Sample records for galerkin least-squares solutions

  1. Stochastic Least-Squares Petrov--Galerkin Method for Parameterized Linear Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kookjin; Carlberg, Kevin; Elman, Howard C.

    Here, we consider the numerical solution of parameterized linear systems where the system matrix, the solution, and the right-hand side are parameterized by a set of uncertain input parameters. We explore spectral methods in which the solutions are approximated in a chosen finite-dimensional subspace. It has been shown that the stochastic Galerkin projection technique fails to minimize any measure of the solution error. As a remedy for this, we propose a novel stochatic least-squares Petrov--Galerkin (LSPG) method. The proposed method is optimal in the sense that it produces the solution that minimizes a weightedmore » $$\\ell^2$$-norm of the residual over all solutions in a given finite-dimensional subspace. Moreover, the method can be adapted to minimize the solution error in different weighted $$\\ell^2$$-norms by simply applying a weighting function within the least-squares formulation. In addition, a goal-oriented seminorm induced by an output quantity of interest can be minimized by defining a weighting function as a linear functional of the solution. We establish optimality and error bounds for the proposed method, and extensive numerical experiments show that the weighted LSPG method outperforms other spectral methods in minimizing corresponding target weighted norms.« less

  2. Comparison between results of solution of Burgers' equation and Laplace's equation by Galerkin and least-square finite element methods

    NASA Astrophysics Data System (ADS)

    Adib, Arash; Poorveis, Davood; Mehraban, Farid

    2018-03-01

    In this research, two equations are considered as examples of hyperbolic and elliptic equations. In addition, two finite element methods are applied for solving of these equations. The purpose of this research is the selection of suitable method for solving each of two equations. Burgers' equation is a hyperbolic equation. This equation is a pure advection (without diffusion) equation. This equation is one-dimensional and unsteady. A sudden shock wave is introduced to the model. This wave moves without deformation. In addition, Laplace's equation is an elliptical equation. This equation is steady and two-dimensional. The solution of Laplace's equation in an earth dam is considered. By solution of Laplace's equation, head pressure and the value of seepage in the directions X and Y are calculated in different points of earth dam. At the end, water table is shown in the earth dam. For Burgers' equation, least-square method can show movement of wave with oscillation but Galerkin method can not show it correctly (the best method for solving of the Burgers' equation is discrete space by least-square finite element method and discrete time by forward difference.). For Laplace's equation, Galerkin and least square methods can show water table correctly in earth dam.

  3. Galerkin v. least-squares Petrov–Galerkin projection in nonlinear model reduction

    DOE PAGES

    Carlberg, Kevin Thomas; Barone, Matthew F.; Antil, Harbir

    2016-10-20

    Least-squares Petrov–Galerkin (LSPG) model-reduction techniques such as the Gauss–Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible flow problems where standard Galerkin techniques have failed. Furthermore, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform optimal projection associated with residual minimization at the time-continuous level, while LSPG techniques do so at the time-discrete level. This work provides a detailed theoretical and computational comparison of the two techniques for two common classes of timemore » integrators: linear multistep schemes and Runge–Kutta schemes. We present a number of new findings, including conditions under which the LSPG ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and computationally that decreasing the time step does not necessarily decrease the error for the LSPG ROM; instead, the time step should be ‘matched’ to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible-flow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the LSPG reduced-order model by an order of magnitude.« less

  4. Galerkin v. least-squares Petrov–Galerkin projection in nonlinear model reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlberg, Kevin Thomas; Barone, Matthew F.; Antil, Harbir

    Least-squares Petrov–Galerkin (LSPG) model-reduction techniques such as the Gauss–Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible flow problems where standard Galerkin techniques have failed. Furthermore, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform optimal projection associated with residual minimization at the time-continuous level, while LSPG techniques do so at the time-discrete level. This work provides a detailed theoretical and computational comparison of the two techniques for two common classes of timemore » integrators: linear multistep schemes and Runge–Kutta schemes. We present a number of new findings, including conditions under which the LSPG ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and computationally that decreasing the time step does not necessarily decrease the error for the LSPG ROM; instead, the time step should be ‘matched’ to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible-flow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the LSPG reduced-order model by an order of magnitude.« less

  5. A weak Galerkin least-squares finite element method for div-curl systems

    NASA Astrophysics Data System (ADS)

    Li, Jichun; Ye, Xiu; Zhang, Shangyou

    2018-06-01

    In this paper, we introduce a weak Galerkin least-squares method for solving div-curl problem. This finite element method leads to a symmetric positive definite system and has the flexibility to work with general meshes such as hybrid mesh, polytopal mesh and mesh with hanging nodes. Error estimates of the finite element solution are derived. The numerical examples demonstrate the robustness and flexibility of the proposed method.

  6. A Least-Squares-Based Weak Galerkin Finite Element Method for Second Order Elliptic Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Lin; Wang, Junping; Ye, Xiu

    Here, in this article, we introduce a least-squares-based weak Galerkin finite element method for the second order elliptic equation. This new method is shown to provide very accurate numerical approximations for both the primal and the flux variables. In contrast to other existing least-squares finite element methods, this new method allows us to use discontinuous approximating functions on finite element partitions consisting of arbitrary polygon/polyhedron shapes. We also develop a Schur complement algorithm for the resulting discretization problem by eliminating all the unknowns that represent the solution information in the interior of each element. Optimal order error estimates for bothmore » the primal and the flux variables are established. An extensive set of numerical experiments are conducted to demonstrate the robustness, reliability, flexibility, and accuracy of the least-squares-based weak Galerkin finite element method. Finally, the numerical examples cover a wide range of applied problems, including singularly perturbed reaction-diffusion equations and the flow of fluid in porous media with strong anisotropy and heterogeneity.« less

  7. A Least-Squares-Based Weak Galerkin Finite Element Method for Second Order Elliptic Equations

    DOE PAGES

    Mu, Lin; Wang, Junping; Ye, Xiu

    2017-08-17

    Here, in this article, we introduce a least-squares-based weak Galerkin finite element method for the second order elliptic equation. This new method is shown to provide very accurate numerical approximations for both the primal and the flux variables. In contrast to other existing least-squares finite element methods, this new method allows us to use discontinuous approximating functions on finite element partitions consisting of arbitrary polygon/polyhedron shapes. We also develop a Schur complement algorithm for the resulting discretization problem by eliminating all the unknowns that represent the solution information in the interior of each element. Optimal order error estimates for bothmore » the primal and the flux variables are established. An extensive set of numerical experiments are conducted to demonstrate the robustness, reliability, flexibility, and accuracy of the least-squares-based weak Galerkin finite element method. Finally, the numerical examples cover a wide range of applied problems, including singularly perturbed reaction-diffusion equations and the flow of fluid in porous media with strong anisotropy and heterogeneity.« less

  8. A Galerkin least squares approach to viscoelastic flow.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Rekha R.; Schunk, Peter Randall

    2015-10-01

    A Galerkin/least-squares stabilization technique is applied to a discrete Elastic Viscous Stress Splitting formulation of for viscoelastic flow. From this, a possible viscoelastic stabilization method is proposed. This method is tested with the flow of an Oldroyd-B fluid past a rigid cylinder, where it is found to produce inaccurate drag coefficients. Furthermore, it fails for relatively low Weissenberg number indicating it is not suited for use as a general algorithm. In addition, a decoupled approach is used as a way separating the constitutive equation from the rest of the system. A Pressure Poisson equation is used when the velocity andmore » pressure are sought to be decoupled, but this fails to produce a solution when inflow/outflow boundaries are considered. However, a coupled pressure-velocity equation with a decoupled constitutive equation is successful for the flow past a rigid cylinder and seems to be suitable as a general-use algorithm.« less

  9. Space-time least-squares Petrov-Galerkin projection in nonlinear model reduction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Youngsoo; Carlberg, Kevin Thomas

    Our work proposes a space-time least-squares Petrov-Galerkin (ST-LSPG) projection method for model reduction of nonlinear dynamical systems. In contrast to typical nonlinear model-reduction methods that first apply Petrov-Galerkin projection in the spatial dimension and subsequently apply time integration to numerically resolve the resulting low-dimensional dynamical system, the proposed method applies projection in space and time simultaneously. To accomplish this, the method first introduces a low-dimensional space-time trial subspace, which can be obtained by computing tensor decompositions of state-snapshot data. The method then computes discrete-optimal approximations in this space-time trial subspace by minimizing the residual arising after time discretization over allmore » space and time in a weighted ℓ 2-norm. This norm can be de ned to enable complexity reduction (i.e., hyper-reduction) in time, which leads to space-time collocation and space-time GNAT variants of the ST-LSPG method. Advantages of the approach relative to typical spatial-projection-based nonlinear model reduction methods such as Galerkin projection and least-squares Petrov-Galerkin projection include: (1) a reduction of both the spatial and temporal dimensions of the dynamical system, (2) the removal of spurious temporal modes (e.g., unstable growth) from the state space, and (3) error bounds that exhibit slower growth in time. Numerical examples performed on model problems in fluid dynamics demonstrate the ability of the method to generate orders-of-magnitude computational savings relative to spatial-projection-based reduced-order models without sacrificing accuracy.« less

  10. Application of the Galerkin/least-squares formulation to the analysis of hypersonic flows. II - Flow past a double ellipse

    NASA Technical Reports Server (NTRS)

    Chalot, F.; Hughes, T. J. R.; Johan, Z.; Shakib, F.

    1991-01-01

    A finite element method for the compressible Navier-Stokes equations is introduced. The discretization is based on entropy variables. The methodology is developed within the framework of a Galerkin/least-squares formulation to which a discontinuity-capturing operator is added. Results for four test cases selected among those of the Workshop on Hypersonic Flows for Reentry Problems are presented.

  11. A new family of stable elements for the Stokes problem based on a mixed Galerkin/least-squares finite element formulation

    NASA Technical Reports Server (NTRS)

    Franca, Leopoldo P.; Loula, Abimael F. D.; Hughes, Thomas J. R.; Miranda, Isidoro

    1989-01-01

    Adding to the classical Hellinger-Reissner formulation, a residual form of the equilibrium equation, a new Galerkin/least-squares finite element method is derived. It fits within the framework of a mixed finite element method and is stable for rather general combinations of stress and velocity interpolations, including equal-order discontinuous stress and continuous velocity interpolations which are unstable within the Galerkin approach. Error estimates are presented based on a generalization of the Babuska-Brezzi theory. Numerical results (not presented herein) have confirmed these estimates as well as the good accuracy and stability of the method.

  12. Application of the Galerkin/least-squares formulation to the analysis of hypersonic flows. I - Flow over a two-dimensional ramp

    NASA Technical Reports Server (NTRS)

    Chalot, F.; Hughes, T. J. R.; Johan, Z.; Shakib, F.

    1991-01-01

    An FEM for the compressible Navier-Stokes equations is introduced. The discretization is based on entropy variables. The methodology is developed within the framework of a Galerkin/least-squares formulation to which a discontinuity-capturing operator is added. Results for three test cases selected among those of the Workshop on Hypersonic Flows for Reentry Problems are presented.

  13. A new finite element formulation for computational fluid dynamics. IX - Fourier analysis of space-time Galerkin/least-squares algorithms

    NASA Technical Reports Server (NTRS)

    Shakib, Farzin; Hughes, Thomas J. R.

    1991-01-01

    A Fourier stability and accuracy analysis of the space-time Galerkin/least-squares method as applied to a time-dependent advective-diffusive model problem is presented. Two time discretizations are studied: a constant-in-time approximation and a linear-in-time approximation. Corresponding space-time predictor multi-corrector algorithms are also derived and studied. The behavior of the space-time algorithms is compared to algorithms based on semidiscrete formulations.

  14. Non-oscillatory and non-diffusive solution of convection problems by the iteratively reweighted least-squares finite element method

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan

    1993-01-01

    A comparative description is presented for the least-squares FEM (LSFEM) for 2D steady-state pure convection problems. In addition to exhibiting better control of the streamline derivative than the streamline upwinding Petrov-Galerkin method, numerical convergence rates are obtained which show the LSFEM to be virtually optimal. The LSFEM is used as a framework for an iteratively reweighted LSFEM yielding nonoscillatory and nondiffusive solutions for problems with contact discontinuities; this method is shown to convect contact discontinuities without error when using triangular and bilinear elements.

  15. Solution of a Complex Least Squares Problem with Constrained Phase.

    PubMed

    Bydder, Mark

    2010-12-30

    The least squares solution of a complex linear equation is in general a complex vector with independent real and imaginary parts. In certain applications in magnetic resonance imaging, a solution is desired such that each element has the same phase. A direct method for obtaining the least squares solution to the phase constrained problem is described.

  16. A Stochastic Total Least Squares Solution of Adaptive Filtering Problem

    PubMed Central

    Ahmad, Noor Atinah

    2014-01-01

    An efficient and computationally linear algorithm is derived for total least squares solution of adaptive filtering problem, when both input and output signals are contaminated by noise. The proposed total least mean squares (TLMS) algorithm is designed by recursively computing an optimal solution of adaptive TLS problem by minimizing instantaneous value of weighted cost function. Convergence analysis of the algorithm is given to show the global convergence of the proposed algorithm, provided that the stepsize parameter is appropriately chosen. The TLMS algorithm is computationally simpler than the other TLS algorithms and demonstrates a better performance as compared with the least mean square (LMS) and normalized least mean square (NLMS) algorithms. It provides minimum mean square deviation by exhibiting better convergence in misalignment for unknown system identification under noisy inputs. PMID:24688412

  17. Optimal least-squares finite element method for elliptic problems

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Povinelli, Louis A.

    1991-01-01

    An optimal least squares finite element method is proposed for two dimensional and three dimensional elliptic problems and its advantages are discussed over the mixed Galerkin method and the usual least squares finite element method. In the usual least squares finite element method, the second order equation (-Delta x (Delta u) + u = f) is recast as a first order system (-Delta x p + u = f, Delta u - p = 0). The error analysis and numerical experiment show that, in this usual least squares finite element method, the rate of convergence for flux p is one order lower than optimal. In order to get an optimal least squares method, the irrotationality Delta x p = 0 should be included in the first order system.

  18. Least-squares finite element solution of 3D incompressible Navier-Stokes problems

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Lin, Tsung-Liang; Povinelli, Louis A.

    1992-01-01

    Although significant progress has been made in the finite element solution of incompressible viscous flow problems. Development of more efficient methods is still needed before large-scale computation of 3D problems becomes feasible. This paper presents such a development. The most popular finite element method for the solution of incompressible Navier-Stokes equations is the classic Galerkin mixed method based on the velocity-pressure formulation. The mixed method requires the use of different elements to interpolate the velocity and the pressure in order to satisfy the Ladyzhenskaya-Babuska-Brezzi (LBB) condition for the existence of the solution. On the other hand, due to the lack of symmetry and positive definiteness of the linear equations arising from the mixed method, iterative methods for the solution of linear systems have been hard to come by. Therefore, direct Gaussian elimination has been considered the only viable method for solving the systems. But, for three-dimensional problems, the computer resources required by a direct method become prohibitively large. In order to overcome these difficulties, a least-squares finite element method (LSFEM) has been developed. This method is based on the first-order velocity-pressure-vorticity formulation. In this paper the LSFEM is extended for the solution of three-dimensional incompressible Navier-Stokes equations written in the following first-order quasi-linear velocity-pressure-vorticity formulation.

  19. Domain Decomposition Algorithms for First-Order System Least Squares Methods

    NASA Technical Reports Server (NTRS)

    Pavarino, Luca F.

    1996-01-01

    Least squares methods based on first-order systems have been recently proposed and analyzed for second-order elliptic equations and systems. They produce symmetric and positive definite discrete systems by using standard finite element spaces, which are not required to satisfy the inf-sup condition. In this paper, several domain decomposition algorithms for these first-order least squares methods are studied. Some representative overlapping and substructuring algorithms are considered in their additive and multiplicative variants. The theoretical and numerical results obtained show that the classical convergence bounds (on the iteration operator) for standard Galerkin discretizations are also valid for least squares methods.

  20. On estimating gravity anomalies: A comparison of least squares collocation with least squares techniques

    NASA Technical Reports Server (NTRS)

    Argentiero, P.; Lowrey, B.

    1976-01-01

    The least squares collocation algorithm for estimating gravity anomalies from geodetic data is shown to be an application of the well known regression equations which provide the mean and covariance of a random vector (gravity anomalies) given a realization of a correlated random vector (geodetic data). It is also shown that the collocation solution for gravity anomalies is equivalent to the conventional least-squares-Stokes' function solution when the conventional solution utilizes properly weighted zero a priori estimates. The mathematical and physical assumptions underlying the least squares collocation estimator are described, and its numerical properties are compared with the numerical properties of the conventional least squares estimator.

  1. A CLASS OF RECONSTRUCTED DISCONTINUOUS GALERKIN METHODS IN COMPUTATIONAL FLUID DYNAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong Luo; Yidong Xia; Robert Nourgaliev

    2011-05-01

    A class of reconstructed discontinuous Galerkin (DG) methods is presented to solve compressible flow problems on arbitrary grids. The idea is to combine the efficiency of the reconstruction methods in finite volume methods and the accuracy of the DG methods to obtain a better numerical algorithm in computational fluid dynamics. The beauty of the resulting reconstructed discontinuous Galerkin (RDG) methods is that they provide a unified formulation for both finite volume and DG methods, and contain both classical finite volume and standard DG methods as two special cases of the RDG methods, and thus allow for a direct efficiency comparison.more » Both Green-Gauss and least-squares reconstruction methods and a least-squares recovery method are presented to obtain a quadratic polynomial representation of the underlying linear discontinuous Galerkin solution on each cell via a so-called in-cell reconstruction process. The devised in-cell reconstruction is aimed to augment the accuracy of the discontinuous Galerkin method by increasing the order of the underlying polynomial solution. These three reconstructed discontinuous Galerkin methods are used to compute a variety of compressible flow problems on arbitrary meshes to assess their accuracy. The numerical experiments demonstrate that all three reconstructed discontinuous Galerkin methods can significantly improve the accuracy of the underlying second-order DG method, although the least-squares reconstructed DG method provides the best performance in terms of both accuracy, efficiency, and robustness.« less

  2. Fast Algorithms for Structured Least Squares and Total Least Squares Problems

    PubMed Central

    Kalsi, Anoop; O’Leary, Dianne P.

    2006-01-01

    We consider the problem of solving least squares problems involving a matrix M of small displacement rank with respect to two matrices Z1 and Z2. We develop formulas for the generators of the matrix M HM in terms of the generators of M and show that the Cholesky factorization of the matrix M HM can be computed quickly if Z1 is close to unitary and Z2 is triangular and nilpotent. These conditions are satisfied for several classes of matrices, including Toeplitz, block Toeplitz, Hankel, and block Hankel, and for matrices whose blocks have such structure. Fast Cholesky factorization enables fast solution of least squares problems, total least squares problems, and regularized total least squares problems involving these classes of matrices. PMID:27274922

  3. Fast Algorithms for Structured Least Squares and Total Least Squares Problems.

    PubMed

    Kalsi, Anoop; O'Leary, Dianne P

    2006-01-01

    We consider the problem of solving least squares problems involving a matrix M of small displacement rank with respect to two matrices Z 1 and Z 2. We develop formulas for the generators of the matrix M (H) M in terms of the generators of M and show that the Cholesky factorization of the matrix M (H) M can be computed quickly if Z 1 is close to unitary and Z 2 is triangular and nilpotent. These conditions are satisfied for several classes of matrices, including Toeplitz, block Toeplitz, Hankel, and block Hankel, and for matrices whose blocks have such structure. Fast Cholesky factorization enables fast solution of least squares problems, total least squares problems, and regularized total least squares problems involving these classes of matrices.

  4. The covariance matrix for the solution vector of an equality-constrained least-squares problem

    NASA Technical Reports Server (NTRS)

    Lawson, C. L.

    1976-01-01

    Methods are given for computing the covariance matrix for the solution vector of an equality-constrained least squares problem. The methods are matched to the solution algorithms given in the book, 'Solving Least Squares Problems.'

  5. On estimating gravity anomalies - A comparison of least squares collocation with conventional least squares techniques

    NASA Technical Reports Server (NTRS)

    Argentiero, P.; Lowrey, B.

    1977-01-01

    The least squares collocation algorithm for estimating gravity anomalies from geodetic data is shown to be an application of the well known regression equations which provide the mean and covariance of a random vector (gravity anomalies) given a realization of a correlated random vector (geodetic data). It is also shown that the collocation solution for gravity anomalies is equivalent to the conventional least-squares-Stokes' function solution when the conventional solution utilizes properly weighted zero a priori estimates. The mathematical and physical assumptions underlying the least squares collocation estimator are described.

  6. Preprocessing Inconsistent Linear System for a Meaningful Least Squares Solution

    NASA Technical Reports Server (NTRS)

    Sen, Syamal K.; Shaykhian, Gholam Ali

    2011-01-01

    Mathematical models of many physical/statistical problems are systems of linear equations. Due to measurement and possible human errors/mistakes in modeling/data, as well as due to certain assumptions to reduce complexity, inconsistency (contradiction) is injected into the model, viz. the linear system. While any inconsistent system irrespective of the degree of inconsistency has always a least-squares solution, one needs to check whether an equation is too much inconsistent or, equivalently too much contradictory. Such an equation will affect/distort the least-squares solution to such an extent that renders it unacceptable/unfit to be used in a real-world application. We propose an algorithm which (i) prunes numerically redundant linear equations from the system as these do not add any new information to the model, (ii) detects contradictory linear equations along with their degree of contradiction (inconsistency index), (iii) removes those equations presumed to be too contradictory, and then (iv) obtain the minimum norm least-squares solution of the acceptably inconsistent reduced linear system. The algorithm presented in Matlab reduces the computational and storage complexities and also improves the accuracy of the solution. It also provides the necessary warning about the existence of too much contradiction in the model. In addition, we suggest a thorough relook into the mathematical modeling to determine the reason why unacceptable contradiction has occurred thus prompting us to make necessary corrections/modifications to the models - both mathematical and, if necessary, physical.

  7. 2-D weighted least-squares phase unwrapping

    DOEpatents

    Ghiglia, Dennis C.; Romero, Louis A.

    1995-01-01

    Weighted values of interferometric signals are unwrapped by determining the least squares solution of phase unwrapping for unweighted values of the interferometric signals; and then determining the least squares solution of phase unwrapping for weighted values of the interferometric signals by preconditioned conjugate gradient methods using the unweighted solutions as preconditioning values. An output is provided that is representative of the least squares solution of phase unwrapping for weighted values of the interferometric signals.

  8. 2-D weighted least-squares phase unwrapping

    DOEpatents

    Ghiglia, D.C.; Romero, L.A.

    1995-06-13

    Weighted values of interferometric signals are unwrapped by determining the least squares solution of phase unwrapping for unweighted values of the interferometric signals; and then determining the least squares solution of phase unwrapping for weighted values of the interferometric signals by preconditioned conjugate gradient methods using the unweighted solutions as preconditioning values. An output is provided that is representative of the least squares solution of phase unwrapping for weighted values of the interferometric signals. 6 figs.

  9. The moving-least-squares-particle hydrodynamics method (MLSPH)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dilts, G.

    1997-12-31

    An enhancement of the smooth-particle hydrodynamics (SPH) method has been developed using the moving-least-squares (MLS) interpolants of Lancaster and Salkauskas which simultaneously relieves the method of several well-known undesirable behaviors, including spurious boundary effects, inaccurate strain and rotation rates, pressure spikes at impact boundaries, and the infamous tension instability. The classical SPH method is derived in a novel manner by means of a Galerkin approximation applied to the Lagrangian equations of motion for continua using as basis functions the SPH kernel function multiplied by the particle volume. This derivation is then modified by simply substituting the MLS interpolants for themore » SPH Galerkin basis, taking care to redefine the particle volume and mass appropriately. The familiar SPH kernel approximation is now equivalent to a colocation-Galerkin method. Both classical conservative and recent non-conservative formulations of SPH can be derived and emulated. The non-conservative forms can be made conservative by adding terms that are zero within the approximation at the expense of boundary-value considerations. The familiar Monaghan viscosity is used. Test calculations of uniformly expanding fluids, the Swegle example, spinning solid disks, impacting bars, and spherically symmetric flow illustrate the superiority of the technique over SPH. In all cases it is seen that the marvelous ability of the MLS interpolants to add up correctly everywhere civilizes the noisy, unpredictable nature of SPH. Being a relatively minor perturbation of the SPH method, it is easily retrofitted into existing SPH codes. On the down side, computational expense at this point is significant, the Monaghan viscosity undoes the contribution of the MLS interpolants, and one-point quadrature (colocation) is not accurate enough. Solutions to these difficulties are being pursued vigorously.« less

  10. Theoretical study of the incompressible Navier-Stokes equations by the least-squares method

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Loh, Ching Y.; Povinelli, Louis A.

    1994-01-01

    Usually the theoretical analysis of the Navier-Stokes equations is conducted via the Galerkin method which leads to difficult saddle-point problems. This paper demonstrates that the least-squares method is a useful alternative tool for the theoretical study of partial differential equations since it leads to minimization problems which can often be treated by an elementary technique. The principal part of the Navier-Stokes equations in the first-order velocity-pressure-vorticity formulation consists of two div-curl systems, so the three-dimensional div-curl system is thoroughly studied at first. By introducing a dummy variable and by using the least-squares method, this paper shows that the div-curl system is properly determined and elliptic, and has a unique solution. The same technique then is employed to prove that the Stokes equations are properly determined and elliptic, and that four boundary conditions on a fixed boundary are required for three-dimensional problems. This paper also shows that under four combinations of non-standard boundary conditions the solution of the Stokes equations is unique. This paper emphasizes the application of the least-squares method and the div-curl method to derive a high-order version of differential equations and additional boundary conditions. In this paper, an elementary method (integration by parts) is used to prove Friedrichs' inequalities related to the div and curl operators which play an essential role in the analysis.

  11. Preprocessing in Matlab Inconsistent Linear System for a Meaningful Least Squares Solution

    NASA Technical Reports Server (NTRS)

    Sen, Symal K.; Shaykhian, Gholam Ali

    2011-01-01

    Mathematical models of many physical/statistical problems are systems of linear equations Due to measurement and possible human errors/mistakes in modeling/data, as well as due to certain assumptions to reduce complexity, inconsistency (contradiction) is injected into the model, viz. the linear system. While any inconsistent system irrespective of the degree of inconsistency has always a least-squares solution, one needs to check whether an equation is too much inconsistent or, equivalently too much contradictory. Such an equation will affect/distort the least-squares solution to such an extent that renders it unacceptable/unfit to be used in a real-world application. We propose an algorithm which (i) prunes numerically redundant linear equations from the system as these do not add any new information to the model, (ii) detects contradictory linear equations along with their degree of contradiction (inconsistency index), (iii) removes those equations presumed to be too contradictory, and then (iv) obtain the . minimum norm least-squares solution of the acceptably inconsistent reduced linear system. The algorithm presented in Matlab reduces the computational and storage complexities and also improves the accuracy of the solution. It also provides the necessary warning about the existence of too much contradiction in the model. In addition, we suggest a thorough relook into the mathematical modeling to determine the reason why unacceptable contradiction has occurred thus prompting us to make necessary corrections/modifications to the models - both mathematical and, if necessary, physical.

  12. Difficulty Factors, Distribution Effects, and the Least Squares Simplex Data Matrix Solution

    ERIC Educational Resources Information Center

    Ten Berge, Jos M. F.

    1972-01-01

    In the present article it is argued that the Least Squares Simplex Data Matrix Solution does not deal adequately with difficulty factors inasmuch as the theoretical foundation is insufficient. (Author/CB)

  13. Updating QR factorization procedure for solution of linear least squares problem with equality constraints.

    PubMed

    Zeb, Salman; Yousaf, Muhammad

    2017-01-01

    In this article, we present a QR updating procedure as a solution approach for linear least squares problem with equality constraints. We reduce the constrained problem to unconstrained linear least squares and partition it into a small subproblem. The QR factorization of the subproblem is calculated and then we apply updating techniques to its upper triangular factor R to obtain its solution. We carry out the error analysis of the proposed algorithm to show that it is backward stable. We also illustrate the implementation and accuracy of the proposed algorithm by providing some numerical experiments with particular emphasis on dense problems.

  14. Least-squares model-based halftoning

    NASA Astrophysics Data System (ADS)

    Pappas, Thrasyvoulos N.; Neuhoff, David L.

    1992-08-01

    A least-squares model-based approach to digital halftoning is proposed. It exploits both a printer model and a model for visual perception. It attempts to produce an 'optimal' halftoned reproduction, by minimizing the squared error between the response of the cascade of the printer and visual models to the binary image and the response of the visual model to the original gray-scale image. Conventional methods, such as clustered ordered dither, use the properties of the eye only implicitly, and resist printer distortions at the expense of spatial and gray-scale resolution. In previous work we showed that our printer model can be used to modify error diffusion to account for printer distortions. The modified error diffusion algorithm has better spatial and gray-scale resolution than conventional techniques, but produces some well known artifacts and asymmetries because it does not make use of an explicit eye model. Least-squares model-based halftoning uses explicit eye models and relies on printer models that predict distortions and exploit them to increase, rather than decrease, both spatial and gray-scale resolution. We have shown that the one-dimensional least-squares problem, in which each row or column of the image is halftoned independently, can be implemented with the Viterbi's algorithm. Unfortunately, no closed form solution can be found in two dimensions. The two-dimensional least squares solution is obtained by iterative techniques. Experiments show that least-squares model-based halftoning produces more gray levels and better spatial resolution than conventional techniques. We also show that the least- squares approach eliminates the problems associated with error diffusion. Model-based halftoning can be especially useful in transmission of high quality documents using high fidelity gray-scale image encoders. As we have shown, in such cases halftoning can be performed at the receiver, just before printing. Apart from coding efficiency, this approach

  15. A fast least-squares algorithm for population inference

    PubMed Central

    2013-01-01

    Background Population inference is an important problem in genetics used to remove population stratification in genome-wide association studies and to detect migration patterns or shared ancestry. An individual’s genotype can be modeled as a probabilistic function of ancestral population memberships, Q, and the allele frequencies in those populations, P. The parameters, P and Q, of this binomial likelihood model can be inferred using slow sampling methods such as Markov Chain Monte Carlo methods or faster gradient based approaches such as sequential quadratic programming. This paper proposes a least-squares simplification of the binomial likelihood model motivated by a Euclidean interpretation of the genotype feature space. This results in a faster algorithm that easily incorporates the degree of admixture within the sample of individuals and improves estimates without requiring trial-and-error tuning. Results We show that the expected value of the least-squares solution across all possible genotype datasets is equal to the true solution when part of the problem has been solved, and that the variance of the solution approaches zero as its size increases. The Least-squares algorithm performs nearly as well as Admixture for these theoretical scenarios. We compare least-squares, Admixture, and FRAPPE for a variety of problem sizes and difficulties. For particularly hard problems with a large number of populations, small number of samples, or greater degree of admixture, least-squares performs better than the other methods. On simulated mixtures of real population allele frequencies from the HapMap project, Admixture estimates sparsely mixed individuals better than Least-squares. The least-squares approach, however, performs within 1.5% of the Admixture error. On individual genotypes from the HapMap project, Admixture and least-squares perform qualitatively similarly and within 1.2% of each other. Significantly, the least-squares approach nearly always converges 1

  16. A fast least-squares algorithm for population inference.

    PubMed

    Parry, R Mitchell; Wang, May D

    2013-01-23

    Population inference is an important problem in genetics used to remove population stratification in genome-wide association studies and to detect migration patterns or shared ancestry. An individual's genotype can be modeled as a probabilistic function of ancestral population memberships, Q, and the allele frequencies in those populations, P. The parameters, P and Q, of this binomial likelihood model can be inferred using slow sampling methods such as Markov Chain Monte Carlo methods or faster gradient based approaches such as sequential quadratic programming. This paper proposes a least-squares simplification of the binomial likelihood model motivated by a Euclidean interpretation of the genotype feature space. This results in a faster algorithm that easily incorporates the degree of admixture within the sample of individuals and improves estimates without requiring trial-and-error tuning. We show that the expected value of the least-squares solution across all possible genotype datasets is equal to the true solution when part of the problem has been solved, and that the variance of the solution approaches zero as its size increases. The Least-squares algorithm performs nearly as well as Admixture for these theoretical scenarios. We compare least-squares, Admixture, and FRAPPE for a variety of problem sizes and difficulties. For particularly hard problems with a large number of populations, small number of samples, or greater degree of admixture, least-squares performs better than the other methods. On simulated mixtures of real population allele frequencies from the HapMap project, Admixture estimates sparsely mixed individuals better than Least-squares. The least-squares approach, however, performs within 1.5% of the Admixture error. On individual genotypes from the HapMap project, Admixture and least-squares perform qualitatively similarly and within 1.2% of each other. Significantly, the least-squares approach nearly always converges 1.5- to 6-times faster

  17. An improved conjugate gradient scheme to the solution of least squares SVM.

    PubMed

    Chu, Wei; Ong, Chong Jin; Keerthi, S Sathiya

    2005-03-01

    The least square support vector machines (LS-SVM) formulation corresponds to the solution of a linear system of equations. Several approaches to its numerical solutions have been proposed in the literature. In this letter, we propose an improved method to the numerical solution of LS-SVM and show that the problem can be solved using one reduced system of linear equations. Compared with the existing algorithm for LS-SVM, the approach used in this letter is about twice as efficient. Numerical results using the proposed method are provided for comparisons with other existing algorithms.

  18. Fast Combinatorial Algorithm for the Solution of Linearly Constrained Least Squares Problems

    DOEpatents

    Van Benthem, Mark H.; Keenan, Michael R.

    2008-11-11

    A fast combinatorial algorithm can significantly reduce the computational burden when solving general equality and inequality constrained least squares problems with large numbers of observation vectors. The combinatorial algorithm provides a mathematically rigorous solution and operates at great speed by reorganizing the calculations to take advantage of the combinatorial nature of the problems to be solved. The combinatorial algorithm exploits the structure that exists in large-scale problems in order to minimize the number of arithmetic operations required to obtain a solution.

  19. Confidence Region of Least Squares Solution for Single-Arc Observations

    NASA Astrophysics Data System (ADS)

    Principe, G.; Armellin, R.; Lewis, H.

    2016-09-01

    The total number of active satellites, rocket bodies, and debris larger than 10 cm is currently about 20,000. Considering all resident space objects larger than 1 cm this rises to an estimated minimum of 500,000 objects. Latest generation sensor networks will be able to detect small-size objects, producing millions of observations per day. Due to observability constraints it is likely that long gaps between observations will occur for small objects. This requires to determine the space object (SO) orbit and to accurately describe the associated uncertainty when observations are acquired on a single arc. The aim of this work is to revisit the classical least squares method taking advantage of the high order Taylor expansions enabled by differential algebra. In particular, the high order expansion of the residuals with respect to the state is used to implement an arbitrary order least squares solver, avoiding the typical approximations of differential correction methods. In addition, the same expansions are used to accurately characterize the confidence region of the solution, going beyond the classical Gaussian distributions. The properties and performances of the proposed method are discussed using optical observations of objects in LEO, HEO, and GEO.

  20. Weighted Least Squares Fitting Using Ordinary Least Squares Algorithms.

    ERIC Educational Resources Information Center

    Kiers, Henk A. L.

    1997-01-01

    A general approach for fitting a model to a data matrix by weighted least squares (WLS) is studied. The approach consists of iteratively performing steps of existing algorithms for ordinary least squares fitting of the same model and is based on maximizing a function that majorizes WLS loss function. (Author/SLD)

  1. Linear Least Squares for Correlated Data

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1988-01-01

    Throughout the literature authors have consistently discussed the suspicion that regression results were less than satisfactory when the independent variables were correlated. Camm, Gulledge, and Womer, and Womer and Marcotte provide excellent applied examples of these concerns. Many authors have obtained partial solutions for this problem as discussed by Womer and Marcotte and Wonnacott and Wonnacott, which result in generalized least squares algorithms to solve restrictive cases. This paper presents a simple but relatively general multivariate method for obtaining linear least squares coefficients which are free of the statistical distortion created by correlated independent variables.

  2. A Reconstructed Discontinuous Galerkin Method for the Euler Equations on Arbitrary Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong Luo; Luqing Luo; Robert Nourgaliev

    2012-11-01

    A reconstruction-based discontinuous Galerkin (RDG(P1P2)) method, a variant of P1P2 method, is presented for the solution of the compressible Euler equations on arbitrary grids. In this method, an in-cell reconstruction, designed to enhance the accuracy of the discontinuous Galerkin method, is used to obtain a quadratic polynomial solution (P2) from the underlying linear polynomial (P1) discontinuous Galerkin solution using a least-squares method. The stencils used in the reconstruction involve only the von Neumann neighborhood (face-neighboring cells) and are compact and consistent with the underlying DG method. The developed RDG method is used to compute a variety of flow problems onmore » arbitrary meshes to demonstrate its accuracy, efficiency, robustness, and versatility. The numerical results indicate that this RDG(P1P2) method is third-order accurate, and outperforms the third-order DG method (DG(P2)) in terms of both computing costs and storage requirements.« less

  3. Meshless Local Petrov-Galerkin Method for Bending Problems

    NASA Technical Reports Server (NTRS)

    Phillips, Dawn R.; Raju, Ivatury S.

    2002-01-01

    Recent literature shows extensive research work on meshless or element-free methods as alternatives to the versatile Finite Element Method. One such meshless method is the Meshless Local Petrov-Galerkin (MLPG) method. In this report, the method is developed for bending of beams - C1 problems. A generalized moving least squares (GMLS) interpolation is used to construct the trial functions, and spline and power weight functions are used as the test functions. The method is applied to problems for which exact solutions are available to evaluate its effectiveness. The accuracy of the method is demonstrated for problems with load discontinuities and continuous beam problems. A Petrov-Galerkin implementation of the method is shown to greatly reduce computational time and effort and is thus preferable over the previously developed Galerkin approach. The MLPG method for beam problems yields very accurate deflections and slopes and continuous moment and shear forces without the need for elaborate post-processing techniques.

  4. Least Squares Procedures.

    ERIC Educational Resources Information Center

    Hester, Yvette

    Least squares methods are sophisticated mathematical curve fitting procedures used in all classical parametric methods. The linear least squares approximation is most often associated with finding the "line of best fit" or the regression line. Since all statistical analyses are correlational and all classical parametric methods are least…

  5. Least-squares finite element solutions for three-dimensional backward-facing step flow

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Hou, Lin-Jun; Lin, Tsung-Liang

    1993-01-01

    Comprehensive numerical solutions of the steady state incompressible viscous flow over a three-dimensional backward-facing step up to Re equals 800 are presented. The results are obtained by the least-squares finite element method (LSFEM) which is based on the velocity-pressure-vorticity formulation. The computed model is of the same size as that of Armaly's experiment. Three-dimensional phenomena are observed even at low Reynolds number. The calculated values of the primary reattachment length are in good agreement with experimental results.

  6. A high order compact least-squares reconstructed discontinuous Galerkin method for the steady-state compressible flows on hybrid grids

    NASA Astrophysics Data System (ADS)

    Cheng, Jian; Zhang, Fan; Liu, Tiegang

    2018-06-01

    In this paper, a class of new high order reconstructed DG (rDG) methods based on the compact least-squares (CLS) reconstruction [23,24] is developed for simulating the two dimensional steady-state compressible flows on hybrid grids. The proposed method combines the advantages of the DG discretization with the flexibility of the compact least-squares reconstruction, which exhibits its superior potential in enhancing the level of accuracy and reducing the computational cost compared to the underlying DG methods with respect to the same number of degrees of freedom. To be specific, a third-order compact least-squares rDG(p1p2) method and a fourth-order compact least-squares rDG(p2p3) method are developed and investigated in this work. In this compact least-squares rDG method, the low order degrees of freedom are evolved through the underlying DG(p1) method and DG(p2) method, respectively, while the high order degrees of freedom are reconstructed through the compact least-squares reconstruction, in which the constitutive relations are built by requiring the reconstructed polynomial and its spatial derivatives on the target cell to conserve the cell averages and the corresponding spatial derivatives on the face-neighboring cells. The large sparse linear system resulted by the compact least-squares reconstruction can be solved relatively efficient when it is coupled with the temporal discretization in the steady-state simulations. A number of test cases are presented to assess the performance of the high order compact least-squares rDG methods, which demonstrates their potential to be an alternative approach for the high order numerical simulations of steady-state compressible flows.

  7. Phasing via pure crystallographic least squares: an unexpected feature.

    PubMed

    Burla, Maria Cristina; Carrozzini, Benedetta; Cascarano, Giovanni Luca; Giacovazzo, Carmelo; Polidori, Giampiero

    2018-03-01

    Crystallographic least-squares techniques, the main tool for crystal structure refinement of small and medium-size molecules, are for the first time used for ab initio phasing. It is shown that the chief obstacle to such use, the least-squares severe convergence limits, may be overcome by a multi-solution procedure able to progressively recognize and discard model atoms in false positions and to include in the current model new atoms sufficiently close to correct positions. The applications show that the least-squares procedure is able to solve many small structures without the use of important ancillary tools: e.g. no electron-density map is calculated as a support for the least-squares procedure.

  8. Least-Squares Curve-Fitting Program

    NASA Technical Reports Server (NTRS)

    Kantak, Anil V.

    1990-01-01

    Least Squares Curve Fitting program, AKLSQF, easily and efficiently computes polynomial providing least-squares best fit to uniformly spaced data. Enables user to specify tolerable least-squares error in fit or degree of polynomial. AKLSQF returns polynomial and actual least-squares-fit error incurred in operation. Data supplied to routine either by direct keyboard entry or via file. Written for an IBM PC X/AT or compatible using Microsoft's Quick Basic compiler.

  9. Simplified Discontinuous Galerkin Methods for Systems of Conservation Laws with Convex Extension

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    1999-01-01

    Simplified forms of the space-time discontinuous Galerkin (DG) and discontinuous Galerkin least-squares (DGLS) finite element method are developed and analyzed. The new formulations exploit simplifying properties of entropy endowed conservation law systems while retaining the favorable energy properties associated with symmetric variable formulations.

  10. AKLSQF - LEAST SQUARES CURVE FITTING

    NASA Technical Reports Server (NTRS)

    Kantak, A. V.

    1994-01-01

    The Least Squares Curve Fitting program, AKLSQF, computes the polynomial which will least square fit uniformly spaced data easily and efficiently. The program allows the user to specify the tolerable least squares error in the fitting or allows the user to specify the polynomial degree. In both cases AKLSQF returns the polynomial and the actual least squares fit error incurred in the operation. The data may be supplied to the routine either by direct keyboard entry or via a file. AKLSQF produces the least squares polynomial in two steps. First, the data points are least squares fitted using the orthogonal factorial polynomials. The result is then reduced to a regular polynomial using Sterling numbers of the first kind. If an error tolerance is specified, the program starts with a polynomial of degree 1 and computes the least squares fit error. The degree of the polynomial used for fitting is then increased successively until the error criterion specified by the user is met. At every step the polynomial as well as the least squares fitting error is printed to the screen. In general, the program can produce a curve fitting up to a 100 degree polynomial. All computations in the program are carried out under Double Precision format for real numbers and under long integer format for integers to provide the maximum accuracy possible. AKLSQF was written for an IBM PC X/AT or compatible using Microsoft's Quick Basic compiler. It has been implemented under DOS 3.2.1 using 23K of RAM. AKLSQF was developed in 1989.

  11. A Least-Squares Transport Equation Compatible with Voids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Jon; Peterson, Jacob; Morel, Jim

    Standard second-order self-adjoint forms of the transport equation, such as the even-parity, odd-parity, and self-adjoint angular flux equation, cannot be used in voids. Perhaps more important, they experience numerical convergence difficulties in near-voids. Here we present a new form of a second-order self-adjoint transport equation that has an advantage relative to standard forms in that it can be used in voids or near-voids. Our equation is closely related to the standard least-squares form of the transport equation with both equations being applicable in a void and having a nonconservative analytic form. However, unlike the standard least-squares form of the transportmore » equation, our least-squares equation is compatible with source iteration. It has been found that the standard least-squares form of the transport equation with a linear-continuous finite-element spatial discretization has difficulty in the thick diffusion limit. Here we extensively test the 1D slab-geometry version of our scheme with respect to void solutions, spatial convergence rate, and the intermediate and thick diffusion limits. We also define an effective diffusion synthetic acceleration scheme for our discretization. Our conclusion is that our least-squares S n formulation represents an excellent alternative to existing second-order S n transport formulations« less

  12. Using Least Squares to Solve Systems of Equations

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    2016-01-01

    The method of least squares (LS) yields exact solutions for the adjustable parameters when the number of data values n equals the number of parameters "p". This holds also when the fit model consists of "m" different equations and "m = p", which means that LS algorithms can be used to obtain solutions to systems of…

  13. Least-squares collocation meshless approach for radiative heat transfer in absorbing and scattering media

    NASA Astrophysics Data System (ADS)

    Liu, L. H.; Tan, J. Y.

    2007-02-01

    A least-squares collocation meshless method is employed for solving the radiative heat transfer in absorbing, emitting and scattering media. The least-squares collocation meshless method for radiative transfer is based on the discrete ordinates equation. A moving least-squares approximation is applied to construct the trial functions. Except for the collocation points which are used to construct the trial functions, a number of auxiliary points are also adopted to form the total residuals of the problem. The least-squares technique is used to obtain the solution of the problem by minimizing the summation of residuals of all collocation and auxiliary points. Three numerical examples are studied to illustrate the performance of this new solution method. The numerical results are compared with the other benchmark approximate solutions. By comparison, the results show that the least-squares collocation meshless method is efficient, accurate and stable, and can be used for solving the radiative heat transfer in absorbing, emitting and scattering media.

  14. Constrained Least Squares Estimators of Oblique Common Factors.

    ERIC Educational Resources Information Center

    McDonald, Roderick P.

    1981-01-01

    An expression is given for weighted least squares estimators of oblique common factors of factor analyses, constrained to have the same covariance matrix as the factors they estimate. A proof of the uniqueness of the solution is given. (Author/JKS)

  15. Combinatorics of least-squares trees.

    PubMed

    Mihaescu, Radu; Pachter, Lior

    2008-09-09

    A recurring theme in the least-squares approach to phylogenetics has been the discovery of elegant combinatorial formulas for the least-squares estimates of edge lengths. These formulas have proved useful for the development of efficient algorithms, and have also been important for understanding connections among popular phylogeny algorithms. For example, the selection criterion of the neighbor-joining algorithm is now understood in terms of the combinatorial formulas of Pauplin for estimating tree length. We highlight a phylogenetically desirable property that weighted least-squares methods should satisfy, and provide a complete characterization of methods that satisfy the property. The necessary and sufficient condition is a multiplicative four-point condition that the variance matrix needs to satisfy. The proof is based on the observation that the Lagrange multipliers in the proof of the Gauss-Markov theorem are tree-additive. Our results generalize and complete previous work on ordinary least squares, balanced minimum evolution, and the taxon-weighted variance model. They also provide a time-optimal algorithm for computation.

  16. Least-Squares Self-Calibration of Imaging Array Data

    NASA Technical Reports Server (NTRS)

    Arendt, R. G.; Moseley, S. H.; Fixsen, D. J.

    2004-01-01

    When arrays are used to collect multiple appropriately-dithered images of the same region of sky, the resulting data set can be calibrated using a least-squares minimization procedure that determines the optimal fit between the data and a model of that data. The model parameters include the desired sky intensities as well as instrument parameters such as pixel-to-pixel gains and offsets. The least-squares solution simultaneously provides the formal error estimates for the model parameters. With a suitable observing strategy, the need for separate calibration observations is reduced or eliminated. We show examples of this calibration technique applied to HST NICMOS observations of the Hubble Deep Fields and simulated SIRTF IRAC observations.

  17. Collinearity in Least-Squares Analysis

    ERIC Educational Resources Information Center

    de Levie, Robert

    2012-01-01

    How useful are the standard deviations per se, and how reliable are results derived from several least-squares coefficients and their associated standard deviations? When the output parameters obtained from a least-squares analysis are mutually independent, as is often assumed, they are reliable estimators of imprecision and so are the functions…

  18. Generalized adjustment by least squares ( GALS).

    USGS Publications Warehouse

    Elassal, A.A.

    1983-01-01

    The least-squares principle is universally accepted as the basis for adjustment procedures in the allied fields of geodesy, photogrammetry and surveying. A prototype software package for Generalized Adjustment by Least Squares (GALS) is described. The package is designed to perform all least-squares-related functions in a typical adjustment program. GALS is capable of supporting development of adjustment programs of any size or degree of complexity. -Author

  19. Using Least Squares for Error Propagation

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    2015-01-01

    The method of least-squares (LS) has a built-in procedure for estimating the standard errors (SEs) of the adjustable parameters in the fit model: They are the square roots of the diagonal elements of the covariance matrix. This means that one can use least-squares to obtain numerical values of propagated errors by defining the target quantities as…

  20. First-Order System Least-Squares for the Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Bochev, P.; Cai, Z.; Manteuffel, T. A.; McCormick, S. F.

    1996-01-01

    This paper develops a least-squares approach to the solution of the incompressible Navier-Stokes equations in primitive variables. As with our earlier work on Stokes equations, we recast the Navier-Stokes equations as a first-order system by introducing a velocity flux variable and associated curl and trace equations. We show that the resulting system is well-posed, and that an associated least-squares principle yields optimal discretization error estimates in the H(sup 1) norm in each variable (including the velocity flux) and optimal multigrid convergence estimates for the resulting algebraic system.

  1. Revisiting the Least-squares Procedure for Gradient Reconstruction on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.; Thomas, James L. (Technical Monitor)

    2003-01-01

    The accuracy of the least-squares technique for gradient reconstruction on unstructured meshes is examined. While least-squares techniques produce accurate results on arbitrary isotropic unstructured meshes, serious difficulties exist for highly stretched meshes in the presence of surface curvature. In these situations, gradients are typically under-estimated by up to an order of magnitude. For vertex-based discretizations on triangular and quadrilateral meshes, and cell-centered discretizations on quadrilateral meshes, accuracy can be recovered using an inverse distance weighting in the least-squares construction. For cell-centered discretizations on triangles, both the unweighted and weighted least-squares constructions fail to provide suitable gradient estimates for highly stretched curved meshes. Good overall flow solution accuracy can be retained in spite of poor gradient estimates, due to the presence of flow alignment in exactly the same regions where the poor gradient accuracy is observed. However, the use of entropy fixes has the potential for generating large but subtle discretization errors.

  2. A spectral mimetic least-squares method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bochev, Pavel; Gerritsma, Marc

    We present a spectral mimetic least-squares method for a model diffusion–reaction problem, which preserves key conservation properties of the continuum problem. Casting the model problem into a first-order system for two scalar and two vector variables shifts material properties from the differential equations to a pair of constitutive relations. We also use this system to motivate a new least-squares functional involving all four fields and show that its minimizer satisfies the differential equations exactly. Discretization of the four-field least-squares functional by spectral spaces compatible with the differential operators leads to a least-squares method in which the differential equations are alsomore » satisfied exactly. Additionally, the latter are reduced to purely topological relationships for the degrees of freedom that can be satisfied without reference to basis functions. Furthermore, numerical experiments confirm the spectral accuracy of the method and its local conservation.« less

  3. A spectral mimetic least-squares method

    DOE PAGES

    Bochev, Pavel; Gerritsma, Marc

    2014-09-01

    We present a spectral mimetic least-squares method for a model diffusion–reaction problem, which preserves key conservation properties of the continuum problem. Casting the model problem into a first-order system for two scalar and two vector variables shifts material properties from the differential equations to a pair of constitutive relations. We also use this system to motivate a new least-squares functional involving all four fields and show that its minimizer satisfies the differential equations exactly. Discretization of the four-field least-squares functional by spectral spaces compatible with the differential operators leads to a least-squares method in which the differential equations are alsomore » satisfied exactly. Additionally, the latter are reduced to purely topological relationships for the degrees of freedom that can be satisfied without reference to basis functions. Furthermore, numerical experiments confirm the spectral accuracy of the method and its local conservation.« less

  4. Orthogonalizing EM: A design-based least squares algorithm

    PubMed Central

    Xiong, Shifeng; Dai, Bin; Huling, Jared; Qian, Peter Z. G.

    2016-01-01

    We introduce an efficient iterative algorithm, intended for various least squares problems, based on a design of experiments perspective. The algorithm, called orthogonalizing EM (OEM), works for ordinary least squares and can be easily extended to penalized least squares. The main idea of the procedure is to orthogonalize a design matrix by adding new rows and then solve the original problem by embedding the augmented design in a missing data framework. We establish several attractive theoretical properties concerning OEM. For the ordinary least squares with a singular regression matrix, an OEM sequence converges to the Moore-Penrose generalized inverse-based least squares estimator. For ordinary and penalized least squares with various penalties, it converges to a point having grouping coherence for fully aliased regression matrices. Convergence and the convergence rate of the algorithm are examined. Finally, we demonstrate that OEM is highly efficient for large-scale least squares and penalized least squares problems, and is considerably faster than competing methods when n is much larger than p. Supplementary materials for this article are available online. PMID:27499558

  5. Orthogonalizing EM: A design-based least squares algorithm.

    PubMed

    Xiong, Shifeng; Dai, Bin; Huling, Jared; Qian, Peter Z G

    We introduce an efficient iterative algorithm, intended for various least squares problems, based on a design of experiments perspective. The algorithm, called orthogonalizing EM (OEM), works for ordinary least squares and can be easily extended to penalized least squares. The main idea of the procedure is to orthogonalize a design matrix by adding new rows and then solve the original problem by embedding the augmented design in a missing data framework. We establish several attractive theoretical properties concerning OEM. For the ordinary least squares with a singular regression matrix, an OEM sequence converges to the Moore-Penrose generalized inverse-based least squares estimator. For ordinary and penalized least squares with various penalties, it converges to a point having grouping coherence for fully aliased regression matrices. Convergence and the convergence rate of the algorithm are examined. Finally, we demonstrate that OEM is highly efficient for large-scale least squares and penalized least squares problems, and is considerably faster than competing methods when n is much larger than p . Supplementary materials for this article are available online.

  6. A Weighted Least Squares Approach To Robustify Least Squares Estimates.

    ERIC Educational Resources Information Center

    Lin, Chowhong; Davenport, Ernest C., Jr.

    This study developed a robust linear regression technique based on the idea of weighted least squares. In this technique, a subsample of the full data of interest is drawn, based on a measure of distance, and an initial set of regression coefficients is calculated. The rest of the data points are then taken into the subsample, one after another,…

  7. Three Perspectives on Teaching Least Squares

    ERIC Educational Resources Information Center

    Scariano, Stephen M.; Calzada, Maria

    2004-01-01

    The method of Least Squares is the most widely used technique for fitting a straight line to data, and it is typically discussed in several undergraduate courses. This article focuses on three developmentally different approaches for solving the Least Squares problem that are suitable for classroom exposition.

  8. Nonnegative least-squares image deblurring: improved gradient projection approaches

    NASA Astrophysics Data System (ADS)

    Benvenuto, F.; Zanella, R.; Zanni, L.; Bertero, M.

    2010-02-01

    The least-squares approach to image deblurring leads to an ill-posed problem. The addition of the nonnegativity constraint, when appropriate, does not provide regularization, even if, as far as we know, a thorough investigation of the ill-posedness of the resulting constrained least-squares problem has still to be done. Iterative methods, converging to nonnegative least-squares solutions, have been proposed. Some of them have the 'semi-convergence' property, i.e. early stopping of the iteration provides 'regularized' solutions. In this paper we consider two of these methods: the projected Landweber (PL) method and the iterative image space reconstruction algorithm (ISRA). Even if they work well in many instances, they are not frequently used in practice because, in general, they require a large number of iterations before providing a sensible solution. Therefore, the main purpose of this paper is to refresh these methods by increasing their efficiency. Starting from the remark that PL and ISRA require only the computation of the gradient of the functional, we propose the application to these algorithms of special acceleration techniques that have been recently developed in the area of the gradient methods. In particular, we propose the application of efficient step-length selection rules and line-search strategies. Moreover, remarking that ISRA is a scaled gradient algorithm, we evaluate its behaviour in comparison with a recent scaled gradient projection (SGP) method for image deblurring. Numerical experiments demonstrate that the accelerated methods still exhibit the semi-convergence property, with a considerable gain both in the number of iterations and in the computational time; in particular, SGP appears definitely the most efficient one.

  9. Least-Squares Data Adjustment with Rank-Deficient Data Covariance Matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, J.G.

    2011-07-01

    A derivation of the linear least-squares adjustment formulae is required that avoids the assumption that the covariance matrix of prior parameters can be inverted. Possible proofs are of several kinds, including: (i) extension of standard results for the linear regression formulae, and (ii) minimization by differentiation of a quadratic form of the deviations in parameters and responses. In this paper, the least-squares adjustment equations are derived in both these ways, while explicitly assuming that the covariance matrix of prior parameters is singular. It will be proved that the solutions are unique and that, contrary to statements that have appeared inmore » the literature, the least-squares adjustment problem is not ill-posed. No modification is required to the adjustment formulae that have been used in the past in the case of a singular covariance matrix for the priors. In conclusion: The linear least-squares adjustment formula that has been used in the past is valid in the case of a singular covariance matrix for the covariance matrix of prior parameters. Furthermore, it provides a unique solution. Statements in the literature, to the effect that the problem is ill-posed are wrong. No regularization of the problem is required. This has been proved in the present paper by two methods, while explicitly assuming that the covariance matrix of prior parameters is singular: i) extension of standard results for the linear regression formulae, and (ii) minimization by differentiation of a quadratic form of the deviations in parameters and responses. No modification is needed to the adjustment formulae that have been used in the past. (author)« less

  10. Parallel Nonnegative Least Squares Solvers for Model Order Reduction

    DTIC Science & Technology

    2016-03-01

    NNLS problems that arise when the Energy Conserving Sampling and Weighting hyper -reduction procedure is used when constructing a reduced-order model...ScaLAPACK and performance results are presented. nonnegative least squares, model order reduction, hyper -reduction, Energy Conserving Sampling and...optimal solution. ........................................ 20 Table 6 Reduced mesh sizes produced for each solver in the ECSW hyper -reduction step

  11. Least-squares solution of incompressible Navier-Stokes equations with the p-version of finite elements

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Sonnad, Vijay

    1991-01-01

    A p-version of the least squares finite element method, based on the velocity-pressure-vorticity formulation, is developed for solving steady state incompressible viscous flow problems. The resulting system of symmetric and positive definite linear equations can be solved satisfactorily with the conjugate gradient method. In conjunction with the use of rapid operator application which avoids the formation of either element of global matrices, it is possible to achieve a highly compact and efficient solution scheme for the incompressible Navier-Stokes equations. Numerical results are presented for two-dimensional flow over a backward facing step. The effectiveness of simple outflow boundary conditions is also demonstrated.

  12. Understanding Least Squares through Monte Carlo Calculations

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    2005-01-01

    The method of least squares (LS) is considered as an important data analysis tool available to physical scientists. The mathematics of linear least squares(LLS) is summarized in a very compact matrix rotation that renders it practically "formulaic".

  13. A simple method for processing data with least square method

    NASA Astrophysics Data System (ADS)

    Wang, Chunyan; Qi, Liqun; Chen, Yongxiang; Pang, Guangning

    2017-08-01

    The least square method is widely used in data processing and error estimation. The mathematical method has become an essential technique for parameter estimation, data processing, regression analysis and experimental data fitting, and has become a criterion tool for statistical inference. In measurement data analysis, the distribution of complex rules is usually based on the least square principle, i.e., the use of matrix to solve the final estimate and to improve its accuracy. In this paper, a new method is presented for the solution of the method which is based on algebraic computation and is relatively straightforward and easy to understand. The practicability of this method is described by a concrete example.

  14. Method for exploiting bias in factor analysis using constrained alternating least squares algorithms

    DOEpatents

    Keenan, Michael R.

    2008-12-30

    Bias plays an important role in factor analysis and is often implicitly made use of, for example, to constrain solutions to factors that conform to physical reality. However, when components are collinear, a large range of solutions may exist that satisfy the basic constraints and fit the data equally well. In such cases, the introduction of mathematical bias through the application of constraints may select solutions that are less than optimal. The biased alternating least squares algorithm of the present invention can offset mathematical bias introduced by constraints in the standard alternating least squares analysis to achieve factor solutions that are most consistent with physical reality. In addition, these methods can be used to explicitly exploit bias to provide alternative views and provide additional insights into spectral data sets.

  15. Least-squares Legendre spectral element solutions to sound propagation problems.

    PubMed

    Lin, W H

    2001-02-01

    This paper presents a novel algorithm and numerical results of sound wave propagation. The method is based on a least-squares Legendre spectral element approach for spatial discretization and the Crank-Nicolson [Proc. Cambridge Philos. Soc. 43, 50-67 (1947)] and Adams-Bashforth [D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications (CBMS-NSF Monograph, Siam 1977)] schemes for temporal discretization to solve the linearized acoustic field equations for sound propagation. Two types of NASA Computational Aeroacoustics (CAA) Workshop benchmark problems [ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics, edited by J. C. Hardin, J. R. Ristorcelli, and C. K. W. Tam, NASA Conference Publication 3300, 1995a] are considered: a narrow Gaussian sound wave propagating in a one-dimensional space without flows, and the reflection of a two-dimensional acoustic pulse off a rigid wall in the presence of a uniform flow of Mach 0.5 in a semi-infinite space. The first problem was used to examine the numerical dispersion and dissipation characteristics of the proposed algorithm. The second problem was to demonstrate the capability of the algorithm in treating sound propagation in a flow. Comparisons were made of the computed results with analytical results and results obtained by other methods. It is shown that all results computed by the present method are in good agreement with the analytical solutions and results of the first problem agree very well with those predicted by other schemes.

  16. Application of the Polynomial-Based Least Squares and Total Least Squares Models for the Attenuated Total Reflection Fourier Transform Infrared Spectra of Binary Mixtures of Hydroxyl Compounds.

    PubMed

    Shan, Peng; Peng, Silong; Zhao, Yuhui; Tang, Liang

    2016-03-01

    An analysis of binary mixtures of hydroxyl compound by Attenuated Total Reflection Fourier transform infrared spectroscopy (ATR FT-IR) and classical least squares (CLS) yield large model error due to the presence of unmodeled components such as H-bonded components. To accommodate these spectral variations, polynomial-based least squares (LSP) and polynomial-based total least squares (TLSP) are proposed to capture the nonlinear absorbance-concentration relationship. LSP is based on assuming that only absorbance noise exists; while TLSP takes both absorbance noise and concentration noise into consideration. In addition, based on different solving strategy, two optimization algorithms (limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm and Levenberg-Marquardt (LM) algorithm) are combined with TLSP and then two different TLSP versions (termed as TLSP-LBFGS and TLSP-LM) are formed. The optimum order of each nonlinear model is determined by cross-validation. Comparison and analyses of the four models are made from two aspects: absorbance prediction and concentration prediction. The results for water-ethanol solution and ethanol-ethyl lactate solution show that LSP, TLSP-LBFGS, and TLSP-LM can, for both absorbance prediction and concentration prediction, obtain smaller root mean square error of prediction than CLS. Additionally, they can also greatly enhance the accuracy of estimated pure component spectra. However, from the view of concentration prediction, the Wilcoxon signed rank test shows that there is no statistically significant difference between each nonlinear model and CLS. © The Author(s) 2016.

  17. Accuracy of least-squares methods for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Bochev, Pavel B.; Gunzburger, Max D.

    1993-01-01

    Recently there has been substantial interest in least-squares finite element methods for velocity-vorticity-pressure formulations of the incompressible Navier-Stokes equations. The main cause for this interest is the fact that algorithms for the resulting discrete equations can be devised which require the solution of only symmetric, positive definite systems of algebraic equations. On the other hand, it is well-documented that methods using the vorticity as a primary variable often yield very poor approximations. Thus, here we study the accuracy of these methods through a series of computational experiments, and also comment on theoretical error estimates. It is found, despite the failure of standard methods for deriving error estimates, that computational evidence suggests that these methods are, at the least, nearly optimally accurate. Thus, in addition to the desirable matrix properties yielded by least-squares methods, one also obtains accurate approximations.

  18. Spacecraft inertia estimation via constrained least squares

    NASA Technical Reports Server (NTRS)

    Keim, Jason A.; Acikmese, Behcet A.; Shields, Joel F.

    2006-01-01

    This paper presents a new formulation for spacecraft inertia estimation from test data. Specifically, the inertia estimation problem is formulated as a constrained least squares minimization problem with explicit bounds on the inertia matrix incorporated as LMIs [linear matrix inequalities). The resulting minimization problem is a semidefinite optimization that can be solved efficiently with guaranteed convergence to the global optimum by readily available algorithms. This method is applied to data collected from a robotic testbed consisting of a freely rotating body. The results show that the constrained least squares approach produces more accurate estimates of the inertia matrix than standard unconstrained least squares estimation methods.

  19. Least squares collocation applied to local gravimetric solutions from satellite gravity gradiometry data

    NASA Technical Reports Server (NTRS)

    Robbins, J. W.

    1985-01-01

    An autonomous spaceborne gravity gradiometer mission is being considered as a post Geopotential Research Mission project. The introduction of satellite diometry data to geodesy is expected to improve solid earth gravity models. The possibility of utilizing gradiometer data for the determination of pertinent gravimetric quantities on a local basis is explored. The analytical technique of least squares collocation is investigated for its usefulness in local solutions of this type. It is assumed, in the error analysis, that the vertical gravity gradient component of the gradient tensor is used as the raw data signal from which the corresponding reference gradients are removed to create the centered observations required in the collocation solution. The reference gradients are computed from a high degree and order geopotential model. The solution can be made in terms of mean or point gravity anomalies, height anomalies, or other useful gravimetric quantities depending on the choice of covariance types. Selected for this study were 30 x 30 foot mean gravity and height anomalies. Existing software and new software are utilized to implement the collocation technique. It was determined that satellite gradiometry data at an altitude of 200 km can be used successfully for the determination of 30 x 30 foot mean gravity anomalies to an accuracy of 9.2 mgal from this algorithm. It is shown that the resulting accuracy estimates are sensitive to gravity model coefficient uncertainties, data reduction assumptions and satellite mission parameters.

  20. An Alternating Least Squares Method for the Weighted Approximation of a Symmetric Matrix.

    ERIC Educational Resources Information Center

    ten Berge, Jos M. F.; Kiers, Henk A. L.

    1993-01-01

    R. A. Bailey and J. C. Gower explored approximating a symmetric matrix "B" by another, "C," in the least squares sense when the squared discrepancies for diagonal elements receive specific nonunit weights. A solution is proposed where "C" is constrained to be positive semidefinite and of a fixed rank. (SLD)

  1. A Reconstructed Discontinuous Galerkin Method for the Compressible Euler Equations on Arbitrary Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong Luo; Luquing Luo; Robert Nourgaliev

    2009-06-01

    A reconstruction-based discontinuous Galerkin (DG) method is presented for the solution of the compressible Euler equations on arbitrary grids. By taking advantage of handily available and yet invaluable information, namely the derivatives, in the context of the discontinuous Galerkin methods, a solution polynomial of one degree higher is reconstructed using a least-squares method. The stencils used in the reconstruction involve only the van Neumann neighborhood (face-neighboring cells) and are compact and consistent with the underlying DG method. The resulting DG method can be regarded as an improvement of a recovery-based DG method in the sense that it shares the samemore » nice features as the recovery-based DG method, such as high accuracy and efficiency, and yet overcomes some of its shortcomings such as a lack of flexibility, compactness, and robustness. The developed DG method is used to compute a variety of flow problems on arbitrary meshes to demonstrate the accuracy and efficiency of the method. The numerical results indicate that this reconstructed DG method is able to obtain a third-order accurate solution at a slightly higher cost than its second-order DG method and provide an increase in performance over the third order DG method in terms of computing time and storage requirement.« less

  2. A Christoffel function weighted least squares algorithm for collocation approximations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan, Akil; Jakeman, John D.; Zhou, Tao

    Here, we propose, theoretically investigate, and numerically validate an algorithm for the Monte Carlo solution of least-squares polynomial approximation problems in a collocation framework. Our investigation is motivated by applications in the collocation approximation of parametric functions, which frequently entails construction of surrogates via orthogonal polynomials. A standard Monte Carlo approach would draw samples according to the density defining the orthogonal polynomial family. Our proposed algorithm instead samples with respect to the (weighted) pluripotential equilibrium measure of the domain, and subsequently solves a weighted least-squares problem, with weights given by evaluations of the Christoffel function. We present theoretical analysis tomore » motivate the algorithm, and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest.« less

  3. A Christoffel function weighted least squares algorithm for collocation approximations

    DOE PAGES

    Narayan, Akil; Jakeman, John D.; Zhou, Tao

    2016-11-28

    Here, we propose, theoretically investigate, and numerically validate an algorithm for the Monte Carlo solution of least-squares polynomial approximation problems in a collocation framework. Our investigation is motivated by applications in the collocation approximation of parametric functions, which frequently entails construction of surrogates via orthogonal polynomials. A standard Monte Carlo approach would draw samples according to the density defining the orthogonal polynomial family. Our proposed algorithm instead samples with respect to the (weighted) pluripotential equilibrium measure of the domain, and subsequently solves a weighted least-squares problem, with weights given by evaluations of the Christoffel function. We present theoretical analysis tomore » motivate the algorithm, and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest.« less

  4. Least-squares finite element methods for compressible Euler equations

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Carey, G. F.

    1990-01-01

    A method based on backward finite differencing in time and a least-squares finite element scheme for first-order systems of partial differential equations in space is applied to the Euler equations for gas dynamics. The scheme minimizes the L-sq-norm of the residual within each time step. The method naturally generates numerical dissipation proportional to the time step size. An implicit method employing linear elements has been implemented and proves robust. For high-order elements, computed solutions based on the L-sq method may have oscillations for calculations at similar time step sizes. To overcome this difficulty, a scheme which minimizes the weighted H1-norm of the residual is proposed and leads to a successful scheme with high-degree elements. Finally, a conservative least-squares finite element method is also developed. Numerical results for two-dimensional problems are given to demonstrate the shock resolution of the methods and compare different approaches.

  5. Robust inverse kinematics using damped least squares with dynamic weighting

    NASA Technical Reports Server (NTRS)

    Schinstock, D. E.; Faddis, T. N.; Greenway, R. B.

    1994-01-01

    This paper presents a general method for calculating the inverse kinematics with singularity and joint limit robustness for both redundant and non-redundant serial-link manipulators. Damped least squares inverse of the Jacobian is used with dynamic weighting matrices in approximating the solution. This reduces specific joint differential vectors. The algorithm gives an exact solution away from the singularities and joint limits, and an approximate solution at or near the singularities and/or joint limits. The procedure is here implemented for a six d.o.f. teleoperator and a well behaved slave manipulator resulted under teleoperational control.

  6. Exact least squares adaptive beamforming using an orthogonalization network

    NASA Astrophysics Data System (ADS)

    Yuen, Stanley M.

    1991-03-01

    The pros and cons of various classical and state-of-the-art methods in adaptive array processing are discussed, and the relevant concepts and historical developments are pointed out. A set of easy-to-understand equations for facilitating derivation of any least-squares-based algorithm is derived. Using this set of equations and incorporating all of the useful properties associated with various techniques, an efficient solution to the real-time adaptive beamforming problem is developed.

  7. Generalizations of Tikhonov's regularized method of least squares to non-Euclidean vector norms

    NASA Astrophysics Data System (ADS)

    Volkov, V. V.; Erokhin, V. I.; Kakaev, V. V.; Onufrei, A. Yu.

    2017-09-01

    Tikhonov's regularized method of least squares and its generalizations to non-Euclidean norms, including polyhedral, are considered. The regularized method of least squares is reduced to mathematical programming problems obtained by "instrumental" generalizations of the Tikhonov lemma on the minimal (in a certain norm) solution of a system of linear algebraic equations with respect to an unknown matrix. Further studies are needed for problems concerning the development of methods and algorithms for solving reduced mathematical programming problems in which the objective functions and admissible domains are constructed using polyhedral vector norms.

  8. An analysis of the least-squares problem for the DSN systematic pointing error model

    NASA Technical Reports Server (NTRS)

    Alvarez, L. S.

    1991-01-01

    A systematic pointing error model is used to calibrate antennas in the Deep Space Network. The least squares problem is described and analyzed along with the solution methods used to determine the model's parameters. Specifically studied are the rank degeneracy problems resulting from beam pointing error measurement sets that incorporate inadequate sky coverage. A least squares parameter subset selection method is described and its applicability to the systematic error modeling process is demonstrated on Voyager 2 measurement distribution.

  9. A new least-squares transport equation compatible with voids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, J. B.; Morel, J. E.

    2013-07-01

    We define a new least-squares transport equation that is applicable in voids, can be solved using source iteration with diffusion-synthetic acceleration, and requires only the solution of an independent set of second-order self-adjoint equations for each direction during each source iteration. We derive the equation, discretize it using the S{sub n} method in conjunction with a linear-continuous finite-element method in space, and computationally demonstrate various of its properties. (authors)

  10. On the Numerical Solution of the Elliptic Monge—Ampère Equation in Dimension Two: A Least-Squares Approach

    NASA Astrophysics Data System (ADS)

    Dean, Edward J.; Glowinski, Roland

    During his outstanding career, Olivier Pironneau has addressed the solution of a large variety of problems from the Natural Sciences, Engineering and Finance to name a few, an evidence of his activity being the many articles and books he has written. It is the opinion of these authors, and former collaborators of O. Pironneau (cf. [DGP91]), that this chapter is well-suited to a volume honoring him. Indeed, the two pillars of the solution methodology that we are going to describe are: (1) a nonlinear least squares formulation in an appropriate Hilbert space, and (2) a mixed finite element approximation, reminiscent of the one used in [DGP91] and [GP79] for solving the Stokes and Navier-Stokes equations in their stream function-vorticity formulation; the contributions of O. Pironneau on the two above topics are well-known world wide. Last but not least, we will show that the solution method discussed here can be viewed as a solution method for a non-standard variant of the incompressible Navier-Stokes equations, an area where O. Pironneau has many outstanding and celebrated contributions (cf. [Pir89], for example).

  11. Least-squares Minimization Approaches to Interpret Total Magnetic Anomalies Due to Spheres

    NASA Astrophysics Data System (ADS)

    Abdelrahman, E. M.; El-Araby, T. M.; Soliman, K. S.; Essa, K. S.; Abo-Ezz, E. R.

    2007-05-01

    We have developed three different least-squares approaches to determine successively: the depth, magnetic angle, and amplitude coefficient of a buried sphere from a total magnetic anomaly. By defining the anomaly value at the origin and the nearest zero-anomaly distance from the origin on the profile, the problem of depth determination is transformed into the problem of finding a solution of a nonlinear equation of the form f(z)=0. Knowing the depth and applying the least-squares method, the magnetic angle and amplitude coefficient are determined using two simple linear equations. In this way, the depth, magnetic angle, and amplitude coefficient are determined individually from all observed total magnetic data. The method is applied to synthetic examples with and without random errors and tested on a field example from Senegal, West Africa. In all cases, the depth solutions are in good agreement with the actual ones.

  12. Least Squares Moving-Window Spectral Analysis.

    PubMed

    Lee, Young Jong

    2017-08-01

    Least squares regression is proposed as a moving-windows method for analysis of a series of spectra acquired as a function of external perturbation. The least squares moving-window (LSMW) method can be considered an extended form of the Savitzky-Golay differentiation for nonuniform perturbation spacing. LSMW is characterized in terms of moving-window size, perturbation spacing type, and intensity noise. Simulation results from LSMW are compared with results from other numerical differentiation methods, such as single-interval differentiation, autocorrelation moving-window, and perturbation correlation moving-window methods. It is demonstrated that this simple LSMW method can be useful for quantitative analysis of nonuniformly spaced spectral data with high frequency noise.

  13. Unweighted least squares phase unwrapping by means of multigrid techniques

    NASA Astrophysics Data System (ADS)

    Pritt, Mark D.

    1995-11-01

    We present a multigrid algorithm for unweighted least squares phase unwrapping. This algorithm applies Gauss-Seidel relaxation schemes to solve the Poisson equation on smaller, coarser grids and transfers the intermediate results to the finer grids. This approach forms the basis of our multigrid algorithm for weighted least squares phase unwrapping, which is described in a separate paper. The key idea of our multigrid approach is to maintain the partial derivatives of the phase data in separate arrays and to correct these derivatives at the boundaries of the coarser grids. This maintains the boundary conditions necessary for rapid convergence to the correct solution. Although the multigrid algorithm is an iterative algorithm, we demonstrate that it is nearly as fast as the direct Fourier-based method. We also describe how to parallelize the algorithm for execution on a distributed-memory parallel processor computer or a network-cluster of workstations.

  14. Retargeted Least Squares Regression Algorithm.

    PubMed

    Zhang, Xu-Yao; Wang, Lingfeng; Xiang, Shiming; Liu, Cheng-Lin

    2015-09-01

    This brief presents a framework of retargeted least squares regression (ReLSR) for multicategory classification. The core idea is to directly learn the regression targets from data other than using the traditional zero-one matrix as regression targets. The learned target matrix can guarantee a large margin constraint for the requirement of correct classification for each data point. Compared with the traditional least squares regression (LSR) and a recently proposed discriminative LSR models, ReLSR is much more accurate in measuring the classification error of the regression model. Furthermore, ReLSR is a single and compact model, hence there is no need to train two-class (binary) machines that are independent of each other. The convex optimization problem of ReLSR is solved elegantly and efficiently with an alternating procedure including regression and retargeting as substeps. The experimental evaluation over a range of databases identifies the validity of our method.

  15. Least-Squares Approximation of an Improper Correlation Matrix by a Proper One.

    ERIC Educational Resources Information Center

    Knol, Dirk L.; ten Berge, Jos M. F.

    1989-01-01

    An algorithm, based on a solution for C. I. Mosier's oblique Procrustes rotation problem, is presented for the best least-squares fitting correlation matrix approximating a given missing value or improper correlation matrix. Results are of interest for missing value and tetrachoric correlation, indefinite matrix correlation, and constrained…

  16. Suboptimal Scheduling in Switched Systems With Continuous-Time Dynamics: A Least Squares Approach.

    PubMed

    Sardarmehni, Tohid; Heydari, Ali

    2018-06-01

    Two approximate solutions for optimal control of switched systems with autonomous subsystems and continuous-time dynamics are presented. The first solution formulates a policy iteration (PI) algorithm for the switched systems with recursive least squares. To reduce the computational burden imposed by the PI algorithm, a second solution, called single loop PI, is presented. Online and concurrent training algorithms are discussed for implementing each solution. At last, effectiveness of the presented algorithms is evaluated through numerical simulations.

  17. Penalized Nonlinear Least Squares Estimation of Time-Varying Parameters in Ordinary Differential Equations

    PubMed Central

    Cao, Jiguo; Huang, Jianhua Z.; Wu, Hulin

    2012-01-01

    Ordinary differential equations (ODEs) are widely used in biomedical research and other scientific areas to model complex dynamic systems. It is an important statistical problem to estimate parameters in ODEs from noisy observations. In this article we propose a method for estimating the time-varying coefficients in an ODE. Our method is a variation of the nonlinear least squares where penalized splines are used to model the functional parameters and the ODE solutions are approximated also using splines. We resort to the implicit function theorem to deal with the nonlinear least squares objective function that is only defined implicitly. The proposed penalized nonlinear least squares method is applied to estimate a HIV dynamic model from a real dataset. Monte Carlo simulations show that the new method can provide much more accurate estimates of functional parameters than the existing two-step local polynomial method which relies on estimation of the derivatives of the state function. Supplemental materials for the article are available online. PMID:23155351

  18. A Discontinuous Petrov-Galerkin Methodology for Adaptive Solutions to the Incompressible Navier-Stokes Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Nathan V.; Demkowiz, Leszek; Moser, Robert

    2015-11-15

    The discontinuous Petrov-Galerkin methodology with optimal test functions (DPG) of Demkowicz and Gopalakrishnan [18, 20] guarantees the optimality of the solution in an energy norm, and provides several features facilitating adaptive schemes. Whereas Bubnov-Galerkin methods use identical trial and test spaces, Petrov-Galerkin methods allow these function spaces to differ. In DPG, test functions are computed on the fly and are chosen to realize the supremum in the inf-sup condition; the method is equivalent to a minimum residual method. For well-posed problems with sufficiently regular solutions, DPG can be shown to converge at optimal rates—the inf-sup constants governing the convergence aremore » mesh-independent, and of the same order as those governing the continuous problem [48]. DPG also provides an accurate mechanism for measuring the error, and this can be used to drive adaptive mesh refinements. We employ DPG to solve the steady incompressible Navier-Stokes equations in two dimensions, building on previous work on the Stokes equations, and focusing particularly on the usefulness of the approach for automatic adaptivity starting from a coarse mesh. We apply our approach to a manufactured solution due to Kovasznay as well as the lid-driven cavity flow, backward-facing step, and flow past a cylinder problems.« less

  19. Hybridized Multiscale Discontinuous Galerkin Methods for Multiphysics

    DTIC Science & Technology

    2015-09-14

    discontinuous Galerkin method for the numerical solution of the Helmholtz equation , J. Comp. Phys., 290, 318–335, 2015. [14] N.C. NGUYEN, J. PERAIRE...approximations of the Helmholtz equation for a very wide range of wave frequencies. Our approach combines the hybridizable discontinuous Galerkin methodology...local approximation spaces of the hybridizable discontinuous Galerkin methods with precomputed phases which are solutions of the eikonal equation in

  20. Neither fixed nor random: weighted least squares meta-analysis.

    PubMed

    Stanley, T D; Doucouliagos, Hristos

    2015-06-15

    This study challenges two core conventional meta-analysis methods: fixed effect and random effects. We show how and explain why an unrestricted weighted least squares estimator is superior to conventional random-effects meta-analysis when there is publication (or small-sample) bias and better than a fixed-effect weighted average if there is heterogeneity. Statistical theory and simulations of effect sizes, log odds ratios and regression coefficients demonstrate that this unrestricted weighted least squares estimator provides satisfactory estimates and confidence intervals that are comparable to random effects when there is no publication (or small-sample) bias and identical to fixed-effect meta-analysis when there is no heterogeneity. When there is publication selection bias, the unrestricted weighted least squares approach dominates random effects; when there is excess heterogeneity, it is clearly superior to fixed-effect meta-analysis. In practical applications, an unrestricted weighted least squares weighted average will often provide superior estimates to both conventional fixed and random effects. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Least Squares Solution of Small Sample Multiple-Master PSInSAR System

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Ding, Xiao Li; Lu, Zhong

    2010-03-01

    In this paper we propose a least squares based approach for multi-temporal SAR interferometry that allows to estimate the deformation rate with no need of phase unwrapping. The approach utilizes a series of multi-master wrapped differential interferograms with short baselines and only focuses on the arcs constructed by two nearby points at which there are no phase ambiguities. During the estimation an outlier detector is used to identify and remove the arcs with phase ambiguities, and pseudoinverse of priori variance component matrix is taken as the weight of correlated observations in the model. The parameters at points can be obtained by an indirect adjustment model with constraints when several reference points are available. The proposed approach is verified by a set of simulated data.

  2. Least squares restoration of multichannel images

    NASA Technical Reports Server (NTRS)

    Galatsanos, Nikolas P.; Katsaggelos, Aggelos K.; Chin, Roland T.; Hillery, Allen D.

    1991-01-01

    Multichannel restoration using both within- and between-channel deterministic information is considered. A multichannel image is a set of image planes that exhibit cross-plane similarity. Existing optimal restoration filters for single-plane images yield suboptimal results when applied to multichannel images, since between-channel information is not utilized. Multichannel least squares restoration filters are developed using the set theoretic and the constrained optimization approaches. A geometric interpretation of the estimates of both filters is given. Color images (three-channel imagery with red, green, and blue components) are considered. Constraints that capture the within- and between-channel properties of color images are developed. Issues associated with the computation of the two estimates are addressed. A spatially adaptive, multichannel least squares filter that utilizes local within- and between-channel image properties is proposed. Experiments using color images are described.

  3. Matrix-Free Polynomial-Based Nonlinear Least Squares Optimized Preconditioning and its Application to Discontinuous Galerkin Discretizations of the Euler Equations

    DTIC Science & Technology

    2015-06-01

    cient parallel code for applying the operator. Our method constructs a polynomial preconditioner using a nonlinear least squares (NLLS) algorithm. We show...apply the underlying operator. Such a preconditioner can be very attractive in scenarios where one has a highly efficient parallel code for applying...repeatedly solve a large system of linear equations where one has an extremely fast parallel code for applying an underlying fixed linear operator

  4. The program LOPT for least-squares optimization of energy levels

    NASA Astrophysics Data System (ADS)

    Kramida, A. E.

    2011-02-01

    The article describes a program that solves the least-squares optimization problem for finding the energy levels of a quantum-mechanical system based on a set of measured energy separations or wavelengths of transitions between those energy levels, as well as determining the Ritz wavelengths of transitions and their uncertainties. The energy levels are determined by solving the matrix equation of the problem, and the uncertainties of the Ritz wavenumbers are determined from the covariance matrix of the problem. Program summaryProgram title: LOPT Catalogue identifier: AEHM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 19 254 No. of bytes in distributed program, including test data, etc.: 427 839 Distribution format: tar.gz Programming language: Perl v.5 Computer: PC, Mac, Unix workstations Operating system: MS Windows (XP, Vista, 7), Mac OS X, Linux, Unix (AIX) RAM: 3 Mwords or more Word size: 32 or 64 Classification: 2.2 Nature of problem: The least-squares energy-level optimization problem, i.e., finding a set of energy level values that best fits the given set of transition intervals. Solution method: The solution of the least-squares problem is found by solving the corresponding linear matrix equation, where the matrix is constructed using a new method with variable substitution. Restrictions: A practical limitation on the size of the problem N is imposed by the execution time, which scales as N and depends on the computer. Unusual features: Properly rounds the resulting data and formats the output in a format suitable for viewing with spreadsheet editing software. Estimates numerical errors resulting from the limited machine precision. Running time: 1 s for N=100, or 60 s for N=400 on a typical PC.

  5. A constrained robust least squares approach for contaminant release history identification

    NASA Astrophysics Data System (ADS)

    Sun, Alexander Y.; Painter, Scott L.; Wittmeyer, Gordon W.

    2006-04-01

    Contaminant source identification is an important type of inverse problem in groundwater modeling and is subject to both data and model uncertainty. Model uncertainty was rarely considered in the previous studies. In this work, a robust framework for solving contaminant source recovery problems is introduced. The contaminant source identification problem is first cast into one of solving uncertain linear equations, where the response matrix is constructed using a superposition technique. The formulation presented here is general and is applicable to any porous media flow and transport solvers. The robust least squares (RLS) estimator, which originated in the field of robust identification, directly accounts for errors arising from model uncertainty and has been shown to significantly reduce the sensitivity of the optimal solution to perturbations in model and data. In this work, a new variant of RLS, the constrained robust least squares (CRLS), is formulated for solving uncertain linear equations. CRLS allows for additional constraints, such as nonnegativity, to be imposed. The performance of CRLS is demonstrated through one- and two-dimensional test problems. When the system is ill-conditioned and uncertain, it is found that CRLS gave much better performance than its classical counterpart, the nonnegative least squares. The source identification framework developed in this work thus constitutes a reliable tool for recovering source release histories in real applications.

  6. Kernel-based least squares policy iteration for reinforcement learning.

    PubMed

    Xu, Xin; Hu, Dewen; Lu, Xicheng

    2007-07-01

    In this paper, we present a kernel-based least squares policy iteration (KLSPI) algorithm for reinforcement learning (RL) in large or continuous state spaces, which can be used to realize adaptive feedback control of uncertain dynamic systems. By using KLSPI, near-optimal control policies can be obtained without much a priori knowledge on dynamic models of control plants. In KLSPI, Mercer kernels are used in the policy evaluation of a policy iteration process, where a new kernel-based least squares temporal-difference algorithm called KLSTD-Q is proposed for efficient policy evaluation. To keep the sparsity and improve the generalization ability of KLSTD-Q solutions, a kernel sparsification procedure based on approximate linear dependency (ALD) is performed. Compared to the previous works on approximate RL methods, KLSPI makes two progresses to eliminate the main difficulties of existing results. One is the better convergence and (near) optimality guarantee by using the KLSTD-Q algorithm for policy evaluation with high precision. The other is the automatic feature selection using the ALD-based kernel sparsification. Therefore, the KLSPI algorithm provides a general RL method with generalization performance and convergence guarantee for large-scale Markov decision problems (MDPs). Experimental results on a typical RL task for a stochastic chain problem demonstrate that KLSPI can consistently achieve better learning efficiency and policy quality than the previous least squares policy iteration (LSPI) algorithm. Furthermore, the KLSPI method was also evaluated on two nonlinear feedback control problems, including a ship heading control problem and the swing up control of a double-link underactuated pendulum called acrobot. Simulation results illustrate that the proposed method can optimize controller performance using little a priori information of uncertain dynamic systems. It is also demonstrated that KLSPI can be applied to online learning control by incorporating

  7. Application of least median of squared orthogonal distance (LMD) and LMD-based reweighted least squares (RLS) methods on the stock-recruitment relationship

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Jun; Liu, Qun

    1999-03-01

    Analysis of stock-recruitment (SR) data is most often done by fitting various SR relationship curves to the data. Fish population dynamics data often have stochastic variations and measurement errors, which usually result in a biased regression analysis. This paper presents a robust regression method, least median of squared orthogonal distance (LMD), which is insensitive to abnormal values in the dependent and independent variables in a regression analysis. Outliers that have significantly different variance from the rest of the data can be identified in a residual analysis. Then, the least squares (LS) method is applied to the SR data with defined outliers being down weighted. The application of LMD and LMD-based Reweighted Least Squares (RLS) method to simulated and real fisheries SR data is explored.

  8. On the multivariate total least-squares approach to empirical coordinate transformations. Three algorithms

    NASA Astrophysics Data System (ADS)

    Schaffrin, Burkhard; Felus, Yaron A.

    2008-06-01

    The multivariate total least-squares (MTLS) approach aims at estimating a matrix of parameters, Ξ, from a linear model ( Y- E Y = ( X- E X ) · Ξ) that includes an observation matrix, Y, another observation matrix, X, and matrices of randomly distributed errors, E Y and E X . Two special cases of the MTLS approach include the standard multivariate least-squares approach where only the observation matrix, Y, is perturbed by random errors and, on the other hand, the data least-squares approach where only the coefficient matrix X is affected by random errors. In a previous contribution, the authors derived an iterative algorithm to solve the MTLS problem by using the nonlinear Euler-Lagrange conditions. In this contribution, new lemmas are developed to analyze the iterative algorithm, modify it, and compare it with a new ‘closed form’ solution that is based on the singular-value decomposition. For an application, the total least-squares approach is used to estimate the affine transformation parameters that convert cadastral data from the old to the new Israeli datum. Technical aspects of this approach, such as scaling the data and fixing the columns in the coefficient matrix are investigated. This case study illuminates the issue of “symmetry” in the treatment of two sets of coordinates for identical point fields, a topic that had already been emphasized by Teunissen (1989, Festschrift to Torben Krarup, Geodetic Institute Bull no. 58, Copenhagen, Denmark, pp 335-342). The differences between the standard least-squares and the TLS approach are analyzed in terms of the estimated variance component and a first-order approximation of the dispersion matrix of the estimated parameters.

  9. Least-Squares Models to Correct for Rater Effects in Performance Assessment.

    ERIC Educational Resources Information Center

    Raymond, Mark R.; Viswesvaran, Chockalingam

    This study illustrates the use of three least-squares models to control for rater effects in performance evaluation: (1) ordinary least squares (OLS); (2) weighted least squares (WLS); and (3) OLS subsequent to applying a logistic transformation to observed ratings (LOG-OLS). The three models were applied to ratings obtained from four…

  10. Sparse partial least squares regression for simultaneous dimension reduction and variable selection

    PubMed Central

    Chun, Hyonho; Keleş, Sündüz

    2010-01-01

    Partial least squares regression has been an alternative to ordinary least squares for handling multicollinearity in several areas of scientific research since the 1960s. It has recently gained much attention in the analysis of high dimensional genomic data. We show that known asymptotic consistency of the partial least squares estimator for a univariate response does not hold with the very large p and small n paradigm. We derive a similar result for a multivariate response regression with partial least squares. We then propose a sparse partial least squares formulation which aims simultaneously to achieve good predictive performance and variable selection by producing sparse linear combinations of the original predictors. We provide an efficient implementation of sparse partial least squares regression and compare it with well-known variable selection and dimension reduction approaches via simulation experiments. We illustrate the practical utility of sparse partial least squares regression in a joint analysis of gene expression and genomewide binding data. PMID:20107611

  11. Element free Galerkin formulation of composite beam with longitudinal slip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Dzulkarnain; Mokhtaram, Mokhtazul Haizad; Badli, Mohd Iqbal

    2015-05-15

    Behaviour between two materials in composite beam is assumed partially interact when longitudinal slip at its interfacial surfaces is considered. Commonly analysed by the mesh-based formulation, this study used meshless formulation known as Element Free Galerkin (EFG) method in the beam partial interaction analysis, numerically. As meshless formulation implies that the problem domain is discretised only by nodes, the EFG method is based on Moving Least Square (MLS) approach for shape functions formulation with its weak form is developed using variational method. The essential boundary conditions are enforced by Langrange multipliers. The proposed EFG formulation gives comparable results, after beenmore » verified by analytical solution, thus signify its application in partial interaction problems. Based on numerical test results, the Cubic Spline and Quartic Spline weight functions yield better accuracy for the EFG formulation, compares to other proposed weight functions.« less

  12. Quantized kernel least mean square algorithm.

    PubMed

    Chen, Badong; Zhao, Songlin; Zhu, Pingping; Príncipe, José C

    2012-01-01

    In this paper, we propose a quantization approach, as an alternative of sparsification, to curb the growth of the radial basis function structure in kernel adaptive filtering. The basic idea behind this method is to quantize and hence compress the input (or feature) space. Different from sparsification, the new approach uses the "redundant" data to update the coefficient of the closest center. In particular, a quantized kernel least mean square (QKLMS) algorithm is developed, which is based on a simple online vector quantization method. The analytical study of the mean square convergence has been carried out. The energy conservation relation for QKLMS is established, and on this basis we arrive at a sufficient condition for mean square convergence, and a lower and upper bound on the theoretical value of the steady-state excess mean square error. Static function estimation and short-term chaotic time-series prediction examples are presented to demonstrate the excellent performance.

  13. Simple Test Functions in Meshless Local Petrov-Galerkin Methods

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.

    2016-01-01

    Two meshless local Petrov-Galerkin (MLPG) methods based on two different trial functions but that use a simple linear test function were developed for beam and column problems. These methods used generalized moving least squares (GMLS) and radial basis (RB) interpolation functions as trial functions. These two methods were tested on various patch test problems. Both methods passed the patch tests successfully. Then the methods were applied to various beam vibration problems and problems involving Euler and Beck's columns. Both methods yielded accurate solutions for all problems studied. The simple linear test function offers considerable savings in computing efforts as the domain integrals involved in the weak form are avoided. The two methods based on this simple linear test function method produced accurate results for frequencies and buckling loads. Of the two methods studied, the method with radial basis trial functions is very attractive as the method is simple, accurate, and robust.

  14. A Limitation with Least Squares Predictions

    ERIC Educational Resources Information Center

    Bittner, Teresa L.

    2013-01-01

    Although researchers have documented that some data make larger contributions than others to predictions made with least squares models, it is relatively unknown that some data actually make no contribution to the predictions produced by these models. This article explores such noncontributory data. (Contains 1 table and 2 figures.)

  15. Least-squares dual characterization for ROI assessment in emission tomography

    NASA Astrophysics Data System (ADS)

    Ben Bouallègue, F.; Crouzet, J. F.; Dubois, A.; Buvat, I.; Mariano-Goulart, D.

    2013-06-01

    Our aim is to describe an original method for estimating the statistical properties of regions of interest (ROIs) in emission tomography. Drawn upon the works of Louis on the approximate inverse, we propose a dual formulation of the ROI estimation problem to derive the ROI activity and variance directly from the measured data without any image reconstruction. The method requires the definition of an ROI characteristic function that can be extracted from a co-registered morphological image. This characteristic function can be smoothed to optimize the resolution-variance tradeoff. An iterative procedure is detailed for the solution of the dual problem in the least-squares sense (least-squares dual (LSD) characterization), and a linear extrapolation scheme is described to compensate for sampling partial volume effect and reduce the estimation bias (LSD-ex). LSD and LSD-ex are compared with classical ROI estimation using pixel summation after image reconstruction and with Huesman's method. For this comparison, we used Monte Carlo simulations (GATE simulation tool) of 2D PET data of a Hoffman brain phantom containing three small uniform high-contrast ROIs and a large non-uniform low-contrast ROI. Our results show that the performances of LSD characterization are at least as good as those of the classical methods in terms of root mean square (RMS) error. For the three small tumor regions, LSD-ex allows a reduction in the estimation bias by up to 14%, resulting in a reduction in the RMS error of up to 8.5%, compared with the optimal classical estimation. For the large non-specific region, LSD using appropriate smoothing could intuitively and efficiently handle the resolution-variance tradeoff.

  16. Least square regularized regression in sum space.

    PubMed

    Xu, Yong-Li; Chen, Di-Rong; Li, Han-Xiong; Liu, Lu

    2013-04-01

    This paper proposes a least square regularized regression algorithm in sum space of reproducing kernel Hilbert spaces (RKHSs) for nonflat function approximation, and obtains the solution of the algorithm by solving a system of linear equations. This algorithm can approximate the low- and high-frequency component of the target function with large and small scale kernels, respectively. The convergence and learning rate are analyzed. We measure the complexity of the sum space by its covering number and demonstrate that the covering number can be bounded by the product of the covering numbers of basic RKHSs. For sum space of RKHSs with Gaussian kernels, by choosing appropriate parameters, we tradeoff the sample error and regularization error, and obtain a polynomial learning rate, which is better than that in any single RKHS. The utility of this method is illustrated with two simulated data sets and five real-life databases.

  17. Constrained hierarchical least square nonlinear equation solvers. [for indefinite stiffness and large structural deformations

    NASA Technical Reports Server (NTRS)

    Padovan, J.; Lackney, J.

    1986-01-01

    The current paper develops a constrained hierarchical least square nonlinear equation solver. The procedure can handle the response behavior of systems which possess indefinite tangent stiffness characteristics. Due to the generality of the scheme, this can be achieved at various hierarchical application levels. For instance, in the case of finite element simulations, various combinations of either degree of freedom, nodal, elemental, substructural, and global level iterations are possible. Overall, this enables a solution methodology which is highly stable and storage efficient. To demonstrate the capability of the constrained hierarchical least square methodology, benchmarking examples are presented which treat structure exhibiting highly nonlinear pre- and postbuckling behavior wherein several indefinite stiffness transitions occur.

  18. Multi-element array signal reconstruction with adaptive least-squares algorithms

    NASA Technical Reports Server (NTRS)

    Kumar, R.

    1992-01-01

    Two versions of the adaptive least-squares algorithm are presented for combining signals from multiple feeds placed in the focal plane of a mechanical antenna whose reflector surface is distorted due to various deformations. Coherent signal combining techniques based on the adaptive least-squares algorithm are examined for nearly optimally and adaptively combining the outputs of the feeds. The performance of the two versions is evaluated by simulations. It is demonstrated for the example considered that both of the adaptive least-squares algorithms are capable of offsetting most of the loss in the antenna gain incurred due to reflector surface deformations.

  19. Sequential Least-Squares Using Orthogonal Transformations. [spacecraft communication/spacecraft tracking-data smoothing

    NASA Technical Reports Server (NTRS)

    Bierman, G. J.

    1975-01-01

    Square root information estimation, starting from its beginnings in least-squares parameter estimation, is considered. Special attention is devoted to discussions of sensitivity and perturbation matrices, computed solutions and their formal statistics, consider-parameters and consider-covariances, and the effects of a priori statistics. The constant-parameter model is extended to include time-varying parameters and process noise, and the error analysis capabilities are generalized. Efficient and elegant smoothing results are obtained as easy consequences of the filter formulation. The value of the techniques is demonstrated by the navigation results that were obtained for the Mariner Venus-Mercury (Mariner 10) multiple-planetary space probe and for the Viking Mars space mission.

  20. Algorithms for Nonlinear Least-Squares Problems

    DTIC Science & Technology

    1988-09-01

    O -,i(x) 2 , where each -,(x) is a smooth function mapping Rn to R. J - The m x n Jacobian matrix of f. ... x g - The gradient of the nonlinear least...V211f(X*)I112~ l~ l) J(xk)T J(xk) 2 + O(k - X*) For more convergence results and detailed convergence analysis for the Gauss-Newton method, see, e. g ...for a class of nonlinear least-squares problems that includes zero-residual prob- lems. The function Jt is the pseudo-inverse of Jk (see, e. g

  1. Least-Squares Analysis of Data with Uncertainty in "y" and "x": Algorithms in Excel and KaleidaGraph

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    2018-01-01

    For the least-squares analysis of data having multiple uncertain variables, the generally accepted best solution comes from minimizing the sum of weighted squared residuals over all uncertain variables, with, for example, weights in x[subscript i] taken as inversely proportional to the variance [delta][subscript xi][superscript 2]. A complication…

  2. Comparison of ERBS orbit determination accuracy using batch least-squares and sequential methods

    NASA Technical Reports Server (NTRS)

    Oza, D. H.; Jones, T. L.; Fabien, S. M.; Mistretta, G. D.; Hart, R. C.; Doll, C. E.

    1991-01-01

    The Flight Dynamics Div. (FDD) at NASA-Goddard commissioned a study to develop the Real Time Orbit Determination/Enhanced (RTOD/E) system as a prototype system for sequential orbit determination of spacecraft on a DOS based personal computer (PC). An overview is presented of RTOD/E capabilities and the results are presented of a study to compare the orbit determination accuracy for a Tracking and Data Relay Satellite System (TDRSS) user spacecraft obtained using RTOS/E on a PC with the accuracy of an established batch least squares system, the Goddard Trajectory Determination System (GTDS), operating on a mainframe computer. RTOD/E was used to perform sequential orbit determination for the Earth Radiation Budget Satellite (ERBS), and the Goddard Trajectory Determination System (GTDS) was used to perform the batch least squares orbit determination. The estimated ERBS ephemerides were obtained for the Aug. 16 to 22, 1989, timeframe, during which intensive TDRSS tracking data for ERBS were available. Independent assessments were made to examine the consistencies of results obtained by the batch and sequential methods. Comparisons were made between the forward filtered RTOD/E orbit solutions and definitive GTDS orbit solutions for ERBS; the solution differences were less than 40 meters after the filter had reached steady state.

  3. Comparison of ERBS orbit determination accuracy using batch least-squares and sequential methods

    NASA Astrophysics Data System (ADS)

    Oza, D. H.; Jones, T. L.; Fabien, S. M.; Mistretta, G. D.; Hart, R. C.; Doll, C. E.

    1991-10-01

    The Flight Dynamics Div. (FDD) at NASA-Goddard commissioned a study to develop the Real Time Orbit Determination/Enhanced (RTOD/E) system as a prototype system for sequential orbit determination of spacecraft on a DOS based personal computer (PC). An overview is presented of RTOD/E capabilities and the results are presented of a study to compare the orbit determination accuracy for a Tracking and Data Relay Satellite System (TDRSS) user spacecraft obtained using RTOS/E on a PC with the accuracy of an established batch least squares system, the Goddard Trajectory Determination System (GTDS), operating on a mainframe computer. RTOD/E was used to perform sequential orbit determination for the Earth Radiation Budget Satellite (ERBS), and the Goddard Trajectory Determination System (GTDS) was used to perform the batch least squares orbit determination. The estimated ERBS ephemerides were obtained for the Aug. 16 to 22, 1989, timeframe, during which intensive TDRSS tracking data for ERBS were available. Independent assessments were made to examine the consistencies of results obtained by the batch and sequential methods. Comparisons were made between the forward filtered RTOD/E orbit solutions and definitive GTDS orbit solutions for ERBS; the solution differences were less than 40 meters after the filter had reached steady state.

  4. Factor Analysis by Generalized Least Squares.

    ERIC Educational Resources Information Center

    Joreskog, Karl G.; Goldberger, Arthur S.

    Aitkin's generalized least squares (GLS) principle, with the inverse of the observed variance-covariance matrix as a weight matrix, is applied to estimate the factor analysis model in the exploratory (unrestricted) case. It is shown that the GLS estimates are scale free and asymptotically efficient. The estimates are computed by a rapidly…

  5. Using Weighted Least Squares Regression for Obtaining Langmuir Sorption Constants

    USDA-ARS?s Scientific Manuscript database

    One of the most commonly used models for describing phosphorus (P) sorption to soils is the Langmuir model. To obtain model parameters, the Langmuir model is fit to measured sorption data using least squares regression. Least squares regression is based on several assumptions including normally dist...

  6. A Piecewise Local Partial Least Squares (PLS) Method for the Quantitative Analysis of Plutonium Nitrate Solutions

    DOE PAGES

    Lascola, Robert; O'Rourke, Patrick E.; Kyser, Edward A.

    2017-10-05

    Here, we have developed a piecewise local (PL) partial least squares (PLS) analysis method for total plutonium measurements by absorption spectroscopy in nitric acid-based nuclear material processing streams. Instead of using a single PLS model that covers all expected solution conditions, the method selects one of several local models based on an assessment of solution absorbance, acidity, and Pu oxidation state distribution. The local models match the global model for accuracy against the calibration set, but were observed in several instances to be more robust to variations associated with measurements in the process. The improvements are attributed to the relativemore » parsimony of the local models. Not all of the sources of spectral variation are uniformly present at each part of the calibration range. Thus, the global model is locally overfitting and susceptible to increased variance when presented with new samples. A second set of models quantifies the relative concentrations of Pu(III), (IV), and (VI). Standards containing a mixture of these species were not at equilibrium due to a disproportionation reaction. Therefore, a separate principal component analysis is used to estimate of the concentrations of the individual oxidation states in these standards in the absence of independent confirmatory analysis. The PL analysis approach is generalizable to other systems where the analysis of chemically complicated systems can be aided by rational division of the overall range of solution conditions into simpler sub-regions.« less

  7. A Piecewise Local Partial Least Squares (PLS) Method for the Quantitative Analysis of Plutonium Nitrate Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lascola, Robert; O'Rourke, Patrick E.; Kyser, Edward A.

    Here, we have developed a piecewise local (PL) partial least squares (PLS) analysis method for total plutonium measurements by absorption spectroscopy in nitric acid-based nuclear material processing streams. Instead of using a single PLS model that covers all expected solution conditions, the method selects one of several local models based on an assessment of solution absorbance, acidity, and Pu oxidation state distribution. The local models match the global model for accuracy against the calibration set, but were observed in several instances to be more robust to variations associated with measurements in the process. The improvements are attributed to the relativemore » parsimony of the local models. Not all of the sources of spectral variation are uniformly present at each part of the calibration range. Thus, the global model is locally overfitting and susceptible to increased variance when presented with new samples. A second set of models quantifies the relative concentrations of Pu(III), (IV), and (VI). Standards containing a mixture of these species were not at equilibrium due to a disproportionation reaction. Therefore, a separate principal component analysis is used to estimate of the concentrations of the individual oxidation states in these standards in the absence of independent confirmatory analysis. The PL analysis approach is generalizable to other systems where the analysis of chemically complicated systems can be aided by rational division of the overall range of solution conditions into simpler sub-regions.« less

  8. Fracture characterization by hybrid enumerative search and Gauss-Newton least-squares inversion methods

    NASA Astrophysics Data System (ADS)

    Alkharji, Mohammed N.

    Most fracture characterization methods provide a general description of the fracture parameters as part of the reservoirs parameters; the fracture interaction and geometry within the reservoir is given less attention. T-Matrix and Linear Slip effective medium fracture models are implemented to invert the elastic tensor for the parameters and geometries of the fractures within the reservoir. The fracture inverse problem has an ill-posed, overdetermined, underconstrained rank-deficit system of equations. Least-squares inverse methods are used to solve the problem. A good starting initial model for the parameters is a key factor in the reliability of the inversion. Most methods assume that the starting parameters are close to the solution to avoid inaccurate local minimum solutions. The prior knowledge of the fracture parameters and their geometry is not available. We develop a hybrid, enumerative and Gauss-Newton, method that estimates the fracture parameters and geometry from the elastic tensor with no prior knowledge of the initial parameter values. The fracture parameters are separated into two groups. The first group contains the fracture parameters with no prior information, and the second group contains the parameters with known prior information. Different models are generated from the first group parameters by sampling the solution space over a predefined range of possible solutions for each parameter. Each model generated by the first group is fixed and used as a starting model to invert for the second group of parameters using the Gauss-Newton method. The least-squares residual between the observed elastic tensor and the estimated elastic tensor is calculated for each model. The model parameters that yield the least-squares residual corresponds to the correct fracture reservoir parameters and geometry. Two synthetic examples of fractured reservoirs with oil and gas saturations were inverted with no prior information about the fracture properties. The

  9. Hybrid least squares multivariate spectral analysis methods

    DOEpatents

    Haaland, David M.

    2002-01-01

    A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following estimation or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The "hybrid" method herein means a combination of an initial classical least squares analysis calibration step with subsequent analysis by an inverse multivariate analysis method. A "spectral shape" herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The "shape" can be continuous, discontinuous, or even discrete points illustrative of the particular effect.

  10. A feasibility study of a 3-D finite element solution scheme for aeroengine duct acoustics

    NASA Technical Reports Server (NTRS)

    Abrahamson, A. L.

    1980-01-01

    The advantage from development of a 3-D model of aeroengine duct acoustics is the ability to analyze axial and circumferential liner segmentation simultaneously. The feasibility of a 3-D duct acoustics model was investigated using Galerkin or least squares element formulations combined with Gaussian elimination, successive over-relaxation, or conjugate gradient solution algorithms on conventional scalar computers and on a vector machine. A least squares element formulation combined with a conjugate gradient solver on a CDC Star vector computer initially appeared to have great promise, but severe difficulties were encountered with matrix ill-conditioning. These difficulties in conditioning rendered this technique impractical for realistic problems.

  11. On Least Squares Fitting Nonlinear Submodels.

    ERIC Educational Resources Information Center

    Bechtel, Gordon G.

    Three simplifying conditions are given for obtaining least squares (LS) estimates for a nonlinear submodel of a linear model. If these are satisfied, and if the subset of nonlinear parameters may be LS fit to the corresponding LS estimates of the linear model, then one attains the desired LS estimates for the entire submodel. Two illustrative…

  12. Software For Least-Squares And Robust Estimation

    NASA Technical Reports Server (NTRS)

    Jeffreys, William H.; Fitzpatrick, Michael J.; Mcarthur, Barbara E.; Mccartney, James

    1990-01-01

    GAUSSFIT computer program includes full-featured programming language facilitating creation of mathematical models solving least-squares and robust-estimation problems. Programming language designed to make it easy to specify complex reduction models. Written in 100 percent C language.

  13. From direct-space discrepancy functions to crystallographic least squares.

    PubMed

    Giacovazzo, Carmelo

    2015-01-01

    Crystallographic least squares are a fundamental tool for crystal structure analysis. In this paper their properties are derived from functions estimating the degree of similarity between two electron-density maps. The new approach leads also to modifications of the standard least-squares procedures, potentially able to improve their efficiency. The role of the scaling factor between observed and model amplitudes is analysed: the concept of unlocated model is discussed and its scattering contribution is combined with that arising from the located model. Also, the possible use of an ancillary parameter, to be associated with the classical weight related to the variance of the observed amplitudes, is studied. The crystallographic discrepancy factors, basic tools often combined with least-squares procedures in phasing approaches, are analysed. The mathematical approach here described includes, as a special case, the so-called vector refinement, used when accurate estimates of the target phases are available.

  14. Least squares reverse time migration of controlled order multiples

    NASA Astrophysics Data System (ADS)

    Liu, Y.

    2016-12-01

    Imaging using the reverse time migration of multiples generates inherent crosstalk artifacts due to the interference among different order multiples. Traditionally, least-square fitting has been used to address this issue by seeking the best objective function to measure the amplitude differences between the predicted and observed data. We have developed an alternative objective function by decomposing multiples into different orders to minimize the difference between Born modeling predicted multiples and specific-order multiples from observational data in order to attenuate the crosstalk. This method is denoted as the least-squares reverse time migration of controlled order multiples (LSRTM-CM). Our numerical examples demonstrated that the LSRTM-CM can significantly improve image quality compared with reverse time migration of multiples and least-square reverse time migration of multiples. Acknowledgments This research was funded by the National Nature Science Foundation of China (Grant Nos. 41430321 and 41374138).

  15. The incomplete inverse and its applications to the linear least squares problem

    NASA Technical Reports Server (NTRS)

    Morduch, G. E.

    1977-01-01

    A modified matrix product is explained, and it is shown that this product defiles a group whose inverse is called the incomplete inverse. It was proven that the incomplete inverse of an augmented normal matrix includes all the quantities associated with the least squares solution. An answer is provided to the problem that occurs when the data residuals are too large and when insufficient data to justify augmenting the model are available.

  16. Parallel block schemes for large scale least squares computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golub, G.H.; Plemmons, R.J.; Sameh, A.

    1986-04-01

    Large scale least squares computations arise in a variety of scientific and engineering problems, including geodetic adjustments and surveys, medical image analysis, molecular structures, partial differential equations and substructuring methods in structural engineering. In each of these problems, matrices often arise which possess a block structure which reflects the local connection nature of the underlying physical problem. For example, such super-large nonlinear least squares computations arise in geodesy. Here the coordinates of positions are calculated by iteratively solving overdetermined systems of nonlinear equations by the Gauss-Newton method. The US National Geodetic Survey will complete this year (1986) the readjustment ofmore » the North American Datum, a problem which involves over 540 thousand unknowns and over 6.5 million observations (equations). The observation matrix for these least squares computations has a block angular form with 161 diagnonal blocks, each containing 3 to 4 thousand unknowns. In this paper parallel schemes are suggested for the orthogonal factorization of matrices in block angular form and for the associated backsubstitution phase of the least squares computations. In addition, a parallel scheme for the calculation of certain elements of the covariance matrix for such problems is described. It is shown that these algorithms are ideally suited for multiprocessors with three levels of parallelism such as the Cedar system at the University of Illinois. 20 refs., 7 figs.« less

  17. Accurate human limb angle measurement: sensor fusion through Kalman, least mean squares and recursive least-squares adaptive filtering

    NASA Astrophysics Data System (ADS)

    Olivares, A.; Górriz, J. M.; Ramírez, J.; Olivares, G.

    2011-02-01

    Inertial sensors are widely used in human body motion monitoring systems since they permit us to determine the position of the subject's limbs. Limb angle measurement is carried out through the integration of the angular velocity measured by a rate sensor and the decomposition of the components of static gravity acceleration measured by an accelerometer. Different factors derived from the sensors' nature, such as the angle random walk and dynamic bias, lead to erroneous measurements. Dynamic bias effects can be reduced through the use of adaptive filtering based on sensor fusion concepts. Most existing published works use a Kalman filtering sensor fusion approach. Our aim is to perform a comparative study among different adaptive filters. Several least mean squares (LMS), recursive least squares (RLS) and Kalman filtering variations are tested for the purpose of finding the best method leading to a more accurate and robust limb angle measurement. A new angle wander compensation sensor fusion approach based on LMS and RLS filters has been developed.

  18. Using Perturbed QR Factorizations To Solve Linear Least-Squares Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avron, Haim; Ng, Esmond G.; Toledo, Sivan

    2008-03-21

    We propose and analyze a new tool to help solve sparse linear least-squares problems min{sub x} {parallel}Ax-b{parallel}{sub 2}. Our method is based on a sparse QR factorization of a low-rank perturbation {cflx A} of A. More precisely, we show that the R factor of {cflx A} is an effective preconditioner for the least-squares problem min{sub x} {parallel}Ax-b{parallel}{sub 2}, when solved using LSQR. We propose applications for the new technique. When A is rank deficient we can add rows to ensure that the preconditioner is well-conditioned without column pivoting. When A is sparse except for a few dense rows we canmore » drop these dense rows from A to obtain {cflx A}. Another application is solving an updated or downdated problem. If R is a good preconditioner for the original problem A, it is a good preconditioner for the updated/downdated problem {cflx A}. We can also solve what-if scenarios, where we want to find the solution if a column of the original matrix is changed/removed. We present a spectral theory that analyzes the generalized spectrum of the pencil (A*A,R*R) and analyze the applications.« less

  19. Elastic Model Transitions Using Quadratic Inequality Constrained Least Squares

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.

    2012-01-01

    A technique is presented for initializing multiple discrete finite element model (FEM) mode sets for certain types of flight dynamics formulations that rely on superposition of orthogonal modes for modeling the elastic response. Such approaches are commonly used for modeling launch vehicle dynamics, and challenges arise due to the rapidly time-varying nature of the rigid-body and elastic characteristics. By way of an energy argument, a quadratic inequality constrained least squares (LSQI) algorithm is employed to e ect a smooth transition from one set of FEM eigenvectors to another with no requirement that the models be of similar dimension or that the eigenvectors be correlated in any particular way. The physically unrealistic and controversial method of eigenvector interpolation is completely avoided, and the discrete solution approximates that of the continuously varying system. The real-time computational burden is shown to be negligible due to convenient features of the solution method. Simulation results are presented, and applications to staging and other discontinuous mass changes are discussed

  20. Numerical solution of the unsteady diffusion-convection-reaction equation based on improved spectral Galerkin method

    NASA Astrophysics Data System (ADS)

    Zhong, Jiaqi; Zeng, Cheng; Yuan, Yupeng; Zhang, Yuzhe; Zhang, Ye

    2018-04-01

    The aim of this paper is to present an explicit numerical algorithm based on improved spectral Galerkin method for solving the unsteady diffusion-convection-reaction equation. The principal characteristics of this approach give the explicit eigenvalues and eigenvectors based on the time-space separation method and boundary condition analysis. With the help of Fourier series and Galerkin truncation, we can obtain the finite-dimensional ordinary differential equations which facilitate the system analysis and controller design. By comparing with the finite element method, the numerical solutions are demonstrated via two examples. It is shown that the proposed method is effective.

  1. Phase-space finite elements in a least-squares solution of the transport equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drumm, C.; Fan, W.; Pautz, S.

    2013-07-01

    The linear Boltzmann transport equation is solved using a least-squares finite element approximation in the space, angular and energy phase-space variables. The method is applied to both neutral particle transport and also to charged particle transport in the presence of an electric field, where the angular and energy derivative terms are handled with the energy/angular finite elements approximation, in a manner analogous to the way the spatial streaming term is handled. For multi-dimensional problems, a novel approach is used for the angular finite elements: mapping the surface of a unit sphere to a two-dimensional planar region and using a meshingmore » tool to generate a mesh. In this manner, much of the spatial finite-elements machinery can be easily adapted to handle the angular variable. The energy variable and the angular variable for one-dimensional problems make use of edge/beam elements, also building upon the spatial finite elements capabilities. The methods described here can make use of either continuous or discontinuous finite elements in space, angle and/or energy, with the use of continuous finite elements resulting in a smaller problem size and the use of discontinuous finite elements resulting in more accurate solutions for certain types of problems. The work described in this paper makes use of continuous finite elements, so that the resulting linear system is symmetric positive definite and can be solved with a highly efficient parallel preconditioned conjugate gradients algorithm. The phase-space finite elements capability has been built into the Sceptre code and applied to several test problems, including a simple one-dimensional problem with an analytic solution available, a two-dimensional problem with an isolated source term, showing how the method essentially eliminates ray effects encountered with discrete ordinates, and a simple one-dimensional charged-particle transport problem in the presence of an electric field. (authors)« less

  2. Quantitative accuracy of the closed-form least-squares solution for targeted SPECT.

    PubMed

    Shcherbinin, S; Celler, A

    2010-10-07

    The aim of this study is to investigate the quantitative accuracy of the closed-form least-squares solution (LSS) for single photon emission computed tomography (SPECT). The main limitation for employing this method in actual clinical reconstructions is the computational cost related to operations with a large-sized system matrix. However, in some clinical situations, the size of the system matrix can be decreased using targeted reconstruction. For example, some oncology SPECT studies are characterized by intense tracer uptakes that are localized in relatively small areas, while the remaining parts of the patient body have only a low activity background. Conventional procedures reconstruct the activity distribution in the whole object, which leads to relatively poor image accuracy/resolution for tumors while computer resources are wasted, trying to rebuild diagnostically useless background. In this study, we apply a concept of targeted reconstruction to SPECT phantom experiments imitating such oncology scans. Our approach includes two major components: (i) disconnection of the entire imaging system of equations and extraction of only those parts that correspond to the targets, i.e., regions of interest (ROI) encompassing active containers/tumors and (ii) generation of the closed-form LSS for each target ROI. We compared these ROI-based LSS with those reconstructed by the conventional MLEM approach. The analysis of the five processed cases from two phantom experiments demonstrated that the LSS approach outperformed MLEM in terms of the noise level inside ROI. On the other hand, MLEM better recovered total activity if the number of iterations was large enough. For the experiment without background activity, the ROI-based LSS led to noticeably better spatial activity distribution inside ROI. However, the distributions pertaining to both approaches were practically identical for the experiment with the concentration ratio 7:1 between the containers and the background.

  3. A Simple Introduction to Moving Least Squares and Local Regression Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garimella, Rao Veerabhadra

    In this brief note, a highly simpli ed introduction to esimating functions over a set of particles is presented. The note starts from Global Least Squares tting, going on to Moving Least Squares estimation (MLS) and nally, Local Regression Estimation (LRE).

  4. Study of the convergence behavior of the complex kernel least mean square algorithm.

    PubMed

    Paul, Thomas K; Ogunfunmi, Tokunbo

    2013-09-01

    The complex kernel least mean square (CKLMS) algorithm is recently derived and allows for online kernel adaptive learning for complex data. Kernel adaptive methods can be used in finding solutions for neural network and machine learning applications. The derivation of CKLMS involved the development of a modified Wirtinger calculus for Hilbert spaces to obtain the cost function gradient. We analyze the convergence of the CKLMS with different kernel forms for complex data. The expressions obtained enable us to generate theory-predicted mean-square error curves considering the circularity of the complex input signals and their effect on nonlinear learning. Simulations are used for verifying the analysis results.

  5. Recursive least-squares learning algorithms for neural networks

    NASA Astrophysics Data System (ADS)

    Lewis, Paul S.; Hwang, Jenq N.

    1990-11-01

    This paper presents the development of a pair of recursive least squares (ItLS) algorithms for online training of multilayer perceptrons which are a class of feedforward artificial neural networks. These algorithms incorporate second order information about the training error surface in order to achieve faster learning rates than are possible using first order gradient descent algorithms such as the generalized delta rule. A least squares formulation is derived from a linearization of the training error function. Individual training pattern errors are linearized about the network parameters that were in effect when the pattern was presented. This permits the recursive solution of the least squares approximation either via conventional RLS recursions or by recursive QR decomposition-based techniques. The computational complexity of the update is 0(N2) where N is the number of network parameters. This is due to the estimation of the N x N inverse Hessian matrix. Less computationally intensive approximations of the ilLS algorithms can be easily derived by using only block diagonal elements of this matrix thereby partitioning the learning into independent sets. A simulation example is presented in which a neural network is trained to approximate a two dimensional Gaussian bump. In this example RLS training required an order of magnitude fewer iterations on average (527) than did training with the generalized delta rule (6 1 BACKGROUND Artificial neural networks (ANNs) offer an interesting and potentially useful paradigm for signal processing and pattern recognition. The majority of ANN applications employ the feed-forward multilayer perceptron (MLP) network architecture in which network parameters are " trained" by a supervised learning algorithm employing the generalized delta rule (GDIt) [1 2]. The GDR algorithm approximates a fixed step steepest descent algorithm using derivatives computed by error backpropagatiori. The GDII algorithm is sometimes referred to as the

  6. Optimally weighted least-squares steganalysis

    NASA Astrophysics Data System (ADS)

    Ker, Andrew D.

    2007-02-01

    Quantitative steganalysis aims to estimate the amount of payload in a stego object, and such estimators seem to arise naturally in steganalysis of Least Significant Bit (LSB) replacement in digital images. However, as with all steganalysis, the estimators are subject to errors, and their magnitude seems heavily dependent on properties of the cover. In very recent work we have given the first derivation of estimation error, for a certain method of steganalysis (the Least-Squares variant of Sample Pairs Analysis) of LSB replacement steganography in digital images. In this paper we make use of our theoretical results to find an improved estimator and detector. We also extend the theoretical analysis to another (more accurate) steganalysis estimator (Triples Analysis) and hence derive an improved version of that estimator too. Experimental results show that the new steganalyzers have improved accuracy, particularly in the difficult case of never-compressed covers.

  7. Least-squares sequential parameter and state estimation for large space structures

    NASA Technical Reports Server (NTRS)

    Thau, F. E.; Eliazov, T.; Montgomery, R. C.

    1982-01-01

    This paper presents the formulation of simultaneous state and parameter estimation problems for flexible structures in terms of least-squares minimization problems. The approach combines an on-line order determination algorithm, with least-squares algorithms for finding estimates of modal approximation functions, modal amplitudes, and modal parameters. The approach combines previous results on separable nonlinear least squares estimation with a regression analysis formulation of the state estimation problem. The technique makes use of sequential Householder transformations. This allows for sequential accumulation of matrices required during the identification process. The technique is used to identify the modal prameters of a flexible beam.

  8. Least squares estimation of avian molt rates

    USGS Publications Warehouse

    Johnson, D.H.

    1989-01-01

    A straightforward least squares method of estimating the rate at which birds molt feathers is presented, suitable for birds captured more than once during the period of molt. The date of molt onset can also be estimated. The method is applied to male and female mourning doves.

  9. Efficient spectral-Galerkin algorithms for direct solution for second-order differential equations using Jacobi polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E.; Bhrawy, A.

    2006-06-01

    It is well known that spectral methods (tau, Galerkin, collocation) have a condition number of ( is the number of retained modes of polynomial approximations). This paper presents some efficient spectral algorithms, which have a condition number of , based on the Jacobi?Galerkin methods of second-order elliptic equations in one and two space variables. The key to the efficiency of these algorithms is to construct appropriate base functions, which lead to systems with specially structured matrices that can be efficiently inverted. The complexities of the algorithms are a small multiple of operations for a -dimensional domain with unknowns, while the convergence rates of the algorithms are exponentials with smooth solutions.

  10. Least Squares Metric, Unidimensional Scaling of Multivariate Linear Models.

    ERIC Educational Resources Information Center

    Poole, Keith T.

    1990-01-01

    A general approach to least-squares unidimensional scaling is presented. Ordering information contained in the parameters is used to transform the standard squared error loss function into a discrete rather than continuous form. Monte Carlo tests with 38,094 ratings of 261 senators, and 1,258 representatives demonstrate the procedure's…

  11. A two-dimensional Riemann solver with self-similar sub-structure - Alternative formulation based on least squares projection

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Vides, Jeaniffer; Gurski, Katharine; Nkonga, Boniface; Dumbser, Michael; Garain, Sudip; Audit, Edouard

    2016-01-01

    Just as the quality of a one-dimensional approximate Riemann solver is improved by the inclusion of internal sub-structure, the quality of a multidimensional Riemann solver is also similarly improved. Such multidimensional Riemann problems arise when multiple states come together at the vertex of a mesh. The interaction of the resulting one-dimensional Riemann problems gives rise to a strongly-interacting state. We wish to endow this strongly-interacting state with physically-motivated sub-structure. The self-similar formulation of Balsara [16] proves especially useful for this purpose. While that work is based on a Galerkin projection, in this paper we present an analogous self-similar formulation that is based on a different interpretation. In the present formulation, we interpret the shock jumps at the boundary of the strongly-interacting state quite literally. The enforcement of the shock jump conditions is done with a least squares projection (Vides, Nkonga and Audit [67]). With that interpretation, we again show that the multidimensional Riemann solver can be endowed with sub-structure. However, we find that the most efficient implementation arises when we use a flux vector splitting and a least squares projection. An alternative formulation that is based on the full characteristic matrices is also presented. The multidimensional Riemann solvers that are demonstrated here use one-dimensional HLLC Riemann solvers as building blocks. Several stringent test problems drawn from hydrodynamics and MHD are presented to show that the method works. Results from structured and unstructured meshes demonstrate the versatility of our method. The reader is also invited to watch a video introduction to multidimensional Riemann solvers on http://www.nd.edu/ dbalsara/Numerical-PDE-Course.

  12. Optimal Least-Squares Unidimensional Scaling: Improved Branch-and-Bound Procedures and Comparison to Dynamic Programming

    ERIC Educational Resources Information Center

    Brusco, Michael J.; Stahl, Stephanie

    2005-01-01

    There are two well-known methods for obtaining a guaranteed globally optimal solution to the problem of least-squares unidimensional scaling of a symmetric dissimilarity matrix: (a) dynamic programming, and (b) branch-and-bound. Dynamic programming is generally more efficient than branch-and-bound, but the former is limited to matrices with…

  13. Parameter estimation of Monod model by the Least-Squares method for microalgae Botryococcus Braunii sp

    NASA Astrophysics Data System (ADS)

    See, J. J.; Jamaian, S. S.; Salleh, R. M.; Nor, M. E.; Aman, F.

    2018-04-01

    This research aims to estimate the parameters of Monod model of microalgae Botryococcus Braunii sp growth by the Least-Squares method. Monod equation is a non-linear equation which can be transformed into a linear equation form and it is solved by implementing the Least-Squares linear regression method. Meanwhile, Gauss-Newton method is an alternative method to solve the non-linear Least-Squares problem with the aim to obtain the parameters value of Monod model by minimizing the sum of square error ( SSE). As the result, the parameters of the Monod model for microalgae Botryococcus Braunii sp can be estimated by the Least-Squares method. However, the estimated parameters value obtained by the non-linear Least-Squares method are more accurate compared to the linear Least-Squares method since the SSE of the non-linear Least-Squares method is less than the linear Least-Squares method.

  14. Application of Least Mean Square Algorithms to Spacecraft Vibration Compensation

    NASA Technical Reports Server (NTRS)

    Woodard , Stanley E.; Nagchaudhuri, Abhijit

    1998-01-01

    This paper describes the application of the Least Mean Square (LMS) algorithm in tandem with the Filtered-X Least Mean Square algorithm for controlling a science instrument's line-of-sight pointing. Pointing error is caused by a periodic disturbance and spacecraft vibration. A least mean square algorithm is used on-orbit to produce the transfer function between the instrument's servo-mechanism and error sensor. The result is a set of adaptive transversal filter weights tuned to the transfer function. The Filtered-X LMS algorithm, which is an extension of the LMS, tunes a set of transversal filter weights to the transfer function between the disturbance source and the servo-mechanism's actuation signal. The servo-mechanism's resulting actuation counters the disturbance response and thus maintains accurate science instrumental pointing. A simulation model of the Upper Atmosphere Research Satellite is used to demonstrate the algorithms.

  15. A coupled electro-thermal Discontinuous Galerkin method

    NASA Astrophysics Data System (ADS)

    Homsi, L.; Geuzaine, C.; Noels, L.

    2017-11-01

    This paper presents a Discontinuous Galerkin scheme in order to solve the nonlinear elliptic partial differential equations of coupled electro-thermal problems. In this paper we discuss the fundamental equations for the transport of electricity and heat, in terms of macroscopic variables such as temperature and electric potential. A fully coupled nonlinear weak formulation for electro-thermal problems is developed based on continuum mechanics equations expressed in terms of energetically conjugated pair of fluxes and fields gradients. The weak form can thus be formulated as a Discontinuous Galerkin method. The existence and uniqueness of the weak form solution are proved. The numerical properties of the nonlinear elliptic problems i.e., consistency and stability, are demonstrated under specific conditions, i.e. use of high enough stabilization parameter and at least quadratic polynomial approximations. Moreover the prior error estimates in the H1-norm and in the L2-norm are shown to be optimal in the mesh size with the polynomial approximation degree.

  16. Speckle evolution with multiple steps of least-squares phase removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Mingzhou; Dainty, Chris; Roux, Filippus S.

    2011-08-15

    We study numerically the evolution of speckle fields due to the annihilation of optical vortices after the least-squares phase has been removed. A process with multiple steps of least-squares phase removal is carried out to minimize both vortex density and scintillation index. Statistical results show that almost all the optical vortices can be removed from a speckle field, which finally decays into a quasiplane wave after such an iterative process.

  17. Least squares regression methods for clustered ROC data with discrete covariates.

    PubMed

    Tang, Liansheng Larry; Zhang, Wei; Li, Qizhai; Ye, Xuan; Chan, Leighton

    2016-07-01

    The receiver operating characteristic (ROC) curve is a popular tool to evaluate and compare the accuracy of diagnostic tests to distinguish the diseased group from the nondiseased group when test results from tests are continuous or ordinal. A complicated data setting occurs when multiple tests are measured on abnormal and normal locations from the same subject and the measurements are clustered within the subject. Although least squares regression methods can be used for the estimation of ROC curve from correlated data, how to develop the least squares methods to estimate the ROC curve from the clustered data has not been studied. Also, the statistical properties of the least squares methods under the clustering setting are unknown. In this article, we develop the least squares ROC methods to allow the baseline and link functions to differ, and more importantly, to accommodate clustered data with discrete covariates. The methods can generate smooth ROC curves that satisfy the inherent continuous property of the true underlying curve. The least squares methods are shown to be more efficient than the existing nonparametric ROC methods under appropriate model assumptions in simulation studies. We apply the methods to a real example in the detection of glaucomatous deterioration. We also derive the asymptotic properties of the proposed methods. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. First-Order System Least-Squares for Second-Order Elliptic Problems with Discontinuous Coefficients

    NASA Technical Reports Server (NTRS)

    Manteuffel, Thomas A.; McCormick, Stephen F.; Starke, Gerhard

    1996-01-01

    The first-order system least-squares methodology represents an alternative to standard mixed finite element methods. Among its advantages is the fact that the finite element spaces approximating the pressure and flux variables are not restricted by the inf-sup condition and that the least-squares functional itself serves as an appropriate error measure. This paper studies the first-order system least-squares approach for scalar second-order elliptic boundary value problems with discontinuous coefficients. Ellipticity of an appropriately scaled least-squares bilinear form of the size of the jumps in the coefficients leading to adequate finite element approximation results. The occurrence of singularities at interface corners and cross-points is discussed. and a weighted least-squares functional is introduced to handle such cases. Numerical experiments are presented for two test problems to illustrate the performance of this approach.

  19. Uncertainty based pressure reconstruction from velocity measurement with generalized least squares

    NASA Astrophysics Data System (ADS)

    Zhang, Jiacheng; Scalo, Carlo; Vlachos, Pavlos

    2017-11-01

    A method using generalized least squares reconstruction of instantaneous pressure field from velocity measurement and velocity uncertainty is introduced and applied to both planar and volumetric flow data. Pressure gradients are computed on a staggered grid from flow acceleration. The variance-covariance matrix of the pressure gradients is evaluated from the velocity uncertainty by approximating the pressure gradient error to a linear combination of velocity errors. An overdetermined system of linear equations which relates the pressure and the computed pressure gradients is formulated and then solved using generalized least squares with the variance-covariance matrix of the pressure gradients. By comparing the reconstructed pressure field against other methods such as solving the pressure Poisson equation, the omni-directional integration, and the ordinary least squares reconstruction, generalized least squares method is found to be more robust to the noise in velocity measurement. The improvement on pressure result becomes more remarkable when the velocity measurement becomes less accurate and more heteroscedastic. The uncertainty of the reconstructed pressure field is also quantified and compared across the different methods.

  20. Applied Algebra: The Modeling Technique of Least Squares

    ERIC Educational Resources Information Center

    Zelkowski, Jeremy; Mayes, Robert

    2008-01-01

    The article focuses on engaging students in algebra through modeling real-world problems. The technique of least squares is explored, encouraging students to develop a deeper understanding of the method. (Contains 2 figures and a bibliography.)

  1. Inter-class sparsity based discriminative least square regression.

    PubMed

    Wen, Jie; Xu, Yong; Li, Zuoyong; Ma, Zhongli; Xu, Yuanrong

    2018-06-01

    Least square regression is a very popular supervised classification method. However, two main issues greatly limit its performance. The first one is that it only focuses on fitting the input features to the corresponding output labels while ignoring the correlations among samples. The second one is that the used label matrix, i.e., zero-one label matrix is inappropriate for classification. To solve these problems and improve the performance, this paper presents a novel method, i.e., inter-class sparsity based discriminative least square regression (ICS_DLSR), for multi-class classification. Different from other methods, the proposed method pursues that the transformed samples have a common sparsity structure in each class. For this goal, an inter-class sparsity constraint is introduced to the least square regression model such that the margins of samples from the same class can be greatly reduced while those of samples from different classes can be enlarged. In addition, an error term with row-sparsity constraint is introduced to relax the strict zero-one label matrix, which allows the method to be more flexible in learning the discriminative transformation matrix. These factors encourage the method to learn a more compact and discriminative transformation for regression and thus has the potential to perform better than other methods. Extensive experimental results show that the proposed method achieves the best performance in comparison with other methods for multi-class classification. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Weighted linear least squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls.

    PubMed

    Veraart, Jelle; Sijbers, Jan; Sunaert, Stefan; Leemans, Alexander; Jeurissen, Ben

    2013-11-01

    Linear least squares estimators are widely used in diffusion MRI for the estimation of diffusion parameters. Although adding proper weights is necessary to increase the precision of these linear estimators, there is no consensus on how to practically define them. In this study, the impact of the commonly used weighting strategies on the accuracy and precision of linear diffusion parameter estimators is evaluated and compared with the nonlinear least squares estimation approach. Simulation and real data experiments were done to study the performance of the weighted linear least squares estimators with weights defined by (a) the squares of the respective noisy diffusion-weighted signals; and (b) the squares of the predicted signals, which are reconstructed from a previous estimate of the diffusion model parameters. The negative effect of weighting strategy (a) on the accuracy of the estimator was surprisingly high. Multi-step weighting strategies yield better performance and, in some cases, even outperformed the nonlinear least squares estimator. If proper weighting strategies are applied, the weighted linear least squares approach shows high performance characteristics in terms of accuracy/precision and may even be preferred over nonlinear estimation methods. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Multicategory Composite Least Squares Classifiers

    PubMed Central

    Park, Seo Young; Liu, Yufeng; Liu, Dacheng; Scholl, Paul

    2010-01-01

    Classification is a very useful statistical tool for information extraction. In particular, multicategory classification is commonly seen in various applications. Although binary classification problems are heavily studied, extensions to the multicategory case are much less so. In view of the increased complexity and volume of modern statistical problems, it is desirable to have multicategory classifiers that are able to handle problems with high dimensions and with a large number of classes. Moreover, it is necessary to have sound theoretical properties for the multicategory classifiers. In the literature, there exist several different versions of simultaneous multicategory Support Vector Machines (SVMs). However, the computation of the SVM can be difficult for large scale problems, especially for problems with large number of classes. Furthermore, the SVM cannot produce class probability estimation directly. In this article, we propose a novel efficient multicategory composite least squares classifier (CLS classifier), which utilizes a new composite squared loss function. The proposed CLS classifier has several important merits: efficient computation for problems with large number of classes, asymptotic consistency, ability to handle high dimensional data, and simple conditional class probability estimation. Our simulated and real examples demonstrate competitive performance of the proposed approach. PMID:21218128

  4. Semivariogram modeling by weighted least squares

    USGS Publications Warehouse

    Jian, X.; Olea, R.A.; Yu, Y.-S.

    1996-01-01

    Permissible semivariogram models are fundamental for geostatistical estimation and simulation of attributes having a continuous spatiotemporal variation. The usual practice is to fit those models manually to experimental semivariograms. Fitting by weighted least squares produces comparable results to fitting manually in less time, systematically, and provides an Akaike information criterion for the proper comparison of alternative models. We illustrate the application of a computer program with examples showing the fitting of simple and nested models. Copyright ?? 1996 Elsevier Science Ltd.

  5. Use of inequality constrained least squares estimation in small area estimation

    NASA Astrophysics Data System (ADS)

    Abeygunawardana, R. A. B.; Wickremasinghe, W. N.

    2017-05-01

    Traditional surveys provide estimates that are based only on the sample observations collected for the population characteristic of interest. However, these estimates may have unacceptably large variance for certain domains. Small Area Estimation (SAE) deals with determining precise and accurate estimates for population characteristics of interest for such domains. SAE usually uses least squares or maximum likelihood procedures incorporating prior information and current survey data. Many available methods in SAE use constraints in equality form. However there are practical situations where certain inequality restrictions on model parameters are more realistic. It will lead to Inequality Constrained Least Squares (ICLS) estimates if the method used is least squares. In this study ICLS estimation procedure is applied to many proposed small area estimates.

  6. Two-dimensional wavefront reconstruction based on double-shearing and least squares fitting

    NASA Astrophysics Data System (ADS)

    Liang, Peiying; Ding, Jianping; Zhu, Yangqing; Dong, Qian; Huang, Yuhua; Zhu, Zhen

    2017-06-01

    The two-dimensional wavefront reconstruction method based on double-shearing and least squares fitting is proposed in this paper. Four one-dimensional phase estimates of the measured wavefront, which correspond to the two shears and the two orthogonal directions, could be calculated from the differential phase, which solves the problem of the missing spectrum, and then by using the least squares method the two-dimensional wavefront reconstruction could be done. The numerical simulations of the proposed algorithm are carried out to verify the feasibility of this method. The influence of noise generated from different shear amount and different intensity on the accuracy of the reconstruction is studied and compared with the results from the algorithm based on single-shearing and least squares fitting. Finally, a two-grating lateral shearing interference experiment is carried out to verify the wavefront reconstruction algorithm based on doubleshearing and least squares fitting.

  7. A Galerkin method for the estimation of parameters in hybrid systems governing the vibration of flexible beams with tip bodies

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Rosen, I. G.

    1985-01-01

    An approximation scheme is developed for the identification of hybrid systems describing the transverse vibrations of flexible beams with attached tip bodies. In particular, problems involving the estimation of functional parameters are considered. The identification problem is formulated as a least squares fit to data subject to the coupled system of partial and ordinary differential equations describing the transverse displacement of the beam and the motion of the tip bodies respectively. A cubic spline-based Galerkin method applied to the state equations in weak form and the discretization of the admissible parameter space yield a sequence of approximating finite dimensional identification problems. It is shown that each of the approximating problems admits a solution and that from the resulting sequence of optimal solutions a convergent subsequence can be extracted, the limit of which is a solution to the original identification problem. The approximating identification problems can be solved using standard techniques and readily available software.

  8. Least Squares Computations in Science and Engineering

    DTIC Science & Technology

    1994-02-01

    iterative least squares deblurring procedure. Because of the ill-posed characteristics of the deconvolution problem, in the presence of noise , direct...optimization methods. Generally, the problems are accompanied by constraints, such as bound constraints, and the observations are corrupted by noise . The...engineering. This effort has involved interaction with researchers in closed-loop active noise (vibration) control at Phillips Air Force Laboratory

  9. Numerical scheme approximating solution and parameters in a beam equation

    NASA Astrophysics Data System (ADS)

    Ferdinand, Robert R.

    2003-12-01

    We present a mathematical model which describes vibration in a metallic beam about its equilibrium position. This model takes the form of a nonlinear second-order (in time) and fourth-order (in space) partial differential equation with boundary and initial conditions. A finite-element Galerkin approximation scheme is used to estimate model solution. Infinite-dimensional model parameters are then estimated numerically using an inverse method procedure which involves the minimization of a least-squares cost functional. Numerical results are presented and future work to be done is discussed.

  10. Simultaneous spectrophotometric determination of four metals by two kinds of partial least squares methods

    NASA Astrophysics Data System (ADS)

    Gao, Ling; Ren, Shouxin

    2005-10-01

    Simultaneous determination of Ni(II), Cd(II), Cu(II) and Zn(II) was studied by two methods, kernel partial least squares (KPLS) and wavelet packet transform partial least squares (WPTPLS), with xylenol orange and cetyltrimethyl ammonium bromide as reagents in the medium pH = 9.22 borax-hydrochloric acid buffer solution. Two programs, PKPLS and PWPTPLS, were designed to perform the calculations. Data reduction was performed using kernel matrices and wavelet packet transform, respectively. In the KPLS method, the size of the kernel matrix is only dependent on the number of samples, thus the method was suitable for the data matrix with many wavelengths and fewer samples. Wavelet packet representations of signals provide a local time-frequency description, thus in the wavelet packet domain, the quality of the noise removal can be improved. In the WPTPLS by optimization, wavelet function and decomposition level were selected as Daubeches 12 and 5, respectively. Experimental results showed both methods to be successful even where there was severe overlap of spectra.

  11. An improved algorithm for the determination of the system paramters of a visual binary by least squares

    NASA Astrophysics Data System (ADS)

    Xu, Yu-Lin

    The problem of computing the orbit of a visual binary from a set of observed positions is reconsidered. It is a least squares adjustment problem, if the observational errors follow a bias-free multivariate Gaussian distribution and the covariance matrix of the observations is assumed to be known. The condition equations are constructed to satisfy both the conic section equation and the area theorem, which are nonlinear in both the observations and the adjustment parameters. The traditional least squares algorithm, which employs condition equations that are solved with respect to the uncorrelated observations and either linear in the adjustment parameters or linearized by developing them in Taylor series by first-order approximation, is inadequate in our orbit problem. D.C. Brown proposed an algorithm solving a more general least squares adjustment problem in which the scalar residual function, however, is still constructed by first-order approximation. Not long ago, a completely general solution was published by W.H Jefferys, who proposed a rigorous adjustment algorithm for models in which the observations appear nonlinearly in the condition equations and may be correlated, and in which construction of the normal equations and the residual function involves no approximation. This method was successfully applied in our problem. The normal equations were first solved by Newton's scheme. Practical examples show that this converges fast if the observational errors are sufficiently small and the initial approximate solution is sufficiently accurate, and that it fails otherwise. Newton's method was modified to yield a definitive solution in the case the normal approach fails, by combination with the method of steepest descent and other sophisticated algorithms. Practical examples show that the modified Newton scheme can always lead to a final solution. The weighting of observations, the orthogonal parameters and the efficiency of a set of adjustment parameters are also

  12. Estimation of parameters in rational reaction rates of molecular biological systems via weighted least squares

    NASA Astrophysics Data System (ADS)

    Wu, Fang-Xiang; Mu, Lei; Shi, Zhong-Ke

    2010-01-01

    The models of gene regulatory networks are often derived from statistical thermodynamics principle or Michaelis-Menten kinetics equation. As a result, the models contain rational reaction rates which are nonlinear in both parameters and states. It is challenging to estimate parameters nonlinear in a model although there have been many traditional nonlinear parameter estimation methods such as Gauss-Newton iteration method and its variants. In this article, we develop a two-step method to estimate the parameters in rational reaction rates of gene regulatory networks via weighted linear least squares. This method takes the special structure of rational reaction rates into consideration. That is, in the rational reaction rates, the numerator and the denominator are linear in parameters. By designing a special weight matrix for the linear least squares, parameters in the numerator and the denominator can be estimated by solving two linear least squares problems. The main advantage of the developed method is that it can produce the analytical solutions to the estimation of parameters in rational reaction rates which originally is nonlinear parameter estimation problem. The developed method is applied to a couple of gene regulatory networks. The simulation results show the superior performance over Gauss-Newton method.

  13. Bayesian least squares deconvolution

    NASA Astrophysics Data System (ADS)

    Asensio Ramos, A.; Petit, P.

    2015-11-01

    Aims: We develop a fully Bayesian least squares deconvolution (LSD) that can be applied to the reliable detection of magnetic signals in noise-limited stellar spectropolarimetric observations using multiline techniques. Methods: We consider LSD under the Bayesian framework and we introduce a flexible Gaussian process (GP) prior for the LSD profile. This prior allows the result to automatically adapt to the presence of signal. We exploit several linear algebra identities to accelerate the calculations. The final algorithm can deal with thousands of spectral lines in a few seconds. Results: We demonstrate the reliability of the method with synthetic experiments and we apply it to real spectropolarimetric observations of magnetic stars. We are able to recover the magnetic signals using a small number of spectral lines, together with the uncertainty at each velocity bin. This allows the user to consider if the detected signal is reliable. The code to compute the Bayesian LSD profile is freely available.

  14. The dimension split element-free Galerkin method for three-dimensional potential problems

    NASA Astrophysics Data System (ADS)

    Meng, Z. J.; Cheng, H.; Ma, L. D.; Cheng, Y. M.

    2018-06-01

    This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method.

  15. Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography.

    PubMed

    Yalavarthy, Phaneendra K; Pogue, Brian W; Dehghani, Hamid; Paulsen, Keith D

    2007-06-01

    Diffuse optical tomography (DOT) involves estimation of tissue optical properties using noninvasive boundary measurements. The image reconstruction procedure is a nonlinear, ill-posed, and ill-determined problem, so overcoming these difficulties requires regularization of the solution. While the methods developed for solving the DOT image reconstruction procedure have a long history, there is less direct evidence on the optimal regularization methods, or exploring a common theoretical framework for techniques which uses least-squares (LS) minimization. A generalized least-squares (GLS) method is discussed here, which takes into account the variances and covariances among the individual data points and optical properties in the image into a structured weight matrix. It is shown that most of the least-squares techniques applied in DOT can be considered as special cases of this more generalized LS approach. The performance of three minimization techniques using the same implementation scheme is compared using test problems with increasing noise level and increasing complexity within the imaging field. Techniques that use spatial-prior information as constraints can be also incorporated into the GLS formalism. It is also illustrated that inclusion of spatial priors reduces the image error by at least a factor of 2. The improvement of GLS minimization is even more apparent when the noise level in the data is high (as high as 10%), indicating that the benefits of this approach are important for reconstruction of data in a routine setting where the data variance can be known based upon the signal to noise properties of the instruments.

  16. Estimating parameter of influenza transmission using regularized least square

    NASA Astrophysics Data System (ADS)

    Nuraini, N.; Syukriah, Y.; Indratno, S. W.

    2014-02-01

    Transmission process of influenza can be presented in a mathematical model as a non-linear differential equations system. In this model the transmission of influenza is determined by the parameter of contact rate of the infected host and susceptible host. This parameter will be estimated using a regularized least square method where the Finite Element Method and Euler Method are used for approximating the solution of the SIR differential equation. The new infected data of influenza from CDC is used to see the effectiveness of the method. The estimated parameter represents the contact rate proportion of transmission probability in a day which can influence the number of infected people by the influenza. Relation between the estimated parameter and the number of infected people by the influenza is measured by coefficient of correlation. The numerical results show positive correlation between the estimated parameters and the infected people.

  17. Evaluation of fuzzy inference systems using fuzzy least squares

    NASA Technical Reports Server (NTRS)

    Barone, Joseph M.

    1992-01-01

    Efforts to develop evaluation methods for fuzzy inference systems which are not based on crisp, quantitative data or processes (i.e., where the phenomenon the system is built to describe or control is inherently fuzzy) are just beginning. This paper suggests that the method of fuzzy least squares can be used to perform such evaluations. Regressing the desired outputs onto the inferred outputs can provide both global and local measures of success. The global measures have some value in an absolute sense, but they are particularly useful when competing solutions (e.g., different numbers of rules, different fuzzy input partitions) are being compared. The local measure described here can be used to identify specific areas of poor fit where special measures (e.g., the use of emphatic or suppressive rules) can be applied. Several examples are discussed which illustrate the applicability of the method as an evaluation tool.

  18. An Extension of RSS-based Model Comparison Tests for Weighted Least Squares

    DTIC Science & Technology

    2012-08-22

    use the model comparison test statistic to analyze the null hypothesis. Under the null hypothesis, the weighted least squares cost functional is JWLS ...q̂WLSH ) = 10.3040×106. Under the alternative hypothesis, the weighted least squares cost functional is JWLS (q̂WLS) = 8.8394 × 106. Thus the model

  19. Simplified Least Squares Shadowing sensitivity analysis for chaotic ODEs and PDEs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chater, Mario, E-mail: chaterm@mit.edu; Ni, Angxiu, E-mail: niangxiu@mit.edu; Wang, Qiqi, E-mail: qiqi@mit.edu

    This paper develops a variant of the Least Squares Shadowing (LSS) method, which has successfully computed the derivative for several chaotic ODEs and PDEs. The development in this paper aims to simplify Least Squares Shadowing method by improving how time dilation is treated. Instead of adding an explicit time dilation term as in the original method, the new variant uses windowing, which can be more efficient and simpler to implement, especially for PDEs.

  20. Least-mean-square spatial filter for IR sensors.

    PubMed

    Takken, E H; Friedman, D; Milton, A F; Nitzberg, R

    1979-12-15

    A new least-mean-square filter is defined for signal-detection problems. The technique is proposed for scanning IR surveillance systems operating in poorly characterized but primarily low-frequency clutter interference. Near-optimal detection of point-source targets is predicted both for continuous-time and sampled-data systems.

  1. The crux of the method: assumptions in ordinary least squares and logistic regression.

    PubMed

    Long, Rebecca G

    2008-10-01

    Logistic regression has increasingly become the tool of choice when analyzing data with a binary dependent variable. While resources relating to the technique are widely available, clear discussions of why logistic regression should be used in place of ordinary least squares regression are difficult to find. The current paper compares and contrasts the assumptions of ordinary least squares with those of logistic regression and explains why logistic regression's looser assumptions make it adept at handling violations of the more important assumptions in ordinary least squares.

  2. Multiple concurrent recursive least squares identification with application to on-line spacecraft mass-property identification

    NASA Technical Reports Server (NTRS)

    Wilson, Edward (Inventor)

    2006-01-01

    The present invention is a method for identifying unknown parameters in a system having a set of governing equations describing its behavior that cannot be put into regression form with the unknown parameters linearly represented. In this method, the vector of unknown parameters is segmented into a plurality of groups where each individual group of unknown parameters may be isolated linearly by manipulation of said equations. Multiple concurrent and independent recursive least squares identification of each said group run, treating other unknown parameters appearing in their regression equation as if they were known perfectly, with said values provided by recursive least squares estimation from the other groups, thereby enabling the use of fast, compact, efficient linear algorithms to solve problems that would otherwise require nonlinear solution approaches. This invention is presented with application to identification of mass and thruster properties for a thruster-controlled spacecraft.

  3. Comparing least-squares and quantile regression approaches to analyzing median hospital charges.

    PubMed

    Olsen, Cody S; Clark, Amy E; Thomas, Andrea M; Cook, Lawrence J

    2012-07-01

    Emergency department (ED) and hospital charges obtained from administrative data sets are useful descriptors of injury severity and the burden to EDs and the health care system. However, charges are typically positively skewed due to costly procedures, long hospital stays, and complicated or prolonged treatment for few patients. The median is not affected by extreme observations and is useful in describing and comparing distributions of hospital charges. A least-squares analysis employing a log transformation is one approach for estimating median hospital charges, corresponding confidence intervals (CIs), and differences between groups; however, this method requires certain distributional properties. An alternate method is quantile regression, which allows estimation and inference related to the median without making distributional assumptions. The objective was to compare the log-transformation least-squares method to the quantile regression approach for estimating median hospital charges, differences in median charges between groups, and associated CIs. The authors performed simulations using repeated sampling of observed statewide ED and hospital charges and charges randomly generated from a hypothetical lognormal distribution. The median and 95% CI and the multiplicative difference between the median charges of two groups were estimated using both least-squares and quantile regression methods. Performance of the two methods was evaluated. In contrast to least squares, quantile regression produced estimates that were unbiased and had smaller mean square errors in simulations of observed ED and hospital charges. Both methods performed well in simulations of hypothetical charges that met least-squares method assumptions. When the data did not follow the assumed distribution, least-squares estimates were often biased, and the associated CIs had lower than expected coverage as sample size increased. Quantile regression analyses of hospital charges provide unbiased

  4. Least-Squares Adaptive Control Using Chebyshev Orthogonal Polynomials

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Burken, John; Ishihara, Abraham

    2011-01-01

    This paper presents a new adaptive control approach using Chebyshev orthogonal polynomials as basis functions in a least-squares functional approximation. The use of orthogonal basis functions improves the function approximation significantly and enables better convergence of parameter estimates. Flight control simulations demonstrate the effectiveness of the proposed adaptive control approach.

  5. Augmented classical least squares multivariate spectral analysis

    DOEpatents

    Haaland, David M.; Melgaard, David K.

    2004-02-03

    A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.

  6. Augmented Classical Least Squares Multivariate Spectral Analysis

    DOEpatents

    Haaland, David M.; Melgaard, David K.

    2005-07-26

    A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.

  7. Augmented Classical Least Squares Multivariate Spectral Analysis

    DOEpatents

    Haaland, David M.; Melgaard, David K.

    2005-01-11

    A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.

  8. Least squares reconstruction of non-linear RF phase encoded MR data.

    PubMed

    Salajeghe, Somaie; Babyn, Paul; Sharp, Jonathan C; Sarty, Gordon E

    2016-09-01

    The numerical feasibility of reconstructing MRI signals generated by RF coils that produce B1 fields with a non-linearly varying spatial phase is explored. A global linear spatial phase variation of B1 is difficult to produce from current confined to RF coils. Here we use regularized least squares inversion, in place of the usual Fourier transform, to reconstruct signals generated in B1 fields with non-linear phase variation. RF encoded signals were simulated for three RF coil configurations: ideal linear, parallel conductors and, circular coil pairs. The simulated signals were reconstructed by Fourier transform and by regularized least squares. The Fourier reconstruction of simulated RF encoded signals from the parallel conductor coil set showed minor distortions over the reconstruction of signals from the ideal linear coil set but the Fourier reconstruction of signals from the circular coil set produced severe geometric distortion. Least squares inversion in all cases produced reconstruction errors comparable to the Fourier reconstruction of the simulated signal from the ideal linear coil set. MRI signals encoded in B1 fields with non-linearly varying spatial phase may be accurately reconstructed using regularized least squares thus pointing the way to the use of simple RF coil designs for RF encoded MRI. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  9. On the method of least squares. II. [for calculation of covariance matrices and optimization algorithms

    NASA Technical Reports Server (NTRS)

    Jefferys, W. H.

    1981-01-01

    A least squares method proposed previously for solving a general class of problems is expanded in two ways. First, covariance matrices related to the solution are calculated and their interpretation is given. Second, improved methods of solving the normal equations related to those of Marquardt (1963) and Fletcher and Powell (1963) are developed for this approach. These methods may converge in cases where Newton's method diverges or converges slowly.

  10. Multi-element least square HDMR methods and their applications for stochastic multiscale model reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Lijian, E-mail: ljjiang@hnu.edu.cn; Li, Xinping, E-mail: exping@126.com

    Stochastic multiscale modeling has become a necessary approach to quantify uncertainty and characterize multiscale phenomena for many practical problems such as flows in stochastic porous media. The numerical treatment of the stochastic multiscale models can be very challengeable as the existence of complex uncertainty and multiple physical scales in the models. To efficiently take care of the difficulty, we construct a computational reduced model. To this end, we propose a multi-element least square high-dimensional model representation (HDMR) method, through which the random domain is adaptively decomposed into a few subdomains, and a local least square HDMR is constructed in eachmore » subdomain. These local HDMRs are represented by a finite number of orthogonal basis functions defined in low-dimensional random spaces. The coefficients in the local HDMRs are determined using least square methods. We paste all the local HDMR approximations together to form a global HDMR approximation. To further reduce computational cost, we present a multi-element reduced least-square HDMR, which improves both efficiency and approximation accuracy in certain conditions. To effectively treat heterogeneity properties and multiscale features in the models, we integrate multiscale finite element methods with multi-element least-square HDMR for stochastic multiscale model reduction. This approach significantly reduces the original model's complexity in both the resolution of the physical space and the high-dimensional stochastic space. We analyze the proposed approach, and provide a set of numerical experiments to demonstrate the performance of the presented model reduction techniques. - Highlights: • Multi-element least square HDMR is proposed to treat stochastic models. • Random domain is adaptively decomposed into some subdomains to obtain adaptive multi-element HDMR. • Least-square reduced HDMR is proposed to enhance computation efficiency and approximation accuracy in

  11. Adaptive slab laser beam quality improvement using a weighted least-squares reconstruction algorithm.

    PubMed

    Chen, Shanqiu; Dong, LiZhi; Chen, XiaoJun; Tan, Yi; Liu, Wenjin; Wang, Shuai; Yang, Ping; Xu, Bing; Ye, YuTang

    2016-04-10

    Adaptive optics is an important technology for improving beam quality in solid-state slab lasers. However, there are uncorrectable aberrations in partial areas of the beam. In the criterion of the conventional least-squares reconstruction method, it makes the zones with small aberrations nonsensitive and hinders this zone from being further corrected. In this paper, a weighted least-squares reconstruction method is proposed to improve the relative sensitivity of zones with small aberrations and to further improve beam quality. Relatively small weights are applied to the zones with large residual aberrations. Comparisons of results show that peak intensity in the far field improved from 1242 analog digital units (ADU) to 2248 ADU, and beam quality β improved from 2.5 to 2.0. This indicates the weighted least-squares method has better performance than the least-squares reconstruction method when there are large zonal uncorrectable aberrations in the slab laser system.

  12. Least-Squares Regression and Spectral Residual Augmented Classical Least-Squares Chemometric Models for Stability-Indicating Analysis of Agomelatine and Its Degradation Products: A Comparative Study.

    PubMed

    Naguib, Ibrahim A; Abdelrahman, Maha M; El Ghobashy, Mohamed R; Ali, Nesma A

    2016-01-01

    Two accurate, sensitive, and selective stability-indicating methods are developed and validated for simultaneous quantitative determination of agomelatine (AGM) and its forced degradation products (Deg I and Deg II), whether in pure forms or in pharmaceutical formulations. Partial least-squares regression (PLSR) and spectral residual augmented classical least-squares (SRACLS) are two chemometric models that are being subjected to a comparative study through handling UV spectral data in range (215-350 nm). For proper analysis, a three-factor, four-level experimental design was established, resulting in a training set consisting of 16 mixtures containing different ratios of interfering species. An independent test set consisting of eight mixtures was used to validate the prediction ability of the suggested models. The results presented indicate the ability of mentioned multivariate calibration models to analyze AGM, Deg I, and Deg II with high selectivity and accuracy. The analysis results of the pharmaceutical formulations were statistically compared to the reference HPLC method, with no significant differences observed regarding accuracy and precision. The SRACLS model gives comparable results to the PLSR model; however, it keeps the qualitative spectral information of the classical least-squares algorithm for analyzed components.

  13. [Locally weighted least squares estimation of DPOAE evoked by continuously sweeping primaries].

    PubMed

    Han, Xiaoli; Fu, Xinxing; Cui, Jie; Xiao, Ling

    2013-12-01

    Distortion product otoacoustic emission (DPOAE) signal can be used for diagnosis of hearing loss so that it has an important clinical value. Continuously using sweeping primaries to measure DPOAE provides an efficient tool to record DPOAE data rapidly when DPOAE is measured in a large frequency range. In this paper, locally weighted least squares estimation (LWLSE) of 2f1-f2 DPOAE is presented based on least-squares-fit (LSF) algorithm, in which DPOAE is evoked by continuously sweeping tones. In our study, we used a weighted error function as the loss function and the weighting matrixes in the local sense to obtain a smaller estimated variance. Firstly, ordinary least squares estimation of the DPOAE parameters was obtained. Then the error vectors were grouped and the different local weighting matrixes were calculated in each group. And finally, the parameters of the DPOAE signal were estimated based on least squares estimation principle using the local weighting matrixes. The simulation results showed that the estimate variance and fluctuation errors were reduced, so the method estimates DPOAE and stimuli more accurately and stably, which facilitates extraction of clearer DPOAE fine structure.

  14. A class of least-squares filtering and identification algorithms with systolic array architectures

    NASA Technical Reports Server (NTRS)

    Kalson, Seth Z.; Yao, Kung

    1991-01-01

    A unified approach is presented for deriving a large class of new and previously known time- and order-recursive least-squares algorithms with systolic array architectures, suitable for high-throughput-rate and VLSI implementations of space-time filtering and system identification problems. The geometrical derivation given is unique in that no assumption is made concerning the rank of the sample data correlation matrix. This method utilizes and extends the concept of oblique projections, as used previously in the derivations of the least-squares lattice algorithms. Exponentially weighted least-squares criteria are considered for both sliding and growing memory.

  15. Discrete square root smoothing.

    NASA Technical Reports Server (NTRS)

    Kaminski, P. G.; Bryson, A. E., Jr.

    1972-01-01

    The basic techniques applied in the square root least squares and square root filtering solutions are applied to the smoothing problem. Both conventional and square root solutions are obtained by computing the filtered solutions, then modifying the results to include the effect of all measurements. A comparison of computation requirements indicates that the square root information smoother (SRIS) is more efficient than conventional solutions in a large class of fixed interval smoothing problems.

  16. Least squares restoration of multi-channel images

    NASA Technical Reports Server (NTRS)

    Chin, Roland T.; Galatsanos, Nikolas P.

    1989-01-01

    In this paper, a least squares filter for the restoration of multichannel imagery is presented. The restoration filter is based on a linear, space-invariant imaging model and makes use of an iterative matrix inversion algorithm. The restoration utilizes both within-channel (spatial) and cross-channel information as constraints. Experiments using color images (three-channel imagery with red, green, and blue components) were performed to evaluate the filter's performance and to compare it with other monochrome and multichannel filters.

  17. The Least-Squares Estimation of Latent Trait Variables.

    ERIC Educational Resources Information Center

    Tatsuoka, Kikumi

    This paper presents a new method for estimating a given latent trait variable by the least-squares approach. The beta weights are obtained recursively with the help of Fourier series and expressed as functions of item parameters of response curves. The values of the latent trait variable estimated by this method and by maximum likelihood method…

  18. Tensor hypercontraction. II. Least-squares renormalization.

    PubMed

    Parrish, Robert M; Hohenstein, Edward G; Martínez, Todd J; Sherrill, C David

    2012-12-14

    The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the generic tensor hypercontraction (THC) ansatz, which represents the fourth-order ERI tensor as a product of five second-order tensors [E. G. Hohenstein, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 137, 044103 (2012)]. Our initial algorithm for the generation of the THC factors involved a two-sided invocation of overlap-metric density fitting, followed by a PARAFAC decomposition, and is denoted PARAFAC tensor hypercontraction (PF-THC). LS-THC supersedes PF-THC by producing the THC factors through a least-squares renormalization of a spatial quadrature over the otherwise singular 1∕r(12) operator. Remarkably, an analytical and simple formula for the LS-THC factors exists. Using this formula, the factors may be generated with O(N(5)) effort if exact integrals are decomposed, or O(N(4)) effort if the decomposition is applied to density-fitted integrals, using any choice of density fitting metric. The accuracy of LS-THC is explored for a range of systems using both conventional and density-fitted integrals in the context of MP2. The grid fitting error is found to be negligible even for extremely sparse spatial quadrature grids. For the case of density-fitted integrals, the additional error incurred by the grid fitting step is generally markedly smaller than the underlying Coulomb-metric density fitting error. The present results, coupled with our previously published factorizations of MP2 and MP3, provide an efficient, robust O(N(4)) approach to both methods. Moreover, LS-THC is generally applicable to many other methods in quantum chemistry.

  19. TDRSS-user orbit determination using batch least-squares and sequential methods

    NASA Astrophysics Data System (ADS)

    Oza, D. H.; Jones, T. L.; Hakimi, M.; Samii, Mina V.; Doll, C. E.; Mistretta, G. D.; Hart, R. C.

    1993-02-01

    The Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) commissioned Applied Technology Associates, Incorporated, to develop the Real-Time Orbit Determination/Enhanced (RTOD/E) system on a Disk Operating System (DOS)-based personal computer (PC) as a prototype system for sequential orbit determination of spacecraft. This paper presents the results of a study to compare the orbit determination accuracy for a Tracking and Data Relay Satellite System (TDRSS) user spacecraft, Landsat-4, obtained using RTOD/E, operating on a PC, with the accuracy of an established batch least-squares system, the Goddard Trajectory Determination System (GTDS), and operating on a mainframe computer. The results of Landsat-4 orbit determination will provide useful experience for the Earth Observing System (EOS) series of satellites. The Landsat-4 ephemerides were estimated for the January 17-23, 1991, timeframe, during which intensive TDRSS tracking data for Landsat-4 were available. Independent assessments were made of the consistencies (overlap comparisons for the batch case and covariances and the first measurement residuals for the sequential case) of solutions produced by the batch and sequential methods. The forward-filtered RTOD/E orbit solutions were compared with the definitive GTDS orbit solutions for Landsat-4; the solution differences were less than 40 meters after the filter had reached steady state.

  20. TDRSS-user orbit determination using batch least-squares and sequential methods

    NASA Technical Reports Server (NTRS)

    Oza, D. H.; Jones, T. L.; Hakimi, M.; Samii, Mina V.; Doll, C. E.; Mistretta, G. D.; Hart, R. C.

    1993-01-01

    The Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) commissioned Applied Technology Associates, Incorporated, to develop the Real-Time Orbit Determination/Enhanced (RTOD/E) system on a Disk Operating System (DOS)-based personal computer (PC) as a prototype system for sequential orbit determination of spacecraft. This paper presents the results of a study to compare the orbit determination accuracy for a Tracking and Data Relay Satellite System (TDRSS) user spacecraft, Landsat-4, obtained using RTOD/E, operating on a PC, with the accuracy of an established batch least-squares system, the Goddard Trajectory Determination System (GTDS), and operating on a mainframe computer. The results of Landsat-4 orbit determination will provide useful experience for the Earth Observing System (EOS) series of satellites. The Landsat-4 ephemerides were estimated for the January 17-23, 1991, timeframe, during which intensive TDRSS tracking data for Landsat-4 were available. Independent assessments were made of the consistencies (overlap comparisons for the batch case and covariances and the first measurement residuals for the sequential case) of solutions produced by the batch and sequential methods. The forward-filtered RTOD/E orbit solutions were compared with the definitive GTDS orbit solutions for Landsat-4; the solution differences were less than 40 meters after the filter had reached steady state.

  1. Evaluation of TDRSS-user orbit determination accuracy using batch least-squares and sequential methods

    NASA Technical Reports Server (NTRS)

    Oza, D. H.; Jones, T. L.; Hodjatzadeh, M.; Samii, M. V.; Doll, C. E.; Hart, R. C.; Mistretta, G. D.

    1991-01-01

    The development of the Real-Time Orbit Determination/Enhanced (RTOD/E) system as a prototype system for sequential orbit determination on a Disk Operating System (DOS) based Personal Computer (PC) is addressed. The results of a study to compare the orbit determination accuracy of a Tracking and Data Relay Satellite System (TDRSS) user spacecraft obtained using RTOD/E with the accuracy of an established batch least squares system, the Goddard Trajectory Determination System (GTDS), is addressed. Independent assessments were made to examine the consistencies of results obtained by the batch and sequential methods. Comparisons were made between the forward filtered RTOD/E orbit solutions and definitive GTDS orbit solutions for the Earth Radiation Budget Satellite (ERBS); the maximum solution differences were less than 25 m after the filter had reached steady state.

  2. An information geometric approach to least squares minimization

    NASA Astrophysics Data System (ADS)

    Transtrum, Mark; Machta, Benjamin; Sethna, James

    2009-03-01

    Parameter estimation by nonlinear least squares minimization is a ubiquitous problem that has an elegant geometric interpretation: all possible parameter values induce a manifold embedded within the space of data. The minimization problem is then to find the point on the manifold closest to the origin. The standard algorithm for minimizing sums of squares, the Levenberg-Marquardt algorithm, also has geometric meaning. When the standard algorithm fails to efficiently find accurate fits to the data, geometric considerations suggest improvements. Problems involving large numbers of parameters, such as often arise in biological contexts, are notoriously difficult. We suggest an algorithm based on geodesic motion that may offer improvements over the standard algorithm for a certain class of problems.

  3. Collocation and Galerkin Time-Stepping Methods

    NASA Technical Reports Server (NTRS)

    Huynh, H. T.

    2011-01-01

    We study the numerical solutions of ordinary differential equations by one-step methods where the solution at tn is known and that at t(sub n+1) is to be calculated. The approaches employed are collocation, continuous Galerkin (CG) and discontinuous Galerkin (DG). Relations among these three approaches are established. A quadrature formula using s evaluation points is employed for the Galerkin formulations. We show that with such a quadrature, the CG method is identical to the collocation method using quadrature points as collocation points. Furthermore, if the quadrature formula is the right Radau one (including t(sub n+1)), then the DG and CG methods also become identical, and they reduce to the Radau IIA collocation method. In addition, we present a generalization of DG that yields a method identical to CG and collocation with arbitrary collocation points. Thus, the collocation, CG, and generalized DG methods are equivalent, and the latter two methods can be formulated using the differential instead of integral equation. Finally, all schemes discussed can be cast as s-stage implicit Runge-Kutta methods.

  4. Error propagation of partial least squares for parameters optimization in NIR modeling.

    PubMed

    Du, Chenzhao; Dai, Shengyun; Qiao, Yanjiang; Wu, Zhisheng

    2018-03-05

    A novel methodology is proposed to determine the error propagation of partial least-square (PLS) for parameters optimization in near-infrared (NIR) modeling. The parameters include spectral pretreatment, latent variables and variable selection. In this paper, an open source dataset (corn) and a complicated dataset (Gardenia) were used to establish PLS models under different modeling parameters. And error propagation of modeling parameters for water quantity in corn and geniposide quantity in Gardenia were presented by both type І and type II error. For example, when variable importance in the projection (VIP), interval partial least square (iPLS) and backward interval partial least square (BiPLS) variable selection algorithms were used for geniposide in Gardenia, compared with synergy interval partial least squares (SiPLS), the error weight varied from 5% to 65%, 55% and 15%. The results demonstrated how and what extent the different modeling parameters affect error propagation of PLS for parameters optimization in NIR modeling. The larger the error weight, the worse the model. Finally, our trials finished a powerful process in developing robust PLS models for corn and Gardenia under the optimal modeling parameters. Furthermore, it could provide a significant guidance for the selection of modeling parameters of other multivariate calibration models. Copyright © 2017. Published by Elsevier B.V.

  5. Error propagation of partial least squares for parameters optimization in NIR modeling

    NASA Astrophysics Data System (ADS)

    Du, Chenzhao; Dai, Shengyun; Qiao, Yanjiang; Wu, Zhisheng

    2018-03-01

    A novel methodology is proposed to determine the error propagation of partial least-square (PLS) for parameters optimization in near-infrared (NIR) modeling. The parameters include spectral pretreatment, latent variables and variable selection. In this paper, an open source dataset (corn) and a complicated dataset (Gardenia) were used to establish PLS models under different modeling parameters. And error propagation of modeling parameters for water quantity in corn and geniposide quantity in Gardenia were presented by both type І and type II error. For example, when variable importance in the projection (VIP), interval partial least square (iPLS) and backward interval partial least square (BiPLS) variable selection algorithms were used for geniposide in Gardenia, compared with synergy interval partial least squares (SiPLS), the error weight varied from 5% to 65%, 55% and 15%. The results demonstrated how and what extent the different modeling parameters affect error propagation of PLS for parameters optimization in NIR modeling. The larger the error weight, the worse the model. Finally, our trials finished a powerful process in developing robust PLS models for corn and Gardenia under the optimal modeling parameters. Furthermore, it could provide a significant guidance for the selection of modeling parameters of other multivariate calibration models.

  6. An on-line modified least-mean-square algorithm for training neurofuzzy controllers.

    PubMed

    Tan, Woei Wan

    2007-04-01

    The problem hindering the use of data-driven modelling methods for training controllers on-line is the lack of control over the amount by which the plant is excited. As the operating schedule determines the information available on-line, the knowledge of the process may degrade if the setpoint remains constant for an extended period. This paper proposes an identification algorithm that alleviates "learning interference" by incorporating fuzzy theory into the normalized least-mean-square update rule. The ability of the proposed methodology to achieve faster learning is examined by employing the algorithm to train a neurofuzzy feedforward controller for controlling a liquid level process. Since the proposed identification strategy has similarities with the normalized least-mean-square update rule and the recursive least-square estimator, the on-line learning rates of these algorithms are also compared.

  7. A Least-Squares Finite Element Method for Electromagnetic Scattering Problems

    NASA Technical Reports Server (NTRS)

    Wu, Jie; Jiang, Bo-nan

    1996-01-01

    The least-squares finite element method (LSFEM) is applied to electromagnetic scattering and radar cross section (RCS) calculations. In contrast to most existing numerical approaches, in which divergence-free constraints are omitted, the LSFF-M directly incorporates two divergence equations in the discretization process. The importance of including the divergence equations is demonstrated by showing that otherwise spurious solutions with large divergence occur near the scatterers. The LSFEM is based on unstructured grids and possesses full flexibility in handling complex geometry and local refinement Moreover, the LSFEM does not require any special handling, such as upwinding, staggered grids, artificial dissipation, flux-differencing, etc. Implicit time discretization is used and the scheme is unconditionally stable. By using a matrix-free iterative method, the computational cost and memory requirement for the present scheme is competitive with other approaches. The accuracy of the LSFEM is verified by several benchmark test problems.

  8. Tensor hypercontraction. II. Least-squares renormalization

    NASA Astrophysics Data System (ADS)

    Parrish, Robert M.; Hohenstein, Edward G.; Martínez, Todd J.; Sherrill, C. David

    2012-12-01

    The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the generic tensor hypercontraction (THC) ansatz, which represents the fourth-order ERI tensor as a product of five second-order tensors [E. G. Hohenstein, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 137, 044103 (2012)], 10.1063/1.4732310. Our initial algorithm for the generation of the THC factors involved a two-sided invocation of overlap-metric density fitting, followed by a PARAFAC decomposition, and is denoted PARAFAC tensor hypercontraction (PF-THC). LS-THC supersedes PF-THC by producing the THC factors through a least-squares renormalization of a spatial quadrature over the otherwise singular 1/r12 operator. Remarkably, an analytical and simple formula for the LS-THC factors exists. Using this formula, the factors may be generated with O(N^5) effort if exact integrals are decomposed, or O(N^4) effort if the decomposition is applied to density-fitted integrals, using any choice of density fitting metric. The accuracy of LS-THC is explored for a range of systems using both conventional and density-fitted integrals in the context of MP2. The grid fitting error is found to be negligible even for extremely sparse spatial quadrature grids. For the case of density-fitted integrals, the additional error incurred by the grid fitting step is generally markedly smaller than the underlying Coulomb-metric density fitting error. The present results, coupled with our previously published factorizations of MP2 and MP3, provide an efficient, robust O(N^4) approach to both methods. Moreover, LS-THC is generally applicable to many other methods in quantum chemistry.

  9. A note on implementation of decaying product correlation structures for quasi-least squares.

    PubMed

    Shults, Justine; Guerra, Matthew W

    2014-08-30

    This note implements an unstructured decaying product matrix via the quasi-least squares approach for estimation of the correlation parameters in the framework of generalized estimating equations. The structure we consider is fairly general without requiring the large number of parameters that are involved in a fully unstructured matrix. It is straightforward to show that the quasi-least squares estimators of the correlation parameters yield feasible values for the unstructured decaying product structure. Furthermore, subject to conditions that are easily checked, the quasi-least squares estimators are valid for longitudinal Bernoulli data. We demonstrate implementation of the structure in a longitudinal clinical trial with both a continuous and binary outcome variable. Copyright © 2014 John Wiley & Sons, Ltd.

  10. A Two-Layer Least Squares Support Vector Machine Approach to Credit Risk Assessment

    NASA Astrophysics Data System (ADS)

    Liu, Jingli; Li, Jianping; Xu, Weixuan; Shi, Yong

    Least squares support vector machine (LS-SVM) is a revised version of support vector machine (SVM) and has been proved to be a useful tool for pattern recognition. LS-SVM had excellent generalization performance and low computational cost. In this paper, we propose a new method called two-layer least squares support vector machine which combines kernel principle component analysis (KPCA) and linear programming form of least square support vector machine. With this method sparseness and robustness is obtained while solving large dimensional and large scale database. A U.S. commercial credit card database is used to test the efficiency of our method and the result proved to be a satisfactory one.

  11. Least square neural network model of the crude oil blending process.

    PubMed

    Rubio, José de Jesús

    2016-06-01

    In this paper, the recursive least square algorithm is designed for the big data learning of a feedforward neural network. The proposed method as the combination of the recursive least square and feedforward neural network obtains four advantages over the alone algorithms: it requires less number of regressors, it is fast, it has the learning ability, and it is more compact. Stability, convergence, boundedness of parameters, and local minimum avoidance of the proposed technique are guaranteed. The introduced strategy is applied for the modeling of the crude oil blending process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Asymptotic Analysis Of The Total Least Squares ESPRIT Algorithm'

    NASA Astrophysics Data System (ADS)

    Ottersten, B. E.; Viberg, M.; Kailath, T.

    1989-11-01

    This paper considers the problem of estimating the parameters of multiple narrowband signals arriving at an array of sensors. Modern approaches to this problem often involve costly procedures for calculating the estimates. The ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) algorithm was recently proposed as a means for obtaining accurate estimates without requiring a costly search of the parameter space. This method utilizes an array invariance to arrive at a computationally efficient multidimensional estimation procedure. Herein, the asymptotic distribution of the estimation error is derived for the Total Least Squares (TLS) version of ESPRIT. The Cramer-Rao Bound (CRB) for the ESPRIT problem formulation is also derived and found to coincide with the variance of the asymptotic distribution through numerical examples. The method is also compared to least squares ESPRIT and MUSIC as well as to the CRB for a calibrated array. Simulations indicate that the theoretic expressions can be used to accurately predict the performance of the algorithm.

  13. Least-squares analysis of the Mueller matrix.

    PubMed

    Reimer, Michael; Yevick, David

    2006-08-15

    In a single-mode fiber excited by light with a fixed polarization state, the output polarizations obtained at two different optical frequencies are related by a Mueller matrix. We examine least-squares procedures for estimating this matrix from repeated measurements of the output Stokes vector for a random set of input polarization states. We then apply these methods to the determination of polarization mode dispersion and polarization-dependent loss in an optical fiber. We find that a relatively simple formalism leads to results that are comparable with those of far more involved techniques.

  14. Advantages of soft versus hard constraints in self-modeling curve resolution problems. Alternating least squares with penalty functions.

    PubMed

    Gemperline, Paul J; Cash, Eric

    2003-08-15

    A new algorithm for self-modeling curve resolution (SMCR) that yields improved results by incorporating soft constraints is described. The method uses least squares penalty functions to implement constraints in an alternating least squares algorithm, including nonnegativity, unimodality, equality, and closure constraints. By using least squares penalty functions, soft constraints are formulated rather than hard constraints. Significant benefits are (obtained using soft constraints, especially in the form of fewer distortions due to noise in resolved profiles. Soft equality constraints can also be used to introduce incomplete or partial reference information into SMCR solutions. Four different examples demonstrating application of the new method are presented, including resolution of overlapped HPLC-DAD peaks, flow injection analysis data, and batch reaction data measured by UV/visible and near-infrared spectroscopy (NIR). Each example was selected to show one aspect of the significant advantages of soft constraints over traditionally used hard constraints. Incomplete or partial reference information into self-modeling curve resolution models is described. The method offers a substantial improvement in the ability to resolve time-dependent concentration profiles from mixture spectra recorded as a function of time.

  15. EXPLICIT LEAST-DEGREE BOUNDARY FILTERS FOR DISCONTINUOUS GALERKIN.

    PubMed

    Nguyen, Dang-Manh; Peters, Jörg

    2017-01-01

    Convolving the output of Discontinuous Galerkin (DG) computations using spline filters can improve both smoothness and accuracy of the output. At domain boundaries, these filters have to be one-sided for non-periodic boundary conditions. Recently, position-dependent smoothness-increasing accuracy-preserving (PSIAC) filters were shown to be a superset of the well-known one-sided RLKV and SRV filters. Since PSIAC filters can be formulated symbolically, PSIAC filtering amounts to forming linear products with local DG output and so offers a more stable and efficient implementation. The paper introduces a new class of PSIAC filters NP 0 that have small support and are piecewise constant. Extensive numerical experiments for the canonical hyperbolic test equation show NP 0 filters outperform the more complex known boundary filters. NP 0 filters typically reduce the L ∞ error in the boundary region below that of the interior where optimally superconvergent symmetric filters of the same support are applied. NP 0 filtering can be implemented as forming linear combinations of the data with short rational weights. Exact derivatives of the convolved output are easy to compute.

  16. EXPLICIT LEAST-DEGREE BOUNDARY FILTERS FOR DISCONTINUOUS GALERKIN*

    PubMed Central

    Nguyen, Dang-Manh; Peters, Jörg

    2017-01-01

    Convolving the output of Discontinuous Galerkin (DG) computations using spline filters can improve both smoothness and accuracy of the output. At domain boundaries, these filters have to be one-sided for non-periodic boundary conditions. Recently, position-dependent smoothness-increasing accuracy-preserving (PSIAC) filters were shown to be a superset of the well-known one-sided RLKV and SRV filters. Since PSIAC filters can be formulated symbolically, PSIAC filtering amounts to forming linear products with local DG output and so offers a more stable and efficient implementation. The paper introduces a new class of PSIAC filters NP0 that have small support and are piecewise constant. Extensive numerical experiments for the canonical hyperbolic test equation show NP0 filters outperform the more complex known boundary filters. NP0 filters typically reduce the L∞ error in the boundary region below that of the interior where optimally superconvergent symmetric filters of the same support are applied. NP0 filtering can be implemented as forming linear combinations of the data with short rational weights. Exact derivatives of the convolved output are easy to compute. PMID:29081643

  17. On sufficient statistics of least-squares superposition of vector sets.

    PubMed

    Konagurthu, Arun S; Kasarapu, Parthan; Allison, Lloyd; Collier, James H; Lesk, Arthur M

    2015-06-01

    The problem of superposition of two corresponding vector sets by minimizing their sum-of-squares error under orthogonal transformation is a fundamental task in many areas of science, notably structural molecular biology. This problem can be solved exactly using an algorithm whose time complexity grows linearly with the number of correspondences. This efficient solution has facilitated the widespread use of the superposition task, particularly in studies involving macromolecular structures. This article formally derives a set of sufficient statistics for the least-squares superposition problem. These statistics are additive. This permits a highly efficient (constant time) computation of superpositions (and sufficient statistics) of vector sets that are composed from its constituent vector sets under addition or deletion operation, where the sufficient statistics of the constituent sets are already known (that is, the constituent vector sets have been previously superposed). This results in a drastic improvement in the run time of the methods that commonly superpose vector sets under addition or deletion operations, where previously these operations were carried out ab initio (ignoring the sufficient statistics). We experimentally demonstrate the improvement our work offers in the context of protein structural alignment programs that assemble a reliable structural alignment from well-fitting (substructural) fragment pairs. A C++ library for this task is available online under an open-source license.

  18. Temporal gravity field modeling based on least square collocation with short-arc approach

    NASA Astrophysics Data System (ADS)

    ran, jiangjun; Zhong, Min; Xu, Houze; Liu, Chengshu; Tangdamrongsub, Natthachet

    2014-05-01

    After the launch of the Gravity Recovery And Climate Experiment (GRACE) in 2002, several research centers have attempted to produce the finest gravity model based on different approaches. In this study, we present an alternative approach to derive the Earth's gravity field, and two main objectives are discussed. Firstly, we seek the optimal method to estimate the accelerometer parameters, and secondly, we intend to recover the monthly gravity model based on least square collocation method. The method has been paid less attention compared to the least square adjustment method because of the massive computational resource's requirement. The positions of twin satellites are treated as pseudo-observations and unknown parameters at the same time. The variance covariance matrices of the pseudo-observations and the unknown parameters are valuable information to improve the accuracy of the estimated gravity solutions. Our analyses showed that introducing a drift parameter as an additional accelerometer parameter, compared to using only a bias parameter, leads to a significant improvement of our estimated monthly gravity field. The gravity errors outside the continents are significantly reduced based on the selected set of the accelerometer parameters. We introduced the improved gravity model namely the second version of Institute of Geodesy and Geophysics, Chinese Academy of Sciences (IGG-CAS 02). The accuracy of IGG-CAS 02 model is comparable to the gravity solutions computed from the Geoforschungszentrum (GFZ), the Center for Space Research (CSR) and the NASA Jet Propulsion Laboratory (JPL). In term of the equivalent water height, the correlation coefficients over the study regions (the Yangtze River valley, the Sahara desert, and the Amazon) among four gravity models are greater than 0.80.

  19. Combining Approach in Stages with Least Squares for fits of data in hyperelasticity

    NASA Astrophysics Data System (ADS)

    Beda, Tibi

    2006-10-01

    The present work concerns a method of continuous approximation by block of a continuous function; a method of approximation combining the Approach in Stages with the finite domains Least Squares. An identification procedure by sub-domains: basic generating functions are determined step-by-step permitting their weighting effects to be felt. This procedure allows one to be in control of the signs and to some extent of the optimal values of the parameters estimated, and consequently it provides a unique set of solutions that should represent the real physical parameters. Illustrations and comparisons are developed in rubber hyperelastic modeling. To cite this article: T. Beda, C. R. Mecanique 334 (2006).

  20. Least Squares Approach to the Alignment of the Generic High Precision Tracking System

    NASA Astrophysics Data System (ADS)

    de Renstrom, Pawel Brückman; Haywood, Stephen

    2006-04-01

    A least squares method to solve a generic alignment problem of a high granularity tracking system is presented. The algorithm is based on an analytical linear expansion and allows for multiple nested fits, e.g. imposing a common vertex for groups of particle tracks is of particular interest. We present a consistent and complete recipe to impose constraints on either implicit or explicit parameters. The method has been applied to the full simulation of a subset of the ATLAS silicon tracking system. The ultimate goal is to determine ≈35,000 degrees of freedom (DoF's). We present a limited scale exercise exploring various aspects of the solution.

  1. Classical least squares multivariate spectral analysis

    DOEpatents

    Haaland, David M.

    2002-01-01

    An improved classical least squares multivariate spectral analysis method that adds spectral shapes describing non-calibrated components and system effects (other than baseline corrections) present in the analyzed mixture to the prediction phase of the method. These improvements decrease or eliminate many of the restrictions to the CLS-type methods and greatly extend their capabilities, accuracy, and precision. One new application of PACLS includes the ability to accurately predict unknown sample concentrations when new unmodeled spectral components are present in the unknown samples. Other applications of PACLS include the incorporation of spectrometer drift into the quantitative multivariate model and the maintenance of a calibration on a drifting spectrometer. Finally, the ability of PACLS to transfer a multivariate model between spectrometers is demonstrated.

  2. Assessing Fit and Dimensionality in Least Squares Metric Multidimensional Scaling Using Akaike's Information Criterion

    ERIC Educational Resources Information Center

    Ding, Cody S.; Davison, Mark L.

    2010-01-01

    Akaike's information criterion is suggested as a tool for evaluating fit and dimensionality in metric multidimensional scaling that uses least squares methods of estimation. This criterion combines the least squares loss function with the number of estimated parameters. Numerical examples are presented. The results from analyses of both simulation…

  3. Least-squares finite element method for fluid dynamics

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Povinelli, Louis A.

    1989-01-01

    An overview is given of new developments of the least squares finite element method (LSFEM) in fluid dynamics. Special emphasis is placed on the universality of LSFEM; the symmetry and positiveness of the algebraic systems obtained from LSFEM; the accommodation of LSFEM to equal order interpolations for incompressible viscous flows; and the natural numerical dissipation of LSFEM for convective transport problems and high speed compressible flows. The performance of LSFEM is illustrated by numerical examples.

  4. Wind Tunnel Strain-Gage Balance Calibration Data Analysis Using a Weighted Least Squares Approach

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; Volden, T.

    2017-01-01

    A new approach is presented that uses a weighted least squares fit to analyze wind tunnel strain-gage balance calibration data. The weighted least squares fit is specifically designed to increase the influence of single-component loadings during the regression analysis. The weighted least squares fit also reduces the impact of calibration load schedule asymmetries on the predicted primary sensitivities of the balance gages. A weighting factor between zero and one is assigned to each calibration data point that depends on a simple count of its intentionally loaded load components or gages. The greater the number of a data point's intentionally loaded load components or gages is, the smaller its weighting factor becomes. The proposed approach is applicable to both the Iterative and Non-Iterative Methods that are used for the analysis of strain-gage balance calibration data in the aerospace testing community. The Iterative Method uses a reasonable estimate of the tare corrected load set as input for the determination of the weighting factors. The Non-Iterative Method, on the other hand, uses gage output differences relative to the natural zeros as input for the determination of the weighting factors. Machine calibration data of a six-component force balance is used to illustrate benefits of the proposed weighted least squares fit. In addition, a detailed derivation of the PRESS residuals associated with a weighted least squares fit is given in the appendices of the paper as this information could not be found in the literature. These PRESS residuals may be needed to evaluate the predictive capabilities of the final regression models that result from a weighted least squares fit of the balance calibration data.

  5. A Solution to Weighted Sums of Squares as a Square

    ERIC Educational Resources Information Center

    Withers, Christopher S.; Nadarajah, Saralees

    2012-01-01

    For n = 1, 2, ... , we give a solution (x[subscript 1], ... , x[subscript n], N) to the Diophantine integer equation [image omitted]. Our solution has N of the form n!, in contrast to other solutions in the literature that are extensions of Euler's solution for N, a sum of squares. More generally, for given n and given integer weights m[subscript…

  6. A Genetic Algorithm Approach to Nonlinear Least Squares Estimation

    ERIC Educational Resources Information Center

    Olinsky, Alan D.; Quinn, John T.; Mangiameli, Paul M.; Chen, Shaw K.

    2004-01-01

    A common type of problem encountered in mathematics is optimizing nonlinear functions. Many popular algorithms that are currently available for finding nonlinear least squares estimators, a special class of nonlinear problems, are sometimes inadequate. They might not converge to an optimal value, or if they do, it could be to a local rather than…

  7. Faraday rotation data analysis with least-squares elliptical fitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Adam D.; McHale, G. Brent; Goerz, David A.

    2010-10-15

    A method of analyzing Faraday rotation data from pulsed magnetic field measurements is described. The method uses direct least-squares elliptical fitting to measured data. The least-squares fit conic parameters are used to rotate, translate, and rescale the measured data. Interpretation of the transformed data provides improved accuracy and time-resolution characteristics compared with many existing methods of analyzing Faraday rotation data. The method is especially useful when linear birefringence is present at the input or output of the sensing medium, or when the relative angle of the polarizers used in analysis is not aligned with precision; under these circumstances the methodmore » is shown to return the analytically correct input signal. The method may be pertinent to other applications where analysis of Lissajous figures is required, such as the velocity interferometer system for any reflector (VISAR) diagnostics. The entire algorithm is fully automated and requires no user interaction. An example of algorithm execution is shown, using data from a fiber-based Faraday rotation sensor on a capacitive discharge experiment.« less

  8. On the accuracy of least squares methods in the presence of corner singularities

    NASA Technical Reports Server (NTRS)

    Cox, C. L.; Fix, G. J.

    1985-01-01

    Elliptic problems with corner singularities are discussed. Finite element approximations based on variational principles of the least squares type tend to display poor convergence properties in such contexts. Moreover, mesh refinement or the use of special singular elements do not appreciably improve matters. It is shown that if the least squares formulation is done in appropriately weighted space, then optimal convergence results in unweighted spaces like L(2).

  9. Avoiding Communication in the Lanczos Bidiagonalization Routine and Associated Least Squares QR Solver

    DTIC Science & Technology

    2015-04-12

    Avoiding communication in the Lanczos bidiagonalization routine and associated Least Squares QR solver Erin Carson Electrical Engineering and...Bidiagonalization Routine and Associated Least Squares QR Solver 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...throughout scienti c codes , are often the bottlenecks in application perfor- mance due to a low computation/communication ratio. In this paper we develop

  10. Foundations for estimation by the method of least squares

    NASA Technical Reports Server (NTRS)

    Hauck, W. W., Jr.

    1971-01-01

    Least squares estimation is discussed from the point of view of a statistician. Much of the emphasis is on problems encountered in application and, more specifically, on questions involving assumptions: what assumptions are needed, when are they needed, what happens if they are not valid, and if they are invalid, how that fact can be detected.

  11. Advantages of soft versus hard constraints in self-modeling curve resolution problems. Penalty alternating least squares (P-ALS) extension to multi-way problems.

    PubMed

    Richards, Selena; Miller, Robert; Gemperline, Paul

    2008-02-01

    An extension to the penalty alternating least squares (P-ALS) method, called multi-way penalty alternating least squares (NWAY P-ALS), is presented. Optionally, hard constraints (no deviation from predefined constraints) or soft constraints (small deviations from predefined constraints) were applied through the application of a row-wise penalty least squares function. NWAY P-ALS was applied to the multi-batch near-infrared (NIR) data acquired from the base catalyzed esterification reaction of acetic anhydride in order to resolve the concentration and spectral profiles of l-butanol with the reaction constituents. Application of the NWAY P-ALS approach resulted in the reduction of the number of active constraints at the solution point, while the batch column-wise augmentation allowed hard constraints in the spectral profiles and resolved rank deficiency problems of the measurement matrix. The results were compared with the multi-way multivariate curve resolution (MCR)-ALS results using hard and soft constraints to determine whether any advantages had been gained through using the weighted least squares function of NWAY P-ALS over the MCR-ALS resolution.

  12. Versions of the collocation and least squares method for solving biharmonic equations in non-canonical domains

    NASA Astrophysics Data System (ADS)

    Belyaev, V. A.; Shapeev, V. P.

    2017-10-01

    New versions of the collocations and least squares method of high-order accuracy are proposed and implemented for the numerical solution of the boundary value problems for the biharmonic equation in non-canonical domains. The solution of the biharmonic equation is used for simulating the stress-strain state of an isotropic plate under the action of transverse load. The differential problem is projected into a space of fourth-degree polynomials by the CLS method. The boundary conditions for the approximate solution are put down exactly on the boundary of the computational domain. The versions of the CLS method are implemented on the grids which are constructed in two different ways. It is shown that the approximate solution of problems converges with high order. Thus it matches with high accuracy with the analytical solution of the test problems in the case of known solution in the numerical experiments on the convergence of the solution of various problems on a sequence of grids.

  13. Influence of the least-squares phase on optical vortices in strongly scintillated beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Mingzhou; Roux, Filippus S.; National Laser Centre, CSIR, P.O. Box 395, Pretoria 0001

    2009-07-15

    The optical vortices that exist in strongly scintillated beams make it difficult for conventional adaptive optics systems to remove the phase distortions. When the least-squares reconstructed phase is removed, the vortices still remain. However, we found that the removal of the least-squares phase induces a portion of the vortices to be annihilated during subsequent propagation, causing a reduction in the total number of vortices. This can be understood in terms of the restoration of equilibrium between explicit vortices, which are visible in the phase function, and vortex bound states, which are somehow encoded in the continuous phase fluctuations. Numerical simulationsmore » are provided to show that the total number of optical vortices in a strongly scintillated beam can be reduced significantly after a few steps of least-squares phase corrections.« less

  14. Use of partial least squares regression to impute SNP genotypes in Italian cattle breeds.

    PubMed

    Dimauro, Corrado; Cellesi, Massimo; Gaspa, Giustino; Ajmone-Marsan, Paolo; Steri, Roberto; Marras, Gabriele; Macciotta, Nicolò P P

    2013-06-05

    The objective of the present study was to test the ability of the partial least squares regression technique to impute genotypes from low density single nucleotide polymorphisms (SNP) panels i.e. 3K or 7K to a high density panel with 50K SNP. No pedigree information was used. Data consisted of 2093 Holstein, 749 Brown Swiss and 479 Simmental bulls genotyped with the Illumina 50K Beadchip. First, a single-breed approach was applied by using only data from Holstein animals. Then, to enlarge the training population, data from the three breeds were combined and a multi-breed analysis was performed. Accuracies of genotypes imputed using the partial least squares regression method were compared with those obtained by using the Beagle software. The impact of genotype imputation on breeding value prediction was evaluated for milk yield, fat content and protein content. In the single-breed approach, the accuracy of imputation using partial least squares regression was around 90 and 94% for the 3K and 7K platforms, respectively; corresponding accuracies obtained with Beagle were around 85% and 90%. Moreover, computing time required by the partial least squares regression method was on average around 10 times lower than computing time required by Beagle. Using the partial least squares regression method in the multi-breed resulted in lower imputation accuracies than using single-breed data. The impact of the SNP-genotype imputation on the accuracy of direct genomic breeding values was small. The correlation between estimates of genetic merit obtained by using imputed versus actual genotypes was around 0.96 for the 7K chip. Results of the present work suggested that the partial least squares regression imputation method could be useful to impute SNP genotypes when pedigree information is not available.

  15. A hybrid perturbation-Galerkin technique for partial differential equations

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Anderson, Carl M.

    1990-01-01

    A two-step hybrid perturbation-Galerkin technique for improving the usefulness of perturbation solutions to partial differential equations which contain a parameter is presented and discussed. In the first step of the method, the leading terms in the asymptotic expansion(s) of the solution about one or more values of the perturbation parameter are obtained using standard perturbation methods. In the second step, the perturbation functions obtained in the first step are used as trial functions in a Bubnov-Galerkin approximation. This semi-analytical, semi-numerical hybrid technique appears to overcome some of the drawbacks of the perturbation and Galerkin methods when they are applied by themselves, while combining some of the good features of each. The technique is illustrated first by a simple example. It is then applied to the problem of determining the flow of a slightly compressible fluid past a circular cylinder and to the problem of determining the shape of a free surface due to a sink above the surface. Solutions obtained by the hybrid method are compared with other approximate solutions, and its possible application to certain problems associated with domain decomposition is discussed.

  16. Growth kinetics of borided layers: Artificial neural network and least square approaches

    NASA Astrophysics Data System (ADS)

    Campos, I.; Islas, M.; Ramírez, G.; VillaVelázquez, C.; Mota, C.

    2007-05-01

    The present study evaluates the growth kinetics of the boride layer Fe 2B in AISI 1045 steel, by means of neural networks and the least square techniques. The Fe 2B phase was formed at the material surface using the paste boriding process. The surface boron potential was modified considering different boron paste thicknesses, with exposure times of 2, 4 and 6 h, and treatment temperatures of 1193, 1223 and 1273 K. The neural network and the least square models were set by the layer thickness of Fe 2B phase, and assuming that the growth of the boride layer follows a parabolic law. The reliability of the techniques used is compared with a set of experiments at a temperature of 1223 K with 5 h of treatment time and boron potentials of 2, 3, 4 and 5 mm. The results of the Fe 2B layer thicknesses show a mean error of 5.31% for the neural network and 3.42% for the least square method.

  17. New method to incorporate Type B uncertainty into least-squares procedures in radionuclide metrology.

    PubMed

    Han, Jubong; Lee, K B; Lee, Jong-Man; Park, Tae Soon; Oh, J S; Oh, Pil-Jei

    2016-03-01

    We discuss a new method to incorporate Type B uncertainty into least-squares procedures. The new method is based on an extension of the likelihood function from which a conventional least-squares function is derived. The extended likelihood function is the product of the original likelihood function with additional PDFs (Probability Density Functions) that characterize the Type B uncertainties. The PDFs are considered to describe one's incomplete knowledge on correction factors being called nuisance parameters. We use the extended likelihood function to make point and interval estimations of parameters in the basically same way as the least-squares function used in the conventional least-squares method is derived. Since the nuisance parameters are not of interest and should be prevented from appearing in the final result, we eliminate such nuisance parameters by using the profile likelihood. As an example, we present a case study for a linear regression analysis with a common component of Type B uncertainty. In this example we compare the analysis results obtained from using our procedure with those from conventional methods. Copyright © 2015. Published by Elsevier Ltd.

  18. Kernel analysis of partial least squares (PLS) regression models.

    PubMed

    Shinzawa, Hideyuki; Ritthiruangdej, Pitiporn; Ozaki, Yukihiro

    2011-05-01

    An analytical technique based on kernel matrix representation is demonstrated to provide further chemically meaningful insight into partial least squares (PLS) regression models. The kernel matrix condenses essential information about scores derived from PLS or principal component analysis (PCA). Thus, it becomes possible to establish the proper interpretation of the scores. A PLS model for the total nitrogen (TN) content in multiple Thai fish sauces is built with a set of near-infrared (NIR) transmittance spectra of the fish sauce samples. The kernel analysis of the scores effectively reveals that the variation of the spectral feature induced by the change in protein content is substantially associated with the total water content and the protein hydration. Kernel analysis is also carried out on a set of time-dependent infrared (IR) spectra representing transient evaporation of ethanol from a binary mixture solution of ethanol and oleic acid. A PLS model to predict the elapsed time is built with the IR spectra and the kernel matrix is derived from the scores. The detailed analysis of the kernel matrix provides penetrating insight into the interaction between the ethanol and the oleic acid.

  19. A Reconstructed Discontinuous Galerkin Method for the Compressible Navier-Stokes Equations on Arbitrary Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong Luo; Luqing Luo; Robert Nourgaliev

    2010-09-01

    A reconstruction-based discontinuous Galerkin (RDG) method is presented for the solution of the compressible Navier–Stokes equations on arbitrary grids. The RDG method, originally developed for the compressible Euler equations, is extended to discretize viscous and heat fluxes in the Navier–Stokes equations using a so-called inter-cell reconstruction, where a smooth solution is locally reconstructed using a least-squares method from the underlying discontinuous DG solution. Similar to the recovery-based DG (rDG) methods, this reconstructed DG method eliminates the introduction of ad hoc penalty or coupling terms commonly found in traditional DG methods. Unlike rDG methods, this RDG method does not need tomore » judiciously choose a proper form of a recovered polynomial, thus is simple, flexible, and robust, and can be used on arbitrary grids. The developed RDG method is used to compute a variety of flow problems on arbitrary meshes to demonstrate its accuracy, efficiency, robustness, and versatility. The numerical results indicate that this RDG method is able to deliver the same accuracy as the well-known Bassi–Rebay II scheme, at a half of its computing costs for the discretization of the viscous fluxes in the Navier–Stokes equations, clearly demonstrating its superior performance over the existing DG methods for solving the compressible Navier–Stokes equations.« less

  20. A Reconstructed Discontinuous Galerkin Method for the Compressible Navier-Stokes Equations on Arbitrary Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong Luo; Luqing Luo; Robert Nourgaliev

    2010-01-01

    A reconstruction-based discontinuous Galerkin (RDG) method is presented for the solution of the compressible Navier-Stokes equations on arbitrary grids. The RDG method, originally developed for the compressible Euler equations, is extended to discretize viscous and heat fluxes in the Navier-Stokes equations using a so-called inter-cell reconstruction, where a smooth solution is locally reconstructed using a least-squares method from the underlying discontinuous DG solution. Similar to the recovery-based DG (rDG) methods, this reconstructed DG method eliminates the introduction of ad hoc penalty or coupling terms commonly found in traditional DG methods. Unlike rDG methods, this RDG method does not need tomore » judiciously choose a proper form of a recovered polynomial, thus is simple, flexible, and robust, and can be used on arbitrary grids. The developed RDG method is used to compute a variety of flow problems on arbitrary meshes to demonstrate its accuracy, efficiency, robustness, and versatility. The numerical results indicate that this RDG method is able to deliver the same accuracy as the well-known Bassi-Rebay II scheme, at a half of its computing costs for the discretization of the viscous fluxes in the Navier-Stokes equations, clearly demonstrating its superior performance over the existing DG methods for solving the compressible Navier-Stokes equations.« less

  1. An efficient variable projection formulation for separable nonlinear least squares problems.

    PubMed

    Gan, Min; Li, Han-Xiong

    2014-05-01

    We consider in this paper a class of nonlinear least squares problems in which the model can be represented as a linear combination of nonlinear functions. The variable projection algorithm projects the linear parameters out of the problem, leaving the nonlinear least squares problems involving only the nonlinear parameters. To implement the variable projection algorithm more efficiently, we propose a new variable projection functional based on matrix decomposition. The advantage of the proposed formulation is that the size of the decomposed matrix may be much smaller than those of previous ones. The Levenberg-Marquardt algorithm using finite difference method is then applied to minimize the new criterion. Numerical results show that the proposed approach achieves significant reduction in computing time.

  2. Smoothed low rank and sparse matrix recovery by iteratively reweighted least squares minimization.

    PubMed

    Lu, Canyi; Lin, Zhouchen; Yan, Shuicheng

    2015-02-01

    This paper presents a general framework for solving the low-rank and/or sparse matrix minimization problems, which may involve multiple nonsmooth terms. The iteratively reweighted least squares (IRLSs) method is a fast solver, which smooths the objective function and minimizes it by alternately updating the variables and their weights. However, the traditional IRLS can only solve a sparse only or low rank only minimization problem with squared loss or an affine constraint. This paper generalizes IRLS to solve joint/mixed low-rank and sparse minimization problems, which are essential formulations for many tasks. As a concrete example, we solve the Schatten-p norm and l2,q-norm regularized low-rank representation problem by IRLS, and theoretically prove that the derived solution is a stationary point (globally optimal if p,q ≥ 1). Our convergence proof of IRLS is more general than previous one that depends on the special properties of the Schatten-p norm and l2,q-norm. Extensive experiments on both synthetic and real data sets demonstrate that our IRLS is much more efficient.

  3. Weibull Modulus Estimated by the Non-linear Least Squares Method: A Solution to Deviation Occurring in Traditional Weibull Estimation

    NASA Astrophysics Data System (ADS)

    Li, T.; Griffiths, W. D.; Chen, J.

    2017-11-01

    The Maximum Likelihood method and the Linear Least Squares (LLS) method have been widely used to estimate Weibull parameters for reliability of brittle and metal materials. In the last 30 years, many researchers focused on the bias of Weibull modulus estimation, and some improvements have been achieved, especially in the case of the LLS method. However, there is a shortcoming in these methods for a specific type of data, where the lower tail deviates dramatically from the well-known linear fit in a classic LLS Weibull analysis. This deviation can be commonly found from the measured properties of materials, and previous applications of the LLS method on this kind of dataset present an unreliable linear regression. This deviation was previously thought to be due to physical flaws ( i.e., defects) contained in materials. However, this paper demonstrates that this deviation can also be caused by the linear transformation of the Weibull function, occurring in the traditional LLS method. Accordingly, it may not be appropriate to carry out a Weibull analysis according to the linearized Weibull function, and the Non-linear Least Squares method (Non-LS) is instead recommended for the Weibull modulus estimation of casting properties.

  4. Algorithm 937: MINRES-QLP for Symmetric and Hermitian Linear Equations and Least-Squares Problems.

    PubMed

    Choi, Sou-Cheng T; Saunders, Michael A

    2014-02-01

    We describe algorithm MINRES-QLP and its FORTRAN 90 implementation for solving symmetric or Hermitian linear systems or least-squares problems. If the system is singular, MINRES-QLP computes the unique minimum-length solution (also known as the pseudoinverse solution), which generally eludes MINRES. In all cases, it overcomes a potential instability in the original MINRES algorithm. A positive-definite pre-conditioner may be supplied. Our FORTRAN 90 implementation illustrates a design pattern that allows users to make problem data known to the solver but hidden and secure from other program units. In particular, we circumvent the need for reverse communication. Example test programs input and solve real or complex problems specified in Matrix Market format. While we focus here on a FORTRAN 90 implementation, we also provide and maintain MATLAB versions of MINRES and MINRES-QLP.

  5. Algorithm 937: MINRES-QLP for Symmetric and Hermitian Linear Equations and Least-Squares Problems

    PubMed Central

    Choi, Sou-Cheng T.; Saunders, Michael A.

    2014-01-01

    We describe algorithm MINRES-QLP and its FORTRAN 90 implementation for solving symmetric or Hermitian linear systems or least-squares problems. If the system is singular, MINRES-QLP computes the unique minimum-length solution (also known as the pseudoinverse solution), which generally eludes MINRES. In all cases, it overcomes a potential instability in the original MINRES algorithm. A positive-definite pre-conditioner may be supplied. Our FORTRAN 90 implementation illustrates a design pattern that allows users to make problem data known to the solver but hidden and secure from other program units. In particular, we circumvent the need for reverse communication. Example test programs input and solve real or complex problems specified in Matrix Market format. While we focus here on a FORTRAN 90 implementation, we also provide and maintain MATLAB versions of MINRES and MINRES-QLP. PMID:25328255

  6. Event Compression Using Recursive Least Squares Signal Processing.

    DTIC Science & Technology

    1980-07-01

    decimation of the Burstl signal with and without all-pole prefiltering to reduce aliasing . Figures 3.32a-c and 3.33a-c show the same examples but with 4/1...to reduce aliasing , w~t found that it did not improve the quality of the event compressed signals . If filtering must be performed, all-pole filtering...A-AO89 785 MASSACHUSETTS IN T OF TECH CAMBRIDGE RESEARCH LAB OF--ETC F/B 17/9 EVENT COMPRESSION USING RECURSIVE LEAST SQUARES SIGNAL PROCESSI-ETC(t

  7. Analysis and computation of a least-squares method for consistent mesh tying

    DOE PAGES

    Day, David; Bochev, Pavel

    2007-07-10

    We report in the finite element method, a standard approach to mesh tying is to apply Lagrange multipliers. If the interface is curved, however, discretization generally leads to adjoining surfaces that do not coincide spatially. Straightforward Lagrange multiplier methods lead to discrete formulations failing a first-order patch test [T.A. Laursen, M.W. Heinstein, Consistent mesh-tying methods for topologically distinct discretized surfaces in non-linear solid mechanics, Internat. J. Numer. Methods Eng. 57 (2003) 1197–1242]. This paper presents a theoretical and computational study of a least-squares method for mesh tying [P. Bochev, D.M. Day, A least-squares method for consistent mesh tying, Internat. J.more » Numer. Anal. Modeling 4 (2007) 342–352], applied to the partial differential equation -∇ 2φ+αφ=f. We prove optimal convergence rates for domains represented as overlapping subdomains and show that the least-squares method passes a patch test of the order of the finite element space by construction. To apply the method to subdomain configurations with gaps and overlaps we use interface perturbations to eliminate the gaps. Finally, theoretical error estimates are illustrated by numerical experiments.« less

  8. Explicit least squares system parameter identification for exact differential input/output models

    NASA Technical Reports Server (NTRS)

    Pearson, A. E.

    1993-01-01

    The equation error for a class of systems modeled by input/output differential operator equations has the potential to be integrated exactly, given the input/output data on a finite time interval, thereby opening up the possibility of using an explicit least squares estimation technique for system parameter identification. The paper delineates the class of models for which this is possible and shows how the explicit least squares cost function can be obtained in a way that obviates dealing with unknown initial and boundary conditions. The approach is illustrated by two examples: a second order chemical kinetics model and a third order system of Lorenz equations.

  9. Estimation of liver T₂ in transfusion-related iron overload in patients with weighted least squares T₂ IDEAL.

    PubMed

    Vasanawala, Shreyas S; Yu, Huanzhou; Shimakawa, Ann; Jeng, Michael; Brittain, Jean H

    2012-01-01

    MRI imaging of hepatic iron overload can be achieved by estimating T(2) values using multiple-echo sequences. The purpose of this work is to develop and clinically evaluate a weighted least squares algorithm based on T(2) Iterative Decomposition of water and fat with Echo Asymmetry and Least-squares estimation (IDEAL) technique for volumetric estimation of hepatic T(2) in the setting of iron overload. The weighted least squares T(2) IDEAL technique improves T(2) estimation by automatically decreasing the impact of later, noise-dominated echoes. The technique was evaluated in 37 patients with iron overload. Each patient underwent (i) a standard 2D multiple-echo gradient echo sequence for T(2) assessment with nonlinear exponential fitting, and (ii) a 3D T(2) IDEAL technique, with and without a weighted least squares fit. Regression and Bland-Altman analysis demonstrated strong correlation between conventional 2D and T(2) IDEAL estimation. In cases of severe iron overload, T(2) IDEAL without weighted least squares reconstruction resulted in a relative overestimation of T(2) compared with weighted least squares. Copyright © 2011 Wiley-Liss, Inc.

  10. Development and application of discontinuous Galerkin method for the solution of two-dimensional Maxwell equations

    NASA Astrophysics Data System (ADS)

    Wong, See-Cheuk

    , degrees of freedom, boundary conditions, and other implementation issues. The computational solution amounts to a near-field solution in form of contour plot and one extending from the scatterer to a far-field boundary located a few wavelengths away. Near-field to far-field transformation utilizing the Green's function is performed to obtain the bistatic radar cross section information. Results are presented for scatterings from a series of two-dimensional objects, including circular and square cylinders, ogive and NACA airfoils. Also, scatterings from more complex geometries such as cylindrical and rectangular cavitations are simulated. Exact solutions for selected cases are compared to the computational results and demonstrate excellent accuracy and efficiency in the RKDG calculations. In the whole, its ease and flexibility to incorporate the characteristic-based schemes for the flux integrals between cell interfaces, and the compact formulation allowing direct application to the boundary elements without modification are some of the admired features of the DG method.

  11. Dynamic least-squares kernel density modeling of Fokker-Planck equations with application to neural population.

    PubMed

    Shotorban, Babak

    2010-04-01

    The dynamic least-squares kernel density (LSQKD) model [C. Pantano and B. Shotorban, Phys. Rev. E 76, 066705 (2007)] is used to solve the Fokker-Planck equations. In this model the probability density function (PDF) is approximated by a linear combination of basis functions with unknown parameters whose governing equations are determined by a global least-squares approximation of the PDF in the phase space. In this work basis functions are set to be Gaussian for which the mean, variance, and covariances are governed by a set of partial differential equations (PDEs) or ordinary differential equations (ODEs) depending on what phase-space variables are approximated by Gaussian functions. Three sample problems of univariate double-well potential, bivariate bistable neurodynamical system [G. Deco and D. Martí, Phys. Rev. E 75, 031913 (2007)], and bivariate Brownian particles in a nonuniform gas are studied. The LSQKD is verified for these problems as its results are compared against the results of the method of characteristics in nondiffusive cases and the stochastic particle method in diffusive cases. For the double-well potential problem it is observed that for low to moderate diffusivity the dynamic LSQKD well predicts the stationary PDF for which there is an exact solution. A similar observation is made for the bistable neurodynamical system. In both these problems least-squares approximation is made on all phase-space variables resulting in a set of ODEs with time as the independent variable for the Gaussian function parameters. In the problem of Brownian particles in a nonuniform gas, this approximation is made only for the particle velocity variable leading to a set of PDEs with time and particle position as independent variables. Solving these PDEs, a very good performance by LSQKD is observed for a wide range of diffusivities.

  12. Areal Control Using Generalized Least Squares As An Alternative to Stratification

    Treesearch

    Raymond L. Czaplewski

    2001-01-01

    Stratification for both variance reduction and areal control proliferates the number of strata, which causes small sample sizes in many strata. This might compromise statistical efficiency. Generalized least squares can, in principle, replace stratification for areal control.

  13. Selective Weighted Least Squares Method for Fourier Transform Infrared Quantitative Analysis.

    PubMed

    Wang, Xin; Li, Yan; Wei, Haoyun; Chen, Xia

    2017-06-01

    Classical least squares (CLS) regression is a popular multivariate statistical method used frequently for quantitative analysis using Fourier transform infrared (FT-IR) spectrometry. Classical least squares provides the best unbiased estimator for uncorrelated residual errors with zero mean and equal variance. However, the noise in FT-IR spectra, which accounts for a large portion of the residual errors, is heteroscedastic. Thus, if this noise with zero mean dominates in the residual errors, the weighted least squares (WLS) regression method described in this paper is a better estimator than CLS. However, if bias errors, such as the residual baseline error, are significant, WLS may perform worse than CLS. In this paper, we compare the effect of noise and bias error in using CLS and WLS in quantitative analysis. Results indicated that for wavenumbers with low absorbance, the bias error significantly affected the error, such that the performance of CLS is better than that of WLS. However, for wavenumbers with high absorbance, the noise significantly affected the error, and WLS proves to be better than CLS. Thus, we propose a selective weighted least squares (SWLS) regression that processes data with different wavenumbers using either CLS or WLS based on a selection criterion, i.e., lower or higher than an absorbance threshold. The effects of various factors on the optimal threshold value (OTV) for SWLS have been studied through numerical simulations. These studies reported that: (1) the concentration and the analyte type had minimal effect on OTV; and (2) the major factor that influences OTV is the ratio between the bias error and the standard deviation of the noise. The last part of this paper is dedicated to quantitative analysis of methane gas spectra, and methane/toluene mixtures gas spectra as measured using FT-IR spectrometry and CLS, WLS, and SWLS. The standard error of prediction (SEP), bias of prediction (bias), and the residual sum of squares of the errors

  14. Geodesic least squares regression for scaling studies in magnetic confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verdoolaege, Geert

    In regression analyses for deriving scaling laws that occur in various scientific disciplines, usually standard regression methods have been applied, of which ordinary least squares (OLS) is the most popular. However, concerns have been raised with respect to several assumptions underlying OLS in its application to scaling laws. We here discuss a new regression method that is robust in the presence of significant uncertainty on both the data and the regression model. The method, which we call geodesic least squares regression (GLS), is based on minimization of the Rao geodesic distance on a probabilistic manifold. We demonstrate the superiority ofmore » the method using synthetic data and we present an application to the scaling law for the power threshold for the transition to the high confinement regime in magnetic confinement fusion devices.« less

  15. Partial Least Squares for Discrimination in fMRI Data

    PubMed Central

    Andersen, Anders H.; Rayens, William S.; Liu, Yushu; Smith, Charles D.

    2011-01-01

    Multivariate methods for discrimination were used in the comparison of brain activation patterns between groups of cognitively normal women who are at either high or low Alzheimer's disease risk based on family history and apolipoprotein-E4 status. Linear discriminant analysis (LDA) was preceded by dimension reduction using either principal component analysis (PCA), partial least squares (PLS), or a new oriented partial least squares (OrPLS) method. The aim was to identify a spatial pattern of functionally connected brain regions that was differentially expressed by the risk groups and yielded optimal classification accuracy. Multivariate dimension reduction is required prior to LDA when the data contains more feature variables than there are observations on individual subjects. Whereas PCA has been commonly used to identify covariance patterns in neuroimaging data, this approach only identifies gross variability and is not capable of distinguishing among-groups from within-groups variability. PLS and OrPLS provide a more focused dimension reduction by incorporating information on class structure and therefore lead to more parsimonious models for discrimination. Performance was evaluated in terms of the cross-validated misclassification rates. The results support the potential of using fMRI as an imaging biomarker or diagnostic tool to discriminate individuals with disease or high risk. PMID:22227352

  16. A least-squares minimisation approach to depth determination from numerical second horizontal self-potential anomalies

    NASA Astrophysics Data System (ADS)

    Abdelrahman, El-Sayed Mohamed; Soliman, Khalid; Essa, Khalid Sayed; Abo-Ezz, Eid Ragab; El-Araby, Tarek Mohamed

    2009-06-01

    This paper develops a least-squares minimisation approach to determine the depth of a buried structure from numerical second horizontal derivative anomalies obtained from self-potential (SP) data using filters of successive window lengths. The method is based on using a relationship between the depth and a combination of observations at symmetric points with respect to the coordinate of the projection of the centre of the source in the plane of the measurement points with a free parameter (graticule spacing). The problem of depth determination from second derivative SP anomalies has been transformed into the problem of finding a solution to a non-linear equation of the form f(z)=0. Formulas have been derived for horizontal cylinders, spheres, and vertical cylinders. Procedures are also formulated to determine the electric dipole moment and the polarization angle. The proposed method was tested on synthetic noisy and real SP data. In the case of the synthetic data, the least-squares method determined the correct depths of the sources. In the case of practical data (SP anomalies over a sulfide ore deposit, Sariyer, Turkey and over a Malachite Mine, Jefferson County, Colorado, USA), the estimated depths of the buried structures are in good agreement with the results obtained from drilling and surface geology.

  17. Feasibility study on the least square method for fitting non-Gaussian noise data

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Chen, Wen; Liang, Yingjie

    2018-02-01

    This study is to investigate the feasibility of least square method in fitting non-Gaussian noise data. We add different levels of the two typical non-Gaussian noises, Lévy and stretched Gaussian noises, to exact value of the selected functions including linear equations, polynomial and exponential equations, and the maximum absolute and the mean square errors are calculated for the different cases. Lévy and stretched Gaussian distributions have many applications in fractional and fractal calculus. It is observed that the non-Gaussian noises are less accurately fitted than the Gaussian noise, but the stretched Gaussian cases appear to perform better than the Lévy noise cases. It is stressed that the least-squares method is inapplicable to the non-Gaussian noise cases when the noise level is larger than 5%.

  18. An Incremental Weighted Least Squares Approach to Surface Lights Fields

    NASA Astrophysics Data System (ADS)

    Coombe, Greg; Lastra, Anselmo

    An Image-Based Rendering (IBR) approach to appearance modelling enables the capture of a wide variety of real physical surfaces with complex reflectance behaviour. The challenges with this approach are handling the large amount of data, rendering the data efficiently, and previewing the model as it is being constructed. In this paper, we introduce the Incremental Weighted Least Squares approach to the representation and rendering of spatially and directionally varying illumination. Each surface patch consists of a set of Weighted Least Squares (WLS) node centers, which are low-degree polynomial representations of the anisotropic exitant radiance. During rendering, the representations are combined in a non-linear fashion to generate a full reconstruction of the exitant radiance. The rendering algorithm is fast, efficient, and implemented entirely on the GPU. The construction algorithm is incremental, which means that images are processed as they arrive instead of in the traditional batch fashion. This human-in-the-loop process enables the user to preview the model as it is being constructed and to adapt to over-sampling and under-sampling of the surface appearance.

  19. Non-stationary least-squares complex decomposition for microseismic noise attenuation

    NASA Astrophysics Data System (ADS)

    Chen, Yangkang

    2018-06-01

    Microseismic data processing and imaging are crucial for subsurface real-time monitoring during hydraulic fracturing process. Unlike the active-source seismic events or large-scale earthquake events, the microseismic event is usually of very small magnitude, which makes its detection challenging. The biggest trouble of microseismic data is the low signal-to-noise ratio issue. Because of the small energy difference between effective microseismic signal and ambient noise, the effective signals are usually buried in strong random noise. I propose a useful microseismic denoising algorithm that is based on decomposing a microseismic trace into an ensemble of components using least-squares inversion. Based on the predictive property of useful microseismic event along the time direction, the random noise can be filtered out via least-squares fitting of multiple damping exponential components. The method is flexible and almost automated since the only parameter needed to be defined is a decomposition number. I use some synthetic and real data examples to demonstrate the potential of the algorithm in processing complicated microseismic data sets.

  20. Study on the PGNAA measurement of heavy metals in aqueous solution by the Monte Carlo-Library Least-Squares (MCLLS) approach.

    PubMed

    Zhang, Yan; Jia, WenBao; Gardner, Robin; Shan, Qing; Hei, Daqian

    2018-02-01

    In the present work, a prompt gamma neutron activation analysis (PGNAA) setup, which consists of a 300mCi 241 Americium-Beryllium (Am-Be) neutron source and a 4 × 4-in. Bismuth germanium oxide (BGO) detector, was developed for heavy metal detection in aqueous solutions. A series of standard samples with analytical purity were prepared by dissolving heavy metals in deionized water. Quantitative spectrum analysis was performed by the Monte Carlo-Least-Squares (MCLLS) approach to measure the standard samples. The detector response functions of 4 × 4-in. BGO detector were generated by using the CEARDRF code. The element libraries were simulated in silico by the CEARCPG code, which was developed by Dr. Gardner. The simulation results presented were in very good agreement with the experimental results. The correlation coefficients were very close to 1 when the fitted spectrum was compared with the experimental spectrum. By applying the MCLLS approach, the relative deviation of the measurement accuracy was less than 2.27% for Ni, Mn, and Cu and up to 69.33% for Pb. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Kernel Partial Least Squares for Nonlinear Regression and Discrimination

    NASA Technical Reports Server (NTRS)

    Rosipal, Roman; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This paper summarizes recent results on applying the method of partial least squares (PLS) in a reproducing kernel Hilbert space (RKHS). A previously proposed kernel PLS regression model was proven to be competitive with other regularized regression methods in RKHS. The family of nonlinear kernel-based PLS models is extended by considering the kernel PLS method for discrimination. Theoretical and experimental results on a two-class discrimination problem indicate usefulness of the method.

  2. Regional geoid computation by least squares modified Hotine's formula with additive corrections

    NASA Astrophysics Data System (ADS)

    Märdla, Silja; Ellmann, Artu; Ågren, Jonas; Sjöberg, Lars E.

    2018-03-01

    Geoid and quasigeoid modelling from gravity anomalies by the method of least squares modification of Stokes's formula with additive corrections is adapted for the usage with gravity disturbances and Hotine's formula. The biased, unbiased and optimum versions of least squares modification are considered. Equations are presented for the four additive corrections that account for the combined (direct plus indirect) effect of downward continuation (DWC), topographic, atmospheric and ellipsoidal corrections in geoid or quasigeoid modelling. The geoid or quasigeoid modelling scheme by the least squares modified Hotine formula is numerically verified, analysed and compared to the Stokes counterpart in a heterogeneous study area. The resulting geoid models and the additive corrections computed both for use with Stokes's or Hotine's formula differ most in high topography areas. Over the study area (reaching almost 2 km in altitude), the approximate geoid models (before the additive corrections) differ by 7 mm on average with a 3 mm standard deviation (SD) and a maximum of 1.3 cm. The additive corrections, out of which only the DWC correction has a numerically significant difference, improve the agreement between respective geoid or quasigeoid models to an average difference of 5 mm with a 1 mm SD and a maximum of 8 mm.

  3. Budget Online Learning Algorithm for Least Squares SVM.

    PubMed

    Jian, Ling; Shen, Shuqian; Li, Jundong; Liang, Xijun; Li, Lei

    2017-09-01

    Batch-mode least squares support vector machine (LSSVM) is often associated with unbounded number of support vectors (SVs'), making it unsuitable for applications involving large-scale streaming data. Limited-scale LSSVM, which allows efficient updating, seems to be a good solution to tackle this issue. In this paper, to train the limited-scale LSSVM dynamically, we present a budget online LSSVM (BOLSSVM) algorithm. Methodologically, by setting a fixed budget for SVs', we are able to update the LSSVM model according to the updated SVs' set dynamically without retraining from scratch. In particular, when a new small chunk of SVs' substitute for the old ones, the proposed algorithm employs a low rank correction technology and the Sherman-Morrison-Woodbury formula to compute the inverse of saddle point matrix derived from the LSSVM's Karush-Kuhn-Tucker (KKT) system, which, in turn, updates the LSSVM model efficiently. In this way, the proposed BOLSSVM algorithm is especially useful for online prediction tasks. Another merit of the proposed BOLSSVM is that it can be used for k -fold cross validation. Specifically, compared with batch-mode learning methods, the computational complexity of the proposed BOLSSVM method is significantly reduced from O(n 4 ) to O(n 3 ) for leave-one-out cross validation with n training samples. The experimental results of classification and regression on benchmark data sets and real-world applications show the validity and effectiveness of the proposed BOLSSVM algorithm.

  4. Using Technology to Optimize and Generalize: The Least-Squares Line

    ERIC Educational Resources Information Center

    Burke, Maurice J.; Hodgson, Ted R.

    2007-01-01

    With the help of technology and a basic high school algebra method for finding the vertex of a quadratic polynomial, students can develop and prove the formula for least-squares lines. Students are exposed to the power of a computer algebra system to generalize processes they understand and to see deeper patterns in those processes. (Contains 4…

  5. Nonlinear least-squares data fitting in Excel spreadsheets.

    PubMed

    Kemmer, Gerdi; Keller, Sandro

    2010-02-01

    We describe an intuitive and rapid procedure for analyzing experimental data by nonlinear least-squares fitting (NLSF) in the most widely used spreadsheet program. Experimental data in x/y form and data calculated from a regression equation are inputted and plotted in a Microsoft Excel worksheet, and the sum of squared residuals is computed and minimized using the Solver add-in to obtain the set of parameter values that best describes the experimental data. The confidence of best-fit values is then visualized and assessed in a generally applicable and easily comprehensible way. Every user familiar with the most basic functions of Excel will be able to implement this protocol, without previous experience in data fitting or programming and without additional costs for specialist software. The application of this tool is exemplified using the well-known Michaelis-Menten equation characterizing simple enzyme kinetics. Only slight modifications are required to adapt the protocol to virtually any other kind of dataset or regression equation. The entire protocol takes approximately 1 h.

  6. Time-Series INSAR: An Integer Least-Squares Approach For Distributed Scatterers

    NASA Astrophysics Data System (ADS)

    Samiei-Esfahany, Sami; Hanssen, Ramon F.

    2012-01-01

    The objective of this research is to extend the geode- tic mathematical model which was developed for persistent scatterers to a model which can exploit distributed scatterers (DS). The main focus is on the integer least- squares framework, and the main challenge is to include the decorrelation effect in the mathematical model. In order to adapt the integer least-squares mathematical model for DS we altered the model from a single master to a multi-master configuration and introduced the decorrelation effect stochastically. This effect is described in our model by a full covariance matrix. We propose to de- rive this covariance matrix by numerical integration of the (joint) probability distribution function (PDF) of interferometric phases. This PDF is a function of coherence values and can be directly computed from radar data. We show that the use of this model can improve the performance of temporal phase unwrapping of distributed scatterers.

  7. Enhancing Least-Squares Finite Element Methods Through a Quantity-of-Interest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhry, Jehanzeb Hameed; Cyr, Eric C.; Liu, Kuo

    2014-12-18

    Here, we introduce an approach that augments least-squares finite element formulations with user-specified quantities-of-interest. The method incorporates the quantity-of-interest into the least-squares functional and inherits the global approximation properties of the standard formulation as well as increased resolution of the quantity-of-interest. We establish theoretical properties such as optimality and enhanced convergence under a set of general assumptions. Central to the approach is that it offers an element-level estimate of the error in the quantity-of-interest. As a result, we introduce an adaptive approach that yields efficient, adaptively refined approximations. Several numerical experiments for a range of situations are presented to supportmore » the theory and highlight the effectiveness of our methodology. Notably, the results show that the new approach is effective at improving the accuracy per total computational cost.« less

  8. Real-Time Adaptive Least-Squares Drag Minimization for Performance Adaptive Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Ferrier, Yvonne L.; Nguyen, Nhan T.; Ting, Eric

    2016-01-01

    This paper contains a simulation study of a real-time adaptive least-squares drag minimization algorithm for an aeroelastic model of a flexible wing aircraft. The aircraft model is based on the NASA Generic Transport Model (GTM). The wing structures incorporate a novel aerodynamic control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF). The drag minimization algorithm uses the Newton-Raphson method to find the optimal VCCTEF deflections for minimum drag in the context of an altitude-hold flight control mode at cruise conditions. The aerodynamic coefficient parameters used in this optimization method are identified in real-time using Recursive Least Squares (RLS). The results demonstrate the potential of the VCCTEF to improve aerodynamic efficiency for drag minimization for transport aircraft.

  9. Robust Mean and Covariance Structure Analysis through Iteratively Reweighted Least Squares.

    ERIC Educational Resources Information Center

    Yuan, Ke-Hai; Bentler, Peter M.

    2000-01-01

    Adapts robust schemes to mean and covariance structures, providing an iteratively reweighted least squares approach to robust structural equation modeling. Each case is weighted according to its distance, based on first and second order moments. Test statistics and standard error estimators are given. (SLD)

  10. Least-Squares Approximation of an Improper by a Proper Correlation Matrix Using a Semi-Infinite Convex Program. Research Report 87-7.

    ERIC Educational Resources Information Center

    Knol, Dirk L.; ten Berge, Jos M. F.

    An algorithm is presented for the best least-squares fitting correlation matrix approximating a given missing value or improper correlation matrix. The proposed algorithm is based on a solution for C. I. Mosier's oblique Procrustes rotation problem offered by J. M. F. ten Berge and K. Nevels (1977). It is shown that the minimization problem…

  11. Power-law modeling based on least-squares minimization criteria.

    PubMed

    Hernández-Bermejo, B; Fairén, V; Sorribas, A

    1999-10-01

    The power-law formalism has been successfully used as a modeling tool in many applications. The resulting models, either as Generalized Mass Action or as S-systems models, allow one to characterize the target system and to simulate its dynamical behavior in response to external perturbations and parameter changes. The power-law formalism was first derived as a Taylor series approximation in logarithmic space for kinetic rate-laws. The especial characteristics of this approximation produce an extremely useful systemic representation that allows a complete system characterization. Furthermore, their parameters have a precise interpretation as local sensitivities of each of the individual processes and as rate-constants. This facilitates a qualitative discussion and a quantitative estimation of their possible values in relation to the kinetic properties. Following this interpretation, parameter estimation is also possible by relating the systemic behavior to the underlying processes. Without leaving the general formalism, in this paper we suggest deriving the power-law representation in an alternative way that uses least-squares minimization. The resulting power-law mimics the target rate-law in a wider range of concentration values than the classical power-law. Although the implications of this alternative approach remain to be established, our results show that the predicted steady-state using the least-squares power-law is closest to the actual steady-state of the target system.

  12. Beyond Principal Component Analysis: A Trilinear Decomposition Model and Least Squares Estimation.

    ERIC Educational Resources Information Center

    Pham, Tuan Dinh; Mocks, Joachim

    1992-01-01

    Sufficient conditions are derived for the consistency and asymptotic normality of the least squares estimator of a trilinear decomposition model for multiway data analysis. The limiting covariance matrix is computed. (Author/SLD)

  13. Hybrid least squares multivariate spectral analysis methods

    DOEpatents

    Haaland, David M.

    2004-03-23

    A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following prediction or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The hybrid method herein means a combination of an initial calibration step with subsequent analysis by an inverse multivariate analysis method. A spectral shape herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The shape can be continuous, discontinuous, or even discrete points illustrative of the particular effect.

  14. Precision PEP-II optics measurement with an SVD-enhanced Least-Square fitting

    NASA Astrophysics Data System (ADS)

    Yan, Y. T.; Cai, Y.

    2006-03-01

    A singular value decomposition (SVD)-enhanced Least-Square fitting technique is discussed. By automatic identifying, ordering, and selecting dominant SVD modes of the derivative matrix that responds to the variations of the variables, the converging process of the Least-Square fitting is significantly enhanced. Thus the fitting speed can be fast enough for a fairly large system. This technique has been successfully applied to precision PEP-II optics measurement in which we determine all quadrupole strengths (both normal and skew components) and sextupole feed-downs as well as all BPM gains and BPM cross-plane couplings through Least-Square fitting of the phase advances and the Local Green's functions as well as the coupling ellipses among BPMs. The local Green's functions are specified by 4 local transfer matrix components R12, R34, R32, R14. These measurable quantities (the Green's functions, the phase advances and the coupling ellipse tilt angles and axis ratios) are obtained by analyzing turn-by-turn Beam Position Monitor (BPM) data with a high-resolution model-independent analysis (MIA). Once all of the quadrupoles and sextupole feed-downs are determined, we obtain a computer virtual accelerator which matches the real accelerator in linear optics. Thus, beta functions, linear coupling parameters, and interaction point (IP) optics characteristics can be measured and displayed.

  15. Kernel Recursive Least-Squares Temporal Difference Algorithms with Sparsification and Regularization.

    PubMed

    Zhang, Chunyuan; Zhu, Qingxin; Niu, Xinzheng

    2016-01-01

    By combining with sparse kernel methods, least-squares temporal difference (LSTD) algorithms can construct the feature dictionary automatically and obtain a better generalization ability. However, the previous kernel-based LSTD algorithms do not consider regularization and their sparsification processes are batch or offline, which hinder their widespread applications in online learning problems. In this paper, we combine the following five techniques and propose two novel kernel recursive LSTD algorithms: (i) online sparsification, which can cope with unknown state regions and be used for online learning, (ii) L 2 and L 1 regularization, which can avoid overfitting and eliminate the influence of noise, (iii) recursive least squares, which can eliminate matrix-inversion operations and reduce computational complexity, (iv) a sliding-window approach, which can avoid caching all history samples and reduce the computational cost, and (v) the fixed-point subiteration and online pruning, which can make L 1 regularization easy to implement. Finally, simulation results on two 50-state chain problems demonstrate the effectiveness of our algorithms.

  16. A hybrid perturbation Galerkin technique with applications to slender body theory

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Andersen, Carl M.

    1989-01-01

    A two-step hybrid perturbation-Galerkin method to solve a variety of applied mathematics problems which involve a small parameter is presented. The method consists of: (1) the use of a regular or singular perturbation method to determine the asymptotic expansion of the solution in terms of the small parameter; (2) construction of an approximate solution in the form of a sum of the perturbation coefficient functions multiplied by (unknown) amplitudes (gauge functions); and (3) the use of the classical Bubnov-Galerkin method to determine these amplitudes. This hybrid method has the potential of overcoming some of the drawbacks of the perturbation method and the Bubnov-Galerkin method when they are applied by themselves, while combining some of the good features of both. The proposed method is applied to some singular perturbation problems in slender body theory. The results obtained from the hybrid method are compared with approximate solutions obtained by other methods, and the degree of applicability of the hybrid method to broader problem areas is discussed.

  17. A hybrid perturbation Galerkin technique with applications to slender body theory

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Andersen, Carl M.

    1987-01-01

    A two step hybrid perturbation-Galerkin method to solve a variety of applied mathematics problems which involve a small parameter is presented. The method consists of: (1) the use of a regular or singular perturbation method to determine the asymptotic expansion of the solution in terms of the small parameter; (2) construction of an approximate solution in the form of a sum of the perturbation coefficient functions multiplied by (unknown) amplitudes (gauge functions); and (3) the use of the classical Bubnov-Galerkin method to determine these amplitudes. This hybrid method has the potential of overcoming some of the drawbacks of the perturbation method and the Bubnov-Galerkin method when they are applied by themselves, while combining some of the good features of both. The proposed method is applied to some singular perturbation problems in slender body theory. The results obtained from the hybrid method are compared with approximate solutions obtained by other methods, and the degree of applicability of the hybrid method to broader problem areas is discussed.

  18. Recursive least squares estimation and its application to shallow trench isolation

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Qin, S. Joe; Bode, Christopher A.; Purdy, Matthew A.

    2003-06-01

    In recent years, run-to-run (R2R) control technology has received tremendous interest in semiconductor manufacturing. One class of widely used run-to-run controllers is based on the exponentially weighted moving average (EWMA) statistics to estimate process deviations. Using an EWMA filter to smooth the control action on a linear process has been shown to provide good results in a number of applications. However, for a process with severe drifts, the EWMA controller is insufficient even when large weights are used. This problem becomes more severe when there is measurement delay, which is almost inevitable in semiconductor industry. In order to control drifting processes, a predictor-corrector controller (PCC) and a double EWMA controller have been developed. Chen and Guo (2001) show that both PCC and double-EWMA controller are in effect Integral-double-Integral (I-II) controllers, which are able to control drifting processes. However, since offset is often within the noise of the process, the second integrator can actually cause jittering. Besides, tuning the second filter is not as intuitive as a single EWMA filter. In this work, we look at an alternative way Recursive Least Squares (RLS), to estimate and control the drifting process. EWMA and double-EWMA are shown to be the least squares estimate for locally constant mean model and locally constant linear trend model. Then the recursive least squares with exponential factor is applied to shallow trench isolation etch process to predict the future etch rate. The etch process, which is a critical process in the flash memory manufacturing, is known to suffer from significant etch rate drift due to chamber seasoning. In order to handle the metrology delay, we propose a new time update scheme. RLS with the new time update method gives very good result. The estimate error variance is smaller than that from EWMA, and mean square error decrease more than 10% compared to that from EWMA.

  19. Spatial Autocorrelation Approaches to Testing Residuals from Least Squares Regression.

    PubMed

    Chen, Yanguang

    2016-01-01

    In geo-statistics, the Durbin-Watson test is frequently employed to detect the presence of residual serial correlation from least squares regression analyses. However, the Durbin-Watson statistic is only suitable for ordered time or spatial series. If the variables comprise cross-sectional data coming from spatial random sampling, the test will be ineffectual because the value of Durbin-Watson's statistic depends on the sequence of data points. This paper develops two new statistics for testing serial correlation of residuals from least squares regression based on spatial samples. By analogy with the new form of Moran's index, an autocorrelation coefficient is defined with a standardized residual vector and a normalized spatial weight matrix. Then by analogy with the Durbin-Watson statistic, two types of new serial correlation indices are constructed. As a case study, the two newly presented statistics are applied to a spatial sample of 29 China's regions. These results show that the new spatial autocorrelation models can be used to test the serial correlation of residuals from regression analysis. In practice, the new statistics can make up for the deficiencies of the Durbin-Watson test.

  20. Spatial Autocorrelation Approaches to Testing Residuals from Least Squares Regression

    PubMed Central

    Chen, Yanguang

    2016-01-01

    In geo-statistics, the Durbin-Watson test is frequently employed to detect the presence of residual serial correlation from least squares regression analyses. However, the Durbin-Watson statistic is only suitable for ordered time or spatial series. If the variables comprise cross-sectional data coming from spatial random sampling, the test will be ineffectual because the value of Durbin-Watson’s statistic depends on the sequence of data points. This paper develops two new statistics for testing serial correlation of residuals from least squares regression based on spatial samples. By analogy with the new form of Moran’s index, an autocorrelation coefficient is defined with a standardized residual vector and a normalized spatial weight matrix. Then by analogy with the Durbin-Watson statistic, two types of new serial correlation indices are constructed. As a case study, the two newly presented statistics are applied to a spatial sample of 29 China’s regions. These results show that the new spatial autocorrelation models can be used to test the serial correlation of residuals from regression analysis. In practice, the new statistics can make up for the deficiencies of the Durbin-Watson test. PMID:26800271

  1. Meshless Local Petrov-Galerkin Euler-Bernoulli Beam Problems: A Radial Basis Function Approach

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Phillips, D. R.; Krishnamurthy, T.

    2003-01-01

    A radial basis function implementation of the meshless local Petrov-Galerkin (MLPG) method is presented to study Euler-Bernoulli beam problems. Radial basis functions, rather than generalized moving least squares (GMLS) interpolations, are used to develop the trial functions. This choice yields a computationally simpler method as fewer matrix inversions and multiplications are required than when GMLS interpolations are used. Test functions are chosen as simple weight functions as in the conventional MLPG method. Compactly and noncompactly supported radial basis functions are considered. The non-compactly supported cubic radial basis function is found to perform very well. Results obtained from the radial basis MLPG method are comparable to those obtained using the conventional MLPG method for mixed boundary value problems and problems with discontinuous loading conditions.

  2. Prediction model of sinoatrial node field potential using high order partial least squares.

    PubMed

    Feng, Yu; Cao, Hui; Zhang, Yanbin

    2015-01-01

    High order partial least squares (HOPLS) is a novel data processing method. It is highly suitable for building prediction model which has tensor input and output. The objective of this study is to build a prediction model of the relationship between sinoatrial node field potential and high glucose using HOPLS. The three sub-signals of the sinoatrial node field potential made up the model's input. The concentration and the actuation duration of high glucose made up the model's output. The results showed that on the premise of predicting two dimensional variables, HOPLS had the same predictive ability and a lower dispersion degree compared with partial least squares (PLS).

  3. Landsat-4 (TDRSS-user) orbit determination using batch least-squares and sequential methods

    NASA Technical Reports Server (NTRS)

    Oza, D. H.; Jones, T. L.; Hakimi, M.; Samii, M. V.; Doll, C. E.; Mistretta, G. D.; Hart, R. C.

    1992-01-01

    TDRSS user orbit determination is analyzed using a batch least-squares method and a sequential estimation method. It was found that in the batch least-squares method analysis, the orbit determination consistency for Landsat-4, which was heavily tracked by TDRSS during January 1991, was about 4 meters in the rms overlap comparisons and about 6 meters in the maximum position differences in overlap comparisons. The consistency was about 10 to 30 meters in the 3 sigma state error covariance function in the sequential method analysis. As a measure of consistency, the first residual of each pass was within the 3 sigma bound in the residual space.

  4. A simple suboptimal least-squares algorithm for attitude determination with multiple sensors

    NASA Technical Reports Server (NTRS)

    Brozenec, Thomas F.; Bender, Douglas J.

    1994-01-01

    Three-axis attitude determination is equivalent to finding a coordinate transformation matrix which transforms a set of reference vectors fixed in inertial space to a set of measurement vectors fixed in the spacecraft. The attitude determination problem can be expressed as a constrained optimization problem. The constraint is that a coordinate transformation matrix must be proper, real, and orthogonal. A transformation matrix can be thought of as optimal in the least-squares sense if it maps the measurement vectors to the reference vectors with minimal 2-norm errors and meets the above constraint. This constrained optimization problem is known as Wahba's problem. Several algorithms which solve Wahba's problem exactly have been developed and used. These algorithms, while steadily improving, are all rather complicated. Furthermore, they involve such numerically unstable or sensitive operations as matrix determinant, matrix adjoint, and Newton-Raphson iterations. This paper describes an algorithm which minimizes Wahba's loss function, but without the constraint. When the constraint is ignored, the problem can be solved by a straightforward, numerically stable least-squares algorithm such as QR decomposition. Even though the algorithm does not explicitly take the constraint into account, it still yields a nearly orthogonal matrix for most practical cases; orthogonality only becomes corrupted when the sensor measurements are very noisy, on the same order of magnitude as the attitude rotations. The algorithm can be simplified if the attitude rotations are small enough so that the approximation sin(theta) approximately equals theta holds. We then compare the computational requirements for several well-known algorithms. For the general large-angle case, the QR least-squares algorithm is competitive with all other know algorithms and faster than most. If attitude rotations are small, the least-squares algorithm can be modified to run faster, and this modified algorithm is

  5. Concerning an application of the method of least squares with a variable weight matrix

    NASA Technical Reports Server (NTRS)

    Sukhanov, A. A.

    1979-01-01

    An estimate of a state vector for a physical system when the weight matrix in the method of least squares is a function of this vector is considered. An iterative procedure is proposed for calculating the desired estimate. Conditions for the existence and uniqueness of the limit of this procedure are obtained, and a domain is found which contains the limit estimate. A second method for calculating the desired estimate which reduces to the solution of a system of algebraic equations is proposed. The question of applying Newton's method of tangents to solving the given system of algebraic equations is considered and conditions for the convergence of the modified Newton's method are obtained. Certain properties of the estimate obtained are presented together with an example.

  6. Speckle noise removal applied to ultrasound image of carotid artery based on total least squares model.

    PubMed

    Yang, Lei; Lu, Jun; Dai, Ming; Ren, Li-Jie; Liu, Wei-Zong; Li, Zhen-Zhou; Gong, Xue-Hao

    2016-10-06

    An ultrasonic image speckle noise removal method by using total least squares model is proposed and applied onto images of cardiovascular structures such as the carotid artery. On the basis of the least squares principle, the related principle of minimum square method is applied to cardiac ultrasound image speckle noise removal process to establish the model of total least squares, orthogonal projection transformation processing is utilized for the output of the model, and the denoising processing for the cardiac ultrasound image speckle noise is realized. Experimental results show that the improved algorithm can greatly improve the resolution of the image, and meet the needs of clinical medical diagnosis and treatment of the cardiovascular system for the head and neck. Furthermore, the success in imaging of carotid arteries has strong implications in neurological complications such as stroke.

  7. Generalized Least Squares Estimators in the Analysis of Covariance Structures.

    ERIC Educational Resources Information Center

    Browne, Michael W.

    This paper concerns situations in which a p x p covariance matrix is a function of an unknown q x 1 parameter vector y-sub-o. Notation is defined in the second section, and some algebraic results used in subsequent sections are given. Section 3 deals with asymptotic properties of generalized least squares (G.L.S.) estimators of y-sub-o. Section 4…

  8. Partial least squares correspondence analysis: A framework to simultaneously analyze behavioral and genetic data.

    PubMed

    Beaton, Derek; Dunlop, Joseph; Abdi, Hervé

    2016-12-01

    For nearly a century, detecting the genetic contributions to cognitive and behavioral phenomena has been a core interest for psychological research. Recently, this interest has been reinvigorated by the availability of genotyping technologies (e.g., microarrays) that provide new genetic data, such as single nucleotide polymorphisms (SNPs). These SNPs-which represent pairs of nucleotide letters (e.g., AA, AG, or GG) found at specific positions on human chromosomes-are best considered as categorical variables, but this coding scheme can make difficult the multivariate analysis of their relationships with behavioral measurements, because most multivariate techniques developed for the analysis between sets of variables are designed for quantitative variables. To palliate this problem, we present a generalization of partial least squares-a technique used to extract the information common to 2 different data tables measured on the same observations-called partial least squares correspondence analysis-that is specifically tailored for the analysis of categorical and mixed ("heterogeneous") data types. Here, we formally define and illustrate-in a tutorial format-how partial least squares correspondence analysis extends to various types of data and design problems that are particularly relevant for psychological research that include genetic data. We illustrate partial least squares correspondence analysis with genetic, behavioral, and neuroimaging data from the Alzheimer's Disease Neuroimaging Initiative. R code is available on the Comprehensive R Archive Network and via the authors' websites. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  9. Multilevel Modeling and Ordinary Least Squares Regression: How Comparable Are They?

    ERIC Educational Resources Information Center

    Huang, Francis L.

    2018-01-01

    Studies analyzing clustered data sets using both multilevel models (MLMs) and ordinary least squares (OLS) regression have generally concluded that resulting point estimates, but not the standard errors, are comparable with each other. However, the accuracy of the estimates of OLS models is important to consider, as several alternative techniques…

  10. Application of a sparseness constraint in multivariate curve resolution - Alternating least squares.

    PubMed

    Hugelier, Siewert; Piqueras, Sara; Bedia, Carmen; de Juan, Anna; Ruckebusch, Cyril

    2018-02-13

    The use of sparseness in chemometrics is a concept that has increased in popularity. The advantage is, above all, a better interpretability of the results obtained. In this work, sparseness is implemented as a constraint in multivariate curve resolution - alternating least squares (MCR-ALS), which aims at reproducing raw (mixed) data by a bilinear model of chemically meaningful profiles. In many cases, the mixed raw data analyzed are not sparse by nature, but their decomposition profiles can be, as it is the case in some instrumental responses, such as mass spectra, or in concentration profiles linked to scattered distribution maps of powdered samples in hyperspectral images. To induce sparseness in the constrained profiles, one-dimensional and/or two-dimensional numerical arrays can be fitted using a basis of Gaussian functions with a penalty on the coefficients. In this work, a least squares regression framework with L 0 -norm penalty is applied. This L 0 -norm penalty constrains the number of non-null coefficients in the fit of the array constrained without having an a priori on the number and their positions. It has been shown that the sparseness constraint induces the suppression of values linked to uninformative channels and noise in MS spectra and improves the location of scattered compounds in distribution maps, resulting in a better interpretability of the constrained profiles. An additional benefit of the sparseness constraint is a lower ambiguity in the bilinear model, since the major presence of null coefficients in the constrained profiles also helps to limit the solutions for the profiles in the counterpart matrix of the MCR bilinear model. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Density-Dependent Quantized Least Squares Support Vector Machine for Large Data Sets.

    PubMed

    Nan, Shengyu; Sun, Lei; Chen, Badong; Lin, Zhiping; Toh, Kar-Ann

    2017-01-01

    Based on the knowledge that input data distribution is important for learning, a data density-dependent quantization scheme (DQS) is proposed for sparse input data representation. The usefulness of the representation scheme is demonstrated by using it as a data preprocessing unit attached to the well-known least squares support vector machine (LS-SVM) for application on big data sets. Essentially, the proposed DQS adopts a single shrinkage threshold to obtain a simple quantization scheme, which adapts its outputs to input data density. With this quantization scheme, a large data set is quantized to a small subset where considerable sample size reduction is generally obtained. In particular, the sample size reduction can save significant computational cost when using the quantized subset for feature approximation via the Nyström method. Based on the quantized subset, the approximated features are incorporated into LS-SVM to develop a data density-dependent quantized LS-SVM (DQLS-SVM), where an analytic solution is obtained in the primal solution space. The developed DQLS-SVM is evaluated on synthetic and benchmark data with particular emphasis on large data sets. Extensive experimental results show that the learning machine incorporating DQS attains not only high computational efficiency but also good generalization performance.

  12. Cross-correlation least-squares reverse time migration in the pseudo-time domain

    NASA Astrophysics Data System (ADS)

    Li, Qingyang; Huang, Jianping; Li, Zhenchun

    2017-08-01

    The least-squares reverse time migration (LSRTM) method with higher image resolution and amplitude is becoming increasingly popular. However, the LSRTM is not widely used in field land data processing because of its sensitivity to the initial migration velocity model, large computational cost and mismatch of amplitudes between the synthetic and observed data. To overcome the shortcomings of the conventional LSRTM, we propose a cross-correlation least-squares reverse time migration algorithm in pseudo-time domain (PTCLSRTM). Our algorithm not only reduces the depth/velocity ambiguities, but also reduces the effect of velocity error on the imaging results. It relieves the accuracy requirements on the migration velocity model of least-squares migration (LSM). The pseudo-time domain algorithm eliminates the irregular wavelength sampling in the vertical direction, thus it can reduce the vertical grid points and memory requirements used during computation, which makes our method more computationally efficient than the standard implementation. Besides, for field data applications, matching the recorded amplitudes is a very difficult task because of the viscoelastic nature of the Earth and inaccuracies in the estimation of the source wavelet. To relax the requirement for strong amplitude matching of LSM, we extend the normalized cross-correlation objective function to the pseudo-time domain. Our method is only sensitive to the similarity between the predicted and the observed data. Numerical tests on synthetic and land field data confirm the effectiveness of our method and its adaptability for complex models.

  13. An Application of the Quadrature-Free Discontinuous Galerkin Method

    NASA Technical Reports Server (NTRS)

    Lockard, David P.; Atkins, Harold L.

    2000-01-01

    The process of generating a block-structured mesh with the smoothness required for high-accuracy schemes is still a time-consuming process often measured in weeks or months. Unstructured grids about complex geometries are more easily generated, and for this reason, methods using unstructured grids have gained favor for aerodynamic analyses. The discontinuous Galerkin (DG) method is a compact finite-element projection method that provides a practical framework for the development of a high-order method using unstructured grids. Higher-order accuracy is obtained by representing the solution as a high-degree polynomial whose time evolution is governed by a local Galerkin projection. The traditional implementation of the discontinuous Galerkin uses quadrature for the evaluation of the integral projections and is prohibitively expensive. Atkins and Shu introduced the quadrature-free formulation in which the integrals are evaluated a-priori and exactly for a similarity element. The approach has been demonstrated to possess the accuracy required for acoustics even in cases where the grid is not smooth. Other issues such as boundary conditions and the treatment of non-linear fluxes have also been studied in earlier work This paper describes the application of the quadrature-free discontinuous Galerkin method to a two-dimensional shear layer problem. First, a brief description of the method is given. Next, the problem is described and the solution is presented. Finally, the resources required to perform the calculations are given.

  14. The derivation of vector magnetic fields from Stokes profiles - Integral versus least squares fitting techniques

    NASA Technical Reports Server (NTRS)

    Ronan, R. S.; Mickey, D. L.; Orrall, F. Q.

    1987-01-01

    The results of two methods for deriving photospheric vector magnetic fields from the Zeeman effect, as observed in the Fe I line at 6302.5 A at high spectral resolution (45 mA), are compared. The first method does not take magnetooptical effects into account, but determines the vector magnetic field from the integral properties of the Stokes profiles. The second method is an iterative least-squares fitting technique which fits the observed Stokes profiles to the profiles predicted by the Unno-Rachkovsky solution to the radiative transfer equation. For sunspot fields above about 1500 gauss, the two methods are found to agree in derived azimuthal and inclination angles to within about + or - 20 deg.

  15. Ordinary Least Squares and Quantile Regression: An Inquiry-Based Learning Approach to a Comparison of Regression Methods

    ERIC Educational Resources Information Center

    Helmreich, James E.; Krog, K. Peter

    2018-01-01

    We present a short, inquiry-based learning course on concepts and methods underlying ordinary least squares (OLS), least absolute deviation (LAD), and quantile regression (QR). Students investigate squared, absolute, and weighted absolute distance functions (metrics) as location measures. Using differential calculus and properties of convex…

  16. Parameter estimation using weighted total least squares in the two-compartment exchange model.

    PubMed

    Garpebring, Anders; Löfstedt, Tommy

    2018-01-01

    The linear least squares (LLS) estimator provides a fast approach to parameter estimation in the linearized two-compartment exchange model. However, the LLS method may introduce a bias through correlated noise in the system matrix of the model. The purpose of this work is to present a new estimator for the linearized two-compartment exchange model that takes this noise into account. To account for the noise in the system matrix, we developed an estimator based on the weighted total least squares (WTLS) method. Using simulations, the proposed WTLS estimator was compared, in terms of accuracy and precision, to an LLS estimator and a nonlinear least squares (NLLS) estimator. The WTLS method improved the accuracy compared to the LLS method to levels comparable to the NLLS method. This improvement was at the expense of increased computational time; however, the WTLS was still faster than the NLLS method. At high signal-to-noise ratio all methods provided similar precisions while inconclusive results were observed at low signal-to-noise ratio. The proposed method provides improvements in accuracy compared to the LLS method, however, at an increased computational cost. Magn Reson Med 79:561-567, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Discontinuous Galerkin finite element methods for radiative transfer in spherical symmetry

    NASA Astrophysics Data System (ADS)

    Kitzmann, D.; Bolte, J.; Patzer, A. B. C.

    2016-11-01

    The discontinuous Galerkin finite element method (DG-FEM) is successfully applied to treat a broad variety of transport problems numerically. In this work, we use the full capacity of the DG-FEM to solve the radiative transfer equation in spherical symmetry. We present a discontinuous Galerkin method to directly solve the spherically symmetric radiative transfer equation as a two-dimensional problem. The transport equation in spherical atmospheres is more complicated than in the plane-parallel case owing to the appearance of an additional derivative with respect to the polar angle. The DG-FEM formalism allows for the exact integration of arbitrarily complex scattering phase functions, independent of the angular mesh resolution. We show that the discontinuous Galerkin method is able to describe accurately the radiative transfer in extended atmospheres and to capture discontinuities or complex scattering behaviour which might be present in the solution of certain radiative transfer tasks and can, therefore, cause severe numerical problems for other radiative transfer solution methods.

  18. On Some Separated Algorithms for Separable Nonlinear Least Squares Problems.

    PubMed

    Gan, Min; Chen, C L Philip; Chen, Guang-Yong; Chen, Long

    2017-10-03

    For a class of nonlinear least squares problems, it is usually very beneficial to separate the variables into a linear and a nonlinear part and take full advantage of reliable linear least squares techniques. Consequently, the original problem is turned into a reduced problem which involves only nonlinear parameters. We consider in this paper four separated algorithms for such problems. The first one is the variable projection (VP) algorithm with full Jacobian matrix of Golub and Pereyra. The second and third ones are VP algorithms with simplified Jacobian matrices proposed by Kaufman and Ruano et al. respectively. The fourth one only uses the gradient of the reduced problem. Monte Carlo experiments are conducted to compare the performance of these four algorithms. From the results of the experiments, we find that: 1) the simplified Jacobian proposed by Ruano et al. is not a good choice for the VP algorithm; moreover, it may render the algorithm hard to converge; 2) the fourth algorithm perform moderately among these four algorithms; 3) the VP algorithm with the full Jacobian matrix perform more stable than that of the VP algorithm with Kuafman's simplified one; and 4) the combination of VP algorithm and Levenberg-Marquardt method is more effective than the combination of VP algorithm and Gauss-Newton method.

  19. Kernel Recursive Least-Squares Temporal Difference Algorithms with Sparsification and Regularization

    PubMed Central

    Zhu, Qingxin; Niu, Xinzheng

    2016-01-01

    By combining with sparse kernel methods, least-squares temporal difference (LSTD) algorithms can construct the feature dictionary automatically and obtain a better generalization ability. However, the previous kernel-based LSTD algorithms do not consider regularization and their sparsification processes are batch or offline, which hinder their widespread applications in online learning problems. In this paper, we combine the following five techniques and propose two novel kernel recursive LSTD algorithms: (i) online sparsification, which can cope with unknown state regions and be used for online learning, (ii) L 2 and L 1 regularization, which can avoid overfitting and eliminate the influence of noise, (iii) recursive least squares, which can eliminate matrix-inversion operations and reduce computational complexity, (iv) a sliding-window approach, which can avoid caching all history samples and reduce the computational cost, and (v) the fixed-point subiteration and online pruning, which can make L 1 regularization easy to implement. Finally, simulation results on two 50-state chain problems demonstrate the effectiveness of our algorithms. PMID:27436996

  20. Time-domain least-squares migration using the Gaussian beam summation method

    NASA Astrophysics Data System (ADS)

    Yang, Jidong; Zhu, Hejun; McMechan, George; Yue, Yubo

    2018-04-01

    With a finite recording aperture, a limited source spectrum and unbalanced illumination, traditional imaging methods are insufficient to generate satisfactory depth profiles with high resolution and high amplitude fidelity. This is because traditional migration uses the adjoint operator of the forward modeling rather than the inverse operator. We propose a least-squares migration approach based on the time-domain Gaussian beam summation, which helps to balance subsurface illumination and improve image resolution. Based on the Born approximation for the isotropic acoustic wave equation, we derive a linear time-domain Gaussian beam modeling operator, which significantly reduces computational costs in comparison with the spectral method. Then, we formulate the corresponding adjoint Gaussian beam migration, as the gradient of an L2-norm waveform misfit function. An L1-norm regularization is introduced to the inversion to enhance the robustness of least-squares migration, and an approximated diagonal Hessian is used as a preconditioner to speed convergence. Synthetic and field data examples demonstrate that the proposed approach improves imaging resolution and amplitude fidelity in comparison with traditional Gaussian beam migration.

  1. Time-domain least-squares migration using the Gaussian beam summation method

    NASA Astrophysics Data System (ADS)

    Yang, Jidong; Zhu, Hejun; McMechan, George; Yue, Yubo

    2018-07-01

    With a finite recording aperture, a limited source spectrum and unbalanced illumination, traditional imaging methods are insufficient to generate satisfactory depth profiles with high resolution and high amplitude fidelity. This is because traditional migration uses the adjoint operator of the forward modelling rather than the inverse operator. We propose a least-squares migration approach based on the time-domain Gaussian beam summation, which helps to balance subsurface illumination and improve image resolution. Based on the Born approximation for the isotropic acoustic wave equation, we derive a linear time-domain Gaussian beam modelling operator, which significantly reduces computational costs in comparison with the spectral method. Then, we formulate the corresponding adjoint Gaussian beam migration, as the gradient of an L2-norm waveform misfit function. An L1-norm regularization is introduced to the inversion to enhance the robustness of least-squares migration, and an approximated diagonal Hessian is used as a pre-conditioner to speed convergence. Synthetic and field data examples demonstrate that the proposed approach improves imaging resolution and amplitude fidelity in comparison with traditional Gaussian beam migration.

  2. Comparison of Response Surface Construction Methods for Derivative Estimation Using Moving Least Squares, Kriging and Radial Basis Functions

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, Thiagarajan

    2005-01-01

    Response construction methods using Moving Least Squares (MLS), Kriging and Radial Basis Functions (RBF) are compared with the Global Least Squares (GLS) method in three numerical examples for derivative generation capability. Also, a new Interpolating Moving Least Squares (IMLS) method adopted from the meshless method is presented. It is found that the response surface construction methods using the Kriging and RBF interpolation yields more accurate results compared with MLS and GLS methods. Several computational aspects of the response surface construction methods also discussed.

  3. Load forecasting via suboptimal seasonal autoregressive models and iteratively reweighted least squares estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mbamalu, G.A.N.; El-Hawary, M.E.

    The authors propose suboptimal least squares or IRWLS procedures for estimating the parameters of a seasonal multiplicative AR model encountered during power system load forecasting. The proposed method involves using an interactive computer environment to estimate the parameters of a seasonal multiplicative AR process. The method comprises five major computational steps. The first determines the order of the seasonal multiplicative AR process, and the second uses the least squares or the IRWLS to estimate the optimal nonseasonal AR model parameters. In the third step one obtains the intermediate series by back forecast, which is followed by using the least squaresmore » or the IRWLS to estimate the optimal season AR parameters. The final step uses the estimated parameters to forecast future load. The method is applied to predict the Nova Scotia Power Corporation's 168 lead time hourly load. The results obtained are documented and compared with results based on the Box and Jenkins method.« less

  4. Assessing Compliance-Effect Bias in the Two Stage Least Squares Estimator

    ERIC Educational Resources Information Center

    Reardon, Sean; Unlu, Fatih; Zhu, Pei; Bloom, Howard

    2011-01-01

    The proposed paper studies the bias in the two-stage least squares, or 2SLS, estimator that is caused by the compliance-effect covariance (hereafter, the compliance-effect bias). It starts by deriving the formula for the bias in an infinite sample (i.e., in the absence of finite sample bias) under different circumstances. Specifically, it…

  5. Sensitivity test of derivative matrix isopotential synchronous fluorimetry and least squares fitting methods.

    PubMed

    Makkai, Géza; Buzády, Andrea; Erostyák, János

    2010-01-01

    Determination of concentrations of spectrally overlapping compounds has special difficulties. Several methods are available to calculate the constituents' concentrations in moderately complex mixtures. A method which can provide information about spectrally hidden components in mixtures is very useful. Two methods powerful in resolving spectral components are compared in this paper. The first method tested is the Derivative Matrix Isopotential Synchronous Fluorimetry (DMISF). It is based on derivative analysis of MISF spectra, which are constructed using isopotential trajectories in the Excitation-Emission Matrix (EEM) of background solution. For DMISF method, a mathematical routine fitting the 3D data of EEMs was developed. The other method tested uses classical Least Squares Fitting (LSF) algorithm, wherein Rayleigh- and Raman-scattering bands may lead to complications. Both methods give excellent sensitivity and have advantages against each other. Detection limits of DMISF and LSF have been determined at very different concentration and noise levels.

  6. Evaluation of fatty proportion in fatty liver using least squares method with constraints.

    PubMed

    Li, Xingsong; Deng, Yinhui; Yu, Jinhua; Wang, Yuanyuan; Shamdasani, Vijay

    2014-01-01

    Backscatter and attenuation parameters are not easily measured in clinical applications due to tissue inhomogeneity in the region of interest (ROI). A least squares method(LSM) that fits the echo signal power spectra from a ROI to a 3-parameter tissue model was used to get attenuation coefficient imaging in fatty liver. Since fat's attenuation value is higher than normal liver parenchyma, a reasonable threshold was chosen to evaluate the fatty proportion in fatty liver. Experimental results using clinical data of fatty liver illustrate that the least squares method can get accurate attenuation estimates. It is proved that the attenuation values have a positive correlation with the fatty proportion, which can be used to evaluate the syndrome of fatty liver.

  7. [The research on separating and extracting overlapping spectral feature lines in LIBS using damped least squares method].

    PubMed

    Wang, Yin; Zhao, Nan-jing; Liu, Wen-qing; Yu, Yang; Fang, Li; Meng, De-shuo; Hu, Li; Zhang, Da-hai; Ma, Min-jun; Xiao, Xue; Wang, Yu; Liu, Jian-guo

    2015-02-01

    In recent years, the technology of laser induced breakdown spectroscopy has been developed rapidly. As one kind of new material composition detection technology, laser induced breakdown spectroscopy can simultaneously detect multi elements fast and simply without any complex sample preparation and realize field, in-situ material composition detection of the sample to be tested. This kind of technology is very promising in many fields. It is very important to separate, fit and extract spectral feature lines in laser induced breakdown spectroscopy, which is the cornerstone of spectral feature recognition and subsequent elements concentrations inversion research. In order to realize effective separation, fitting and extraction of spectral feature lines in laser induced breakdown spectroscopy, the original parameters for spectral lines fitting before iteration were analyzed and determined. The spectral feature line of' chromium (Cr I : 427.480 nm) in fly ash gathered from a coal-fired power station, which was overlapped with another line(FeI: 427.176 nm), was separated from the other one and extracted by using damped least squares method. Based on Gauss-Newton iteration, damped least squares method adds damping factor to step and adjust step length dynamically according to the feedback information after each iteration, in order to prevent the iteration from diverging and make sure that the iteration could converge fast. Damped least squares method helps to obtain better results of separating, fitting and extracting spectral feature lines and give more accurate intensity values of these spectral feature lines: The spectral feature lines of chromium in samples which contain different concentrations of chromium were separated and extracted. And then, the intensity values of corresponding spectral lines were given by using damped least squares method and least squares method separately. The calibration curves were plotted, which showed the relationship between spectral

  8. Estimating errors in least-squares fitting

    NASA Technical Reports Server (NTRS)

    Richter, P. H.

    1995-01-01

    While least-squares fitting procedures are commonly used in data analysis and are extensively discussed in the literature devoted to this subject, the proper assessment of errors resulting from such fits has received relatively little attention. The present work considers statistical errors in the fitted parameters, as well as in the values of the fitted function itself, resulting from random errors in the data. Expressions are derived for the standard error of the fit, as a function of the independent variable, for the general nonlinear and linear fitting problems. Additionally, closed-form expressions are derived for some examples commonly encountered in the scientific and engineering fields, namely ordinary polynomial and Gaussian fitting functions. These results have direct application to the assessment of the antenna gain and system temperature characteristics, in addition to a broad range of problems in data analysis. The effects of the nature of the data and the choice of fitting function on the ability to accurately model the system under study are discussed, and some general rules are deduced to assist workers intent on maximizing the amount of information obtained form a given set of measurements.

  9. Domain-Invariant Partial-Least-Squares Regression.

    PubMed

    Nikzad-Langerodi, Ramin; Zellinger, Werner; Lughofer, Edwin; Saminger-Platz, Susanne

    2018-05-11

    Multivariate calibration models often fail to extrapolate beyond the calibration samples because of changes associated with the instrumental response, environmental condition, or sample matrix. Most of the current methods used to adapt a source calibration model to a target domain exclusively apply to calibration transfer between similar analytical devices, while generic methods for calibration-model adaptation are largely missing. To fill this gap, we here introduce domain-invariant partial-least-squares (di-PLS) regression, which extends ordinary PLS by a domain regularizer in order to align the source and target distributions in the latent-variable space. We show that a domain-invariant weight vector can be derived in closed form, which allows the integration of (partially) labeled data from the source and target domains as well as entirely unlabeled data from the latter. We test our approach on a simulated data set where the aim is to desensitize a source calibration model to an unknown interfering agent in the target domain (i.e., unsupervised model adaptation). In addition, we demonstrate unsupervised, semisupervised, and supervised model adaptation by di-PLS on two real-world near-infrared (NIR) spectroscopic data sets.

  10. Mass-conservative reconstruction of Galerkin velocity fields for transport simulations

    NASA Astrophysics Data System (ADS)

    Scudeler, C.; Putti, M.; Paniconi, C.

    2016-08-01

    Accurate calculation of mass-conservative velocity fields from numerical solutions of Richards' equation is central to reliable surface-subsurface flow and transport modeling, for example in long-term tracer simulations to determine catchment residence time distributions. In this study we assess the performance of a local Larson-Niklasson (LN) post-processing procedure for reconstructing mass-conservative velocities from a linear (P1) Galerkin finite element solution of Richards' equation. This approach, originally proposed for a-posteriori error estimation, modifies the standard finite element velocities by imposing local conservation on element patches. The resulting reconstructed flow field is characterized by continuous fluxes on element edges that can be efficiently used to drive a second order finite volume advective transport model. Through a series of tests of increasing complexity that compare results from the LN scheme to those using velocity fields derived directly from the P1 Galerkin solution, we show that a locally mass-conservative velocity field is necessary to obtain accurate transport results. We also show that the accuracy of the LN reconstruction procedure is comparable to that of the inherently conservative mixed finite element approach, taken as a reference solution, but that the LN scheme has much lower computational costs. The numerical tests examine steady and unsteady, saturated and variably saturated, and homogeneous and heterogeneous cases along with initial and boundary conditions that include dry soil infiltration, alternating solute and water injection, and seepage face outflow. Typical problems that arise with velocities derived from P1 Galerkin solutions include outgoing solute flux from no-flow boundaries, solute entrapment in zones of low hydraulic conductivity, and occurrences of anomalous sources and sinks. In addition to inducing significant mass balance errors, such manifestations often lead to oscillations in concentration

  11. The least-squares mixing models to generate fraction images derived from remote sensing multispectral data

    NASA Technical Reports Server (NTRS)

    Shimabukuro, Yosio Edemir; Smith, James A.

    1991-01-01

    Constrained-least-squares and weighted-least-squares mixing models for generating fraction images derived from remote sensing multispectral data are presented. An experiment considering three components within the pixels-eucalyptus, soil (understory), and shade-was performed. The generated fraction images for shade (shade image) derived from these two methods were compared by considering the performance and computer time. The derived shade images are related to the observed variation in forest structure, i.e., the fraction of inferred shade in the pixel is related to different eucalyptus ages.

  12. Robust analysis of trends in noisy tokamak confinement data using geodesic least squares regression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verdoolaege, G., E-mail: geert.verdoolaege@ugent.be; Laboratory for Plasma Physics, Royal Military Academy, B-1000 Brussels; Shabbir, A.

    Regression analysis is a very common activity in fusion science for unveiling trends and parametric dependencies, but it can be a difficult matter. We have recently developed the method of geodesic least squares (GLS) regression that is able to handle errors in all variables, is robust against data outliers and uncertainty in the regression model, and can be used with arbitrary distribution models and regression functions. We here report on first results of application of GLS to estimation of the multi-machine scaling law for the energy confinement time in tokamaks, demonstrating improved consistency of the GLS results compared to standardmore » least squares.« less

  13. Weak solution concept and Galerkin's matrix for the exterior of an oblate ellipsoid of revolution in the representation of the Earth's gravity potential by buried masses

    NASA Astrophysics Data System (ADS)

    Holota, Petr; Nesvadba, Otakar

    2017-04-01

    The paper is motivated by the role of boundary value problems in Earth's gravity field studies. The discussion focuses on Neumann's problem formulated for the exterior of an oblate ellipsoid of revolution as this is considered a basis for an iteration solution of the linear gravimetric boundary value problem in the determination of the disturbing potential. The approach follows the concept of the weak solution and Galerkin's approximations are applied. This means that the solution of the problem is approximated by linear combinations of basis functions with scalar coefficients. The construction of Galerkin's matrix for basis functions generated by elementary potentials (point masses) is discussed. Ellipsoidal harmonics are used as a natural tool and the elementary potentials are expressed by means of series of ellipsoidal harmonics. The problem, however, is the summation of the series that represent the entries of Galerkin's matrix. It is difficult to reduce the number of summation indices since in the ellipsoidal case there is no analogue to the addition theorem known for spherical harmonics. Therefore, the straightforward application of series of ellipsoidal harmonics is complemented by deeper relations contained in the theory of ordinary differential equations of second order and in the theory of Legendre's functions. Subsequently, also hypergeometric functions and series are used. Moreover, within some approximations the entries are split into parts. Some of the resulting series may be summed relatively easily, apart from technical tricks. For the remaining series the summation was converted to elliptic integrals. The approach made it possible to deduce a closed (though approximate) form representation of the entries in Galerkin's matrix. The result rests on concepts and methods of mathematical analysis. In the paper it is confronted with a direct numerical approach applied for the implementation of Legendre's functions. The computation of the entries is more

  14. A Galerkin discretisation-based identification for parameters in nonlinear mechanical systems

    NASA Astrophysics Data System (ADS)

    Liu, Zuolin; Xu, Jian

    2018-04-01

    In the paper, a new parameter identification method is proposed for mechanical systems. Based on the idea of Galerkin finite-element method, the displacement over time history is approximated by piecewise linear functions, and the second-order terms in model equation are eliminated by integrating by parts. In this way, the lost function of integration form is derived. Being different with the existing methods, the lost function actually is a quadratic sum of integration over the whole time history. Then for linear or nonlinear systems, the optimisation of the lost function can be applied with traditional least-squares algorithm or the iterative one, respectively. Such method could be used to effectively identify parameters in linear and arbitrary nonlinear mechanical systems. Simulation results show that even under the condition of sparse data or low sampling frequency, this method could still guarantee high accuracy in identifying linear and nonlinear parameters.

  15. Retrieval of the non-depolarizing components of depolarizing Mueller matrices by using symmetry conditions and least squares minimization

    NASA Astrophysics Data System (ADS)

    Kuntman, Ertan; Canillas, Adolf; Arteaga, Oriol

    2017-11-01

    Experimental Mueller matrices contain certain amount of uncertainty in their elements and these uncertainties can create difficulties for decomposition methods based on analytic solutions. In an earlier paper [1], we proposed a decomposition method for depolarizing Mueller matrices by using certain symmetry conditions. However, because of the experimental error, that method creates over-determined systems with non-unique solutions. Here we propose to use least squares minimization approach in order to improve the accuracy of our results. In this method, we are taking into account the number of independent parameters of the corresponding symmetry and the rank constraints on the component matrices to decide on our fitting model. This approach is illustrated with experimental Mueller matrices that include material media with different Mueller symmetries.

  16. Arrhenius time-scaled least squares: a simple, robust approach to accelerated stability data analysis for bioproducts.

    PubMed

    Rauk, Adam P; Guo, Kevin; Hu, Yanling; Cahya, Suntara; Weiss, William F

    2014-08-01

    Defining a suitable product presentation with an acceptable stability profile over its intended shelf-life is one of the principal challenges in bioproduct development. Accelerated stability studies are routinely used as a tool to better understand long-term stability. Data analysis often employs an overall mass action kinetics description for the degradation and the Arrhenius relationship to capture the temperature dependence of the observed rate constant. To improve predictive accuracy and precision, the current work proposes a least-squares estimation approach with a single nonlinear covariate and uses a polynomial to describe the change in a product attribute with respect to time. The approach, which will be referred to as Arrhenius time-scaled (ATS) least squares, enables accurate, precise predictions to be achieved for degradation profiles commonly encountered during bioproduct development. A Monte Carlo study is conducted to compare the proposed approach with the common method of least-squares estimation on the logarithmic form of the Arrhenius equation and nonlinear estimation of a first-order model. The ATS least squares method accommodates a range of degradation profiles, provides a simple and intuitive approach for data presentation, and can be implemented with ease. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. A unifying theoretical and algorithmic framework for least squares methods of estimation in diffusion tensor imaging.

    PubMed

    Koay, Cheng Guan; Chang, Lin-Ching; Carew, John D; Pierpaoli, Carlo; Basser, Peter J

    2006-09-01

    A unifying theoretical and algorithmic framework for diffusion tensor estimation is presented. Theoretical connections among the least squares (LS) methods, (linear least squares (LLS), weighted linear least squares (WLLS), nonlinear least squares (NLS) and their constrained counterparts), are established through their respective objective functions, and higher order derivatives of these objective functions, i.e., Hessian matrices. These theoretical connections provide new insights in designing efficient algorithms for NLS and constrained NLS (CNLS) estimation. Here, we propose novel algorithms of full Newton-type for the NLS and CNLS estimations, which are evaluated with Monte Carlo simulations and compared with the commonly used Levenberg-Marquardt method. The proposed methods have a lower percent of relative error in estimating the trace and lower reduced chi2 value than those of the Levenberg-Marquardt method. These results also demonstrate that the accuracy of an estimate, particularly in a nonlinear estimation problem, is greatly affected by the Hessian matrix. In other words, the accuracy of a nonlinear estimation is algorithm-dependent. Further, this study shows that the noise variance in diffusion weighted signals is orientation dependent when signal-to-noise ratio (SNR) is low (

  18. Least Square Regression Method for Estimating Gas Concentration in an Electronic Nose System

    PubMed Central

    Khalaf, Walaa; Pace, Calogero; Gaudioso, Manlio

    2009-01-01

    We describe an Electronic Nose (ENose) system which is able to identify the type of analyte and to estimate its concentration. The system consists of seven sensors, five of them being gas sensors (supplied with different heater voltage values), the remainder being a temperature and a humidity sensor, respectively. To identify a new analyte sample and then to estimate its concentration, we use both some machine learning techniques and the least square regression principle. In fact, we apply two different training models; the first one is based on the Support Vector Machine (SVM) approach and is aimed at teaching the system how to discriminate among different gases, while the second one uses the least squares regression approach to predict the concentration of each type of analyte. PMID:22573980

  19. Variable forgetting factor mechanisms for diffusion recursive least squares algorithm in sensor networks

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Cai, Yunlong; Li, Chunguang; de Lamare, Rodrigo C.

    2017-12-01

    In this work, we present low-complexity variable forgetting factor (VFF) techniques for diffusion recursive least squares (DRLS) algorithms. Particularly, we propose low-complexity VFF-DRLS algorithms for distributed parameter and spectrum estimation in sensor networks. For the proposed algorithms, they can adjust the forgetting factor automatically according to the posteriori error signal. We develop detailed analyses in terms of mean and mean square performance for the proposed algorithms and derive mathematical expressions for the mean square deviation (MSD) and the excess mean square error (EMSE). The simulation results show that the proposed low-complexity VFF-DRLS algorithms achieve superior performance to the existing DRLS algorithm with fixed forgetting factor when applied to scenarios of distributed parameter and spectrum estimation. Besides, the simulation results also demonstrate a good match for our proposed analytical expressions.

  20. Improvement of depth resolution in depth-resolved wavenumber-scanning interferometry using wavenumber-domain least-squares algorithm: comparison and experiment.

    PubMed

    Bai, Yulei; Jia, Quanjie; Zhang, Yun; Huang, Qiquan; Yang, Qiyu; Ye, Shuangli; He, Zhaoshui; Zhou, Yanzhou; Xie, Shengli

    2016-05-01

    It is important to improve the depth resolution in depth-resolved wavenumber-scanning interferometry (DRWSI) owing to the limited range of wavenumber scanning. In this work, a new nonlinear iterative least-squares algorithm called the wavenumber-domain least-squares algorithm (WLSA) is proposed for evaluating the phase of DRWSI. The simulated and experimental results of the Fourier transform (FT), complex-number least-squares algorithm (CNLSA), eigenvalue-decomposition and least-squares algorithm (EDLSA), and WLSA were compared and analyzed. According to the results, the WLSA is less dependent on the initial values, and the depth resolution δz is approximately changed from δz to δz/6. Thus, the WLSA exhibits a better performance than the FT, CNLSA, and EDLSA.

  1. Simulation of Foam Divot Weight on External Tank Utilizing Least Squares and Neural Network Methods

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Coroneos, Rula M.

    2007-01-01

    Simulation of divot weight in the insulating foam, associated with the external tank of the U.S. space shuttle, has been evaluated using least squares and neural network concepts. The simulation required models based on fundamental considerations that can be used to predict under what conditions voids form, the size of the voids, and subsequent divot ejection mechanisms. The quadratic neural networks were found to be satisfactory for the simulation of foam divot weight in various tests associated with the external tank. Both linear least squares method and the nonlinear neural network predicted identical results.

  2. Application of copulas to improve covariance estimation for partial least squares.

    PubMed

    D'Angelo, Gina M; Weissfeld, Lisa A

    2013-02-20

    Dimension reduction techniques, such as partial least squares, are useful for computing summary measures and examining relationships in complex settings. Partial least squares requires an estimate of the covariance matrix as a first step in the analysis, making this estimate critical to the results. In addition, the covariance matrix also forms the basis for other techniques in multivariate analysis, such as principal component analysis and independent component analysis. This paper has been motivated by an example from an imaging study in Alzheimer's disease where there is complete separation between Alzheimer's and control subjects for one of the imaging modalities. This separation occurs in one block of variables and does not occur with the second block of variables resulting in inaccurate estimates of the covariance. We propose the use of a copula to obtain estimates of the covariance in this setting, where one set of variables comes from a mixture distribution. Simulation studies show that the proposed estimator is an improvement over the standard estimators of covariance. We illustrate the methods from the motivating example from a study in the area of Alzheimer's disease. Copyright © 2012 John Wiley & Sons, Ltd.

  3. An improved partial least-squares regression method for Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Momenpour Tehran Monfared, Ali; Anis, Hanan

    2017-10-01

    It is known that the performance of partial least-squares (PLS) regression analysis can be improved using the backward variable selection method (BVSPLS). In this paper, we further improve the BVSPLS based on a novel selection mechanism. The proposed method is based on sorting the weighted regression coefficients, and then the importance of each variable of the sorted list is evaluated using root mean square errors of prediction (RMSEP) criterion in each iteration step. Our Improved BVSPLS (IBVSPLS) method has been applied to leukemia and heparin data sets and led to an improvement in limit of detection of Raman biosensing ranged from 10% to 43% compared to PLS. Our IBVSPLS was also compared to the jack-knifing (simpler) and Genetic Algorithm (more complex) methods. Our method was consistently better than the jack-knifing method and showed either a similar or a better performance compared to the genetic algorithm.

  4. Local classification: Locally weighted-partial least squares-discriminant analysis (LW-PLS-DA).

    PubMed

    Bevilacqua, Marta; Marini, Federico

    2014-08-01

    The possibility of devising a simple, flexible and accurate non-linear classification method, by extending the locally weighted partial least squares (LW-PLS) approach to the cases where the algorithm is used in a discriminant way (partial least squares discriminant analysis, PLS-DA), is presented. In particular, to assess which category an unknown sample belongs to, the proposed algorithm operates by identifying which training objects are most similar to the one to be predicted and building a PLS-DA model using these calibration samples only. Moreover, the influence of the selected training samples on the local model can be further modulated by adopting a not uniform distance-based weighting scheme which allows the farthest calibration objects to have less impact than the closest ones. The performances of the proposed locally weighted-partial least squares-discriminant analysis (LW-PLS-DA) algorithm have been tested on three simulated data sets characterized by a varying degree of non-linearity: in all cases, a classification accuracy higher than 99% on external validation samples was achieved. Moreover, when also applied to a real data set (classification of rice varieties), characterized by a high extent of non-linearity, the proposed method provided an average correct classification rate of about 93% on the test set. By the preliminary results, showed in this paper, the performances of the proposed LW-PLS-DA approach have proved to be comparable and in some cases better than those obtained by other non-linear methods (k nearest neighbors, kernel-PLS-DA and, in the case of rice, counterpropagation neural networks). Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Least-squares luma-chroma demultiplexing algorithm for Bayer demosaicking.

    PubMed

    Leung, Brian; Jeon, Gwanggil; Dubois, Eric

    2011-07-01

    This paper addresses the problem of interpolating missing color components at the output of a Bayer color filter array (CFA), a process known as demosaicking. A luma-chroma demultiplexing algorithm is presented in detail, using a least-squares design methodology for the required bandpass filters. A systematic study of objective demosaicking performance and system complexity is carried out, and several system configurations are recommended. The method is compared with other benchmark algorithms in terms of CPSNR and S-CIELAB ∆E∗ objective quality measures and demosaicking speed. It was found to provide excellent performance and the best quality-speed tradeoff among the methods studied.

  6. Incoherent dictionary learning for reducing crosstalk noise in least-squares reverse time migration

    NASA Astrophysics Data System (ADS)

    Wu, Juan; Bai, Min

    2018-05-01

    We propose to apply a novel incoherent dictionary learning (IDL) algorithm for regularizing the least-squares inversion in seismic imaging. The IDL is proposed to overcome the drawback of traditional dictionary learning algorithm in losing partial texture information. Firstly, the noisy image is divided into overlapped image patches, and some random patches are extracted for dictionary learning. Then, we apply the IDL technology to minimize the coherency between atoms during dictionary learning. Finally, the sparse representation problem is solved by a sparse coding algorithm, and image is restored by those sparse coefficients. By reducing the correlation among atoms, it is possible to preserve most of the small-scale features in the image while removing much of the long-wavelength noise. The application of the IDL method to regularization of seismic images from least-squares reverse time migration shows successful performance.

  7. Small-kernel, constrained least-squares restoration of sampled image data

    NASA Technical Reports Server (NTRS)

    Hazra, Rajeeb; Park, Stephen K.

    1992-01-01

    Following the work of Park (1989), who extended a derivation of the Wiener filter based on the incomplete discrete/discrete model to a more comprehensive end-to-end continuous/discrete/continuous model, it is shown that a derivation of the constrained least-squares (CLS) filter based on the discrete/discrete model can also be extended to this more comprehensive continuous/discrete/continuous model. This results in an improved CLS restoration filter, which can be efficiently implemented as a small-kernel convolution in the spatial domain.

  8. Evaluation of Landsat-4 orbit determination accuracy using batch least-squares and sequential methods

    NASA Astrophysics Data System (ADS)

    Oza, D. H.; Jones, T. L.; Feiertag, R.; Samii, M. V.; Doll, C. E.; Mistretta, G. D.; Hart, R. C.

    The Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) commissioned Applied Technology Associates, Incorporated, to develop the Real-Time Orbit Determination/Enhanced (RTOD/E) system on a Disk Operating System (DOS)-based personal computer (PC) as a prototype system for sequential orbit determination of spacecraft. This paper presents the results of a study to compare the orbit determination accuracy for a Tracking and Data Relay Satellite (TDRS) System (TDRSS) user spacecraft, Landsat-4, obtained using RTOD/E, operating on a PC, with the accuracy of an established batch least-squares system, the Goddard Trajectory Determination System (GTDS), operating on a mainframe computer. The results of Landsat-4 orbit determination will provide useful experience for the Earth Observing System (EOS) series of satellites. The Landsat-4 ephemerides were estimated for the May 18-24, 1992, timeframe, during which intensive TDRSS tracking data for Landsat-4 were available. During this period, there were two separate orbit-adjust maneuvers on one of the TDRSS spacecraft (TDRS-East) and one small orbit-adjust maneuver for Landsat-4. Independent assessments were made of the consistencies (overlap comparisons for the batch case and covariances and the first measurement residuals for the sequential case) of solutions produced by the batch and sequential methods. The forward-filtered RTOD/E orbit solutions were compared with the definitive GTDS orbit solutions for Landsat-4; the solution differences were generally less than 30 meters after the filter had reached steady state.

  9. Evaluation of Landsat-4 orbit determination accuracy using batch least-squares and sequential methods

    NASA Technical Reports Server (NTRS)

    Oza, D. H.; Jones, T. L.; Feiertag, R.; Samii, M. V.; Doll, C. E.; Mistretta, G. D.; Hart, R. C.

    1993-01-01

    The Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) commissioned Applied Technology Associates, Incorporated, to develop the Real-Time Orbit Determination/Enhanced (RTOD/E) system on a Disk Operating System (DOS)-based personal computer (PC) as a prototype system for sequential orbit determination of spacecraft. This paper presents the results of a study to compare the orbit determination accuracy for a Tracking and Data Relay Satellite (TDRS) System (TDRSS) user spacecraft, Landsat-4, obtained using RTOD/E, operating on a PC, with the accuracy of an established batch least-squares system, the Goddard Trajectory Determination System (GTDS), operating on a mainframe computer. The results of Landsat-4 orbit determination will provide useful experience for the Earth Observing System (EOS) series of satellites. The Landsat-4 ephemerides were estimated for the May 18-24, 1992, timeframe, during which intensive TDRSS tracking data for Landsat-4 were available. During this period, there were two separate orbit-adjust maneuvers on one of the TDRSS spacecraft (TDRS-East) and one small orbit-adjust maneuver for Landsat-4. Independent assessments were made of the consistencies (overlap comparisons for the batch case and covariances and the first measurement residuals for the sequential case) of solutions produced by the batch and sequential methods. The forward-filtered RTOD/E orbit solutions were compared with the definitive GTDS orbit solutions for Landsat-4; the solution differences were generally less than 30 meters after the filter had reached steady state.

  10. Hypoglycemia Early Alarm Systems Based on Recursive Autoregressive Partial Least Squares Models

    PubMed Central

    Bayrak, Elif Seyma; Turksoy, Kamuran; Cinar, Ali; Quinn, Lauretta; Littlejohn, Elizabeth; Rollins, Derrick

    2013-01-01

    Background Hypoglycemia caused by intensive insulin therapy is a major challenge for artificial pancreas systems. Early detection and prevention of potential hypoglycemia are essential for the acceptance of fully automated artificial pancreas systems. Many of the proposed alarm systems are based on interpretation of recent values or trends in glucose values. In the present study, subject-specific linear models are introduced to capture glucose variations and predict future blood glucose concentrations. These models can be used in early alarm systems of potential hypoglycemia. Methods A recursive autoregressive partial least squares (RARPLS) algorithm is used to model the continuous glucose monitoring sensor data and predict future glucose concentrations for use in hypoglycemia alarm systems. The partial least squares models constructed are updated recursively at each sampling step with a moving window. An early hypoglycemia alarm algorithm using these models is proposed and evaluated. Results Glucose prediction models based on real-time filtered data has a root mean squared error of 7.79 and a sum of squares of glucose prediction error of 7.35% for six-step-ahead (30 min) glucose predictions. The early alarm systems based on RARPLS shows good performance. A sensitivity of 86% and a false alarm rate of 0.42 false positive/day are obtained for the early alarm system based on six-step-ahead predicted glucose values with an average early detection time of 25.25 min. Conclusions The RARPLS models developed provide satisfactory glucose prediction with relatively smaller error than other proposed algorithms and are good candidates to forecast and warn about potential hypoglycemia unless preventive action is taken far in advance. PMID:23439179

  11. Hypoglycemia early alarm systems based on recursive autoregressive partial least squares models.

    PubMed

    Bayrak, Elif Seyma; Turksoy, Kamuran; Cinar, Ali; Quinn, Lauretta; Littlejohn, Elizabeth; Rollins, Derrick

    2013-01-01

    Hypoglycemia caused by intensive insulin therapy is a major challenge for artificial pancreas systems. Early detection and prevention of potential hypoglycemia are essential for the acceptance of fully automated artificial pancreas systems. Many of the proposed alarm systems are based on interpretation of recent values or trends in glucose values. In the present study, subject-specific linear models are introduced to capture glucose variations and predict future blood glucose concentrations. These models can be used in early alarm systems of potential hypoglycemia. A recursive autoregressive partial least squares (RARPLS) algorithm is used to model the continuous glucose monitoring sensor data and predict future glucose concentrations for use in hypoglycemia alarm systems. The partial least squares models constructed are updated recursively at each sampling step with a moving window. An early hypoglycemia alarm algorithm using these models is proposed and evaluated. Glucose prediction models based on real-time filtered data has a root mean squared error of 7.79 and a sum of squares of glucose prediction error of 7.35% for six-step-ahead (30 min) glucose predictions. The early alarm systems based on RARPLS shows good performance. A sensitivity of 86% and a false alarm rate of 0.42 false positive/day are obtained for the early alarm system based on six-step-ahead predicted glucose values with an average early detection time of 25.25 min. The RARPLS models developed provide satisfactory glucose prediction with relatively smaller error than other proposed algorithms and are good candidates to forecast and warn about potential hypoglycemia unless preventive action is taken far in advance. © 2012 Diabetes Technology Society.

  12. MIB Galerkin method for elliptic interface problems.

    PubMed

    Xia, Kelin; Zhan, Meng; Wei, Guo-Wei

    2014-12-15

    Material interfaces are omnipresent in the real-world structures and devices. Mathematical modeling of material interfaces often leads to elliptic partial differential equations (PDEs) with discontinuous coefficients and singular sources, which are commonly called elliptic interface problems. The development of high-order numerical schemes for elliptic interface problems has become a well defined field in applied and computational mathematics and attracted much attention in the past decades. Despite of significant advances, challenges remain in the construction of high-order schemes for nonsmooth interfaces, i.e., interfaces with geometric singularities, such as tips, cusps and sharp edges. The challenge of geometric singularities is amplified when they are associated with low solution regularities, e.g., tip-geometry effects in many fields. The present work introduces a matched interface and boundary (MIB) Galerkin method for solving two-dimensional (2D) elliptic PDEs with complex interfaces, geometric singularities and low solution regularities. The Cartesian grid based triangular elements are employed to avoid the time consuming mesh generation procedure. Consequently, the interface cuts through elements. To ensure the continuity of classic basis functions across the interface, two sets of overlapping elements, called MIB elements, are defined near the interface. As a result, differentiation can be computed near the interface as if there is no interface. Interpolation functions are constructed on MIB element spaces to smoothly extend function values across the interface. A set of lowest order interface jump conditions is enforced on the interface, which in turn, determines the interpolation functions. The performance of the proposed MIB Galerkin finite element method is validated by numerical experiments with a wide range of interface geometries, geometric singularities, low regularity solutions and grid resolutions. Extensive numerical studies confirm the

  13. Weighted least-square approach for simultaneous measurement of multiple reflective surfaces

    NASA Astrophysics Data System (ADS)

    Tang, Shouhong; Bills, Richard E.; Freischlad, Klaus

    2007-09-01

    Phase shifting interferometry (PSI) is a highly accurate method for measuring the nanometer-scale relative surface height of a semi-reflective test surface. PSI is effectively used in conjunction with Fizeau interferometers for optical testing, hard disk inspection, and semiconductor wafer flatness. However, commonly-used PSI algorithms are unable to produce an accurate phase measurement if more than one reflective surface is present in the Fizeau interferometer test cavity. Examples of test parts that fall into this category include lithography mask blanks and their protective pellicles, and plane parallel optical beam splitters. The plane parallel surfaces of these parts generate multiple interferograms that are superimposed in the recording plane of the Fizeau interferometer. When using wavelength shifting in PSI the phase shifting speed of each interferogram is proportional to the optical path difference (OPD) between the two reflective surfaces. The proposed method is able to differentiate each underlying interferogram from each other in an optimal manner. In this paper, we present a method for simultaneously measuring the multiple test surfaces of all underlying interferograms from these superimposed interferograms through the use of a weighted least-square fitting technique. The theoretical analysis of weighted least-square technique and the measurement results will be described in this paper.

  14. Limited-memory BFGS based least-squares pre-stack Kirchhoff depth migration

    NASA Astrophysics Data System (ADS)

    Wu, Shaojiang; Wang, Yibo; Zheng, Yikang; Chang, Xu

    2015-08-01

    Least-squares migration (LSM) is a linearized inversion technique for subsurface reflectivity estimation. Compared to conventional migration algorithms, it can improve spatial resolution significantly with a few iterative calculations. There are three key steps in LSM, (1) calculate data residuals between observed data and demigrated data using the inverted reflectivity model; (2) migrate data residuals to form reflectivity gradient and (3) update reflectivity model using optimization methods. In order to obtain an accurate and high-resolution inversion result, the good estimation of inverse Hessian matrix plays a crucial role. However, due to the large size of Hessian matrix, the inverse matrix calculation is always a tough task. The limited-memory BFGS (L-BFGS) method can evaluate the Hessian matrix indirectly using a limited amount of computer memory which only maintains a history of the past m gradients (often m < 10). We combine the L-BFGS method with least-squares pre-stack Kirchhoff depth migration. Then, we validate the introduced approach by the 2-D Marmousi synthetic data set and a 2-D marine data set. The results show that the introduced method can effectively obtain reflectivity model and has a faster convergence rate with two comparison gradient methods. It might be significant for general complex subsurface imaging.

  15. Using Quantile and Asymmetric Least Squares Regression for Optimal Risk Adjustment.

    PubMed

    Lorenz, Normann

    2017-06-01

    In this paper, we analyze optimal risk adjustment for direct risk selection (DRS). Integrating insurers' activities for risk selection into a discrete choice model of individuals' health insurance choice shows that DRS has the structure of a contest. For the contest success function (csf) used in most of the contest literature (the Tullock-csf), optimal transfers for a risk adjustment scheme have to be determined by means of a restricted quantile regression, irrespective of whether insurers are primarily engaged in positive DRS (attracting low risks) or negative DRS (repelling high risks). This is at odds with the common practice of determining transfers by means of a least squares regression. However, this common practice can be rationalized for a new csf, but only if positive and negative DRSs are equally important; if they are not, optimal transfers have to be calculated by means of a restricted asymmetric least squares regression. Using data from German and Swiss health insurers, we find considerable differences between the three types of regressions. Optimal transfers therefore critically depend on which csf represents insurers' incentives for DRS and, if it is not the Tullock-csf, whether insurers are primarily engaged in positive or negative DRS. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Spreadsheet for designing valid least-squares calibrations: A tutorial.

    PubMed

    Bettencourt da Silva, Ricardo J N

    2016-02-01

    Instrumental methods of analysis are used to define the price of goods, the compliance of products with a regulation, or the outcome of fundamental or applied research. These methods can only play their role properly if reported information is objective and their quality is fit for the intended use. If measurement results are reported with an adequately small measurement uncertainty both of these goals are achieved. The evaluation of the measurement uncertainty can be performed by the bottom-up approach, that involves a detailed description of the measurement process, or using a pragmatic top-down approach that quantify major uncertainty components from global performance data. The bottom-up approach is not so frequently used due to the need to master the quantification of individual components responsible for random and systematic effects that affect measurement results. This work presents a tutorial that can be easily used by non-experts in the accurate evaluation of the measurement uncertainty of instrumental methods of analysis calibrated using least-squares regressions. The tutorial includes the definition of the calibration interval, the assessments of instrumental response homoscedasticity, the definition of calibrators preparation procedure required for least-squares regression model application, the assessment of instrumental response linearity and the evaluation of measurement uncertainty. The developed measurement model is only applicable in calibration ranges where signal precision is constant. A MS-Excel file is made available to allow the easy application of the tutorial. This tool can be useful for cases where top-down approaches cannot produce results with adequately low measurement uncertainty. An example of the application of this tool to the determination of nitrate in water by ion chromatography is presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Doppler-shift estimation of flat underwater channel using data-aided least-square approach

    NASA Astrophysics Data System (ADS)

    Pan, Weiqiang; Liu, Ping; Chen, Fangjiong; Ji, Fei; Feng, Jing

    2015-06-01

    In this paper we proposed a dada-aided Doppler estimation method for underwater acoustic communication. The training sequence is non-dedicate, hence it can be designed for Doppler estimation as well as channel equalization. We assume the channel has been equalized and consider only flat-fading channel. First, based on the training symbols the theoretical received sequence is composed. Next the least square principle is applied to build the objective function, which minimizes the error between the composed and the actual received signal. Then an iterative approach is applied to solve the least square problem. The proposed approach involves an outer loop and inner loop, which resolve the channel gain and Doppler coefficient, respectively. The theoretical performance bound, i.e. the Cramer-Rao Lower Bound (CRLB) of estimation is also derived. Computer simulations results show that the proposed algorithm achieves the CRLB in medium to high SNR cases.

  18. Numerical solution of the Navier-Stokes equations by discontinuous Galerkin method

    NASA Astrophysics Data System (ADS)

    Krasnov, M. M.; Kuchugov, P. A.; E Ladonkina, M.; E Lutsky, A.; Tishkin, V. F.

    2017-02-01

    Detailed unstructured grids and numerical methods of high accuracy are frequently used in the numerical simulation of gasdynamic flows in areas with complex geometry. Galerkin method with discontinuous basis functions or Discontinuous Galerkin Method (DGM) works well in dealing with such problems. This approach offers a number of advantages inherent to both finite-element and finite-difference approximations. Moreover, the present paper shows that DGM schemes can be viewed as Godunov method extension to piecewise-polynomial functions. As is known, DGM involves significant computational complexity, and this brings up the question of ensuring the most effective use of all the computational capacity available. In order to speed up the calculations, operator programming method has been applied while creating the computational module. This approach makes possible compact encoding of mathematical formulas and facilitates the porting of programs to parallel architectures, such as NVidia CUDA and Intel Xeon Phi. With the software package, based on DGM, numerical simulations of supersonic flow past solid bodies has been carried out. The numerical results are in good agreement with the experimental ones.

  19. Tensor-product preconditioners for higher-order space-time discontinuous Galerkin methods

    NASA Astrophysics Data System (ADS)

    Diosady, Laslo T.; Murman, Scott M.

    2017-02-01

    A space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equations. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high-order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.

  20. Tensor-Product Preconditioners for Higher-Order Space-Time Discontinuous Galerkin Methods

    NASA Technical Reports Server (NTRS)

    Diosady, Laslo T.; Murman, Scott M.

    2016-01-01

    space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equat ions. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.

  1. A novel approach to the experimental study on methane/steam reforming kinetics using the Orthogonal Least Squares method

    NASA Astrophysics Data System (ADS)

    Sciazko, Anna; Komatsu, Yosuke; Brus, Grzegorz; Kimijima, Shinji; Szmyd, Janusz S.

    2014-09-01

    For a mathematical model based on the result of physical measurements, it becomes possible to determine their influence on the final solution and its accuracy. However, in classical approaches, the influence of different model simplifications on the reliability of the obtained results are usually not comprehensively discussed. This paper presents a novel approach to the study of methane/steam reforming kinetics based on an advanced methodology called the Orthogonal Least Squares method. The kinetics of the reforming process published earlier are divergent among themselves. To obtain the most probable values of kinetic parameters and enable direct and objective model verification, an appropriate calculation procedure needs to be proposed. The applied Generalized Least Squares (GLS) method includes all the experimental results into the mathematical model which becomes internally contradicted, as the number of equations is greater than number of unknown variables. The GLS method is adopted to select the most probable values of results and simultaneously determine the uncertainty coupled with all the variables in the system. In this paper, the evaluation of the reaction rate after the pre-determination of the reaction rate, which was made by preliminary calculation based on the obtained experimental results over a Nickel/Yttria-stabilized Zirconia catalyst, was performed.

  2. Fast Dating Using Least-Squares Criteria and Algorithms.

    PubMed

    To, Thu-Hien; Jung, Matthieu; Lycett, Samantha; Gascuel, Olivier

    2016-01-01

    Phylogenies provide a useful way to understand the evolutionary history of genetic samples, and data sets with more than a thousand taxa are becoming increasingly common, notably with viruses (e.g., human immunodeficiency virus (HIV)). Dating ancestral events is one of the first, essential goals with such data. However, current sophisticated probabilistic approaches struggle to handle data sets of this size. Here, we present very fast dating algorithms, based on a Gaussian model closely related to the Langley-Fitch molecular-clock model. We show that this model is robust to uncorrelated violations of the molecular clock. Our algorithms apply to serial data, where the tips of the tree have been sampled through times. They estimate the substitution rate and the dates of all ancestral nodes. When the input tree is unrooted, they can provide an estimate for the root position, thus representing a new, practical alternative to the standard rooting methods (e.g., midpoint). Our algorithms exploit the tree (recursive) structure of the problem at hand, and the close relationships between least-squares and linear algebra. We distinguish between an unconstrained setting and the case where the temporal precedence constraint (i.e., an ancestral node must be older that its daughter nodes) is accounted for. With rooted trees, the former is solved using linear algebra in linear computing time (i.e., proportional to the number of taxa), while the resolution of the latter, constrained setting, is based on an active-set method that runs in nearly linear time. With unrooted trees the computing time becomes (nearly) quadratic (i.e., proportional to the square of the number of taxa). In all cases, very large input trees (>10,000 taxa) can easily be processed and transformed into time-scaled trees. We compare these algorithms to standard methods (root-to-tip, r8s version of Langley-Fitch method, and BEAST). Using simulated data, we show that their estimation accuracy is similar to that

  3. Fast Dating Using Least-Squares Criteria and Algorithms

    PubMed Central

    To, Thu-Hien; Jung, Matthieu; Lycett, Samantha; Gascuel, Olivier

    2016-01-01

    Phylogenies provide a useful way to understand the evolutionary history of genetic samples, and data sets with more than a thousand taxa are becoming increasingly common, notably with viruses (e.g., human immunodeficiency virus (HIV)). Dating ancestral events is one of the first, essential goals with such data. However, current sophisticated probabilistic approaches struggle to handle data sets of this size. Here, we present very fast dating algorithms, based on a Gaussian model closely related to the Langley–Fitch molecular-clock model. We show that this model is robust to uncorrelated violations of the molecular clock. Our algorithms apply to serial data, where the tips of the tree have been sampled through times. They estimate the substitution rate and the dates of all ancestral nodes. When the input tree is unrooted, they can provide an estimate for the root position, thus representing a new, practical alternative to the standard rooting methods (e.g., midpoint). Our algorithms exploit the tree (recursive) structure of the problem at hand, and the close relationships between least-squares and linear algebra. We distinguish between an unconstrained setting and the case where the temporal precedence constraint (i.e., an ancestral node must be older that its daughter nodes) is accounted for. With rooted trees, the former is solved using linear algebra in linear computing time (i.e., proportional to the number of taxa), while the resolution of the latter, constrained setting, is based on an active-set method that runs in nearly linear time. With unrooted trees the computing time becomes (nearly) quadratic (i.e., proportional to the square of the number of taxa). In all cases, very large input trees (>10,000 taxa) can easily be processed and transformed into time-scaled trees. We compare these algorithms to standard methods (root-to-tip, r8s version of Langley–Fitch method, and BEAST). Using simulated data, we show that their estimation accuracy is similar to

  4. An error analysis of least-squares finite element method of velocity-pressure-vorticity formulation for Stokes problem

    NASA Technical Reports Server (NTRS)

    Chang, Ching L.; Jiang, Bo-Nan

    1990-01-01

    A theoretical proof of the optimal rate of convergence for the least-squares method is developed for the Stokes problem based on the velocity-pressure-vorticity formula. The 2D Stokes problem is analyzed to define the product space and its inner product, and the a priori estimates are derived to give the finite-element approximation. The least-squares method is found to converge at the optimal rate for equal-order interpolation.

  5. Least median of squares and iteratively re-weighted least squares as robust linear regression methods for fluorimetric determination of α-lipoic acid in capsules in ideal and non-ideal cases of linearity.

    PubMed

    Korany, Mohamed A; Gazy, Azza A; Khamis, Essam F; Ragab, Marwa A A; Kamal, Miranda F

    2018-06-01

    This study outlines two robust regression approaches, namely least median of squares (LMS) and iteratively re-weighted least squares (IRLS) to investigate their application in instrument analysis of nutraceuticals (that is, fluorescence quenching of merbromin reagent upon lipoic acid addition). These robust regression methods were used to calculate calibration data from the fluorescence quenching reaction (∆F and F-ratio) under ideal or non-ideal linearity conditions. For each condition, data were treated using three regression fittings: Ordinary Least Squares (OLS), LMS and IRLS. Assessment of linearity, limits of detection (LOD) and quantitation (LOQ), accuracy and precision were carefully studied for each condition. LMS and IRLS regression line fittings showed significant improvement in correlation coefficients and all regression parameters for both methods and both conditions. In the ideal linearity condition, the intercept and slope changed insignificantly, but a dramatic change was observed for the non-ideal condition and linearity intercept. Under both linearity conditions, LOD and LOQ values after the robust regression line fitting of data were lower than those obtained before data treatment. The results obtained after statistical treatment indicated that the linearity ranges for drug determination could be expanded to lower limits of quantitation by enhancing the regression equation parameters after data treatment. Analysis results for lipoic acid in capsules, using both fluorimetric methods, treated by parametric OLS and after treatment by robust LMS and IRLS were compared for both linearity conditions. Copyright © 2018 John Wiley & Sons, Ltd.

  6. A hybrid perturbation-Galerkin method for differential equations containing a parameter

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Andersen, Carl M.

    1989-01-01

    A two-step hybrid perturbation-Galerkin method to solve a variety of differential equations which involve a parameter is presented and discussed. The method consists of: (1) the use of a perturbation method to determine the asymptotic expansion of the solution about one or more values of the parameter; and (2) the use of some of the perturbation coefficient functions as trial functions in the classical Bubnov-Galerkin method. This hybrid method has the potential of overcoming some of the drawbacks of the perturbation method and the Bubnov-Galerkin method when they are applied by themselves, while combining some of the good features of both. The proposed method is illustrated first with a simple linear two-point boundary value problem and is then applied to a nonlinear two-point boundary value problem in lubrication theory. The results obtained from the hybrid method are compared with approximate solutions obtained by purely numerical methods. Some general features of the method, as well as some special tips for its implementation, are discussed. A survey of some current research application areas is presented and its degree of applicability to broader problem areas is discussed.

  7. Kinase Identification with Supervised Laplacian Regularized Least Squares.

    PubMed

    Li, Ao; Xu, Xiaoyi; Zhang, He; Wang, Minghui

    2015-01-01

    Phosphorylation is catalyzed by protein kinases and is irreplaceable in regulating biological processes. Identification of phosphorylation sites with their corresponding kinases contributes to the understanding of molecular mechanisms. Mass spectrometry analysis of phosphor-proteomes generates a large number of phosphorylated sites. However, experimental methods are costly and time-consuming, and most phosphorylation sites determined by experimental methods lack kinase information. Therefore, computational methods are urgently needed to address the kinase identification problem. To this end, we propose a new kernel-based machine learning method called Supervised Laplacian Regularized Least Squares (SLapRLS), which adopts a new method to construct kernels based on the similarity matrix and minimizes both structure risk and overall inconsistency between labels and similarities. The results predicted using both Phospho.ELM and an additional independent test dataset indicate that SLapRLS can more effectively identify kinases compared to other existing algorithms.

  8. Kinase Identification with Supervised Laplacian Regularized Least Squares

    PubMed Central

    Zhang, He; Wang, Minghui

    2015-01-01

    Phosphorylation is catalyzed by protein kinases and is irreplaceable in regulating biological processes. Identification of phosphorylation sites with their corresponding kinases contributes to the understanding of molecular mechanisms. Mass spectrometry analysis of phosphor-proteomes generates a large number of phosphorylated sites. However, experimental methods are costly and time-consuming, and most phosphorylation sites determined by experimental methods lack kinase information. Therefore, computational methods are urgently needed to address the kinase identification problem. To this end, we propose a new kernel-based machine learning method called Supervised Laplacian Regularized Least Squares (SLapRLS), which adopts a new method to construct kernels based on the similarity matrix and minimizes both structure risk and overall inconsistency between labels and similarities. The results predicted using both Phospho.ELM and an additional independent test dataset indicate that SLapRLS can more effectively identify kinases compared to other existing algorithms. PMID:26448296

  9. Credit Risk Evaluation Using a C-Variable Least Squares Support Vector Classification Model

    NASA Astrophysics Data System (ADS)

    Yu, Lean; Wang, Shouyang; Lai, K. K.

    Credit risk evaluation is one of the most important issues in financial risk management. In this paper, a C-variable least squares support vector classification (C-VLSSVC) model is proposed for credit risk analysis. The main idea of this model is based on the prior knowledge that different classes may have different importance for modeling and more weights should be given to those classes with more importance. The C-VLSSVC model can be constructed by a simple modification of the regularization parameter in LSSVC, whereby more weights are given to the lease squares classification errors with important classes than the lease squares classification errors with unimportant classes while keeping the regularized terms in its original form. For illustration purpose, a real-world credit dataset is used to test the effectiveness of the C-VLSSVC model.

  10. On recursive least-squares filtering algorithms and implementations. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hsieh, Shih-Fu

    1990-01-01

    In many real-time signal processing applications, fast and numerically stable algorithms for solving least-squares problems are necessary and important. In particular, under non-stationary conditions, these algorithms must be able to adapt themselves to reflect the changes in the system and take appropriate adjustments to achieve optimum performances. Among existing algorithms, the QR-decomposition (QRD)-based recursive least-squares (RLS) methods have been shown to be useful and effective for adaptive signal processing. In order to increase the speed of processing and achieve high throughput rate, many algorithms are being vectorized and/or pipelined to facilitate high degrees of parallelism. A time-recursive formulation of RLS filtering employing block QRD will be considered first. Several methods, including a new non-continuous windowing scheme based on selectively rejecting contaminated data, were investigated for adaptive processing. Based on systolic triarrays, many other forms of systolic arrays are shown to be capable of implementing different algorithms. Various updating and downdating systolic algorithms and architectures for RLS filtering are examined and compared in details, which include Householder reflector, Gram-Schmidt procedure, and Givens rotation. A unified approach encompassing existing square-root-free algorithms is also proposed. For the sinusoidal spectrum estimation problem, a judicious method of separating the noise from the signal is of great interest. Various truncated QR methods are proposed for this purpose and compared to the truncated SVD method. Computer simulations provided for detailed comparisons show the effectiveness of these methods. This thesis deals with fundamental issues of numerical stability, computational efficiency, adaptivity, and VLSI implementation for the RLS filtering problems. In all, various new and modified algorithms and architectures are proposed and analyzed; the significance of any of the new method depends

  11. A new linear least squares method for T1 estimation from SPGR signals with multiple TRs

    NASA Astrophysics Data System (ADS)

    Chang, Lin-Ching; Koay, Cheng Guan; Basser, Peter J.; Pierpaoli, Carlo

    2009-02-01

    The longitudinal relaxation time, T1, can be estimated from two or more spoiled gradient recalled echo x (SPGR) images with two or more flip angles and one or more repetition times (TRs). The function relating signal intensity and the parameters are nonlinear; T1 maps can be computed from SPGR signals using nonlinear least squares regression. A widely-used linear method transforms the nonlinear model by assuming a fixed TR in SPGR images. This constraint is not desirable since multiple TRs are a clinically practical way to reduce the total acquisition time, to satisfy the required resolution, and/or to combine SPGR data acquired at different times. A new linear least squares method is proposed using the first order Taylor expansion. Monte Carlo simulations of SPGR experiments are used to evaluate the accuracy and precision of the estimated T1 from the proposed linear and the nonlinear methods. We show that the new linear least squares method provides T1 estimates comparable in both precision and accuracy to those from the nonlinear method, allowing multiple TRs and reducing computation time significantly.

  12. Accuracy of maximum likelihood and least-squares estimates in the lidar slope method with noisy data.

    PubMed

    Eberhard, Wynn L

    2017-04-01

    The maximum likelihood estimator (MLE) is derived for retrieving the extinction coefficient and zero-range intercept in the lidar slope method in the presence of random and independent Gaussian noise. Least-squares fitting, weighted by the inverse of the noise variance, is equivalent to the MLE. Monte Carlo simulations demonstrate that two traditional least-squares fitting schemes, which use different weights, are less accurate. Alternative fitting schemes that have some positive attributes are introduced and evaluated. The principal factors governing accuracy of all these schemes are elucidated. Applying these schemes to data with Poisson rather than Gaussian noise alters accuracy little, even when the signal-to-noise ratio is low. Methods to estimate optimum weighting factors in actual data are presented. Even when the weighting estimates are coarse, retrieval accuracy declines only modestly. Mathematical tools are described for predicting retrieval accuracy. Least-squares fitting with inverse variance weighting has optimum accuracy for retrieval of parameters from single-wavelength lidar measurements when noise, errors, and uncertainties are Gaussian distributed, or close to optimum when only approximately Gaussian.

  13. Resonant frequency calculations using a hybrid perturbation-Galerkin technique

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Andersen, Carl M.

    1991-01-01

    A two-step hybrid perturbation Galerkin technique is applied to the problem of determining the resonant frequencies of one or several degree of freedom nonlinear systems involving a parameter. In one step, the Lindstedt-Poincare method is used to determine perturbation solutions which are formally valid about one or more special values of the parameter (e.g., for large or small values of the parameter). In step two, a subset of the perturbation coordinate functions determined in step one is used in Galerkin type approximation. The technique is illustrated for several one degree of freedom systems, including the Duffing and van der Pol oscillators, as well as for the compound pendulum. For all of the examples considered, it is shown that the frequencies obtained by the hybrid technique using only a few terms from the perturbation solutions are significantly more accurate than the perturbation results on which they are based, and they compare very well with frequencies obtained by purely numerical methods.

  14. Estimating gene function with least squares nonnegative matrix factorization.

    PubMed

    Wang, Guoli; Ochs, Michael F

    2007-01-01

    Nonnegative matrix factorization is a machine learning algorithm that has extracted information from data in a number of fields, including imaging and spectral analysis, text mining, and microarray data analysis. One limitation with the method for linking genes through microarray data in order to estimate gene function is the high variance observed in transcription levels between different genes. Least squares nonnegative matrix factorization uses estimates of the uncertainties on the mRNA levels for each gene in each condition, to guide the algorithm to a local minimum in normalized chi2, rather than a Euclidean distance or divergence between the reconstructed data and the data itself. Herein, application of this method to microarray data is demonstrated in order to predict gene function.

  15. Flow Applications of the Least Squares Finite Element Method

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan

    1998-01-01

    The main thrust of the effort has been towards the development, analysis and implementation of the least-squares finite element method (LSFEM) for fluid dynamics and electromagnetics applications. In the past year, there were four major accomplishments: 1) special treatments in computational fluid dynamics and computational electromagnetics, such as upwinding, numerical dissipation, staggered grid, non-equal order elements, operator splitting and preconditioning, edge elements, and vector potential are unnecessary; 2) the analysis of the LSFEM for most partial differential equations can be based on the bounded inverse theorem; 3) the finite difference and finite volume algorithms solve only two Maxwell equations and ignore the divergence equations; and 4) the first numerical simulation of three-dimensional Marangoni-Benard convection was performed using the LSFEM.

  16. Penalized Multi-Way Partial Least Squares for Smooth Trajectory Decoding from Electrocorticographic (ECoG) Recording

    PubMed Central

    Eliseyev, Andrey; Aksenova, Tetiana

    2016-01-01

    In the current paper the decoding algorithms for motor-related BCI systems for continuous upper limb trajectory prediction are considered. Two methods for the smooth prediction, namely Sobolev and Polynomial Penalized Multi-Way Partial Least Squares (PLS) regressions, are proposed. The methods are compared to the Multi-Way Partial Least Squares and Kalman Filter approaches. The comparison demonstrated that the proposed methods combined the prediction accuracy of the algorithms of the PLS family and trajectory smoothness of the Kalman Filter. In addition, the prediction delay is significantly lower for the proposed algorithms than for the Kalman Filter approach. The proposed methods could be applied in a wide range of applications beyond neuroscience. PMID:27196417

  17. Assessment of Gait Characteristics in Total Knee Arthroplasty Patients Using a Hierarchical Partial Least Squares Method.

    PubMed

    Wang, Wei; Ackland, David C; McClelland, Jodie A; Webster, Kate E; Halgamuge, Saman

    2018-01-01

    Quantitative gait analysis is an important tool in objective assessment and management of total knee arthroplasty (TKA) patients. Studies evaluating gait patterns in TKA patients have tended to focus on discrete data such as spatiotemporal information, joint range of motion and peak values of kinematics and kinetics, or consider selected principal components of gait waveforms for analysis. These strategies may not have the capacity to capture small variations in gait patterns associated with each joint across an entire gait cycle, and may ultimately limit the accuracy of gait classification. The aim of this study was to develop an automatic feature extraction method to analyse patterns from high-dimensional autocorrelated gait waveforms. A general linear feature extraction framework was proposed and a hierarchical partial least squares method derived for discriminant analysis of multiple gait waveforms. The effectiveness of this strategy was verified using a dataset of joint angle and ground reaction force waveforms from 43 patients after TKA surgery and 31 healthy control subjects. Compared with principal component analysis and partial least squares methods, the hierarchical partial least squares method achieved generally better classification performance on all possible combinations of waveforms, with the highest classification accuracy . The novel hierarchical partial least squares method proposed is capable of capturing virtually all significant differences between TKA patients and the controls, and provides new insights into data visualization. The proposed framework presents a foundation for more rigorous classification of gait, and may ultimately be used to evaluate the effects of interventions such as surgery and rehabilitation.

  18. Least Median of Squares Filtering of Locally Optimal Point Matches for Compressible Flow Image Registration

    PubMed Central

    Castillo, Edward; Castillo, Richard; White, Benjamin; Rojo, Javier; Guerrero, Thomas

    2012-01-01

    Compressible flow based image registration operates under the assumption that the mass of the imaged material is conserved from one image to the next. Depending on how the mass conservation assumption is modeled, the performance of existing compressible flow methods is limited by factors such as image quality, noise, large magnitude voxel displacements, and computational requirements. The Least Median of Squares Filtered Compressible Flow (LFC) method introduced here is based on a localized, nonlinear least squares, compressible flow model that describes the displacement of a single voxel that lends itself to a simple grid search (block matching) optimization strategy. Spatially inaccurate grid search point matches, corresponding to erroneous local minimizers of the nonlinear compressible flow model, are removed by a novel filtering approach based on least median of squares fitting and the forward search outlier detection method. The spatial accuracy of the method is measured using ten thoracic CT image sets and large samples of expert determined landmarks (available at www.dir-lab.com). The LFC method produces an average error within the intra-observer error on eight of the ten cases, indicating that the method is capable of achieving a high spatial accuracy for thoracic CT registration. PMID:22797602

  19. More efficient parameter estimates for factor analysis of ordinal variables by ridge generalized least squares.

    PubMed

    Yuan, Ke-Hai; Jiang, Ge; Cheng, Ying

    2017-11-01

    Data in psychology are often collected using Likert-type scales, and it has been shown that factor analysis of Likert-type data is better performed on the polychoric correlation matrix than on the product-moment covariance matrix, especially when the distributions of the observed variables are skewed. In theory, factor analysis of the polychoric correlation matrix is best conducted using generalized least squares with an asymptotically correct weight matrix (AGLS). However, simulation studies showed that both least squares (LS) and diagonally weighted least squares (DWLS) perform better than AGLS, and thus LS or DWLS is routinely used in practice. In either LS or DWLS, the associations among the polychoric correlation coefficients are completely ignored. To mend such a gap between statistical theory and empirical work, this paper proposes new methods, called ridge GLS, for factor analysis of ordinal data. Monte Carlo results show that, for a wide range of sample sizes, ridge GLS methods yield uniformly more accurate parameter estimates than existing methods (LS, DWLS, AGLS). A real-data example indicates that estimates by ridge GLS are 9-20% more efficient than those by existing methods. Rescaled and adjusted test statistics as well as sandwich-type standard errors following the ridge GLS methods also perform reasonably well. © 2017 The British Psychological Society.

  20. Three-Dimensional Simulations of Marangoni-Benard Convection in Small Containers by the Least-Squares Finite Element Method

    NASA Technical Reports Server (NTRS)

    Yu, Sheng-Tao; Jiang, Bo-Nan; Wu, Jie; Duh, J. C.

    1996-01-01

    This paper reports a numerical study of the Marangoni-Benard (MB) convection in a planar fluid layer. The least-squares finite element method (LSFEM) is employed to solve the three-dimensional Stokes equations and the energy equation. First, the governing equations are reduced to be first-order by introducing variables such as vorticity and heat fluxes. The resultant first-order system is then cast into a div-curl-grad formulation, and its ellipticity and permissible boundary conditions are readily proved. This numerical approach provides an equal-order discretization for velocity, pressure, vorticity, temperature, and heat conduction fluxes, and therefore can provide high fidelity solutions for the complex flow physics of the MB convection. Numerical results reported include the critical Marangoni numbers (M(sub ac)) for the onset of the convection in containers with various aspect ratios, and the planforms of supercritical MB flows. The numerical solutions compared favorably with the experimental results reported by Koschmieder et al..

  1. Stochastic Galerkin methods for the steady-state Navier–Stokes equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sousedík, Bedřich, E-mail: sousedik@umbc.edu; Elman, Howard C., E-mail: elman@cs.umd.edu

    2016-07-01

    We study the steady-state Navier–Stokes equations in the context of stochastic finite element discretizations. Specifically, we assume that the viscosity is a random field given in the form of a generalized polynomial chaos expansion. For the resulting stochastic problem, we formulate the model and linearization schemes using Picard and Newton iterations in the framework of the stochastic Galerkin method, and we explore properties of the resulting stochastic solutions. We also propose a preconditioner for solving the linear systems of equations arising at each step of the stochastic (Galerkin) nonlinear iteration and demonstrate its effectiveness for solving a set of benchmarkmore » problems.« less

  2. Stochastic Galerkin methods for the steady-state Navier–Stokes equations

    DOE PAGES

    Sousedík, Bedřich; Elman, Howard C.

    2016-04-12

    We study the steady-state Navier–Stokes equations in the context of stochastic finite element discretizations. Specifically, we assume that the viscosity is a random field given in the form of a generalized polynomial chaos expansion. For the resulting stochastic problem, we formulate the model and linearization schemes using Picard and Newton iterations in the framework of the stochastic Galerkin method, and we explore properties of the resulting stochastic solutions. We also propose a preconditioner for solving the linear systems of equations arising at each step of the stochastic (Galerkin) nonlinear iteration and demonstrate its effectiveness for solving a set of benchmarkmore » problems.« less

  3. Consistent Partial Least Squares Path Modeling via Regularization

    PubMed Central

    Jung, Sunho; Park, JaeHong

    2018-01-01

    Partial least squares (PLS) path modeling is a component-based structural equation modeling that has been adopted in social and psychological research due to its data-analytic capability and flexibility. A recent methodological advance is consistent PLS (PLSc), designed to produce consistent estimates of path coefficients in structural models involving common factors. In practice, however, PLSc may frequently encounter multicollinearity in part because it takes a strategy of estimating path coefficients based on consistent correlations among independent latent variables. PLSc has yet no remedy for this multicollinearity problem, which can cause loss of statistical power and accuracy in parameter estimation. Thus, a ridge type of regularization is incorporated into PLSc, creating a new technique called regularized PLSc. A comprehensive simulation study is conducted to evaluate the performance of regularized PLSc as compared to its non-regularized counterpart in terms of power and accuracy. The results show that our regularized PLSc is recommended for use when serious multicollinearity is present. PMID:29515491

  4. Consistent Partial Least Squares Path Modeling via Regularization.

    PubMed

    Jung, Sunho; Park, JaeHong

    2018-01-01

    Partial least squares (PLS) path modeling is a component-based structural equation modeling that has been adopted in social and psychological research due to its data-analytic capability and flexibility. A recent methodological advance is consistent PLS (PLSc), designed to produce consistent estimates of path coefficients in structural models involving common factors. In practice, however, PLSc may frequently encounter multicollinearity in part because it takes a strategy of estimating path coefficients based on consistent correlations among independent latent variables. PLSc has yet no remedy for this multicollinearity problem, which can cause loss of statistical power and accuracy in parameter estimation. Thus, a ridge type of regularization is incorporated into PLSc, creating a new technique called regularized PLSc. A comprehensive simulation study is conducted to evaluate the performance of regularized PLSc as compared to its non-regularized counterpart in terms of power and accuracy. The results show that our regularized PLSc is recommended for use when serious multicollinearity is present.

  5. Bootstrapping Least Squares Estimates in Biochemical Reaction Networks

    PubMed Central

    Linder, Daniel F.

    2015-01-01

    The paper proposes new computational methods of computing confidence bounds for the least squares estimates (LSEs) of rate constants in mass-action biochemical reaction network and stochastic epidemic models. Such LSEs are obtained by fitting the set of deterministic ordinary differential equations (ODEs), corresponding to the large volume limit of a reaction network, to network’s partially observed trajectory treated as a continuous-time, pure jump Markov process. In the large volume limit the LSEs are asymptotically Gaussian, but their limiting covariance structure is complicated since it is described by a set of nonlinear ODEs which are often ill-conditioned and numerically unstable. The current paper considers two bootstrap Monte-Carlo procedures, based on the diffusion and linear noise approximations for pure jump processes, which allow one to avoid solving the limiting covariance ODEs. The results are illustrated with both in-silico and real data examples from the LINE 1 gene retrotranscription model and compared with those obtained using other methods. PMID:25898769

  6. Least squares parameter estimation methods for material decomposition with energy discriminating detectors

    PubMed Central

    Le, Huy Q.; Molloi, Sabee

    2011-01-01

    Purpose: Energy resolving detectors provide more than one spectral measurement in one image acquisition. The purpose of this study is to investigate, with simulation, the ability to decompose four materials using energy discriminating detectors and least squares minimization techniques. Methods: Three least squares parameter estimation decomposition techniques were investigated for four-material breast imaging tasks in the image domain. The first technique treats the voxel as if it consisted of fractions of all the materials. The second method assumes that a voxel primarily contains one material and divides the decomposition process into segmentation and quantification tasks. The third is similar to the second method but a calibration was used. The simulated computed tomography (CT) system consisted of an 80 kVp spectrum and a CdZnTe (CZT) detector that could resolve the x-ray spectrum into five energy bins. A postmortem breast specimen was imaged with flat panel CT to provide a model for the digital phantoms. Hydroxyapatite (HA) (50, 150, 250, 350, 450, and 550 mg∕ml) and iodine (4, 12, 20, 28, 36, and 44 mg∕ml) contrast elements were embedded into the glandular region of the phantoms. Calibration phantoms consisted of a 30∕70 glandular-to-adipose tissue ratio with embedded HA (100, 200, 300, 400, and 500 mg∕ml) and iodine (5, 15, 25, 35, and 45 mg∕ml). The x-ray transport process was simulated where the Beer–Lambert law, Poisson process, and CZT absorption efficiency were applied. Qualitative and quantitative evaluations of the decomposition techniques were performed and compared. The effect of breast size was also investigated. Results: The first technique decomposed iodine adequately but failed for other materials. The second method separated the materials but was unable to quantify the materials. With the addition of a calibration, the third technique provided good separation and quantification of hydroxyapatite, iodine, glandular, and adipose

  7. Conjunctive and Disjunctive Extensions of the Least Squares Distance Model of Cognitive Diagnosis

    ERIC Educational Resources Information Center

    Dimitrov, Dimiter M.; Atanasov, Dimitar V.

    2012-01-01

    Many models of cognitive diagnosis, including the "least squares distance model" (LSDM), work under the "conjunctive" assumption that a correct item response occurs when all latent attributes required by the item are correctly performed. This article proposes a "disjunctive" version of the LSDM under which the correct item response occurs when "at…

  8. An Alternative Two Stage Least Squares (2SLS) Estimator for Latent Variable Equations.

    ERIC Educational Resources Information Center

    Bollen, Kenneth A.

    1996-01-01

    An alternative two-stage least squares (2SLS) estimator of the parameters in LISREL type models is proposed and contrasted with existing estimators. The new 2SLS estimator allows observed and latent variables to originate from nonnormal distributions, is consistent, has a known asymptotic covariance matrix, and can be estimated with standard…

  9. A Geometric Analysis of when Fixed Weighting Schemes Will Outperform Ordinary Least Squares

    ERIC Educational Resources Information Center

    Davis-Stober, Clintin P.

    2011-01-01

    Many researchers have demonstrated that fixed, exogenously chosen weights can be useful alternatives to Ordinary Least Squares (OLS) estimation within the linear model (e.g., Dawes, Am. Psychol. 34:571-582, 1979; Einhorn & Hogarth, Org. Behav. Human Perform. 13:171-192, 1975; Wainer, Psychol. Bull. 83:213-217, 1976). Generalizing the approach of…

  10. A hybrid-perturbation-Galerkin technique which combines multiple expansions

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Andersen, Carl M.

    1989-01-01

    A two-step hybrid perturbation-Galerkin method for the solution of a variety of differential equations type problems is found to give better results when multiple perturbation expansions are employed. The method assumes that there is parameter in the problem formulation and that a perturbation method can be sued to construct one or more expansions in this perturbation coefficient functions multiplied by computed amplitudes. In step one, regular and/or singular perturbation methods are used to determine the perturbation coefficient functions. The results of step one are in the form of one or more expansions each expressed as a sum of perturbation coefficient functions multiplied by a priori known gauge functions. In step two the classical Bubnov-Galerkin method uses the perturbation coefficient functions computed in step one to determine a set of amplitudes which replace and improve upon the gauge functions. The hybrid method has the potential of overcoming some of the drawbacks of the perturbation and Galerkin methods as applied separately, while combining some of their better features. The proposed method is applied, with two perturbation expansions in each case, to a variety of model ordinary differential equations problems including: a family of linear two-boundary-value problems, a nonlinear two-point boundary-value problem, a quantum mechanical eigenvalue problem and a nonlinear free oscillation problem. The results obtained from the hybrid methods are compared with approximate solutions obtained by other methods, and the applicability of the hybrid method to broader problem areas is discussed.

  11. Random errors in interferometry with the least-squares method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Qi

    2011-01-20

    This investigation analyzes random errors in interferometric surface profilers using the least-squares method when random noises are present. Two types of random noise are considered here: intensity noise and position noise. Two formulas have been derived for estimating the standard deviations of the surface height measurements: one is for estimating the standard deviation when only intensity noise is present, and the other is for estimating the standard deviation when only position noise is present. Measurements on simulated noisy interferometric data have been performed, and standard deviations of the simulated measurements have been compared with those theoretically derived. The relationships havemore » also been discussed between random error and the wavelength of the light source and between random error and the amplitude of the interference fringe.« less

  12. A masked least-squares smoothing procedure for artifact reduction in scanning-EMG recordings.

    PubMed

    Corera, Íñigo; Eciolaza, Adrián; Rubio, Oliver; Malanda, Armando; Rodríguez-Falces, Javier; Navallas, Javier

    2018-01-11

    Scanning-EMG is an electrophysiological technique in which the electrical activity of the motor unit is recorded at multiple points along a corridor crossing the motor unit territory. Correct analysis of the scanning-EMG signal requires prior elimination of interference from nearby motor units. Although the traditional processing based on the median filtering is effective in removing such interference, it distorts the physiological waveform of the scanning-EMG signal. In this study, we describe a new scanning-EMG signal processing algorithm that preserves the physiological signal waveform while effectively removing interference from other motor units. To obtain a cleaned-up version of the scanning signal, the masked least-squares smoothing (MLSS) algorithm recalculates and replaces each sample value of the signal using a least-squares smoothing in the spatial dimension, taking into account the information of only those samples that are not contaminated with activity of other motor units. The performance of the new algorithm with simulated scanning-EMG signals is studied and compared with the performance of the median algorithm and tested with real scanning signals. Results show that the MLSS algorithm distorts the waveform of the scanning-EMG signal much less than the median algorithm (approximately 3.5 dB gain), being at the same time very effective at removing interference components. Graphical Abstract The raw scanning-EMG signal (left figure) is processed by the MLSS algorithm in order to remove the artifact interference. Firstly, artifacts are detected from the raw signal, obtaining a validity mask (central figure) that determines the samples that have been contaminated by artifacts. Secondly, a least-squares smoothing procedure in the spatial dimension is applied to the raw signal using the not contaminated samples according to the validity mask. The resulting MLSS-processed scanning-EMG signal (right figure) is clean of artifact interference.

  13. Long-time stability effects of quadrature and artificial viscosity on nodal discontinuous Galerkin methods for gas dynamics

    NASA Astrophysics Data System (ADS)

    Durant, Bradford; Hackl, Jason; Balachandar, Sivaramakrishnan

    2017-11-01

    Nodal discontinuous Galerkin schemes present an attractive approach to robust high-order solution of the equations of fluid mechanics, but remain accompanied by subtle challenges in their consistent stabilization. The effect of quadrature choices (full mass matrix vs spectral elements), over-integration to manage aliasing errors, and explicit artificial viscosity on the numerical solution of a steady homentropic vortex are assessed over a wide range of resolutions and polynomial orders using quadrilateral elements. In both stagnant and advected vortices in periodic and non-periodic domains the need arises for explicit stabilization beyond the numerical surface fluxes of discontinuous Galerkin spectral elements. Artificial viscosity via the entropy viscosity method is assessed as a stabilizing mechanism. It is shown that the regularity of the artificial viscosity field is essential to its use for long-time stabilization of small-scale features in nodal discontinuous Galerkin solutions of the Euler equations of gas dynamics. Supported by the Department of Energy Predictive Science Academic Alliance Program Contract DE-NA0002378.

  14. Online least squares one-class support vector machines-based abnormal visual event detection.

    PubMed

    Wang, Tian; Chen, Jie; Zhou, Yi; Snoussi, Hichem

    2013-12-12

    The abnormal event detection problem is an important subject in real-time video surveillance. In this paper, we propose a novel online one-class classification algorithm, online least squares one-class support vector machine (online LS-OC-SVM), combined with its sparsified version (sparse online LS-OC-SVM). LS-OC-SVM extracts a hyperplane as an optimal description of training objects in a regularized least squares sense. The online LS-OC-SVM learns a training set with a limited number of samples to provide a basic normal model, then updates the model through remaining data. In the sparse online scheme, the model complexity is controlled by the coherence criterion. The online LS-OC-SVM is adopted to handle the abnormal event detection problem. Each frame of the video is characterized by the covariance matrix descriptor encoding the moving information, then is classified into a normal or an abnormal frame. Experiments are conducted, on a two-dimensional synthetic distribution dataset and a benchmark video surveillance dataset, to demonstrate the promising results of the proposed online LS-OC-SVM method.

  15. Online Least Squares One-Class Support Vector Machines-Based Abnormal Visual Event Detection

    PubMed Central

    Wang, Tian; Chen, Jie; Zhou, Yi; Snoussi, Hichem

    2013-01-01

    The abnormal event detection problem is an important subject in real-time video surveillance. In this paper, we propose a novel online one-class classification algorithm, online least squares one-class support vector machine (online LS-OC-SVM), combined with its sparsified version (sparse online LS-OC-SVM). LS-OC-SVM extracts a hyperplane as an optimal description of training objects in a regularized least squares sense. The online LS-OC-SVM learns a training set with a limited number of samples to provide a basic normal model, then updates the model through remaining data. In the sparse online scheme, the model complexity is controlled by the coherence criterion. The online LS-OC-SVM is adopted to handle the abnormal event detection problem. Each frame of the video is characterized by the covariance matrix descriptor encoding the moving information, then is classified into a normal or an abnormal frame. Experiments are conducted, on a two-dimensional synthetic distribution dataset and a benchmark video surveillance dataset, to demonstrate the promising results of the proposed online LS-OC-SVM method. PMID:24351629

  16. From least squares to multilevel modeling: A graphical introduction to Bayesian inference

    NASA Astrophysics Data System (ADS)

    Loredo, Thomas J.

    2016-01-01

    This tutorial presentation will introduce some of the key ideas and techniques involved in applying Bayesian methods to problems in astrostatistics. The focus will be on the big picture: understanding the foundations (interpreting probability, Bayes's theorem, the law of total probability and marginalization), making connections to traditional methods (propagation of errors, least squares, chi-squared, maximum likelihood, Monte Carlo simulation), and highlighting problems where a Bayesian approach can be particularly powerful (Poisson processes, density estimation and curve fitting with measurement error). The "graphical" component of the title reflects an emphasis on pictorial representations of some of the math, but also on the use of graphical models (multilevel or hierarchical models) for analyzing complex data. Code for some examples from the talk will be available to participants, in Python and in the Stan probabilistic programming language.

  17. Interpreting the Results of Weighted Least-Squares Regression: Caveats for the Statistical Consumer.

    ERIC Educational Resources Information Center

    Willett, John B.; Singer, Judith D.

    In research, data sets often occur in which the variance of the distribution of the dependent variable at given levels of the predictors is a function of the values of the predictors. In this situation, the use of weighted least-squares (WLS) or techniques is required. Weights suitable for use in a WLS regression analysis must be estimated. A…

  18. Least-squares/parabolized Navier-Stokes procedure for optimizing hypersonic wind tunnel nozzles

    NASA Technical Reports Server (NTRS)

    Korte, John J.; Kumar, Ajay; Singh, D. J.; Grossman, B.

    1991-01-01

    A new procedure is demonstrated for optimizing hypersonic wind-tunnel-nozzle contours. The procedure couples a CFD computer code to an optimization algorithm, and is applied to both conical and contoured hypersonic nozzles for the purpose of determining an optimal set of parameters to describe the surface geometry. A design-objective function is specified based on the deviation from the desired test-section flow-field conditions. The objective function is minimized by optimizing the parameters used to describe the nozzle contour based on the solution to a nonlinear least-squares problem. The effect of the changes in the nozzle wall parameters are evaluated by computing the nozzle flow using the parabolized Navier-Stokes equations. The advantage of the new procedure is that it directly takes into account the displacement effect of the boundary layer on the wall contour. The new procedure provides a method for optimizing hypersonic nozzles of high Mach numbers which have been designed by classical procedures, but are shown to produce poor flow quality due to the large boundary layers present in the test section. The procedure is demonstrated by finding the optimum design parameters for a Mach 10 conical nozzle and a Mach 6 and a Mach 15 contoured nozzle.

  19. The effect of constraints on the analytical figures of merit achieved by extended multivariate curve resolution-alternating least-squares.

    PubMed

    Pellegrino Vidal, Rocío B; Allegrini, Franco; Olivieri, Alejandro C

    2018-03-20

    Multivariate curve resolution-alternating least-squares (MCR-ALS) is the model of choice when dealing with some non-trilinear arrays, specifically when the data are of chromatographic origin. To drive the iterative procedure to chemically interpretable solutions, the use of constraints becomes essential. In this work, both simulated and experimental data have been analyzed by MCR-ALS, applying chemically reasonable constraints, and investigating the relationship between selectivity, analytical sensitivity (γ) and root mean square error of prediction (RMSEP). As the selectivity in the instrumental modes decreases, the estimated values for γ did not fully represent the predictive model capabilities, judged from the obtained RMSEP values. Since the available sensitivity expressions have been developed by error propagation theory in unconstrained systems, there is a need of developing new expressions or analytical indicators. They should not only consider the specific profiles retrieved by MCR-ALS, but also the constraints under which the latter ones have been obtained. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A least-squares finite element method for incompressible Navier-Stokes problems

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan

    1992-01-01

    A least-squares finite element method, based on the velocity-pressure-vorticity formulation, is developed for solving steady incompressible Navier-Stokes problems. This method leads to a minimization problem rather than to a saddle-point problem by the classic mixed method and can thus accommodate equal-order interpolations. This method has no parameter to tune. The associated algebraic system is symmetric, and positive definite. Numerical results for the cavity flow at Reynolds number up to 10,000 and the backward-facing step flow at Reynolds number up to 900 are presented.

  1. QCL spectroscopy combined with the least squares method for substance analysis

    NASA Astrophysics Data System (ADS)

    Samsonov, D. A.; Tabalina, A. S.; Fufurin, I. L.

    2017-11-01

    The article briefly describes distinctive features of quantum cascade lasers (QCL). It also describes an experimental set-up for acquiring mid-infrared absorption spectra using QCL. The paper demonstrates experimental results in the form of normed spectra. We tested the application of the least squares method for spectrum analysis. We used this method for substance identification and extraction of concentration data. We compare the results with more common methods of absorption spectroscopy. Eventually, we prove the feasibility of using this simple method for quantitative and qualitative analysis of experimental data acquired with QCL.

  2. Comment on "Fringe projection profilometry with nonparallel illumination: a least-squares approach"

    NASA Astrophysics Data System (ADS)

    Wang, Zhaoyang; Bi, Hongbo

    2006-07-01

    We comment on the recent Letter by Chen and Quan [Opt. Lett.30, 2101 (2005)] in which a least-squares approach was proposed to cope with the nonparallel illumination in fringe projection profilometry. It is noted that the previous mathematical derivations of the fringe pitch and carrier phase functions on the reference plane were incorrect. In addition, we suggest that the variation of carrier phase along the vertical direction should be considered.

  3. Least-Squares PN Formulation of the Transport Equation Using Self-Adjoint-Angular-Flux Consistent Boundary Conditions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincent M. Laboure; Yaqi Wang; Mark D. DeHart

    In this paper, we study the Least-Squares (LS) PN form of the transport equation compatible with voids in the context of Continuous Finite Element Methods (CFEM).We first deriveweakly imposed boundary conditions which make the LS weak formulation equivalent to the Self-Adjoint Angular Flux (SAAF) variational formulation with a void treatment, in the particular case of constant cross-sections and a uniform mesh. We then implement this method in Rattlesnake with the Multiphysics Object Oriented Simulation Environment (MOOSE) framework using a spherical harmonics (PN) expansion to discretize in angle. We test our implementation using the Method of Manufactured Solutions (MMS) and findmore » the expected convergence behavior both in angle and space. Lastly, we investigate the impact of the global non-conservation of LS by comparing the method with SAAF on a heterogeneous test problem.« less

  4. Accurate phase extraction algorithm based on Gram–Schmidt orthonormalization and least square ellipse fitting method

    NASA Astrophysics Data System (ADS)

    Lei, Hebing; Yao, Yong; Liu, Haopeng; Tian, Yiting; Yang, Yanfu; Gu, Yinglong

    2018-06-01

    An accurate algorithm by combing Gram-Schmidt orthonormalization and least square ellipse fitting technology is proposed, which could be used for phase extraction from two or three interferograms. The DC term of background intensity is suppressed by subtraction operation on three interferograms or by high-pass filter on two interferograms. Performing Gram-Schmidt orthonormalization on pre-processing interferograms, the phase shift error is corrected and a general ellipse form is derived. Then the background intensity error and the corrected error could be compensated by least square ellipse fitting method. Finally, the phase could be extracted rapidly. The algorithm could cope with the two or three interferograms with environmental disturbance, low fringe number or small phase shifts. The accuracy and effectiveness of the proposed algorithm are verified by both of the numerical simulations and experiments.

  5. Parametric output-only identification of time-varying structures using a kernel recursive extended least squares TARMA approach

    NASA Astrophysics Data System (ADS)

    Ma, Zhi-Sai; Liu, Li; Zhou, Si-Da; Yu, Lei; Naets, Frank; Heylen, Ward; Desmet, Wim

    2018-01-01

    The problem of parametric output-only identification of time-varying structures in a recursive manner is considered. A kernelized time-dependent autoregressive moving average (TARMA) model is proposed by expanding the time-varying model parameters onto the basis set of kernel functions in a reproducing kernel Hilbert space. An exponentially weighted kernel recursive extended least squares TARMA identification scheme is proposed, and a sliding-window technique is subsequently applied to fix the computational complexity for each consecutive update, allowing the method to operate online in time-varying environments. The proposed sliding-window exponentially weighted kernel recursive extended least squares TARMA method is employed for the identification of a laboratory time-varying structure consisting of a simply supported beam and a moving mass sliding on it. The proposed method is comparatively assessed against an existing recursive pseudo-linear regression TARMA method via Monte Carlo experiments and shown to be capable of accurately tracking the time-varying dynamics. Furthermore, the comparisons demonstrate the superior achievable accuracy, lower computational complexity and enhanced online identification capability of the proposed kernel recursive extended least squares TARMA approach.

  6. Integral Equations and Scattering Solutions for a Square-Well Potential.

    ERIC Educational Resources Information Center

    Bagchi, B.; Seyler, R. G.

    1979-01-01

    Derives Green's functions and integral equations for scattering solutions subject to a variety of boundary conditions. Exact solutions are obtained for the case of a finite spherical square-well potential, and properties of these solutions are discussed. (Author/HM)

  7. Combining existing numerical models with data assimilation using weighted least-squares finite element methods.

    PubMed

    Rajaraman, Prathish K; Manteuffel, T A; Belohlavek, M; Heys, Jeffrey J

    2017-01-01

    A new approach has been developed for combining and enhancing the results from an existing computational fluid dynamics model with experimental data using the weighted least-squares finite element method (WLSFEM). Development of the approach was motivated by the existence of both limited experimental blood velocity in the left ventricle and inexact numerical models of the same flow. Limitations of the experimental data include measurement noise and having data only along a two-dimensional plane. Most numerical modeling approaches do not provide the flexibility to assimilate noisy experimental data. We previously developed an approach that could assimilate experimental data into the process of numerically solving the Navier-Stokes equations, but the approach was limited because it required the use of specific finite element methods for solving all model equations and did not support alternative numerical approximation methods. The new approach presented here allows virtually any numerical method to be used for approximately solving the Navier-Stokes equations, and then the WLSFEM is used to combine the experimental data with the numerical solution of the model equations in a final step. The approach dynamically adjusts the influence of the experimental data on the numerical solution so that more accurate data are more closely matched by the final solution and less accurate data are not closely matched. The new approach is demonstrated on different test problems and provides significantly reduced computational costs compared with many previous methods for data assimilation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Phase-unwrapping algorithm by a rounding-least-squares approach

    NASA Astrophysics Data System (ADS)

    Juarez-Salazar, Rigoberto; Robledo-Sanchez, Carlos; Guerrero-Sanchez, Fermin

    2014-02-01

    A simple and efficient phase-unwrapping algorithm based on a rounding procedure and a global least-squares minimization is proposed. Instead of processing the gradient of the wrapped phase, this algorithm operates over the gradient of the phase jumps by a robust and noniterative scheme. Thus, the residue-spreading and over-smoothing effects are reduced. The algorithm's performance is compared with four well-known phase-unwrapping methods: minimum cost network flow (MCNF), fast Fourier transform (FFT), quality-guided, and branch-cut. A computer simulation and experimental results show that the proposed algorithm reaches a high-accuracy level than the MCNF method by a low-computing time similar to the FFT phase-unwrapping method. Moreover, since the proposed algorithm is simple, fast, and user-free, it could be used in metrological interferometric and fringe-projection automatic real-time applications.

  9. Least Squares Shadowing sensitivity analysis of chaotic limit cycle oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qiqi, E-mail: qiqi@mit.edu; Hu, Rui, E-mail: hurui@mit.edu; Blonigan, Patrick, E-mail: blonigan@mit.edu

    2014-06-15

    The adjoint method, among other sensitivity analysis methods, can fail in chaotic dynamical systems. The result from these methods can be too large, often by orders of magnitude, when the result is the derivative of a long time averaged quantity. This failure is known to be caused by ill-conditioned initial value problems. This paper overcomes this failure by replacing the initial value problem with the well-conditioned “least squares shadowing (LSS) problem”. The LSS problem is then linearized in our sensitivity analysis algorithm, which computes a derivative that converges to the derivative of the infinitely long time average. We demonstrate ourmore » algorithm in several dynamical systems exhibiting both periodic and chaotic oscillations.« less

  10. Fast frequency acquisition via adaptive least squares algorithm

    NASA Technical Reports Server (NTRS)

    Kumar, R.

    1986-01-01

    A new least squares algorithm is proposed and investigated for fast frequency and phase acquisition of sinusoids in the presence of noise. This algorithm is a special case of more general, adaptive parameter-estimation techniques. The advantages of the algorithms are their conceptual simplicity, flexibility and applicability to general situations. For example, the frequency to be acquired can be time varying, and the noise can be nonGaussian, nonstationary and colored. As the proposed algorithm can be made recursive in the number of observations, it is not necessary to have a priori knowledge of the received signal-to-noise ratio or to specify the measurement time. This would be required for batch processing techniques, such as the fast Fourier transform (FFT). The proposed algorithm improves the frequency estimate on a recursive basis as more and more observations are obtained. When the algorithm is applied in real time, it has the extra advantage that the observations need not be stored. The algorithm also yields a real time confidence measure as to the accuracy of the estimator.

  11. Robust design optimization using the price of robustness, robust least squares and regularization methods

    NASA Astrophysics Data System (ADS)

    Bukhari, Hassan J.

    2017-12-01

    In this paper a framework for robust optimization of mechanical design problems and process systems that have parametric uncertainty is presented using three different approaches. Robust optimization problems are formulated so that the optimal solution is robust which means it is minimally sensitive to any perturbations in parameters. The first method uses the price of robustness approach which assumes the uncertain parameters to be symmetric and bounded. The robustness for the design can be controlled by limiting the parameters that can perturb.The second method uses the robust least squares method to determine the optimal parameters when data itself is subjected to perturbations instead of the parameters. The last method manages uncertainty by restricting the perturbation on parameters to improve sensitivity similar to Tikhonov regularization. The methods are implemented on two sets of problems; one linear and the other non-linear. This methodology will be compared with a prior method using multiple Monte Carlo simulation runs which shows that the approach being presented in this paper results in better performance.

  12. A component prediction method for flue gas of natural gas combustion based on nonlinear partial least squares method.

    PubMed

    Cao, Hui; Yan, Xingyu; Li, Yaojiang; Wang, Yanxia; Zhou, Yan; Yang, Sanchun

    2014-01-01

    Quantitative analysis for the flue gas of natural gas-fired generator is significant for energy conservation and emission reduction. The traditional partial least squares method may not deal with the nonlinear problems effectively. In the paper, a nonlinear partial least squares method with extended input based on radial basis function neural network (RBFNN) is used for components prediction of flue gas. For the proposed method, the original independent input matrix is the input of RBFNN and the outputs of hidden layer nodes of RBFNN are the extension term of the original independent input matrix. Then, the partial least squares regression is performed on the extended input matrix and the output matrix to establish the components prediction model of flue gas. A near-infrared spectral dataset of flue gas of natural gas combustion is used for estimating the effectiveness of the proposed method compared with PLS. The experiments results show that the root-mean-square errors of prediction values of the proposed method for methane, carbon monoxide, and carbon dioxide are, respectively, reduced by 4.74%, 21.76%, and 5.32% compared to those of PLS. Hence, the proposed method has higher predictive capabilities and better robustness.

  13. A Simple Formula to Calculate Shallow-Water Transmission Loss by Means of a Least-Squares Surface Fit Technique.

    DTIC Science & Technology

    1980-09-01

    HASTRUP , T REAL UNCLASSIFIED SACLAATCEN- SM-139 N SACLANTCEN Memorandum SM -139 -LEFW SACLANT ASW RESEARCH CENTRE ~ MEMORANDUM A SIMPLE FORMULA TO...CALCULATE SHALLOW-WATER TRANSMISSION LOSS BY MEANS OF A LEAST- SQUARES SURFACE FIT TECHNIQUE 7-sallby OLE F. HASTRUP and TUNCAY AKAL I SEPTEMBER 1980 NORTH...JRANSi4ISSION LOSS/ BY MEANS OF A LEAST-SQUARES SURFACE fIT TECHNIQUE, C T ~e F./ Hastrup .0TnaAa ()1 Sep 8 This memorandum has been prepared within the

  14. New recursive-least-squares algorithms for nonlinear active control of sound and vibration using neural networks.

    PubMed

    Bouchard, M

    2001-01-01

    In recent years, a few articles describing the use of neural networks for nonlinear active control of sound and vibration were published. Using a control structure with two multilayer feedforward neural networks (one as a nonlinear controller and one as a nonlinear plant model), steepest descent algorithms based on two distinct gradient approaches were introduced for the training of the controller network. The two gradient approaches were sometimes called the filtered-x approach and the adjoint approach. Some recursive-least-squares algorithms were also introduced, using the adjoint approach. In this paper, an heuristic procedure is introduced for the development of recursive-least-squares algorithms based on the filtered-x and the adjoint gradient approaches. This leads to the development of new recursive-least-squares algorithms for the training of the controller neural network in the two networks structure. These new algorithms produce a better convergence performance than previously published algorithms. Differences in the performance of algorithms using the filtered-x and the adjoint gradient approaches are discussed in the paper. The computational load of the algorithms discussed in the paper is evaluated for multichannel systems of nonlinear active control. Simulation results are presented to compare the convergence performance of the algorithms, showing the convergence gain provided by the new algorithms.

  15. Recursive least squares method of regression coefficients estimation as a special case of Kalman filter

    NASA Astrophysics Data System (ADS)

    Borodachev, S. M.

    2016-06-01

    The simple derivation of recursive least squares (RLS) method equations is given as special case of Kalman filter estimation of a constant system state under changing observation conditions. A numerical example illustrates application of RLS to multicollinearity problem.

  16. Matched Field Processing Based on Least Squares with a Small Aperture Hydrophone Array.

    PubMed

    Wang, Qi; Wang, Yingmin; Zhu, Guolei

    2016-12-30

    The receiver hydrophone array is the signal front-end and plays an important role in matched field processing, which usually covers the whole water column from the sea surface to the bottom. Such a large aperture array is very difficult to realize. To solve this problem, an approach called matched field processing based on least squares with a small aperture hydrophone array is proposed, which decomposes the received acoustic fields into depth function matrix and amplitudes of the normal modes at the beginning. Then all the mode amplitudes are estimated using the least squares in the sense of minimum norm, and the amplitudes estimated are used to recalculate the received acoustic fields of the small aperture array, which means the recalculated ones contain more environmental information. In the end, lots of numerical experiments with three small aperture arrays are processed in the classical shallow water, and the performance of matched field passive localization is evaluated. The results show that the proposed method can make the recalculated fields contain more acoustic information of the source, and the performance of matched field passive localization with small aperture array is improved, so the proposed algorithm is proved to be effective.

  17. Matched Field Processing Based on Least Squares with a Small Aperture Hydrophone Array

    PubMed Central

    Wang, Qi; Wang, Yingmin; Zhu, Guolei

    2016-01-01

    The receiver hydrophone array is the signal front-end and plays an important role in matched field processing, which usually covers the whole water column from the sea surface to the bottom. Such a large aperture array is very difficult to realize. To solve this problem, an approach called matched field processing based on least squares with a small aperture hydrophone array is proposed, which decomposes the received acoustic fields into depth function matrix and amplitudes of the normal modes at the beginning. Then all the mode amplitudes are estimated using the least squares in the sense of minimum norm, and the amplitudes estimated are used to recalculate the received acoustic fields of the small aperture array, which means the recalculated ones contain more environmental information. In the end, lots of numerical experiments with three small aperture arrays are processed in the classical shallow water, and the performance of matched field passive localization is evaluated. The results show that the proposed method can make the recalculated fields contain more acoustic information of the source, and the performance of matched field passive localization with small aperture array is improved, so the proposed algorithm is proved to be effective. PMID:28042828

  18. An augmented classical least squares method for quantitative Raman spectral analysis against component information loss.

    PubMed

    Zhou, Yan; Cao, Hui

    2013-01-01

    We propose an augmented classical least squares (ACLS) calibration method for quantitative Raman spectral analysis against component information loss. The Raman spectral signals with low analyte concentration correlations were selected and used as the substitutes for unknown quantitative component information during the CLS calibration procedure. The number of selected signals was determined by using the leave-one-out root-mean-square error of cross-validation (RMSECV) curve. An ACLS model was built based on the augmented concentration matrix and the reference spectral signal matrix. The proposed method was compared with partial least squares (PLS) and principal component regression (PCR) using one example: a data set recorded from an experiment of analyte concentration determination using Raman spectroscopy. A 2-fold cross-validation with Venetian blinds strategy was exploited to evaluate the predictive power of the proposed method. The one-way variance analysis (ANOVA) was used to access the predictive power difference between the proposed method and existing methods. Results indicated that the proposed method is effective at increasing the robust predictive power of traditional CLS model against component information loss and its predictive power is comparable to that of PLS or PCR.

  19. A Bayesian least squares support vector machines based framework for fault diagnosis and failure prognosis

    NASA Astrophysics Data System (ADS)

    Khawaja, Taimoor Saleem

    A high-belief low-overhead Prognostics and Health Management (PHM) system is desired for online real-time monitoring of complex non-linear systems operating in a complex (possibly non-Gaussian) noise environment. This thesis presents a Bayesian Least Squares Support Vector Machine (LS-SVM) based framework for fault diagnosis and failure prognosis in nonlinear non-Gaussian systems. The methodology assumes the availability of real-time process measurements, definition of a set of fault indicators and the existence of empirical knowledge (or historical data) to characterize both nominal and abnormal operating conditions. An efficient yet powerful Least Squares Support Vector Machine (LS-SVM) algorithm, set within a Bayesian Inference framework, not only allows for the development of real-time algorithms for diagnosis and prognosis but also provides a solid theoretical framework to address key concepts related to classification for diagnosis and regression modeling for prognosis. SVM machines are founded on the principle of Structural Risk Minimization (SRM) which tends to find a good trade-off between low empirical risk and small capacity. The key features in SVM are the use of non-linear kernels, the absence of local minima, the sparseness of the solution and the capacity control obtained by optimizing the margin. The Bayesian Inference framework linked with LS-SVMs allows a probabilistic interpretation of the results for diagnosis and prognosis. Additional levels of inference provide the much coveted features of adaptability and tunability of the modeling parameters. The two main modules considered in this research are fault diagnosis and failure prognosis. With the goal of designing an efficient and reliable fault diagnosis scheme, a novel Anomaly Detector is suggested based on the LS-SVM machines. The proposed scheme uses only baseline data to construct a 1-class LS-SVM machine which, when presented with online data is able to distinguish between normal behavior

  20. Stability analysis of the Peregrine solution via squared eigenfunctions

    NASA Astrophysics Data System (ADS)

    Schober, C. M.; Strawn, M.

    2017-10-01

    A preliminary numerical investigation involving ensembles of perturbed initial data for the Peregrine soliton (the lowest order rational solution of the nonlinear Schrödinger equation) indicates that it is unstable [16]. In this paper we analytically investigate the linear stability of the Peregrine soliton, appealing to the fact that the Peregrine solution can be viewed as the singular limit of a single mode spatially periodic breathers (SPB). The "squared eigenfunction" connection between the Zakharov-Shabat (Z-S) system and the linearized NLS equation is employed in the stability analysis. Specifically, we determine the eigenfunctions of the Z-S system associated with the Peregrine soliton and construct a family of solutions of the associated linearized NLS (about the Peregrine) in terms of quadratic products of components of the eigenfunctions (i.e., the squared eigenfunction). We find there exist solutions of the linearization that grow exponentially in time, thus showing the Peregrine soliton is linearly unstable.

  1. Locally Linear Embedding of Local Orthogonal Least Squares Images for Face Recognition

    NASA Astrophysics Data System (ADS)

    Hafizhelmi Kamaru Zaman, Fadhlan

    2018-03-01

    Dimensionality reduction is very important in face recognition since it ensures that high-dimensionality data can be mapped to lower dimensional space without losing salient and integral facial information. Locally Linear Embedding (LLE) has been previously used to serve this purpose, however, the process of acquiring LLE features requires high computation and resources. To overcome this limitation, we propose a locally-applied Local Orthogonal Least Squares (LOLS) model can be used as initial feature extraction before the application of LLE. By construction of least squares regression under orthogonal constraints we can preserve more discriminant information in the local subspace of facial features while reducing the overall features into a more compact form that we called LOLS images. LLE can then be applied on the LOLS images to maps its representation into a global coordinate system of much lower dimensionality. Several experiments carried out using publicly available face datasets such as AR, ORL, YaleB, and FERET under Single Sample Per Person (SSPP) constraint demonstrates that our proposed method can reduce the time required to compute LLE features while delivering better accuracy when compared to when either LLE or OLS alone is used. Comparison against several other feature extraction methods and more recent feature-learning method such as state-of-the-art Convolutional Neural Networks (CNN) also reveal the superiority of the proposed method under SSPP constraint.

  2. Least-Squares Neutron Spectral Adjustment with STAYSL PNNL

    NASA Astrophysics Data System (ADS)

    Greenwood, L. R.; Johnson, C. D.

    2016-02-01

    The STAYSL PNNL computer code, a descendant of the STAY'SL code [1], performs neutron spectral adjustment of a starting neutron spectrum, applying a least squares method to determine adjustments based on saturated activation rates, neutron cross sections from evaluated nuclear data libraries, and all associated covariances. STAYSL PNNL is provided as part of a comprehensive suite of programs [2], where additional tools in the suite are used for assembling a set of nuclear data libraries and determining all required corrections to the measured data to determine saturated activation rates. Neutron cross section and covariance data are taken from the International Reactor Dosimetry File (IRDF-2002) [3], which was sponsored by the International Atomic Energy Agency (IAEA), though work is planned to update to data from the IAEA's International Reactor Dosimetry and Fusion File (IRDFF) [4]. The nuclear data and associated covariances are extracted from IRDF-2002 using the third-party NJOY99 computer code [5]. The NJpp translation code converts the extracted data into a library data array format suitable for use as input to STAYSL PNNL. The software suite also includes three utilities to calculate corrections to measured activation rates. Neutron self-shielding corrections are calculated as a function of neutron energy with the SHIELD code and are applied to the group cross sections prior to spectral adjustment, thus making the corrections independent of the neutron spectrum. The SigPhi Calculator is a Microsoft Excel spreadsheet used for calculating saturated activation rates from raw gamma activities by applying corrections for gamma self-absorption, neutron burn-up, and the irradiation history. Gamma self-absorption and neutron burn-up corrections are calculated (iteratively in the case of the burn-up) within the SigPhi Calculator spreadsheet. The irradiation history corrections are calculated using the BCF computer code and are inserted into the SigPhi Calculator

  3. A quadratic-tensor model algorithm for nonlinear least-squares problems with linear constraints

    NASA Technical Reports Server (NTRS)

    Hanson, R. J.; Krogh, Fred T.

    1992-01-01

    A new algorithm for solving nonlinear least-squares and nonlinear equation problems is proposed which is based on approximating the nonlinear functions using the quadratic-tensor model by Schnabel and Frank. The algorithm uses a trust region defined by a box containing the current values of the unknowns. The algorithm is found to be effective for problems with linear constraints and dense Jacobian matrices.

  4. Short-term stability studies of ampicillin and cephalexin in aqueous solution and human plasma: Application of least squares method in Arrhenius equation.

    PubMed

    do Nascimento, Ticiano Gomes; de Jesus Oliveira, Eduardo; Basílio Júnior, Irinaldo Diniz; de Araújo-Júnior, João Xavier; Macêdo, Rui Oliveira

    2013-01-25

    A limited number of studies with application of the Arrhenius equation have been reported to drugs and biopharmaceuticals in biological fluids at frozen temperatures. This paper describes stability studies of ampicillin and cephalexin in aqueous solution and human plasma applying the Arrhenius law for determination of adequate temperature and time of storage of these drugs using appropriate statistical analysis. Stability studies of the beta-lactams in human plasma were conducted at temperatures of 20°C, 2°C, -20°C and also during four cycles of freeze-thawing. Chromatographic separation was achieved using a Shimpak C(18) column, acetonitrile as organic modifier and detection at 215nm. LC-UV-MS/MS was used to demonstrate the conversion of ampicillin into two diastereomeric forms of ampicilloic acid. Stability studies demonstrated degradation greater than 10% for ampicillin in human plasma at 20°C, 2°C and -20°C after 15h, 2.7days, 11days and for cephalexin at the same temperatures after 14h, 3.4days and 19days, respectively, and after the fourth cycle of freezing-thawing. The Arrhenius plot showed good prediction for the ideal temperature and time of storage for ampicillin (52days) and cephalexin (151days) at a temperature of -40°C, but statistical analysis (least squares method) must be applied to avoid incorrect extrapolations and estimated values out uncertainty limits. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Analyzing Multilevel Data: Comparing Findings from Hierarchical Linear Modeling and Ordinary Least Squares Regression

    ERIC Educational Resources Information Center

    Rocconi, Louis M.

    2013-01-01

    This study examined the differing conclusions one may come to depending upon the type of analysis chosen, hierarchical linear modeling or ordinary least squares (OLS) regression. To illustrate this point, this study examined the influences of seniors' self-reported critical thinking abilities three ways: (1) an OLS regression with the student…

  6. Cognitive assessment in mathematics with the least squares distance method.

    PubMed

    Ma, Lin; Çetin, Emre; Green, Kathy E

    2012-01-01

    This study investigated the validation of comprehensive cognitive attributes of an eighth-grade mathematics test using the least squares distance method and compared performance on attributes by gender and region. A sample of 5,000 students was randomly selected from the data of the 2005 Turkish national mathematics assessment of eighth-grade students. Twenty-five math items were assessed for presence or absence of 20 cognitive attributes (content, cognitive processes, and skill). Four attributes were found to be misspecified or nonpredictive. However, results demonstrated the validity of cognitive attributes in terms of the revised set of 17 attributes. The girls had similar performance on the attributes as the boys. The students from the two eastern regions significantly underperformed on the most attributes.

  7. Bootstrap Confidence Intervals for Ordinary Least Squares Factor Loadings and Correlations in Exploratory Factor Analysis

    ERIC Educational Resources Information Center

    Zhang, Guangjian; Preacher, Kristopher J.; Luo, Shanhong

    2010-01-01

    This article is concerned with using the bootstrap to assign confidence intervals for rotated factor loadings and factor correlations in ordinary least squares exploratory factor analysis. Coverage performances of "SE"-based intervals, percentile intervals, bias-corrected percentile intervals, bias-corrected accelerated percentile…

  8. Performance characteristics of an adaptive controller based on least-mean-square filters

    NASA Technical Reports Server (NTRS)

    Mehta, Rajiv S.; Merhav, Shmuel J.

    1986-01-01

    A closed loop, adaptive control scheme that uses a least mean square filter as the controller model is presented, along with simulation results that demonstrate the excellent robustness of this scheme. It is shown that the scheme adapts very well to unknown plants, even those that are marginally stable, responds appropriately to changes in plant parameters, and is not unduly affected by additive noise. A heuristic argument for the conditions necessary for convergence is presented. Potential applications and extensions of the scheme are also discussed.

  9. Non-parametric and least squares Langley plot methods

    NASA Astrophysics Data System (ADS)

    Kiedron, P. W.; Michalsky, J. J.

    2016-01-01

    Langley plots are used to calibrate sun radiometers primarily for the measurement of the aerosol component of the atmosphere that attenuates (scatters and absorbs) incoming direct solar radiation. In principle, the calibration of a sun radiometer is a straightforward application of the Bouguer-Lambert-Beer law V = V0e-τ ṡ m, where a plot of ln(V) voltage vs. m air mass yields a straight line with intercept ln(V0). This ln(V0) subsequently can be used to solve for τ for any measurement of V and calculation of m. This calibration works well on some high mountain sites, but the application of the Langley plot calibration technique is more complicated at other, more interesting, locales. This paper is concerned with ferreting out calibrations at difficult sites and examining and comparing a number of conventional and non-conventional methods for obtaining successful Langley plots. The 11 techniques discussed indicate that both least squares and various non-parametric techniques produce satisfactory calibrations with no significant differences among them when the time series of ln(V0)'s are smoothed and interpolated with median and mean moving window filters.

  10. Comments on real tachyon vacuum solution without square roots

    NASA Astrophysics Data System (ADS)

    Arroyo, E. Aldo

    2018-01-01

    We analyze the consistency of a recently proposed real tachyon vacuum solution without square roots in open bosonic string field theory. We show that the equation of motion contracted with the solution itself is satisfied. Additionally, by expanding the solution in the basis of the curly ℒ0 and the traditional L 0 eigenstates, we evaluate numerically the vacuum energy and obtain a result in agreement with Sen's conjecture.

  11. Effective implementation of wavelet Galerkin method

    NASA Astrophysics Data System (ADS)

    Finěk, Václav; Šimunková, Martina

    2012-11-01

    It was proved by W. Dahmen et al. that an adaptive wavelet scheme is asymptotically optimal for a wide class of elliptic equations. This scheme approximates the solution u by a linear combination of N wavelets and a benchmark for its performance is the best N-term approximation, which is obtained by retaining the N largest wavelet coefficients of the unknown solution. Moreover, the number of arithmetic operations needed to compute the approximate solution is proportional to N. The most time consuming part of this scheme is the approximate matrix-vector multiplication. In this contribution, we will introduce our implementation of wavelet Galerkin method for Poisson equation -Δu = f on hypercube with homogeneous Dirichlet boundary conditions. In our implementation, we identified nonzero elements of stiffness matrix corresponding to the above problem and we perform matrix-vector multiplication only with these nonzero elements.

  12. Partial Least Squares Regression Models for the Analysis of Kinase Signaling.

    PubMed

    Bourgeois, Danielle L; Kreeger, Pamela K

    2017-01-01

    Partial least squares regression (PLSR) is a data-driven modeling approach that can be used to analyze multivariate relationships between kinase networks and cellular decisions or patient outcomes. In PLSR, a linear model relating an X matrix of dependent variables and a Y matrix of independent variables is generated by extracting the factors with the strongest covariation. While the identified relationship is correlative, PLSR models can be used to generate quantitative predictions for new conditions or perturbations to the network, allowing for mechanisms to be identified. This chapter will provide a brief explanation of PLSR and provide an instructive example to demonstrate the use of PLSR to analyze kinase signaling.

  13. Detection of Tetracycline in Milk using NIR Spectroscopy and Partial Least Squares

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Xu, Chenshan; Yang, Renjie; Ji, Xinning; Liu, Xinyuan; Yang, Fan; Zeng, Ming

    2018-02-01

    The feasibility of measuring tetracycline in milk was investigated by near infrared (NIR) spectroscopic technique combined with partial least squares (PLS) method. The NIR transmittance spectra of 40 pure milk samples and 40 tetracycline adulterated milk samples with different concentrations (from 0.005 to 40 mg/L) were obtained. The pure milk and tetracycline adulterated milk samples were properly assigned to the categories with 100% accuracy in the calibration set, and the rate of correct classification of 96.3% was obtained in the prediction set. For the quantitation of tetracycline in adulterated milk, the root mean squares errors for calibration and prediction models were 0.61 mg/L and 4.22 mg/L, respectively. The PLS model had good fitting effect in calibration set, however its predictive ability was limited, especially for low tetracycline concentration samples. Totally, this approach can be considered as a promising tool for discrimination of tetracycline adulterated milk, as a supplement to high performance liquid chromatography.

  14. On the Least-Squares Fitting of Correlated Data: a Priorivs a PosterioriWeighting

    NASA Astrophysics Data System (ADS)

    Tellinghuisen, Joel

    1996-10-01

    One of the methods in common use for analyzing large data sets is a two-step procedure, in which subsets of the full data are first least-squares fitted to a preliminary set of parameters, and the latter are subsequently merged to yield the final parameters. The second step of this procedure is properly a correlated least-squares fit and requires the variance-covariance matrices from the first step to construct the weight matrix for the merge. There is, however, an ambiguity concerning the manner in which the first-step variance-covariance matrices are assessed, which leads to different statistical properties for the quantities determined in the merge. The issue is one ofa priorivsa posterioriassessment of weights, which is an application of what was originally calledinternalvsexternal consistencyby Birge [Phys. Rev.40,207-227 (1932)] and Deming ("Statistical Adjustment of Data." Dover, New York, 1964). In the present work the simplest case of a merge fit-that of an average as obtained from a global fit vs a two-step fit of partitioned data-is used to illustrate that only in the case of a priori weighting do the results have the usually expected and desired statistical properties: normal distributions for residuals,tdistributions for parameters assessed a posteriori, and χ2distributions for variances.

  15. Multisource least-squares reverse-time migration with structure-oriented filtering

    NASA Astrophysics Data System (ADS)

    Fan, Jing-Wen; Li, Zhen-Chun; Zhang, Kai; Zhang, Min; Liu, Xue-Tong

    2016-09-01

    The technology of simultaneous-source acquisition of seismic data excited by several sources can significantly improve the data collection efficiency. However, direct imaging of simultaneous-source data or blended data may introduce crosstalk noise and affect the imaging quality. To address this problem, we introduce a structure-oriented filtering operator as preconditioner into the multisource least-squares reverse-time migration (LSRTM). The structure-oriented filtering operator is a nonstationary filter along structural trends that suppresses crosstalk noise while maintaining structural information. The proposed method uses the conjugate-gradient method to minimize the mismatch between predicted and observed data, while effectively attenuating the interference noise caused by exciting several sources simultaneously. Numerical experiments using synthetic data suggest that the proposed method can suppress the crosstalk noise and produce highly accurate images.

  16. A full vectorial generalized discontinuous Galerkin beam propagation method (GDG-BPM) for nonsmooth electromagnetic fields in waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan Kai; Cai Wei; Ji Xia

    2008-07-20

    In this paper, we propose a new full vectorial generalized discontinuous Galerkin beam propagation method (GDG-BPM) to accurately handle the discontinuities in electromagnetic fields associated with wave propagations in inhomogeneous optical waveguides. The numerical method is a combination of the traditional beam propagation method (BPM) with a newly developed generalized discontinuous Galerkin (GDG) method [K. Fan, W. Cai, X. Ji, A generalized discontinuous Galerkin method (GDG) for Schroedinger equations with nonsmooth solutions, J. Comput. Phys. 227 (2008) 2387-2410]. The GDG method is based on a reformulation, using distributional variables to account for solution jumps across material interfaces, of Schroedinger equationsmore » resulting from paraxial approximations of vector Helmholtz equations. Four versions of the GDG-BPM are obtained for either the electric or magnetic field components. Modeling of wave propagations in various optical fibers using the full vectorial GDG-BPM is included. Numerical results validate the high order accuracy and the flexibility of the method for various types of interface jump conditions.« less

  17. An efficient implementation of Forward-Backward Least-Mean-Square Adaptive Line Enhancers

    NASA Technical Reports Server (NTRS)

    Yeh, H.-G.; Nguyen, T. M.

    1995-01-01

    An efficient implementation of the forward-backward least-mean-square (FBLMS) adaptive line enhancer is presented in this article. Without changing the characteristics of the FBLMS adaptive line enhancer, the proposed implementation technique reduces multiplications by 25% and additions by 12.5% in two successive time samples in comparison with those operations of direct implementation in both prediction and weight control. The proposed FBLMS architecture and algorithm can be applied to digital receivers for enhancing signal-to-noise ratio to allow fast carrier acquisition and tracking in both stationary and nonstationary environments.

  18. A spectral mimetic least-squares method for the Stokes equations with no-slip boundary condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerritsma, Marc; Bochev, Pavel

    Formulation of locally conservative least-squares finite element methods (LSFEMs) for the Stokes equations with the no-slip boundary condition has been a long standing problem. Existing LSFEMs that yield exactly divergence free velocities require non-standard boundary conditions (Bochev and Gunzburger, 2009 [3]), while methods that admit the no-slip condition satisfy the incompressibility equation only approximately (Bochev and Gunzburger, 2009 [4, Chapter 7]). Here we address this problem by proving a new non-standard stability bound for the velocity–vorticity–pressure Stokes system augmented with a no-slip boundary condition. This bound gives rise to a norm-equivalent least-squares functional in which the velocity can be approximatedmore » by div-conforming finite element spaces, thereby enabling a locally-conservative approximations of this variable. Here, we also provide a practical realization of the new LSFEM using high-order spectral mimetic finite element spaces (Kreeft et al., 2011) and report several numerical tests, which confirm its mimetic properties.« less

  19. Multivariate fault isolation of batch processes via variable selection in partial least squares discriminant analysis.

    PubMed

    Yan, Zhengbing; Kuang, Te-Hui; Yao, Yuan

    2017-09-01

    In recent years, multivariate statistical monitoring of batch processes has become a popular research topic, wherein multivariate fault isolation is an important step aiming at the identification of the faulty variables contributing most to the detected process abnormality. Although contribution plots have been commonly used in statistical fault isolation, such methods suffer from the smearing effect between correlated variables. In particular, in batch process monitoring, the high autocorrelations and cross-correlations that exist in variable trajectories make the smearing effect unavoidable. To address such a problem, a variable selection-based fault isolation method is proposed in this research, which transforms the fault isolation problem into a variable selection problem in partial least squares discriminant analysis and solves it by calculating a sparse partial least squares model. As different from the traditional methods, the proposed method emphasizes the relative importance of each process variable. Such information may help process engineers in conducting root-cause diagnosis. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  20. A spectral mimetic least-squares method for the Stokes equations with no-slip boundary condition

    DOE PAGES

    Gerritsma, Marc; Bochev, Pavel

    2016-03-22

    Formulation of locally conservative least-squares finite element methods (LSFEMs) for the Stokes equations with the no-slip boundary condition has been a long standing problem. Existing LSFEMs that yield exactly divergence free velocities require non-standard boundary conditions (Bochev and Gunzburger, 2009 [3]), while methods that admit the no-slip condition satisfy the incompressibility equation only approximately (Bochev and Gunzburger, 2009 [4, Chapter 7]). Here we address this problem by proving a new non-standard stability bound for the velocity–vorticity–pressure Stokes system augmented with a no-slip boundary condition. This bound gives rise to a norm-equivalent least-squares functional in which the velocity can be approximatedmore » by div-conforming finite element spaces, thereby enabling a locally-conservative approximations of this variable. Here, we also provide a practical realization of the new LSFEM using high-order spectral mimetic finite element spaces (Kreeft et al., 2011) and report several numerical tests, which confirm its mimetic properties.« less

  1. Planet-disc interactions with Discontinuous Galerkin Methods using GPUs

    NASA Astrophysics Data System (ADS)

    Velasco Romero, David A.; Veiga, Maria Han; Teyssier, Romain; Masset, Frédéric S.

    2018-05-01

    We present a two-dimensional Cartesian code based on high order discontinuous Galerkin methods, implemented to run in parallel over multiple GPUs. A simple planet-disc setup is used to compare the behaviour of our code against the behaviour found using the FARGO3D code with a polar mesh. We make use of the time dependence of the torque exerted by the disc on the planet as a mean to quantify the numerical viscosity of the code. We find that the numerical viscosity of the Keplerian flow can be as low as a few 10-8r2Ω, r and Ω being respectively the local orbital radius and frequency, for fifth order schemes and resolution of ˜10-2r. Although for a single disc problem a solution of low numerical viscosity can be obtained at lower computational cost with FARGO3D (which is nearly an order of magnitude faster than a fifth order method), discontinuous Galerkin methods appear promising to obtain solutions of low numerical viscosity in more complex situations where the flow cannot be captured on a polar or spherical mesh concentric with the disc.

  2. A B-spline Galerkin method for the Dirac equation

    NASA Astrophysics Data System (ADS)

    Froese Fischer, Charlotte; Zatsarinny, Oleg

    2009-06-01

    The B-spline Galerkin method is first investigated for the simple eigenvalue problem, y=-λy, that can also be written as a pair of first-order equations y=λz, z=-λy. Expanding both y(r) and z(r) in the B basis results in many spurious solutions such as those observed for the Dirac equation. However, when y(r) is expanded in the B basis and z(r) in the dB/dr basis, solutions of the well-behaved second-order differential equation are obtained. From this analysis, we propose a stable method ( B,B) basis for the Dirac equation and evaluate its accuracy by comparing the computed and exact R-matrix for a wide range of nuclear charges Z and angular quantum numbers κ. When splines of the same order are used, many spurious solutions are found whereas none are found for splines of different order. Excellent agreement is obtained for the R-matrix and energies for bound states for low values of Z. For high Z, accuracy requires the use of a grid with many points near the nucleus. We demonstrate the accuracy of the bound-state wavefunctions by comparing integrals arising in hyperfine interaction matrix elements with exact analytic expressions. We also show that the Thomas-Reiche-Kuhn sum rule is not a good measure of the quality of the solutions obtained by the B-spline Galerkin method whereas the R-matrix is very sensitive to the appearance of pseudo-states.

  3. Reconstruction method for fluorescent X-ray computed tomography by least-squares method using singular value decomposition

    NASA Astrophysics Data System (ADS)

    Yuasa, T.; Akiba, M.; Takeda, T.; Kazama, M.; Hoshino, A.; Watanabe, Y.; Hyodo, K.; Dilmanian, F. A.; Akatsuka, T.; Itai, Y.

    1997-02-01

    We describe a new attenuation correction method for fluorescent X-ray computed tomography (FXCT) applied to image nonradioactive contrast materials in vivo. The principle of the FXCT imaging is that of computed tomography of the first generation. Using monochromatized synchrotron radiation from the BLNE-5A bending-magnet beam line of Tristan Accumulation Ring in KEK, Japan, we studied phantoms with the FXCT method, and we succeeded in delineating a 4-mm-diameter channel filled with a 500 /spl mu/g I/ml iodine solution in a 20-mm-diameter acrylic cylindrical phantom. However, to detect smaller iodine concentrations, attenuation correction is needed. We present a correction method based on the equation representing the measurement process. The discretized equation system is solved by the least-squares method using the singular value decomposition. The attenuation correction method is applied to the projections by the Monte Carlo simulation and the experiment to confirm its effectiveness.

  4. Computing ordinary least-squares parameter estimates for the National Descriptive Model of Mercury in Fish

    USGS Publications Warehouse

    Donato, David I.

    2013-01-01

    A specialized technique is used to compute weighted ordinary least-squares (OLS) estimates of the parameters of the National Descriptive Model of Mercury in Fish (NDMMF) in less time using less computer memory than general methods. The characteristics of the NDMMF allow the two products X'X and X'y in the normal equations to be filled out in a second or two of computer time during a single pass through the N data observations. As a result, the matrix X does not have to be stored in computer memory and the computationally expensive matrix multiplications generally required to produce X'X and X'y do not have to be carried out. The normal equations may then be solved to determine the best-fit parameters in the OLS sense. The computational solution based on this specialized technique requires O(8p2+16p) bytes of computer memory for p parameters on a machine with 8-byte double-precision numbers. This publication includes a reference implementation of this technique and a Gaussian-elimination solver in preliminary custom software.

  5. Model-Based Least Squares Reconstruction of Coded Source Neutron Radiographs: Integrating the ORNL HFIR CG1D Source Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos-Villalobos, Hector J; Gregor, Jens; Bingham, Philip R

    2014-01-01

    At the present, neutron sources cannot be fabricated small and powerful enough in order to achieve high resolution radiography while maintaining an adequate flux. One solution is to employ computational imaging techniques such as a Magnified Coded Source Imaging (CSI) system. A coded-mask is placed between the neutron source and the object. The system resolution is increased by reducing the size of the mask holes and the flux is increased by increasing the size of the coded-mask and/or the number of holes. One limitation of such system is that the resolution of current state-of-the-art scintillator-based detectors caps around 50um. Tomore » overcome this challenge, the coded-mask and object are magnified by making the distance from the coded-mask to the object much smaller than the distance from object to detector. In previous work, we have shown via synthetic experiments that our least squares method outperforms other methods in image quality and reconstruction precision because of the modeling of the CSI system components. However, the validation experiments were limited to simplistic neutron sources. In this work, we aim to model the flux distribution of a real neutron source and incorporate such a model in our least squares computational system. We provide a full description of the methodology used to characterize the neutron source and validate the method with synthetic experiments.« less

  6. A Comparison of Mean Phase Difference and Generalized Least Squares for Analyzing Single-Case Data

    ERIC Educational Resources Information Center

    Manolov, Rumen; Solanas, Antonio

    2013-01-01

    The present study focuses on single-case data analysis specifically on two procedures for quantifying differences between baseline and treatment measurements. The first technique tested is based on generalized least square regression analysis and is compared to a proposed non-regression technique, which allows obtaining similar information. The…

  7. Simultaneous spectrophotometric determination of trace copper, nickel, and cobalt ions in water samples using solid phase extraction coupled with partial least squares approaches

    NASA Astrophysics Data System (ADS)

    Guo, Yugao; Zhao, He; Han, Yelin; Liu, Xia; Guan, Shan; Zhang, Qingyin; Bian, Xihui

    2017-02-01

    A simultaneous spectrophotometric determination method for trace heavy metal ions based on solid-phase extraction coupled with partial least squares approaches was developed. In the proposed method, trace metal ions in aqueous samples were adsorbed by cation exchange fibers and desorbed by acidic solution from the fibers. After the ion preconcentration process, the enriched solution was detected by ultraviolet and visible spectrophotometer (UV-Vis). Then, the concentration of heavy metal ions were quantified by analyzing ultraviolet and visible spectrum with the help of partial least squares (PLS) approaches. Under the optimal conditions of operation time, flow rate and detection parameters, the overlapped absorption peaks of mixed ions were obtained. The experimental data showed that the concentration, which can be calculated through chemometrics method, of each metal ion increased significantly. The heavy metal ions can be enriched more than 80-fold. The limits of detection (LOD) for the target analytes of copper ions (Cu2 +), cobalt ions (Co2 +) and nickel ions (Ni2 +) mixture was 0.10 μg L- 1, 0.15 μg L- 1 and 0.13 μg L- 1, respectively. The relative standard deviations (RSD) were less than 5%. The performance of the solid-phase extraction can enrich the ions efficiently and the combined method of spectrophotometric detection and PLS can evaluate the ions concentration accurately. The work proposed here is an interesting and promising attempt for the trace ions determination in water samples and will have much more applied field.

  8. An Extension of Least Squares Estimation of IRT Linking Coefficients for the Graded Response Model

    ERIC Educational Resources Information Center

    Kim, Seonghoon

    2010-01-01

    The three types (generalized, unweighted, and weighted) of least squares methods, proposed by Ogasawara, for estimating item response theory (IRT) linking coefficients under dichotomous models are extended to the graded response model. A simulation study was conducted to confirm the accuracy of the extended formulas, and a real data study was…

  9. Computation of nonlinear least squares estimator and maximum likelihood using principles in matrix calculus

    NASA Astrophysics Data System (ADS)

    Mahaboob, B.; Venkateswarlu, B.; Sankar, J. Ravi; Balasiddamuni, P.

    2017-11-01

    This paper uses matrix calculus techniques to obtain Nonlinear Least Squares Estimator (NLSE), Maximum Likelihood Estimator (MLE) and Linear Pseudo model for nonlinear regression model. David Pollard and Peter Radchenko [1] explained analytic techniques to compute the NLSE. However the present research paper introduces an innovative method to compute the NLSE using principles in multivariate calculus. This study is concerned with very new optimization techniques used to compute MLE and NLSE. Anh [2] derived NLSE and MLE of a heteroscedatistic regression model. Lemcoff [3] discussed a procedure to get linear pseudo model for nonlinear regression model. In this research article a new technique is developed to get the linear pseudo model for nonlinear regression model using multivariate calculus. The linear pseudo model of Edmond Malinvaud [4] has been explained in a very different way in this paper. David Pollard et.al used empirical process techniques to study the asymptotic of the LSE (Least-squares estimation) for the fitting of nonlinear regression function in 2006. In Jae Myung [13] provided a go conceptual for Maximum likelihood estimation in his work “Tutorial on maximum likelihood estimation

  10. Coded-Aperture X- or gamma -ray telescope with Least- squares image reconstruction. III. Data acquisition and analysis enhancements

    NASA Astrophysics Data System (ADS)

    Kohman, T. P.

    1995-05-01

    The design of a cosmic X- or gamma -ray telescope with least- squares image reconstruction and its simulated operation have been described (Rev. Sci. Instrum. 60, 3396 and 3410 (1989)). Use of an auxiliary open aperture ("limiter") ahead of the coded aperture limits the object field to fewer pixels than detector elements, permitting least-squares reconstruction with improved accuracy in the imaged field; it also yields a uniformly sensitive ("flat") central field. The design has been enhanced to provide for mask-antimask operation. This cancels and eliminates uncertainties in the detector background, and the simulated results have virtually the same statistical accuracy (pixel-by-pixel output-input RMSD) as with a single mask alone. The simulations have been made more realistic by incorporating instrumental blurring of sources. A second-stage least-squares procedure had been developed to determine the precise positions and total fluxes of point sources responsible for clusters of above-background pixels in the field resulting from the first-stage reconstruction. Another program converts source positions in the image plane to celestial coordinates and vice versa, the image being a gnomic projection of a region of the sky.

  11. [Formula: see text]-regularized recursive total least squares based sparse system identification for the error-in-variables.

    PubMed

    Lim, Jun-Seok; Pang, Hee-Suk

    2016-01-01

    In this paper an [Formula: see text]-regularized recursive total least squares (RTLS) algorithm is considered for the sparse system identification. Although recursive least squares (RLS) has been successfully applied in sparse system identification, the estimation performance in RLS based algorithms becomes worse, when both input and output are contaminated by noise (the error-in-variables problem). We proposed an algorithm to handle the error-in-variables problem. The proposed [Formula: see text]-RTLS algorithm is an RLS like iteration using the [Formula: see text] regularization. The proposed algorithm not only gives excellent performance but also reduces the required complexity through the effective inversion matrix handling. Simulations demonstrate the superiority of the proposed [Formula: see text]-regularized RTLS for the sparse system identification setting.

  12. AVIRIS study of Death Valley evaporite deposits using least-squares band-fitting methods

    NASA Technical Reports Server (NTRS)

    Crowley, J. K.; Clark, R. N.

    1992-01-01

    Minerals found in playa evaporite deposits reflect the chemically diverse origins of ground waters in arid regions. Recently, it was discovered that many playa minerals exhibit diagnostic visible and near-infrared (0.4-2.5 micron) absorption bands that provide a remote sensing basis for observing important compositional details of desert ground water systems. The study of such systems is relevant to understanding solute acquisition, transport, and fractionation processes that are active in the subsurface. Observations of playa evaporites may also be useful for monitoring the hydrologic response of desert basins to changing climatic conditions on regional and global scales. Ongoing work using Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data to map evaporite minerals in the Death Valley salt pan is described. The AVIRIS data point to differences in inflow water chemistry in different parts of the Death Valley playa system and have led to the discovery of at least two new North American mineral occurrences. Seven segments of AVIRIS data were acquired over Death Valley on 31 July 1990, and were calibrated to reflectance by using the spectrum of a uniform area of alluvium near the salt pan. The calibrated data were subsequently analyzed by using least-squares spectral band-fitting methods, first described by Clark and others. In the band-fitting procedure, AVIRIS spectra are fit compared over selected wavelength intervals to a series of library reference spectra. Output images showing the degree of fit, band depth, and fit times the band depth are generated for each reference spectrum. The reference spectra used in the study included laboratory data for 35 pure evaporite spectra extracted from the AVIRIS image cube. Additional details of the band-fitting technique are provided by Clark and others elsewhere in this volume.

  13. Battery state-of-charge estimation using approximate least squares

    NASA Astrophysics Data System (ADS)

    Unterrieder, C.; Zhang, C.; Lunglmayr, M.; Priewasser, R.; Marsili, S.; Huemer, M.

    2015-03-01

    In recent years, much effort has been spent to extend the runtime of battery-powered electronic applications. In order to improve the utilization of the available cell capacity, high precision estimation approaches for battery-specific parameters are needed. In this work, an approximate least squares estimation scheme is proposed for the estimation of the battery state-of-charge (SoC). The SoC is determined based on the prediction of the battery's electromotive force. The proposed approach allows for an improved re-initialization of the Coulomb counting (CC) based SoC estimation method. Experimental results for an implementation of the estimation scheme on a fuel gauge system on chip are illustrated. Implementation details and design guidelines are presented. The performance of the presented concept is evaluated for realistic operating conditions (temperature effects, aging, standby current, etc.). For the considered test case of a GSM/UMTS load current pattern of a mobile phone, the proposed method is able to re-initialize the CC-method with a high accuracy, while state-of-the-art methods fail to perform a re-initialization.

  14. Application of partial least squares near-infrared spectral classification in diabetic identification

    NASA Astrophysics Data System (ADS)

    Yan, Wen-juan; Yang, Ming; He, Guo-quan; Qin, Lin; Li, Gang

    2014-11-01

    In order to identify the diabetic patients by using tongue near-infrared (NIR) spectrum - a spectral classification model of the NIR reflectivity of the tongue tip is proposed, based on the partial least square (PLS) method. 39sample data of tongue tip's NIR spectra are harvested from healthy people and diabetic patients , respectively. After pretreatment of the reflectivity, the spectral data are set as the independent variable matrix, and information of classification as the dependent variables matrix, Samples were divided into two groups - i.e. 53 samples as calibration set and 25 as prediction set - then the PLS is used to build the classification model The constructed modelfrom the 53 samples has the correlation of 0.9614 and the root mean square error of cross-validation (RMSECV) of 0.1387.The predictions for the 25 samples have the correlation of 0.9146 and the RMSECV of 0.2122.The experimental result shows that the PLS method can achieve good classification on features of healthy people and diabetic patients.

  15. Solution of a few nonlinear problems in aerodynamics by the finite elements and functional least squares methods. Ph.D. Thesis - Paris Univ.; [mathematical models of transonic flow using nonlinear equations

    NASA Technical Reports Server (NTRS)

    Periaux, J.

    1979-01-01

    The numerical simulation of the transonic flows of idealized fluids and of incompressible viscous fluids, by the nonlinear least squares methods is presented. The nonlinear equations, the boundary conditions, and the various constraints controlling the two types of flow are described. The standard iterative methods for solving a quasi elliptical nonlinear equation with partial derivatives are reviewed with emphasis placed on two examples: the fixed point method applied to the Gelder functional in the case of compressible subsonic flows and the Newton method used in the technique of decomposition of the lifting potential. The new abstract least squares method is discussed. It consists of substituting the nonlinear equation by a problem of minimization in a H to the minus 1 type Sobolev functional space.

  16. ON ASYMPTOTIC DISTRIBUTION AND ASYMPTOTIC EFFICIENCY OF LEAST SQUARES ESTIMATORS OF SPATIAL VARIOGRAM PARAMETERS. (R827257)

    EPA Science Inventory

    Abstract

    In this article, we consider the least-squares approach for estimating parameters of a spatial variogram and establish consistency and asymptotic normality of these estimators under general conditions. Large-sample distributions are also established under a sp...

  17. Exploring the limits of cryospectroscopy: Least-squares based approaches for analyzing the self-association of HCl

    NASA Astrophysics Data System (ADS)

    De Beuckeleer, Liene I.; Herrebout, Wouter A.

    2016-02-01

    To rationalize the concentration dependent behavior observed for a large spectral data set of HCl recorded in liquid argon, least-squares based numerical methods are developed and validated. In these methods, for each wavenumber a polynomial is used to mimic the relation between monomer concentrations and measured absorbances. Least-squares fitting of higher degree polynomials tends to overfit and thus leads to compensation effects where a contribution due to one species is compensated for by a negative contribution of another. The compensation effects are corrected for by carefully analyzing, using AIC and BIC information criteria, the differences observed between consecutive fittings when the degree of the polynomial model is systematically increased, and by introducing constraints prohibiting negative absorbances to occur for the monomer or for one of the oligomers. The method developed should allow other, more complicated self-associating systems to be analyzed with a much higher accuracy than before.

  18. Recursive least squares background prediction of univariate syndromic surveillance data

    PubMed Central

    2009-01-01

    Background Surveillance of univariate syndromic data as a means of potential indicator of developing public health conditions has been used extensively. This paper aims to improve the performance of detecting outbreaks by using a background forecasting algorithm based on the adaptive recursive least squares method combined with a novel treatment of the Day of the Week effect. Methods Previous work by the first author has suggested that univariate recursive least squares analysis of syndromic data can be used to characterize the background upon which a prediction and detection component of a biosurvellance system may be built. An adaptive implementation is used to deal with data non-stationarity. In this paper we develop and implement the RLS method for background estimation of univariate data. The distinctly dissimilar distribution of data for different days of the week, however, can affect filter implementations adversely, and so a novel procedure based on linear transformations of the sorted values of the daily counts is introduced. Seven-days ahead daily predicted counts are used as background estimates. A signal injection procedure is used to examine the integrated algorithm's ability to detect synthetic anomalies in real syndromic time series. We compare the method to a baseline CDC forecasting algorithm known as the W2 method. Results We present detection results in the form of Receiver Operating Characteristic curve values for four different injected signal to noise ratios using 16 sets of syndromic data. We find improvements in the false alarm probabilities when compared to the baseline W2 background forecasts. Conclusion The current paper introduces a prediction approach for city-level biosurveillance data streams such as time series of outpatient clinic visits and sales of over-the-counter remedies. This approach uses RLS filters modified by a correction for the weekly patterns often seen in these data series, and a threshold detection algorithm from the

  19. Recursive least squares background prediction of univariate syndromic surveillance data.

    PubMed

    Najmi, Amir-Homayoon; Burkom, Howard

    2009-01-16

    Surveillance of univariate syndromic data as a means of potential indicator of developing public health conditions has been used extensively. This paper aims to improve the performance of detecting outbreaks by using a background forecasting algorithm based on the adaptive recursive least squares method combined with a novel treatment of the Day of the Week effect. Previous work by the first author has suggested that univariate recursive least squares analysis of syndromic data can be used to characterize the background upon which a prediction and detection component of a biosurvellance system may be built. An adaptive implementation is used to deal with data non-stationarity. In this paper we develop and implement the RLS method for background estimation of univariate data. The distinctly dissimilar distribution of data for different days of the week, however, can affect filter implementations adversely, and so a novel procedure based on linear transformations of the sorted values of the daily counts is introduced. Seven-days ahead daily predicted counts are used as background estimates. A signal injection procedure is used to examine the integrated algorithm's ability to detect synthetic anomalies in real syndromic time series. We compare the method to a baseline CDC forecasting algorithm known as the W2 method. We present detection results in the form of Receiver Operating Characteristic curve values for four different injected signal to noise ratios using 16 sets of syndromic data. We find improvements in the false alarm probabilities when compared to the baseline W2 background forecasts. The current paper introduces a prediction approach for city-level biosurveillance data streams such as time series of outpatient clinic visits and sales of over-the-counter remedies. This approach uses RLS filters modified by a correction for the weekly patterns often seen in these data series, and a threshold detection algorithm from the residuals of the RLS forecasts. We

  20. Linear least-squares method for global luminescent oil film skin friction field analysis

    NASA Astrophysics Data System (ADS)

    Lee, Taekjin; Nonomura, Taku; Asai, Keisuke; Liu, Tianshu

    2018-06-01

    A data analysis method based on the linear least-squares (LLS) method was developed for the extraction of high-resolution skin friction fields from global luminescent oil film (GLOF) visualization images of a surface in an aerodynamic flow. In this method, the oil film thickness distribution and its spatiotemporal development are measured by detecting the luminescence intensity of the thin oil film. From the resulting set of GLOF images, the thin oil film equation is solved to obtain an ensemble-averaged (steady) skin friction field as an inverse problem. In this paper, the formulation of a discrete linear system of equations for the LLS method is described, and an error analysis is given to identify the main error sources and the relevant parameters. Simulations were conducted to evaluate the accuracy of the LLS method and the effects of the image patterns, image noise, and sample numbers on the results in comparison with the previous snapshot-solution-averaging (SSA) method. An experimental case is shown to enable the comparison of the results obtained using conventional oil flow visualization and those obtained using both the LLS and SSA methods. The overall results show that the LLS method is more reliable than the SSA method and the LLS method can yield a more detailed skin friction topology in an objective way.

  1. WEAK GALERKIN METHODS FOR SECOND ORDER ELLIPTIC INTERFACE PROBLEMS

    PubMed Central

    MU, LIN; WANG, JUNPING; WEI, GUOWEI; YE, XIU; ZHAO, SHAN

    2013-01-01

    Weak Galerkin methods refer to general finite element methods for partial differential equations (PDEs) in which differential operators are approximated by their weak forms as distributions. Such weak forms give rise to desirable flexibilities in enforcing boundary and interface conditions. A weak Galerkin finite element method (WG-FEM) is developed in this paper for solving elliptic PDEs with discontinuous coefficients and interfaces. Theoretically, it is proved that high order numerical schemes can be designed by using the WG-FEM with polynomials of high order on each element. Extensive numerical experiments have been carried to validate the WG-FEM for solving second order elliptic interface problems. High order of convergence is numerically confirmed in both L2 and L∞ norms for the piecewise linear WG-FEM. Special attention is paid to solve many interface problems, in which the solution possesses a certain singularity due to the nonsmoothness of the interface. A challenge in research is to design nearly second order numerical methods that work well for problems with low regularity in the solution. The best known numerical scheme in the literature is of order O(h) to O(h1.5) for the solution itself in L∞ norm. It is demonstrated that the WG-FEM of the lowest order, i.e., the piecewise constant WG-FEM, is capable of delivering numerical approximations that are of order O(h1.75) to O(h2) in the L∞ norm for C1 or Lipschitz continuous interfaces associated with a C1 or H2 continuous solution. PMID:24072935

  2. Effect of the curvature parameter on least-squares prediction within poor data coverage: case study for Africa

    NASA Astrophysics Data System (ADS)

    Abd-Elmotaal, Hussein; Kühtreiber, Norbert

    2016-04-01

    In the framework of the IAG African Geoid Project, there are a lot of large data gaps in its gravity database. These gaps are filled initially using unequal weight least-squares prediction technique. This technique uses a generalized Hirvonen covariance function model to replace the empirically determined covariance function. The generalized Hirvonen covariance function model has a sensitive parameter which is related to the curvature parameter of the covariance function at the origin. This paper studies the effect of the curvature parameter on the least-squares prediction results, especially in the large data gaps as appearing in the African gravity database. An optimum estimation of the curvature parameter has also been carried out. A wide comparison among the results obtained in this research along with their obtained accuracy is given and thoroughly discussed.

  3. Parameter Uncertainty for Aircraft Aerodynamic Modeling using Recursive Least Squares

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2016-01-01

    A real-time method was demonstrated for determining accurate uncertainty levels of stability and control derivatives estimated using recursive least squares and time-domain data. The method uses a recursive formulation of the residual autocorrelation to account for colored residuals, which are routinely encountered in aircraft parameter estimation and change the predicted uncertainties. Simulation data and flight test data for a subscale jet transport aircraft were used to demonstrate the approach. Results showed that the corrected uncertainties matched the observed scatter in the parameter estimates, and did so more accurately than conventional uncertainty estimates that assume white residuals. Only small differences were observed between batch estimates and recursive estimates at the end of the maneuver. It was also demonstrated that the autocorrelation could be reduced to a small number of lags to minimize computation and memory storage requirements without significantly degrading the accuracy of predicted uncertainty levels.

  4. Facial Expression Recognition using Multiclass Ensemble Least-Square Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Lawi, Armin; Sya'Rani Machrizzandi, M.

    2018-03-01

    Facial expression is one of behavior characteristics of human-being. The use of biometrics technology system with facial expression characteristics makes it possible to recognize a person’s mood or emotion. The basic components of facial expression analysis system are face detection, face image extraction, facial classification and facial expressions recognition. This paper uses Principal Component Analysis (PCA) algorithm to extract facial features with expression parameters, i.e., happy, sad, neutral, angry, fear, and disgusted. Then Multiclass Ensemble Least-Squares Support Vector Machine (MELS-SVM) is used for the classification process of facial expression. The result of MELS-SVM model obtained from our 185 different expression images of 10 persons showed high accuracy level of 99.998% using RBF kernel.

  5. Addressing the identification problem in age-period-cohort analysis: a tutorial on the use of partial least squares and principal components analysis.

    PubMed

    Tu, Yu-Kang; Krämer, Nicole; Lee, Wen-Chung

    2012-07-01

    In the analysis of trends in health outcomes, an ongoing issue is how to separate and estimate the effects of age, period, and cohort. As these 3 variables are perfectly collinear by definition, regression coefficients in a general linear model are not unique. In this tutorial, we review why identification is a problem, and how this problem may be tackled using partial least squares and principal components regression analyses. Both methods produce regression coefficients that fulfill the same collinearity constraint as the variables age, period, and cohort. We show that, because the constraint imposed by partial least squares and principal components regression is inherent in the mathematical relation among the 3 variables, this leads to more interpretable results. We use one dataset from a Taiwanese health-screening program to illustrate how to use partial least squares regression to analyze the trends in body heights with 3 continuous variables for age, period, and cohort. We then use another dataset of hepatocellular carcinoma mortality rates for Taiwanese men to illustrate how to use partial least squares regression to analyze tables with aggregated data. We use the second dataset to show the relation between the intrinsic estimator, a recently proposed method for the age-period-cohort analysis, and partial least squares regression. We also show that the inclusion of all indicator variables provides a more consistent approach. R code for our analyses is provided in the eAppendix.

  6. Exploring the limits of cryospectroscopy: Least-squares based approaches for analyzing the self-association of HCl.

    PubMed

    De Beuckeleer, Liene I; Herrebout, Wouter A

    2016-02-05

    To rationalize the concentration dependent behavior observed for a large spectral data set of HCl recorded in liquid argon, least-squares based numerical methods are developed and validated. In these methods, for each wavenumber a polynomial is used to mimic the relation between monomer concentrations and measured absorbances. Least-squares fitting of higher degree polynomials tends to overfit and thus leads to compensation effects where a contribution due to one species is compensated for by a negative contribution of another. The compensation effects are corrected for by carefully analyzing, using AIC and BIC information criteria, the differences observed between consecutive fittings when the degree of the polynomial model is systematically increased, and by introducing constraints prohibiting negative absorbances to occur for the monomer or for one of the oligomers. The method developed should allow other, more complicated self-associating systems to be analyzed with a much higher accuracy than before. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Simultaneous spectrophotometric determination of trace copper, nickel, and cobalt ions in water samples using solid phase extraction coupled with partial least squares approaches.

    PubMed

    Guo, Yugao; Zhao, He; Han, Yelin; Liu, Xia; Guan, Shan; Zhang, Qingyin; Bian, Xihui

    2017-02-15

    A simultaneous spectrophotometric determination method for trace heavy metal ions based on solid-phase extraction coupled with partial least squares approaches was developed. In the proposed method, trace metal ions in aqueous samples were adsorbed by cation exchange fibers and desorbed by acidic solution from the fibers. After the ion preconcentration process, the enriched solution was detected by ultraviolet and visible spectrophotometer (UV-Vis). Then, the concentration of heavy metal ions were quantified by analyzing ultraviolet and visible spectrum with the help of partial least squares (PLS) approaches. Under the optimal conditions of operation time, flow rate and detection parameters, the overlapped absorption peaks of mixed ions were obtained. The experimental data showed that the concentration, which can be calculated through chemometrics method, of each metal ion increased significantly. The heavy metal ions can be enriched more than 80-fold. The limits of detection (LOD) for the target analytes of copper ions (Cu 2+ ), cobalt ions (Co 2+ ) and nickel ions (Ni 2+ ) mixture was 0.10μgL -1 , 0.15μgL -1 and 0.13μgL -1 , respectively. The relative standard deviations (RSD) were less than 5%. The performance of the solid-phase extraction can enrich the ions efficiently and the combined method of spectrophotometric detection and PLS can evaluate the ions concentration accurately. The work proposed here is an interesting and promising attempt for the trace ions determination in water samples and will have much more applied field. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Investigating a hybrid perturbation-Galerkin technique using computer algebra

    NASA Technical Reports Server (NTRS)

    Andersen, Carl M.; Geer, James F.

    1988-01-01

    A two-step hybrid perturbation-Galerkin method is presented for the solution of a variety of differential equations type problems which involve a scalar parameter. The resulting (approximate) solution has the form of a sum where each term consists of the product of two functions. The first function is a function of the independent field variable(s) x, and the second is a function of the parameter lambda. In step one the functions of x are determined by forming a perturbation expansion in lambda. In step two the functions of lambda are determined through the use of the classical Bubnov-Gelerkin method. The resulting hybrid method has the potential of overcoming some of the drawbacks of the perturbation and Bubnov-Galerkin methods applied separately, while combining some of the good features of each. In particular, the results can be useful well beyond the radius of convergence associated with the perturbation expansion. The hybrid method is applied with the aid of computer algebra to a simple two-point boundary value problem where the radius of convergence is finite and to a quantum eigenvalue problem where the radius of convergence is zero. For both problems the hybrid method apparently converges for an infinite range of the parameter lambda. The results obtained from the hybrid method are compared with approximate solutions obtained by other methods, and the applicability of the hybrid method to broader problem areas is discussed.

  9. Parallel adaptive discontinuous Galerkin approximation for thin layer avalanche modeling

    NASA Astrophysics Data System (ADS)

    Patra, A. K.; Nichita, C. C.; Bauer, A. C.; Pitman, E. B.; Bursik, M.; Sheridan, M. F.

    2006-08-01

    This paper describes the development of highly accurate adaptive discontinuous Galerkin schemes for the solution of the equations arising from a thin layer type model of debris flows. Such flows have wide applicability in the analysis of avalanches induced by many natural calamities, e.g. volcanoes, earthquakes, etc. These schemes are coupled with special parallel solution methodologies to produce a simulation tool capable of very high-order numerical accuracy. The methodology successfully replicates cold rock avalanches at Mount Rainier, Washington and hot volcanic particulate flows at Colima Volcano, Mexico.

  10. A Least-Squares Commutator in the Iterative Subspace Method for Accelerating Self-Consistent Field Convergence.

    PubMed

    Li, Haichen; Yaron, David J

    2016-11-08

    A least-squares commutator in the iterative subspace (LCIIS) approach is explored for accelerating self-consistent field (SCF) calculations. LCIIS is similar to direct inversion of the iterative subspace (DIIS) methods in that the next iterate of the density matrix is obtained as a linear combination of past iterates. However, whereas DIIS methods find the linear combination by minimizing a sum of error vectors, LCIIS minimizes the Frobenius norm of the commutator between the density matrix and the Fock matrix. This minimization leads to a quartic problem that can be solved iteratively through a constrained Newton's method. The relationship between LCIIS and DIIS is discussed. Numerical experiments suggest that LCIIS leads to faster convergence than other SCF convergence accelerating methods in a statistically significant sense, and in a number of cases LCIIS leads to stable SCF solutions that are not found by other methods. The computational cost involved in solving the quartic minimization problem is small compared to the typical cost of SCF iterations and the approach is easily integrated into existing codes. LCIIS can therefore serve as a powerful addition to SCF convergence accelerating methods in computational quantum chemistry packages.

  11. Convergence of Galerkin approximations for operator Riccati equations: A nonlinear evolution equation approach

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1988-01-01

    An approximation and convergence theory was developed for Galerkin approximations to infinite dimensional operator Riccati differential equations formulated in the space of Hilbert-Schmidt operators on a separable Hilbert space. The Riccati equation was treated as a nonlinear evolution equation with dynamics described by a nonlinear monotone perturbation of a strongly coercive linear operator. A generic approximation result was proven for quasi-autonomous nonlinear evolution system involving accretive operators which was then used to demonstrate the Hilbert-Schmidt norm convergence of Galerkin approximations to the solution of the Riccati equation. The application of the results was illustrated in the context of a linear quadratic optimal control problem for a one dimensional heat equation.

  12. Edge-Preserving Image Smoothing Constraint in Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) of Hyperspectral Data.

    PubMed

    Hugelier, Siewert; Vitale, Raffaele; Ruckebusch, Cyril

    2018-03-01

    This article explores smoothing with edge-preserving properties as a spatial constraint for the resolution of hyperspectral images with multivariate curve resolution-alternating least squares (MCR-ALS). For each constrained component image (distribution map), irrelevant spatial details and noise are smoothed applying an L 1 - or L 0 -norm penalized least squares regression, highlighting in this way big changes in intensity of adjacent pixels. The feasibility of the constraint is demonstrated on three different case studies, in which the objects under investigation are spatially clearly defined, but have significant spectral overlap. This spectral overlap is detrimental for obtaining a good resolution and additional spatial information should be provided. The final results show that the spatial constraint enables better image (map) abstraction, artifact removal, and better interpretation of the results obtained, compared to a classical MCR-ALS analysis of hyperspectral images.

  13. Simultaneous Determination of Iron, Copper and Cobalt in Food Samples by CCD-diode Array Detection-Flow Injection Analysis with Partial Least Squares Calibration Model

    NASA Astrophysics Data System (ADS)

    Mi, Jiaping; Li, Yuanqian; Zhou, Xiaoli; Zheng, Bo; Zhou, Ying

    2006-01-01

    A flow injection-CCD diode array detection spectrophotometry with partial least squares (PLS) program for simultaneous determination of iron, copper and cobalt in food samples has been established. The method was based on the chromogenic reaction of the three metal ions and 2- (5-Bromo-2-pyridylazo)-5-diethylaminophenol, 5-Br-PADAP in acetic acid - sodium acetate buffer solution (pH5) with Triton X-100 and ascorbic acid. The overlapped spectra of the colored complexes were collected by charge-coupled device (CCD) - diode array detector and the multi-wavelength absorbance data was processed using partial least squares (PLS) algorithm. Optimum reaction conditions and parameters of flow injection analysis were investigated. The samples of tea, sesame, laver, millet, cornmeal, mung bean and soybean powder were determined by the proposed method. The average recoveries of spiked samples were 91.80%~100.9% for Iron, 92.50%~108.0% for Copper, 93.00%~110.5% for Cobalt, respectively with relative standard deviation (R.S.D) of 1.1%~12.1%. The sampling rate is 45 samples h-1. The determination results of the food samples were in good agreement between the proposed method and ICP-AES.

  14. Parameter estimation in nonlinear distributed systems - Approximation theory and convergence results

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Reich, Simeon; Rosen, I. G.

    1988-01-01

    An abstract approximation framework and convergence theory is described for Galerkin approximations applied to inverse problems involving nonlinear distributed parameter systems. Parameter estimation problems are considered and formulated as the minimization of a least-squares-like performance index over a compact admissible parameter set subject to state constraints given by an inhomogeneous nonlinear distributed system. The theory applies to systems whose dynamics can be described by either time-independent or nonstationary strongly maximal monotonic operators defined on a reflexive Banach space which is densely and continuously embedded in a Hilbert space. It is demonstrated that if readily verifiable conditions on the system's dependence on the unknown parameters are satisfied, and the usual Galerkin approximation assumption holds, then solutions to the approximating problems exist and approximate a solution to the original infinite-dimensional identification problem.

  15. Weighted least squares phase unwrapping based on the wavelet transform

    NASA Astrophysics Data System (ADS)

    Chen, Jiafeng; Chen, Haiqin; Yang, Zhengang; Ren, Haixia

    2007-01-01

    The weighted least squares phase unwrapping algorithm is a robust and accurate method to solve phase unwrapping problem. This method usually leads to a large sparse linear equation system. Gauss-Seidel relaxation iterative method is usually used to solve this large linear equation. However, this method is not practical due to its extremely slow convergence. The multigrid method is an efficient algorithm to improve convergence rate. However, this method needs an additional weight restriction operator which is very complicated. For this reason, the multiresolution analysis method based on the wavelet transform is proposed. By applying the wavelet transform, the original system is decomposed into its coarse and fine resolution levels and an equivalent equation system with better convergence condition can be obtained. Fast convergence in separate coarse resolution levels speeds up the overall system convergence rate. The simulated experiment shows that the proposed method converges faster and provides better result than the multigrid method.

  16. Constrained Low-Rank Learning Using Least Squares-Based Regularization.

    PubMed

    Li, Ping; Yu, Jun; Wang, Meng; Zhang, Luming; Cai, Deng; Li, Xuelong

    2017-12-01

    Low-rank learning has attracted much attention recently due to its efficacy in a rich variety of real-world tasks, e.g., subspace segmentation and image categorization. Most low-rank methods are incapable of capturing low-dimensional subspace for supervised learning tasks, e.g., classification and regression. This paper aims to learn both the discriminant low-rank representation (LRR) and the robust projecting subspace in a supervised manner. To achieve this goal, we cast the problem into a constrained rank minimization framework by adopting the least squares regularization. Naturally, the data label structure tends to resemble that of the corresponding low-dimensional representation, which is derived from the robust subspace projection of clean data by low-rank learning. Moreover, the low-dimensional representation of original data can be paired with some informative structure by imposing an appropriate constraint, e.g., Laplacian regularizer. Therefore, we propose a novel constrained LRR method. The objective function is formulated as a constrained nuclear norm minimization problem, which can be solved by the inexact augmented Lagrange multiplier algorithm. Extensive experiments on image classification, human pose estimation, and robust face recovery have confirmed the superiority of our method.

  17. Thermal-to-visible face recognition using partial least squares.

    PubMed

    Hu, Shuowen; Choi, Jonghyun; Chan, Alex L; Schwartz, William Robson

    2015-03-01

    Although visible face recognition has been an active area of research for several decades, cross-modal face recognition has only been explored by the biometrics community relatively recently. Thermal-to-visible face recognition is one of the most difficult cross-modal face recognition challenges, because of the difference in phenomenology between the thermal and visible imaging modalities. We address the cross-modal recognition problem using a partial least squares (PLS) regression-based approach consisting of preprocessing, feature extraction, and PLS model building. The preprocessing and feature extraction stages are designed to reduce the modality gap between the thermal and visible facial signatures, and facilitate the subsequent one-vs-all PLS-based model building. We incorporate multi-modal information into the PLS model building stage to enhance cross-modal recognition. The performance of the proposed recognition algorithm is evaluated on three challenging datasets containing visible and thermal imagery acquired under different experimental scenarios: time-lapse, physical tasks, mental tasks, and subject-to-camera range. These scenarios represent difficult challenges relevant to real-world applications. We demonstrate that the proposed method performs robustly for the examined scenarios.

  18. On the treatment of ill-conditioned cases in the Monte Carlo library least-squares approach for inverse radiation analyzers

    NASA Astrophysics Data System (ADS)

    Meric, Ilker; Johansen, Geir A.; Holstad, Marie B.; Mattingly, John; Gardner, Robin P.

    2012-05-01

    Prompt gamma-ray neutron activation analysis (PGNAA) has been and still is one of the major methods of choice for the elemental analysis of various bulk samples. This is mostly due to the fact that PGNAA offers a rapid, non-destructive and on-line means of sample interrogation. The quantitative analysis of the prompt gamma-ray data could, on the other hand, be performed either through the single peak analysis or the so-called Monte Carlo library least-squares (MCLLS) approach, of which the latter has been shown to be more sensitive and more accurate than the former. The MCLLS approach is based on the assumption that the total prompt gamma-ray spectrum of any sample is a linear combination of the contributions from the individual constituents or libraries. This assumption leads to, through the minimization of the chi-square value, a set of linear equations which has to be solved to obtain the library multipliers, a process that involves the inversion of the covariance matrix. The least-squares solution may be extremely uncertain due to the ill-conditioning of the covariance matrix. The covariance matrix will become ill-conditioned whenever, in the subsequent calculations, two or more libraries are highly correlated. The ill-conditioning will also be unavoidable whenever the sample contains trace amounts of certain elements or elements with significantly low thermal neutron capture cross-sections. In this work, a new iterative approach, which can handle the ill-conditioning of the covariance matrix, is proposed and applied to a hydrocarbon multiphase flow problem in which the parameters of interest are the separate amounts of the oil, gas, water and salt phases. The results of the proposed method are also compared with the results obtained through the implementation of a well-known regularization method, the truncated singular value decomposition. Final calculations indicate that the proposed approach would be able to treat ill-conditioned cases appropriately.

  19. A weighted least squares estimation of the polynomial regression model on paddy production in the area of Kedah and Perlis

    NASA Astrophysics Data System (ADS)

    Musa, Rosliza; Ali, Zalila; Baharum, Adam; Nor, Norlida Mohd

    2017-08-01

    The linear regression model assumes that all random error components are identically and independently distributed with constant variance. Hence, each data point provides equally precise information about the deterministic part of the total variation. In other words, the standard deviations of the error terms are constant over all values of the predictor variables. When the assumption of constant variance is violated, the ordinary least squares estimator of regression coefficient lost its property of minimum variance in the class of linear and unbiased estimators. Weighted least squares estimation are often used to maximize the efficiency of parameter estimation. A procedure that treats all of the data equally would give less precisely measured points more influence than they should have and would give highly precise points too little influence. Optimizing the weighted fitting criterion to find the parameter estimates allows the weights to determine the contribution of each observation to the final parameter estimates. This study used polynomial model with weighted least squares estimation to investigate paddy production of different paddy lots based on paddy cultivation characteristics and environmental characteristics in the area of Kedah and Perlis. The results indicated that factors affecting paddy production are mixture fertilizer application cycle, average temperature, the squared effect of average rainfall, the squared effect of pest and disease, the interaction between acreage with amount of mixture fertilizer, the interaction between paddy variety and NPK fertilizer application cycle and the interaction between pest and disease and NPK fertilizer application cycle.

  20. Linking Socioeconomic Status to Social Cognitive Career Theory Factors: A Partial Least Squares Path Modeling Analysis

    ERIC Educational Resources Information Center

    Huang, Jie-Tsuen; Hsieh, Hui-Hsien

    2011-01-01

    The purpose of this study was to investigate the contributions of socioeconomic status (SES) in predicting social cognitive career theory (SCCT) factors. Data were collected from 738 college students in Taiwan. The results of the partial least squares (PLS) analyses indicated that SES significantly predicted career decision self-efficacy (CDSE);…

  1. Using partial least squares regression as a predictive tool in describing equine third metacarpal bone shape.

    PubMed

    Liley, Helen; Zhang, Ju; Firth, Elwyn; Fernandez, Justin; Besier, Thor

    2017-11-01

    Population variance in bone shape is an important consideration when applying the results of subject-specific computational models to a population. In this letter, we demonstrate the ability of partial least squares regression to provide an improved shape prediction of the equine third metacarpal epiphysis, using two easily obtained measurements.

  2. Testing of Lagrange multiplier damped least-squares control algorithm for woofer-tweeter adaptive optics

    PubMed Central

    Zou, Weiyao; Burns, Stephen A.

    2012-01-01

    A Lagrange multiplier-based damped least-squares control algorithm for woofer-tweeter (W-T) dual deformable-mirror (DM) adaptive optics (AO) is tested with a breadboard system. We show that the algorithm can complementarily command the two DMs to correct wavefront aberrations within a single optimization process: the woofer DM correcting the high-stroke, low-order aberrations, and the tweeter DM correcting the low-stroke, high-order aberrations. The optimal damping factor for a DM is found to be the median of the eigenvalue spectrum of the influence matrix of that DM. Wavefront control accuracy is maximized with the optimized control parameters. For the breadboard system, the residual wavefront error can be controlled to the precision of 0.03 μm in root mean square. The W-T dual-DM AO has applications in both ophthalmology and astronomy. PMID:22441462

  3. Simultaneous quantitative analysis of olmesartan, amlodipine and hydrochlorothiazide in their combined dosage form utilizing classical and alternating least squares based chemometric methods.

    PubMed

    Darwish, Hany W; Bakheit, Ahmed H; Abdelhameed, Ali S

    2016-03-01

    Simultaneous spectrophotometric analysis of a multi-component dosage form of olmesartan, amlodipine and hydrochlorothiazide used for the treatment of hypertension has been carried out using various chemometric methods. Multivariate calibration methods include classical least squares (CLS) executed by net analyte processing (NAP-CLS), orthogonal signal correction (OSC-CLS) and direct orthogonal signal correction (DOSC-CLS) in addition to multivariate curve resolution-alternating least squares (MCR-ALS). Results demonstrated the efficiency of the proposed methods as quantitative tools of analysis as well as their qualitative capability. The three analytes were determined precisely using the aforementioned methods in an external data set and in a dosage form after optimization of experimental conditions. Finally, the efficiency of the models was validated via comparison with the partial least squares (PLS) method in terms of accuracy and precision.

  4. Iterative weighting of multiblock data in the orthogonal partial least squares framework.

    PubMed

    Boccard, Julien; Rutledge, Douglas N

    2014-02-27

    The integration of multiple data sources has emerged as a pivotal aspect to assess complex systems comprehensively. This new paradigm requires the ability to separate common and redundant from specific and complementary information during the joint analysis of several data blocks. However, inherent problems encountered when analysing single tables are amplified with the generation of multiblock datasets. Finding the relationships between data layers of increasing complexity constitutes therefore a challenging task. In the present work, an algorithm is proposed for the supervised analysis of multiblock data structures. It associates the advantages of interpretability from the orthogonal partial least squares (OPLS) framework and the ability of common component and specific weights analysis (CCSWA) to weight each data table individually in order to grasp its specificities and handle efficiently the different sources of Y-orthogonal variation. Three applications are proposed for illustration purposes. A first example refers to a quantitative structure-activity relationship study aiming to predict the binding affinity of flavonoids toward the P-glycoprotein based on physicochemical properties. A second application concerns the integration of several groups of sensory attributes for overall quality assessment of a series of red wines. A third case study highlights the ability of the method to combine very large heterogeneous data blocks from Omics experiments in systems biology. Results were compared to the reference multiblock partial least squares (MBPLS) method to assess the performance of the proposed algorithm in terms of predictive ability and model interpretability. In all cases, ComDim-OPLS was demonstrated as a relevant data mining strategy for the simultaneous analysis of multiblock structures by accounting for specific variation sources in each dataset and providing a balance between predictive and descriptive purpose. Copyright © 2014 Elsevier B.V. All

  5. Mass Conservation of the Unified Continuous and Discontinuous Element-Based Galerkin Methods on Dynamically Adaptive Grids with Application to Atmospheric Simulations

    DTIC Science & Technology

    2015-09-01

    Discontinuous Element-Based Galerkin Methods on Dynamically Adaptive Grids with Application to Atmospheric Simulations 5a. CONTRACT NUMBER 5b. GRANT NUMBER...Discontinuous Element-Based Galerkin Methods on Dynamically Adaptive Grids with Application to Atmospheric Simulations. Michal A. Koperaa,∗, Francis X...mass conservation, as it is an important feature for many atmospheric applications . We believe this is a good metric because, for smooth solutions

  6. Tensor-product preconditioners for a space-time discontinuous Galerkin method

    NASA Astrophysics Data System (ADS)

    Diosady, Laslo T.; Murman, Scott M.

    2014-10-01

    A space-time discontinuous Galerkin spectral element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equations. An efficient solution technique based on a matrix-free Newton-Krylov method is presented. A diagonalized alternating direction implicit preconditioner is extended to a space-time formulation using entropy variables. The effectiveness of this technique is demonstrated for the direct numerical simulation of turbulent flow in a channel.

  7. Discontinuous Galerkin finite element method for solving population density functions of cortical pyramidal and thalamic neuronal populations.

    PubMed

    Huang, Chih-Hsu; Lin, Chou-Ching K; Ju, Ming-Shaung

    2015-02-01

    Compared with the Monte Carlo method, the population density method is efficient for modeling collective dynamics of neuronal populations in human brain. In this method, a population density function describes the probabilistic distribution of states of all neurons in the population and it is governed by a hyperbolic partial differential equation. In the past, the problem was mainly solved by using the finite difference method. In a previous study, a continuous Galerkin finite element method was found better than the finite difference method for solving the hyperbolic partial differential equation; however, the population density function often has discontinuity and both methods suffer from a numerical stability problem. The goal of this study is to improve the numerical stability of the solution using discontinuous Galerkin finite element method. To test the performance of the new approach, interaction of a population of cortical pyramidal neurons and a population of thalamic neurons was simulated. The numerical results showed good agreement between results of discontinuous Galerkin finite element and Monte Carlo methods. The convergence and accuracy of the solutions are excellent. The numerical stability problem could be resolved using the discontinuous Galerkin finite element method which has total-variation-diminishing property. The efficient approach will be employed to simulate the electroencephalogram or dynamics of thalamocortical network which involves three populations, namely, thalamic reticular neurons, thalamocortical neurons and cortical pyramidal neurons. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A New Runge-Kutta Discontinuous Galerkin Method with Conservation Constraint to Improve CFL Condition for Solving Conservation Laws

    PubMed Central

    Xu, Zhiliang; Chen, Xu-Yan; Liu, Yingjie

    2014-01-01

    We present a new formulation of the Runge-Kutta discontinuous Galerkin (RKDG) method [9, 8, 7, 6] for solving conservation Laws with increased CFL numbers. The new formulation requires the computed RKDG solution in a cell to satisfy additional conservation constraint in adjacent cells and does not increase the complexity or change the compactness of the RKDG method. Numerical computations for solving one-dimensional and two-dimensional scalar and systems of nonlinear hyperbolic conservation laws are performed with approximate solutions represented by piecewise quadratic and cubic polynomials, respectively. The hierarchical reconstruction [17, 33] is applied as a limiter to eliminate spurious oscillations in discontinuous solutions. From both numerical experiments and the analytic estimate of the CFL number of the newly formulated method, we find that: 1) this new formulation improves the CFL number over the original RKDG formulation by at least three times or more and thus reduces the overall computational cost; and 2) the new formulation essentially does not compromise the resolution of the numerical solutions of shock wave problems compared with ones computed by the RKDG method. PMID:25414520

  9. PROPOSED MODIFICATIONS OF K2-TEMPERATURE RELATION AND LEAST SQUARES ESTIMATES OF BOD (BIOCHEMICAL OXYGEN DEMAND) PARAMETERS

    EPA Science Inventory

    A technique is presented for finding the least squares estimates for the ultimate biochemical oxygen demand (BOD) and rate coefficient for the BOD reaction without resorting to complicated computer algorithms or subjective graphical methods. This may be used in stream water quali...

  10. Calibration and compensation method of three-axis geomagnetic sensor based on pre-processing total least square iteration

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Zhang, X.; Xiao, W.

    2018-04-01

    As the geomagnetic sensor is susceptible to interference, a pre-processing total least square iteration method is proposed for calibration compensation. Firstly, the error model of the geomagnetic sensor is analyzed and the correction model is proposed, then the characteristics of the model are analyzed and converted into nine parameters. The geomagnetic data is processed by Hilbert transform (HHT) to improve the signal-to-noise ratio, and the nine parameters are calculated by using the combination of Newton iteration method and the least squares estimation method. The sifter algorithm is used to filter the initial value of the iteration to ensure that the initial error is as small as possible. The experimental results show that this method does not need additional equipment and devices, can continuously update the calibration parameters, and better than the two-step estimation method, it can compensate geomagnetic sensor error well.

  11. Assessing statistical differences between parameters estimates in Partial Least Squares path modeling.

    PubMed

    Rodríguez-Entrena, Macario; Schuberth, Florian; Gelhard, Carsten

    2018-01-01

    Structural equation modeling using partial least squares (PLS-SEM) has become a main-stream modeling approach in various disciplines. Nevertheless, prior literature still lacks a practical guidance on how to properly test for differences between parameter estimates. Whereas existing techniques such as parametric and non-parametric approaches in PLS multi-group analysis solely allow to assess differences between parameters that are estimated for different subpopulations, the study at hand introduces a technique that allows to also assess whether two parameter estimates that are derived from the same sample are statistically different. To illustrate this advancement to PLS-SEM, we particularly refer to a reduced version of the well-established technology acceptance model.

  12. Cortical dipole imaging using truncated total least squares considering transfer matrix error.

    PubMed

    Hori, Junichi; Takeuchi, Kosuke

    2013-01-01

    Cortical dipole imaging has been proposed as a method to visualize electroencephalogram in high spatial resolution. We investigated the inverse technique of cortical dipole imaging using a truncated total least squares (TTLS). The TTLS is a regularization technique to reduce the influence from both the measurement noise and the transfer matrix error caused by the head model distortion. The estimation of the regularization parameter was also investigated based on L-curve. The computer simulation suggested that the estimation accuracy was improved by the TTLS compared with Tikhonov regularization. The proposed method was applied to human experimental data of visual evoked potentials. We confirmed the TTLS provided the high spatial resolution of cortical dipole imaging.

  13. Correspondence and Least Squares Analyses of Soil and Rock Compositions for the Viking Lander 1 and Pathfinder Sites

    NASA Technical Reports Server (NTRS)

    Larsen, K. W.; Arvidson, R. E.; Jolliff, B. L.; Clark, B. C.

    2000-01-01

    Correspondence and Least Squares Mixing Analysis techniques are applied to the chemical composition of Viking 1 soils and Pathfinder rocks and soils. Implications for the parent composition of local and global materials are discussed.

  14. A Partial Least-Squares Analysis of Health-Related Quality-of-Life Outcomes After Aneurysmal Subarachnoid Hemorrhage.

    PubMed

    Young, Julia M; Morgan, Benjamin R; Mišić, Bratislav; Schweizer, Tom A; Ibrahim, George M; Macdonald, R Loch

    2015-12-01

    Individuals who have aneurysmal subarachnoid hemorrhages (SAHs) experience decreased health-related qualities of life (HRQoLs) that persist after the primary insult. To identify clinical variables that concurrently associate with HRQoL outcomes by using a partial least-squares approach, which has the distinct advantage of explaining multidimensional variance where predictor variables may be highly collinear. Data collected from the CONSCIOUS-1 trial was used to extract 29 clinical variables including SAH presentation, hospital procedures, and demographic information in addition to 5 HRQoL outcome variables for 256 individuals. A partial least-squares analysis was performed by calculating a heterogeneous correlation matrix and applying singular value decomposition to determine components that best represent the correlations between the 2 sets of variables. Bootstrapping was used to estimate statistical significance. The first 2 components accounting for 81.6% and 7.8% of the total variance revealed significant associations between clinical predictors and HRQoL outcomes. The first component identified associations between disability in self-care with longer durations of critical care stay, invasive intracranial monitoring, ventricular drain time, poorer clinical grade on presentation, greater amounts of cerebral spinal fluid drainage, and a history of hypertension. The second component identified associations between disability due to pain and discomfort as well as anxiety and depression with greater body mass index, abnormal heart rate, longer durations of deep sedation and critical care, and higher World Federation of Neurosurgical Societies and Hijdra scores. By applying a data-driven, multivariate approach, we identified robust associations between SAH clinical presentations and HRQoL outcomes. EQ-VAS, EuroQoL visual analog scaleHRQoL, health-related quality of lifeICU, intensive care unitIVH, intraventricular hemorrhagePLS, partial least squaresSAH, subarachnoid

  15. A Generalized Least Squares Regression Approach for Computing Effect Sizes in Single-Case Research: Application Examples

    ERIC Educational Resources Information Center

    Maggin, Daniel M.; Swaminathan, Hariharan; Rogers, Helen J.; O'Keeffe, Breda V.; Sugai, George; Horner, Robert H.

    2011-01-01

    A new method for deriving effect sizes from single-case designs is proposed. The strategy is applicable to small-sample time-series data with autoregressive errors. The method uses Generalized Least Squares (GLS) to model the autocorrelation of the data and estimate regression parameters to produce an effect size that represents the magnitude of…

  16. A consensus least squares support vector regression (LS-SVR) for analysis of near-infrared spectra of plant samples.

    PubMed

    Li, Yankun; Shao, Xueguang; Cai, Wensheng

    2007-04-15

    Consensus modeling of combining the results of multiple independent models to produce a single prediction avoids the instability of single model. Based on the principle of consensus modeling, a consensus least squares support vector regression (LS-SVR) method for calibrating the near-infrared (NIR) spectra was proposed. In the proposed approach, NIR spectra of plant samples were firstly preprocessed using discrete wavelet transform (DWT) for filtering the spectral background and noise, then, consensus LS-SVR technique was used for building the calibration model. With an optimization of the parameters involved in the modeling, a satisfied model was achieved for predicting the content of reducing sugar in plant samples. The predicted results show that consensus LS-SVR model is more robust and reliable than the conventional partial least squares (PLS) and LS-SVR methods.

  17. A Constrained Least Squares Approach to Mobile Positioning: Algorithms and Optimality

    NASA Astrophysics Data System (ADS)

    Cheung, KW; So, HC; Ma, W.-K.; Chan, YT

    2006-12-01

    The problem of locating a mobile terminal has received significant attention in the field of wireless communications. Time-of-arrival (TOA), received signal strength (RSS), time-difference-of-arrival (TDOA), and angle-of-arrival (AOA) are commonly used measurements for estimating the position of the mobile station. In this paper, we present a constrained weighted least squares (CWLS) mobile positioning approach that encompasses all the above described measurement cases. The advantages of CWLS include performance optimality and capability of extension to hybrid measurement cases (e.g., mobile positioning using TDOA and AOA measurements jointly). Assuming zero-mean uncorrelated measurement errors, we show by mean and variance analysis that all the developed CWLS location estimators achieve zero bias and the Cramér-Rao lower bound approximately when measurement error variances are small. The asymptotic optimum performance is also confirmed by simulation results.

  18. An Empirical State Error Covariance Matrix for the Weighted Least Squares Estimation Method

    NASA Technical Reports Server (NTRS)

    Frisbee, Joseph H., Jr.

    2011-01-01

    State estimation techniques effectively provide mean state estimates. However, the theoretical state error covariance matrices provided as part of these techniques often suffer from a lack of confidence in their ability to describe the un-certainty in the estimated states. By a reinterpretation of the equations involved in the weighted least squares algorithm, it is possible to directly arrive at an empirical state error covariance matrix. This proposed empirical state error covariance matrix will contain the effect of all error sources, known or not. Results based on the proposed technique will be presented for a simple, two observer, measurement error only problem.

  19. Testing of Lagrange multiplier damped least-squares control algorithm for woofer-tweeter adaptive optics.

    PubMed

    Zou, Weiyao; Burns, Stephen A

    2012-03-20

    A Lagrange multiplier-based damped least-squares control algorithm for woofer-tweeter (W-T) dual deformable-mirror (DM) adaptive optics (AO) is tested with a breadboard system. We show that the algorithm can complementarily command the two DMs to correct wavefront aberrations within a single optimization process: the woofer DM correcting the high-stroke, low-order aberrations, and the tweeter DM correcting the low-stroke, high-order aberrations. The optimal damping factor for a DM is found to be the median of the eigenvalue spectrum of the influence matrix of that DM. Wavefront control accuracy is maximized with the optimized control parameters. For the breadboard system, the residual wavefront error can be controlled to the precision of 0.03 μm in root mean square. The W-T dual-DM AO has applications in both ophthalmology and astronomy. © 2012 Optical Society of America

  20. Evaluation of unconfined-aquifer parameters from pumping test data by nonlinear least squares

    NASA Astrophysics Data System (ADS)

    Heidari, Manoutchehr; Wench, Allen

    1997-05-01

    Nonlinear least squares (NLS) with automatic differentiation was used to estimate aquifer parameters from drawdown data obtained from published pumping tests conducted in homogeneous, water-table aquifers. The method is based on a technique that seeks to minimize the squares of residuals between observed and calculated drawdown subject to bounds that are placed on the parameter of interest. The analytical model developed by Neuman for flow to a partially penetrating well of infinitesimal diameter situated in an infinite, homogeneous and anisotropic aquifer was used to obtain calculated drawdown. NLS was first applied to synthetic drawdown data from a hypothetical but realistic aquifer to demonstrate that the relevant hydraulic parameters (storativity, specific yield, and horizontal and vertical hydraulic conductivity) can be evaluated accurately. Next the method was used to estimate the parameters at three field sites with widely varying hydraulic properties. NLS produced unbiased estimates of the aquifer parameters that are close to the estimates obtained with the same data using a visual curve-matching approach. Small differences in the estimates are a consequence of subjective interpretation introduced in the visual approach.

  1. Evaluation of unconfined-aquifer parameters from pumping test data by nonlinear least squares

    USGS Publications Warehouse

    Heidari, M.; Moench, A.

    1997-01-01

    Nonlinear least squares (NLS) with automatic differentiation was used to estimate aquifer parameters from drawdown data obtained from published pumping tests conducted in homogeneous, water-table aquifers. The method is based on a technique that seeks to minimize the squares of residuals between observed and calculated drawdown subject to bounds that are placed on the parameter of interest. The analytical model developed by Neuman for flow to a partially penetrating well of infinitesimal diameter situated in an infinite, homogeneous and anisotropic aquifer was used to obtain calculated drawdown. NLS was first applied to synthetic drawdown data from a hypothetical but realistic aquifer to demonstrate that the relevant hydraulic parameters (storativity, specific yield, and horizontal and vertical hydraulic conductivity) can be evaluated accurately. Next the method was used to estimate the parameters at three field sites with widely varying hydraulic properties. NLS produced unbiased estimates of the aquifer parameters that are close to the estimates obtained with the same data using a visual curve-matching approach. Small differences in the estimates are a consequence of subjective interpretation introduced in the visual approach.

  2. Prediction of pH of cola beverage using Vis/NIR spectroscopy and least squares-support vector machine

    NASA Astrophysics Data System (ADS)

    Liu, Fei; He, Yong

    2008-02-01

    Visible and near infrared (Vis/NIR) transmission spectroscopy and chemometric methods were utilized to predict the pH values of cola beverages. Five varieties of cola were prepared and 225 samples (45 samples for each variety) were selected for the calibration set, while 75 samples (15 samples for each variety) for the validation set. The smoothing way of Savitzky-Golay and standard normal variate (SNV) followed by first-derivative were used as the pre-processing methods. Partial least squares (PLS) analysis was employed to extract the principal components (PCs) which were used as the inputs of least squares-support vector machine (LS-SVM) model according to their accumulative reliabilities. Then LS-SVM with radial basis function (RBF) kernel function and a two-step grid search technique were applied to build the regression model with a comparison of PLS regression. The correlation coefficient (r), root mean square error of prediction (RMSEP) and bias were 0.961, 0.040 and 0.012 for PLS, while 0.975, 0.031 and 4.697x10 -3 for LS-SVM, respectively. Both methods obtained a satisfying precision. The results indicated that Vis/NIR spectroscopy combined with chemometric methods could be applied as an alternative way for the prediction of pH of cola beverages.

  3. A well-posed and stable stochastic Galerkin formulation of the incompressible Navier–Stokes equations with random data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pettersson, Per, E-mail: per.pettersson@uib.no; Nordström, Jan, E-mail: jan.nordstrom@liu.se; Doostan, Alireza, E-mail: alireza.doostan@colorado.edu

    2016-02-01

    We present a well-posed stochastic Galerkin formulation of the incompressible Navier–Stokes equations with uncertainty in model parameters or the initial and boundary conditions. The stochastic Galerkin method involves representation of the solution through generalized polynomial chaos expansion and projection of the governing equations onto stochastic basis functions, resulting in an extended system of equations. A relatively low-order generalized polynomial chaos expansion is sufficient to capture the stochastic solution for the problem considered. We derive boundary conditions for the continuous form of the stochastic Galerkin formulation of the velocity and pressure equations. The resulting problem formulation leads to an energy estimatemore » for the divergence. With suitable boundary data on the pressure and velocity, the energy estimate implies zero divergence of the velocity field. Based on the analysis of the continuous equations, we present a semi-discretized system where the spatial derivatives are approximated using finite difference operators with a summation-by-parts property. With a suitable choice of dissipative boundary conditions imposed weakly through penalty terms, the semi-discrete scheme is shown to be stable. Numerical experiments in the laminar flow regime corroborate the theoretical results and we obtain high-order accurate results for the solution variables and the velocity divergence converges to zero as the mesh is refined.« less

  4. On the equivalence of generalized least-squares approaches to the evaluation of measurement comparisons

    NASA Astrophysics Data System (ADS)

    Koo, A.; Clare, J. F.

    2012-06-01

    Analysis of CIPM international comparisons is increasingly being carried out using a model-based approach that leads naturally to a generalized least-squares (GLS) solution. While this method offers the advantages of being easier to audit and having general applicability to any form of comparison protocol, there is a lack of consensus over aspects of its implementation. Two significant results are presented that show the equivalence of three differing approaches discussed by or applied in comparisons run by Consultative Committees of the CIPM. Both results depend on a mathematical condition equivalent to the requirement that any two artefacts in the comparison are linked through a sequence of measurements of overlapping pairs of artefacts. The first result is that a GLS estimator excluding all sources of error common to all measurements of a participant is equal to the GLS estimator incorporating all sources of error, including those associated with any bias in the standards or procedures of the measuring laboratory. The second result identifies the component of uncertainty in the estimate of bias that arises from possible systematic effects in the participants' measurement standards and procedures. The expression so obtained is a generalization of an expression previously published for a one-artefact comparison with no inter-participant correlations, to one for a comparison comprising any number of repeat measurements of multiple artefacts and allowing for inter-laboratory correlations.

  5. Prediction of properties and elemental composition of biomass pyrolysis oils by NMR and partial least squares analysis

    USDA-ARS?s Scientific Manuscript database

    Several partial least squares (PLS) models were created correlating various properties and chemical composition measurements with the 1H and 13C NMR spectra of 73 different of pyrolysis bio-oil samples from various biomass sources (crude and intermediate products), finished oils and small molecule s...

  6. Rank-k modification methods for recursive least squares problems

    NASA Astrophysics Data System (ADS)

    Olszanskyj, Serge; Lebak, James; Bojanczyk, Adam

    1994-09-01

    In least squares problems, it is often desired to solve the same problem repeatedly but with several rows of the data either added, deleted, or both. Methods for quickly solving a problem after adding or deleting one row of data at a time are known. In this paper we introduce fundamental rank-k updating and downdating methods and show how extensions of rank-1 downdating methods based on LINPACK, Corrected Semi-Normal Equations (CSNE), and Gram-Schmidt factorizations, as well as new rank-k downdating methods, can all be derived from these fundamental results. We then analyze the cost of each new algorithm and make comparisons tok applications of the corresponding rank-1 algorithms. We provide experimental results comparing the numerical accuracy of the various algorithms, paying particular attention to the downdating methods, due to their potential numerical difficulties for ill-conditioned problems. We then discuss the computation involved for each downdating method, measured in terms of operation counts and BLAS calls. Finally, we provide serial execution timing results for these algorithms, noting preferable points for improvement and optimization. From our experiments we conclude that the Gram-Schmidt methods perform best in terms of numerical accuracy, but may be too costly for serial execution for large problems.

  7. Inline Measurement of Particle Concentrations in Multicomponent Suspensions using Ultrasonic Sensor and Least Squares Support Vector Machines.

    PubMed

    Zhan, Xiaobin; Jiang, Shulan; Yang, Yili; Liang, Jian; Shi, Tielin; Li, Xiwen

    2015-09-18

    This paper proposes an ultrasonic measurement system based on least squares support vector machines (LS-SVM) for inline measurement of particle concentrations in multicomponent suspensions. Firstly, the ultrasonic signals are analyzed and processed, and the optimal feature subset that contributes to the best model performance is selected based on the importance of features. Secondly, the LS-SVM model is tuned, trained and tested with different feature subsets to obtain the optimal model. In addition, a comparison is made between the partial least square (PLS) model and the LS-SVM model. Finally, the optimal LS-SVM model with the optimal feature subset is applied to inline measurement of particle concentrations in the mixing process. The results show that the proposed method is reliable and accurate for inline measuring the particle concentrations in multicomponent suspensions and the measurement accuracy is sufficiently high for industrial application. Furthermore, the proposed method is applicable to the modeling of the nonlinear system dynamically and provides a feasible way to monitor industrial processes.

  8. Least Square Fast Learning Network for modeling the combustion efficiency of a 300WM coal-fired boiler.

    PubMed

    Li, Guoqiang; Niu, Peifeng; Wang, Huaibao; Liu, Yongchao

    2014-03-01

    This paper presents a novel artificial neural network with a very fast learning speed, all of whose weights and biases are determined by the twice Least Square method, so it is called Least Square Fast Learning Network (LSFLN). In addition, there is another difference from conventional neural networks, which is that the output neurons of LSFLN not only receive the information from the hidden layer neurons, but also receive the external information itself directly from the input neurons. In order to test the validity of LSFLN, it is applied to 6 classical regression applications, and also employed to build the functional relation between the combustion efficiency and operating parameters of a 300WM coal-fired boiler. Experimental results show that, compared with other methods, LSFLN with very less hidden neurons could achieve much better regression precision and generalization ability at a much faster learning speed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Application of Partial Least Square (PLS) Regression to Determine Landscape-Scale Aquatic Resources Vulnerability in the Ozark Mountains

    EPA Science Inventory

    Partial least squares (PLS) analysis offers a number of advantages over the more traditionally used regression analyses applied in landscape ecology, particularly for determining the associations among multiple constituents of surface water and landscape configuration. Common dat...

  10. Least squares polynomial chaos expansion: A review of sampling strategies

    NASA Astrophysics Data System (ADS)

    Hadigol, Mohammad; Doostan, Alireza

    2018-04-01

    As non-institutive polynomial chaos expansion (PCE) techniques have gained growing popularity among researchers, we here provide a comprehensive review of major sampling strategies for the least squares based PCE. Traditional sampling methods, such as Monte Carlo, Latin hypercube, quasi-Monte Carlo, optimal design of experiments (ODE), Gaussian quadratures, as well as more recent techniques, such as coherence-optimal and randomized quadratures are discussed. We also propose a hybrid sampling method, dubbed alphabetic-coherence-optimal, that employs the so-called alphabetic optimality criteria used in the context of ODE in conjunction with coherence-optimal samples. A comparison between the empirical performance of the selected sampling methods applied to three numerical examples, including high-order PCE's, high-dimensional problems, and low oversampling ratios, is presented to provide a road map for practitioners seeking the most suitable sampling technique for a problem at hand. We observed that the alphabetic-coherence-optimal technique outperforms other sampling methods, specially when high-order ODE are employed and/or the oversampling ratio is low.

  11. Discriminative least squares regression for multiclass classification and feature selection.

    PubMed

    Xiang, Shiming; Nie, Feiping; Meng, Gaofeng; Pan, Chunhong; Zhang, Changshui

    2012-11-01

    This paper presents a framework of discriminative least squares regression (LSR) for multiclass classification and feature selection. The core idea is to enlarge the distance between different classes under the conceptual framework of LSR. First, a technique called ε-dragging is introduced to force the regression targets of different classes moving along opposite directions such that the distances between classes can be enlarged. Then, the ε-draggings are integrated into the LSR model for multiclass classification. Our learning framework, referred to as discriminative LSR, has a compact model form, where there is no need to train two-class machines that are independent of each other. With its compact form, this model can be naturally extended for feature selection. This goal is achieved in terms of L2,1 norm of matrix, generating a sparse learning model for feature selection. The model for multiclass classification and its extension for feature selection are finally solved elegantly and efficiently. Experimental evaluation over a range of benchmark datasets indicates the validity of our method.

  12. Isotope pattern deconvolution for peptide mass spectrometry by non-negative least squares/least absolute deviation template matching

    PubMed Central

    2012-01-01

    Background The robust identification of isotope patterns originating from peptides being analyzed through mass spectrometry (MS) is often significantly hampered by noise artifacts and the interference of overlapping patterns arising e.g. from post-translational modifications. As the classification of the recorded data points into either ‘noise’ or ‘signal’ lies at the very root of essentially every proteomic application, the quality of the automated processing of mass spectra can significantly influence the way the data might be interpreted within a given biological context. Results We propose non-negative least squares/non-negative least absolute deviation regression to fit a raw spectrum by templates imitating isotope patterns. In a carefully designed validation scheme, we show that the method exhibits excellent performance in pattern picking. It is demonstrated that the method is able to disentangle complicated overlaps of patterns. Conclusions We find that regularization is not necessary to prevent overfitting and that thresholding is an effective and user-friendly way to perform feature selection. The proposed method avoids problems inherent in regularization-based approaches, comes with a set of well-interpretable parameters whose default configuration is shown to generalize well without the need for fine-tuning, and is applicable to spectra of different platforms. The R package IPPD implements the method and is available from the Bioconductor platform (http://bioconductor.fhcrc.org/help/bioc-views/devel/bioc/html/IPPD.html). PMID:23137144

  13. A second order discontinuous Galerkin fast sweeping method for Eikonal equations

    NASA Astrophysics Data System (ADS)

    Li, Fengyan; Shu, Chi-Wang; Zhang, Yong-Tao; Zhao, Hongkai

    2008-09-01

    In this paper, we construct a second order fast sweeping method with a discontinuous Galerkin (DG) local solver for computing viscosity solutions of a class of static Hamilton-Jacobi equations, namely the Eikonal equations. Our piecewise linear DG local solver is built on a DG method developed recently [Y. Cheng, C.-W. Shu, A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations, Journal of Computational Physics 223 (2007) 398-415] for the time-dependent Hamilton-Jacobi equations. The causality property of Eikonal equations is incorporated into the design of this solver. The resulting local nonlinear system in the Gauss-Seidel iterations is a simple quadratic system and can be solved explicitly. The compactness of the DG method and the fast sweeping strategy lead to fast convergence of the new scheme for Eikonal equations. Extensive numerical examples verify efficiency, convergence and second order accuracy of the proposed method.

  14. Spectrophotometric determination of ternary mixtures of thiamin, riboflavin and pyridoxal in pharmaceutical and human plasma by least-squares support vector machines.

    PubMed

    Niazi, Ali; Zolgharnein, Javad; Afiuni-Zadeh, Somaie

    2007-11-01

    Ternary mixtures of thiamin, riboflavin and pyridoxal have been simultaneously determined in synthetic and real samples by applications of spectrophotometric and least-squares support vector machines. The calibration graphs were linear in the ranges of 1.0 - 20.0, 1.0 - 10.0 and 1.0 - 20.0 microg ml(-1) with detection limits of 0.6, 0.5 and 0.7 microg ml(-1) for thiamin, riboflavin and pyridoxal, respectively. The experimental calibration matrix was designed with 21 mixtures of these chemicals. The concentrations were varied between calibration graph concentrations of vitamins. The simultaneous determination of these vitamin mixtures by using spectrophotometric methods is a difficult problem, due to spectral interferences. The partial least squares (PLS) modeling and least-squares support vector machines were used for the multivariate calibration of the spectrophotometric data. An excellent model was built using LS-SVM, with low prediction errors and superior performance in relation to PLS. The root mean square errors of prediction (RMSEP) for thiamin, riboflavin and pyridoxal with PLS and LS-SVM were 0.6926, 0.3755, 0.4322 and 0.0421, 0.0318, 0.0457, respectively. The proposed method was satisfactorily applied to the rapid simultaneous determination of thiamin, riboflavin and pyridoxal in commercial pharmaceutical preparations and human plasma samples.

  15. New robust bilinear least squares method for the analysis of spectral-pH matrix data.

    PubMed

    Goicoechea, Héctor C; Olivieri, Alejandro C

    2005-07-01

    A new second-order multivariate method has been developed for the analysis of spectral-pH matrix data, based on a bilinear least-squares (BLLS) model achieving the second-order advantage and handling multiple calibration standards. A simulated Monte Carlo study of synthetic absorbance-pH data allowed comparison of the newly proposed BLLS methodology with constrained parallel factor analysis (PARAFAC) and with the combination multivariate curve resolution-alternating least-squares (MCR-ALS) technique under different conditions of sample-to-sample pH mismatch and analyte-background ratio. The results indicate an improved prediction ability for the new method. Experimental data generated by measuring absorption spectra of several calibration standards of ascorbic acid and samples of orange juice were subjected to second-order calibration analysis with PARAFAC, MCR-ALS, and the new BLLS method. The results indicate that the latter method provides the best analytical results in regard to analyte recovery in samples of complex composition requiring strict adherence to the second-order advantage. Linear dependencies appear when multivariate data are produced by using the pH or a reaction time as one of the data dimensions, posing a challenge to classical multivariate calibration models. The presently discussed algorithm is useful for these latter systems.

  16. Application of least mean square algorithm to suppression of maglev track-induced self-excited vibration

    NASA Astrophysics Data System (ADS)

    Zhou, D. F.; Li, J.; Hansen, C. H.

    2011-11-01

    Track-induced self-excited vibration is commonly encountered in EMS (electromagnetic suspension) maglev systems, and a solution to this problem is important in enabling the commercial widespread implementation of maglev systems. Here, the coupled model of the steel track and the magnetic levitation system is developed, and its stability is investigated using the Nyquist criterion. The harmonic balance method is employed to investigate the stability and amplitude of the self-excited vibration, which provides an explanation of the phenomenon that track-induced self-excited vibration generally occurs at a specified amplitude and frequency. To eliminate the self-excited vibration, an improved LMS (Least Mean Square) cancellation algorithm with phase correction (C-LMS) is employed. The harmonic balance analysis shows that the C-LMS cancellation algorithm can completely suppress the self-excited vibration. To achieve adaptive cancellation, a frequency estimator similar to the tuner of a TV receiver is employed to provide the C-LMS algorithm with a roughly estimated reference frequency. Numerical simulation and experiments undertaken on the CMS-04 vehicle show that the proposed adaptive C-LMS algorithm can effectively eliminate the self-excited vibration over a wide frequency range, and that the robustness of the algorithm suggests excellent potential for application to EMS maglev systems.

  17. Reconstruction of vibroacoustic responses of a highly nonspherical structure using Helmholtz equation least-squares method.

    PubMed

    Lu, Huancai; Wu, Sean F

    2009-03-01

    The vibroacoustic responses of a highly nonspherical vibrating object are reconstructed using Helmholtz equation least-squares (HELS) method. The objectives of this study are to examine the accuracy of reconstruction and the impacts of various parameters involved in reconstruction using HELS. The test object is a simply supported and baffled thin plate. The reason for selecting this object is that it represents a class of structures that cannot be exactly described by the spherical Hankel functions and spherical harmonics, which are taken as the basis functions in the HELS formulation, yet the analytic solutions to vibroacoustic responses of a baffled plate are readily available so the accuracy of reconstruction can be checked accurately. The input field acoustic pressures for reconstruction are generated by the Rayleigh integral. The reconstructed normal surface velocities are validated against the benchmark values, and the out-of-plane vibration patterns at several natural frequencies are compared with the natural modes of a simply supported plate. The impacts of various parameters such as number of measurement points, measurement distance, location of the origin of the coordinate system, microphone spacing, and ratio of measurement aperture size to the area of source surface of reconstruction on the resultant accuracy of reconstruction are examined.

  18. Multi-innovation auto-constructed least squares identification for 4 DOF ship manoeuvring modelling with full-scale trial data.

    PubMed

    Zhang, Guoqing; Zhang, Xianku; Pang, Hongshuai

    2015-09-01

    This research is concerned with the problem of 4 degrees of freedom (DOF) ship manoeuvring identification modelling with the full-scale trial data. To avoid the multi-innovation matrix inversion in the conventional multi-innovation least squares (MILS) algorithm, a new transformed multi-innovation least squares (TMILS) algorithm is first developed by virtue of the coupling identification concept. And much effort is made to guarantee the uniformly ultimate convergence. Furthermore, the auto-constructed TMILS scheme is derived for the ship manoeuvring motion identification by combination with a statistic index. Comparing with the existing results, the proposed scheme has the significant computational advantage and is able to estimate the model structure. The illustrative examples demonstrate the effectiveness of the proposed algorithm, especially including the identification application with full-scale trial data. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Numerical Evaluation of P-Multigrid Method for the Solution of Discontinuous Galerkin Discretizations of Diffusive Equations

    NASA Technical Reports Server (NTRS)

    Atkins, H. L.; Helenbrook, B. T.

    2005-01-01

    This paper describes numerical experiments with P-multigrid to corroborate analysis, validate the present implementation, and to examine issues that arise in the implementations of the various combinations of relaxation schemes, discretizations and P-multigrid methods. The two approaches to implement P-multigrid presented here are equivalent for most high-order discretization methods such as spectral element, SUPG, and discontinuous Galerkin applied to advection; however it is discovered that the approach that mimics the common geometric multigrid implementation is less robust, and frequently unstable when applied to discontinuous Galerkin discretizations of di usion. Gauss-Seidel relaxation converges 40% faster than block Jacobi, as predicted by analysis; however, the implementation of Gauss-Seidel is considerably more expensive that one would expect because gradients in most neighboring elements must be updated. A compromise quasi Gauss-Seidel relaxation method that evaluates the gradient in each element twice per iteration converges at rates similar to those predicted for true Gauss-Seidel.

  20. A hybrid least squares support vector machines and GMDH approach for river flow forecasting

    NASA Astrophysics Data System (ADS)

    Samsudin, R.; Saad, P.; Shabri, A.

    2010-06-01

    This paper proposes a novel hybrid forecasting model, which combines the group method of data handling (GMDH) and the least squares support vector machine (LSSVM), known as GLSSVM. The GMDH is used to determine the useful input variables for LSSVM model and the LSSVM model which works as time series forecasting. In this study the application of GLSSVM for monthly river flow forecasting of Selangor and Bernam River are investigated. The results of the proposed GLSSVM approach are compared with the conventional artificial neural network (ANN) models, Autoregressive Integrated Moving Average (ARIMA) model, GMDH and LSSVM models using the long term observations of monthly river flow discharge. The standard statistical, the root mean square error (RMSE) and coefficient of correlation (R) are employed to evaluate the performance of various models developed. Experiment result indicates that the hybrid model was powerful tools to model discharge time series and can be applied successfully in complex hydrological modeling.