Sample records for galileo jupiter probe

  1. VLA Will Receive Galileo Probe Signals To Measure Jupiter's Winds

    NASA Astrophysics Data System (ADS)

    1995-11-01

    Socorro, NM -- When the Galileo Probe becomes the first spacecraft to enter the atmosphere of Jupiter on Dec. 7, a New Mexico radio telescope will be watching. In a technical feat thought impossible when Galileo was launched in 1989, the National Science Foundation's Very Large Array (VLA) will record the faint radio signal from the probe to help scientists measure the giant planet's winds. The VLA observations will dramatically improve estimates of Jupiter's wind speeds and complement other measurements studying the climate of Jupiter. The Galileo probe will transmit information to the main spacecraft as it descends toward a searing death under tremendous heat in Jupiter's lower atmosphere. The main spacecraft will later relay the probe's data to Earth. No Earth-based reception of the probe's radio signals was planned originally. The probe's antenna will be pointed at the main spacecraft, not the Earth. However, in 1991, Robert Preston and William Folkner of NASA's Jet Propulsion Laboratory (JPL) in Pasadena, CA, were discussing Earth-based reception of data from a similar probe under design for a planned mission to Saturn. "I thought, why not do this for Galileo," Folkner said. "They were planning to build this capability into the spacecraft for Saturn," Folkner explained, "and they thought it couldn't be done with the Galileo spacecraft already enroute to Jupiter. I didn't know it couldn't be done, so I worked it out and found that we could do it." According to Preston and Folkner's calculations, the direct reception of the probe's signals by the VLA and a similar radio telescope in Australia will make the measurement of Jupiter's winds ten times more precise as long as the probe radio signal can be detected. In addition, the direct reception also greatly improves scientists' knowledge of the probe's position as it enters the Jovian atmosphere. This will allow more effective use of the measurements of the probe radio signal by the main spacecraft to determine

  2. Understanding of Jupiter's Atmosphere after the Galileo Probe Entry

    NASA Technical Reports Server (NTRS)

    Fonda, Mark (Technical Monitor); Young, Richard E.

    2003-01-01

    Instruments on the Galileo probe measured composition, cloud properties, thermal structure, winds, radiative energy balance, and electrical properties of the Jovian atmosphere. As expected the probe results confirm some expectations about Jupiter's atmosphere, refute others, and raise new questions which still remain unanswered. This talk will concentrate on those aspects of the probe observations which either raised new questions or remain unresolved. The Galileo probe observations of composition and clouds provided some of the biggest surprises of the mission. Helium abundance measured by the probe differed significantly from the remote sensing derivations from Voyager. Discrepancy between the Voyager helium abundance determinations for Jupiter and the Galileo probe value have now led to a considerably increased helium determination for Saturn. Global abundance of N in the form of ammonia was observed to be super-solar by approximately the same factor as carbon, in contrast to expectations that C/N would be significantly larger than solar. This has implications for the formation and evolution of Jupiter. The cloud structure was not what was generally anticipated, even though most previous remote sensing results below the uppermost cloud referred to 5 micron hot spots, local regions with reduced cloud opacity. The Galileo probe descended in one of these hot spots. Only a tenuous, presumed ammomium hydrosulfide, cloud was detected, and no significant water cloud or super-solar water abundance was measured. The mixing ratios as a function of depth for the condensibles ammonia, hydrogen sulfide, and water, exhibited no apparent correlation with either condensation levels or with each other, an observation that is still a puzzle, although there are now dynamical models of hot spots which show promise in being able to explain such behavior. Probe tracked zonal winds show that wind magnitude increases with depth to pressures of about 4 bars, with the winds extending to

  3. Understanding of Jupiter's Atmosphere After the Galileo Probe Entry

    NASA Technical Reports Server (NTRS)

    Young, Richard E.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Instruments on the Galileo probe measured composition, cloud properties, thermal structure. winds, radiative energy balance, and electrical properties of the Jovian atmosphere. As expected the probe results confirm some expectations about Jupiter's atmosphere, refute others, and raise new questions which still remain unanswered. This talk will concentrate on those aspects of the probe observations which either raised new questions or remain unresolved. The Galileo probe observations of composition and clouds provided some of the biggest surprises of the mission. Helium abundance measured by the probe differed significantly from the remote sensing derivations from Voyager. discrepancy between the Voyager helium abundance determinations for Jupiter and the Galileo probe value have now led to a considerably increased helium determination for Saturn. Global abundance of N in the form of ammonia was observed to be supersolar by approximately the same factor as carbon, in contrast to expectations that C/N would be significantly larger than solar. This has implications for the formation and evolution of Jupiter. The cloud structure was not what was generally anticipated, even though most previous remote sensing results below the uppermost cloud referred to 5 micron hot spots, local regions with reduced cloud opacity. The Galileo probe descended in one of these hot spots. Only a tenuous, presumed ammonium hydrosulfide, cloud was detected, and no significant water cloud or super-solar water abundance was measured. The mixing ratios as a function of depth for the condensibles ammonia, hydrogen sulfide, and water, exhibited no apparent correlation with either condensation levels or with each other, an observation that is still a puzzle, although there are now dynamical models of hot spots which show promise in being able to explain such behavior. Probe tracked zonal winds show that wind magnitude increases with depth to pressures of about 4 bars, with the winds extending to

  4. Energetic Electron Measurements from the Galileo Jupiter Probe

    NASA Technical Reports Server (NTRS)

    Mihalov, J. D.; Lanzerotti, L. J.; Fischer, H. M.; Pehlke, E.

    1998-01-01

    Energetic trapped electrons were measured with the Galileo Jupiter Probe, with samples from inside Io's orbit, down to just above the atmosphere. The energetic electron fluxes and spectra agree well with the earlier results from the Pioneer spacecraft, where comparison may be made under the assumption of simple power law spectra. New features from the Galileo measurements include direct observations of the electron pitch angle distributions and spectral softening, both as the atmosphere is approached and at smaller pitch angles at each measurement location.

  5. The GalileoJupiter Probe Doppler Wind Experiment

    NASA Astrophysics Data System (ADS)

    Atkinson, D. H.

    2001-09-01

    The GalileoJupiter atmospheric entry probe was launched along with the Galileoorbiter spacecraft from Cape Canaveral in Florida, USA, on October 18, 1989. Following a cruise of greater than six years, the probe arrived at Jupiter on December 7, 1995. During its 57-minute descent, instruments on the probe studied the atmospheric composition and structure, the clouds, lightning, and energy structure of the upper Jovian atmosphere. One of the two radio channels over which the experiment data was transmitted to the orbiter was driven by an ultrastable oscillator. All motions of the probe and orbiter, including the speed of probe descent, Jupiter's rotation, and the atmospheric winds, contributed to a Doppler shift of the probe radio frequency. By accurately measuring the frequency of the probe radio signal, an accurate time history of the probe-orbiter relative motions could be reconstructed. Knowledge of the nominal probe and orbiter trajectories allowed the nominal Doppler shift to be removed from the probe radio frequency leaving a measurable frequency residual arising primarily from the zonal winds in Jupiter's atmosphere, and micromotions of the probe arising from probe spin, swing under the parachute, atmospheric turbulence, and aerodynamic effects. Assuming that the zonal horizontal winds dominate the residual probe motion, a profile of frequency residuals was generated. Inversion of the frequency residuals resulted in the first in situ measurements of the vertical profile of Jupiter's deep zonal winds. It is found that beneath 700 mb, the winds are strong and prograde, rising rapidly to 170 m/s between 1 and 4 bars. Beneath 4 bars to 21 bars, the depth at which the link with the probe was lost, the winds remain constant and strong. When corrections for the high temperatures encountered by the probe are considered, there is no evidence of diminishing or strengthening of the zonal winds in the deepest regions explored by the Galileoprobe. Following the wind

  6. Galileo Jupiter approach orbit determination

    NASA Technical Reports Server (NTRS)

    Miller, J. K.; Nicholson, F. T.

    1984-01-01

    Orbit determination characteristics of the Jupiter approach phase of the Galileo mission are described. Predicted orbit determination performance is given for the various mission events that occur during Jupiter approach. These mission events include delivery of an atmospheric entry probe, acquisition of probe science data by the Galileo orbiter for relay to earth, delivery of an orbiter to a close encounter of the Galilean satellite Io, and insertion of the orbiter into orbit about Jupiter. The orbit determination strategy and resulting accuracies are discussed for the data types which include Doppler, range, optical imaging of Io, and a new Very Long Baseline Interferometry (VLBI) data type called Differential One-Way Range (DOR).

  7. HUBBLE VIEWS THE GALILEO PROBE ENTRY SITE ON JUPITER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [left] - This Hubble Space Telescope image of Jupiter was taken on Oct. 5, 1995, when the giant planet was at a distance of 534 million miles (854 million kilometers) from Earth. The arrow points to the predicted site at which the Galileo Probe will enter Jupiter's atmosphere on December 7, 1995. At this latitude, the eastward winds have speeds of about 250 miles per hour (110 meters per second). The white oval to the north of the probe site drifts westward at 13 miles per hour (6 meters per second), rolling in the winds which increase sharply toward the equator. The Jupiter image was obtained with the high resolution mode of Hubble's Wide Field Planetary Camera 2 (WFPC2). Because the disk of the planet is larger than the field of view of the camera, image processing was used to combine overlapping images from three consecutive orbits to produce this full disk view of the planet. [right] - These four enlarged Hubble images of Jupiter's equatorial region show clouds sweeping across the predicted Galileo probe entry site, which is at the exact center of each frame (a small white dot has been inserted at the centered at the predicted entry site). The first image (upper left quadrant) was obtained with the WFPC2 on Oct. 4, 1995 at (18 hours UT). The second, third and fourth images (from upper right to lower right) were obtained 10, 20 and 60 hours later, respectively. The maps extend +/- 15 degrees in latitude and longitude. The distance across one of the images is about three Earth diameters (37,433 kilometers). During the intervening time between the first and fourth maps, the winds have swept the clouds 15,000 miles (24,000 kilometers) eastward. Credit: Reta Beebe (New Mexico State University), and NASA

  8. The Galileo probe Doppler wind experiment: Measurement of the deep zonal winds on Jupiter

    NASA Astrophysics Data System (ADS)

    Atkinson, David H.; Pollack, James B.; Seiff, Alvin

    1998-09-01

    During its descent into the upper atmosphere of Jupiter, the Galileo probe transmitted data to the orbiter for 57.5 min. Accurate measurements of the probe radio frequency, driven by an ultrastable oscillator, allowed an accurate time history of the probe motions to be reconstructed. Removal from the probe radio frequency profile of known Doppler contributions, including the orbiter trajectory, the probe descent velocity, and the rotation of Jupiter, left a measurable frequency residual due to Jupiter's zonal winds, and microdynamical motion of the probe from spin, swing under the parachute, atmospheric turbulence, and aerodynamic buffeting. From the assumption of the dominance of the zonal horizontal winds, the frequency residuals were inverted and resulted in the first in situ measurements of the vertical profile of Jupiter's deep zonal winds. A number of error sources with the capability of corrupting the frequency measurements or the interpretation of the frequency residuals were considered using reasonable assumptions and calibrations from prelaunch and in-flight testing. It is found that beneath the cloud tops (about 700 mbar) the winds are prograde and rise rapidly to 170 m/s at 4 bars. Beyond 4 bars to the depth at which the link with the probe was lost, nearly 21 bars, the winds remain constant and strong. Corrections for the high temperatures encountered by the probe have recently been completed and provide no evidence of diminishing or strengthening of the zonal wind profile in the deeper regions explored by the Galileo probe.

  9. Potential Jupiter astmospheric constituents: candidates for the mass spectrometer in the Galileo atmospheric probe

    NASA Technical Reports Server (NTRS)

    Keane, T. C.; Yuan, F.; Ferris, J. P.

    1996-01-01

    An array of carbon-hydrogen-nitrogen (CHN) compounds are formed when mixtures of ammonia and acetylene are photolyzed with ultraviolet (UV) light. Some of these compounds, formed in our investigation of pathways for HCN synthesis on Jupiter, have not been encountered previously in observational, theoretical or laboratory photochemical studies. Knowledge of these structures may facilitate the interpretation of the mass spectral data obtained by the Galileo probe as it passed through the atmosphere of Jupiter.

  10. Deep Atmosphere Ammonia Mixing Ratio at Jupiter from the Galileo Probe Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Niemann, H. B.; Demick, J. E.

    1999-01-01

    New laboratory studies employing the Engineering Unit (EU) of the Galileo Probe Mass Spectrometer (GPMS) have resulted in a substantial reduction in the previously reported upper limit on the ammonia mixing ratio derived from the GPMS experiment at Jupiter. This measurement is complicated by background ammonia contributions in the GPMS during direct atmospheric sampling produced from the preceding gas enrichment experiments. These backgrounds can be quantified with the data from the EU studies when they are carried out in a manner that duplicates the descent profile of pressure and enrichment cell loading. This background is due to the tendency of ammonia to interact strongly with the walls of the mass spectrometer and on release to contribute to the gas being directly directed into the ion source from the atmosphere through a capillary pressure reduction leak. It is evident from the GPMS and other observations that the mixing ratio of ammonia at Jupiter reaches the deep atmosphere value at substantially higher pressures than previously assumed. This is a likely explanation for the previously perceived discrepancy between ammonia values derived from ground based microwave observations and those obtained from attenuation of the Galileo Probe radio signal.

  11. Galileo to Jupiter: Probing the Planet and Mapping Its Moons

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The first project to use the space shuttle as an interplanetary launch vehicle, the Galileo mission is designed to obtain information about the origin and evolution of the solar system by studying large-scale phenomena on Jupiter and its satellites. Aimed towards Mars to obtain gravity assist, the orbiting spacecraft will deploy a probe, which penetrating the Jovian atmosphere, will transmit data for approximately an hour. The spacecraft itself will inspect the atmospheres, ionospheres, and surfaces of Ganymede, Io, Europa, and Callisto, as well as determine their magnetic and gravitational properties. The experiments to be conducted and their scientific objectives are described. Known facts about the Jovian system are reviewed.

  12. The Galileo Probe: How it Has Changed Our Understanding of Jupiter

    NASA Technical Reports Server (NTRS)

    Young, Richard E.

    2003-01-01

    The Galileo Mission to Jupiter, which arrived in December of 1995, provided the first study by an orbiter, and the first in-situ sampling via an entry probe, of an outer planet atmosphere. The rationale for an entry probe is that, even from an orbiter, remote sensing of the jovian atmosphere could not adequately retrieve the information desired. This paper provides a current summary of the most significant aspects of the data returned from the Galileo entry probe. As a result of the probe measurements, there has been a reassessment of our understanding of outer planet formation and evolution of the solar system. The primary scientific objective of the Galileo probe was to determine the composition of the jovian atmosphere, which from remote sensing remained either very uncertain, or completely unknown, with respect to several key elements. The probe found that the global He mass fraction is. significantly above the value reported from the Voyager Jupiter flybys but is slightly below the protosolar value, implying that there has been some settling of He to the deep jovian interior. The probe He measurements have also led to a reevaluation of the Voyager He mass fraction for Saturn, which is now determined to be much closer to that of Jupiter. The elements C, N, S, Ar, Kr, Xe were all found to have global abundances approximately 3 times their respective solar abundances. This result has raised a number of fundamental issues with regard to properties of planetesimals and the solar nebula at the time of giant planet formation. Ne, on the other hand, was found to be highly depleted, probably as the result of it being carried along with helium as helium settles towards the deep interior. The global abundance of O was not obtained by the probe because of the influence of local processes at the probe entry site (PES), processes which depleted condensible species, in this case H2O, well below condensation levels. Other condensible species, namely NH3 and H2S, were

  13. Line drawing of the Galileo spacecraft's encounters on its way to Jupiter

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Line drawing charts the Galileo spacecraft's launch from low Earth orbit and its three planetary and two asteroid encounters in the course of its gravity-assisted flight to Jupiter. These encounters include Venus (February 1990), two Earth passes (December 1990 and December 1992), and the asteroids Gaspra and Ida in the asteroid belt. Galileo will release a probe and will arrive at Jupiter, 12-07-95.

  14. Line drawing of the Galileo spacecraft's encounters on its way to Jupiter

    NASA Image and Video Library

    1989-09-11

    Line drawing charts the Galileo spacecraft's launch from low Earth orbit and its three planetary and two asteroid encounters in the course of its gravity-assisted flight to Jupiter. These encounters include Venus (February 1990), two Earth passes (December 1990 and December 1992), and the asteroids Gaspra and Ida in the asteroid belt. Galileo will release a probe and will arrive at Jupiter, 12-07-95.

  15. Artist: Ken Hodges Composite image explaining Objective and Motivation for Galileo Probe Heat Loads:

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Artist: Ken Hodges Composite image explaining Objective and Motivation for Galileo Probe Heat Loads: Galileo Probe descending into Jupiters Atmosphere shows heat shield separation with parachute deployed. (Ref. JPL P-19180)

  16. Labeled line drawing of Galileo spacecraft's atmospheric probe

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Labeled line drawing entitled GALILEO PROBE identifies the deceleration module aft cover, descent module, and deceleration module aeroshell configurations and dimensions prior to and during entry into Jupiter's atmosphere.

  17. Labeled line drawing of Galileo spacecraft's atmospheric probe

    NASA Image and Video Library

    1989-09-11

    Labeled line drawing entitled GALILEO PROBE identifies the deceleration module aft cover, descent module, and deceleration module aeroshell configurations and dimensions prior to and during entry into Jupiter's atmosphere.

  18. JAE: A Jupiter Atmospheric Entry Probe Heating Code

    NASA Technical Reports Server (NTRS)

    Wercinski, Paul F.; Tauber, Michael E.; Yang, Lily

    1997-01-01

    The strong gravitational attraction of Jupiter on probes approaching the planet results in very high atmospheric entry velocities. The values relative to the rotating atmosphere can vary from about 47 to 60 km/sec, depending on the latitude of the entry. Therefore, the peak heating rates and heat shield mass fractions exceed those for any other atmospheric entries. For example, the Galileo probe's heat shield mass fraction was 50%, of which 45% was devoted to the forebody. Although the Galileo probe's mission was very successful, many more scientific questions about the Jovian atmosphere remain to be answered and additional probe missions are being planned. Recent developments in microelectronics have raised the possibility of building smaller and less expensive probes than Galileo. Therefore, it was desirable to develop a code that could quickly compute the forebody entry heating environments when performing parametric probe sizing studies. The Jupiter Atmospheric Entry (JAE) code was developed to meet this requirement. The body geometry consists of a blunt-nosed conical shape of arbitrary nose and base radius and cone angles up to about 65 deg at zero angle of attack.

  19. Galileo Outreach Compilation

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This NASA JPL (Jet Propulsion Laboratory) video production is a compilation of the best short movies and computer simulation/animations of the Galileo spacecraft's journey to Jupiter. A limited number of actual shots are presented of Jupiter and its natural satellites. Most of the video is comprised of computer animations of the spacecraft's trajectory, encounters with the Galilean satellites Io, Europa and Ganymede, as well as their atmospheric and surface structures. Computer animations of plasma wave observations of Ganymede's magnetosphere, a surface gravity map of Io, the Galileo/Io flyby, the Galileo space probe orbit insertion around Jupiter, and actual shots of Jupiter's Great Red Spot are presented. Panoramic views of our Earth (from orbit) and moon (from orbit) as seen from Galileo as well as actual footage of the Space Shuttle/Galileo liftoff and Galileo's space probe separation are also included.

  20. Using Methane Absorption to Probe Jupiter's Atmosphere

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaics of a belt-zone boundary near Jupiter's equator in near-infrared light moderately absorbed by atmospheric methane (top panel), and strongly absorbed by atmospheric methane (bottom panel). The four images that make up each of these mosaics were taken within a few minutes of each other. Methane in Jupiter's atmosphere absorbs light at specific wavelengths called absorption bands. By detecting light close and far from these absorption bands, Galileo can probe to different depths in Jupiter's atmosphere. Sunlight near 732 nanometers (top panel) is moderately absorbed by methane. Some of the light reflected from clouds deep in Jupiter's troposphere is absorbed, enhancing the higher features. Sunlight at 886 nanometers (bottom panel) is strongly absorbed by methane. Most of the light reflected from the deeper clouds is absorbed, making these clouds invisible. Features in the diffuse cloud layer higher in Jupiter's atmosphere are greatly enhanced.

    North is at the top. The mosaic covers latitudes -13 to +3 degrees and is centered at longitude 282 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on November 5th, 1996, at a range of 1.2 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  1. Galileo Probe Doppler Residuals as the Wave-Dynamical Signature of Weakly Stable, Downward-Increasing Stratification in Jupiter's Deep Wind Layer

    NASA Technical Reports Server (NTRS)

    Allison, Michael; Atkinson, David H.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Doppler radio tracking of the Galileo probe-to-orbiter relay, previously analyzed for its in situ measure of Jupiter's zonal wind at the equatorial entry site, also shows a record of significant residual fluctuations apparently indicative of varying vertical motions. Regular oscillations over pressure depth in the residual Doppler measurements of roughly 1-8 Hz (increasing upward), as filtered over a 134 sec window, are most plausibly interpreted as gravity waves, and imply a weak, but downward increasing static stability within the 5 - 20 bar region of Jupiter's atmosphere. A matched extension to deeper levels of an independent inertial stability constraint from the measured vertical wind shear at 1 - 4 bars is roughly consistent with a static stability of approximately 0.5 K/km near the 20 bar level, as independently detected by the probe Atmospheric Structure Instrument.

  2. Galileo's Telescopy and Jupiter's Tablet

    NASA Astrophysics Data System (ADS)

    Usher, P. D.

    2003-12-01

    A previous paper (BAAS 33:4, 1363, 2001) reported on the dramatic scene in Shakespeare's Cymbeline that features the descent of the deity Jupiter. The paper suggested that the four ghosts circling the sleeping Posthumus denote the four Galilean moons of Jupiter. The god Jupiter commands the ghosts to lay a tablet upon the prone Posthumus, but says that its value should not be overestimated. When Posthumus wakens he notices the tablet, which he calls a "book." Not only has the deity's "tablet" become the earthling's "book," but it appears that the book has covers which Posthumus evidently recognizes because without even opening the book he ascribes two further properties to it: rarity, and the very property that Jupiter had earlier attributed, viz. that one must not read too much into it. The mystery deepens when the Jovian gift undergoes a second metamorphosis, to "label." With the help of the OED, the potentially disparate terms "tablet," "book," and "label," may be explained by terms appropriate either to supernatural or worldly beings. "Tablet" may recognize the Mosaic artifact, whereas "book" and "label" are probably mundane references to Galileo's Sidereus Nuncius which appeared shortly before Cymbeline. The message of the Olympian god indicates therefore that the book is unique even as its contents have limited value. The first property celebrates the fact that Galileo's book is the first of its kind, and the second advises that all results except the discovery of Jupiter's moons have been reported earlier, in Hamlet.

  3. Galileo probe battery systems design

    NASA Technical Reports Server (NTRS)

    Dagarin, B. P.; Van Ess, J. S.; Marcoux, L. S.

    1986-01-01

    NASA's Galileo mission to Jupiter will consist of a Jovian orbiter and an atmospheric entry probe. The power for the probe will be derived from two primary power sources. The main source is composed of three Li-SO2 battery modules containing 13 D-size cell strings per module. These are required to retain capacity for 7.5 years, support a 150 day clock, and a 7 hour mission sequence of increasing loads from 0.15 to 9.5 amperes for the last 30 minutes. This main power source is supplemented by two thermal batteries (CaCrO4-Ca) for use in firing the pyrotechnic initiators during the atmospheric staging events. This paper describes design development and testing of these batteries at the system level.

  4. A reassessment of Galileo radiation exposures in the Jupiter magnetosphere.

    PubMed

    Atwell, William; Townsend, Lawrence; Miller, Thomas; Campbell, Christina

    2005-01-01

    Earlier particle experiments in the 1970s on Pioneer-10 and -11 and Voyager-1 and -2 provided Jupiter flyby particle data, which were used by Divine and Garrett to develop the first Jupiter trapped radiation environment model. This model was used to establish a baseline radiation effects design limit for the Galileo onboard electronics. Recently, Garrett et al. have developed an updated Galileo Interim Radiation Environment (GIRE) model based on Galileo electron data. In this paper, we have used the GIRE model to reassess the computed radiation exposures and dose effects for Galileo. The 34-orbit 'as flown' Galileo trajectory data and the updated GIRE model were used to compute the electron and proton spectra for each of the 34 orbits. The total ionisation doses of electrons and protons have been computed based on a parametric shielding configuration, and these results are compared with previously published results.

  5. Artist concept of Galileo encountering Io during its Jupiter approach

    NASA Image and Video Library

    1989-08-25

    Artist concept shows Galileo spacecraft while still approaching Jupiter having a satellite encounter. Galileo is flying about 600 miles above Io's volcano-torn surface, twenty times closer than the closest flyby altitude of Voyager in 1979.

  6. Artist concept of Galileo spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Galileo spacecraft is illustrated in artist concept. Gallileo, named for the Italian astronomer, physicist and mathematician who is credited with construction of the first complete, practical telescope in 1620, will make detailed studies of Jupiter. A cooperative program with the Federal Republic of Germany the Galileo mission will amplify information acquired by two Voyager spacecraft in their brief flybys. Galileo is a two-element system that includes a Jupiter-orbiting observatory and an entry probe. Jet Propulsion Laboratory (JPL) is Galileo project manager and builder of the main spacecraft. Ames Research Center (ARC) has responsibility for the entry probe, which was built by Hughes Aircraft Company and General Electric. Galileo will be deployed from the payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104, during mission STS-34.

  7. Calibration of the Infrared Telescope Facility National Science Foundation Camera Jupiter Galileo Data Set

    NASA Astrophysics Data System (ADS)

    Vincent, Mark B.; Chanover, Nancy J.; Beebe, Reta F.; Huber, Lyle

    2005-10-01

    The NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii, set aside some time on about 500 nights from 1995 to 2002, when the NSFCAM facility infrared camera was mounted and Jupiter was visible, for a standardized set of observations of Jupiter in support of the Galileo mission. The program included observations of Jupiter, nearby reference stars, and dome flats in five filters: narrowband filters centered at 1.58, 2.28, and 3.53 μm, and broader L' and M' bands that probe the atmosphere from the stratosphere to below the main cloud layer. The reference stars were not cross-calibrated against standards. We performed follow-up observations to calibrate these stars and Jupiter in 2003 and 2004. We present a summary of the calibration of the Galileo support monitoring program data set. We present calibrated magnitudes of the six most frequently observed stars, calibrated reflectivities, and brightness temperatures of Jupiter from 1995 to 2004, and a simple method of normalizing the Jovian brightness to the 2004 results. Our study indicates that the NSFCAM's zero-point magnitudes were not stable from 1995 to early 1997, and that the best Jovian calibration possible with this data set is limited to about +/-10%. The raw images and calibration data have been deposited in the Planetary Data System.

  8. Rarefaction effects on Galileo probe aerodynamics

    NASA Technical Reports Server (NTRS)

    Moss, James N.; LeBeau, Gerald J.; Blanchard, Robert C.; Price, Joseph M.

    1996-01-01

    Solutions of aerodynamic characteristics are presented for the Galileo Probe entering Jupiter's hydrogen-helium atmosphere at a nominal relative velocity of 47.4 km/s. Focus is on predicting the aerodynamic drag coefficient during the transitional flow regime using the direct simulation Monte Carlo (DSMC) method. Accuracy of the probe's drag coefficient directly impacts the inferred atmospheric properties that are being extracted from the deceleration measurements made by onboard accelerometers as part of the Atmospheric Structure Experiment. The range of rarefaction considered in the present study extends from the free molecular limit to continuum conditions. Comparisons made with previous calculations and experimental measurements show the present results for drag to merge well with Navier-Stokes and experimental results for the least rarefied conditions considered.

  9. Further evaluation of waves and turbulence encountered by the Galileo Probe during descent in Jupiter's atmosphere

    NASA Astrophysics Data System (ADS)

    Seiff, Alvin; Kirk, Donn B.; Mihalov, John; Knight, Tony C. D.

    Data from the Galileo Probe in Jupiter descent indicated descent velocity oscillations as large as ±5 m/s on a height scale of a few km, which suggested gravity waves in the atmosphere between 4 and 20 bars (Seiff et al., 1998), an important observation for atmospheric stability and dynamics. But we now find these velocity fluctuations to be inconsistent with simultaneous measurements of mean accelerations, which were relatively steady. This conflict is resolved in favor of the accelerometers. The velocity fluctuations can be explained from digital uncertainties in the slow rate of pressure rise. However, the accelerometers did record higher frequency perturbations of up to 0.1g. Attributed to turbulence, these imply turbulent velocities from 0.3 to 5 m/s at scales of 10 to 40 m. However, they were at least partly a result of unsteady parachute aerodynamics.

  10. Ultraviolet Studies of Jupiter's Hydrocarbons and Aerosols from Galileo

    NASA Technical Reports Server (NTRS)

    Gladstone, G. Randall

    2001-01-01

    This is the final report for this project. The purpose of this project was to support PI Wayne Pryor's effort to reduce and analyze Galileo UVS (Ultraviolet Spectrometer) data under the JSDAP program. The spectral observations made by the Galileo UVS were to be analyzed to determine mixing ratios for important hydrocarbon species (and aerosols) in Jupiter's stratosphere as a function of location on Jupiter. Much of this work is still ongoing. To date, we have concentrated on analyzing the variability of the auroral emissions rather than the absorption signatures of hydrocarbons, although we have done some work in this area with related HST-STIS data.

  11. Simon Marius vs. Galileo: Who First Saw Moons of Jupiter?

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Van Helden, Albert

    2016-10-01

    In his almanac for 1612 and book Mundus Iovalis of 1614, Simon Marius in Germany reported his discovery of moons around Jupiter, which he started writing down in late 1609 in the Julian calendar, which translated to 8 January 1610 in the Gregorian calendar in use by Galileo in Italy. Is Marius to be believed? Galileo certainly did not. But a Dutch jury of experts about three hundred years later reported that they validated the claim that Marius independently discovered the moons of Jupiter one day after Galileo first both saw and wrote down his discovery! There is no doubt that the names Io, Europa, Ganymede, and Callisto came from Marius (to whom they were suggested by Kepler). See JMP's Journal for the History of Astronomy article, 46(2), 218-234 (2015).Marius wrote that he had been observing the moons around Jupiter since November 1609 (Julian), using a neighboring nobleman's telescope, which would mean that he actually saw the Jupiter satellites first (though publish or perish). Whether this feat was technically possible comes down to discussions of the capabilities of telescopes in the early 17th century.The quadricentennial of Marius's book was celebrated in Nuremberg with a symposium that is now in press in German with an English translation expected. One of us (AVH) has recently prepared a complete English translation of Marius's book, superseding the partial translation made 100 years ago. There is no evidence that, whether he saw what we now call the Galilean satellites first or not, Marius appreciated their cosmological significance the way that Galileo soon did. And Marius was certainly the first to publish tables of the moons of Jupiter.We thank the Chapin Library of Williams College and the Huntington Library for assistance with first editions of Marius's 1614 book, and we thank Pierre Leich of the Simon Marius Gesellschaft for his consultations.

  12. From Galileo's telescope to the Galileo spacecraft: our changing views of the Jupiter system

    NASA Astrophysics Data System (ADS)

    Lopes, R. M.

    2008-12-01

    In four centuries, we have gone from the discovery of the four large moons of Jupiter - Io, Europa, Ganymede, and Callisto - to important discoveries about these four very different worlds. Galileo's telescopic discovery was a major turning point in the understanding of science. His observations of the moons' motion around Jupiter challenged the notion of an Earth-centric Universe. A few months later, Galileo discovered the phases of Venus, which had been predicted by the heliocentric model of the Solar System. Galileo also observed the rings of Saturn (which he mistook for planets) and sunspots, and was the first person to report mountains and craters on the Moon, whose existence he deduced from the patterns of light and shadow on the Moon's surface, concluding that the surface was topographically rough. Centuries later, the Galileo spacecraft's discoveries challenged our understanding of outer planet satellites. Results included the discovery of an icy ocean underneath Europa's surface, the possibility of life on Europa, the widespread volcanism on Io, and the detection of a magnetic field around Ganymede. All four of these satellites revealed how the major geologic processes - volcanism, tectonism, impact cratering and erosion - operate in these different bodies, from the total lack of impact craters on Io to the heavily cratered, ancient surface of Callisto. The Galileo spacecraft's journey also took it to Venus and the Moon, making important scientific observations about these bodies. The spacecraft discovered the first moon orbiting around an asteroid which, had Galileo the man observed, would have been another major blow for the geocentric model of our Solar System.

  13. Continuing Studies of Planetary Atmospheres Associated with Experiments on the Galileo Jupiter Probe and Infrared Observations of Venus

    NASA Technical Reports Server (NTRS)

    Ragent, Boris

    1998-01-01

    The results of the nephelometer experiment conducted aboard the Probe of the Galileo mission to Jupiter are presented. The tenuous clouds and sparse particulate matter in the relatively particle-free 5-micron "hot spot" region of the Probe's descent were documented from about 0.46 bars to about 12 bars. Three regions of apparent coherent structure were noted, in addition to many indications of extremely small particle concentrations along the descent path. From the first valid measurement at about 0.46 bars down to about 0.55 bars a feeble decaying lower portion of a cloud, corresponding with the predicted ammonia particle cloud, was encountered. A denser, but still very modest, particle structure was present in the pressure regime extending from about 0.76 to a distinctive base at 1.34 bars, and is compatible with the expected ammonium hydrosulfide cloud. No massive water cloud was encountered, although below the second structure, a small, vertically thin layer at about 1.65 bars may be detached from the cloud above, but may also be water condensation, compatible with reported measurements of water abundance from other Galileo Mission experiments. A third small signal region, extending from about 1.9 to 4.5 bars, exhibited quite weak but still distinctive structure, and, although the identification of the light scatterers in this region is uncertain, may also be a water cloud perhaps associated with lateral atmospheric motion and/or reduced to a small mass density by atmospheric subsidence or other explanations. Rough descriptions of the particle size distributions and cloud properties in these regions have been derived, although they may be imprecise because of the small signals and experimental difficulties. These descriptions document the small number densities of particles, the moderate particle sizes, generally in the slightly submicron to few micron range, and the resulting small optical depths, mass densities due to particles, column particle number loading

  14. Continuing Studies of Planetary Atmospheres Associated With Experiments on the Galileo Jupiter Probe and Infrared Observations of Venus

    NASA Technical Reports Server (NTRS)

    Goodman,Jindra; Ragent, Boris

    1998-01-01

    The results of the nephelometer experiment conducted aboard the Probe of the Galileo mission to Jupiter are presented. The tenuous clouds and sparse particulate matter in the relatively particle-free 5-micron "hot spot" region of the Probe's descent were documented from about 0.46 bars to about 12 bars. Three regions of apparent coherent structure were noted, in addition to many indications of extremely small particle concentrations along the descent path. From the first valid measurement at about 0.46 bars down to about 0.55 bars a feeble decaying lower portion of a cloud, corresponding with the predicted ammonia particle cloud, was encountered. A denser, but still very modest, particle structure was present in the pressure regime extending from about 0.76 to a distinctive base at 1.34 bars, and is compatible with the expected ammonium hydrosulfide cloud. No massive water cloud was encountered, although below the second structure, a small, vertically thin layer at about 1.65 bars may be detached from the cloud above, but may also be water condensation, compatible with reported measurements of water abundance from other Galileo Mission experiments. A third small signal region, extending from about 1.9 to 4.5 bars, exhibited quite weak but still distinctive structure, and, although the identification of the light scatterers in this region is uncertain, may also be a water cloud perhaps associated with lateral atmospheric motion and/or reduced to a small mass density by atmospheric subsidence or other explanations. Rough descriptions of the particle size distributions and cloud properties in these regions have been derived, although they may be imprecise because of the small signals and experimental difficulties. These descriptions document the small number densities of particles, the moderate particle sizes, generally in the slightly submicron to few micron range, and the resulting small optical depths, mass densities due to particles, column particle number loading

  15. Project GALILEO: Farewell to the Major Moons of Jupiter

    NASA Astrophysics Data System (ADS)

    Theilig, E.

    2002-01-01

    After a six year odyssey, Galileo has completed its survey of the large moons of Jupiter. In the four years since the end of the primary mission, Galileo provided new insights into the fundamental questions concerning Jupiter and its moons and magnetosphere. Longevity, changing orbital geometry, and multiple flybys afforded the opportunity to distinguish intrinsic versus induced magnetic fields on the Galilean moons, to characterize the dusk side of the magnetosphere, to acquire high resolution observations supporting the possibility of subsurface water within Europa, Ganymede, and Callisto, and to monitor the highly dynamic volcanic activity of Io. In January 2002, a final gravity assist placed the spacecraft on a two-orbit trajectory culminating in a Jupiter impact in September 2003. With the successful completion of the Io encounters, plans are being made for the final encounter of the mission. In November 2002, the spacecraft will fly one Jupiter radius above the planet's cloud-tops, sampling the inner magnetosphere and the gossamer rings. The trajectory will take Galileo close enough to Amalthea, (a small inner moon) to obtain the first gravity data for this body. Because a radiation dose of 73 krads is expected on this encounter, which will bring the total radiation dose to greater than four times the spacecraft design limits, the command sequence has to account for the possibility of subsystem failure and the loss of spacecraft control after this perijove passage. One of the primary objectives this year has been to place the spacecraft on a trajectory to impact Jupiter on orbit 35. Galileo's discovery of water beneath the frozen surface of Europa raised concerns about forward contamination by inadvertently impacting that moon and resulted in an end of mission requirement to dispose of the spacecraft. A risk assessment of the final two Io encounters was performed to manage the project's ability to meet this requirement. Radiation affected the extended mission

  16. Integer cosine transform compression for Galileo at Jupiter: A preliminary look

    NASA Technical Reports Server (NTRS)

    Ekroot, L.; Dolinar, S.; Cheung, K.-M.

    1993-01-01

    The Galileo low-gain antenna mission has a severely rate-constrained channel over which we wish to send large amounts of information. Because of this link pressure, compression techniques for image and other data are being selected. The compression technique that will be used for images is the integer cosine transform (ICT). This article investigates the compression performance of Galileo's ICT algorithm as applied to Galileo images taken during the early portion of the mission and to images that simulate those expected from the encounter at Jupiter.

  17. Jupiter Equatorial Region

    NASA Image and Video Library

    1998-03-06

    This photographic mosaic of images from NASA's Galileo spacecraft covers an area of 34,000 kilometers by 22,000 kilometers (about 21,100 by 13,600 miles) in Jupiter's equatorial region. The dark region near the center of the mosaic is an equatorial "hotspot" similar to the site where the Galileo Probe parachuted into Jupiter's atmosphere in December 1995. These features are holes in the bright, reflective, equatorial cloud layer where heat from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright oval in the upper right of the mosaic as well as the other smaller bright features are examples of upwelling of moist air and condensation. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging camera system aboard Galileo. North is at the top. The mosaic covers latitudes 1 to 19 degrees and is centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. http://photojournal.jpl.nasa.gov/catalog/PIA00604

  18. Shuttle Atlantis to deploy Galileo probe toward Jupiter

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objectives of Space Shuttle Mission STS-34 are described along with major flight activities, prelaunch and launch operations, trajectory sequence of events, and landing and post-landing operations. The primary objective of STS-34 is to deploy the Galileo planetary exploration spacecraft into low earth orbit. Following deployment, Galileo will be propelled on a trajectory, known as Venus-Earth-Earth Gravity Assist (VEEGA), by an inertial upper stage (IUS). The objectives of the Galileo mission are to study the chemical composition, state, and dynamics of the Jovian atmosphere and satellites, and investigate the structure and physical dynamics of the Jovian magnetosphere. Secondary STS-34 payloads include the Shuttle Solar Backscatter Ultraviolet (SSBUV) instrument; the Mesoscale Lightning Experiment (MLE); and various other payloads involving polymer morphology, the effects of microgravity on plant growth hormone, and the growth of ice crystals.

  19. Chemical composition measurements of the atmosphere of Jupiter with the Galileo Probe mass spectrometer

    NASA Technical Reports Server (NTRS)

    Niemann, H. B.; Atreya, S. K.; Carignan, G. R.; Donahue, T. M.; Haberman, J. A.; Harpold, D. N.; Hartle, R. E.; Hunten, D. M.; Kasprzak, W. T.; Mahaffy, P. R.; hide

    1998-01-01

    The Galileo Probe entered the atmosphere of Jupiter on December 7, 1995. Measurements of the chemical and isotopic composition of the Jovian atmosphere were obtained by the mass spectrometer during the descent over the 0.5 to 21 bar pressure region over a time period of approximately 1 hour. The sampling was either of atmospheric gases directly introduced into the ion source of the mass spectrometer through capillary leaks or of gas, which had been chemically processed to enhance the sensitivity of the measurement to trace species or noble gases. The analysis of this data set continues to be refined based on supporting laboratory studies on an engineering unit. The mixing ratios of the major constituents of the atmosphere hydrogen and helium have been determined as well as mixing ratios or upper limits for several less abundant species including: methane, water, ammonia, ethane, ethylene, propane, hydrogen sulfide, neon, argon, krypton, and xenon. Analysis also suggests the presence of trace levels of other 3 and 4 carbon hydrocarbons, or carbon and nitrogen containing species, phosphine, hydrogen chloride, and of benzene. The data set also allows upper limits to be set for many species of interest which were not detected. Isotope ratios were measured for 3He/4He, D/H, 13C/12C, 20Ne/22Ne, 38Ar/36Ar and for isotopes of both Kr and Xe.

  20. Chemical composition measurements of the atmosphere of Jupiter with the Galileo Probe mass spectrometer.

    PubMed

    Niemann, H B; Atreya, S K; Carignan, G R; Donahue, T M; Haberman, J A; Harpold, D N; Hartle, R E; Hunten, D M; Kasprzak, W T; Mahaffy, P R; Owen, T C; Spencer, N W

    1998-01-01

    The Galileo Probe entered the atmosphere of Jupiter on December 7, 1995. Measurements of the chemical and isotopic composition of the Jovian atmosphere were obtained by the mass spectrometer during the descent over the 0.5 to 21 bar pressure region over a time period of approximately 1 hour. The sampling was either of atmospheric gases directly introduced into the ion source of the mass spectrometer through capillary leaks or of gas, which had been chemically processed to enhance the sensitivity of the measurement to trace species or noble gases. The analysis of this data set continues to be refined based on supporting laboratory studies on an engineering unit. The mixing ratios of the major constituents of the atmosphere hydrogen and helium have been determined as well as mixing ratios or upper limits for several less abundant species including: methane, water, ammonia, ethane, ethylene, propane, hydrogen sulfide, neon, argon, krypton, and xenon. Analysis also suggests the presence of trace levels of other 3 and 4 carbon hydrocarbons, or carbon and nitrogen containing species, phosphine, hydrogen chloride, and of benzene. The data set also allows upper limits to be set for many species of interest which were not detected. Isotope ratios were measured for 3He/4He, D/H, 13C/12C, 20Ne/22Ne, 38Ar/36Ar and for isotopes of both Kr and Xe.

  1. Chemical composition measurements of the atmosphere of jupiter with the galileo probe mass spectrometer

    NASA Astrophysics Data System (ADS)

    Niemann, H. B.; Atreya, S. K.; Carignan, G. R.; Donahue, T. M.; Haberman, J. A.; Harpold, D. N.; Hartle, R. E.; Hunten, D. M.; Kasprzak, W. T.; Mahaffy, P. R.; Owen, T. C.; Spencer, N. W.

    The Galileo Probe entered the atmosphere of Jupiter on December 7, 1995. Measurements of the chemical and isotopic composition of the Jovian atmosphere were obtained by the mass spectrometer during the descent over the 0.5 to 21 bar pressure region over a time period of approximately 1 hour. The sampling was either of atmospheric gases directly introduced into the ion source of the mass spectrometer through capillary leaks or of gas, which had been chemically processed to enhance the sensitivity of the measurement to trace species or noble gases. The analysis of this data set continues to be refined based on supporting laboratory studies on an engineering unit. The mixing ratios of the major constituents of the atmosphere hydrogen and helium have been determined as well as mixing ratios or upper limits for several less abundant species including: methane, water, ammonia, ethane, ethylene, propane, hydrogen sulfide, neon, argon, krypton, and xenon. Analysis also suggests the presence of trace levels of other 3 and 4 carbon hydrocarbons, or carbon and nitrogen containing species, phosphine, hydrogen chloride, and of benzene. The data set also allows upper limits to be set for many species of interest which were not detected. Isotope ratios were measured for ^3He/^4He, D/H, ^13C/^12C, ^20Ne/^22Ne, ^38Ar/^36Ar and for isotopes of both Kr and Xe.

  2. Near-Infrared Spectroscopy and Spectral Mapping of Jupiter and the Galilean Satellites: Results from Galileo's Initial Orbit

    NASA Technical Reports Server (NTRS)

    Carlson, R.; Smythe, W.; Baines, K.; Barbinis, E.; Becker, K.; Burns, R.; Calcutt, S.; Calvin, W.; Clark, R.; Danielson, G.; hide

    1996-01-01

    The Near Infrared Mapping Spectrometer performed spectral studies of Jupiter and the Galilean satellites during the June 1996 perijove pass of the Galileo spacecraft. Spectra fora5-micrometer hotspot on Jupiter are consistent with the absence of a significant watercloud above 8 bars and with a depletion of water compared to that predicted for solar composition, corroborating results from the Galileo probe. Great Red Spot (GRS) spectral images show that parts of this feature extend upward to 240 millibars, although considerable altitude-dependent structure is found within it. A ring of dense clouds surrounds the GRS and is lower than it by 3 to 7 kilometers. Spectra of Callisto and Ganymede reveal a feature at 4.25 micrometers, attributed to the presence of hydrated minerals or possibly carbon dioxide on their surfaces. Spectra of Europa's high latitudes imply that fine-grained water frost overlies larger grains. Several active volcanic regions were found on lo, with temperatures of 420 to 620 kelvin and projected areas of 5 to 70 square kilometers.

  3. Observations of Jupiter From Cassini, Galileo and Hst

    NASA Astrophysics Data System (ADS)

    West, R. A.

    This report summarizes recent scientific results for JupiterSs atmosphere from instru- ments sensing ultraviolet and visible wavelengths (to the CCD sensitivity limit near 1000 nm) on the Hubble Space Telescope and the Galileo and Cassini spacecraft. Most prominent among these have been images of the aurora which show the morphology and temporal behavior of the main oval as well as active regions inside the oval and Galilean satellite flux tube and wake interactions. Galileo and especially Cassini ul- traviolet spectrometers added to this picture by revealing auroral brightenings and, along with in situ plasma instruments establish a link between solar wind events and jovian auroral activity. Cassini spectra of the quiescent day and night glow provide compelling evidence for a dominating influence of soft electron excitation (probably secondary electrons) at high altitude and limit the possible contribution of fluores- cence to about 15 percent of the short-wave UV flux. Although fluorescence does not dominate the emission process sunlight is the ultimate source of the emission via photo excitation of vibrationally excited H2. Energetic H2 molecules can be excited by more abundant longer wavelength solar photons. This new insight goes a long way toward resolving the mystery of how the abundant UV flux is produced. At longer wave- lengths (200-300 nm) images by HST and by the Cassini ISS instrument reveal haze morphology and motions in the polar stratosphere. The most striking new discovery in that realm proved to be the formation and evolution of a large dark oval near latitude +60, about the same size and shape as JupiterSs Great Red Spot but ephemeral and invisible at longer wavelengths. Galileo and Cassini made new observations of light- ning. Lightning on the night side can be mapped to cloud features seen on the day side and illuminated by light from Io on the night side. High spatial resolution images in methane bands made by Galileo and Cassini are

  4. Galileo probe battery system -- An update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagarin, B.P.; Taenaka, R.K.; Stofel, E.J.

    NASA`s Galileo 6-year trip to Jupiter is in its final phase. The mission consists of a Jovian Orbiter and an atmospheric entry Probe. The Probe is designed to coast autonomously for up to 190 days and turn itself on 6 hours prior to entry. It will then descend through the upper atmosphere for 50 to 75 minutes with the aid of an 8-foot parachute. This paper discusses sources of electrical power for the Probe and battery testing at the systems level. Described are the final production phase, qualification, and systems testing prior to and following launch, as well as decisionsmore » made regarding the Probe separation Li/SO{sub 2} battery configuration. In addition, the paper briefly describes the thermal battery verification program. The main power source comprises three Li/SO{sub 2} battery modules containing 13 D-sized cell strings per module. These modules are required to retain capacity for 7.5 years and support a 150-day clock, ending with a 7-hour mission sequence of increasing loads from 0.15 A to 9.5 A during the last 30 minutes. The main power source is supplemented by two thermal batteries (CaCrO{sub 4}-Ca), which will be used for firing the pyrotechnic initiators during the atmospheric entry.« less

  5. Galileo's First Images of Jupiter and the Galilean Satellites

    PubMed

    Belton, M J S; Head, J W; Ingersoll, A P; Greeley, R; McEwen, A S; Klaasen, K P; Senske, D; Pappalardo, R; Collins, G; Vasavada, A R; Sullivan, R; Simonelli, D; Geissler, P; Carr, M H; Davies, M E; Veverka, J; Gierasch, P J; Banfield, D; Bell, M; Chapman, C R; Anger, C; Greenberg, R; Neukum, G; Pilcher, C B; Beebe, R F; Burns, J A; Fanale, F; Ip, W; Johnson, T V; Morrison, D; Moore, J; Orton, G S; Thomas, P; West, R A

    1996-10-18

    The first images of Jupiter, Io, Europa, and Ganymede from the Galileo spacecraft reveal new information about Jupiter's Great Red Spot (GRS) and the surfaces of the Galilean satellites. Features similar to clusters of thunderstorms were found in the GRS. Nearby wave structures suggest that the GRS may be a shallow atmospheric feature. Changes in surface color and plume distribution indicate differences in resurfacing processes near hot spots on Io. Patchy emissions were seen while Io was in eclipse by Jupiter. The outer margins of prominent linear markings (triple bands) on Europa are diffuse, suggesting that material has been vented from fractures. Numerous small circular craters indicate localized areas of relatively old surface. Pervasive brittle deformation of an ice layer appears to have formed grooves on Ganymede. Dark terrain unexpectedly shows distinctive albedo variations to the limit of resolution.

  6. Galileo's first images of Jupiter and the Galilean satellites

    USGS Publications Warehouse

    Belton, M.J.S.; Head, J. W.; Ingersoll, A.P.; Greeley, R.; McEwen, A.S.; Klaasen, K.P.; Senske, D.; Pappalardo, R.; Collins, G.; Vasavada, A.R.; Sullivan, R.; Simonelli, D.; Geissler, P.; Carr, M.H.; Davies, M.E.; Veverka, J.; Gierasch, P.J.; Banfield, D.; Bell, M.; Chapman, C.R.; Anger, C.; Greenberg, R.; Neukum, G.; Pilcher, C.B.; Beebe, R.F.; Burns, J.A.; Fanale, F.; Ip, W.; Johnson, T.V.; Morrison, D.; Moore, J.; Orton, G.S.; Thomas, P.; West, R.A.

    1996-01-01

    The first images of Jupiter, Io, Europa, and Ganymede from the Galileo spacecraft reveal new information about Jupiter's Great Red Spot (GRS) and the surfaces of the Galilean satellites. Features similar to clusters of thunderstorms were found in the GRS. Nearby wave structures suggest that the GRS may be a shallow atmospheric feature. Changes in surface color and plume distribution indicate differences in resurfacing processes near hot spots on lo. Patchy emissions were seen while Io was in eclipse by Jupiter. The outer margins of prominent linear markings (triple bands) on Europa are diffuse, suggesting that material has been vented from fractures. Numerous small circular craters indicate localized areas of relatively old surface. Pervasive brittle deformation of an ice layer appears to have formed grooves on Ganymede. Dark terrain unexpectedly shows distinctive albedo variations to the limit of resolution.

  7. Galileo and optical illusion

    NASA Astrophysics Data System (ADS)

    Parker, Gary D.

    1986-03-01

    Galileo's earliest telescopic measurements are of sufficient quality that their detailed analysis yields scientifically interesting and pedagogically useful results. An optical illusion strongly influences Galileo's observations of Jupiter's moons, as published in the Starry Messenger. A simple procedure identifies individual satellites with sufficient reliability to demonstrate that Galileo regularly underestimated satellite brightness and overestimated elongation when a satellite was very close to Jupiter. The probability of underestimation is a monotonically decreasing function of separation angle, both for Galileo and for viewers of a laboratory simulation of the Jupiter ``starfield'' viewed by Galileo. Analysis of Galileo's records and a simple simulation experiment appropriate to undergraduate courses clarify the scientific problems facing Galileo in interpreting his observations.

  8. Survey of Galileo Plasma Observations in Jupiter's Plasma Sheet

    NASA Technical Reports Server (NTRS)

    Bagenal, Fran; Wilson, Robert J.; Siler, Scott; Paterson, William R.; Kurth, William S.

    2016-01-01

    The plasma science (PLS) Instrument on the Galileo spacecraft (orbiting Jupiter from December 1995 to September 2003) measured properties of the ions that were trapped in the magnetic field. The PLS data provide a survey of the plasma properties between approx. 5 and 30 Jupiter radii [R(sub J)] in the equatorial region. We present plasma properties derived via two analysis methods: numerical moments and forward modeling. We find that the density decreases with radial distance by nearly 5 orders of magnitude from approx. 2 to 3000 cm(exp.-3) at 6R(sub j) to approx. 0.05cm(sub -3) at 30 R(sub j). The density profile did not show major changes from orbit to orbit, suggesting that the plasma production and transport remained constant within about a factor of 2. The radial profile of ion temperature increased with distance which implied that contrary to the concept of adiabatic cooling on expansion, the plasma heats up as it expands out from Io's orbit (where TI is approx.60-80 eV) at approx. 6R(sub j) to a few keV at 30R(sub j).There does not seem to be a long-term, systematic variation in ion temperature with either local time or longitude. This latter finding differs from earlier analysis of Galileo PLS data from a selection of orbits. Further examination of all data from all Galileo orbits suggests that System Ill variations are transitory on timescales of weeks, consistent with the modeling of Cassini Ultraviolet Imaging Spectrograph observations. The plasma flow is dominated by azimuthal flow that is between 80% and 100% of corotation out to 25 R(sub j).

  9. Europa's Interaction with Jupiter's Magnetosphere: Galileo Plasma Observations Revisited.

    NASA Astrophysics Data System (ADS)

    Heuer, S. V.; Rymer, A. M.; Westlake, J. H.; Paterson, W. R.; Collinson, G.

    2017-12-01

    The Galileo spacecraft was active at Jupiter from December 1995 to September 2003, carrying the Galileo Plasma Science Instrument (PLS), an electrostatic analyzer with three spherical-segment plates which directed energy selected particles into one of seven electron sensors or seven ion channels with field-of-views which combined to cover 80% of the 4pi-sr unit sphere (Frank et al., 1992). While Galileo accomplished most of its primary scientific objectives, the mission did not reach its full potential due to a failed high-gain antenna deployment which severely limited the available bandwidth for data transmission. Consequently, the PLS was limited by bandwidth availability, and only collected data with high temporal and energy resolution for short periods of time (e.g. review by Bagenal et al., 2016). The electron sensors were also negatively affected by the gaseous environment around Jupiter, which is suspected to have deposited a layer of contaminants on the detectors, raising the threshold energy required to pass through the aperture and effectively preventing the measurement of electrons below 1keV (Frank et al., 2002). As a result, data from the PLS is challenging to process and interpret. Ion plasma moments have been computed (and published on the PDS) in the magnetosphere, but moon flybys were excluded (Bagenal et al., 2016). In anticipation of future in-situ exploration of the Europa plasma environment, we present analysis of full-resolution plasma data acquired by the PLS during the nine Europa flybys and compare our results with existing data in order to further inform designs currently being worked for the Europa Clipper and JUICE missions.

  10. Galileo spacecraft power distribution and autonomous fault recovery

    NASA Technical Reports Server (NTRS)

    Detwiler, R. C.

    1982-01-01

    There is a trend in current spacecraft design to achieve greater fault tolerance through the implemenation of on-board software dedicated to detecting and isolating failures. A combination of hardware and software is utilized in the Galileo power system for autonomous fault recovery. Galileo is a dual-spun spacecraft designed to carry a number of scientific instruments into a series of orbits around the planet Jupiter. In addition to its self-contained scientific payload, it will also carry a probe system which will be separated from the spacecraft some 150 days prior to Jupiter encounter. The Galileo spacecraft is scheduled to be launched in 1985. Attention is given to the power system, the fault protection requirements, and the power fault recovery implementation.

  11. The possible contamination of Jupiter

    NASA Technical Reports Server (NTRS)

    Garcia, Joe

    1988-01-01

    The Galileo probe, though at present its future is uncertain, would, if not sterilized, represent a good chance of contaminating Jupiter. Most scientists opposed to sterilizing the probe argue that to order the probe sterilized would be the death of the project, since sterilization would entail a reconstruction of the probe, and there are not enough funds to accomplish this. These scientists, however, are ignoring a relatively simple and inexpensive alternative to the traditional heat sterilization method. The main threat of contamination comes from Galileo's exterior surfaces: the shell of the probe and its parachute. The probe innermost components would not represent a threat since the probe is sealed. In light of the fact that only the exterior of Galileo would have to be sterilized, heat would not have to be used as a method of sterilization. Instead, various gas mixtures could be sprayed entirely over the probe and its parachute, gases which would kill any and all bacteria. This idea is more thoroughly examined.

  12. Microwave observations of jupiter's synchrotron emission during the galileo flyby of amalthea in 2002.

    NASA Astrophysics Data System (ADS)

    Klein, M. J.; Bolton, S. J.; Bastian, T. S.; Blanc, M.; Levin, S. M.; McLeod, R. J.; MacLaren, D.; Roller, J. P.; Santos-Costa, D.; Sault, R.

    2003-04-01

    In November, 2002, the Galileo spacecraft trajectory provided a close flyby of Amalthea, one of Jupiter's inner most moons (˜2.4 RJ). During this pass, Galileo entered into a region rarely explored by spacecraft, the inner radiation belts of Jupiter. We present preliminary results from a campaign of microwave observations of Jovian synchrotron emission over a six month interval centered around the flyby. The observations were made with NASA's Deep Space Network (DSN) antennas at Goldstone, California, and the NRAO Very Large Array. We report preliminary measurements of the flux density of the synchrotron emission and the rotational beaming curves and a compare them with the long term history of Jupiter's microwave emission which varies significantly on timescales of months to years. The new data are also being examined to search for evidence of short-term variations and to compare single aperture beaming curves with the spatially resolved images obtained with the VLA. These radio astronomy data will be combined with in-situ measurements from Galileo (see companion paper by Bolton et al) to improve models of the synchrotron emission from Jupiter's radiation belts. A large percentage of the Goldstone observations were conducted by middle- and high school students from classrooms across the nation. The students and their teachers are participants in the Goldstone-Apple Valley Radio Telescope (GAVRT) science education project, which is a partnership involving NASA, the Jet Propulsion Laboratory and the Lewis Center for Educational Research (LCER) in Apple Valley, CA. Working with the Lewis Center over the Internet, GAVRT students conduct remotely controlled radio astronomy observations using 34-m antennas at Goldstone. The JPL contribution to this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration 2756 Planetary magnetospheres (5443, 5737, 6030) 6218 Jovian

  13. Galileo Parachute System modification program

    NASA Technical Reports Server (NTRS)

    Mcmenamin, H. J.; Pochettino, L. R.

    1984-01-01

    This paper discusses the development program conducted on the Galileo Parachute System following the slow opening performance of the main parachute during the first system drop test. The parachute system is part of the Galileo entry probe that will descend through the Jupiter atmosphere. The uncontrolled parachute opening experienced in this test was not acceptable for the probe system. Therefore, the main parachute design was modified and the system sequence was changed to prevent a recurrence. These alterations and their system effects were evaluated analytically, and in a ground test program. At the conclusion of this phase, the system drop test was successfully repeated.

  14. Thunderheads on Jupiter

    NASA Image and Video Library

    1997-09-08

    Scientists have spotted what appear to be thunderheads on Jupiter bright white cumulus clouds similar to those that bring thunderstorms on Earth - at the outer edges of Jupiter's Great Red Spot. Images from NASA's Galileo spacecraft now in orbit around Jupiter are providing new evidence that thunderstorms may be an important source of energy for Jupiter's winds that blow at more than 500 kilometers per hour (about 300 miles per hour). The photos were taken by Galileo's solid state imager camera on June 26, 1996 at a range of about 1.4 million kilometers (about 860,000 miles). The image at top is a mosaic of multiple images taken through near-infrared filters. False coloring in the image reveals cloud-top heights. High, thick clouds are white and high, thin clouds are pink. Low-altitude clouds are blue. The two black-and-white images at bottom are enlargements of the boxed area; the one on the right was taken 70 minutes after the image on the left. The arrows show where clouds have formed or dissipated in the short time between the images. The smallest clouds are tens of kilometers across. On Earth, moist convection in thunderstorms is a pathway through which solar energy, deposited at the surface, is transported and delivered to the atmosphere. Scientists at the California Institute of Technology analyzing data from Galileo believe that water, the most likely candidate for what composes these clouds on Jupiter, may be more abundant at the site seen here than at the Galileo Probe entry site, which was found to be unexpectedly dry. http://photojournal.jpl.nasa.gov/catalog/PIA00506

  15. Jupiter's first 100 miles

    PubMed

    Reichhardt, T

    1996-04-01

    In December, 1995, after a journey of six years, the Galileo probe plunged into Jupiter's atmosphere, becoming the first artificial object to make direct contact with an outer planet. New data supplied by the probe indicated: 1) A new radiation belt around Jupiter ten times stronger than the Van Allen belt around Earth; 2) Jupiter may be much drier than predicted. Its atmosphere contains about as much water as the Sun, but this is subject to instrument calibration uncertainties, and the location of the landing in one of the driest spots on the planet; 3) Jupiter's atmosphere appears to have about three to ten times less lightning than Earth's, while the events are about 10 times stronger, both in terms of size and amount of electrical discharge; and, 4) Jupiter's winds were stronger than expected, increasing with depth, at 330 mph.

  16. Galileo and Ulysses missions safety analysis and launch readiness status

    NASA Technical Reports Server (NTRS)

    Cork, M. Joseph; Turi, James A.

    1989-01-01

    The Galileo spacecraft, which will release probes to explore the Jupiter system, was launched in October, 1989 as the payload on STS-34, and the Ulysses spacecraft, which will fly by Jupiter en route to a polar orbit of the sun, is presently entering system-test activity in preparation for an October, 1990 launch. This paper reviews the Galileo and Ulysses mission objectives and design approaches and presents details of the missions' safety analysis. The processes used to develop the safety analysis are described and the results of safety tests are presented.

  17. Coupled Ablation, Heat Conduction, Pyrolysis, Shape Change and Spallation of the Galileo Probe

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Y.-K.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    The Galileo probe enters the atmosphere of Jupiter in December 1995. This paper presents numerical methodology and detailed results of our final pre-impact calculations for the heat shield response. The calculations are performed using a highly modified version of a viscous shock layer code with massive radiation coupled with a surface thermochemical ablation and spallation model and with the transient in-depth thermal response of the charring and ablating heat shield. The flowfield is quasi-steady along the trajectory, but the heat shield thermal response is dynamic. Each surface node of the VSL grid is coupled with a one-dimensional thermal response calculation. The thermal solver includes heat conduction, pyrolysis, and grid movement owing to surface recession. Initial conditions for the heat shield temperature and density were obtained from the high altitude rarefied-flow calculations of Haas and Milos. Galileo probe surface temperature, shape, mass flux, and element flux are all determined as functions of time along the trajectory with spallation varied parametrically. The calculations also estimate the in-depth density and temperature profiles for the heat shield. All this information is required to determine the time-dependent vehicle mass and drag coefficient which are necessary inputs for the atmospheric reconstruction experiment on board the probe.

  18. Galileo Net Flux Radiometer Report 1997

    NASA Technical Reports Server (NTRS)

    Tomasko, Martin G.

    1997-01-01

    On 7 December 1995, the Galileo probe entered Jupiter's atmosphere. The Net Flux Radiometer (NFR) on board the probe, measured upward and downward fluxes in the visible and infrared. At the University of Arizona, we have analyzed the data from the two visible-light channels, as well as the solar contributions to the thermal channels. The results are being prepared for submission to JGR in early September.

  19. Galileo probe lithium-sulfur dioxide cell life testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofland, L.M.; Stofel, E.J.; Taenaka, R.K.

    Several hundred D-sized, Li/SO{sub 2} battery cells have been in a carefully controlled quiescent storage test for up to 14 years, starting at Honeywell but completing at the NASA Ames Research Center, in support of the Atmospheric Probe portion of the Galileo Mission to the planet Jupiter. This population of cells includes similar samples from 8 different manufacturing lots; the earliest from October 1981, the latest from October 1988. The baseline samples have been divided among several storage chambers, each having its own constant temperature, respectively set between 0 to 40 C. Non-invasive measurements have been made repeatedly of openmore » circuit voltage and internal resistance (at 1,000 Hz). At intervals, a small portion of the cells has been removed from storage and fully discharged under repetitive conditions, thus assessing any storage related loss of discharge capacity. The results show that for storage up to 20 C the cells have excellent stability. Above 20 C noticeable degradation occurs.« less

  20. The Galileo probe mass spectrometer: composition of Jupiter's atmosphere

    NASA Technical Reports Server (NTRS)

    Niemann, H. B.; Atreya, S. K.; Carignan, G. R.; Donahue, T. M.; Haberman, J. A.; Harpold, D. N.; Hartle, R. E.; Hunten, D. M.; Kasprzak, W. T.; Mahaffy, P. R.; hide

    1996-01-01

    The composition of the jovian atmosphere from 0.5 to 21 bars along the descent trajectory was determined by a quadrupole mass spectrometer on the Galileo probe. The mixing ratio of He (helium) to H2 (hydrogen), 0.156, is close to the solar ratio. The abundances of methane, water, argon, neon, and hydrogen sulfide were measured; krypton and xenon were detected. As measured in the jovian atmosphere, the amount of carbon is 2.9 times the solar abundance relative to H2, the amount of sulfur is greater than the solar abundance, and the amount of oxygen is much less than the solar abundance. The neon abundance compared with that of hydrogen is about an order of magnitude less than the solar abundance. Isotopic ratios of carbon and the noble gases are consistent with solar values. The measured ratio of deuterium to hydrogen (D/H) of (5 +/- 2) x 10(-5) indicates that this ratio is greater in solar-system hydrogen than in local interstellar hydrogen, and the 3He/4He ratio of (1.1 +/- 0.2) x 10(-4) provides a new value for protosolar (solar nebula) helium isotopes. Together, the D/H and 3He/4He ratios are consistent with conversion in the sun of protosolar deuterium to present-day 3He.

  1. The Galileo probe mass spectrometer: composition of Jupiter's atmosphere.

    PubMed

    Niemann, H B; Atreya, S K; Carignan, G R; Donahue, T M; Haberman, J A; Harpold, D N; Hartle, R E; Hunten, D M; Kasprzak, W T; Mahaffy, P R; Owen, T C; Spencer, N W; Way, S H

    1996-05-10

    The composition of the jovian atmosphere from 0.5 to 21 bars along the descent trajectory was determined by a quadrupole mass spectrometer on the Galileo probe. The mixing ratio of He (helium) to H2 (hydrogen), 0.156, is close to the solar ratio. The abundances of methane, water, argon, neon, and hydrogen sulfide were measured; krypton and xenon were detected. As measured in the jovian atmosphere, the amount of carbon is 2.9 times the solar abundance relative to H2, the amount of sulfur is greater than the solar abundance, and the amount of oxygen is much less than the solar abundance. The neon abundance compared with that of hydrogen is about an order of magnitude less than the solar abundance. Isotopic ratios of carbon and the noble gases are consistent with solar values. The measured ratio of deuterium to hydrogen (D/H) of (5 +/- 2) x 10(-5) indicates that this ratio is greater in solar-system hydrogen than in local interstellar hydrogen, and the 3He/4He ratio of (1.1 +/- 0.2) x 10(-4) provides a new value for protosolar (solar nebula) helium isotopes. Together, the D/H and 3He/4He ratios are consistent with conversion in the sun of protosolar deuterium to present-day 3He.

  2. STS-34 Galileo processing at KSC's SAEF-2 planetary spacecraft facility

    NASA Image and Video Library

    1989-07-21

    At the Kennedy Space Center's (KSC's) Spacecraft and Assembly Encapsulation Facility 2 (SAEF-2), the planetary spacecraft checkout facility, clean-suited technicians work on the Galileo spacecraft prior to moving it to the Vehicle Processing Facility (VPF) for mating with the inertial upper stage (IUS). Galileo is scheduled for launch aboard Atlantis, Orbiter Vehicle (OV) 104, on Space Shuttle Mission STS-34 in October 1989. It will be sent to the planet Jupiter, a journey which will taken more than six years to complete. In December 1995 as the two and one half ton spacecraft orbits Jupiter with its ten scientific instruments, a probe will be released to parachute into the Jovian atmosphere. NASA's Jet Propulsion Laboratory (JPL) manages the Galileo project. View provided by KSC.

  3. The Galileo attitude and articulation control system - A radiation-hard, high precision, state-of-the-art control system

    NASA Technical Reports Server (NTRS)

    Stephenson, R. Rhoads

    1985-01-01

    The Galileo mission and spacecraft, consisting of a Jupiter-orbiter and an atmospheric entry probe, are discussed. Components will include: magnetometers and plasma-wave antennas on a boom, high-gain antenna, probe vehicle, two different bus electronics packages, and a radioisotope thermoelectric generator. Instruments, investigators and objectives are tabulated for both probe science and orbiter science investigations. Requirements in the design of the attitude and articulation control system are very stringent because of the complex dynamics, flexible body effects, the need for autonomy, and the severe radiation environment in the Jupiter nighborhood. Galileo was intended to be ready for launch via Space Shuttle in May of 1986.

  4. Jupiter's Equatorial Region in the Two Methane Bands (Time set 2)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaics of an equatorial 'hotspot' on Jupiter at 727 nanometers (top) and 889 nanometers (bottom). The mosaics cover an area of 34,000 kilometers by 11,000 kilometers. The darker region near the center of each mosaic is an equatorial 'hotspot' similar to the Galileo Probe entry site. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance.

    Light at 727 nanometers (nm) is moderately absorbed by atmospheric methane. This mosaic shows the features of Jupiter's main visible cloud deck and upper tropospheric haze, with higher features enhanced in brightness over lower features. Light at 889 nm is strongly absorbed by atmospheric methane. This mosaic shows the features of a hazy cloud layer tens of kilometers above Jupiter's main visible cloud deck. This haze varies in height but appears to be present over the entire region. Small patches of very bright clouds may be similar to terrestrial thunderstorms. Together images at these wavelengths provide a three dimensional view of the cloud layers in Jupiter's atmosphere.

    North is at the top. The mosaics cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational

  5. Galileo Over Io Artist Concept

    NASA Image and Video Library

    1996-01-02

    Artist rendering of NASA Galileo spacecraft flying past Jupiter moon Io. Galileo made multiple close approaches to the volcanically active moon during its time at Jupiter. http://photojournal.jpl.nasa.gov/catalog/PIA18176

  6. Scientific and Technical Support for the Galileo Net Flux Radiometer Experiment

    NASA Technical Reports Server (NTRS)

    Sromovsky, Lawrence A.

    1997-01-01

    This report describes work in support of the Galileo Net Flux Radiometer (NFR), an instrument mounted on the Galileo probe, a spacecraft designed for entry into and direct measurements of Jupiter's atmosphere. Tasks originally proposed for the post launch period covered by NCC 2-854 are briefly as follows: attend and support PSG (Project Science Group) and other project science meetings; support in-flight checkouts; maintain and keep safe the spare instrument and GSE (Ground Support Equipment); organize and maintain documentation; finish NFR calibration measurements, documentation, and analysis; characterize and diagnose instrument anomalies; develop descent data analysis tools; and science data analysis and publication. Because we had the capability to satisfy a project support need we also subsequently proposed and were funded to make ground-based observations of Jupiter during the period surrounding the Galileo arrival at Jupiter, using the Swedish Solar Telescope at La Palma, Canary Islands. The following section provides background information on the NFR instrument. Section 3 contains the final report of work done.

  7. Scientific and Technical Support for the Galileo Net Flux Radiometer Experiment

    NASA Technical Reports Server (NTRS)

    Sromovsky, Lawrence A.

    1997-01-01

    This report describes work in support of the Galileo Net Flux Radiometer (NFR), an instrument mounted on the Galileo probe, a spacecraft designed for entry into and direct measurements of Jupiter's atmosphere. Tasks originally proposed for the post launch period are briefly as follows: attend and support PSG (Project Science Group) and other project science meetings; support in-flight checkouts; maintain and keep safe the spare instrument and GSE (Ground Support Equipment); organize and maintain documentation; finish NFR calibration measurements, documentation, and analysis; characterize and diagnose instrument anomalies; develop descent data analysis tools; and science data analysis and publication. Because we had the capability to satisfy a project support need we also subsequently proposed and were funded to make ground- based observations of Jupiter during the period surrounding the Galileo arrival at Jupiter, using the Swedish Solar Telescope at La Palma, Canary Islands. The following section (11) provides background information on the NFR instrument.

  8. Encouragement from Jupiter for Europe's Titan Probe

    NASA Astrophysics Data System (ADS)

    1996-04-01

    Huygens will transmit scientific information for 150 minutes, from the outer reaches of Titan's cold atmosphere and all the way down to its enigmatic surface. For comparison, the Jupiter Probe radioed scientific data for 58 minutes as it descended about 200 kilometres into the outer part of the atmosphere of the giant planet. The parachutes controlling various stages of Huygens' descent will rely upon a system for deployment designed and developed in Europe that is nevertheless similar to that used by the Jupiter Probe. The elaborate sequence of operations in Huygens worked perfectly during a dramatic drop test from a stratospheric balloon over Sweden in May 1995, which approximated as closely as possible to events on Titan. The performance of the American Probe at Jupiter renews the European engineers' confidence in their own descent control system, and also in the lithium sulphur-dioxide batteries which were chosen to power both Probes. "The systems work after long storage in space," comments Hamid Hassan, ESA's Project Manager for Huygens. "Huygens will spend seven years travelling to Saturn's vicinity aboard the Cassini Orbiter. The Jupiter Probe was a passenger in Galileo for six years before its release, so there is no reason to doubt that Huygens will work just as well." Huygens will enter the outer atmosphere of Titan at 20,000 kilometres per hour. A heat shield 2.7 metres in diameter will withstand the friction and slow the Probe to a speed at which parachutes can be deployed. The size of the parachute for the main phase of the descent is chosen to allow Huygens to reach the surface in about 2 hours. The batteries powering Huygens will last for about 21/2 hours. Prepared for surprises A different perspective on the Jupiter Probe comes from Jean-Pierre Lebreton, ESA's Project Scientist for Huygens. The results contradicted many preconceptions of the Galileo scientists, particularly about the abundance of water and the structure of cloud layers. Arguments

  9. Jupiter's Equatorial Region in a Methane band (Time set 1)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaic of an equatorial 'hotspot' on Jupiter at 889 nanometers (nm). The mosaic covers an area of 34,000 kilometers by 11,000 kilometers. Light at 889 nm is strongly absorbed by atmospheric methane. This image shows the features of a hazy cloud layer tens of kilometers above Jupiter's main visible cloud deck. This haze varies in height but appears to be present over the entire region. Small patches of very bright clouds may be similar to terrestrial thunderstorms. The dark region near the center of the mosaic is an equatorial 'hotspot' similar to the Galileo Probe entry site. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance.

    North is at the top. The mosaic covers latitudes 1 to 10 degrees and is centered at longitude 336 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  10. Jupiter Hot Spot

    NASA Image and Video Library

    2001-01-03

    In this movie clip (of which the release image is a still frame), created from images taken by NASA's Cassini spacecraft, the blue region in the center is a relatively cloud-free area where thermal radiation from warmer, deeper levels emerges. NASA's Galileo probe in 1995 entered Jupiter's atmosphere in a similar area. http://photojournal.jpl.nasa.gov/catalog/PIA02875

  11. Jupiter radiation measurements from enhanced Galileo/EPD data for NASA's PDS archive

    NASA Astrophysics Data System (ADS)

    Kollmann, P.; Smith, D.; Vandegriff, J. D.; Paranicas, C.; Lee-Payne, Z. H.

    2017-12-01

    The Galileo mission included the first orbiter around Jupiter. Its Energetic Particle Detector (EPD) provided an excellent survey of the radiation in this planetary magnetosphere. EPD measured electrons and various ion species in the energy range of tens of keV to tens of MeV. This data set is unique since the orbit was close to the equatorial plane, covered distances from Jupiter to its magnetopause, and included several close flybys at moons. The ongoing Juno mission in comparison only skims the equatorial plane and does not include moon flybys. Even though the Galileo mission ended in 2003, the EPD data archived through NASA's Planetary Data System (PDS) is sparse and not well calibrated. The bulk of the PDS data is from a low time resolution mode (from Galileo's "real time" mode), and is only provided as count rates. Only the 14 directionally resolved channels are provided in the PDS, but there would be also 35 additional omnidirectional channels available. Data in the higher time resolution "record mode" is archived but has not been adequately corrected. We present a preliminary version of fully cleaned, calibrated, and corrected EPD data that can be used without specialized instrument knowledge. Archive products for both the updated data and also the initial raw data (all channels and resolutions) are being prepared for delivery to the PDS. Major issues with the data from the Low Energy Magnetospheric Measurements System (EPD/LEMMS) were that some channels were saturated or contaminated. We correct for this using dead times and background values determined in flight. The raw measurements of electrons in the MeV range are not resolved in energy. We ran a forward model considering the instrument response to calculate electron MeV range spectra, which have many applications. From the Composition Measurement System (EPS/CMS), we have also extracted event data, which will also be included in our PDS delivery and can be used to derive high-resolution energy spectra

  12. Energetic Particles Investigation (EPI). [during pre-entry of Galileo Probe in Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Fischer, H. M.; Mihalov, J. D.; Lanzerotti, L. J.; Wibberenz, G.; Rinnert, K.; Gliem, F. O.; Bach, J.

    1992-01-01

    The EPI instrument operates during the pre-entry phase of the Galileo Probe. The main objective is the study of the energetic particle population in the inner Jovian magnetosphere and in the upper atmosphere. This will be achieved through omnidirectional measurements of electrons, protons, alpha-particles and heavy ions (Z greater than 2) and recording intensity profiles with a spatial resolution of about 0.02 Jupiter radii. Sectored data will also be obtained for electrons, protons, and alpha-particles to determine directional anisotropies and particle pitch angle distributions. The detector assembly is a two-element telescope using totally depleted circular silicon surface-barrier detectors surrounded by cylindrical tungsten shielding. The lower energy threshold of the particle species investigated during the Probe's pre-entry phase is determined by the material thickness of the Probe's rear heat shield which is required for heat protection of the scientific payload during entry into the Jovian atmosphere. The EPI instrument is combined with the Lightning and Radio Emission Detector and both instruments share one interface of the Probe's power, command, and data unit.

  13. Probing Storm Activity on Jupiter

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Scientists assume Jupiter's clouds are composed primarily of ammonia, but only about 1% of the cloud area displays the characteristic spectral fingerprint of ammonia. This composite of infrared images taken by the New Horizons Linear Etalon Infrared Spectral Imager (LEISA) captures several eruptions of this relatively rare breed of ammonia cloud and follows the evolution of the clouds over two Jovian days. (One day on Jupiter is approximately 10 hours, which is how long it takes Jupiter to make one complete rotation about its axis.)

    The New Horizons spacecraft was still closing in on the giant planet when it made these observations: Jupiter was 3.4 million kilometers (2.1 million miles) from the New Horizons spacecraft for the LEISA image taken at 19:35 Universal Time on February 26, 2007, and the distance decreased to 2.5 million kilometers (1.6 million miles) for the last image shown. LEISA's spatial resolution scale varied from approximately 210 kilometers (130 miles) for the first image to 160 kilometers (100 miles) for the last one.

    New Horizons scientists originally targeted the region slightly northwest (up and to the left) of the Great Red Spot to search for these special ammonia clouds because that's where they were most easily seen during infrared spectral observations made by the Galileo spacecraft. But unlike the churning, turbulent cloud structures seen near the Great Red Spot during the Galileo era, this region has been quieting down during the past several months and was unusually tranquil when New Horizons passed by. Nevertheless, LEISA managed to find other regions of fresh, upwelling ammonia clouds, and the temporal evolution of one such region is displayed in this figure. In the first image, a fresh ammonia cloud (the blue region) sprouts from between white clouds and a dark elongated region. This blue cloud subsequently stretches along the white-dark border in the next two images.

    These fresh ammonia clouds trace the strong

  14. Pioneer Jupiter orbiter probe mission 1980, probe description

    NASA Technical Reports Server (NTRS)

    Defrees, R. E.

    1974-01-01

    The adaptation of the Saturn-Uranus Atmospheric Entry Probe (SUAEP) to a Jupiter entry probe is summarized. This report is extracted from a comprehensive study of Jovian missions, atmospheric model definitions and probe subsystem alternatives.

  15. Jupiter's Equatorial Region in a Methane band (Time set 1)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaic of Jupiter's equatorial region at 727 nanometers (nm). The mosaic covers an area of 34,000 kilometers by 22,000 kilometers. Light at 727 nm is moderately absorbed by atmospheric methane. This image shows the features of Jupiter's main visible cloud deck and upper tropospheric haze, with higher features enhanced in brightness over lower features. The dark region near the center of the mosaic is an equatorial 'hotspot' similar to the Galileo Probe entry site. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright oval in the upper right of the mosaic as well as the other smaller bright features are examples of upwelling of moist air and condensation.

    North is at the top. The mosaic covers latitudes 1 to 19 degrees and is centered at longitude 336 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  16. Jupiter's Equatorial Region in a Methane band (Time set 3)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaic of an equatorial 'hotspot' on Jupiter at 889 nanometers (nm). The mosaic covers an area of 34,000 kilometers by 11,000 kilometers. Light at 889 nm is strongly absorbed by atmospheric methane. This image shows the features of a hazy cloud layer tens of kilometers above Jupiter's main visible cloud deck. This haze varies in height but appears to be present over the entire region. Small patches of very bright clouds may be similar to terrestrial thunderstorms. The dark region near the center of the mosaic is an equatorial 'hotspot' similar to the Galileo Probe entry site. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance.

    North is at the top. The mosaic covers latitudes 1 to 10 degrees and is centered at longitude 336 degrees West. The planetary limb runs along the right edge of the image. Cloud patterns appear foreshortened as they approach the limb. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  17. Jupiter's Equatorial Region in a Methane band (Time set 3)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaic of Jupiter's equatorial region at 727 nanometers (nm). The mosaic covers an area of 34,000 kilometers by 22,000 kilometers. Light at 727 nm is moderately absorbed by atmospheric methane. This image shows the features of Jupiter's main visible cloud deck and upper-tropospheric haze, with higher features enhanced in brightness over lower features. The dark region near the center of the mosaic is an equatorial 'hotspot' similar to the Galileo Probe entry site. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright oval in the upper right of the mosaic as well as the other smaller bright features are examples of upwelling of moist air and condensation.

    North is at the top. The mosaic covers latitudes 1 to 19 degrees and is centered at longitude 336 degrees West. The planetary limb runs along the right edge of the image. Cloud patterns appear foreshortened as they approach the limb. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  18. Jupiter's Equatorial Region in a Methane band (Time set 4)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaic of Jupiter's equatorial region at 727 nanometers (nm). The mosaic covers an area of 34,000 kilometers by 22,000 kilometers. Light at 727 nm is moderately absorbed by atmospheric methane. This image shows the features of Jupiter's main visible cloud deck and upper-tropospheric haze, with higher features enhanced in brightness over lower features. The dark region near the center of the mosaic is an equatorial 'hotspot' similar to the Galileo Probe entry site. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright oval in the upper right of the mosaic as well as the other smaller bright features are examples of upwelling of moist air and condensation.

    North is at the top. The mosaic covers latitudes 1 to 19 degrees and is centered at longitude 336 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  19. Three dimensional Visualization of Jupiter's Equatorial Region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

    This frame is a view to the northeast, from between the cloud layers and above the streaks in the lower cloud leading towards the hotspot. The upper haze layer has some features that match the lower cloud, such as the bright streak in the foreground of the frame. These are probably thick clouds that span several tens of vertical kilometers.

    Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

    The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly

  20. Three dimensional Visualization of Jupiter's Equatorial Region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

    This frame is a view from the southwest looking northeast, from an altitude just above the high haze layer. The streaks in the lower cloud leading towards the hotspot are visible. The upper haze layer is mostly flat, with notable small peaks that can be matched with features in the lower cloud. In reality, these areas may represent a continuous vertical cloud column.

    Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

    The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756

  1. Three dimensional Visualization of Jupiter's Equatorial Region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

    This frame is a view to the southeast, from between the cloud layers and over the north center of the region. The tall white clouds in the lower cloud deck are probably much like large terrestrial thunderclouds. They may be regions where atmospheric water powers vertical convection over large horizontal distances.

    Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

    The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on

  2. Three dimensional Visualization of Jupiter's Equatorial Region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

    This frame is a view to the northeast, from between the cloud layers and above the streaks in the lower cloud leading towards the hotspot. The hotspot is clearly visible as a deep blue feature. The cloud streaks end near the hotspot, consistent with the idea that clouds traveling along these streak lines descend and evaporate as they approach the hotspot. The upper haze layer is slightly bowed upwards above the hotspot.

    Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

    The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional

  3. Three dimensional Visualization of Jupiter's Equatorial Region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

    This frame is a view from above and to the south of the visualized area, showing the entire model. The entire region is overlain by a thin, transparent haze. In places the haze is high and thick, especially to the east (to the right of) the hotspot.

    Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

    The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper

  4. Three dimensional Visualization of Jupiter's Equatorial Region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

    This frame is a view to the west, from between the cloud layers and over the patchy white clouds to the east of the hotspot. This is probably an area where moist convection is occurring over large horizontal distances, similar to the atmosphere over the equatorial ocean on Earth. The clouds are high and thick, and are observed to change rapidly over short time scales.

    Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

    The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756

  5. Galileo Science Summary October, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This video is a compilation of visualizations, animation and some actual shots from the Galileo mission. It shows the trajectories of the mission around Jupiter that took the mission to Jupiter, and the various orbits of the spacecraft around the planet, that allowed for the views of several of Jupiter's moons from which the visualizations of this video are taken. It mainly shows the visualizations of the Galileo's view of Jupiter's atmosphere, Io, Ganymede, and Europa. There is no spoken presentation, the views are announced with slides prior to the presentation. Orchestrated selections from Vivaldi's Four Season's serves as background.

  6. Nonlinear simulations of Jupiter's 5-micron hot spots

    NASA Technical Reports Server (NTRS)

    Showman, A. P.; Dowling, T. E.

    2000-01-01

    Large-scale nonlinear simulations of Jupiter's 5-micron hot spots produce long-lived coherent structures that cause subsidence in local regions, explaining the low cloudiness and the dryness measured by the Galileo probe inside a hot spot. Like observed hot spots, the simulated coherent structures are equatorially confined, have periodic spacing, propagate west relative to the flow, are generally confined to one hemisphere, and have an anticyclonic gyre on their equatorward side. The southern edge of the simulated hot spots develops vertical shear of up to 70 meters per second in the eastward wind, which can explain the results of the Galileo probe Doppler wind experiment.

  7. The Jupiter System Observer: Probing the Foundations of Planetary Systems

    NASA Astrophysics Data System (ADS)

    Senske, D.; Prockter, L.; Collins, G.; Cooper, J.; Hendrix, A.; Hibbitts, K.; Kivelson, M.; Orton, G.; Schubert, G.; Showman, A.; Turtle, E.; Williams, D.; Kwok, J.; Spilker, T.; Tan-Wang, G.

    2007-12-01

    Galileo's observations in the 1600's of the dynamic system of Jupiter and its moons launched a revolution in understanding the way planetary systems operate. Now, some 400 years later, the discovery of extra solar planetary systems with Jupiter-sized bodies has led to a similar revolution in thought regarding how these systems form and evolve. From the time of Galileo, the Jovian system has been viewed as a solar system in miniature, providing a laboratory to study, diverse and dynamic processes in a single place. The icy Galilean satellites provide a window into solar system history by preserving in their cratering records a chronology dating back nearly 4.5 By and extending to the present. The continuously erupting volcanoes of Io may provide insight into the era when magma oceans were common. The discovery of an internally generated magnetic field at Ganymede, one of only three terrestrial bodies to possess such a field, is a place to gain insight as to how dynamos work. The confirmation and characterization of icy satellite subsurface oceans impacts the way habitability is considered. Understanding the composition and volatile inventory of Jupiter can shed light into how planets accrete from the solar nebulae. Finally, like our sun, Jupiter influences its system through its extensive magnetic field. In early 2007, NASA's Science Mission Directorate formed four Science Definition Teams (SDTs) to formulate science goals and objectives in anticipation of the initiation of a flagship-class mission to the outer solar system (Europa, Jupiter system, Titan and Enceladus). The Jupiter System Observer (JSO) mission concept emphasizes overall Jupiter system science: 1) Jupiter and its atmosphere, 2) the geology and geophysics of the Galilean satellites (Io, Europa, Ganymede and Callisto), 3) the magnetosphere environment - both Jupiter's and Ganymede's&pand 4) interactions within the system. Focusing on the unique geology, presence of an internal magnetic field and

  8. Jupiter Equatorial Region in a Methane Band Time Set 1

    NASA Image and Video Library

    1998-03-06

    Mosaic of an equatorial "hotspot" on Jupiter at 889 nanometers (nm). The mosaic covers an area of 34,000 kilometers by 11,000 kilometers. Light at 889 nm is strongly absorbed by atmospheric methane. This image shows the features of a hazy cloud layer tens of kilometers above Jupiter's main visible cloud deck. This haze varies in height but appears to be present over the entire region. Small patches of very bright clouds may be similar to terrestrial thunderstorms. The dark region near the center of the mosaic is an equatorial "hotspot" similar to the Galileo Probe entry site. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. North is at the top. The mosaic covers latitudes 1 to 10 degrees and is centered at longitude 336 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft. http://photojournal.jpl.nasa.gov/catalog/PIA01200

  9. STS-34 Galileo PCR at Pad & Galileo in Atlantis

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The primary objective of the STS-34 mission was the deployment of the Galileo spacecraft and the attached Inertial Upper Stage. This videotape shows the Galileo in the Payload Clean Room in preparation for the six year trip to Jupiter. There are also views of the spacecraft in the Atlantis Payload Bay.

  10. Galileo spacecraft power management and distribution system

    NASA Technical Reports Server (NTRS)

    Detwiler, R. C.; Smith, R. L.

    1990-01-01

    The Galileo PMAD (power management and distribution system) is described, and the design drivers that established the final as-built hardware are discussed. The spacecraft is powered by two general-purpose heat-source-radioisotope thermoelectric generators. Power bus regulation is provided by a shunt regulator. Galileo PMAD distributes a 570-W beginning of mission (BOM) power source to a user complement of some 137 load elements. Extensive use of pyrotechnics requires two pyro switching subassemblies. They initiate 148 squibs which operate the 47 pyro devices on the spacecraft. Detection and correction of faults in the Galileo PMAD is an autonomous feature dictated by requirements for long life and reliability in the absence of ground-based support. Volatile computer memories in the spacecraft command and data system and attitude control system require a continuous source of backup power during all anticipated power bus fault scenarios. Power for the Jupiter Probe is conditioned, isolated, and controlled by a Probe interface subassembly. Flight performance of the spacecraft and the PMAD has been successful to date, with no major anomalies.

  11. What Does Galileo's Discovery of Jupiter's Moons Tell Us About the Process of Scientific Discovery?

    NASA Astrophysics Data System (ADS)

    Lawson, Anton E.

    In 1610, Galileo Galilei discovered Jupiter''smoons with the aid of a new morepowerful telescope of his invention. Analysisof his report reveals that his discoveryinvolved the use of at least three cycles ofhypothetico-deductive reasoning. Galileofirst used hypothetico-deductive reasoning to generateand reject a fixed star hypothesis.He then generated and rejected an ad hocastronomers-made-a-mistake hypothesis.Finally, he generated, tested, and accepted a moonhypothesis. Galileo''s reasoningis modeled in terms of Piaget''s equilibration theory,Grossberg''s theory of neurologicalactivity, a neural network model proposed by Levine &Prueitt, and another proposedby Kosslyn & Koenig. Given that hypothetico-deductivereasoning has played a rolein other important scientific discoveries, thequestion is asked whether it plays a rolein all important scientific discoveries. In otherwords, is hypothetico-deductive reasoningthe essence of the scientific method? Possiblealternative scientific methods, such asBaconian induction and combinatorial analysis,are explored and rejected as viablealternatives. Educational implications of thishypothetico-deductive view of scienceare discussed.

  12. UV Studies of Jupiter's Aerosols and Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Pryor, Wayne

    2004-01-01

    This project funded research related to our involvement in the Galileo Ultraviolet Spectrometer experiment. Pryor was a Co-I on that experiment, which recently ended when Galileo crashed into Jupiter's atmosphere. It also funded related research on HST observations of Jupiter's atmosphere, and Cassini observations of Jupiter's atmosphere, and ground-based studies of Jupiter's atmosphere using the facilities of McDonald Observatory. Specific activities related to this grant include study of UV spectra returned by Galileo UVS and Cassini UVIS, development of simple models to explain these spectra, participation in archiving activities for these data sets, travel to conferences, and publication of scientific papers. Highlights of our Jupiter research efforts include: 1.) evidence for heavy hydrocarbons in Jupiter's atmosphere (from HST) (Clarke et al. poster), that may be the source of Jupiter's stratospheric aerosols, 2.) detection of auroral flares in Jupiter's atmosphere from Galileo (Pryor et al., 2001). 3.) establishing a connection between coronal mass ejections and auroral outbursts (Gurnett et al., 2002), and 4) establishing a connection between short-term variations in Jupiter's auroral emissions and radio emissions (Pryor et al. presented at AGU in 2002, paper in preparation).

  13. Survey of the supporting research and technology for the thermal protection of the Galileo Probe

    NASA Technical Reports Server (NTRS)

    Howe, J. T.; Pitts, W. C.; Lundell, J. H.

    1981-01-01

    The Galileo Probe, which is scheduled to be launched in 1985 and to enter the hydrogen-helium atmosphere of Jupiter up to 1,475 days later, presents thermal protection problems that are far more difficult than those experienced in previous planetary entry missions. The high entry speed of the Probe will cause forebody heating rates orders of magnitude greater than those encountered in the Apollo and Pioneer Venus missions, severe afterbody heating from base-flow radiation, and thermochemical ablation rates for carbon phenolic that rival the free-stream mass flux. This paper presents a comprehensive survey of the experimental work and computational research that provide technological support for the Probe's heat-shield design effort. The survey includes atmospheric modeling; both approximate and first-principle computations of flow fields and heat-shield material response; base heating; turbulence modelling; new computational techniques; experimental heating and materials studies; code validation efforts; and a set of 'consensus' first-principle flow-field solutions through the entry maneuver, with predictions of the corresponding thermal protection requirements.

  14. Modelling of Jupiter's Innermost Radiation Belt

    NASA Technical Reports Server (NTRS)

    Mihalov, J. D.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    In order to understand better source and loss processes for energetic trapped protons near Jupiter, a modification of de Pater and Goertz' finite difference diffusion calculations for Jovian equatorial energetic electrons is made to apply to the case of protons inside the orbit of Metis. Explicit account is taken of energy loss in the Jovian ring. Comparison of the results is made with Galileo Probe measurements.

  15. Monte Carlo Radiative Transfer Modeling of Lightning Observed in Galileo Images of Jupiter

    NASA Technical Reports Server (NTRS)

    Dyudine, U. A.; Ingersoll, Andrew P.

    2002-01-01

    We study lightning on Jupiter and the clouds illuminated by the lightning using images taken by the Galileo orbiter. The Galileo images have a resolution of 25 km/pixel and axe able to resolve the shape of the single lightning spots in the images, which have full widths at half the maximum intensity in the range of 90-160 km. We compare the measured lightning flash images with simulated images produced by our ED Monte Carlo light-scattering model. The model calculates Monte Carlo scattering of photons in a ED opacity distribution. During each scattering event, light is partially absorbed. The new direction of the photon after scattering is chosen according to a Henyey-Greenstein phase function. An image from each direction is produced by accumulating photons emerging from the cloud in a small range (bins) of emission angles. Lightning bolts are modeled either as points or vertical lines. Our results suggest that some of the observed scattering patterns axe produced in a 3-D cloud rather than in a plane-parallel cloud layer. Lightning is estimated to occur at least as deep as the bottom of the expected water cloud. For the six cases studied, we find that the clouds above the lightning are optically thick (tau > 5). Jovian flashes are more regular and circular than the largest terrestrial flashes observed from space. On Jupiter there is nothing equivalent to the 30-40-km horizontal flashes which axe seen on Earth.

  16. Galileo, Cassini and Huygens : Spatial Probes, but also Men focused on Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Déau, Estelle

    2008-09-01

    Galileo Galilei (1564-1642), Christiaan Huygens (1629-1675) and Jean-Dominique Cassini (1625-1712) are maybe the most important astronomers of the 17th century. Galileo discovered the 4 biggest satellites around Jupiter (Io, Ganymede, Europa and Callisto, known as the 'Galilean satellites'), Huygens discovered Titan, the biggest satellite of Saturn and Cassini discovered the zodiacal light and 4 satellites around Saturn (Iapetus, Rhea, Tethys and Dione). They brough fundamental ideas to the knowledge of the Saturn's rings: (i) Galileo found firstly a strange shape around the planet Saturn (known as the 6th and last planet of the Solar System), (ii) Cassini found other satellites than Titan around Saturn that implying more forthcoming satellites discoveries (until now !), and (iii) Huygens showed that the viewing geometry of an object can dramatically change its appearence. All these discoveries are linked to their personnality and their education. Galileo the autodidact loved discoveries (as the triple form of Saturn) but did not give enough attention to all of their physical implications. Huygens the mathematician did not discover but observed and theoretically confirmed simultaneously his discovery (as for the identification of the Saturn's ring). Cassini the brilliant astronomer interpreted his observations in order to make new discoveries (shadow of galiliean satellites on Jupiter, Cassini Division contradicts the vision of a single ring). At less than one year left to the International Year of Astronomy 2009 (AMA09 or IYA09) these three examples show how the education and the scientific carrer and methodology are intrinsically linked.

  17. The size distribution of Jupiter's main ring from Galileo imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Brooks, Shawn M.; Esposito, Larry W.; Showalter, Mark R.; Throop, Henry B.

    2004-07-01

    Galileo's Solid State Imaging experiment (SSI) obtained 36 visible wavelength images of Jupiter's ring system during the nominal mission (Ockert-Bell et al., 1999, Icarus 138, 188-213) and another 21 during the extended mission. The Near Infrared Mapping Spectrometer (NIMS) recorded an observation of Jupiter's main ring during orbit C3 at wavelengths from 0.7 to 5.2 μm; a second observation was attempted during orbit E4. We analyze the high phase angle NIMS and SSI observations to constrain the size distribution of the main ring's micron-sized dust population. This portion of the population is best constrained at high phase angles, as the light scattering behavior of small dust grains dominates at these geometries and contributions from larger ring particles are negligible. High phase angle images of the main ring obtained by the Voyager spacecraft covered phase angles between 173.8° and 176.9° (Showalter et al., 1987, Icarus 69, 458-498). Galileo images extend this range up to 178.6°. We model the Galileo phase curve and the ring spectra from the C3 NIMS ring observation as the combination of two power law distributions. Our analysis of the main ring phase curve and the NIMS spectra suggests the size distribution of the smallest ring particles is a power law with an index of 2.0±0.3 below a size of ˜15 μm that transitions to a power law with an index of 5.0±1.5 at larger sizes. This combined power law distribution, or "broken power law" distribution, yields a better fit to the NIMS data than do the power law distributions that have previously been fit to the Voyager imaging data (Showalter et al., 1987, Icarus 69, 458-498). The broken power law distribution reconciles the results of Showalter et al. (1987, Icarus 69, 458-498) and McMuldroch et al. (2000, Icarus 146, 1-11), who also analyzed the NIMS data, and can be considered as an obvious extension of a simple power law. This more complex size distribution could indicate that ring particle production

  18. Galileo NIMS Observes Amirani

    NASA Image and Video Library

    1999-11-19

    This image is the highest-resolution thermal, or heat image, ever made of Amirani, a large volcano on Jupiter moon Io. It was taken on Oct. 10, 1999, by NASA Galileo spacecraft. Amirani is on the side of Io that permanently faces away from Jupiter.

  19. A Fast Code for Jupiter Atmospheric Entry

    NASA Technical Reports Server (NTRS)

    Tauber, Michael E.; Wercinski, Paul; Yang, Lily; Chen, Yih-Kanq; Arnold, James (Technical Monitor)

    1998-01-01

    A fast code was developed to calculate the forebody heating environment and heat shielding that is required for Jupiter atmospheric entry probes. A carbon phenolic heat shield material was assumed and, since computational efficiency was a major goal, analytic expressions were used, primarily, to calculate the heating, ablation and the required insulation. The code was verified by comparison with flight measurements from the Galileo probe's entry; the calculation required 3.5 sec of CPU time on a work station. The computed surface recessions from ablation were compared with the flight values at six body stations. The average, absolute, predicted difference in the recession was 12.5% too high. The forebody's mass loss was overpredicted by 5.5% and the heat shield mass was calculated to be 15% less than the probe's actual heat shield. However, the calculated heat shield mass did not include contingencies for the various uncertainties that must be considered in the design of probes. Therefore, the agreement with the Galileo probe's values was considered satisfactory, especially in view of the code's fast running time and the methods' approximations.

  20. Far infrared filters for the Galileo-Jupiter and other missions

    NASA Technical Reports Server (NTRS)

    Seeley, J. S.; Hunneman, R.; Whatley, A.

    1981-01-01

    Progress in the development of FIR multilayer interference filters for the net flux radiometer and photopolarizing radiometer to be carried on board the Galileo mission to Jupiter is reported. The multilayer interference technique has been extended to the region above 40 microns by the use of PbTe/II-VI materials in hard-coated combination, with the thickest layers composed of CdSe QWOT at 74 microns and PbTe QWOT. Improvements have also been obtained in filters below 20 microns on the basis of the Chebyshev stack design. A composite filter cutting on steeply at 40 microns has been designed which employs a thin crystal quartz substrate, shorter wavelength absorption in ZnS and As2S3 thin films, and supplementary multilayer interference. Finally, absorptive filters have been developed based on II-VI compounds in multilayer combination with KRS-5 (or 6) on a KRS-5 (or 6) substrate

  1. Galileo dust data from the jovian system: 2000 to 2003

    NASA Astrophysics Data System (ADS)

    Krüger, H.; Bindschadler, D.; Dermott, S. F.; Graps, A. L.; Grün, E.; Gustafson, B. A.; Hamilton, D. P.; Hanner, M. S.; Horányi, M.; Kissel, J.; Linkert, D.; Linkert, G.; Mann, I.; McDonnell, J. A. M.; Moissl, R.; Morfill, G. E.; Polanskey, C.; Roy, M.; Schwehm, G.; Srama, R.

    2010-06-01

    The Galileo spacecraft was the first man-made satellite of Jupiter, orbiting the planet between December 1995 and September 2003. The spacecraft was equipped with a highly sensitive dust detector that monitored the jovian dust environment between approximately 2 and 370 RJ (jovian radius RJ=71 492 km). The Galileo dust detector was a twin of the one flying on board the Ulysses spacecraft. This is the tenth in a series of papers dedicated to presenting Galileo and Ulysses dust data. Here we present data from the Galileo dust instrument for the period January 2000 to September 2003 until Galileo was destroyed in a planned impact with Jupiter. The previous Galileo dust data set contains data of 2883 particles detected during Galileo's interplanetary cruise and 12 978 particles detected in the jovian system between 1996 and 1999. In this paper we report on the data of additional 5389 particles measured between 2000 and the end of the mission in 2003. The majority of the 21 250 particles for which the full set of measured impact parameters (impact time, impact direction, charge rise times, charge amplitudes, etc.) was transmitted to Earth were tiny grains (about 10 nm in radius), most of them originating from Jupiter's innermost Galilean moon Io. They were detected throughout the jovian system and the impact rates frequently exceeded 10 min -1. Surprisingly large impact rates up to 100 min -1 occurred in August/September 2000 when Galileo was far away (≈280RJ) from Jupiter, implying dust ejection rates in excess of 100 kg s -1. This peak in dust emission appears to coincide with strong changes in the release of neutral gas from the Io torus. Strong variability in the Io dust flux was measured on timescales of days to weeks, indicating large variations in the dust release from Io or the Io torus or both on such short timescales. Galileo has detected a large number of bigger micron-sized particles mostly in the region between the Galilean moons. A surprisingly large

  2. Hubble Tracks Jupiter Storms

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's Hubble Space Telescope is following dramatic and rapid changes in Jupiter's turbulent atmosphere that will be critical for targeting observations made by the Galileo space probe when it arrives at the giant planet later this year.

    This Hubble image provides a detailed look at a unique cluster of three white oval-shaped storms that lie southwest (below and to the left) of Jupiter's Great Red Spot. The appearance of the clouds, as imaged on February 13, 1995 is considerably different from their appearance only seven months earlier. Hubble shows these features moving closer together as the Great Red Spot is carried westward by the prevailing winds while the white ovals are swept eastward. (This change in appearance is not an effect of last July's comet Shoemaker-Levy 9 collisions with Jupiter.)

    The outer two of the white storms formed in the late 1930s. In the centers of these cloud systems the air is rising, carrying fresh ammonia gas upward. New, white ice crystals form when the upwelling gas freezes as it reaches the chilly cloud top level where temperatures are -200 degrees Fahrenheit (- 130 degrees Centigrade).

    The intervening white storm center, the ropy structure to the left of the ovals, and the small brown spot have formed in low pressure cells. The white clouds sit above locations where gas is descending to lower, warmer regions. The extent of melting of the white ice exposes varied amounts of Jupiter's ubiquitous brown haze. The stronger the down flow, the less ice, and the browner the region.

    A scheduled series of Hubble observations will help target regions of interest for detailed scrutiny by the Galileo spacecraft, which will arrive at Jupiter in early December 1995. Hubble will provide a global view of Jupiter while Galileo will obtain close-up images of structure of the clouds that make up the large storm systems such as the Great Red Spot and white ovals that are seen in this picture.

    This color picture is assembled from a

  3. Io, the closest Galileo's Medicean Moon: Changes in its Sodium Cloud Caused by Jupiter Eclipse

    NASA Astrophysics Data System (ADS)

    Grava, Cesare; Schneider, Nicholas M.; Barbieri, Cesare

    2010-01-01

    We report results of a study of true temporal variations in Io's sodium cloud before and after eclipse by Jupiter. The eclipse geometry is important because there is a hypothesis that the atmosphere partially condenses when the satellite enters the Jupiter's shadow, preventing sodium from being released to the cloud in the hours immediately after the reappearance. The challenge lies in disentangling true variations in sodium content from the changing strength of resonant scattering due Io's changing Doppler shift in the solar sodium absorption line. We undertook some observing runs at Telescopio Nazionale Galileo (TNG) at La Palma Canary Island with the high resolution spectrograph SARG in order to observe Io entering into Jupiter's shadow and coming out from it. The particular configuration chosen for the observations allowed us to observe Io far enough from Jupiter and to disentangle line-of-sight effects looking perpendicularly at the sodium cloud. We will present results which took advantage of a very careful reduction strategy. We remove the dependence from γ-factor, which is the fraction of solar light available for resonant scattering, in order to remove the dependence on the radial velocity of Io with respect to the Sun. This work has been supported by NSF's Planetary Astronomy Program, INAF/TNG and the Department of Astronomy and Cisas of University of Padova, through a contract by the Italian Space Agency ASI.

  4. Jupiter's Main Ring

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (km) per picture element (pixel) along the rings; however, because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow peering back toward the Sun; the ring was approximately 2,300,000 kilometers (km) away. The arc on the far right of the image is produced by sunlight scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age.

    Jupiter's ring system is composed of three parts -- a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, which lies exterior to the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the far left side of the figure. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow. Some radial structure is barely visible across the ring's ansa. A faint mist of particles can be seen above and below the main rings; this vertically extended 'halo' is unusual in planetary rings, and is probably caused by electromagnetic forces pushing the smallest grains out of the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic.

    Jupiter's main ring is a thin strand of material encircling the planet. The diffuse innermost boundary begins at approximately 123,000 km. The main ring's outer radius is found to be

  5. Jupiter's Ring Halo

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (km) per picture element (pixel) along the rings; however, because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow peering back toward the Sun; the ring was approximately 2,300,000 kilometers (km) away. The arc on the far right of the image is produced by sunlight scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age.

    Jupiter's ring system is composed of three parts -- a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, which lies exterior to the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the far left side of the figure. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow.

    A faint mist of particles can be seen above and below the main rings; this vertically extended, toroidal 'halo' is unusual in planetary rings, and is probably caused by electromagnetic forces which can push small grains out of the ring plane. Halo material is present across this entire image, implying that it reaches more than 27,000 km above the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic. In order to accentuate faint features in the image, different brightnesses are shown through color, with the brightest

  6. Jupiter Temperatures--Broad Latitude

    NASA Image and Video Library

    1997-09-23

    This is one of the highest resolution images ever recorded of Jupiter temperature field. It was obtained by NASA Galileo mission, with its Photopolarimeter-Radiometer PPR experiment, during the seventh of its 10 orbits around Jupiter to date.

  7. Modern Exploration of Galileo's New Worlds

    NASA Technical Reports Server (NTRS)

    Johnson, Torrence V.

    2010-01-01

    Four hundred years ago Galileo turned his telescope to the heavens and changed the way we view the cosmos forever. Among his discoveries in January of 1610 were four new 'stars', following Jupiter in the sky but changing their positions with respect to the giant planet every night. Galileo showed that these 'Medicean stars', as he named them, were moons orbiting Jupiter in the same manner that the Earth and planets revolve about the Sun in the Copernican theory of the solar system. Over the next three centuries these moons, now collectively named the Galilean satellites after their discoverer, remained tiny dots of light in astronomers' telescopes. In the latter portion of the twentieth century Galileo's new worlds became important targets of exploration by robotic spacecraft. This paper reviews the history of this exploration through the discoveries made by the Galileo mission from 1995 to 2003, setting the stage for on-going exploration in the new century.

  8. Origin, Bulk Chemical Composition and Physical Structure of the Galilean Satellites of Jupiter: A Post-Galileo Analysis

    NASA Technical Reports Server (NTRS)

    Prentice, A. J. R.

    1999-01-01

    The origin of Jupiter and the Galilean satellite system is examined in the light of the new data that has been obtained by the NASA Galileo Project. In particular, special attention is given to a theory of satellite origin which was put forward at the start of the Galileo Mission and on the basis of which several predictions have now been proven successful. These predictions concern the chemical composition of Jupiter's atmosphere and the physical structure of the satellites. According to the proposed theory of satellite origin, each of the Galilean satellites formed by chemical condensation and gravitational accumulation of solid grains within a concentric family of orbiting gas rings. These rings were cast off equatorially by the rotating proto-Jovian cloud (PJC which contracted gravitationally to form Jupiter some 4 1/2 billion years ago. The PJC formed from the gas and grains left over from the gas ring that had been shed at Jupiter's orbit by the contracting proto-solar cloud (PSC Supersonic turbulent convection provides the means for shedding discrete gas rings. The temperatures T (sub n) of the system of gas rings shed by the PSC and PJC vary with their respective mean orbital radii R (sub n) (n = 0, 1,2,...) according as T (sub n) proportional to R (sub n) (exp -0.9). If the planet Mercury condenses at 1640 K, so accounting for the high density of that planet via a process of chemical fractionation between iron and silicates, then T (sub n) at Jupiter's orbit is 158 K. Only 35% of the water vapour condenses out. Thus fractionation between rock and ice, together with an enhancement in the abundance of solids relative to gas which takes place through gravitational sedimentation of solids onto the mean orbit of the gas ring, ensures nearly equal proportions of rock and ice in each of Ganymede and Callisto. Io and Europa condense above the H20 ice point and consist solely of hydrated rock (h-rock). The Ganymedan condensate consists of h-rock and H20 ice. For

  9. Mass Spectrometry in Jupiter's Atmosphere: Vertical Variation of Volatile Vapors

    NASA Astrophysics Data System (ADS)

    Wong, Michael H.; Atreya, Sushil K.; Mahaffy, Paul R.

    2014-05-01

    The Galileo Probe made the first and only in situ measurements of composition in Jupiter's atmosphere, led by the Galileo Probe Mass Spectrometer, or GPMS [1]. The major contribution from this instrument was the measurement of abundances and isotope ratios of the noble gases, as well as the volatile gases CH4, NH3, H2O, and H2S [2,3]. These initial results were further refined by detailed laboratory calibrations for the noble gases [4] and the volatiles [5]. The probe measurements resulted in the first determination of the heavy element abundances (except carbon that was known previously) and He/H ratio, which provide critical constraints to models of the formation of Jupiter and the origin of its atmosphere [6,7]. The condensable volatiles, or CVs (ammonia, H2S, and water), increased with depth in the probe entry site. This vertical variation was observed at levels much deeper than the modeled cloud bases, as predicted by one-dimensional chemical equilibrium models. The discrepancy is due to the probe's entry into a dry region known as a 5-μm hot spot. The 5-μm hot spots are part of an atmospheric wave system that encircles Jupiter just north of the equator. Despite the anomalous meteorology, the bulk abundances of NH3 and H2S were measured by the probe, and found to be enriched with respect to solar composition (similarly to the non-condensable volatile CH4). The deepest water mixing ratio, however, was observed to be depleted relative to solar composition. We review an updated context for the CV vertical profiles measured by the GPMS, based on the latest results from remote sensing, simulation, and reinterpretation of Galileo Probe measurements. In particular, we find that (1) the bulk abundance of water in Jupiter's atmosphere must be greater than the subsolar abundance derived from the deepest GPMS measurements [8], and that (2) CV mixing ratios are controlled by a range of processes in addition to condensation of the ices NH3, NH4SH, and H2O [5-9]. Both

  10. A Fast Code for Jupiter Atmospheric Entry Analysis

    NASA Technical Reports Server (NTRS)

    Yauber, Michael E.; Wercinski, Paul; Yang, Lily; Chen, Yih-Kanq

    1999-01-01

    A fast code was developed to calculate the forebody heating environment and heat shielding that is required for Jupiter atmospheric entry probes. A carbon phenolic heat shield material was assumed and, since computational efficiency was a major goal, analytic expressions were used, primarily, to calculate the heating, ablation and the required insulation. The code was verified by comparison with flight measurements from the Galileo probe's entry. The calculation required 3.5 sec of CPU time on a work station, or three to four orders of magnitude less than for previous Jovian entry heat shields. The computed surface recessions from ablation were compared with the flight values at six body stations. The average, absolute, predicted difference in the recession was 13.7% too high. The forebody's mass loss was overpredicted by 5.3% and the heat shield mass was calculated to be 15% less than the probe's actual heat shield. However, the calculated heat shield mass did not include contingencies for the various uncertainties that must be considered in the design of probes. Therefore, the agreement with the Galileo probe's values was satisfactory in view of the code's fast running time and the methods' approximations.

  11. Radio Frequency Signals in Jupiter's Atmosphere

    PubMed

    Lanzerotti; Rinnert; Dehmel; Gliem; Krider; Uman; Bach

    1996-05-10

    During the Galileo probe's descent through Jupiter's atmosphere, under the ionosphere, the lightning and radio emission detector measured radio frequency signals at levels significantly above the probe's electromagnetic noise. The signal strengths at 3 and 15 kilohertz were relatively large at the beginning of the descent, decreased with depth to a pressure level of about 5 bars, and then increased slowly until the end of the mission. The 15-kilohertz signals show arrival direction anisotropies. Measurements of radio frequency wave forms show that the probe passed through an atmospheric region that did not support lightning within at least 100 kilometers and more likely a few thousand kilometers of the descent trajectory. The apparent opacity of the jovian atmosphere increases sharply at pressures greater than about 4 bars.

  12. In the Footsteps of Galileo

    NASA Astrophysics Data System (ADS)

    Erickson, John; van der Veen, W.; Moody, T.; O'Dea, T.

    2008-05-01

    This workshop links the goals of IYA to needs in science education. Lack of understanding of how science is practiced exists at all levels of society and is perpetuated by the way science is presented in classrooms and informal settings, often illustrated by the scientific method as a rigid multi-step process. This workshop presents an alternative to misleading scientific method lessons by highlighting some of Galileo's work. Looking through his telescope at four moons orbiting the planet Jupiter, Galileo gave priority to evidence over popular belief, completely changing the existing world view. We have adapted an activity developed by UC Berkeley's Lawrence Hall of Science in which students simulate observations of Jupiter's moons over several nights. The activity emphasizes the nature of science in regard to observations, evidence, predictions, models, hypotheses, and theories. A direct link is made between Galileo's work and the Five Essential Features of Inquiry as outlined in the National Science Education Standards. Participants will "observe” the Galilean moons of Jupiter, record data, make predictions, and analyze and model the data to determine orbital periods and distances for each moon. Extensions of this activity will be presented, including comparisons of the Jupiter system to the Earth-Moon system. Participants will also learn about Slooh, a robotic telescope that can be used by students to obtain their own images of Jupiter and its moons. As one way to have a multitude of learners in a variety of settings participate in IYA, this activity will be made available to many audiences for presentation in the fall of 2009. Participants in this workshop will discuss adaptations suitable for different groups and mechanisms for encouraging and enabling the presentation of this activity. Participants will receive a preliminary version of the adapted Jupiter activity and the BSCS publication: "Why Does Inquiry Matter?"

  13. Wind Patterns in Jupiter's Equatorial Region (Time set 1)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Wind patterns of Jupiter's equatorial region. This mosaic covers an area of 34,000 kilometers by 22,000 kilometers and was taken using the 756 nanometer (nm) near-infrared continuum filter. The dark region near the center of the mosaic is an equatorial 'hotspot' similar to the Galileo Probe entry site. The near-infrared continuum filter shows the features of Jupiter's main visible cloud deck.

    Jupiter's atmospheric circulation is dominated by alternating jets of east/west (zonal) winds. The bands have different widths and wind speeds but have remained constant as long as telescopes and spacecraft have measured them. The top half of these mosaics lies within Jupiter's North Equatorial Belt, a westward (left) current. The bottom half shows part of the Equatorial Zone, a fast moving eastward current. The clouds near the hotspot are the fastest moving features in these mosaics, moving at about 100 meters per second, or 224 miles per hour.

    Superimposed on the zonal wind currents is the Jovian 'weather'. The arrows show the winds measured by an observer moving eastward (right) at the speed of the hotspot. (The observer's perspective is that the hotspot is 'still' while the rest of the planet moves around it.) Clouds south of the hotspot appear to be moving towards it, as seen in the flow aligned with cloud streaks to the southwest and in the clockwise flow to the southeast. Interestingly, there is little cloud motion away from the hotspot in any direction. This is consistent with the idea that dry air is converging over this region and sinking, maintaining the cloud-free nature of the hotspot.

    North is at the top. The mosaic covers latitudes 1 to 19 degrees and is centered at longitude 336 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA

  14. Galileo Probe Mass Spectrometer Measurements of the Chemical Composition of the Atmosphere of Jupiter

    NASA Astrophysics Data System (ADS)

    Niemann, H. B.; Haberman, J. A.; Harpold, D. N.; Hartle, R. E.; Kasprzak, W. T.; Mahaffy, P. R.; Atreya, S. K.; Carignan, G. R.; Donahue, T. M.; Hunten, D. M.; Owen, T. C.; Spencer, N. W.

    1996-09-01

    The chemical and isotopic composition of the Jovian atmosphere was measured by the Galileo Probe Mass Spectrometer (GPMS). This data was obtained on December 7, 1995 over a time period of approximately 1 hour during the probe descent in the 0.5 to 20 bar pressure region and transmitted to Earth over a period of several weeks. The sampling was either of atmospheric gases directly introduced into the ion source of the mass spectrometer through one of 2 capillary leak arrays or of gas which had been processed in enrichment cells to enhance the sensitivity of the measurement to trace species or heavy noble gases. Mixing ratios or limits were previously reported [Niemann et al., 1996] for atmospheric hydrogen, helium, methane, water, ammonia, hydrogen sulfide, neon, argon, krypton, and xenon. Ratios for isotopes of He, Ne, Ar, Kr, Xe, C, and H were also obtained. Additional molecules detected at the present stage of analysis include ethane, ethylene, propane, and hydrogen chloride as well as benzene and carbon/nitrogen compounds. The GPMS Flight Unit was not calibrated for some of these molecules and laboratory studies continue on an Engineering Unit. A substantial increase was observed in the mixing ratio of water, hydrogen sulfide, ethane and other species with increasing depth into the atmosphere over the 8 bar to 23 bar pressure regime. It has been suggested [Atreya et al., 1996] that the lower than expected abundance of many species in the early part of the descent and the observed increase with depth may be the signature of a large downdraft. H. B. Niemann et al., Science 272, 781 (1996). S. K. Atreya et al., Paper presented at the European Geophysical Society Meeting, The Hague, Netherlands, May 6, 1996, EGS Bull. 58, 197 (1996).

  15. Status of Galileo interim radiation electron model

    NASA Technical Reports Server (NTRS)

    Garrett, H. B.; Jun, I.; Ratliff, J. M.; Evans, R. W.; Clough, G. A.; McEntire, R. W.

    2003-01-01

    Measurements of the high energy, omni-directional electron environment by the Galileo spacecraft Energetic Particle Detector (EDP) were used to develop a new model of Jupiter's trapped electron radiation in the jovian equatorial plane for the range 8 to 16 Jupiter radii.

  16. Motion in Jupiter's Atmospheric Vortices (Near-infrared filters)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Two frame 'movie' of a pair of vortices in Jupiter's southern hemisphere. The two frames are separated by ten hours. The right oval is rotating counterclockwise, like other anticyclonic bright vortices in Jupiter's atmosphere. The left vortex is a cyclonic (clockwise) vortex. The differences between them (their brightness, their symmetry, and their behavior) are clues to how Jupiter's atmosphere works. The frames span about fifteen degrees in latitude and longitude and are centered at 141 degrees west longitude and 36 degrees south planetocentric latitude. Both vortices are about 3500 kilometers in diameter in the north-south direction.

    The images were taken in near infrared light at 756 nanometers and show clouds that are at a pressure level of about 1 bar in Jupiter's atmosphere. North is at the top. The smallest resolved features are tens of kilometers in size. These images were taken on May 7, 1997, at a range of 1.5 million kilometers by the Solid State Imaging system on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  17. Jupiter's Temperatures--Broad Latitude

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is one of the highest resolution images ever recorded of Jupiter's temperature field. It was obtained by NASA's Galileo mission, with its Photopolarimeter-Radiometer (PPR) experiment, during the seventh of its 10 orbits around Jupiter to date. This map, shown in the left panel, indicates the forces powering Jovian winds, and differentiates between areas of strongest upwelling and downwelling winds in the upper part of the atmosphere. A Hubble Space Telescope Planetary Camera color composite of this same region, taken within 10 hours of the PPR map, is shown in the right panel for the same region, as a reference to the visual clouds. An outline of the region mapped by the PPR is also shown.

    This atmospheric observation covered a broad latitude region, and it shows that the visually dark regions generally have warmer temperatures than the visually light ones, indicating that they are regions of downwelling, dry air which clear out cloud condensate particles. The 'little red spot' at the northernmost part of this image is colder than its surroundings, consistent with it being a region of upwelling and cooling gas. The smaller spots to its southeast (lower right) and other lighter spots in the HST image are all colder than their surroundings, consistent with regions of upwelling and cooling gas. The northern half of the brightest band in the map is brighter than the southern half, and it reveals some detailed structure, down to the 1900- kilometer (1200-mile) resolution of the PPR, which is not always readily correlated with variations of the visual cloud field.

    One surprise of this temperature map involved temperatures near the dark blue-gray feature in the map, an area like the one into which the Probe descended. While large regions of downwelling wind heat the local area elsewhere in Jupiter, this region of vigorous downwelling appears close to being thermally neutral. The drying, downwelling winds may be deeper in the atmosphere than sensed by the PPR

  18. Groundbased IO [O I] 6300A Observations during the Galileo I24 and I25 and Cassini Encounters

    NASA Technical Reports Server (NTRS)

    Oliverson, R. J.; Morgenthaler, J. P.; Scherb, F.; Harris, W. M.; Smyth, W. H.; Lupie, O. L.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    We report on selected recent spectroscopic observations of Io [OI] 6300Angstrom emission, using the high-resolution (R approximately equal to 120,000) stellar spectrograph at the National Solar Observatory McMath-Pierce telescope. These data were obtained during the Galileo I24 (1999-Oct-11) and I25 (1999-Nov-26) encounters with Io and the Cassini Jupiter encounter (closest approach 2000-Dec-30). The exposure time for each spectrum was 15 minutes, with a 5.2 second x 5.2 second aperture centered on Io. We obtained 102 spectra for the I24 encounter during 1999 October 9-13, 82 spectra for the I25 encounter during 1999 November 24-28, 313 spectra during 2000 December 11-23, and 280 spectra during 2000 December 29-2001 January 21 for the Cassini Jupiter encounter. We showed in a recent paper (Oliversen et al. 2001, JGR, 106, 26183) that this emission allows us to use Io as a localized probe of the three-dimensional plasma torus structure. We will also present preliminary results on selected contemporaneous narrowband [SII]6731A torus images obtained at the McMath-Pierce west auxiliary telescope. We took 136, 112, and 277 torus images during the Galileo I24, Galileo I25 and Cassini Jupiter encounters, respectively. Jupiter was imaged directly onto the CCD through a ND 4 filter and the reflected light was used for guiding. Both sides of the torus were imaged simultaneously when there were no Galilean satellites between 3-8 Jovian radii from Jupiter.

  19. Winds Near Jupiter's Belt-Zone Boundary

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Time Sequence of a belt-zone boundary near Jupiter's equator. These mosaics show Jupiter's appearance at 757 nanometers (near-infrared) and were taken nine hours apart. Images at 757 nanometers show features of Jupiter's primary visible cloud deck.

    Jupiter's atmospheric circulation is dominated by alternating jets of east/west (zonal) winds. The bands have different widths and wind speeds but have remained constant as long as telescopes and spacecraft have measured them. A strong eastward jet is made visible as it stretches the clouds just below the center of this mosaic. The maximum wind speed of this jet is 128 meters per second (286 miles per hour). Features on this jet move about one quarter of the width of the mosaic. All the features visible in these mosaics are moving eastward (right).

    North is at the top. The mosaic covers latitudes -13 to +3 degrees and is centered at longitude 282 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on November 5th, 1996, at a range of 1.2 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  20. Galileo: Exploration of Jupiter's system

    NASA Technical Reports Server (NTRS)

    Johnson, T. V.; Yeates, C. M.; Colin, L.; Fanale, F. P.; Frank, L.; Hunten, D. M.

    1985-01-01

    The scientific objectives of the Galileo mission to the Jovian system is presented. Topics discussed include the history of the project, our current knowledge of the system, the objectives of interrelated experiments, mission design, spacecraft, and instruments. The management, scientists, and major contractors for the project are also given.

  1. Jupiter Temperatures

    NASA Image and Video Library

    1997-09-29

    This is one of the highest resolution images ever recorded of Jupiter temperature field. It was obtained by NASA Galileo mission. This map, shown in the lower panel, indicates the forces powering Jovian winds.

  2. Galileo Probe forebody thermal protection

    NASA Technical Reports Server (NTRS)

    Green, M. J.; Davy, W. C.

    1981-01-01

    Material response solutions for the forebody heat shield on the candidate 310-kg Galileo Probe are presented. A charring material ablation analysis predicts thermochemical surface recession, insulation thickness, and total required heat shield mass. Benchmark shock layer solutions provide the imposed entry heating environments on the ablating surface. Heat shield sizing results are given for a nominal entry into modeled nominal and cool-heavy Jovian atmospheres, and for two heat-shield property models. The nominally designed heat shield requires a mass of at least 126 kg and would require an additional 13 kg to survive entry into the less probable cool-heavy atmosphere. The material-property model with a 30% surface reflectance reduces these mass requirements by as much as 16%.

  3. Jupiter Great Red Spot

    NASA Image and Video Library

    1997-09-07

    This view of Jupiter Great Red Spot is a mosaic of two images taken by NASA Galileo spacecraft. The Great Red Spot is a storm in Jupiter atmosphere and is at least 300 years-old. The image was taken on June 26, 1996. http://photojournal.jpl.nasa.gov/catalog/PIA00296

  4. Jupiter's Main Ring/Ring Halo

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (28.5 miles) per picture element (pixel) along Jupiter's rings. Because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow, peering back toward the Sun; the ring was approximately 2.3 million kilometers (1.4 million miles) away. The arc on the far right of the image is produced when sunlight is scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age.

    Jupiter's ring system is composed of three parts - - a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, outside the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the figure's far left side. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow. Some radial structure is barely visible across the ring's ansa (top image). A faint mist of particles can be seen above and below the main rings. This vertically extended 'halo' is unusual in planetary rings, and is probably caused by electromagnetic forces pushing the smallest grains out of the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic. To accentuate faint features in the bottom image of the ring halo, different brightnesses are shown through color. Brightest features are white or yellow and the

  5. Prediction of Particle Number Density and Particle Properties in the Flow Field Observed by the Nephelometer Experiment on the Galileo Probe

    NASA Technical Reports Server (NTRS)

    Naughton, Jonathan W.

    1998-01-01

    This report summarizes the work performed to assist in the analysis of data returned from the Galileo Probe's Nephelometer instrument. A computation of the flow field around the Galileo Probe during its descent through the Jovian atmosphere was simulated. The behavior of cloud particles that passed around the Galileo probe was then computed and the number density in the vicinity of the Nephelometer instrument was predicted. The results of our analysis support the finding that the number density of cloud particles was not the same in each of the four sampling volumes of the Nephelometer instrument. The number densities calculated in this study are currently being used to assist in the reanalysis of the data returned from the Galileo Probe.

  6. Shock Synthesis in the Atmosphere of Jupiter

    NASA Astrophysics Data System (ADS)

    Khare, B. N.; Sagan, C.; McDonald, G. D.; de Vanssay, E.; Borucki, W. J.; McKay, C. P.; Bernstein, M. P.; Hartman, T. G.; Lech, J.

    1996-09-01

    We have previously investigated an approximate simulation of the Jupiter troposphere at the 1 bar NH_3 cloud level using Laser Induced Plasma (LIP) for shock synthesis in a 84.62:13.3:1.07:1.01 H_2:He:CH_4:NH_3 gas mixture, and found by GC/MS that HCN is the most abundant product, more abundant than all the major product hydrocarbons (C_2H_6, C_2H_2, C_3H_8, and C_4H10) combined. Using purge and trap isolation techniques on the LIP gas mixture using two absorbent traps in tandem, thermal desorption GC/MS has revealed a large array of product molecules starting from simple hydrocarbons such as C_2H_2, C_2H_4, etc., simple nitriles such as HCN, CH_3CN, etc., to molecules up to C13 (e.g. C13H23N). Here we report the results of our more accurate simulation of Jupiter at the 5 bar level using LIP with a 88:11.7:0.2:0.1 H_2:He:CH_4:NH_3 mixture, for comparison with mass spectral data from the Galileo probe. We detect in this more acurate simulation of Jupiter many of the same compounds, such as HCN, dimethylaminoacetonitrile, and dimethylcyanamide, as in the previous lower dilution experiment. We will compare the present results with those from low-pressure continuous flow plasma discharge experiments (McDonald et al. 1992, al Icarus 99, 131). We will also discuss the relevance of our data in light of the significant discrepancies between standard models of the jovian atmosphere and the compositional data returned by the Galileo entry probe.

  7. Flexible stator control on the Galileo spacecraft

    NASA Technical Reports Server (NTRS)

    Kopf, E. H.; Brown, T. K.; Marsh, E. L.

    1979-01-01

    Galileo is a dual-spin spacecraft designed to deliver a probe to Jupiter and then orbit the planet. The stator, or despun section, contains four flexible modes below 10 Hz and the despun actuator is separated from the inertial sensors by this flexibility. Control loop separation by bandwidth proved unacceptable due to performance requirements. To obtain the desired performance, a control scheme was devised which consists of three parts. First, flexibility damping and control notch filtering are accomplished by phase locked loop techniques. Second, slewing maneuvers are produced by torque profiles which are nonexcitatory to the structure. Finally, a low bandwidth perturbation controller is supplied to remove spacecraft disturbances.

  8. Jupiter's Water Worlds

    NASA Technical Reports Server (NTRS)

    Pappalardo, R. T.

    2004-01-01

    When the twin Voyager spacecraft cruised past Jupiter in 1979, they did more than rewrite the textbooks on the giant planet. Their cameras also unveiled the astounding diversity of the four planet-size moons of ice and stone known as the Galilean satellites. The Voyagers revealed the cratered countenance of Callisto, the valleys and ridges of Ganymede, the cracked face of Europa, and the spewing volcanoes of Io. But it would take a spacecraft named for Italian scientist Galileo, who discovered the moons in 1610, to reveal the true complexity of these worlds and to begin to divulge their interior secrets. Incredibly, the Galileo data strongly suggest that Jupiter's three large icy moons (all but rocky Io) hide interior oceans.

  9. Galileo: Earth avoidance study report

    NASA Technical Reports Server (NTRS)

    Mitchell, R. T.

    1988-01-01

    The 1989 Galileo mission to Jupiter is based on a VEEGA (Venus Earth Earth-Gravity Assist) trajectory which uses two flybys of Earth and one of Venus to achieve the necessary energy and shaping to reach Jupiter. These encounters are needed because the Centaur upper stage is not now being used on this mission. Since the Galileo spacecraft uses radioisotope thermoelectric generators (RTGs) for electrical power, the question arises as to whether there is any chance of an inadvertent atmospheric entry of the spacecraft during either of the two Earth flybys. A study was performed which determined the necessary actions, in both spacecraft and trajectory design as well as in operations, to insure that the probability of such reentry is made very small, and to provide a quantitative assessment of the probability of reentry.

  10. Galileo - Ganymede Family Night

    NASA Technical Reports Server (NTRS)

    1996-01-01

    When the Galileo spacecraft flew by Ganymede, Jupiter's and the solar system's largest satellite, on June 26, 1996, the project scientists and engineers gather with their friends and family to view the photos as they are received and to celebrate the mission. This videotape presents that meeting. Representatives from the various instrument science teams discuss many of the instruments aboard Galileo and show videos and pictures of what they have seen so far. This video is continued on Videotape number NONP-NASA-VT-2000036028.

  11. False Color Mosaic of Jupiter's Belt-Zone Boundary

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false color mosaic shows a belt-zone boundary near Jupiter's equator. The images that make up the four quadrants of this mosaic were taken within a few minutes of each other. Light at each of Galileo's three near-infrared wavelengths is displayed here in the visible colors red, green and blue. Light at 886 nanometers, strongly absorbed by atmospheric methane and scattered from clouds high in the atmosphere, is shown in red. Light at 732 nanometers, moderately absorbed by atmospheric methane, is shown in green. Light at 757 nanometers, scattered mostly from Jupiter's lower visible cloud deck, is shown in blue. The lower cloud deck appears bluish white, while the higher layer appears pinkish. The holes in the upper layer and their relationships to features in the lower cloud deck can be studied in the lower half of the mosaic. Galileo is the first spacecraft to image different layers in Jupiter's atmosphere.

    The edge of the planet runs along the right side of the mosaic. North is at the top. The mosaic covers latitudes -13 to +3 degrees and is centered at longitude 280 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on Nov. 5, 1996, at a range of 1.2 million kilometers by the solid state imaging (CCD) system aboard NASA's Galileo spacecraft.

    Launched in October 1989, Galileo entered orbit around Jupiter on Dec. 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at http://www.jpl.nasa.gov/galileo/sepo.

  12. Four Galileo Views of Amalthea

    NASA Technical Reports Server (NTRS)

    1997-01-01

    These four images of Jupiter's moon, Amalthea, were taken by Galileo's solid state imaging system at various times between February and June 1997. North is approximately up in all cases. Amalthea, whose longest dimension is approximately 247 kilometers (154 miles) across, is tidally locked so that the same side of the satellite always points towards Jupiter, similar to how the nearside of our own Moon always points toward Earth. In such a tidally locked state, one side of Amalthea always points in the direction in which Amalthea moves as it orbits about Jupiter. This is called the 'leading side' of the moon and is shown in the top two images. The opposite side of Amalthea, the 'trailing side,' is shown in the bottom pair of images. The Sun illuminates the surface from the left in the top left image and from the right in the bottom left image. Such lighting geometries, similar to taking a picture from a high altitude at sunrise or sunset, are excellent for viewing the topography of the satellite's surface such as impact craters and hills. In the two images on the right, however, the Sun is almost directly behind the spacecraft. This latter geometry, similar to taking a picture from a high altitude at noon, washes out topographic features and emphasizes Amalthea's albedo (light/dark) patterns. It emphasizes the presence of surface materials that are intrinsically brighter or darker than their surroundings. The bright albedo spot that dominates the top right image is located inside a large south polar crater named Gaea.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  13. Jupiter's Northern Hemisphere in False Color (Time Set 2)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaic of Jupiter's northern hemisphere between 10 and 50 degrees latitude. Jupiter's atmospheric circulation is dominated by alternating eastward and westward jets from equatorial to polar latitudes. The direction and speed of these jets in part determine the color and texture of the clouds seen in this mosaic. Also visible are several other common Jovian cloud features, including large white ovals, bright spots, dark spots, interacting vortices, and turbulent chaotic systems. The north-south dimension of each of the two interacting vortices in the upper half of the mosaic is about 3500 kilometers.

    This mosaic uses the Galileo imaging camera's three near-infrared wavelengths (756 nanometers, 727 nanometers, and 889 nanometers displayed in red, green, and blue) to show variations in cloud height and thickness. Light blue clouds are high and thin, reddish clouds are deep, and white clouds are high and thick. The clouds and haze over the ovals are high, extending into Jupiter's stratosphere. Dark purple most likely represents a high haze overlying a clear deep atmosphere. Galileo is the first spacecraft to distinguish cloud layers on Jupiter.

    North is at the top. The images are projected on a sphere, with features being foreshortened towards the north. The smallest resolved features are tens of kilometers in size. These images were taken on April 3, 1997, at a range of 1.4 million kilometers by the Solid State Imaging system (CCD) on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  14. Galileo multispectral imaging of Earth.

    PubMed

    Geissler, P; Thompson, W R; Greenberg, R; Moersch, J; McEwen, A; Sagan, C

    1995-08-25

    Nearly 6000 multispectral images of Earth were acquired by the Galileo spacecraft during its two flybys. The Galileo images offer a unique perspective on our home planet through the spectral capability made possible by four narrowband near-infrared filters, intended for observations of methane in Jupiter's atmosphere, which are not incorporated in any of the currently operating Earth orbital remote sensing systems. Spectral variations due to mineralogy, vegetative cover, and condensed water are effectively mapped by the visible and near-infrared multispectral imagery, showing a wide variety of biological, meteorological, and geological phenomena. Global tectonic and volcanic processes are clearly illustrated by these images, providing a useful basis for comparative planetary geology. Differences between plant species are detected through the narrowband IR filters on Galileo, allowing regional measurements of variation in the "red edge" of chlorophyll and the depth of the 1-micrometer water band, which is diagnostic of leaf moisture content. Although evidence of life is widespread in the Galileo data set, only a single image (at approximately 2 km/pixel) shows geometrization plausibly attributable to our technical civilization. Water vapor can be uniquely imaged in the Galileo 0.73-micrometer band, permitting spectral discrimination of moist and dry clouds with otherwise similar albedo. Surface snow and ice can be readily distinguished from cloud cover by narrowband imaging within the sensitivity range of Galileo's silicon CCD camera. Ice grain size variations can be mapped using the weak H2O absorption at 1 micrometer, a technique which may find important applications in the exploration of the moons of Jupiter. The Galileo images have the potential to make unique contributions to Earth science in the areas of geological, meteorological and biological remote sensing, due to the inclusion of previously untried narrowband IR filters. The vast scale and near global

  15. Systems-level study of a nonsurvivable Jupiter turbopause probe. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Wiltshire, R. S.

    1972-01-01

    The design of a space probe to explore the atmosphere of the planet Jupiter is discussed. Five major areas were considered: (1) definition of science requirements, (2) mission evaluation, (3) definition of probe system, (4) definition of spacecraft support requirements, and (5) nonequilibrium flow field analysis for communications blackout evaluation. The overall mission and system design are emphasized. The integration of the various technologies into complete systems designs is described. Results showed that a nonsurvivable turbopause probe mission to Jupiter with adequate data return to meet the science objectives is feasible and practical.

  16. Time Series of Jupiter Aurora

    NASA Image and Video Library

    1998-06-10

    These mosaics of Jupiter's night side show the Jovian aurora at approximately 45 minute intervals as the auroral ring rotated with the planet below the spacecraft. The images were obtained by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft. during its eleventh orbit of Jupiter. The auroral ring is offset from Jupiter's pole of rotation and reaches the lowest latitude near 165 degrees west longitude. The aurora is hundreds of kilometers wide, and when it crosses the edge of Jupiter, it is about 250 kilometers above the planet. As on Earth, the auroral emission is caused by electrically charged particles striking atoms in the upper atmosphere from above. The particles travel along Jupiter's magnetic field lines, but their origin is not fully understood. The field lines where the aurora is most intense cross the Jovian equator at large distances (many Jovian radii) from the planet. The faint background throughout the image is scattered light in the camera. This stray light comes from the sunlit portion of Jupiter, which is out of the image. In multispectral observations the aurora appears red, consistent with how atomic hydrogen in Jupiter's atmosphere would glow. Galileo's unique perspective allows it to view the night side of the planet at short range, revealing details that cannot be seen from Earth. These detailed features are time dependent, and can be followed in this sequence of Galileo images. In the first mosaic, the auroral ring is directly over Jupiter's limb and is seen "edge on." In the fifth mosaic, the auroral emission is coming from several distinct bands. This mosaic also shows the footprint of the Io flux tube. Volcanic eruptions on Jupiter's moon, Io, spew forth particles that become ionized and are pulled into Jupiter's magnetic field to form an invisible tube, the Io flux tube, between Jupiter and Io. The bright circular feature towards the lower right may mark the location where these energetic particles impact Jupiter. Stars

  17. Juno observes the dynamics of Jupiter's atmosphere

    NASA Astrophysics Data System (ADS)

    Ingersoll, Andrew P.; Juno Science Team

    2017-10-01

    Jupiter is a photogenic planet, but our knowledge of the deep atmosphere is limited. Remote sensing observations have traditionally probed within and above the cloud tops, which are in the 0.5-1.0 bar pressure range. Dynamical models have focused on explaining this data set. Microwave observations from Earth probe down to the 5-10 bar range, which overlaps with the predicted base of the water cloud. The Galileo probe yielded data on winds, composition, temperature gradients, clouds, radiant flux, and lightning down to 22 bars, but only at one place on the planet. Further, the traditional observations are constrained to cover low and middle latitudes. In contrast, Juno's camera and infrared radiometer, JunoCam and JIRAM, have yielded images of the poles that show cyclonic vortices in polygonal arrangements. Juno's microwave radiometer yields latitude-altitude cross sections that show dynamical features of the ammonia distribution down to 50-100 bars. And Jupiter's gravity field yields information about the winds at thousands of km depth, where the pressures are tens of kbars. In this talk I will summarize the Juno observations that pertain to the dynamics of Jupiter's atmosphere and I will offer some of my own interpretations. The new data raise as many questions as answers, but that is as it should be. As Ed Stone said during a Voyager encounter, "If we knew all the answers before we got there, we wouldn't be learning anything."

  18. Galileo Press Conference from JPL. Parts 1 and 2

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This two-tape Jet Propulsion Laboratory (JPL) video production presents a Dec. 8, 1992 press conference held at JPL to discuss the final Galileo spacecraft encounter with Earth before beginning its journey to Jupiter. The main theme of the conference was centered on the significance of the 2nd and final Earth/Moon flyby as being the spacecraft's last planetary encounter in the solar system before reaching Jupiter, as well as final flight preparations prior to its final journey. Each person of the five member panel was introduced by Robert MacMillan (JPL Public Information Mgr.) before giving brief presentations including slides and viewgraphs covering their area of expertise regarding Galileo's current status and future plans. After the presentations, the media was given an opportunity to ask questions of the panel regarding the mission. Mr. Wesley Huntress (Dir. of Solar System Exploration (NASA)), William J. ONeill (Galileo Project Manager), Neal E. Ausman, Jr. (Galileo Mission Director), Dr. Torrence V. Johnson (Galileo Project Scientist) and Dr. Ronald Greeley (Member, Imaging Team, Colorado St. Univ.) made up the panel and discussed topics including: Galileo's interplanetary trajectory; project status and performance review; instrument calibration activities; mission timelines; lunar observation and imaging; and general lunar science. Also included in the last three minutes of the video are simulations and images of the 2nd Galileo/Moon encounter.

  19. Atmospheric Dynamics on Venus, Jupiter, and Saturn: An Observational and Analytical Study

    NASA Technical Reports Server (NTRS)

    Bridger, Alison; Magalhaes, Julio A.; Young, Richard E.

    2000-01-01

    Determining the static stability of Jupiter's atmosphere below the visible cloud levels is important for understanding the dynamical modes by which energy and momentum are transported through Jupiter's deep troposphere. The Galileo Probe Atmospheric Structure Investigation (ASI) employed pressure and temperature sensors to directly measure these state variables during the parachute-descent phase, which started at a pressure (p) of 0.4 bars and ended at p= 22 bars. The internal temperature of the probe underwent large temperature fluctuations which significantly exceeded design specifications. Corrections for these anomalous interior temperatures have been evaluated based on laboratory data acquired after the mission using the flight spare hardware. The corrections to the pressure sensor readings was particularly large and the uncertainties in the atmospheric pressures derived from the p sensor measurements may still be significant. We have sought to estimate the formal uncertainties in the static stability derived from the p and T sensor measurements directly and to devise means of assessing the static stability of Jupiter's atmosphere which do not rely on the p sensor data.

  20. Galileo's Medicean Moons (IAU S269)

    NASA Astrophysics Data System (ADS)

    Barbieri, Cesare; Chakrabarti, Supriya; Coradini, Marcello; Lazzarin, Monica

    2010-11-01

    Preface; 1. Galileo's telescopic observations: the marvel and meaning of discovery George V. Coyne, S. J.; 2. Popular perceptions of Galileo Dava Sobel; 3. The slow growth of humility Tobias Owen and Scott Bolton; 4. A new physics to support the Copernican system. Gleanings from Galileo's works Giulio Peruzzi; 5. The telescope in the making, the Galileo first telescopic observations Alberto Righini; 6. The appearance of the Medicean Moons in 17th century charts and books. How long did it take? Michael Mendillo; 7. Navigation, world mapping and astrometry with Galileo's moons Kaare Aksnes; 8. Modern exploration of Galileo's new worlds Torrence V. Johnson; 9. Medicean Moons sailing through plasma seas: challenges in establishing magnetic properties Margaret G. Kivelson, Xianzhe Jia and Krishan K. Khurana; 10. Aurora on Jupiter: a magnetic connection with the Sun and the Medicean Moons Supriya Chakrabarti and Marina Galand; 11. Io's escaping atmosphere: continuing the legacy of surprise Nicholas M. Schneider; 12. The Jovian Rings Wing-Huen Ip; 13. The Juno mission Scott J. Bolton and the Juno Science Team; 14. Seeking Europa's ocean Robert T. Pappalardo; 15. Europa lander mission: a challenge to find traces of alien life Lev Zelenyi, Oleg Korablev, Elena Vorobyova, Maxim Martynov, Efraim L. Akim and Alexander Zakahrov; 16. Atmospheric moons Galileo would have loved Sushil K. Atreya; 17. The study of Mercury Louise M. Prockter and Peter D. Bedini; 18. Jupiter and the other giants: a comparative study Thérèse Encrenaz; 19. Spectroscopic and spectrometric differentiation between abiotic and biogenic material on icy worlds Kevin P. Hand, Chris McKay and Carl Pilcher; 20. Other worlds, other civilizations? Guy Consolmagno, S. J.; 21. Concluding remarks Roger M. Bonnet; Posters; Author index; Object index.

  1. Detecting 3D Vegetation Structure with the Galileo Space Probe: Can a Distant Probe Detect Vegetation Structure on Earth?

    PubMed Central

    2016-01-01

    Sagan et al. (1993) used the Galileo space probe data and first principles to find evidence of life on Earth. Here we ask whether Sagan et al. (1993) could also have detected whether life on Earth had three-dimensional structure, based on the Galileo space probe data. We reanalyse the data from this probe to see if structured vegetation could have been detected in regions with abundant photosynthetic pigments through the anisotropy of reflected shortwave radiation. We compare changing brightness of the Amazon forest (a region where Sagan et al. (1993) noted a red edge in the reflectance spectrum, indicative of photosynthesis) as the planet rotates to a common model of reflectance anisotropy and found measured increase of surface reflectance of 0.019 ± 0.003 versus a 0.007 predicted from only anisotropic effects. We hypothesize the difference was due to minor cloud contamination. However, the Galileo dataset had only a small change in phase angle (sun-satellite position) which reduced the observed anisotropy signal and we demonstrate that theoretically if the probe had a variable phase angle between 0–20°, there would have been a much larger predicted change in surface reflectance of 0.1 and under such a scenario three-dimensional vegetation structure on Earth could possibly have been detected. These results suggest that anisotropic effects may be useful to help determine whether exoplanets have three-dimensional vegetation structure in the future, but that further comparisons between empirical and theoretical results are first necessary. PMID:27973530

  2. Detecting 3D Vegetation Structure with the Galileo Space Probe: Can a Distant Probe Detect Vegetation Structure on Earth?

    PubMed

    Doughty, Christopher E; Wolf, Adam

    2016-01-01

    Sagan et al. (1993) used the Galileo space probe data and first principles to find evidence of life on Earth. Here we ask whether Sagan et al. (1993) could also have detected whether life on Earth had three-dimensional structure, based on the Galileo space probe data. We reanalyse the data from this probe to see if structured vegetation could have been detected in regions with abundant photosynthetic pigments through the anisotropy of reflected shortwave radiation. We compare changing brightness of the Amazon forest (a region where Sagan et al. (1993) noted a red edge in the reflectance spectrum, indicative of photosynthesis) as the planet rotates to a common model of reflectance anisotropy and found measured increase of surface reflectance of 0.019 ± 0.003 versus a 0.007 predicted from only anisotropic effects. We hypothesize the difference was due to minor cloud contamination. However, the Galileo dataset had only a small change in phase angle (sun-satellite position) which reduced the observed anisotropy signal and we demonstrate that theoretically if the probe had a variable phase angle between 0-20°, there would have been a much larger predicted change in surface reflectance of 0.1 and under such a scenario three-dimensional vegetation structure on Earth could possibly have been detected. These results suggest that anisotropic effects may be useful to help determine whether exoplanets have three-dimensional vegetation structure in the future, but that further comparisons between empirical and theoretical results are first necessary.

  3. Turbulent Region Near Jupiter's Great Red Spot

    NASA Technical Reports Server (NTRS)

    1997-01-01

    True and false color mosaics of the turbulent region west of Jupiter's Great Red Spot. The Great Red Spot is on the planetary limb on the right hand side of each mosaic. The region west (left) of the Great Red Spot is characterized by large, turbulent structures that rapidly change in appearance. The turbulence results from the collision of a westward jet that is deflected northward by the Great Red Spot into a higher latitude eastward jet. The large eddies nearest to the Great Red Spot are bright, suggesting that convection and cloud formation are active there.

    The top mosaic combines the violet (410 nanometers) and near infrared continuum (756 nanometers) filter images to create a mosaic similar to how Jupiter would appear to human eyes. Differences in coloration are due to the composition and abundance of trace chemicals in Jupiter's atmosphere. The lower mosaic uses the Galileo imaging camera's three near-infrared (invisible) wavelengths (756 nanometers, 727 nanometers, and 889 nanometers displayed in red, green, and blue) to show variations in cloud height and thickness. Light blue clouds are high and thin, reddish clouds are deep, and white clouds are high and thick. Purple most likely represents a high haze overlying a clear deep atmosphere. Galileo is the first spacecraft to distinguish cloud layers on Jupiter.

    The mosaic is centered at 16.5 degrees south planetocentric latitude and 85 degrees west longitude. The north-south dimension of the Great Red Spot is approximately 11,000 kilometers. The smallest resolved features are tens of kilometers in size. North is at the top of the picture. The images used were taken on June 26, 1997 at a range of 1.2 million kilometers (1.05 million miles) by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology

  4. Loki as viewed by Galileo NIMS

    NASA Image and Video Library

    1999-11-19

    This image shows Loki, the most powerful volcano in the solar system, which has been constantly active on Jupiter moon Io. NASA Galileo spacecraft took these images during its approach to Io on October 10, 1999.

  5. Jupiter's Northern Hemisphere in True Color (Time Set 2)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaic of Jupiter's northern hemisphere between 10 and 50 degrees latitude. Jupiter's atmospheric circulation is dominated by alternating eastward and westward jets from equatorial to polar latitudes. The direction and speed of these jets in part determine the color and texture of the clouds seen in this mosaic. Also visible are several other common Jovian cloud features, including large white ovals, bright spots, dark spots, interacting vortices, and turbulent chaotic systems. The north-south dimension of each of the two interacting vortices in the upper half of the mosaic is about 3500 kilometers. This mosaic combines the violet (410 nanometers) and near infrared continuum (756 nanometers) filter images to create a mosaic similar to how Jupiter would appear to human eyes. Differences in coloration are due to the composition and abundance of trace chemicals in Jupiter's atmosphere.

    North is at the top. The images are projected on a sphere, with features being foreshortened towards the north. The smallest resolved features are tens of kilometers in size. These images were taken on April 3, 1997, at a range of 1.4 million kilometers by the Solid State Imaging system (CCD) on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  6. Galileo probe forebody thermal protection - Benchmark heating environment calculations

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A.; Nicolet, W. E.

    1981-01-01

    Solutions are presented for the aerothermal heating environment for the forebody heatshield of candidate Galileo probe. Entry into both the nominal and cool-heavy model atmospheres were considered. Solutions were obtained for the candidate heavy probe with a weight of 310 kg and a lighter probe with a weight of 290 kg. In the flowfield analysis, a finite difference procedure was employed to obtain benchmark predictions of pressure, radiative and convective heating rates, and the steady-state wall blowing rates. Calculated heating rates for entry into the cool-heavy model atmosphere were about 60 percent higher than those predicted for the entry into the nominal atmosphere. The total mass lost for entry into the cool-heavy model atmosphere was about 146 kg and the mass lost for entry into the nominal model atmosphere was about 101 kg.

  7. Earth - Departing Image by Galileo

    NASA Image and Video Library

    1996-02-08

    This color image of the Earth was taken by NASA’s Galileo spacecraft on December 11 as it departed on its 3-year flight to Jupiter, about 2 1/2 days after the second Earth flyby. http://photojournal.jpl.nasa.gov/catalog/PIA00232

  8. Ganymede - Comparison of Voyager and Galileo Resolution

    NASA Image and Video Library

    1997-09-07

    These images demonstrate the dramatic improvement in the resolution of pictures that NASA Galileo spacecraft returned compared to previous images of the Jupiter system. http://photojournal.jpl.nasa.gov/catalog/PIA00277

  9. Jupiter's Northern Hemisphere in False Color (Time Set 3)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaic of Jupiter's northern hemisphere between 10 and 50 degrees latitude. Jupiter's atmospheric circulation is dominated by alternating eastward and westward jets from equatorial to polar latitudes. The direction and speed of these jets in part determine the color and texture of the clouds seen in this mosaic. Also visible are several other common Jovian cloud features, including large white ovals, bright spots, dark spots, interacting vortices, and turbulent chaotic systems. The north-south dimension of each of the two interacting vortices in the upper half of the mosaic is about 3500 kilometers.

    This mosaic uses the Galileo imaging camera's three near-infrared wavelengths (756 nanometers, 727 nanometers, and 889 nanometers displayed in red, green, and blue) to show variations in cloud height and thickness. Light blue clouds are high and thin, reddish clouds are deep, and white clouds are high and thick. The clouds and haze over the ovals are high, extending into Jupiter's stratosphere. Dark purple most likely represents a high haze overlying a clear deep atmosphere. Galileo is the first spacecraft to distinguish cloud layers on Jupiter.

    North is at the top. The images are projected on a sphere, with features being foreshortened towards the north. The planetary limb runs along the right edge of the mosaic. Cloud patterns appear foreshortened as they approach the limb. The smallest resolved features are tens of kilometers in size. These images were taken on April 3, 1997, at a range of 1.4 million kilometers by the Solid State Imaging system (CCD) on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  10. Jupiter - Solid or Gaseous? Ask Juno

    NASA Astrophysics Data System (ADS)

    Ackerman, J. A., Jr.

    2015-12-01

    Data from Cassini, Galileo, S-L 9 and Ulysses suggest Jupiter and Saturn are solid, frozen, Methane Gas Hydrate (MGH) planets. The bulk of these giants formed slow and cold by the natural accretion of snowflakes at their current orbital radii in the presence of methane, forming rigid incompressible bodies. MGH, (CH4)8(H2O)46 (d=0.9), is consistent with the abundances of the elements comprising the Earth (H>O>C). Their combined MGH comprises >250 earth-masses of H2O. Jupiter (d=1.33) incorporated most of the heavy elements in the nascent solar system, exemplified by an enormously enhanced D/H. The temperature excess of Jupiter's atmosphere is the result of an impact ~6,000 years BP, triggering an incredibly energetic fusion explosion which ejected the masses of the proto-Galilean moons. It also initiated a continuing fusion furnace in the crater producing a jet of hot gases extending >2x106 km, beyond Callisto. The jet has slowly diminished over 6,000 years, resulting in the differences in the four Galilean Moons. The mass ejection (ang. mom.) slowed Jupiter's rotation until ~1930, currently interpreted as a drift of the Great Red Spot. A diminishing fusion reaction (D + p → 3He + γ) continues to this day, producing Jupiter's atmospheric 'temperature excess'. Jupiter's rapid rotation deflects the rising vortex of hot gases from the fusion reaction horizontally, driving multiple zonal vortices, constrained by the frozen MGH surface <1000 km below the cloud tops. It appears as the tilted Great Red Spot (GRS), ~30,000 km to the west of the crater at 22 o S Lat., which has remained unchanged in the last 350 years - impossible due to the enormous Coliolis effect. Streams of 3He produced in the fusion reaction exiting Jupiter through the center of the GRS have been detected by the Galileo probe and orbiter, Ulysses, and Cassini. The fusion releases methane, also heavy elements which oxidize as they rise, producing the cloud-top colors. The MGH hypothesis explains the

  11. False Color Mosaic of Jupiter's Belt-Zone Boundary

    NASA Technical Reports Server (NTRS)

    1997-01-01

    False-color mosaic of a belt-zone boundary near Jupiter's equator. The images that make up the four quadrants of this mosaic were taken within a few minutes of each other. Light at each of Galileo's three near-infrared wavelengths is displayed here mapped to the visible colors red, green, and blue. Light at 886 nanometers, strongly absorbed by atmospheric methane and scattered from clouds high in the atmosphere, is shown in red. Light at 732 nanometers, moderately absorbed by atmospheric methane, is shown in green. Light at 757 nanometers, scattered mostly from Jupiter's lower visible cloud deck, is shown in blue. The lower cloud deck appears bluish white, while the higher layer appears pinkish. The holes in the upper layer and their relationships to features in the lower cloud deck can be studied in the lower half of the mosaic. Galileo is the first spacecraft to image different layers in Jupiter's atmosphere.

    North is at the top. The mosaic covers latitudes -13 to +3 degrees and is centered at longitude 282 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on November 5th, 1996, at a range of 1.2 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  12. The Galileo Spacecraft: A Telecommunications Legacy for Future Space Flight

    NASA Technical Reports Server (NTRS)

    Deutsch, Leslie J.

    1997-01-01

    The Galileo mission to Jupiter has implemented a wide range of telecommunication inprovements in response to the loss of its high gain antenna. While necessity dictated the use of these new techniques for Galileo, now that they have been proven in flight, they are available for use on future deep space missions. This telecommunications legacy of Galileo will aid in our ability to conduct a meaningful exploration of the solar system, and beyond, at a reasonable cost.

  13. Ganymede - Dark Terrain in Galileo Regio

    NASA Image and Video Library

    1997-09-07

    This view of a part of the Galileo Regio region on Jupiter moon Ganymede shows fine details of the dark terrain that makes up about half of the surface of the planet-sized moon. http://photojournal.jpl.nasa.gov/catalog/PIA00278

  14. Ganymede - Ancient Impact Craters in Galileo Regio

    NASA Image and Video Library

    1997-09-07

    Ancient impact craters shown in this image of Jupiter moon Ganymede taken by NASA Galileo spacecraft testify to the great age of the terrain, dating back several billion years. http://photojournal.jpl.nasa.gov/catalog/PIA00279

  15. Loss and source mechanisms of Jupiter's radiation belts near the inner boundary of trapping regions

    NASA Astrophysics Data System (ADS)

    Santos-Costa, Daniel; Bolton, Scott J.; Becker, Heidi N.; Clark, George; Kollmann, Peter; Paranicas, Chris; Mauk, Barry; Joergensen, John L.; Adriani, Alberto; Thorne, Richard M.; Bagenal, Fran; Janssen, Mike A.; Levin, Steve M.; Oyafuso, Fabiano A.; Williamson, Ross; Adumitroaie, Virgil; Ingersoll, Andrew P.; Kurth, Bill; Connerney, John E. P.

    2017-04-01

    We have merged a set of physics-based and empirical models to investigate the energy and spatial distributions of Jupiter's electron and proton populations in the inner and middle magnetospheric regions. Beyond the main source of plasma (> 5 Rj) where interchange instability is believed to drive the radial transport of charged particles, the method originally developed by Divine and Garrett [J. Geophys. Res., 88, 6889-6903, 1983] has been adapted. Closer to the planet where field fluctuations control the radial transport, a diffusion theory approach is used. Our results for the equatorial and mid-latitude regions are compared with Pioneer and Galileo Probe measurements. Data collected along Juno's polar orbit allow us to examine the features of Jupiter's radiation environment near the inner boundary of trapping regions. Significant discrepancies between Juno (JEDI keV energy particles and high energy radiation environment measurements made by Juno's SRU and ASC star cameras and the JIRAM infrared imager) and Galileo Probe data sets and models are observed close to the planet. Our simulations of Juno MWR observations of Jupiter's electron-belt emission confirm the limitation of our model to realistically depict the energy and spatial distributions of the ultra-energetic electrons. In this paper, we present our modeling approach, the data sets and resulting data-model comparisons for Juno's first science orbits. We describe our effort to improve our models of electron and proton belts. To gain a physical understanding of the dissimilarities with observations, we revisit the magnetic environment and the mechanisms of loss and source in our models.

  16. Chandra Probes High-Voltage Auroras on Jupiter

    NASA Astrophysics Data System (ADS)

    2005-03-01

    Scientists have obtained new insight into the unique power source for many of Jupiter's auroras, the most spectacular and active auroras in the Solar System. Extended monitoring of the giant planet with NASA's Chandra X-ray Observatory detected the presence of highly charged particles crashing into the atmosphere above its poles. X-ray spectra measured by Chandra showed that the auroral activity was produced by ions of oxygen and other elements that were stripped of most of their electrons. This implies that these particles were accelerated to high energies in a multimillion-volt environment above the planet's poles. The presence of these energetic ions indicates that the cause of many of Jupiter's auroras is different from auroras produced on Earth or Saturn. Chandra X-ray Image of Jupiter Chandra X-ray Image of Jupiter "Spacecraft have not explored the region above the poles of Jupiter, so X-ray observations provide one of the few ways to probe that environment," said Ron Elsner of the NASA Marshall Space Flight Center in Huntsville, Alabama, and lead author on a recently published paper describing these results in the Journal for Geophysical Research. "These results will help scientists to understand the mechanism for the power output from Jupiter's auroras, which are a thousand times more powerful than those on Earth." Electric voltages of about 10 million volts, and currents of 10 million amps - a hundred times greater than the most powerful lightning bolts - are required to explain the X-ray observations. These voltages would also explain the radio emission from energetic electrons observed near Jupiter by the Ulysses spacecraft. Schematic of Jupiter's Auroral Activity Production Schematic of Jupiter's Auroral Activity Production On Earth, auroras are triggered by solar storms of energetic particles, which disturb Earth's magnetic field. Gusts of particles from the Sun can also produce auroras on Jupiter, but unlike Earth, Jupiter has another way of producing

  17. Jupiter's Northern Hemisphere in True Color (Time Set 3)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaic of Jupiter's northern hemisphere between 10 and 50 degrees latitude. Jupiter's atmospheric circulation is dominated by alternating eastward and westward jets from equatorial to polar latitudes. The direction and speed of these jets in part determine the color and texture of the clouds seen in this mosaic. Also visible are several other common Jovian cloud features, including large white ovals, bright spots, dark spots, interacting vortices, and turbulent chaotic systems. The north-south dimension of each of the two interacting vortices in the upper half of the mosaic is about 3500 kilometers. This mosaic combines the violet (410 nanometers) and near infrared continuum (756 nanometers) filter images to create a mosaic similar to how Jupiter would appear to human eyes. Differences in coloration are due to the composition and abundance of trace chemicals in Jupiter's atmosphere.

    North is at the top. The images are projected on a sphere, with features being foreshortened towards the north. The planetary limb runs along the right edge of the mosaic. Cloud patterns appear foreshortened as they approach the limb. The smallest resolved features are tens of kilometers in size. These images were taken on April 3, 1997, at a range of 1.4 million kilometers by the Solid State Imaging system (CCD) on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  18. Jupiter's Northern Hemisphere in Violet Light (Time Set 3)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaic of Jupiter's northern hemisphere between 10 and 50 degrees latitude. Jupiter's atmospheric circulation is dominated by alternating eastward and westward jets from equatorial to polar latitudes. The direction and speed of these jets in part determine the color and texture of the clouds seen in this mosaic. Also visible are several other common Jovian cloud features, including large white ovals, bright spots, dark spots, interacting vortices, and turbulent chaotic systems. The north-south dimension of each of the two interacting vortices in the upper half of the mosaic is about 3500 kilometers. Light at 410 nanometers is affected by the sizes and compositions of cloud particles, as well as the trace chemicals that give Jupiter's clouds their colors. This mosaic shows the features of Jupiter's main visible cloud deck and the hazy cloud layer above it.

    North is at the top. The images are projected on a sphere, with features being foreshortened towards the north. The planetary limb runs along the right edge of the mosaic. Cloud patterns appear foreshortened as they approach the limb. The smallest resolved features are tens of kilometers in size. These images were taken on April 3, 1997, at a range of 1.4 million kilometers by the Solid State Imaging system (CCD) on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  19. Jupiter and the Extrasolar Giant Planets: Composition and origin of atmospheres

    NASA Astrophysics Data System (ADS)

    Atreya, S.; Wong, A.; Mahaffy, P.; Niemann, H.; Wong, M.; Owen, T.

    In this paper, we will discuss the related issues of the composition and origin of Jupiter's atmosphere, and how this can help in understanding the atmospheres of the extrasolar giant planets (EGP). In the case of Jupiter, a wealth of data on the planet's atmosphere is available, largely as a result of the successful spacecraft observations by the Galileo Orbiter and Probe, ISO and Voyager, complemented by ground-based observations (Atreya et al., PSS 47, 1243, 1999; Encrenaz et al., PSS, 47, 1223, 1999; Atreya et al., PSS, 2002, in press). Although the atmosphere is made up of mostly H and He, trace amounts of CH4 and its products, H O, NH 3, H2S,22 heavy noble gases (Ne, Ar, Kr, Xe), and disequilibrium species (PH3, CO, CO2, GeH4, AsH3), are also detected. From measurements of the trace constituents in Jupiter's upper and the deep well-mixed troposphere by the Galileo Probe, it has been possible to determine the "bulk" abundance of the heavy elements, which is key to understanding the origin and evolution of the planet's atmosphere. C, N, S, Ar, Kr and Xe are all found to be enriched by a factor of 2-4 relative to their solar ratios to H. This unexpected finding led Owen et al. (Nature, 402, 269, 1999) to suggest that the icy planetesimals that formed Jupiter must have had a low temperature (=30 K) origin in order for them to trap the volatiles containing the heavy elements. An alternate hypothesis - according to which the volatiles were trapped in clathrate hydrates instead (Gautier et al., Ap. J., 550, L227, 2001) - overestimates Jupiter's sulfur abundance, and it too requires a remarkably low temperature of =38 K for argon clathration (Gautier et al., Ap. J., 559, L183, 2001) Could the known composition of Jupiter help in understanding the atmospheres of the EGP's? So far, only sodium has been detected in the atmosphere of an EGP that orbits a sun-like star, HD 209458, at 0.0468 AU (Charbonneau et al., Ap. J., 568, 377, 2002). However, sodium has not been

  20. (abstract) The Galileo Spacecraft: A Telecommunications Legacy for Future Space Flight

    NASA Technical Reports Server (NTRS)

    Deutsch, Leslie J.

    1997-01-01

    The Galileo mission to Jupiter has implemented a wide range of telecommunication improvements in response to the loss of its high gain antenna. While necessity dictated the use of these new techniques for Galileo, now that they have been proven in flight, they are available for use on future deep space missions. This telecommunications legacy of Galileo will aid in our ability to conduct a meaningful exploration of the solar system, and beyond, at a reasonable cost.

  1. Jupiter's Southern Hemisphere in the Near-Infrared (Time Set 2)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaic of Jupiter's southern hemisphere between -25 and -80 degrees (south) latitude. In time sequence two, taken nine hours after sequence one, the limb is visible near the bottom right part of the mosaic. The curved border near the bottom left indicates the location of Jupiter's day/night terminator.

    Jupiter's atmospheric circulation is dominated by alternating eastward and westward jets from equatorial to polar latitudes. The direction and speed of these jets in part determine the brightness and texture of the clouds seen in this mosaic. Also visible are several other common Jovian cloud features, including two large vortices, bright spots, dark spots, interacting vortices, and turbulent chaotic systems. The north-south dimension of each of the two vortices in the center of the mosaic is about 3500 kilometers. The right oval is rotating counterclockwise, like other anticyclonic bright vortices in Jupiter's atmosphere. The left vortex is a cyclonic (clockwise) vortex. The differences between them (their brightness, their symmetry, and their behavior) are clues to how Jupiter's atmosphere works. The cloud features visible at 756 nanometers (near-infrared light) are at an atmospheric pressure level of about 1 bar.

    North is at the top. The images are projected onto a sphere, with features being foreshortened towards the south and east. The smallest resolved features are tens of kilometers in size. These images were taken on May 7, 1997, at a range of 1.5 million kilometers by the Solid State Imaging system on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  2. An overview of the Galileo Optical Experiment (GOPEX)

    NASA Technical Reports Server (NTRS)

    Wilson, K. E.; Lesh, J. R.

    1993-01-01

    Uplink optical communication to a deep-space vehicle was demonstrated. In the Galileo Optical Experiment (GOPEX), optical transmissions were beamed to the Galileo spacecraft by Earth-based transmitters at the Table Mountain Facility (TMF), California, and Starfire Optical Range (SOR), New Mexico. The demonstration took place over an eight-day period (9 Dec. through 16 Dec. 1992) as Galileo receded from Earth on its way to Jupiter, and covered ranges from 1-6 million km. At 6 million km (15 times the Earth-Moon distance), the laser beam transmitted from TMF eight days after Earth flyby covered the longest known range for transmission and detection.

  3. Evolution and Persistence of 5-um Hot Spots at the Galileo Probe entry Latitude

    NASA Technical Reports Server (NTRS)

    Fisher, B. M.

    1997-01-01

    We present a study on the longtudinal locations, morphology and evolution of the 5-um hot spots at 6.5 deg. N latitude (planetocentric), from an extensive IRTF-NSFCAM data set spanning more that 3 years, which includes the date of the Galileo Probe entry.

  4. Jupiter's Southern Hemisphere in the Near-Infrared (Time Set 1)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaic of Jupiter's southern hemisphere between -10 and -80 degrees (south) latitude. In time sequence one, the planetary limb is visible in near the bottom right part of the mosaic.

    Jupiter's atmospheric circulation is dominated by alternating eastward and westward jets from equatorial to polar latitudes. The direction and speed of these jets in part determine the brightness and texture of the clouds seen in this mosaic. Also visible are several other common Jovian cloud features, including two large vortices, bright spots, dark spots, interacting vortices, and turbulent chaotic systems. The north-south dimension of each of the two vortices in the center of the mosaic is about 3500 kilometers. The right oval is rotating counterclockwise, like other anticyclonic bright vortices in Jupiter's atmosphere. The left vortex is a cyclonic (clockwise) vortex. The differences between them (their brightness, their symmetry, and their behavior) are clues to how Jupiter's atmosphere works. The cloud features visible at 756 nanometers (near-infrared light) are at an atmospheric pressure level of about 1 bar.

    North is at the top. The images are projected onto a sphere, with features being foreshortened towards the south and east. The smallest resolved features are tens of kilometers in size. These images were taken on May 7, 1997, at a range of 1.5 million kilometers by the Solid State Imaging system on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  5. Jupiter's Southern Hemisphere in the Near-Infrared (Time Set 3)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaic of Jupiter's southern hemisphere between -25 and -80 degrees (south) latitude. In time sequence three, taken 10 hours after sequence one, the limb is visible near the bottom right part of the mosaic.

    Jupiter's atmospheric circulation is dominated by alternating eastward and westward jets from equatorial to polar latitudes. The direction and speed of these jets in part determine the brightness and texture of the clouds seen in this mosaic. Also visible are several other common Jovian cloud features, including two large vortices, bright spots, dark spots, interacting vortices, and turbulent chaotic systems. The north-south dimension of each of the two vortices in the center of the mosaic is about 3500 kilometers. The right oval is rotating counterclockwise, like other anticyclonic bright vortices in Jupiter's atmosphere. The left vortex is a cyclonic (clockwise) vortex. The differences between them (their brightness, their symmetry, and their behavior) are clues to how Jupiter's atmosphere works. The cloud features visible at 756 nanometers (near-infrared light) are at an atmospheric pressure level of about 1 bar.

    North is at the top. The images are projected onto a sphere, with features being foreshortened towards the south and east. The smallest resolved features are tens of kilometers in size. These images were taken on May 7, 1997, at a range of 1.5 million kilometers by the Solid State Imaging system on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  6. Work on Planetary Atmospheres and Planetary Atmosphere Probes

    NASA Technical Reports Server (NTRS)

    Seiff, Alvin; Lester, Peter

    1999-01-01

    A major objective of the grant was to complete the fabrication, test, and evaluation of the atmosphere structure experiment on the Galileo Probe, and to receive, analyze, and interpret data received from the spacecraft. The grantee was competitively selected to be Principal Investigator of Jupiter's atmosphere structure on the Galileo Probe. His primary motivation was to learn as much as possible about Jupiter's atmosphere by means of a successful atmosphere structure experiment, and to support the needs and schedule of the Galileo Project. After a number of launch delays, the Flight instrument was shipped to Kennedy Space Center 2 years after the start of this collaboration, on April 14, 1989, at which time it was determined from System level tests of the ASI on the Probe that the instrument was in good working order and ready for flight. The spacecraft was launched on October 18, 1989. Data analysis of test and calibration data taken over a period of years of instrument testing was continued in preparation for the encounter. The initial instrument checkout in space was performed on October 26, 1989. The data set received by telemetry was thoroughly analyzed, and a report of the findings was transmitted to the Probe Operations Office on Feb. 28, 1990. Key findings reported were that the accelerometer biases had shifted by less than 1 mg through launch and since calibration at Bell Aerospace in 1983; accelerometer scale factors, evaluated by means of calibration currents, fell on lines of variation with temperature established in laboratory calibrations; pressure sensor offsets, correlated as a function of temperature, fell generally within the limits of several years of ground test data; atmospheric and engineering temperature sensor data were internally consistent within a few tenths of a degree; and the instrument electronics performed all expected functions without any observable fault. Altogether, this checkout was highly encouraging of the prospects of

  7. Line-by-line transport calculations for Jupiter entry probes. [of radiative transfer

    NASA Technical Reports Server (NTRS)

    Arnold, J. O.; Cooper, D. M.; Park, C.; Prakash, S. G.

    1979-01-01

    Line-by-line calculations of the radiative transport for a condition near peak heating for entry of the Galileo probe into the Jovian atmosphere are described. The discussion includes a thorough specification of the atomic and molecular input data used in the calculations that could be useful to others working in the field. The results show that the use of spectrally averaged cross sections for diatomic absorbers such as CO and C2 in the boundary layer can lead to an underestimation (by as much as 29%) of the spectral flux at the stagnation point. On the other hand, for the turbulent region near the cone frustum on the probe, the flow tends to be optically thin, and the spectrally averaged results commonly used in coupled radiative transport-flow field calculations are in good agreement with the present line-by-line results. It is recommended that these results be taken into account in sizing the final thickness of the Galileo's heat shield.

  8. Mesoscale Waves in Jupiter Atmosphere

    NASA Image and Video Library

    1997-09-07

    These two images of Jupiter atmosphere were taken with the violet filter of the Solid State Imaging CCD system aboard NASA Galileo spacecraft. Mesoscale waves can be seen in the center of the upper image. The images were obtained on June 26, 1996.

  9. Design study for electronic system for Jupiter Orbit Probe (JOP)

    NASA Technical Reports Server (NTRS)

    Elero, B. P., Jr.; Carignan, G. R.

    1978-01-01

    The conceptual design of the Jupiter probe spectrometer is presented. Block and circuit diagrams are presented along with tabulated parts lists. Problem areas are considered to be (1) the schedule, (2) weight limitations for the electronic systems, and (3) radiation hardness of the electronic devices.

  10. The search for reference sources for delta VLBI navigation of the Galileo spacecraft

    NASA Technical Reports Server (NTRS)

    Ulvestad, J. S.; Linfield, R. P.

    1986-01-01

    A comprehensive search was made in order to identify celestial radio sources that can be used as references for navigation of the Galileo spacecraft by means of VLBI observations. The astronomical literature was seached for potential navigation sources, and several VLBI experiments were performed to determine the suitability of those sources for navigation. The results of such work performed since mid-1983 is reported. A summary is presented of the source properties required, the procedures used to identify candidate sources, and the results of the observations of these sources. The lists of souces presented are not meant to be taken directly and used for VLBI navigation, but they do provide a means of identifying the radio sources that could be used at various positions along the Galileo trajectory. Since the reference sources nearest the critical points of Jupiter encounter and probe release are rather weak, it would be extremely beneficial to use a pair of 70-m antennas for the VLBI measurements.

  11. Family Portrait of the Small Inner Satellites of Jupiter

    NASA Technical Reports Server (NTRS)

    1997-01-01

    These images, taken by Galileo's solid state imaging system between November 1996 and June 1997, provide the first ever 'family portrait' of the four small, irregularly shaped moons that orbit Jupiter in the zone between the planet's ring and the larger Galilean satellites. The moons are shown in their correct relative sizes, with north approximately up in all cases. From left to right, arranged in order of increasing distance from Jupiter, are Metis (longest dimension is approximately 60 kilometers or 37 miles across), Adrastea (20 kilometers or 12 miles across), Amalthea (247 kilometers or 154 miles across), and Thebe (116 kilometers or 72 miles across). While Amalthea, the largest of these four tiny moons, was imaged by NASA's two Voyager spacecraft in 1979 with a resolution comparable to what is shown here, the new Galileo observations represent the first time that Metis, Adrastea, and Thebe have been seen as more than points of light.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.

  12. Family Portrait of Jupiter's Great Red Spot and the Galilean Satellites

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This 'family portrait,' a composite of the Jovian system, includes the edge of Jupiter with its Great Red Spot, and Jupiter's four largest moons, known as the Galilean satellites. From top to bottom, the moons shown are Io, Europa, Ganymede and Callisto.

    The Great Red Spot, a storm in Jupiter's atmosphere, is at least 300 years old. Winds blow counterclockwise around the Great Red Spot at about 400 kilometers per hour (250 miles per hour). The storm is larger than one Earth diameter from north to south, and more than two Earth diameters from east to west. In this oblique view, the Great Red Spot appears longer in the north-south direction.

    Europa, the smallest of the four moons, is about the size of Earth's moon, while Ganymede is the largest moon in the solar system. North is at the top of this composite picture in which the massive planet and its largest satellites have all been scaled to a common factor of 15 kilometers (9 miles) per picture element.

    The Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft obtained the Jupiter, Io and Ganymede images in June 1996, while the Europa images were obtained in September 1996. Because Galileo focuses on high resolution imaging of regional areas on Callisto rather than global coverage, the portrait of Callisto is from the 1979 flyby of NASA's Voyager spacecraft.

    Launched in October 1989, the spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at: http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at: http:/ /www.jpl.nasa.gov/galileo/sepo.

  13. Jupiter's Northern Hemisphere in a Methane Band (Time Set 2)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaic of Jupiter's northern hemisphere between 10 and 50 degrees latitude. Jupiter's atmospheric circulation is dominated by alternating eastward and westward jets from equatorial to polar latitudes. The direction and speed of these jets in part determine the color and texture of the clouds seen in this mosaic. Also visible are several other common Jovian cloud features, including large white ovals, bright spots, dark spots, interacting vortices, and turbulent chaotic systems. The north-south dimension of each of the two interacting vortices in the upper half of the mosaic is about 3500 kilometers. Light at 727 nanometers is moderately absorbed by atmospheric methane. This mosaic shows the features of Jupiter's main visible cloud deck and upper-tropospheric haze, with higher features enhanced in brightness over lower features.

    North is at the top. The images are projected on a sphere, with features being foreshortened towards the north. The smallest resolved features are tens of kilometers in size. These images were taken on April 3, 1997, at a range of 1.4 million kilometers by the Solid State Imaging system on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  14. Jupiter's Northern Hemisphere in the Near-Infrared (Time Set 3)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaic of Jupiter's northern hemisphere between 10 and 50 degrees latitude. Jupiter's atmospheric circulation is dominated by alternating eastward and westward jets from equatorial to polar latitudes. The direction and speed of these jets in part determine the color and texture of the clouds seen in this mosaic. Also visible are several other common Jovian cloud features, including large white ovals, bright spots, dark spots, interacting vortices, and turbulent chaotic systems. The north-south dimension of each of the two interacting vortices in the upper half of the mosaic is about 3500 kilometers. The near-infrared continuum filter (756 nanometers) shows the features of Jupiter's main visible cloud deck.

    North is at the top. The images are projected on a sphere, with features being foreshortened towards the north. The planetary limb runs along the right edge of the mosaic. Cloud patterns appear foreshortened as they approach the limb. The smallest resolved features are tens of kilometers in size. These images were taken on April 3, 1997, at a range of 1.4 million kilometers by the Solid State Imaging system (CCD) on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  15. Nitrogen Isotopic Ratio in Jupiter's Atmosphere from Observations by Composite Infrared Spectrometer (CIRS) on the Cassini Spacecraft

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; LeClair, A.; Owen, T.; Conrath, B. J.; Flasar, F. M.; Kunde, V. G.; Nixon, C. A..; Achterberg, R. K.; Bjoraker, G.; Jennings, D. J.

    2003-01-01

    The Composite Infrared Spectrometer (CIRS) on the Cassini spacecraft made infrared observations of Jupiter's atmosphere during the flyby in December 2000 to January 2001. The unique database in the 600-1400/cm region with 0.53 and 2.8/cm spectral resolutions obtained from the observations permits retrieval of global maps of the thermal structure and composition of Jupiter's atmosphere including the distributions of (14)NH3 and (15)NH3. Analysis of Jupiter's ammonia distributions from three isolated (15)NH3 spectral lines in eight latitudes is presented for evaluation of the nitrogen isotopic ratio. The nitrogen isotopic ratio (14)N/(15)N (or (15)N/(14)N) in Jupiter's atmosphere in this analysis is calculated to be: 448 +/- 62 ((2.23 +/- 0.31) x 10(exp -3)). This value of the ratio determined from CIRS data is found to be in very close agreement with the value previously obtained from the measurements by the Galileo Probe Mass Spectrometer. Some possible mechanisms to account for the variation of Jupiter's observed isotopic ratio relative to various astrophysical environments are discussed.

  16. Mesoscale Waves in Jupiter's Atmosphere

    NASA Technical Reports Server (NTRS)

    1997-01-01

    These two images of Jupiter's atmosphere were taken with the violet filter of the Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft. The images were obtained on June 26, 1996; the lower image was taken approximately one rotation (9 hours) later than the upper image.

    Mesoscale waves can be seen in the center of the upper image. They appear as a series of about 15 nearly vertical stripes; the wave crests are aligned north-south. The wave packet is about 300 kilometers in length and is aligned east-west. In the lower image there is no indication of the waves, though the clouds appear to have been disturbed. Such waves were seen also in images obtained by NASA's Voyager spacecraft in 1979, though lower spatial and time resolution made tracking of features such as these nearly impossible.

    Mesoscale waves occur when the wind shear is strong in an atmospheric layer that is sandwiched vertically between zones of stable stratification. The orientation of the wave crests is perpendicular to the shear. Thus, a wave observation gives information about how the wind direction changes with height in the atmosphere.

    North is at the top of these images which are centered at approximately 15 South latitude and 307 West longitude. In the upper image, each picture element (pixel) subtends a square of about 36 kilometers on a side, and the spacecraft was at a range of more than 1.7 million kilometers from Jupiter. In the lower image, each pixel subtends a square of about 30 kilometers on a side, and the spacecraft was at a range of more than 1.4 million kilometers from Jupiter.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  17. Groundbased Observations of Io [OI]6300 A Emission During the Galileo 124, 125, and Cassini Encounters

    NASA Technical Reports Server (NTRS)

    Oliversen, R. J.; Morgenthaler, J. P.; Scherb, F.; Woodward, R. C.; Smyth, W. H.; Lupie, O. L.

    2003-01-01

    For the past 12 years, we have conducted a synoptic study of [OI] 6300 A emission from Io using the high-resolution (R 120,000) stellar spectrograph at the National Solar Observatory McMath-Pierce telescope. We showed in a recent paper that this emission allows us to use Io as a localized probe of the three-dimensional plasma torus structure. We report on selected recent spectroscopic observations of Io [OI] 6300 A emission obtained during the Galileo I24 (1999-Oct-11) and I25 (1999-Nov-26) encounters with Io and the Cassini Jupiter encounter (closest approach 2000-Dec-30). The exposure time for each spectrum was 15 minutes, with a 5.2 x 5.2 aperture centered on Io. We obtained over 100 spectra for the I24 encounter during 1999 October 9-13, over 100 spectra for the I25 encounter during 1999 November 24-30, and for the Cassini Jupiter flyby almost 600 spectra from 2000 December to 2001 January 21. We use our database of observations to track long- and short-term variations in torus structure. We compare our results to Galileo, Cassini, HST, and other groundbased contemporaneous observations to gain insight into torus variability and structure.

  18. Galileo - Ganymede Family Night

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This videotape is a continuation of tape number NONP-NASA-VT-2000036029. When the Galileo spacecraft flew by Ganymede, Jupiter's and the solar system's largest satellite, the project scientist and engineers gather together with their friends and family to view the photos as they are received. This videotape presents the last part of that meeting, which culminates in the announcement of the confirmation of the fly-by, and a review of the current trajectory status.

  19. Galileo and Cassini Image Two Giant Plumes on Io

    NASA Image and Video Library

    2001-03-29

    Two tall volcanic plumes and the rings of red material they have deposited onto surrounding surface areas appear in images taken of Jupiter moon Io by NASA Galileo and Cassini spacecraft in late December 2000 and early January 2001.

  20. Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa.

    PubMed

    Kivelson, M G; Khurana, K K; Russell, C T; Volwerk, M; Walker, R J; Zimmer, C

    2000-08-25

    On 3 January 2000, the Galileo spacecraft passed close to Europa when it was located far south of Jupiter's magnetic equator in a region where the radial component of the magnetospheric magnetic field points inward toward Jupiter. This pass with a previously unexamined orientation of the external forcing field distinguished between an induced and a permanent magnetic dipole moment model of Europa's internal field. The Galileo magnetometer measured changes in the magnetic field predicted if a current-carrying outer shell, such as a planet-scale liquid ocean, is present beneath the icy surface. The evidence that Europa's field varies temporally strengthens the argument that a liquid ocean exists beneath the present-day surface.

  1. Galileo Magnetometer Measurements: A Stronger Case for a Subsurface Ocean at Europa

    NASA Astrophysics Data System (ADS)

    Kivelson, Margaret G.; Khurana, Krishan K.; Russell, Christopher T.; Volwerk, Martin; Walker, Raymond J.; Zimmer, Christophe

    2000-08-01

    On 3 January 2000, the Galileo spacecraft passed close to Europa when it was located far south of Jupiter's magnetic equator in a region where the radial component of the magnetospheric magnetic field points inward toward Jupiter. This pass with a previously unexamined orientation of the external forcing field distinguished between an induced and a permanent magnetic dipole moment model of Europa's internal field. The Galileo magnetometer measured changes in the magnetic field predicted if a current-carrying outer shell, such as a planet-scale liquid ocean, is present beneath the icy surface. The evidence that Europa's field varies temporally strengthens the argument that a liquid ocean exists beneath the present-day surface.

  2. Work on Planetary Atmospheres and Planetary Atmosphere Probes

    NASA Technical Reports Server (NTRS)

    Lester, Peter

    1999-01-01

    A summary final report of work accomplished is presented. Work was performed in the following areas: (1) Galileo Probe science analysis, (2) Galileo probe Atmosphere Structure Instrument, (3) Mars Pathfinder Atmosphere Structure/Meteorology instrument, (4) Mars Pathfinder data analysis, (5) Science Definition for future Mars missions, (6) Viking Lander data analysis, (7) winds in Mars atmosphere Venus atmospheric dynamics, (8) Pioneer Venus Probe data analysis, (9) Pioneer Venus anomaly analysis, (10) Discovery Venus Probe Titan probe instrument design, and (11) laboratory studies of Titan probe impact phenomena. The work has resulted in more than 10 articles published in archive journals, 2 encyclopedia articles, and many working papers. This final report is organized around the four planets on which there was activity, Jupiter, Mars, Venus, and Titan, with a closing section on Miscellaneous Activities. A major objective was to complete the fabrication, test, and evaluation of the atmosphere structure experiment on the Galileo probe, and to receive, analyze and interpret data received from the spacecraft. The instrument was launched on April 14, 1989. Calibration data were taken for all experiment sensors. The data were analyzed, fitted with algorithms, and summarized in a calibration report for use in analyzing and interpreting data returned from Jupiter's atmosphere. The sensors included were the primary science pressure, temperature and acceleration sensors, and the supporting engineering temperature sensors. Computer programs were written to decode the Experiment Data Record and convert the digital numbers to physical quantities, i.e., temperatures, pressures, and accelerations. The project office agreed to obtain telemetry of checkout data from the probe. Work to extend programs written for use on the Pioneer Venus project included: (1) massive heat shield ablation leading to important mass loss during entry; and (2) rapid planet rotation, which introduced

  3. ARC-1981-AC81-0174

    NASA Image and Video Library

    1981-03-20

    Artist: Ken Hodges Composite image explaining Objective and Motivation for Galileo Probe Heat Loads: Galileo Probe descending into Jupiters Atmosphere shows heat shield separation with parachute deployed. (Ref. JPL P-19180)

  4. Jupiter's Northern Hemisphere in a Methane Band (Time Set 3)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaic of Jupiter's northern hemisphere between 10 and 50 degrees latitude. Jupiter's atmospheric circulation is dominated by alternating eastward and westward jets from equatorial to polar latitudes. The direction and speed of these jets in part determine the color and texture of the clouds seen in this mosaic. Also visible are several other common Jovian cloud features, including large white ovals, bright spots, dark spots, interacting vortices, and turbulent chaotic systems. The north-south dimension of each of the two interacting vortices in the upper half of the mosaic is about 3500 kilometers. Light at 727 nanometers is moderately absorbed by atmospheric methane. This mosaic shows the features of Jupiter's main visible cloud deck and upper-tropospheric haze, with higher features enhanced in brightness over lower features.

    North is at the top. The images are projected on a sphere, with features being foreshortened towards the north. The planetary limb runs along the right edge of the mosaic. Cloud patterns appear foreshortened as they approach the limb. The smallest resolved features are tens of kilometers in size. These images were taken on April 3, 1997, at a range of 1.4 million kilometers by the Solid State Imaging system (CCD) on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  5. Jupiter's Northern Hemisphere in a Methane Band (Time Set 2)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaic of Jupiter's northern hemisphere between 10 and 50 degrees latitude. Jupiter's atmospheric circulation is dominated by alternating eastward and westward jets from equatorial to polar latitudes. The direction and speed of these jets in part determine the color and texture of the clouds seen in this mosaic. Also visible are several other common Jovian cloud features, including large white ovals, bright spots, dark spots, interacting vortices, and turbulent chaotic systems. The north-south dimension of each of the two interacting vortices in the upper half of the mosaic is about 3500 kilometers.

    Light at 889 nanometers is strongly absorbed by atmospheric methane. This mosaic shows the features of a hazy cloud layer tens of kilometers above Jupiter's main visible cloud deck. This haze varies in height but appears to be present over the entire region. Small patches of very bright clouds may be similar to terrestrial thunderstorms.

    North is at the top. The images are projected on a sphere, with features being foreshortened towards the north. The smallest resolved features are tens of kilometers in size. These images were taken on April 3, 1997, at a range of 1.4 million kilometers by the Solid State Imaging system on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  6. Jupiter Ring Halo

    NASA Image and Video Library

    1998-03-26

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (km) per picture element (pixel) along the rings; however, because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow peering back toward the Sun; the ring was approximately 2,300,000 kilometers (km) away. The arc on the far right of the image is produced by sunlight scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age. Jupiter's ring system is composed of three parts -- a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, which lies exterior to the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the far left side of the figure. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow. A faint mist of particles can be seen above and below the main rings; this vertically extended, toroidal "halo" is unusual in planetary rings, and is probably caused by electromagnetic forces which can push small grains out of the ring plane. Halo material is present across this entire image, implying that it reaches more than 27,000 km above the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic. In order to accentuate faint features in the image, different brightnesses are shown through color, with the brightest being

  7. Galileo Probe Measurements of Thermal and Solar Radiation Fluxes in the Jovian Atmosphere

    NASA Technical Reports Server (NTRS)

    Sromovsky, L. A.; Collard, A. D.; Fry, P. M.; Orton, G. S.; Lemmon, M. T.; Tomasko, M. G.; Freedman, R. S.

    1998-01-01

    The Galileo probe net flux radiometer (NFR) measured radiation fluxes in Jupiter's atmosphere from about 0.44 to 14 bars, using five spectral channels to separate solar and thermal components. Onboard calibration results confirm that the NFR responded to radiation approximately as expected. NFR channels also responded to a superimposed thermal perturbation, which can be approximately removed using blind channel measurements and physical constraints. Evidence for the expected NH3 cloud was seen in the spectral character of spin-induced modulations of the direct solar beam signals. These results are consistent with an overlying cloud of small NH3 ice particles (0.5-0.75 microns in radius) of optical depth 1.5-2 at 0.5 microns. Such a cloud would have so little effect on thermal fluxes that NFR thermal channels provide no additional constraints on its properties. However, evidence for heating near 0.45 bar in the NFR thermal channels would seem to require either an additional opacity source beyond this small-particle cloud, implying a heterogeneous cloud structure to avoid conflicts with solar modulation results, or a change in temperature lapse rate just above the probe measurements. The large thermal flux levels imply water vapor mixing ratios that are only 6% of solar at 10 bars, but possibly increasing with depth, and significantly subsaturated ammonia at pressures less than 3 bars. If deep NH3 mixing ratios at the probe entry site are 3-4 times ground-based inferences, as suggested by probe radio signal attenuation, then only half as much water is needed to match NFR observations. No evidence of a water cloud was seen near the 5-bar level. The 5-microns thermal channel detected the presumed NH4SH cloud base near 1.35 bars. Effects of this cloud were also seen in the solar channel upflux measurements but not in the solar net fluxes, implying that the cloud is a conservative scatterer of sunlight. The minor thermal signature of this cloud is compatible with

  8. Galileo Probe Measurements of Thermal and Solar Radiation Fluxes in the Jovian Atmosphere

    NASA Technical Reports Server (NTRS)

    Sromovsky, L. A.; Collard, A. D.; Fry, P. M.; Orton, G. S.; Lemmon, M. T.; Tomasko, M. G.; Freedman, R. S.

    1998-01-01

    The Galileo probe net flux radiometer (NFR) measured radiation fluxes in Jupiter's atmosphere from about 0.44 to 14 bars, using five spectral channels to separate solar and thermal components. Onboard calibration results confirm that the NFR responded to radiation approximately as expected. NFR channels also responded to a superimposed thermal perturbation, which can be approximately removed using blind channel measurements and physical constraints. Evidence for the expected NH3 cloud was seen in the spectral character of spin-induced modulations of the direct solar beam signals. These results are consistent with an overlying cloud of small NH3 ice particles (0.5-0.75 microns in radius) of optical depth 1.5-2 at 0.5 microns. Such a cloud would have so little effect on thermal fluxes that NFR thermal channels provide no additional constraints on its properties. However, evidence for heating near 0.45 bar in the NFR thermal channels would seem to require either an additional opacity source beyond this small-particle cloud, implying a heterogeneous-cloud structure to avoid conflicts with solar modulation results, or a change in temperature lapse rate just above the probe measurements. The large thermal flux levels imply water vapor mixing ratios that are only 6% of solar at 10 bars, but possibly increasing with depth, and significantly subsaturated ammonia at pressures less than 3 bars. If deep NH3 mixing ratios at the probe entry site are 3-4 times ground-based inferences, as suggested by probe radio signal attenuation, then only half as much water is needed to match NFR observations. No evidence of a water cloud was seen near the 5-bar level. The 5 microns thermal channel detected the presumed NH4SH cloud base near 1.35 bars. Effects of this cloud were also seen in the solar channel upflux measurements but not in the solar net fluxes, implying that the cloud is a conservative scatterer of sunlight. The minor thermal signature of this cloud is compatible with

  9. Artist concept of Galileo with inertial upper stage (IUS) in low Earth orbit

    NASA Image and Video Library

    1989-08-25

    S89-42940 (April 1989) --- In this artist's rendition, the Galileo spacecraft is being boosted into its inter-planetary trajectory by the Inertial Upper Stage (IUS) rocket. The Space Shuttle Atlantis, which is scheduled to take Galileo and the IUS from Earth's surface into space, is depicted against the curve of Earth. Galileo will be placed on a trajectory to Venus, from which it will return to Earth at higher velocity and then gain still more energy in two gravity-assist passes, until it has enough velocity to reach Jupiter. Passing Venus, it will take scientific data using instruments designed for observing Jupiter; later, it will make measurements at Earth and the moon, crossing above the moon's north pole in the second pass. Between the two Earth passes, it will edge into the asteroid belt, beyond Mars' orbit; there, the first close-up observation of an asteroid is planned. Crossing the belt later, another asteroid flyby is possible.

  10. Predicting Juno Evidence for a Solid Methane Gas Hydrate Jupiter J. Ackerman Abstract

    NASA Astrophysics Data System (ADS)

    Ackerman, J. A., Jr.

    2016-12-01

    Predicting Juno Evidence for a Solid Methane Gas Hydrate Jupiter J. Ackerman AbstractDeuterium enhancements of 1010 observed in LDNs and heavy elements detected by the Galileo probe (C, O, S, Ar, Kr and Xe) suggest the giant planets accreted slow and cold from snowflakes and dust at their current orbits, forming frozen, highly deuterated Methane Gas Hydrate (d=0.9) bodies, together comprising > 300 earth masses of water. Jupiter also incorporated most of the heavy elements in the nascent solar system as dust grains (d=1.33). A recent (6,000 years BP) high energy impact on heavily deuterated Jupiter triggered a massive nuclear fusion explosion which ejected the Galilean moons, initiating a flaming plasma plume originally extending 2 x106 km, beyond Callisto. The rapidly rotating plume produced the physical differences observed on the Galilean moons and the remainder condensed ejecting millions of asteroids similar to 67P as it slowly diminished over 5000 years. The fusion reaction has diminished to d + p > 3He+ + γ, but is still producing Jupiter's atmospheric temperature excess, >5x1017 watts, and driving the multiple zonal wind vortices constrained below by Jupiter's solid surface. The mass being ejected by the plume measurably slowed the rotation of the giant Jupiter up until 1937. The highly energetic 3He+ ions from the fusion reaction that exit Jupiter through the Great Red Spot were sensed by Ulysses, Cassini and Galileo at distances greater than 11 Jupiter radii, with the period of Jupiter's rotation. The Juno JEDI particle detector will measure the speed and density of the 3He+ 'blizzard' exiting the GRS, for which there is no other explanation. The Micro Wave Radiometer (MWR) system will confirm the hot vortex extending below the cloud tops from the fusion reaction on the surface westward to the Great Red Spot at 22o S latitude, due to its estimated 115 degree longitudinal extent. The high intensity of the 3He+ particulate radiation at 4000 km directly

  11. Galileo attitude and articulation control subsystem closed loop testing

    NASA Technical Reports Server (NTRS)

    Lembeck, M. F.; Pignatano, N. D.

    1983-01-01

    In order to ensure the reliable operation of the Attitude and Articulation Control Subsystem (AACS) which will guide the Galileo spacecraft on its two and one-half year journey to Jupiter, the AACS is being rigorously tested. The primary objectives of the test program are the verification of the AACS's form, fit, and function, especially with regard to subsystem external interfaces and the functional operation of the flight software. Attention is presently given to the Galileo Closed Loop Test System, which simulates the dynamic and 'visual' flight environment for AACS components in the laboratory.

  12. A Comprehensive Orbit Reconstruction for the Galileo Prime Mission in the J2000 System

    NASA Technical Reports Server (NTRS)

    Jacobson, Robert A.; Haw, Robert J.; McElrath, Tim P.; Antreasian, Peter G.

    1999-01-01

    The Galileo spacecraft arrived at Jupiter in December of 1995 to begin an orbital tour of the Jovian system. The objective of the tour was up close study of the planet, its satellites, and its magnetosphere. The spacecraft completed its 11 orbit prime mission in November of 1997 having had 16 successful close encounters with the Galilean satellites (including two prior to Jupiter orbit insertion). Galileo continues to operate and will have made an additional 10 orbits of Jupiter by the date of this Conference. Earlier papers discuss the determination of the spacecraft orbit in support of mission operations from arrival at Jupiter through the first 9 orbits. In this paper we re-examine those earlier orbits and extend the analysis through orbit 12, the first orbit of the Galileo Europa Mission (GEM). The objective of our work is the reconstruction of the spacecraft trajectory together with the development of a consistent set of ephemerides for the Galilean satellites. As a necessary byproduct of the reconstruction we determine improved values for the Jovian system gravitational parameters and for the Jupiter pole orientation angles. Our preliminary analyses have already led to many of the results reported in the scientific literature. Unlike the Galileo Navigation Team which operates in the EME-1950 coordinate system, we elected to work in the (J2000) International Celestial Reference Frame (ICRF), the reference frame of the current JPL planetary and satellite ephemerides as well as the standard frame of the international astronomical and planetary science community. Use of this frame permits more precise modelling of the spacecraft and satellite observations. Moreover, it is the frame of choice for all other operational JPL missions and will probably be the frame for future missions for some time. Consequently, our adoption of the ICRF will facilitate the combination of our results with any obtained from future missions (e.g. the proposed Europa Orbiter mission). In

  13. Jupiter's Northern Hemisphere in a Methane Band (Time Set 3)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaic of Jupiter's northern hemisphere between 10 and 50 degrees latitude. Jupiter's atmospheric circulation is dominated by alternating eastward and westward jets from equatorial to polar latitudes. The direction and speed of these jets in part determine the color and texture of the clouds seen in this mosaic. Also visible are several other common Jovian cloud features, including large white ovals, bright spots, dark spots, interacting vortices, and turbulent chaotic systems. The north-south dimension of each of the two interacting vortices in the upper half of the mosaic is about 3500 kilometers.

    Light at 889 nanometers is strongly absorbed by atmospheric methane. This mosaic shows the features of a hazy cloud layer tens of kilometers above Jupiter's main visible cloud deck. This haze varies in height but appears to be present over the entire region. Small patches of very bright clouds may be similar to terrestrial thunderstorms.

    North is at the top. The images are projected on a sphere, with features being foreshortened towards the north. The planetary limb runs along the right edge of the mosaic. Cloud patterns appear foreshortened as they approach the limb. The smallest resolved features are tens of kilometers in size. These images were taken on April 3, 1997, at a range of 1.4 million kilometers by the Solid State Imaging system (CCD) on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  14. High-Resolution Views of Io's Emakong Patera: Latest Galileo Imaging Results

    NASA Technical Reports Server (NTRS)

    Williams, D. A.; Keszthelyi, L. P.; Davies, A. G.; Greeley, R.; Head, J. W., III

    2002-01-01

    This presentation will discuss analyses of the latest Galileo SSI (solid state imaging) high-resolution images of the Emakong lava channels and flow field on Jupiter's moon Io. Additional information is contained in the original extended abstract.

  15. Optimizing the Galileo space communication link

    NASA Technical Reports Server (NTRS)

    Statman, J. I.

    1994-01-01

    The Galileo mission was originally designed to investigate Jupiter and its moons utilizing a high-rate, X-band (8415 MHz) communication downlink with a maximum rate of 134.4 kb/sec. However, following the failure of the high-gain antenna (HGA) to fully deploy, a completely new communication link design was established that is based on Galileo's S-band (2295 MHz), low-gain antenna (LGA). The new link relies on data compression, local and intercontinental arraying of antennas, a (14,1/4) convolutional code, a (255,M) variable-redundancy Reed-Solomon code, decoding feedback, and techniques to reprocess recorded data to greatly reduce data losses during signal acquisition. The combination of these techniques will enable return of significant science data from the mission.

  16. An Impacting Descent Probe for Europa and the Other Galilean Moons of Jupiter

    NASA Astrophysics Data System (ADS)

    Wurz, P.; Lasi, D.; Thomas, N.; Piazza, D.; Galli, A.; Jutzi, M.; Barabash, S.; Wieser, M.; Magnes, W.; Lammer, H.; Auster, U.; Gurvits, L. I.; Hajdas, W.

    2017-08-01

    We present a study of an impacting descent probe that increases the science return of spacecraft orbiting or passing an atmosphere-less planetary bodies of the solar system, such as the Galilean moons of Jupiter. The descent probe is a carry-on small spacecraft (<100 kg), to be deployed by the mother spacecraft, that brings itself onto a collisional trajectory with the targeted planetary body in a simple manner. A possible science payload includes instruments for surface imaging, characterisation of the neutral exosphere, and magnetic field and plasma measurement near the target body down to very low-altitudes ( 1 km), during the probe's fast ( km/s) descent to the surface until impact. The science goals and the concept of operation are discussed with particular reference to Europa, including options for flying through water plumes and after-impact retrieval of very-low altitude science data. All in all, it is demonstrated how the descent probe has the potential to provide a high science return to a mission at a low extra level of complexity, engineering effort, and risk. This study builds upon earlier studies for a Callisto Descent Probe for the former Europa-Jupiter System Mission of ESA and NASA, and extends them with a detailed assessment of a descent probe designed to be an additional science payload for the NASA Europa Mission.

  17. The Production and Archiving of Navigation and Ancillary Data for the Galileo Mission

    NASA Technical Reports Server (NTRS)

    Miller, J.; Clarke, T.

    1994-01-01

    The Galileo Mission to Jupiter is using the SPICE formats developed by the Navigation and Ancillary Information Facility, a node of the Planetary Data System, to archive its navigation and ancillary data.

  18. Atmospheric Motion in Jupiter Northern Hemisphere

    NASA Image and Video Library

    2000-09-25

    True-color (left) and false-color (right) mosaics of Jupiter's northern hemisphere between 10 and 50 degrees latitude. Jupiter's atmospheric motions are controlled by alternating eastward and westward bands of air between Jupiter's equator and polar regions. The direction and speed of these bands influences the color and texture of the clouds seen in this mosaic. The high and thin clouds are represented by light blue, deep clouds are reddish, and high and thick clouds are white. A high haze overlying a clear, deep atmosphere is represented by dark purple. This image was taken by NASA's Galileo spacecraft on April 3, 1997 at a distance of 1.4 million kilometers (.86 million miles). http://photojournal.jpl.nasa.gov/catalog/PIA03000

  19. Ganymede - Galileo Mosaic Overlayed on Voyager Data in Uruk Sulcus Region

    NASA Image and Video Library

    1997-09-07

    A mosaic of four Galileo high-resolution images of the Uruk Sulcus region of Jupiter moon Ganymede is shown within the context of an image of the region taken by Voyager 2 in 1979. http://photojournal.jpl.nasa.gov/catalog/PIA00281

  20. Processes of Equatorial Thermal Structure: An Analysis of Galileo Temperature Profile with 3-D Model

    NASA Technical Reports Server (NTRS)

    Majeed, T.; Waite, J. H., Jr.; Bougher, S. W.; Gladstone, G. R.

    2005-01-01

    The Jupiter Thermosphere General Circulation Model (JTGCM) calculates the global dynamical structure of Jupiter's thermosphere self-consistently with its global thermal structure and composition. The main heat source that drives the thermospheric flow is high-latitude Joule heating. A secondary source of heating is the auroral process of particle precipitation. Global simulations of Jovian thermospheric dynamics indicate strong neutral outflows from the auroral ovals with velocities up to approximately 2 kilometers per second and subsequent convergence and downwelling at the Jovian equator. Such circulation is shown to be an important process for transporting significant amounts of auroral energy to equatorial latitudes and for regulating the global heat budget in a manner consistent with the high thermospheric temperatures observed by the Galileo probe. Adiabatic compression of the neutral atmosphere resulting from downward motion is an important source of equatorial heating (less than 0.06 microbar). The adiabatic heating continues to dominate between 0.06 and 0.2 microbar, but with an addition of comparable heating due to horizontal advection induced by the meridional flow. Thermal conduction plays an important role in transporting heat down to lower altitudes (greater than 0.2microbar) where it is balanced by the cooling associated with the wind transport processes. Interestingly, we find that radiative cooling caused by H3(+), CH4, and C2H2 emissions does not play a significant role in interpreting the Galileo temperature profile.

  1. Return to Europa: Overview of the Jupiter Europa Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Clark, K.; Tan-Wang, G.; Boldt, J.; Greeley, R.; Jun, I.; Lock, R.; Ludwinski, J.; Pappalardo, R.; Van Houten, T.; Yan, T.

    2009-01-01

    Missions to explore Europa have been imagined ever since the Voyager mission first suggested that Europa was geologically very young. Subsequently, Galileo supplied fascinating new insights into that satellite's secrets. The Jupiter Europa Orbiter (JEO) would be the NASA-led portion of the Europa Jupiter System Mission (EJSM), an international mission with orbiters developed by NASA, ESA and possibly JAXA. JEO would address a very important subset of the complete EJSM science objectives and is designed to function alone or in conjunction with ESA's Jupiter Ganymede Orbiter (JGO).

  2. Galileo radio science investigations

    NASA Technical Reports Server (NTRS)

    Howard, H. T.; Eshleman, V. R.; Hinson, D. P.; Kliore, A. J.; Lindal, G. F.; Woo, R.; Bird, M. K.; Volland, H.; Edenhoffer, P.; Paetzold, M.

    1992-01-01

    Galileo radio-propagation experiments are based on measurements of absolute and differential propagation time delay, differential phase delay, Doppler shift, signal strength, and polarization. These measurements can be used to study: the atmospheric and ionospheric structure, constituents, and dynamics of Jupiter; the magnetic field of Jupiter; the diameter of Io, its ionospheric structure, and the distribution of plasma in the Io torus; the diameters of the other Galilean satellites, certain properties of their surfaces, and possibly their atmospheres and ionospheres; and the plasma dynamics and magnetic field of the solar corona. The spacecraft system provides linear rather than circular polarization on the S-band downlink signal, the capability to receive X-band uplink signals, and a differential downlink ranging mode. A highly-stable, dual-frequency, spacecraft radio system is developed that is suitable for simultaneous measurements of all the parameters normally attributed to radio waves.

  3. Long-Term Variability of Jupiter's Magnetodisk and Implications for the Aurora

    NASA Astrophysics Data System (ADS)

    Vogt, Marissa F.; Bunce, Emma J.; Nichols, Jonathan D.; Clarke, John T.; Kurth, William S.

    2017-12-01

    Observations of Jupiter's UV auroral emissions collected over several years show that the ionospheric positions of the main emission and the Ganymede footprint can vary by as much as 3° in latitude. One explanation for this shift is a change of Jupiter's current sheet current density, which would alter the amount of field line stretching and displace the ionospheric mapping of field lines from a given radial distance in the magnetosphere. In this study we measure the long-term variability of Jupiter's magnetodisk using Galileo magnetometer data collected from 1996 to 2003. Using the Connerney et al. (1981) current sheet model, we calculate the current sheet density parameter that gives the best fit to the data from each orbit and find that the current density parameter varies by about 15% of its average value during the Galileo era. We investigate possible relationships between the observed current sheet variability and quantities such as Io's plasma torus production rate inferred from volcanic activity and external solar wind conditions extrapolated from data at 1 AU but find only a weak correlation. Finally, we trace Khurana (1997) model field lines to show that the observed changes in Jupiter's current sheet are sufficient to shift the ionospheric footprint of Ganymede and main auroral emission by a few degrees of latitude, consistent with the magnitude of auroral variability observed by Hubble Space Telescope (HST). However, we find that the measured auroral shifts in HST images are not consistent with concurrent changes in the current density parameter measured by Galileo.

  4. False Color Mosaic of Jupiter Belt-Zone Boundary

    NASA Image and Video Library

    1997-12-18

    This false color mosaic shows a belt-zone boundary near Jupiter equator. The images that make up the four quadrants of this mosaic were taken within a few minutes of each other. These images were taken on Nov. 5, 1996 by NASA Galileo orbiter.

  5. Scientific Rationale of a Saturn Probe Mission

    NASA Astrophysics Data System (ADS)

    Mousis, Olivier; Fletcher, Leigh N.; Lebreton, Jean-Pierre; Wurz, Peter; Cavalié, Thibault; Coustenis, Athena; Atkinson, Dave H.; Atreya, Sushil; Gautier, Daniel; Guillot, Tristan; Lunine, Jonathan I.; Marty, Bernard; Morse, Andrew D.; Rey, Kim R.; Simon-Miller, Amy; Spilker, Thomas R.; Waite, Jack Hunter

    2014-05-01

    Remote sensing observations meet some limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the unicity of in situ probe measurements is illustrated by the exploration of Jupiter, where key measurements such as noble gases abundances and the precise measurement of the helium mixing ratio have only been made available through in situ measurements by the Galileo probe. Here we describe the main scientific goals to be addressed by future in situ exploration of Saturn. Planet formation: To understand the formation of giant planets and the origin of our Solar System, statistical data obtained from the observation of exoplanetary systems must be supplemented by direct measurements of the composition of the planets in our solar system. A giant planet's bulk composition depends on the timing and location of planet formation, subsequent migration and the delivery mechanisms for the heavier elements. By measuring a giant planet's chemical inventory, and contrasting these with measurements of (i) other giant planets, (ii) primitive materials found in small bodies, and (iii) the composition of our parent star and the local interstellar medium, much can be revealed about the conditions at work during the formation of our planetary system [1]. To date, the Galileo probe at Jupiter (1995) remains our only data point for interpreting the bulk composi-tion of the giant planets. Galileo found that Jupiter exhibited an enrichment in C, N, S, Ar, Kr and Xe compared to the solar photospheric abundances, with some notable exceptions - water was found depleted, possibly due to meteorological processes at the probe entry site; and neon was also found depleted, possibly due to rain-out to deeper levels [2]. Explaining the high abundance of noble gases requires either condensing these elements directly at low-temperature in the form of amorphous ices [3], trapping them as clathrates [4-7] or photoevaporating the

  6. Galileo spacecraft modal test and evaluation of testing techniques

    NASA Technical Reports Server (NTRS)

    Chen, J.-C.

    1984-01-01

    The structural configuration, modal test requirements and pre-test activities involved in modeling the expected dynamic environment and responses of the Galileo spacecraft are discussed. The probe will be Shuttle-launched in 1986 and will gather data on the Jupiter system. Loads analysis for the 5300 lb spacecraft were performed with the NASTRAN code, and covered 10,000 static degrees of freedom and 1600 mass degrees of freedom. A modal analysis will be used to verify the predictions for natural frequencies, mode shapes, orthogonality checks, residual mass, modal damping and forces, and generalized forces. Verification of the validity of considering only 70 natural modes in the numerical simulation is being performed by examining the forcing functions of the analysis. The analysis led to requirements that 162 channels of accelerometer data and 118 channels of strain gage data be recorded during shaker tests to reveal areas where design changes will be needed to eliminate vibration peaks.

  7. Entry-probe studies of the atmospheres of earth, Mars, and Venus - A review (Von Karman Lecture)

    NASA Technical Reports Server (NTRS)

    Seiff, Alvin

    1990-01-01

    This paper overviews the history (since 1963) of the exploration of planetary atmospheres by use of entry probes. The techniques used to measure the compositions of the atmospheres of the earth, Mars, and Venus are described together with the key results obtained. Attention is also given to the atmosphere-structure experiment aboard the Galileo Mission, launched on October 17, 1989 and now under way on its 6-yr trip to Jupiter, and to future experiments.

  8. Galileo Near-Infrared Mapping Spectrometer Detects Active Lava Flows at Prometheus Volcano, Io

    NASA Image and Video Library

    1999-11-04

    The active volcano Prometheus on Jupiter moon Io was imaged by NASA Galileo spacecraft during the close flyby of Io on Oct.10, 1999. The spectrometer can detect active volcanoes on Io by measuring their heat in the near-infrared wavelengths.

  9. Proposed data compression schemes for the Galileo S-band contingency mission

    NASA Technical Reports Server (NTRS)

    Cheung, Kar-Ming; Tong, Kevin

    1993-01-01

    The Galileo spacecraft is currently on its way to Jupiter and its moons. In April 1991, the high gain antenna (HGA) failed to deploy as commanded. In case the current efforts to deploy the HGA fails, communications during the Jupiter encounters will be through one of two low gain antenna (LGA) on an S-band (2.3 GHz) carrier. A lot of effort has been and will be conducted to attempt to open the HGA. Also various options for improving Galileo's telemetry downlink performance are being evaluated in the event that the HGA will not open at Jupiter arrival. Among all viable options the most promising and powerful one is to perform image and non-image data compression in software onboard the spacecraft. This involves in-flight re-programming of the existing flight software of Galileo's Command and Data Subsystem processors and Attitude and Articulation Control System (AACS) processor, which have very limited computational and memory resources. In this article we describe the proposed data compression algorithms and give their respective compression performance. The planned image compression algorithm is a 4 x 4 or an 8 x 8 multiplication-free integer cosine transform (ICT) scheme, which can be viewed as an integer approximation of the popular discrete cosine transform (DCT) scheme. The implementation complexity of the ICT schemes is much lower than the DCT-based schemes, yet the performances of the two algorithms are indistinguishable. The proposed non-image compression algorith is a Lempel-Ziv-Welch (LZW) variant, which is a lossless universal compression algorithm based on a dynamic dictionary lookup table. We developed a simple and efficient hashing function to perform the string search.

  10. Jupiter's Multi-level Clouds

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Clouds and hazes at various altitudes within the dynamic Jovian atmosphere are revealed by multi-color imaging taken by the Near-Infrared Mapping Spectrometer (NIMS) onboard the Galileo spacecraft. These images were taken during the second orbit (G2) on September 5, 1996 from an early-morning vantage point 2.1 million kilometers (1.3 million miles) above Jupiter. They show the planet's appearance as viewed at various near-infrared wavelengths, with distinct differences due primarily to variations in the altitudes and opacities of the cloud systems. The top left and right images, taken at 1.61 microns and 2.73 microns respectively, show relatively clear views of the deep atmosphere, with clouds down to a level about three times the atmospheric pressure at the Earth's surface.

    By contrast, the middle image in top row, taken at 2.17 microns, shows only the highest altitude clouds and hazes. This wavelength is severely affected by the absorption of light by hydrogen gas, the main constituent of Jupiter's atmosphere. Therefore, only the Great Red Spot, the highest equatorial clouds, a small feature at mid-northern latitudes, and thin, high photochemical polar hazes can be seen. In the lower left image, at 3.01 microns, deeper clouds can be seen dimly against gaseous ammonia and methane absorption. In the lower middle image, at 4.99 microns, the light observed is the planet's own indigenous heat from the deep, warm atmosphere.

    The false color image (lower right) succinctly shows various cloud and haze levels seen in the Jovian atmosphere. This image indicates the temperature and altitude at which the light being observed is produced. Thermally-rich red areas denote high temperatures from photons in the deep atmosphere leaking through minimal cloud cover; green denotes cool temperatures of the tropospheric clouds; blue denotes cold of the upper troposphere and lower stratosphere. The polar regions appear purplish, because small-particle hazes allow leakage and

  11. Refraction effects on the Galileo probe telemetry carrier frequency

    NASA Technical Reports Server (NTRS)

    Atkinson, D. H.; Spilker, T. R.

    1991-01-01

    As the Galileo probe relay radio link (RRL) signal propagates outward through the Jovian atmosphere, the atmosphere will manifest itself in two ways. First, the geometric path length of the signal is increased, resulting in a small change of the RRL signal departure angle from the proble (transmitter). Secondly, the velocity of the signal is decreased. For a spherical, static atmosphere with a known profile of refractivity versus altitude the effects of refraction on the RRL frequency can be found using a variation of standard ray-tracing techniques, whereby the ray departure angle is found by an iterative process. From the dispersive characteristics of a mixture of hydrogen and helium with trace amounts of methane and ammonia a simple model of the Jovian atmosphere is constructed assuming spherical symmetry and uniform mixing. The contribution to the RRL Doppler frequency arising from refraction is calculated, and its effect on the Doppler wind measurements is discussed.

  12. The Hera Entry Probe Mission to Saturn, an ESA M-class mission proposal

    NASA Astrophysics Data System (ADS)

    Mousis, O.; Atkinson, D. H.; Spilker, T.; Venkatapathy, E.; Poncy, J.; Coustenis, A.; Reh, K.

    2015-10-01

    A fundamental goal of solar system exploration is to understand the origin of the solar system, the initial stages, conditions, and processes by which the solar system formed, how the formation process was initiated, and the nature of the interstellar seed material from which the solar system was born. Key to understanding solar system formation and subsequent dynamical and chemical evolution is the origin and evolution of the giant planets and their atmospheres. Additionally, the atmospheres of the giant planets serve as laboratories to better understand the atmospheric chemistries, dynamics, processes, and climates on all planets in the solar system including Earth, offer a context and provide a ground truth for exoplanets and exoplanetary systems,and have long been thought to play a critical role in the development of potentially habitable planetary systems. Remote sensing observations are limited when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the value of in situ probe measurements is illustrated by the exploration of Jupiter, where key measurements such as noble gases abundances and the precise measurement of the helium mixing ratio have only been made available through in situ measurements by the Galileo probe. Representing the only method providing ground-truth to connect the remote sensing inferences with physical reality, in situ measurements have only been accomplished twice in the history of outer solar system exploration, via the Galileo probe for Jupiter and the Huygens probe for Titan. In situ measurements provide access to atmospheric regions that are beyond the reach of remote sensing, enabling the dynamical, chemical and aerosol-forming processes at work from the thermosphere to the troposphere below the cloud decks to be studied. A proposal for a Saturn entry probe mission named Hera was recently submitted to the European Space Agency Medium Class mission announcement of

  13. Galileo 1989 VEEGA trajectory design. [Venus-Earth-Earth-Gravity-Assist

    NASA Technical Reports Server (NTRS)

    D'Amario, Louis A.; Byrnes, Dennis V.; Johannesen, Jennie R.; Nolan, Brian G.

    1989-01-01

    The new baseline for the Galileo Mission is a 1989 Venus-earth-earth gravity-assist (VEEGA) trajectory, which utilizes three gravity-assist planetary flybys in order to reduce launch energy requirements significantly compared to other earth-Jupiter transfer modes. The launch period occurs during October-November 1989. The total flight time is about 6 years, with November 1995 as the most likely choice for arrival at Jupiter. Optimal 1989 VEEGA trajectories have been generated for a wide range of earth launch dates and Jupiter arrival dates. Launch/arrival space contour plots are presented for various trajectory parameters, including propellant margin, which is used to measure mission performance. The accessible region of the launch/arrival space is defined by propellant margin and launch energy constraints; the available launch period is approximately 1.5 months long.

  14. The effects of correlated noise in intra-complex DSN arrays for S-band Galileo telemetry reception

    NASA Technical Reports Server (NTRS)

    Dewey, R. J.

    1992-01-01

    A number of the proposals for supporting a Galileo S-band (2.3-GHz) mission involve arraying several antennas to maximize the signal-to-noise ratio (and bit rate) obtainable from a given set of antennas. Arraying is no longer a new idea, having been used successfully during the Voyager encounters with Uranus and Neptune. However, arraying for Galileo's tour of Jupiter is complicated by Jupiter's strong radio emission, which produces correlated noise effects. This article discusses the general problem of correlated noise due to a planet, or other radio source, and applies the results to the specific case of an array of antennas at the DSN's Tidbinbilla, Australia, complex (DSS 42, DSS 43, DSS 45, and the yet-to-be-built DSS 34). The effects of correlated noise are highly dependent on the specific geometry of the array and on the spacecraft-planet configuration; in some cases, correlated noise effects produce an enhancement, rather than a degradation, of the signal-to-noise ratio. For the case considered here--an array of the DSN's Australian antennas observing Galileo and Jupiter--there are three regimes of interest. If the spacecraft-planet separation is approximately less than 75 arcsec, the average effect of correlated noise is a loss of signal to noise (approximately 0.2 dB as the spacecraft-planet separation approaches zero). For spacecraft-planet separations approximately greater than 75 arcsec, but approximately less than 400 arcsec, the effects of correlated noise cause signal-to-noise variations as large as several tenths of a decibel over time scales of hours or changes in spacecraft-planet separation of tens of arcseconds; however, on average its effects are small (less than 0.01 dB). When the spacecraft is more than 400 arcsec from Jupiter (as is the case for about half of Galileo's tour), correlated noise is a less than 0.05-dB effect.

  15. Radiative signatures from impact of Comet Shoemaker-Levy-9 on Jupiter

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.; Takata, Toshiko; O'Keefe, John D.; Orton, Glenn S.

    1994-01-01

    The visible optical power emitted from the expansion plumes from 0.4 and 2 km diameter fragments of Shoemaker-Levy are expected to be, approximately 25% and comparable to, the visible solar flux reflected from Jupiter, respectively, for several minutes, and could be easily observed by sensors on the Galileo spacecraft. Earth-based observers can detect these plumes as these expand over the SW limb of Jupiter and come into earth view some minutes after impact!

  16. Results of Observations over Jupiter's Galilean Satellites

    NASA Astrophysics Data System (ADS)

    Chigladze, Revaz; Tateshvili, Maia

    The work describes the polarization properties of the light reflected from the surfaces of Galileo Jupiter's satellites, with their physical characteristics studied based on their analysis. Europe turned out to have the most homogeneous, and Callisto has the least homogeneous. Time variations are the most typical to satellite Io what must be the result of the volcanic actions on the satellite surface.

  17. Analysis of flow decay potential on Galileo. [oxidizer flow rate reduction by iron nitrate precipitates

    NASA Technical Reports Server (NTRS)

    Cole, T. W.; Frisbee, R. H.; Yavrouian, A. H.

    1987-01-01

    The risks posed to the NASA's Galileo spacecraft by the oxidizer flow decay during its extended mission to Jupiter is discussed. The Galileo spacecraft will use nitrogen tetroxide (NTO)/monomethyl hydrazine bipropellant system with one large engine thrust-rated at a nominal 400 N, and 12 smaller engines each thrust-rated at a nominal 10 N. These smaller thrusters, because of their small valve inlet filters and small injector ports, are especially vulnerable to clogging by iron nitrate precipitates formed by NTO-wetted stainless steel components. To quantify the corrosion rates and solubility levels which will be seen during the Galileo mission, corrosion and solubility testing experiments were performed with simulated Galileo materials, propellants, and environments. The results show the potential benefits of propellant sieving in terms of iron and water impurity reduction.

  18. Galileo's Telescope and the Birth of Space Science

    NASA Astrophysics Data System (ADS)

    van Helden, A.

    2002-01-01

    The age of telescopic astronomy began in December 1609, when Galileo Galilei (1564-1642) began the first telescopic astronomical research project, an extended series of observations of the Moon. Over the next 18 months, he discovered the earth-like nature of the Moon, four satellites of Jupiter, the strange appearances of Saturn, the phases of Venus, and sunspots. His discoveries cut at the roots of the Aristotelian cosmological system with its central, corrupt, Earth and perfect heavens; and they provided important evidence for the Copernican heliocentric system. The instruments that provided the turning point in this great transition were by modern standards exceedingly primitive, and there is no question about the fact that Galileo must have been an exceptional observer to discover what he did. But he was also a great communicator. His scientific arguments for the new world system were models of logic and rigor; they were also rhetorical masterpieces. Galileo never needed a popularizer to bring his ideas to a wide audience. For that he paid a price.

  19. Studies of Plasma Flow Past Jupiters Satellite Io

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.

    1997-01-01

    We have investigated the interaction of Io, Jupiter's innermost Galilean satellite, with the Io plasma torus, and the interaction of Ganymede with the corotating Jovian plasma. With the successful insertion of the Galileo spacecraft into orbit around Jupiter, many new observations have been made of the Jovian magnetosphere. Some of the most exciting results thus far have been in regards to Jupiter's satellites, Io and Ganymede. In both cases the large perturbations to the background (Jovian) magnetic field have been consistent with the satellites' possession of an intrinsic magnetic field. The gravity measurements implying a differentiated core at both Io and Ganymede makes internal generation of a magnetic field by dynamo action in these satellites plausible, and, in the case of Ganymede, the identification of an intrinsic field is apparently unambiguous. For Io the situation is less clear, and further analysis is necessary to answer this important question. During the past year, we have used time-dependent three-dimensional magnetohydrodynamic (MHD) simulations to study these plasma-moon interactions. The results from these simulations have been used directly in the analysis of the Galileo magnetometer data. Our primary emphasis has been on the Io interaction, but we recently presented results on the Ganymede interaction as well. In this progress summary we describe our efforts on these problems to date.

  20. Using Jupiter's gravitational field to probe the Jovian convective dynamo.

    PubMed

    Kong, Dali; Zhang, Keke; Schubert, Gerald

    2016-03-23

    Convective motion in the deep metallic hydrogen region of Jupiter is believed to generate its magnetic field, the strongest in the solar system. The amplitude, structure and depth of the convective motion are unknown. A promising way of probing the Jovian convective dynamo is to measure its effect on the external gravitational field, a task to be soon undertaken by the Juno spacecraft. We calculate the gravitational signature of non-axisymmetric convective motion in the Jovian metallic hydrogen region and show that with sufficiently accurate measurements it can reveal the nature of the deep convection.

  1. Jupiter Thermospheric General Circulation Model (JTGCM): Global Structure and Dynamics Driven by Auroral and Joule Heating

    NASA Technical Reports Server (NTRS)

    Bougher, S. W.; J. Il. Waite, Jr.; Majeed, T.

    2005-01-01

    A growing multispectral database plus recent Galileo descent measurements are being used to construct a self-consistent picture of the Jupiter thermosphere/ionosphere system. The proper characterization of Jupiter s upper atmosphere, embedded ionosphere, and auroral features requires the examination of underlying processes, including the feedbacks of energetics, neutral-ion dynamics, composition, and magnetospheric coupling. A fully 3-D Jupiter Thermospheric General Circulation Model (JTGCM) has been developed and exercised to address global temperatures, three-component neutral winds, and neutral-ion species distributions. The domain of this JTGCM extends from 20-microbar (capturing hydrocarbon cooling) to 1.0 x 10(exp -4) nbar (including aurora/Joule heating processes). The resulting JTGCM has been fully spun-up and integrated for greater than or equal to40 Jupiter rotations. Results from three JTGCM cases incorporating moderate auroral heating, ion drag, and moderate to strong Joule heating processes are presented. The neutral horizontal winds at ionospheric heights vary from 0.5 km/s to 1.2 km/s, atomic hydrogen is transported equatorward, and auroral exospheric temperatures range from approx.1200-1300 K to above 3000 K, depending on the magnitude of Joule heating. The equatorial temperature profiles from the JTGCM are compared with the measured temperature structure from the Galileo AS1 data set. The best fit to the Galileo data implies that the major energy source for maintaining the equatorial temperatures is due to dynamical heating induced by the low-latitude convergence of the high-latitude-driven thermospheric circulation. Overall, the Jupiter thermosphere/ionosphere system is highly variable and is shown to be strongly dependent on magnetospheric coupling which regulates Joule heating.

  2. Development and Use of the Galileo and Ulysses Power Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Gary L; Hemler, Richard J; Schock, Alfred

    Paper presented at the 45th Congress of the International Astronautical Federation, October 1994. The Galileo mission to Jupiter and the Ulysses mission to explore the polar regions of the Sun required a new power source: the general-purpose heat source radioisotope thermoelectric generator (GPHS-RTG), the most powerful RTG yet flow. Four flight-qualified GPHS-RTGs were fabricated with one that is being used on Ulysses, two that are being used on Galileo and one that was a common spare (and is now available for the Cassini mission to Saturn). In addition, and Engineering Unit and a Qualification Unit were fabricated to qualify themore » design for space through rigorous ground tests. This paper summarizes the ground testing and performance predictions showing that the GPHS-RTGs have met and will continue to meet or exceed the performance requirements of the ongoing Galileo and Ulysses missions. There are two copies in the file.« less

  3. The search for active Europa plumes in Galileo plasma particle detector data: the E12 flyby

    NASA Astrophysics Data System (ADS)

    Huybrighs, H.; Roussos, E.; Krupp, N.; Fraenz, M.; Futaana, Y.; Barabash, S. V.; Glassmeier, K. H.

    2017-12-01

    Hubble Space Telescope observations of Europa's auroral emissions and transits in front of Jupiter suggest that recurring water vapour plumes originating from Europa's surface might exist. If conclusively proven, the discovery of these plumes would be significant, because Europa's potentially habitable ocean could be studied remotely by taking in-situ samples of these plumes from a flyby mission. The first opportunity to collect in-situ evidence of the plumes will not arise before the early 2030's when ESA's JUICE mission or NASA's Europa Clipper are set to arrive. However, it may be possible that NASA's Galileo mission has already encountered the plumes when it was active in the Jupiter system from 1995 to 2003. It has been suggested that the high plasma densities and anomalous magnetic fields measured during one of the Galileo flybys of Europa (flyby E12) could be connected to plume activity. In the context of the search for Europa plume signatures in Galileo particle data we present an overview of the in-situ plasma particle data obtained by the Galileo spacecraft during the E12 flyby. Focus is in particular on the data obtained with the plasma particle instruments PLS (low energy ions and electrons) and EPD (high energy ions and electrons). We search for signs of an extended exosphere/ionosphere that could be consistent with ongoing plume activity. The PLS data obtained during the E12 flyby show an extended interaction region between Europa and the plasma from Jupiter's magnetosphere, hinting at the existence of an extended ionosphere and exosphere. Furthermore we show how the EPD data are analyzed and modelled in order to evaluate whether a series of energetic ion depletions can be attributed to losses on the moon's surface or its neutral exosphere.

  4. Europa Scene: Plume, Galileo, Magnetic Field (Artist's Concept)

    NASA Image and Video Library

    2018-05-14

    Artist's illustration of Jupiter and Europa (in the foreground) with the Galileo spacecraft after its pass through a plume erupting from Europa's surface. A new computer simulation gives us an idea of how the magnetic field interacted with a plume. The magnetic field lines (depicted in blue) show how the plume interacts with the ambient flow of Jovian plasma. The red colors on the lines show more dense areas of plasma. https://photojournal.jpl.nasa.gov/catalog/PIA21922

  5. Implementation Options For the Solar System Exploration Survey's "Jupiter Polar Orbiter with Probes" Mission

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.

    2002-09-01

    In July of this year the National Academy of Science released a draft of its report, "New Frontiers in the Solar System: An Integrated Exploration Strategy," briefly describing the current state of solar system planetary science and the most important science objectives for the next decade (2003-2013). It includes a prioritized list of five mission concepts that might be flown as part of NASA's fledgling New Frontiers Program; each "concept" is more a list of science or measurement objectives than a full mission concept, since it does not specify implementation details in most cases. Number three on that list is the "Jupiter Polar Orbiter with Probes" ("JPOP") mission. This mission concept combines the strengths of previously described or proposed Jupiter missions into a single mission, and gains from the synergies of some of the newly-combined investigations. The primary science objectives are: 1. Determine if Jupiter has a central core 2. Determine the deep abundance of water (and other volatiles) 3. Measure Jupiter's deep winds 4. Determine the structure of Jupiter's dynamo magnetic field 5. Sample in situ Jupiter's polar magnetosphere This paper examines some of the implementation options for a JPOP mission, and gives relative advantages and disadvantages. Given the New Frontier Program's maximum cost to NASA of \\650M, plus an approx. \\120M cap on international contributions, implementing the full range of JPOP science objectives in a single New Frontiers mission may be challenging. This work was performed at the Jet Propulsion Laboratory / California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  6. Shape change of Galileo probe models in free-flight tests

    NASA Technical Reports Server (NTRS)

    Park, C.; Derose, C. F.

    1980-01-01

    Scale models of the Galileo Probe made of polycarbonate, AXF5Q graphite, carbon-carbon composite, and carbon-phenolic were flown in a free flight range in an ambient gas of air, krypton, or xenon. Mach numbers varied between 14 and 24, Reynolds numbers between 300,000 and 1,000,000, stagnation pressures between 31 and 200 atm, and stagnation point heat transfer rates between 10 and 1,000 kW/sq cm. Shadowgraphs indicate gouging ablation of the aft portion of the frustum; the gouging was moderate in air and severe in the noble gases. The graphite models break in the same region. An explanation of the phenomena is offered in terms of the strong compression and shear caused by the reattachment of a turbulent separated flow. Conditions are calculated for similar tests appropriate for Von Karman Facility of the Arnold Engineering Development Center in which a larger model can be flown in argon.

  7. Fast E-sail Uranus entry probe mission

    NASA Astrophysics Data System (ADS)

    Janhunen, Pekka; Lebreton, Jean-Pierre; Merikallio, Sini; Paton, Mark; Mengali, Giovanni; Quarta, Alessandro A.

    2014-12-01

    The electric solar wind sail is a novel propellantless space propulsion concept. According to numerical estimates, the electric solar wind sail can produce a large total impulse per propulsion system mass. Here we consider using a 0.5 N electric solar wind sail for boosting a 550 kg spacecraft to Uranus in less than 6 years. The spacecraft is a stack consisting of the electric solar wind sail module which is jettisoned roughly at Saturn distance, a carrier module and a probe for Uranus atmospheric entry. The carrier module has a chemical propulsion ability for orbital corrections and it uses its antenna for picking up the probe's data transmission and later relaying it to Earth. The scientific output of the mission is similar to what the Galileo Probe did at Jupiter. Measurements of the chemical and isotope composition of the Uranian atmosphere can give key constraints to different formation theories of the Solar System. A similar method could also be applied to other giant planets and Titan by using a fleet of more or less identical probes.

  8. Neptune Polar Orbiter with Probes

    NASA Technical Reports Server (NTRS)

    Bienstock, Bernard; Atkinson, David; Baines, Kevin; Mahaffy, Paul; Steffes, Paul; Atreya, Sushil; Stern, Alan; Wright, Michael; Willenberg, Harvey; Smith, David; hide

    2005-01-01

    The giant planets of the outer solar system divide into two distinct classes: the gas giants Jupiter and Saturn, which consist mainly of hydrogen and helium; and the ice giants Uranus and Neptune, which are believed to contain significant amounts of the heavier elements oxygen, nitrogen, and carbon and sulfur. Detailed comparisons of the internal structures and compositions of the gas giants with those of the ice giants will yield valuable insights into the processes that formed the solar system and, perhaps, other planetary systems. By 2012, Galileo, Cassini and possibly a Jupiter Orbiter mission with microwave radiometers, Juno, in the New Frontiers program, will have yielded significant information on the chemical and physical properties of Jupiter and Saturn. A Neptune Orbiter with Probes (NOP) mission would deliver the corresponding key data for an ice giant planet. Such a mission would ideally study the deep Neptune atmosphere to pressures approaching and possibly exceeding 1000 bars, as well as the rings, Triton, Nereid, and Neptune s other icy satellites. A potential source of power would be nuclear electric propulsion (NEP). Such an ambitious mission requires that a number of technical issues be investigated, however, including: (1) atmospheric entry probe thermal protection system (TPS) design, (2) probe structural design including seals, windows, penetrations and pressure vessel, (3) digital, RF subsystem, and overall communication link design for long term operation in the very extreme environment of Neptune's deep atmosphere, (4) trajectory design allowing probe release on a trajectory to impact Neptune while allowing the spacecraft to achieve a polar orbit of Neptune, (5) and finally the suite of science instruments enabled by the probe technology to explore the depths of the Neptune atmosphere. Another driving factor in the design of the Orbiter and Probes is the necessity to maintain a fully operational flight system during the lengthy transit time

  9. Family Portrait of Jupiter Great Red Spot and the Galilean Satellites

    NASA Image and Video Library

    1997-11-18

    This "family portrait," a composite of the Jovian system, includes the edge of Jupiter with its Great Red Spot, and Jupiter's four largest moons, known as the Galilean satellites. From top to bottom, the moons shown are Io, Europa, Ganymede and Callisto. The Great Red Spot, a storm in Jupiter's atmosphere, is at least 300 years old. Winds blow counterclockwise around the Great Red Spot at about 400 kilometers per hour (250 miles per hour). The storm is larger than one Earth diameter from north to south, and more than two Earth diameters from east to west. In this oblique view, the Great Red Spot appears longer in the north-south direction. Europa, the smallest of the four moons, is about the size of Earth's moon, while Ganymede is the largest moon in the solar system. North is at the top of this composite picture in which the massive planet and its largest satellites have all been scaled to a common factor of 15 kilometers (9 miles) per picture element. The Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft obtained the Jupiter, Io and Ganymede images in June 1996, while the Europa images were obtained in September 1996. Because Galileo focuses on high resolution imaging of regional areas on Callisto rather than global coverage, the portrait of Callisto is from the 1979 flyby of NASA's Voyager spacecraft. http://photojournal.jpl.nasa.gov/catalog/PIA00600

  10. Features of Jupiter's Great Red Spot

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This montage features activity in the turbulent region of Jupiter's Great Red Spot (GRS). Four sets of images of the GRS were taken through various filters of the Galileo imaging system over an 11.5 hour period on 26 June, 1996 Universal Time. The sequence was designed to reveal cloud motions. The top and bottom frames on the left are of the same area, northeast of the GRS, viewed through the methane (732 nm) filter but about 70 minutes apart. The top left and top middle frames are of the same area and at the same time, but the top middle frame is taken at a wavelength (886 nm) where methane absorbs more strongly. (Only high clouds can reflect sunlight in this wavelength.) Brightness differences are caused by the different depths of features in the two images. The bottom middle frame shows reflected light at a wavelength (757 nm) where there are essentially no absorbers in the Jovian atmosphere. The white spot is to the northwest of the GRS; its appearance at different wavelengths suggests that the brightest elements are 30 km higher than the surrounding clouds. The top and bottom frames on the right, taken nine hours apart and in the violet (415 nm) filter, show the time evolution of an atmospheric wave northeast of the GRS. Visible crests in the top right frame are much less apparent 9 hours later in the bottom right frame. The misalignment of the north-south wave crests with the observed northwestward local wind may indicate a shift in wind direction (wind shear) with height. The areas within the dark lines are 'truth windows' or sections of the images which were transmitted to Earth using less data compression. Each of the six squares covers 4.8 degrees of latitude and longitude (about 6000 square kilometers). North is at the top of each frame.

    Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment

  11. The vertical structure of Jupiter and Saturn zonal winds from nonlinear simulations of major vortices and planetary-scale disturbances

    NASA Astrophysics Data System (ADS)

    Garcia-Melendo, E.; Legarreta, J.; Sanchez-Lavega, A.

    2012-12-01

    Direct measurements of the structure of the zonal winds of Jupiter and Saturn below the upper cloud layer are very difficult to retrieve. Except from the vertical profile at a Jupiter hot spot obtained from the Galileo probe in 1995 and measurements from cloud tracking by Cassini instruments just below the upper cloud, no other data are available. We present here our inferences of the vertical structure of Jupiter and Saturn zonal wind across the upper troposphere (deep down to about 10 bar level) obtained from nonlinear simulations using the EPIC code of the stability and interactions of large-scale vortices and planetary-scale disturbances in both planets. Acknowledgements: This work has been funded by Spanish MICIIN AYA2009-10701 with FEDER support, Grupos Gobierno Vasco IT-464-07 and UPV/EHU UFI11/55. [1] García-Melendo E., Sánchez-Lavega A., Dowling T.., Icarus, 176, 272-282 (2005). [2] García-Melendo E., Sánchez-Lavega A., Hueso R., Icarus, 191, 665-677 (2007). [3] Sánchez-Lavega A., et al., Nature, 451, 437- 440 (2008). [4] Sánchez-Lavega A., et al., Nature, 475, 71-74 (2011).

  12. The Galileo plasma wave investigation

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Kurth, W. S.; Shaw, R. R.; Roux, A.; Gendrin, R.; Kennel, C. F.; Scarf, F. L.; Shawhan, S. D.

    1992-01-01

    The purpose of the Galileo plasma wave investigation is to study plasma waves and radio emissions in the magnetosphere of Jupiter. The plasma wave instrument uses an electric dipole antenna to detect electric fields, and two search coil magnetic antennas to detect magnetic fields. The frequency range covered is 5 Hz to 5.6 MHz for electric fields and 5 Hz to 160 kHz for magnetic fields. Low time-resolution survey spectrums are provided by three on-board spectrum analyzers. In the normal mode of operation the frequency resolution is about 10 percent, and the time resolution for a complete set of electric and magnetic field measurements is 37.33 s. High time-resolution spectrums are provided by a wideband receiver. The wideband receiver provides waveform measurements over bandwidths of 1, 10, and 80 kHz. Compared to previous measurements at Jupiter this instrument has several new capabilities. These new capabilities include (1) both electric and magnetic field measurements to distinguish electrostatic and electromagnetic waves, (2) direction finding measurements to determine source locations, and (3) increased bandwidth for the wideband measurements.

  13. Analysis of the Variation of Energetic Electron Flux with Respect to Longitude and Distance Normal to the Magnetic Equatorial Plane for Galileo Energetic Particle Detector Data

    NASA Technical Reports Server (NTRS)

    Swimm, Randall; Garrett, Henry B.; Jun, Insoo; Evans, Robin W.

    2004-01-01

    In this study we examine ten-minute omni-directional averages of energetic electron data measured by the Galileo spacecraft Energetic Particle Detector (EPD). Count rates from electron channels B1, DC2, and DC3 are evaluated using a power law model to yield estimates of the differential electron fluxes from 1 MeV to 11 MeV at distances between 8 and 51 Jupiter radii. Whereas the orbit of the Galileo spacecraft remained close to the rotational equatorial plane of Jupiter, the approximately 11 degree tilt of the magnetic axis of Jupiter relative to its rotational axis allowed the EPD instrument to sample high energy electrons at limited distances normal to the magnetic equatorial plane. We present a Fourier analysis of the semi-diurnal variation of electron fluxes with longitude.

  14. NIMS Spectral Maps of Jupiter's Great Red Spot

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Near-Infrared Mapping Spectrometer (NIMS) instrument looks at Jupiter's Great Red Spot, in these views from June 26, 1996. NIMS studies infrared wavelengths of light that our eye cannot see. These maps are at four different infrared wavelengths, each one picked to reveal something different about the atmosphere.

    The top image is a false color map of a wavelength that is at the red edge of our ability to see. It shows the shapes of features that we would see with our eyes.

    The second map is of ammonia ice, red showing where the most ice is, blue where none exists. The differences between this and the first image are due to the amount and size of ammonia ice crystals.

    The third map down is from a wavelength that shows cloud heights, with the highest clouds in red, and the lowest in blue.

    The bottom map uses a wavelength that shows the hot Jupiter shining through the clouds. Red represents the thinnest clouds, and blue is thickest where it is more difficult to see below. Comparing the bottom two images, note that the highest clouds are in the center of the Great Red Spot, while there are relatively few clouds around the edges.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  15. Galileo spacecraft integration - International cooperation on a planetary mission in the Shuttle era

    NASA Technical Reports Server (NTRS)

    Spehalski, R. J.

    1983-01-01

    The Galileo mission is designed to greatly expand scientific knowledge of Jupiter and its system. The retropropulsion module (RPM) as a major functional element of the Galileo spacecraft is described. The major mission and spacecraft requirements on the RPM are presented. Complexities of the integration process due to the international interface are identified. Challenges associated with integration with new launch vehicles, the Shuttle and upper stage, and their relationships to the RPM are discussed. The results of the integration process involving mission and propulsion performance, reliability, mechanical and thermal interfaces, and safety are described. Finally, considerations and recommendations for future missions involving international cooperation are given.

  16. Motion in Jupiter's Atmospheric Vortices (Near-infrared filters)

    NASA Image and Video Library

    1998-03-26

    Two frame "movie" of a pair of vortices in Jupiter's southern hemisphere. The two frames are separated by ten hours. The right oval is rotating counterclockwise, like other anticyclonic bright vortices in Jupiter's atmosphere. The left vortex is a cyclonic (clockwise) vortex. The differences between them (their brightness, their symmetry, and their behavior) are clues to how Jupiter's atmosphere works. The frames span about fifteen degrees in latitude and longitude and are centered at 141 degrees west longitude and 36 degrees south planetocentric latitude. Both vortices are about 3500 kilometers in diameter in the north-south direction. The images were taken in near infrared light at 756 nanometers and show clouds that are at a pressure level of about 1 bar in Jupiter's atmosphere. North is at the top. The smallest resolved features are tens of kilometers in size. These images were taken on May 7, 1997, at a range of 1.5 million kilometers by the Solid State Imaging system on NASA's Galileo spacecraft. An animation is available at http://photojournal.jpl.nasa.gov/catalog/PIA01230

  17. Asteroid/comet encounter opportunities for the Galileo VEEGA mission

    NASA Technical Reports Server (NTRS)

    Johannesen, Jennie R.; Nolan, Brian G.; Byrnes, Dennis V.; D'Amario, Louis A.

    1988-01-01

    The opportunity for the Galileo spacecraft to perform a close flyby of an asteroid or distant observation of a comet while on the Venus-Earth-Earth-Gravity-Assist (VEEGA) mission to Jupiter is discussed. More than 120 nominal trajectories were used in a scan program to identify asteroids passing within 30 million km of the spacecraft. A total of 47 asteroids were examined to determine the propellant cost of a close flyby. The possible flybys include a double asteroid flyby with No. 951 in October, 1991, with a flyby of No. 243 in August 1993. The factors considered in the selection of an asteroid include the propellant margin cost of modifying a nominal trajectory to include a close flyby, the size and type of asteroid, and the Jupiter arrival date.

  18. Planetary Entry Probes and Mass Spectroscopy: Tools and Science Results from In Situ Studies of Planetary Atmospheres and Surfaces

    NASA Technical Reports Server (NTRS)

    Niemann, Hasso B.

    2007-01-01

    Probing the atmospheres and surfaces of the planets and their moons with fast moving entry probes has been a very useful and essential technique to obtain in situ or quasi in situ scientific data (ground truth) which could not otherwise be obtained from fly by or orbiter only missions and where balloon, aircraft or lander missions are too complex and costly. Planetary entry probe missions have been conducted successfully on Venus, Mars, Jupiter and Titan after having been first demonstrated in the Earth's atmosphere. Future missions will hopefully also include more entry probe missions back to Venus and to the outer planets. 1 he success of and science returns from past missions, the need for more and better data, and a continuously advancing technology generate confidence that future missions will be even more successful with respect to science return and technical performance. I'he pioneering and tireless work of Al Seiff and his collaborators at the NASA Ames Research Center had provided convincing evidence of the value of entry probe science and how to practically implement flight missions. Even in the most recent missions involving entry probes i.e. Galileo and Cassini/Huygens A1 contributed uniquely to the science results on atmospheric structure, turbulence and temperature on Jupiter and Titan.

  19. Results from the Galileo Laser Uplink: A JPL Demonstration of Deep-Space Optical Communications

    NASA Technical Reports Server (NTRS)

    Wilson, K. E.; Lesh, J. R.

    1993-01-01

    The successful completion of the Galileo Optical Experiment (GOPEX), represented the accomplishment of a significant milestone in JPL's optical communication plan. The experiment demonstrated the first transmission of a narrow laser beam to a deep-space vehicle. Laser pulses were beamed to the Galileo spacecraft by Earth-based transmitters at the Table Mountain Facility (TMF), California, and Starfire Optical Range (SOR), New Mexico. The experiment took place over an eight-day period (December 9 through December 16, 1992) as Galileo receded from Earth on its way to Jupiter, and covered ranges from 1 to 6 million kilometers (15 times the Earth-Moon distance), the laser uplink from TMF covered the longest known range for laser beam transmission and detection. This demonstration is the latest in a series of accomplishments by JPL in the development of deep-space optical communications technology.

  20. Science goals and concepts of a Saturn probe for the future L2/L3 ESA call

    NASA Astrophysics Data System (ADS)

    Schmider, F.-X.; Mousis, O.; Fletcher, L. N.; Altwegg, K.; André, N.; Blanc, M.; Coustenis, A.; Gautier, D.; Geppert, W. D.; Guillot, T.; Irwin, P.; Lebreton, J.-P.; Marty, B.; Sánchez-Lavega, A.; Waite, J. H.; Wurz, P.

    2013-11-01

    Comparative studies of the elemental enrichments and isotopic abundances measured on Saturn can provide unique insights into the processes at work within our planetary system and are related to the time and location of giant planet formation. In situ measurements via entry probes remain the only reliable, unambiguous method for determining the atmospheric composition from the thermosphere to the deep cloud-forming regions of their complex weather layers. Furthermore, in situ experiments can reveal the meteorological properties of planetary atmospheres to provide ``ground truth'' for orbital remote sensing. Following the orbital reconnaissance of the Galileo and Cassini spacecraft, and the single-point in situ measurement of the Galileo probe to Jupiter, we believe that an in situ measurement of Saturn's atmospheric composition should be an essential element of ESA's future cornerstone missions, providing the much-needed comparative planetology to reveal the origins of our outer planets. This quest for understanding the origins of our solar system and the nature of planetary atmospheres is in the heart of ESA's Cosmic Vision, and has vast implications for the origins of planetary systems around other stars.

  1. Composition and evolution of the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Donahue, Thomas (Principal Investigator)

    1996-01-01

    The contract year started by analyzing Jovian atmospheric data acquired by the Galileo Probe Mass Spectrometer (GPMS). Two Venus hydrogen projects got underway as well. The first study strives to understand how to reconcile the standard treatment of the evolution of the H2O and HDO resevoirs on Venus over 4.5 Gyr in the presence of H and D escape and injection by comets. The second study is calculating the charge exchange contribution to hydrogen loss rates, using realistic models for exospheric H, H(+), D, D(+), and ion temperature from PV data. This report includes the following papers as attachments and supporting data: 'The Galileo Probe Mass Spectrometer: Composition of Jupiter's Atmosphere'; 'Chemical Composition Measurements of the Atmosphere of Jupiter with the Galileo Probe Mass Spectrometer'; 'Ion/Neutral Escape of Hydrogen and Deuterium: Evolution of Water'; 'Hydrogen and Deuterium in the Thermosphere of Venus: Solar Cycle Variations and Escape'; and 'Solar Cycle Variations in H(+) and D(+) Densities in the Venus Ionosphere: Implications for Escape'.

  2. Galileo Ultraviolet Spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Hord, C. W.; Mcclintock, W. E.; Stewart, A. I. F.; Barth, C. A.; Esposito, L. W.; Thomas, G. E.; Sandel, B. R.; Hunten, D. M.; Broadfoot, A. L.; Shemansky, D. E.

    1992-01-01

    The Galileo ultraviolet spectrometer experiment uses data obtained by the Ultraviolet Spectrometer (UVS) mounted on the pointed orbiter scan platform and from the Extreme Ultraviolet Spectrometer (EUVS) mounted on the spinning part of the orbiter with the field of view perpendicular to the spin axis. The UVS is a Ebert-Fastie design that covers the range 113-432 nm with a wavelength resolution of 0.7 nm below 190 and 1.3 nm at longer wavelengths. The UVS spatial resolution is 0.4 deg x 0.1 deg for illuminated disk observations and 1 deg x 0.1 deg for limb geometries. The EUVS is a Voyager design objective grating spectrometer, modified to cover the wavelength range from 54 to 128 nm with wavelength resolution 3.5 nm for extended sources and 1.5 nm for point sources and spatial resolution of 0.87 deg x 0.17 deg. The EUVS instrument will follow up on the many Voyager UVS discoveries, particularly the sulfur and oxygen ion emissions in the Io torus and molecular and atomic hydrogen auroral and airglow emissions from Jupiter. The UVS will obtain spectra of emission, absorption, and scattering features in the unexplored, by spacecraft, 170-432 nm wavelength region. The UVS and EUVS instruments will provide a powerful instrument complement to investigate volatile escape and surface composition of the Galilean satellites, the Io plasma torus, micro- and macro-properties of the Jupiter clouds, and the composition structure and evolution of the Jupiter upper atmosphere.

  3. Atmospheric science on the Galileo mission

    NASA Technical Reports Server (NTRS)

    Hunten, D. M.; Colin, L.; Hansen, J. E.

    1986-01-01

    The atmospheric science goals of the Galileo mission, and instruments of the probe and orbiter are described. The current data available, and the goals of the Galileo mission concerning the chemical composition of the Jovian atmosphere; the thermal structure of the atmosphere; the nature of cloud particles and cloud layering; the radiative energy balance; atmospheric dynamics; and the upper atmosphere are discussed. The objectives and operations of the atmospheric structure instrument, neutral mass spectrometer, helium abundance interferometer, nephelometer, net flux radiometer, lightning and radio emission detector, solid state imaging system, NIR mapping spectrometer, photopolarimeter radiometer, and UV spectrometer are examined.

  4. Jupiter's Magnetodisc in the Juno Era and Implications for the Aurora

    NASA Astrophysics Data System (ADS)

    Vogt, M. F.; Spalsbury, L.; Connerney, J. E. P.

    2017-12-01

    The magnetic field in Jupiter's middle and outer magnetosphere is highly radially stretched by the presence of an azimuthally directed current sheet or magnetodisc. Magnetic field measurements from the Voyager, Pioneer, and Galileo spacecraft have been used to construct models of this current sheet, but these observations were limited to latitudes near the jovigraphic equator. High-latitude measurements, such as those recently collected by the Juno spacecraft in its polar orbit of Jupiter, are needed to more fully constrain our understanding of the magnetodisc structure and its effects on the coupling between the ionosphere and middle and outer magnetosphere. Here we will present Juno magnetic field observations from Jupiter's middle magnetosphere and will fit these data to current sheet models, including the Connerney et al. (1981) and Khurana (1997) models, to study the structure of the magnetodisc. We will examine how well the observations are fit by the available current sheet models and discuss any model modifications that are necessary to accurately represent the magnetic field measurements at high latitudes. We will also discuss temporal changes in the magnetodisc between successive Juno orbits ( 53 days) and on longer time scales by comparing Juno data to data from the Voyager, Pioneer, and Galileo spacecraft. Finally, we will consider the implications of our findings for other magnetospheric and auroral processes, particularly the magnetic mapping between the ionosphere and middle and outer magnetosphere.

  5. Jupiter's Deep Cloud Structure Revealed Using Keck Observations of Spectrally Resolved Line Shapes

    NASA Technical Reports Server (NTRS)

    Bjoraker, G. L.; Wong, M.H.; de Pater, I.; Adamkovics, M.

    2015-01-01

    Technique: We present a method to determine the pressure at which significant cloud opacity is present between 2 and 6 bars on Jupiter. We use: a) the strength of a Fraunhofer absorption line in a zone to determine the ratio of reflected sunlight to thermal emission, and b) pressure- broadened line profiles of deuterated methane (CH3D) at 4.66 meters to determine the location of clouds. We use radiative transfer models to constrain the altitude region of both the solar and thermal components of Jupiter's 5-meter spectrum. Results: For nearly all latitudes on Jupiter the thermal component is large enough to constrain the deep cloud structure even when upper clouds are present. We find that Hot Spots, belts, and high latitudes have broader line profiles than do zones. Radiative transfer models show that Hot Spots in the North and South Equatorial Belts (NEB, SEB) typically do not have opaque clouds at pressures greater than 2 bars. The South Tropical Zone (STZ) at 32 degrees South has an opaque cloud top between 4 and 5 bars. From thermochemical models this must be a water cloud. We measured the variation of the equivalent width of CH3D with latitude for comparison with Jupiter's belt-zone structure. We also constrained the vertical profile of H2O in an SEB Hot Spot and in the STZ. The Hot Spot is very dry for a probability less than 4.5 bars and then follows the H2O profile observed by the Galileo Probe. The STZ has a saturated H2O profile above its cloud top between 4 and 5 bars.

  6. Hera - an ESA M-class Saturn Entry Probe Mission Proposal

    NASA Astrophysics Data System (ADS)

    Atkinson, D. H.; Mousis, O.; Spilker, T. R.; Venkatapathy, E.; Poncy, J.; Coustenis, A.; Reh, K. R.

    2015-12-01

    A fundamental goal of solar system exploration is to understand the origin of the solar system, the initial stages, conditions, and processes by which the solar system formed, how the formation process was initiated, and the nature of the interstellar seed material from which the solar system was born. Key to understanding solar system formation and subsequent dynamical and chemical evolution is the origin and evolution of the giant planets and their atmospheres. Additionally, the atmospheres of the giant planets serve as laboratories to better understand the atmospheric chemistries, dynamics, processes, and climates on all planets in the solar system including Earth, offer a context and provide a ground truth for exoplanets and exoplanetary systems, and have long been thought to play a critical role in the development of potentially habitable planetary systems. Remote sensing observations are limited when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the value of in situ measurements is provided by measurements of Jupiter's noble gas abundances and helium mixing ratio by the Galileo probe. In situ measurements provide direct access to atmospheric regions that are beyond the reach of remote sensing, enabling the dynamical, chemical and aerosol-forming processes at work from the thermosphere to the troposphere below the cloud decks to be studied. Studies for a newly proposed Saturn atmospheric entry probe mission named Hera is being prepared for the upcoming European Space Agency Medium Class (M5) mission announcement of opportunity. A solar powered mission, Hera will take approximately 8 years to reach Saturn and will carry instruments to measure the composition, structure, and dynamics of Saturn's atmosphere. In the context of giant planet science provided by the Galileo, Juno, and Cassini missions to Jupiter and Saturn, the Hera Saturn probe will provide critical measurements of composition

  7. Pioneer 11 Encounter. [with Jupiter

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Pioneer 11's encounter with Jupiter is discussed in detail. The scientific experiments carried out on the probe are described along with the instruments used. Tables are included which provide data on the times of experiments, encounters, and the distances from Jupiter. Educational study projects are also given.

  8. Mosaic of Jupiter's Great Red Spot (Methane Filter)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Great Red Spot of Jupiter as seen through the methane (886 nm) filter of the Galileo imaging system. The image is a mosaic of six images that have been map-projected to a uniform grid of latitude and longitude. North is at the top. The mosaic was taken over a 76 second interval beginning at universal time 14 hours, 33 minutes, 22 seconds, on June 26, 1996. The Red Spot is 20,000 km long and has been followed by observers on Earth since the telescope was invented 300 years ago. It is a huge storm made visible by variations in the composition of the cloud particles. The Red Spot is not unique, but is simply the largest of a class of long-lived vortices, some of which are visible in the lower part of the image. The range is 1.46 million kilometers.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA s Office of Space Science, Washington, DC.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  9. Highest-resolution Europa Image & Mosaic from Galileo

    NASA Image and Video Library

    2017-02-08

    This mosaic of images includes the most detailed view of the surface of Jupiter's moon Europa obtained by NASA's Galileo mission. The topmost footprint is the highest resolution image taken by Galileo at Europa. It was obtained at an original image scale of 19 feet (6 meters) per pixel. The other seven images in this observation were obtained at a resolution of 38 feet (12 meters) per pixel, thus the mosaic, including the top image, has been projected at the higher image scale. The top image is also provided at its original resolution, as a separate image file. It includes a vertical black line that resulted from missing data that was not transmitted by Galileo. This is the highest resolution view of Europa available until a future mission visits the icy moon. The right side of the image was previously published as PIA01180. Although this data has been publicly available in NASA's Planetary Data System archive for many years, NASA scientists have not previously combined these images into a mosaic for public release. This observation was taken with the sun relatively high in the sky, so most of the brightness variations visible here are due to color differences in the surface material rather than shadows. Bright ridge tops are paired with darker valleys, perhaps due to a process in which small temperature variations allow bright frost to accumulate in slightly colder, higher-elevation locations. http://photojournal.jpl.nasa.gov/catalog/PIA21431

  10. Entry Probe Missions to the Giant Planets

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.; Atkinson, D. H.; Atreya, S. K.; Colaprete, A.; Cuzzi, J. N.; Spilker, L. J.; Coustenis, A.; Venkatapathy, E.; Reh, K.; Frampton, R.

    2009-12-01

    The primary motivation for in situ probe missions to the outer planets derives from the need to constrain models of solar system formation and the origin and evolution of atmospheres, to provide a basis for comparative studies of the gas and ice giants, and to provide a valuable link to extrasolar planetary systems. As time capsules of the solar system, the gas and ice giants offer a laboratory to better understand the atmospheric chemistries, dynamics, and interiors of all the planets, including Earth; and it is within the atmospheres and interiors of the giant planets that material diagnostic of the epoch of formation can be found, providing clues to the local chemical and physical conditions existing at the time and location at which each planet formed. Measurements of current conditions and processes in those atmospheres inform us about their evolution since formation and into the future, providing information about our solar system’s evolution, and potentially establishing a framework for recognizing extrasolar giant planets in different stages of their evolution. Detailed explorations and comparative studies of the gas and ice giant planets will provide a foundation for understanding the integrated dynamic, physical, and chemical origins, formation, and evolution of the solar system. To allow reliable conclusions from comparative studies of gas giants Jupiter and Saturn, an entry probe mission to Saturn is needed to complement the Galileo Probe measurements at Jupiter. These measurements provide the basis for a significantly better understanding of gas giant formation in the context of solar system formation. A probe mission to either Uranus or Neptune will be needed for comparative studies of the gas giants and the ice giants, adding knowledge of ice giant origins and thus making further inroads in our understanding of solar system formation. Recognizing Jupiter’s spatial variability and the need to understand its implications for global composition

  11. HUBBLE CLICKS IMAGES OF IO SWEEPING ACROSS JUPITER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    are regions of sulfur dioxide frost. On Jupiter, the white and brown regions distinguish areas of high-altitude haze and clouds; the blue regions depict relatively clear skies at high altitudes. These images were taken July 22, 1997, in two wavelengths: 3400 Angstroms (ultraviolet) and 4100 Angstroms (violet). The colors do not correspond closely to what the human eye would see because ultraviolet light is invisible to the eye. Io: Jupiter's Volcanic Moon In the close-up picture of Io (bottom right), the mound rising from Io's surface is actually an eruption from Pillan, a volcano that had previously been dormant. Measurements at two ultraviolet wavelengths indicate that the ejecta consist of sulfur dioxide 'snow,' making the plume appear green in this false-color image. Astronomers increased the color contrast and added false colors to the image to make the faint plume visible. Pillan's plume is very hot and its ejecta is moving extremely fast. Based on information from the Galileo spacecraft, Pillan's outburst is at least 2,240 degrees Fahrenheit (1,500 degrees Kelvin). The late bloomer is spewing material at speeds of 1,800 mph (2,880 kilometers per hour). The hot sulfur dioxide gas expelled from the volcano cools rapidly as it expands into space, freezing into snow. Io is well known for its active volcanoes, many of which blast huge plumes of volcanic debris into space. Astronomers discovered Pillan's volcanic explosion while looking for similar activity from a known active volcano, Pele, about 300 miles (500 kilometers) away from Pillan. But Pele turned out to be peaceful. Io has hundreds of active volcanoes, but only a few, typically eight or nine, have visible plumes at any given time. Scientists will get a closer look at Io later this year during a pair of close flybys to be performed by NASA's Galileo spacecraft, which has been orbiting Jupiter and its moons for nearly 3-1/2 years. The first Galileo flyby is scheduled for Oct. 10 at an altitude of 379 miles

  12. Hubble Clicks Images of Io Sweeping Across Jupiter

    NASA Technical Reports Server (NTRS)

    1999-01-01

    .

    The bright patches on Io are regions of sulfur dioxide frost. On Jupiter, the white and brown regions distinguish areas of high-altitude haze and clouds; the blue regions depict relatively clear skies at high altitudes.

    These images were taken July 22, 1997, in two wavelengths: 3400 Angstroms (ultraviolet) and 4100 Angstroms (violet). The colors do not correspond closely to what the human eye would see because ultraviolet light is invisible to the eye.

    Io: Jupiter's Volcanic Moon

    In the close-up picture of Io (bottom right), the mound rising from Io's surface is actually an eruption from Pillan, a volcano that had previously been dormant.

    Measurements at two ultraviolet wavelengths indicate that the ejecta consist of sulfur dioxide 'snow,' making the plume appear green in this false-color image. Astronomers increased the color contrast and added false colors to the image to make the faint plume visible.

    Pillan's plume is very hot and its ejecta is moving extremely fast. Based on information from the Galileo spacecraft, Pillan's outburst is at least 2,240 degrees Fahrenheit (1,500 degrees Kelvin). The late bloomer is spewing material at speeds of 1,800 mph (2,880 kilometers per hour). The hot sulfur dioxide gas expelled from the volcano cools rapidly as it expands into space, freezing into snow.

    Io is well known for its active volcanoes, many of which blast huge plumes of volcanic debris into space. Astronomers discovered Pillan's volcanic explosion while looking for similar activity from a known active volcano, Pele, about 300 miles (500 kilometers) away from Pillan. But Pele turned out to be peaceful. Io has hundreds of active volcanoes, but only a few, typically eight or nine, have visible plumes at any given time.

    Scientists will get a closer look at Io later this year during a pair of close flybys to be performed by NASA's Galileo spacecraft, which has been orbiting Jupiter and its moons for nearly 3-1/2 years.

    The first Galileo flyby is scheduled

  13. ARC-1981-AC81-0174-1

    NASA Image and Video Library

    1981-03-20

    Artist: Ken Hodges Pioneer Galileo Probe descending into Jupiter's Atmosphere with parachute deployed, heat shield separation, while orbiter collects data from above (from JPL files - no reference nunber available)

  14. Planetary Atmosphere Dynamics and Radiative Transfer

    NASA Technical Reports Server (NTRS)

    Atkinson, David H.

    1996-01-01

    This research program has dealt with two projects in the field of planetary atmosphere dynamics and radiative energy transfer, one theoretical and one experimental. The first project, in radiative energy transfer, incorporated the capability to isolate and quantify the contribution of individual atmospheric components to the Venus radiative balance and thermal structure to greatly improve the current understanding of the radiative processes occurring within the Venus atmosphere. This is possible by varying the mixing ratios of each gas species, and the location, number density and aerosol size distributions of the clouds. This project was a continuation of the work initiated under a 1992 University Consortium Agreement. Under the just completed grant, work has continued on the use of a convolution-based algorithm that provided the capability to calculate the k coefficients of a gas mixture at different temperatures, pressures and spectral intervals from the separate k-distributions of the individual gas species. The second primary goal of this research dealt with the Doppler wind retrieval for the Successful Galileo Jupiter probe mission in December, 1995. In anticipation of the arrival of Galileo at Jupiter, software development continued to read the radioscience and probe/orbiter trajectory data provided by the Galileo project and required for Jupiter zonal wind measurements. Sample experiment radioscience data records and probe/orbiter trajectory data files provided by the Galileo Radioscience and Navigation teams at the Jet Propulsion Laboratory, respectively, were used for the first phase of the software development. The software to read the necessary data records was completed in 1995. The procedure by which the wind retrieval takes place begins with initial consistency checks of the raw data, preliminary data reductions, wind recoveries, iterative reconstruction of the probe descent profile, and refined wind recoveries. At each stage of the wind recovery

  15. The systems impact of a concentrated solar array on a Jupiter orbiter

    NASA Technical Reports Server (NTRS)

    Rockey, D. E.; Bamford, R.; Hollars, M. G.; Klemetson, R. W.; Koerner, T. W.; Marsh, E. L.; Price, H.; Uphoff, C.

    1981-01-01

    Results of a study are presented suggesting that a Galileo Jupiter orbiting mission could be performed with a concentrated solar array power source. A baseline spacecraft design using concentrated arrays is given, and the overall spacecraft implications for attitude control, propulsion, power conditioning and the resultant spacecraft mass are examined. It is noted that while the concentrated array concept still requires extensive development effort, no insurmountable system level barriers preclude the use of a concentrated solar array on this difficult mission, with its stressing radiation environment, its lengthy periods of spacecraft shadowing as it passes behind Jupiter, and, finally, its large delta v burn required for orbital insertion.

  16. In the sign of Galileo: pictorial representation in the 17th-century Copernican debate.

    PubMed

    Remmert, Volker R

    2003-03-01

    After Galileo had discovered the four moons of Jupiter in 1609 he became increasingly convinced that the Copernican, heliocentric system of the world was correct. However, this ran against the opinions of the Church and a large number of contemporary astronomers and natural philosophers. The ensuing development culminated in the condemnation of the Copernican system by the Church in 1616 and of Galileo himself, who had propagated the Copernican system in his Dialogue Concerning the Two Chief World Systems (1632), in 1633. Nevertheless, there was a constant debate about the right world system during the whole 17th century. Pictorial representation played an important role in it and the illustrations used as book frontispieces were a significant medium for the dispute.

  17. Bring the Process of Science to Life! Use Galileo's Historic Observations to Celebrate the International Year of Astronomy 2009

    NASA Astrophysics Data System (ADS)

    Moody, Theresa R.; van der Veen, W.; Erickson, J.; Manning, J.; White, V.

    2009-01-01

    The International Year of Astronomy 2009 was conceived to honor the 400th anniversary of Galileo's first telescopic observations in 1609. Galileo gave priority to evidence over popular belief. This completely changed the existing world view and formed the basis for the modern scientific process. Galileo's work provides an example of how science is grounded in evidence rather than belief or opinion. The goal of this project is to present K-16 instructors with an alternative to the traditional scientific method unit. We will briefly describe two activities that model Galileo's telescopic observations of Jupiter and Venus and simultaneously build abilities and understandings of scientific inquiry. Participants will learn about activities where students record and analyze data, make predictions, use multiple forms of evidence, and use a variety of models to find support for a heliocentric solar system. Materials will be available for download for those interested in using this in their classroom as well as for the purpose of training other teachers.

  18. Bring the Process of Science to Life! Use Galileo's Historic Observations to Celebrate the International Year of Astronomy 2009

    NASA Astrophysics Data System (ADS)

    Roelofsen Moody, T.; van der Veen, W.; Manning, J.; White, V.; Erickson, J.

    2008-12-01

    The International Year of Astronomy 2009 was conceived to honor the 400th anniversary of Galileo's first telescopic observations in 1609. Galileo gave priority to evidence over popular belief. This completely changed the existing world view and formed the basis for the modern scientific process. Galileo's work provides an example of how science is grounded in evidence rather than belief or opinion. The goal of this project is to present K-16 instructors with an alternative to the traditional scientific method unit. We will briefly describe two activities that model Galileo's telescopic observations of Jupiter and Venus and simultaneously build abilities and understandings of scientific inquiry. Participants will learn about activities where students record and analyze data, make predictions, use multiple forms of evidence, and use a variety of models to find support for a heliocentric solar system. Materials will be available for download for those interested in using this in their classroom as well as for the purpose of training other teachers.

  19. The Galileo Solid-State Imaging experiment

    USGS Publications Warehouse

    Belton, M.J.S.; Klaasen, K.P.; Clary, M.C.; Anderson, J.L.; Anger, C.D.; Carr, M.H.; Chapman, C.R.; Davies, M.E.; Greeley, R.; Anderson, D.; Bolef, L.K.; Townsend, T.E.; Greenberg, R.; Head, J. W.; Neukum, G.; Pilcher, C.B.; Veverka, J.; Gierasch, P.J.; Fanale, F.P.; Ingersoll, A.P.; Masursky, H.; Morrison, D.; Pollack, James B.

    1992-01-01

    . The dynamic range is spread over 3 gain states and an exposure range from 4.17 ms to 51.2 s. A low-level of radial, third-order, geometric distortion has been measured in the raw images that is entirely due to the optical design. The distortion is of the pincushion type and amounts to about 1.2 pixels in the corners of the images. It is expected to be very stable. We discuss the measurement objectives of the SSI experiment in the Jupiter system and emphasize their relationships to those of other experiments in the Galileo project. We outline objectives for Jupiter atmospheric science, noting the relationship of SSI data to that to be returned by experiments on the atmospheric entry Probe. We also outline SSI objectives for satellite surfaces, ring structure, and 'darkside' (e.g., aurorae, lightning, etc.) experiments. Proposed cruise measurement objectives that relate to encounters at Venus, Moon, Earth, Gaspra, and, possibly, Ida are also briefly outlined. The article concludes with a description of a 'fully distributed' data analysis system (HIIPS) that SSI team members intend to use at their home institutions. We also list the nature of systematic data products that will become available to the scientific community. Finally, we append a short 'historical' note outlining the responsibilities and roles of institutions and individuals that have been involved in the 14 year development of the SSI experiment so far. ?? 1992 Kluwer Academic Publishers.

  20. Imaging of volcanic activity on Jupiter's moon Io by Galileo during the Galileo Europa Mission and the Galileo Millennium Mission

    USGS Publications Warehouse

    Keszthelyi, L.; McEwen, A.S.; Phillips, C.B.; Milazzo, M.; Geissler, P.; Turtle, E.P.; Radebaugh, J.; Williams, D.A.; Simonelli, D.P.; Breneman, H.H.; Klaasen, K.P.; Levanas, G.; Denk, T.; Alexander, D.D.A.; Capraro, K.; Chang, S.-H.; Chen, A.C.; Clark, J.; Conner, D.L.; Culver, A.; Handley, T.H.; Jensen, D.N.; Knight, D.D.; LaVoie, S.K.; McAuley, M.; Mego, V.; Montoya, O.; Mortensen, H.B.; Noland, S.J.; Patel, R.R.; Pauro, T.M.; Stanley, C.L.; Steinwand, D.J.; Thaller, T.F.; Woncik, P.J.; Yagi, G.M.; Yoshimizu, J.R.; Alvarez, Del; Castillo, E.M.; Belton, M.J.S.; Beyer, R.; Branston, D.; Fishburn, M.B.; Mueller, B.; Ragan, R.; Samarasinha, N.; Anger, C.D.; Cunningham, C.; Little, B.; Arriola, S.; Carr, M.H.; Asphaug, E.; Moore, J.; Morrison, D.; Rages, K.; Banfield, D.; Bell, M.; Burns, J.A.; Carcich, B.; Clark, B.; Currier, N.; Dauber, I.; Gierasch, P.J.; Helfenstein, P.; Mann, M.; Othman, O.; Rossier, L.; Solomon, N.; Sullivan, R.; Thomas, P.C.; Veverka, J.; Becker, T.; Edwards, K.; Gaddis, L.; Kirk, R.; Lee, E.; Rosanova, T.; Sucharski, R.M.; Beebe, R.F.; Simon, A.; Bender, K.; Chuang, F.; Fagents, S.; Figueredo, P.; Greeley, R.; Homan, K.; Kadel, S.; Kerr, J.; Klemaszewski, J.; Lo, E.; Schwarz, W.; Williams, K.; Bierhaus, E.; Brooks, S.; Chapman, C.R.; Merline, B.; Keller, J.; Schenk, P.; Tamblyn, P.; Bouchez, A.; Dyundian, U.; Ingersoll, A.P.; Showman, A.; Spitale, J.; Stewart, S.; Vasavada, A.; Cunningham, W.F.; Johnson, T.V.; Jones, T.J.; Kaufman, J.M.; Magee, K.P.; Meredith, M.K.; Orton, G.S.; Senske, D.A.; West, A.; Winther, D.; Collins, G.; Fripp, W.J.; Head, J. W.; Pappalardo, R.; Pratt, S.; Procter, L.; Spaun, N.; Colvin, T.; Davies, M.; DeJong, E.M.; Hall, J.; Suzuki, S.; Gorjian, Z.; Giese, B.; Koehler, U.; Neukum, G.; Oberst, J.; Roatsch, T.; Tost, W.; Schuster, P.; Wagner, R.; Dieter, N.; Durda, D.; Greenberg, R.J.; Hoppa, G.; Jaeger, W.; Plassman, J.; Tufts, R.; Fanale, F.P.; Gran,

    2001-01-01

    The Solid-State Imaging (SSI) instrument provided the first high- and medium-resolution views of Io as the Galileo spacecraft closed in on the volcanic body in late 1999 and early 2000. While each volcanic center has many unique features, the majority can be placed into one of two broad categories. The "Promethean" eruptions, typified by the volcanic center Prometheus, are characterized by long-lived steady eruptions producing a compound flow field emplaced in an insulating manner over a period of years to decades. In contrast, "Pillanian" eruptions are characterized by large pyroclastic deposits and short-lived but high effusion rate eruptions from fissures feeding open-channel or open-sheet flows. Both types of eruptions commonly have ???100-km-tall, bright, SO2-rich plumes forming near the flow fronts and smaller deposits of red material that mark the vent for the silicate lavas. Copyright 2001 by the American Geophysical Union.

  1. Outer planet entry probe system study. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    General mission considerations and science prospectus, which are of a general nature that applies to several or all planetary applications, are presented. Five probe systems are defined: nominal Jupiter probe system, and Jupiter probe-dedicated alternative probe system, Jupiter spacecraft radiation-compatible alternative probe system, Saturn probe system, and Saturn probe applicability for Uranus. Parametric analysis is summarized for mission analysis of a general nature, and then for specific missions to Jupiter, Saturn, Uranus, and Neptune. The program is also discussed from the hardware availability viewpoint and the aspect of commonality.

  2. Considerations for effusive cryovolcanism on Europa: The post-Galileo perspective

    NASA Astrophysics Data System (ADS)

    Fagents, Sarah A.

    2003-12-01

    Cryovolcanic resurfacing is a popular mechanism to explain relatively young surface units on icy satellites of Jupiter, Saturn, Uranus, and Neptune. Prior to the Galileo data acquired between 1996 and 2001, Europa was thought to have undergone significant cryovolcanic resurfacing, facilitated by a global ocean beneath the icy surface. However, close examination of Galileo data at resolutions much better than those of Voyager images show that many of the features previously thought to be cryovolcanic are commonly best explained by other formative mechanisms, including tectonism and diapirism. In this study, I present an examination of the characteristics of a variety of Europan surface features for which effusive cryovolcanism is a possible origin, including apparently lobate ``flows,'' certain elliptical to circular lenticulae, and low-lying, smooth, low-albedo surfaces. A review of cryovolcanic eruption theory, together with Galileo data analysis of Europan surface geology and composition, indicates that cryovolcanism is a viable, though not unequivocal, explanation for some of these features. Some constraints on cryomagma properties and lithospheric structure are offered for these cases. The presence of small-volume, low-viscosity effusions is supported by observations and modeling. Some positive relief lenticulae could represent more viscous effusions, although diapirism may be a preferable explanation. However, strong evidence is lacking for cryovolcanic resurfacing on a large scale. On the basis of our experience with Galileo images of Europa (and Ganymede), Voyager-era inferences for widespread cryovolcanism on icy satellites may be overstated and will need to be carefully reexamined in the light of new data from upcoming spacecraft missions.

  3. Galileo perceptionist.

    PubMed

    Sinico, Michele

    2012-01-01

    The present paper focuses on Galileo's conception of perception. I take as my starting point the interpretation of the Galilean text by Piccolino and Wade (2008, Perception 37 1312-1340): Galileo's eye: a new vision of the senses in the work of Galileo Galilei. Three points are discussed: the criticism of naive realism, the theoretical role of perceptual laws, and the distinction between different qualities of experience. The conclusions support an alternative interpretation which underscores the crucial role of phenomenology of perception in Galileo's epistemology.

  4. Testing the Interstellar Wind Helium Flow Direction with Galileo Euvs Data

    NASA Astrophysics Data System (ADS)

    Pryor, W. R.; Simmons, K. E.; Ajello, J. M.; Tobiska, W. K.; Retherford, K. D.; Stern, S. A.; Feldman, P. D.; Frisch, P. C.; Bzowski, M.; Grava, C.

    2014-12-01

    Forty years of measurements of the flow of interstellar helium through the heliosphere suggest that variations of the flow direction with time are possible. We will model Galileo Extreme Ultraviolet Spectrometer (EUVS) data to determine the best-fitting flow direction and compare it to values obtained by other spacecraft. The Galileo EUVS (Hord et al., 1992) was mounted on the spinning part of the spacecraft and obtained interstellar wind hydrogen Lyman-alpha 121.6 nm and helium 58.4 nm data on great circles passing near the ecliptic poles during the interplanetary cruise phase of the mission and also during the Jupiter orbital phase of the mission. The Galileo hydrogen cruise data have been previously published (Hord et al., 1991, Pryor et al., 1992; 1996; 2001), but the helium data have not. Our model was previously used by Ajello et al., 1978, 1979 to model Mariner 10 interstellar wind helium data, and by Stern et al., 2012 and Feldman et al., 2012 to model the interplanetary helium background near the moon in Lunar Reconnaissance Orbiter (LRO) Lyman-alpha Mapping Project (LAMP) data. The model has been updated to include recent determinations of daily helium 58.4 nm solar flux variations and helium losses due to EUV photoionization and electron impact ionization.

  5. SIG Galileo final converter technical summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinderman, J.D.

    1979-05-01

    The report is primarily concerned with the work performed for DOE on converter development and fabrication for the NASA Galileo Jupiter mission as a DOE prime contractor with interface primarily with Teledyne Energy Systems. The activities reported on were directed toward design, analysis and testing of modules and converters SN-1 thru SN-7 and attendant Quality Control and Reliability effort. Although assembly and testing of SN-1 was not accomplished due to the stop work order, the design was virtually completed and a significant amount of subcontracting and manufacturing of both module and converter components was underway. These subcontracting and manufacturing activitiesmore » were selectively closed down depending upon degree of completion and material or hardware potential usage in the Technology Program.« less

  6. Ten bar probe technical summary. [feasibility of outer planet common atmospheric probe

    NASA Technical Reports Server (NTRS)

    Ellis, T. R.

    1974-01-01

    The feasibility of an outer planet common atmospheric probe is studied with emphasis on entry heating rates and improved ephemeris. It is concluded that a common probe design is possible except for Jupiter; the basic technology exists except for Jupiter heat shielding. A Mariner class bus provides for better bus science and probe bus communications than a Pioneer class bus.

  7. ScienceCast 38: The Great Lakes of Europa

    NASA Image and Video Library

    2011-11-23

    Scientists studying data from NASA's Galileo probe have discovered what appears to be a body of liquid water the volume of the North American Great Lakes locked inside the icy shell of Jupiter's moon Europa.

  8. Changing Characteristics of Jupiter's Little Red Spot

    NASA Technical Reports Server (NTRS)

    Cheng, A. F.; Simon-Miller, A. A.; Weaver, H. A.; Baines, K. H.; Orton, G. S.; Yanamandra-FIsher, P. A.; Mousis, O.; Pantin, E.; Vanzi, L.; Fletcher, L. N.; hide

    2008-01-01

    The Little Red Spot (LRS) in Jupiter's atmosphere was investigated in unprecedented detail by the New Horizons spacecraft together with the Hubble Space Telescope (HST) and the Very Large Telescope (VLT). The LRS and the larger Great Red Spot (GRS) of Jupiter are the largest known atmospheric storms in the solar system. Originally a white oval, the LRS formed from the mergers of three smaller storms in 1998 and 2000 and became as red as the GRS between 2005 and 2006. Here we show that circulation and wind speeds in the LRS have increased substantially since the Voyager and Galileo eras when the oval was white. The maximum tangential velocity of the LRS is now 172 +/- 18 m/s, close to the highest values ever seen in the GRS, which has also evolved both in size and maximum wind speed. The cloud top altitudes of the GRS and LRS are similar, both storms extending much higher in the atmosphere than other Jovian anticyclonic systems. The similarities in wind speeds, cloud morphology, and coloring suggest a common dynamical mechanism explains the reddening of the two largest anticyclonic systems on Jupiter. These storms will not be observed again from close range until at least 2016.

  9. The final Galileo SSI observations of Io: Orbits G28-I33

    USGS Publications Warehouse

    Turtle, E.P.; Keszthelyi, L.P.; McEwen, A.S.; Radebaugh, J.; Milazzo, M.; Simonelli, D.P.; Geissler, P.; Williams, D.A.; Perry, J.; Jaeger, W.L.; Klaasen, K.P.; Breneman, H.H.; Denk, T.; Phillips, C.B.

    2004-01-01

    We present the observations of Io acquired by the Solid State Imaging (SSI) experiment during the Galileo Millennium Mission (GMM) and the strategy we used to plan the exploration of Io. Despite Galileo's tight restrictions on data volume and downlink capability and several spacecraft and camera anomalies due to the intense radiation close to Jupiter, there were many successful SSI observations during GMM. Four giant, high-latitude plumes, including the largest plume ever observed on Io, were documented over a period of eight months; only faint evidence of such plumes had been seen since the Voyager 2 encounter, despite monitoring by Galileo during the previous five years. Moreover, the source of one of the plumes was Tvashtar Catena, demonstrating that a single site can exhibit remarkably diverse eruption styles - from a curtain of lava fountains, to extensive surface flows, and finally a ??? 400 km high plume - over a relatively short period of time (??? 13 months between orbits 125 and G29). Despite this substantial activity, no evidence of any truly new volcanic center was seen during the six years of Galileo observations. The recent observations also revealed details of mass wasting processes acting on Io. Slumping and landsliding dominate and occur in close proximity to each other, demonstrating spatial variation in material properties over distances of several kilometers. However, despite the ubiquitous evidence for mass wasting, the rate of volcanic resurfacing seems to dominate; the floors of paterae in proximity to mountains are generally free of debris. Finally, the highest resolution observations obtained during Galileo's final encounters with Io provided further evidence for a wide diversity of surface processes at work on Io. ?? 2003 Elsevier Inc. All rights reserved.

  10. Evidence of Plume on Europa from Galileo Magnetic and Plasma Density Signatures

    NASA Astrophysics Data System (ADS)

    Jia, X.; Kivelson, M.; Khurana, K. K.; Kurth, W. S.

    2017-12-01

    The icy surface of Jupiter's moon, Europa, is thought to lie on top of a global ocean [Khurana et al., 1998; Kivelson et al., 2000]. Water plumes rising 200 kilometers above the disk of the solid body in some Hubble Space Telescope images have been identified through emission spectra of hydrogen and oxygen [Roth et al., 2016] and through absorption in the far ultraviolet of sunlight reflected off of Jupiter [Sparks et al., 2016, 2017]. Plume activity appears to be intermittent, although Sparks et al. [2017] identified a plume at a location where one had been detected in an earlier study. While the detections appear to be valid within statistical uncertainty, they are all close to the limit of detection, making it desirable to find other evidence of the presence of localized vapor above Europa's surface. In this presentation, we examine magnetometer and electromagnetic wave data acquired by the Galileo spacecraft on a close encounter with Europa on December 16, 1997. We identify distinct features in the data that have the characteristics expected if the spacecraft went through magnetic flux tubes that pass around a plume, close to the location proposed for one of the plumes observed by Sparks et al. [2016]. 3D magnetohydrodynamic simulations have been conducted to model the interaction of plume with Europa's plasma and magnetic environment. Our simulations confirm that the magnetic and plasma signatures identified in the Galileo data are consistent with perturbations associated with a localized plume source.

  11. Galileo's telescopic observations: the marvel and meaning of discovery

    NASA Astrophysics Data System (ADS)

    Coyne, George V.

    2010-01-01

    During the very last year of what he himself described “as the best [eighteen] years of his life” spent at the University of Padua, Galileo first observed the heavens with a telescope. In order to appreciate the marvel and the true significance of those observations we must appreciate both the intellectual climate in Europe and the critical intellectual period through which Galileo himself was passing at the time those observations were made. Through his studies on motion Galileo had come to have serious doubts about the Aristotelian concept of nature. What he sensed was lacking was a true physics. He was very acute, therefore, when he came to sense the significance of his observations of the moon, of the phases of Venus, of the moons of Jupiter and of the Milky Way. The preconceptions of the Aristotelians were crumbling before his eyes. He had remained silent long enough, over a three month period, in his contemplations of the heavens. It was time to organize his thoughts and tell what he had seen and what he thought it meant. It was time to publish! In so doing he would become one of the pioneers of modern science. For the first time in over 2,000 years new significant observational data had been put at the disposition of anyone who cared to think, not in abstract preconceptions but in obedience to what the universe had to say about itself.

  12. An image assessment study of image acceptability of the Galileo low gain antenna mission

    NASA Technical Reports Server (NTRS)

    Chuang, S. L.; Haines, R. F.; Grant, T.; Gold, Yaron; Cheung, Kar-Ming

    1994-01-01

    This paper describes a study conducted by NASA Ames Research Center (ARC) in collaboration with the Jet Propulsion Laboratory (JPL), Pasadena, California on the image acceptability of the Galileo Low Gain Antenna mission. The primary objective of the study is to determine the impact of the Integer Cosine Transform (ICT) compression algorithm on Galilean images of atmospheric bodies, moons, asteroids and Jupiter's rings. The approach involved fifteen volunteer subjects representing twelve institutions involved with the Galileo Solid State Imaging (SSI) experiment. Four different experiment specific quantization tables (q-table) and various compression stepsizes (q-factor) to achieve different compression ratios were used. It then determined the acceptability of the compressed monochromatic astronomical images as evaluated by Galileo SSI mission scientists. Fourteen different images were evaluated. Each observer viewed two versions of the same image side by side on a high resolution monitor, each was compressed using a different quantization stepsize. They were requested to select which image had the highest overall quality to support them in carrying out their visual evaluations of image content. Then they rated both images using a scale from one to five on its judged degree of usefulness. Up to four pre-selected types of images were presented with and without noise to each subject based upon results of a previously administered survey of their image preferences. Fourteen different images in seven image groups were studied. The results showed that: (1) acceptable compression ratios vary widely with the type of images; (2) noisy images detract greatly from image acceptability and acceptable compression ratios; and (3) atmospheric images of Jupiter seem to have higher compression ratios of 4 to 5 times that of some clear surface satellite images.

  13. Radiation analysis for manned missions to the Jupiter system

    NASA Technical Reports Server (NTRS)

    De Angelis, G.; Clowdsley, M. S.; Nealy, J. E.; Tripathi, R. K.; Wilson, J. W.

    2004-01-01

    An analysis for manned missions targeted to the Jovian system has been performed in the framework of the NASA RASC (Revolutionary Aerospace Systems Concepts) program on Human Exploration beyond Mars. The missions were targeted to the Jupiter satellite Callisto. The mission analysis has been divided into three main phases, namely the interplanetary cruise, the Jupiter orbital insertion, and the surface landing and exploration phases. The interplanetary phase is based on departure from the Earth-Moon L1 point. Interplanetary trajectories based on the use of different propulsion systems have been considered, with resulting overall cruise phase duration varying between two and five years. The Jupiter-approach and the orbital insertion trajectories are considered in detail, with the spacecraft crossing the Jupiter radiation belts and staying around the landing target. In the surface exploration phase the stay on the Callisto surface is considered. The satellite surface composition has been modeled based on the most recent results from the GALILEO spacecraft. In the transport computations the surface backscattering has been duly taken into account. Particle transport has been performed with the HZETRN heavy ion code for hadrons and with an in-house developed transport code for electrons and bremsstrahlung photons. The obtained doses have been compared to dose exposure limits. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  14. Radiation analysis for manned missions to the Jupiter system.

    PubMed

    De Angelis, G; Clowdsley, M S; Nealy, J E; Tripathi, R K; Wilson, J W

    2004-01-01

    An analysis for manned missions targeted to the Jovian system has been performed in the framework of the NASA RASC (Revolutionary Aerospace Systems Concepts) program on Human Exploration beyond Mars. The missions were targeted to the Jupiter satellite Callisto. The mission analysis has been divided into three main phases, namely the interplanetary cruise, the Jupiter orbital insertion, and the surface landing and exploration phases. The interplanetary phase is based on departure from the Earth-Moon L1 point. Interplanetary trajectories based on the use of different propulsion systems have been considered, with resulting overall cruise phase duration varying between two and five years. The Jupiter-approach and the orbital insertion trajectories are considered in detail, with the spacecraft crossing the Jupiter radiation belts and staying around the landing target. In the surface exploration phase the stay on the Callisto surface is considered. The satellite surface composition has been modeled based on the most recent results from the GALILEO spacecraft. In the transport computations the surface backscattering has been duly taken into account. Particle transport has been performed with the HZETRN heavy ion code for hadrons and with an in-house developed transport code for electrons and bremsstrahlung photons. The obtained doses have been compared to dose exposure limits. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  15. Pioneer probe mission with orbiter option

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A spacecraft is described which is based on Pioneer 10 and 11, and existing propulsion technology; it can transport and release a probe for entry into Jupiter's atmosphere, and subsequently maneuver to place the spacecraft in orbit about Jupiter. Orbital operations last 3 years and include maneuvers to provide multiple close satellite encounters which allow the orbit to be significantly changed to explore different parts of the magnetosphere. A mission summary, a guide to related documents, and background information about Jupiter are presented along with mission analysis over the complete mission profile. Other topics discussed include the launch, interplanetary flight, probe release and orbit deflection, probe entry, orbit selection, orbit insertion, periapsis raising, spacecraft description, and the effects of Jupiter's radiation belt on both orbiter and the probe.

  16. Europa: Initial Galileo Geological Observations

    USGS Publications Warehouse

    Greeley, R.; Sullivan, R.; Klemaszewski, J.; Homan, K.; Head, J. W.; Pappalardo, R.T.; Veverka, J.; Clark, B.E.; Johnson, T.V.; Klaasen, K.P.; Belton, M.; Moore, J.; Asphaug, E.; Carr, M.H.; Neukum, G.; Denk, T.; Chapman, C.R.; Pilcher, C.B.; Geissler, P.E.; Greenberg, R.; Tufts, R.

    1998-01-01

    Images of Europa from the Galileo spacecraft show a surface with a complex history involving tectonic deformation, impact cratering, and possible emplacement of ice-rich materials and perhaps liquids on the surface. Differences in impact crater distributions suggest that some areas have been resurfaced more recently than others; Europa could experience current cryovolcanic and tectonic activity. Global-scale patterns of tectonic features suggest deformation resulting from non-synchronous rotation of Europa around Jupiter. Some regions of the lithosphere have been fractured, with icy plates separated and rotated into new positions. The dimensions of these plates suggest that the depth to liquid or mobile ice was only a few kilometers at the time of disruption. Some surfaces have also been upwarped, possibly by diapirs, cryomagmatic intrusions, or convective upwelling. In some places, this deformation has led to the development of chaotic terrain in which surface material has collapsed and/or been eroded. ?? 1998 Academic Press.

  17. Probing Signatures of a Distant Planet around the Young T-Tauri Star CI Tau Hosting a Possible Hot Jupiter

    NASA Astrophysics Data System (ADS)

    Konishi, Mihoko; Hashimoto, Jun; Hori, Yasunori

    2018-06-01

    We search for signatures of a distant planet around the two million-year-old classical T-Tauri star CI Tau hosting a hot-Jupiter candidate ({M}{{p}}\\sin i∼ 8.1 {M}Jupiter}) in an eccentric orbit (e ∼ 0.3). To probe the existence of an outer perturber, we reanalyzed 1.3 mm dust continuum observations of the protoplanetary disk around CI Tau obtained by the Atacama Large Millimeter/submillimeter Array (ALMA). We found a gap structure at ∼0.″8 in CI Tau’s disk. Our visibility fitting assuming an axisymmetric surface brightness profile suggested that the gap is located at a deprojected radius of 104.5 ± 1.6 au and has a width of 36.9 ± 2.9 au. The brightness temperature around the gap was calculated to be ∼2.3 K lower than that of the ambient disk. Gap-opening mechanisms such as secular gravitational instability (GI) and dust trapping can explain the gap morphology in the CI Tau disk. The scenario that an unseen planet created the observed gap structure cannot be ruled out, although the coexistence of an eccentric hot Jupiter and a distant planet around the young CI Tau would be challenging for gravitational scattering scenarios. The mass of the planet was estimated to be between ∼0.25 M Jupiter and ∼0.8 M Jupiter from the gap width and depth ({0.41}-0.06+0.04) in the modeled surface brightness image, which is lower than the current detection limits of high-contrast direct imaging. The young classical T-Tauri CI Tau may be a unique system for exploring the existence of a potential distant planet as well as the origin of an eccentric hot Jupiter.

  18. The Galileo Orbiter - Command and telemetry subsystems on their way to Jupiter

    NASA Astrophysics Data System (ADS)

    Erickson, James K.

    1990-09-01

    An overview is given of the Galileo command and telemetry subsystems, which exemplify the rigid time-synchronized systems required by TDM (time division multiplexing). The spacecraft clock is examined, along with some of the rationale for the development of the clock structure and timing to give a sense of the design imperatives for rigidly synchronized systems. Additional subjects include the structure of the science and engineering frames, emphasizing the subcommutated structure of the engineering frame and its relationship to the spacecraft clock; ground processing for and basic uses of the telemetry; the various message types used to transmit commands to the spacecraft; and the generation processes for the command message types.

  19. Connecting Io's volcanic activity to the Io plasma torus: comparison of Galileo/NIMS volcanic and ground-based torus observations

    NASA Astrophysics Data System (ADS)

    Magalhaes, F. P.; Lopes, R. M. C.; Rathbun, J. A.; Gonzalez, W. D.; Morgenthaler, J. P.; Echer, E.; Echer, M. P. D. S.

    2015-12-01

    Io, the innermost of the Jupiter's four Galilean moons, is a remarkable object in the Solar System, due to its intense and energetic volcanic activity. The volcanic sulfur and oxygen in Io's tenuous atmosphere escapes forming an extended neutral cloud around Io and Jupiter. Subsequently, by ionization and pickup ions, a ring of charged particles encircling Jupiter is created, forming the Io plasma torus. Considering this scenario, it is reasonable to expect that the Io plasma torus should be affected by changes in Io's volcanism. Interactions between Io and the Jovian environment is unique and yet not very well understood. Here we present two sets of observations. One from the Galileo Near-Infrared Imaging Spectrograph (NIMS) instrument, which obtained spectral image cubes between 0.7 and 5.2 microns. The other dataset is from ground-based observations of the [SII] 6731 Å emission lines from the Io plasma torus, obtained at McMath-Pierce Solar Telescope, at Kitt Peak. Our dataset from the [SII] 6731 Å emission lines cover more years than the one from the NIMS data. The years presented in this work for a comparative study are from 1998 through 2001. Using the NIMS instrument we were able to identify which volcanoes were active and measure their level of activity. From the [SII] 6731 Å emission lines we were able to trace the densest part of the torus and also the brightness of both ansa. By comparing the results from the Galileo instrument and the ground-based observations, we are exploring how the Io plasma torus responds to large eruptions from Io. We aim with this study to help improve our understanding of this complex coupled system, Jupiter-Io.

  20. Galileo and the Movies

    NASA Astrophysics Data System (ADS)

    Olivotto, Cristina; Testa, Antonella

    2010-12-01

    We analyze the character of Galileo Galilei (1564-1642), one of the most famous scientists of all time, as portrayed in three significant movies: Luigi Maggi's Galileo Galilei (1909), Liliana Cavani's Galileo (1968), and Joseph Losey's Galileo (1975), the last one of which was based upon Bertolt Brecht's drama, Das Leben des Galilei (1947). We investigate the relationships between the main characteristics of these fictional Galileos and the most important twentieth-century Galilean historiographic models. We also analyze the veracity of the plots of these three movies and the role that historical and scientific consultants played in producing them. We conclude that connections between these three movies and Galilean historiographic models are far from evident, that other factors deeply influenced the representation of Galileo on the screen.

  1. Solar wind influence on Jupiter's magnetosphere and aurora

    NASA Astrophysics Data System (ADS)

    Vogt, Marissa; Gyalay, Szilard; Withers, Paul

    2016-04-01

    Jupiter's magnetosphere is often said to be rotationally driven, with strong centrifugal stresses due to large spatial scales and a rapid planetary rotation period. For example, the main auroral emission at Jupiter is not due to the magnetosphere-solar wind interaction but is driven by a system of corotation enforcement currents that arises to speed up outflowing Iogenic plasma. Additionally, processes like tail reconnection are also thought to be driven, at least in part, by processes internal to the magnetosphere. While the solar wind is generally expected to have only a small influence on Jupiter's magnetosphere and aurora, there is considerable observational evidence that the solar wind does affect the magnetopause standoff distance, auroral radio emissions, and the position and brightness of the UV auroral emissions. We will report on the results of a comprehensive, quantitative study of the influence of the solar wind on various magnetospheric data sets measured by the Galileo mission from 1996 to 2003. Using the Michigan Solar Wind Model (mSWiM) to predict the solar wind conditions upstream of Jupiter, we have identified intervals of high and low solar wind dynamic pressure. We can use this information to quantify how a magnetospheric compression affects the magnetospheric field configuration, which in turn will affect the ionospheric mapping of the main auroral emission. We also consider whether there is evidence that reconnection events occur preferentially during certain solar wind conditions or that the solar wind modulates the quasi-periodicity seen in the magnetic field dipolarizations and flow bursts.

  2. The Collision of Comet Shoemaker-Levy 9 and Jupiter

    NASA Astrophysics Data System (ADS)

    Noll, Keith S.; Weaver, Harold A.; Feldman, Paul D.

    2006-11-01

    Participants; Preface; 1. The orbital motion and impact circumstances of Comet Shoemaker-Levy 9 Paul W. Chodas and Donald K. Yeomans; 2. Observational constraints on the composition and nature of Comet D/Shoemaker-Levy 9 Jacques Crovisier; 3. Tidal breakup of the nucleus of Comet Shoemaker-Levy 9 Zdenek Sekanina; 4. Earth-based observations of impact phenomena Philip D. Nicholson; 5. HST imaging of Jupiter shortly after each impact: plumes and fresh sites Heidi B. Hammel; 6. Galileo observations of the impacts Clark R. Chapman; 7. Models of fragment penetration and fireball evolution David A. Crawford; 8. Entry and fireball models vs. observations: what have we learned? Mordecai-Mark Mac Low; 9. Dynamics and chemistry of SL9 plumes Kevin Zahnle; 10. Chemistry induced by the impacts: observations Emmanuel Lellouch; 11. SL9 impact chemistry: long-term photochemical evolution Julianne I. Moses; 12. Particulate matter in Jupiter's atmosphere from the impacts of Comet P/Shoemaker-Levy 9 Robert A. West; 13. Jupiter's post-impact atmospheric thermal response Barney J. Conrath; 14. Growth and dispersion of the Shoemaker-Levy 9 impact features from HST imaging Reta F. Beebe; 15. Waves from the Shoemaker-Levy 9 impacts Andrew P. Ingersoll and Hiroo Kanamori; 16. Jovian magnetospheric and auroral effects of the SL9 impacts Wing-Huen Ip.

  3. Transport and acceleration of plasma in the magnetospheres of Earth and Jupiter and expectations for Saturn

    NASA Astrophysics Data System (ADS)

    Kivelson, M. G.

    The first comparative magnetospheres conference was held in Frascati, Italy thirty years ago this summer, less than half a year after the first spacecraft encounter with Jupiter's magnetosphere (Formisano, V. (Ed.), The Magnetospheres of the Earth and Jupiter, Proceedings of the Neil Brice Memorial Symposium held in Frascati, Italy, May 28-June 1, 1974. D. Reidel Publishing Co., Boston, USA, 1975). Disputes highlighted various issues still being investigated, such as how plasma transport at Jupiter deviates from the prototypical form of transport at Earth and the role of substorms in Jupiter's dynamics. Today there is a wealth of data on which to base the analysis, data gathered by seven missions that culminated with Galileo's 8-year orbital tour. We are still debating how magnetic flux is returned to the inner magnetosphere following its outward transport by iogenic plasma. We are still uncertain about the nature of sporadic dynamical disturbances at Jupiter and their relation to terrestrial substorms. At Saturn, the centrifugal stresses are not effective in distorting the magnetic field, so in some ways the magnetosphere appears Earthlike. Yet the presence of plasma sources in the close-in equatorial magnetosphere parallels conditions at Jupiter. This suggests that we need to study both Jupiter and Earth when thinking about what to anticipate from Cassini's exploration of Saturn's magnetosphere. This paper addresses issues relevant to plasma transport and acceleration in all three magnetospheres.

  4. [Galileo and his telescope].

    PubMed

    Strebel, Christoph

    2006-01-01

    Galileo's publication of observations made with his newly reinvented telescope provoked a fierce debate. In April 1610 Martinus Horky, a young Bohemian astronomer, had an opportunity to make his own observations with Galileo's telescope in the presence of Antonio Magini and other astronomers. Horky and the other witnesses denied the adequacy of Galileo's telescope and therefore the bona fides of his discoveries. Kepler conjectured Horky as well as all his witnesses to be myopic. But Kepler's objection could not stop the publication of Horky's Peregrinatio contra nuncium sidereum (Modena, 1610), the first printed refutation of Galileo's Sidereus nuncius. In his treatise, Horky adresses four questions: 1) Do the four newly observed heavenly bodies actually exist? Horky denies their existence on various grounds: a) God, as every astronomer teaches, has created only seven moveable heavenly bodies and astronomical knowledge originates in God, too. b) Heavenly bodies are either stars or planets. Galileo's moveable heavenly bodies fit into neither category. c) If they do exist, why have they not already been observed by other scholars? Horky concludes that there are no such heavenly bodies. 2) What are these phenomena? They are purely artefactual, and produced by Galileo's telescope. 3) How are they like? Galileo's "stars" are so small as to be almost invisible. Galileo claims that he has measured their distances from each other. This however is impossible due to their diminutive size and other observational problems. Hence, Galileo's claim is a further proof that he is a fraud. 4) Why are they? For Galileo they are a chance to earn money but for astronomers like Horky they are a reason to offer thanks and honour to God. Horky's treatise was favourably received by the enemies of Galileo. But Kepler's critique was devastating. After calling on Kepler in Prague, Horky had to revoke the contents of his book.

  5. Galileo's tidal theory.

    PubMed

    Naylor, Ron

    2007-03-01

    The aim of Galileo's tidal theory was to show that the tides were produced entirely by the earth's motion and thereby to demonstrate the physical truth of Copernicanism. However, in the Dialogue Concerning the Two Chief World Systems Galileo did not explain some of the most significant aspects of the theory completely. As a consequence, the way the theory works has long been disputed. Though there exist a number of interpretations in the literature, the most widely accepted are based on ideas that are not explicitly articulated by Galileo in the Dialogue. This essay attempts to understand the way the theory functions in terms of Galilean physics. It is an interpretation of the theory based solely on Galileo's arguments--and one that reveals it to have had some unrecognized consequences. This interpretation indicates that Galileo's theory would not have worked in the manner he described in the Dialogue.

  6. Jupiter Hot Spot Makes Trouble For Theory

    NASA Astrophysics Data System (ADS)

    2002-02-01

    A pulsating hot spot of X-rays has been discovered in the polar regions of Jupiter's upper atmosphere by NASA's Chandra X-ray Observatory. Previous theories cannot explain either the pulsations or the location of the hot spot, prompting scientists to search for a new process to produce Jupiter's X-rays. "The location of the X-ray hot spot effectively retires the existing explanation for Jupiter's X-ray emission, leaving us very unsure of its origin," said Randy Gladstone, of the Southwest Research Institute in San Antonio and lead author of a paper on the results in the Feb.28, 2002 issue of the journal Nature. "The source of ions that produce the X-rays must be a lot farther away from Jupiter than previously believed." Chandra observed Jupiter for 10 hours on Dec. 18, 2000, when NASA's Cassini spacecraft was flying by Jupiter on its way to Saturn. The X-ray observations revealed that most of the auroral X-rays come from a pulsating hot spot that appears at a fixed location near the north magnetic pole of Jupiter. Bright infrared and ultraviolet emissions have also been detected from this region in the past. The X-rays were observed to pulsate with a period of 45 minutes, similar to the period of high-latitude radio pulsations detected by NASA's Galileo and Cassini spacecraft. Jupiter X-ray/UV/Optical Composite Credit: X-ray: NASA/SWRI/R.Gladstone et al. UV: NASA/HST/J.Clarke et al. Optical: NASA/HST/R.Beebe et al. An aurora of X-ray light near Jupiter's polar regions had been detected by previous satellites. However, scientists were unable to determine the exact location of the X-rays. The accepted theory held that the X-rays were produced by energetic oxygen and sulfur ions that became excited as they ran into hydrogen and helium in Jupiter's atmosphere. Oxygen and sulfur ions (originally from Jupiter's moon Io) are energized while circulating around Jupiter's enormous magnetosphere. And, some - the purported X-ray producers - get dumped into Jupiter's atmosphere

  7. A Common Probe Design for Multiple Planetary Destinations

    NASA Technical Reports Server (NTRS)

    Hwang, H. H.; Allen, G. A., Jr.; Alunni, A. I.; Amato, M. J.; Atkinson, D. H.; Bienstock, B. J.; Cruz, J. R.; Dillman, R. A.; Cianciolo, A. D.; Elliott, J. O.; hide

    2018-01-01

    Atmospheric probes have been successfully flown to planets and moons in the solar system to conduct in situ measurements. They include the Pioneer Venus multi-probes, the Galileo Jupiter probe, and Huygens probe. Probe mission concepts to five destinations, including Venus, Jupiter, Saturn, Uranus, and Neptune, have all utilized similar-shaped aeroshells and concept of operations, namely a 45-degree sphere cone shape with high density heatshield material and parachute system for extracting the descent vehicle from the aeroshell. Each concept designed its probe to meet specific mission requirements and to optimize mass, volume, and cost. At the 2017 International Planetary Probe Workshop (IPPW), NASA Headquarters postulated that a common aeroshell design could be used successfully for multiple destinations and missions. This "common probe"� design could even be assembled with multiple copies, properly stored, and made available for future NASA missions, potentially realizing savings in cost and schedule and reducing the risk of losing technologies and skills difficult to sustain over decades. Thus the NASA Planetary Science Division funded a study to investigate whether a common probe design could meet most, if not all, mission needs to the five planetary destinations with extreme entry environments. The Common Probe study involved four NASA Centers and addressed these issues, including constraints and inefficiencies that occur in specifying a common design. Study methodology: First, a notional payload of instruments for each destination was defined based on priority measurements from the Planetary Science Decadal Survey. Steep and shallow entry flight path angles (EFPA) were defined for each planet based on qualification and operational g-load limits for current, state-of-the-art instruments. Interplanetary trajectories were then identified for a bounding range of EFPA. Next, 3-degrees-of-freedom simulations for entry trajectories were run using the entry state

  8. JunoCam's Images of Jupiter

    NASA Astrophysics Data System (ADS)

    Hansen, C. J.; Ravine, M. A.; Caplinger, M. A.; Orton, G. S.; Ingersoll, A. P.; Jensen, E.; Lipkaman, L.; Krysak, D.; Zimdar, R.; Bolton, S. J.

    2016-12-01

    JunoCam is a visible imager on the Juno spacecraft in orbit around Jupiter. It is a wide angle camera (58 deg field of view) with 4 color filters: red, green and blue (RGB) and methane at 889 nm, designed for optimal imaging of Jupiter's poles. Juno's elliptical polar orbit will offer unique views of Jupiter's polar regions with a spatial scale of 50 km/pixel. At closest approach the images will have a spatial scale of 3 km/pixel. As a push-frame imager on a rotating spacecraft, JunoCam uses time-delayed integration to take advantage of the spacecraft spin to extend integration time to increase signal. Images of Jupiter's poles reveal a largely uncharted region of Jupiter, as nearly all earlier spacecraft have orbited or flown by in the equatorial plane. Most of the images of Jupiter will be acquired in the +/-2 hours surrounding closest approach. The polar vortex, polar cloud morphology, and winds will be investigated. RGB color images of the aurora will be acquired if detectable. Stereo images and images taken with the methane filter will allow us to estimate cloud-top heights. Images of the cloud-tops will aid in understanding the data collected by other instruments on Juno that probe deeper in the atmosphere. During the two months that Jupiter is too close to the sun for ground-based observers to collect data, JunoCam will take images routinely to monitor large-scale features. Occasional, opportunistic images of the Galilean moons will be acquired.

  9. A close-up look at Io from Galileo's near-infrared mapping spectrometer

    USGS Publications Warehouse

    Lopes-Gautier, R.; Doute, S.; Smythe, W.D.; Kamp, L.W.; Carlson, R.W.; Davies, A.G.; Leader, F.E.; McEwen, A.S.; Geissler, P.E.; Kieffer, S.W.; Keszthelyi, L.; Barbinis, E.; Mehlman, R.; Segura, M.; Shirley, J.; Soderblom, L.A.

    2000-01-01

    Infrared spectral images of Jupiter's volcanic moon Io, acquired during the October and November 1999 and February 2000 flybys of the Galileo spacecraft, were used to study the thermal structure and sulfur dioxide distribution of active volcanoes. Loki Patera, the solar system's most powerful known volcano, exhibits large expanses of dark, cooling lava on its caldera floor. Prometheus, the site of long-lived plume activity, has two major areas of thermal emission, which support ideas of plume migration. Sulfur dioxide deposits were mapped at local scales and show a more complex relationship to surface colors than previously thought, indicating the presence of other sulfur compounds.

  10. JUPITER WILL BECOME A HOT JUPITER: CONSEQUENCES OF POST-MAIN-SEQUENCE STELLAR EVOLUTION ON GAS GIANT PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spiegel, David S.; Madhusudhan, Nikku, E-mail: dave@ias.edu, E-mail: Nikku.Madhusudhan@yale.edu

    When the Sun ascends the red giant branch (RGB), its luminosity will increase and all the planets will receive much greater irradiation than they do now. Jupiter, in particular, might end up more highly irradiated than the hot Neptune GJ 436b and, hence, could appropriately be termed a 'hot Jupiter'. When their stars go through the RGB or asymptotic giant branch stages, many of the currently known Jupiter-mass planets in several-AU orbits will receive levels of irradiation comparable to the hot Jupiters, which will transiently increase their atmospheric temperatures to {approx}1000 K or more. Furthermore, massive planets around post-main-sequence starsmore » could accrete a non-negligible amount of material from the enhanced stellar winds, thereby significantly altering their atmospheric chemistry as well as causing a significant accretion luminosity during the epochs of most intense stellar mass loss. Future generations of infrared observatories might be able to probe the thermal and chemical structure of such hot Jupiters' atmospheres. Finally, we argue that, unlike their main-sequence analogs (whose zonal winds are thought to be organized in only a few broad, planetary-scale jets), red-giant hot Jupiters should have multiple, narrow jets of zonal winds and efficient day-night redistribution.« less

  11. Direct Communication to Earth from Probes

    NASA Technical Reports Server (NTRS)

    Bolton, Scott J.; Folkner, William M.; Abraham, Douglas S.

    2005-01-01

    A viewgraph presentation on outer planetary probe communications to Earth is shown. The topics include: 1) Science Rational for Atmospheric Probes to the Outer Planets; 2) Controlling the Scientific Appetite; 3) Learning more about Jupiter before we send more probes; 4) Sample Microwave Scan From Juno; 5) Jupiter s Deep Interior; 6) The Square Kilometer Array (SKA): A Breakthrough for Radio Astronomy; 7) Deep Space Array-based Network (DSAN); 8) Probe Direct-to-Earth Data Rate Calculations; 9) Summary; and 10) Enabling Ideas.

  12. An empirical model of the high-energy electron environment at Jupiter

    NASA Astrophysics Data System (ADS)

    de Soria-Santacruz, M.; Garrett, H. B.; Evans, R. W.; Jun, I.; Kim, W.; Paranicas, C.; Drozdov, A.

    2016-10-01

    We present an empirical model of the energetic electron environment in Jupiter's magnetosphere that we have named the Galileo Interim Radiation Electron Model version-2 (GIRE2) since it is based on Galileo data from the Energetic Particle Detector (EPD). Inside 8RJ, GIRE2 adopts the previously existing model of Divine and Garrett because this region was well sampled by the Pioneer and Voyager spacecraft but poorly covered by Galileo. Outside of 8RJ, the model is based on 10 min averages of Galileo EPD data as well as on measurements from the Geiger Tube Telescope on board the Pioneer spacecraft. In the inner magnetosphere the field configuration is dipolar, while in the outer magnetosphere it presents a disk-like structure. The gradual transition between these two behaviors is centered at about 17RJ. GIRE2 distinguishes between the two different regions characterized by these two magnetic field topologies. Specifically, GIRE2 consists of an inner trapped omnidirectional model between 8 to 17RJ that smoothly joins onto the original Divine and Garrett model inside 8RJ and onto a GIRE2 plasma sheet model at large radial distances. The model provides a complete picture of the high-energy electron environment in the Jovian magnetosphere from ˜1 to 50RJ. The present manuscript describes in great detail the data sets, formulation, and fittings used in the model and provides a discussion of the predicted high-energy electron fluxes as a function of energy and radial distance from the planet.

  13. Generalizing Galileo's Passe-Dix Game

    ERIC Educational Resources Information Center

    Hombas, Vassilios

    2012-01-01

    This article shows a generalization of Galileo's "passe-dix" game. The game was born following one of Galileo's [G. Galileo, "Sopra le Scoperte dei Dadi" (Galileo, Opere, Firenze, Barbera, Vol. 8). Translated by E.H. Thorne, 1898, pp. 591-594] explanations on a paradox that occurred in the experiment of tossing three fair "six-sided" dice.…

  14. Galileo observations of volcanic plumes on Io

    USGS Publications Warehouse

    Geissler, P.E.; McMillan, M.T.

    2008-01-01

    Io's volcanic plumes erupt in a dazzling variety of sizes, shapes, colors and opacities. In general, the plumes fall into two classes, representing distinct source gas temperatures. Most of the Galileo imaging observations were of the smaller, more numerous Prometheus-type plumes that are produced when hot flows of silicate lava impinge on volatile surface ices of SO2. Few detections were made of the giant, Pele-type plumes that vent high temperature, sulfur-rich gases from the interior of Io; this was partly because of the insensitivity of Galileo's camera to ultraviolet wavelengths. Both gas and dust spout from plumes of each class. Favorably located gas plumes were detected during eclipse, when Io was in Jupiter's shadow. Dense dust columns were imaged in daylight above several Prometheus-type eruptions, reaching heights typically less than 100 km. Comparisons between eclipse observations, sunlit images, and the record of surface changes show that these optically thick dust columns are much smaller in stature than the corresponding gas plumes but are adequate to produce the observed surface deposits. Mie scattering calculations suggest that these conspicuous dust plumes are made up of coarse grained “ash” particles with radii on the order of 100 nm, and total masses on the order of 106 kg per plume. Long exposure images of Thor in sunlight show a faint outer envelope apparently populated by particles small enough to be carried along with the gas flow, perhaps formed by condensation of sulfurous “snowflakes” as suggested by the plasma instrumentation aboard Galileo as it flew through Thor's plume [Frank, L.A., Paterson, W.R., 2002. J. Geophys. Res. (Space Phys.) 107, doi:10.1029/2002JA009240. 31-1]. If so, the total mass of these fine, nearly invisible particles may be comparable to the mass of the gas, and could account for much of Io's rapid resurfacing.

  15. The Galileo Affair.

    ERIC Educational Resources Information Center

    Poole, Michael

    1990-01-01

    Presented is background material on Galileo and his views on astronomy, religion, and Copernicus. The history of theory development related to the science of astronomy and a review of Galileo's writings are included. (KR)

  16. Infrared Spectra of Hydrated Magnesium Salts and their Role in the Search for Possible Life Conditions on Jupiter Moons

    NASA Technical Reports Server (NTRS)

    Chaban, Galina; Huo, Winifred M.; Lee, Timothy J.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Recent observations from the Galileo satellite indicate that three of the Jupiter moons, Europa, Ganymede, and Callisto, may have subsurface oceans. Possible existence of such ocean and the nature of its composition are of great interest to astrobiologists. Data from Galileo's NIMS spectrometer indicate the possibility of hydrated salts on Europa's surface. To aid in the design of future missions, we investigated infrared spectra of MgSO4-nH20, n=1-3 using ab initio calculations. Geometry, energetics, dipole moments, vibrational frequencies and infrared intensities of pure and hydrated MgSO4 salts were determined. Significant differences are found between vibrational spectra of water molecules in complexes with MgSO4 and pure water. Some of the O-H stretching frequencies in the complexes are shifted to the red by up to 1,500 - 2,000 per cm. In addition, the SO2 stretching vibrations are found at lower frequency regions than the water vibrations. The calculated bands of water and SO2 fragments can serve as markers for the existence of the salt-water complexes on the surface of Jupiter's moon.

  17. Galileo Infrared Observations of the Shoemaker Levy 9 G and R Fireballs and Splash

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Weissman, P. R.; Hui, J.; Segura, M.; Baines, K. H.; Johnson, T. V.; Dossart, P.; Encrenaz, T.; Leader, F.; Mehlman, R.

    1995-01-01

    The Galileo spacecraft was fortuitously situated for a direct view of the impacts of comet Shoemaker(ka)evy 9 in Jupiter's atmosphere and measurements were recorded by the Near Infrared Mapping Spectrometer (NIMS) instrument for several of the impact events. Seventeen discrete wavelength channels were used between 0.7 to 5.0 microns, obtained with a time resolution of 5 seconds. Two phases of the impact phenomena are found in the data: the initial fireball, which was evident for one minute, and subsequent fallback of impact ejecta onto the atmosphere, starting six minutes after fireball initiation.

  18. The trials of Galileo

    NASA Astrophysics Data System (ADS)

    Gingerich, Owen

    2009-12-01

    There are so many books about Galileo, author Dan Hofstadter remarks, so why another? Given that 2009 marks the 400th anniversary of the first astronomical use of the telescope, where Galileo's role was paramount, the answer may seem obvious. But that is not where the strength of Hofstadter's book lies. In The Earth Moves: Galileo and the Roman Inquisition, he instead advances the clock to 1633, towards the end of the Italian scientist's career and the year of the infamous trial that resulted after Galileo's Dialogue on the Two Great World Systems was published in 1632.

  19. Galileo NIMS Observations of Europa

    NASA Astrophysics Data System (ADS)

    Shirley, J. H.; Ocampo, A. C.; Carlson, R. W.

    2000-10-01

    The Galileo spacecraft began its tour of the Jovian system in December, 1995. The Galileo Millenium Mission (GMM) is scheduled to end in January, 2003. The opportunities to observe Europa in the remaining orbits are severely limited. Thus the catalog of NIMS observations of Europa is virtually complete. We summarize and describe this extraordinary dataset, which consists of 77 observations. The observations may be grouped in three categories, based on the scale of the data (km/pixel). The highest-resolution observations, with projected scales of 1-9 km/pixel, comprise one important subset of the catalog. These 29 observations sample both leading and trailing hemispheres at low and high latitudes. They have been employed in studies exploring the chemical composition of the non-ice surface materials on Europa (McCord et al., 1999, JGR 104, 11,827; Carlson et al., 1999, Science 286, 97). A second category consists of regional observations at moderate resolution. These 15 observations image Europa's surface at scales of 15-50 km/pixel, appropriate for construction of regional and global mosaics. A gap in coverage for longitudes 270-359 W may be partially filled during the 34th orbit of GMM. The final category consists of 33 global observations with scales ranging upward from 150 km/pixel. The noise levels are typically much reduced in comparison to observations taken deep within Jupiter's magnetosphere. Distant observations obtained during the 11th orbit revealed the presence of hydrogen peroxide on Europa's surface (Carlson et al., 1999b, Science 283, 2062). NIMS observations are archived in ISIS-format "cubes," which are available to researchers through the Planetary Data System (http://www-pdsimage.jpl.nasa.gov/PDS/Public/Atlas/Atlas.html). Detailed guides to every NIMS observation may be downloaded from the NIMS web site (http://jumpy.igpp.ucla.edu/ nims/).

  20. Thermal re-design of the Galileo spacecraft for a Venus-earth-earth-gravity assist (VEEGA) trajectory

    NASA Technical Reports Server (NTRS)

    Reeve, R.

    1989-01-01

    The cancellation of the Centaur upper stage program in the aftermath of the Challenger tragedy forced a redesign of the flight trajectory of the Galileo spacecraft to Jupiter, i.e., from a direct trajectory to the Venus-earth-earth-gravity-assist (VEEGA) trajectory on the lower energy two-stage inertial upper stage (IUS), with the result that the spacecraft would be exposed to more than twofold increase in peak solar irradiance. This paper describes the general system-level thermal redesign effort for the Galileo spacecraft, from the start of feasibility studies to its final implementation. Results indicate that the addition of sunshades and the generous utilization of second-surface aluminized Kapton surface material for reflecting high percentages of incident solar irradiation would 'harden' the spacecraft's existing thermal protection system adequately, provided that sun-pointing at the relatively higher solar irradiance levels could be maintained. The final miximum flight temperature predictions for the spacecraft's subsystem thermal designs are given.

  1. An overview of software design languages. [for Galileo spacecraft Command and Data Subsystems

    NASA Technical Reports Server (NTRS)

    Callender, E. D.

    1980-01-01

    The nature and use of design languages and associated processors that are used in software development are reviewed with reference to development work on the Galileo spacecraft project, a Jupiter orbiter scheduled for launch in 1984. The major design steps are identified (functional design, architectural design, detailed design, coding, and testing), and the purpose, functions and the range of applications of design languages are examined. Then the general character of any design language is analyzed in terms of syntax and semantics. Finally, the differences and similarities between design languages are illustrated by examining two specific design languages: Software Design and Documentation language and Problem Statement Language/Problem Statement Analyzer.

  2. "Galileo Calling Earth..."

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This guide presents an activity for helping students understand how data from the Galileo spacecraft is sent to scientists on earth. Students are asked to learn about the concepts of bit-rate and resolution and apply them to the interpretation of images from the Galileo Orbiter. (WRM)

  3. Becoming Galileo in the Classroom

    NASA Astrophysics Data System (ADS)

    Cavicchi, Elizabeth

    2011-04-01

    Galileo's contributions are so familiar as to be taken for granted, obscuring the exploratory process by which his discoveries arose. The wonder that Galileo experienced comes alive for undergraduates and teachers that I teach, when they find themselves taking Galileo's role by means of their own explorations. These classroom journeys include: sighting through picture frames to understand perspective, watching the night sky, experimenting with lenses and motion, and responding to Galileo's story. In teaching, I use critical exploration, the research pedagogy developed by Eleanor Duckworth that arose historically from both the clinical interviewing of Jean Piaget and B"arbel Inhelder and the Elementary Science Study of the 1960s. During critical explorations, the teacher supports students' investigations by posing provocative experiences while interactively following students' emergent understandings. In the context of Galileo, students learned to observe carefully, trust their observations, notice things they had never noticed before, and extend their understanding in the midst of pervasive confusion. Personal investment moved students to question assumptions that they had never critically evaluated. By becoming Galileo in today's classroom, we found the ordinary world no less intriguing and unsettling to explore, as the historical world of protagonists in Galileo's Dialogue.

  4. Generalizing Galileo's passé-dix game

    NASA Astrophysics Data System (ADS)

    Hombas, Vassilios

    2012-07-01

    This article shows a generalization of Galileo's 'passé-dix' game. The game was born following one of Galileo's [G. Galileo, Sopra le Scoperte dei Dadi (Galileo, Opere, Firenze, Barbera, Vol. 8). Translated by E.H. Thorne, 1898, pp. 591-594] explanations on a paradox that occurred in the experiment of tossing three fair 'six-sided' dice.

  5. Observations of Jupiter thermal emission made by the Infrared Telescope Facility and the Galileo NIMS instrument

    NASA Image and Video Library

    1998-03-26

    These observations of Jupiter equator in thermal heat emission were made by NASA Infrared Telescope Facility top panel within hours of the Near-Infrared Mapping Spectrometer NIMS instrument image middle inset and the spectra bottom.

  6. Jupiter's Great Red Spot in Cassini image

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This true color image of Jupiter, taken by NASA's Cassini spacecraft, is composed of three images taken in the blue, green and red regions of the spectrum. All images were taken from a distance of 77.6 million kilometers (48.2 million miles) on Oct. 8, 2000.

    Different chemical compositions of the cloud particles lead to different colors. The cloud patterns reflect different physical conditions -- updrafts and downdrafts -- in which the clouds form. The bluish areas are believed to be regions devoid of clouds and covered by high haze.

    The Great Red Spot (below and to the right of center) is a giant atmospheric storm as wide as two Earths and over 300 years old, with peripheral winds of 483 kilometers per hour (300 miles per hour). This image shows that it is trailed to the north by a turbulent region, caused by atmospheric flow around the spot.

    The bright white spots in this region are lightning storms, which were seen by NASA's Galileo spacecraft when it photographed the night side of Jupiter. Cassini will track these lightning storms and measure their lifetimes and motions when it passes Jupiter in late December and looks back on the darkside of the planet. Cassini is currently en route to its ultimate destination, Saturn.

    The resolution is 466 kilometers (290 miles) per picture element.

    Cassini is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, Calif., manages the Cassini mission for NASA's Office of Space Science, Washington, D.C.

  7. Galileo and Music: A Family Affair

    NASA Astrophysics Data System (ADS)

    Fabris, D.

    2011-06-01

    According to Viviani, Galileo's first biographer, the scientist was an excellent keyboard and lute player. In turn Vincenzo Galilei, father of the illustrious scientist, had been one of the most influential music theorist of his age and also a great composer and virtuoso of the lute. Galileo and his brother Michelangelo, born in 1575, inherited Vincenzo's duel skills, both in theory and practical music: Galileo's correspondences show indeed his competence in the music and in the lute playing; Michelagnolo, after being educated in part in Galileo's house in Padua, transferred to Germany in Munich, where he became a court lute player. Nevertheless, Galileo helped for the rest of his life not only his brother but also his nephews, as documented in dozen of family letters quite important to establish the central role of the music in Galileo's everyday life, a fact almost ignored by most modern biographers. The importance of music in Galileo's output and life has been first outlined by the historian of sciences Stillman Drake and by the musicologist Claude Palisca. After their studies starting in the 1960s there is a great belief that Vincenzo influenced his son Galileo, directing him towards experimentation. The aim of this paper, following the reconstruction of Galileo's soundscape proposed by Pierluigi Petrobelli, is to reexamine the surviving historical accounts on the musical passion and talent of Galileo and his family in the several houses where they performed music (in Florence, Padua, Munich, etc.) in particular on the lute, the instrument that was an important experimental tool for the scientist.

  8. Hybrid multi-grids simulations of Ganymede's magnetosphere : comparison with Galileo observations.

    NASA Astrophysics Data System (ADS)

    Leclercq, L.; Modolo, R.; Leblanc, F.

    2015-12-01

    The Jovian satellite Ganymede is the biggest moon of our solar system. One of the main motivation of our interest for this moon is its own intrinsic magnetic field, which has been discovered during the Galileo mission (Kivelson et al. 1996). The magnetic field of Ganymede directly interacts with the corotating jovian plasma, leading to the formation of a mini-magnetosphere which is embedded in the giant magnetosphere of Jupiter. This is the only known case of interaction between two planetary magnetospheres.In the frame of the European space mission JUICE (Jupiter Icy moon Exploration), we investigate this unique interaction with a 3D parallel multi-species hybrid model. This model is based on the CAM-CL algorithm (Matthews 1994) and has been used to study the ionized environments of Titan, Mars and Mercury. In the hybrid formalism, ions are kinetically treated whereas electrons are considered as a zero-inertial fluid to ensure the quasi-neutrality of the plasma. The temporal evolution of the electromagnetic fields is calculated solving Maxwell's equations. The jovian magnetospheric plasma is described as being composed of oxygen and proton ions. The magnetic field of Ganymede, which includes dipolar and induced components (Kivelson et al, 2002), is distorted by its interaction with the Jovian plasma and formed the Alfvén wings. The planetary plasma is described as being composed of O+, with a scale height equal to 125 km. The description of the exosphere is provided by the 3D multi-species collisional exospheric/atmospheric model of Leblanc et al, (2015) and Turc et al. (2014). The ionization of this neutral exosphere by charge exchanges, by electronic impacts, and by reaction with solar photons contributes to the production of planetary plasma. In this model, calculations are performed on a cartesian simulation grid which is refined (down to ~120 km of spatial resolution) at Ganymede, using a multi-grids approach (Leclercq et al., submitted, 2015). Results are

  9. Does Solar Wind also Drive Convection in Jupiter's Magnetosphere?

    NASA Astrophysics Data System (ADS)

    Khurana, K. K.

    2001-05-01

    Using a simple model of magnetic field and plasma velocity, Brice and Ioannidis [1970] showed that the corotation electric field exceeds convection electric field throughout the Jovian magnetosphere. Since that time it has been tacitly assumed that Jupiter's magnetosphere is driven from within. If Brice and Ioannidis conjecture is correct then one would not expect major asymmetries in the field and plasma parameters in the middle magnetosphere of Jupiter. Yet, new field and plasma observations from Galileo and simultaneous auroral observations from HST show that there are large dawn/dusk and day/night asymmetries in many magnetospheric parameters. For example, the magnetic observations show that a partial ring current and an associated Region-2 type field-aligned current system exist in the magnetosphere of Jupiter. In the Earth's magnetosphere it is well known that the region-2 current system is created by the asymmetries imposed by a solar wind driven convection. Thus, we are getting first hints that the solar wind driven convection is important in Jupiter's magnetosphere as well. Other in-situ observations also point to dawn-dusk asymmetries imposed by the solar wind. For example, first order anisotropies in the Energetic Particle Detector show that the plasma is close to corotational on the dawn side but lags behind corotation in the dusk sector. Magnetic field data show that the current sheet is thin and highly organized on the dawn side but thick and disturbed on the dusk side. I will discuss the reasons why Brice and Ioannidis calculation may not be valid. I will show that both the magnetic field and plasma velocity estimates used by Brice and Ioannidis were rather excessive. Using more modern estimates of the field and velocity values I show that the solar wind convection can penetrate as deep as 40 RJ on the dawnside. I will present a new model of convection that invokes in addition to a distant neutral line spanning the whole magnetotail, a near-Jupiter

  10. Galileo Earth/Moon News Conference. Part 1

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This NASA Kennedy Space Center (KSC) video release (Part 1 of 2) begins with a presentation given by William J. O'Neil (Galileo Project Manager) describing the status and position of the Galileo spacecraft 7 days prior to the Galileo Earth-2 flyby. Slides are presented including diagrams of the Galileo spacecraft trajectory, trajectory correction maneuvers, and the Venus and asteroid flybys. Torrence Johnson (Galileo Project Scientist) follows Mr. O'Neil with an explanation of the Earth/Moon science activities that will be undertaken during the second Galileo/Earth encounter. These activities include remote sensing, magnetospheric and plasma measurements, and images taken directly from Galileo of the Earth and Moon. Dr. Joseph Veverka (Galileo Imaging Team, Cornell University) then gives a brief presentation of the data collected by the first Galileo/Gaspra asteroid flyby. Images sampled from the 57 photographs taken of Gaspra are presented along with discussions of Gaspra's morphology, shape and size, and surface features. These presentations are followed by a question and answer period given for the benefit of scientific journalists whose subjects include overall Galileo spacecraft health, verification of the Gaspra images timeframe, and the condition of certain scientific spacecraft instruments. Part 2 of this video can be retrieved by using Report No. NONP-NASA-VT-2000001078.

  11. Formation of relief on Europa's surface and analysis of a melting probe movement through the ice

    NASA Astrophysics Data System (ADS)

    Erokhina, O. S.; Chumachenko, E. N.; Dunham, D. W.; Aksenov, S. A.; Logashina, I. V.

    2013-12-01

    These days, studies of planetary bodies' are of great interest. And of special interest are the icy moons of the giant planets like Jupiter and Saturn. Analysis of 'Voyager 1', 'Voyager 2', 'Galileo' and 'Cassini' spacecraft data showed that icy covers were observed on Jupiter's moons Ganymede, Europa and Calisto, and Saturn's moons Titan and Enceladus. Of particular interest is the relatively smooth surface of Europa. The entire surface is covered by a system of bands, valleys, and ridges. These structures are explained by the mobility of surface ice, and the impact of stress and large-scale tectonic processes. Also conditions on these moons allow speculation about possible life, considering these moons from an astrobiological point of view. To study the planetary icy body in future space missions, one of the problems to solve is the problem of design of a special device capable of penetrating through the ice, as well as the choice of the landing site of this probe. To select a possible landing site, analysis of Europa's surface relief formation is studied. This analysis showed that compression, extention, shearing, and bending can influence some arbitrarily separated section of Europe's icy surface. The computer simulation with the finite element method (FEM) was performed to see what types of defects could arise from such effects. The analysis showed that fractures and cracks could have various forms depending on the stress-strained state arising in their vicinity. Also the problem of a melting probe's movement through the ice is considered: How the probe will move in low gravity and low atmospheric pressure; whether the hole formed in the ice will be closed when the probe penetrates far enough or not; what is the influence of the probe's characteristics on the melting process; what would be the order of magnitude of the penetration velocity. This study explores the technique based on elasto-plastic theory and so-called 'solid water' theory to estimate the

  12. Cassini-VIMS at Jupiter: Solar occultation measurements using Io

    USGS Publications Warehouse

    Formisano, V.; D'Aversa, E.; Bellucci, G.; Baines, K.H.; Bibring, J.-P.; Brown, R.H.; Buratti, B.J.; Capaccioni, F.; Cerroni, P.; Clark, R.N.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Jaumann, R.; Langevin, Y.; Matson, D.L.; McCord, T.B.; Mennella, V.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe; Chamberlain, M.C.; Hansen, G.; Hibbits, K.; Showalter, M.; Filacchione, G.

    2003-01-01

    We report unusual and somewhat unexpected observations of the jovian satellite Io, showing strong methane absorption bands. These observations were made by the Cassini VIMS experiment during the Jupiter flyby of December/January 2000/2001. The explanation is straightforward: Entering or exiting from Jupiter's shadow during an eclipse, Io is illuminated by solar light which has transited the atmosphere of Jupiter. This light, therefore becomes imprinted with the spectral signature of Jupiter's upper atmosphere, which includes strong atmospheric methane absorption bands. Intercepting solar light refracted by the jovian atmosphere, Io essentially becomes a "miffor" for solar occultation events of Jupiter. The thickness of the layer where refracted solar light is observed is so large (more than 3000 km at Io's orbit), that we can foresee a nearly continuous multi-year period of similar events at Saturn, utilizing the large and bright ring system. During Cassini's 4-year nominal mission, this probing tecnique should reveal information of Saturn's atmosphere over a large range of southern latitudes and times. ?? 2003 Elsevier Inc. All rights reserved.

  13. Cold Hole Over Jupiter's Pole

    NASA Technical Reports Server (NTRS)

    2002-01-01

    frequencies sensitive to the polar haze were taken at frequent intervals from June to October 1999. They show that the quasi-hexagonal structure rotates slowly eastward at 1.2 degrees of longitude per day, a rate consistent with the average wind speeds measured from movement of visible clouds.

    Scientists studying the Earth's atmosphere are interested in these results because Jupiter's atmosphere provides a natural laboratory in which models of the polar vortex phenomenon can be studied under different conditions - for example, without the interference of topography. Of particular interest but yet unknown is how deep into Jupiter's troposphere the phenomenon extends. The answer to this question might be supplied by instrumentation on a polar orbiter mission at Jupiter.

    These images were taken as part of a program to support NASA's Galileo spacecraft reconnaissance of Jupiter. The Infrared Telescope Facility is on the summit of Hawaii's Mauna Kea and is operated by the University of Hawaii under a cooperative agreement with NASA. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. The telescope is managed by the Space Telescope Science Institute, Baltimore, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Md. The California Institute of Technology, Pasadena manages JPL for NASA.

  14. Objectives for Atmospheres and Ring Science for the Jupiter Icy Moons Orbiter

    NASA Astrophysics Data System (ADS)

    Ingersoll, A.; Simon-Miller, A.

    2003-12-01

    The Solar System Exploration Decadal Survey was made public in draft form in June 2002. It lists 12 key scientific questions, of which 4 are most relevant to the planet Jupiter: 1. Over what period did the gas giants form, and how did the birth of the ice giants (Uranus, Neptune) differ from that of Jupiter and its gas-giant sibling, Saturn? 2. What is the history of volatile compounds, especially water, across our solar system? 3. How do the processes that shape the contemporary character of planetary bodies operate and interact? 4. What does our solar system tell us about the development and evolution of extrasolar planetary systems, and vice versa? The Decadal Survey, which was asked to provide a prioritized list of the most promising avenues for flight investigations, recommended a Jupiter Orbiter with Probes (JPOP) as the highest priority giant planets mission in the New Frontiers line. The goals of that mission are: 1. Determine if Jupiter has a central core to constrain ideas of its formation 2. Determine the planetary water abundance 3. Determine if the winds persist into Jupiter's interior or are confined to the weather layer 4. Assess the structure of Jupiter's magnetic field to learn how the internal dynamo works 5. Measure the polar magnetosphere to understand its rotation and relation to the aurora JPOP was proposed as a high inclination orbiter whose low equatorial perijove enabled it to make detailed measurements of the gravitational and magnetic fields as well as the polar magnetosphere. The probes mainly addressed the water abundance and deep winds. The gravitational field measurement also addressed the deep winds as well as the central core. The JIMO opportunity arose after the Decadal Survey report was written, and is different from the opportunity afforded by a New Frontiers mission. JIMO offers a potential breakthrough in remote sensing: The 1-3 Mbps data rate is 2 orders of magnitude greater than that of previous missions. The circular orbit

  15. Galileo's Courage to Create New Cosmology

    NASA Astrophysics Data System (ADS)

    Carr, Paul H.

    2009-10-01

    The trial of Galileo was a confrontation between the creativity of new science and the traditions of ``the religious establishment.''Galileo challenged ancient cosmology, where heavenly bodies were thoughtto be perfect spheres made of ``ether.'' His trail might have been avoided if Galileo had been more diplomatic. Paradoxically, the Roman Catholic Church was scientifically correct: Galileo had no proof the earth rotated about its axis as it orbited around the sun. His assertion that the tides arise from the earth's rotation later turned out to be correct, but at that time no one knew enough about gravitational and centrifugal forces. Galileo courageously argued, ``The Bible tells us how to go to heaven, not how the heavens go [1].'' He was nevertheless convicted at age 69, Galileo, although deeply hurt, did not withdraw from the Church. He believed himself to be a good Catholic who had sought to keep his church, for its own good, from making a mistake. In 1992, Pope John Paul said the Church had erred in condemning Galileo. [4pt] [1] Carr, P. H. (2006). ``The Courage to Create Beauty,'' Chap 10 of ``Beauty in Science & Spirit,'' Beech River Books, Center Ossipee, NH.

  16. Light scattering calculations for the nephelometer experiment on the 1981/1982 Jupiter Orbiter-Probe mission

    NASA Technical Reports Server (NTRS)

    Grams, G. W.

    1982-01-01

    A variety of studies were carried out to help establish the accuracy of quantities describing physical characteristics of cloud particles (such as size, shape, and composition) that are to be inferred from light scattering data obtained with the nephelameter experiment on the Galileo spacecraft. The objectives were to provide data for validating and testing procedures for analyzing the Galileo nephelameter data with light scattering observations in a variety of on-going laboratory and field measurement programs for which simultaneous observations of the physical characteristics of the scattering particles were available.

  17. Multi-fluid MHD simulations of Europa's interaction with Jupiter's magnetosphere

    NASA Astrophysics Data System (ADS)

    Harris, C. D. K.; Jia, X.; Slavin, J. A.; Rubin, M.; Toth, G.

    2017-12-01

    Several distinct physical processes generate the interaction between Europa, the smallest of Jupiter's Galilean moons, and Jupiter's magnetosphere. The 10˚ tilt of Jupiter's dipole causes time varying magnetic fields at Europa's orbit which interact with Europa's subsurface conducting ocean to induce magnetic perturbations around the moon. Jovian plasma interacts with Europa's icy surface to sputter off neutral particles, forming a tenuous exosphere which is then ionized by impact and photo-ionization to form an ionosphere. As jovian plasma flows towards the moon, mass-loading and interaction with the ionosphere slow the flow, producing magnetic perturbations that propagate along the field lines to form an Alfvén wing current system, which connects Europa to its bright footprint in Jupiter's ionosphere. The Galileo mission has shown that the plasma interaction generates significant magnetic perturbations that obscure signatures of the induced field from the subsurface ocean. Modeling the plasma-related perturbations is critical to interpreting the magnetic signatures of Europa's induction field, and therefore to magnetic sounding of its interior, a central goal of the upcoming Europa Clipper mission. Here we model the Europa-Jupiter interaction with multi-fluid magnetohydrodynamic simulations to understand quantitatively how these physical processes affect the plasma and magnetic environment around the moon. Our model separately tracks the bulk motion of three different ion fluids (exospheric O2+, O+, and magnetospheric O+), and includes sources and losses of mass, momentum and energy to each of the ion fluids due to ionization, charge-exchange and recombination. We include calculations of the electron temperature allowing for field-aligned electron heat conduction, and Hall effects due to differential ion-electron motion. Compared to previous simulations, this multi-fluid model allows us to more accurately determine the precipitation flux of jovian plasma to

  18. [Galileo and centrifugal force].

    PubMed

    Vilain, Christiane

    This work intends to focus on Galileo's study of what is now called "centrifugal force," within the framework of the Second Day of his Dialogo written in 1632, rather than on the previously published commentaries on the topic. Galileo proposes three geometrical demonstrations in order to prove that gravity will always overcome centrifugalforce, and that the potential rotation of the Earth, whatever its speed, cannot in any case project objects beyond it. Each of these demonstrations must consequently contain an error and it has seemed to us that the first one had not been understood up until now. Our analysis offers an opportunity to return to Galileo's geometrical representation of dynamical questions; actually, we get an insight into the sophistication of Galileo's practices more than into his mistakes. Our second point, concerning the historiography of the problem, shows an evolution from anachronic critics to more contextual considerations, in the course of the second half of the twentieth century.

  19. Galileo's Earth-Moon portrait

    NASA Astrophysics Data System (ADS)

    Simarski, Lynn Teo

    Research reported at an AGU session on Galileo's Earth/Moon flyby refined the spacecraft's distinctive portrait of the Earth-Moon system. The Galileo team presented dramatic new views of the Earth and Moon taken last December. Andrew P. Ingersoll showed a color movie of the rotating Earth, made through spectral filters with which Galileo viewed the Earth almost continuously for 25 hours.Galileo also made finely tuned observations of vegetation and clouds, using three very closely spaced spectral wavelengths in the near-infrared, explained W. Reid Thompson. In the resulting images, Argentinian grassland and Brazilian rain forest are clearly distinguished, demonstrating the applicability of this technique for routine monitoring of deforestation, shifts in vegetation due to climate, and other phenomena. Thompson suggested that this capability could be used on the Earth Observing System. One of the spectral bands may also have potential for monitoring cloud condensation, as it appears to differentiate actively condensing, vapor-heavy clouds from higher and drier clouds.

  20. Second Harmonic Hectometric Radio Emission at Jupiter

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Gurnett, D. A.; Groene, J. B.

    1998-01-01

    Galileo has been in orbit around Jupiter since December 1995. The plasma wave instrument on board the spacecraft has occasionally detected a rotationally modulated attenuation band in the hectometric (HOM) emission that most likely is due to scattering of the radiation from density fluctuations along the Io L-shell, as reported earlier. The occurrence of the attenuation band is likely to be dependent on Io activity and the presence of density scattering centers along the Io-L-shell as well as the location of the source region. Some of the attenuation bands show clear indications of second harmonic emission. Without polarization measurements, it is difficult to place constraints on the local generation conditions based on the cyclotron maser instability, but the results imply that second harmonic emission could be present in the decametric (DAM) radiation as well. A survey of the data has revealed about 30 examples of second harmonic HOM.

  1. Second Harmonic Hectometric Radio Emission at Jupiter

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Gurnett, D. A.; Groene, J. B.

    1998-01-01

    Galileo has been in orbit around Jupiter since December 1995. The plasma wave instrument on board the spacecraft has occasionally detected a rotationally modulated attenuation band in the hectometric (HOM) emission that most likely is due to scattering of the radiation from density fluctuations along the Io L-shell, as reported earlier. The occurrence of the attenuation band is likely to be dependent on Io activity and the presence of density scattering centers along the Io L-shell as well as the location of the source region. Some of the attenuation bands show clear indications of second harmonic emission. Without polarization measurements, it is difficult to place constraints on the local generation conditions based on the cyclotron maser instability, but the results imply that second harmonic emission could be present in the decametric (DAM) radiation as well. A survey of the data has revealed about 30 examples of second harmonic HOM.

  2. JUPITER AS A GIANT COSMIC RAY DETECTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rimmer, P. B.; Stark, C. R.; Helling, Ch., E-mail: pr33@st-andrews.ac.uk

    We explore the feasibility of using the atmosphere of Jupiter to detect ultra-high-energy cosmic rays (UHECRs). The large surface area of Jupiter allows us to probe cosmic rays of higher energies than previously accessible. Cosmic ray extensive air showers in Jupiter's atmosphere could in principle be detected by the Large Area Telescope (LAT) on the Fermi observatory. In order to be observed, these air showers would need to be oriented toward the Earth, and would need to occur sufficiently high in the atmosphere that the gamma rays can penetrate. We demonstrate that, under these assumptions, Jupiter provides an effective cosmicmore » ray ''detector'' area of 3.3 × 10{sup 7} km{sup 2}. We predict that Fermi-LAT should be able to detect events of energy >10{sup 21} eV with fluence 10{sup –7} erg cm{sup –2} at a rate of about one per month. The observed number of air showers may provide an indirect measure of the flux of cosmic rays ≳ 10{sup 20} eV. Extensive air showers also produce a synchrotron signature that may be measurable by Atacama Large Millimeter/submillimeter Array (ALMA). Simultaneous observations of Jupiter with ALMA and Fermi-LAT could be used to provide broad constraints on the energies of the initiating cosmic rays.« less

  3. New evidence for chemical depletion of ammonia in the 1 to 2 bar region of Jupiter's atmosphere

    NASA Astrophysics Data System (ADS)

    Wong, M. H.; Atreya, S. K.; Romani, P. N.; De Pater, I.; Kuhn, W. R.; Kalogerakis, K. S.

    2014-12-01

    It has long been known that the vertical profile of ammonia within Jupiter's cloud layers is not well-described by a simple equilibrium profile, with saturated vapor above the cloud base and the well-mixed deep abundance below the cloud base. An additional depletion of ammonia by a factor of 4-10 is required by global microwave spectra at p < 6 bar [e.g., 1]. Dynamical effects, ranging from cloud layer circulation between belts and zones [2] to molecular differentiation following convective activity [3] might be sufficient to explain the global microwave data. However, in situ cloud density measurements by the Galileo Probe [4] suggest a large gap in our understanding of cloud chemistry in Jupiter, especially when combined with other tracers such as volatile mixing ratios [5] and static stability [6]. Using the "fresh clouds" method of modeling cloud density [7], and assuming that cloud-forming advection was weak at all levels in the probe site, we find that NH4SH formation cannot explain cloud densities between 1 and 1.4 bar in situ. The composition of additional chemical species, or adsorption of ammonia on other ices, are candidate processes that strongly require further laboratory study of the H2O-NH3-H2S volatile system at temperatures of 150 to 300 K [1]. Spectral features near 3 microns suggest widespread NH4SH in the visible cloud decks of Jupiter [8], but additional species may also contribute to absorption at these wavelengths. Infrared spectroscopy at high angular resolution in the future---performed by Juno, JWST, or 30-m class ground-based telescopes---may be able to observe ammonia depletion mechanisms in action. References:[1] de Pater et al. (2001), Icarus 149, 66-78.[2] Showman and de Pater (2005), Icarus 174, 192-204.[3] Sugiyama et al. (2011), GRL 38, L13201.[4] Ragent et al. (1998), JGR 103, 22891-22909.[5] Wong et al. (2004), Icarus 171, 153-170.[6] Magalhães, Seiff, and Young (2002), Icarus 158, 410-433.[7] Wong et al. (2014), Icarus

  4. A Modern Galileo Tale

    ERIC Educational Resources Information Center

    Arnone, Stefano; Moauro, Francesco; Siccardi, Matteo

    2017-01-01

    The year 2014 marked the four-hundred-and-fiftieth anniversary of Galileo's birth, making it the perfect occasion to present and illustrate a GeoGebra applet which reproduces some of Galileo's celebrated experiments on the uniformly accelerated motion, as reported on in "Discourses and Mathematical Demonstrations Relating to Two New…

  5. Io plasma torus ion composition: Voyager, Galileo, and Cassini

    NASA Astrophysics Data System (ADS)

    Nerney, Edward G.; Bagenal, Fran; Steffl, Andrew J.

    2017-01-01

    The Io torus produces ultraviolet emissions diagnostic of plasma conditions. We revisit data sets obtained by the Voyager 1, Galileo, and Cassini missions at Jupiter. With the latest version (8.0) of the CHIANTI atomic database we analyze UV spectra to determine ion composition. We compare ion composition obtained from observations from these three missions with a theoretical model of the physical chemistry of the torus by Delamere et al. (2005). We find ion abundances from the Voyager data similar to the Cassini epoch, consistent with the dissociation and ionization of SO2, but with a slightly higher average ionization state for sulfur, consistent with the higher electron temperature measured by Voyager. This reanalysis of the Voyager data produces a much lower oxygen:sulfur ratio than earlier analysis by Shemansky (1988), which was also reported by Bagenal (1994). We derive fractional ion compositions in the center of the torus to be S+/Ne 5%, S++/Ne 20%, S+++/Ne 5%, O+/Ne 20%, O++/Ne 3%, and Σ(On+)/Σ(Sn+) 0.8, leaving about 10-15% of the charge as protons. The radial profile of ion composition indicates a slightly higher average ionization state, a modest loss of sulfur relative to oxygen, and Σ(On+)/Σ(Sn+) 1.2 at about 8 RJ, beyond which the composition is basically frozen in. The Galileo observations of UV emissions from the torus suggest that the composition in June 1996 may have comprised a lower abundance of oxygen than usual, consistent with observations made at the same time by the EUVE satellite.

  6. Simulation Facilities and Test Beds for Galileo

    NASA Astrophysics Data System (ADS)

    Schlarmann, Bernhard Kl.; Leonard, Arian

    2002-01-01

    Galileo is the European satellite navigation system, financed by the European Space Agency (ESA) and the European Commission (EC). The Galileo System, currently under definition phase, will offer seamless global coverage, providing state-of-the-art positioning and timing services. Galileo services will include a standard service targeted at mass market users, an augmented integrity service, providing integrity warnings when fault occur and Public Regulated Services (ensuring a continuity of service for the public users). Other services are under consideration (SAR and integrated communications). Galileo will be interoperable with GPS, and will be complemented by local elements that will enhance the services for specific local users. In the frame of the Galileo definition phase, several system design and simulation facilities and test beds have been defined and developed for the coming phases of the project, respectively they are currently under development. These are mainly the following tools: Galileo Mission Analysis Simulator to design the Space Segment, especially to support constellation design, deployment and replacement. Galileo Service Volume Simulator to analyse the global performance requirements based on a coverage analysis for different service levels and degrades modes. Galileo System Simulation Facility is a sophisticated end-to-end simulation tool to assess the navigation performances for a complete variety of users under different operating conditions and different modes. Galileo Signal Validation Facility to evaluate signal and message structures for Galileo. Galileo System Test Bed (Version 1) to assess and refine the Orbit Determination &Time Synchronisation and Integrity algorithms, through experiments relying on GPS space infrastructure. This paper presents an overview on the so called "G-Facilities" and describes the use of the different system design tools during the project life cycle in order to design the system with respect to

  7. A new code for Galileo

    NASA Technical Reports Server (NTRS)

    Dolinar, S.

    1988-01-01

    Over the past six to eight years, an extensive research effort was conducted to investigate advanced coding techniques which promised to yield more coding gain than is available with current NASA standard codes. The delay in Galileo's launch due to the temporary suspension of the shuttle program provided the Galileo project with an opportunity to evaluate the possibility of including some version of the advanced codes as a mission enhancement option. A study was initiated last summer to determine if substantial coding gain was feasible for Galileo and, is so, to recommend a suitable experimental code for use as a switchable alternative to the current NASA-standard code. The Galileo experimental code study resulted in the selection of a code with constant length 15 and rate 1/4. The code parameters were chosen to optimize performance within cost and risk constraints consistent with retrofitting the new code into the existing Galileo system design and launch schedule. The particular code was recommended after a very limited search among good codes with the chosen parameters. It will theoretically yield about 1.5 dB enhancement under idealizing assumptions relative to the current NASA-standard code at Galileo's desired bit error rates. This ideal predicted gain includes enough cushion to meet the project's target of at least 1 dB enhancement under real, non-ideal conditions.

  8. The GalileoMobile Project

    NASA Astrophysics Data System (ADS)

    Del Pilar Becerra, A.&ída; Bhatt, Megha; Kobel, Philippe

    2012-07-01

    GalileoMobile is a traveling science education project by an international team of PhD students and recent graduates (partnering with the Universe Awareness program) that brings astronomy to young people in remote regions of developing countries. Our primary project goals are: (1) to stimulate students' curiosity and interest in learning, (2) to exchange different visions of the cosmos and cultures, and (3) to inspire a feeling of unity "under the same sky" between people from different parts of the world. In 2009, GalileoMobile traveled to 30 schools in Chile, Bolivia and Peru, bringing hands-on activities and Galileoscopes; the team also produced a documentary movie to share the experiences and culture with the world. In 2012, GalileoMobile plans an expedition to India from the 2nd to the 13th of July in villages between Bangalore and Mysore. We will again bring hands-on astronomy activities and telescopes to the schools, and share our experiences with the world via internet resources. GalileoMobile is also collaborating with the Galileo Teacher Training Program to provide workshops for local teachers, to encourage continuation of astronomy education beyond our visit. In this way, we expect to spark sustainable interest in astronomy in remote areas that have little access to science outreach, and to share the culture of these areas with the world -- "under the same sky."

  9. A comprehensive picture of Callisto's magnetic and cold plasma environment during the Galileo era and implications for JUICE

    NASA Astrophysics Data System (ADS)

    Liuzzo, L.; Simon, S.; Feyerabend, M.; Motschmann, U. M.

    2017-12-01

    We apply data analysis techniques and hybrid modeling to study Callisto's interaction with Jupiter's magnetosphere. Magnetometer data from the C3 and C9 Galileo flybys had been explained with a pure induction model, as the plasma interaction was weak. We expand this analysis to include the remaining five flybys (C10, C21, C22, C23, C30) where the plasma interaction was non-negligible. We therefore consider contributions to Callisto's magnetic environment generated by induction as well as the plasma interaction. We have identified a quasi-dipolar "core region" near Callisto's wakeside surface, dominated by induction and partially shielded from the plasma interaction. Outside of this region, Callisto's magnetic environment is characterized by field line draping. Future flybys during the upcoming JUICE mission may sample the wakeside "core region" to better constrain the conductivity, thickness, and depth of Callisto's subsurface ocean. Our analysis also shows that even during a single flyby, various non-stationarities in the upstream environment may be present near Callisto, which may partially obscure the magnetic signature of the moon's subsurface ocean. Overall, our study provides a complete three-dimensional picture of Callisto's magnetic environment during the Galileo era, based on all available magnetometer data from the Galileo flybys. We apply our understanding to the future JUICE flybys of Callisto to determine which encounters will be best to identify Callisto's inductive response in magnetometer data.

  10. ISO celebrates its prolonged life with a video of Jupiter

    NASA Astrophysics Data System (ADS)

    1997-07-01

    the results so far. "By observing Jupiter with ISO we can build up a 3-D picture of the peculiar weather on this giant planet," Encrenaz comments. "We can also fit into our big picture the local results coming from NASA's Galileo spacecraft. For example, it sent a probe into Jupiter and scientists were puzzled by the results, and now we know that the probe plunged by chance into one of the dry, cloud-free anticyclones seen clearly by ISO at 5 microns. ISO's perspective links the winds, clouds, temperatures and chemistry of Jupiter's atmosphere in fascinating ways." Notes about the ISO Jupiter video The video is available to broadcasters on request, in Betacam form. Please contact ESTEC (Tel :+31.71.565.3429) or ESA HQ (Tel: +33 (0)1.53.69.7155). The video consists of 86 frames shown at a rate of 2.5 frames per second. Each frame is at a different wavelength between 2.3 and 11.6 microns, as indicated by the moving pointer. North is at the top. The images were obtained sequentially over 35 minutes. During that time the Great Red Spot, seen conspicuously bright below the equatorial at the outset moves a little to the right. At the outset and in other early frames ISO sees the cloudy zones of Jupiter and the Great Red Spot. Around 3.3 microns the planet goes dramatically dark because methane gas in the atmosphere absorbs all the infrared radiation. At 5 microns, ISO sees deep into the atmosphere, in the belts between the cloud zones. The bright spots conspicuous north of the equator are hot dry regions, similar to the one visited by the Galileo probe. Around 7.7 microns, ISO is looking at the upper atmosphere (stratosphere) of Jupiter. The south polar region glows bright. In the last images, Jupiter is becoming too hot for the camera The rate of frequency change is not constant. Thus 3 microns is attained at frames 15-16, 4 microns at 31-32, 5 microns at 44-47, 6 microns at 54-55, 7 microns at 63-64, 8 microns at 69-70, 9 microns at 74-75, 10 microns at 82-83, and 11

  11. The Detection of a Striking Increase in the Microwave Emission from Jupiter's Radiation Belts in June and July 2003.

    NASA Astrophysics Data System (ADS)

    Klein, M. J.; Bolton, S. J.; Levin, S. M.; Mac Laren, D.

    2004-12-01

    Synchrotron emission from energetic electrons in Jupiter's radiation belts has been routinely measured by ground-based radio telescopes for three decades. The NASA-JPL Jupiter Patrol, using NASA's Deep Space Network (DSN) antennas at Goldstone, CA., has reported significant (5 %-to-30 %) variations in Jupiter's flux density near 13-cm wavelength with timescales from a few days to several months. In this paper we report observations of an unusually sudden increase in flux density from 3.8 to 4.3 Jy that occurred between 20 June and 15 July 2003. The rate of increase (approximately 0.6 percent per day) is the steepest increase that we have detected with the exception of the increase in 1994 following the impacts of fragments from comet Shoemaker-Levy 9. More than half of the reported observations were conducted by middle- and high school students from classrooms across the nation. The students and their teachers are participants in the Goldstone-Apple Valley Radio Telescope (GAVRT) science education project, which is a partnership involving NASA, the Jet Propulsion Laboratory and the Lewis Center for Educational Research (LCER) in Apple Valley, CA. Working with the Lewis Center over the Internet, GAVRT students conduct remotely controlled radio astronomy observations using 34-m antennas at Goldstone. We also report preliminary results from a special GAVRT observing campaign conducted in the fall of 2003 before, during and after the controlled impact of the Galileo spacecraft into the Jovian atmosphere. Simultaneous observations were made at 3.5 and 13 cm wavelengths three-to-four days per week. These data are being incorporated into synchrotron emission studies of the state of the radiation belts during the last weeks of the Galileo mission. The JPL contribution to this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  12. Galileo multispectral imaging of the north polar and eastern limb regions of the moon

    USGS Publications Warehouse

    Belton, M.J.S.; Greeley, R.; Greenberg, R.; McEwen, A.; Klaasen, K.P.; Head, J. W.; Pieters, C.; Neukum, G.; Chapman, C.R.; Geissler, P.; Heffernan, C.; Breneman, H.; Anger, C.; Carr, M.H.; Davies, M.E.; Fanale, F.P.; Gierasch, P.J.; Ingersoll, A.P.; Johnson, T.V.; Pilcher, C.B.; Thompson, W.R.; Veverka, J.; Sagan, C.

    1994-01-01

    Multispectral images obtained during the Galileo probe's second encounter with the moon reveal the compositional nature of the north polar regions and the northeastern limb. Mare deposits in these regions are found to be primarily low to medium titanium lavas and, as on the western limb, show only slight spectral heterogeneity. The northern light plains are found to have the spectral characteristics of highlands materials, show little evidence for the presence of cryptomaria, and were most likely emplaced by impact processes regardless of their age.Multispectral images obtained during the Galileo probe's second encounter with the moon reveal the compositional nature of the north polar regions and the northeastern limb. Mare deposits in these regions are found to be primarily low to medium titanium lavas and, as on the western limb, show only slight spectral heterogeneity. The northern light plains are found to have the spectral characteristics of highlands materials, show little evidence for the presence of cryptomaria, and were most likely emplaced by impact processes regardless of their age.

  13. The complex magnetic field of Jupiter

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Ness, N. F.

    1975-01-01

    An analysis of the characteristics of the magnetic field of the planet Jupiter is presented. The data were obtained during the flight of Pioneer 11 space probe, using a high field triaxial fluxgate magnetometer. The data are analyzed in terms of traditional Schmitt normalized spherical harmonic expansion fitted to the observations in a least squares sense. Tables of data and graphs are provided to summarize the findings.

  14. Qualification testing of secondary sterilizable silver-zinc cells for use in the Jupiter atmospheric entry probe

    NASA Technical Reports Server (NTRS)

    Manzo, M. A.

    1981-01-01

    A series of qualification tests were run on the secondary, sterilizable silver oxide - zinc cell developed at the NASA Lewis Research Center to determine if the cell was capable of providing mission power requirements for the Jupiter atmospheric entry probe. The cells were tested for their ability to survive radiation at the levels predicted for the Jovian atmosphere with no loss of performance. Cell performance was evaluated under various temperature and loading conditions, and the cells were tested under various environmental conditions related to launch and to deceleration into the Jovian atmosphere. The cell performed acceptably except under the required loading at low temperatures. The cell was redesigned to improve low-temperature performance and energy density. The modified cells improved performance at all temperatures. Results of testing cells of both the original and modified designs are discussed.

  15. Gaining Momentum: Re-Creating Galileo's Inclined Plane.

    ERIC Educational Resources Information Center

    Albrecht, Bob; Firedrake, George

    1998-01-01

    Provides an excerpt of Galileo's description of his inclined plane experiment. Describes the replication of Galileo's inclined plane experiment by students at Rice University (Texas) using an Internet site called the Galileo Project; then describes the authors' replication of the Project. (AEF)

  16. Galileo and Bellarmine

    NASA Astrophysics Data System (ADS)

    Coyne, G. V.

    2011-06-01

    This paper aims to delineate two of the many tensions which bring to light the contrasting views of Galileo Galilei and of Cardinal Robert Bellarmine with respect to the Copernican-Ptolemaic controversies of the 16th and 17th centuries: their respective positions on Aristotle's natural philosophy and on the interpretation of Sacred Scripture. Galileo's telescopic observations, reported in his Sidereus Nuncius, were bringing about the collapse of Aristotle's natural philosophy and he taught that there was no science in Scripture.

  17. Music in Galileo's Time

    NASA Astrophysics Data System (ADS)

    Petrobelli, P.

    2011-06-01

    Claudio Monteverdi appears as the key personality of the music in Galileo's time. His revolution in format and function of the musical language-from an essentially edonistic creation of purely sonorous images to a musical language consciously "expressive" of the content of the words on which it is based-is similar in character to the influential innovations in scientific thinking operated by Galileo.

  18. Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures

    NASA Astrophysics Data System (ADS)

    Jia, Xianzhe; Kivelson, Margaret G.; Khurana, Krishan K.; Kurth, William S.

    2018-05-01

    The icy surface of Jupiter's moon, Europa, is thought to lie on top of a global ocean1-4. Signatures in some Hubble Space Telescope images have been associated with putative water plumes rising above Europa's surface5,6, providing support for the ocean theory. However, all telescopic detections reported were made at the limit of sensitivity of the data5-7, thereby calling for a search for plume signatures in in-situ measurements. Here, we report in-situ evidence of a plume on Europa from the magnetic field and plasma wave observations acquired on Galileo's closest encounter with the moon. During this flyby, which dropped below 400 km altitude, the magnetometer8 recorded an approximately 1,000-kilometre-scale field rotation and a decrease of over 200 nT in field magnitude, and the Plasma Wave Spectrometer9 registered intense localized wave emissions indicative of a brief but substantial increase in plasma density. We show that the location, duration and variations of the magnetic field and plasma wave measurements are consistent with the interaction of Jupiter's corotating plasma with Europa if a plume with characteristics inferred from Hubble images were erupting from the region of Europa's thermal anomalies. These results provide strong independent evidence of the presence of plumes at Europa.

  19. Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures

    NASA Astrophysics Data System (ADS)

    Jia, Xianzhe; Kivelson, Margaret G.; Khurana, Krishan K.; Kurth, William S.

    2018-06-01

    The icy surface of Jupiter's moon, Europa, is thought to lie on top of a global ocean1-4. Signatures in some Hubble Space Telescope images have been associated with putative water plumes rising above Europa's surface5,6, providing support for the ocean theory. However, all telescopic detections reported were made at the limit of sensitivity of the data5-7, thereby calling for a search for plume signatures in in-situ measurements. Here, we report in-situ evidence of a plume on Europa from the magnetic field and plasma wave observations acquired on Galileo's closest encounter with the moon. During this flyby, which dropped below 400 km altitude, the magnetometer8 recorded an approximately 1,000-kilometre-scale field rotation and a decrease of over 200 nT in field magnitude, and the Plasma Wave Spectrometer9 registered intense localized wave emissions indicative of a brief but substantial increase in plasma density. We show that the location, duration and variations of the magnetic field and plasma wave measurements are consistent with the interaction of Jupiter's corotating plasma with Europa if a plume with characteristics inferred from Hubble images were erupting from the region of Europa's thermal anomalies. These results provide strong independent evidence of the presence of plumes at Europa.

  20. The Cassini/Huygens Doppler Wind Experiment: Results from the Titan Descent

    NASA Technical Reports Server (NTRS)

    Bird, M. K.; Dutta-Roy, R.; Allison, M.; Asmar, S. W.; Atkinson, D. H.; Edenhofer, P.; Plettemeier, D.; Tyler, G. L.

    2005-01-01

    The primary objective of the Doppler Wind Experiment (DWE), one of the six scientific investigations comprising the payload of the ESA Huygens Probe, is a determination of the wind velocity in Titan's atmosphere. Measurements of the Doppler shift of the S-band (2040 MHz) carrier signal to the Cassini Orbiter and to Earth were recorded during the Probe descent in order to deduce wind-induced motion of the Probe to an accuracy better than 1 m s-1. An experiment with the same scientific goal was performed with the Galileo Probe at Jupiter. Analogous to the Galileo experience, it was anticipated that the frequency of the Huygens radio signal could be measured on Earth to obtain an additional component of the horizontal winds. Specific secondary science objectives of DWE include measurements of: (a) Doppler fluctuations to determine the turbulence spectrum and possible wave activity in the Titan atmosphere; (b) Doppler and signal level modulation to monitor Probe descent dynamics (e.g., spinrate/spinphase, parachute swing); (c) Probe coordinates and orientation during descent and after impact on Titan.

  1. The Saturn Probe Interior and aTmosphere Explorer (SPRITE) Mission

    NASA Astrophysics Data System (ADS)

    Simon, Amy; Banfield, Donald; Atkinson, David; SPRITE Science Team

    2018-01-01

    A key question in planetary science is how the planets formed in our Solar System, and, by extension, in exoplanet systems. The abundances of the noble gases (He, Ne, Ar, Kr, Xe), heavy elements (C, N, O, S), and their isotopes provide important forensic clues as to location and time of formation in the early Solar System. Jupiter and Saturn contain most of the planetary mass in our solar system, and their chemical fingerprints will distinguish between competing models of the formation of all the planets. After the end of the Cassini mission, some of these elements have only ambiguous values above the cloud tops, while others (particularly the noble gases) have not been measured at all. Resolving this requires direct in situ measurements. The proposed NASA New Frontiers Saturn PRobe Interior and aTmosphere Explorer (SPRITE) mission delivers an instrumented entry probe from a carrier relay spacecraft that also provides context imaging. The powerful probe instrument suite is comprised of a Quadrupole Mass Spectrometer, a Tunable Laser Spectrometer, and an Atmospheric Structure Instrument including a Doppler Wind Experiment and a simple backscatter nephelometer. These instruments measure the elemental and isotopic abundances of helium, the heavier noble gases, and the major elements, as well as constraining cloud properties, 3-D atmospheric dynamics, and disequilibrium chemistry to at least 10 bars in Saturn's troposphere. In situ measurements of Saturn's atmosphere by SPRITE will provide a significantly improved context for interpreting the results from the Galileo probe, Juno, and Cassini missions. SPRITE will revolutionize our understanding of the formation and evolution of the gas giant planets, and ultimately the present-day structure of the Solar System.

  2. Galileo mission planning for Low Gain Antenna based operations

    NASA Technical Reports Server (NTRS)

    Gershman, R.; Buxbaum, K. L.; Ludwinski, J. M.; Paczkowski, B. G.

    1994-01-01

    The Galileo mission operations concept is undergoing substantial redesign, necessitated by the deployment failure of the High Gain Antenna, while the spacecraft is on its way to Jupiter. The new design applies state-of-the-art technology and processes to increase the telemetry rate available through the Low Gain Antenna and to increase the information density of the telemetry. This paper describes the mission planning process being developed as part of this redesign. Principal topics include a brief description of the new mission concept and anticipated science return (these have been covered more extensively in earlier papers), identification of key drivers on the mission planning process, a description of the process and its implementation schedule, a discussion of the application of automated mission planning tool to the process, and a status report on mission planning work to date. Galileo enhancements include extensive reprogramming of on-board computers and substantial hard ware and software upgrades for the Deep Space Network (DSN). The principal mode of operation will be onboard recording of science data followed by extended playback periods. A variety of techniques will be used to compress and edit the data both before recording and during playback. A highly-compressed real-time science data stream will also be important. The telemetry rate will be increased using advanced coding techniques and advanced receivers. Galileo mission planning for orbital operations now involves partitioning of several scarce resources. Particularly difficult are division of the telemetry among the many users (eleven instruments, radio science, engineering monitoring, and navigation) and allocation of space on the tape recorder at each of the ten satellite encounters. The planning process is complicated by uncertainty in forecast performance of the DSN modifications and the non-deterministic nature of the new data compression schemes. Key mission planning steps include

  3. Galileo mission planning for Low Gain Antenna based operations

    NASA Astrophysics Data System (ADS)

    Gershman, R.; Buxbaum, K. L.; Ludwinski, J. M.; Paczkowski, B. G.

    1994-11-01

    The Galileo mission operations concept is undergoing substantial redesign, necessitated by the deployment failure of the High Gain Antenna, while the spacecraft is on its way to Jupiter. The new design applies state-of-the-art technology and processes to increase the telemetry rate available through the Low Gain Antenna and to increase the information density of the telemetry. This paper describes the mission planning process being developed as part of this redesign. Principal topics include a brief description of the new mission concept and anticipated science return (these have been covered more extensively in earlier papers), identification of key drivers on the mission planning process, a description of the process and its implementation schedule, a discussion of the application of automated mission planning tool to the process, and a status report on mission planning work to date. Galileo enhancements include extensive reprogramming of on-board computers and substantial hard ware and software upgrades for the Deep Space Network (DSN). The principal mode of operation will be onboard recording of science data followed by extended playback periods. A variety of techniques will be used to compress and edit the data both before recording and during playback. A highly-compressed real-time science data stream will also be important. The telemetry rate will be increased using advanced coding techniques and advanced receivers. Galileo mission planning for orbital operations now involves partitioning of several scarce resources. Particularly difficult are division of the telemetry among the many users (eleven instruments, radio science, engineering monitoring, and navigation) and allocation of space on the tape recorder at each of the ten satellite encounters. The planning process is complicated by uncertainty in forecast performance of the DSN modifications and the non-deterministic nature of the new data compression schemes. Key mission planning steps include

  4. RTG performance on Galileo and Ulysses and Cassini test results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, C. Edward; Klee, Paul M.

    Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Similar comparisons are made for the RTG on the Ulysses spacecraft which completed its planned mission in 1995. Also presented are test results from small scale thermoelectric modules and full scale converters performed for the Cassini program. The Cassini mission to Saturn is scheduled for an October 1997 launch. Small scale module test results on thermoelectric couples from the qualification and flight production runs are shown. These tests have exceeded 19,000more » hours are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. Test results are presented for full scale units both ETGs (E-6, E-7) and RTGs (F-2, F-5) along with mission power predictions. F-5, fueled in 1985, served as a spare for the Galileo and Ulysses missions and plays the same role in the Cassini program. It has successfully completed all acceptance testing. The ten years storage between thermal vacuum tests is the longest ever experienced by an RTG. The data from this test are unique in providing the effects of long term low temperature storage on power output. All ETG and RTG test results to date indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of at least five percent are predicted.« less

  5. RTG performance on Galileo and Ulysses and Cassini test results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, C.E.; Klee, P.M.

    Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Similar comparisons are made for the RTG on the Ulysses spacecraft which completed its planned mission in 1995. Also presented are test results from small scale thermoelectric modules and full scale converters performed for the Cassini program. The Cassini mission to Saturn is scheduled for an October 1997 launch. Small scale module test results on thermoelectric couples from the qualification and flight production runs are shown. These tests have exceeded 19,000more » hours are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. Test results are presented for full scale units both ETGs (E-6, E-7) and RTGs (F-2, F-5) along with mission power predictions. F-5, fueled in 1985, served as a spare for the Galileo and Ulysses missions and plays the same role in the Cassini program. It has successfully completed all acceptance testing. The ten years storage between thermal vacuum tests is the longest ever experienced by an RTG. The data from this test are unique in providing the effects of long term low temperature storage on power output. All ETG and RTG test results to date indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of at least five percent are predicted. {copyright} {ital 1997 American Institute of Physics.}« less

  6. Galileo and the Interpretation of the Bible.

    ERIC Educational Resources Information Center

    Carroll, William E.

    1999-01-01

    Argues that, contrary to the common view, Galileo and the theologians of the Inquisition share the same fundamental principles of biblical interpretation. Contends that Galileo and these theologians thought that the Bible contained truths about nature, but Galileo denied what the theologians accepted as scientifically true. Contains 93 references.…

  7. Jupiter's High-Altitude Clouds

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Jupiter in this image has a mottled appearance, and the scene is not as dynamic as the equatorial and south polar regions.

    The intricate structures revealed in this image are exciting, but they are only part of the story. The New Horizons instruments have taken images of Jupiter at approximately 260 different wavelengths, providing essentially a three-dimensional view of Jupiter's atmosphere, since images at different wavelengths probe different altitudes. New Horizons is providing a wealth of data on this fascinating planet during this last close-up view of Jupiter until the middle of the next decade.

  8. Star Messenger: Galileo at the Millennium

    NASA Astrophysics Data System (ADS)

    White, R. E.

    1999-05-01

    Smith College has recently established the Louise B. and Edmund J. Kahn Liberal Arts Institute to foster interdisciplinary scholarship among the faculty. In the 1999-2000 academic year, the Kahn Institute is sponsoring a project entitled "Star Messenger: Galileo at the Millennium." The project will explore the impact of the astronomical discoveries of Galileo and his contemporaries on the Renaissance world-view and also use Galileo's experience as a lens for examining scientific and cultural developments at the symbolic juncture represented by the year 2000. Seven faculty fellows and 10-12 student fellows will participate in a year-long colloquium pursuing these themes, aided by the participation of some five Visiting Fellows. The inaugural public event will be a symposium on the historical Galileo, with presentation by three noted scholars, each of whom will return to campus for a second meeting with the Kahn colloquium. Additional events will include an exhibit of prints, artifacts, and rare books related to Galileo and his time, an early music concert featuring music composed by Galileo's father, and a series of other events sponsored by diverse departments and programs, all related to the broad themes of the Galileo project. The culminating events will be the premiere of a new music theater work, which will encapsulate the insights of the colloquium about human reactions to novel insights about the world, and a symposium presenting the research results of faculty and student fellows. The symposium will feature a capstone lecture by an visionary scholar projecting the implication of historical and contemporary trends into the future.

  9. The Voyager flights to Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The results of the mini-Grand Tour to Jupiter and Saturn by the Voyager 1 and 2 spacecraft are highlighted. Features of the spacecraft are depicted including the 11 instruments designed to probe the planets and their magnetic environments, the rings of Saturn, the fleets of satellites escorting the planets, and the interplanetary medium. Major scientific discoveries relating to these phenomena are summarized.

  10. QUENCHING OF CARBON MONOXIDE AND METHANE IN THE ATMOSPHERES OF COOL BROWN DWARFS AND HOT JUPITERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visscher, Channon; Moses, Julianne I., E-mail: visscher@lpi.usra.edu, E-mail: jmoses@spacescience.org

    We explore CO{r_reversible}CH{sub 4} quench kinetics in the atmospheres of substellar objects using updated timescale arguments, as suggested by a thermochemical kinetics and diffusion model that transitions from the thermochemical-equilibrium regime in the deep atmosphere to a quench-chemical regime at higher altitudes. More specifically, we examine CO quench chemistry on the T dwarf Gliese 229B and CH{sub 4} quench chemistry on the hot-Jupiter HD 189733b. We describe a method for correctly calculating reverse rate coefficients for chemical reactions, discuss the predominant pathways for CO{r_reversible}CH{sub 4} interconversion as indicated by the model, and demonstrate that a simple timescale approach can bemore » used to accurately describe the behavior of quenched species when updated reaction kinetics and mixing-length-scale assumptions are used. Proper treatment of quench kinetics has important implications for estimates of molecular abundances and/or vertical mixing rates in the atmospheres of substellar objects. Our model results indicate significantly higher K{sub zz} values than previously estimated near the CO quench level on Gliese 229B, whereas current-model-data comparisons using CH{sub 4} permit a wide range of K{sub zz} values on HD 189733b. We also use updated reaction kinetics to revise previous estimates of the Jovian water abundance, based upon the observed abundance and chemical behavior of carbon monoxide. The CO chemical/observational constraint, along with Galileo entry probe data, suggests a water abundance of approximately 0.51-2.6 x solar (for a solar value of H{sub 2}O/H{sub 2} = 9.61 x 10{sup -4}) in Jupiter's troposphere, assuming vertical mixing from the deep atmosphere is the only source of tropospheric CO.« less

  11. A High-Resolution Study of Quasiperiodic Radio Emissions Observed by the Galileo Plasma Wave Instrument

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Christopher, I.; Granroth, L. J.

    2001-01-01

    We have conducted a study of quasiperiodic emission observed by the plasma wave instrument on board the Galileo spacecraft. These emissions appear as broadband bursts with dominant periods ranging from 10 min to over 40 min. For these emissions we have explicitly analyzed the high-resolution (waveform) data to determine the presence of impulsive, solitary signatures. Our investigations have indicated that the broadband bursts, as well as the background more narrowband continuum emission, are composed of a highly turbulent spectrum. Within the broadband burst, however, there are higher-frequency components present, but no impulsive electrostatic signatures. Also significantly, the broadband bursts show no low-frequency dispersion. We conclude that the bursts are consistent with a distant, electromagnetic source, probably in the near-Jupiter vicinity.

  12. HERA: an atmospheric probe to unveil the depths of Saturn

    NASA Astrophysics Data System (ADS)

    Mousis, Olivier; Atkinson, David H.; Amato, Michael; Aslam, Shahid; Atreya, Sushil K.; Blanc, Michel; Bolton, Scott J.; Brugger, Bastien; Calcutt, Simon; Cavalié, Thibault; Charnoz, Sébastien; Coustenis, Athena; DELEUIL, Magali; Ferri, Francesca; Fletcher, Leigh N.; Guillot, Tristan; Hartogh, Paul; Holland, Andrew; Hueso, Ricardo; Keller, Christoph; Kessler, Ernst; Lebreton, Jean-Pierre; leese, Mark; Lellouch, Emmanuel; Levacher, Patrick; Marty, Bernard; Morse, Andrew; Nixon, Conor; Reh, Kim R.; Renard, Jean-Baptiste; Sanchez-Lavega, Agustin; Schmider, François-Xavier; Sheridan, Simon; Simon, Amy A.; Snik, Frans; Spilker, Thomas R.; Stam, Daphne M.; Venkatapathy, Ethiraj; Vernazza, Pierre; Waite, J. Hunter; Wurz, Peter

    2016-10-01

    The Hera Saturn entry probe mission is proposed as an M-class mission led by ESA with a significant collaboration with NASA. It consists of a Saturn atmospheric probe and a Carrier-Relay spacecraft. Hera will perform in situ measurements of the chemical and isotopic compositions as well as the dynamics of Saturn's atmosphere, with the goal of improving our understanding of the origin, formation, and evolution of Saturn, the giant planets and their satellite systems, with extrapolation to extrasolar planets.The primary science objectives will be addressed by an atmospheric entry probe that would descend under parachute and carry out in situ measurements beginning in the stratosphere to help characterize the location and properties of the tropopause, and continue into the troposphere to pressures of at least 10 bars. All of the science objectives, except for the abundance of oxygen, which may be only addressed indirectly via observations of species whose abundances are tied to the abundance of water, can be achieved by reaching 10 bars. As in previous highly successful collaborative efforts between ESA and NASA, the proposed mission has a baseline concept based on a NASA-provided carrier/data relay spacecraft that would deliver the ESA-provided atmospheric probe to the desired atmospheric entry point at Saturn. ESA's proposed contribution should fit well into the M5 Cosmic Vision ESA call cost envelope.A nominal mission configuration would consist of a probe that detaches from the carrier one to several months prior to probe entry. Subsequent to probe release, the carrier trajectory would be deflected to optimize the over-flight phasing of the probe descent location for both probe data relay as well as performing carrier approach and flyby science, and would allow multiple retransmissions of the probe data for redundancy. The Saturn atmospheric entry probe would in many respects resemble the Jupiter Galileo probe. It is anticipated that the probe architecture for

  13. Interplanetary mission design handbook. Volume 1, part 3: Earth to Jupiter ballistic mission opportunities, 1985-2005

    NASA Technical Reports Server (NTRS)

    Sergeyevsky, A. B.; Snyder, G. C.

    1982-01-01

    Graphical data necessary for the preliminary design of ballistic missions to Jupiter are provided. Contours of launch energy requirements, as well as many other launch and Jupiter arrival parameters, are presented in launch date/arrival date space for all launch opportunities from 1985 through 2005. In addition, an extensive text is included which explains mission design methods, from launch window development to Jupiter probe and orbiter arrival design, utilizing the graphical data in this volume as well as numerous equations relating various parameters.

  14. Galileo's Lute and the Law of Falling Bodies

    NASA Astrophysics Data System (ADS)

    Thompson, Mark

    2008-05-01

    Galileo's Lute and the Law of Falling Bodies is an excerpt from Galileo 1610. Galileo 1610 is a dramatic, musical and intellectual odyssey back to the life and times of Galileo Galilei, the famous 17th century Italian scientist and philosopher. It commemorates the 400th anniversary of Galileo's discoveries with his telescope in 1610. Dressed in authentic Renaissance attire as Galileo, the author-- a cantorial soloist and amateur astronomer-- tells the fascinating story of "The Father of Modern Science,” drawing from the actual correspondence and writings of Galileo, as well as those of his many biographers. Through his dialogue with the audience on a wide range of discoveries and opinions, "Galileo” shares his wisdom and his life experiences with pathos, wit and humor, lacing his narration with entertaining lute songs from the late Renaissance period, some of which were actually composed by Galileo's father, Vincenzo. Bridging the past to the present, the author breathes life into "Galileo” as he once again frolics and struggles among us. In bringing forth some of life's great issues, we learn something about our own inquisitive nature, as well as that of science and music. The author has appeared as Galileo for over a decade on radio, at community theatres and libraries, public schools, colleges and universities throughout the country. He has performed for civic organizations, astronomy association conventions, marketing and outreach programs as well as private events and parties. Galileo 1610 is suitable for a variety of educational and entertainment programs, for both children and adults. All presentations are tailored to fit the interest, experience and size of the audience.

  15. Using Galileo's Own Words in the Physics Classroom

    NASA Astrophysics Data System (ADS)

    Garber, Gary

    2009-10-01

    After years of discussing Galileo using secondary sources, I decided to have my students use Galileo's writings as a primary source of information in their lab reports. The advancements of Google Books and the internet has made it possible for all students to read Aristotle, Galileo, and Newton when exploring the nature of free fall kinematics. I will present links and suggested passages from several sources including Galileo's Dialogues Concerning Two New Sciences.

  16. New Results From Galileo's First Flyby of Ganymede: Reconnection-Driven Flows at the Low-Latitude Magnetopause Boundary, Crossing the Cusp, and Icy Ionospheric Escape

    NASA Astrophysics Data System (ADS)

    Collinson, Glyn; Paterson, William R.; Bard, Christopher; Dorelli, John; Glocer, Alex; Sarantos, Menelaos; Wilson, Rob

    2018-04-01

    On 27 June 1996, the NASA Galileo spacecraft made humanity's first flyby of Jupiter's largest moon, Ganymede, discovering that it is the only moon known to possess an internally generated magnetic field. Resurrecting the original Galileo Plasma Subsystem (PLS) data analysis software, we processed the raw PLS data from G01 and for the first time present the properties of plasmas encountered. Entry into the magnetosphere of Ganymede occurred near the confluence of the magnetopause and plasma sheet. Reconnection-driven plasma flows were observed (consistent with an Earth-like Dungey cycle), which may be a result of reconnection in the plasma sheet, magnetopause, or might be Ganymede's equivalent of a Low-Latitude Boundary Layer. Dropouts in plasma density combined with velocity perturbations afterward suggest that Galileo briefly crossed the cusps into closed magnetic field lines. Galileo then crossed the cusps, where field-aligned precipitating ions were observed flowing down into the surface, at a location consistent with observations by the Hubble Space Telescope. The density of plasma outflowing from Ganymede jumped an order of magnitude around closest approach over the north polar cap. The abrupt increase may be a result of crossing the cusp or may represent an altitude-dependent boundary such as an ionopause. More diffuse, warmer field-aligned outflows were observed in the lobes. Fluxes of particles near the moon on the nightside were significantly lower than on the dayside, possibly resulting from a diurnal cycle of the ionosphere and/or neutral atmosphere.

  17. Study of alternative probe technologies

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A number of implied technologies for a deep probe mission was examined; i.e., one that would provide the capability to scientifically examine planetary atmospheres at the 1000 bar level. Conditions imposed by current Jupiter, Saturn, and Uranus atmospheric models were considered. The major thrust of the measurements was to determine lower atmosphere composition, even to trace constituents of one part per billion. Two types of instruments having the necessary accuracy to meet the science objectives were considered and integrated into a deep probe configuration. One deep probe option that resulted was identified as a Minimum Technology Development approach. The significant feature of this option is that only three technology developments are required to enable the mission, i.e., (1) science instrument development, (2) advanced data processing, and (3) external high pressure/thermal insulation. It is concluded that a probe designed for a Jupiter mission could, with minor changes, be used for a Saturn or Uranus mission.

  18. Uranus science planning. [considering Mariner Jupiter-Uranus mission

    NASA Technical Reports Server (NTRS)

    Moore, J.

    1974-01-01

    Recommendations for a 1979 Mariner Jupiter-Uranus mission are discussed with the possibility of launching the first outer planet atmospheric entry probe. Measurement categories considered for the mission include conducting imaging experiments, observations in both the IR and UV spectral range, experiments associated with magnetic fields, plasma, charged particles, and S- and X-band occultation measurements.

  19. Substorms At Jupiter: Galileo Observations of Transient Reconnection in The Near Tail

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Khurana, K. K.; Kivelson, M. G.; Huddleston, D. E.

    2000-01-01

    The magnetic flux content of the Jovian magnetosphere is set by the internal dynamo, but those magnetic field lines are constantly being loaded by heavy ions at the orbit of lo and dragged inexorably outward by the centrifugal force. Vasyliunas has proposed a steady state reconnecting magnetospheric model that sheds plasma islands of zero net magnetic flux and returns nearly empty flux tubes to the inner magnetosphere. The Galileo observations indicate that beyond 40 Rj the current sheet begins to tear and beyond 50 Rj on the nightside explosively reconnects as the tearing site reaches the low density lobe region above and below the current sheet. Small events occur irregularly but on average about every 4 hours and large events about once a day. The magnetic flux reconnected in such events amounts up to about 70,000 Webers/sec and is sufficient to return the outwardly convected magnetic flux to the inner magnetosphere. Since this process releases plasmoids into the jovian tail, as do terrestrial substorms; since this process involves explosive reconnection across the current sheet on the nightside of the planet, as do terrestrial substorms; and since the process is a key in closing the circulation pattern of the magnetic and plasma flux, as it is in terrestrial substorms; we refer to these events as jovian substorms.

  20. Jovian system science issues and implications for a Mariner Jupiter Orbiter mission

    NASA Technical Reports Server (NTRS)

    Beckman, J. C.; Miner, E. D.

    1975-01-01

    Science goals for missions to Jupiter in the early 1980's are reviewed and a case is made for the science community to play the key role in assigning relative priorities for these goals. A reference set of measurement requirements and their priorities is established and those high priority goals that are most demanding on spacecraft and mission design are used to develop a reference mission concept. An orbiter mission is required to satisfy a majority of the measurements, and a spacecraft data handling capability as least equivalent to the Mariner Jupiter/Saturn spacecraft is the major system design driver. This reference Mission Concept is called Mariner Jupiter Orbiter. The remaining measurement requirements are reviewed in light of the potential science return of this mission, and certain options are developed to augment this science return. Two attractive options fulfill high priority objectives not achieved by the reference Mariner Jupiter Orbiter mission alone: an atmospheric entry probe, released prior to orbit insertion; and a daughter satellite dedicated to particle and fields measurements, ejected into an independent orbit about Jupiter.

  1. Jupiter's Hot, Mushy Moon

    NASA Technical Reports Server (NTRS)

    Taylor, G. Jeffrey

    2003-01-01

    Jupiter's moon Io is the most volcanically active body in the Solar System. Observations by instruments on the Galileo spacecraft and on telescopes atop Mauna Kea in Hawai'i indicate that lava flows on Io are surprisingly hot, over 1200 oC and possibly as much as 1300 oC; a few areas might have lava flows as hot as 1500 oC. Such high temperatures imply that the lava flows are composed of rock that formed by a very large amount of melting of Io's mantle. This has led Laszlo Keszthelyi and Alfred S. McEwen of the University of Arizona and me to reawaken an old hypothesis that suggests that the interior of Io is a partially-molten mush of crystals and magma. The idea, which had fallen out of favor for a decade or two, explains high-temperature hot spots, mountains, calderas, and volcanic plains on Io. If correct, Io gives us an opportunity to study processes that operate in huge, global magma systems, which scientists believe were important during the early history of the Moon and Earth, and possibly other planetary bodies as well. Though far from proven, the idea that Io has a ocean of mushy magma beneath its crust can be tested with measurements by future spacecraft.

  2. Alvin (Al) Sieff: Thoughts About and Lessons from a Great Engineer

    NASA Technical Reports Server (NTRS)

    Tauber, Michael

    2010-01-01

    Alvin (Al) Seiff was known as a world-class atmospheric scientist during the last three decades of his life. Equally deserving, however, were his prior achievements as an innovative engineer, an exceptional technical manager, and a mentor of young engineers at NASA Ames Research Center. This paper outlines Al's role in developing Ames ballistic range facilities, probably the most advanced in the world at that time, and his seminal 1963 report that contained the concepts used to reconstruct the atmospheres of Mars, Venus, Jupiter and Titan. Also discussed is my affiliation with Al after he hired me in 1962, including our joint work on Mars missions and investigating the feasibility that a Jupiter probe could survive entry, work that eventually led to the development of the Galileo probe. Finally, suggestions are offered for speeding the analysis and design of thermal protection systems based on lessons learned from successful probes and landers.

  3. Europa Active Surface

    NASA Image and Video Library

    1997-09-07

    On June 27, 1996, during Galileo first orbit around Jupiter, a newly discovered impact crater could be seen just right of the center of this image of Jupiter moon Europa returned by NASA Galileo spacecraft camera. http://photojournal.jpl.nasa.gov/catalog/PIA00294

  4. Teetering Stars: Resonant Excitation of Stellar Obliquities by Hot and Warm Jupiters with External Companions

    NASA Astrophysics Data System (ADS)

    Anderson, Kassandra; Lai, Dong

    2018-04-01

    Stellar spin-orbit misalignments (obliquities) in hot Jupiter systems have been extensively probed in recent years thanks to Rossiter-McLaughlin observations. Such obliquities may reveal clues about hot Jupiter dynamical and migration histories. Common explanations for generating stellar obliquities include high-eccentricity migration, or primordial disk misalignment. This talk investigates another mechanism for producing stellar spin-orbit misalignments in systems hosting a close-in giant planet with an external, inclined planetary companion. Spin-orbit misalignment may be excited due to a secular resonance, occurring when the precession rate of the stellar spin axis (due to the inner orbit) becomes comparable to the precession rate of the inner orbital axis (due to the outer companion). Due to the spin-down of the host star via magnetic braking, this resonance may be achieved at some point during the star's main sequence lifetime for a wide range of giant planet masses and orbital architectures. We focus on both hot Jupiters (with orbital periods less than ten days) and warm Jupiters (with orbital periods around tens of days), and identify the outer perburber properties needed to generate substantial obliquities via resonant excitation, in terms of mass, separation, and inclination. For hot Jupiters, the stellar spin axis is strongly coupled to the orbital axis, and resonant excitation of obliquity requires a close perturber, located within 1-2 AU. For warm Jupiters, the spin and orbital axes are more weakly coupled, and the resonance may be achieved for more distant perturbers (at several to tens of AU). Resonant excitation of the stellar obliquity is accompanied by a decrease in the planets' mutual orbital inclination, and can thus erase high mutual inclinations in two-planet systems. Since many warm Jupiters are known to have outer planetary companions at several AU or beyond, stellar obliquities in warm Jupiter systems may be common, regardless of the

  5. The Saturn PRobe Interior and aTmosphere Explorer (SPRITE) Mission Concept

    NASA Astrophysics Data System (ADS)

    Atkinson, David H.; Simon, Amy; Banfield, Don

    2017-04-01

    The proposed NASA New Frontiers Saturn PRobe Interior and aTmosphere Explorer (SPRITE) mission would measure the abundance of helium and the other noble gases, elemental and isotopic abundances, the clouds, dynamics, and processes within Saturn's troposphere. In situ measurements of Saturn's atmosphere by SPRITE would provide a significantly improved context for understanding the results from the Galileo Jupiter probe, and the formation and evolution of the gas giant planets, resulting in a paradigm shift in our understanding of the formation, evolution, and ultimately the present day structure of the solar system. The proposed SPRITE concept carries an instrument payload to measure Saturn's atmospheric structure, dynamics, composition, chemistry, and clouds to at least 10 bars. A Quadrupole Mass Spectrometer measures noble gases and noble gas isotopes to accuracies that exceed the Galileo probe measurements at Jupiter and allows for discrimination between competing theories of giant planet formation, evolution, and possible migration. Of particular importance are measurements of helium, key to understanding Saturn's thermal evolution. A Tunable Laser Spectrometer measures molecular abundances and isotope ratios to determine the chemical structure of Saturn's atmosphere, and disequilibrium species such as PH3 and CO which can be used to predict Saturn's deep water abundance. An Atmospheric Structure Instrument provides the pressure/temperature profile of Saturn's atmosphere to determine the altitude profile of static stability, and when combined with cloud measurements from the SPRITE Nephelometer, would elucidate processes that determine the location and structure of Saturn's multiple cloud layers. Coupled with the measurement of atmospheric vertical velocities from the Atmospheric Structure Instrument, a Doppler Wind Experiment provides a measure of the 3-dimensional dynamics of the Saturn atmosphere, including the profile of zonal winds with depth and vertical

  6. The ionosphere of Europa from Galileo radio occultations

    NASA Technical Reports Server (NTRS)

    Kliore, A. J.; Hinson, D. P.; Flasar, F. M.; Nagy, A. F.; Cravens, T. E.

    1997-01-01

    The Galileo spacecraft performed six radio occultation observations of Jupiter's Galilean satellite Europa during its tour of the jovian system. In five of the six instances, these occultations revealed the presence of a tenuous ionosphere on Europa, with an average maximum electron density of nearly 10(4) per cubic centimeter near the surface and a plasma scale height of about 240 +/- 40 kilometers from the surface to 300 kilometers and of 440 +/- 60 kilometers above 300 kilometers. Such an ionosphere could be produced by solar photoionization and jovian magnetospheric particle impact in an atmosphere having a surface density of about 10(8) electrons per cubic centimeter. If this atmosphere is composed primarily of O2, then the principal ion is O2+ and the neutral atmosphere temperature implied by the 240-kilometer scale height is about 600 kelvin. If it is composed of H2O, the principal ion is H3O+ and the neutral temperature is about 340 kelvin. In either case, these temperatures are much higher than those observed on Europa's surface, and an external heating source from the jovian magnetosphere is required.

  7. The ionosphere of Europa from Galileo radio occultations.

    PubMed

    Kliore, A J; Hinson, D P; Flasar, F M; Nagy, A F; Cravens, T E

    1997-07-18

    The Galileo spacecraft performed six radio occultation observations of Jupiter's Galilean satellite Europa during its tour of the jovian system. In five of the six instances, these occultations revealed the presence of a tenuous ionosphere on Europa, with an average maximum electron density of nearly 10(4) per cubic centimeter near the surface and a plasma scale height of about 240 +/- 40 kilometers from the surface to 300 kilometers and of 440 +/- 60 kilometers above 300 kilometers. Such an ionosphere could be produced by solar photoionization and jovian magnetospheric particle impact in an atmosphere having a surface density of about 10(8) electrons per cubic centimeter. If this atmosphere is composed primarily of O2, then the principal ion is O2+ and the neutral atmosphere temperature implied by the 240-kilometer scale height is about 600 kelvin. If it is composed of H2O, the principal ion is H3O+ and the neutral temperature is about 340 kelvin. In either case, these temperatures are much higher than those observed on Europa's surface, and an external heating source from the jovian magnetosphere is required.

  8. Ground radiation tests and flight atomic oxygen tests of ITO protective coatings for Galileo Spacecraft

    NASA Technical Reports Server (NTRS)

    Bouquet, Frank L.; Maag, Carl R.

    1986-01-01

    Radiation simulation tests (protons and electrons) were performed along with atomic oxygen flight tests aboard the Shuttle to space qualify the surface protective coatings. The results, which contributed to the selection of indium-tin-oxide (ITO) coated polyester as the material for the thermal blankets of the Galileo Spacecraft, are given here. Two candidate materials, polyester and Fluorglas, were radiation-tested to determine changes at simulated Jovian radiation levels. The polyester exhibited a smaller weight loss (2.8) than the Fluorglas (8.8 percent). Other changes of polyester are given. During low-earth orbit, prior to transit to Jupiter, the thermal blankets would be exposed to atomic oxygen. Samples of uncoated and ITO-coated polyesters were flown on the Shuttle. Qualitative results are given which indicated that the ITO coating protected the underlying polyester.

  9. JunoCam's Imaging of Jupiter

    NASA Astrophysics Data System (ADS)

    Orton, Glenn; Hansen, Candice; Momary, Thomas; Caplinger, Michael; Ravine, Michael; Atreya, Sushil; Ingersoll, Andrew; Bolton, Scott; Rogers, John; Eichstaedt, Gerald

    2017-04-01

    Juno's visible imager, JunoCam, is a wide-angle camera (58° field of view) with 4 color filters: red, green and blue (RGB) and methane at 889 nm, designed for optimal imaging of Jupiter's poles. Juno's elliptical polar orbit offers unique views of Jupiter's polar regions with spatial scales as good as 50 km/pixel. At closest approach ("perijove") the images have spatial scale down to ˜3 km/pixel. As a push-frame imager on a rotating spacecraft, JunoCam uses time-delayed integration to take advantage of the spacecraft spin to extend integration time to increase signal. Images of Jupiter's poles reveal a largely uncharted region of Jupiter, as nearly all earlier spacecraft except Pioneer 11 have orbited or flown by close to the equatorial plane. Poleward of 64-68° planetocentric latitude, Jupiter's familiar east-west banded structure breaks down. Several types of discrete features appear on a darker, bluish-cast background. Clusters of circular cyclonic spirals are found immediately around the north and south poles. Oval-shaped features are also present, ranging in size down to JunoCam's resolution limits. The largest and brightest features usually have chaotic shapes; animations over ˜1 hour can reveal cyclonic motion in them. Narrow linear features traverse tens of degrees of longitude and are not confined in latitude. JunoCam also detected optically thin clouds or hazes that are illuminated beyond the nightside ˜1-bar terminator; one of these detected at Perijove lay some 3 scale heights above the main cloud deck. Tests have been made to detect the aurora and lightning. Most close-up images of Jupiter have been acquired at lower latitudes within 2 hours of closest approach. These images aid in understanding the data collected by other instruments on Juno that probe deeper in the atmosphere. When Jupiter was too close to the sun for ground-based observers to collect data between perijoves 1 and 2, JunoCam took a sequence of routine images to monitor large

  10. Comparison of viscous-shock-layer solutions by time-asymptotic and steady-state methods. [flow distribution around a Jupiter entry probe

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.; Moss, J. N.; Simmonds, A. L.

    1982-01-01

    Two flow-field codes employing the time- and space-marching numerical techniques were evaluated. Both methods were used to analyze the flow field around a massively blown Jupiter entry probe under perfect-gas conditions. In order to obtain a direct point-by-point comparison, the computations were made by using identical grids and turbulence models. For the same degree of accuracy, the space-marching scheme takes much less time as compared to the time-marching method and would appear to provide accurate results for the problems with nonequilibrium chemistry, free from the effect of local differences in time on the final solution which is inherent in time-marching methods. With the time-marching method, however, the solutions are obtainable for the realistic entry probe shapes with massive or uniform surface blowing rates; whereas, with the space-marching technique, it is difficult to obtain converged solutions for such flow conditions. The choice of the numerical method is, therefore, problem dependent. Both methods give equally good results for the cases where results are compared with experimental data.

  11. Galileo's eye: a new vision of the senses in the work of Galileo Galilei.

    PubMed

    Piccolino, Marco; Wade, Nicholas J

    2008-01-01

    Reflections on the senses, and particularly on vision, permeate the writings of Galileo Galilei, one of the main protagonists of the scientific revolution. This aspect of his work has received scant attention by historians, in spite of its importance for his achievements in astronomy, and also for the significance in the innovative scientific methodology he fostered. Galileo's vision pursued a different path from the main stream of the then contemporary studies in the field; these were concerned with the dioptrics and anatomy of the eye, as elaborated mainly by Johannes Kepler and Christoph Scheiner. Galileo was more concerned with the phenomenology rather than with the mechanisms of the visual process. His general interest in the senses was psychological and philosophical; it reflected the fallacies and limits of the senses and the ways in which scientific knowledge of the world could be gathered from potentially deceptive appearances. Galileo's innovative conception of the relation between the senses and external reality contrasted with the classical tradition dominated by Aristotle; it paved the way for the modern understanding of sensory processing, culminating two centuries later in Johannes Müller's elaboration of the doctrine of specific nerve energies and in Helmholtz's general theory of perception.

  12. E4 True and false color hot spot mosaic

    NASA Technical Reports Server (NTRS)

    1997-01-01

    True and false color views of Jupiter from NASA's Galileo spacecraft show an equatorial 'hotspot' on Jupiter. These images cover an area 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles). The top mosaic combines the violet and near infrared continuum filter images to create an image similar to how Jupiter would appear to human eyes. Differences in coloration are due to the composition and abundances of trace chemicals in Jupiter's atmosphere. The bottom mosaic uses Galileo's three near-infrared wavelengths displayed in red, green, and blue) to show variations in cloud height and thickness. Bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the deep cloud with an overlying thin haze. The light blue region to the left is covered by a very high haze layer. The multicolored region to the right has overlapping cloud layers of different heights. Galileo is the first spacecraft to distinguish cloud layers on Jupiter.

    North is at the top. The mosaic covers latitudes 1 to 10 degrees and is centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging camera system aboard Galileo. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at: http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at: http:/ /www.jpl.nasa.gov/galileo/sepo.

  13. Europa and Callisto under the watchful gaze of Jupiter

    NASA Technical Reports Server (NTRS)

    2000-01-01

    One moment in an ancient, orbital dance is caught in this color picture taken by NASA's Cassini spacecraft on Dec. 7, 2000, just as two of Jupiter's four major moons, Europa and Callisto, were nearly perfectly aligned with each other and the center of the planet.

    The distances are deceiving. Europa, seen against Jupiter, is 600,000 kilometers (370,000 miles) above the planet's cloud tops. Callisto, at lower left, is nearly three times that distance from the cloud tops. Europa is a bit smaller than Earth's Moon and has one of the brightest surfaces in the solar system. Callisto is 50 percent bigger -- roughly the size of Saturn's largest satellite, Titan -- and three times darker than Europa. Its brightness had to be enhanced in this picture, relative Europa's and Jupiter's, in order for Callisto to be seen in this image.

    Europa and Callisto have had very different geologic histories but share some surprising similarities, such as surfaces rich in ice. Callisto has apparently not undergone major internal compositional stratification, but Europa's interior has differentiated into a rocky core and an outer layer of nearly pure ice. Callisto's ancient surface is completely covered by large impact craters: The brightest features seen on Callisto in this image were discovered by the Voyager spacecraft in 1979 to be bright craters, like those on our Moon. In contrast, Europa's young surface is covered by a wild tapestry of ridges, chaotic terrain and only a handful of large craters.

    Recent data from the magnetometer carried by the Galileo spacecraft, which has been in orbit around Jupiter since 1995, indicate the presence of conducting fluid, most likely salty water, inside both worlds.

    Scientists are eager to discover whether the surface of Saturn's Titan resembles that of Callisto or Europa, or whether it is entirely different when Cassini finally reaches its destination in 2004.

    Cassini is a cooperative project of NASA, the European Space Agency and

  14. Preliminary studies on the planetary entry to Jupiter by aerocapture technique

    NASA Astrophysics Data System (ADS)

    Aso, Shigeru; Yasaka, Tetsuo; Hirayama, Hiroshi; Poetro, Ridanto Eko; Hatta, Shinji

    2006-10-01

    Preliminary studies on the planetary entry to Jupiter by aerocapture technique are studied in order to complete technological challenges to deliver scientific probe with low cost and smaller mass of the spacecraft to Jupiter. Jupiter aerocapture corridor determination based on maximum deceleration limit of 5g (lower corridor) and aerocapture capability (upper corridor) at Jupiter are carefully considered and calculated. The results show about 1700 m/s of saving velocity due to aerocapture could be possible in some cases for the spacecraft to be captured by Jovian gravitational field. However, the results also show that Jovian aerocapture is not available in some cases. Hence, careful selection is needed to realize Jovian aerocapture. Also the numerical simulation of aerodynamic heating to the spacecraft has been conducted. DSMC method is used for the simulation of flow fields around the spacecraft. The transient changes of drag due to Jovian atmosphere and total heat loads to the spacecraft are obtained. The results show that the estimated heat loads could be within allowable amount heat load when some ablation heat shield technique is applied.

  15. Preliminary studies on the planetary entry to Jupiter by aerocapture technique

    NASA Astrophysics Data System (ADS)

    Aso, Shigeru; Yasaka, Tetsuo; Hirayama, Hiroshi; Eko Poetro, Ridanto; Hatta, Shinji

    2003-11-01

    Preliminary studies on the planetary entry to Jupiter by aerocapture technique are studied in order to complete technological challenges to deliver scientific probe with low cost and smaller mass of the spacecraft to Jupiter. Jupiter aerocapture corridor determination based on maximum deceleration limit of 5g (lower corridor) and aerocapture capability (upper corridor) at Jupiter are carefully considered and calculated. The results show about 1700 m/s of saving velocity due to aerocapture could be possible in some cases for the spacecraft to be captured by Jovian gravitational field. However, the results also show that Jovian aerocapture is not available in some cases. Hence, careful selection is needed to realise Jovian aerocapture. Also the numerical simulation of aerodynamic heating to the spacecraft has been conducted. DSMC method is used for the simulation of flow fields around the spacecraft. The transient changes of drag due to Jovian atmosphere and total heat loads to the spacecraft are obtained. The results show the estimated heat loads could be within allowable amount heat load when some ablation heat shield technique is applied.

  16. Galileo and the Interpretation of the Bible

    NASA Astrophysics Data System (ADS)

    Carroll, William E.

    Galileo's understanding of the relationship between science and the Bible has frequently been celebrated as anticipating a modern distinction between the essentially religious nature of scripture and the claims of the natural sciences. Galileo's reference to the remarks of Cardinal Baronius, that the Bible teaches one how to go to heaven and not how the heavens go, has been seem as emblematic of his commitment to the distinction between the Book of Nature and the Book of Scripture. This essay argues that, contrary to the common view, Galileo shares with the theologians of the Inquisition the same fundamental principles of biblical interpretation: principles which include traditional scriptural hermeneutics enunciated by Augustine and Aquinas, as well as those characteristic of Counter-Reformation Catholicism. Although Galileo argues that one should not begin with biblical passages in order to discover truths about nature, he does think that the Bible contains scientific truths and that it is the function of wise interpreters to discover these truths. The dispute with the theologians of the Inquisition occurred because they thought that it was obviously true scientifically that the earth did not move and, on the basis of this view, they read the Bible as revealing the same thing. They reached this conclusion because, like Galileo, they thought that the Bible contained truths about nature. Of course, what these theologians accepted as scientifically true, Galileo denied.

  17. Popular perceptions of Galileo

    NASA Astrophysics Data System (ADS)

    Sobel, Dava

    2010-01-01

    Among the most persistent popular misperceptions of Galileo is the image of an irreligious scientist who opposed the Catholic Church and was therefore convicted of heresy-was even excommunicated, according to some accounts, and denied Christian burial. In fact, Galileo considered himself a good Catholic. He accepted the Bible as the true word of God on matters pertaining to salvation, but insisted Scripture did not teach astronomy. Emboldened by his discovery of the Medicean Moons, he took a stand on Biblical exegesis that has since become the official Church position.

  18. Characterization of Jupiter's Atmosphere from Galileo and Earth-Based Observations During the Ganymede-1 and Ganymede-2 Orbit Encounters

    NASA Astrophysics Data System (ADS)

    Orton, G.; Fisher, B.; Ortiz, J. L.; Yanamandra-Fisher, P.; Rages, K.; Howell, R.; Klebe, D.; Stencel, R.; Drossart, P.; Lecacheux, J.; Colas, F.; Frappa, E.; Hernandez, C.; Parker, D.; Miyazaki, I.; Stewart, S.; Stansberry, J.; Spencer, J.; Golisch, W.; Griep, D.; Hainaut, M.-C.; Joseph, R.; Kaminski, C.; Banjevic, M.; Connor, C.; Hinkley, S.; Marinova, M.; Marriage, B.; Dobrea, E. Noe

    1996-09-01

    Galileo remote sensing data are examined in the context of an extensive set of earth-based observations supporting the Ganymede-1 and Ganymede-2 encounters. Movies of the Great Red Spot (GRS) in reflected sunlight, show large-scale flow; for example, the circular feature northwest of the GRS during G1 was one of several high-altitude systems moving westward with respect to the GRS. The southern part of the clear band surrounding the GRS was narrower at 5 mu m than 8.57 mu m, suggesting more cloud cover at depth than at the NH_3 condensation level; this region was also warmer in the troposphere. High-altitude particles were found in the flow pattern ``trailing'' the GRS. The real-time NIMS G1 spectra sampled a region only moderately bright at 5-mu m, not a classical ``hot spot''. Synoptic middle-infrared spectra of this region complement NIMS spectra of the deep troposphere by constraining abundances of NH_3 and PH_3 at higher altitudes. The southern part of the North Equatorial Belt, observed by both NIMS spectra and PPR radiometry, was very active, generating classical bright ``plumes'' and dark ovals (``barges'') for the first time in many months. A long-term program will continue to observe potential targets for the Galileo's atmospheric investigation.

  19. BOOK REVIEW: Galileo's Muse: Renaissance Mathematics and the Arts

    NASA Astrophysics Data System (ADS)

    Peterson, Mark; Sterken, Christiaan

    2013-12-01

    Galileo's Muse is a book that focuses on the life and thought of Galileo Galilei. The Prologue consists of a first chapter on Galileo the humanist and deals with Galileo's influence on his student Vincenzo Viviani (who wrote a biography of Galileo). This introductory chapter is followed by a very nice chapter that describes the classical legacy: Pythagoreanism and Platonism, Euclid and Archimedes, and Plutarch and Ptolemy. The author explicates the distinction between Greek and Roman contributions to the classical legacy, an explanation that is crucial for understanding Galileo and Renaissance mathematics. The following eleven chapters of this book arranged in a kind of quadrivium, viz., Poetry, Painting, Music, Architecture present arguments to support the author's thesis that the driver for Galileo's genius was not Renaissance science as is generally accepted but Renaissance arts brought forth by poets, painters, musicians, and architects. These four sets of chapters describe the underlying mathematics in poetry, visual arts, music and architecture. Likewise, Peterson stresses the impact of the philosophical overtones present in geometry, but absent in algebra and its equations. Basically, the author writes about Galileo, while trying to ignore the Copernican controversy, which he sees as distracting attention from Galileo's scientific legacy. As such, his story deviates from the standard myth on Galileo. But the book also looks at other eminent characters, such as Galileo's father Vincenzo (who cultivated music and music theory), the painter Piero della Francesca (who featured elaborate perspectives in his work), Dante Alighieri (author of the Divina Commedia), Filippo Brunelleschi (who engineered the dome of the Basilica di Santa Maria del Fiore in Florence, Johannes Kepler (a strong supporter of Galileo's Copernicanism), etc. This book is very well documented: it offers, for each chapter, a wide selection of excellent biographical notes, and includes a fine

  20. The response of Galileo aft cover components to laser radiation

    NASA Technical Reports Server (NTRS)

    Metzger, J. W.

    1982-01-01

    The aft region of the Galileo probe will be subjected to severe heat transfer rates dominated by the radiation contributions. To assess the response of several vehicle aft region components to thermal radiation, tests employing a 10 KW CO2 laser were conducted. The experiments evaluated the annulus/aft cover interface, the umbilical feedthrough assembly and the mortar cover seal assembly. Experimental evidence of the response of the phenolic nylon heatshield and quantitative measures of its effect on gap geometries of several vehicle components were acquired. In addition, qualitative measures of the survivability of the irradiated components were obtained.

  1. Jupiter Eruptions

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on the image for high resolution image of Nature Cover

    Detailed analysis of two continent-sized storms that erupted in Jupiter's atmosphere in March 2007 shows that Jupiter's internal heat plays a significant role in generating atmospheric disturbances. Understanding these outbreaks could be the key to unlock the mysteries buried in the deep Jovian atmosphere, say astronomers.

    This visible-light image is from NASA's Hubble Space Telescope taken on May 11, 2007. It shows the turbulent pattern generated by the two plumes on the upper left part of Jupiter.

    Understanding these phenomena is important for Earth's meteorology where storms are present everywhere and jet streams dominate the atmospheric circulation. Jupiter is a natural laboratory where atmospheric scientists study the nature and interplay of the intense jets and severe atmospheric phenomena.

    According to the analysis, the bright plumes were storm systems triggered in Jupiter's deep water clouds that moved upward in the atmosphere vi gorously and injected a fresh mixture of ammonia ice and water about 20 miles (30 kilometers) above the visible clouds. The storms moved in the peak of a jet stream in Jupiter's atmosphere at 375 miles per hour (600 kilometers per hour). Models of the disturbance indicate that the jet stream extends deep in the buried atmosphere of Jupiter, more than 60 miles (approximately100 kilometers) below the cloud tops where most sunlight is absorbed.

  2. Cassini imaging observations of Jupiter's rings

    NASA Astrophysics Data System (ADS)

    Throop, H. B.; Porco, C. C.; West, R. A.; Burns, J. A.; Showalter, M. R.; Nicholson, P. D.

    2003-05-01

    Cassini's Imaging Science Subsystem (ISS) instrument took nearly 1200 images of the Jupiter ring system during the spacecraft's 6-month encounter with Jupiter. These observations constitute the most complete dataset of the ring taken by a single instrument, both in phase angle (0.5 - 120° at seven angles) and wavelength (0.45 - 0.93 μ {m} through eight filters). The main ring was detected in all targeted exposures; the halo and gossamer rings were too faint to be observed above the planet's stray light. The optical depth and radial profile of the main ring are unchanged from that of previous studies. No evidence for broad asymmetries within the ring were found; we did identify possible evidence for 1000 km-scale clumps within the ring. Cassini observations at a phase angle of 64° place an upper limit on the ring's full thickness of 80 km. We have combined the Cassini ISS and VIMS observations with those from Voyager, HST, Keck, Galileo, Palomar, and IRTF. We have fit the entire suite of data using a photometric model that includes microscopic silicate dust grains as well as larger, long-lived `parent bodies' that engender this dust. Our dust grain model considers a range of spheroidal particle shapes computed using the T-matrix method (Mishchenko & Travis 1998). Our best-fit model to all the data indicates an optical depth of small particles of τ s = 4.7x 10-6 and large bodies τ l = 1.3x 10-6. The dust is concentrated about a radius of 15 μ {m}. The data are fit significantly better using non-spherical rather than spherical dust grains. The parent bodies themselves must be very red from 0.4--2.5 μ {m} and may have absorption features near 0.9 μ {m} and 2.2 μ {m}.

  3. Jupiter cloud composition, stratification, convection, and wave motion: a view from new horizons.

    PubMed

    Reuter, D C; Simon-Miller, A A; Lunsford, A; Baines, K H; Cheng, A F; Jennings, D E; Olkin, C B; Spencer, J R; Stern, S A; Weaver, H A; Young, L A

    2007-10-12

    Several observations of Jupiter's atmosphere made by instruments on the New Horizons spacecraft have implications for the stability and dynamics of Jupiter's weather layer. Mesoscale waves, first seen by Voyager, have been observed at a spatial resolution of 11 to 45 kilometers. These waves have a 300-kilometer wavelength and phase velocities greater than the local zonal flow by 100 meters per second, much higher than predicted by models. Additionally, infrared spectral measurements over five successive Jupiter rotations at spatial resolutions of 200 to 140 kilometers have shown the development of transient ammonia ice clouds (lifetimes of 40 hours or less) in regions of strong atmospheric upwelling. Both of these phenomena serve as probes of atmospheric dynamics below the visible cloud tops.

  4. Planetary Wind Determination by Doppler Tracking of a Small Entry Probe Network

    NASA Astrophysics Data System (ADS)

    Atkinson, D. H.; Asmar, S.; Lazio, J.; Preston, R. A.

    2017-12-01

    To understand the origin and chemical/dynamical evolution of planetary atmospheres, measurements of atmospheric chemistries and processes including dynamics are needed. In situ measurements of planetary winds have been demonstrated on multiple occasions, including the Pioneer multiprobe and Venera missions to Venus, and the Galileo/Jupiter and Huygens/Titan probes. However, with the exception of Pioneer Venus, the retrieval of the zonal (east-west) wind profile has been limited to a single atmospheric slice. significantly improved understanding of the global dynamics requires sampling of multiple latitudes, times of day, and seasons. Simultaneous tracking of a small network of probes would enable measurements of spatially distributed winds providing a substantially improved characterization of a planet's global atmospheric circulation. Careful selection of descent locations would provide wind measurements at latitudes receiving different solar insolations, longitudes reflecting different times of day, and different seasons if both hemispheres are targeted. Doppler wind retrievals are limited by the stability of the probe and carrier spacecraft clocks, and must be equipped with an ultrastable oscillator, accelerometers for reconstructing the probe entry trajectory, and pressure / temperature sensors for determination of descent speed. A probe were equipped with both absolute and dynamic pressure sensors can measure planet center-relative and atmosphere-relative descent speeds, enabling the measurement of vertical winds from convection or atmospheric waves. Possible ambiguities arising from the assumption of no north-south winds could be removed if the probe were simultaneously tracked from the carrier spacecraft as well as from the Earth or a second spacecraft. The global circulation of an atmosphere comprising waves and flows that vary with location and depth is inherently tied to the thermal, chemical, and energy structure of the atmosphere. Wind measurements

  5. The Galileo Legend as Scientific Folklore.

    ERIC Educational Resources Information Center

    Lessl, Thomas M.

    1999-01-01

    Examines the various ways in which the legend of Galileo's persecution by the Roman Catholic Church diverges from scholarly readings of the Galileo affair. Finds five distinct themes of scientific ideology in the 40 accounts examined. Assesses the part that folklore plays in building and sustaining a professional ideology for the modern scientific…

  6. GPS and Galileo: Friendly Foes? (Walker Paper, Number 12)

    DTIC Science & Technology

    2008-05-01

    their data, others employ different techniques. US defense contractor Lockheed Martin developed an anti-jam GPS receiver in 2000 for its joint air...26. Jolis , “Problems Run Rampant for Galileo Project.” 27. Ibid. 28. “Galileo, Involving Europe,” 23. 29. Ibid., 16. 30. Ibid., 17. Assuming that by...Told to Put House in Order.” 38. EC, “Galileo, Involving Europe,” 5. 39. “Galileo Adrift in European Outer Space.” 40. Jolis , “Problems Run Rampant

  7. A versatile microprocessor-controlled hybrid receiver. [with firmware control for operation over large frequency uncertainty

    NASA Technical Reports Server (NTRS)

    Grant, T. L.

    1978-01-01

    A hybrid receiver has been designed for the Galileo Project. The receiver, located on the Galileo Orbiter, will autonomously acquire and track signals from the first atmospheric probe of Jupiter as well as demodulate, bit-synchronize, and buffer the telemetry data. The receiver has a conventional RF and LF front end but performs multiple functions digitally under firmware control. It will be a self-acquiring receiver that operates under a large frequency uncertainty; it can accommodate different modulation types, bit rates, and other parameter changes via reprogramming. A breadboard receiver and test set demonstrate a preliminary version of the sequential detection process and verify the hypothesis that a fading channel does not reduce the probability of detection.

  8. Galileo Science Writers' Briefing. Part 1

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This NASA Kennedy video production presents Part 1 of a press conference held at JPL on August 8, 1989. The briefing in its entirety covers the Galileo Project's mission design from launch to completion in 1997 and is moderated by JPL Public Information Mgr. Robert Macmillan. Part 1 of the 3 part video series includes presentations by Richard J. Spehalski (Galileo Project Manager) and Clayne M. Yeates (Acting Science Mission Design Manager). Mr. Spehalski's presentation includes actual footage of spacecraft preparations at Kennedy Space Center and slides of mission timelines. Dr. Yeates discusses the Galileo mission in chronological order and includes slides of the interplanetary trajectory, encounter geometry, propellant margins vs. launch date, and planned earth images.

  9. Jupiter

    NASA Astrophysics Data System (ADS)

    Bagenal, Fran; Dowling, Timothy E.; McKinnon, William B.

    2007-03-01

    Preface; 1. Introduction F. Bagenal, T. E. Dowling and W. B. McKinnon; 2. The origin of Jupiter J. I. Lunine, A. Corandini, D. Gautier, T. C. Owen and G. Wuchterl; 3. The interior of Jupiter T. Guillot, D. J. Stevenson, W. B. Hubbard and D. Saumon; 4. The composition of the atmosphere of Jupiter F. W. Taylor, S. K. Atreya, Th. Encrenaz, D. M. Hunten, P. G. J. Irwin and T. C. Owen; 5. Jovian clouds and haze R. A. West, K. H. Baines, A. J. Friedson, D. Banfield, B. Ragent and F. W. Taylor; 6. Dynamics of Jupiter's atmosphere A. P. Ingersoll, T. E. Dowling, P. J. Gierasch, G. S. Orton, P. L. Read, A. Sánchez-Lavega, A. P. Showman, A. A. Simon-Miller and A. R. Vasavada; 7. The stratosphere of Jupiter J. I. Moses, T. Fouchet, R. V. Yelle, A. J. Friedson, G. S. Orton, B. Bézard, P. Drossart, G. R. Gladstone, T. Kostiuk and T. A. Livengood; 8. Lessons from Shoemaker-Levy 9 about Jupiter and planetary impacts J. Harrington, I. de Pater, S. H. Brecht, D. Deming, V. Meadows, K. Zahnle and P. D. Nicholson; 9. Jupiter's thermosphere and ionosphere R. V. Yelle and S. Miller; 10. Jovian dust: streams, clouds and rings H. Krüger, M. Horányi, A. V. Krivov and A. L. Graps; 11. Jupiter's ring-moon system J. A. Burns, D. P. Simonelli, M. R. Showalter, D. P. Hamilton, C. C. Porco, H. Throop and L. W. Esposito; 12. Jupiter's outer satellites and trojans D. C. Jewitt, S. Sheppard and C. Porco; 13. Interior composition, structure and dynamics of the Galilean satellites G. Schubert, J. D. Anderson, T. Spohn and W. B. McKinnon; 14. The lithosphere and surface of Io A. S. McEwen, L. P. Keszthelyi, R. Lopes, P. M. Schenk and J. R. Spencer; 15. Geology of Europa R. Greeley, C. F. Chyba, J. W. Head III, T. B. McCord, W. B. McKinnon, R. T. Pappalardo and P. Figueredo; 16. Geology of Ganymede R. T. Pappalardo, G. C. Collins, J. W. Head III, P. Helfenstein, T. B. McCord, J. M. Moore, L. M. Procktor, P. M. Shenk and J. R. Spencer; 17. Callisto J. M. Moore, C. R. Chapman. E. B. Bierhaus, R

  10. Phosphine absorption in the 5-micron window of Jupiter

    NASA Technical Reports Server (NTRS)

    Beer, R.; Taylor, F. W.

    1979-01-01

    Since the original suggestion by Gillett et al. (1969) it has generally been assumed that the region of partial transparency near 5 micron in Jupiter's atmosphere (the 5-micron window) is bounded by the nu sub 4 NH3 at 6.1 micron and the nu sub 3 CH4 band at 3.3 micron. New measurements of Jupiter and of laboratory phosphine (PH3) samples show that PH3 is a significant contributor to the continuum opacity in the window and in fact defines its short-wavelength limit. This has important implications for the use of 5-micron observations as a means to probe the deep atmospheric structure of Jupiter. The abundance of PH3 which results from a comparison of Jovian and laboratory spectra is about 3 to 5 cm-am. This is five to eight times less than that found by Larson et al. (1977) in the same spectral region, but is in good agreement with the result of Tokunaga et al. (1979) from 10-micron observations.

  11. Combining VPL tools with NEMESIS to Probe Hot Jupiter Exoclimes for JWST

    NASA Astrophysics Data System (ADS)

    Afrin Badhan, Mahmuda; Kopparapu, Ravi Kumar; Domagal-Goldman, Shawn; Hébrard, Eric; Deming, Drake; Barstow, Joanna; Claire, Mark; Irwin, Patrick GJ; Mandell, Avi; Batalha, Natasha; Garland, Ryan

    2016-06-01

    Hot Jupiters are the most readily detected exoplanets by present technology. Since the scorching temperatures (>1000K) from high stellar irradiation levels do not allow for cold traps to form in their atmospheres, we can constrain their envelope’s elemental composition with greater confidence compared to our own Jupiter. Thus highly irradiated giant exoplanets hold keys to advancing our understanding of the origin and evolution of planetary systems.Constraining the atmospheric constituents through retrieval methods demands high-precision spectroscopic measurements and robust models to match those measurements. The former will be provided by NASA’s upcoming missions such as JWST. We meet the latter by producing self-consistent retrievals. Here I present modeling results for the temperature structure and photochemical gas abundances of water, methane, carbon dioxide and carbon monoxide, in the dayside atmospheres of selected H2-dominated hot Jupiters observed by present space missions and JWST/NIRSpec simulations, for two [C]/[O] metallicity ratios.The photochemical models were computed using a recently upgraded version of the NASA Astrobiology Institute’s VPL/Atmos software suite. For the radiative transfer and retrieval work, I have utilized a combination of two different numerical approaches in the extensively validated NEMESIS Atmospheric Retrieval Algorithm (Oxford Planetary Group). I have also represented the temperature profile in an analytical radiative equilibrium form to ascertain their physical plausibility. Finally, high-temperature (T> 1000K) spectroscopic opacity databases are slowly but continually being improved. Since this carries the potential of impacting irradiated atmospheric models quite significantly, I also talk about the potential observable impact of such improvements on the retrieval results.

  12. Tracking Advanced Planetary Systems (TAPAS) with HARPS-N. IV. TYC 3667-1280-1: The most massive red giant star hosting a warm Jupiter

    NASA Astrophysics Data System (ADS)

    Niedzielski, A.; Villaver, E.; Nowak, G.; Adamów, M.; Maciejewski, G.; Kowalik, K.; Wolszczan, A.; Deka-Szymankiewicz, B.; Adamczyk, M.

    2016-05-01

    Context. We present the latest result of the TAPAS project that is devoted to intense monitoring of planetary candidates that are identified within the PennState-Toruń planet search. Aims: We aim to detect planetary systems around evolved stars to be able to build sound statistics on the frequency and intrinsic nature of these systems, and to deliver in-depth studies of selected planetary systems with evidence of star-planet interaction processes. Methods: The paper is based on precise radial velocity measurements: 13 epochs collected over 1920 days with the Hobby-Eberly Telescope and its High-Resolution Spectrograph, and 22 epochs of ultra-precise HARPS-N data collected over 961 days. Results: We present a warm-Jupiter (Teq = 1350 K, m2 sin I = 5.4 ± 0.4 MJ) companion with an orbital period of 26.468 days in a circular (e = 0.036) orbit around a giant evolved (log g = 3.11 ± 0.09, R = 6.26 ± 0.86 R⊙) star with M⋆ = 1.87 ± 0.17 M⊙. This is the most massive and oldest star found to be hosting a close-in giant planet. Its proximity to its host (a = 0.21 au) means that the planet has a 13.9 ± 2.0% probability of transits; this calls for photometric follow-up study. Conclusions: This massive warm Jupiter with a near circular orbit around an evolved massive star can help set constraints on general migration mechanisms for warm Jupiters and, given its high equilibrium temperature, can help test energy deposition models in hot Jupiters. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto

  13. Multiple-wavelength sensing of Jupiter during the Juno mission's first perijove passage

    NASA Astrophysics Data System (ADS)

    Orton, G. S.; Momary, T.; Ingersoll, A. P.; Adriani, A.; Hansen, C. J.; Janssen, M.; Arballo, J.; Atreya, S. K.; Bolton, S.; Brown, S.; Caplinger, M.; Grassi, D.; Li, C.; Levin, S.; Moriconi, M. L.; Mura, A.; Sindoni, G.

    2017-05-01

    We compare Jupiter observations made around 27 August 2016 by Juno's JunoCam, Jovian Infrared Auroral Mapper (JIRAM), MicroWave Radiometer (MWR) instruments, and NASA's Infrared Telescope Facility. Visibly dark regions are highly correlated with bright areas at 5 µm, a wavelength sensitive to gaseous NH3 gas and particulate opacity at p ≤5 bars. A general correlation between 5-µm and microwave radiances arises from a similar dependence on NH3 opacity. Significant exceptions are present and probably arise from additional particulate opacity at 5 µm. JIRAM spectroscopy and the MWR derive consistent 5-bar NH3 abundances that are within the lower bounds of Galileo measurement uncertainties. Vigorous upward vertical transport near the equator is likely responsible for high NH3 abundances and with enhanced abundances of some disequilibrium species used as indirect indicators of vertical motions.

  14. Jupiter Eruptions

    NASA Image and Video Library

    2008-01-25

    NASA Hubble Space Telescope shows detailed analysis of two continent-sized storms that erupted in Jupiter atmosphere in March 2007 shows that Jupiter internal heat plays a significant role in generating atmospheric disturbances .

  15. Galileo infrared imaging spectrometry measurements at the Moon

    NASA Technical Reports Server (NTRS)

    Mccord, Thomas B.; Soderblom, Larry A.; Carlson, Robert W.; Fanale, Fraser P.; Lopes-Gautier, Rosaly; Ocampo, Adriano; Forsythe, Jennifer; Campbell, Bruce; Granahan, James C.; Smythe, W. D.

    1994-01-01

    Imaging spectrometer observations were made of the surface of the Moon during the December 1990 flyby of the Earth-Moon system by the Galileo spacecraft. This article documents this data set and presents analyses of some of the data. The near infrared mapping spectrometer (NIMS) investigation obtained 17 separate mosaics of the Moon in 408 spectral channels between about 0.7 and 5.2 micrometers. The instrument was originally designed to operate in orbit about Jupiter and therefore saturates at many spectral channels for most measurement situations at 1 AU. However, sufficient measurements were made of the Moon to verify the proper operation of the instrument and to demonstrate its capabilities. Analysis of these data show that the NIMS worked as expected and produced measurements consistent with previous ground-based telescopic studies. These are the first imaging spectrometer measurements of this type from space for the Moon, and they illustrate several major points concerning this type of observation and about the NIMS capabilities specifically. Of major importance are the difference between framing and scanning instruments and the effects of the spacecraft and the scan platform on the performance of such and experiment. The science return of subsequent NIMS and other investigation measurements will be significantly enhanced by the experience and results gained.

  16. Galileo as a Patient

    NASA Astrophysics Data System (ADS)

    Thiene, G.; Basso, C.

    2011-06-01

    The clinical history of Galileo, as it turns out from hundred letters he wrote and received, is so informative as to make it possible to delineate the natural history of his body. It is well known that he suffered from recurrent episodes of fever (terzana) since 1606, when he was in Florence as guest of Cristina Lorena for education of the future granduke Cosimo II. By reading signs and symptoms he reported several times, it is clear that he had various diseases (rheumatism, haemorroids, kidney stones, arrhythmias). When in December 1632, at the age of 68, Galileo delayed his journey to Rome claiming sickness, Pope Urban VIII committed 3 physicians to examine him. They reported that Galileo was affected by "pulsus intermittens" (most probably atrial fibrillation), large hernia at risk of rupture, dizziness, diffuse pain, hypochondriacal melancholy as a consequence of the "declining age". It was in February 1637 that he started to have eye disease with lacrimation and progressive loss of sight, which in 10 months led to loose at first the right eye and then also the left one. According to the consultation, asked at distance to Giovanni Trullio on February 1538 in Rome, the diagnosis of blindness due to bilateral uveitis came out. Keeping with the current medicine, the illnes might have been explained in the setting of an immune rheumatic disease (Reiter's syndrome). The cause of Galileo's death, which occurred on 8 January 1642 at the age of 78, is not known since it was not submitted to autopsy. We can speculate cardiac death due to pneumonia complicating congestive heart failure.

  17. The Block V Receiver fast acquisition algorithm for the Galileo S-band mission

    NASA Technical Reports Server (NTRS)

    Aung, M.; Hurd, W. J.; Buu, C. M.; Berner, J. B.; Stephens, S. A.; Gevargiz, J. M.

    1994-01-01

    A fast acquisition algorithm for the Galileo suppressed carrier, subcarrier, and data symbol signals under low data rate, signal-to-noise ratio (SNR) and high carrier phase-noise conditions has been developed. The algorithm employs a two-arm fast Fourier transform (FFT) method utilizing both the in-phase and quadrature-phase channels of the carrier. The use of both channels results in an improved SNR in the FFT acquisition, enabling the use of a shorter FFT period over which the carrier instability is expected to be less significant. The use of a two-arm FFT also enables subcarrier and symbol acquisition before carrier acquisition. With the subcarrier and symbol loops locked first, the carrier can be acquired from an even shorter FFT period. Two-arm tracking loops are employed to lock the subcarrier and symbol loops parameter modification to achieve the final (high) loop SNR in the shortest time possible. The fast acquisition algorithm is implemented in the Block V Receiver (BVR). This article describes the complete algorithm design, the extensive computer simulation work done for verification of the design and the analysis, implementation issues in the BVR, and the acquisition times of the algorithm. In the expected case of the Galileo spacecraft at Jupiter orbit insertion PD/No equals 14.6 dB-Hz, R(sym) equals 16 symbols per sec, and the predicted acquisition time of the algorithm (to attain a 0.2-dB degradation from each loop to the output symbol SNR) is 38 sec.

  18. A dialogue in paradise: John Milton's visit with Galileo

    NASA Astrophysics Data System (ADS)

    Henderson, Hugh

    2001-03-01

    According to his 1644 speech, ``Areopagitica,'' the English poet John Milton visited Galileo in his villa in Arcetri in 1638 while Galileo was under house arrest for offending the Church authorities. This article explores the influences Galileo may have had on Milton's writing as a result of the presumed meeting between the two, and discusses some similarities between Galileo's Starry Messenger (1610) and Dialogue Concerning the Two Chief World Systems (1632) and Milton's Paradise Lost (1667). Teachers and students of physics, astronomy, and li!!terature can benefit from studying connections such as these between science and the arts.

  19. Thermo-optical vacuum testing of Galileo In-Orbit Validation laser retroreflectors

    NASA Astrophysics Data System (ADS)

    Dell'Agnello, S.; Boni, A.; Cantone, C.; Ciocci, E.; Contessa, S.; Delle Monache, G.; Lops, C.; Martini, M.; Patrizi, G.; Porcelli, L.; Salvatori, L.; Tibuzzi, M.; Intaglietta, N.; Tuscano, P.; Mondaini, C.; Maiello, M.; Doyle, D.; García-Prieto, R.; Navarro-Reyes, D.

    2016-06-01

    The Galileo constellation is a space research and development program of the European Union to help navigate users all over the world. The Galileo IOV (In-Orbit Validation) are the first test satellites of the Galileo constellation and carry satellite laser retroreflectors as part of their payload systems for precision orbit determination and performance assessment. INFN-LNF SCF_Lab (Satellite/lunar/GNSS laser ranging/altimetry and Cube/microsat Characterization Facilities Laboratory) has been performing tests on a sample of the laser array segment under the Thermo-optical vacuum testing of Galileo IOV laser retro-reflectors of Galileo IOV LRA project, as defined in ESA-INFN Contract No. 4000108617/13/NL/PA. We will present the results of FFDP (Far Field Diffraction Pattern) and thermal relaxation times measurements in relevant space conditions of Galileo IOV CCRs (Cube Corner Retroreflectors) provided by ESA-ESTEC. A reference for the performance of laser ranging on Galileo satellites is the FFDP of a retroreflector in its design specifications and a Galileo retroreflector, in air and isothermal conditions, should have a minimum return intensity within the range [ 0.55 ×106m2- 2.14 ×106m2 ] (ESA-INFN, 2013). Measurements, performed in SCF_Lab facility, demonstrated that the 7 Galileo IOV laser retroreflectors under test were compliant with design performance expectations (Porcelli et al., 2015). The kind of tests carried out for this activity are the first performed on spare Galileo IOV hardware, made available after the launch of the four Galileo IOV satellites (2011 and 2012), which were the operational core of the constellation. The characterisation of the retroreflectors against their design requirements is important because LRAs (Laser Retroreflector Arrays) will be flown on all Galileo satellites.

  20. Preentry communications study. Outer planets atmospheric entry probe

    NASA Technical Reports Server (NTRS)

    Hinrichs, C. A.

    1976-01-01

    A pre-entry communications study is presented for a relay link between a Jupiter entry probe and a spacecraft in hyperbolic orbit. Two generic communications links of interest are described: a pre-entry link to a spun spacecraft antenna, and a pre-entry link to a despun spacecraft antenna. The propagation environment of Jupiter is defined. Although this is one of the least well known features of Jupiter, enough information exists to reasonably establish bounds on the performance of a communications link. Within these bounds, optimal carrier frequencies are defined. The next step is to identify optimal relative geometries between the probe and the spacecraft. Optimal trajectories are established for both spun and despun spacecraft antennas. Given the optimal carrier frequencies, and the optimal trajectories, the data carrying capacities of the pre-entry links are defined. The impact of incorporating pre-entry communications into a basic post entry probe is then assessed. This assessment covers the disciplines of thermal control, power source, mass properties and design layout. A conceptual design is developed of an electronically despun antenna for use on a Pioneer class of spacecraft.

  1. Jupiter Wave

    NASA Image and Video Library

    2015-10-13

    Scientists spotted a rare wave in Jupiter North Equatorial Belt that had been seen there only once before in this false-color close-up from NASA Hubble Telescope. In Jupiter's North Equatorial Belt, scientists spotted a rare wave that had been seen there only once before. It is similar to a wave that sometimes occurs in Earth's atmosphere when cyclones are forming. This false-color close-up of Jupiter shows cyclones (arrows) and the wave (vertical lines). http://photojournal.jpl.nasa.gov/catalog/PIA19659

  2. Stellar occultation spikes as probes of atmospheric structure and composition. [for Jupiter

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Veverka, J.

    1976-01-01

    The characteristics of spikes observed in occultation light curves of Beta Scorpii by Jupiter are discussed in terms of the gravity-gradient model. The occultation of Beta Sco by Jupiter on May 13, 1971, is reviewed, and the gravity-gradient model is defined as an isothermal atmosphere of constant composition in which the refractivity is a function only of the radial coordinate from the center of refraction, which is assumed to lie parallel to the local gravity gradient. The derivation of the occultation light curve in terms of the atmosphere, the angular diameter of the occulted star, and the occultation geometry is outlined. It is shown that analysis of the light-curve spikes can yield the He/H2 concentration ratio in a well-mixed atmosphere, information on fine-scale atmospheric structure, high-resolution images of the occulted star, and information on ray crossing. Observational limits are placed on the magnitude of horizontal refractivity gradients, and it is concluded that the spikes are the result of local atmospheric density variations: atmospheric layers, density waves, or turbulence.

  3. Voyager telecommunications - The broadcast from Jupiter

    NASA Technical Reports Server (NTRS)

    Edelson, R. E.; Madsen, B. D.; Davis, E. K.; Garrison, G. W.

    1979-01-01

    The means by which the data collected by the Voyager 1 mission to Jupiter were returned to earth are presented. Radio links between the earth and the spacecraft are used for the transmission of both imaging and nonimaging telemetry from the spacecraft and commands from the earth and for radiometric observations of the spacecraft and its environment. Features which have lead to vast improvements in the capability of the Voyager telecommunications system over that of previous space probes include the use of X-band rather than S-band telemetry, a dual power X-band traveling wave tube amplifier, a 3.7 m spacecraft antenna and a single channel telemetry system with concatenated coding. Communications equipment at the three ground complexes of the Deep Space Network for telemetry reception includes 64 m steerable antennas, cryogenic maser preamplifiers and a phase-lock loop receiver. Voyager 1 has met or exceeded all of its telecommunications requirements, providing a 98% data return and a total of 2 x 10 to the 11th data bits during the Jupiter encounter.

  4. Galilean Satellite Surface Non-Ice Constituents: New Results from the Cassini/Huygens VIMS Jupiter Flyby in the Context of the Galileo NIMS Results

    NASA Technical Reports Server (NTRS)

    McCord, T. B.; Brown, R.; Baines, K.; Bellucci, G.; Bibring, J.-P.; Buratti, B.; Capaccioni, F.; Cerroni, P.; Clark, R.; Coradini, A.

    2001-01-01

    The Cassini mission Visible and Infrared Mapping Spectrometer (VIMS) is currently returning data for the Galilean satellites. Examples of the new satellite data and the initial interpretations will be presented in the context of the Galileo NIMS data and results. Additional information is contained in the original extended abstract.

  5. Galileo's wondrous telescope

    NASA Astrophysics Data System (ADS)

    Cartlidge, Edwin

    2008-06-01

    If you need reminding of just how wrong the great and the good can be, take a trip to the Museum of the History of Science in Florence, Italy. The museum is staging an exhibition entitled "Galileo's telescope - the instrument that changed the world" to mark the 400th anniversary this year of Galileo Galilei's revolutionary astronomical discoveries, which were made possible by the invention of the telescope. At the start of the 17th century, astronomers assumed that all the planets and the stars in the heavens had been identified and that there was nothing new for them to discover, as the exhibition's curator, Giorgio Strano, points out. "No-one could have imagined what wondrous new things were about to be revealed by an instrument created by inserting two eyeglass lenses into the ends of a tube," he adds.

  6. Europa Imaging Highlights during GEM

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During the two year Galileo Europa Mission (GEM), NASA's Galileo spacecraft will focus intensively on Jupiter's intriguing moon, Europa. This montage shows samples of some of the features that will be imaged during eight successive orbits. The images in this montage are in order of increasing orbit from the upper left (orbit 11) to the lower right (orbit 19).

    DESCRIPTIONS AND APPROXIMATE RESOLUTIONSTriple bands and dark spots

    1.6 kilometers/pixelConamara Chaos

    1.6 kilometers/pixelMannan'an Crater

    1.6 kilometers/ pixelCilix

    1.6 kilometers/pixelAgenor Linea and Thrace Macula

    2 kilometers/pixelSouth polar terrain

    2 kilometers/pixelRhadamanthys Linea

    1.6 kilometers/pixelEuropa plume search

    7 kilometers/pixel

    1. Triple bands and dark spots were the focus of some images from Galileo's eleventh orbit of Jupiter. Triple bands are multiple ridges with dark deposits along the outer margins. Some extend for thousands of kilometers across Europa's icy surface. They are cracks in the ice sheet and indicate the great stresses imposed on Europa by tides raised by Jupiter, as well as Europa's neighboring moons, Ganymede and Io. The dark spots or 'lenticulae' are spots of localized disruption.

    2. The Conamara Chaos region reveals icy plates which have broken up, moved, and rafted into new positions. This terrain suggests that liquid water or ductile ice was present near the surface. On Galileo's twelfth orbit of Jupiter, sections of this region with resolutions as high as 10 meters per picture element will be obtained.

    3. Mannann'an Crater is a feature newly discovered by Galileo in June 1996. Color and high resolution images (to 40 meters per picture element) from Galileo's fourteenth orbit of Jupiter will offer a close look at the crater and help characterize how impacts affect the icy surface of this moon.

    4. Cilix, a large mound about 1.5 kilometers high, is the center of Europa's coordinate system. Its concave top and what may be flow

  7. Galileo satellite antenna modeling

    NASA Astrophysics Data System (ADS)

    Steigenberger, Peter; Dach, Rolf; Prange, Lars; Montenbruck, Oliver

    2015-04-01

    The space segment of the European satellite navigation system Galileo currently consists of six satellites. Four of them belong to the first generation of In-Orbit Validation (IOV) satellites whereas the other two are Full Operational Capability (FOC) satellites. High-precision geodetic applications require detailed knowledge about the actual phase center of the satellite and receiver antenna. The deviation of this actual phase center from a well-defined reference point is described by phase center offsets (PCOs) and phase center variations (PCVs). Unfortunately, no public information is available about the Galileo satellite antenna PCOs and PCVs, neither for the IOV, nor the FOC satellites. Therefore, conventional values for the IOV satellite antenna PCOs have been adopted for the Multi-GNSS experiment (MGEX) of the International GNSS Service (IGS). The effect of the PCVs is currently neglected and no PCOs for the FOC satellites are available yet. To overcome this deficiency in GNSS observation modeling, satellite antenna PCOs and PCVs are estimated for the Galileo IOV satellites based on global GNSS tracking data of the MGEX network and additional stations of the legacy IGS network. Two completely independent solutions are computed with the Bernese and Napeos software packages. The PCO and PCV values of the individual satellites are analyzed and the availability of two different solutions allows for an accuracy assessment. The FOC satellites are built by a different manufacturer and are also equipped with another type of antenna panel compared to the IOV satellites. Signal transmission of the first FOC satellite has started in December 2014 and activation of the second satellite is expected for early 2015. Based on the available observations PCO estimates and, optionally PCVs of the FOC satellites will be presented as well. Finally, the impact of the new antenna model on the precision and accuracy of the Galileo orbit determination is analyzed.

  8. Structured plasma sheet thinning observed by Galileo and 1984-129

    NASA Technical Reports Server (NTRS)

    Reeves, G. D.; Belian, R. D.; Fritz, T. A.; Kivelson, M. G.; Mcentire, R. W.; Roelof, E. C.; Wilken, B.; Williams, D. J.

    1993-01-01

    On December 8, 1990, the Galileo spacecraft used the Earth for a gravity assist on its way to Jupiter. Its trajectory was such that it crossed geosynchronous orbit at approximately local midnight between 1900 and 2000 UT. At the same time, spacecraft 1984-129 was also located at geosynchronous orbit near local midnight. Several flux dropout events were observed when the two spacecraft were in the near-Earth plasma sheet in the same local time sector. Flux dropout events are associated with plasma sheet thinning in the near-profile of the near-Earth plasma sheet while 1984-129 provided an azimuthal profile. With measurements from these two spacecraft we can distinguish between spatial structures and temporal change. Our observations confirm that the geosynchronous flux dropout events are consistent with plasma sheet thinning which changes the spacecraft's magnetic connection from the trapping region to the more distant plasma sheet. However, for this period, thinning occurred on two spatial and temporal scales. The geosynchronous dropouts were highly localized phenomena of 30 min duration superimposed on a more global reconfiguration of the tail lasting approximately 4 hours.

  9. Three-dimensional modeling of lightning-induced electromagnetic pulses on Venus, Jupiter, and Saturn

    NASA Astrophysics Data System (ADS)

    Pérez-Invernón, F. J.; Luque, A.; Gordillo-Vázquez, F. J.

    2017-07-01

    While lightning activity in Venus is still controversial, its existence in Jupiter and Saturn was first detected by the Voyager missions and later on confirmed by Cassini and New Horizons optical recordings in the case of Jupiter, and recently by Cassini on Saturn in 2009. Based on a recently developed 3-D model, we investigate the influence of lightning-emitted electromagnetic pulses on the upper atmosphere of Venus, Saturn, and Jupiter. We explore how different lightning properties such as total energy released and orientation (vertical, horizontal, and oblique) can produce mesospheric transient optical emissions of different shapes, sizes, and intensities. Moreover, we show that the relatively strong background magnetic field of Saturn can enhance the lightning-induced quasi-electrostatic and inductive electric field components above 1000 km of altitude producing stronger transient optical emissions that could be detected from orbital probes.

  10. Performance Analysis of Several GPS/Galileo Precise Point Positioning Models

    PubMed Central

    Afifi, Akram; El-Rabbany, Ahmed

    2015-01-01

    This paper examines the performance of several precise point positioning (PPP) models, which combine dual-frequency GPS/Galileo observations in the un-differenced and between-satellite single-difference (BSSD) modes. These include the traditional un-differenced model, the decoupled clock model, the semi-decoupled clock model, and the between-satellite single-difference model. We take advantage of the IGS-MGEX network products to correct for the satellite differential code biases and the orbital and satellite clock errors. Natural Resources Canada’s GPSPace PPP software is modified to handle the various GPS/Galileo PPP models. A total of six data sets of GPS and Galileo observations at six IGS stations are processed to examine the performance of the various PPP models. It is shown that the traditional un-differenced GPS/Galileo PPP model, the GPS decoupled clock model, and the semi-decoupled clock GPS/Galileo PPP model improve the convergence time by about 25% in comparison with the un-differenced GPS-only model. In addition, the semi-decoupled GPS/Galileo PPP model improves the solution precision by about 25% compared to the traditional un-differenced GPS/Galileo PPP model. Moreover, the BSSD GPS/Galileo PPP model improves the solution convergence time by about 50%, in comparison with the un-differenced GPS PPP model, regardless of the type of BSSD combination used. As well, the BSSD model improves the precision of the estimated parameters by about 50% and 25% when the loose and the tight combinations are used, respectively, in comparison with the un-differenced GPS-only model. Comparable results are obtained through the tight combination when either a GPS or a Galileo satellite is selected as a reference. PMID:26102495

  11. Performance Analysis of Several GPS/Galileo Precise Point Positioning Models.

    PubMed

    Afifi, Akram; El-Rabbany, Ahmed

    2015-06-19

    This paper examines the performance of several precise point positioning (PPP) models, which combine dual-frequency GPS/Galileo observations in the un-differenced and between-satellite single-difference (BSSD) modes. These include the traditional un-differenced model, the decoupled clock model, the semi-decoupled clock model, and the between-satellite single-difference model. We take advantage of the IGS-MGEX network products to correct for the satellite differential code biases and the orbital and satellite clock errors. Natural Resources Canada's GPSPace PPP software is modified to handle the various GPS/Galileo PPP models. A total of six data sets of GPS and Galileo observations at six IGS stations are processed to examine the performance of the various PPP models. It is shown that the traditional un-differenced GPS/Galileo PPP model, the GPS decoupled clock model, and the semi-decoupled clock GPS/Galileo PPP model improve the convergence time by about 25% in comparison with the un-differenced GPS-only model. In addition, the semi-decoupled GPS/Galileo PPP model improves the solution precision by about 25% compared to the traditional un-differenced GPS/Galileo PPP model. Moreover, the BSSD GPS/Galileo PPP model improves the solution convergence time by about 50%, in comparison with the un-differenced GPS PPP model, regardless of the type of BSSD combination used. As well, the BSSD model improves the precision of the estimated parameters by about 50% and 25% when the loose and the tight combinations are used, respectively, in comparison with the un-differenced GPS-only model. Comparable results are obtained through the tight combination when either a GPS or a Galileo satellite is selected as a reference.

  12. Meteorology of Jupiter's Equatorial Hot Spots and Plumes from Cassini

    NASA Technical Reports Server (NTRS)

    Choi, David Sanghun; Showman, Adam P.; Vasavada, Ashwin R.; Simon-Miller, Amy A.

    2013-01-01

    We present an updated analysis of Jupiter's equatorial meteorology from Cassini observations. For two months preceding the spacecraft's closest approach, the Imaging Science Subsystem (ISS) onboard regularly imaged the atmosphere. We created time-lapse movies from this period in order to analyze the dynamics of equatorial hot spots and their interactions with adjacent latitudes. Hot spots are relatively cloud-free regions that emit strongly at 5 lm; improved knowledge of these features is crucial for fully understanding Galileo probe measurements taken during its descent through one. Hot spots are quasistable, rectangular dark areas on visible-wavelength images, with defined eastern edges that sharply contrast with surrounding clouds, but diffuse western edges serving as nebulous boundaries with adjacent equatorial plumes. Hot spots exhibit significant variations in size and shape over timescales of days and weeks. Some of these changes correspond with passing vortex systems from adjacent latitudes interacting with hot spots. Strong anticyclonic gyres present to the south and southeast of the dark areas appear to circulate into hot spots. Impressive, bright white plumes occupy spaces in between hot spots. Compact cirrus-like 'scooter' clouds flow rapidly through the plumes before disappearing within the dark areas. These clouds travel at 150-200 m/s, much faster than the 100 m/s hot spot and plume drift speed. This raises the possibility that the scooter clouds may be more illustrative of the actual jet stream speed at these latitudes. Most previously published zonal wind profiles represent the drift speed of the hot spots at their latitude from pattern matching of the entire longitudinal image strip. If a downward branch of an equatorially-trapped Rossby wave controls the overall appearance of hot spots, however, the westward phase velocity of the wave leads to underestimates of the true jet stream speed.

  13. Possible portrait of Galileo Galilei as a young scientist

    NASA Astrophysics Data System (ADS)

    Molaro, P.

    2012-02-01

    We describe here the possible discovery of a portrait of Galileo Galilei in his youth. The painting is not signed and the identification is mainly physiognomic. In fact, the face reveals clear resemblance to Domenico Tintoretto's portrait and to Giuseppe Calendi's engraving derived from a lost portrait made by Santi di Tito in 1601. Along with the portraits by Tintoretto, Furini, Leoni, Passignano, and Sustermans this could be another portrait of Galileo made al naturale, but, unlike the others, it depicts the scientist before he reached fame. Galileo looks rather young, at age of about 20-25 years. His eyes in the portrait are clear and the expression intense and appealing. From Galileo's correspondence we know of a portrait made by his friend Ludovico Cigoli. Rather interesting, though admittedly quite improbable, is the possibility of a self-portrait whose existence is mentioned in the first biography of Galileo by Salusbury in 1664.

  14. X-Ray Probes of Jupiter's Auroral Zones, Galilean Moons, and the Io Plasma Torus

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Ramsey, B. D.; Swartz, D. A.; Rehak, P.; Waite, J. H., Jr.; Cooper, J. F.; Johnson, R. E.

    2005-01-01

    Remote observations from the Earth orbiting Chandra X-ray Observatory and the XMM-Newton Observatory have shown the the Jovian system is a rich and complex source of x-ray emission. The planet's auroral zones and its disk are powerful sources of x-ray emission, though with different origins. Chandra observations discovered x-ray emission from the Io plasma torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from the moons is due to bombardment of their surfaces by highly energetic magnetospheric protons, and oxygen and sulfur ions, producing fluorescent x-ray emission lines from the elements in their surfaces against an intense background continuum. Although very faint when observed from Earth orbit, an imaging x-ray spectrometer in orbit around the icy Galilean moons would provide a detail mapping of the elemental composition in their surfaces. Here we review the results of Chandra and XMM-Newton observations of the Jovian system and describe the characteristics of X-MIME, an imaging x-ray spectrometer undergoing study for possible application to future missions to Jupiter such as JIMO. X-MIME has the ultimate goal of providing detailed high-resolution maps of the elemental abundances of the surfaces of Jupiter's icy moons and Io, as well as detailed study of the x-ray mission from the Io plasma torus, Jupiter's auroral zones, and the planetary disk.

  15. Classroom Explorations: Pendulums, Mirrors, and Galileo's Drama

    ERIC Educational Resources Information Center

    Cavicchi, Elizabeth

    2011-01-01

    What do you see in a mirror when not looking at yourself? What goes on as a pendulum swings? Undergraduates in a science class supposed that these behaviors were obvious until their explorations exposed questions with no quick answers. While exploring materials, students researched Galileo, his trial, and its aftermath. Galileo came to life both…

  16. A Galilean Approach to the Galileo Affair, 1609-2009

    NASA Astrophysics Data System (ADS)

    Finocchiaro, Maurice A.

    2011-01-01

    Galileo's telescopic discoveries of 1609-1612 provided a crucial, although not conclusive, confirmation of the Copernican hypothesis of the earth's motion. In Galileo's approach, the Copernican Revolution required that the geokinetic hypothesis be supported not only with new theoretical arguments but also with new observational evidence; that it be not only supported constructively but also critically defended from objections; and that such objections be not only refuted but also appreciated in all their strength. However, Galileo's defense of Copernicanism triggered a sequence of events that climaxed in 1633, when the Inquisition tried and condemned him as a suspected heretic. In turn, the repercussions of Galileo's condemnation have been a defining theme of modern Western culture for the last four centuries. In particular, the 20th century witnessed a curious spectacle: rehabilitation efforts by the Catholic Church and anti-Galilean critiques by secular-minded left-leaning social critics. The controversy shows no signs of abating to date, as may be seen from the episode of Pope Benedict XVI's attitude toward Paul Feyerabend's critique of Galileo. Nevertheless, I have devised a framework which should pave the way for eventually resolving this controversy, and which is modeled on Galileo's own approach to the Copernican Revolution.

  17. NIMS Observes the Structure and Composition of Jupiter Clouds

    NASA Image and Video Library

    1998-03-26

    dryest places being inside the hot spot. This corroborates the in-situ Galileo Entry Probe measurements. The Probe entered the atmosphere, on December 5 1995, in a hot spot region. Whereas the Probe obtained only a very localized snapshot, with NIMS we can do observations of larger areas and over longer periods. The spatial distribution of water is more complex than expected. More detailed investigations will be necessary to fully understand these results. http://photojournal.jpl.nasa.gov/catalog/PIA01224

  18. Odin space telescope monitoring of water vapor in the stratosphere of Jupiter

    NASA Astrophysics Data System (ADS)

    Cavalié, T.; Biver, N.; Hartogh, P.; Dobrijevic, M.; Billebaud, F.; Lellouch, E.; Sandqvist, Aa.; Brillet, J.; Lecacheux, A.; Hjalmarson, Å.; Frisk, U.; Olberg, M.; Odin Team

    2012-02-01

    The Odin space telescope has monitored the H2O (110-101) line in Jupiter's stratosphere over the 2003-2009 period. When comparing these data with previous spectra obtained with SWAS and Odin over the 1999-2002 period, we see no significant variations in the line-to-continuum ratio of the H2O line over the whole period. We have however tentatively identified a decrease by ∼15% of the line-to-continuum ratio between 2002 and 2007-2009, indicating that there was less H2O in the stratosphere of Jupiter in 2007-2009 than anticipated. We have tested the IDP (interplanetary dust particles) and SL9 (Shoemaker-Levy 9) 1D time-dependent models presented in Cavalié et al. [2008, Observation of water vapor in the stratosphere 613 of Jupiter with the Odin space telescope. Planetary and Space Science 56, 1573-1584]. We present a series of scenarios that lead to satisfactory fits of the whole data set (1999-2002 and 2003-2009 periods) based on IDP and SL9 models. The evolution of Jupiter's stratospheric H2O that we have tentatively observed has however to be confirmed by Herschel/HIFI observations. If the decrease of the line-to-continuum ratio is confirmed by future observations, it would be a direct evidence that Jupiter's H2O comes from SL9. In addition, this study shows that new constraints on Jupiter's eddy diffusion coefficient profile could be obtained (in the pressure ranges that are probed) from the monitoring of SL9 species in its stratosphere.

  19. Search for low-latitude atmospheric hydrocarbon variations on Jupiter from Juno-UVS measurements

    NASA Astrophysics Data System (ADS)

    Hue, V.; Gladstone, R.; Greathouse, T.; Versteeg, M.; Davis, M. W.; Gerard, J. C. M. C.; Grodent, D. C.; Bonfond, B.; Bolton, S. J.; Levin, S.; Connerney, J. E. P.

    2016-12-01

    The Juno mission offers the opportunity to study Jupiter, from its inner structure, up to its magnetospheric environment. Juno was launched on August 2011 and its Jupiter orbit insertion (JOI) occurred on July 4th 2016. The nominal Juno mission involves 35 science polar-orbits of 14-days period, with perijove and apojove distances located at 0.06 Rj and 45 Rj, respectively. Juno-UVS is a UV spectrograph with a bandpass of 70<λ<205 nm, designed to characterize Jupiter UV emissions. One of the main additions of UVS compared to its predecessors (New Horizons- and Rosetta- Alice, LRO-LAMP) is a 2.54 mm tantalum shielding, to protect it from the harsh radiation environment at Jupiter, and a scan mirror, to allow for targeting specific auroral and atmospheric features at +/- 30° perpendicular to the Juno spin plane. It will provide new constraints on Jupiter's auroral morphology, spectral features, and vertical structure, while providing remote-sensing constraints for the onboard waves and particle instruments. It will also be used to probe upper-atmospheric composition through absorption features found in the UV spectra using reflected solar UV radiation. For example, stratospheric hydrocarbons such as C2H2 and C2H6 are known to absorb significantly in the 150-180 nm regions, and these absorption features can be used to determine their abundances. We will present our search for the spectroscopic features seen in Jupiter's reflected sunlight during the first perijove.

  20. A comparison of full-spectrum and complex-symbol combining techniques for the Galileo S-band mission

    NASA Technical Reports Server (NTRS)

    Million, S.; Shah, B.; Hinedi, S.

    1994-01-01

    Full-spectrum combining (FSC) and complex-symbol combining (CSC) are two antenna-arraying techniques being considered for the Galileo spacecraft's upcoming encounter with Jupiter. This article describes the performance of these techniques in terms of symbol signal-to-noise ratio (SNR) degradation and symbol SNR loss. It is shown that both degradation and loss are approximately equal at low values of symbol SNR but diverge at high SNR values. For the Galileo S-band (2.2 to 2.3 GHz) mission, degradation provides a good estimate of performance as the symbol SNR is typically below -5 dB. For the following arrays - two 70-m antennas, one 70-m and one 34-m antenna, one 70-m and two 34-m antennas, and one 70-m and three 34-m antennas - it is shown that FSC has less degradation than CSC when the subcarrier and symbol window-loop bandwidth products are above 3.0, 10.0, 8.5, and 8.2 mHz at the symbol rate of 200 sym/sec, and above 1.2, 4.5, 4.0, and 3.5 mHz at a symbol rate of 400 sym/sec, respectively. Moreover, for an array of four 34-m antennas, FSC has less degradation than CSC when the subcarrier and symbol window-loop bandwidth products are above 0.32 mHz at the symbol rate of 50 sym/sec and above 0.8 mHz at the symbol rate of 25 sym/sec.

  1. Jupiter - Friend or Foe?

    NASA Astrophysics Data System (ADS)

    Horner, J.; Jones, B. W.

    2008-09-01

    It has long been believed that the planet Jupiter has played a beneficial role in the development of life on the Earth, acting as a shield from objects which would otherwise go on to significantly raise the impact flux experienced by our planet. Without Jupiter, the story goes, the Earth would have experienced a far greater number of impacts, making it far less hospitable to burgeoning life. In an on-going series of separate studies[1,2], we have examined the effects of varying the mass of Jupiter on the impact flux that the Earth would experience from Near-Earth Objects sourced from the Asteroid belt, short-period comets sourced from the Edgeworth-Kuiper belt, and long-period comets sourced from the Oort cloud. The results are remarkable - it seems that, far from being a shield, Jupiter actually acts to increase the impact flux experienced by the Earth over that which would be expected without the planet. Still more surprising, in the cases of the asteroids and Edgeworth-Kuiper belt objects, it seems that a Jupiter around 0.2 times the mass of "our Jupiter" would be even more threatening, sending a still greater number of objects our way. In order to simulate such disparate populations, different approaches to population construction were needed. The asteroidal and short-period comet populations each contained 100,000 test particles, moving on orbits typical of their class. The asteroids were initially distributed between 2 and 4 AU, with orbits of varying eccentricity and inclination, with number density varying as a function of semi-major axis. The short-period cometary flux was obtained through simulation of a population based on the subset of known Centaurs and Scattered Disk Objects which are Neptune-crossing, and have perihelia beyond the orbit of Uranus. These objects are the parents of the short-period comets, and were chosen since they are a population beyond the current influence of the planet Jupiter. Since our goal was to study the effect of Jupiter

  2. Galileo lithium/SO2

    NASA Technical Reports Server (NTRS)

    Blagdon, L. J.

    1980-01-01

    The current status of the Galileo lithium SO2 battery is described. The following general requirements of the battery are discussed: (1) electrical characteristics, (2) storage, (3) reliability, and (4) performance.

  3. Infrared interferometer spectrometer and radiometer (IRIS) instrument for Mariner/Jupiter/Saturn 1977 (MJS'77)

    NASA Technical Reports Server (NTRS)

    Vanous, D. D.

    1974-01-01

    The development and characteristics of the infrared interferometer spectrometer and radiometer (IRIS) instrument for use with the Mariner/Jupiter/Saturn space probe. The subjects discussed are: (1) the electronic design, (2) the opto-mechanical design, (3) reliability analysis, (4) quality control, and (5) program management.

  4. Variability of Jupiter's Five-Micron Hot Spot Inventory

    NASA Technical Reports Server (NTRS)

    Yanamandra-Fisher, Padma A.; Orton, G. S.; Wakefield, L.; Rogers, J. H.; Simon-Miller, A. A.; Boydstun, K.

    2012-01-01

    Global upheavals on Jupiter involve changes in the albedo of entire axisymmetric regions, lasting several years, with the last two occurring in 1989 and 2006. Against this backdrop of planetary-scale changes, discrete features such as the Great Red Spot (GRS), and other vortices exhibit changes on shorter spatial- and time-scales. We track the variability of the discrete equatorial 5-micron hot spots, semi-evenly spaced in longitude and confined to a narrow latitude band centered at 6.5degN (southern edge of the North Equatorial Belt, NEB), abundant in Voyager images. Tantalizingly similar patterns were observed in the visible (bright plumes and blue-gray regions), where reflectivity in the red is anti-correlated with 5-microns thermal radiance. Ortiz et al. (1998, GRL, 103) characterized the latitude and drift rates of the hot spots, including the descent of the Galileo probe at the southern edge of a 5-micron hot spot, as the superposition of equatorial Rossby waves, with phase speeds between 99 - 103m/s, relative to System III. We note that the high 5-micron radiances correlate well but not perfectly with high 8.57-micron radiances. Because the latter are modulated primarily by changes in the upper ammonia (NH3) ice cloud opacity, this correlation implies that changes in the ammonia ice cloud field may be responsible for the variability seen in the 5-m maps. During the NEB fade (2011 - early 2012), however, these otherwise ubiquitous features were absent, an atmospheric state not seen in decades. The ongoing NEB revival indicates nascent 5-m hot spots as early as April 2012, with corresponding visible dark spots. Their continuing growth through July 2012 indicates the possit.le re-establishment of Rossby waves. The South Equatorial Belt (SEB) and NEB revivals began similarly with an instability that developed into a major outbreak, and many similarities in the observed propagation of clear regions.

  5. Wake flowfields for Jovian probe

    NASA Technical Reports Server (NTRS)

    Engel, C. D.; Hair, L. M.

    1980-01-01

    The wake flow field developed by the Galileo probe as it enters the Jovian atmosphere was modeled. The wake produced by the probe is highly energetic, yielding both convective and radiative heat inputs to the base of the probe. A component mathematical model for the inviscid near and far wake, the viscous near and far wake, and near wake recirculation zone was developed. Equilibrium thermodynamics were used for both the ablation and atmospheric species. Flow fields for three entry conditions were calculated. The near viscous wave was found to exhibit a variable axial pressure distribution with the neck pressure approximately three times the base pressure. Peak wake flow field temperatures were found to be in proportion to forebody post shock temperatures.

  6. PROBING THE TERMINATOR REGION ATMOSPHERE OF THE HOT-JUPITER XO-1b WITH TRANSMISSION SPECTROSCOPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tinetti, G.; Deroo, P.; Swain, M. R.

    2010-04-01

    We report here the first infrared spectrum of the hot-Jupiter XO-1b. The observations were obtained with the NICMOS instrument on board the Hubble Space Telescope during a primary eclipse of the XO-1 system. Near photon-noise-limited spectroscopy between 1.2 and 1.8 {mu}m allows us to determine the main composition of this hot-Jupiter's planetary atmosphere with good precision. This is the third hot-Jupiter's atmosphere for which spectroscopic data are available in the near-IR. The spectrum shows the presence of water vapor (H{sub 2}O), methane (CH{sub 4}), and carbon dioxide (CO{sub 2}), and suggests the possible presence of carbon monoxide (CO). We showmore » that the published IRAC secondary transit emission photometric data are compatible with the atmospheric composition at the terminator determined from the NICMOS spectrum, with a range of possible mixing ratios and thermal profiles; additional emission spectroscopy data are needed to reduce the degeneracy of the possible solutions. Finally, we note the similarity between the 1.2-1.8 {mu}m transmission spectra of XO-1b and HD 209458b, suggesting that in addition to having similar stellar/orbital and planetary parameters the two systems may also have a similar exoplanetary atmospheric composition.« less

  7. Searches for Plumes and Ongoing Geologic Activity on Europa from Galileo and Other Spacecraft

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.

    2014-12-01

    The recent discovery of an apparent plume erupting from Europa's surface using data from the Hubble Space Telescope (Roth et al. 2014) has prompted renewed interest in the possibility of recent or ongoing geologic activity on Europa. Here we summarize previous searches for plumes and changes on Europa's surface, and make recommendations for future efforts. During the period of time in which the Galileo spacecraft was in orbit in the Jupiter system, we made a number of comparisons with observations taken 20 years earlier by the Voyager spacecraft to look for surface changes (Phillips et al. 2000). We found no changes which were visible on Europa's surface. These comparisons, however, were necessarily limited by the low resolution of the Voyager images, which had a maximum resolution of about 2 km/pixel. We also used Galileo spacecraft data to search for plumes of material being ejected from Europa's surface. A 30-image observation was taken in 1999 to observe the limb and the dark sky just off the limb in a search for active plumes, but no plumes were observed (Phillips et al. 2000). However, Hoppa et al (1999) suggested that this image sequence occurred under unfavorable tidal stress conditions. Plume searches were also performed in eclipse images, but again no plumes were detected. More recently, we compared global-scale images of Europa taken in 2007 by the New Horizons spacecraft during its Jupiter flyby en route to Pluto (Bramson et al. 2011). After a careful search that included the iterative coregistration and ratioing techniques developed by Phillips et al. (2000), again, no changes were found on Europa's surface. If the recent Roth et al. (2014) suggestions of an active plume on Europa prove to be correct, we infer that one of two possibilities must be the case. Either 1) the plume is a recent event and was not active before the 2007 New Horizons flyby; or 2) the plume is intermittent and low-density, consisting primarily of gas and not dust, and therefore

  8. Cassini RTG acceptance test results and RTG performance on Galileo and Ulysses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, C.E.; Klee, P.M.

    Flight acceptance testing has been completed for the RTGs to be used on the Cassini spacecraft which is scheduled for an October 6, 1997 launch to Saturn. The acceptance test program includes vibration tests, magnetic field measurements, mass properties (weight and c.g.) and thermal vacuum test. This paper presents the thermal vacuum test results. Three RTGs are to be used, F-2, F-6, and F-7. F-5 is the backup RTG, as it was for the Galileo and Ulysses missions launched in 1989 and 1990, respectively. RTG performance measured during the thermal vacuum tests carried out at the Mound Laboratory facility metmore » all specification requirements. Beginning of mission (BOM) and end of mission (EOM) power predictions have been made based on these tests results. BOM power is predicted to be 888 watts compared to the minimum requirement of 826 watts. Degradation models predict the EOM power after 16 years is to be 640 watts compared to a minimum requirement of 596 watts. Results of small scale module tests are also shown. The modules contain couples from the qualification and flight production runs. The tests have exceeded 28,000 hours (3.2 years) and are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. All test results indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of over 5% are predicted. Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Telemetry data are also shown for the RTG on the Ulysses spacecraft which completed its planned mission in 1995 and is now in the extended mission.« less

  9. Cassini RTG acceptance test results and RTG performance on Galileo and Ulysses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, C.E.; Klee, P.M.

    Flight acceptance testing has been completed for the RTGs to be used on the Cassini spacecraft which is scheduled for an October 6, 1997 launch to Saturn. The acceptance test program includes vibration tests, magnetic field measurements, properties (weight and c.g.) and thermal vacuum test. This paper presents The thermal vacuum test results. Three RTGs are to be used, F-2, F-6, and F-7. F-5 is tile back-up RTG, as it was for the Galileo and Ulysses missions launched in 1989 and 1990, respectively. RTG performance measured during the thermal vacuum tests carried out at die Mound Laboratory facility met allmore » specification requirements. Beginning of mission (BOM) and end of mission (EOM) power predictions have been made based on than tests results. BOM power is predicted to be 888 watts compared to the minimum requirement of 826 watts. Degradation models predict the EOM power after 16 years is to be 640 watts compared to a minimum requirement of 596 watts. Results of small scale module tests are also showing. The modules contain couples from the qualification and flight production runs. The tests have exceeded 28,000 hours (3.2 years) and are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. All test results indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of over five percent are predicted. Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Telemetry data are also shown for the RTG on the Ulysses spacecraft which completed its planned mission in 1995 and is now in the extended mission.« less

  10. Cassini RTG Acceptance Test Results and RTG Performance on Galileo and Ulysses

    DOE R&D Accomplishments Database

    Kelly, C. E.; Klee, P. M.

    1997-06-01

    Flight acceptance testing has been completed for the RTGs to be used on the Cassini spacecraft which is scheduled for an October 6, 1997 launch to Saturn. The acceptance test program includes vibration tests, magnetic field measurements, properties (weight and c.g.) and thermal vacuum test. This paper presents The thermal vacuum test results. Three RTGs are to be used, F 2, F 6, and F 7. F 5 is tile back up RTG, as it was for the Galileo and Ulysses missions launched in 1989 and 1990, respectively. RTG performance measured during the thermal vacuum tests carried out at die Mound Laboratory facility met all specification requirements. Beginning of mission (BOM) and end of mission (EOM) power predictions have been made based on than tests results. BOM power is predicted to be 888 watts compared to the minimum requirement of 826 watts. Degradation models predict the EOM power after 16 years is to be 640 watts compared to a minimum requirement of 596 watts. Results of small scale module tests are also showing. The modules contain couples from the qualification and flight production runs. The tests have exceeded 28,000 hours (3.2 years) and are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. All test results indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of over five percent are predicted. Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Telemetry data are also shown for the RTG on the Ulysses spacecraft which completed its planned mission in 1995 and is now in the extended mission.

  11. The Edge of Jupiter

    NASA Image and Video Library

    2017-04-19

    This enhanced color Jupiter image, taken by the JunoCam imager on NASA's Juno spacecraft, showcases several interesting features on the apparent edge (limb) of the planet. Prior to Juno's fifth flyby over Jupiter's mysterious cloud tops, members of the public voted on which targets JunoCam should image. This picture captures not only a fascinating variety of textures in Jupiter's atmosphere, it also features three specific points of interest: "String of Pearls," "Between the Pearls," and "An Interesting Band Point." Also visible is what's known as the STB Spectre, a feature in Jupiter's South Temperate Belt where multiple atmospheric conditions appear to collide. JunoCam images of Jupiter sometimes appear to have an odd shape. This is because the Juno spacecraft is so close to Jupiter that it cannot capture the entire illuminated area in one image -- the sides get cut off. Juno acquired this image on March 27, 2017, at 2:12 a.m. PDT (5:12 a.m. EDT), as the spacecraft performed a close flyby of Jupiter. When the image was taken, the spacecraft was about 12,400 miles (20,000 kilometers) from the planet. This enhanced color image was created by citizen scientist Bjorn Jonsson. https://photojournal.jpl.nasa.gov/catalog/PIA21389

  12. The effect of Jupiter oscillations on Juno gravity measurements

    NASA Astrophysics Data System (ADS)

    Durante, Daniele; Guillot, Tristan; Iess, Luciano

    2017-01-01

    Seismology represents a unique method to probe the interiors of giant planets. Recently, Saturn's f-modes have been indirectly observed in its rings, and there is strong evidence for the detection of Jupiter global modes by means of ground-based, spatially-resolved, velocimetry measurements. We propose to exploit Juno's extremely accurate radio science data by looking at the gravity perturbations that Jupiter's acoustic modes would produce. We evaluate the perturbation to Jupiter's gravitational field using the oscillation spectrum of a polytrope with index 1 and the corresponding radial eigenfunctions. We show that Juno will be most sensitive to the fundamental mode (n = 0), unless its amplitude is smaller than 0.5 cm/s, i.e. 100 times weaker than the n ∼ 4 - 11 modes detected by spatially-resolved velocimetry. The oscillations yield contributions to Juno's measured gravitational coefficients similar to or larger than those expected from shallow zonal winds (extending to depths less than 300 km). In the case of a strong f-mode (radial velocity ∼ 30 cm/s), these contributions would become of the same order as those expected from deep zonal winds (extending to 3000 km), especially on the low degree zonal harmonics, therefore requiring a new approach to the analysis of Juno data.

  13. Galileo, measurement of the velocity of light, and the reaction times.

    PubMed

    Foschi, Renato; Leone, Matteo

    2009-01-01

    According to the commonly accepted view, Galileo Galilei devised in 1638 an experiment that seemed able to show that the velocity of light is finite. An analysis of archival material shows that two decades later members of the Florence scientific society Accademia del Cimento followed Galileo guidelines by actually attempting to measure the velocity of light and suggesting improvements. This analysis also reveals a fundamental difference between Galileo's and Florence academy's methodologies and that Galileo's experiment was, in some respects, a pioneering work affecting also the history of the psychology of perception.

  14. Jupiter's Northern Lights

    NASA Image and Video Library

    2017-09-06

    This is a reconstructed view of Jupiter's northern lights through the filters of Juno's Ultraviolet Imaging Spectrometer (UVS) instrument on Dec. 11, 2016, as the Juno spacecraft approached Jupiter, passed over its poles, and plunged towards the equator. Such measurements present a real challenge for the spacecraft's science instruments: Juno flies over Jupiter's poles at 30 miles (50 kilometers) per second -- more than 100,000 miles per hour -- speeding past auroral forms in a matter of seconds. https://photojournal.jpl.nasa.gov/catalog/PIA21938

  15. Juno on Jupiter Doorstep

    NASA Image and Video Library

    2016-06-24

    NASA's Juno spacecraft obtained this color view on June 21, 2016, at a distance of 6.8 million miles (10.9 million kilometers) from Jupiter. As Juno makes its initial approach, the giant planet's four largest moons -- Io, Europa, Ganymede and Callisto -- are visible, and the alternating light and dark bands of the planet's clouds are just beginning to come into view. Juno is approaching over Jupiter's north pole, affording the spacecraft a unique perspective on the Jupiter system. Previous missions that imaged Jupiter on approach saw the system from much lower latitudes, closer to the planet's equator. The scene was captured by the mission's imaging camera, called JunoCam, which is designed to acquire high resolution views of features in Jupiter's atmosphere from very close to the planet. http://photojournal.jpl.nasa.gov/catalog/PIA20701

  16. A Jovian Hotspot in True and False Colors (Time set 1)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    True and false color views of an equatorial 'hotspot' on Jupiter. These images cover an area 34,000 kilometers by 11,000 kilometers. The top mosaic combines the violet (410 nanometers or nm) and near-infrared continuum (756 nm) filter images to create an image similar to how Jupiter would appear to human eyes. Differences in coloration are due to the composition and abundances of trace chemicals in Jupiter's atmosphere. The bottom mosaic uses Galileo's three near-infrared wavelengths (756 nm, 727 nm, and 889 nm displayed in red, green, and blue) to show variations in cloud height and thickness. Bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the deep cloud with an overlying thin haze. The light blue region to the left is covered by a very high haze layer. The multicolored region to the right has overlapping cloud layers of different heights. Galileo is the first spacecraft to distinguish cloud layers on Jupiter.

    North is at the top. The mosaics cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  17. Preentry communication design elements for outer planets atmospheric entry probe

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Four related tasks are discussed for data transmission from a probe prior to entering the atmosphere of Jupiter to an orbiting spacecraft in a trajectory past the planet: (1) link analysis and design; (2) system conceptual design; (3) Doppler measurement analysis; and (4) an electronically despun antenna. For tasks 1, 3, and 4, an analytical approach was developed and combined with computational capability available to produce quantitative results corresponding to requirements and constraints given by NASA, ARC. One constraint having a major impact on the numerical results of the link analysis was the assumption of a nonsteerable antenna on a spinning orbiter. Other constraints included the interplanetary trajectory and the approach trajectory. Because the Jupiter Orbiter Probe (JOP) program is currently in a state of evolution, all requirements and constraints applied during this study are subject to change. However, the relationships of parameters as developed will remain valid and will aid in planning Jupiter missions.

  18. 2nd International Planetary Probe Workshop

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Martinez, Ed; Arcadi, Marla

    2005-01-01

    Included are presentations from the 2nd International Planetary Probe Workshop. The purpose of the second workshop was to continue to unite the community of planetary scientists, spacecraft engineers and mission designers and planners; whose expertise, experience and interests are in the areas of entry probe trajectory and attitude determination, and the aerodynamics/aerothermodynamics of planetary entry vehicles. Mars lander missions and the first probe mission to Titan made 2004 an exciting year for planetary exploration. The Workshop addressed entry probe science, engineering challenges, mission design and instruments, along with the challenges of reconstruction of the entry, descent and landing or the aerocapture phases. Topics addressed included methods, technologies, and algorithms currently employed; techniques and results from the rich history of entry probe science such as PAET, Venera/Vega, Pioneer Venus, Viking, Galileo, Mars Pathfinder and Mars MER; upcoming missions such as the imminent entry of Huygens and future Mars entry probes; and new and novel instrumentation and methodologies.

  19. Voyager 2 Jupiter encounter

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A NASA News Release is presented which contains the following: (1) general release; (2) two views of Voyager 2 flight past Jupiter; (3) Voyager mission summary; (4) Voyager 1 science results; (5) Jupiter science objectives; (6) Jupiter the planet and its satellites; (7) Voyager experiments; (8) planet comparison; (9) a list of Voyager science investigators and (10) the Voyager team.

  20. Galileo environmental test and analysis program summary

    NASA Technical Reports Server (NTRS)

    Hoffman, A. R.

    1991-01-01

    This paper presents an overview of the Galileo Project's environmental test and analysis program during the spacecraft development phase - October 1978 through launch in October 1989. After describing the top-level objectives of the program, summaries of-the approach, requirements, and margins are provided. Examples of assembly- and system-level test results are given for both the pre-1986 (direct mission) testing and the post-1986 (Venus-Earth-Earth gravity assist mission) testing, including dynamic, thermal, electromagnetic compatibility (EMC), and magnetic. The approaches and results for verifying by analysis that the requirements of certain environments (e.g., radiation, micrometeoroids, and single event upsets) are satisfied are presented. The environmental program implemented on Galileo satisfied the spirit and intent of the requirements imposed by the Project during the spacecraft's development. The lessons learned from the Galileo environmental program are discussed in this paper.

  1. Officine Galileo for Mars Exploration

    NASA Astrophysics Data System (ADS)

    Battistelli, E.; Tacconi, M.

    1999-09-01

    The interest for Mars's exploration is continuously increasing. Officine Galileo is engaged in this endeavor with several programmes. The exobiology is, of course, a stimulating field; presently Officine Galileo is leading a team with Dasa and Tecnospazio, under ESA contract, for the definition of a facility for the search of extinct life on Mars through the detection of indicators of life. The system, to be embarked on a Mars lander, is based on a drill to take rock samples underneath the oxidised soil layer, on a sample preparation and distribution system devoted to condition and bring the sample to a set of analytical instruments to carry out in-situ chemical and mineralogical investigations. The facility benefits of the presence of optical microscope, gas chromatograph, several spectrometers (Raman, Mass, Mossbauer, APX-Ray), and further instruments. In the frame of planetology, Officine Galileo is collaborating with several Principal Investigators to the definition of a set of instruments to be integrated on the Mars 2003 Lander (a NASA-ASI cooperation). A drill (by Tecnospazio), with the main task to collect Mars soil samples for the subsequent storage and return to Earth, will have the capability to perform several soil analyses, e.g. temperature and near infrared reflectivity spectra down to 50 cm depth, surface thermal and electrical conductivity, sounding of electromagnetic properties down to a few hundreds meter, radioactivity. Moreover a kit of instruments for in-situ soil samples analyses if foreseen; it is based on a dust analyser, an IR spectrometer, a thermofluorescence sensor, and a radioactivity analyser. The attention to the Red Planet is growing, in parallel with the findings of present and planned missions. In the following years the technology of Officine Galileo will carry a strong contribution to the science of Mars.

  2. Sharpening Up Jupiter

    NASA Astrophysics Data System (ADS)

    2008-10-01

    New image-correction technique delivers sharpest whole-planet ground-based picture ever A record two-hour observation of Jupiter using a superior technique to remove atmospheric blur has produced the sharpest whole-planet picture ever taken from the ground. The series of 265 snapshots obtained with the Multi-Conjugate Adaptive Optics Demonstrator (MAD) prototype instrument mounted on ESO's Very Large Telescope (VLT) reveal changes in Jupiter's smog-like haze, probably in response to a planet-wide upheaval more than a year ago. Sharpening Up Jupiter ESO PR Photo 33/08 Sharpening Up Jupiter Being able to correct wide field images for atmospheric distortions has been the dream of scientists and engineers for decades. The new images of Jupiter prove the value of the advanced technology used by MAD, which uses two or more guide stars instead of one as references to remove the blur caused by atmospheric turbulence over a field of view thirty times larger than existing techniques [1]. "This type of adaptive optics has a big advantage for looking at large objects, such as planets, star clusters or nebulae," says lead researcher Franck Marchis, from UC Berkeley and the SETI Institute in Mountain View, California, USA. "While regular adaptive optics provides excellent correction in a small field of view, MAD provides good correction over a larger area of sky. And in fact, were it not for MAD, we would not have been able to perform these amazing observations." MAD allowed the researchers to observe Jupiter for almost two hours on 16 and 17 August 2008, a record duration, according to the observing team. Conventional adaptive optics systems using a single Jupiter moon as reference cannot monitor Jupiter for so long because the moon moves too far from the planet. The Hubble Space Telescope cannot observe Jupiter continuously for more than about 50 minutes, because its view is regularly blocked by the Earth during Hubble's 96-minute orbit. Using MAD, ESO astronomer Paola Amico

  3. A Physical Model of the Proton Radiation Belts of Jupiter inside Europa's Orbit

    NASA Astrophysics Data System (ADS)

    Nénon, Q.; Sicard, A.; Kollmann, P.; Garrett, H. B.; Sauer, S. P. A.; Paranicas, C.

    2018-05-01

    A physical model of the Jovian trapped protons with kinetic energies higher than 1 MeV inward of the orbit of the icy moon Europa is presented. The model, named Salammbô, takes into account the radial diffusion process, the absorption effect of the Jovian moons, and the Coulomb collisions and charge exchanges with the cold plasma and neutral populations of the inner Jovian magnetosphere. Preliminary modeling of the wave-particle interaction with electromagnetic ion cyclotron waves near the moon Io is also performed. Salammbô is validated against in situ proton measurements of Pioneer 10, Pioneer 11, Voyager 1, Galileo Probe, and Galileo Orbiter. A prominent feature of the MeV proton intensity distribution in the modeled area is the 2 orders of magnitude flux depletion observed in MeV measurements near the orbit of Io. Our simulations reveal that this is not due to direct interactions with the moon or its neutral environment but results from scattering of the protons by electromagnetic ion cyclotron waves.

  4. Hubble Provides Infrared View of Jupiter's Moon, Ring, and Clouds

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Probing Jupiter's atmosphere for the first time, the Hubble Space Telescope's new Near Infrared Camera and Multi-Object Spectrometer (NICMOS) provides a sharp glimpse of the planet's ring, moon, and high-altitude clouds.

    The presence of methane in Jupiter's hydrogen- and helium-rich atmosphere has allowed NICMOS to plumb Jupiter's atmosphere, revealing bands of high-altitude clouds. Visible light observations cannot provide a clear view of these high clouds because the underlying clouds reflect so much visible light that the higher level clouds are indistinguishable from the lower layer. The methane gas between the main cloud deck and the high clouds absorbs the reflected infrared light, allowing those clouds that are above most of the atmosphere to appear bright. Scientists will use NICMOS to study the high altitude portion of Jupiter's atmosphere to study clouds at lower levels. They will then analyze those images along with visible light information to compile a clearer picture of the planet's weather. Clouds at different levels tell unique stories. On Earth, for example, ice crystal (cirrus) clouds are found at high altitudes while water (cumulus) clouds are at lower levels.

    Besides showing details of the planet's high-altitude clouds, NICMOS also provides a clear view of the ring and the moon, Metis. Jupiter's ring plane, seen nearly edge-on, is visible as a faint line on the upper right portion of the NICMOS image. Metis can be seen in the ring plane (the bright circle on the ring's outer edge). The moon is 25 miles wide and about 80,000 miles from Jupiter.

    Because of the near-infrared camera's narrow field of view, this image is a mosaic constructed from three individual images taken Sept. 17, 1997. The color intensity was adjusted to accentuate the high-altitude clouds. The dark circle on the disk of Jupiter (center of image) is an artifact of the imaging system.

    This image and other images and data received from the Hubble Space Telescope are

  5. Structured plasma sheet thinning observed by Galileo and 1984-129

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeves, G.D.; Belian, R.D.; Fritz, T.A.

    On December 8, 1990, the Galileo spacecraft used the Earth for a gravity assist on its way to Jupiter. Its trajectory was such that is crossed geosynchronous orbit at approximately local midnight between 1900 and 2000 UT. At the same time, spacecraft 1984-129 was also located at geosynchronous orbit near local midnight. Several flux dropout events were observed when the two spacecraft were in the near-Earth plasma sheet in the same local time sector. Flux dropout events are associated with plasma sheet thinning in the near-Earth tail during the growth phase of substorms. This period is unique in that Galileomore » provided a rapid radial profile of the near-Earth plasma sheet while 1984-129 provided an azimuthal profile. With measurements from these two spacecraft the authors can distinguish between spatial structures and temporal changes. Their observations confirm that the geosynchronous flux dropout events are consistent with plasma sheet thinning which changes the spacecraft`s magnetic connection from the trapping region to the more distant plasma sheet. However, for this period, thinning occurred on two spatial and temporal scales. The geosynchronous dropouts were highly localized phenomena of 30 min duration superimposed on a more global reconfiguration of the tail lasting approximately 4 hours. 28 refs., 10 figs.« less

  6. Evidence for non-synchronous rotation of Europa. Galileo Imaging Team.

    PubMed

    Geissler, P E; Greenberg, R; Hoppa, G; Helfenstein, P; McEwen, A; Pappalardo, R; Tufts, R; Ockert-Bell, M; Sullivan, R; Greeley, R; Belton, M J; Denk, T; Clark, B; Burns, J; Veverka, J

    1998-01-22

    Non-synchronous rotation of Europa was predicted on theoretical grounds, by considering the orbitally averaged torque exerted by Jupiter on the satellite's tidal bulges. If Europa's orbit were circular, or the satellite were comprised of a frictionless fluid without tidal dissipation, this torque would average to zero. However, Europa has a small forced eccentricity e approximately 0.01 , generated by its dynamical interaction with Io and Ganymede, which should cause the equilibrium spin rate of the satellite to be slightly faster than synchronous. Recent gravity data suggest that there may be a permanent asymmetry in Europa's interior mass distribution which is large enough to offset the tidal torque; hence, if non-synchronous rotation is observed, the surface is probably decoupled from the interior by a subsurface layer of liquid or ductile ice. Non-synchronous rotation was invoked to explain Europa's global system of lineaments and an equatorial region of rifting seen in Voyager images. Here we report an analysis of the orientation and distribution of these surface features, based on initial observations made by the Galileo spacecraft. We find evidence that Europa spins faster than the synchronous rate (or did so in the past), consistent with the possibility of a global subsurface ocean.

  7. Exploring Galileo's Telescope

    ERIC Educational Resources Information Center

    Straulino, Samuele; Terzuoli, Alessandra

    2010-01-01

    In the first months of 2009, the International Year of Astronomy, the authors developed an educational project for middle-level students connected with the first astronomical discoveries that Galileo Galilei (1564-1642) made 400 years ago. The project included the construction of a basic telescope and the observation of the Moon. The project, if…

  8. Sulfuric Acid on Europa

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Frozen sulfuric acid on Jupiter's moon Europa is depicted in this image produced from data gathered by NASA's Galileo spacecraft. The brightest areas, where the yellow is most intense, represent regions of high frozen sulfuric acid concentration. Sulfuric acid is found in battery acid and in Earth's acid rain.

    This image is based on data gathered by Galileo's near infrared mapping spectrometer.

    Europa's leading hemisphere is toward the bottom right, and there are enhanced concentrations of sulfuric acid in the trailing side of Europa (the upper left side of the image). This is the face of Europa that is struck by sulfur ions coming from Jupiter's innermost moon, Io. The long, narrow features that crisscross Europa also show sulfuric acid that may be from sulfurous material extruded in cracks.

    Galileo, launched in 1989, has been orbiting Jupiter and its moons since December 1995. JPL manages the Galileo mission for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  9. Jupiter and Its Galilean Satellites

    NASA Technical Reports Server (NTRS)

    McGrath, Melissa A.

    2012-01-01

    Jupiter is one of the two most studied planets other than Earth in our Solar System. It is the largest, fastest rotating, has the strongest magnetic field, and an incredibly diverse set of satellites, most prominent of which are the four Galilean satellites discovered in 1610. Io, Europa, Ganymede and Callisto encompass some of the most bizarre environments known in the solar system, from Io, the most volcanically active and perhaps the most inhospitable body known, to Europa, currently thought to be the most likely extraterrestrial abode for habitability, to Ganymede, which is larger than Mercury, and Callisto, which has the oldest surface known in the solar system with the widest array of crater morphologies known. One of the premier areas of scientific return in solar system research in the past 15 years, due in large part to the Galileo mission and observations by the Hubble Space Telescope, has been a remarkable increase in our knowledge about these satellites. Discoveries have been made of tenuous molecular oxygen atmospheres on Europa and Ganymede, a magnetic field and accompanying auroral emissions at the poles of Ganymede, and of ozone and sulfur dioxide embedded in the surfaces of Europa, Ganymede and Callisto. Io's unusual sulfur dioxide atmosphere, including its volcanic plumes and strong electrodynamic interaction with magnetospheric plasma, has finally been quantitatively characterized. This talk will present highlights from the recent discoveries and advances in our understanding of these fascinating objects.

  10. The Galileo Teacher Training Programme

    NASA Astrophysics Data System (ADS)

    Doran, Rosa

    The Galileo Teacher Training Program is a global effort to empower teachers all over the world to embark on a new trend in science teaching, using new technologies and real research meth-ods to teach curriculum content. The GTTP goal is to create a worldwide network of "Galileo Ambassadors", promoters of GTTP training session, and a legion of "Galileo Teachers", edu-cators engaged on the use of innovative resources and sharing experiences and supporting its pears worldwide. Through workshops, online training tools and resources, the products and techniques promoted by this program can be adapted to reach locations with few resources of their own, as well as network-connected areas that can take advantage of access to robotic, optical and radio telescopes, webcams, astronomy exercises, cross-disciplinary resources, image processing and digital universes (web and desktop planetariums). Promoters of GTTP are expert astronomy educators connected to Universities or EPO institutions that facilitate the consolidation of an active support to newcomers and act as a 24 hour helpdesk to teachers all over the world. GTTP will also engage in the creation of a repository of astronomy education resources and science research projects, ViRoS (Virtual Repository of resources and Science Projects), in order to simplify the task of educators willing to enrich classroom activities.

  11. Idealisation and Galileo's Pendulum Discoveries: Historical, Philosophical and Pedagogical Considerations

    NASA Astrophysics Data System (ADS)

    Matthews, Michael R.

    2004-11-01

    Galileo's discovery of the properties of pendulum motion depended on his adoption of the novel methodology of idealisation. Galileo's laws of pendulum motion could not be accepted until the empiricist methodological constraints placed on science by Aristotle, and by common sense, were overturned. As long as scientific claims were judged by how the world was immediately seen to behave, and as long as mathematics and physics were kept separate, then Galileo's pendulum claims could not be substantiated; the evidence was against them. Proof of the laws required not just a new science, but a new way of doing science, a new way of handling evidence, a new methodology of science. This was Galileo's method of idealisatioin. It was the foundation of the Galilean-Newtonian Paradigm which characterised the Scientific Revolution of the 17th century, and the subsequent centuries of modern science. As the pendulum was central to Galileo's and Newton's physics, appreciating the role of idealisation in their work is an instructive way to learn about the nature of science.

  12. E4 True and False Color Hot Spot Mosaic

    NASA Image and Video Library

    1998-03-06

    True and false color views of Jupiter from NASA's Galileo spacecraft show an equatorial "hotspot" on Jupiter. These images cover an area 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles). The top mosaic combines the violet and near infrared continuum filter images to create an image similar to how Jupiter would appear to human eyes. Differences in coloration are due to the composition and abundances of trace chemicals in Jupiter's atmosphere. The bottom mosaic uses Galileo's three near-infrared wavelengths displayed in red, green, and blue) to show variations in cloud height and thickness. Bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the deep cloud with an overlying thin haze. The light blue region to the left is covered by a very high haze layer. The multicolored region to the right has overlapping cloud layers of different heights. Galileo is the first spacecraft to distinguish cloud layers on Jupiter. North is at the top. The mosaic covers latitudes 1 to 10 degrees and is centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging camera system aboard Galileo. http://photojournal.jpl.nasa.gov/catalog/PIA00602

  13. Moons around Jupiter

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The New Horizons Long Range Reconnaissance Imager (LORRI) took this photo of Jupiter at 20:42:01 UTC on January 9, 2007, when the spacecraft was 80 million kilometers (49.6 million miles) from the giant planet. The volcanic moon Io is to the left of the planet; the shadow of the icy moon Ganymede moves across Jupiter's northern hemisphere.

    Ganymede's average orbit distance from Jupiter is about 1 million kilometers (620,000 miles); Io's is 422,000 kilometers (262,000 miles). Both Io and Ganymede are larger than Earth's moon; Ganymede is larger than the planet Mercury.

  14. Jupiter Environment Tool

    NASA Technical Reports Server (NTRS)

    Sturm, Erick J.; Monahue, Kenneth M.; Biehl, James P.; Kokorowski, Michael; Ngalande, Cedrick,; Boedeker, Jordan

    2012-01-01

    The Jupiter Environment Tool (JET) is a custom UI plug-in for STK that provides an interface to Jupiter environment models for visualization and analysis. Users can visualize the different magnetic field models of Jupiter through various rendering methods, which are fully integrated within STK s 3D Window. This allows users to take snapshots and make animations of their scenarios with magnetic field visualizations. Analytical data can be accessed in the form of custom vectors. Given these custom vectors, users have access to magnetic field data in custom reports, graphs, access constraints, coverage analysis, and anywhere else vectors are used within STK.

  15. Voyage to Jupiter.

    ERIC Educational Resources Information Center

    Morrison, David; Samz, Jane

    This publication illustrates the features of Jupiter and its family of satellites pictured by the Pioneer and the Voyager missions. Chapters included are: (1) "The Jovian System" (describing the history of astronomy); (2) "Pioneers to Jupiter" (outlining the Pioneer Mission); (3) "The Voyager Mission"; (4)…

  16. Jovian Tropospheric Photohemistry: Constraints from Recent Cassini and Galileo Observations and from Laboratory Experiment Simulations

    NASA Astrophysics Data System (ADS)

    Moses, Julianne I.; Sperier, A. D.; Keane, T. C.

    2008-09-01

    We use the Caltech/JPL KINETICS code (Allen et al. 1981, JGR 86, 3617) to develop 1-D (in altitude) photochemical models for Jupiter's troposphere that are consistent with available Cassini, Galileo, Voyager, and Earth-based observations of ammonia and phosphine, and upper limits for HCN. As a test of the adopted chemical reaction list, we simulate laboratory experiments of coupled NH3-PH3 and NH3-C2H2 photochemistry (Ferris et al. 1984, J. Am. Chem. Soc. 106, 318; Ferris and Ishikawa 1988, J. Am. Chem. Soc. 110, 4306; Keane et al. 1996, Icarus 122, 205). We find that the vertical profile of PH3 is sensitive to the assumed tropospheric eddy diffusion coefficient and aerosol extinction, both of which are loosely constrained by observations and seem to vary with latitude. The NH3 profile is controlled by condensation and is relatively insensitive to the eddy diffusion coefficient. As was determined by previous photochemical models, the dominant products of Jovian tropospheric chemistry are P2H4, N2H4, red phosphorus, NH2PH2, and N2. All of these species except N2 will condense. Diphosphine (P2H4) is an underappreciated condensate that will likely be more important than N2H4 as an aerosol component on Jupiter as well as Saturn. Little is known about the chemistry and properties of NH2PH2, but this product could also be an important condensable constituent. Coupled NH3-C2H2 photochemistry does not readily occur in Jupiter's troposphere due to the low predicted (and observed) tropospheric C2H2 abundance. The models therefore produce only a small amount of HCN (well within upper limits), and even smaller amounts of the nitriles, hydrazones, and other organo-nitrogen molecules identified in the laboratory experiments mentioned above. This work was supported by the NASA Planetary Atmospheres Program (NNX08AF05G) and the Lunar and Planetary Institute/USRA.

  17. Jupiter: friend or foe?

    NASA Astrophysics Data System (ADS)

    Horner, Jonti; Jones, Barrie W.

    2008-02-01

    The idea that Jupiter has shielded the Earth from potentially catastrophic impacts has long permeated the public and scientific mind. But has it shielded us? We are carrying out the first detailed examination of the degree of shielding provided by Jupiter and have obtained some surprising results. Rather than Jupiter acting as a defensive presence, we found that it actually makes little difference - but if Jupiter were significantly smaller, the impact rate experienced by the Earth would be considerably enhanced. Indeed, it seems that a giant planet in the outer reaches of a planetary system can actually pose a threat to the habitability of terrestrial worlds closer to the system's parent star.

  18. Jupiter with Io Crossing

    NASA Image and Video Library

    1996-09-26

    million kilometers). The satellite's shadow can be seen falling on the face of Jupiter at left. Io is traveling from left to right in its one-and-three-quarter-day orbit around Jupiter. Even from this great distance the image of Io shows dark poles and a bright equatorial region. Voyager will make its closest approach to Jupiter -- 174,000 miles (280,000 kilometer) -- on March 5. It will then continue to Saturn in November 1980, Meanwhile Voyager 2, a sister spacecraft, will fly past Jupiter July 9, 1979, and reach Saturn in August 1981. This color image was taken through orange, green and blue filters. http://photojournal.jpl.nasa.gov/catalog/PIA00455

  19. Exploring the outer planets

    NASA Technical Reports Server (NTRS)

    Parks, R. J.

    1979-01-01

    Initial, current and planned United States projects for the spacecraft exploration of the outer planets of the solar system are presented. Initial plans were developed in the mid-1960's for the exploration of the outer planets by utilizing the gravity-assist technique during a fortuitous alignment of the outer planets in the Grand Tour Project, however although state-of-the-art space technology could have supported the project, it was considered too expensive, therefore politically infeasible. Subsequently, the Pioneer Project was undertaken to explore the asteroid belt and the environment around Jupiter and the Voyager Project was undertaken to send two spacecraft to fly by Jupiter and utilize its gravity assist to reach Saturn. The successful Pioneer 10 and 11 missions have provided important information on the effects of the asteroid belt and the severe radiation environment around Jupiter, and Voyager 1 has collected information about Jupiter, its magnetic fields and radiation zones, and its satellites. Project Galileo is intended to be launched in January 1982 to conduct an intensive investigation of Jupiter, its satellites and immediate environment and a Saturn Orbiter dual probe mission and a Uranus orbiter are also under consideration.

  20. Magnitudes of selected stellar occultation candidates for Pluto and other planets, with new predictions for Mars and Jupiter

    NASA Technical Reports Server (NTRS)

    Sybert, C. B.; Bosh, A. S.; Sauter, L. M.; Elliot, J. L.; Wasserman, L. H.

    1992-01-01

    Occultation predictions for the planets Mars and Jupiter are presented along with BVRI magnitudes of 45 occultation candidates for Mars, Jupiter, Saturn, Uranus, and Pluto. Observers can use these magnitudes to plan observations of occultation events. The optical depth of the Jovian ring can be probed by a nearly central occultation on 1992 July 8. Mars occults an unusually red star in early 1993, and the occultations for Pluto involving the brightest candidates would possibly occur in the spring of 1992 and the fall of 1993.

  1. Selenide isotope generator for the Galileo mission. SIG/Galileo contract compliance power prediction technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammel, T.E.; Srinivas, V.

    1978-11-01

    This initial definition of the power degradation prediction technique outlines a model for predicting SIG/Galileo mean EOM power using component test data and data from a module power degradation demonstration test program. (LCL)

  2. A Galilean Approach to the Galileo Affair, 1609-2009

    ERIC Educational Resources Information Center

    Finocchiaro, Maurice A.

    2011-01-01

    Galileo's telescopic discoveries of 1609-1612 provided a crucial, although not conclusive, confirmation of the Copernican hypothesis of the earth's motion. In Galileo's approach, the Copernican Revolution required that the geokinetic hypothesis be supported not only with new theoretical arguments but also with new observational evidence; that it…

  3. Knowing what would happen: The epistemic strategies in Galileo's thought experiments.

    PubMed

    Camilleri, Kristian

    2015-12-01

    While philosophers have subjected Galileo's classic thought experiments to critical analysis, they have tended to largely ignored the historical and intellectual context in which they were deployed, and the specific role they played in Galileo's overall vision of science. In this paper I investigate Galileo's use of thought experiments, by focusing on the epistemic and rhetorical strategies that he employed in attempting to answer the question of how one can know what would happen in an imaginary scenario. Here I argue we can find three different answers to this question in Galileo later dialogues, which reflect the changing meanings of 'experience' and 'knowledge' (scientia) in the early modern period. Once we recognise that Galileo's thought experiments sometimes drew on the power of memory and the explicit appeal to 'common experience', while at other times, they took the form of demonstrative arguments intended to have the status of necessary truths; and on still other occasions, they were extrapolations, or probable guesses, drawn from a carefully planned series of controlled experiments, it becomes evident that no single account of the epistemological relationship between thought experiment, experience and experiment can adequately capture the epistemic variety we find Galileo's use of imaginary scenarios. To this extent, we cannot neatly classify Galileo's use of thought experiments as either 'medieval' or 'early modern', but we should see them as indicative of the complex epistemological transformations of the early seventeenth century. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A New Look at Jupiter: Results at the Now Frontier. [Pioneer 10, interplanetary space, and Jupiter atmosphere

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Pioneer 10's encounter with Jupiter is discussed along with the interplanetary space beyond the orbit of Mars. Other topics discussed include the size of Jupiter, the Galilean satellites, the magnetic field of Jupiter, radiation belts, Jupiter's weather and interior, and future exploration possibilities. Educational projects are also included.

  5. Voyager 2 Jupiter Eruption Movie

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This movie records an eruptive event in the southern hemisphere of Jupiter over a period of 8 Jupiter days. Prior to the event, an undistinguished oval cloud mass cruised through the turbulent atmosphere. The eruption occurs over avery short time at the very center of the cloud. The white eruptive material is swirled about by the internal wind patterns of the cloud. As a result of the eruption, the cloud then becomes a type of feature seen elsewhere on Jupiter known as 'spaghetti bowls'.

    As Voyager 2 approached Jupiter in 1979, it took images of the planet at regular intervals. This sequence is made from 8 images taken once every Jupiter rotation period (about 10 hours). These images were acquired in the Violet filter around May 6, 1979. The spacecraft was about 50 million kilometers from Jupiter at that time.

    This time-lapse movie was produced at JPL by the Image Processing Laboratory in 1979.

  6. The Spatial Variation of Water and Ammonia near Jupiter's Great Red Spot

    NASA Technical Reports Server (NTRS)

    Bjoraker, G. L.; Orton, G. S.; Collard, A. D.; Stromovsky, L. A.

    1999-01-01

    The CSHELL spectrometer at NASA's Infrared Telescope Facility was used in August 1996 to observe Jupiter at 5.18 microns. This wavelength sounds the 3-8 bar region in Jupiter's deep troposphere. A 1-arcsec-wide slit was aligned east-west on Jupiter and stepped from north to south across the Great Red Spot (GRS). Within our spectral bandpass are absorption lines of NH3 and a hot band of CH4. Radiative transfer models indicate that the strength of the CH4 feature is anti-correlated with gaseous H2O between 3 and 6 bars. The CH4 feature is predicted to be very strong for H2O abundances less than 10ppm and it should vanish when H2O > 300ppm. The depths of the observed CH4 and NH3 absorption features varied dramatically near the GRS. The center and east side (planetocentric) of the GRS is dry in both volatiles as indicated by strong CH4 absorption and a weak NH3 line. The CH4 line vanishes and the NH3 feature grows stronger on the west side of the GRS. We interpret this as due to a real variation in both volatiles - H2O and NH3 - due to a common dynamical mechanism. Water clouds are expected to be accompanied by saturated gaseous H2O profiles between 3 and 5 bars. The Galileo imaging team (Banfield et al 1998 Icarus 135, p230) deduced the presence of a cloud near the 4-bar level northwest of the GRS. Our data indicate that this same region is volatile rich; thus the combination of the two datasets provides a compelling case for a water cloud at this location. The deep volatile abundance does not correlate with 5-micron continuum opacity near the GRS. This suggests that the spatial variation of the 5-micron flux near the GRS is due primarily to NH3 clouds, rather than H2O clouds.

  7. Juno’s Latest Close Flyby of Jupiter on This Week @NASA – February 3, 2017

    NASA Image and Video Library

    2017-02-03

    NASA’s Juno spacecraft made its latest close flyby of Jupiter Feb. 2 -- passing about 2,700 miles above the planet’s clouds. This was the fourth close flyby since Juno began orbiting Jupiter last year on July 4. During these close passes instruments on the spacecraft probe beneath the cloud cover to collect scientific data about the planet's structure, atmosphere and magnetosphere. This information could help us better understand the planetary systems being discovered around other stars. Also, Cassini Sees Saturn’s Rings in Greater Detail, The Most Extreme Blazars, NASA at Super Bowl Event, NASA at NBA Black Heritage Celebration, and Day of Remembrance!

  8. GPHS-RTG performance on the Galileo mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemler, R.J.; Cockfield, R.D.

    The Galileo spacecraft, launched in October, 1989, is powered by two General Purpose Heat source-Radioisotope Thermoelectric Generator (GPHS-RTGs). These RTGs were designed, built, and tested by General Electric under contract from the Office of Special Applications of the Department of Energy (DOE). Isotope heat source installation and additional testing of these RTGs were performed at DOE's EG G Mound Facility in Miamisburg, Ohio. This paper provides a report on performance of the RTGs during launch and the early phases of the eight year Galileo mission.The effect of long term storage of the RTGs on power output, since the originally scheduledmore » launch data in May, 1986, will be dicussed, including the effects of helium buildup and subsequent purging with xenon. The RTGs performed as expected during the launch transient, met all specified power requirements for Beginning of Mission (BOM), and continue to follow prediced performance characteristics during the first year of the Galileo mission.« less

  9. Full Jupiter Mosaic

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This image of Jupiter is produced from a 2x2 mosaic of photos taken by the New Horizons Long Range Reconnaissance Imager (LORRI), and assembled by the LORRI team at the Johns Hopkins University Applied Physics Laboratory. The telescopic camera snapped the images during a 3-minute, 35-second span on February 10, when the spacecraft was 29 million kilometers (18 million miles) from Jupiter. At this distance, Jupiter's diameter was 1,015 LORRI pixels -- nearly filling the imager's entire (1,024-by-1,024 pixel) field of view. Features as small as 290 kilometers (180 miles) are visible.

    Both the Great Red Spot and Little Red Spot are visible in the image, on the left and lower right, respectively. The apparent 'storm' on the planet's right limb is a section of the south tropical zone that has been detached from the region to its west (or left) by a 'disturbance' that scientists and amateur astronomers are watching closely.

    At the time LORRI took these images, New Horizons was 820 million kilometers (510 million miles) from home -- nearly 51/2 times the distance between the Sun and Earth. This is the last full-disk image of Jupiter LORRI will produce, since Jupiter is appearing larger as New Horizons draws closer, and the imager will start to focus on specific areas of the planet for higher-resolution studies.

  10. Outer planet probe navigation. [considering Pioneer space missions

    NASA Technical Reports Server (NTRS)

    Friedman, L.

    1974-01-01

    A series of navigation studies in conjunction with outer planet Pioneer missions are reformed to determine navigation requirements and measurement systems in order to target probes. Some particular cases are established where optical navigation is important and some cases where radio alone navigation is suffucient. Considered are a direct Saturn mission, a Saturn Uranus mission, a Jupiter Uranus mission, and a Titan probe mission.

  11. Ammonia Clouds on Jupiter

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Ammonia Ice Clouds on Jupiter

    In this movie, put together from false-color images taken by the New Horizons Ralph instrument as the spacecraft flew past Jupiter in early 2007, show ammonia clouds (appearing as bright blue areas) as they form and disperse over five successive Jupiter 'days.' Scientists noted how the larger cloud travels along with a small, local deep hole.

  12. Night Side Jovian Aurora

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Jovian aurora on the night side of the planet. The upper bright arc is auroral emission seen 'edge on' above the planetary limb with the darkness of space as a background. The lower bright arc is seen against the dark clouds of Jupiter. The aurora is easier to see on the night side of Jupiter because it is fainter than the clouds when they are illuminated by sunlight. Jupiter's north pole is out of view to the upper right. The images were taken in the clear filter (visible light) and are displayed in shades of blue.

    As on Earth, the auroral emission is caused by electrically charged particles striking the upper atmosphere from above. The particles travel along the magnetic field lines of the planet, but their origin is not fully understood. The field lines where the aurora is most intense cross the Jovian equator at large distances (many Jovian radii) from the planet. The faint background throughout the image is scattered light in the camera. This stray light comes from the sunlit portion of Jupiter, which is out of the image to the right. In multispectral observations the aurora appears red, consistent with glow from atomic hydrogen in Jupiter's atmosphere. Galileo's unique perspective allows it to view the night side of the planet at short range, revealing details that cannot be seen from Earth. These detailed features are time dependent, and can be followed in sequences of Galileo images.

    North is at the top of the picture. A grid of planetocentric latitude and west longitude is overlain on the images. The images were taken on November 5, 1997 at a range of 1.3 million kilometers by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the

  13. GalileoMobile: Interactive astronomy activities in schools

    NASA Astrophysics Data System (ADS)

    Vasquez, M.; Dasi Espuig, M.

    2014-04-01

    GalileoMobile is an itinerant science education initiative run on a voluntary basis by an international team of astronomers, educators, and science communicators. Our team's main goal is to make astronomy accessible to schools and communities around the globe that have little or no access to outreach actions. We do this by performing teacher workshops, activities with students, and donating educational material. Since the creation of GalileoMobile in 2008, we have travelled to Chile, Bolivia, Peru, India, and Uganda, and worked with 56 schools in total.

  14. Scorched Planets: Understanding the Structure and Climate of Hot Jupiter Atmospheres

    NASA Astrophysics Data System (ADS)

    Colón, Knicole; Martioli, Eder; Angerhausen, Daniel; Rodriguez, Joseph E.; Zhou, George; Pepper, Joshua; Stassun, Keivan; Gaudi, B. Scott; James, David; Eastman, Jason; Beatty, Thomas G.; Bayliss, Daniel

    2015-12-01

    Radial velocity and transit surveys have revealed that hot Jupiters are intrinsically rare in the Galaxy. These extreme examples of extrasolar planets have been the subject of many studies to date, but their formation and evolution are still shrouded in mystery. I will present results from a large ground-based survey to study the atmospheres of hot Jupiters via their secondary eclipses in the near-infrared. Such observations provide us with a direct measurement of thermal emission from a planet’s day-side, allowing us to probe the connection between the atmospheric structure and climate deep in their atmospheres, as well as the irradiation from their host star. I will present results obtained for several hot Jupiters using the wide-field camera WIRCam on the 3.6m Canada-France-Hawaii-Telescope (CFHT). The sample of hot Jupiters observed to date in the CFHT survey spans a range of planetary parameters (e.g. temperatures and densities) and also includes several new exotic discoveries from the KELT transit survey, such as a planet in a hierarchical triple stellar system as well as a planet with a very rapidly rotating host star. Results from the CFHT survey will be combined with those from an ongoing survey of hot Jupiter eclipses in the southern hemisphere using the 3.9m Anglo-Australian Telescope as well as an upcoming survey using the 4m Mayall Telescope at Kitt Peak National Observatory. The combined survey will be the largest homogeneous study of this kind to date, and it will provide us with the congruent observations of a significant number of unique planets in eclipse. These observations will ultimately allow a comprehensive statistical analysis of the diversity of hot Jupiter atmospheres via their near-infrared eclipses. In addition, this project will identify legacy targets for comparative exoplanetology using next-generation facilities such as the James Webb Space Telescope.

  15. 95 Minutes Over Jupiter

    NASA Image and Video Library

    2017-09-28

    This sequence of color-enhanced images shows how quickly the viewing geometry changes for NASA's Juno spacecraft as it swoops by Jupiter. The images were obtained by JunoCam. Once every 53 days, Juno swings close to Jupiter, speeding over its clouds. In just two hours, the spacecraft travels from a perch over Jupiter's north pole through its closest approach (perijove), then passes over the south pole on its way back out. This sequence shows 11 color-enhanced images from Perijove 8 (Sept. 1, 2017) with the south pole on the left (11th image in the sequence) and the north pole on the right (first image in the sequence). The first image on the right shows a half-lit globe of Jupiter, with the north pole approximately at the upper center of the image close to the terminator -- the dividing line between night and day. As the spacecraft gets closer to Jupiter, the horizon moves in and the range of visible latitudes shrinks. The second and third images in this sequence show the north polar region rotating away from the spacecraft's field of view while the first of Jupiter's lighter-colored bands comes into view. The fourth through the eighth images display a blue-colored vortex in the mid-southern latitudes near Points of Interest "Collision of Colours," "Sharp Edge," "Caltech, by Halka," and "Structure01." The Points of Interest are locations in Jupiter's atmosphere that were identified and named by members of the general public. Additionally, a darker, dynamic band can be seen just south of the vortex. In the ninth and tenth images, the south polar region rotates into view. The final image on the left displays Jupiter's south pole in the center. From the start of this sequence of images to the end, roughly 1 hour and 35 minutes elapsed. https://photojournal.jpl.nasa.gov/catalog/PIA21967

  16. Jupiter's evolution with primordial composition gradients

    NASA Astrophysics Data System (ADS)

    Vazan, Allona; Helled, Ravit; Guillot, Tristan

    2018-02-01

    Recent formation and structure models of Jupiter suggest that the planet can have composition gradients and not be fully convective (adiabatic). This possibility directly affects our understanding of Jupiter's bulk composition and origin. In this Letter we present Jupiter's evolution with a primordial structure consisting of a relatively steep heavy-element gradient of 40 M⊕. We show that for a primordial structure with composition gradients, most of the mixing occurs in the outer part of the gradient during the early evolution (several 107 yr), leading to an adiabatic outer envelope (60% of Jupiter's mass). We find that the composition gradient in the deep interior persists, suggesting that 40% of Jupiter's mass can be non-adiabatic with a higher temperature than the one derived from Jupiter's atmospheric properties. The region that can potentially develop layered convection in Jupiter today is estimated to be limited to 10% of the mass. Movies associated to Figs. 1-3 are available at http://https://www.aanda.org

  17. Jupiter Blues

    NASA Image and Video Library

    2017-11-30

    See Jovian clouds in striking shades of blue in this new view taken by NASA's Juno spacecraft. The Juno spacecraft captured this image when the spacecraft was only 11,747 miles (18,906 kilometers) from the tops of Jupiter's clouds -- that's roughly as far as the distance between New York City and Perth, Australia. The color-enhanced image, which captures a cloud system in Jupiter's northern hemisphere, was taken on Oct. 24, 2017 at 10:24 a.m. PDT (1:24 p.m. EDT) when Juno was at a latitude of 57.57 degrees (nearly three-fifths of the way from Jupiter's equator to its north pole) and performing its ninth close flyby of the gas giant planet. The spatial scale in this image is 7.75 miles/pixel (12.5 kilometers/pixel). Because of the Juno-Jupiter-Sun angle when the spacecraft captured this image, the higher-altitude clouds can be seen casting shadows on their surroundings. The behavior is most easily observable in the whitest regions in the image, but also in a few isolated spots in both the bottom and right areas of the image. Citizen scientists Gerald Eichstädt and Seán Doran processed this image using data from the JunoCam imager. https://photojournal.jpl.nasa.gov/catalog/PIA21972

  18. Foundations of an Idea: Galileo and Freedom of Expression.

    ERIC Educational Resources Information Center

    James, Beverly

    This paper examines the origins of the principle of free expression as worked out by Galileo. It is intended to supplement standard histories of the development of free expression and to recover its history as part of the political project of postmodernism. The paper resurrects Galileo's encounters with entrenched beliefs in order to position free…

  19. Galileo as an intellectual heretic and why that matters

    NASA Astrophysics Data System (ADS)

    Palmieri, Paolo

    2014-03-01

    What was physics like before Galileo? Five centuries ago physics was taught in universities all over Europe as part of a broader field of knowledge known as natural philosophy. It was neither quantitative, nor experimental, but mostly an a-priori, logical type of inquiry about principles concerning notions such as space, time, and motion, from which deductions could be made about the natural world. Galileo changed all that. He claimed that inquiry about nature should be experimental, and that reasoning in natural philosophy should be mathematical. It was a bold enough move. But Galileo's intellectual heresy was the discovery that knowledge of the natural world could only be achieved by relaxing the requirement that principles be known with absolute certainty. He demonstrated that a new mathematical physics could be built upon principles based on experiment. Thus the new physics could be extended recklessly by starting from less than certain foundations. Galileo's startling insight was that scientific truth need not be localized but can be diffused throughout the structure of science.

  20. Four centuries later: how to close the Galileo case?

    PubMed

    Segre, Michael

    The "Galileo case" is still open: John Paul II's 1979 initiative to "recognize wrongs from whatever side they come" was carried out in an unsatisfactory manner. The task would have been easy had the Pontifical Study Commission created for that purpose concentrated on the 1616 decree alone and declared it not in line with the hermeneutical guidelines of the Council of Trent, in agreement with Galileo and not with Saint Robert Bellarmine. A possible avenue to closing the "Galileo case" on the part of the Church of Rome could, thus, be to change its current defensive attitude and declare itself no longer what it was in 1616, since another such "case" is, hopefully, no longer conceivable.

  1. Jupiter Eye to Io

    NASA Image and Video Library

    2000-12-12

    This image taken by NASA Cassini spacecraft on Dec. 1, 2000, shows details of Jupiter Great Red Spot and other features that were not visible in images taken earlier, when Cassini was farther from Jupiter.

  2. Galileo Optical Experiment GOPEX

    NASA Image and Video Library

    1996-02-08

    Two sets of laser pulses transmitted from Earth to a spacecraft over a distance of 1.4 million kilometers 870,000 miles in a communications experiment are shown in this long-exposure image made by NASA’s Galileo spacecraft imaging system. http://photojournal.jpl.nasa.gov/catalog/PIA00230

  3. Integrated results from the COPERNICUS and GALILEO studies.

    PubMed

    Pielen, Amelie; Clark, W Lloyd; Boyer, David S; Ogura, Yuichiro; Holz, Frank G; Korobelnik, Jean-Francois; Stemper, Brigitte; Asmus, Friedrich; Rittenhouse, Kay D; Ahlers, Christiane; Vitti, Robert; Saroj, Namrata; Zeitz, Oliver; Haller, Julia A

    2017-01-01

    To report on the efficacy and safety of intravitreal aflibercept in patients with macular edema secondary to central retinal vein occlusion (CRVO) in an integrated analysis of COPERNICUS and GALILEO. Patients were randomized to receive intravitreal aflibercept 2 mg every 4 weeks or sham injections until week 24. From week 24 to week 52, all intravitreal aflibercept-treated patients in both studies and sham-treated patients in COPERNICUS were eligible to receive intravitreal aflibercept based on prespecified criteria. In GALILEO, sham-treated patients continued to receive sham treatment through week 52. At week 24, mean gain in best-corrected visual acuity and mean reduction in central retinal thickness were greater for intravitreal aflibercept-treated patients compared with sham, consistent with individual trial results. At week 52, after 6 months of intravitreal aflibercept as-needed treatment in COPERNICUS, patients originally randomized to sham group experienced visual and anatomic improvements but did not improve to the extent of those initially treated with intravitreal aflibercept, while the sham group in GALILEO did not improve over week 24 mean best-corrected visual acuity scores. Ocular serious adverse events occurred in <10% of patients. This analysis of integrated data from COPERNICUS and GALILEO confirmed that intravitreal aflibercept is an effective treatment for macular edema following CRVO.

  4. Galileo imaging results from the second Earth-Moon flyby: Lunar Maria and related units

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Belton, M. J. S.; Head, J. W.; Mcewen, A. S.; Pieters, C. M.; Neukum, G.; Becker, T. L.; Fischer, E. M.; Kadel, S. D.; Robinson, M. S.

    1993-01-01

    The second flyby of the Earth-Moon System by Galileo occurred on December 7, 1992, on its trajectory toward Jupiter. The flyby took the spacecraft over the lunar north polar region from the dark farside and continued across the illuminated nearside. This provided the first opportunity to observe northern and northeastern limb regions with a modern, multispectral imaging system with high spatial resolution (up to 1.1 km/pixel). Scientific objectives included compositional assessment of previously uncharacterized mare regions, study of various light plains materials, and assessment of dark mantle deposits (DMD) and dark halo craters (DHC). Color composite images were prepared from ratios of Galileo SSI filter data (0.76/0.41 yields red; 0.76/0.99 yields green; 0.41/0.76 yields blue) and used for preliminary comparison of units. The 0.41/0.76 ratio has been empirically correlated to Ti content of mare soils (blue is relatively high, red is relatively low). The relative strengths of the ferrous one micron absorption in mafic minerals can be compared using the 0.76/0.99 ratio. In addition, relative ages of units analyzed spectrally were determined from crater statistics using Lunar Orbiter images following the techniques of Neukum et al. Mare deposits analyzed include Mare Humboldtianum, central and eastern Mare Frigoris, Mare Crisium and other deposits in the Crisium Basin, and isolated mare patches on the northeastern lunar limb. Preliminary results show a diversity of 0.41/0.76 micron signatures, implying a wide range of titanium contents. Some light plains units are similar to units found at the Apollo 16 site; others may be ancient mare materials. Dark mantle deposits (DMD) analyzed also are available.

  5. Galileo's Treatment for the Centre of Gravity of Solids

    ERIC Educational Resources Information Center

    Worner, C. H.; Iommi-Amunategui, G.

    2007-01-01

    The appendix on the centres of gravity that appears at the end of Galileo's book, "Two New Sciences", is analysed. It is shown that the method used by Galileo in this work has an interesting reasoning and also shows preliminary ideas about scaling and advances some ideas about series convergence. In addition, we note that the geometrical language…

  6. The New Jupiter: Results from the Juno Mission

    NASA Astrophysics Data System (ADS)

    Bolton, Scott

    2018-01-01

    NASA's Juno mission to Jupiter launched in 2011 and arrived at Jupiter on July 4, 2016. Juno's scientific objectives include the study of Jupiter's interior, atmosphere and magnetosphere with the goal of understanding Jupiter's origin, formation and evolution. An extensive campaign of Earth based observations of Jupiter and the solar wind were orchestrated to complement Juno measurements during Juno's approach to Jupiter and during its orbital mission around Jupiter. This presentation provides an overview of results from the Juno measurements during the early phases of Juno's prime mission. Scientific results include Jupiter's interior structure, magnetic field, deep atmospheric dynamics and composition, and the first in-situ exploration of Jupiter's polar magnetosphere and aurorae.

  7. Proceedings: Outer Planet Probe Technology Workshop, summary volume

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A summary report and overview of the Outer Planet Probe Technology Conference are given. Summary data cover: (1) state of the art concerning mission definitions, probe requirements, systems, subsystems, and mission peculiar hardware, (2) mission and equipment trade-offs associated with Saturn/Uranus baseline configuration and the influence of Titan and Jupiter options on mission performance and costs, and (3) identification of critically required future R and D activities.

  8. Galileo Station Keeping Strategy

    NASA Technical Reports Server (NTRS)

    Perez-Cambriles, Antonio; Bejar-Romero, Juan Antonio; Aguilar-Taboada, Daniel; Perez-Lopez, Fernando; Navarro, Daniel

    2007-01-01

    This paper presents analyses done for the design and implementation of the Maneuver Planning software of the Galileo Flight Dynamics Facility. The station keeping requirements of the constellation have been analyzed in order to identify the key parameters to be taken into account in the design and implementation of the software.

  9. Galileo's Trajectory with Mild Resistance

    ERIC Educational Resources Information Center

    Groetsch, C. W.

    2012-01-01

    An aspect of Galileo's classical trajectory that persists in a simple resistance model is noted. The resistive model provides a case study for the classroom analysis of limiting behaviour of an implicitly defined function. (Contains 1 note.)

  10. Cylindrical Projection of Jupiter

    NASA Image and Video Library

    1996-01-29

    This computer generated map of Jupiter was made from 10 color images of Jupiter taken Feb. 1, 1979, by NASA Voyager 1, during a single, 10 hour rotation of the planet. http://photojournal.jpl.nasa.gov/catalog/PIA00011

  11. Polarimetric Study of Jupiter's Atmosphere

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, P. A.; McLean, W.; Wesley, A.; Miles, P.; Masding, P.

    2017-12-01

    Jupiter's atmosphere displays polarization, attributed to changes in the clouds/thermal filed that can be brought about by endogenic dynamical processes such merger of vortices; global, planetary scale upheavals, and external factors such as celestial collisions (such as D/Shoemaker-Levy 9 impact with Jupiter in 1994, etc.). Although the range of phase angles available from Earth for Jupiter is restricted to a narrow range, limb polarization measurements provide constraints on the polarimetric properties. Jupiter is known to exhibit a strong polar limb polarization and a low equatorial limb polarization due to the presence of haze particles and Rayleigh scattering at the poles. In contrast, at the equator, the concentration of particulates in the high atmosphere might change, changing the polarimetric signature and aurorae at both poles. The polarimetric maps, in conjunction with thermal maps and albedo maps, can provide constraints on modeling efforts to understand the nature of the aerosols/hazes in Jovian atmosphere. With Jupiter experiencing morphological changes at many latitudes, we have initiated a polarimetric observing campaign of Jupiter, in conjunction with The PACA Project and preliminary results will be discussed. Some of our observations are acquired by a team of professional/amateur planetary imagers astronomers.

  12. Jovian Dark Spot

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A recently discovered black spot in Jupiter's clouds is darker than any feature ever before observed on the giant planet. The spot may be the result of a downward spiraling wind that blows away high clouds and reveals deeper, very dark cloud layers. These three panels depict the same area of Jupiter's atmosphere. A map of Jovian temperatures near 250 millibar pressure (top) panel is derived from the photopolarimeter-radiometer instrument on NASA's Galileo Jupiter orbiter. This map is compared with maps derived from images of the same area in visible light (middle panel)and thermal radiation sensitive to cloud-top temperatures (bottom panel).

    The single downward-pointing arrow in the top panel indicates the location of a warm area that corresponds to the position of a so-called 'black spot'(shown in the middle panel), a feature that is about a year old. Features this dark are rare on Jupiter. The bottom panel, sensitive to temperatures at Jupiter's cloud tops, shows this feature as a bright object, meaning that upper-level cold clouds are missing - allowing us to see deeper into Jupiter's warmer interior. The dark visible appearance of the feature than most likely represents the color of very deep clouds. The warm temperatures and cloud-free conditions imply that this feature is a region where dry upper-atmospheric gas is being forced to converge, is warmed up and then forced to descend, clearing out clouds. It is the opposite of wet, upwelling gas in areas such as Jupiter's Great Red Spot or white ovals. On the other hand, it is unlike the dry and relatively cloudless feature into which the Galileo probe descended in 1995, because that region had the same temperatures as its surroundings and did not appear nearly as dark as this new spot.

    The temperatures sampled by the photopolarimeter radiometer are near the top of Jupiter's troposphere, where wind motions control the atmosphere. The top row of arrows shows the location of temperature waves in a warm region

  13. Small Friends of Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Nunez, Luis Ernesto; Johnson, John A.

    2017-01-01

    Hot Jupiters are Jupiter-sized gas giant exoplanets that closely orbit their host star in periods of about 10 days or less. Early models hypothesized that these exoplanets formed away from the star, then over time drifted to their characteristically closer locations. However, new theories predict that Hot Jupiters form at their close proximity during the process of core accretion (Batygin et al. 2015). In fact, a super-Earth and a Neptune-sized exoplanet have already been detected in the Hot Jupiter-hosting star WASP-47 (Becker et al. 2015). We will present our analysis of radial velocity time series plots to determine whether low-mass, short-period planets have been previously overlooked in systems of stars which host Hot Jupiters.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851.

  14. The Primordial Entropy of Jupiter

    NASA Astrophysics Data System (ADS)

    Cumming, Andrew; Helled, Ravit; Venturini, Julia

    2018-04-01

    The formation history of giant planets determines their primordial structure and consequent evolution. We simulate various formation paths of Jupiter to determine its primordial entropy, and find that a common outcome is for proto-Jupiter to have non-convective regions in its interior. We use planet formation models to calculate how the entropy and post-formation luminosity depend on model properties such as the solid accretion rate and opacity, and show that the gas accretion rate and its time evolution play a key role in determining the entropy profile. The predicted luminosity of Jupiter shortly after formation varies by a factor of 2-3 for different choices of model parameters. We find that entropy gradients inside Jupiter persist for ˜10 Myr after formation. We suggest that these gradients should be considered together with heavy-element composition gradients when modeling Jupiter's evolution and internal structure.

  15. The primordial entropy of Jupiter

    NASA Astrophysics Data System (ADS)

    Cumming, Andrew; Helled, Ravit; Venturini, Julia

    2018-07-01

    The formation history of giant planets determines their primordial structure and consequent evolution. We simulate various formation paths of Jupiter to determine its primordial entropy, and find that a common outcome is for proto-Jupiter to have non-convective regions in its interior. We use planet formation models to calculate how the entropy and post-formation luminosity depend on model properties such as the solid accretion rate and opacity, and show that the gas accretion rate and its time evolution play a key role in determining the entropy profile. The predicted luminosity of Jupiter shortly after formation varies by a factor of 2-3 for different choices of model parameters. We find that entropy gradients inside Jupiter persist for ˜10 Myr after formation. We suggest that these gradients should be considered together with heavy-element composition gradients when modelling Jupiter's evolution and internal structure.

  16. A Jovian Hotspot in True and False Colors (Time set 3)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    True and false color views of an equatorial 'hotspot' on Jupiter. These images cover an area 34,000 kilometers by 11,000 kilometers. The top mosaic combines the violet (410 nanometers or nm) and near-infrared continuum (756 nm) filter images to create an image similar to how Jupiter would appear to human eyes. Differences in coloration are due to the composition and abundances of trace chemicals in Jupiter's atmosphere. The bottom mosaic uses Galileo's three near-infrared wavelengths (756 nm, 727 nm, and 889 nm displayed in red, green, and blue) to show variations in cloud height and thickness. Bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the deep cloud with an overlying thin haze. The light blue region to the left is covered by a very high haze layer. The multicolored region to the right has overlapping cloud layers of different heights. Galileo is the first spacecraft to distinguish cloud layers on Jupiter.

    North is at the top. The mosaics cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees West. The planetary limb runs along the right edge of the image. Cloud patterns appear foreshortened as they approach the limb. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  17. Galileo's Paradox

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2008-05-01

    The paradox is a wonderful teaching tool. The sleepy student in the back row is surprised and wakes up, and the student with the instantly memorized answer is forced into the analytical mode. The diagram in Fig. 1 has the following paradox: A body sliding freely down a chord from the edge of the circle reaches the lowest point on the circle at the same time as a body released simultaneously from the top. This result was first mentioned in a 1602 letter from Galileo Galilei to Guidobaldo dal Monte.

  18. Structural and sequence diversity of the transposon Galileo in the Drosophila willistoni genome.

    PubMed

    Gonçalves, Juliana W; Valiati, Victor Hugo; Delprat, Alejandra; Valente, Vera L S; Ruiz, Alfredo

    2014-09-13

    Galileo is one of three members of the P superfamily of DNA transposons. It was originally discovered in Drosophila buzzatii, in which three segregating chromosomal inversions were shown to have been generated by ectopic recombination between Galileo copies. Subsequently, Galileo was identified in six of 12 sequenced Drosophila genomes, indicating its widespread distribution within this genus. Galileo is strikingly abundant in Drosophila willistoni, a neotropical species that is highly polymorphic for chromosomal inversions, suggesting a role for this transposon in the evolution of its genome. We carried out a detailed characterization of all Galileo copies present in the D. willistoni genome. A total of 191 copies, including 133 with two terminal inverted repeats (TIRs), were classified according to structure in six groups. The TIRs exhibited remarkable variation in their length and structure compared to the most complete copy. Three copies showed extended TIRs due to internal tandem repeats, the insertion of other transposable elements (TEs), or the incorporation of non-TIR sequences into the TIRs. Phylogenetic analyses of the transposase (TPase)-encoding and TIR segments yielded two divergent clades, which we termed Galileo subfamilies V and W. Target-site duplications (TSDs) in D. willistoni Galileo copies were 7- or 8-bp in length, with the consensus sequence GTATTAC. Analysis of the region around the TSDs revealed a target site motif (TSM) with a 15-bp palindrome that may give rise to a stem-loop secondary structure. There is a remarkable abundance and diversity of Galileo copies in the D. willistoni genome, although no functional copies were found. The TIRs in particular have a dynamic structure and extend in different ways, but their ends (required for transposition) are more conserved than the rest of the element. The D. willistoni genome harbors two Galileo subfamilies (V and W) that diverged ~9 million years ago and may have descended from an ancestral

  19. The Galileo PPS expert monitoring and diagnostic prototype

    NASA Technical Reports Server (NTRS)

    Bahrami, Khosrow

    1989-01-01

    The Galileo PPS Expert Monitoring Module (EMM) is a prototype system implemented on the SUN workstation that will demonstrate a knowledge-based approach to monitoring and diagnosis for the Galileo spacecraft Power/Pyro subsystems. The prototype will simulate an analysis module functioning within the SFOC Engineering Analysis Subsystem Environment (EASE). This document describes the implementation of a prototype EMM for the Galileo spacecraft Power Pyro Subsystem. Section 2 of this document provides an overview of the issues in monitoring and diagnosis and comparison between traditional and knowledge-based solutions to this problem. Section 3 describes various tradeoffs which must be considered when designing a knowledge-based approach to monitoring and diagnosis, and section 4 discusses how these issues were resolved in constructing the prototype. Section 5 presents conclusions and recommendations for constructing a full-scale demonstration of the EMM. A Glossary provides definitions of terms used in this text.

  20. Galileo Avionica's technologies and instruments for planetary exploration.

    PubMed

    Battistelli, E; Falciani, P; Magnani, P; Midollini, B; Preti, G; Re, E

    2006-12-01

    Several missions for planetary exploration, including comets and asteroids, are ongoing or planned by the European Space Agencies: Rosetta, Venus Express, Bepi Colombo, Dawn, Aurora and all Mars Programme (in its past and next missions) are good examples. The satisfaction of the scientific request for the mentioned programmes calls for the development of new instruments and facilities devoted to investigate the body (planet, asteroid or comet) both remotely and by in situ measurements. The paper is an overview of some instruments for remote sensing and in situ planetary exploration already developed or under study by Galileo Avionica Space & Electro-Optics B.U. (in the following shortened as Galileo Avionica) for both the Italian Space Agency (ASI) and for the European Space Agency (ESA). Main technologies and specifications are outlined; for more detailed information please refer to Galileo Avionica's web-site at: http://www.galileoavionica.com .