Science.gov

Sample records for galileo mission program

  1. Galileo Mission Science Briefing

    NASA Astrophysics Data System (ADS)

    1989-07-01

    The first of two tapes of the Galileo Mission Science press briefing is presented. The panel is moderated by George Diller from the Kennedy Space Center (KSC) Public Affairs Office. The participants are John Conway, the director of Payload and operations at Kennedy; Donald E. Williams, Commander of STS-43, the shuttle mission which will launch the Galileo mission; John Casani, the Deputy Assistant Director of Flight Projects at the Jet Propulsion Lab (JPL); Dick Spehalski, Galileo Project Manager at JPL; and Terrence Johnson, Galileo Project Scientist at JPL. The briefing begins with an announcement of the arrival of the Galileo Orbiter at KSC. The required steps prior to the launch are discussed. The mission trajectory and gravity assists from planetary and solar flybys are reviewed. Detailed designs of the orbiter are shown. The distance that Galileo will travel from the sun precludes the use of solar energy for heat. Therefore Radioisotope heater units are used to keep the equipment at operational temperature. A video of the arrival of the spacecraft at KSC and final tests and preparations is shown. Some of the many science goals of the mission are reviewed. Another video showing an overview of the Galileo mission is presented. During the question and answer period, the issue of the use of plutonium on the mission is broached, which engenders a review of the testing methods used to ensure the safety of the capsules containing the hazardous substance. This video has actual shots of the orbiter, as it is undergoing the final preparations and tests for the mission.

  2. Galileo Mission Science Briefing

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The first of two tapes of the Galileo Mission Science press briefing is presented. The panel is moderated by George Diller from the Kennedy Space Center (KSC) Public Affairs Office. The participants are John Conway, the director of Payload and operations at Kennedy; Donald E. Williams, Commander of STS-43, the shuttle mission which will launch the Galileo mission; John Casani, the Deputy Assistant Director of Flight Projects at the Jet Propulsion Lab (JPL); Dick Spehalski, Galileo Project Manager at JPL; and Terrence Johnson, Galileo Project Scientist at JPL. The briefing begins with an announcement of the arrival of the Galileo Orbiter at KSC. The required steps prior to the launch are discussed. The mission trajectory and gravity assists from planetary and solar flybys are reviewed. Detailed designs of the orbiter are shown. The distance that Galileo will travel from the sun precludes the use of solar energy for heat. Therefore Radioisotope heater units are used to keep the equipment at operational temperature. A video of the arrival of the spacecraft at KSC and final tests and preparations is shown. Some of the many science goals of the mission are reviewed. Another video showing an overview of the Galileo mission is presented. During the question and answer period, the issue of the use of plutonium on the mission is broached, which engenders a review of the testing methods used to ensure the safety of the capsules containing the hazardous substance. This video has actual shots of the orbiter, as it is undergoing the final preparations and tests for the mission.

  3. Galileo internal electrostatic discharge program

    NASA Technical Reports Server (NTRS)

    Leung, P. L.; Plamp, G. H.; Robinson, P. A., Jr.

    1985-01-01

    The Galileo spacecraft which will orbit Jupiter in 1988 will encounter a very harsh environment of energetic electrons. These electrons will have sufficient energy to penetrate the spacecraft shielding, consequently depositing charges in the dielectric insulating materials or ungrounded conductors. The resulting electric field could exceed the breakdown strength of the insulating materials, producing discharges. The transients produced from these Internal Electrostatic Discharges (IESD) could, depending on their relative location, be coupled to nearby cables and circuits. These transients could change the state of logic circuits or degrade or even damage spacecraft components, consequently disrupting the operation of subsystems and systems of the Galileo spacecraft during its expected mission life. An extensive testing program was initiated for the purpose of understanding the potential threats associated with these IESD events. Data obtained from these tests were used to define design guidelines.

  4. Update to the safety program for the general-purpose heat source radioisotope thermoelectric generators for the Galileo and Ulysses missions

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Bradshaw, C. T.; Englehart, Richard W.; Bartram, Bart W.; Cull, Theresa A.; Zocher, Roy W.; Eck, Marshall B.; Mukunda, Meera; Brenza, Peter T.; Chan, Chris C.

    1992-01-01

    With the rescheduling of the Galileo and Ulysses launches and the use of new upper stages following the Challenger accident, the aerospace nuclear safety program for the general-purpose heat source radioisotope thermoelectric generators (GPHS-RTGs) was extended to accommodate the new mission scenarios. As in the original safety program, the objectives were to determine the response of the GPHS-RTG to the various postulated accident environments and to determine the risk (if any) associated with these postulated accidents. The extended GPHS-RTG safety program was successfully completed in sufficient time to prepare an updated Final Safety Analysis Report (FSAR) with revisions for the October 1989 launch of the Galileo spacecraft.

  5. The GalileoMobile Program

    NASA Astrophysics Data System (ADS)

    Spinelli, P. F.

    2014-10-01

    GalileoMobile is an itinerant science education program that is bringing astronomy closer to young people around the world since 2009 (http://galileo-mobile.org/). GalileoMobile acts in areas where outreach projects are scarce or non-existent. It is a purely non-profit initiative run by 22 volunteers (astronomers, educators and science communicators) from all over the world. The team seeks to promote cultural interaction among people beyond geographical borders and spread the message that we all live under the same sky.

  6. Final Environmental Impact Statement for the Galileo Mission (Tier 2)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This Final Environmental Impact Statement (FEIS) addresses the proposed action of completing the preparation and operation of the Galileo spacecraft, including its planned launch on the Space Transportation System (STS) Shuttle in October 1989, and the alternative of canceling further work on the mission. The Tier 1 (program level) EIS (NASA 1988a) considered the Titan IV launch vehicle as an alternative booster stage for launch in May 1991 or later. The May 1991 Venus launch opportunity is considered a planetary back-up for the Magellan (Venus Radar Mapper) mission, the Galileo mission, and the Ulysses mission. Plans were underway to enable the use of a Titan IV launch vehicle for the planetary back-up. However, in November 1988, the U.S. Air Force, which procures the Titan IV for NASA, notified NASA that it could not provide a Titan IV vehicle for the May 1991 launch opportunity due to high priority Department of Defense requirements. Consequently, NASA terminated all mission planning for the Titan IV planetary back-up. A minimum of 3 years is required to implement mission-specific modifications to the basic Titan IV launch configuration; therefore, insufficient time is available to use a Titan IV vehicle in May 1991. Thus, the Titan IV launch vehicle is no longer a feasible alternative to the STS/Inertial Upper Stage (IUS) for the May 1991 launch opportunity.

  7. GPHS-RTG performance on the Galileo mission

    SciTech Connect

    Hemler, R.J.; Cockfield, R.D. )

    1991-01-05

    The Galileo spacecraft, launched in October, 1989, is powered by two General Purpose Heat source-Radioisotope Thermoelectric Generator (GPHS-RTGs). These RTGs were designed, built, and tested by General Electric under contract from the Office of Special Applications of the Department of Energy (DOE). Isotope heat source installation and additional testing of these RTGs were performed at DOE's EG G Mound Facility in Miamisburg, Ohio. This paper provides a report on performance of the RTGs during launch and the early phases of the eight year Galileo mission.The effect of long term storage of the RTGs on power output, since the originally scheduled launch data in May, 1986, will be dicussed, including the effects of helium buildup and subsequent purging with xenon. The RTGs performed as expected during the launch transient, met all specified power requirements for Beginning of Mission (BOM), and continue to follow prediced performance characteristics during the first year of the Galileo mission.

  8. Galileo and Ulysses missions safety analysis and launch readiness status

    NASA Technical Reports Server (NTRS)

    Cork, M. Joseph; Turi, James A.

    1989-01-01

    The Galileo spacecraft, which will release probes to explore the Jupiter system, was launched in October, 1989 as the payload on STS-34, and the Ulysses spacecraft, which will fly by Jupiter en route to a polar orbit of the sun, is presently entering system-test activity in preparation for an October, 1990 launch. This paper reviews the Galileo and Ulysses mission objectives and design approaches and presents details of the missions' safety analysis. The processes used to develop the safety analysis are described and the results of safety tests are presented.

  9. Galileo Probe: Spacecraft Mission to Jupiter Press Release

    NASA Astrophysics Data System (ADS)

    1989-09-01

    This video is a compilation of three short videos related to the Galileo mission. The first section shows animation of the descent of the Galileo probe into the atmosphere of Jupiter. It includes cutaway views of the atmosphere showing the different layers. This descent will represent the first entry into the atmosphere of an outer planet in our solar system. A second section shows some live shots of the development and drop chute tests of the Galileo spacecraft. A third section is an animation that shows the Probe mission. It shows visualizations from the launch, including the Venus flyby, the separation of the probe and the orbiter, and the trajectory of the planetary arrival. It also shows the descent of the probe into the atmosphere.

  10. Galileo mission planning for Low Gain Antenna based operations

    NASA Technical Reports Server (NTRS)

    Gershman, R.; Buxbaum, K. L.; Ludwinski, J. M.; Paczkowski, B. G.

    1994-01-01

    The Galileo mission operations concept is undergoing substantial redesign, necessitated by the deployment failure of the High Gain Antenna, while the spacecraft is on its way to Jupiter. The new design applies state-of-the-art technology and processes to increase the telemetry rate available through the Low Gain Antenna and to increase the information density of the telemetry. This paper describes the mission planning process being developed as part of this redesign. Principal topics include a brief description of the new mission concept and anticipated science return (these have been covered more extensively in earlier papers), identification of key drivers on the mission planning process, a description of the process and its implementation schedule, a discussion of the application of automated mission planning tool to the process, and a status report on mission planning work to date. Galileo enhancements include extensive reprogramming of on-board computers and substantial hard ware and software upgrades for the Deep Space Network (DSN). The principal mode of operation will be onboard recording of science data followed by extended playback periods. A variety of techniques will be used to compress and edit the data both before recording and during playback. A highly-compressed real-time science data stream will also be important. The telemetry rate will be increased using advanced coding techniques and advanced receivers. Galileo mission planning for orbital operations now involves partitioning of several scarce resources. Particularly difficult are division of the telemetry among the many users (eleven instruments, radio science, engineering monitoring, and navigation) and allocation of space on the tape recorder at each of the ten satellite encounters. The planning process is complicated by uncertainty in forecast performance of the DSN modifications and the non-deterministic nature of the new data compression schemes. Key mission planning steps include

  11. Final environmental impact statement for the Galileo Mission (Tier 2)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This Final Environmental Impact Statement (FEIS) addresses the proposed action of completing the preparation and operation of the Galileo spacecraft, including its planned launch on the Space Transportation System (STS) Shuttle in October 1989, and the alternative of canceling further work on the mission. The only expected environmental effects of the proposed action are associated with normal launch vehicle operation, and are treated in published National Environmental Policy Act (NEPA) documents on the Shuttle (NASA 1978) and the Kennedy Space Center (NASA 1979), and in the KSC Environmental Resources Document (NASA 1986) and the Galileo Tier 1 EIS (NASA 1988a). The environmental impacts of a normal launch were deemed insufficient to preclude Shuttle operations. Environmental impacts may also result from launch or mission accidents that could release plutonium fuel used in the Galileo power system. Intensive analysis of the possible accidents associated with the proposed action reveal small health or environmental risks. There are no environmental impacts in the no-action alternative. The remote possibility of environmental impacts of the proposed action must be weighed against the large adverse fiscal and programmatic impacts inherent in the no-action alternative.

  12. Imaging of volcanic activity on Jupiter's moon Io by Galileo during the Galileo Europa Mission and the Galileo Millennium Mission

    USGS Publications Warehouse

    Keszthelyi, L.; McEwen, A.S.; Phillips, C.B.; Milazzo, M.; Geissler, P.; Turtle, E.P.; Radebaugh, J.; Williams, D.A.; Simonelli, D.P.; Breneman, H.H.; Klaasen, K.P.; Levanas, G.; Denk, T.; Alexander, D.D.A.; Capraro, K.; Chang, S.-H.; Chen, A.C.; Clark, J.; Conner, D.L.; Culver, A.; Handley, T.H.; Jensen, D.N.; Knight, D.D.; LaVoie, S.K.; McAuley, M.; Mego, V.; Montoya, O.; Mortensen, H.B.; Noland, S.J.; Patel, R.R.; Pauro, T.M.; Stanley, C.L.; Steinwand, D.J.; Thaller, T.F.; Woncik, P.J.; Yagi, G.M.; Yoshimizu, J.R.; Alvarez, Del; Castillo, E.M.; Belton, M.J.S.; Beyer, R.; Branston, D.; Fishburn, M.B.; Mueller, B.; Ragan, R.; Samarasinha, N.; Anger, C.D.; Cunningham, C.; Little, B.; Arriola, S.; Carr, M.H.; Asphaug, E.; Moore, J.; Morrison, D.; Rages, K.; Banfield, D.; Bell, M.; Burns, J.A.; Carcich, B.; Clark, B.; Currier, N.; Dauber, I.; Gierasch, P.J.; Helfenstein, P.; Mann, M.; Othman, O.; Rossier, L.; Solomon, N.; Sullivan, R.; Thomas, P.C.; Veverka, J.; Becker, T.; Edwards, K.; Gaddis, L.; Kirk, R.; Lee, E.; Rosanova, T.; Sucharski, R.M.; Beebe, R.F.; Simon, A.; Bender, K.; Chuang, F.; Fagents, S.; Figueredo, P.; Greeley, R.; Homan, K.; Kadel, S.; Kerr, J.; Klemaszewski, J.; Lo, E.; Schwarz, W.; Williams, K.; Bierhaus, E.; Brooks, S.; Chapman, C.R.; Merline, B.; Keller, J.; Schenk, P.; Tamblyn, P.; Bouchez, A.; Dyundian, U.; Ingersoll, A.P.; Showman, A.; Spitale, J.; Stewart, S.; Vasavada, A.; Cunningham, W.F.; Johnson, T.V.; Jones, T.J.; Kaufman, J.M.; Magee, K.P.; Meredith, M.K.; Orton, G.S.; Senske, D.A.; West, A.; Winther, D.; Collins, G.; Fripp, W.J.; Head, J. W.; Pappalardo, R.; Pratt, S.; Procter, L.; Spaun, N.; Colvin, T.; Davies, M.; DeJong, E.M.; Hall, J.; Suzuki, S.; Gorjian, Z.; Giese, B.; Koehler, U.; Neukum, G.; Oberst, J.; Roatsch, T.; Tost, W.; Schuster, P.; Wagner, R.; Dieter, N.; Durda, D.; Greenberg, R.J.; Hoppa, G.; Jaeger, W.; Plassman, J.; Tufts, R.; Fanale, F.P.; Gran,

    2001-01-01

    The Solid-State Imaging (SSI) instrument provided the first high- and medium-resolution views of Io as the Galileo spacecraft closed in on the volcanic body in late 1999 and early 2000. While each volcanic center has many unique features, the majority can be placed into one of two broad categories. The "Promethean" eruptions, typified by the volcanic center Prometheus, are characterized by long-lived steady eruptions producing a compound flow field emplaced in an insulating manner over a period of years to decades. In contrast, "Pillanian" eruptions are characterized by large pyroclastic deposits and short-lived but high effusion rate eruptions from fissures feeding open-channel or open-sheet flows. Both types of eruptions commonly have ???100-km-tall, bright, SO2-rich plumes forming near the flow fronts and smaller deposits of red material that mark the vent for the silicate lavas. Copyright 2001 by the American Geophysical Union.

  13. Galileo Teacher Training Program - MoonDays

    NASA Astrophysics Data System (ADS)

    Heenatigala, T.; Doran, R.

    2012-09-01

    Moon is an excellent tool for classroom education. Many teachers fail to implement lunar science in classroom at several levels though - lack of guidance, finding the right materials, and implanting lessons in the school curriculum - just to name a few. To overcome this need, Galileo Teacher Training Program (GTTP) [1] present MoonDays, a resource guide for teachers globally which can be used both in and out of classroom. GTTP MoonDays includes scientific knowledge, hands-on activities, computing skills, creativity and disability based lesson plans.

  14. The Production and Archiving of Navigation and Ancillary Data for the Galileo Mission

    NASA Technical Reports Server (NTRS)

    Miller, J.; Clarke, T.

    1994-01-01

    The Galileo Mission to Jupiter is using the SPICE formats developed by the Navigation and Ancillary Information Facility, a node of the Planetary Data System, to archive its navigation and ancillary data.

  15. Draft environmental impact statement for the Galileo Mission (Tier 2)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This Draft Environmental Impact Statement (DEIS) addresses the environmental impacts which may be caused by the preparation and operation of the Galileo spacecraft, including its planned launch on the Space Transportation System (STS) Shuttle and the alternative of canceling further work on the mission. The launch configuration will use the STS/Inertial Upper Stage (IUS)/Payload Assist Module-Special (PAM-S) combination. The Tier 1 EIS included a delay alternative which considered the Titan 4 launch vehicle as an alternative booster stage for launch in 1991 or later. However, the U.S. Air Force, which procures the Titan 4 for NASA, could not provide a Titan 4 vehicle for the 1991 launch opportunity because of high priority Department of Defense requirements. The only expected environmental effects of the proposed action are associated with normal Shuttle launch operations. These impacts are limited largely to the near-field at the launch pad, except for temporary stratospheric ozone effects during launch and occasional sonic boom effects near the landing site. These effects have been judged insufficient to preclude Shuttle launches. In the event of: (1) an accident during launch, or (2) reentry of the spacecraft from earth orbit, there are potential adverse health and environmental effects associated with the possible release of plutonium dioxide from the spacecraft's radioisotope thermoelectric generators (RTG).

  16. Surface Changes on Io during the Galileo Mission

    NASA Astrophysics Data System (ADS)

    Geissler, P.; McEwen, A.; Phillips, C.; Keszthelyi, L.; Spencer, J.

    2003-04-01

    A careful survey of Galileo SSI global monitoring images revealed more than 80 apparent surface changes that took place on Io during the 5 year period of observation, ranging from giant plume deposits to subtle changes in the color or albedo of patera surfaces. Explosive volcanic activity was discovered at four previously unrecognized centers: an un-named patera to the south of Karei that produced a Pele-sized red ring, a patera to the west of Zal that produced a small circular bright deposit, a large orange ring detected near the north pole of Io, and a small bright ring near Io's south pole. Only a handful of Io's many active volcanoes produced large scale explosive eruptions, and several of these erupted repeatedly, leaving at least 83% of Io's surface unaltered throughout the Galileo mission. Most of the hot spots detected from SSI, NIMS and groundbased thermal observations caused no noticeable surface changes greater than 10 km in extent over the five year period. Surface changes were found at every location where active plumes were identified, including Acala which was never seen in sunlight and was only detected through auroral emissions during eclipse. Two types of plumes are distinguished on the basis of the size and color of their deposits, confirming post-Voyager suggestions by McEwen and Soderblom (1983). Smaller plumes produce near-circular rings typically 150 to 200 km in radius that are white or yellow in color unless contaminated with silicates, and frequently coat their surroundings with frosts of fine-grained SO2. The larger plumes are much less numerous, limited to a half dozen examples, and produce oval, orange or red, sulfur- rich rings with maximum radii in the north-south direction that are typically in the range from 500 to 550 km. Both types of plumes can be either episodic or quasi-continuous over a five year period. Repeated eruptions of the smaller SO2-rich plumes likely contribute significantly to Io's resurfacing rate, whereas dust

  17. Surface changes on Io during the Galileo mission

    NASA Astrophysics Data System (ADS)

    Geissler, Paul; McEwen, Alfred; Phillips, Cynthia; Keszthelyi, Laszlo; Spencer, John

    2004-05-01

    A careful survey of Galileo SSI global monitoring images revealed more than 80 apparent surface changes that took place on Io during the 5 year period of observation, ranging from giant plume deposits to subtle changes in the color or albedo of patera surfaces. Explosive volcanic activity was discovered at four previously unrecognized centers: an unnamed patera to the south of Karei that produced a Pele-sized red ring, a patera to the west of Zal that produced a small circular bright deposit, a large orange ring detected near the north pole of Io, and a small bright ring near Io's south pole. Only a handful of Io's many active volcanoes produced large scale explosive eruptions, and several of these erupted repeatedly, leaving at least 83% of Io's surface unaltered throughout the Galileo mission. Most of the hot spots detected from SSI, NIMS and ground-based thermal observations caused no noticeable surface changes greater than 10 km in extent over the five year period. Surface changes were found at every location where active plumes were identified, including Acala which was never seen in sunlight and was only detected through auroral emissions during eclipse. Two types of plumes are distinguished on the basis of the size and color of their deposits, confirming post-Voyager suggestions by McEwen and Soderblom [Icarus 55 (1983) 191]. Smaller plumes produce near-circular rings typically 150-200 km in radius that are white or yellow in color unless contaminated with silicates, and frequently coat their surroundings with frosts of fine-grained SO 2. The larger plumes are much less numerous, limited to a half dozen examples, and produce oval, orange or red, sulfur-rich rings with maximum radii in the north-south direction that are typically in the range from 500 to 550 km. Both types of plumes can be either episodic or quasi-continuous over a five year period. Repeated eruptions of the smaller SO 2-rich plumes likely contribute significantly to Io's resurfacing rate

  18. Surface changes on Io during the Galileo mission

    USGS Publications Warehouse

    Geissler, P.; McEwen, A.; Phillips, C.; Keszthelyi, L.; Spencer, J.

    2004-01-01

    A careful survey of Galileo SSI global monitoring images revealed more than 80 apparent surface changes that took place on Io during the 5 year period of observation, ranging from giant plume deposits to subtle changes in the color or albedo of Patera surfaces. Explosive volcanic activity was discovered at four previously unrecognized centers: an unnamed patera to the south of Karei that produced a Pele-sized red ring, a patera to the west of Zal that produced a small circular bright deposit, a large orange ring detected near the north pole of Io, and a small bright ring near Io's south pole. Only a handful of Io's many active volcanoes produced large scale explosive eruptions, and several of these erupted repeatedly, leaving at least 83% of Io's surface unaltered throughout the Galileo mission. Most of the hot spots detected from SSI, NIMS and ground-based thermal observations caused no noticeable surface changes greater than 10 km in extent over the five year period. Surface changes were found at every location where active plumes were identified, including Acala which was never seen in sunlight and was only detected through auroral emissions during eclipse. Two types of plumes are distinguished on the basis of the size and color of their deposits, confirming post-Voyager suggestions by McEwen and Soderblom [Icarus 55 (1983) 191]. Smaller plumes produce near-circular rings typically 150-200 km in radius that are white or yellow in color unless contaminated with silicates, and frequently coat their surroundings with frosts of fine-grained SO2. The larger plumes are much less numerous, limited to a half dozen examples, and produce oval, orange or red, sulfur-rich rings with maximum radii in the north-south direction that are typically in the range from 500 to 550 km. Both types of plumes can be either episodic or quasi-continuous over a five year period. Repeated eruptions of the smaller SO2-rich plumes likely contribute significantly to Io's resurfacing rate

  19. The Galileo Teacher Training Program Global Efforts

    NASA Astrophysics Data System (ADS)

    Doran, R.; Pennypacker, C.; Ferlet, R.

    2012-08-01

    The Galileo Teacher Training Program (GTTP) successfully named representatives in nearly 100 nations in 2009, the International Year of Astronomy (IYA2009). The challenge had just begun. The steps ahead are how to reach educators that might benefit from our program and how to help build a more fair and science literate society, a society in which good tools and resources for science education are not the privilege of a few. From 2010 on our efforts have been to strengthen the newly formed network and learn how to equally help educators and students around the globe. New partnerships with other strong programs and institutions are being formed, sponsorship schemes being outlined, new tools and resources being publicized, and on-site and video conference training conducted all over the world. Efforts to officially accredit a GTTP curriculum are on the march and a stronger certification process being outlined. New science topics are being integrated in our effort and we now seek to discuss the path ahead with experts in this field and the community of users, opening the network to all corners of our beautiful blue dot. The main aim of this article is to open the discussion regarding the urgent issue of how to reawaken student interest in science, how to solve the gender inequality in science careers, and how to reach the underprivileged students and open to them the same possibilities. Efforts are in strengthening the newly formed network and learning how to equally help educators and students around the globe.

  20. Galileo spacecraft integration - International cooperation on a planetary mission in the Shuttle era

    NASA Technical Reports Server (NTRS)

    Spehalski, R. J.

    1983-01-01

    The Galileo mission is designed to greatly expand scientific knowledge of Jupiter and its system. The retropropulsion module (RPM) as a major functional element of the Galileo spacecraft is described. The major mission and spacecraft requirements on the RPM are presented. Complexities of the integration process due to the international interface are identified. Challenges associated with integration with new launch vehicles, the Shuttle and upper stage, and their relationships to the RPM are discussed. The results of the integration process involving mission and propulsion performance, reliability, mechanical and thermal interfaces, and safety are described. Finally, considerations and recommendations for future missions involving international cooperation are given.

  1. Galileo Teacher Training Program - GTTP Days

    NASA Astrophysics Data System (ADS)

    Heenatigala, T.; Doran, R.

    2012-09-01

    Despite the vast availability of teaching resources on the internet, finding a quality and user-friendly materials is a challenge. Many teachers are not trained with proper computing skills to search for the right materials. With years of expertise training teachers globally, Galileo Teacher Training Program (GTTP) [1] recognize the need of having a go-to place for teachers to access resources. To fill this need GTTP developed - GTTP Days - a program creating resource guides for planetary, lunar and solar fields. Avoiding the imbalance in science resources between the developed and undeveloped world, GTTP Days is available both online and offline as a printable version. Each resource guide covers areas such as scientific knowledge, exploration, observation, photography, art & culture and web tools. The lesson plans of each guide include hands-on activities, web tools, software tools, and activities for people with disabilities [2]. Each activity indicate the concepts used, the skills required and age level which guides the teachers and educators to select the correct content suitable for local curriculum.

  2. Operation Galileo

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Operation Galileo education program took off with the first of four flights on board a U.S. Air Force C-130 transport aircraft from Keesler Air Force Base, Miss. Teachers from Mississippi and Louisiana participated in the program which aims to enhance math and science education of high-risk students by allowing junior high and middle school teachers, students and parents to fly in cargo and tanker aircraft during routine training missions. The Air Force Reserve created Operation Galileo, which was implemented by NASA's Educator Resource Center at Stennis.

  3. Enhanced Decoding for the Galileo Low-Gain Antenna Mission

    NASA Technical Reports Server (NTRS)

    Dolinar, S.; Belongie, M.

    1994-01-01

    Due to a malfunctioning high-gain antenna, the Galileo spacecraft is transmitting all its data through a low-gain antenna, and the data rate will seldom exceed 100 bits per second during its two-year tour of Jupiter's satellites.

  4. Final safety analysis report for the Galileo Mission: Volume 2, Book 2: Accident model document: Appendices

    SciTech Connect

    Not Available

    1988-12-15

    This section of the Accident Model Document (AMD) presents the appendices which describe the various analyses that have been conducted for use in the Galileo Final Safety Analysis Report II, Volume II. Included in these appendices are the approaches, techniques, conditions and assumptions used in the development of the analytical models plus the detailed results of the analyses. Also included in these appendices are summaries of the accidents and their associated probabilities and environment models taken from the Shuttle Data Book (NSTS-08116), plus summaries of the several segments of the recent GPHS safety test program. The information presented in these appendices is used in Section 3.0 of the AMD to develop the Failure/Abort Sequence Trees (FASTs) and to determine the fuel releases (source terms) resulting from the potential Space Shuttle/IUS accidents throughout the missions.

  5. Global Distribution of Active Volcanism on Io as Known at the End of the Galileo Mission

    NASA Technical Reports Server (NTRS)

    Lopes, Rosaly M. C.; Kamp. Lucas W.; Smythe, W. D.; Radebaugh, J.; Turtle, E.; Perry, J.; Bruno, B.

    2004-01-01

    Hot spots are manifestations of Io s mechanism of internal heating and heat transfer. Therefore, the global distribution of hot spots and their power output has important implications for how Io is losing heat. The end of the Galileo mission is an opportune time to revisit studies of the distribution of hot spots on Io, and to investigate the distribution of their power output.

  6. Integrating the GalileoScope into Successful Outreach Programming

    NASA Astrophysics Data System (ADS)

    Michaud, Peter D.; Slater, S.; Goldstein, J.; Harvey, J.; Garcia, A.

    2010-01-01

    Since 2004, the Gemini Observatory’s week-long Journey Through the Universe (JTtU) program has successfully shared the excitement of scientific research with teachers, students and the public on Hawaii’s Big Island. Based on the national JTtU program started in 1999, the Hawai‘i version reaches an average of 7,000 students annually and each year features a different theme shared with a diverse set of learners. In 2010, the theme includes the integration of the GalileoScope-produced as a keystone project for the International Year of Astronomy. In preparation, a pilot teacher workshop (held in October 2009) introduced local island teachers to the GalileoScope and a 128-page educator’s activity resource book coordinated by the University of Wyoming. Response from this initial teacher’s workshop has been strong and evaluations plus follow-up actions by participating teachers illustrate that the integration of the GalileoScope has been successful based upon this diverse sample. Integrating GalileoScopes into Chilean schools in 2010 is also underway at Gemini South. This program will solicit informal proposals from educators who wish to use the telescopes in classrooms and a Spanish version of the teacher resource book is planned. The authors conclude that integration of the GalileoScope into an existing outreach program is an effective way to keep content fresh, relevant and engaging for both educators and students. This initiative is funded by Gemini Observatory outreach program. The Gemini Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (US), the Science and Technology Facilities Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva

  7. Enhanced decoding for the Galileo low-gain antenna mission: Viterbi redecoding with four decoding stages

    NASA Technical Reports Server (NTRS)

    Dolinar, S.; Belongie, M.

    1995-01-01

    The Galileo low-gain antenna mission will be supported by a coding system that uses a (14,1/4) inner convolutional code concatenated with Reed-Solomon codes of four different redundancies. Decoding for this code is designed to proceed in four distinct stages of Viterbi decoding followed by Reed-Solomon decoding. In each successive stage, the Reed-Solomon decoder only tries to decode the highest redundancy codewords not yet decoded in previous stages, and the Viterbi decoder redecodes its data utilizing the known symbols from previously decoded Reed-Solomon codewords. A previous article analyzed a two-stage decoding option that was not selected by Galileo. The present article analyzes the four-stage decoding scheme and derives the near-optimum set of redundancies selected for use by Galileo. The performance improvements relative to one- and two-stage decoding systems are evaluated.

  8. Safety analysis report for the Galileo Mission. Volume 2, book 1: Accident model document

    NASA Astrophysics Data System (ADS)

    1988-12-01

    The Accident Model Document (AMD) is the second volume of the three volume Final Safety Analysis Report (FSAR) for the Galileo outer planetary space science mission. This mission employs Radioisotope Thermoelectric Generators (RTGs) as the prime electrical power sources for the spacecraft. Galileo will be launched into Earth orbit using the Space Shuttle and will use the Inertial Upper Stage (IUS) booster to place the spacecraft into an Earth escape trajectory. The RTG's employ silicon-germanium thermoelectric couples to produce electricity from the heat energy that results from the decay of the radioisotope fuel, Plutonium-238, used in the RTG heat source. The heat source configuration used in the RTG's is termed General Purpose Heat Source (GPHS), and the RTG's are designated GPHS-RTGs. The use of radioactive material in these missions necessitates evaluations of the radiological risks that may be encountered by launch complex personnel as well as by the Earth's general population resulting from postulated malfunctions or failures occurring in the mission operations. The FSAR presents the results of a rigorous safety assessment, including substantial analyses and testing, of the launch and deployment of the RTGs for the Galileo mission. This AMD is a summary of the potential accident and failure sequences which might result in fuel release, the analysis and testing methods employed, and the predicted source terms. Each source term consists of a quantity of fuel released, the location of release and the physical characteristics of the fuel released. Each source term has an associated probability of occurrence.

  9. Final safety analysis report for the Galileo Mission: Volume 1, Reference design document

    SciTech Connect

    Not Available

    1988-05-01

    The Galileo mission uses nuclear power sources called Radioisotope Thermoelectric Generators (RTGs) to provide the spacecraft's primary electrical power. Because these generators contain nuclear material, a Safety Analysis Report (SAR) is required. A preliminary SAR and an updated SAR were previously issued that provided an evolving status report on the safety analysis. As a result of the Challenger accident, the launch dates for both Galileo and Ulysses missions were later rescheduled for November 1989 and October 1990, respectively. The decision was made by agreement between the DOE and the NASA to have a revised safety evaluation and report (FSAR) prepared on the basis of these revised vehicle accidents and environments. The results of this latest revised safety evaluation are presented in this document (Galileo FSAR). Volume I, this document, provides the background design information required to understand the analyses presented in Volumes II and III. It contains descriptions of the RTGs, the Galileo spacecraft, the Space Shuttle, the Inertial Upper Stage (IUS), the trajectory and flight characteristics including flight contingency modes, and the launch site. There are two appendices in Volume I which provide detailed material properties for the RTG.

  10. Final safety analysis report for the Galileo Mission: Volume 2: Summary

    SciTech Connect

    Not Available

    1988-12-15

    The General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHS-RTG) will be used as the prime source of electric power for the spacecraft on the Galileo mission. The use of radioactive material in these missions necessitates evaluations of the radiological risks that may be encountered by launch complex personnel and by the Earth's general population resulting from postulated malfunctions or failures occurring in the mission operations. The purpose of the Final Safety Analysis Report (FSAR) is to present the analyses and results of the latest evaluation of the nuclear safety potential of the GPHS-RTG as employed in the Galileo mission. This evaluation is an extension of earlier work that addressed the planned 1986 launch using the Space Shuttle Vehicle with the Centaur as the upper stage. This extended evaluation represents the launch by the Space Shuttle/IUS vehicle. The IUS stage has been selected as the vehicle to be used to boost the Galileo spacecraft into the Earth escape trajectory after the parking orbit is attained.

  11. Light Weight Radioisotope Heater Unit (LWRHU) production for the Galileo mission

    NASA Astrophysics Data System (ADS)

    Rinehart, Gary H.

    The Light Weight Radioisotope Heater Unit (LWRHU) is a (Pu-238)O2-fueled heat source designed to provide a thermal watt of power for space missions. The LWRHU will be used to maintain the temperature of various components on the spacecraft at the required level. The heat source consists of a (Pu-238)O2-fuel pellet, a Pt-30 pct Rh capsule, a pyrolytic graphite insulator, and a woven graphite aeroshell assembly. Los Alamos National Laboratory has fabricated 134 heater units which will be used on the Galileo mission.

  12. Final safety analysis report for the Galileo Mission: Volume 2: Book 1, Accident model document

    SciTech Connect

    Not Available

    1988-12-15

    The Accident Model Document (AMD) is the second volume of the three volume Final Safety Analysis Report (FSAR) for the Galileo outer planetary space science mission. This mission employs Radioisotope Thermoelectric Generators (RTGs) as the prime electrical power sources for the spacecraft. Galileo will be launched into Earth orbit using the Space Shuttle and will use the Inertial Upper Stage (IUS) booster to place the spacecraft into an Earth escape trajectory. The RTG's employ silicon-germanium thermoelectric couples to produce electricity from the heat energy that results from the decay of the radioisotope fuel, Plutonium-238, used in the RTG heat source. The heat source configuration used in the RTG's is termed General Purpose Heat Source (GPHS), and the RTG's are designated GPHS-RTGs. The use of radioactive material in these missions necessitates evaluations of the radiological risks that may be encountered by launch complex personnel as well as by the Earth's general population resulting from postulated malfunctions or failures occurring in the mission operations. The FSAR presents the results of a rigorous safety assessment, including substantial analyses and testing, of the launch and deployment of the RTGs for the Galileo mission. This AMD is a summary of the potential accident and failure sequences which might result in fuel release, the analysis and testing methods employed, and the predicted source terms. Each source term consists of a quantity of fuel released, the location of release and the physical characteristics of the fuel released. Each source term has an associated probability of occurrence. 27 figs., 11 tabs.

  13. Final (Tier 1) environmental impact statement for the Galileo and Ulysses Missions

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Presented here is a Final (Tier 1) Environmental Impact Statement (EIS) addressing the potential environmental consequences associated with continuing the modifications of the Galileo and Ulysses spacecraft for launch using a booster/upper stage combination that is different from the one planned for use prior to the Challenger accident, while conducting the detailed safety and environmental analysis in order to preserve the October 1989 launch opportunity for Galileo and an October 1990 launch opportunity for Ulysses. While detailed safety and environmental analyses associated with the missions are underway, they currently are not complete. Nevertheless, sufficient information is available to enable a choice among the reconfiguration alternatives presented. Relevant assessments of the potential for environmental impacts are presented.

  14. Galileo Ground Mission Segment: Development and Use of an Engineering Tool Environment

    NASA Astrophysics Data System (ADS)

    Espinasse, M.; Boyer, A.; Forn, B.; Gandara, M.

    2007-08-01

    The Engineering Tool Environment (ETE) is dedicated to the simulation of Galileo Ground Mission Segment (GMS). ETE is a complete multi-user engineering platform that allows to simulate and assess end-to-end Galileo GMS System Performances from Synthetic or real Galileo (or GPS) data. ETE allows in particular to : demonstrate, during the GMS design consolidation phase, that the GMS design (and in particular the algorithms specifications) is able to comply with system requirements support the performance evaluations during GMS AIV (Assembly Integration &Validation) and IOV (In Orbit Validation) phases extrapolate the GMS performances from IOV to FOC (Full Operational Capability) The ETE platform architecture is based on the Storage Area Network (SAN) technology for high data storage capacity and optimised data exchanges, and on quadri- processors servers for high processing power. Allowing simulation in 78 hours of 17 days full configuration scenario, including production of several hundreds of GB of data, ETE provides the powerful simulation platform necessary for GMS experimentations. This paper first describes ETE functions and operations, it presents afterwards ETE design and performances achieved. Finally, a last section provides a presentation of ETE road map and applications.

  15. Artist concept of Galileo spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Galileo spacecraft is illustrated in artist concept. Gallileo, named for the Italian astronomer, physicist and mathematician who is credited with construction of the first complete, practical telescope in 1620, will make detailed studies of Jupiter. A cooperative program with the Federal Republic of Germany the Galileo mission will amplify information acquired by two Voyager spacecraft in their brief flybys. Galileo is a two-element system that includes a Jupiter-orbiting observatory and an entry probe. Jet Propulsion Laboratory (JPL) is Galileo project manager and builder of the main spacecraft. Ames Research Center (ARC) has responsibility for the entry probe, which was built by Hughes Aircraft Company and General Electric. Galileo will be deployed from the payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104, during mission STS-34.

  16. Assembly of radioisotope heat sources and thermoelectric generators for Galileo and Ulysses missions

    NASA Astrophysics Data System (ADS)

    Amos, Wayne R.; Goebel, Charles J.

    The processes and facilities for assembling General-Purpose Heat Sources (GPHS) and assembling and testing GPHS radioisotope thermoelectric generators (RTGs) are discussed. Each RTG contains 18 GPHS modules and was designed to produce approximately 285 We. Five of these RTGs were successfully assembled and tested. Two are providing spacecraft power for NASA's Galileo mission to Jupiter. One RTG will provide spacecraft power for the Joint NASA/ESA, Ulysses mission to study the polar regions of the sun. One RTG was assembled and tested to serve as the common spare for both missions, while the fifth RTG serves as the nonflight qualification unit and is undergoing long-term life tests in a simulated space environment.

  17. Lunar scout missions: Galileo encounter results and application to scientific problems and exploration requirements

    NASA Technical Reports Server (NTRS)

    Head, J. W.; Belton, M.; Greeley, R.; Pieters, C.; Mcewen, A.; Neukum, G.; Mccord, T.

    1993-01-01

    The Lunar Scout Missions (payload: x-ray fluorescence spectrometer, high-resolution stereocamera, neutron spectrometer, gamma-ray spectrometer, imaging spectrometer, gravity experiment) will provide a global data set for the chemistry, mineralogy, geology, topography, and gravity of the Moon. These data will in turn provide an important baseline for the further scientific exploration of the Moon by all-purpose landers and micro-rovers, and sample return missions from sites shown to be of primary interest from the global orbital data. These data would clearly provide the basis for intelligent selection of sites for the establishment of lunar base sites for long-term scientific and resource exploration and engineering studies. The two recent Galileo encounters with the Moon (December, 1990 and December, 1992) illustrate how modern technology can be applied to significant lunar problems. We emphasize the regional results of the Galileo SSI to show the promise of geologic unit definition and characterization as an example of what can be done with the global coverage to be obtained by the Lunar Scout Missions.

  18. (abstract) MEASURE-Jupiter: Low Cost Missions to Explore Jupiter in the Post-Galileo Era

    NASA Technical Reports Server (NTRS)

    Wallace, R. A.; Stern, S. A.; Ayon, J. A.; Lane, A. L.; Nunez, C. L.; Sauer, C. G.; Stetson, D. G.; West, R. A.

    1994-01-01

    MEASURE-Jupiter is a new mission concept for the exploration of giant planets, with initial application to Jupiter. By flying sets of lightweight spacecraft with highly focused measurement objectives, it is designed to break the apparent impass in giant planet exploration beyond Cassini. The MEASURE-Jupiter concept is characterized by: 1) intensive exploration of a giant planet system, 2) multiple small missions flown in focused waves using spacecraft costing $100M to $200M, and 3) mission sets launched every 2 to 3 years. Why Jupiter? Jupiter is the most complex planetary system in the Solar System with many scientifically intriguing bodies and phenomena to explore. The Galileo mission will scratch the surface of the exploration of Jupiter, posing many questions for the MEASURE-Jupiter missions to address. Jupiter is also the easiest planet in the Outer Solar System to reach, making possible flight times of 2 years and total mission durations of 3 years or less. Concept design studies have uncovered a number of scientifically rewarding, simple, low-cost mission options. These options have the additional attraction of being able to launch on 2-year trajectories to Jupiter with low-cost Delta II expendable launch vehicles. A partial list of mission concepts studied to date include: Io Very Close Flyby, Jupiter Close Polar Pass, Mini-Orbiters, and Galilean Satellite Penetrators. Key to the realization of the MEASURE-Jupiter missions is the judicious use of the new low power consuming advanced technology and applicable systems from the Pluto Fast Flyby mission spacecraft design. Foremost of the new technologies planned for inclusion are the elements of hybrid solar array/battery power systems which make it possible to perform the identified missions without the need for Radioactive Thermoelectric Generators (RTGs). This relieves the mission design of the attendant programmatic complexities, cost, and constraints attendant with the use of RTGs.

  19. An image assessment study of image acceptability of the Galileo low gain antenna mission

    NASA Technical Reports Server (NTRS)

    Chuang, S. L.; Haines, R. F.; Grant, T.; Gold, Yaron; Cheung, Kar-Ming

    1994-01-01

    This paper describes a study conducted by NASA Ames Research Center (ARC) in collaboration with the Jet Propulsion Laboratory (JPL), Pasadena, California on the image acceptability of the Galileo Low Gain Antenna mission. The primary objective of the study is to determine the impact of the Integer Cosine Transform (ICT) compression algorithm on Galilean images of atmospheric bodies, moons, asteroids and Jupiter's rings. The approach involved fifteen volunteer subjects representing twelve institutions involved with the Galileo Solid State Imaging (SSI) experiment. Four different experiment specific quantization tables (q-table) and various compression stepsizes (q-factor) to achieve different compression ratios were used. It then determined the acceptability of the compressed monochromatic astronomical images as evaluated by Galileo SSI mission scientists. Fourteen different images were evaluated. Each observer viewed two versions of the same image side by side on a high resolution monitor, each was compressed using a different quantization stepsize. They were requested to select which image had the highest overall quality to support them in carrying out their visual evaluations of image content. Then they rated both images using a scale from one to five on its judged degree of usefulness. Up to four pre-selected types of images were presented with and without noise to each subject based upon results of a previously administered survey of their image preferences. Fourteen different images in seven image groups were studied. The results showed that: (1) acceptable compression ratios vary widely with the type of images; (2) noisy images detract greatly from image acceptability and acceptable compression ratios; and (3) atmospheric images of Jupiter seem to have higher compression ratios of 4 to 5 times that of some clear surface satellite images.

  20. Silicon Germanium (SiGe) Radioisotope Thermoelectric Generator (RTG) Program for space missions. Fifteenth technical progress report, August 1-31, 1980

    SciTech Connect

    Whitmore, C. W.; Silverman, G.

    1980-01-01

    This program consists of the following three tasks: Multi-Hundred Watt RTG for the Galileo Probe Mission; Reestablishment of Silicon Germanium Unicouple Capability; and General Purpose Heat Source RTG for the International Solar Polar and Galileo Orbiter Missions. Details of program progress for each task, including a milestone schedule and a discussion of current problem areas (if any) are presented.

  1. Observing Mercury: from Galileo to the stereo camera on the BepiColombo mission

    NASA Astrophysics Data System (ADS)

    Cremonese, Gabriele; Da Deppo, Vania; Naletto, Giampiero; Martellato, Elena; Debei, Stefano; Barbieri, Cesare; Bettanini, Carlo; Capria, Maria T.; Massironi, Matteo; Zaccariotto, Mirko

    2010-01-01

    After having observed the planets from his house in Padova using his telescope, in January 1611 Galileo wrote to Giuliano de Medici that Venus is moving around the Sun as Mercury. Forty years ago, Giuseppe Colombo, professor of Celestial Mechanics in Padova, made a decisive step to clarify the rotational period of Mercury. Today, scientists and engineers of the Astronomical Observatory of Padova and of the University of Padova, reunited in the Center for Space Studies and Activities (CISAS) named after Giuseppe Colombo, are busy to realize a stereo camera (STC) that will be on board the European (ESA) and Japanese (JAXA) space mission BepiColombo, devoted to the observation and exploration of the innermost planet. This paper will describe the stereo camera, which is one of the channels of the SIMBIOSYS instrument, aiming to produce the global mapping of the surface with 3D images.

  2. Updated Integrated Mission Program

    NASA Technical Reports Server (NTRS)

    Dauro, Vincent A., Sr.

    2003-01-01

    Integrated Mission Program (IMP) is a computer program for simulating spacecraft missions around the Earth, Moon, Mars, and/or other large bodies. IMP solves the differential equations of motion by use of a Runge-Kutta numerical-integration algorithm. Users control missions through selection from a large menu of events and maneuvers. Mission profiles, time lines, propellant requirements, feasibility analyses, and perturbation analyses can be computed quickly and accurately. A prior version of IMP, written in FORTRAN 77, was reported in Program Simulates Spacecraft Missions (MFS-28606), NASA Tech Briefs, Vol. 17, No. 4 (April 1993), page 60. The present version, written in double-precision Lahey FORTRAN 90, incorporates a number of improvements over the prior version. Some of the improvements modernize the code to take advantage of today's greater central-processing-unit speeds. Other improvements render the code more modular; provide additional input, output, and debugging capabilities; and add to the variety of maneuvers, events, and means of propulsion that can be simulated. The IMP user manuals (of which there are now ten, each addressing a different aspect of the code and its use) have been updated accordingly.

  3. Mass Movement and Landform Degradation on the Icy Galilean Satellites: Results of the Galileo Nominal Mission

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Asphaug, Erik; Morrison, David; Spencer, John R.; Chapman, Clark R.; Bierhaus, Beau; Sullivan, Robert J.; Chuang, Frank C.; Klemaszewski, James E.; Greeley, Ronald

    1999-01-01

    The Galileo mission has revealed remarkable evidence of mass movement and landform degradation on the icy Galilean satellites of Jupiter. Weakening of surface materials coupled with mass movement reduces the topographic relief of landforms by moving surface materials down-slope. Throughout the Galileo orbiter nominal mission we have studied all known forms of mass movement and landform degradation of the icy galilean satellites, of which Callisto, by far, displays the most degraded surface. Callisto exhibits discrete mass movements that are larger and apparently more common than seen elsewhere. Most degradation on Ganymede appears consistent with sliding or slumping, impact erosion, and regolith evolution. Sliding or slumping is also observed at very small (100 m) scale on Europa. Sputter ablation, while probably playing some role in the evolution of Ganymede's and Callisto's debris layers, appears to be less important than other processes. Sputter ablation might play a significant role on Europa only if that satellite's surface is significantly older than 10(exp 8) years, far older than crater statistics indicate. Impact erosion and regolith formation on Europa are probably minimal, as implied by the low density of small craters there. Impact erosion and regolith formation may be important on the dark terrains of Ganymede, though some surfaces on this satellite may be modified by sublimation-degradation. While impact erosion and regolith formation are expected to operate with the same vigor on Callisto as on Ganymede, most of the areas examined at high resolution on Callisto have an appearance that implies that some additional process is at work, most likely sublimation-driven landform modification and mass wasting. The extent of surface degradation ascribed to sublimation on the outer two Galilean satellites implies that an ice more volatile than H2O is probably involved.

  4. Proposed data compression schemes for the Galileo S-band contingency mission

    NASA Technical Reports Server (NTRS)

    Cheung, Kar-Ming; Tong, Kevin

    1993-01-01

    The Galileo spacecraft is currently on its way to Jupiter and its moons. In April 1991, the high gain antenna (HGA) failed to deploy as commanded. In case the current efforts to deploy the HGA fails, communications during the Jupiter encounters will be through one of two low gain antenna (LGA) on an S-band (2.3 GHz) carrier. A lot of effort has been and will be conducted to attempt to open the HGA. Also various options for improving Galileo's telemetry downlink performance are being evaluated in the event that the HGA will not open at Jupiter arrival. Among all viable options the most promising and powerful one is to perform image and non-image data compression in software onboard the spacecraft. This involves in-flight re-programming of the existing flight software of Galileo's Command and Data Subsystem processors and Attitude and Articulation Control System (AACS) processor, which have very limited computational and memory resources. In this article we describe the proposed data compression algorithms and give their respective compression performance. The planned image compression algorithm is a 4 x 4 or an 8 x 8 multiplication-free integer cosine transform (ICT) scheme, which can be viewed as an integer approximation of the popular discrete cosine transform (DCT) scheme. The implementation complexity of the ICT schemes is much lower than the DCT-based schemes, yet the performances of the two algorithms are indistinguishable. The proposed non-image compression algorith is a Lempel-Ziv-Welch (LZW) variant, which is a lossless universal compression algorithm based on a dynamic dictionary lookup table. We developed a simple and efficient hashing function to perform the string search.

  5. Empirical Model for Ion Flows Around Jupiter During the Galileo Mission

    NASA Astrophysics Data System (ADS)

    Egert, Austin; Bell, Jared; Waite, Hunter

    2010-10-01

    Jupiter's intense magnetic field is second only to the solar magnetic field. This intense field surrounds and permeates a robust magnetospheric plasma that co-rotates with the planet out to several Jovian (radii), RJ, until a multitude of processes cause the co-rotating plasma to lag (Hill [1979]). The complex plasma dynamics produce a system of field aligned currents and electric fields that map down into Jupiter's upper atmosphere. It is currently believed that this mapping of these convection electric fields play a dominant role (if not the dominant role) in determining the energy balance for Jupiter's entire upper atmosphere. For this poster, we present an empirically based model of the Jovian plasma motion, focused on reproducing in qualitative and quantitative terms the measured ion flows from Galileo (Krupp et al. [2007]). Using this empirical ion flow model, we plan to construct a semi-empirical model for the mapping of convection electric fields into Jupiter's upper atmosphere. This electric field model will be used to drive ion dynamics and thermal balance calculations in a newly developed Jovian Global thermosphere-ionosphere model (J-GITM), which will be used to support the upcoming Juno mission.

  6. Galileo Science Update

    NASA Astrophysics Data System (ADS)

    1997-12-01

    Live footage shows Jane Platt, JPL Public Information Office, introducing the moderator of the panel discussion. The moderator introduces the panel members include Bill O'Neil, Project Manager Galileo Primary Mission, Dr. Torrence V. Johnson Galileo Project Scientist, Prof. Ronald Greeley from Arizona State University Galileo Imaging Team, Bob Mitchell Project Manager Galileo Europa Mission, and Dr. Karen Buxbaum Galileo Science Planning Manager. The panelists give the audience information about the Galileo Mission and answers questions from the audience and from Kennedy Space Center. An animation of the Galileo Spacecraft approaching and passing Europa is presented. The panelists mentions High Resolution Images, Detail Gravity studies, Spectral Maps of non-ice materials, Jupiter studies, Callisto studies, Europa studies, and Io studies.

  7. IMP - INTEGRATED MISSION PROGRAM

    NASA Technical Reports Server (NTRS)

    Dauro, V. A.

    1994-01-01

    IMP is a simulation language that is used to model missions around the Earth, Moon, Mars, or other planets. It has been used to model missions for the Saturn Program, Apollo Program, Space Transportation System, Space Exploration Initiative, and Space Station Freedom. IMP allows a user to control the mission being simulated through a large event/maneuver menu. Up to three spacecraft may be used: a main, a target and an observer. The simulation may begin at liftoff, suborbital, or orbital. IMP incorporates a Fehlberg seventh order, thirteen evaluation Runge-Kutta integrator with error and step-size control to numerically integrate the equations of motion. The user may choose oblate or spherical gravity for the central body (Earth, Mars, Moon or other) while a spherical model is used for the gravity of an additional perturbing body. Sun gravity and pressure and Moon gravity effects are user-selectable. Earth/Mars atmospheric effects can be included. The optimum thrust guidance parameters are calculated automatically. Events/maneuvers may involve many velocity changes, and these velocity changes may be impulsive or of finite duration. Aerobraking to orbit is also an option. Other simulation options include line-of-sight communication guidelines, a choice of propulsion systems, a soft landing on the Earth or Mars, and rendezvous with a target vehicle. The input/output is in metric units, with the exception of thrust and weight which are in English units. Input is read from the user's input file to minimize real-time keyboard input. Output includes vehicle state, orbital and guide parameters, event and total velocity changes, and propellant usage. The main output is to the user defined print file, but during execution, part of the input/output is also displayed on the screen. An included FORTRAN program, TEKPLOT, will display plots on the VDT as well as generating a graphic file suitable for output on most laser printers. The code is double precision. IMP is written in

  8. Galileo Science Writers' Briefing

    NASA Astrophysics Data System (ADS)

    1989-08-01

    This NASA Kennedy video production presents Part 2 of a press conference held at JPL on August 8, 1989. The briefing in its entirety covers the Galileo Project's mission design from launch to completion in 1997 and is moderated by JPL Public Information Mgr. Robert Macmillan. Part 2 of the 3 part video series begins with Richard J. Spehalski's (Galileo Project Manager) description of the spacecraft and mission operations. E. Cherniack gives a slide presentation of a Galileo spacecraft model and some design features unique to the spacecraft. John Givens (Probe System Design Manager) then presents a brief overview of the mission and subsystems surrounding the Galileo Space Probe. Neal E. Ausman, Jr. (Mission Director) ends the video with a discussion of mission operations including slides of the Galileo launch scenario and a trajectory correction maneuver.

  9. Safety testing program for the Galileo mission radioisotope thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Cull, Theresa A.

    The major design requirement for any space nuclear power system is to minimize the potential for interaction of the radioactive materials with Earth's population and environment. All previous space power systems were launched on expendable launch vehicles (ELVs), so the design emphasis for the General Purpose Heat Source (GPHS) was on surviving the most severe ELV accident environments (launch pad explosion and solid propellant fire) and on surviving accident environments resulting from spacecraft failure (reentry and land impact).

  10. Safety testing program for the Galileo mission radioisotope thermoelectric generator

    SciTech Connect

    Cull, T.A.

    1989-01-01

    The major design requirement for any space nuclear power system is to minimize the potential for interaction of the radioactive materials with Earth's population and environment. All previous space power systems were launched on expendable launch vehicles (ELVs), so the design emphasis for the GPHS was on surviving the most severe ELV accident environments (launch pad explosion and solid propellant fire) and on surviving accident environments resulting from spacecraft failure (reentry and land impact). 14 refs., 4 figs., 2 tabs.

  11. Final safety analysis report for the Galileo mission: Volume 3 (Book 1), Nuclear risk analysis document: Revision 1

    SciTech Connect

    Not Available

    1989-01-13

    It is the purpose of the NRAD to provide an analysis of the range of potential consequences of accidents which have been identified that are associated with the launching and deployment of the Galileo mission spacecraft. The specific consequences analyzed are those associated with the possible release of radioactive material (fuel) of the Radioisotope Thermoelectric Generators (RTGs). They are in terms of radiation doses to people and areas of deposition of radioactive material. These consequence analyses can be used in several ways. One way is to identify the potential range of consequences which might have to be dealt with if there were to be an accident with a release of fuel, so as to assure that, given such an accident, the health and safety of the public will be reasonably protected. Another use of the information, in conjunction with accident and release probabilities, is to estimate the risks associated with the mission. That is, most space launches occur without incident. Given an accident, the most probable result relative to the RTGs is complete containment of the radioactive material. Only a small fraction of accidents might result in a release of fuel and subsequent radiological consequences. The combination of probability with consequence is risk, which can be compared to other human and societal risks to assure that no undue risks are implied by undertaking the mission. 4 refs., 11 figs., 31 tabs.

  12. Final safety analysis report for the Galileo mission: Volume 3 (Book 2), Nuclear risk analysis document: Appendices: Revision 1

    SciTech Connect

    Not Available

    1989-01-25

    It is the purpose of the NRAD to provide an analysis of the range of potential consequences of accidents which have been identified that are associated with the launching and deployment of the Galileo mission spacecraft. The specific consequences analyzed are those associated with the possible release of radioactive material (fuel) of the Radioisotope Thermoelectric Generators (RTGs). They are in terms of radiation doses to people and areas of deposition of radioactive material. These consequence analyses can be used in several ways. One way is to identify the potential range of consequences which might have to be dealt with if there were to be an accident with a release of fuel, so as to assure that, given such an accident, the health and safety of the public will be reasonably protected. Another use of the information, in conjunction with accident and release probabilities, is to estimate the risks associated with the mission. That is, most space launches occur without incident. Given an accident, the most probable result relative to the RTGs is complete containment of the radioactive material. Only a small fraction of accidents might result in a release of fuel and subsequent radiological consequences. The combination of probability with consequence is risk, which can be compared to other human and societal risks to assure that no undue risks are implied by undertaking the mission. Book 2 contains eight appendices.

  13. A comparison of full-spectrum and complex-symbol combining techniques for the Galileo S-band mission

    NASA Technical Reports Server (NTRS)

    Million, S.; Shah, B.; Hinedi, S.

    1994-01-01

    Full-spectrum combining (FSC) and complex-symbol combining (CSC) are two antenna-arraying techniques being considered for the Galileo spacecraft's upcoming encounter with Jupiter. This article describes the performance of these techniques in terms of symbol signal-to-noise ratio (SNR) degradation and symbol SNR loss. It is shown that both degradation and loss are approximately equal at low values of symbol SNR but diverge at high SNR values. For the Galileo S-band (2.2 to 2.3 GHz) mission, degradation provides a good estimate of performance as the symbol SNR is typically below -5 dB. For the following arrays - two 70-m antennas, one 70-m and one 34-m antenna, one 70-m and two 34-m antennas, and one 70-m and three 34-m antennas - it is shown that FSC has less degradation than CSC when the subcarrier and symbol window-loop bandwidth products are above 3.0, 10.0, 8.5, and 8.2 mHz at the symbol rate of 200 sym/sec, and above 1.2, 4.5, 4.0, and 3.5 mHz at a symbol rate of 400 sym/sec, respectively. Moreover, for an array of four 34-m antennas, FSC has less degradation than CSC when the subcarrier and symbol window-loop bandwidth products are above 0.32 mHz at the symbol rate of 50 sym/sec and above 0.8 mHz at the symbol rate of 25 sym/sec.

  14. Galileo Regio Mosaic - Galileo over Voyager Data

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A mosaic of four Galileo images of the Galileo Regio region on Ganymede (Latitude 18 N, Longitude: 149 W) is shown overlayed on the data obtained by the Voyager 2 spacecraft in 1979. North is to the top of the picture, and the sun illuminates the surface from the lower left, about 58 degrees above the horizon. The smallest features that can be discerned are about 80 meters (262 feet) in size in the Galileo images. These Galileo images show fine details of the dark terrain that makes up about half of the surface of the planet-sized moon. Ancient impact craters of various sizes and states of degradation testify to the great age of the terrain, dating back several billion years. The images reveal distinctive variations in albedo from the brighter rims, knobs, and furrow walls to a possible accumulation of dark material on the lower slopes, and crater floors. High photometric activity (large light contrast at high spatial frequencies) of this ice-rich surface was such that the Galileo camera's hardware data compressor was pushed into truncating lines. The north-south running gap between the left and right halves of the mosaic is a result of line truncation from the normal 800 samples per line to about 540. The images were taken on 27 June, 1996 Universal Time at a range of 7,580 kilometers (4,738 miles) through the clear filter of the Galileo spacecraft's imaging system. Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  15. Large Impact Features on Europa: Results of the Galileo Nominal Mission

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Asphaug, Erik; Sullivan, Robert J.; Klemaszewski, James E.; Bender, Kelly C.; Greeley, Ronald; Geissler, Paul E.; McEwen, Alfred S.; Turtle, Elizabeth P.; Phillips, Cynthia B.

    1998-01-01

    The Galileo Orbiter examined several impact features on Europa at considerably better resolution than was possible from Voyager. The new data allow us to describe the morphology and infer the geology of the largest impact features on Europa, which are probes into the crust. We observe two basic types of large impact features: (1) "classic" impact craters that grossly resemble well-preserved lunar craters of similar size but are more topographically subdued (e.g., Pwyll) and (2) very flat circular features that lack the basic topographic structures of impact craters such as raised rims, a central depression, or central peaks, and which largely owe their identification as impact features to the field of secondary craters radially sprayed about them (e.g., Callanish). Our interpretation is that the classic craters (all <30 km diameter) formed entirely within a solid target at least 5 to 10 km thick that exhibited brittle behavior on time scales of the impact events. Some of the classic craters have a more subdued topography than fresh craters of similar size on other icy bodies such as Ganymede and Callisto, probably due to the enhanced viscous relaxation produced by a steeper thermal gradient on Europa. Pedestal ejecta facies on Europa (and Ganymede) may be produced by the relief-flattening movement of plastically deforming but otherwise solid ice that was warm at the time of emplacement. Callanish and Tyre do not appear to be larger and even more viscously relaxed versions of the classic craters; rather they display totally different morphologies such as distinctive textures and a series of large concentric structural rings cutting impact-feature-related materials. Impact simulations suggest that the distinctive morphologies would not be produced by impact into a solid ice target, but may be explained by impact into an ice layer approximately 10 to 15 km thick overlying a low-viscosity material such as water. The very wide (near antipodal) separation of Callanish

  16. Large Impact Features on Europa: Results of the Galileo Nominal Mission

    USGS Publications Warehouse

    Moore, Johnnie N.; Asphaug, E.; Sullivan, R.J.; Klemaszewski, J.E.; Bender, K.C.; Greeley, R.; Geissler, P.E.; McEwen, A.S.; Turtle, E.P.; Phillips, C.B.; Tufts, B.R.; Head, J. W.; Pappalardo, R.T.; Jones, K.B.; Chapman, C.R.; Belton, M.J.S.; Kirk, R.L.; Morrison, D.

    1998-01-01

    The Galileo Orbiter examined several impact features on Europa at considerably better resolution than was possible from Voyager. The new data allow us to describe the morphology and infer the geology of the largest impact features on Europa, which are probes into the crust. We observe two basic types of large impact features: (1) "classic" impact craters that grossly resemble well-preserved lunar craters of similar size but are more topographically subdued (e.g., Pwyll) and (2) very flat circular features that lack the basic topographic structures of impact craters such as raised rims, a central depression, or central peaks, and which largely owe their identification as impact features to the field of secondary craters radially sprayed about them (e.g., Callanish). Our interpretation is that the classic craters (all <30 km diameter) formed entirely within a solid target at least 5 to 10 km thick that exhibited brittle behavior on time scales of the impact events. Some of the classic craters have a more subdued topography than fresh craters of similar size on other icy bodies such as Ganymede and Callisto, probably due to the enhanced viscous relaxation produced by a steeper thermal gradient on Europa. Pedestal ejecta facies on Europa (and Ganymede) may be produced by the relief-flattening movement of plastically deforming but otherwise solid ice that was warm at the time of emplacement. Callanish and Tyre do not appear to be larger and even more viscously relaxed versions of the classic craters; rather they display totally different morphologies such as distinctive textures and a series of large concentric structural rings cutting impact-feature-related materials. Impact simulations suggest that the distinctive morphologies would not be produced by impact into a solid ice target, but may be explained by impact into an ice layer ~10 to 15 km thick overlying a low-viscosity material such as water. The very wide (near antipodal) separation of Callanish and Tyre imply

  17. Galileo Science Writers' Briefing

    NASA Astrophysics Data System (ADS)

    1989-08-01

    This NASA Kennedy video production presents Part 1 of a press conference held at JPL on August 8, 1989. The briefing in its entirety covers the Galileo Project's mission design from launch to completion in 1997 and is moderated by JPL Public Information Mgr. Robert Macmillan. Part 1 of the 3 part video series includes presentations by Richard J. Spehalski (Galileo Project Manager) and Clayne M. Yeates (Acting Science Mission Design Manager). Mr. Spehalski's presentation includes actual footage of spacecraft preparations at Kennedy Space Center and slides of mission timelines. Dr. Yeates discusses the Galileo mission in chronological order and includes slides of the interplanetary trajectory, encounter geometry, propellant margins vs. launch date, and planned earth images.

  18. Silicon germanium (SiGe) radioisotope thermoelectric generator (RTG) program for space missions. Nineteenth technical progress report, December 1980-January 1981

    SciTech Connect

    Whitmore, C. W.; Silverman, G.

    1981-01-01

    Work accomplished during the reporting period on the DOE Silicon Germanium RTG Program, Contract DE-AC01-79ET-32043 is described. This program consists of the following three tasks: multi-hundred watt RTG for the Galileo probe mission; reestablishment of silicon germanium unicouple capability; and general purpose heat source RTG for the international solar polar and Galileo orbiter missions. Details of program progress for each task, including a milestone schedule and a discussion of current problem areas (if any) are presented.

  19. Russian program of planetary missions.

    PubMed

    Galeev, A A

    1996-01-01

    In the area of Solar System Exploration most of recently proposed mission oriented to the studies of Mars. Except MARS-96 and possibly MARS SAMPLE RETURN missions other Mars missions use Molnija class launchers. All Russian missions heavily involve international partners.

  20. STS-34 Galileo PCR at Pad & Galileo in Atlantis

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The primary objective of the STS-34 mission was the deployment of the Galileo spacecraft and the attached Inertial Upper Stage. This videotape shows the Galileo in the Payload Clean Room in preparation for the six year trip to Jupiter. There are also views of the spacecraft in the Atlantis Payload Bay.

  1. Galileo perceptionist.

    PubMed

    Sinico, Michele

    2012-01-01

    The present paper focuses on Galileo's conception of perception. I take as my starting point the interpretation of the Galilean text by Piccolino and Wade (2008, Perception 37 1312-1340): Galileo's eye: a new vision of the senses in the work of Galileo Galilei. Three points are discussed: the criticism of naive realism, the theoretical role of perceptual laws, and the distinction between different qualities of experience. The conclusions support an alternative interpretation which underscores the crucial role of phenomenology of perception in Galileo's epistemology. PMID:22896920

  2. Galileo perceptionist.

    PubMed

    Sinico, Michele

    2012-01-01

    The present paper focuses on Galileo's conception of perception. I take as my starting point the interpretation of the Galilean text by Piccolino and Wade (2008, Perception 37 1312-1340): Galileo's eye: a new vision of the senses in the work of Galileo Galilei. Three points are discussed: the criticism of naive realism, the theoretical role of perceptual laws, and the distinction between different qualities of experience. The conclusions support an alternative interpretation which underscores the crucial role of phenomenology of perception in Galileo's epistemology.

  3. Galileo quartz clock

    NASA Technical Reports Server (NTRS)

    Block, M.; Meirs, M.; Rosenfeld, M.; Garriga, P. C.

    1979-01-01

    A quartz oscillator for use in the Galileo experiment (orbiter and Probe) for Jupiter mission 1982 are described. This oscillator has achieved significant performance breakthroughs by the use of an SC cut, double rotated, crystal in a titanium dewar flask. Some of the performance parameters as well as the design feature of the oscillator are presented.

  4. Galileo Probe Battery System

    NASA Technical Reports Server (NTRS)

    Dagarin, B. P.; Taenaka, R. K.; Stofel, E. J.

    1997-01-01

    The conclusions of the Galileo probe battery system are: the battery performance met mission requirements with margin; extensive ground-based and flight tests of batteries prior to probe separation from orbiter provided good prediction of actual entry performance at Jupiter; and the Li-SO2 battery was an important choice for the probe's main power.

  5. NASA Mir program: Mission operations concept

    NASA Technical Reports Server (NTRS)

    Cardenas, Jeffrey A.

    1996-01-01

    The joint NASA/Russian Space Agency mission program is discussed, considering the lessons learned. The initial Shuttle Mir science program and the NASA Mir program are described. The NASA Mir program is organized into ten distinct working groups which are co-chaired by representatives from the two cooperating nations. The NASA component is managed from the Johnson Space Center (TX). The support provided by NASA for long-duration missions and Mir expeditions is described. The scope of the scientific research carried out within the framework of the joint program is considered. The NASA Mir training approach is discussed and the mission operations are reviewed with emphasis on the Mir 21/NASA 2 mission.

  6. Judging Galileo

    NASA Astrophysics Data System (ADS)

    Hutchinson, Ian; Brandon, David; Ferguson, Ian

    2009-05-01

    In his article "The Galileo affair" (March pp54-57), Maurice A Finocchiaro asserts that the complexities of the affair "can be simplified, without oversimplification". But when he concludes that "the proper defence of Galileo should have the reasoned, critical, open-minded and fairminded character that was also displayed by [Galileo's] own defence of Copernicus", Finocchiaro thereby fails to follow the admirable principles he advocates. Why? Because the evidence shows that it was in large degree Galileo's own boastful arrogance and lack of fair-mindedness that drew upon him the ire of the scholars he so despised, and feared. By putting the Ptolemaic arguments into the mouth of "Simpleton", Galileo won his staged Dialogue on the Two Chief World Systems, Ptolemaic and Copernican, but lost far more, notably the former friendship and admiration of Pope Urban VIII.

  7. Galileo - Ganymede Family Night

    NASA Astrophysics Data System (ADS)

    1996-06-01

    When the Galileo spacecraft flew by Ganymede, Jupiter's and the solar system's largest satellite, on June 26, 1996, the project scientists and engineers gather with their friends and family to view the photos as they are received and to celebrate the mission. This videotape presents that meeting. Representatives from the various instrument science teams discuss many of the instruments aboard Galileo and show videos and pictures of what they have seen so far. This video is continued on Videotape number NONP-NASA-VT-2000036028.

  8. Galileo's Pendulum.

    ERIC Educational Resources Information Center

    Erlichson, Herman

    1999-01-01

    Describes a laboratory activity in which students speculate about the extent to which Galileo actually performed an experiment to determine that all pendulums of a given length have the same period, independent of amplitude. (WRM)

  9. The Program of ``EXOMARS'' Mission Planetary Protection

    NASA Astrophysics Data System (ADS)

    Khamidullina, N.; Novikova, Nataliya; Deshevaya, Elena; Orlov, Oleg; Aleksashkin, Sergey; Kalashnikov, Viktor; Trofimov, Vladislav

    The main purpose of “Exomars” interplanetary mission is landing of Descent Module onto the Mars surface and investigation of Martian environment, including implementation of biological experiments on the search for possible life forms by Rover. According to COSPАR classification the Descent Module is related to category IVa and the Rover is related to category IVb. The report contains main provisions of the program on planetary protection of Mars which will be implemented in the process of the mission preparation.

  10. Galileo Science Summary October, 1997

    NASA Astrophysics Data System (ADS)

    1997-10-01

    This video is a compilation of visualizations, animation and some actual shots from the Galileo mission. It shows the trajectories of the mission around Jupiter that took the mission to Jupiter, and the various orbits of the spacecraft around the planet, that allowed for the views of several of Jupiter's moons from which the visualizations of this video are taken. It mainly shows the visualizations of the Galileo's view of Jupiter's atmosphere, Io, Ganymede, and Europa. There is no spoken presentation, the views are announced with slides prior to the presentation. Orchestrated selections from Vivaldi's Four Season's serves as background.

  11. Hybrid simulation of the Ganymede's magnetosphere: comparison with the Galileo observations and predictions for the JUICE mission

    NASA Astrophysics Data System (ADS)

    Leclercq, L.; Modolo, R.; Leblanc, F.; Hess, S.; André, N.

    2014-04-01

    Ganymede is a unique object: it is the biggest moon of our solar system, and the only satellite which has its own intrinsic magnetic field leading to the formation of a small magnetosphere. The magnetosphere of Ganymede being embedded in the Jovian magnetosphere, the environment of the Galilean moon presents the only known case of interaction between two magnetospheres (Kivelson et al. 1996). To modelize this peculiar interaction, we developped a 3D parallel multi-species hybrid model based on a CAM-CL algorithm (Mathews et al. 1994) which has been largely used for other magnetized or unmagnetized bodies such as Mars, Titan or Mercury. In this model, ions have a kinetic description whereas electrons are considered as an inertialess fluid which ensure the neutrality of the plasma and contribute to the total current and electronic pressure. Maxwell's equations are solved to compute the temporal evolution of electromagnetic field. The Jovian magnetospheric plasma is composed of O+ and H+, and the intrinsic Ganymede's magnetic field is implemented at initialization as a dipolar field with a magnetic moment taken from (Kivelson et al.2002). The planetary plasma included in the simulation is composed of ionospheric O+ and H+. In a first attempt, the ionospheric plasma is loaded at the initialization of the simulation with a total density at the surface and a scale height of 125 km in agreement with Paty and Winglee et al. (2004). In addition, neutral corona of atomic hydrogen and molecular hydrogen is included in the simulation. This neutral environment is partly ionized by solar photons, electron impacts and charge exchange reactions between the magnetospheric ions and the neutral coronae. During different flybys of Ganymede by the spacecraft Galileo in 1996, the Galileo magnetometer measured the magnetic field of the moon. In order to compare the results of our model with the in-situ observations of Galileo, we consider the observations conditions of different flybys

  12. Galileo Science Writers' Briefing

    NASA Astrophysics Data System (ADS)

    1989-08-01

    This NASA Kennedy video production presents Part 3 of a press conference held at JPL on August 8, 1989. The briefing in its entirety covers the Galileo Project's mission design from launch to completion in 1997 and is moderated by JPL Public Information Mgr. Robert Macmillan. Part 3 of the 3 part video series centers on the Galileo science goals, which are to explore not only Jupiter but the entire Jovian system, and the individual instruments that will make these objectives possible. Dr. Torrence V. Johnson (Project Scientist) introduces Dr. Richard Young (Probe Scientist (AMES)) and Dr. Clayne M. Yeates (Acting Science Mission Design Manager) who discuss the six main instruments included on the Probe and the Orbiter experiments and instrumentation, respectively. The video is rounded out by a period in which the Science Writer's are given an opportunity to ask questions of the seven member panel.

  13. Galileo: Exploration of Jupiter's system

    NASA Technical Reports Server (NTRS)

    Johnson, T. V.; Yeates, C. M.; Colin, L.; Fanale, F. P.; Frank, L.; Hunten, D. M.

    1985-01-01

    The scientific objectives of the Galileo mission to the Jovian system is presented. Topics discussed include the history of the project, our current knowledge of the system, the objectives of interrelated experiments, mission design, spacecraft, and instruments. The management, scientists, and major contractors for the project are also given.

  14. Galileo: exploration of Jupiter's system

    SciTech Connect

    Johnson, T.V.; Yeates, C.M.; Colin, L.; Fanale, F.P.; Frank, L.; Hunten, D.M.

    1985-06-01

    The scientific objectives of the Galileo mission to the Jovian system is presented. Topics discussed include the history of the project, our current knowledge of the system, the objectives of interrelated experiments, mission design, spacecraft, and instruments. The management, scientists, and major contractors for the project are also given.

  15. Deployment of Galileo and the IUS

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Galileo spacecraft and its Inertial Upper Stage (IUS) booster were deployed from the cargo bay of STS-34 Atlantis. Deployment occurred at 7:15 P.M. EDT on October 18, 1989. Beginning an hour after deployment, two rocket stages of the IUS fired in succession. Galileo separated from the IUS' second stage at 9:05 P.M. and began its ballistic flight to Venus for the first of three gravity-assisted flybys, which will take Galileo to Jupiter.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA'is Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  16. Design and test of the Near Infrared Mapping Spectrometer /NIMS/ focal plane for the Galileo Jupiter Orbiter mission

    NASA Technical Reports Server (NTRS)

    Bailey, G.

    1979-01-01

    A Near Infrared Mapping Spectrometer (NIMS) will fly past Jupiter on the Galileo spacecraft in 1982. The infrared detector assembly (focal plane) used in the NIMS instrument is to be passively cooled to 80 K by radiation into space. The focal plane contains 15 InSb and two silicon detectors, each with an associated dual J-FET preamp and feedback resistor. Preliminary fabrication and test experience will be described for an experimental five-channel hybrid detector assembly. Measurements of spectral noise density along with a plasma cleaning technique will also be described. The final NIMS focal plane will contain much of the design experience gained from the experimental hybrid detector assembly.

  17. NASA Technology Demonstrations Missions Program Overview

    NASA Technical Reports Server (NTRS)

    Turner, Susan

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Fiscal Year 2010 (FY10) budget introduced a new strategic plan that placed renewed emphasis on advanced missions beyond Earth orbit. This supports NASA s 2011 strategic goal to create innovative new space technologies for our exploration, science, and economic future. As a result of this focus on undertaking many and more complex missions, NASA placed its attention on a greater investment in technology development, and this shift resulted in the establishment of the Technology Demonstrations Missions (TDM) Program. The TDM Program, within the newly formed NASA Office of the Chief Technologist, supports NASA s grand challenges by providing a steady cadence of advanced space technology demonstrations (Figure 1), allowing the infusion of flexible path capabilities for future exploration. The TDM Program's goal is to mature crosscutting capabilities to flight readiness in support of multiple future space missions, including flight test projects where demonstration is needed before the capability can transition to direct mission The TDM Program has several unique criteria that set it apart from other NASA program offices. For instance, the TDM Office matures a small number of technologies that are of benefit to multiple customers to flight technology readiness level (TRL) 6 through relevant environment testing on a 3-year development schedule. These technologies must be crosscutting, which is defined as technology with potential to benefit multiple mission directorates, other government agencies, or the aerospace industry, and they must capture significant public interest and awareness. These projects will rely heavily on industry partner collaboration, and funding is capped for all elements of the flight test demonstration including planning, hardware development, software development, launch costs, ground operations, and post-test assessments. In order to inspire collaboration across government and industry

  18. Building Technologies Program Vision, Mission, and Goals

    SciTech Connect

    2011-12-15

    The Vision, Mission, and Goals of the Building Technologies Program (BTP) focus on short term energy efficiency outcomes such as improved economic environment, enhanced comfort, and affordability that collectively benefit our nation. Long-term goals focus on helping secure our nation's energy independence.

  19. Mound Supports Galileo

    SciTech Connect

    Monsanto Research Corporation

    1986-01-01

    This video describes the invention of Radioisotope Thermoelectric Generators (RTGs) at Mound Laboratory, and radioisotope heat source production from 1 watt-thermal to 2400 watts-thermal. RTGs have been used in many space vehicles, but the RTG built for the Galileo mission to orbit Jupiter is the largest. This RTG unit will produce 4400 watts-thermal and convert to 300 watts-electric. The plutonium-238 heat source assembly and test at Mound is described. The RTGs are tested under simulated mission conditions. The RTG leakage radiation is carefully measured for background compensation for on-board radiation monitoring instruments.

  20. National Space Transportation Systems Program mission report

    NASA Technical Reports Server (NTRS)

    Collins, M. A., Jr.; Aldrich, A. D.; Lunney, G. S.

    1984-01-01

    The STS 41-C National Space Transportation Systems Program Mission Report contains a summary of the major activities and accomplishments of the eleventh Shuttle flight and fifth flight of the OV-099 vehicle, Challenger. Also summarized are the significant problems that occurred during STS 41-C, and a problem tracking list that is a complete list of all problems that occurred during the flight. The major objectives of flight STS 41-C were to successfully deploy the LDEF (long duration exposure facility) and retrieve, repair and redeploy the SMM (Solar Maximum Mission) spacecraft, and perform functions of IMAX and Cinema 360 cameras.

  1. Galileo's Dagger.

    PubMed

    Anstis, Stuart

    2016-01-01

    Galileo found that fine lines on a balance scale dazzled his eyes and were unreadable. So he used a grid of fine wires instead and ran his dagger across it, counting the number of auditory clicks. This is the first known experiment on sensory substitution. PMID:26562849

  2. Galileo's Dagger.

    PubMed

    Anstis, Stuart

    2016-01-01

    Galileo found that fine lines on a balance scale dazzled his eyes and were unreadable. So he used a grid of fine wires instead and ran his dagger across it, counting the number of auditory clicks. This is the first known experiment on sensory substitution.

  3. Galileo probe parachute test program: Wake properties of the Galileo probe at Mach numbers from 0.25 to 0.95

    NASA Astrophysics Data System (ADS)

    Canning, Thomas N.; Edwards, Thomas M.

    1988-04-01

    The results of surveys of the near and far wake of the Galileo Probe are presented for Mach numbers from 0.25 tp 0.95. The trends in the data resulting from changes in Mach number, radial and axial distance, angle of attack, and a small change in model shape are shown in crossplots based on the data. A rationale for selecting an operating volume suitable for parachute inflation based on low Mach number flight results is outlined.

  4. Galileo probe parachute test program: Wake properties of the Galileo probe at Mach numbers from 0.25 to 0.95

    NASA Technical Reports Server (NTRS)

    Canning, Thomas N.; Edwards, Thomas M.

    1988-01-01

    The results of surveys of the near and far wake of the Galileo Probe are presented for Mach numbers from 0.25 tp 0.95. The trends in the data resulting from changes in Mach number, radial and axial distance, angle of attack, and a small change in model shape are shown in crossplots based on the data. A rationale for selecting an operating volume suitable for parachute inflation based on low Mach number flight results is outlined.

  5. Mars Surveyor Program 2001 Mission Overview

    NASA Technical Reports Server (NTRS)

    Saunders, R. Stephen

    1999-01-01

    The Mars Surveyor 2001 mission to Mars was initially a key element in the Mars sample return sequence of missions. A capable rover, carrying the Cornell Athena instruments would be placed on Mars to roam over several kilometers, select samples, and place them in a cache for return by a subsequent mission. Inevitably, budget constraints forced descopes. At one critical point, the landed payload consisted only of the HEDS (Human Exploration and Development of Space) payloads selected for testing environmental properties of the surface for future human exploration. Then Congress intervened and put back some of the funding that had been deleted. NASA next redefined the payload to include as many of the Athena instruments as possible, to be distributed between the lander deck and a Sojourner class rover. This payload would then be placed on a modified version of the Mars Polar Lander rather than on the much larger, and more expensive, lander that had been originally designed for the mission. With this functionality restored the '01 mission remains an important and pivotal element of the Mars Surveyor program. It completes the Mars Observer objectives with the gamma ray spectrometer mapping. This mission will largely complete the global characterization phase of Mars exploration and mark the beginning of focused surface exploration leading to return of the first samples and the search for evidence of past Martian life. MSP'01 also is the first mission in the combined Mars exploration strategy of the HEDS and Space Science Enterprises of NASA. This mission, and those to follow, will demonstrate technologies and collect environmental data that will provide the basis for a decision to send humans to Mars. The NASA exploration strategy for Mars includes orbiters, landers and rovers launched in 2001 and 2003 and a sample return mission to be launched in 2005, returning a sample by 2008. The purpose of the rovers is to explore and characterize sites on Mars. The 2003 and 2005

  6. Galileo Space Probe News Conference

    NASA Astrophysics Data System (ADS)

    1996-01-01

    This NASA Kennedy Space Center (KSC) video release presents Part 1 of a press conference regarding the successful entry of the Galileo Space Probe into Jupiter's atmosphere. The press conference panel is comprised of twelve principal investigators and project scientists that oversee the Galileo mission. Among these panelists, William J. O'Neil (Jet Propulsion Lab.) begins the video praising all of the scientists that worked on the orbiter mission. He then presents a visual overview of Galileo's overall mission trajectory and schedule. Marcie Smith (NASA Ames Research Center) then describes the Galileo Probe mission and the overall engineering and data acquisition aspects of the Probe's Jupiter atmospheric entry. Dr. Richard Young (NASA Ames Research Center) follows with a brief scientific overview, describing the measurements of the atmospheric composition as well as the instruments that were used to gather the data. Atmospheric pressure, temperature, density, and radiation levels of Jupiter were among the most important parameters measured. It is explained that these measurements would be helpful in determining among other things, the overall dynamic meteorology of Jupiter. A question and answer period follows the individual presentations. Atmospheric thermal structure, water abundances, wind profiles, radiation, cloud structure, chemical composition, and electricity are among the topics discussed. Parts 2 and 3 of the press conference can be found in document numbers NONP-NASA-VT-2000001074, and NONP-NASA-VT-2000001075.

  7. Dawn Mission's Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    McFadden, Lucy-Ann A.; Wise, J.; Ristvey, J.; Warner, E. M.

    2007-10-01

    NASA's Dawn mission, the 9th Discovery mission, is the first to orbit two solar system bodies: Vesta (Oct 2011-Apr 2012), then Ceres (Feb-Jul 2015), the most massive Main Belt asteroids. The Education and Public Outreach (EPO) goals are to inspire the next generation of explorers; motivate students to pursue careers in science, technology, engineering and mathematics (STEM); to enhance the quality of STEM education at the K-13 level and engage the public in exploration and discovery. Dawn's website (dawn.jpl.nasa.gov) is central to the dissemination of products and activities. The Dawn E-Newsletter, with 2,301 subscribers, is produced on a quarterly basis. Leonard Nimoy narrated the mission video available on Google videos. Dawn Young Engineers build a paper model of the Dawn spacecraft and submit photos with their constructions. 366,050 names were collected to send to the asteroids. Speaker's kits for the Solar System Ambassadors are online and a poster can be printed via web at a local Office Max. Educational materials about dwarf planets, history and discovery of asteroids, ion propulsion and finding meteorites have been developed. In addition, numerous activities including an interactive activity on ion propulsion, identifying craters (ClickWorkers) and observing asteroids (Telescopes in Education and Amateur Observers' Program) appeal to formal and informal educational audiences. Educators from over 20 states convened in Florida for a workshop in June with the opportunity to meet mission scientists, learn about the modules and activities, observe Vesta through a telescope and tour KSFC. Plans for the coming years include developing modules on instrumentation, theories of the origin of the solar system and data analysis. A planetarium show, museum displays, a video field trip to the asteroid belt and additional educator workshops are planned. This work is funded by NASA's Discovery Program.

  8. Evaluating Mission Drift in Microfinance: Lessons for Programs with Social Mission

    ERIC Educational Resources Information Center

    Hishigsuren, Gaamaa

    2007-01-01

    The article contributes to a better understanding of implications of scaling up on the social mission of microfinance programs. It proposes a methodology to measure the extent, if any, to which a microfinance program with a poverty alleviation mission drifts away from its mission during rapid scaling up and presents findings from a field research…

  9. Galileo's Paradox

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2008-05-01

    The paradox is a wonderful teaching tool. The sleepy student in the back row is surprised and wakes up, and the student with the instantly memorized answer is forced into the analytical mode. The diagram in Fig. 1 has the following paradox: A body sliding freely down a chord from the edge of the circle reaches the lowest point on the circle at the same time as a body released simultaneously from the top. This result was first mentioned in a 1602 letter from Galileo Galilei to Guidobaldo dal Monte.

  10. Uruk Sulcus Mosaic - Galileo over Voyager Data

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A mosaic of four Galileo images of the Uruk Sulcus region on Ganymede (Latitude 11 N, Longitude: 170 W) is shown overlayed on the data obtained by the Voyager 2 spacecraft in 1979. North is to the top of the picture, and the sun illuminates the surface from the lower left, nearly overhead. The area shown is about 120 by 110 kilometers (75 by 68 miles) in extent and the smallest features that can be discerned are 74 meters (243 feet) in size in the Galileo images and 1.3 kilometers (0.8 miles) in the Voyager data. The higher resolution Galileo images unveil the details of parallel ridges and troughs that are principal features in the brighter regions of Ganymede. High photometric activity (large light contrast at high spatial frequencies) of this ice-rich surface was such that the Galileo camera's hardware data compressor was pushed into truncating lines. The north-south running gap between the left and right halves of the mosaic is a result of line truncation from the normal 800 samples per line to about 540. The images were taken on 27 June, 1996 Universal Time at a range of 7,448 kilometers (4,628 miles) through the clear filter of the Galileo spacecraft's imaging system.

    Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  11. Launch of Galileo on STS-34 Atlantis

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-34 Atlantis, carrying the Galileo spacecraft and its Inertial Upper Stage booster, lifts off from Kennedy Space Center, Florida, on October 18, 1989. Liftoff occurred at 12:53 P.M. EDT. Space Shuttle Atlantis was commanded by Donald E. Williams and piloted by Michael J. McCulley; mission specialists were Shannon W. Lucid, Franklin W. Chang-Diaz, and Ellen S. Baker.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA'is Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  12. The Galileo Spacecraft: A Telecommunications Legacy for Future Space Flight

    NASA Technical Reports Server (NTRS)

    Deutsch, Leslie J.

    1997-01-01

    The Galileo mission to Jupiter has implemented a wide range of telecommunication inprovements in response to the loss of its high gain antenna. While necessity dictated the use of these new techniques for Galileo, now that they have been proven in flight, they are available for use on future deep space missions. This telecommunications legacy of Galileo will aid in our ability to conduct a meaningful exploration of the solar system, and beyond, at a reasonable cost.

  13. The Interagency Nuclear Safety Review Panel's Galileo safety evaluation report

    SciTech Connect

    Nelson, R.C.; Gray, L.B.; Huff, D.A.

    1989-01-01

    The safety evaluation report (SER) for Galileo was prepared by the Interagency Nuclear Safety Review Panel (INSRP) coordinators in accordance with Presidential directive/National Security Council memorandum 25. The INSRP consists of three coordinators appointed by their respective agencies, the Department of Defense, the Department of Energy (DOE), and the National Aeronautics and Space Administration (NASA). These individuals are independent of the program being evaluated and depend on independent experts drawn from the national technical community to serve on the five INSRP subpanels. The Galileo SER is based on input provided by the NASA Galileo Program Office, review and assessment of the final safety analysis report prepared by the Office of Special Applications of the DOE under a memorandum of understanding between NASA and the DOE, as well as other related data and analyses. The SER was prepared for use by the agencies and the Office of Science and Technology Policy, Executive Office of the Present for use in their launch decision-making process. Although more than 20 nuclear-powered space missions have been previously reviewed via the INSRP process, the Galileo review constituted the first review of a nuclear power source associated with launch aboard the Space Transportation System.

  14. Galileo's Lens

    NASA Astrophysics Data System (ADS)

    Manos, Harry

    2003-05-01

    Most visitors to Florence, Italy, know about the Galleria dell'Accademia, housing Michelangelo's famous statue of David, or the Galleria degli Uffizi with the famous Medici collection. Few visitors know that only two blocks from the Uffizi on the Arno River is one of the world's finest museums featuring historic scientific instruments, the Museo di Storia della Scienza. In the February issue of TPT, Nickell states that the Museo di Storia della Scienza ``is perhaps the best museum on the history of science in the world.''1 This fact is likely true, and the museum is a must for physics teachers visiting Florence. It features a vast collection of authentic ``cutting-edge'' scientific instruments, including one of Galileo's lenses in a magnificent ebony and ivory frame. One of the tragedies is that this museum goes unmarked on many tourist maps and unmentioned in many guidebooks.

  15. Constellation Program Mission Operations Project Office Status and Support Philosophy

    NASA Technical Reports Server (NTRS)

    Smith, Ernest; Webb, Dennis

    2007-01-01

    The Constellation Program Mission Operations Project Office (CxP MOP) at Johnson Space Center in Houston Texas is preparing to support the CxP mission operations objectives for the CEV/Orion flights, the Lunar Lander, and and Lunar surface operations. Initially the CEV will provide access to the International Space Station, then progress to the Lunar missions. Initial CEV mission operations support will be conceptually similar to the Apollo missions, and we have set a challenge to support the CEV mission with 50% of the mission operations support currently required for Shuttle missions. Therefore, we are assessing more efficient way to organize the support and new technologies which will enhance our operations support. This paper will address the status of our preparation for these CxP missions, our philosophical approach to CxP operations support, and some of the technologies we are assessing to streamline our mission operations infrastructure.

  16. Changes around Marduk between Voyager, and Galileo's first two orbits

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Detail of changes around Marduk on Jupiter's moon Io as seen by Voyager 1 in 1979 (upper left) and NASA's Galileo spacecraft between June 1996 (lower left) and September 1996 (upper and lower right). The new dark red linear feature extending southeast from Marduk is about 250 kilometers long and may be a volcanic fissure. The flow-like feature at the bottom of the images is distinct in the Voyager data, indistinct in the June Galileo data, but distinct again in the September Galileo data. This may be due to the different lighting conditions rather than volcanic activity. The Voyager 1 image uses the green, blue, and violet filters. The upper right September 1996 image from Galileo uses the violet and green filters of the solid state imaging system aboard the Galileo spacecraft and a synthetic blue to simulate Voyager colors. The lower June and September, 1996 Galileo images use the imaging system's near-infrared (756 nm), green, and violet filters. North is to the top in all frames.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  17. 45 CFR 1388.3 - Program criteria-mission.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION ON DEVELOPMENTAL DISABILITIES, DEVELOPMENTAL DISABILITIES PROGRAM THE UNIVERSITY AFFILIATED PROGRAMS § 1388.3 Program criteria—mission. (a) Introduction to mission: The UAP is guided by values of independence, productivity, integration and inclusion...

  18. Planetary missions

    NASA Technical Reports Server (NTRS)

    Mclaughlin, William I.

    1989-01-01

    The scientific and engineering aspects of near-term missions for planetary exploration are outlined. The missions include the Voyager Neptune flyby, the Magellan survey of Venus, the Ocean Topography Experiment, the Mars Observer mission, the Galileo Jupiter Orbiter and Probe, the Comet Rendezvous Asteroid Flyby mission, the Mars Rover Sample Return mission, the Cassini mission to Saturn and Titan, and the Daedalus probe to Barnard's star. The spacecraft, scientific goals, and instruments for these missions are noted.

  19. The GalileoMobile Project

    NASA Astrophysics Data System (ADS)

    Del Pilar Becerra, A.&ída; Bhatt, Megha; Kobel, Philippe

    2012-07-01

    GalileoMobile is a traveling science education project by an international team of PhD students and recent graduates (partnering with the Universe Awareness program) that brings astronomy to young people in remote regions of developing countries. Our primary project goals are: (1) to stimulate students' curiosity and interest in learning, (2) to exchange different visions of the cosmos and cultures, and (3) to inspire a feeling of unity "under the same sky" between people from different parts of the world. In 2009, GalileoMobile traveled to 30 schools in Chile, Bolivia and Peru, bringing hands-on activities and Galileoscopes; the team also produced a documentary movie to share the experiences and culture with the world. In 2012, GalileoMobile plans an expedition to India from the 2nd to the 13th of July in villages between Bangalore and Mysore. We will again bring hands-on astronomy activities and telescopes to the schools, and share our experiences with the world via internet resources. GalileoMobile is also collaborating with the Galileo Teacher Training Program to provide workshops for local teachers, to encourage continuation of astronomy education beyond our visit. In this way, we expect to spark sustainable interest in astronomy in remote areas that have little access to science outreach, and to share the culture of these areas with the world -- "under the same sky."

  20. Galileo: Earth avoidance study report

    NASA Technical Reports Server (NTRS)

    Mitchell, R. T.

    1988-01-01

    The 1989 Galileo mission to Jupiter is based on a VEEGA (Venus Earth Earth-Gravity Assist) trajectory which uses two flybys of Earth and one of Venus to achieve the necessary energy and shaping to reach Jupiter. These encounters are needed because the Centaur upper stage is not now being used on this mission. Since the Galileo spacecraft uses radioisotope thermoelectric generators (RTGs) for electrical power, the question arises as to whether there is any chance of an inadvertent atmospheric entry of the spacecraft during either of the two Earth flybys. A study was performed which determined the necessary actions, in both spacecraft and trajectory design as well as in operations, to insure that the probability of such reentry is made very small, and to provide a quantitative assessment of the probability of reentry.

  1. National Space Transportation Systems Program mission report

    NASA Technical Reports Server (NTRS)

    Collins, M. A., Jr.; Aldrich, A. D.; Lunney, G. S.

    1984-01-01

    The 515-41B National Space Transportation Systems Program Mission Report contains a summary of the major activities and accomplishments of the sixth operational Shuttle flight and fourth flight of the OV-099 vehicle, Challenger. Since this flight was the first to land at Kennedy Space Center, the vehicle was towed directly to the OPF (Orbiter Processing Facility) where preparations for flight STS-41C, scheduled for early April 1984, began immediately. The significant problems that occurred during STS-41B are summarized and a problem tracking list that is a complete list of all problems that occurred during the flight is given. None of the problems will affect the STS 41C flight. The major objectives of flight STS-41B were to successfully deploy the Westar satellite and the Indonesian Communications Satellite-B2 (PALAPA-B2); to evaluate the MMU (Manned Maneuvering Unit) support for EVA (Extravehicular Activities); to exercise the MFR (Manipulator Foot Restraint); to demonstrate a closed loop rendezvous; and to operate the M.R (Monodisperse Latex Reactor), the ACES (Acoustic Containerless Experiment System) and the IEF (Isoelectric Focusing) in cabin experiments; and to obtain photographs with the Cinema 360 Cameras.

  2. Four Galileo Views of Amalthea

    NASA Technical Reports Server (NTRS)

    1997-01-01

    These four images of Jupiter's moon, Amalthea, were taken by Galileo's solid state imaging system at various times between February and June 1997. North is approximately up in all cases. Amalthea, whose longest dimension is approximately 247 kilometers (154 miles) across, is tidally locked so that the same side of the satellite always points towards Jupiter, similar to how the nearside of our own Moon always points toward Earth. In such a tidally locked state, one side of Amalthea always points in the direction in which Amalthea moves as it orbits about Jupiter. This is called the 'leading side' of the moon and is shown in the top two images. The opposite side of Amalthea, the 'trailing side,' is shown in the bottom pair of images. The Sun illuminates the surface from the left in the top left image and from the right in the bottom left image. Such lighting geometries, similar to taking a picture from a high altitude at sunrise or sunset, are excellent for viewing the topography of the satellite's surface such as impact craters and hills. In the two images on the right, however, the Sun is almost directly behind the spacecraft. This latter geometry, similar to taking a picture from a high altitude at noon, washes out topographic features and emphasizes Amalthea's albedo (light/dark) patterns. It emphasizes the presence of surface materials that are intrinsically brighter or darker than their surroundings. The bright albedo spot that dominates the top right image is located inside a large south polar crater named Gaea.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  3. The Galileo Affair.

    ERIC Educational Resources Information Center

    Poole, Michael

    1990-01-01

    Presented is background material on Galileo and his views on astronomy, religion, and Copernicus. The history of theory development related to the science of astronomy and a review of Galileo's writings are included. (KR)

  4. Voyager-to-Galileo Changes, Io's Anti-Jove Hemisphere

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Shown here is a comparison of a Galileo color image (right) of Jupiter's moon Io, with a Voyager mosaic (left) reprojected to the same geometry as the Galileo image. The image on the right was obtained by the Galileo spacecraft's imaging camera on September 7th, 1996; the mosaic on the left was obtained by the Voyager spacecraft in 1979. Color is synthesized from green and violet filters only in both cases, as these are the only two filters that are reasonably similar between Voyager and Galileo. Many surface changes can be seen due to volcanic activity from 1979 to 1996. North is to the top of both frames. Galileo was about 487,000 kilometers (302,000 miles) from Io on September 7, 1996.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  5. RTG performance on Galileo and Ulysses and Cassini test results

    SciTech Connect

    Kelly, C. Edward; Klee, Paul M.

    1997-01-10

    Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Similar comparisons are made for the RTG on the Ulysses spacecraft which completed its planned mission in 1995. Also presented are test results from small scale thermoelectric modules and full scale converters performed for the Cassini program. The Cassini mission to Saturn is scheduled for an October 1997 launch. Small scale module test results on thermoelectric couples from the qualification and flight production runs are shown. These tests have exceeded 19,000 hours are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. Test results are presented for full scale units both ETGs (E-6, E-7) and RTGs (F-2, F-5) along with mission power predictions. F-5, fueled in 1985, served as a spare for the Galileo and Ulysses missions and plays the same role in the Cassini program. It has successfully completed all acceptance testing. The ten years storage between thermal vacuum tests is the longest ever experienced by an RTG. The data from this test are unique in providing the effects of long term low temperature storage on power output. All ETG and RTG test results to date indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of at least five percent are predicted.

  6. RTG performance on Galileo and Ulysses and Cassini test results

    SciTech Connect

    Kelly, C.E.; Klee, P.M.

    1997-01-01

    Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Similar comparisons are made for the RTG on the Ulysses spacecraft which completed its planned mission in 1995. Also presented are test results from small scale thermoelectric modules and full scale converters performed for the Cassini program. The Cassini mission to Saturn is scheduled for an October 1997 launch. Small scale module test results on thermoelectric couples from the qualification and flight production runs are shown. These tests have exceeded 19,000 hours are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. Test results are presented for full scale units both ETGs (E-6, E-7) and RTGs (F-2, F-5) along with mission power predictions. F-5, fueled in 1985, served as a spare for the Galileo and Ulysses missions and plays the same role in the Cassini program. It has successfully completed all acceptance testing. The ten years storage between thermal vacuum tests is the longest ever experienced by an RTG. The data from this test are unique in providing the effects of long term low temperature storage on power output. All ETG and RTG test results to date indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of at least five percent are predicted. {copyright} {ital 1997 American Institute of Physics.}

  7. Single-shell tank retrieval program mission analysis report

    SciTech Connect

    Stokes, W.J.

    1998-08-11

    This Mission Analysis Report was prepared to provide the foundation for the Single-Shell Tank (SST) Retrieval Program, a new program responsible for waste removal for the SSTS. The SST Retrieval Program is integrated with other Tank Waste Remediation System activities that provide the management, technical, and operations elements associated with planning and execution of SST and SST Farm retrieval and closure. This Mission Analysis Report provides the basis and strategy for developing a program plan for SST retrieval. This Mission Analysis Report responds to a US Department of Energy request for an alternative single-shell tank retrieval approach (Taylor 1997).

  8. Simulation Facilities and Test Beds for Galileo

    NASA Astrophysics Data System (ADS)

    Schlarmann, Bernhard Kl.; Leonard, Arian

    2002-01-01

    Galileo is the European satellite navigation system, financed by the European Space Agency (ESA) and the European Commission (EC). The Galileo System, currently under definition phase, will offer seamless global coverage, providing state-of-the-art positioning and timing services. Galileo services will include a standard service targeted at mass market users, an augmented integrity service, providing integrity warnings when fault occur and Public Regulated Services (ensuring a continuity of service for the public users). Other services are under consideration (SAR and integrated communications). Galileo will be interoperable with GPS, and will be complemented by local elements that will enhance the services for specific local users. In the frame of the Galileo definition phase, several system design and simulation facilities and test beds have been defined and developed for the coming phases of the project, respectively they are currently under development. These are mainly the following tools: Galileo Mission Analysis Simulator to design the Space Segment, especially to support constellation design, deployment and replacement. Galileo Service Volume Simulator to analyse the global performance requirements based on a coverage analysis for different service levels and degrades modes. Galileo System Simulation Facility is a sophisticated end-to-end simulation tool to assess the navigation performances for a complete variety of users under different operating conditions and different modes. Galileo Signal Validation Facility to evaluate signal and message structures for Galileo. Galileo System Test Bed (Version 1) to assess and refine the Orbit Determination &Time Synchronisation and Integrity algorithms, through experiments relying on GPS space infrastructure. This paper presents an overview on the so called "G-Facilities" and describes the use of the different system design tools during the project life cycle in order to design the system with respect to

  9. Modern exploration of Galileo's new worlds

    NASA Astrophysics Data System (ADS)

    Johnson, Torrence V.

    2010-01-01

    Four hundred years ago Galileo turned his telescope to the heavens and changed the way we view the cosmos forever. Among his discoveries in January of 1610 were four new ‘stars’, following Jupiter in the sky but changing their positions with respect to the giant planet every night. Galileo showed that these ‘Medicean stars’, as he named them, were moons orbiting Jupiter in the same manner that the Earth and planets revolve about the Sun in the Copernican theory of the solar system. Over the next three centuries these moons, now collectively named the Galilean satellites after their discoverer, remained tiny dots of light in astronomers' telescopes. In the latter portion of the twentieth century Galileo's new worlds became important targets of exploration by robotic spacecraft. This paper reviews the history of this exploration through the discoveries made by the Galileo mission from 1995 to 2003, setting the stage for on-going exploration in the new century.

  10. Modern Exploration of Galileo's New Worlds

    NASA Technical Reports Server (NTRS)

    Johnson, Torrence V.

    2010-01-01

    Four hundred years ago Galileo turned his telescope to the heavens and changed the way we view the cosmos forever. Among his discoveries in January of 1610 were four new 'stars', following Jupiter in the sky but changing their positions with respect to the giant planet every night. Galileo showed that these 'Medicean stars', as he named them, were moons orbiting Jupiter in the same manner that the Earth and planets revolve about the Sun in the Copernican theory of the solar system. Over the next three centuries these moons, now collectively named the Galilean satellites after their discoverer, remained tiny dots of light in astronomers' telescopes. In the latter portion of the twentieth century Galileo's new worlds became important targets of exploration by robotic spacecraft. This paper reviews the history of this exploration through the discoveries made by the Galileo mission from 1995 to 2003, setting the stage for on-going exploration in the new century.

  11. View of Callisto from Voyager and Galileo

    NASA Technical Reports Server (NTRS)

    1996-01-01

    View of Callisto, most distant of the four large moons of Jupiter. This mosaic was prepared from images obtained by three spacecraft: Voyager 1 (left side), Galileo (middle), and Voyager 2 data (right side). The Voyager data were taken in 1979 but left a 'gap' centered at longitude 290 degrees in the trailing hemisphere of Callisto. The Galileo Solid-State Imaging system photographed this area on its second orbit around Jupiter on 9 September, 1996 Universal Time. The resolution of the Galileo data is 4.3 kilometers/pixel (2.7 miles), meaning that the smallest visible feature is about 12 kilometers (7 miles) across. North is to the top of the picture.

    Features of interest in the new Galileo data include a dark, smooth area in the northern latitudes (upper third) which appears to mantle older terrain. This could be dark ejecta from a small impact crater. Also visible is a fresh, sharp-rimmed crater some 90 km (56 miles) across named Igaluk (center left third of picture), and a bright zone in the south polar area (bottom of image) which could be an impact scar.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  12. Flight performance of Galileo and Ulysses RTGs

    SciTech Connect

    Hemler, R.J.; Kelly, C.E. )

    1993-01-10

    Flight performance data of the GPHS-RTGs (General Purpose Heat Source---Radioisotope Thermoelectric Generators) on the Galileo and Ulysses spacecraft are reported. Comparison of the flight data with analytical predictions is preformed. Differences between actual flight telemetry data and analytical predictions are addressed including the degree of uncertainty associated with the telemetry data. End of mission power level predictions are included for both missions with an overall assessment of RTG mission performances.

  13. National Space Transportation Systems Program mission report

    NASA Technical Reports Server (NTRS)

    Collins, M. A., Jr.; Aldrich, A. D.; Lunney, G. S.

    1984-01-01

    The major activities and accomplishments of this first Spacelab mission using Orbiter vehicle 102. The significant configuration differences incorporated prior to STS-9 include the first use of the 3 substack fuel cells, the use of 5 cryo tanks sets and the addition of a galley and crew sleep stations. These differences combined with the Spacelab payload resulted in the heaviest landing weight yet flown. The problems that occurred are cited and a problem tracking list of all significant anomalies tht occurred during the mission is included. Scientific results of experiments conducted are highlighted.

  14. Galileo Space Probe News Conference

    NASA Astrophysics Data System (ADS)

    1996-01-01

    This NASA Kennedy Space Center (KSC) video release presents Part 2 of a press conference regarding the successful entry of the Galileo Space Probe into Jupiter's atmosphere. The press conference panel is comprised of twelve principal investigators and project scientists that oversee the Galileo mission. The press conference question and answer period is continued from Part 1. Atmospheric thermal structure, water abundances, wind profiles, and electricity are among the topics discussed. The question and answer period is followed by a 3 minute presentation in which all of the visuals that are shown during the press conference are reviewed. Parts 1 and 3 of the press conference can be found in document numbers NONP-NASA-VT-2000001073, and NONP-NASA-VT-2000001075.

  15. Mission Operations Directorate - Success Legacy of the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Azbell, James A.

    2011-01-01

    In support of the Space Shuttle Program, as well as NASA s other human space flight programs, the Mission Operations Directorate (MOD) at the Johnson Space Center has become the world leader in human spaceflight operations. From the earliest programs - Mercury, Gemini, Apollo - through Skylab, Shuttle, ISS, and our Exploration initiatives, MOD and its predecessors have pioneered ops concepts and emphasized a history of mission leadership which has added value, maximized mission success, and built on continual improvement of the capabilities to become more efficient and effective. MOD s focus on building and contributing value with diverse teams has been key to their successes both with the US space industry and the broader international community. Since their beginning, MOD has consistently demonstrated their ability to evolve and respond to an ever changing environment, effectively prepare for the expected and successfully respond to the unexpected, and develop leaders, expertise, and a culture that has led to mission and Program success.

  16. Mission Operations Directorate - Success Legacy of the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Azbell, Jim

    2010-01-01

    In support of the Space Shuttle Program, as well as NASA's other human space flight programs, the Mission Operations Directorate (MOD) at the Johnson Space Center has become the world leader in human spaceflight operations. From the earliest programs - Mercury, Gemini, Apollo - through Skylab, Shuttle, ISS, and our Exploration initiatives, MOD and its predecessors have pioneered ops concepts and emphasized a history of mission leadership which has added value, maximized mission success, and built on continual improvement of the capabilities to become more efficient and effective. MOD's focus on building and contributing value with diverse teams has been key to their successes both with the US space industry and the broader international community. Since their beginning, MOD has consistently demonstrated their ability to evolve and respond to an ever changing environment, effectively prepare for the expected and successfully respond to the unexpected, and develop leaders, expertise, and a culture that has led to mission and Program success.

  17. Galileo Outreach Compilation

    NASA Astrophysics Data System (ADS)

    1998-09-01

    This NASA JPL (Jet Propulsion Laboratory) video production is a compilation of the best short movies and computer simulation/animations of the Galileo spacecraft's journey to Jupiter. A limited number of actual shots are presented of Jupiter and its natural satellites. Most of the video is comprised of computer animations of the spacecraft's trajectory, encounters with the Galilean satellites Io, Europa and Ganymede, as well as their atmospheric and surface structures. Computer animations of plasma wave observations of Ganymede's magnetosphere, a surface gravity map of Io, the Galileo/Io flyby, the Galileo space probe orbit insertion around Jupiter, and actual shots of Jupiter's Great Red Spot are presented. Panoramic views of our Earth (from orbit) and moon (from orbit) as seen from Galileo as well as actual footage of the Space Shuttle/Galileo liftoff and Galileo's space probe separation are also included.

  18. Galileo and the Movies

    NASA Astrophysics Data System (ADS)

    Olivotto, Cristina; Testa, Antonella

    2010-12-01

    We analyze the character of Galileo Galilei (1564-1642), one of the most famous scientists of all time, as portrayed in three significant movies: Luigi Maggi's Galileo Galilei (1909), Liliana Cavani's Galileo (1968), and Joseph Losey's Galileo (1975), the last one of which was based upon Bertolt Brecht's drama, Das Leben des Galilei (1947). We investigate the relationships between the main characteristics of these fictional Galileos and the most important twentieth-century Galilean historiographic models. We also analyze the veracity of the plots of these three movies and the role that historical and scientific consultants played in producing them. We conclude that connections between these three movies and Galilean historiographic models are far from evident, that other factors deeply influenced the representation of Galileo on the screen.

  19. Planetary exploration through year 2000, a core program: Mission operations

    NASA Technical Reports Server (NTRS)

    1986-01-01

    In 1980 the NASA Advisory Council created the Solar System Exploratory Committee (SSEC) to formulate a long-range program of planetary missions that was consistent with likely fiscal constraints on total program cost. The SSEC had as its primary goal the establishment of a scientifically valid, affordable program that would preserve the nation's leading role in solar system exploration, capitalize on two decades of investment, and be consistent with the coordinated set of scientific stategies developed earlier by the Committe on Planetary and Lunar Exploration (COMPLEX). The result of the SSEC effort was the design of a Core Program of planetary missions to be launched by the year 2000, together with a realistic and responsible funding plan. The Core Program Missions, subcommittee activities, science issues, transition period assumptions, and recommendations are discussed.

  20. Galileo Reader and Annotator

    NASA Astrophysics Data System (ADS)

    Besomi, O.

    2011-06-01

    In his readings, Galileo made frequent use of annotations. Here, I will offer a general glance at them by discussing the case of the annotations to the Libra astronomica published in 1619 by Orazio Grassi, a Jesuit mathematician of the Collegio Romano. The annotations directly reflect Galileo's reaction to Grassi's book in a heated debate between the two astronomers. Galileo and Grassi had opposite ideas about the nature of the comets, which resulted in different scientific and theological implications. The annotations represent the starting point for Galileo's reply to the Libra, namely Il Saggiatore, which was published four years later and dedicated to the new pope Urban VIII.

  1. Galileo's Medicean Moons (IAU S269)

    NASA Astrophysics Data System (ADS)

    Barbieri, Cesare; Chakrabarti, Supriya; Coradini, Marcello; Lazzarin, Monica

    2010-11-01

    Preface; 1. Galileo's telescopic observations: the marvel and meaning of discovery George V. Coyne, S. J.; 2. Popular perceptions of Galileo Dava Sobel; 3. The slow growth of humility Tobias Owen and Scott Bolton; 4. A new physics to support the Copernican system. Gleanings from Galileo's works Giulio Peruzzi; 5. The telescope in the making, the Galileo first telescopic observations Alberto Righini; 6. The appearance of the Medicean Moons in 17th century charts and books. How long did it take? Michael Mendillo; 7. Navigation, world mapping and astrometry with Galileo's moons Kaare Aksnes; 8. Modern exploration of Galileo's new worlds Torrence V. Johnson; 9. Medicean Moons sailing through plasma seas: challenges in establishing magnetic properties Margaret G. Kivelson, Xianzhe Jia and Krishan K. Khurana; 10. Aurora on Jupiter: a magnetic connection with the Sun and the Medicean Moons Supriya Chakrabarti and Marina Galand; 11. Io's escaping atmosphere: continuing the legacy of surprise Nicholas M. Schneider; 12. The Jovian Rings Wing-Huen Ip; 13. The Juno mission Scott J. Bolton and the Juno Science Team; 14. Seeking Europa's ocean Robert T. Pappalardo; 15. Europa lander mission: a challenge to find traces of alien life Lev Zelenyi, Oleg Korablev, Elena Vorobyova, Maxim Martynov, Efraim L. Akim and Alexander Zakahrov; 16. Atmospheric moons Galileo would have loved Sushil K. Atreya; 17. The study of Mercury Louise M. Prockter and Peter D. Bedini; 18. Jupiter and the other giants: a comparative study Thérèse Encrenaz; 19. Spectroscopic and spectrometric differentiation between abiotic and biogenic material on icy worlds Kevin P. Hand, Chris McKay and Carl Pilcher; 20. Other worlds, other civilizations? Guy Consolmagno, S. J.; 21. Concluding remarks Roger M. Bonnet; Posters; Author index; Object index.

  2. Galileo Space Probe News Conference. Part 1

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This NASA Kennedy Space Center (KSC) video release presents Part 1 of a press conference regarding the successful entry of the Galileo Space Probe into Jupiter's atmosphere. The press conference panel is comprised of twelve principal investigators and project scientists that oversee the Galileo mission. Among these panelists, William J. O'Neil (Jet Propulsion Lab.) begins the video praising all of the scientists that worked on the orbiter mission. He then presents a visual overview of Galileo's overall mission trajectory and schedule. Marcie Smith (NASA Ames Research Center) then describes the Galileo Probe mission and the overall engineering and data acquisition aspects of the Probe's Jupiter atmospheric entry. Dr. Richard Young (NASA Ames Research Center) follows with a brief scientific overview, describing the measurements of the atmospheric composition as well as the instruments that were used to gather the data. Atmospheric pressure, temperature, density, and radiation levels of Jupiter were among the most important parameters measured. It is explained that these measurements would be helpful in determining among other things, the overall dynamic meteorology of Jupiter. A question and answer period follows the individual presentations. Atmospheric thermal structure, water abundances, wind profiles, radiation, cloud structure, chemical composition, and electricity are among the topics discussed. Parts 2 and 3 of the press conference can be found in document numbers NONP-NASA-VT-2000001074, and NONP-NASA-VT-2000001075.

  3. Galileo's Exploration of Small Bodies

    NASA Astrophysics Data System (ADS)

    Johnson, Torrence

    The Galileo mission to the Jupiter system afforded the opportunity to make the first ever flyby observations of main belt asteroids. The first encounter with 951 Gaspra revealed an irregular cratered surface that shows evidence of regolith optical space weatering processes. The second encounter with 243 Ida resulted in the discovery of the first confirmed satellite of an asteroid Dactyl. Measruements of Dactyl's orbit also allowed a useful determination of mass and density for Ida. In addition to these pioneering asteroid observations Galileo also made observations of Jupiter's small inner moons and found that they were the major source for material in Jupiter's tenuous ring system. During it's final data taking orbit in 2002 Galileo passed within about 250 km of the irregularly shaped satellite Amalthea. Determination of Amalthea's mass from tracking data yields a bulk density for this small body of less than 1 gm/cc suggesting a body of relatively high porosity. This is consistent with the growing body of data on small asteroid densities and estimates of their porosity

  4. Galileo's Exploration of Small Bodies

    NASA Astrophysics Data System (ADS)

    Johnson, Torrence

    2005-01-01

    The Galileo mission to the Jupiter system afforded the opportunity to make the first ever flyby observations of main belt asteroids. The first encounter with 951 Gaspra revealed an irregular cratered surface that shows evidence of regolith optical space weatering processes. The second encounter with 243 Ida resulted in the discovery of the first confirmed satellite of an asteroid Dactyl. Measruements of Dactyl's orbit also allowed a useful determination of mass and density for Ida. In addition to these pioneering asteroid observations Galileo also made observations of Jupiter's small inner moons and found that they were the major source for material in Jupiter's tenuous ring system. During it's final data taking orbit in 2002 Galileo passed within about 250 km of the irregularly shaped satellite Amalthea. Determination of Amalthea's mass from tracking data yields a bulk density for this small body of less than 1 gm/cc suggesting a body of relatively high porosity. This is consistent with the growing body of data on small asteroid densities and estimates of their porosity.

  5. Galileo Space Probe News Conference

    NASA Astrophysics Data System (ADS)

    1996-01-01

    This NASA Kennedy Space Center (KSC) video release presents Part 3 of a press conference from Ames Research Center (ARC) regarding the successful entry of the Galileo Space Probe into Jupiter's atmosphere. The press conference panel is comprised of twelve principal investigators and project scientists that oversee the Galileo mission. The press conference question and answer period is continued from Part 2. Atmospheric thermal structure, water abundances, wind profiles, radiation, cloud structure, chemical composition, and electricity are among the topics discussed. The question and answer period is followed by a presentation in which all of the visuals that are shown during the press conference are reviewed. The video ends with several animations depicting the entry of the probe, descent, and the first measurements of the Jovian atmosphere, historical footage of the building of the probe, and a short interview with Dr. Richard Young (Galileo Probe Scientist, ARC). Parts 1 and 2 of the press conference can be found in document numbers NONP-NASA-VT-2000001073, and NONP-NASA-VT-2000001074.

  6. [Galileo and his telescope].

    PubMed

    Strebel, Christoph

    2006-01-01

    Galileo's publication of observations made with his newly reinvented telescope provoked a fierce debate. In April 1610 Martinus Horky, a young Bohemian astronomer, had an opportunity to make his own observations with Galileo's telescope in the presence of Antonio Magini and other astronomers. Horky and the other witnesses denied the adequacy of Galileo's telescope and therefore the bona fides of his discoveries. Kepler conjectured Horky as well as all his witnesses to be myopic. But Kepler's objection could not stop the publication of Horky's Peregrinatio contra nuncium sidereum (Modena, 1610), the first printed refutation of Galileo's Sidereus nuncius. In his treatise, Horky adresses four questions: 1) Do the four newly observed heavenly bodies actually exist? Horky denies their existence on various grounds: a) God, as every astronomer teaches, has created only seven moveable heavenly bodies and astronomical knowledge originates in God, too. b) Heavenly bodies are either stars or planets. Galileo's moveable heavenly bodies fit into neither category. c) If they do exist, why have they not already been observed by other scholars? Horky concludes that there are no such heavenly bodies. 2) What are these phenomena? They are purely artefactual, and produced by Galileo's telescope. 3) How are they like? Galileo's "stars" are so small as to be almost invisible. Galileo claims that he has measured their distances from each other. This however is impossible due to their diminutive size and other observational problems. Hence, Galileo's claim is a further proof that he is a fraud. 4) Why are they? For Galileo they are a chance to earn money but for astronomers like Horky they are a reason to offer thanks and honour to God. Horky's treatise was favourably received by the enemies of Galileo. But Kepler's critique was devastating. After calling on Kepler in Prague, Horky had to revoke the contents of his book.

  7. [Galileo and his telescope].

    PubMed

    Strebel, Christoph

    2006-01-01

    Galileo's publication of observations made with his newly reinvented telescope provoked a fierce debate. In April 1610 Martinus Horky, a young Bohemian astronomer, had an opportunity to make his own observations with Galileo's telescope in the presence of Antonio Magini and other astronomers. Horky and the other witnesses denied the adequacy of Galileo's telescope and therefore the bona fides of his discoveries. Kepler conjectured Horky as well as all his witnesses to be myopic. But Kepler's objection could not stop the publication of Horky's Peregrinatio contra nuncium sidereum (Modena, 1610), the first printed refutation of Galileo's Sidereus nuncius. In his treatise, Horky adresses four questions: 1) Do the four newly observed heavenly bodies actually exist? Horky denies their existence on various grounds: a) God, as every astronomer teaches, has created only seven moveable heavenly bodies and astronomical knowledge originates in God, too. b) Heavenly bodies are either stars or planets. Galileo's moveable heavenly bodies fit into neither category. c) If they do exist, why have they not already been observed by other scholars? Horky concludes that there are no such heavenly bodies. 2) What are these phenomena? They are purely artefactual, and produced by Galileo's telescope. 3) How are they like? Galileo's "stars" are so small as to be almost invisible. Galileo claims that he has measured their distances from each other. This however is impossible due to their diminutive size and other observational problems. Hence, Galileo's claim is a further proof that he is a fraud. 4) Why are they? For Galileo they are a chance to earn money but for astronomers like Horky they are a reason to offer thanks and honour to God. Horky's treatise was favourably received by the enemies of Galileo. But Kepler's critique was devastating. After calling on Kepler in Prague, Horky had to revoke the contents of his book. PMID:16929794

  8. The Living with a Star Program Mission Plan

    NASA Technical Reports Server (NTRS)

    Barth, Janet; Day, John (Technical Monitor)

    2001-01-01

    LWS (Living With a Star) is research science focused to facilitate enabling science for spacecraft design (specifically environment specification models) and spacecraft operations (specifically Space Weather research). The following topics are discussed: LWS goals and program, program architecture, the solar dynamic observer, the geospace plan, the space environment testbed concept, and the heliosphere missions.

  9. NASA's Robotic Lunar Exploration Program (RLEP) 2 Mission

    NASA Technical Reports Server (NTRS)

    Horack, John M.; Lavoie, Anthony; Spudis, Paul

    2006-01-01

    Before returning humans to the Moon for mankind's seventh lunar landing, NASA will embark upon a series of robotic missions to prepare the way for further exploration. These missions, part of the Robotic Lunar Exploration Program (RLEP), are designed to acquire decisive knowledge about the moon as well as to develop infrastructure needed to sustain human exploration in the lunar environment. Here we focus on the second mission in the RLEP program, RLEP-2, the first dedicated to landing in the south polar region of the moon. Managed by NASA's Marshall Space Flight Center in Huntsville, Alabama, along with the Applied Physics Laboratory and NASA Goddard Space Flight Center, RLEP-2 will build upon knowledge gained from the Chandraayan-1 and Lunar Robotic Orbiter orbital missions, to help further the prospects for sustainable human exploration on the moon. This mission will characterize the lighting environment in the polar region, critically important to understanding the amount of power available and to the thermal design of hardware, as well as explore the nature and distribution of volatiles that may be present in permanently shadowed regions of polar craters. We shall review the current status of the mission, articulate the results of onoging trade studies in power, surface mobility, launch vehicles, measurements and instrumentation, and navigation/communication, as well as discuss the primary mission objectives in detail.

  10. Lessons Learned from NASA UAV Science Demonstration Program Missions

    NASA Technical Reports Server (NTRS)

    Wegener, Steven S.; Schoenung, Susan M.

    2003-01-01

    During the summer of 2002, two airborne missions were flown as part of a NASA Earth Science Enterprise program to demonstrate the use of uninhabited aerial vehicles (UAVs) to perform earth science. One mission, the Altus Cumulus Electrification Study (ACES), successfully measured lightning storms in the vicinity of Key West, Florida, during storm season using a high-altitude Altus(TM) UAV. In the other, a solar-powered UAV, the Pathfinder Plus, flew a high-resolution imaging mission over coffee fields in Kauai, Hawaii, to help guide the harvest.

  11. "Galileo Calling Earth..."

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This guide presents an activity for helping students understand how data from the Galileo spacecraft is sent to scientists on earth. Students are asked to learn about the concepts of bit-rate and resolution and apply them to the interpretation of images from the Galileo Orbiter. (WRM)

  12. Galileo's tidal theory.

    PubMed

    Naylor, Ron

    2007-03-01

    The aim of Galileo's tidal theory was to show that the tides were produced entirely by the earth's motion and thereby to demonstrate the physical truth of Copernicanism. However, in the Dialogue Concerning the Two Chief World Systems Galileo did not explain some of the most significant aspects of the theory completely. As a consequence, the way the theory works has long been disputed. Though there exist a number of interpretations in the literature, the most widely accepted are based on ideas that are not explicitly articulated by Galileo in the Dialogue. This essay attempts to understand the way the theory functions in terms of Galilean physics. It is an interpretation of the theory based solely on Galileo's arguments--and one that reveals it to have had some unrecognized consequences. This interpretation indicates that Galileo's theory would not have worked in the manner he described in the Dialogue. PMID:17539198

  13. Galileo's tidal theory.

    PubMed

    Naylor, Ron

    2007-03-01

    The aim of Galileo's tidal theory was to show that the tides were produced entirely by the earth's motion and thereby to demonstrate the physical truth of Copernicanism. However, in the Dialogue Concerning the Two Chief World Systems Galileo did not explain some of the most significant aspects of the theory completely. As a consequence, the way the theory works has long been disputed. Though there exist a number of interpretations in the literature, the most widely accepted are based on ideas that are not explicitly articulated by Galileo in the Dialogue. This essay attempts to understand the way the theory functions in terms of Galilean physics. It is an interpretation of the theory based solely on Galileo's arguments--and one that reveals it to have had some unrecognized consequences. This interpretation indicates that Galileo's theory would not have worked in the manner he described in the Dialogue.

  14. Exploration System Mission Directorate and Constellation Program Support for Analogue Missions

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.; Voels, Stephen A.; Gerty, Christopher E.

    2008-01-01

    Vision: To create a cross-cutting Earth-based program to minimize cost and risk while maximizing the productivity of planetary exploration missions, by supporting precursor system development and carrying out system integration, testing, training, and public engagement as an integral part of the Vision for Space Exploration.

  15. (abstract) The Galileo Spacecraft: A Telecommunications Legacy for Future Space Flight

    NASA Technical Reports Server (NTRS)

    Deutsch, Leslie J.

    1997-01-01

    The Galileo mission to Jupiter has implemented a wide range of telecommunication improvements in response to the loss of its high gain antenna. While necessity dictated the use of these new techniques for Galileo, now that they have been proven in flight, they are available for use on future deep space missions. This telecommunications legacy of Galileo will aid in our ability to conduct a meaningful exploration of the solar system, and beyond, at a reasonable cost.

  16. Detail of Ganymede's Uruk Sulcus Region as Viewed by Galileo and Voyager

    NASA Technical Reports Server (NTRS)

    1996-01-01

    View of the region of Ganymede's Uruk Sulcus placed on a lower resolution Voyager view taken 17 years earlier. North is to the top of the picture and the sun illuminates the surface from almost overhead in the Galileo view. The finest details that can be discerned in the Galileo picture are about 80 meters across. The four boxes outlined in white show the extent of Galileo's initial look at this area. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  17. Environmental Assurance Program for the Phoenix Mars Mission

    NASA Technical Reports Server (NTRS)

    Man, Kin F.; Natour, Maher C.; Hoffman, Alan R.

    2008-01-01

    The Phoenix Mars mission involves delivering a stationary science lander on to the surface of Mars in the polar region within the latitude band 65 deg N to 72 deg N. Its primary objective is to perform in-situ and remote sensing investigations that will characterize the chemistry of the materials at the local surface, subsurface, and atmosphere. The Phoenix spacecraft was launched on August 4, 2007 and will arrive at Mars in May 2008. The lander includes a suite of seven (7) science instruments. This mission is baselined for up to 90 sols (Martian days) of digging, sampling, and analysis. Operating at the Mars polar region creates a challenging environment for the Phoenix landed subsystems and instruments with Mars surface temperature extremes between -120 deg C to 25 deg C and diurnal thermal cycling in excess of 145 deg C. Some engineering and science hardware inside the lander were qualification tested up to 80 deg C to account for self heating. Furthermore, many of the hardware for this mission were inherited from earlier missions: the lander from the Mars Surveyor Program 2001 (MSP'01) and instruments from the MSP'01 and the Mars Polar Lander. Ensuring all the hardware was properly qualified and flight acceptance tested to meet the environments for this mission required defining and implementing an environmental assurance program that included a detailed heritage review coupled with tailored flight acceptance testing. A heritage review process with defined acceptance success criteria was developed and is presented in this paper together with the lessons learned in its implementation. This paper also provides a detailed description of the environmental assurance program of the Phoenix Mars mission. This program includes assembly/subsystem and system level testing in the areas of dynamics, thermal, and electromagnetic compatibility, as well as venting/pressure, dust, radiation, and meteoroid analyses to meet the challenging environment of this mission.

  18. The Galileo Teacher Training Programme

    NASA Astrophysics Data System (ADS)

    Doran, Rosa

    The Galileo Teacher Training Program is a global effort to empower teachers all over the world to embark on a new trend in science teaching, using new technologies and real research meth-ods to teach curriculum content. The GTTP goal is to create a worldwide network of "Galileo Ambassadors", promoters of GTTP training session, and a legion of "Galileo Teachers", edu-cators engaged on the use of innovative resources and sharing experiences and supporting its pears worldwide. Through workshops, online training tools and resources, the products and techniques promoted by this program can be adapted to reach locations with few resources of their own, as well as network-connected areas that can take advantage of access to robotic, optical and radio telescopes, webcams, astronomy exercises, cross-disciplinary resources, image processing and digital universes (web and desktop planetariums). Promoters of GTTP are expert astronomy educators connected to Universities or EPO institutions that facilitate the consolidation of an active support to newcomers and act as a 24 hour helpdesk to teachers all over the world. GTTP will also engage in the creation of a repository of astronomy education resources and science research projects, ViRoS (Virtual Repository of resources and Science Projects), in order to simplify the task of educators willing to enrich classroom activities.

  19. A Participating Scientist Program for the STARDUST Mission

    NASA Technical Reports Server (NTRS)

    Morgan, T. H.; Geldazhler, B. G.

    2003-01-01

    It is the Policy of NASA s Office of Space Science to emphasize and encourage the addition of Participating Scientist Programs (PSP s) to broaden the scientific impact of missions. A Participating Scientist Program for the STARDUST Mission: STARDUST is the fourth Discovery mission, and it is the first sample return mission selected within the Discovery Program. The STARDUST Spacecraft will fly through the coma of comet PIwildt-2 in early January 2004, and return the samples to the Earth in January 2006. The Principal Investigator of the STARDUST mission, Dr. Donald Brownlee, has generously requested the implementation of a PSP for STARDUST in order to provide more community participation in the initial characterization and analysis of the samples from PIwildt-2. In particular participating scientists will fill out the membership of the Preliminary Examination Team (PET) called for in the original 1994 STARDUST proposal accepted by NASA in 1995. The work of the PET will be organized around major subdiscipline areas such as mineralogy and petrology, isotopic abundances, and elemental composition. There will be leaders for each of these areas, and also a number of team members within each. Support will be commensurate with the level of participation.

  20. Ganymede - Comparison of Voyager and Galileo Resolution

    NASA Technical Reports Server (NTRS)

    1996-01-01

    These images demonstrate the dramatic improvement in the resolution of pictures that NASA's Galileo spacecraft is returning compared to previous images of the Jupiter system. The frame at left was taken by the Voyager 2 spacecraft when it flew by in 1979, with a resolution of about 1.3 kilometers (0.8 mile) per pixel. The frame at right showing the same area was captured by Galileo during its first flyby of Ganymede on June 27, 1996; it has a resolution of about 74 meters (243 feet) per pixel, more than 17 times better than that of the Voyager image. In the Voyager frame, line-like bright and dark bands can be seen but their detailed structure and origin are not clear. In the Galileo image, each band is now seen to be composed of many smaller ridges. The structure and shape of the ridges permit scientists to determine their origin and their relation to other terrains, helping to unravel the complex history of the planet-sized moon. In each of these frames, north is to the top, and the sun illuminates the surface from the lower left nearly overhead (about 77 degrees above the horizon). The area shown, at latitude 10 degrees north, 167 degrees west, is about 35 by 55 kilometers (25 by 34 miles). The image was taken June 27 when Galileo was 7,448 kilometers (4.628 miles) away from Ganymede. The Jet Propulsion Laboratory manages the Galileo mission for NASA's Office of Space Science.

  1. Galileo probe battery system -- An update

    SciTech Connect

    Dagarin, B.P.; Taenaka, R.K.; Stofel, E.J.

    1996-11-01

    NASA`s Galileo 6-year trip to Jupiter is in its final phase. The mission consists of a Jovian Orbiter and an atmospheric entry Probe. The Probe is designed to coast autonomously for up to 190 days and turn itself on 6 hours prior to entry. It will then descend through the upper atmosphere for 50 to 75 minutes with the aid of an 8-foot parachute. This paper discusses sources of electrical power for the Probe and battery testing at the systems level. Described are the final production phase, qualification, and systems testing prior to and following launch, as well as decisions made regarding the Probe separation Li/SO{sub 2} battery configuration. In addition, the paper briefly describes the thermal battery verification program. The main power source comprises three Li/SO{sub 2} battery modules containing 13 D-sized cell strings per module. These modules are required to retain capacity for 7.5 years and support a 150-day clock, ending with a 7-hour mission sequence of increasing loads from 0.15 A to 9.5 A during the last 30 minutes. The main power source is supplemented by two thermal batteries (CaCrO{sub 4}-Ca), which will be used for firing the pyrotechnic initiators during the atmospheric entry.

  2. Bridging the Divide: Mission and Revenue in Museum Programming

    ERIC Educational Resources Information Center

    Hughes, Margaret W.

    2010-01-01

    At a time of economic recession, museums are called upon more than ever to demonstrate their public value while simultaneously finding funding for their work. This series of case studies examines how three museums balance mission-based programming with generating revenue for their organizations. The Newseum, in Washington, DC, has repurposed…

  3. Astrotech 21: A technology program for future astrophysics missions

    NASA Technical Reports Server (NTRS)

    Cutts, James A.; Newton, George P.

    1991-01-01

    The Astrotech 21 technology program is being formulated to enable a program of advanced astrophysical observatories in the first decade of the 21st century. This paper describes the objectives of Astrotech 21 and the process that NASA is using to plan and implement it. It also describes the future astrophysical mission concepts that have been defined for the twenty-first century and discusses some of the requirements that they will impose on information systems for space astrophysics.

  4. GPHS-RTG launch accident analysis for Galileo and Ulysses

    SciTech Connect

    Bradshaw, C.T. )

    1991-01-01

    This paper presents the safety program conducted to determine the response of the General Purpose Heat Source (GPHS) Radioisotope Thermoelectric Generator (RTG) to potential launch accidents of the Space Shuttle for the Galileo and Ulysses missions. The National Aeronautics and Space Administration (NASA) provided definition of the Shuttle potential accidents and characterized the environments. The Launch Accident Scenario Evaluation Program (LASEP) was developed by GE to analyze the RTG response to these accidents. RTG detailed response to Solid Rocket Booster (SRB) fragment impacts, as well as to other types of impact, was obtained from an extensive series of hydrocode analyses. A comprehensive test program was conducted also to determine RTG response to the accident environments. The hydrocode response analyses coupled with the test data base provided the broad range response capability which was implemented in LASEP.

  5. [Galileo and centrifugal force].

    PubMed

    Vilain, Christiane

    This work intends to focus on Galileo's study of what is now called "centrifugal force," within the framework of the Second Day of his Dialogo written in 1632, rather than on the previously published commentaries on the topic. Galileo proposes three geometrical demonstrations in order to prove that gravity will always overcome centrifugalforce, and that the potential rotation of the Earth, whatever its speed, cannot in any case project objects beyond it. Each of these demonstrations must consequently contain an error and it has seemed to us that the first one had not been understood up until now. Our analysis offers an opportunity to return to Galileo's geometrical representation of dynamical questions; actually, we get an insight into the sophistication of Galileo's practices more than into his mistakes. Our second point, concerning the historiography of the problem, shows an evolution from anachronic critics to more contextual considerations, in the course of the second half of the twentieth century. PMID:25029818

  6. [Galileo and centrifugal force].

    PubMed

    Vilain, Christiane

    This work intends to focus on Galileo's study of what is now called "centrifugal force," within the framework of the Second Day of his Dialogo written in 1632, rather than on the previously published commentaries on the topic. Galileo proposes three geometrical demonstrations in order to prove that gravity will always overcome centrifugalforce, and that the potential rotation of the Earth, whatever its speed, cannot in any case project objects beyond it. Each of these demonstrations must consequently contain an error and it has seemed to us that the first one had not been understood up until now. Our analysis offers an opportunity to return to Galileo's geometrical representation of dynamical questions; actually, we get an insight into the sophistication of Galileo's practices more than into his mistakes. Our second point, concerning the historiography of the problem, shows an evolution from anachronic critics to more contextual considerations, in the course of the second half of the twentieth century.

  7. Postflight analysis for Delta Program Mission no. 113: COS-B Mission

    NASA Technical Reports Server (NTRS)

    1976-01-01

    On 8 August 1975, the COS-B spacecraft was launched successfully from the Western Test Range (Delta Program Mission No. 113). The launch vehicle was a three stage Extended Long Tank Delta DSV-3P-11B vehicle. Postflight analyses performed in connection with flight are presented. Vehicle trajectory, stage performance, vehicle reliability and the propulsion, guidance, flight control, electronics, mechanical and structural systems are evaluated.

  8. Music in Galileo's Time

    NASA Astrophysics Data System (ADS)

    Petrobelli, P.

    2011-06-01

    Claudio Monteverdi appears as the key personality of the music in Galileo's time. His revolution in format and function of the musical language-from an essentially edonistic creation of purely sonorous images to a musical language consciously "expressive" of the content of the words on which it is based-is similar in character to the influential innovations in scientific thinking operated by Galileo.

  9. Galileo and Bellarmine

    NASA Astrophysics Data System (ADS)

    Coyne, G. V.

    2011-06-01

    This paper aims to delineate two of the many tensions which bring to light the contrasting views of Galileo Galilei and of Cardinal Robert Bellarmine with respect to the Copernican-Ptolemaic controversies of the 16th and 17th centuries: their respective positions on Aristotle's natural philosophy and on the interpretation of Sacred Scripture. Galileo's telescopic observations, reported in his Sidereus Nuncius, were bringing about the collapse of Aristotle's natural philosophy and he taught that there was no science in Scripture.

  10. Space Weather Mission of SmartSat Program

    NASA Astrophysics Data System (ADS)

    Akioka, M.; Miyake, W.; Nagatsuma, T.; Ohtaka, K.; Kimura, S.; Goka, T.; Matsumoto, H.; Koshiishi, H.

    2009-06-01

    The SmartSat Program is a collaborative program of government agency (NICT,JAXA) and private sector (MHI) in Japan to develop small satellite about 200 Kg. The space weather experiment of the SmartSat consists of Wide Field CME Imager (WCI), Space Environment Data Acquisition Equipment (SEDA), and mission processor (MP). Both of the instruments will be principal components of the L5 mission. WCI is a imager to track CME as far as earth orbit. CME brightness near earth orbit is expected 1E-15 solar brightness or 1/200 of zodiacal light brightness. To observe such a extreme faint target, we are developing wide field of view camera with very high sensitivity and large dynamic range. These highly challenging experiment and demonstration will be implemented in SmartSat program.

  11. The New Millenium Program ST-5 Mission: Nanosatellite Constellation Trailblazer

    NASA Technical Reports Server (NTRS)

    Slavin, James A.

    1999-01-01

    NASA's New Millenium Program has recently selected the Nanosatellite Constellation Trailblazer (NCT) as its fifth mission (ST-5). NCT will consist of 3 small, very capable and highly autonomous satellites which will be operated as a single "constellation" with minimal ground operations support. Each spacecraft will be approximately 40 cm in diameter by 20 cm in height and weigh only 20 kg. These small satellites will incorporate 8 new technologies essential to the further miniaturization of space science spacecraft which need space flight validation. In this talk we will describe in greater detail the NCT mission concept and goals, the exciting new technologies it will validate, and the role of miniaturized particles and fields sensors in this project. Finally, NCT's pathfinder function for such future NASA missions as Magnetotail Constellation and Inner Magnetosphere Constellation will be discussed.

  12. NASA's Living with a Star Program: The Geospace Mission Concept

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; Giles, Barbara; Zanetti, Lawrence; Spann, James; Day, John H. (Technical Monitor)

    2002-01-01

    NASA has initiated the Living with a Star Program (LWS) to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affect life and society. A goal of the program is to bridge the gap between science, engineering, and user application communities. This will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. Three program elements are the Science Missions; a Theory, Modeling, and Data Analysis program; and a Space Environment Testbeds program. Because many of the effects of solar variability on humanity are observed in Geospace regions of space, the science research for all three elements of the LWS Program have significant components in Geospace regions.

  13. The NASA Commercial Crew Program (CCP) Mission Assurance Process

    NASA Technical Reports Server (NTRS)

    Canfield, Amy

    2016-01-01

    In 2010, NASA established the Commercial Crew Program in order to provide human access to the International Space Station and low earth orbit via the commercial (non-governmental) sector. A particular challenge to NASA has been how to determine the commercial providers transportation system complies with Programmatic safety requirements. The process used in this determination is the Safety Technical Review Board which reviews and approves provider submitted Hazard Reports. One significant product of the review is a set of hazard control verifications. In past NASA programs, 100 percent of these safety critical verifications were typically confirmed by NASA. The traditional Safety and Mission Assurance (SMA) model does not support the nature of the Commercial Crew Program. To that end, NASA SMA is implementing a Risk Based Assurance (RBA) process to determine which hazard control verifications require NASA authentication. Additionally, a Shared Assurance Model is also being developed to efficiently use the available resources to execute the verifications. This paper will describe the evolution of the CCP Mission Assurance process from the beginning of the Program to its current incarnation. Topics to be covered include a short history of the CCP; the development of the Programmatic mission assurance requirements; the current safety review process; a description of the RBA process and its products and ending with a description of the Shared Assurance Model.

  14. Development and Use of the Galileo and Ulysses Power Sources

    SciTech Connect

    Bennett, Gary L; Hemler, Richard J; Schock, Alfred

    1994-10-01

    Paper presented at the 45th Congress of the International Astronautical Federation, October 1994. The Galileo mission to Jupiter and the Ulysses mission to explore the polar regions of the Sun required a new power source: the general-purpose heat source radioisotope thermoelectric generator (GPHS-RTG), the most powerful RTG yet flow. Four flight-qualified GPHS-RTGs were fabricated with one that is being used on Ulysses, two that are being used on Galileo and one that was a common spare (and is now available for the Cassini mission to Saturn). In addition, and Engineering Unit and a Qualification Unit were fabricated to qualify the design for space through rigorous ground tests. This paper summarizes the ground testing and performance predictions showing that the GPHS-RTGs have met and will continue to meet or exceed the performance requirements of the ongoing Galileo and Ulysses missions. There are two copies in the file.

  15. Star Messenger: Galileo at the Millennium

    NASA Astrophysics Data System (ADS)

    White, R. E.

    1999-05-01

    Smith College has recently established the Louise B. and Edmund J. Kahn Liberal Arts Institute to foster interdisciplinary scholarship among the faculty. In the 1999-2000 academic year, the Kahn Institute is sponsoring a project entitled "Star Messenger: Galileo at the Millennium." The project will explore the impact of the astronomical discoveries of Galileo and his contemporaries on the Renaissance world-view and also use Galileo's experience as a lens for examining scientific and cultural developments at the symbolic juncture represented by the year 2000. Seven faculty fellows and 10-12 student fellows will participate in a year-long colloquium pursuing these themes, aided by the participation of some five Visiting Fellows. The inaugural public event will be a symposium on the historical Galileo, with presentation by three noted scholars, each of whom will return to campus for a second meeting with the Kahn colloquium. Additional events will include an exhibit of prints, artifacts, and rare books related to Galileo and his time, an early music concert featuring music composed by Galileo's father, and a series of other events sponsored by diverse departments and programs, all related to the broad themes of the Galileo project. The culminating events will be the premiere of a new music theater work, which will encapsulate the insights of the colloquium about human reactions to novel insights about the world, and a symposium presenting the research results of faculty and student fellows. The symposium will feature a capstone lecture by an visionary scholar projecting the implication of historical and contemporary trends into the future.

  16. Comet and Asteroid Missions in NASA's New Millennium Program

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.

    2000-01-01

    NASA's New Millennium Program (NMP) is designed to develop, test, and flight validate new, advanced technologies for planetary and Earth exploration missions, using a series of low cost spacecraft. Two of NMP's current missions include encounters with comets and asteroids. The Deep Space 1 mission was launched on October 24, 1998 and will fly by asteroid 1992 KD on July 29, 1999, and possibly Comet Wilson-Harrington and/or Comet Borrelly in 2001. The Space Technology 4/Champollion mission will be launched in April, 2003 and will rendezvous with, orbit and land on periodic Comet Tempel 1 in 2006. ST-4/Champollion is a joint project with CNES, the French space agency. The DS-1 mission is going well since launch and has already validated several major technologies, including solar electric propulsion (SEP), solar concentrator arrays, a small deep space transponder, and autonomous navigation. The spacecraft carries two scientific instruments: MICAS, a combined visible camera and UV and IR spectrometers, and PEPE, an ion and electron spectrometer. Testing of the science instruments is ongoing. Following the asteroid encounter in July, 1999, DS-1 will go on to encounters with one or both comets if NASA approves funding for an extended mission. The ST-4/Champollion mission will use an advanced, multi-engine SEP system to effect a rendezvous with Comet P/Tempel 1 in February, 2006, after a flight time of 2.8 years. After orbiting the comet for several months in order to map its surface and determine its gravity field, ST-4/Chainpollion will descend to the comet's surface and will anchor itself with a 3-meter long harpoon. Scientific experiments include narrow and wide angle cameras for orbital mapping, panoramic and near-field cameras for landing site mapping, a gas chromatograph/mass spectrometer, a combined microscope and infrared spectrometer, and physical properties probes. Cometary samples will be obtained from depths up to 1.4 meters. The spacecraft is solar powered

  17. Changes on Io between Voyager 1 and Galileo's second orbit around an unnamed vent North of

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Detail of changes around a probable vent about 650 kilometers north of Prometheus on Jupiter's moon Io as seen in images obtained by the Voyager 1 spacecraft in April 1979 (left) and the imaging system aboard NASA's Galileo spacecraft on September 7th, 1996 (right). The re-arranging of dark and light radial surface patterns may be a result of plume fallout. North is to the top of both images which are approximately 400 kilometers square.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  18. Galileo's Observations of Neptune

    NASA Astrophysics Data System (ADS)

    Standish, E. M.

    2001-11-01

    In 1979, Stillman Drake and Charles Kowal found that the astronomer Galileo actually observed the planet Neptune in the years 1612 and 1613. Galileo's observing notebooks still exist and are preserved in the National Central Library in Florence, Italy. In them, one can see the discovery of the four large moons of Jupiter, and one can follow the subsequent work of Galileo as he improved his telescopes, charted the nightly positions of the satellites, and refined his ability to predict their future configurations. One sees his observing innovations and improving accuracies which seem to reach a crescendo just at the time of his observations of Neptune. Further scrutiny of Galileo's notebooks has revealed other intriguing observations. One is a probable fourth observation of Neptune which has a direct bearing upon present-day ephemerides. There are also observations of two other objects which, to this day, despite some effort, remain unidentified - possibly asteroids, comets, novae, or supernovae. More than of just historical interest, Galileo's work still has important implications for present-day astronomy. The research described in this talk was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  19. Jovian Global Photometry During the Galileo Epoch

    NASA Astrophysics Data System (ADS)

    Rages, Kathy

    1996-07-01

    We propose to investigate the vertical aerosol structure of Jupiter's atmosphere, and its spatial and temporal variability, in conjunction with nearly simultaneous observations by the uniquely well positioned but data-limited Galileo Orbiter. Our Cycle 6 observations are targeted to broaden the perspective of the spatially-, temporally-, and spectrally-limited sampling of Jupiter by Galileo, thus providing a strategic supplement to the atmospheric science derived from the Galileo mission. In addition, the high- spatial-resolution global coverage provided by HST imagery provides an essential component in a larger, comprehensive research campaign to acquire and analyze synoptic observations of Jupiter's atmosphere in order to understand the planet's dynamic meteorology. The wide-field option of the WF/PC2 instrument will be used with filters and observing sequences chosen to optimize the determination of vertical cloud structure. Additionally, our observing sequences will be merged with those proposed separately by Beebe et al. to elucidate questions about Jupiter's dynamics in order to integrate and optimize each investigation. Features to be observed within our global imagery include not only those slated to be scrutinized by Galileo during Cycle 6 --- the Great Red Spot and a 5-micron hot spot --- but also important contextual features and surrounding territory which the data-limited spacecraft simply can not observe.

  20. Popular perceptions of Galileo

    NASA Astrophysics Data System (ADS)

    Sobel, Dava

    2010-01-01

    Among the most persistent popular misperceptions of Galileo is the image of an irreligious scientist who opposed the Catholic Church and was therefore convicted of heresy-was even excommunicated, according to some accounts, and denied Christian burial. In fact, Galileo considered himself a good Catholic. He accepted the Bible as the true word of God on matters pertaining to salvation, but insisted Scripture did not teach astronomy. Emboldened by his discovery of the Medicean Moons, he took a stand on Biblical exegesis that has since become the official Church position.

  1. The New Millennium Program Space Technology 5 (ST-5) Mission

    NASA Technical Reports Server (NTRS)

    Webb, Evan H.; Carlisle, Candace C.; Slavin, James A.

    2005-01-01

    The Space Technology 5 (ST-5) Project is part of NASA's New Millennium Program. ST-5 will consist of a constellation of three 25kg microsatellites. The mission goals are to demonstrate the research-quality science capability of the ST-5 spacecraft; to operate the three spacecraft as a constellation; and to design, develop and flight-validate three capable microsatellites with new technologies. ST-5 will be launched by a Pegasus XL into an elliptical polar (sun-synchronous) orbit. The three-month flight demonstration phase, beginning in March 2006, will validate the ability to perform science measurements, as well as the technologies and constellation operations. ST-5's technologies and concepts will enable future microsatellite science missions.

  2. Learning To Lead: The Galileo Leadership Academy.

    ERIC Educational Resources Information Center

    Kloosterhouse, Vicki

    2003-01-01

    Describes Michigan's Galileo Leadership Academy, a collaboration between K-12 and community college educators that develops leadership skills. Explains that 11 organizations participate in the program, and every two years each organization chooses five to nine leaders (primarily classroom educators) to be part of a new cohort. Asserts that the…

  3. The cryogenics analysis program for Apollo mission planning and analysis

    NASA Technical Reports Server (NTRS)

    Scott, W.; Williams, J.

    1971-01-01

    The cryogenics analysis program was developed as a simplified tool for use in premission planning operations for the Apollo command service module. Through a dynamic development effort, the program has been extended to include real time and postflight analysis capabilities with nominal and contingency planning features. The technical aspects of the program and a comparison of ground test and mission data with data generated by using the cryogenics analysis program are presented. The results of the program capability to predict flight requirements also are presented. Comparisons of data from the program with data from flight results, from a tank qualifications program, and from various system anomalies that have been encountered are discussed. Future plans and additional considerations for the program also are included. Among these plans are a three tank management scheme for hydrogen, venting profile generation for Skylab, and a capability for handling two gas atmospheres. The plan for two gas atmospheres will involve the addition of the capability to handle nitrogen as well as oxygen and hydrogen.

  4. Galileo's Lute and the Law of Falling Bodies

    NASA Astrophysics Data System (ADS)

    Thompson, Mark

    2008-05-01

    Galileo's Lute and the Law of Falling Bodies is an excerpt from Galileo 1610. Galileo 1610 is a dramatic, musical and intellectual odyssey back to the life and times of Galileo Galilei, the famous 17th century Italian scientist and philosopher. It commemorates the 400th anniversary of Galileo's discoveries with his telescope in 1610. Dressed in authentic Renaissance attire as Galileo, the author-- a cantorial soloist and amateur astronomer-- tells the fascinating story of "The Father of Modern Science,” drawing from the actual correspondence and writings of Galileo, as well as those of his many biographers. Through his dialogue with the audience on a wide range of discoveries and opinions, "Galileo” shares his wisdom and his life experiences with pathos, wit and humor, lacing his narration with entertaining lute songs from the late Renaissance period, some of which were actually composed by Galileo's father, Vincenzo. Bridging the past to the present, the author breathes life into "Galileo” as he once again frolics and struggles among us. In bringing forth some of life's great issues, we learn something about our own inquisitive nature, as well as that of science and music. The author has appeared as Galileo for over a decade on radio, at community theatres and libraries, public schools, colleges and universities throughout the country. He has performed for civic organizations, astronomy association conventions, marketing and outreach programs as well as private events and parties. Galileo 1610 is suitable for a variety of educational and entertainment programs, for both children and adults. All presentations are tailored to fit the interest, experience and size of the audience.

  5. Gravitation and celestial mechanics investigations with Galileo

    NASA Technical Reports Server (NTRS)

    Anderson, J. D.; Armstrong, J. W.; Campbell, J. K.; Estabrook, F. B.; Krisher, T. P.; Lau, E. L.

    1992-01-01

    The gravitation and celestial mechanics investigations that are to be conducted during the cruise and Orbiter phases of the Galileo Mission cover four investigation categories: (1) the gravity fields of Jupiter and its four major satellites; (2) a search for gravitational radiation; (3) mathematical modeling of general relativistic effects on Doppler ranging data; and (4) improvements of the Jupiter ephemeris via Orbiter ranging. Also noted are two secondary objectives, involving a range fix during Venus flyby and the determination of the earth's mass on the bases of the two earth gravity assists used by the mission.

  6. Scientific returns from a program of space missions to comets

    NASA Technical Reports Server (NTRS)

    Delsemme, A. H.

    1979-01-01

    A program of cometary missions is proposed. The nature and size of interstellar dust, its origin and evolution; identification of new interstellar molecules; clarification of interstellar chemistry; accretion of grains into protosolar cometesimals; role of a T Tauri wind in the dissipation of the protosolar nebula; record of isotopic anomalies, better preserved in comets than in meteorites; cosmogenic and radiogenic dating of comets; cosmochronology and mineralogy of meteorites, as compared with that of cometary samples; origin of the earth's biosphere, and the origin of life are topics discussed in relation to comet exploration.

  7. Exploring Galileo's Telescope

    ERIC Educational Resources Information Center

    Straulino, Samuele; Terzuoli, Alessandra

    2010-01-01

    In the first months of 2009, the International Year of Astronomy, the authors developed an educational project for middle-level students connected with the first astronomical discoveries that Galileo Galilei (1564-1642) made 400 years ago. The project included the construction of a basic telescope and the observation of the Moon. The project, if…

  8. Galileo Station Keeping Strategy

    NASA Technical Reports Server (NTRS)

    Perez-Cambriles, Antonio; Bejar-Romero, Juan Antonio; Aguilar-Taboada, Daniel; Perez-Lopez, Fernando; Navarro, Daniel

    2007-01-01

    This paper presents analyses done for the design and implementation of the Maneuver Planning software of the Galileo Flight Dynamics Facility. The station keeping requirements of the constellation have been analyzed in order to identify the key parameters to be taken into account in the design and implementation of the software.

  9. Mission Preparation Program for Exobiological Experiments in Earth Orbit

    NASA Astrophysics Data System (ADS)

    Panitz, Corinna; Reitz, Guenther; Horneck, Gerda; Rabbow, Elke; Rettberg, Petra

    The ESA facilities EXPOSE-R and EXPOSE-E on board of the the International Space Station ISS provide the technology for exposing chemical and biological samples in a controlled manner to outer space parameters, such as high vacuum, intense radiation of galactic and solar origin and microgravity. EXPOSE-E has been attached to the outer balcony of the European Columbus module of the ISS in Febraury 2008 and will stay for about 1 year in space, EXPOSE-R will be attached to the Russian Svezda module of the ISS in fall 2008. The EXPOSE facilities are a further step in the study of the Responses of Organisms to Space Environment (ROSE concortium). The results from the EXPOSE missions will give new insights into the survivability of terrestrial organisms in space and will contribute to the understanding of the organic chemistry processes in space, the biological adaptation strategies to extreme conditions, e.g. on early Earth and Mars, and the distribution of life beyond its planet of origin.To test the compatibility of the different biological and chemical systems and their adaptation to the opportunities and constraints of space conditions a profound ground support program has been developed. It resulted in several experiment verification tests EVTs and an experiment sequence test EST that were conducted in the carefully equipped and monitored planetary and space simulation facilities PSI of the Institute of Aerospace Medicine at DLR in Cologne, Germany. These ground based pre-flight studies allow the investigation of a much wider variety of samples and the selection of the most promising organisms for the flight experiment. The procedure and results of these EVT tests and EST will be presented. These results are an essential prerequisite for the success of the EXPOSE missions and have been done in parallel with the development and construction of the final hardware design of the facility. The results gained during the simulation experiments demonstrated mission

  10. A Physical Validation Program for the GPM Mission

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2003-01-01

    of the lack of suitable error modeling systems incorporated into the validation programs and data distribution systems. An overview of how NASA intends to overcome this problem for the GPM mission using a physically-based error modeling approach within a multi-faceted validation program is described. The solution is to first identify specific user requirements and then determine the most stringent of these requirements that embodies all essential error characterization information needed by the entire user community. In the context of NASA s scientific agenda for the GPM mission, the most stringent user requirement is found within the data assimilation community. The fundamental theory of data assimilation vis-a-vis ingesting satellite precipitation information into the pre-forecast initializations is based on quantifying the conditional bias and precision errors of individual rain retrievals, and the space-time structure of the precision error (i.e., the spatial-temporal error covariance). By generating the hardware and software capability to produce this information in a near real-time fashion, and to couple the derived quantitative error properties to the actual retrieved rainrates, all key validation users can be satisfied. The talk will describe the essential components of the hardware and software systems needed to generate such near real-time error properties, as well as the various paradigm shifts needed within the validation community to produce a validation program relevant to the precipitation user community.

  11. Galileo NIMS Observations of Europa

    NASA Astrophysics Data System (ADS)

    Shirley, J. H.; Ocampo, A. C.; Carlson, R. W.

    2000-10-01

    The Galileo spacecraft began its tour of the Jovian system in December, 1995. The Galileo Millenium Mission (GMM) is scheduled to end in January, 2003. The opportunities to observe Europa in the remaining orbits are severely limited. Thus the catalog of NIMS observations of Europa is virtually complete. We summarize and describe this extraordinary dataset, which consists of 77 observations. The observations may be grouped in three categories, based on the scale of the data (km/pixel). The highest-resolution observations, with projected scales of 1-9 km/pixel, comprise one important subset of the catalog. These 29 observations sample both leading and trailing hemispheres at low and high latitudes. They have been employed in studies exploring the chemical composition of the non-ice surface materials on Europa (McCord et al., 1999, JGR 104, 11,827; Carlson et al., 1999, Science 286, 97). A second category consists of regional observations at moderate resolution. These 15 observations image Europa's surface at scales of 15-50 km/pixel, appropriate for construction of regional and global mosaics. A gap in coverage for longitudes 270-359 W may be partially filled during the 34th orbit of GMM. The final category consists of 33 global observations with scales ranging upward from 150 km/pixel. The noise levels are typically much reduced in comparison to observations taken deep within Jupiter's magnetosphere. Distant observations obtained during the 11th orbit revealed the presence of hydrogen peroxide on Europa's surface (Carlson et al., 1999b, Science 283, 2062). NIMS observations are archived in ISIS-format "cubes," which are available to researchers through the Planetary Data System (http://www-pdsimage.jpl.nasa.gov/PDS/Public/Atlas/Atlas.html). Detailed guides to every NIMS observation may be downloaded from the NIMS web site (http://jumpy.igpp.ucla.edu/ nims/).

  12. Galileo Avionica's technologies and instruments for planetary exploration.

    PubMed

    Battistelli, E; Falciani, P; Magnani, P; Midollini, B; Preti, G; Re, E

    2006-12-01

    Several missions for planetary exploration, including comets and asteroids, are ongoing or planned by the European Space Agencies: Rosetta, Venus Express, Bepi Colombo, Dawn, Aurora and all Mars Programme (in its past and next missions) are good examples. The satisfaction of the scientific request for the mentioned programmes calls for the development of new instruments and facilities devoted to investigate the body (planet, asteroid or comet) both remotely and by in situ measurements. The paper is an overview of some instruments for remote sensing and in situ planetary exploration already developed or under study by Galileo Avionica Space & Electro-Optics B.U. (in the following shortened as Galileo Avionica) for both the Italian Space Agency (ASI) and for the European Space Agency (ESA). Main technologies and specifications are outlined; for more detailed information please refer to Galileo Avionica's web-site at: http://www.galileoavionica.com .

  13. Shuttle Atlantis to deploy Galileo probe toward Jupiter

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objectives of Space Shuttle Mission STS-34 are described along with major flight activities, prelaunch and launch operations, trajectory sequence of events, and landing and post-landing operations. The primary objective of STS-34 is to deploy the Galileo planetary exploration spacecraft into low earth orbit. Following deployment, Galileo will be propelled on a trajectory, known as Venus-Earth-Earth Gravity Assist (VEEGA), by an inertial upper stage (IUS). The objectives of the Galileo mission are to study the chemical composition, state, and dynamics of the Jovian atmosphere and satellites, and investigate the structure and physical dynamics of the Jovian magnetosphere. Secondary STS-34 payloads include the Shuttle Solar Backscatter Ultraviolet (SSBUV) instrument; the Mesoscale Lightning Experiment (MLE); and various other payloads involving polymer morphology, the effects of microgravity on plant growth hormone, and the growth of ice crystals.

  14. Project Galileo: completing Europa, preparing for Io.

    PubMed

    Erickson, J K; Cox, Z N; Paczkowski, B G; Sible, R W; Theilig, E E

    2000-01-01

    Galileo has completed the Europa leg of the Galileo Europa Mission, and is now pumping down the apojove in each succeeding orbit in preparation for the Io phase. Including three encounters earlier in the primary mission, the total of ten close passes by Europa have provided a wealth of interesting and provocative information about this intriguing body. The results presented include new and exciting information about Europa's interactions with Jupiter's magnetosphere, its interior structure, and its tantalizing surface features, which strongly hint at a watery subsurface layer. Additional data concerning Callisto, and its own outlook for a subsurface ocean are also presented. In addition the engineering aspects of operating the spacecraft during the past year are explored, as well as a brief examination of what will be the challenges to prepare for the Io encounters. The steadily increasing radiation dosage that the spacecraft is experiencing is well beyond the original design parameters, and is contributing to a number of spacecraft problems and concerns. The ability of the flight team to analyze and solve these problems, even at the reduced staffing levels of an extended mission, is a testament to their tenacity and loyalty to the mission. The engineering data being generated by these continuing radiation-induced anomalies will prove invaluable to designers of future spacecraft to Jupiter and its satellites. The lessons learned during this arduous process are presented.

  15. Telescopes of galileo.

    PubMed

    Greco, V; Molesini, G; Quercioli, F

    1993-11-01

    The Florentine Istituto e Museo di Storia delta Scienza houses two complete telescopes and a single objective lens (reconstructed from several fragments) that can be attributed to Galileo. These optics have been partially dismantled and made available for optical testing with state-of-the-art equipment. The lenses were investigated individually; the focal length and the radii of curvature were measured, and the optical layout of the instruments was worked out. The optical quality of the surfaces and the overall performance of the two complete telescopes have been evaluated interferometrically at a wavelength of 633 nm (with a He-Ne laser source). It was found in particular that the optics of Galileo came close to attaining diffraction-limited operation.

  16. Galileo. Decisive innovator

    NASA Astrophysics Data System (ADS)

    Sharratt, Michael; Knight, David

    In this entertaining and authoritative biography Michael Sharratt examines the flair, imagination, hard-headedness, clarity, combativeness, and penetration of Galileo Galilei. To follow his career as he exploited unforeseen opportunities to unseat established ways of comprehending nature is to understand a crucial stage of the Scientific Revolution. Galileo was a path-breaker for the newly-invented telescope, the decoder of nature's mathematical language, and a quite brilliant populariser of science. Even his reluctant excursion into theology has at last been officially and handsomely recognised by the Church's `rehabilitation' f the Inquisition's most famous victim, fully discussed in the last chapter. This book makes his lasting contributions accessible to non-scientists and his mistakes are not overlooked. This is not a mythical story, but the biography of an innovator - one of the greatest ever known.

  17. Science investigation options with a NASA New Frontiers Program Saturn entry probe mission

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.; Atreya, S. K.; Atkinson, D. H.; Colaprete, A.; Coustenis, A.

    2012-09-01

    In 2011 the Space Studies Board of the US National Research Council released its report, "Vision and Voyages for Planetary Science in the Decade 2013- 2022" [1] (PSDS). This document is intended to be the guiding document for NASA's planetary science and space flight mission priorities for that decade. The PSDS treats three classes of flight missions: small, medium, and large. Small missions are ones that could be flown within the resource constraints of NASA's Discovery Program, a program of PI-led, competed missions, including a US 500 million (FY 2015) recommended cost cap, excluding the launch vehicle. The PSDS makes no specific recommendations for science objectives or destinations for small missions. Medium missions could be flown under NASA's New Frontiers Program, also a program of PI-led, competed missions, with a recommended cost cap of US 1 billion excluding the launch vehicle. Both of these competed mission programs have been highly successful, with multiple spacecraft currently in flight and more either under development or in the final steps of competition. Large missions, generally called flagship missions, would have total mission costs exceeding US $1 billion and would be directed by NASA, not PI-led. Unlike Small class missions, the PSDS recommends specific science objectives for Medium class missions. Four Medium class mission concepts and their science objectives carry over from the previous PSDS [2]: • Comet Surface Sample Return • Lunar South-Pole Aitken Basin Sample Return • Trojan Tour and Rendezvous • Venus In Situ Explorer The current PSDS adds a fifth mission concept to the list for the next New Frontiers Program AO ("NF-4"), currently anticipated in 2016: a Saturn probe mission. This mission would deliver an atmospheric entry probe into Saturn's atmosphere to make composition and atmospheric structure measurements critical to understanding the materials, processes, and time scales of Saturn's formation, and by comparison to

  18. Galileo as a Patient

    NASA Astrophysics Data System (ADS)

    Thiene, G.; Basso, C.

    2011-06-01

    The clinical history of Galileo, as it turns out from hundred letters he wrote and received, is so informative as to make it possible to delineate the natural history of his body. It is well known that he suffered from recurrent episodes of fever (terzana) since 1606, when he was in Florence as guest of Cristina Lorena for education of the future granduke Cosimo II. By reading signs and symptoms he reported several times, it is clear that he had various diseases (rheumatism, haemorroids, kidney stones, arrhythmias). When in December 1632, at the age of 68, Galileo delayed his journey to Rome claiming sickness, Pope Urban VIII committed 3 physicians to examine him. They reported that Galileo was affected by "pulsus intermittens" (most probably atrial fibrillation), large hernia at risk of rupture, dizziness, diffuse pain, hypochondriacal melancholy as a consequence of the "declining age". It was in February 1637 that he started to have eye disease with lacrimation and progressive loss of sight, which in 10 months led to loose at first the right eye and then also the left one. According to the consultation, asked at distance to Giovanni Trullio on February 1538 in Rome, the diagnosis of blindness due to bilateral uveitis came out. Keeping with the current medicine, the illnes might have been explained in the setting of an immune rheumatic disease (Reiter's syndrome). The cause of Galileo's death, which occurred on 8 January 1642 at the age of 78, is not known since it was not submitted to autopsy. We can speculate cardiac death due to pneumonia complicating congestive heart failure.

  19. Galileo satellite antenna modeling

    NASA Astrophysics Data System (ADS)

    Steigenberger, Peter; Dach, Rolf; Prange, Lars; Montenbruck, Oliver

    2015-04-01

    The space segment of the European satellite navigation system Galileo currently consists of six satellites. Four of them belong to the first generation of In-Orbit Validation (IOV) satellites whereas the other two are Full Operational Capability (FOC) satellites. High-precision geodetic applications require detailed knowledge about the actual phase center of the satellite and receiver antenna. The deviation of this actual phase center from a well-defined reference point is described by phase center offsets (PCOs) and phase center variations (PCVs). Unfortunately, no public information is available about the Galileo satellite antenna PCOs and PCVs, neither for the IOV, nor the FOC satellites. Therefore, conventional values for the IOV satellite antenna PCOs have been adopted for the Multi-GNSS experiment (MGEX) of the International GNSS Service (IGS). The effect of the PCVs is currently neglected and no PCOs for the FOC satellites are available yet. To overcome this deficiency in GNSS observation modeling, satellite antenna PCOs and PCVs are estimated for the Galileo IOV satellites based on global GNSS tracking data of the MGEX network and additional stations of the legacy IGS network. Two completely independent solutions are computed with the Bernese and Napeos software packages. The PCO and PCV values of the individual satellites are analyzed and the availability of two different solutions allows for an accuracy assessment. The FOC satellites are built by a different manufacturer and are also equipped with another type of antenna panel compared to the IOV satellites. Signal transmission of the first FOC satellite has started in December 2014 and activation of the second satellite is expected for early 2015. Based on the available observations PCO estimates and, optionally PCVs of the FOC satellites will be presented as well. Finally, the impact of the new antenna model on the precision and accuracy of the Galileo orbit determination is analyzed.

  20. Galileo - Ganymede Family Night

    NASA Astrophysics Data System (ADS)

    1996-06-01

    This videotape is a continuation of tape number NONP-NASA-VT-2000036029. When the Galileo spacecraft flew by Ganymede, Jupiter's and the solar system's largest satellite, the project scientist and engineers gather together with their friends and family to view the photos as they are received. This videotape presents the last part of that meeting, which culminates in the announcement of the confirmation of the fly-by, and a review of the current trajectory status.

  1. The Education and Public Outreach Program for NASA's Dawn Mission

    NASA Astrophysics Data System (ADS)

    McFadden, L. A.; Wise, J.; Ristvey, J. D.; Cobb, W.

    2011-12-01

    The Dawn mission’s Education and Public Outreach (E/PO) program takes advantage of the length of the mission, an effort to maintain level funding, and the exceptional support of the science and engineering teams to create formal and informal educational materials that bring STEM content and modes of thinking to students of all ages. With materials that are based on researched pedagogical principles and aligned with science education standards, Dawn weaves together many aspects of the mission to engage students, teachers, and the general public. E/PO tells the story of the discovery of the asteroid belt, uncovers principles of physics behind the ion propulsion that powers the spacecraft, and explains what we can learn from the instrumentation and how the mission’s results will expand our understanding of the origins of the solar system. In this way, we not only educate and inform, we build anticipation and expectation in the general public for the spacecraft’s arrival at Vesta in 2011 and three years later at Ceres. This chapter discusses the organization, strategies, formative assessment and dissemination of these materials and activities, and includes a section on lessons learned.

  2. Mission Analysis Program for Solar Electric Propulsion (MAPSEP). Volume 3: Program manual for earth orbital MAPSEP

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A revised user's manual for the computer program MAPSEP is presented. Major changes from the interplanetary version of MAPSEP are summarized. The changes are intended to provide a basic capability to analyze anticipated solar electric missions, and a foundation for future more complex, modifications. For Vol. III, N75-16589.

  3. 48 CFR 1852.246-70 - Mission Critical Space System Personnel Reliability Program.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Reliability Program. As prescribed in 1846.370(a), insert the following clause: Mission Critical Space System Personnel Reliability Program (MAR 1997) (a) In implementation of the Mission Critical Space System Personnel Reliability Program, described in 14 CFR 1214.5, the Government shall identify personnel...

  4. 48 CFR 1852.246-70 - Mission Critical Space System Personnel Reliability Program.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Reliability Program. As prescribed in 1846.370(a), insert the following clause: Mission Critical Space System Personnel Reliability Program (MAR 1997) (a) In implementation of the Mission Critical Space System Personnel Reliability Program, described in 14 CFR 1214.5, the Government shall identify personnel...

  5. 48 CFR 1852.246-70 - Mission Critical Space System Personnel Reliability Program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Reliability Program. As prescribed in 1846.370(a), insert the following clause: Mission Critical Space System Personnel Reliability Program (MAR 1997) (a) In implementation of the Mission Critical Space System Personnel Reliability Program, described in 14 CFR 1214.5, the Government shall identify personnel...

  6. 48 CFR 1852.246-70 - Mission Critical Space System Personnel Reliability Program.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Reliability Program. As prescribed in 1846.370(a), insert the following clause: Mission Critical Space System Personnel Reliability Program (MAR 1997) (a) In implementation of the Mission Critical Space System Personnel Reliability Program, described in 14 CFR 1214.5, the Government shall identify personnel...

  7. Galileo spacecraft power management and distribution system

    NASA Technical Reports Server (NTRS)

    Detwiler, R. C.; Smith, R. L.

    1990-01-01

    The Galileo PMAD (power management and distribution system) is described, and the design drivers that established the final as-built hardware are discussed. The spacecraft is powered by two general-purpose heat-source-radioisotope thermoelectric generators. Power bus regulation is provided by a shunt regulator. Galileo PMAD distributes a 570-W beginning of mission (BOM) power source to a user complement of some 137 load elements. Extensive use of pyrotechnics requires two pyro switching subassemblies. They initiate 148 squibs which operate the 47 pyro devices on the spacecraft. Detection and correction of faults in the Galileo PMAD is an autonomous feature dictated by requirements for long life and reliability in the absence of ground-based support. Volatile computer memories in the spacecraft command and data system and attitude control system require a continuous source of backup power during all anticipated power bus fault scenarios. Power for the Jupiter Probe is conditioned, isolated, and controlled by a Probe interface subassembly. Flight performance of the spacecraft and the PMAD has been successful to date, with no major anomalies.

  8. Galileo spacecraft anomaly and safing recovery

    NASA Technical Reports Server (NTRS)

    Basilio, Ralph R.; Durham, David M.

    1993-01-01

    A high-level anomaly recovery plan which identifies the steps necessary to recover from a spacecraft 'Safing' incident was developed for the Galileo spacecraft prior to launch. Since launch, a total of four in-flight anomalies have lead to entry into a system fault protection 'Safing' routine which has required the Galileo flight team to refine and execute the recovery plan. These failures have allowed the flight team to develop an efficient recovery process when permanent spacecraft capability degradation is minimal and the cause of the anomaly is quickly diagnosed. With this previous recovery experience and the very focused boundary conditions of a specific potential failure, a Gaspra asteroid recovery plan was designed to be implemented in as quickly as forty hours (desired goal). This paper documents the work performed above, however, the Galileo project remains challenged to develop a generic detailed recovery plan which can be implemented in a relatively short time to configure the spacecraft to a nominal state prior to future high priority mission objectives.

  9. Jovian Global Photometry During the Galileo Epoch

    NASA Astrophysics Data System (ADS)

    West, Robert

    1997-07-01

    We have two primary objectives. We propose first to investigate the vertical aerosol structure of Jupiter's atmosphere, and its spatial and temporal variability, in conjunction with nearly simultaneous observations by the uniquely well positioned but data-limited Galileo Orbiter. Our second objective is to map the latitudinal extent of the residual stratospheric haze from the SL-9 impacts in 1994. Both goals make use of the wide-field option of the WF/PC2 instrument, with filters and observing sequences chosen to optimize the determination of vertical cloud structure, especially residual SL-9 haze which is apparent in UV images obtained as recently as June, 1996. Our observations are targeted to broaden the perspective of the spatially-, temporally-, and spectrally-limited sampling of Jupiter by Galileo, thus providing a strategic supplement to the atmospheric science derived from the Galileo mission. In addition, the high-spatial-resolution global coverage provided by HST images provides an essential component in a larger, comprehensive research campaign to acquire and analyze synoptic observations of Jupiter's atmosphere in order to understand the planet's dynamic meteorology. Our observing sequences will be merged with those proposed separately by Beebe et al. to elucidate questions about Jupiter's dynamics in order to integrate and optimize each investigation.

  10. Integer cosine transform compression for Galileo at Jupiter: A preliminary look

    NASA Technical Reports Server (NTRS)

    Ekroot, L.; Dolinar, S.; Cheung, K.-M.

    1993-01-01

    The Galileo low-gain antenna mission has a severely rate-constrained channel over which we wish to send large amounts of information. Because of this link pressure, compression techniques for image and other data are being selected. The compression technique that will be used for images is the integer cosine transform (ICT). This article investigates the compression performance of Galileo's ICT algorithm as applied to Galileo images taken during the early portion of the mission and to images that simulate those expected from the encounter at Jupiter.

  11. Science mentor program at Mission Hill Junior High School

    SciTech Connect

    Dahlquist, K.

    1994-12-31

    Science graduate students from the University of California at Santa Cruz mentor a class of 7th graders from the Mission Hill Junior High School. The program`s purpose is: (1) to create a scientific learning community where scientists interact at different levels of the educational hierarchy; (2) to have fun in order to spark interest in science; and (3) to support girls and minority students in science. A total of seven mentors met with the students at least once a week after school for one quarter to tutor and assist with science fair projects. Other activities included a field trip to a university earth science lab, judging the science fair, and assisting during laboratory exercises. Graduate students run the program with minimal organization and funding, communicating by electronic mail. An informal evaluation of the program by the mentors has concluded that the most valuable and effective activities have been the field trip and assisting with labs. The actual {open_quotes}mentor meetings{close_quotes} after school did not work effectively because they had a vaguely defined purpose and the kids did not show up regularly to participate. Future directions include redefining ourselves as mentors for the entire school instead of just one class and better coordinating our activities with the teachers` curriculum. We will continue to assist with the labs and organize formal tutoring for students having problems with math and science. Finally, we will arrange more activities and field trips such as an amateur astronomy night. We will especially target girls who attended the {open_quotes}Expanding Your Horizons{trademark} in Science, Mathematics, and Engineering{close_quotes} career day for those activities.

  12. IMPaCT - Integration of Missions, Programs, and Core Technologies

    NASA Technical Reports Server (NTRS)

    Balacuit, Carlos P.; Cutts, James A.; Peterson, Craig E.; Beauchamp, Patricia M.; Jones, Susan K.; Hang, Winnie N.; Dastur, Shahin D.

    2013-01-01

    IMPaCT enables comprehensive information on current NASA missions, prospective future missions, and the technologies that NASA is investing in, or considering investing in, to be accessed from a common Web-based interface. It allows dependencies to be established between missions and technology, and from this, the benefits of investing in individual technologies can be determined. The software also allows various scenarios for future missions to be explored against resource constraints, and the nominal cost and schedule of each mission to be modified in an effort to fit within a prescribed budget.

  13. Galileo spacecraft modeling for orbital operations

    NASA Technical Reports Server (NTRS)

    Mclaughlin, Bruce A.; Nilsen, Erik N.

    1994-01-01

    The Galileo Jupiter orbital mission using the Low Gain Antenna (LGA) requires a higher degree of spacecraft state knowledge than was originally anticipated. Key elements of the revised design include onboard buffering of science and engineering data and extensive processing of data prior to downlink. In order to prevent loss of data resulting from overflow of the buffers and to allow efficient use of the spacecraft resources, ground based models of the spacecraft processes will be implemented. These models will be integral tools in the development of satellite encounter sequences and the cruise/playback sequences where recorded data is retrieved.

  14. Results of the Galileo probe nephelometer experiment.

    PubMed

    Ragent, B; Colburn, D S; Avrin, P; Rages, K A

    1996-05-10

    The nephelometer experiment carried on the Galileo probe was designed to measure the jovian cloud structure and its microphysical characteristics from entry down to atmospheric pressure levels greater than 10 bars. Before this mission there was no direct evidence for the existence of the clouds below the uppermost cloud layer, and only theoretical models derived from remote sensing observations were available for describing such clouds. Only one significant cloud structure with a base at about 1.55 bars was found along the probe descent trajectory below an ambient pressure of about 0.4 bar, although many indications of small densities of particle concentrations were noted during much of the descent.

  15. A Modern Visit to Galileo

    ERIC Educational Resources Information Center

    Freilich, Florence G.

    1970-01-01

    Describes the author's visit to the Italian cities where Galileo lived. Discusses the legendary swinging Cathedral lamp and the Leaning Tower of Pisa. Describes the science apparatus used by Galileo and other men of science which appear in the Museum of the History of Science in Florence. Presents six pictures of items viewed within the museum.…

  16. In Galileo's footsteps

    NASA Astrophysics Data System (ADS)

    Durrani, Matin

    2009-03-01

    Astronomy can lay rightful claim to being the oldest science, with its foundations dating back even further than those of mathematics. From the ancient Babylonians who observed the regular motions of Venus to medieval Islamic scholars who had the first inklings of heliocentrism, the study of the skies has fascinated humankind. But 2009 - the International Year of Astronomy - commemorates an event central to the development of Western science: Galileo Galilei's first observations with a telescope in 1609. This year also marks the 400th anniversary of Johannes Kepler's Astronomia Nova, in which he outlined his laws of planetary motion.

  17. The Keys to Successful Extended Missions

    NASA Technical Reports Server (NTRS)

    Seal, David A.; Manor-Chapman, Emily A.

    2012-01-01

    Many of NASA's successful missions of robotic exploration have gone on to highly productive mission extensions, from Voyager, Magellan, Ulysses, and Galileo, to the Mars Exploration Rovers Spirit and Opportunity, a variety of Mars orbiters, Spitzer, Deep Impact / EPOXI, and Cassini. These missions delivered not only a high science return during their prime science phase, but a wealth of opportunities during their extensions at a low incremental cost to the program. The success of such mission extensions can be traced to demonstration of new and unique science achievable during the extension; reduction in cost without significant increase in risk to spacecraft health; close inclusion of the science community and approval authorities in planning; intelligent design during the development and prime operations phase; and well crafted and conveyed extension proposals. This paper discusses lessons learned collected from a variety of project leaders which can be applied by current and future missions to maximize their chances of approval and success.

  18. The Galileo Energetic Particles Detector

    NASA Technical Reports Server (NTRS)

    Williams, D. J.; Mcentire, R. W.; Jaskulek, S.; Wilken, B.

    1992-01-01

    Amongst its complement of particles and fields instruments, the Galileo spacecraft carries an Energetic Particles Detector (EPD) designed to measure the characteristics of particle populations important in determining the size, shape, and dynamics of the Jovian magnetosphere. To do this the EPD provides 4pi angular coverage and spectral measurements for Z greater than or equal to 1 ions from 20 keV to 55 MeV, for electrons from 15 keV to greater than 11 MeV, and for the elemental species helium through iron from approximately 10 keV/nucl to 15 MeV/nucl. Two bidirectional telescopes, mounted on a stepping platform, employ magnetic deflection, energy loss versus energy, and time-of-flight techniques to provide 64 rate channels and pulse height analysis of priority selected events. The EPD data system provides a large number of possible operational modes from which a small number will be selected to optimize data collection during the many encounter and cruise phases of the mission. The EPD employs a number of safeing algorithms that are to be used in the event that its self-checking procedures indicate a problem. The instrument and its operation are described.

  19. Space Missions for Automation and Robotics Technologies (SMART) Program

    NASA Technical Reports Server (NTRS)

    Cliffone, D. L.; Lum, H., Jr.

    1985-01-01

    NASA is currently considering the establishment of a Space Mission for Automation and Robotics Technologies (SMART) Program to define, develop, integrate, test, and operate a spaceborne national research facility for the validation of advanced automation and robotics technologies. Initially, the concept is envisioned to be implemented through a series of shuttle based flight experiments which will utilize telepresence technologies and real time operation concepts. However, eventually the facility will be capable of a more autonomous role and will be supported by either the shuttle or the space station. To ensure incorporation of leading edge technology in the facility, performance capability will periodically and systematically be upgraded by the solicitation of recommendations from a user advisory group. The facility will be managed by NASA, but will be available to all potential investigators. Experiments for each flight will be selected by a peer review group. Detailed definition and design is proposed to take place during FY 86, with the first SMART flight projected for FY 89.

  20. Tracking the Galileo spacecraft with the DSCC Galileo Telemetry prototype

    NASA Technical Reports Server (NTRS)

    Pham, T. T.; Shambayati, S.; Hardi, D. E.; Finley, S. G.

    1994-01-01

    On day of the year 062, 1994, a prototype of the Deep Space Communications Complex Galileo Telemetry subsystem successfully tracked and processed signals from the Galileo spacecraft, under fully suppressed-carrier modulation. The demonstration took place at Goldstone, employing the 70-m antenna and the 34-m high-efficiency antenna. This article presents the findings from that demonstration. Specific issues are the system performance in terms of signal-to-noise (SNR) degradation and the arraying gain. Validation of the test results is via symbol-error-rate measurement and the standard symbol SNR. The analysis is also extended to include characterization of the signal received from Galileo.

  1. 45 CFR 1388.3 - Program criteria-mission.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of “diverse network” as defined in § 1388.1 of this part applies to paragraphs (b), (f), (g), and (h) of this section.) (b) The UAP must develop a written mission statement that reflects its values and..., and activities must be consistent with the mission statement and use capacity building strategies...

  2. 45 CFR 1388.3 - Program criteria-mission.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of “diverse network” as defined in § 1388.1 of this part applies to paragraphs (b), (f), (g), and (h) of this section.) (b) The UAP must develop a written mission statement that reflects its values and..., and activities must be consistent with the mission statement and use capacity building strategies...

  3. Generalizing Galileo's passé-dix game

    NASA Astrophysics Data System (ADS)

    Hombas, Vassilios

    2012-07-01

    This article shows a generalization of Galileo's 'passé-dix' game. The game was born following one of Galileo's [G. Galileo, Sopra le Scoperte dei Dadi (Galileo, Opere, Firenze, Barbera, Vol. 8). Translated by E.H. Thorne, 1898, pp. 591-594] explanations on a paradox that occurred in the experiment of tossing three fair 'six-sided' dice.

  4. Generalizing Galileo's Passe-Dix Game

    ERIC Educational Resources Information Center

    Hombas, Vassilios

    2012-01-01

    This article shows a generalization of Galileo's "passe-dix" game. The game was born following one of Galileo's [G. Galileo, "Sopra le Scoperte dei Dadi" (Galileo, Opere, Firenze, Barbera, Vol. 8). Translated by E.H. Thorne, 1898, pp. 591-594] explanations on a paradox that occurred in the experiment of tossing three fair "six-sided" dice.…

  5. Becoming Galileo in the Classroom

    NASA Astrophysics Data System (ADS)

    Cavicchi, Elizabeth

    2011-04-01

    Galileo's contributions are so familiar as to be taken for granted, obscuring the exploratory process by which his discoveries arose. The wonder that Galileo experienced comes alive for undergraduates and teachers that I teach, when they find themselves taking Galileo's role by means of their own explorations. These classroom journeys include: sighting through picture frames to understand perspective, watching the night sky, experimenting with lenses and motion, and responding to Galileo's story. In teaching, I use critical exploration, the research pedagogy developed by Eleanor Duckworth that arose historically from both the clinical interviewing of Jean Piaget and B"arbel Inhelder and the Elementary Science Study of the 1960s. During critical explorations, the teacher supports students' investigations by posing provocative experiences while interactively following students' emergent understandings. In the context of Galileo, students learned to observe carefully, trust their observations, notice things they had never noticed before, and extend their understanding in the midst of pervasive confusion. Personal investment moved students to question assumptions that they had never critically evaluated. By becoming Galileo in today's classroom, we found the ordinary world no less intriguing and unsettling to explore, as the historical world of protagonists in Galileo's Dialogue.

  6. Calibration of the IRTF-Galileo Support Dataset

    NASA Astrophysics Data System (ADS)

    Vincent, M. B.; Chanover, N. J.; Beebe, R. F.

    2004-11-01

    The NASA Infrared Telescope Facility (IRTF), on Mauna Kea, Hawaii, set aside time on almost 500 nights from 1995 to 2002 for a standardized NSFCAM observations of Jupiter (PI: Glenn S. Orton, JPL) in support of the Galileo mission. The program included short, macro-driven observations of Jupiter, with occasional additional observations of calibration stars and flat fields. Data were acquired in four filters: narrow-band filters centered at 1.58 and 2.28 microns and broader L' and M' bands. At the time of the data acquisition, most of the calibration stars were not cross-calibrated against photometric standards. In 2003-2004 we obtained follow-up observations to calibrate the six most frequently observed stars and Jupiter. With the NSFCAM upgrade currently underway, the timing of this effort was crucial for the long-term calibration of the Galileo/Jupiter support data set. Stellar photometry indicates that NSFCAM's zero point had shifted by up to +/-0.15 magnitudes several times from 1995 to 1997. We present calibrated central meridian scans of the albedos and brightness temperatures of Jupiter between 1995 and 2004. Three calibration methods were applied to the scans: 1) the stellar flux from concurrent observations, 2) nominal zero point magnitudes applied uniformly to all scans taken with the same filter, and 3) normalizing selected latitudes to the calibrated 2004 scans. All data will be available to the planetary science community through the Planetary Data System Atmospheres Discipline Node at New Mexico State University. We thank the IRTF Division Chief, Alan Tokunaga, for providing the engineering time on the IRTF that allowed us to complete the calibration of this data set.

  7. The NASA Mission Operations and Control Architecture Program

    NASA Technical Reports Server (NTRS)

    Ondrus, Paul J.; Carper, Richard D.; Jeffries, Alan J.

    1994-01-01

    The conflict between increases in space mission complexity and rapidly declining space mission budgets has created strong pressures to radically reduce the costs of designing and operating spacecraft. A key approach to achieving such reductions is through reducing the development and operations costs of the supporting mission operations systems. One of the efforts which the Communications and Data Systems Division at NASA Headquarters is using to meet this challenge is the Mission Operations Control Architecture (MOCA) project. Technical direction of this effort has been delegated to the Mission Operations Division (MOD) of the Goddard Space Flight Center (GSFC). MOCA is to develop a mission control and data acquisition architecture, and supporting standards, to guide the development of future spacecraft and mission control facilities at GSFC. The architecture will reduce the need for around-the-clock operations staffing, obtain a high level of reuse of flight and ground software elements from mission to mission, and increase overall system flexibility by enabling the migration of appropriate functions from the ground to the spacecraft. The end results are to be an established way of designing the spacecraft-ground system interface for GSFC's in-house developed spacecraft, and a specification of the end to end spacecraft control process, including data structures, interfaces, and protocols, suitable for inclusion in solicitation documents for future flight spacecraft. A flight software kernel may be developed and maintained in a condition that it can be offered as Government Furnished Equipment in solicitations. This paper describes the MOCA project, its current status, and the results to date.

  8. Issues in NASA program and project management

    NASA Technical Reports Server (NTRS)

    Hoffman, Edward J. (Editor)

    1994-01-01

    This volume is the eighth in an ongoing series addressing current topics and lessons learned in NASA program and project management. Articles in this volume cover the following topics: (1) power sources for the Galileo and Ulysses Missions; (2) managing requirements; (3) program control of the Tropical Rainfall Measuring Mission; (4) project management method; (5) career development for project managers; and (6) resources for NASA managers.

  9. Cassini RTG acceptance test results and RTG performance on Galileo and Ulysses

    SciTech Connect

    Kelly, C.E.; Klee, P.M.

    1997-06-01

    Flight acceptance testing has been completed for the RTGs to be used on the Cassini spacecraft which is scheduled for an October 6, 1997 launch to Saturn. The acceptance test program includes vibration tests, magnetic field measurements, properties (weight and c.g.) and thermal vacuum test. This paper presents The thermal vacuum test results. Three RTGs are to be used, F-2, F-6, and F-7. F-5 is tile back-up RTG, as it was for the Galileo and Ulysses missions launched in 1989 and 1990, respectively. RTG performance measured during the thermal vacuum tests carried out at die Mound Laboratory facility met all specification requirements. Beginning of mission (BOM) and end of mission (EOM) power predictions have been made based on than tests results. BOM power is predicted to be 888 watts compared to the minimum requirement of 826 watts. Degradation models predict the EOM power after 16 years is to be 640 watts compared to a minimum requirement of 596 watts. Results of small scale module tests are also showing. The modules contain couples from the qualification and flight production runs. The tests have exceeded 28,000 hours (3.2 years) and are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. All test results indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of over five percent are predicted. Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Telemetry data are also shown for the RTG on the Ulysses spacecraft which completed its planned mission in 1995 and is now in the extended mission.

  10. Cassini RTG acceptance test results and RTG performance on Galileo and Ulysses

    SciTech Connect

    Kelly, C.E.; Klee, P.M.

    1997-12-31

    Flight acceptance testing has been completed for the RTGs to be used on the Cassini spacecraft which is scheduled for an October 6, 1997 launch to Saturn. The acceptance test program includes vibration tests, magnetic field measurements, mass properties (weight and c.g.) and thermal vacuum test. This paper presents the thermal vacuum test results. Three RTGs are to be used, F-2, F-6, and F-7. F-5 is the backup RTG, as it was for the Galileo and Ulysses missions launched in 1989 and 1990, respectively. RTG performance measured during the thermal vacuum tests carried out at the Mound Laboratory facility met all specification requirements. Beginning of mission (BOM) and end of mission (EOM) power predictions have been made based on these tests results. BOM power is predicted to be 888 watts compared to the minimum requirement of 826 watts. Degradation models predict the EOM power after 16 years is to be 640 watts compared to a minimum requirement of 596 watts. Results of small scale module tests are also shown. The modules contain couples from the qualification and flight production runs. The tests have exceeded 28,000 hours (3.2 years) and are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. All test results indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of over 5% are predicted. Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Telemetry data are also shown for the RTG on the Ulysses spacecraft which completed its planned mission in 1995 and is now in the extended mission.

  11. Cassini RTG Acceptance Test Results and RTG Performance on Galileo and Ulysses

    DOE R&D Accomplishments Database

    Kelly, C. E.; Klee, P. M.

    1997-06-01

    Flight acceptance testing has been completed for the RTGs to be used on the Cassini spacecraft which is scheduled for an October 6, 1997 launch to Saturn. The acceptance test program includes vibration tests, magnetic field measurements, properties (weight and c.g.) and thermal vacuum test. This paper presents The thermal vacuum test results. Three RTGs are to be used, F 2, F 6, and F 7. F 5 is tile back up RTG, as it was for the Galileo and Ulysses missions launched in 1989 and 1990, respectively. RTG performance measured during the thermal vacuum tests carried out at die Mound Laboratory facility met all specification requirements. Beginning of mission (BOM) and end of mission (EOM) power predictions have been made based on than tests results. BOM power is predicted to be 888 watts compared to the minimum requirement of 826 watts. Degradation models predict the EOM power after 16 years is to be 640 watts compared to a minimum requirement of 596 watts. Results of small scale module tests are also showing. The modules contain couples from the qualification and flight production runs. The tests have exceeded 28,000 hours (3.2 years) and are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. All test results indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of over five percent are predicted. Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Telemetry data are also shown for the RTG on the Ulysses spacecraft which completed its planned mission in 1995 and is now in the extended mission.

  12. The effect of nitric acid exposure on Galileo spacecraft titanium alloy Ti-6Al-4V propellant tanks

    NASA Technical Reports Server (NTRS)

    Hsieh, Cheng; O'Donnell, Tim; Yavrouian, Andre

    1990-01-01

    The Ti-6Al-4V-constructed retropropulsion-module tanks of the Galileo spacecraft were purged with nitrogen tetroxide in order to wait out a major launch rescheduling; nitric acid is among the residual products of such an operation. A test program was conducted on representative samples to ascertain the fracture toughness and stress corrosion threshold of the tanks' material, in view of Space Shuttle safety and mission-reliability requirements. It was found that the tanks' structural integrity was not degraded by nitric acid exposure.

  13. Astronomy sortie missions definition study. Volume 2, book 1: Astronomy sortie program technical report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The work performed to arrive at a baseline astronomy sortie mission concept is summarized. The material includes: (1) definition of the telescopes and arrays; (2) preliminary definition of mission and systems; (3) identification, definition, and evaluation of alternative sortie programs; (4) the recommended astronomy sortie program; and (5) the astronomy sortie program concept that was approved as a baseline for the remainder of the project.

  14. Galileo lithium/SO2

    NASA Technical Reports Server (NTRS)

    Blagdon, L. J.

    1980-01-01

    The current status of the Galileo lithium SO2 battery is described. The following general requirements of the battery are discussed: (1) electrical characteristics, (2) storage, (3) reliability, and (4) performance.

  15. Galileo's Trajectory with Mild Resistance

    ERIC Educational Resources Information Center

    Groetsch, C. W.

    2012-01-01

    An aspect of Galileo's classical trajectory that persists in a simple resistance model is noted. The resistive model provides a case study for the classroom analysis of limiting behaviour of an implicitly defined function. (Contains 1 note.)

  16. Galileo multispectral imaging of Earth.

    PubMed

    Geissler, P; Thompson, W R; Greenberg, R; Moersch, J; McEwen, A; Sagan, C

    1995-08-25

    Nearly 6000 multispectral images of Earth were acquired by the Galileo spacecraft during its two flybys. The Galileo images offer a unique perspective on our home planet through the spectral capability made possible by four narrowband near-infrared filters, intended for observations of methane in Jupiter's atmosphere, which are not incorporated in any of the currently operating Earth orbital remote sensing systems. Spectral variations due to mineralogy, vegetative cover, and condensed water are effectively mapped by the visible and near-infrared multispectral imagery, showing a wide variety of biological, meteorological, and geological phenomena. Global tectonic and volcanic processes are clearly illustrated by these images, providing a useful basis for comparative planetary geology. Differences between plant species are detected through the narrowband IR filters on Galileo, allowing regional measurements of variation in the "red edge" of chlorophyll and the depth of the 1-micrometer water band, which is diagnostic of leaf moisture content. Although evidence of life is widespread in the Galileo data set, only a single image (at approximately 2 km/pixel) shows geometrization plausibly attributable to our technical civilization. Water vapor can be uniquely imaged in the Galileo 0.73-micrometer band, permitting spectral discrimination of moist and dry clouds with otherwise similar albedo. Surface snow and ice can be readily distinguished from cloud cover by narrowband imaging within the sensitivity range of Galileo's silicon CCD camera. Ice grain size variations can be mapped using the weak H2O absorption at 1 micrometer, a technique which may find important applications in the exploration of the moons of Jupiter. The Galileo images have the potential to make unique contributions to Earth science in the areas of geological, meteorological and biological remote sensing, due to the inclusion of previously untried narrowband IR filters. The vast scale and near global

  17. Galileo multispectral imaging of Earth.

    PubMed

    Geissler, P; Thompson, W R; Greenberg, R; Moersch, J; McEwen, A; Sagan, C

    1995-08-25

    Nearly 6000 multispectral images of Earth were acquired by the Galileo spacecraft during its two flybys. The Galileo images offer a unique perspective on our home planet through the spectral capability made possible by four narrowband near-infrared filters, intended for observations of methane in Jupiter's atmosphere, which are not incorporated in any of the currently operating Earth orbital remote sensing systems. Spectral variations due to mineralogy, vegetative cover, and condensed water are effectively mapped by the visible and near-infrared multispectral imagery, showing a wide variety of biological, meteorological, and geological phenomena. Global tectonic and volcanic processes are clearly illustrated by these images, providing a useful basis for comparative planetary geology. Differences between plant species are detected through the narrowband IR filters on Galileo, allowing regional measurements of variation in the "red edge" of chlorophyll and the depth of the 1-micrometer water band, which is diagnostic of leaf moisture content. Although evidence of life is widespread in the Galileo data set, only a single image (at approximately 2 km/pixel) shows geometrization plausibly attributable to our technical civilization. Water vapor can be uniquely imaged in the Galileo 0.73-micrometer band, permitting spectral discrimination of moist and dry clouds with otherwise similar albedo. Surface snow and ice can be readily distinguished from cloud cover by narrowband imaging within the sensitivity range of Galileo's silicon CCD camera. Ice grain size variations can be mapped using the weak H2O absorption at 1 micrometer, a technique which may find important applications in the exploration of the moons of Jupiter. The Galileo images have the potential to make unique contributions to Earth science in the areas of geological, meteorological and biological remote sensing, due to the inclusion of previously untried narrowband IR filters. The vast scale and near global

  18. Sea-Ice Mission Requirements for the US FIREX and Canada RADARSAT programs

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.; Ramseier, R. O.; Weeks, W. F.

    1982-01-01

    A bilateral synthetic aperture radar (SAR) satellite program is defined. The studies include addressing the requirements supporting a SAR mission posed by a number of disciplines including science and operations in sea ice covered waters. Sea ice research problems such as ice information and total mission requirements, the mission components, the radar engineering parameters, and an approach to the transition of spacecraft SAR from a research to an operational tool were investigated.

  19. Analysis of flow decay potential on Galileo. [oxidizer flow rate reduction by iron nitrate precipitates

    NASA Technical Reports Server (NTRS)

    Cole, T. W.; Frisbee, R. H.; Yavrouian, A. H.

    1987-01-01

    The risks posed to the NASA's Galileo spacecraft by the oxidizer flow decay during its extended mission to Jupiter is discussed. The Galileo spacecraft will use nitrogen tetroxide (NTO)/monomethyl hydrazine bipropellant system with one large engine thrust-rated at a nominal 400 N, and 12 smaller engines each thrust-rated at a nominal 10 N. These smaller thrusters, because of their small valve inlet filters and small injector ports, are especially vulnerable to clogging by iron nitrate precipitates formed by NTO-wetted stainless steel components. To quantify the corrosion rates and solubility levels which will be seen during the Galileo mission, corrosion and solubility testing experiments were performed with simulated Galileo materials, propellants, and environments. The results show the potential benefits of propellant sieving in terms of iron and water impurity reduction.

  20. Thermo-optical vacuum testing of Galileo In-Orbit Validation laser retroreflectors

    NASA Astrophysics Data System (ADS)

    Dell'Agnello, S.; Boni, A.; Cantone, C.; Ciocci, E.; Contessa, S.; Delle Monache, G.; Lops, C.; Martini, M.; Patrizi, G.; Porcelli, L.; Salvatori, L.; Tibuzzi, M.; Intaglietta, N.; Tuscano, P.; Mondaini, C.; Maiello, M.; Doyle, D.; García-Prieto, R.; Navarro-Reyes, D.

    2016-06-01

    The Galileo constellation is a space research and development program of the European Union to help navigate users all over the world. The Galileo IOV (In-Orbit Validation) are the first test satellites of the Galileo constellation and carry satellite laser retroreflectors as part of their payload systems for precision orbit determination and performance assessment. INFN-LNF SCF_Lab (Satellite/lunar/GNSS laser ranging/altimetry and Cube/microsat Characterization Facilities Laboratory) has been performing tests on a sample of the laser array segment under the Thermo-optical vacuum testing of Galileo IOV laser retro-reflectors of Galileo IOV LRA project, as defined in ESA-INFN Contract No. 4000108617/13/NL/PA. We will present the results of FFDP (Far Field Diffraction Pattern) and thermal relaxation times measurements in relevant space conditions of Galileo IOV CCRs (Cube Corner Retroreflectors) provided by ESA-ESTEC. A reference for the performance of laser ranging on Galileo satellites is the FFDP of a retroreflector in its design specifications and a Galileo retroreflector, in air and isothermal conditions, should have a minimum return intensity within the range [ 0.55 ×106m2- 2.14 ×106m2 ] (ESA-INFN, 2013). Measurements, performed in SCF_Lab facility, demonstrated that the 7 Galileo IOV laser retroreflectors under test were compliant with design performance expectations (Porcelli et al., 2015). The kind of tests carried out for this activity are the first performed on spare Galileo IOV hardware, made available after the launch of the four Galileo IOV satellites (2011 and 2012), which were the operational core of the constellation. The characterisation of the retroreflectors against their design requirements is important because LRAs (Laser Retroreflector Arrays) will be flown on all Galileo satellites.

  1. Geopotential research mission, science, engineering and program summary

    NASA Technical Reports Server (NTRS)

    Keating, T. (Editor); Taylor, P. (Editor); Kahn, W. (Editor); Lerch, F. (Editor)

    1986-01-01

    This report is based upon the accumulated scientific and engineering studies pertaining to the Geopotential Research Mission (GRM). The scientific need and justification for the measurement of the Earth's gravity and magnetic fields are discussed. Emphasis is placed upon the studies and conclusions of scientific organizations and NASA advisory groups. The engineering design and investigations performed over the last 4 years are described, and a spacecraft design capable of fulfilling all scientific objectives is presented. In addition, critical features of the scientific requirements and state-of-the-art limitations of spacecraft design, mission flight performance, and data processing are discussed.

  2. Mission X in Japan, an Education Outreach Program Featuring Astronautical Specialties and Knowledge

    NASA Astrophysics Data System (ADS)

    Niihori, Maki; Yamada, Shin; Matsuo, Tomoaki; Nakao, Reiko; Nakazawa, Takashi; Kamiyama, Yoshito; Takeoka, Hajime; Matsumoto, Akiko; Ohshima, Hiroshi; Mukai, Chiaki

    In the science field, disseminating new information to the public is becoming increasingly important, since it can aid a deeper understanding of scientific significance and increase the number of future scientists. As part of our activities, we at the Japan Aerospace Exploration Agency (JAXA) Space Biomedical Research Office, started work to focus on education outreach featuring space biomedical research. In 2010, we launched the Mission X education program in Japan, named after “Mission X: Train Like an Astronaut” (hereinafter called “Mission X”), mainly led by NASA and European Space Agency (ESA). Mission X is an international public outreach program designed to encourage proper nutrition and exercise and teaching young people to live and eat like astronauts. We adopted Mission X's standpoint, and modified the program based on the originals to suit Japanese culture and the students' grade. Using astronauts as examples, this mission can motivate and educate students to instill and adopt good nutrition and physical fitness as life-long practices.Here we introduce our pilot mission of the “Mission X in Japan” education program, which was held in early 2011. We are continuing the education/public outreach to promote the public understanding of science and contribute to science education through lectures on astronautical specialties and knowledge.

  3. 45 CFR 1388.3 - Program criteria-mission.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... mission: The UAP is guided by values of independence, productivity, integration and inclusion of individuals with developmental disabilities and their families. The purpose and scope of the activities must... the meaningful participation of individuals from diverse racial and ethnic backgrounds. (The...

  4. 45 CFR 1388.3 - Program criteria-mission.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... mission: The UAP is guided by values of independence, productivity, integration and inclusion of individuals with developmental disabilities and their families. The purpose and scope of the activities must... the meaningful participation of individuals from diverse racial and ethnic backgrounds. (The...

  5. Mission to Planet Earth: A program to understand global environmental change

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A description of Mission to Planet Earth, a program to understand global environmental change, is presented. Topics discussed include: changes in the environment; global warming; ozone depletion; deforestation; and NASA's role in global change research.

  6. Mission to Planet Earth: A program to understand global environmental change

    SciTech Connect

    Not Available

    1994-02-01

    A description of Mission to Planet Earth, a program to understand global environmental change, is presented. Topics discussed include: changes in the environment; global warming; ozone depletion; deforestation; and NASA's role in global change research.

  7. Remote manipulator system flexibility analysis program: Mission planning, mission analysis, and software formulation

    NASA Technical Reports Server (NTRS)

    Kumar, L.

    1978-01-01

    A computer program is described for calculating the flexibility coefficients as arm design changes are made for the remote manipulator system. The coefficients obtained are required as input for a second program which reduces the number of payload deployment and retrieval system simulation runs required to simulate the various remote manipulator system maneuvers. The second program calculates end effector flexibility and joint flexibility terms for the torque model of each joint for any arbitrary configurations. The listing of both programs is included in the appendix.

  8. Galileo's Encounter with Amalthea

    NASA Astrophysics Data System (ADS)

    Johnson, T. V.; Anderson, J. D.

    2003-04-01

    Galileo's last science periapsis encounter with Jupiter before impact was on orbit 34. One of the main scientific goals of this encounter was a close, targeted flyby of the satellite Amalthea. Although two-way Doppler tracking was lost near closest approach, one-way data were obtained throughout the encounter. Together with solid two-way data before and after the encounter period, there is enough information to constrain the mass of the satellite. Together with previously determined shape and volume information these data yield a useful value for the density of this highly non-spherical moon. Preliminary analyses have been presented indicating a bulk density near 1 gm/cc, considerably lower than was expected from the satellite's dark albedo and anticipated rocky composition. Low-density rock or rock/ice mixtures combined with a high porosity, similar to that inferred from recent small asteroid data, are suggested as the most likely explanation. Refined estimates of mass and density as well as uncertainties will be presented and the implications for Amalthea's composition and porosity discussed.

  9. Galileo Earth Moon Flyby

    NASA Astrophysics Data System (ADS)

    1992-12-01

    This video has five sections. The first is a live discussion of the information that scientists hope to gain by the Galileo flyby of the Moon. This section has no introduction. There is a great deal of the discussion about the lunar craters and lunar volcanism. There is also some discussion of the composition of the far side of the moon. The second section is a short animation that shows the final step to Jupiter with particular emphasis on the gravitational assisted velocity boost, which was planned to give the spacecraft the requisite velocity to make the trip to Jupiter. The next section is an update of the status of the flyby of the Moon, and the Earth, with an explanation of the trajectory around the earth, and the moon. A photograph of the tracking station in Canberra, Australia is included. The next section is a tour of a full-scale model of the spacecraft. The last section is a discussion with the person charged with the procurement of the instrumentation aboard the spacecraft; the importance of the lunar flyby to assist in the calibration of the instruments is discussed.

  10. Galileo asteroid encounter navigation

    NASA Technical Reports Server (NTRS)

    Murrow, D. W.; Chodas, P. W.; Kallemeyn, P. H.

    1990-01-01

    The Galileo spacecraft will be targeted to encounter one or more asteroids during its cruise to Jupiter. Accurate navigation will maximize science return from these asteroid flyby opportunities. Navigation errors for these encounters are dominated by uncertainties in the asteroid ephemeris, which is obtained from fits to ground-based observations. As the spacecraft approaches, on-board optical navigation dramatically improves knowledge of the spacecraft-relative asteroid position normal to the line of sight, while correlations in the asteroid ephemeris provide moderate improvement along the approach direction. The remaining uncertainty in encounter time can be further reduced only by improving the ground-based asteroid ephemeris. Uncertainties perpendicular to the line of sight can be reduced by improving the timing of optical navigation images and their placement with respect to the star background. At the closest approach to the asteroid Gaspra, the one-sigma errors in knowledge of the spacecraft position are less than 10 km in position and 25 seconds in encounter time.

  11. Pathfinder technologies for bold new missions. [U.S. research and development program for space exploration

    NASA Technical Reports Server (NTRS)

    Sadin, Stanley R.; Rosen, Robert

    1987-01-01

    Project Pathfinder is a proposed U.S. Space Research and Technology program intended to enable bold new missions of space exploration. Pathfinder continues the advancement of technological capabilities and extends the foundation established under the Civil Space Technology Initiative, CSTI. By filling critical technological gaps, CSTI enhances access to Earth orbit and supports effective operations and science missions therein. Pathfinder, with a longer-term horizon, looks to a future that builds on Shuttle and Space Station and addresses technologies that support a range of exploration missions including: a return to the Moon to build an outpost; piloted missions to Mars; and continued scientific exploration of Earth and the other planets. The program's objective is to develop, within reasonable time frames, those emerging and innovative technologies that will make possible both new and enhanced missions and system concepts.

  12. Program control on the Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    Pennington, Dorothy J.; Majerowicw, Walter

    1994-01-01

    The Tropical Rainfall Measuring Mission (TRMM), an integral part of NASA's Mission to Planet Earth, is the first satellite dedicated to measuring tropical rainfall. TRMM will contribute to an understanding of the mechanisms through which tropical rainfall influences global circulation and climate. Goddard Space Flight Center's (GSFC) Flight Projects Directorate is responsible for establishing a Project Office for the TRMM to manage, coordinate, and integrate the various organizations involved in the development and operation of this complex satellite. The TRMM observatory, the largest ever developed and built inhouse at GSFC, includes state-of-the-art hardware. It will carry five scientific instruments designed to determine the rate of rainfall and the total rainfall occurring between the north and south latitudes of 35 deg. As a secondary science objective, TRMM will also measure the Earth's radiant energy budget and lightning.

  13. Green Propellant Infusion Mission Program Development and Technology Maturation

    NASA Technical Reports Server (NTRS)

    McLean, Christopher H.; Deininger, William D.; Joniatis, John; Aggarwal, Pravin K.; Spores, Ronald A.; Deans, Matthew; Yim, John T.; Bury, Kristen; Martinez, Jonathan; Cardiff, Eric H.; Bacha, Caitlin E.

    2014-01-01

    The NASA Space Technology Mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) Technology Demonstration Mission (TDM) is comprised of a cross-cutting team of domestic spacecraft propulsion and storable green propellant technology experts. This TDM is led by Ball Aerospace & Technologies Corp. (BATC), who will use their BCP- 100 spacecraft to carry a propulsion system payload consisting of one 22 N thruster for primary divert (DeltaV) maneuvers and four 1 N thrusters for attitude control, in a flight demonstration of the AF-M315E technology. The GPIM project has technology infusion team members from all three major market sectors: Industry, NASA, and the Department of Defense (DoD). The GPIM project team includes BATC, includes Aerojet Rocketdyne (AR), Air Force Research Laboratory, Aerospace Systems Directorate, Edwards AFB (AFRL), NASA Glenn Research Center (GRC), NASA Kennedy Space Center (KSC), and NASA Goddard Space Flight Center (GSFC). STMD programmatic and technology oversight is provided by NASA Marshall Space Flight Center. The GPIM project shall fly an operational AF-M315E green propulsion subsystem on a Ball-built BCP-100 spacecraft.

  14. Planetary protection program for Mars 94/96 mission.

    PubMed

    Rogovski, G; Bogomolov, V; Ivanov, M; Runavot, J; Debus, A; Victorov, A; Darbord, J C

    1996-01-01

    Mars surface in-situ exploration started in 1975 with the American VIKING mission. Two probes landed on the northern hemisphere and provided, for the first time, detailed information on the martian terrain, atmosphere and meteorology. The current goal is to undertake larger surface investigations and many projects are being planned by the major Space Agencies with this objective. Among these projects, the Mars 94/96 mission will make a major contributor toward generating significant information about the martian surface on a large scale. Since the beginning of the Solar System exploration, planets where life could exist have been subject to planetary protection requirements. Those requirements accord with the COSPAR Policy and have two main goals: the protection of the planetary environment from influence or contamination by terrestrial microorganisms, the protection of life science, and particularly of life detection experiments searching extra-terrestrial life, and not life carried by probes and spacecrafts. As the conditions for life and survival for terrestrial microorganisms in the Mars environment became known, COSPAR recommendations were updated. This paper will describe the decontamination requirements which will be applied for the MARS 94/96 mission, the techniques and the procedures which are and will be used to realize and control the decontamination of probes and spacecrafts.

  15. Galileo Orbital Operations Using the Low-Gain Antenna

    NASA Technical Reports Server (NTRS)

    IV, J. C. Marr

    1996-01-01

    A brief overview of the Galileo mission is given. The bulk of this report will focus on the orbital operations design and implementation, beginning with an updated description of the changes being made to both the flight software and ground system. Results of system functional tests of various parts of the design, and descriptions of some of the special test tools developed will also be provided.

  16. Parachute design for Galileo Jupiter entry probe

    NASA Technical Reports Server (NTRS)

    Rodier, R. W.; Thuss, R. C.; Terhune, J. E.

    1981-01-01

    This paper discusses the parachute subsystem used on an atmospheric entry probe that will descend through the clouds of Jupiter. The entry probe is a part of the Galileo Project to be launched in 1985 aboard the Space Shuttle; the entry probe will encounter the planet in 1988. The parachute subsystem consists of a pilot parachute and a main parachute, and both are of conventional conical ribbon design. Key considerations in the design of the parachutes and a summary of the parachute subsystem test program, which includes two air drop tests and a systems drop test (balloon launched), are presented.

  17. Student Planetary Investigators: A Program to Engage Students in Authentic Research Using NASA Mission Data

    NASA Astrophysics Data System (ADS)

    Hallau, K.; Turney, D.; Beisser, K.; Edmonds, J.; Grigsby, B.

    2015-12-01

    The Student Planetary Investigator (PI) Program engages students in authentic scientific research using NASA mission data. This student-focused STEM (Science, Technology, Engineering and Math) program combines problem-based learning modules, Next Generation Science Standards (NGSS) aligned curriculum, and live interactive webinars with mission scientists to create authentic research opportunities and career-ready experiences that prepare and inspire students to pursue STEM occupations. Primarily for high school students, the program employs distance-learning technologies to stream live presentations from mission scientists, archive those presentations to accommodate varied schedules, and collaborate with other student teams and scientists. Like its predecessor, the Mars Exploration Student Data Team (MESDT) program, the Student PI is free and open to teams across the country. To date, students have drafted research-based reports using data from the Lunar Reconnaissance Orbiter Mini-RF instrument and the MESSENGER Mercury orbiter, with plans to offer similar programs aligned with additional NASA missions in the future pending available funding. Overall, the program has reached about 600 students and their educators. Assessments based on qualitative and quantitative data gathered for each Student PI program have shown that students gain new understanding about the scientific process used by real-world scientists as well as gaining enthusiasm for STEM. Additionally, it is highly adaptable to other disciplines and fields. The Student PI program was created by the Johns Hopkins University Applied Physics Laboratory (APL) Space Department Education and Public Outreach office with support from NASA mission and instrument science and engineering teams.

  18. Galileo and Cassini at Jupiter

    NASA Astrophysics Data System (ADS)

    Bindschadler, D. L.; Johnson, T. V.; Hansen, C. H.; Matson, D. L.; Lebreton, J.-P.; Bolton, S. J.; Spilker, L. J.

    2000-12-01

    Galileo's 29th orbit of Jupiter coincides with the period of time that the Cassini spacecraft will be making Jupiter system observations during its flyby on the way to Saturn. Galileo science objectives for this period include coordinated studies of the system, specific targeted events, and Galileo's first detailed study of Ganymede in eclipse. Systematic study of the dusk region of the Jovian magnetosphere has already begun, as Galileo exited the magnetosphere after the Ganymede 28 encounter and entered the solar wind for the first time since 1996. It will re-enter the magnetosphere as Cassini approaches in the Fall of 2000 and be near periapsis with Jupiter at the time of Cassini closest approach. Combining information from both Galileo and Cassini will allow a detailed study of the effects of the solar wind on the magnetosphere for the first time. In addition, the changing geometry of the two spacecraft creates opportunities for coordinated observations of specific phenomena. One example is the measurement of Jupiter dust stream particles with the dust investigations on both spacecraft. Another is observation of an Io eclipse from two different viewpoints and with complementary wavelengths, time and spatial resolution. Finally, the Ganymede 29 encounter will be a unique one, since Ganymede is in Jupiter's shadow at the time of closest approach. Observations will include attempts to determine the geometry of auroral emissions and their relation to Ganymede's magnetosphere and its interaction with Jupiter's environment. This work was supported under NASA's contract with Caltech/Jet Propulsion Laboratory.

  19. Scientific program of the Phobos-Soil mission

    NASA Astrophysics Data System (ADS)

    Zelenyi, Lev; Zakharov, A.; Project Science Team And

    A robotics mission to study a Martian moon Phobos is under development in Russia now. The main goal of the mission is to deliver samples of the Phobos surface material to the Earth for laboratory studies. Other goals are studies of Phobos in situ and remote sensing during the spacecraft orbital motion, studies of the Martian environment. During operation at several different orbits (elliptical and circular) around Mars a number of experiments will be implemented to study the Martian environment (dust, plasma, fields) and monitoring the Martian atmosphere. Remote sensing of the Phobos from the spacecraft orbiting at a very close to Phobos synchronous orbit will be directed to study global parameters of this body and to select a landing site for the spacecraft. After landing of the spacecraft at the Phobos surface and take off the returned spacecraft with samples loaded in the returned capsule in situ science experiments will study chemical and mineralogy composition of the regolith near the landing place, study internal structure of this body, peculiarities of orbital and proper rotation. The drive for Phobos investigation is strongly supported by the need to understand the basic scientific issues related to the Martian moons both as the representatives of the family of the small bodies in the Solar system and as principal components of the Martian environment: primordial matter of the Solar system (what many believe they are). The main goals of the mission are: (a) study physical and chemical characteristics of the Phobos regolith in situ and under laboratory conditions - these data can provide information on properties of primordial matter of the Solar system; (b) study of the origin of the Martian satellites and their relation to Mars - these data can help in our understanding of their evolution and the origin of satellite systems near other planets; (c) search of possible trace of life or paleolife; (d) study of peculiarities of orbital and proper motion of

  20. Scientific program of the Phobos-Soil mission

    NASA Astrophysics Data System (ADS)

    Zakharov, Alexander; Zelenyi, Lev

    Phobos-Soil is a robotics mission to study a Martian moon Phobos under development now in Russia. The main goal of the mission is to deliver samples of the Phobos surface material to the Earth for laboratory studies. Other goals are studies of Phobos in situ and remote sensing during the spacecraft orbital motion, some experiments devoted studies of the Martian environment. Remote sensing of the Phobos from the spacecraft orbiting at a very close to Phobos synchronous orbit will be directed to study global parameters of this body and to select a landing site for the spacecraft. After landing of the spacecraft at the Phobos surface and take off the returned spacecraft with samples loaded in the returned capsule in situ science experiments will study chemical and mineralogy composition of the regolith near the landing place, study internal structure of this body, peculiarities of orbital and proper rotation. The drive for Phobos investigation is strongly supported by the need to understand the basic scientific issues related to the Martian moons both as the representatives of the family of the small bodies in the Solar system and as principal components of the Martian environment: primordial matter of the Solar system (what many believe they are). The main goals of the mission are: (a) study physical and chemical characteristics of the Phobos regolith in situ and under laboratory conditions -these data can provide information on properties of primordial matter of the Solar system; (b) study of the origin of the Martian satellites and their relation to Mars -these data can help in our understanding of their evolution and the origin of satellite systems near other planets; (c) study of peculiarities of orbital and proper motion of Phobos, what is important for understanding their origin, internal structure, celestial mechanics applications; (d) study physical conditions of the Martian environment (dust, gas, plasma components) what is important to study of treatment

  1. Programmer's manual for the Mission Analysis Evaluation and Space Trajectory Operations program (MAESTRO)

    NASA Technical Reports Server (NTRS)

    Lutzky, D.; Bjorkman, W. S.

    1973-01-01

    The Mission Analysis Evaluation and Space Trajectory Operations program known as MAESTRO is described. MAESTRO is an all FORTRAN, block style, computer program designed to perform various mission control tasks. This manual is a guide to MAESTRO, providing individuals the capability of modifying the program to suit their needs. Descriptions are presented of each of the subroutines descriptions consist of input/output description, theory, subroutine description, and a flow chart where applicable. The programmer's manual also contains a detailed description of the common blocks, a subroutine cross reference map, and a general description of the program structure.

  2. Ultraviolet Studies of Jupiter's Hydrocarbons and Aerosols from Galileo

    NASA Technical Reports Server (NTRS)

    Gladstone, G. Randall

    2001-01-01

    This is the final report for this project. The purpose of this project was to support PI Wayne Pryor's effort to reduce and analyze Galileo UVS (Ultraviolet Spectrometer) data under the JSDAP program. The spectral observations made by the Galileo UVS were to be analyzed to determine mixing ratios for important hydrocarbon species (and aerosols) in Jupiter's stratosphere as a function of location on Jupiter. Much of this work is still ongoing. To date, we have concentrated on analyzing the variability of the auroral emissions rather than the absorption signatures of hydrocarbons, although we have done some work in this area with related HST-STIS data.

  3. Galileo Resolutions: Ganymede and the San Francisco Bay Area

    NASA Technical Reports Server (NTRS)

    1997-01-01

    These frames demonstrate the dramatic improvement in the resolution of pictures that NASA's Galileo spacecraft is returning compared to previous images of the Jupiter system. The spacecraft's many orbits allow numerous close flyby's of Jupiter and its moons. The top left frame shows the best resolution (1.3 kilometers per picture element or pixel) data of the Uruk Sulcus region on Jupiter's moon Ganymede which was available after the 1979 flyby of the Voyager 2 spacecraft. The top right frame shows the same area as captured by Galileo during its closer flyby of Ganymede on June 27, 1996 at a range of 7,448 kilometers (4.628 miles). For comparison, the bottom frames show images of the San Francisco Bay area trimmed to the size of the Ganymede images and adjusted to similar resolutions.

    The Galileo image of Uruk Sulcus has a resolution of about 74 meters per pixel. The area shown is about 35 by 55 kilometers (25 by 34 miles). North is to the top, and the sun illuminates the surface from the lower left. The image taken by the Solid State Imaging (CCD) system reveals details of the structure and shape of the ridges which permit scientists to determine their origin and their relation to other terrains. These new views are helping to unravel the complex history of this planet-sized moon.

    The left SF Bay area image is from an image obtained by an Advanced Very High Resolution Radiometer aboard an NOAA satellite. The right SF Bay area image is from a LandSat Thematic Mapper. Golden Gate Park is clearly visible as a narrow dark rectangle towards the middle of this image. Both images were trimmed and adjusted to resolutions similar to the Ganymede images.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and

  4. Electron environment specification models for Galileo

    NASA Astrophysics Data System (ADS)

    Lazaro, Didier; Bourdarie, Sebastien; Hands, Alex; Ryden, Keith; Nieminen, Petteri

    The MEO radiation hazard is becoming an increasingly important consideration with an ever rising number of satellites missions spending most of their time in this environment. This region lies in the heart of the highly dynamic electron radiation belt, where very large radiation doses can be encountered unless proper shielding to critical systems and components is applied. Significant internal charging hazards also arise in the MEO regime. For electron environment specification at Galileo altitude, new models have been developed and implemented: long term effects model for dose evaluation, statistical model for internal charging analysis and latitudinal model for ELDRS analysis. Models outputs, tools and validation with observations (Giove-A data) and existing models (such as FLUMIC) are presented . "Energetic Electron Environment Models for MEO" Co 21403/08/NL/JD in consortium with ONERA, QinetiQ, SSTL and CNES .

  5. Galileo and the Interpretation of the Bible.

    ERIC Educational Resources Information Center

    Carroll, William E.

    1999-01-01

    Argues that, contrary to the common view, Galileo and the theologians of the Inquisition share the same fundamental principles of biblical interpretation. Contends that Galileo and these theologians thought that the Bible contained truths about nature, but Galileo denied what the theologians accepted as scientifically true. Contains 93 references.…

  6. NASA Selects Mars Exploration Program Rover for 2003 Mission

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In 2003, NASA plans to launch a relative of the now-famous 1997 Mars Pathfinder rover. Using drop, bounce and roll technology, this larger cousin is expected to reach the surface of the red planet in January 2004 and begin the longest journey of scientific exploration ever undertaken across the surface of that alien world. The rover will weigh about nearly 150 kilograms (about 300 pounds) and has a range of up to about 100 meters (110 yards) per sol, or Martian day. Surface operations will last for at least 90 sols, extending to late April 2004, but could continue longer, depending on the health of the rover. One aspect of the Mars rover's mission is to determine history of climate and water at a site or sites on Mars where conditions may once have been warmer and wetter and thus potentially favorable to life as we know it here on Earth. The exact landing site has not yet been chosen, but is likely to be a location such as a former lakebed or channel deposit -- a place where scientists believe there was once water. A site will be selected on the basis of intensive study of orbital data collected by the Mars Global Surveyor spacecraft, as well as the Mars 2001 orbiter and other missions.

  7. An engineering research and technology program for an evolving, multi-decade Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Sadin, Stanley R.; Johnston, Gordon I.; Hudson, Wayne R.

    1991-01-01

    A study is presented that examines the technological needs of future systems, surveys current and planned activities and highlights significant accomplishments in the research and technology program of the multidecade Mission to Planet Earth (MTPE). Consideration is given to recent program redirection in MTPE, the initiation of the high performance computing and communications program and the potential impact on the technology programs. The technology set is divided into three subsets covering information, observation, and infrastructure technologies.

  8. Advancing the university mission through partnerships with state Medicaid programs.

    PubMed

    Himmelstein, Jay; Bindman, Andrew B

    2013-11-01

    State Medicaid programs are playing an increasingly important role in the U.S. health care system and represent a major expenditure as well as a major source of revenue for state budgets. The size and complexity of these programs will only increase with the implementation of the Patient Protection and Affordable Care Act. Yet, many state Medicaid programs lack the resources and breadth of expertise to maximize the value of their programs not only for their beneficiaries but also for all those served by the health care system.Universities, especially those with medical schools and other health science programs, can serve as valuable partners in helping state Medicaid programs achieve higher levels of performance, including designing and implementing new approaches for monitoring the effectiveness and outcomes of health services and developing and sharing knowledge about program outcomes. In turn, universities can expand their role in public policy decision making while taking advantage of opportunities for additional research, training, and funding. As of 2013, approximately a dozen universities have developed formal agreements to provide faculty and care delivery resources to support their state Medicaid programs. These examples offer a road map for how others might approach developing similar, mutually beneficial partnerships.

  9. Products from NASA's In-Space Propulsion Technology Program Applicable to Low-Cost Planetary Missions

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil, Eric; Vento, Daniel; Peterson, Todd; Dankanich, John; Hahne, David; Munk, Michelle M.

    2011-01-01

    Since September 2001 NASA s In-Space Propulsion Technology (ISPT) program has been developing technologies for lowering the cost of planetary science missions. Recently completed is the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Two other cost saving technologies nearing completion are the NEXT ion thruster and the Aerocapture technology project. Also under development are several technologies for low cost sample return missions. These include a low cost Hall effect thruster (HIVHAC) which will be completed in 2011, light weight propellant tanks, and a Multi-Mission Earth Entry Vehicle (MMEEV). This paper will discuss the status of the technology development, the cost savings or performance benefits, and applicability of these in-space propulsion technologies to NASA s future Discovery, and New Frontiers missions, as well as their relevance for sample return missions.

  10. Products from NASA's in-space propulsion technology program applicable to low-cost planetary missions

    NASA Astrophysics Data System (ADS)

    Anderson, David J.; Pencil, Eric; Vento, Daniel; Peterson, Todd; Dankanich, John; Hahne, David; Munk, Michelle M.

    2014-01-01

    Since September 2001, NASA's In-Space Propulsion Technology (ISPT) program has been developing technologies for lowering the cost of planetary science missions. Recently completed is the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Two other cost saving technologies nearing completion are the NEXT ion thruster and the Aerocapture technology project. Under development are several technologies for low-cost sample return missions. These include a low-cost Hall-effect thruster (HIVHAC) which will be completed in 2011, light-weight propellant tanks, and a Multi-Mission Earth Entry Vehicle (MMEEV). This paper will discuss the status of the technology development, the cost savings or performance benefits, and applicability of these in-space propulsion technologies to NASA's future Discovery, and New Frontiers missions, as well as their relevance for sample return missions.

  11. Space Technology Mission Directorate Game Changing Development Program FY2015 Annual Program Review: Advanced Manufacturing Technology

    NASA Technical Reports Server (NTRS)

    Vickers, John; Fikes, John

    2015-01-01

    The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.

  12. Changes on Io around Maui and Amirani between Voyager 1 and Galileo's second orbit

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Detail of changes on Jupiter's moon Io in the region around Maui and Amirani as seen by the Voyager 1 spacecraft in April 1979 (left frame) and NASA's Galileo spacecraft in September 1996 (right frame). North is to the top of both frames. The dark, north - south running linear feature, Amirani, is approximately 350 km long. Maui is the large circular feature immediately west of the southern end of Amirani. Note the brightening of the west side of Maui and the bright patch on the west side of Amirani.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  13. Changes on Io around Volund between Voyager 1 and Galileo's second orbit

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Detail of changes on Jupiter's moon Io in the region around Volund as seen by the Voyager 1 spacecraft in April 1979 (left frame) and NASA's Galileo spacecraft in September 1996 (right frame). North is to the top of both frames which are approximately 600 kilometers by 600 kilometers. Note the new linear feature, which may be a volcanic fissure, trending east from the southern end of Volund. Dark diffuse material lies to the west and a ring of bright material which may be SO2- rich plume deposits appears to be centered near the middle of the new linear feature.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  14. Developing a mission-compatible, time-of-service collections program.

    PubMed

    Horton, L K

    1993-01-01

    Linda Horton's article explores the reasons why a comprehensive, time-of-service collection program was the desired goal of her organization. Horton, FACMGA, also describes the process used to select, develop and implement a collections program that blended prudent policies with the group's mission to service the underserved.

  15. Empowering Adult Learners. NIF Literacy Program Helps ABE Accomplish Human Development Mission.

    ERIC Educational Resources Information Center

    Hurley, Mary E.

    1991-01-01

    The National Issues Forum's Literacy Program uses study circles and group discussion to promote empowerment and enhance adult literacy through civic education. The program has helped the Westonka (Minnesota) Adult Basic Education project accomplish its mission and has expanded the staff's view of adult learning. (SK)

  16. Understanding Our Changing Planet: NASA's Mission to Planet Earth, 1995 Catalog of Education Programs and Resources.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Mission to Planet Earth (MTPE) is an integrated, sustainable environmental education program that focuses on the concept of Earth system science which integrates fields like meteorology, oceanography, atmospheric science, geology, and biology. The program has the following objectives: training the next generation of scientists to use an…

  17. Large deployable antenna program. Phase 1: Technology assessment and mission architecture

    NASA Technical Reports Server (NTRS)

    Rogers, Craig A.; Stutzman, Warren L.

    1991-01-01

    The program was initiated to investigate the availability of critical large deployable antenna technologies which would enable microwave remote sensing missions from geostationary orbits as required for Mission to Planet Earth. Program goals for the large antenna were: 40-meter diameter, offset-fed paraboloid, and surface precision of 0.1 mm rms. Phase 1 goals were: to review the state-of-the-art for large, precise, wide-scanning radiometers up to 60 GHz; to assess critical technologies necessary for selected concepts; to develop mission architecture for these concepts; and to evaluate generic technologies to support the large deployable reflectors necessary for these missions. Selected results of the study show that deployable reflectors using furlable segments are limited by surface precision goals to 12 meters in diameter, current launch vehicles can place in geostationary only a 20-meter class antenna, and conceptual designs using stiff reflectors are possible with areal densities of 2.4 deg/sq m.

  18. The New Galileo Communication System

    NASA Technical Reports Server (NTRS)

    Deutsch, L. J.

    1995-01-01

    ave been developed to get as much data as possible from the Galileo spacecraft even without the high gain antenna. These methods include extensive data compression, a new packetized telemetry format, new error-correcting codes, new modulation, new ground receivers, and antenna arraying. (abstract only).

  19. Space missions for automation and robotics technologies (SMART) program

    NASA Technical Reports Server (NTRS)

    Ciffone, D. L.; Lum, H., Jr.

    1985-01-01

    The motivations, features and expected benefits and applications of the NASA SMART program are summarized. SMART is intended to push the state of the art in automation and robotics, a goal that Public Law 98-371 mandated be an inherent part of the Space Station program. The effort would first require tests of sensors, manipulators, computers and other subsystems as seeds for the evolution of flight-qualified subsystems. Consideration is currently being given to robotics systems as add-ons to the RMS, MMU and OMV and a self-contained automation and robotics module which would be tended by astronaut visits. Probable experimentation and development paths that would be pursued with the equipment are discussed, along with the management structure and procedures for the program. The first hardware flight is projected for 1989.

  20. Development of payload subsystem-primate mission-Biosatellite program

    NASA Technical Reports Server (NTRS)

    Hall, J. F., Jr.

    1971-01-01

    Design and operation of the primate life support subsystem for the Biosatellite Program as used during the flight of Biosatellite 3 are discussed. Included are preflight changes necessitated by the primate's (a Macaca nemistrina monkey) influence on the initial equipment design.

  1. Propulsion Technology Development for Sample Return Missions Under NASA's ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil, Eric J.; Vento, Daniel; Dankanich, John W.; Munk, Michelle M.; Hahne, David

    2011-01-01

    The In-Space Propulsion Technology (ISPT) Program was tasked in 2009 to start development of propulsion technologies that would enable future sample return missions. Sample return missions could be quite varied, from collecting and bringing back samples of comets or asteroids, to soil, rocks, or atmosphere from planets or moons. The paper will describe the ISPT Program s propulsion technology development activities relevant to future sample return missions. The sample return propulsion technology development areas for ISPT are: 1) Sample Return Propulsion (SRP), 2) Planetary Ascent Vehicles (PAV), 3) Entry Vehicle Technologies (EVT), and 4) Systems/mission analysis and tools that focuses on sample return propulsion. The Sample Return Propulsion area is subdivided into: a) Electric propulsion for sample return and low cost Discovery-class missions, b) Propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination, and c) Low TRL advanced propulsion technologies. The SRP effort will continue work on HIVHAC thruster development in FY2011 and then transitions into developing a HIVHAC system under future Electric Propulsion for sample return (ERV and transfer stages) and low-cost missions. Previous work on the lightweight propellant-tanks will continue under advanced propulsion technologies for sample return with direct applicability to a Mars Sample Return (MSR) mission and with general applicability to all future planetary spacecraft. A major effort under the EVT area is multi-mission technologies for Earth Entry Vehicles (MMEEV), which will leverage and build upon previous work related to Earth Entry Vehicles (EEV). The major effort under the PAV area is the Mars Ascent Vehicle (MAV). The MAV is a new development area to ISPT, and builds upon and leverages the past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies.

  2. Project Prometheus and Future Entry Probe Missions

    NASA Technical Reports Server (NTRS)

    Spilker, Thomas R.

    2005-01-01

    A viewgraph presentation on project Prometheus and future entry probe missions is shown. The topics include: 1) What Is Project Prometheus?; 2) What Capabilities Can Project Prometheus Offer? What Mission Types Are Being Considered?; 3) Jupiter Icy Moons Orbiter (JIMO); 4) How Are Mission Opportunities Changing?; 5) Missions Of Interest a Year Ago; 6) Missions Now Being Considered For Further Study; 7) Galileo-Style (Conventional) Probe Delivery; 8) Galileo-Style Probe Support; 9) Conventional Delivery and Support of Multiple Probes; 10) How Entry Probe Delivery From an NEP Vehicle Is Different; and 11) Concluding Remarks.

  3. Initial Galileo propulsion system in-flight characterization

    NASA Astrophysics Data System (ADS)

    Barber, T. J.; Krug, F. A.; Froidevaux, B. M.

    1993-06-01

    The Galilee RetroPropulsion Module (RPM) has performed excellently throughout the first three years of mission operations. The RPM is a state-of-the-art, pressure-fed, bipropellant propulsion system, provided to NASA by Germany. Due to efficient navigation, propellant margin has substantially increased since launch, enabling extensive contingency maneuvering and the second asteroid flyby while maintaining the confidence level for successfully completing the orbital tour of the planet Jupiter, beginning in 1995. The RPM has responded very well to the challenges brought about by the attempts to deploy the Galileo High Gain Antenna. No thruster thermal instabilities have been observed during maneuvers through the end of 1992; however, lateral thruster performance shifts have been nonnegligible and remain unexplained. Nearly all Galileo thrusters are exceeding ground performance test levels by 1-7 percent.

  4. Space Trajectory Error Analysis Program (STEAP) for halo orbit missions. Volume 2: Programmer's manual

    NASA Technical Reports Server (NTRS)

    Byrnes, D. V.; Carney, P. C.; Underwood, J. W.; Vogt, E. D.

    1974-01-01

    The six month effort was responsible for the development, test, conversion, and documentation of computer software for the mission analysis of missions to halo orbits about libration points in the earth-sun system. The software consisting of two programs called NOMNAL and ERRAN is part of the Space Trajectories Error Analysis Programs. The program NOMNAL targets a transfer trajectory from earth on a given launch date to a specified halo orbit on a required arrival date. Either impulsive or finite thrust insertion maneuvers into halo orbit are permitted by the program. The transfer trajectory is consistent with a realistic launch profile input by the user. The second program ERRAN conducts error analyses of the targeted transfer trajectory. Measurements including range, doppler, star-planet angles, and apparent planet diameter are processed in a Kalman-Schmidt filter to determine the trajectory knowledge uncertainty.

  5. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2015-01-01

    The Intelligent Control and Autonomy Branch (ICA) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet the goals of the NASA Aeronautics Research Mission Directorate (ARMD) Programs. These efforts are primarily under the various projects under the Advanced Air Vehicles Program (AAVP), Airspace Operations and Safety Program (AOSP) and Transformative Aeronautics Concepts Program (TAC). The ICA Branch is focused on advancing the state-of-the-art of aero-engine control and diagnostics technologies to help improve aviation safety, increase efficiency, and enable operation with reduced emissions. This paper describes the various ICA research efforts under the NASA Aeronautics Research Mission Programs with a summary of motivation, background, technical approach, and recent accomplishments for each of the research tasks.

  6. Ganymede crater dimensions from Galileo-based DEMs

    NASA Astrophysics Data System (ADS)

    Bray, V. J.; Schenk, P.; Melosh, H. J.; McEwen, A. S.; Morgan, J. V.; Collins, G. S.

    2010-12-01

    Images returned from the Voyager mission have allowed the analysis of crater morphology on the icy satellites and the construction of both diameter and depth-related scaling laws. Higher resolution Galileo data has since been used to update the diameter-related scaling trends, and also crater depths on the basis of shadow measurements. Our work adds to this wealth of data with new depth and slope information extracted from digital elevation models (DEMs) created from Galileo Solid State Imager (SSI) images, with the use of the stereo scene-recognition algorithm developed by Schenk et al. (2004), and from photoclinometry incorporating the combined lunar-Lambert photometric function as defined by McEwen et al. (1991). We profiled ~80 craters, ranging from 4 km to 100 km in diameter. Once each DEM of a crater was obtained, spurious patterns or shape distortions created by radiation noise or data compression artifacts were removed through the use of standard image noise filters, and manually by visual inspection of the DEM and original image(s). Terrain type was noted during profile collection so that any differences in crater trends on bright and dark terrains could be documented. Up to 16 cross-sectional profiles were taken across each crater so that the natural variation of crater dimensions with azimuth could be included in the measurement error. This already incorporates a systematic error on depth measurements of ~ 5%, an improvement from Voyager depth uncertainties of 10-30%. The crater diameter, depth, wall slope, rim height, central uplift height, diameter and slope, and central pit depth, diameter and slope were measured from each profile. Our measurements of feature diameters and of crater depth are consistent with already published results based on measurement from images and shadow lengths. We will present example topographic profiles and scaling trends, specifically highlighting the new depth and slope information for different crater types on Ganymede

  7. User's guide to the Mission Analysis Evaluation and Space Trajectory Operations program (MAESTRO)

    NASA Technical Reports Server (NTRS)

    Lutzky, D.; Schafer, J.

    1973-01-01

    The MAESTRO system is a mission analysis tool designed to present to the user information necessary to make the various decisions required in the design and execution of a spaceflight mission. The system was designed so that it can be used in both the pre-launch mission planning phase of a mission and during the flight as an in-flight decision making tool. A description of each of the following modes is presented: (1) trajectory propagation mode; (2) retro-fire determination mode; (3) midcourse analysis determination mode; (4) Monte Carlo mode; (5) verification mode; (6) orbit stability mode; and (7) post injection trim mode. A description of the inputs necessary to run the program mode is given along with a sample case.

  8. On the Tropical Rainfall Measuring Mission (TRMM): Bringing NASA's Earth System Science Program to the Classroom

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall

    1998-01-01

    The Tropical Rainfall Measuring Mission is the first mission dedicated to measuring tropical and subtropical rainfall using a variety of remote sensing instrumentation, including the first spaceborne rain-measuring radar. Since the energy released when tropical rainfall occurs is a primary "fuel" supply for the weather and climate "engine"; improvements in computer models which predict future weather and climate states may depend on better measurements of global tropical rainfall and its energy. In support of the STANYS conference theme of Education and Space, this presentation focuses on one aspect of NASA's Earth Systems Science Program. We seek to present an overview of the TRMM mission. This overview will discuss the scientific motivation for TRMM, the TRMM instrument package, and recent images from tropical rainfall systems and hurricanes. The presentation also targets educational components of the TRMM mission in the areas of weather, mathematics, technology, and geography that can be used by secondary school/high school educators in the classroom.

  9. Mapping Europa's Thermophysical Properties from Galileo PPR

    NASA Astrophysics Data System (ADS)

    Rathbun, Julie A.; Rodriguez, N. J.; Spencer, J. R.

    2009-09-01

    The Galileo Photopolarimeter-Radiometer (PPR) instrument mapped thermal infrared radiation from Jupiter and the Galilean satellites. We use the resulting brightness temperatures at a range of local times to map the thermal properties of Europa's surface, namely bolometric albedo and thermal inertia. Ten high-quality PPR observations were identified based on their coverage and lack of noise. We divided the surface of Europa into 10 degree bins and searched the high-quality data for points in each of those bins. We sorted through the bins to find those with observations near noon and at night, as comparison of these times provides the most robust constraint on thermal properties. For each of these bins, we fit a thermal model to determine the thermal inertia and bolometeric albedo of that bin. Our resulting maps of these quantities cover only the subset of the surface where sufficient data was obtained: a band near the anti-Jovian point and a thinner band near 310 W longitude. Allowing for the low resolution of our maps, our thermally-derived albedos appear to correlate with the albedo features observed in the Galileo SSI basemap. The thermal inertia maps provide a unique probe of the cm-scale properties of Europa's surface, and thus constrain surface processes. Knowledge of diurnal temperatures also allows estimation of the detectability of endogenic hot spots. The improved knowledge of Europa's surface temperature distribution provided by these temperature maps and derived thermophysical properties will also aid in the design of thermal instrumentation to search for endogenic activity on future Europa missions.

  10. Galileo Earth/Moon News Conference

    NASA Astrophysics Data System (ADS)

    1992-12-01

    This NASA Kennedy Space Center (KSC) video release (Part 1 of 2) begins with a presentation given by William J. O'Neil (Galileo Project Manager) describing the status and position of the Galileo spacecraft 7 days prior to the Galileo Earth-2 flyby. Slides are presented including diagrams of the Galileo spacecraft trajectory, trajectory correction maneuvers, and the Venus and asteroid flybys. Torrence Johnson (Galileo Project Scientist) follows Mr. O'Neil with an explanation of the Earth/Moon science activities that will be undertaken during the second Galileo/Earth encounter. These activities include remote sensing, magnetospheric and plasma measurements, and images taken directly from Galileo of the Earth and Moon. Dr. Joseph Veverka (Galileo Imaging Team, Cornell University) then gives a brief presentation of the data collected by the first Galileo/Gaspra asteroid flyby. Images sampled from the 57 photographs taken of Gaspra are presented along with discussions of Gaspra's morphology, shape and size, and surface features. These presentations are followed by a question and answer period given for the benefit of scientific journalists whose subjects include overall Galileo spacecraft health, verification of the Gaspra images timeframe, and the condition of certain scientific spacecraft instruments. Part 2 of this video can be retrieved by using Report No. NONP-NASA-VT-2000001078.

  11. Building a Sustained University-Built Spacecraft Program: Current and Future Space Missions

    NASA Astrophysics Data System (ADS)

    Swartwout, Michael; Jayaram, Sanjay

    2012-07-01

    Hands-on engineering training is considered to be an important part of modern engineering education. This goal has proven to be elusive for spacecraft engineering, however; with the exception of large, government-sponsored "flagship" schools, very few universities have successfully launched and operated their own spacecraft, and the schools that have launched more than one mission can be counted on two hands. The invention and adoption of the CubeSat standard is changing this dynamic; 1-kg, 10-cm CubeSats can be designed, built and launched within the four-year student academic lifetime. But, even if a school could build a series of CubeSats, the question remained as to whether there were any missions worth flying on a CubeSat. The Space Systems Research Laboratory at Saint Louis University (SLU) has embarked on an ambitious program of building a new spacecraft to validate several technical and earth-science payloads. This program is established to sustain the growth of small satellite projects in SLU. To fulfill this mission, SLU is partnering with Vanderbilt University and George Mason University. In addition, as these three universities develop their own payload and bus capabilities, respectively, each school can broaden their partnerships to other organizations to support new missions and new spacecraft. This paper will outline current and future spacecraft missions, the practices adopted by SLU to enable a campaign of student-built spacecraft, and the challenges associated with creating a undergraduate-focused, sustained spacecraft program. The first two Argus spacecraft (COPPER and Argus-High) will be detailed, including the plans for NASA-sponsored launches in 2013. Other two missions, Argus-GTO and the mission proposal currently being developed with George Mason University will also be detailed.

  12. Lifetime assessment analysis of Galileo Li/SO2 cells: Final report

    SciTech Connect

    Levy, S.C.; Jaeger, C.D.; Bouchard, D.A.

    1988-12-01

    Galileo Li/SO2 cells from five lots and five storage temperatures were studied to establish a database from which the performance of flight modules may be predicted. Nondestructive tests consisting of complex impedance analysis and a 15-s pulse were performed on all cells. Chemical analysis was performed on one cell from each lot/storage group, and the remaining cells were discharged at Galileo mission loads. An additional number of cells were placed on high-temperature accelerated aging storage for 6 months and then discharged. All data were statistically analyzed. Results indicate that the present Galileo design Li/SO2 cell will satisfy electrical requirements for a 10-year mission. 10 figs., 4 tabs.

  13. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    The Intelligent Control and Autonomy Branch (ICA) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet the goals of the NASA Aeronautics Research Mission Directorate (ARMD) Programs. These efforts are primarily under the various projects under the Fundamental Aeronautics Program (FAP) and the Aviation Safety Program (ASP). The ICA Branch is focused on advancing the state-of-the-art of aero-engine control and diagnostics technologies to help improve aviation safety, increase efficiency, and enable operation with reduced emissions. This paper describes the various ICA research efforts under the NASA Aeronautics Research Mission Programs with a summary of motivation, background, technical approach, and recent accomplishments for each of the research tasks.

  14. Practical Application of Model-based Programming and State-based Architecture to Space Missions

    NASA Technical Reports Server (NTRS)

    Horvath, Gregory; Ingham, Michel; Chung, Seung; Martin, Oliver; Williams, Brian

    2006-01-01

    A viewgraph presentation to develop models from systems engineers that accomplish mission objectives and manage the health of the system is shown. The topics include: 1) Overview; 2) Motivation; 3) Objective/Vision; 4) Approach; 5) Background: The Mission Data System; 6) Background: State-based Control Architecture System; 7) Background: State Analysis; 8) Overview of State Analysis; 9) Background: MDS Software Frameworks; 10) Background: Model-based Programming; 10) Background: Titan Model-based Executive; 11) Model-based Execution Architecture; 12) Compatibility Analysis of MDS and Titan Architectures; 13) Integrating Model-based Programming and Execution into the Architecture; 14) State Analysis and Modeling; 15) IMU Subsystem State Effects Diagram; 16) Titan Subsystem Model: IMU Health; 17) Integrating Model-based Programming and Execution into the Software IMU; 18) Testing Program; 19) Computationally Tractable State Estimation & Fault Diagnosis; 20) Diagnostic Algorithm Performance; 21) Integration and Test Issues; 22) Demonstrated Benefits; and 23) Next Steps

  15. 48 CFR 1852.246-70 - Mission Critical Space System Personnel Reliability Program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CONTRACT CLAUSES Texts of Provisions and Clauses 1852.246-70 Mission Critical Space System Personnel... Personnel Reliability Program, described in 14 CFR 1214.5, the Government shall identify personnel positions...) provide the affected employees with a clear understanding of the investigative and medical...

  16. Life sciences flight experiments program mission science requirements document. The first life sciences dedicated Spacelab mission, part 1

    NASA Technical Reports Server (NTRS)

    Rummel, J. A.

    1982-01-01

    The Mission Science Requirements Document (MSRD) for the First Dedicated Life Sciences Mission (LS-1) represents the culmination of thousands of hours of experiment selection, and science requirement definition activities. NASA life sciences has never before attempted to integrate, both scientifically and operationally, a single mission dedicated to life sciences research, and the complexity of the planning required for such an endeavor should be apparent. This set of requirements completes the first phase of a continual process which will attempt to optimize (within available programmatic and mission resources) the science accomplished on this mission.

  17. Project GALILEO: Farewell to the Major Moons of Jupiter

    NASA Astrophysics Data System (ADS)

    Theilig, E.

    2002-01-01

    After a six year odyssey, Galileo has completed its survey of the large moons of Jupiter. In the four years since the end of the primary mission, Galileo provided new insights into the fundamental questions concerning Jupiter and its moons and magnetosphere. Longevity, changing orbital geometry, and multiple flybys afforded the opportunity to distinguish intrinsic versus induced magnetic fields on the Galilean moons, to characterize the dusk side of the magnetosphere, to acquire high resolution observations supporting the possibility of subsurface water within Europa, Ganymede, and Callisto, and to monitor the highly dynamic volcanic activity of Io. In January 2002, a final gravity assist placed the spacecraft on a two-orbit trajectory culminating in a Jupiter impact in September 2003. With the successful completion of the Io encounters, plans are being made for the final encounter of the mission. In November 2002, the spacecraft will fly one Jupiter radius above the planet's cloud-tops, sampling the inner magnetosphere and the gossamer rings. The trajectory will take Galileo close enough to Amalthea, (a small inner moon) to obtain the first gravity data for this body. Because a radiation dose of 73 krads is expected on this encounter, which will bring the total radiation dose to greater than four times the spacecraft design limits, the command sequence has to account for the possibility of subsystem failure and the loss of spacecraft control after this perijove passage. One of the primary objectives this year has been to place the spacecraft on a trajectory to impact Jupiter on orbit 35. Galileo's discovery of water beneath the frozen surface of Europa raised concerns about forward contamination by inadvertently impacting that moon and resulted in an end of mission requirement to dispose of the spacecraft. A risk assessment of the final two Io encounters was performed to manage the project's ability to meet this requirement. Radiation affected the extended mission

  18. Quaternions for Galileo scan platform control

    NASA Technical Reports Server (NTRS)

    Breckenridge, W. G.; Man, G. K.

    1984-01-01

    The application of quaternions for the articulation control of the Galileo scan platform is presented in this paper. The purpose of selecting quaternions is to minimize onboard computation time and program size. Attention has been focused on performing inertial pointing while the spacecraft is in a dual spin configuration. Target quaternion and relative target quaternion are introduced and used to specify the target position of the scan platform for point-to-point absolute slews and mosaic relative slews, respectively. The pointing error of the platform is represented by an error quaternion which is converted into gimbal angular errors defining the attitude change. For path control, a moving target quaternion is generated; the corresponding tracking error quaternion and the related spacecraft motion compensation capability are also addressed. A sample slew case is used to demonstrate the implementation of these concepts.

  19. Spallation of the Galileo probe heat shield

    NASA Astrophysics Data System (ADS)

    Lundell, J. H.

    1982-06-01

    The Galileo probe heat shield will encounter severe radiative and convective heating during entry into Jupiter's atmosphere. The shield is made of two different carbon phenolic composites; one is chopped-molded, and the other is tape-wrapped, both of which tend to spall under intense heating conditions. To characterize this phenomenon, an experimental program, using a gasdynamic laser, was initiated. Tests were performed at a variety of radiation intensities, and both the total and spallation mass-loss rates were measured and correlated with intensity. These correlations were then applied to calculated flight heating conditions for two model atmospheres. Entry of a 310-kg probe into the nominal atmosphere would result in a spallation mass loss of 6.3 kg, or 7.4% of the expected thermochemical mass loss. Similarly, entry of that probe into the cool-dense atmosphere would result in 11.9 kg of spallation, or about 10% of the expected thermochemical mass loss.

  20. Shuttle sortie simulation using a Lear jet aircraft: Mission no. 1 (assess program)

    NASA Technical Reports Server (NTRS)

    Mulholland, D. R.; Reller, J. O., Jr.; Nell, C. B., Jr.; Mason, R. H.

    1972-01-01

    The shuttle sortie simulation mission of the Airborne Science/Shuttle Experiments System Simulation Program which was conducted using the CV-990 aircraft is reported. The seven flight, five day mission obtained data on experiment preparation, type of experiment components, operation and maintenance, data acquisition, crew functions, timelines and interfaces, use of support equipment and spare parts, power consumption, work cycles, influence of constraints, and schedule impacts. This report describes the experiment, the facilities, the operation, and the results analyzed from the standpoint of their possible use in aiding the planning for experiments in the Shuttle Sortie Laboratory.

  1. Grid2: A Program for Rapid Estimation of the Jovian Radiation Environment: A Numeric Implementation of the GIRE2 Jovian Radiation Model for Estimating Trapped Radiation for Mission Concept Studies

    NASA Technical Reports Server (NTRS)

    Evans, R. W.; Brinza, D. E.

    2014-01-01

    Grid2 is a program that utilizes the Galileo Interim Radiation Electron model 2 (GIRE2) Jovian radiation model to compute fluences and doses for Jupiter missions. (Note: The iterations of these two softwares have been GIRE and GIRE2; likewise Grid and Grid2.) While GIRE2 is an important improvement over the original GIRE radiation model, the GIRE2 model can take as long as a day or more to compute these quantities for a complete mission. Grid2 fits the results of the detailed GIRE2 code with a set of grids in local time and position thereby greatly speeding up the execution of the model--minutes as opposed to days. The Grid2 model covers the time period from 1971 to 2050and distances of 1.03 to 30 Jovian diameters (Rj). It is available as a direct-access database through a FORTRAN interface program. The new database is only slightly larger than the original grid version: 1.5 gigabytes (GB) versus 1.2 GB.

  2. Recommendation of a More Effective Alternative to the NASA Launch Services Program Mission Integration Reporting System (MIRS) and Implementation of Updates to the Mission Plan

    NASA Technical Reports Server (NTRS)

    Dunn, Michael R.

    2014-01-01

    Over the course of my internship in the Flight Projects Office of NASA's Launch Services Program (LSP), I worked on two major projects, both of which dealt with updating current systems to make them more accurate and to allow them to operate more efficiently. The first project dealt with the Mission Integration Reporting System (MIRS), a web-accessible database application used to manage and provide mission status reporting for the LSP portfolio of awarded missions. MIRS had not gone through any major updates since its implementation in 2005, and it was my job to formulate a recommendation for the improvement of the system. The second project I worked on dealt with the Mission Plan, a document that contains an overview of the general life cycle that is followed by every LSP mission. My job on this project was to update the information currently in the mission plan and to add certain features in order to increase the accuracy and thoroughness of the document. The outcomes of these projects have implications in the orderly and efficient operation of the Flight Projects Office, and the process of Mission Management in the Launch Services Program as a whole.

  3. Understanding of Jupiter's Atmosphere after the Galileo Probe Entry

    NASA Technical Reports Server (NTRS)

    Fonda, Mark (Technical Monitor); Young, Richard E.

    2003-01-01

    Instruments on the Galileo probe measured composition, cloud properties, thermal structure, winds, radiative energy balance, and electrical properties of the Jovian atmosphere. As expected the probe results confirm some expectations about Jupiter's atmosphere, refute others, and raise new questions which still remain unanswered. This talk will concentrate on those aspects of the probe observations which either raised new questions or remain unresolved. The Galileo probe observations of composition and clouds provided some of the biggest surprises of the mission. Helium abundance measured by the probe differed significantly from the remote sensing derivations from Voyager. Discrepancy between the Voyager helium abundance determinations for Jupiter and the Galileo probe value have now led to a considerably increased helium determination for Saturn. Global abundance of N in the form of ammonia was observed to be super-solar by approximately the same factor as carbon, in contrast to expectations that C/N would be significantly larger than solar. This has implications for the formation and evolution of Jupiter. The cloud structure was not what was generally anticipated, even though most previous remote sensing results below the uppermost cloud referred to 5 micron hot spots, local regions with reduced cloud opacity. The Galileo probe descended in one of these hot spots. Only a tenuous, presumed ammomium hydrosulfide, cloud was detected, and no significant water cloud or super-solar water abundance was measured. The mixing ratios as a function of depth for the condensibles ammonia, hydrogen sulfide, and water, exhibited no apparent correlation with either condensation levels or with each other, an observation that is still a puzzle, although there are now dynamical models of hot spots which show promise in being able to explain such behavior. Probe tracked zonal winds show that wind magnitude increases with depth to pressures of about 4 bars, with the winds extending to

  4. Understanding of Jupiter's Atmosphere After the Galileo Probe Entry

    NASA Technical Reports Server (NTRS)

    Young, Richard E.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Instruments on the Galileo probe measured composition, cloud properties, thermal structure. winds, radiative energy balance, and electrical properties of the Jovian atmosphere. As expected the probe results confirm some expectations about Jupiter's atmosphere, refute others, and raise new questions which still remain unanswered. This talk will concentrate on those aspects of the probe observations which either raised new questions or remain unresolved. The Galileo probe observations of composition and clouds provided some of the biggest surprises of the mission. Helium abundance measured by the probe differed significantly from the remote sensing derivations from Voyager. discrepancy between the Voyager helium abundance determinations for Jupiter and the Galileo probe value have now led to a considerably increased helium determination for Saturn. Global abundance of N in the form of ammonia was observed to be supersolar by approximately the same factor as carbon, in contrast to expectations that C/N would be significantly larger than solar. This has implications for the formation and evolution of Jupiter. The cloud structure was not what was generally anticipated, even though most previous remote sensing results below the uppermost cloud referred to 5 micron hot spots, local regions with reduced cloud opacity. The Galileo probe descended in one of these hot spots. Only a tenuous, presumed ammonium hydrosulfide, cloud was detected, and no significant water cloud or super-solar water abundance was measured. The mixing ratios as a function of depth for the condensibles ammonia, hydrogen sulfide, and water, exhibited no apparent correlation with either condensation levels or with each other, an observation that is still a puzzle, although there are now dynamical models of hot spots which show promise in being able to explain such behavior. Probe tracked zonal winds show that wind magnitude increases with depth to pressures of about 4 bars, with the winds extending to

  5. Advanced space power requirements and techniques. Task 1: Mission projections and requirements. Volume 3: Appendices. [cost estimates and computer programs

    NASA Technical Reports Server (NTRS)

    Wolfe, M. G.

    1978-01-01

    Contents: (1) general study guidelines and assumptions; (2) launch vehicle performance and cost assumptions; (3) satellite programs 1959 to 1979; (4) initiative mission and design characteristics; (5) satellite listing; (6) spacecraft design model; (7) spacecraft cost model; (8) mission cost model; and (9) nominal and optimistic budget program cost summaries.

  6. Covenant model of corporate compliance. "Corporate integrity" program meets mission, not just legal, requirements.

    PubMed

    Tuohey, J F

    1998-01-01

    Catholic healthcare should establish comprehensive compliance strategies, beyond following Medicare reimbursement laws, that reflect mission and ethics. A covenant model of business ethics--rather than a self-interest emphasis on contracts--can help organizations develop a creed to focus on obligations and trust in their relationships. The corporate integrity program (CIP) of Mercy Health System Oklahoma promotes its mission and interests, educates and motivates its employees, provides assurance of systemwide commitment, and enforces CIP policies and procedures. Mercy's creed, based on its mission statement and core values, articulates responsibilities regarding patients and providers, business partners, society and the environment, and internal relationships. The CIP is carried out through an integrated network of committees, advocacy teams, and an expanded institutional review board. Two documents set standards for how Mercy conducts external affairs and clarify employee codes of conduct. PMID:10181597

  7. Covenant model of corporate compliance. "Corporate integrity" program meets mission, not just legal, requirements.

    PubMed

    Tuohey, J F

    1998-01-01

    Catholic healthcare should establish comprehensive compliance strategies, beyond following Medicare reimbursement laws, that reflect mission and ethics. A covenant model of business ethics--rather than a self-interest emphasis on contracts--can help organizations develop a creed to focus on obligations and trust in their relationships. The corporate integrity program (CIP) of Mercy Health System Oklahoma promotes its mission and interests, educates and motivates its employees, provides assurance of systemwide commitment, and enforces CIP policies and procedures. Mercy's creed, based on its mission statement and core values, articulates responsibilities regarding patients and providers, business partners, society and the environment, and internal relationships. The CIP is carried out through an integrated network of committees, advocacy teams, and an expanded institutional review board. Two documents set standards for how Mercy conducts external affairs and clarify employee codes of conduct.

  8. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1993-01-01

    This paper presents the status of technology program planning to develop those Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies with significant development heritage: ion electric propulsion and the SP-100 space nuclear power technologies. Detailed plans are presented for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities.

  9. The NASA New Millennium Program: Space Flight Validation of Advanced Technologies for Future Science Missions.

    NASA Astrophysics Data System (ADS)

    Crisp, D.; Raymond, C.

    1999-09-01

    A broad range of advanced technologies are needed to support NASA's ambitious plans for planetary exploration during the next decade. To address these needs, the NASA New Millennium Program (NMP) identifies breakthrough spacecraft and instrument technologies and validates them in space to reduce their cost and risk. The first NMP Deep Space mission, DS1, was launched on October 24, 1998. Since then, it has successfully validated a solar-powered ion propulsion system, a miniaturized deep space transponder, autonomous operations and navigation software, multifunctional structures, low-power microelectronics and 2 instruments: the Miniature Integrated Camera and Spectrometer (MICAS), and the Plasma Experiment for Planetary Exploration (PEPE). To validate these technologies in a realistic environment, DS1's trajectory includes a close (<10km) flyby of asteroid 1992KD. An extended mission will allow encounters with comets Wilson-Harrington and Borrelly. The second NMP mission, DS2, consists of a pair of micro penetrators that are targeted near the Martian South Pole (71 to 76 S). DS2 was launched on January 3, 1999 as a piggyback payload on the Mars Surveyor '98 Lander cruise stage. After crashing into the Martian surface at greater than 200 m/s on December 3, 1999, these probes will validate technologies that will enable future Mars penetrator networks. These technologies include a single-stage, passive atmospheric entry system and a high-impact landing system designed to deliver a payload up to 1 meter below the Martian surface. This mission will also validate a miniaturized telecom system, low-temperature batteries, a suite of miniaturized in-situ scientific instruments, and other innovative packaging technologies. The next 2 NMP space science missions are currently being planned. If approved, Space Technology 3 (ST3) will validate technologies for separated spacecraft optical interferometry, to enable the ambitious Terrestrial Planet Finder (TPF) mission. The ST5

  10. Trajectory design for the Deep Space Program Science Experiment (DSPSE) mission

    NASA Technical Reports Server (NTRS)

    Carrington, D.; Carrico, J.; Jen, J.; Roberts, C.; Seacord, A.; Sharer, P.; Newman, L.; Richon, K.; Kaufman, B.; Middour, J.

    1993-01-01

    In 1994, the Deep Space Program Science Experiment (DSPSE) spacecraft will become the first spacecraft to perform, in succession, both a lunar orbiting mission and a deep-space asteroid encounter mission. The primary mission objective is to perform a long-duration flight-test of various new-technology lightweight components, such as sensors, in a deep-space environment. The mission has two secondary science objectives: to provide high-resolution imaging of the entire lunar surface for mapping purposes and flyby imaging of the asteroid 1620 Geographos. The DSPSE mission is sponsored by the Strategic Defense Initiative Organization (SDIO). As prime contractor, the Naval Research Laboratory (NRL) is building the spacecraft and will conduct mission operations. The Goddard Space Flight Center's (GSFC) Flight Dynamics Division is supporting NRL in the areas of The Deep Space Network (DSN) will provide tracking support. The DSPSE mission will begin with a launch from the Western Test Range in late January 1994. Following a minimum 1.5-day stay in a low-Earth parking orbit, a solid kick motor burn will boost DSPSE into an 18-day, 2.5-revolution phasing orbit transfer trajectory to the Moon. Two burns to insert DSPSE into a lunar polar orbit suitable for the mapping mission will be followed by mapping orbit maintenance and adjustment operations over a period of 2 sidereal months. In May 1994, a lunar orbit departure maneuver, in conjunction with a lunar swingby 26 days later, will propel DSPSE onto a heliocentric transfer that will intercept Geographos on September 1, 1994. This paper presents the characteristics, deterministic delta-Vs, and design details of each trajectory phase of this unique mission, together with the requirements, constraints, and design considerations to which each phase is subject. Numerous trajectory plots and tables of significant trajectory events are included. Following a discussion of the results of a preliminary launch window analysis, a

  11. Optimal selection of space transportation fleet to meet multi-mission space program needs

    NASA Technical Reports Server (NTRS)

    Morgenthaler, George W.; Montoya, Alex J.

    1989-01-01

    A space program that spans several decades will be comprised of a collection of missions such as low earth orbital space station, a polar platform, geosynchronous space station, lunar base, Mars astronaut mission, and Mars base. The optimal selection of a fleet of several recoverable and expendable launch vehicles, upper stages, and interplanetary spacecraft necessary to logistically establish and support these space missions can be examined by means of a linear integer programming optimization model. Such a selection must be made because the economies of scale which comes from producing large quantities of a few standard vehicle types, rather than many, will be needed to provide learning curve effects to reduce the overall cost of space transportation if these future missions are to be affordable. Optimization model inputs come from data and from vehicle designs. Each launch vehicle currently in existence has a launch history, giving rise to statistical estimates of launch reliability. For future, not-yet-developed launch vehicles, theoretical reliabilities corresponding to the maturity of the launch vehicles' technology and the degree of design redundancy must be estimated. Also, each such launch vehicle has a certain historical or estimated development cost, tooling cost, and a variable cost. The cost of a launch used in this paper includes the variable cost plus an amortized portion of the fixed and development costs. The integer linear programming model will have several constraint equations based on assumptions of mission mass requirements, volume requirements, and number of astronauts needed. The model will minimize launch vehicle logistic support cost and will select the most desirable launch vehicle fleet.

  12. Curbing "Math Anxiety" with Galileo While Teaching Physicists, too

    NASA Astrophysics Data System (ADS)

    Schwartz, Brian P.

    2006-12-01

    Carthage College's introductory physics course caters to both freshmen in our program and students in general education. While "Understandings of Physics" is a conceptual overview of our discipline, physical science is necessarily quantitative. Galileo's "Dialogue Concerning the Two New Sciences" provides us with a novel way to teach the fundamentals of motion both to students who "fear" mathematics, as well as those who are adept at solving algebraic equations.

  13. Galileo battery testing and the impact of test automation

    NASA Technical Reports Server (NTRS)

    Pertuch, W. T.; Dils, C. T.

    1985-01-01

    Test complexity, changes of test specifications, and the demand for tight control of tests led to the development of automated testing used for Galileo and other projects. The use of standardized interfacing, i.e., IEEE-488, with desktop computers and test instruments, resulted in greater reliability, repeatability, and accuracy of both control and data reporting. Increased flexibility of test programming has reduced costs by permitting a wide spectrum of test requirements at one station rather than many stations.

  14. Technical Excellence and Communication: The Cornerstones for Successful Safety and Mission Assurance Programs

    NASA Technical Reports Server (NTRS)

    Malone, Roy W.; Livingston, John M.

    2010-01-01

    The paper describes the role of technical excellence and communication in the development and maintenance of safety and mission assurance programs. The Marshall Space Flight Center (MSFC) Safety and Mission Assurance (S&MA) organization is used to illustrate philosophies and techniques that strengthen safety and mission assurance efforts and that contribute to healthy and effective organizational cultures. The events and conditions leading to the development of the MSFC S&MA organization are reviewed. Historic issues and concerns are identified. The adverse effects of resource limitations and risk assessment roles are discussed. The structure and functions of the core safety, reliability, and quality assurance functions are presented. The current organization s mission and vision commitments serve as the starting points for the description of the current organization. The goals and objectives are presented that address the criticisms of the predecessor organizations. Additional improvements are presented that address the development of technical excellence and the steps taken to improve communication within the Center, with program customers, and with other Agency S&MA organizations.

  15. In the Footsteps of Galileo

    NASA Astrophysics Data System (ADS)

    Erickson, John; van der Veen, W.; Moody, T.; O'Dea, T.

    2008-05-01

    This workshop links the goals of IYA to needs in science education. Lack of understanding of how science is practiced exists at all levels of society and is perpetuated by the way science is presented in classrooms and informal settings, often illustrated by the scientific method as a rigid multi-step process. This workshop presents an alternative to misleading scientific method lessons by highlighting some of Galileo's work. Looking through his telescope at four moons orbiting the planet Jupiter, Galileo gave priority to evidence over popular belief, completely changing the existing world view. We have adapted an activity developed by UC Berkeley's Lawrence Hall of Science in which students simulate observations of Jupiter's moons over several nights. The activity emphasizes the nature of science in regard to observations, evidence, predictions, models, hypotheses, and theories. A direct link is made between Galileo's work and the Five Essential Features of Inquiry as outlined in the National Science Education Standards. Participants will "observe” the Galilean moons of Jupiter, record data, make predictions, and analyze and model the data to determine orbital periods and distances for each moon. Extensions of this activity will be presented, including comparisons of the Jupiter system to the Earth-Moon system. Participants will also learn about Slooh, a robotic telescope that can be used by students to obtain their own images of Jupiter and its moons. As one way to have a multitude of learners in a variety of settings participate in IYA, this activity will be made available to many audiences for presentation in the fall of 2009. Participants in this workshop will discuss adaptations suitable for different groups and mechanisms for encouraging and enabling the presentation of this activity. Participants will receive a preliminary version of the adapted Jupiter activity and the BSCS publication: "Why Does Inquiry Matter?"

  16. Recreating Galileo's 1609 Discovery of Lunar Mountains

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Needham, Paul S.; Wright, Ernest T.; Gingerich, Owen

    2014-11-01

    The question of exactly which lunar features persuaded Galileo that there were mountains on the moon has not yet been definitively answered; Galileo was famously more interested in the concepts rather than the topographic mapping in his drawings and the eventual engravings. Since the pioneering work of Ewen Whitaker on trying to identify which specific lunar-terminator features were those that Galileo identified as mountains on the moon in his 1609 observations reported in his Sidereus Nuncius (Venice, 1610), and since the important work on the sequence of Galileo's observations by Owen Gingerich (see "The Mystery of the Missing 2" in Galilaeana IX, 2010, in which he concludes that "the Florentine bifolium sheet [with Galileo's watercolor images] is Galileo's source for the reworked lunar diagrams in Sidereus Nuncius"), there have been advances in lunar topographical measurements that should advance the discussion. In particular, one of us (E.T.W.) at the Scientific Visualization Studio of NASA's Goddard Space Flight Center has used laser-topography from NASA's Lunar Reconnaissance Orbiter to recreate what Galileo would have seen over a sequence of dates in late November and early December 1609, and provided animations both at native resolution and at the degraded resolution that Galileo would have observed with his telescope. The Japanese Kaguya spacecraft also provides modern laser-mapped topographical maps.

  17. The Galileo Legend as Scientific Folklore.

    ERIC Educational Resources Information Center

    Lessl, Thomas M.

    1999-01-01

    Examines the various ways in which the legend of Galileo's persecution by the Roman Catholic Church diverges from scholarly readings of the Galileo affair. Finds five distinct themes of scientific ideology in the 40 accounts examined. Assesses the part that folklore plays in building and sustaining a professional ideology for the modern scientific…

  18. The University System of Georgia's GALILEO.

    ERIC Educational Resources Information Center

    Penson, Merryll

    1998-01-01

    The University System of Georgia and the Online Computer Library Center (OCLC) built the innovative electronic library GALILEO (GeorgiA LIbrary LEarning Online system). This article describes the cooperation, leadership, and technology that made GALILEO possible; the proposal; planning and implementation; governance; current status; and future…

  19. Classroom Explorations: Pendulums, Mirrors, and Galileo's Drama

    ERIC Educational Resources Information Center

    Cavicchi, Elizabeth

    2011-01-01

    What do you see in a mirror when not looking at yourself? What goes on as a pendulum swings? Undergraduates in a science class supposed that these behaviors were obvious until their explorations exposed questions with no quick answers. While exploring materials, students researched Galileo, his trial, and its aftermath. Galileo came to life both…

  20. Galileo and the Rhetoric of Relativity.

    ERIC Educational Resources Information Center

    Machamer, Peter

    1999-01-01

    Galileo fit in well with the neo-Protagorian, person-relative framework that was emerging around him in the late 16th and early 17th centuries in Western Europe. For Galileo, all knowledge depended crucially and essentially on first person experience, and at the same time this knowledge was objective, not subjective. Comments on the educational…

  1. Galileo 243 Ida System Spectral Observations Revisited

    NASA Astrophysics Data System (ADS)

    Granahan, J. C.

    2001-11-01

    On August 28, 1993 the Galileo spacecraft encountered the asteroid 243 Ida and its moon Dactyl. A variety of observations of this asteroid system were collected including visible wavelength (0.4-1.0 microns) imagery with the Solid State Imager (SSI) instrument and infrared wavelength (0.7-5.2 microns) with the Near Infrared Mapping Spectrometer (NIMS). A new analysis of these observations has been conducted using band area analysis, band center measurement, and spectral similarity value measurement using the BAE SYSTEMS Hyperspectral Tool Kit. This abstract reports the initial results of this research effort. These data indicate that 243 Ida has an orthopyroxene/(orthopyroxene + olivine) ratio of about 0.28, a value consistent with that of LL chondrites. The ratio does not vary significantly for the portions of 243 Ida observed by the Galileo NIMS instrument. 243 Ida is a SIV subtype of the S type asteroid population. At least two spectral units were identified in a combined SSI and NIMS spectral data set. The primary difference is the amount of red slope present in the two spectral units. A larger red slope corresponds to regions of 243 Ida where ejecta from the crater Azurra are present. This evidence suggests that impacts enhance the red components of the 243 Ida spectrum, perhaps enhancing the NiFe content. Dactyl has a relatively deep absorption centered approximately at 0.97 microns with no significant two micron absorption features. This is a possible indicator of clinopyroxene and suggests partial melting or fractional crystallization processes occurred on Dactyl. Dactyl appears to be an SII subtype S type asteroid and is spectrally different from 243 Ida. Dactyl may have been produced by partial melting within the Koronis parent body while the 243 Ida region escaped such igneous processing. This study was made possible through support from NASA's Planetary Geology and Geophysics program.

  2. Galileo Earth/Moon News Conference

    NASA Astrophysics Data System (ADS)

    1992-12-01

    This NASA Kennedy Space Center (KSC) video release (Part 2 of 2) is a continuation of a press conference held at the Jet Propulsion Laboratory on Dec. 1, 1992, 7 days prior to the Galileo Earth-2 flyby. The video begins following presentations given by William J. O'Neil (Galileo Project Manager), Torrence Johnson (Galileo Project Scientist), Dr. Joseph Veverka (Galileo Imaging Team, Cornell University) and during a question and answer period given for the benefit of scientific journalists. Subjects include overall Galileo spacecraft health, verification of the Gaspra images timeframe, and the condition of certain scientific spacecraft instruments. Part 1 of this video can be retrieved by using Report No. NONP-NASA-VT-2000001077.

  3. Terrestrial cometary tail and lunar corona induced by small comets: Predictions for Galileo

    SciTech Connect

    Dessler, A.J. ); Sandel, B.R. ); Vasyliunas, V.M. )

    1990-11-01

    A search for small comets near 1 AU is an objective of the Galileo mission. If small comets are as numerous and behave as has been proposed, two near-Earth signatures of small comets should be observable by the UVS experiment on the Earth flybys of Galileo; (1) a comet-like tail of Earth created by small comets that come close to Earth, break up and vaporize, but just miss the atmosphere and proceed back into interplanetary space, and (2) a corona surrounding the Moon induced by lunar impact of small comets.

  4. Deep Impact Extended Mission Challenges for the Validation and Verification Test Program

    NASA Technical Reports Server (NTRS)

    Montanez, Leticia; Holshouser, David

    2008-01-01

    The Deep Impact Spacecraft was launched on January 12, 2005 as part of NASA's Discovery Program as a radical mission to excavate the interior of a comet. The Spacecraft consisted of two separate entities known as the Flyby and the Impactor, which were commanded to separate prior to comet rendezvous with comet 9P/Tempel 1. The overall mission was deemed a success on July 4, 2005, as the 370-kg Impactor collided with the comet at 10.2 km/s. This event was captured using the camera and infrared spectrometer on the Flyby spacecraft, along with ground-based observatories. Since this event, the Flyby spacecraft has been in hibernation mode and has received only a small amount of maintenance. The Deep Impact Program was managed by the Jet Propulsion Laboratory (JPL), led by Dr. Michael A'Hearn from the University of Maryland in College Park, and built by Ball Aerospace & Technologies Corp. in Boulder, Colorado.

  5. Reuniting the Solar System: Integrated Education and Public Outreach Projects for Solar System Exploration Missions and Programs

    NASA Technical Reports Server (NTRS)

    Lowes, Leslie; Lindstrom, Marilyn; Stockman, Stephanie; Scalice, Daniela; Klug, Sheri

    2003-01-01

    The Solar System Exploration Education Forum has worked for five years to foster Education and Public Outreach (E/PO) cooperation among missions and programs in order to leverage resources and better meet the needs of educators and the public. These efforts are coming together in a number of programs and products and in '2004 - The Year of the Solar System.' NASA's practice of having independent E/PO programs for each mission and its public affairs emphasis on uniqueness has led to a public perception of a fragmented solar system exploration program. By working to integrate solar system E/PO, the breadth and depth of the solar system exploration program is revealed. When emphasis is put on what missions have in common, as well as their differences, each mission is seen in the context of the whole program.

  6. Galileo and Music: A Family Affair

    NASA Astrophysics Data System (ADS)

    Fabris, D.

    2011-06-01

    According to Viviani, Galileo's first biographer, the scientist was an excellent keyboard and lute player. In turn Vincenzo Galilei, father of the illustrious scientist, had been one of the most influential music theorist of his age and also a great composer and virtuoso of the lute. Galileo and his brother Michelangelo, born in 1575, inherited Vincenzo's duel skills, both in theory and practical music: Galileo's correspondences show indeed his competence in the music and in the lute playing; Michelagnolo, after being educated in part in Galileo's house in Padua, transferred to Germany in Munich, where he became a court lute player. Nevertheless, Galileo helped for the rest of his life not only his brother but also his nephews, as documented in dozen of family letters quite important to establish the central role of the music in Galileo's everyday life, a fact almost ignored by most modern biographers. The importance of music in Galileo's output and life has been first outlined by the historian of sciences Stillman Drake and by the musicologist Claude Palisca. After their studies starting in the 1960s there is a great belief that Vincenzo influenced his son Galileo, directing him towards experimentation. The aim of this paper, following the reconstruction of Galileo's soundscape proposed by Pierluigi Petrobelli, is to reexamine the surviving historical accounts on the musical passion and talent of Galileo and his family in the several houses where they performed music (in Florence, Padua, Munich, etc.) in particular on the lute, the instrument that was an important experimental tool for the scientist.

  7. The New Millennium Program: Validating Advanced Technologies for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Minning, Charles P.; Luers, Philip

    1999-01-01

    This presentation reviews the activities of the New Millennium Program (NMP) in validating advanced technologies for space missions. The focus of these breakthrough technologies are to enable new capabilities to fulfill the science needs, while reducing costs of future missions. There is a broad spectrum of NMP partners, including government agencies, universities and private industry. The DS-1 was launched on October 24, 1998. Amongst the technologies validated by the NMP on DS-1 are: a Low Power Electronics Experiment, the Power Activation and Switching Module, Multi-Functional Structures. The first two of these technologies are operational and the data analysis is still ongoing. The third program is also operational, and its performance parameters have been verified. The second program, DS-2, was launched January 3 1999. It is expected to impact near Mars southern polar region on 3 December 1999. The technologies used on this mission awaiting validation are an advanced microcontroller, a power microelectronics unit, an evolved water experiment and soil thermal conductivity experiment, Lithium-Thionyl Chloride batteries, the flexible cable interconnect, aeroshell/entry system, and a compact telecom system. EO-1 on schedule for launch in December 1999 carries several technologies to be validated. Amongst these are: a Carbon-Carbon Radiator, an X-band Phased Array Antenna, a pulsed plasma thruster, a wideband advanced recorder processor, an atmospheric corrector, lightweight flexible solar arrays, Advanced Land Imager and the Hyperion instrument

  8. The Global Precipitation Measurement (GPM) Mission: U.S. Program and Science Status

    NASA Astrophysics Data System (ADS)

    Hou, A.; Azarbarzin, A.; Kakar, R.; Neeck, S.

    2009-04-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors to provide next-generation precipitation data products for scientific research and societal applications. NASA and JAXA will deploy the GPM Core Observatory carrying an advanced radar-radiometer system to serve as a physics observatory and calibration reference for constellation radiometers. NASA will deploy the GPM Low-Inclination Observatory to enhance the near real-time monitoring of hurricanes and mid-latitude storms, and JAXA will contribute data from the Global Change Observation Mission-Water (GCOM-W) satellite. Partnerships are under development to include additional conical-scanning microwave imagers on the French-Indian Megha-Tropiques satellite and U.S. Defense Meteorological Satellite Program (DMSP) satellites, as well as cross-track scanning humidity sounders on operational satellites such as the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), POES, NPOESS, and European MetOp satellites, which are used to improve the precipitation sampling over land. In addition, Brazil has in its national space plan for a GPM low-inclination radiometer, and data from Chinese and Russian microwave radiometers could potentially become available through international collaboration under the auspices of the Committee on Earth Observation Satellites (CEOS) and Group on Earth Observations (GEO). As a science mission with integrated application goals, GPM is expected to (1) provide new measurement standards for precipitation estimation from space, (2) improve understanding of precipitation physics, the global water cycle variability, and freshwater availability, and (3) advance weather/climate/hydrological prediction capabilities to directly benefit the society. An overview of the GPM mission concept, program

  9. High Spatial Resolution Europa Coverage by the Galileo Near Infrared Mapping Spectrometer (NIMS)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NIMS instrument on the Galileo spacecraft, which is being used to map the mineral and ice properties over the surfaces of the Jovian moons, produces global spectral images at modest spatial resolution and high resolution spectral images for small selected regions on the satellites. This map illustrates the high resolution coverage of Europa obtained by NIMS through the April 1997 G7 orbit.

    The areas covered are displayed on a Voyager-derived map. A good sampling of the dark trailing-side material (180 to 360 degrees) has been obtained, with less coverage of Europa's leading side.

    The false-color composites use red, green and blue to represent the infrared brightnesses at 0.7, 1.51 and 1.82 microns respectively. Considerable variations are evident and are related to the composition and sizes of the surface grains.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  10. Galileo's Telescopy and Jupiter's Tablet

    NASA Astrophysics Data System (ADS)

    Usher, P. D.

    2003-12-01

    A previous paper (BAAS 33:4, 1363, 2001) reported on the dramatic scene in Shakespeare's Cymbeline that features the descent of the deity Jupiter. The paper suggested that the four ghosts circling the sleeping Posthumus denote the four Galilean moons of Jupiter. The god Jupiter commands the ghosts to lay a tablet upon the prone Posthumus, but says that its value should not be overestimated. When Posthumus wakens he notices the tablet, which he calls a "book." Not only has the deity's "tablet" become the earthling's "book," but it appears that the book has covers which Posthumus evidently recognizes because without even opening the book he ascribes two further properties to it: rarity, and the very property that Jupiter had earlier attributed, viz. that one must not read too much into it. The mystery deepens when the Jovian gift undergoes a second metamorphosis, to "label." With the help of the OED, the potentially disparate terms "tablet," "book," and "label," may be explained by terms appropriate either to supernatural or worldly beings. "Tablet" may recognize the Mosaic artifact, whereas "book" and "label" are probably mundane references to Galileo's Sidereus Nuncius which appeared shortly before Cymbeline. The message of the Olympian god indicates therefore that the book is unique even as its contents have limited value. The first property celebrates the fact that Galileo's book is the first of its kind, and the second advises that all results except the discovery of Jupiter's moons have been reported earlier, in Hamlet.

  11. Cassini Mission. (Latest citations from the EI Compendex*Plus database)

    NASA Astrophysics Data System (ADS)

    1996-01-01

    The bibliography contains citations concerning the Cassini mission to the Saturnian system. Topics include radar instrumentation, altimetry, and model testing, and reference the Voyager and Galileo missions. The interplanetary trajectory design process is discussed.

  12. VLA Will Receive Galileo Probe Signals To Measure Jupiter's Winds

    NASA Astrophysics Data System (ADS)

    1995-11-01

    Socorro, NM -- When the Galileo Probe becomes the first spacecraft to enter the atmosphere of Jupiter on Dec. 7, a New Mexico radio telescope will be watching. In a technical feat thought impossible when Galileo was launched in 1989, the National Science Foundation's Very Large Array (VLA) will record the faint radio signal from the probe to help scientists measure the giant planet's winds. The VLA observations will dramatically improve estimates of Jupiter's wind speeds and complement other measurements studying the climate of Jupiter. The Galileo probe will transmit information to the main spacecraft as it descends toward a searing death under tremendous heat in Jupiter's lower atmosphere. The main spacecraft will later relay the probe's data to Earth. No Earth-based reception of the probe's radio signals was planned originally. The probe's antenna will be pointed at the main spacecraft, not the Earth. However, in 1991, Robert Preston and William Folkner of NASA's Jet Propulsion Laboratory (JPL) in Pasadena, CA, were discussing Earth-based reception of data from a similar probe under design for a planned mission to Saturn. "I thought, why not do this for Galileo," Folkner said. "They were planning to build this capability into the spacecraft for Saturn," Folkner explained, "and they thought it couldn't be done with the Galileo spacecraft already enroute to Jupiter. I didn't know it couldn't be done, so I worked it out and found that we could do it." According to Preston and Folkner's calculations, the direct reception of the probe's signals by the VLA and a similar radio telescope in Australia will make the measurement of Jupiter's winds ten times more precise as long as the probe radio signal can be detected. In addition, the direct reception also greatly improves scientists' knowledge of the probe's position as it enters the Jovian atmosphere. This will allow more effective use of the measurements of the probe radio signal by the main spacecraft to determine

  13. International solar-terrestrial physics program: A plan for the core spaceflight missions

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This brochure has been prepared by NASA on behalf of the European Space Agency (ESA), the Institute of Space and Astronautical Science (Japan) (ISAS), and the U.S. National Aeronautics and Space Administration (NASA) to describe the scope of the science problems to be investigated and the mission plan for the core International Solar-Terrestrial Physics (ISTP) Program. This information is intended to stimulate discussions and plans for the comprehensive worldwide ISTP Program. The plan for the study of the solar - terrestrial system is included. The Sun, geospace, and Sun-Earth interaction is discussed as is solar dynamics and the origins of solar winds.

  14. Woven Thermal Protection System (WTPS) a Novel Approach to Meet NASA's Most Demanding Reentry Missions

    NASA Technical Reports Server (NTRS)

    Stackpoole, Mairead

    2014-01-01

    NASA's future robotic missions to Venus and outer planets, namely, Saturn, Uranus, Neptune, result in extremely high entry conditions that exceed the capabilities of current mid-density ablators (PICA or Avcoat). Therefore mission planners assume the use of a fully dense carbon phenolic heat shield similar to what was flown on Pioneer Venus and Galileo. Carbon phenolic (CP) is a robust Thermal Protection System (TPS) however its high density and thermal conductivity constrain mission planners to steep entries, high heat fluxes, pressures and short entry durations, in order for CP to be feasible from a mass perspective. The high entry conditions pose certification challenges in existing ground based test facilities. In 2012 the Game Changing Development Program in NASA's Space Technology Mission Directorate funded NASA ARC to investigate the feasibility of a Woven Thermal Protection System (WTPS) to meet the needs of NASA's most challenging entry missions. This presentation will summarize maturation of the WTPS project.

  15. Woven Thermal Protection System (WTPS) a Novel Approach to Meet Nasa's Most Demanding Reentry Missions

    NASA Technical Reports Server (NTRS)

    Stackpoole, Margaret M.; Ellerby, Donald T.; Gasch, Matt; Ventkatapathy, Ethiraj; Beerman, Adam; Boghozian, Tane; Gonzales, Gregory; Feldman, Jay; Peterson, Keith; Prabhu, Dinesh

    2014-01-01

    NASA's future robotic missions to Venus and other planets, namely, Saturn, Uranus, Neptune, result in extremely high entry conditions that exceed the capabilities of current mid density ablators (PICA or Avcoat). Therefore mission planners assume the use of a fully dense carbon phenolic heatshield similar to what was flown on Pioneer Venus and Galileo. Carbon phenolic is a robust TPS, however, its high density and thermal conductivity constrain mission planners to steep entries, high fluxes, pressures and short entry durations, in order for CP to be feasible from a mass perspective. The high entry conditions pose certification challenges in existing ground based test facilities. In 2012 the Game Changing Development Program in NASA's Space Technology Mission Directorate funded NASA ARC to investigate the feasibility of a Woven Thermal Protection System to meet the needs of NASA's most challenging entry missions. This presentation will summarize the maturation of the WTPS project.

  16. Spacelab simulation using a Lear Jet aircraft: Mission no. 4 (ASSESS program)

    NASA Technical Reports Server (NTRS)

    Reller, J. O., Jr.; Neel, C. B.; Mason, R. H.

    1975-01-01

    The fourth ASSESS Spacelab simulation mission utilizing a Lear Jet aircraft featured trained experiment operators (EOs) in place of the participating scientists, to simulate the role and functions of payload specialists in Spacelab who may conduct experiments developed by other scientists. The experiment was a broadband infrared photometer coupled to a 30-cm, open port, IR telescope. No compromises in equipment design or target selection were made to simplify operator tasks; the science goals of the mission were selected to advance the mainline research program of the principle investigator (PI). Training of the EOs was the responsibility of the PI team and consisted of laboratory sessions, on-site training during experiment integration, and integrated mission training using the aircraft as a high-fidelity simulator. The EO permission experience in these several disciplines proved adequate for normal experiment operations, but marginal for the identification and remedy of equipment malfunctions. During the mission, the PI utilized a TV communication system to assist the EOs to overcome equipment difficulties; both science and operations were successfully implemented.

  17. Galileo's Courage to Create New Cosmology

    NASA Astrophysics Data System (ADS)

    Carr, Paul H.

    2009-10-01

    The trial of Galileo was a confrontation between the creativity of new science and the traditions of ``the religious establishment.''Galileo challenged ancient cosmology, where heavenly bodies were thoughtto be perfect spheres made of ``ether.'' His trail might have been avoided if Galileo had been more diplomatic. Paradoxically, the Roman Catholic Church was scientifically correct: Galileo had no proof the earth rotated about its axis as it orbited around the sun. His assertion that the tides arise from the earth's rotation later turned out to be correct, but at that time no one knew enough about gravitational and centrifugal forces. Galileo courageously argued, ``The Bible tells us how to go to heaven, not how the heavens go [1].'' He was nevertheless convicted at age 69, Galileo, although deeply hurt, did not withdraw from the Church. He believed himself to be a good Catholic who had sought to keep his church, for its own good, from making a mistake. In 1992, Pope John Paul said the Church had erred in condemning Galileo. [4pt] [1] Carr, P. H. (2006). ``The Courage to Create Beauty,'' Chap 10 of ``Beauty in Science & Spirit,'' Beech River Books, Center Ossipee, NH.

  18. Galileo Update: The Search for Water in Jupiter's Atmosphere

    NASA Astrophysics Data System (ADS)

    1997-06-01

    This videotape presents a panel discussion press conference about the attempts to discover if there is moisture in the atmosphere of Jupiter. David Seidel, of the Jet Propulsion Laboratory (JPL) moderates the discussion. The panel consists of Andrew Ingersoll, California Institute of Technology, Tobias Owen, of the University of Hawaii, Glenn Orton, Robert Carlson of JPL, and Ashwin Vasavada, a graduate student at Cal Tech. Each of the panelists discusses evidence for moisture in Jupiter's atmosphere. They show video tapes of either animation or shots from the Galileo mission or diagrams of the atmosphere of Jupiter. The videos clips that are shown, include a brief summary of the Galileo mission. A diagram showing the layers of Jupiter's atmosphere is discussed. One panelist discusses and shows shots from the nightside of Jupiter. Another video clip shows evidence for convergence downdrafts around dry spots. Evidence for thunderstorms and updrafts is also reviewed. Shots of the giant red spot on Jupiter are shown, and explanations are given as to what it may be.

  19. STS-34 mission highlights resource tape, part 1

    NASA Astrophysics Data System (ADS)

    1989-11-01

    This video tape contains important visual events including launch Galileo/IUS deployment, onboard crew activities, and landing. Also included is air-to-ground transmission between the crew and Mission Control.

  20. Mission Analysis Program for Solar Electric Propulsion (MAPSEP). Volume 1: Analytical manual for earth orbital MAPSEP

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An introduction to the MAPSEP organization and a detailed analytical description of all models and algorithms are given. These include trajectory and error covariance propagation methods, orbit determination processes, thrust modeling, and trajectory correction (guidance) schemes. Earth orbital MAPSEP contains the capability of analyzing almost any currently projected low thrust mission from low earth orbit to super synchronous altitudes. Furthermore, MAPSEP is sufficiently flexible to incorporate extended dynamic models, alternate mission strategies, and almost any other system requirement imposed by the user. As in the interplanetary version, earth orbital MAPSEP represents a trade-off between precision modeling and computational speed consistent with defining necessary system requirements. It can be used in feasibility studies as well as in flight operational support. Pertinent operational constraints are available both implicitly and explicitly. However, the reader should be warned that because of program complexity, MAPSEP is only as good as the user and will quickly succumb to faulty user inputs.

  1. ASSESS program: Shuttle Spacelab simulation using a Lear jet aircraft (mission no. 2)

    NASA Technical Reports Server (NTRS)

    Reller, J. O., Jr.; Neel, C. B.; Mason, R. H.; Pappas, C. C.

    1974-01-01

    The second shuttle Spacelab simulation mission of the ASSESS program was conducted at Ames Research Center by the Airborne Science Office (ASO) using a Lear jet aircraft based at a site remote from normal flight operations. Two experimenters and the copilot were confined to quarters on the site during the mission, departing only to do in-flight research in infrared astronomy. A total of seven flights were made in a period of 4 days. Results show that experimenters with relatively little flight experience can plan and carry out a successful research effort under isolated and physically rigorous conditions, much as would more experienced scientists. Perhaps the margin of success is not as great, but the primary goal of sustained acquisition of significant data over a 5-day period can be achieved.

  2. NSEG: A segmented mission analysis program for low and high speed aircraft. Volume 3: Demonstration problems

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Rozendaal, H. L.

    1977-01-01

    Program NSEG is a rapid mission analysis code based on the use of approximate flight path equations of motion. Equation form varies with the segment type, for example, accelerations, climbs, cruises, descents, and decelerations. Realistic and detailed vehicle characteristics are specified in tabular form. In addition to its mission performance calculation capabilities, the code also contains extensive flight envelope performance mapping capabilities. For example, rate-of-climb, turn rates, and energy maneuverability parameter values may be mapped in the Mach-altitude plane. Approximate take off and landing analyses are also performed. At high speeds, centrifugal lift effects are accounted for. Extensive turbojet and ramjet engine scaling procedures are incorporated in the code.

  3. Practical Application of Model-based Programming and State-based Architecture to Space Missions

    NASA Technical Reports Server (NTRS)

    Horvath, Gregory A.; Ingham, Michel D.; Chung, Seung; Martin, Oliver; Williams, Brian

    2006-01-01

    Innovative systems and software engineering solutions are required to meet the increasingly challenging demands of deep-space robotic missions. While recent advances in the development of an integrated systems and software engineering approach have begun to address some of these issues, they are still at the core highly manual and, therefore, error-prone. This paper describes a task aimed at infusing MIT's model-based executive, Titan, into JPL's Mission Data System (MDS), a unified state-based architecture, systems engineering process, and supporting software framework. Results of the task are presented, including a discussion of the benefits and challenges associated with integrating mature model-based programming techniques and technologies into a rigorously-defined domain specific architecture.

  4. The Global Precipitation Measurement (GPM) Mission: U.S. Program and Science Status

    NASA Astrophysics Data System (ADS)

    Hou, Arthur; Azarbarzin, Ardeshir; Kakar, Ramesh; Neeck, Steven

    2010-05-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. NASA and JAXA will deploy the GPM Core Observatory carrying an advanced radar-radiometer system to serve as a physics observatory and a transfer standard for inter-calibration of constellation radiometers. The GPM Core Observatory is scheduled for launch in July 2013. In addition, NASA will provide a second radiometer to be flown on a partner-provided GPM Low-Inclination Observatory to enhance the near real-time monitoring of hurricanes and mid-latitude storms. JAXA will also contribute data from the Global Change Observation Mission-Water (GCOM-W) satellite. Additional partnerships are under development to include conical-scanning microwave imagers on the French-Indian Megha-Tropiques satellite and U.S. Defense Meteorological Satellite Program (DMSP) satellites, as well as cross-track scanning humidity sounders on operational satellites such as the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), POES, NPOESS, and European MetOp satellites, which are used to improve the precipitation sampling over land. Currently, Brazil has in its national space plan for a GPM low-inclination radiometer, and data from Chinese and Russian microwave radiometers could potentially become available through international collaboration under the auspices of the Committee on Earth Observation Satellites (CEOS) and Group on Earth Observations (GEO). The current generation of global rainfall products combines observations from a network of uncoordinated satellite missions using a variety of merging techniques. GPM will provide "next-generation" precipitation data products characterized by: (1) more accurate instantaneous precipitation measurement (especially for light rain and cold-season solid precipitation), (2) more

  5. Volcanism on Io: The Galileo NIMS Io Thermal Emission Database (NITED)

    NASA Astrophysics Data System (ADS)

    Davies, A. G.; Veeder, G. J.; Matson, D. L.; Johnson, T. V.

    2011-12-01

    In order to determine the magnitude of thermal emission from Io's volcanoes and variability with time at local, regional and global scales, we have calculated the 4.7 or 5 μm radiant flux for every hot spot in every Galileo Near Infrared Mapping Spectrometer (NIMS) observation obtained during the Galileo mission between June 1996 and October 2001. The resulting database contains over 1000 measurements of radiant flux, corrected for emission angle, range to target, and, where necessary, incident sunlight. Io's volcanoes produce the most voluminous and most powerful eruptions in the Solar System [1] and NIMS was the ideal instrument for measuring thermal emission from these volcanoes (see [1, 2]). NIMS covered the infrared from 0.7 to 5.2 μm, so measurement of hot spot thermal emission at ~5 μm was possible even in daytime observations. As part of a campaign to quantify magnitude and variability of volcanic thermal emission [1, 3-5] we examined the entire NIMS dataset (196 observations). The resulting NIMS Io Thermal Emission Database (NITED) allows the charting of 5-μm thermal emission at individual volcanoes, identifying individual eruption episodes, and enabling the comparison of activity at different hot spots [e.g., 6] and different regions of Io. Some ionian hot spots were detected only once or twice by NIMS (e.g., Ah Peku Patera, seen during I32), but most were detected many times (e.g., Culann, Tupan and Zamama, [6]). For example, the database contains over 40 observations of Loki Patera (some at high emission angle, and two partial observations). There are 55 observations of Pele. The 27 nighttime observations of Pele show a remarkably steady 5-μm radiant flux of 35 ± 12 GW/μm. There are 34 observations of Pillan, which erupted violently in 1997. Although in many observations low spatial resolution makes it difficult to separate hot spot pairs such as Susanoo Patera and Mulungu Patera; Tawhaki Patera and Hi'iaka Patera; and Janus Patera and Kanehekili

  6. Galileo Probe forebody thermal protection

    NASA Technical Reports Server (NTRS)

    Green, M. J.; Davy, W. C.

    1981-01-01

    Material response solutions for the forebody heat shield on the candidate 310-kg Galileo Probe are presented. A charring material ablation analysis predicts thermochemical surface recession, insulation thickness, and total required heat shield mass. Benchmark shock layer solutions provide the imposed entry heating environments on the ablating surface. Heat shield sizing results are given for a nominal entry into modeled nominal and cool-heavy Jovian atmospheres, and for two heat-shield property models. The nominally designed heat shield requires a mass of at least 126 kg and would require an additional 13 kg to survive entry into the less probable cool-heavy atmosphere. The material-property model with a 30% surface reflectance reduces these mass requirements by as much as 16%.

  7. Europa: Initial Galileo Geological Observations

    USGS Publications Warehouse

    Greeley, R.; Sullivan, R.; Klemaszewski, J.; Homan, K.; Head, J. W.; Pappalardo, R.T.; Veverka, J.; Clark, B.E.; Johnson, T.V.; Klaasen, K.P.; Belton, M.; Moore, J.; Asphaug, E.; Carr, M.H.; Neukum, G.; Denk, T.; Chapman, C.R.; Pilcher, C.B.; Geissler, P.E.; Greenberg, R.; Tufts, R.

    1998-01-01

    Images of Europa from the Galileo spacecraft show a surface with a complex history involving tectonic deformation, impact cratering, and possible emplacement of ice-rich materials and perhaps liquids on the surface. Differences in impact crater distributions suggest that some areas have been resurfaced more recently than others; Europa could experience current cryovolcanic and tectonic activity. Global-scale patterns of tectonic features suggest deformation resulting from non-synchronous rotation of Europa around Jupiter. Some regions of the lithosphere have been fractured, with icy plates separated and rotated into new positions. The dimensions of these plates suggest that the depth to liquid or mobile ice was only a few kilometers at the time of disruption. Some surfaces have also been upwarped, possibly by diapirs, cryomagmatic intrusions, or convective upwelling. In some places, this deformation has led to the development of chaotic terrain in which surface material has collapsed and/or been eroded. ?? 1998 Academic Press.

  8. How Nasa's Independent Verification and Validation (IVandV) Program Builds Reliability into a Space Mission Software System (SMSS)

    NASA Technical Reports Server (NTRS)

    Fisher, Marcus S.; Northey, Jeffrey; Stanton, William

    2014-01-01

    The purpose of this presentation is to outline how the NASA Independent Verification and Validation (IVV) Program helps to build reliability into the Space Mission Software Systems (SMSSs) that its customers develop.

  9. Europa's Thermal Surface from Galileo PPR

    NASA Astrophysics Data System (ADS)

    Rodriguez, N. J.; Rathbun, J. A.; Spencer, J. R.

    2009-03-01

    We present Galileo Photopolarimeter-Radiometer data of Europa and, from these, model the thermal inertia and bolometric albedo of the surface. We also derive an upper limit for detection of endogenic activity.

  10. The Galileo Solid-State Imaging experiment

    USGS Publications Warehouse

    Belton, M.J.S.; Klaasen, K.P.; Clary, M.C.; Anderson, J.L.; Anger, C.D.; Carr, M.H.; Chapman, C.R.; Davies, M.E.; Greeley, R.; Anderson, D.; Bolef, L.K.; Townsend, T.E.; Greenberg, R.; Head, J. W.; Neukum, G.; Pilcher, C.B.; Veverka, J.; Gierasch, P.J.; Fanale, F.P.; Ingersoll, A.P.; Masursky, H.; Morrison, D.; Pollack, James B.

    1992-01-01

    The Solid State Imaging (SSI) experiment on the Galileo Orbiter spacecraft utilizes a high-resolution (1500 mm focal length) television camera with an 800 ?? 800 pixel virtual-phase, charge-coupled detector. It is designed to return images of Jupiter and its satellites that are characterized by a combination of sensitivity levels, spatial resolution, geometric fiedelity, and spectral range unmatched by imaging data obtained previously. The spectral range extends from approximately 375 to 1100 nm and only in the near ultra-violet region (??? 350 nm) is the spectral coverage reduced from previous missions. The camera is approximately 100 times more sensitive than those used in the Voyager mission, and, because of the nature of the satellite encounters, will produce images with approximately 100 times the ground resolution (i.e., ??? 50 m lp-1) on the Galilean satellites. We describe aspects of the detector including its sensitivity to energetic particle radiation and how the requirements for a large full-well capacity and long-term stability in operating voltages led to the choice of the virtual phase chip. The F/8.5 camera system can reach point sources of V(mag) ??? 11 with S/N ??? 10 and extended sources with surface brightness as low as 20 kR in its highest gain state and longest exposure mode. We describe the performance of the system as determined by ground calibration and the improvements that have been made to the telescope (same basic catadioptric design that was used in Mariner 10 and the Voyager high-resolution cameras) to reduce the scattered light reaching the detector. The images are linearly digitized 8-bits deep and, after flat-fielding, are cosmetically clean. Information 'preserving' and 'non-preserving' on-board data compression capabilities are outlined. A special "summation" mode, designed for use deep in the Jovian radiation belts, near Io, is also described. The detector is 'preflashed' before each exposure to ensure the photometric linearity

  11. Galileo and the Interpretation of the Bible

    NASA Astrophysics Data System (ADS)

    Carroll, William E.

    Galileo's understanding of the relationship between science and the Bible has frequently been celebrated as anticipating a modern distinction between the essentially religious nature of scripture and the claims of the natural sciences. Galileo's reference to the remarks of Cardinal Baronius, that the Bible teaches one how to go to heaven and not how the heavens go, has been seem as emblematic of his commitment to the distinction between the Book of Nature and the Book of Scripture. This essay argues that, contrary to the common view, Galileo shares with the theologians of the Inquisition the same fundamental principles of biblical interpretation: principles which include traditional scriptural hermeneutics enunciated by Augustine and Aquinas, as well as those characteristic of Counter-Reformation Catholicism. Although Galileo argues that one should not begin with biblical passages in order to discover truths about nature, he does think that the Bible contains scientific truths and that it is the function of wise interpreters to discover these truths. The dispute with the theologians of the Inquisition occurred because they thought that it was obviously true scientifically that the earth did not move and, on the basis of this view, they read the Bible as revealing the same thing. They reached this conclusion because, like Galileo, they thought that the Bible contained truths about nature. Of course, what these theologians accepted as scientifically true, Galileo denied.

  12. Re-examining Galileo's theory of tides.

    NASA Astrophysics Data System (ADS)

    Palmieri, P.

    1998-11-01

    This study expounds the model of the Earth tides by Galileo Galilei in all its amazing complexity by bringing to light its completely forgotten vision of the flux and reflux of the sea as a wave-like phenomenon and by reassessing Galileo's claim that this model was a physical proof of the double motion of the Earth as postulated by Copernicus, namely, its diurnal rotation about its polar axis and its annual revolution around the Sun. The study is organized in the chapters: (1) Galileo's tide-generating acceleration: the woad-grindstone model; composition of speeds and relativity; tide-generating acceleration as a historiographical stumbling block. (2) Newton's tide-generating force: Newton's dynamic model; asymmetric tide-generating force and asymmetric tide periods. (3) Galileo's oscillatory model: a simple oscillating system; the laws of basins and superposition of waves. (4) The "warping" of history: Galileo's claim that tides prove Copernicus; Galileo's notions on bodies that move around a centre; tide equations - the quasi-Galilean term; tides in a non-Newtonian universe. (5) Simulate the wind and the sea: comets and winds; rotating buckets and the terrestrial atmosphere; tide experiments - artificial vessels and tide-machines. (6) Celestial wheel clock: monthly and annual periodicities; the celestial balance-stick regulator. (7) Moon and waves: lunar trepidations and tides - a new research programme; a single great wave.

  13. Propulsion Controls and Diagnostics Research in Support of NASA Aeronautics and Exploration Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2011-01-01

    The Controls and Dynamics Branch (CDB) at National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research and Exploration Systems Missions. This paper provides a brief overview of the various CDB tasks in support of the NASA programs. The programmatic structure of the CDB activities is described along with a brief overview of each of the CDB tasks including research objectives, technical challenges, and recent accomplishments. These tasks include active control of propulsion system components, intelligent propulsion diagnostics and control for reliable fault identification and accommodation, distributed engine control, and investigations into unsteady propulsion systems.

  14. AUTOMATED CLASSIFICATION OF VARIABLE STARS IN THE ASTEROSEISMOLOGY PROGRAM OF THE KEPLER SPACE MISSION

    SciTech Connect

    Blomme, J.; Debosscher, J.; De Ridder, J.; Aerts, C.; Gilliland, R. L.; Christensen-Dalsgaard, J.; Kjeldsen, H.; Brown, T. M.; Borucki, W. J.; Koch, D.; Jenkins, J. M.; Stello, D.; Derekas, A.; Stevens, I. R.; Suran, M. D.

    2010-04-20

    We present the first results of the application of supervised classification methods to the Kepler Q1 long-cadence light curves of a subsample of 2288 stars measured in the asteroseismology program of the mission. The methods, originally developed in the framework of the CoRoT and Gaia space missions, are capable of identifying the most common types of stellar variability in a reliable way. Many new variables have been discovered, among which a large fraction are eclipsing/ellipsoidal binaries unknown prior to launch. A comparison is made between our classification from the Kepler data and the pre-launch class based on data from the ground, showing that the latter needs significant improvement. The noise properties of the Kepler data are compared to those of the exoplanet program of the CoRoT satellite. We find that Kepler improves on CoRoT by a factor of 2-2.3 in point-to-point scatter.

  15. The Galileo plasma wave investigation

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Kurth, W. S.; Shaw, R. R.; Roux, A.; Gendrin, R.; Kennel, C. F.; Scarf, F. L.; Shawhan, S. D.

    1992-01-01

    The purpose of the Galileo plasma wave investigation is to study plasma waves and radio emissions in the magnetosphere of Jupiter. The plasma wave instrument uses an electric dipole antenna to detect electric fields, and two search coil magnetic antennas to detect magnetic fields. The frequency range covered is 5 Hz to 5.6 MHz for electric fields and 5 Hz to 160 kHz for magnetic fields. Low time-resolution survey spectrums are provided by three on-board spectrum analyzers. In the normal mode of operation the frequency resolution is about 10 percent, and the time resolution for a complete set of electric and magnetic field measurements is 37.33 s. High time-resolution spectrums are provided by a wideband receiver. The wideband receiver provides waveform measurements over bandwidths of 1, 10, and 80 kHz. Compared to previous measurements at Jupiter this instrument has several new capabilities. These new capabilities include (1) both electric and magnetic field measurements to distinguish electrostatic and electromagnetic waves, (2) direction finding measurements to determine source locations, and (3) increased bandwidth for the wideband measurements.

  16. Galileo Photopolarimeter/Radiometer experiment

    NASA Technical Reports Server (NTRS)

    Russell, E. E.; Brown, F. G.; Chandos, R. A.; Fincher, W. C.; Kubel, L. F.; Lacis, A. A.; Travis, L. D.

    1992-01-01

    The Photopolarimeter/Radiometer (PPR) is a remote sensing instrument on the Galileo Orbiter designed to measure the degree of linear polarization and the intensity of reflected sunlight in ten spectral channels between 410 and 945 nm to determine the physical properties of Jovian clouds and aerosols, and to characterize the texture and microstructure of satellite surfaces. The PPR also measures thermal radiation in five spectral bands between 15 and 100 microns to sense the upper tropospheric temperature structure. Two additional channels which measure spectrally integrated solar and solar plus thermal radiation are used to determine the planetary radiation budget components. The PPR photopolarimetric measurements utilize previously flown technology for high-precision polarimetry using a calcite Wollaston prism and two silicon photodiodes to enable simultaneous detection of the two orthogonal polarization components. The PPR radiometry measurements are made with a lithium tantalate pyroelectric detector utilizing a unique arrangement of radiometric stops and a scene/space chopper blade to enable a warm instrument to sense accurately the much colder scene temperatures.

  17. Copernicus, Epicurus, Galileo, and Gassendi.

    PubMed

    LoLordo, Antonia

    2015-06-01

    In his Letters on the motion impressed by a moving mover, the theory of the motion of composite bodies put forth by Gassendi is strikingly similar to Galileo's. In other of his writings, however, his description of the motion of individual atoms is understood very differently. In those places, he holds (1) that individual atoms are always in motion, even when the body that contains them is at rest, (2) that atomic motion is discontinuous although the motion of composite bodies is at least apparently continuous, and (3) that atomic motion is grounded in an intrinsic vis motrix, motive power. In contrast, composite bodies simply persist in their state of motion or rest in the absence of outside interference. Unfortunately, Gassendi neglects to explain how his accounts of atomic and composite motion fit together, and it is difficult to see how they could possibly be integrated. My goal is to explain, given this difficulty, why he accepted both the Galilean theory of the motion of composite bodies and the Epicurean theory of atomic motion. PMID:26227235

  18. Copernicus, Epicurus, Galileo, and Gassendi.

    PubMed

    LoLordo, Antonia

    2015-06-01

    In his Letters on the motion impressed by a moving mover, the theory of the motion of composite bodies put forth by Gassendi is strikingly similar to Galileo's. In other of his writings, however, his description of the motion of individual atoms is understood very differently. In those places, he holds (1) that individual atoms are always in motion, even when the body that contains them is at rest, (2) that atomic motion is discontinuous although the motion of composite bodies is at least apparently continuous, and (3) that atomic motion is grounded in an intrinsic vis motrix, motive power. In contrast, composite bodies simply persist in their state of motion or rest in the absence of outside interference. Unfortunately, Gassendi neglects to explain how his accounts of atomic and composite motion fit together, and it is difficult to see how they could possibly be integrated. My goal is to explain, given this difficulty, why he accepted both the Galilean theory of the motion of composite bodies and the Epicurean theory of atomic motion.

  19. AIV Platform for the Galileo Precise Timing Facility

    NASA Astrophysics Data System (ADS)

    Oving, B. A.; Kroon, E.

    2008-08-01

    The Precise Timing Facility (PTF) is an element of the Galileo Ground Mission Segment (GMS) and is responsible for maintaining and distributing the Galileo System Time (GST). The PTF is based on a set of Caesium clocks and Active Hydrogen Maser clocks, the combination of which should be able to provide the required precision and stability of the GST. As the PTF is a critical element within the GMS, diversity is applied in that two PTFs are made by two different companies. The subject of this paper is the PTF that is being developed by Kayser-Threde. To perform the Assembly, Integration and Verification (AIV) activities of the PTF, a dedicated test platform, PTF-AIVP, is developed by the National Aerospace Laboratory, NLR (the Netherlands) and the Nederlands Meetinstituut (NMi). The PTF-AIVP will be used to measure and analyse the (physical) output of the PTF, so that the stringent precision and stability requirements can be verified. Furthermore, it will simulate other Elements in the GMS that are connected to the PTF.

  20. Los Angeles Mission College Year-End Narrative Report. Ford Foundation Urban Community College Transfer Opportunities Program.

    ERIC Educational Resources Information Center

    Fonseca, Horacio R.

    This report presents an assessment of the activities conducted at the Los Angeles Mission College under a Ford Foundation Urban Community College Transfer Opportunities Program grant. First, the program achievements are presented including the identification of 86 students who declared an interest in transferring to a four-year institution; the…

  1. The Galileo IOV Dispenser System- Design, Development & Verification

    NASA Astrophysics Data System (ADS)

    Thompson, S. P.; Andersson, G.; Davies, W.; Plaza, M. A.

    2012-07-01

    On October 21st, 2011, lifting off from the ELS launch site in French Guiana, a Soyuz ST-B and FREGAT upper stage, carried the first two Galileo IOV spacecraft on a 3-hour 49-minute flight and successfully injected the 2 Galileo Navigation spacecraft into a circular medium-Earth orbit. The Dispenser System, the subject of this paper, is the equipped launch vehicle hardware mated directly to the FREGAT upper stage and built specifically to carry 2 Galileo IOV spacecraft during all ground and flight operations up to the moment of separation. The Dispenser System was purposely built for the Galileo IOV missions under European Space Agency and Arianespace contract. The prime contractor was selected to be RUAG Space in Sweden (Linköping) for all Dispenser “System and Management” activities and with subcontracts placed to RUAG Space in Switzerland (Zurich) for the Dispenser “Structure” and EADS CASA Spain (Madrid) for the “Hold Down and Release System” (HRS) hardware. The “Structure” is designed to transfer ground and flight loads between the spacecraft and the Launch Vehicle. The upper part, an aluminium sandwich box-type structure, interfaces with the satellites, whereas the lower part transitions to a lower frame, via a CFRP strut arrangement, to interface with the FREGA T upper stage. The spacecraft separation sub-system is composed of two sets of four low- shock “HRS” units and four “pushers” enabling to firmly hold the satellites during ground and flight operations and to release them when ordered by the Launch Vehicle. The Dispenser System also comprises an electrical sub-system and MLI. This paper summarises the overall Design, Development and Verification activities leading to the Qualification of the Dispenser System hardware. This will include the Structure and HRS contribution to the overall System Qualification. An overview of the System hardware will be described along with DDV logic, some key analysis performed and several of the

  2. Numerical Roll Reversal Predictor Corrector Aerocapture and Precision Landing Guidance Algorithms for the Mars Surveyor Program 2001 Missions

    NASA Technical Reports Server (NTRS)

    Powell, Richard W.

    1998-01-01

    This paper describes the development and evaluation of a numerical roll reversal predictor-corrector guidance algorithm for the atmospheric flight portion of the Mars Surveyor Program 2001 Orbiter and Lander missions. The Lander mission utilizes direct entry and has a demanding requirement to deploy its parachute within 10 km of the target deployment point. The Orbiter mission utilizes aerocapture to achieve a precise captured orbit with a single atmospheric pass. Detailed descriptions of these predictor-corrector algorithms are given. Also, results of three and six degree-of-freedom Monte Carlo simulations which include navigation, aerodynamics, mass properties and atmospheric density uncertainties are presented.

  3. Balancing innovation with commercialization in NASA's Science Mission Directorate SBIR Program

    NASA Astrophysics Data System (ADS)

    Terrile, R. J.; Jackson, B. L.

    The NASA Science Mission Directorate (SMD) administers a portion of the Small Business Innovative Research (SBIR) Program. One of the challenges of administrating this program is to balance the need to foster innovation in small businesses and the need to demonstrate commercialization by infusion into NASA. Because of the often risky nature of innovation, SBIR programs will tend to drift into a status that rewards proposals that promise to deliver a product that is exactly what was specified in the call. This often will satisfy the metric of providing a clear demonstration of infusion and thus also providing a publishable success story. However, another goal of the SBIR program is to foster innovation as a national asset. Even though data from commercially successful SMD SBIR tasks indicate a higher value for less innovative efforts, there are programmatic and national reasons to balance the program toward risking a portion of the portfolio on higher innovation tasks. Establishing this balance is made difficult because there is a reward metric for successful infusion and commercialization, but none for successful innovation. In general, the ultimate infusion and commercialization of innovative solutions has a lower probability than implementation of established ideas, but they can also have a much higher return on investment. If innovative ideas are valued and solicited in the SBIR program, then NASA technology requirements need to be specified in a way that defines the problem and possible solution, but will also allow for different approaches and unconventional methods. It may also be necessary to establish a guideline to risk a percentage of awards on these innovations.

  4. The icy Jovian satellites after the Galileo mission

    NASA Astrophysics Data System (ADS)

    Greenberg, Richard

    2010-03-01

    The icy satellites of Jupiter, Callisto, Ganymede, Europa and Amalthea have diverse and remarkable characteristics. Their initial compositions were determined by conditions in the circum-Jovian nebula, just as the planets' initial properties were governed by their formation within the circumsolar nebula. The satellites subsequently evolved under the complex interplay of orbital and geophysical processes, especially the effects of orbital resonances, tides, internal differentiation and heat. The history and character of the satellites can be inferred from consideration of the formation of planets and the satellites, from studies of their plausible orbital evolution, from measurements of geophysical properties, especially gravitational and magnetic fields, from observations of the compositions and geological structure of their surfaces and from theoretical modeling of the processes that connect these lines of evidence. The three large icy satellites probably contain significant liquid water: Europa has a deep liquid water ocean under a thin surface layer of ice; Ganymede and Callisto likely have relatively thin liquid water layers deep below their surfaces. Models of formation are challenged by the surprising properties of the outermost and innermost of the group: Callisto is partially differentiated, with rock and ice mixed through much of its interior; and tiny Amalthea also appears to be largely composed of ice. Each of the four moons is fascinating in its own right, and the ensemble provides a powerful set of constraints on the processes that led to their formation and evolution.

  5. Engaging the Public in the Discovery of Other Worlds: The Kepler Discovery Mission Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    DeVore, E. K.; Gould, A. D.; Harman, P. K.; Koch, D. G.

    2005-12-01

    Are we alone? Are there other worlds like our own? Astronomers are discovering large planets, but can smaller planets - new Earths - be found? These are powerful and exciting questions that motivate student learning and public interest in NASA's Kepler Discovery Mission's search for planets. Continual discoveries of extrasolar planets have sparked broad public interest, and Kepler will expand this search to discover planets like our own. The Kepler Mission Education and Public Outreach (EPO) program focuses on the excitement of discovering Earth-size planets in the habitable zone to enhance student learning and public interest in astronomy and physics. Kepler will launch in 2008, to begin searching for extrasolar Earths. During the first year, we expect Kepler to rapidly detect large planets similar to 51 Peg and smaller Earth-size planets in Mercury-like orbits. By the fourth year, we anticipate the discovery Earth-size planets in habitable zones. The Kepler EPO program began October 2002 and will continue through at least 2012, and our goals and plans are presented in this poster. The EPO program is scoped to build public interest during development, and to engage students and the public throughout the initial four-year, on-orbit mission and beyond if an extended mission is conducted. The EPO goals are to increase public awareness and understanding of the Kepler Mission by embodying key principles of NASA's ``Partners in Education" and ``Implementing the OSS Education/ Public Outreach Strategy:" involve scientists and contractors in EPO efforts, establish collaborations with planetariums and science museums, and build on existing programs and networks that maximize the leverage of NASA EPO funding in this project. The Kepler EPO plan is designed to take advantage of existing collaborations, networks, experience, and relationships to optimize the impact of EPO. Kepler EPO is funded by NASA's Discovery Mission Program, Science Mission Directorate.

  6. Using Galileo's Own Words in the Physics Classroom

    NASA Astrophysics Data System (ADS)

    Garber, Gary

    2009-10-01

    After years of discussing Galileo using secondary sources, I decided to have my students use Galileo's writings as a primary source of information in their lab reports. The advancements of Google Books and the internet has made it possible for all students to read Aristotle, Galileo, and Newton when exploring the nature of free fall kinematics. I will present links and suggested passages from several sources including Galileo's Dialogues Concerning Two New Sciences.

  7. Mission Operations Directorate - Success Legacy of the Space Shuttle Program (Overview of the Evolution and Success Stories from MOD During the Space Shuttle program)

    NASA Technical Reports Server (NTRS)

    Azbell, Jim A.

    2011-01-01

    In support of the Space Shuttle Program, as well as NASA's other human space flight programs, the Mission Operations Directorate (MOD) at the Johnson Space Center has become the world leader in human spaceflight operations. From the earliest programs - Mercury, Gemini, Apollo - through Skylab, Shuttle, ISS, and our Exploration initiatives, MOD and its predecessors have pioneered ops concepts and emphasized a history of mission leadership which has added value, maximized mission success, and built on continual improvement of the capabilities to become more efficient and effective. This paper provides specific examples that illustrate how MOD's focus on building and contributing value with diverse teams has been key to their successes both with the US space industry and the broader international community. This paper will discuss specific examples for the Plan, Train, Fly, and Facilities aspects within MOD. This paper also provides a discussion of the joint civil servant/contractor environment and the relative badge-less society within MOD. Several Shuttle mission related examples have also been included that encompass all of the aforementioned MOD elements and attributes, and are used to show significant MOD successes within the Shuttle Program. These examples include the STS-49 Intelsat recovery and repair, the (post-Columbia accident) TPS inspection process and the associated R-Bar Pitch Maneuver for ISS missions, and the STS-400 rescue mission preparation efforts for the Hubble Space Telescope repair mission. Since their beginning, MOD has consistently demonstrated their ability to evolve and respond to an ever changing environment, effectively prepare for the expected and successfully respond to the unexpected, and develop leaders, expertise, and a culture that has led to mission and Program success.

  8. AIV Platform for the Galileo Message Generation Facility

    NASA Astrophysics Data System (ADS)

    Oving, B. A.; Zwartbol, T.; Denham, S.; Rennie, M.

    2007-08-01

    The Message Generation Facility (MGF) is an element of the Galileo Mission Segment (GMS) and is responsible for real-time distribution of the navigation, integrity and SAR messages from the processing facilities (OSPF, IPF, ERIS, RLSP) to the Up-Link Stations (ULS). The main objective is to route a message to the correct ULS in time for on-board update of navigation data and integrity data for dissemination to users. The MGF element is being developed by Deimos Space S.L. (Spain). To perform the Assembly, Integration and Verification (AIV) activities of the MGF, a dedicated test platform, MGF-AIVP, is developed by the National Aerospace Laboratory, NLR (the Netherlands). The MGF-AIVP simulates other Elements in the GMS that are connected to the MGF, in real-time. Its focus is to verify the main objective of the MGF.

  9. IMP mission

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The program requirements and operations requirements for the IMP mission are presented. The satellite configuration is described and the missions are analyzed. The support equipment, logistics, range facilities, and responsibilities of the launching organizations are defined. The systems for telemetry, communications, satellite tracking, and satellite control are identified.

  10. Ganymede - Galileo Mosaic Overlayed on Voyager Data in Uruk Sulcus Region

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A mosaic of four Galileo high-resolution images of the Uruk Sulcus region of Jupiter's moon Ganymede is shown within the context of an image of the region taken by Voyager 2 in 1979. The image shows details of parallel ridges and troughs that are the principal features in the brighter regions of Ganymede. The Galileo frames unveil the fine-scale topography of Ganymede's ice-rich surface, permitting scientists to develop a detailed understanding of the processes that have shaped Ganymede. Resolution of the Galileo images is 74 meters (243 feet) per pixel, while resolution of the Voyager image is 1.3 kilometers (0.8 mile) per pixel. In this view, north is to the top, and the sun illuminates the surface from the lower left nearly overhead. The area shown, at latitude 10 degrees north, longitude 168 degrees west, is about 120 by 110 kilometers (75 by 68 miles) in extent. The image was taken June 27 at a range of 7,448 kilometers (4,628 miles). The Jet Propulsion Laboratory manages the Galileo mission for NASA's Office of Space Science.

  11. Long Term Monitoring of the Io Plasma Torus During the Galileo Encounter

    NASA Technical Reports Server (NTRS)

    Brown, Michael E.

    2002-01-01

    In the fall of 1999, the Galileo spacecraft made four passes into the Io plasma torus, obtaining the best in situ measurements ever of the particle and field environment in this densest region of the Jovian magnetosphere. Supporting observations from the ground are vital for understanding the global and temporal context of the in situ observations. We conducted a three-month-long Io plasma torus monitoring campaign centered on the time of the Galileo plasma torus passes to support this aspect of the Galileo mission. The almost-daily plasma density and temperature measurements obtained from our campaign allow the much more sparse but also much more detailed Galileo data to be used to address the issues of the structure of the Io plasma torus, the stability mechanism of the Jovian magnetosphere, the transport of material from the source region near Io, and the nature and source of persistent longitudinal variations. Combining the ground-based monitoring data with the detailed in situ data offers the only possibility for answering some of the most fundamental questions about the nature of the Io plasma torus.

  12. APOLLO 15 Galileo's Gravity Experiment

    NASA Technical Reports Server (NTRS)

    1974-01-01

    APOLLO 15: A demonstration of a classic experiment. From the film documentary 'APOLLO 15 'The mountains of the Moon''', part of a documentary series on the APOLLO missions made in the early '70's and narrated by Burgess Meredith. APOLO 15: Fourth manned lunar landing with David R. Scott, Alfred M. Worden, and James B. Irwin. Landed at Hadley rilleon July 30, 1971;performed EVA with Lunar Roving Vehicle; deployed experiments. P& F Subsattelite spring-launched from SM in lunar orbit. Mission Duration 295 hrs 11 min 53sec

  13. Gaining Momentum: Re-Creating Galileo's Inclined Plane.

    ERIC Educational Resources Information Center

    Albrecht, Bob; Firedrake, George

    1998-01-01

    Provides an excerpt of Galileo's description of his inclined plane experiment. Describes the replication of Galileo's inclined plane experiment by students at Rice University (Texas) using an Internet site called the Galileo Project; then describes the authors' replication of the Project. (AEF)

  14. Space Station Engineering and Technology Development. Proceedings of the Panel on Program Performance and Onboard Mission Control

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An ad-hoc committee was asked to review the following questions relevant to the space station program: (1) onboard maintainability and repair; (2) in-space research and technology program and facility plans; (3) solar thermodynamic research and technology development program planning; (4) program performance (cost estimating, management, and cost avoidance); (5) onboard versus ground-based mission control; and (6) technology development road maps from IOC to the growth station. The objective of these new assignments is to provide NASA with advice on ways and means for improving the content, performance, and/or effectiveness of these elements of the space station program.

  15. Evaluation of “The Space Place,” a NASA Integrated, Multi-mission Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    Fisher, Diane K.; Leon, N. J.

    2006-12-01

    The Space Place is an integrated NASA education and public outreach program, so far representing over 40 different NASA missions. It combines Web-based, printed, and externally published media to reach underserved audiences across the nation. Its primary mission is to develop and provide a highly desirable suite of attractive and educational products designed to appeal to and immerse the general public in space exploration. Its primary target audience is elementary school age kids. The program has developed an extensive network of partnerships with museums and libraries in rural areas, English and Spanish language newspapers, astronomy societies, rocketry clubs, and national youth organizations. Materials are distributed monthly through all these channels. Originally a New Millennium Program (NMP) outreach effort only, it is open to all NASA missions. NMP (a NASA-level program managed out of the Jet Propulsion Laboratory) continues to provide the base of support to build and maintain the outreach program’s infrastructure. Obtaining independent evaluation and reporting of the effectiveness of the program is one of NASA’s requirements for education and public outreach efforts. The Program Evaluation and Research Group (PERG) at Lesley University, Cambridge, MA, was retained to perform this service for The Space Place. PERG is also evaluating education and public outreach programs for NASA’s Science Mission Directorate. PERG recently delivered a report evaluating The Space Place program. Using both qualitative and quantitative methods, PERG surveyed representative samples of Space Place partner museums, astronomy clubs, and newspapers. The survey included questions about all the products the program provides. The report concludes that The Space Place fills a niche by serving small institutions, giving them a personal alliance with NASA that they would otherwise not have. By providing free, quality materials, The Space Place program provides these under

  16. Mars mission program for primary students: Building student and teacher skills in science, technology, engineering and mathematics

    NASA Astrophysics Data System (ADS)

    Mathers, Naomi; Pakakis, Michael; Christie, Ian

    2011-09-01

    The Victorian Space Science Education Centre (VSSEC) scenario-based programs, including the Mission to Mars and Mission to the Orbiting Space Laboratory, utilize methodologies such as hands-on applications, immersive learning, integrated technologies, critical thinking and mentoring. The use of a scenario provides a real-life context and purpose to what students might otherwise consider disjointed information. These programs engage students in the areas of maths and science, and highlight potential career paths in science and engineering. The introduction of a scenario-based program for primary students engages students in maths and science at a younger age, addressing the issues of basic numeracy and science literacy, thus laying the foundation for stronger senior science initiatives. Primary students absorb more information within the context of the scenario, and presenting information they can see, hear, touch and smell creates a memorable learning and sensory experience. The mission also supports development of teacher skills in the delivery of hands-on science and helps build their confidence to teach science. The Primary Mission to the Mars Base gives primary school students access to an environment and equipment not available in schools. Students wear flight suits for the duration of the program to immerse them in the experience of being an astronaut. Astronauts work in the VSSEC Space Laboratory, which is transformed into a Mars base for the primary program, to conduct experiments in areas such as robotics, human physiology, microbiology, nanotechnology and environmental science. Specialist mission control software has been developed by La Trobe University Centre for Games Technology to provide age appropriate Information and Communication Technology (ICT) based problem solving and support the concept of a mission. Students in Mission Control observe the astronauts working in the space laboratory and talk to them via the AV system. This interactive

  17. NASA's J-2X Engine Builds on the Apollo Program for Lunar Return Missions

    NASA Technical Reports Server (NTRS)

    Snoddy, Jimmy R.

    2006-01-01

    In January 2006, NASA streamlined its U.S. Vision for Space Exploration hardware development approach for replacing the Space Shuttle after it is retired in 2010. The revised CLV upper stage will use the J-2X engine, a derivative of NASA s Apollo Program Saturn V s S-II and S-IVB main propulsion, which will also serve as the Earth Departure Stage (EDS) engine. This paper gives details of how the J- 2X engine effort mitigates risk by building on the Apollo Program and other lessons learned to deliver a human-rated engine that is on an aggressive development schedule, with first demonstration flight in 2010 and human test flights in 2012. It is well documented that propulsion is historically a high-risk area. NASA s risk reduction strategy for the J-2X engine design, development, test, and evaluation is to build upon heritage hardware and apply valuable experience gained from past development efforts. In addition, NASA and its industry partner, Rocketdyne, which originally built the J-2, have tapped into their extensive databases and are applying lessons conveyed firsthand by Apollo-era veterans of America s first round of Moon missions in the 1960s and 1970s. NASA s development approach for the J-2X engine includes early requirements definition and management; designing-in lessons learned from the 5-2 heritage programs; initiating long-lead procurement items before Preliminary Desi& Review; incorporating design features for anticipated EDS requirements; identifying facilities for sea-level and altitude testing; and starting ground support equipment and logistics planning at an early stage. Other risk reduction strategies include utilizing a proven gas generator cycle with recent development experience; utilizing existing turbomachinery ; applying current and recent main combustion chamber (Integrated Powerhead Demonstrator) and channel wall nozzle (COBRA) advances; and performing rigorous development, qualification, and certification testing of the engine system

  18. Globalization of Craniofacial Plastic Surgery: Foreign Mission Programs for Cleft Lip and Palate

    PubMed Central

    Laub, Donald R.

    2015-01-01

    Abstract International Humanitarian Interchanges are a bona fide component of surgery and medicine. Additionally, these programs also provide substantial benefit both to the doers and the recipients. The foreign mission program is potentially a weapon of foreign policy which is underutilized and underestimated. Physician job dissatisfaction is increasing. However, the happiness and satisfaction of the participants in the short-term multidisciplinary trips, repeated, well-organized and respectful, with rather complete integration of the surgical system of the sister countries (“Plan B”), approaches 100%. The theory of the International Humanitarian Interchanges is based on substance, on medical theory. These trips are particularly successful in interchanges with medium-resourced countries. Furthermore, the academic visiting professor (“Plan A”: hi-resource place to hi-resource place), the One Man Can Save the World model (“Plan C”: to the low-resource place), and the intriguing Horton Peace Plan have possibilities for long-term benefit to the doer, recipient, the field of surgery, and the body of knowledge. In all of these, our country and the family of nations advance. The theoretical basis is not always religious nor the grand strategy plan; both have either proselytizing or political dominance as primary motives, and are mentioned as historically helpful. PMID:26080114

  19. The Evolution of the NASA Commercial Crew Program Mission Assurance Process

    NASA Technical Reports Server (NTRS)

    Canfield, Amy C.

    2016-01-01

    In 2010, the National Aeronautics and Space Administration (NASA) established the Commercial Crew Program (CCP) in order to provide human access to the International Space Station and low Earth orbit via the commercial (non-governmental) sector. A particular challenge to NASA has been how to determine that the Commercial Provider's transportation system complies with programmatic safety requirements. The process used in this determination is the Safety Technical Review Board which reviews and approves provider submitted hazard reports. One significant product of the review is a set of hazard control verifications. In past NASA programs, 100% of these safety critical verifications were typically confirmed by NASA. The traditional Safety and Mission Assurance (S&MA) model does not support the nature of the CCP. To that end, NASA S&MA is implementing a Risk Based Assurance process to determine which hazard control verifications require NASA authentication. Additionally, a Shared Assurance Model is also being developed to efficiently use the available resources to execute the verifications.

  20. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  1. OGO program summary, supplement 1. [updated bibliography for all OGO missions and scientific results from OGO 5 and 6 missions

    NASA Technical Reports Server (NTRS)

    Jackson, J. E.

    1978-01-01

    Scientific results from OGO-5 and OGO-6 experiments are summarized and approximately 200 citations are included to update the 1975 OGO bibliography. Personal author, subject, and corporate source indexes are included. The supplement follows the same format as that of the OGO Program Summary; it does not repeat the finalized information in the original publication, which should be consulted for indexes of experiments, experimenters, institutions, and the glossary of abbreviations and acronyms.

  2. Scaling Laws in Galileo: An Educational Proposal

    ERIC Educational Resources Information Center

    Straulino, S.

    2011-01-01

    In his "Two New Sciences" Galileo Galilei deals with the strength of objects, discussing how it changes with size. Our daily life offers many examples of effects due to change of dimensions and sometimes the consequences are unintuitive. This subject is really interesting for secondary school students and it can be presented through simple…

  3. Status of Galileo interim radiation electron model

    NASA Technical Reports Server (NTRS)

    Garrett, H. B.; Jun, I.; Ratliff, J. M.; Evans, R. W.; Clough, G. A.; McEntire, R. W.

    2003-01-01

    Measurements of the high energy, omni-directional electron environment by the Galileo spacecraft Energetic Particle Detector (EDP) were used to develop a new model of Jupiter's trapped electron radiation in the jovian equatorial plane for the range 8 to 16 Jupiter radii.

  4. Galileo, Gauss, and the Green Monster

    ERIC Educational Resources Information Center

    Kalman, Dan; Teague, Daniel J.

    2013-01-01

    Galileo dropped cannonballs from the leaning tower of Pisa to demonstrate something about falling bodies. Gauss was a giant of mathematics and physics who made unparalleled contributions to both fields. More contemporary (and not a person), the Green Monster is the left-field wall at the home of the Boston Red Sox, Fenway Park. Measuring 37 feet…

  5. Mission Control Operations: Employing a New High Performance Design for Communications Links Supporting Exploration Programs

    NASA Technical Reports Server (NTRS)

    Jackson, Dan E., Jr.

    2015-01-01

    The planetary exploration programs demand a totally new examination of data multiplexing, digital communications protocols and data transmission principles for both ground and spacecraft operations. Highly adaptive communications devices on-board and on the ground must provide the greatest possible transmitted data density between deployed crew personnel, spacecraft and ground control teams. Regarding these requirements, this proposal borrows from research into quantum mechanical computing by applying the concept of a qubit, a single bit that represents 16 states, to radio frequency (RF) communications link design for exploration programs. This concept of placing multiple character values into a single data bit can easily make the evolutionary steps needed to meet exploration mission demands. To move the qubit from the quantum mechanical research laboratory into long distance RF data transmission, this proposal utilizes polarization modulation of the RF carrier signal to represent numbers from zero to fifteen. It introduces the concept of a binary-to-hexadecimal converter that quickly chops any data stream into 16-bit words and connects variously polarized feedhorns to a single-frequency radio transmitter. Further, the concept relies on development of a receiver that uses low-noise amplifiers and an antenna array to quickly assess carrier polarity and perform hexadecimal to binary conversion. Early testbed experiments using the International Space Station (ISS) as an operations laboratory can be implemented to provide the most cost-effective return for research investment. The improvement in signal-to-noise ratio while supporting greater baseband data rates that could be achieved through this concept justifies its consideration for long-distance exploration programs.

  6. Guidance system operations plan for manned cm earth orbital and lunar missions using program Colossus 3. Section 2: Data links

    NASA Technical Reports Server (NTRS)

    Hamilton, M. H.

    1971-01-01

    The data links for use with the guidance system operations plan for manned command module earth orbital and lunar missions using program Colossus 3 are presented. The subjects discussed are: (1) digital uplink to CMC, (2) command module contiguous block update, (3) CMC retrofire external data update, (4) CMC digital downlink, and (5) CMC entry update.

  7. Guidance system operations plan for manned CM earth orbital missions using program Skylark 1. Section 2: Data links

    NASA Technical Reports Server (NTRS)

    Hamilton, M. H.

    1972-01-01

    A computer program to define the digital uplink and downlink for use in manned command module orbital missions is presented. The subjects discussed are: (1) digital uplink to command module, (2) CMC digital downlink, (3) downlist formats, (4) description of telemetered qualities, (5) flagbits, and (6) effects of Fresh Start (V36) and Hardware Restart on flagword and channel bits.

  8. Developing and Evaluating a Student Scholars Program to Engage Students with the University's Public Service and Outreach Mission

    ERIC Educational Resources Information Center

    Matthews, Paul H.

    2012-01-01

    A "student scholars" program was developed to engage undergraduates at a large, public, land-grant research university with its public service and outreach mission, through cohort meetings, supervised internships, and site visits. Qualitative and pre-/post-participation quantitative data from the first cohort of 10 students show that participants…

  9. Galileo In-Situ Dust Measurements and the Physics of Jupiter's Gossamer Rings

    NASA Astrophysics Data System (ADS)

    Krueger, H.; Hamilton, D. P.; Moissl, R.; Gruen, E.

    2007-12-01

    During its late orbital mission about Jupiter, the Galileo spacecraft flew twice through the giant planet's gossamer ring system. The dusty ring material is produced when interplanetary impactors collide with embedded moonlets. Optical images imply that the rings are constrained both horizontally and vertically by the orbits of the moons Amalthea and Thebe with the exception of a faint outward protrusion called the Thebe Extension. During the ring passages, the Galileo impact-ionization dust detector counted a few thousand impacts but only about 100 complete data sets of dust impacts (i.e. impact time, impact speed, mass, impact direction, etc.) were successfully transmitted to Earth. The instrument verified the outward extension of the gossamer ring beyond Thebe's orbit and measured a major reduction in particle ring material interior to Thebe's orbit. The existence of this partially evacuated gap in ring material is also indirectly confirmed by Galileo in-situ energetic particle measurements (Norbert Krupp, priv. comm.). Detected particle sizes range from about 0.2 to 4 micron, extending the size distribution by an order of magnitude towards smaller particles than previously derived from optical imaging (Showalter et al., Icarus 2007). The grain size distribution increases towards smaller grains, showing a much higher proportion of small particles in the Amalthea gossamer ring than in the Thebe ring and the Thebe Extension. Our analysis shows that particles contributing most to the optical cross-section are about 4 micron in radius, in agreement with imaging results. Finally, Galileo also detected some micron and sub-micron grains on highly inclined orbits with inclinations up to 20 degrees. Recent modelling (Hamilton & Krueger, Nature, submitted) shows that time variable electromagnetic effects can account for all of these surprising results. In particular, when the ring particles travel through Jupiter's shadow, dust grain electric charges vary systematically

  10. The final Galileo SSI observations of Io: Orbits G28-I33

    USGS Publications Warehouse

    Turtle, E.P.; Keszthelyi, L.P.; McEwen, A.S.; Radebaugh, J.; Milazzo, M.; Simonelli, D.P.; Geissler, P.; Williams, D.A.; Perry, J.; Jaeger, W.L.; Klaasen, K.P.; Breneman, H.H.; Denk, T.; Phillips, C.B.

    2004-01-01

    We present the observations of Io acquired by the Solid State Imaging (SSI) experiment during the Galileo Millennium Mission (GMM) and the strategy we used to plan the exploration of Io. Despite Galileo's tight restrictions on data volume and downlink capability and several spacecraft and camera anomalies due to the intense radiation close to Jupiter, there were many successful SSI observations during GMM. Four giant, high-latitude plumes, including the largest plume ever observed on Io, were documented over a period of eight months; only faint evidence of such plumes had been seen since the Voyager 2 encounter, despite monitoring by Galileo during the previous five years. Moreover, the source of one of the plumes was Tvashtar Catena, demonstrating that a single site can exhibit remarkably diverse eruption styles - from a curtain of lava fountains, to extensive surface flows, and finally a ??? 400 km high plume - over a relatively short period of time (??? 13 months between orbits 125 and G29). Despite this substantial activity, no evidence of any truly new volcanic center was seen during the six years of Galileo observations. The recent observations also revealed details of mass wasting processes acting on Io. Slumping and landsliding dominate and occur in close proximity to each other, demonstrating spatial variation in material properties over distances of several kilometers. However, despite the ubiquitous evidence for mass wasting, the rate of volcanic resurfacing seems to dominate; the floors of paterae in proximity to mountains are generally free of debris. Finally, the highest resolution observations obtained during Galileo's final encounters with Io provided further evidence for a wide diversity of surface processes at work on Io. ?? 2003 Elsevier Inc. All rights reserved.

  11. Sentinel-3 SAR Altimetry Toolbox - Scientific Exploitation of Operational Missions (SEOM) Program Element

    NASA Astrophysics Data System (ADS)

    Benveniste, Jérôme; Lucas, Bruno; Dinardo, Salvatore

    2014-05-01

    The prime objective of the SEOM (Scientific Exploitation of Operational Missions) element is to federate, support and expand the large international research community that the ERS, ENVISAT and the Envelope programmes have build up over the last 20 years for the future European operational Earth Observation missions, the Sentinels. Sentinel-3 builds directly on a proven heritage pioneered by ERS-1, ERS-2, Envisat and CryoSat-2, with a dual-frequency (Ku and C band) advanced Synthetic Aperture Radar Altimeter (SRAL) that provides measurements at a resolution of ~300m in SAR mode along track. Sentinel-3 will provide exact measurements of sea-surface height along with accurate topography measurements over sea ice, ice sheets, rivers and lakes. The first of the Sentinel-3 series is planned for launch in early 2015. The current universal altimetry toolbox is BRAT (Basic Radar Altimetry Toolbox) which can read all previous and current altimetry mission's data, but it does not have the capabilities to read the upcoming Sentinel-3 L1 and L2 products. ESA will endeavour to develop and supply this capability to support the users of the future Sentinel-3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales, the French Space Agency), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats, the BratGUI is the front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with Matlab/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as net

  12. Testing the Interstellar Wind Helium Flow Direction with Galileo Euvs Data

    NASA Astrophysics Data System (ADS)

    Pryor, W. R.; Simmons, K. E.; Ajello, J. M.; Tobiska, W. K.; Retherford, K. D.; Stern, S. A.; Feldman, P. D.; Frisch, P. C.; Bzowski, M.; Grava, C.

    2014-12-01

    Forty years of measurements of the flow of interstellar helium through the heliosphere suggest that variations of the flow direction with time are possible. We will model Galileo Extreme Ultraviolet Spectrometer (EUVS) data to determine the best-fitting flow direction and compare it to values obtained by other spacecraft. The Galileo EUVS (Hord et al., 1992) was mounted on the spinning part of the spacecraft and obtained interstellar wind hydrogen Lyman-alpha 121.6 nm and helium 58.4 nm data on great circles passing near the ecliptic poles during the interplanetary cruise phase of the mission and also during the Jupiter orbital phase of the mission. The Galileo hydrogen cruise data have been previously published (Hord et al., 1991, Pryor et al., 1992; 1996; 2001), but the helium data have not. Our model was previously used by Ajello et al., 1978, 1979 to model Mariner 10 interstellar wind helium data, and by Stern et al., 2012 and Feldman et al., 2012 to model the interplanetary helium background near the moon in Lunar Reconnaissance Orbiter (LRO) Lyman-alpha Mapping Project (LAMP) data. The model has been updated to include recent determinations of daily helium 58.4 nm solar flux variations and helium losses due to EUV photoionization and electron impact ionization.

  13. Shuttle spacelab simulation using a Lear jet aircraft: Mission no. 3 (ASSESS program)

    NASA Technical Reports Server (NTRS)

    Reller, J. O., Jr.; Neel, C. B.; Mason, R. H.

    1974-01-01

    The third ASSESS mission using a Lear Jet aircraft conducted to continue the study of scientific experiment operations in a simulated Spacelab environment. Prior to the mission, research planning and equipment preparation were observed and documented. A flight readiness review for the experiment was conducted. Nine of the ten scheduled flights were completed during simulation mission and all major science objectives were accomplished. The equipment was well qualified for flight and gave little trouble; telescope malfunctions occurred early in the mission and were corrected. Both real-time and post-observation data evaluation were used to assess research progress and to plan subsequent flight observations for maximum effectiveness.

  14. Time variable gravity retrieval and treatment of temporal aliasing using optical two-way links between GALILEO and LEO satellites

    NASA Astrophysics Data System (ADS)

    Hauk, Markus; Pail, Roland; Murböck, Michael; Schlicht, Anja

    2016-04-01

    For the determination of temporal gravity fields satellite missions such as GRACE (Gravity Recovery and Climate Experiment) or CHAMP (Challenging Minisatellite Payload) were used in the last decade. These missions improved the knowledge of atmospheric, oceanic and tidal mass variations. The most limiting factor of temporal gravity retrieval quality is temporal aliasing due to the undersampling of high frequency signals, especially in the atmosphere and oceans. This kind of error causes the typical stripes in spatial representations of global gravity fields such as from GRACE. As part of the GETRIS (Geodesy and Time Reference in Space) mission, that aims to establish a geodetic reference station and precise time- and frequency reference in space by using optical two-way communication links between geostationary (GEO) and low Earth orbiting (LEO) satellites, a possible future gravity field mission can be set up. By expanding the GETRIS space segment to the global satellite navigation systems (GNSS) the optical two-way links also connect the GALILEO satellites among themselves and to LEO satellites. From these links between GALILEO and LEO satellites gravitational information can be extracted. In our simulations inter-satellite links between GALILEO and LEO satellites are used to determine temporal changes in the Earth's gravitational field. One of the main goals of this work is to find a suitable constellation together with the best analysis method to reduce temporal aliasing errors. Concerning non-tidal aliasing, it could be shown that the co-estimation of short-period long-wavelength gravity field signals, the so-called Wiese approach, is a powerful method for aliasing reduction (Wiese et al. 2013). By means of a closed loop mission simulator using inter-satellite observations as acceleration differences along the line-of-sight, different mission scenarios for GALILEO-LEO inter-satellite links and different functional models like the Wiese approach are analysed.

  15. [Experimental studies with mice on the program of the biosatellite BION-M1 mission].

    PubMed

    Andreev-Andrievsky, A A; Shenkman, B S; Popova, A S; Dolguikh, O N; Anokhin, K V; Soldatov, P E; Ilyin, E A; Sychev, V N

    2014-01-01

    Purpose of the BION-M1 project was laying the evidence and technological basis for addressing the medical issues of future remote space exploration missions by humans. The program of researches with the use of mice was focused on elicitation of cellular and molecular mechanisms of the muscular, cardiovascular and immune reactions to extended exposure in microgravity. The comprehensive studies combined lifetime measurements with investigations of mice tissues and cells by dint of the cutting-edge morphological, biochemical and molecular biology techniques. Males of mice C57/BL6 aged 4 to 5 months were chosen as the object of studies. They were distributed into the flight, ground control and two vivarium (laboratory control) groups and investigated immediately on return and after 7 days of readaptation. Some of the physiological functions were recorded throughout the flight. To ensure wellbeing of the animals in the experiments and to enhance data quality, prior to launch the mice were specially trained so as to accommodate to the group living, eating space food, and in-flight stress factors. Those of the mice that were designated for lifetime investigations were tested and received training pre-launch. PMID:25033610

  16. Re-Analysis of Galileo Cassini & Voyager EUV Observations of the Io Plasma Torus

    NASA Astrophysics Data System (ADS)

    Nerney, E. G.

    2015-12-01

    We present a survey of conditions observed in the Io plasma torus from the Voyager flyby, throughout the Galileo mission (1995 to 2003), & the Cassini flyby of Jupiter (fall 2000 to spring 2001). On the Cassini spacecraft the UVIS instrument made extensive observations of the spatial and temporal variations of torus emissions (Steffl et al. 2004, 2006). We re-analyze the Voyager, Galileo & Cassini EUV observations of torus emissions with a physical chemistry model based on Delamere et al. (2004) to derive modest spatial and temporal variations in torus model parameters (transport time, neutral source, population of hot electrons, ratio of neutral oxygen to sulfur atoms in the source). Torus plasma conditions (Temperature and mixing ratios of the different model species) derived from these emissions are also compared with in situ measurements by the Voyager PLS instruments and ground-based observations of torus emissions.

  17. Subjective evaluations of integer cosine transform compressed Galileo solid state imagery

    NASA Astrophysics Data System (ADS)

    Haines, Richard F.; Gold, Yaron; Grant, Terry; Chuang, Sherry

    1994-07-01

    This paper describes a study conducted for the Jet Propulsion Laboratory, Pasadena, California, using 15 evaluators from 12 institutions involved in the Galileo Solid State Imaging (SSI) experiment. The objective of the study was to determine the impact of integer cosine transform (ICT) compression using specially formulated quantization (q) tables and compression ratios on acceptability of the 800 x 800 x 8 monochromatic astronomical images as evaluated visually by Galileo SSI mission scientists. Fourteen different images in seven image groups were evaluated. Each evaluator viewed two versions of the same image side by side on a high-resolution monitor; each was compressed using a different q level. First the evaluators selected the image with the highest overall quality to support them in their visual evaluations of image content. Next they rated each image using a scale from one to five indicating its judged degree of usefulness. Up to four preselected types of images with and without noise were presented to each evaluator.

  18. Hot spots on Io: Initial results from Galileo's near infrared mapping spectrometer

    USGS Publications Warehouse

    Lopes-Gautier, R.; Davies, A.G.; Carlson, R.; Smythe, W.; Kamp, L.; Soderblom, L.; Leader, F.E.; Mehlman, R.

    1997-01-01

    The Near-Infrared Mapping Spectrometer on Galileo has monitored the volcanic activity on Io since June 28, 1996. This paper presents preliminary analysis of NIMS thermal data for the first four orbits of the Galileo mission. NIMS has detected 18 new hot spots and 12 others which were previously known to be active. The distribution of the hot spots on Io's surface may not be random, as hot spots surround the two bright, SO2-rich regions of Bosphorus Regio and Colchis Regio. Most hot spots seem to be persistently active from orbit to orbit and 10 of those detected were active in 1979 during the Voyager encounters. We report the distribution of hot spot temperatures and find that they are consistent with silicate volcanism. Copyright 1997 by the American Geophysical Union.

  19. Subjective evaluations of integer cosine transform compressed Galileo solid state imagery

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.; Gold, Yaron; Grant, Terry; Chuang, Sherry

    1994-01-01

    This paper describes a study conducted for the Jet Propulsion Laboratory, Pasadena, California, using 15 evaluators from 12 institutions involved in the Galileo Solid State Imaging (SSI) experiment. The objective of the study was to determine the impact of integer cosine transform (ICT) compression using specially formulated quantization (q) tables and compression ratios on acceptability of the 800 x 800 x 8 monochromatic astronomical images as evaluated visually by Galileo SSI mission scientists. Fourteen different images in seven image groups were evaluated. Each evaluator viewed two versions of the same image side by side on a high-resolution monitor; each was compressed using a different q level. First the evaluators selected the image with the highest overall quality to support them in their visual evaluations of image content. Next they rated each image using a scale from one to five indicating its judged degree of usefulness. Up to four preselected types of images with and without noise were presented to each evaluator.

  20. Development of a prototype interactive learning system using multi-media technology for mission independent training program

    NASA Technical Reports Server (NTRS)

    Matson, Jack E.

    1992-01-01

    The Spacelab Mission Independent Training Program provides an overview of payload operations. Most of the training material is currently presented in workbook form with some lecture sessions to supplement selected topics. The goal of this project was to develop a prototype interactive learning system for one of the Mission Independent Training topics to demonstrate how the learning process can be improved by incorporating multi-media technology into an interactive system. This report documents the development process and some of the problems encountered during the analysis, design, and production phases of this system.

  1. Active Volcanism on Io as Seen by Galileo SSI

    USGS Publications Warehouse

    McEwen, A.S.; Keszthelyi, L.; Geissler, P.; Simonelli, D.P.; Carr, M.H.; Johnson, T.V.; Klaasen, K.P.; Breneman, H.H.; Jones, T.J.; Kaufman, J.M.; Magee, K.P.; Senske, D.A.; Belton, M.J.S.; Schubert, G.

    1998-01-01

    Active volcanism on Io has been monitored during the nominal Galileo satellite tour from mid 1996 through late 1997. The Solid State Imaging (SSI) experiment was able to observe many manifestations of this active volcanism, including (1) changes in the color and albedo of the surface, (2) active airborne plumes, and (3) glowing vents seen in eclipse. About 30 large-scale (tens of kilometers) surface changes are obvious from comparison of the SSI images to those acquired by Voyager in 1979. These include new pyroclastic deposits of several colors, bright and dark flows, and caldera-floor materials. There have also been significant surface changes on Io during the Galileo mission itself, such as a new 400-km-diameter dark pyroclastic deposit around Pillan Patera. While these surface changes are impressive, the number of large-scale changes observed in the four months between the Voyager 1 and Voyager 2 flybys in 1979 suggested that over 17 years the cumulative changes would have been much more impressive. There are two reasons why this was not actually the case. First, it appears that the most widespread plume deposits are ephemeral and seem to disappear within a few years. Second, it appears that a large fraction of the volcanic activity is confined to repeated resurfacing of dark calderas and flow fields that cover only a few percent of Io's surface. The plume monitoring has revealed 10 active plumes, comparable to the 9 plumes observed by Voyager. One of these plumes was visible only in the first orbit and three became active in the later orbits. Only the Prometheus plume has been consistently active and easy to detect. Observations of the Pele plume have been particularly intriguing since it was detected only once by SSI, despite repeated attempts, but has been detected several times by the Hubble Space Telescope at 255 nm. Pele's plume is much taller (460 km) than during Voyager 1 (300 km) and much fainter at visible wavelengths. Prometheus-type plumes (50

  2. Active Volcanism on Io as Seen by Galileo SSI

    NASA Astrophysics Data System (ADS)

    McEwen, Alfred S.; Keszthelyi, Laszlo; Geissler, Paul; Simonelli, Damon P.; Carr, Michael H.; Johnson, Torrence V.; Klaasen, Kenneth P.; Breneman, H. Herbert; Jones, Todd J.; Kaufman, James M.; Magee, Kari P.; Senske, David A.; Belton, Michael J. S.; Schubert, Gerald

    1998-09-01

    Active volcanism on Io has been monitored during the nominal Galileo satellite tour from mid 1996 through late 1997. The Solid State Imaging (SSI) experiment was able to observe many manifestations of this active volcanism, including (1) changes in the color and albedo of the surface, (2) active airborne plumes, and (3) glowing vents seen in eclipse. About 30 large-scale (tens of kilometers) surface changes are obvious from comparison of the SSI images to those acquired by Voyager in 1979. These include new pyroclastic deposits of several colors, bright and dark flows, and caldera-floor materials. There have also been significant surface changes on Io during the Galileo mission itself, such as a new 400-km-diameter dark pyroclastic deposit around Pillan Patera. While these surface changes are impressive, the number of large-scale changes observed in the four months between the Voyager 1 and Voyager 2 flybys in 1979 suggested that over 17 years the cumulative changes would have been much more impressive. There are two reasons why this was not actually the case. First, it appears that the most widespread plume deposits are ephemeral and seem to disappear within a few years. Second, it appears that a large fraction of the volcanic activity is confined to repeated resurfacing of dark calderas and flow fields that cover only a few percent of Io's surface. The plume monitoring has revealed 10 active plumes, comparable to the 9 plumes observed by Voyager. One of these plumes was visible only in the first orbit and three became active in the later orbits. Only the Prometheus plume has been consistently active and easy to detect. Observations of the Pele plume have been particularly intriguing since it was detected only once by SSI, despite repeated attempts, but has been detected several times by the Hubble Space Telescope at 255 nm. Pele's plume is much taller (460 km) than during Voyager 1 (300 km) and much fainter at visible wavelengths. Prometheus-type plumes (50

  3. Apollo guidance, navigation and control: Guidance system operations plan for manned CM earth orbital and lunar missions using Program COLOSSUS 3. Section 3: Digital autopilots (revision 14)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Digital autopilots for the manned command module earth orbital and lunar missions using program COLOSSUS 3 are discussed. Subjects presented are: (1) reaction control system digital autopilot, (2) thrust vector control autopilot, (3) entry autopilot and mission control programs, (4) takeover of Saturn steering, and (5) coasting flight attitude maneuver routine.

  4. Welding isotopic heat sources for the cassini mission to Saturn

    SciTech Connect

    Franco-Ferreira, E.A.; George, T.G.

    1994-12-31

    In 1997 NASA will launch the Cassini scientific probe to the planet Saturn. Electric power for this probe will be provided by radioisotope thermoelecric generators thermally driven by general-purpose heat source modules. Each module contains four, 150-g pellets of {sup 238}PuO{sub 2}, individually encapsulated within a thin wall iridium-alloy shell. For the Galileo/Ulysses missions, assembly and welding took an average of 90 min per capsule. the work was done in a hot cell and the potential for personnel radiation exposure was not unduly high. The iridium alloy, from which the clad cups are made, contains a small amount of thorium to improve ductility and minimize grain growth. It has been shown that the thorium contributes to hot shortness which caused significant weld cracking during Galileo/Ulysses production. program requirements dictated that all operations provide high levels of process quality assurance. As a result, the welding system was configured to acquire copious amounts of digitized QA information. Early production operation of the welding systems has proven the ability to meet all program goals. For example, in the course of making approximately 60 girth welds during procedure qualification and safety impact testing, no rejectable weld defects have been found.

  5. Interview with Julie Viveros, RN, Director of Nursing, Charlotte Rescue Mission, Rebound men's program. Interview by Joan Kub.

    PubMed

    Viveros, Julie; Kub, Joan

    2014-01-01

    The Charlotte Rescue Mission is a 90-day residential program that serves approximately 530 men and 365 women experiencing the disease of addiction annually. It has a long rich history and has been serving the Charlotte community for over 75 years for men and almost 25 years for women. "The men's program provides a five-fold, client-centered treatment approach addressing spiritual, mental, physical, social, and vocational needs to battle addiction. The objective is to help individuals fighting addiction and homelessness to accomplish spiritual, mental, physical, social, and vocational goals and be free of addiction." "Dove's Nest, Charlotte Rescue Mission's women's recovery program, opened its doors in 1992. The program provides a structured, yet loving and stable living environment, with a dedicated staff aimed at helping women understand and deal with the core issues of addiction as a disease". (Web site: http:// charlotterescuemission.org/). I had the privilege of interviewing Julie Viveros, RN, the Director of Nursing for the Rebound men's program, about her unique role at the Rescue Mission.

  6. Significant Science from a Saturn Atmospheric Entry Probe Mission

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.; Atkinson, D. H.; Atreya, S. K.; Colaprete, A.; Spilker, L. J.

    2011-12-01

    A single planet cannot be understood in isolation. Comparative studies of gas and ice giant planets' atmospheres are needed to understand the origin and evolution of the solar system and the giant planets, formation of giant planet atmospheres, and to provide a valuable link to extrasolar planets. Giant planets' tropospheres and interiors contain material from the epoch of solar system formation. Some of these materials are expected to be unprocessed and thus would reflect the protosolar nebula's composition at the time and location of each planet's formation. Other materials will have been extensively processed, reflecting a planet's evolutionary processes. Beginning with the Pioneer and Voyager flybys, space flight missions began assembling data sets needed for these comparisons. The Galileo orbiter and probe mission provided both remote sensing and the first in situ studies of Jupiter's atmosphere. Comparable understanding of Saturn, Uranus and Neptune would provide an important comparative planetology context for the Galileo Jupiter results. The Cassini orbiter continues to yield a wealth of discoveries about Saturn's atmosphere from its remote sensing measurements, and its "Proximal Orbits" (2016 and 2017) will provide knowledge of Saturn's internal structure to complement the Juno mission's measurements at Jupiter. A Saturn entry probe mission, to complement the Galileo Probe investigations at Jupiter, would complete a solid basis for improved understanding of both Jupiter and Saturn, and an important stepping stone to understanding Uranus and Neptune, and the formation and evolution of the solar system. The draft "2012 Planetary Science Decadal Survey" (PSDS), released in March 2011, supports the high priority of a Saturn entry probe mission, recommending its addition to NASA's New Frontiers Program. It lists two levels of science objectives: Tier 1, highest-priority objectives that any New Frontiers implementation must achieve; and Tier 2, high priorities

  7. Safety analysis for the Galileo light-weight radioisotope heater unit

    NASA Astrophysics Data System (ADS)

    Johnson, Ernest W.

    The Light-Weight Radioisotope Heater Unit (LWRHU) will be used on the NASA Galileo Mission to provide thermal energy to the various systems on the orbiter and probe that are adversely affected by the low temperature a spacecraft encounters during a long interplanetary mission. Using these plutonia-fueled sources in 1-W increments permits employment of a single design and provides the spacecraft user the option of how many to use and where to position them to satisfy the proper thermal environment for components requiring such consideration. The use of the radioisotope Pu 238 in these devices necessitates the assessment of postulated radiological risks which might be experienced in case of accidents or malfunctions of the space shuttle or the spacecraft during phases of the mission in the vicinity of the earth. Included are data for the design, mission descriptions, postulated accidents with their consequences, test data, and the derived source terms and personnel exposures for the various events.

  8. Orbit determination covariance analysis for the Deep Space Program Science Experiment mission

    NASA Technical Reports Server (NTRS)

    Beckman, M.; Yee, C.; Lee, T.; Hoppe, M.; Oza, D.

    1993-01-01

    To define an appropriate orbit support procedure for the DSPSE mission, detailed permission orbit determination covariance analyses have been performed for the translunar and trans-Geographos mission phases. Preliminary analyses were also performed for the lunar mapping mission phase. These analyses are designed to assess the tracking patterns and the amount of tracking data needed to obtain orbit solutions of required accuracy for each mission phase and before and after each major orbit perturbation, such as orbit maneuvers and flybys of the Earth and Moon. In addition to operational orbit determination procedures, these analyses identify major error sources, estimate their contribution to orbital errors, and address possible strategies to reduce orbit determination error. For the lunar orbit phase, several lunar gravity error modeling approaches have been investigated. The covariance analysis results presented in this paper will serve as a guide for providing orbit determination support for the DSPSE mission.

  9. Sentinel-3 SAR Altimetry Toolbox - Scientific Exploitation of Operational Missions (SEOM) Program Element

    NASA Astrophysics Data System (ADS)

    Benveniste, Jérôme; Dinardo, Salvatore; Lucas, Bruno Manuel

    The prime objective of the SEOM (Scientific Exploitation of Operational Missions) element is to federate, support and expand the large international research community that the ERS, ENVISAT and the Envelope programmes have build up over the last 20 years for the future European operational Earth Observation missions, the Sentinels. Sentinel-3 builds directly on a proven heritage pioneered by ERS-1, ERS-2, Envisat and CryoSat-2, with a dual-frequency (Ku and C band) advanced Synthetic Aperture Radar Altimeter (SRAL) that provides measurements at a resolution of ~300m in SAR mode along track. Sentinel-3 will provide exact measurements of sea-surface height along with accurate topography measurements over sea ice, ice sheets, rivers and lakes. The first of the Sentinel-3 series is planned for launch in early 2015. The current universal altimetry toolbox is BRAT (Basic Radar Altimetry Toolbox) which can read all previous and current altimetry mission’s data, but it does not have the capabilities to read the upcoming Sentinel-3 L1 and L2 products. ESA will endeavour to develop and supply this capability to support the users of the future Sentinel-3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d’Etudes Spatiales, the French Space Agency), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats, the BratGUI is the front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with Matlab/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as

  10. Galileo plasma wave observations of iogenic hydrogen

    NASA Astrophysics Data System (ADS)

    Chust, T.; Roux, A.; Perraut, S.; Louarn, P.; Kurth, W. S.; Gurnett, D. A.

    1999-10-01

    The Galileo plasma wave instrument has detected intense electromagnetic wave emissions approximately centered on the second and fourth harmonics of the local proton gyrofrequency during the close equatorial flyby of Io on 7 December 1995. Their frequencies suggest these emissions are likely generated locally by an instability driven by non thermal protons. Given that this process occurs close to Io, we suggest that hydrogen-bearing compounds, escaping from Io, are broken up/ionized near this moon, thereby releasing protons. Newly-created protons are thus injected in the Jovian corotating plasma with the corotation velocity, leading to the formation of a ring in velocity space. Several electromagnetic wave-particle instabilities can be driven by a ring of newborn protons. Given that the corotating plasma is sub-Alfvénic relative to Io, the magnetosonic mode cannot be destabilized by this proton ring. The full dispersion relation is studied using the WHAMP program ( Rönmark, 1982. Rep. 179. Kiruna Geophys. Inst., Kiruna, Sweden) as well as a new algorithm that allows us to fit the distribution function of newborn protons in a more realistic way. This improvement in the ring model is necessary to explain the relative narrowness of the observed spectral peaks. The measured E/ B ratio is also used to identify the relevant instability and wave mode: this mode results from the coupling between the ion Bernstein and the ion cyclotron mode (IBCW). To our knowledge this mode has not yet been studied. From the instability threshold an estimate of the density of newborn protons around Io is thus given; at about 2 Io radii from the surface and 40°W longitude from the sub-Jupiter meridian, this density is found to be ≥0.5% of the local plasma density (˜4000 cm -3), namely ≥20 cm -3. Assuming a stationary pickup process and a r- n distribution of pickup protons within several Io radii of Io's wake, this implies that more than 10 26 protons/s are created around Io. The

  11. Tectonics of the Galileo Regio on Ganymede

    NASA Technical Reports Server (NTRS)

    Thomas, P. G.; Masson, P. L.

    1985-01-01

    The surface of Ganymede consists of dark cratered terrain, and groved terrain. The dark cratered terrains form polygonal units, the largest of which is Galileo Regio, the surface of which is transected by furrows, smooth floored valleys bounded by relatively sharp parallel ridges. The most apparent of them are grouped together and form an apparently arcuate system of subparallel furrows which was mapped using Voyager pictures and plotted on a map using a stereographic projection. With this kind of projection, the main furrow system is not arcuate, but rectilinear. Observations strongly suggest that the Galileo Regio furrow systems are not of impact origin and appear to be irrelevant to discussions about the basins' morphology or evolution of planetary lithosphere determined from multiring structures.

  12. The Galileo star scanner observations at Amalthea

    NASA Astrophysics Data System (ADS)

    Fieseler, Paul D.; Adams, Olen W.; Vandermey, Nancy; Theilig, E. E.; Schimmels, Kathryn A.; Lewis, George D.; Ardalan, Shadan M.; Alexander, Claudia J.

    2004-06-01

    In November of 2002, the Galileo spacecraft passed within 250 km of Jupiter's moon Amalthea. An onboard telescope, the star scanner, observed a series of bright flashes near the moon. It is believed that these flashes represent sunlight reflected from 7 to 9 small moonlets located within about 3000 km of Amalthea. From star scanner geometry considerations and other arguments, we can constrain the diameter of the observed bodies to be between 0.5 m to several tens of kilometers. In September of 2003, while crossing Amalthea's orbit just prior to Galileo's destruction in the jovian atmosphere, a single additional body seems to have been observed. It is suspected that these bodies are part of a discrete rocky ring embedded within Jupiter's Gossamer ring system.

  13. A General Mission Independent Simulator (GMIS) and Simulator Control Program (SCP)

    NASA Technical Reports Server (NTRS)

    Baker, Paul L.; Moore, J. Michael; Rosenberger, John

    1994-01-01

    GMIS is a general-purpose simulator for testing ground system software. GMIS can be adapted to any mission to simulate changes in the data state maintained by the mission's computers. GMIS was developed in Code 522 NASA Goddard Space Flight Center. The acronym GMIS stands for GOTT Mission Independent Simulator, where GOTT is the Ground Operations Technology Testbed. Within GOTT, GMIS is used to provide simulated data to an installation of TPOCC - the Transportable Payload Operations Control Center. TPOCC was developed by Code 510 as a reusable control center. GOTT uses GMIS and TPOCC to test new technology and new operator procedures.

  14. Galileo Net Flux Radiometer Report 1997

    NASA Technical Reports Server (NTRS)

    Tomasko, Martin G.

    1997-01-01

    On 7 December 1995, the Galileo probe entered Jupiter's atmosphere. The Net Flux Radiometer (NFR) on board the probe, measured upward and downward fluxes in the visible and infrared. At the University of Arizona, we have analyzed the data from the two visible-light channels, as well as the solar contributions to the thermal channels. The results are being prepared for submission to JGR in early September.

  15. The Galileo high gain antenna deployment anomaly

    NASA Technical Reports Server (NTRS)

    Johnson, Michael R.

    1994-01-01

    On April 11, 1991, the Galileo spacecraft executed a sequence that would open the spacecraft's High Gain Antenna. The Antenna's launch restraint had been released just after deployment sequence, the antenna, which opens like an umbrella, never reached the fully deployed position. The analyses and tests that followed allowed a conclusive determination of the likely failure mechanisms and pointed to some strategies to use for recovery of the high gain antenna.

  16. Calibration of Galileo signals for time metrology.

    PubMed

    Defraigne, Pascale; Aerts, Wim; Cerretto, Giancarlo; Cantoni, Elena; Sleewaegen, Jean-Marie

    2014-12-01

    Using global navigation satellite system (GNSS) signals for accurate timing and time transfer requires the knowledge of all electric delays of the signals inside the receiving system. GNSS stations dedicated to timing or time transfer are classically calibrated only for Global Positioning System (GPS) signals. This paper proposes a procedure to determine the hardware delays of a GNSS receiving station for Galileo signals, once the delays of the GPS signals are known. This approach makes use of the broadcast satellite inter-signal biases, and is based on the ionospheric delay measured from dual-frequency combinations of GPS and Galileo signals. The uncertainty on the so-determined hardware delays is estimated to 3.7 ns for each isolated code in the L5 frequency band, and 4.2 ns for the ionosphere-free combination of E1 with a code of the L5 frequency band. For the calibration of a time transfer link between two stations, another approach can be used, based on the difference between the common-view time transfer results obtained with calibrated GPS data and with uncalibrated Galileo data. It is shown that the results obtained with this approach or with the ionospheric method are equivalent. PMID:25474773

  17. Calibration of Galileo signals for time metrology.

    PubMed

    Defraigne, Pascale; Aerts, Wim; Cerretto, Giancarlo; Cantoni, Elena; Sleewaegen, Jean-Marie

    2014-12-01

    Using global navigation satellite system (GNSS) signals for accurate timing and time transfer requires the knowledge of all electric delays of the signals inside the receiving system. GNSS stations dedicated to timing or time transfer are classically calibrated only for Global Positioning System (GPS) signals. This paper proposes a procedure to determine the hardware delays of a GNSS receiving station for Galileo signals, once the delays of the GPS signals are known. This approach makes use of the broadcast satellite inter-signal biases, and is based on the ionospheric delay measured from dual-frequency combinations of GPS and Galileo signals. The uncertainty on the so-determined hardware delays is estimated to 3.7 ns for each isolated code in the L5 frequency band, and 4.2 ns for the ionosphere-free combination of E1 with a code of the L5 frequency band. For the calibration of a time transfer link between two stations, another approach can be used, based on the difference between the common-view time transfer results obtained with calibrated GPS data and with uncalibrated Galileo data. It is shown that the results obtained with this approach or with the ionospheric method are equivalent.

  18. GalileoMobile: Astronomical activities in schools

    NASA Astrophysics Data System (ADS)

    Dasi Espuig, Maria; Vasquez, Mayte; Kobel, Philippe

    GalileoMobile is an itinerant science education initiative run on a voluntary basis by an international team of astronomers, educators, and science communicators. Our team's main goal is to make astronomy accessible to schools and communities around the globe that have little or no access to outreach actions. We do this by performing teacher workshops, activities with students, and donating educational material. Since the creation of GalileoMobile in 2008, we have travelled to Chile, Bolivia, Peru, India, and Uganda, and worked with 56 schools in total. Our activities are centred on the GalileoMobile Handbook of Activities that comprises around 20 astronomical activities which we adapted from many different sources, and translated into 4 languages. The experience we gained in Chile, Bolivia, Peru, India, and Uganda taught us that (1) bringing experts from other countries was very stimulating for children as they are naturally curious about other cultures and encourages a collaboration beyond borders; (2) high-school students who were already interested in science were always very eager to interact with real astronomers doing research to ask for career advice; (3) inquiry-based methods are important to make the learning process more effective and we have therefore, re-adapted the activities in our Handbook according to these; (4) local teachers and university students involved in our activities have the potential to carry out follow-up activities, and examples are those from Uganda and India.

  19. High and low thrust mission analysis for a Mars exploration program

    NASA Technical Reports Server (NTRS)

    Shepard, Kyle M.; Horsewood, Jerry; Suskin, Mark

    1990-01-01

    The purpose of the study is to identify limits, trends, and sensitivities of Mars Transportation System performance over several Mars mission opportunities. Two Mars Transfer Vehicle (MTV) configurations utilizing different propulsion systems (Chemical/Aerobrake and NEP - Nuclear Electric Propulsion) are outlined. The trades involved in comparing two MTS candidate designs are assessed. Mission analysis for mission opportunities beginning in around 2010 and continuing past 2030 is performed, and a Mars mission model is covered, along with orbit selection and NEP and Chemical/Aerobrake performance. The results of several sensitivity studies are given in order to allow for contingency planning in design and performance. It is concluded that the low-thrust system perform best, its vehicle mass is lower and its trip times are more stable.

  20. Europa: Perspectives Halfway through the GEM Mission

    NASA Astrophysics Data System (ADS)

    Chapman, C. R.; Galileo Imaging Team

    1998-09-01

    We are now nearly a year past the end of the prime Galileo mission (orbital tour) and are approaching the halfway point of the Galileo Europa Mission (GEM). Plans are being formulated for follow-on missions. I will review Galileo results concerning Europa, emphasizing evidence from imaging concerning the near-surface interior of Europa (i.e. the putative sub-ice ocean). It is the photogeologist's difficult task to infer the nature of the subsurface third dimension from two-dimensional images of a planet's surface. The remarkably intricate patterns of ridges, cracks, pits, domes, and chaotic zones on Europa strongly constrain surface processes but are less diagnostic of the subsurface. The issue of time (ages and rates) is always a conundrum in geology and it is especially significant for Europa. Does Europa present us with a frozen tableau of the ancient past or a snapshot of a currently active world with surface units only hundreds of thousands to millions of years old? Is its geological style cyclical or even episodic? Does the evidence for "liquidity" below Europa's brittle crust imply actual water or only low-viscosity ice? If water, how close to the surface is it (a) on average and (b) at the shallowest locations? Galileo's evidence suggests, but has not yet proved, that Europa is the most likely currently habitable place in the solar system beyond the Earth.

  1. (abstract) Galileo PPR Observations of Shoemaker-Levy 9

    NASA Technical Reports Server (NTRS)

    Martin, T. Z.; Tamppari, L.; Orton, G. S.; Claypool, I.; Travis, L.

    1994-01-01

    The Galileo spacecraft Photopolarimeter Radiometer (PPR), a hybrid visual/thermal IR instrument designed primarily to measure properties of the Jovian atmosphere, was employed for SL9 as a staring high-speed photometer at 945 and 678 nm, taking advantage of Galileo's direct view of the impact point.The PPR was able to acquire data at times when no other Galileo optical instruments could operate.

  2. Definitional-mission report: A national ethanol program for motor-fuel blending in Uganda. Export trade information

    SciTech Connect

    Not Available

    1991-06-01

    The U.S. Trade and Development Program (TDP) formed a definitional mission team to evaluate the prospects of TDP funding a study for the National Ethanol Program for Motor Fuel Blending in Uganda. The definitional mission team recommends that TDP provide a grant to the Ministry of Energy to finance the cost of (1) a feasibility study for the project, and (2) an orientation visit for several Ugandan officials to visit sugar estates and ethanol plants in the U.S. U.S. technology in this sector is competitive and Ugandans will need to import 60-70 percent of plant equipment and training and construction management services. This will undoubtedly provide opportunities to U.S. suppliers to participate in the expansion of the ethanol industry in Uganda.

  3. Activities conducted during the definition phase of the outer planets missions program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The activities are described of the Meteoroid Science Team for the definition phase of the outer planet missions. Studies reported include: (1) combined zodiacal experiment for the Grand Tour Missions of the outer planets, (2) optical transmission of a honeycomb panel and its effectiveness as a particle impact surface, (3) element identification data from the combined zodiacal OPGT experiment and (4) development of lightweight thermally stable mirrors.

  4. Apollo program flight summary report: Apollo missions AS-201 through Apollo 16, revision 11

    NASA Technical Reports Server (NTRS)

    Holcomb, J. K.

    1972-01-01

    A summary of the Apollo flights from AS-201 through Apollo 16 is presented. The following subjects are discussed for each flight: (1) mission primary objectives, (2) principle objectives of the launch vehicle and spacecraft, (3) secondary objectives of the launch vehicle and spacecraft, (4) unusual features of the mission, (5) general information on the spacecraft and launch vehicle, (6) space vehicle and pre-launch data, and (7) recovery data.

  5. The Hubble Space Telescope Servicing Mission 3A Contamination Control Program

    NASA Technical Reports Server (NTRS)

    Hansen, Patricia A.

    2000-01-01

    After nearly 10 years on-orbit, the Hubble Space Telescope (HST) external thermal control materials and paint have degraded due to exposure to the low Earth orbit environment. This presented a potentially large on-orbit contamination source (particles and/or debris). Contamination mitigation techniques were developed to augment existing on-orbit servicing contamination controls. They encompassed mission management, crew training, and crew aids and tools. These techniques were successfully employed during the HST Servicing Mission 3A, December 1999.

  6. The Zamama-Thor region of Io: Insights from a synthesis of mapping, topography, and Galileo spacecraft data

    USGS Publications Warehouse

    Williams, D.A.; Keszthelyi, L.P.; Schenk, P.M.; Milazzo, M.P.; Lopes, R.M.C.; Rathbun, J.A.; Greeley, R.

    2005-01-01

    We have studied data from the Galileo spacecraft's three remote sensing instruments (Solid-State Imager (SSI), Near-Infrared Mapping Spectrometer (NIMS), and Photopolarimeter-Radiometer (PPR)) covering the Zamama - Thor region of Io's antijovian hemisphere, and produced a geomorphological map of this region. This is the third of three regional maps we are producing from the Galileo spacecraft data. Our goal is to assess the variety of volcanic and tectonic materials and their interrelationships on Io using planetary mapping techniques, supplemented with all available Galileo remote sensing data. Based on the Galileo data analysis and our mapping, we have determined that the most recent geologic activity in the Zamama - Thor region has been dominated by two sites of large-scale volcanic surface changes. The Zamama Eruptive Center is a site of both explosive and effusive eruptions, which emanate from two relatively steep edifices (Zamama Tholi A and B) that appear to be built by both silicate and sulfur volcanism. A ???100-km long flow field formed sometime after the 1979 Voyager flybys, which appears to be a site of promethean-style compound flows, flow-front SO2 plumes, and adjacent sulfur flows. Larger, possibly stealthy, plumes have on at least one occasion during the Galileo mission tapped a source that probably includes S and/or Cl to produce a red pyroclastic deposit from the same vent from which silicate lavas were erupted. The Thor Eruptive Center, which may have been active prior to Voyager, became active again during the Galileo mission between May and August 2001. A pillanian-style eruption at Thor included the tallest plume observed to date on Io (at least 500 km high) and new dark lava flows. The plume produced a central dark pyroclastic deposit (probably silicate-rich) and an outlying white diffuse ring that is SO2-rich. Mapping shows that several of th000e new dark lava flows around the plume vent have reoccupied sites of earlier flows. Unlike most of

  7. SMAP Mission Applications; Post Launch Research and the Early Adopter Program Socioeconomic Impact Analyses

    NASA Astrophysics Data System (ADS)

    Escobar, V. M.

    2015-12-01

    NASA's Soil Moisture Active Passive (SMAP) Mission, launched January 31, 2015, has grown an Early Adopter (EA) community since 2010. Over the next two years, the mission Applications Team will conduct socioeconomic impact analyses on thematic EA research in an effort to demonstrate the value of SMAP products in societally relevant, decision support applications. The SMAP mission provides global observations of the Earth's surface soil moisture, providing high accuracy, resolution and continuous global coverage. The SMAP Applications Team will document and evaluate the use of SMAP science products in applications related to weather forecasting, drought, agriculture productivity, floods, human health and national security. SMAP EA research in applied science cases such as sea ice and sea surface winds will also be evaluated. SMAP EAs provide a thematically scaled perspective on the use and impact of SMAP data. This analysis will demonstrate how the investments in pre-launch applications and early adopter efforts contributed to the mission value, product impact and fueled new research that contributes to the use of mission products, thereby enhancing mission success. This paper presents a set of Early Adopter case studies that show how EAs plan to use SMAP science products to enhance decision support systems, and about how the SMAP data stream affects these users. Detailed tracking of this comprehensive set of case studies will enable quantification and monetization of the benefits of an application by the end of the first two years after launch.

  8. Experiments on buoyancy and surface tension following Galileo Galilei

    NASA Astrophysics Data System (ADS)

    Straulino, S.; Gambi, C. M. C.; Righini, A.

    2011-01-01

    We analyze passages of Galileo's writings on aspects of floating. Galileo encountered peculiar effects such as the "floating" of light objects made of dense material and the creation of large drops of water that were difficult to explain because they are related to our current understanding of surface tension. Even though Galileo could not understand the phenomenon, his proposed explanations and experiments are interesting from an educational point of view. We replicate the experiment on water and wine that was described by Galileo in his Two New Sciences.

  9. Thermosphere-ionosphere-mesosphere energetics and dynamics (TIMED). The TIMED mission and science program report of the science definition team. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A Science Definition Team was established in December 1990 by the Space Physics Division, NASA, to develop a satellite program to conduct research on the energetics, dynamics, and chemistry of the mesosphere and lower thermosphere/ionosphere. This two-volume publication describes the TIMED (Thermosphere-Ionosphere-Mesosphere, Energetics and Dynamics) mission and associated science program. The report outlines the scientific objectives of the mission, the program requirements, and the approach towards meeting these requirements.

  10. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology into NASA Programs Associated with the Aeronautics Research Mission Directorate

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) technologies that have gone through Phase II of the SBIR program into NASA Aeronautics and Mission Directorate (ARMD) programs. Other Government and commercial program managers can also find this information useful.

  11. Guidance system operations plan for manned CM earth orbital missions using program SKYLARK 1. Section 4: Operational modes

    NASA Technical Reports Server (NTRS)

    Dunbar, J. C.

    1972-01-01

    The operational modes for the guidance system operations plan for Program SKYLARK 1 are presented. The procedures control the guidance and navigation system interfaces with the flight crew and the mission control center. The guidance operational concept is designed to comprise a set of manually initiated programs and functions which may be arranged by the flight crew to implement a large class of flight plans. This concept will permit both a late flight plan definition and a capability for real time flight plan changes.

  12. Galilean Satellite Surface Non-Ice Constituents: New Results from the Cassini/Huygens VIMS Jupiter Flyby in the Context of the Galileo NIMS Results

    NASA Technical Reports Server (NTRS)

    McCord, T. B.; Brown, R.; Baines, K.; Bellucci, G.; Bibring, J.-P.; Buratti, B.; Capaccioni, F.; Cerroni, P.; Clark, R.; Coradini, A.

    2001-01-01

    The Cassini mission Visible and Infrared Mapping Spectrometer (VIMS) is currently returning data for the Galilean satellites. Examples of the new satellite data and the initial interpretations will be presented in the context of the Galileo NIMS data and results. Additional information is contained in the original extended abstract.

  13. Transonic wind-tunnel investigation of the Galileo Probe parachute configuration

    NASA Technical Reports Server (NTRS)

    Corridan, R. E.; Givens, J. G.; Kepley, B. M.

    1984-01-01

    Wind-tunnel tests have been made of 1/4-scale and 1/2-scale models of the Galileo Probe conical ribbon-parachute at flight conditions. For the Galileo mission, the parachute is deployed behind a blunt shape at transonic speed. The investigation was initiated to verify the solutions to the delayed main-parachute opening with squidding that was observed in the 1982 Galileo Probe system balloon drop test. In addition to varying model scale, the forebody shape, angle of attack, dynamic pressure, Mach number, and canopy trailing distance behind the forebody were varied to determine their effect on parachute performance. Both steady-state and deployment tests were conducted. Parachute drag was measured and was seen to degrade severely at canopy trailing distances of 5.5 and 7 forebody diameters. Performance was shown to be good at the trailing distances of 9 and 11 diameters. A second balloon drop test demonstrated the desired parachute performance at the system level.

  14. The Galileo System of Measurement: Preliminary Evidence for Precision, Stability, and Equivalance to Traditional Measures

    ERIC Educational Resources Information Center

    Gillham, James; Woelfel, Joseph

    1977-01-01

    Describes the Galileo system of measurement operations including reliability and validity data. Illustrations of some of the relations between Galileo measures and traditional procedures are provided. (MH)

  15. Inter-system biases estimation in multi-GNSS relative positioning with GPS and Galileo

    NASA Astrophysics Data System (ADS)

    Deprez, Cecile; Warnant, Rene

    2016-04-01

    The recent increase in the number of Global Navigation Satellite Systems (GNSS) opens new perspectives in the field of high precision positioning. Particularly, the European Galileo program has experienced major progress in 2015 with the launch of 6 satellites belonging to the new Full Operational Capability (FOC) generation. Associated with the ongoing GPS modernization, many more frequencies and satellites are now available. Therefore, multi-GNSS relative positioning based on GPS and Galileo overlapping frequencies should entail better accuracy and reliability in position estimations. However, the differences between satellite systems induce inter-system biases (ISBs) inside the multi-GNSS equations of observation. Once these biases estimated and removed from the model, a solution involving a unique pivot satellite for the two considered constellations can be obtained. Such an approach implies that the addition of even one single Galileo satellite to the GPS-only model will strengthen it. The combined use of L1 and L5 from GPS with E1 and E5a from Galileo in zero baseline double differences (ZB DD) based on a unique pivot satellite is employed to resolve ISBs. This model removes all the satellite- and receiver-dependant error sources by differentiating and the zero baseline configuration allows atmospheric and multipath effects elimination. An analysis of the long-term stability of ISBs is conducted on various pairs of receivers over large time spans. The possible influence of temperature variations inside the receivers over ISB values is also investigated. Our study is based on the 5 multi-GNSS receivers (2 Septentrio PolaRx4, 1 Septentrio PolaRxS and 2 Trimble NetR9) installed on the roof of our building in Liege. The estimated ISBs are then used as corrections in the multi-GNSS observation model and the resulting accuracy of multi-GNSS positioning is compared to GPS and Galileo standalone solutions.

  16. An Overview of Mission 21. A Program Designed To Assist Teachers in Integrating Technology into Their Present Curriculum through a Problem-Solving Approach. Grades 1 through 6.

    ERIC Educational Resources Information Center

    Brusic, Sharon A.; And Others

    This booklet presents an overview of Mission 21, a project that promotes technological literacy in the elementary school classroom. Funded since 1985, Mission 21 has enabled graduate research associates and Virginia teachers to write and field test a technology education program for children in grades 1 through 6. Over 30 elementary teachers in 11…

  17. Earth-Based Radio Tracking of the Galileo Probe for Jupiter Wind Estimation

    PubMed

    Folkner; Preston; Border; Navarro; Wilson; Oestreich

    1997-01-31

    Although the Galileo probe was designed to communicate only to the orbiter, the probe radio signal was detected at two Earth-based radio observatories where the signal was a billion times weaker. The measured signal frequency was used to derive a vertical profile of the jovian zonal wind speed. Due to the mission geometry, the Earth-based wind estimates are less sensitive to descent trajectory errors than estimates based on probe-orbiter Doppler measurements. The two estimates of wind profiles agree qualitatively; both show high wind speeds at all depths sampled.

  18. Earth-Based Radio Tracking of the Galileo Probe for Jupiter Wind Estimation

    PubMed

    Folkner; Preston; Border; Navarro; Wilson; Oestreich

    1997-01-31

    Although the Galileo probe was designed to communicate only to the orbiter, the probe radio signal was detected at two Earth-based radio observatories where the signal was a billion times weaker. The measured signal frequency was used to derive a vertical profile of the jovian zonal wind speed. Due to the mission geometry, the Earth-based wind estimates are less sensitive to descent trajectory errors than estimates based on probe-orbiter Doppler measurements. The two estimates of wind profiles agree qualitatively; both show high wind speeds at all depths sampled. PMID:9005845

  19. The Feasibility of a Galileo-Style Tour of the Uranian Satellites

    NASA Technical Reports Server (NTRS)

    Heaton, Andrew F.; Longuski, James M.; Vanhooser, Teresa B. (Technical Monitor)

    2001-01-01

    Gravity-assist trajectories have been a key to outer Solar System exploration. In particular, the gravity-assist tour of the Jovian satellites has contributed significantly to the success of the Galileo mission. A comparison of the Jovian system to the Uranian system reveals that the two possess similar satellite/planet mass ratios. Tisserand graphs of the Uranian system also indicate the potential for tours at Uranus. In this paper. We devise tour strategies and design a prototypical tour of the Uranian satellites, proving that tours at Uranus are feasible.

  20. Galileo's eye: a new vision of the senses in the work of Galileo Galilei.

    PubMed

    Piccolino, Marco; Wade, Nicholas J

    2008-01-01

    Reflections on the senses, and particularly on vision, permeate the writings of Galileo Galilei, one of the main protagonists of the scientific revolution. This aspect of his work has received scant attention by historians, in spite of its importance for his achievements in astronomy, and also for the significance in the innovative scientific methodology he fostered. Galileo's vision pursued a different path from the main stream of the then contemporary studies in the field; these were concerned with the dioptrics and anatomy of the eye, as elaborated mainly by Johannes Kepler and Christoph Scheiner. Galileo was more concerned with the phenomenology rather than with the mechanisms of the visual process. His general interest in the senses was psychological and philosophical; it reflected the fallacies and limits of the senses and the ways in which scientific knowledge of the world could be gathered from potentially deceptive appearances. Galileo's innovative conception of the relation between the senses and external reality contrasted with the classical tradition dominated by Aristotle; it paved the way for the modern understanding of sensory processing, culminating two centuries later in Johannes Müller's elaboration of the doctrine of specific nerve energies and in Helmholtz's general theory of perception. PMID:18986060

  1. Galileo's eye: a new vision of the senses in the work of Galileo Galilei.

    PubMed

    Piccolino, Marco; Wade, Nicholas J

    2008-01-01

    Reflections on the senses, and particularly on vision, permeate the writings of Galileo Galilei, one of the main protagonists of the scientific revolution. This aspect of his work has received scant attention by historians, in spite of its importance for his achievements in astronomy, and also for the significance in the innovative scientific methodology he fostered. Galileo's vision pursued a different path from the main stream of the then contemporary studies in the field; these were concerned with the dioptrics and anatomy of the eye, as elaborated mainly by Johannes Kepler and Christoph Scheiner. Galileo was more concerned with the phenomenology rather than with the mechanisms of the visual process. His general interest in the senses was psychological and philosophical; it reflected the fallacies and limits of the senses and the ways in which scientific knowledge of the world could be gathered from potentially deceptive appearances. Galileo's innovative conception of the relation between the senses and external reality contrasted with the classical tradition dominated by Aristotle; it paved the way for the modern understanding of sensory processing, culminating two centuries later in Johannes Müller's elaboration of the doctrine of specific nerve energies and in Helmholtz's general theory of perception.

  2. Historical trends of participation of women in robotic spacecraft missions

    NASA Astrophysics Data System (ADS)

    Rathbun, Julie A.; Dones, Luke; Gay, Pamela; Cohen, Barbara; Horst, Sarah; Lakdawalla, Emily; Spickard, James; Milazzo, Moses; Sayanagi, Kunio M.; Schug, Joanna

    2015-11-01

    For many planetary scientists, being involved in a spacecraft mission is the highlight of a career. Many young scientists hope to one day be involved in such a mission. We will look at the science teams of several flagship-class spacecraft missions to look for trends in the representation of groups that are underrepresented in science. We will start with The Galileo, Cassini, and Europa missions to the outer solar system as representing missions that began in the 1980s, 1990s and 2010s respectively. We would also like to extend our analysis to smaller missions and those to targets other than the outer solar system.

  3. The GalileoMobile Project: sharing astronomy with students and teachers around the world

    NASA Astrophysics Data System (ADS)

    Benitez Herrera, Sandra; Del Sordo, Fabio; Spinelli, Patricia; Ntormousi, Eva

    2015-08-01

    Astronomy is an inspiring tool that can be used to motivate children to learn more about the world, to encourage critical thinking, and engage them in different scientific disciplines. Although many outreach programs bring astronomy to the classroom, most of them act in developed countries and rely heavily on internet connection. This leaves pupils and teachers in remote areas with little access to the latest space missions and the modern astronomical advances. GalileoMobile is an itinerant astronomy education initiative aiming to bridge this gap by donating educational material and organizing activities, experiments and teacher workshops at schools in rural areas. The initiative is run on a voluntary basis by an international team of astronomers, educators, and science communicators, working together to stimulate curiosity and interest in learning, to exchange different visions of the cosmos and to inspire a feeling of unity "under the same sky" between people from different cultures. Since the creation of the project in 2008, we have travelled to Chile, Bolivia, Peru, India, Uganda, Brazil and Colombia, and worked with about 70 schools. From our experiences, we learnt that 1) bringing experts from other countries is very stimulating for children and encourages a collaboration beyond borders; 2) inquiry-based methods are important for making the learning process more effective; 3) involving local educators in our activities helps the longstanding continuation of the project. We are incorporating these lessons learned into a new concept of the project. Constellation 2015, aims to establish a South American network of schools committed to the long-term organisation of astronomical outreach activities amongst their pupils and local communities. Constellation was declared Cosmic Light Project by the International Year of Light 2015 and awarded funding by the OAD. At this Focus Meeting, we will present the outcomes from our latest expeditions in Brazil and Colombia in

  4. Re-Examining the Mission and Delivery of Counseling Programs in Times of Austerity.

    ERIC Educational Resources Information Center

    Miller, Merrill

    1983-01-01

    Describes the counseling services of Northern New Mexico Community College (NNMCC). Covers NNMCC's assumptions regarding counseling, mission, current counseling services, goals, and limitations posed by the present counseling structure. Proposes a proactive delivery mode based on group instruction in response to fiscal constraints. (DMM)

  5. Fulfilling the Mission of ICIE: Industry and Institutions Develop Collaborative Programs.

    ERIC Educational Resources Information Center

    Swaffield, Bruce C.

    1999-01-01

    Examines trends in the increasing partnerships between industry and institutions of higher education in light of the mission and activities of the International Council for Innovation in Higher Education (ICIE). Cites examples of such partnerships involving various industries and types of institutions. Stresses the need for colleges and…

  6. Galileo observations of volcanic plumes on Io

    USGS Publications Warehouse

    Geissler, P.E.; McMillan, M.T.

    2008-01-01

    Io's volcanic plumes erupt in a dazzling variety of sizes, shapes, colors and opacities. In general, the plumes fall into two classes, representing distinct source gas temperatures. Most of the Galileo imaging observations were of the smaller, more numerous Prometheus-type plumes that are produced when hot flows of silicate lava impinge on volatile surface ices of SO2. Few detections were made of the giant, Pele-type plumes that vent high temperature, sulfur-rich gases from the interior of Io; this was partly because of the insensitivity of Galileo's camera to ultraviolet wavelengths. Both gas and dust spout from plumes of each class. Favorably located gas plumes were detected during eclipse, when Io was in Jupiter's shadow. Dense dust columns were imaged in daylight above several Prometheus-type eruptions, reaching heights typically less than 100 km. Comparisons between eclipse observations, sunlit images, and the record of surface changes show that these optically thick dust columns are much smaller in stature than the corresponding gas plumes but are adequate to produce the observed surface deposits. Mie scattering calculations suggest that these conspicuous dust plumes are made up of coarse grained “ash” particles with radii on the order of 100 nm, and total masses on the order of 106 kg per plume. Long exposure images of Thor in sunlight show a faint outer envelope apparently populated by particles small enough to be carried along with the gas flow, perhaps formed by condensation of sulfurous “snowflakes” as suggested by the plasma instrumentation aboard Galileo as it flew through Thor's plume [Frank, L.A., Paterson, W.R., 2002. J. Geophys. Res. (Space Phys.) 107, doi:10.1029/2002JA009240. 31-1]. If so, the total mass of these fine, nearly invisible particles may be comparable to the mass of the gas, and could account for much of Io's rapid resurfacing.

  7. Representing the heavens: Galileo and visual astronomy.

    NASA Astrophysics Data System (ADS)

    Winkler, M. G.; van Helden, A.

    1992-06-01

    The authors present the following conclusion. Galileo was not alone in his ambivalent attitude toward visual communication in astronomy. His attitude was shared by his contemporaries. In fact, the use of visual evidence is surprisingly rare until after 1640. And when astronomers finally began using pictorial evidence, they did so with an explicit commitment to representing the heavens faithfully and accurately. Although Francesco Fontana was the first to publish an astronomical book in which pictorial information was central, it is in the work of Johannes Hevelius (1611 - 1687), a university trained brewer in the Polish city of Gdansk, that we see the new visual dimension of telescopic astronomy best exemplified. Hevelius's Selenographia sive lunae descriptio of 1647 contained figures of forty different lunar phases, four views of the full moon, eighty-three diagrams, and several illustrations of his equipment and the appearances of other heavenly bodies. What is even more interesting, Hevelius made his own telescopes and, he himself engraved virtually every illustration - diagram or picture - in the book, thus combining the roles of the natural philosopher and the lowly artisan. Hevelius's approach to representing the heavens was so different from Galileo's that he utterly misunderstood the purpose behind the views of the moon shown in Sidereus nuncius. Such a completely wrongheaded judgment of Galileo's instruments and his ability as an observer and draftsman shows just how different the worlds of these two men were. When, within the range of media available to them, Hevelius and others chose to make the visual component central in communicating their observations, astronomy became a visual science.

  8. Idealisation and Galileo's Pendulum Discoveries: Historical, Philosophical and Pedagogical Considerations

    ERIC Educational Resources Information Center

    Matthews, Michael R.

    2004-01-01

    Galileo's discovery of the properties of pendulum motion depended on his adoption of the novel methodology of idealisation. Galileo's laws of pendulum motion could not be accepted until the empiricist methodological constraints placed on science by Aristotle, and by common sense, were overturned. As long as scientific claims were judged by how the…

  9. A Galilean Approach to the Galileo Affair, 1609-2009

    ERIC Educational Resources Information Center

    Finocchiaro, Maurice A.

    2011-01-01

    Galileo's telescopic discoveries of 1609-1612 provided a crucial, although not conclusive, confirmation of the Copernican hypothesis of the earth's motion. In Galileo's approach, the Copernican Revolution required that the geokinetic hypothesis be supported not only with new theoretical arguments but also with new observational evidence; that it…

  10. Galileo's Treatment for the Centre of Gravity of Solids

    ERIC Educational Resources Information Center

    Worner, C. H.; Iommi-Amunategui, G.

    2007-01-01

    The appendix on the centres of gravity that appears at the end of Galileo's book, "Two New Sciences", is analysed. It is shown that the method used by Galileo in this work has an interesting reasoning and also shows preliminary ideas about scaling and advances some ideas about series convergence. In addition, we note that the geometrical language…

  11. Galileo infrared imaging spectroscopy measurements at venus.

    PubMed

    Carlson, R W; Baines, K H; Encrenaz, T; Taylor, F W; Drossart, P; Kamp, L W; Pollack, J B; Lellouch, E; Collard, A D; Calcutt, S B; Grinspoon, D; Weissman, P R; Smythe, W D; Ocampo, A C; Danielson, G E; Fanale, F P; Johnson, T V; Kieffer, H H; Matson, D L; McCord, T B; Soderblom, L A

    1991-09-27

    During the 1990 Galileo Venus flyby, the Near Infaied Mapping Spectrometer investigated the night-side atmosphere of Venus in the spectral range 0.7 to 5.2 micrometers. Multispectral images at high spatial resolution indicate substanmial cloud opacity variations in the lower cloud levels, centered at 50 kilometers altitude. Zonal and meridional winds were derived for this level and are consistent with motion of the upper branch of a Hadley cell. Northern and southern hemisphere clouds appear to be markedly different. Spectral profiles were used to derive lower atmosphere abundances of water vapor and other species. PMID:17784099

  12. Galileo infrared imaging spectroscopy measurements at venus.

    PubMed

    Carlson, R W; Baines, K H; Encrenaz, T; Taylor, F W; Drossart, P; Kamp, L W; Pollack, J B; Lellouch, E; Collard, A D; Calcutt, S B; Grinspoon, D; Weissman, P R; Smythe, W D; Ocampo, A C; Danielson, G E; Fanale, F P; Johnson, T V; Kieffer, H H; Matson, D L; McCord, T B; Soderblom, L A

    1991-09-27

    During the 1990 Galileo Venus flyby, the Near Infaied Mapping Spectrometer investigated the night-side atmosphere of Venus in the spectral range 0.7 to 5.2 micrometers. Multispectral images at high spatial resolution indicate substanmial cloud opacity variations in the lower cloud levels, centered at 50 kilometers altitude. Zonal and meridional winds were derived for this level and are consistent with motion of the upper branch of a Hadley cell. Northern and southern hemisphere clouds appear to be markedly different. Spectral profiles were used to derive lower atmosphere abundances of water vapor and other species.

  13. Galileo infrared imaging spectroscopy measurements at venus

    USGS Publications Warehouse

    Carlson, R.W.; Baines, K.H.; Encrenaz, Th.; Taylor, F.W.; Drossart, P.; Kamp, L.W.; Pollack, James B.; Lellouch, E.; Collard, A.D.; Calcutt, S.B.; Grinspoon, D.; Weissman, P.R.; Smythe, W.D.; Ocampo, A.C.; Danielson, G.E.; Fanale, F.P.; Johnson, T.V.; Kieffer, H.H.; Matson, D.L.; McCord, T.B.; Soderblom, L.A.

    1991-01-01

    During the 1990 Galileo Venus flyby, the Near Infrared Mapping Spectrometer investigated the night-side atmosphere of Venus in the spectral range 0.7 to 5.2 micrometers. Multispectral images at high spatial resolution indicate substantial cloud opacity variations in the lower cloud levels, centered at 50 kilometers altitude. Zonal and meridional winds were derived for this level and are consistent with motion of the upper branch of a Hadley cell. Northern and southern hemisphere clouds appear to be markedly different. Spectral profiles were used to derive lower atmosphere abundances of water vapor and other species.

  14. Galileo spacecraft high gain antenna offset calibration

    NASA Technical Reports Server (NTRS)

    Hayati, S. A.

    1982-01-01

    A mathematical model for the estimation of the dual-spin Galileo spacecraft high gain antenna misalignment is developed. The feasibility of the proposed technique is investigated by means of a simulation study. In-flight parameter estimation requires the development of a stochastic model of the spacecraft rotational biases and the earth-received signal strength measurements. The signal strength measurements for X-band frequency are used as observations to estimate the rotational biases and their corresponding uncertainties. The simulation study shows that the initial ground measured uncertainties of .6 mrad can be reduced by a factor of ten.

  15. The Galileo Solid-State Imaging experiment

    NASA Technical Reports Server (NTRS)

    Belton, Michael J. S.; Klaasen, Kenneth P.; Clary, Maurice C.; Anderson, James L.; Anger, Clifford D.; Carr, Michael H.; Chapman, Clark R.; Davies, Merton E.; Greeley, Ronald; Anderson, Donald

    1992-01-01

    The Galileo Orbiter's Solid-State Imaging (SSI) experiment uses a 1.5-m focal length TV camera with 800 x 800 pixel, virtual-phase CCD detector in order to obtain images of Jupiter and its satellites which possess a combination of sensitivity levels, spatial resolutions, geometric fidelity, and spectral range that are unmatched by earlier imaging data. After describing the performance of this equipment on the basis of ground calibrations, attention is given to the SSI experiment's Jupiter system observation objectives; these encompass atmospheric science, satellite surfaces, ring structure, and 'darkside' experiments.

  16. A reassessment of Galileo radiation exposures in the Jupiter magnetosphere.

    PubMed

    Atwell, William; Townsend, Lawrence; Miller, Thomas; Campbell, Christina

    2005-01-01

    Earlier particle experiments in the 1970s on Pioneer-10 and -11 and Voyager-1 and -2 provided Jupiter flyby particle data, which were used by Divine and Garrett to develop the first Jupiter trapped radiation environment model. This model was used to establish a baseline radiation effects design limit for the Galileo onboard electronics. Recently, Garrett et al. have developed an updated Galileo Interim Radiation Environment (GIRE) model based on Galileo electron data. In this paper, we have used the GIRE model to reassess the computed radiation exposures and dose effects for Galileo. The 34-orbit 'as flown' Galileo trajectory data and the updated GIRE model were used to compute the electron and proton spectra for each of the 34 orbits. The total ionisation doses of electrons and protons have been computed based on a parametric shielding configuration, and these results are compared with previously published results.

  17. Possible portrait of Galileo Galilei as a young scientist

    NASA Astrophysics Data System (ADS)

    Molaro, P.

    2012-02-01

    We describe here the possible discovery of a portrait of Galileo Galilei in his youth. The painting is not signed and the identification is mainly physiognomic. In fact, the face reveals clear resemblance to Domenico Tintoretto's portrait and to Giuseppe Calendi's engraving derived from a lost portrait made by Santi di Tito in 1601. Along with the portraits by Tintoretto, Furini, Leoni, Passignano, and Sustermans this could be another portrait of Galileo made al naturale, but, unlike the others, it depicts the scientist before he reached fame. Galileo looks rather young, at age of about 20-25 years. His eyes in the portrait are clear and the expression intense and appealing. From Galileo's correspondence we know of a portrait made by his friend Ludovico Cigoli. Rather interesting, though admittedly quite improbable, is the possibility of a self-portrait whose existence is mentioned in the first biography of Galileo by Salusbury in 1664.

  18. Landform Degradation and Slope Processes on Io: The Galileo View

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Sullivan, Robert J.; Chuang, Frank C.; Head, James W., III; McEwen, Alfred S.; Milazzo, Moses P.; Nixon, Brian E.; Pappalardo, Robert T.; Schenk, Paul M.; Turtle, Elizabeth P.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    The Galileo mission has revealed remarkable evidence of mass movement and landform degradation on Io. We recognize four major slope types observed on a number of intermediate resolution (250 m/pixel) images and several additional textures on very high resolution (10 m/pixel) images. Slopes and scarps on Io often show evidence of erosion, seen in the simplest form as alcove-carving slumps and slides at all scales. Many of the mass movement deposits on Io are probably mostly the consequence of block release and brittle slope failure. Sputtering plays no significant role. Sapping as envisioned by McCauley et al. remains viable. We speculate that alcove-lined canyons seen in one observation and lobed deposits seen along the bases of scarps in several locations may reflect the plastic deformation and 'glacial' flow of interstitial volatiles (e.g., SO2) heated by locally high geothermal energy to mobilize the volatile. The appearance of some slopes and near-slope surface textures seen in very high resolution images is consistent with erosion from sublimation-degradation. However, a suitable volatile (e.g., H2S) that can sublimate fast enough to alter Io's youthful surface has not been identified. Disaggregation from chemical decomposition of solid S2O and other polysulfur oxides may conceivably operate on Io. This mechanism could degrade landforms in a manner that resembles degradation from sublimation, and at a rate that can compete with resurfacing.

  19. Io Plasma Torus Ion Composition: Voyager, Galileo, Cassini

    NASA Astrophysics Data System (ADS)

    Bagenal, Fran; Nerney, Edward; Steffl, Andrew Joseph

    2016-10-01

    With JAXA's Hisaki spacecraft in orbit around Earth gathering information on the Io plasma torus and NASA's Juno mission measuring plasma conditions in the jovian magnetosphere, the time is ripe for a re-evaluation of earlier observations of the plasma torus to assess evidence for temporal variations. In particular, we are interested in exploring the ion composition of the torus and whether there is evidence of the ultimate source – the volcanic gases from Io – have deviated from SO2. We use the latest CHIANTI 8.0 atomic database to analyze UV spectra of the torus from Voyager, Galileo and Cassini as well as with the physical chemistry model of Delamere, Steffl and Bagenal (2005). We find that contrary to earlier analyses of Voyager data (e.g. Shemansky 1987; 1988) that produced a composition requiring a neutral source of O/S~4, we find an ion composition that is consistent with the Cassini UVIS data (Steffl et al. 2004) and a neutral O/S~2, consistent with SO2.

  20. Ice & Fire: Missions to the most difficult solar system destinations… on a budget

    NASA Astrophysics Data System (ADS)

    Staehle, Robert L.; Brewster, Stephen C.; Carraway, John B.; Chatterjee, Alok K.; Clark, Karla B.; Doyle, Richard J.; Henry, Paul K.; Johannesen, Jennie R.; Johnson, Torrence V.; Jorgensen, Edward J.; Kemski, Richard P.; Ludwinski, Jan M.; Maddock, Robert W.; Mondt, Jack F.; Randolph, James E.; Terrile, Richard J.; Tsurutani, Bruce T.

    1999-11-01

    Three radii from the surface of the Sun… more natural radiation around Jupiter than would be encountered immediately following a nuclear war… to the farthest planet and beyond… these challenges are faced by the three "Ice & Fire" missions: Solar Probe, Europa Orbiter, and PlutoKuiper Express. These three missions will be beneficiaries of the X2000 and related advanced technology development programs. Technology developments now in progress make these missions achievable at costs recently thought adequate only for missions of relatively short durations to "nearby" destinations. The next mission to Europa after Galileo will determine whether a global subsurface liquid water ocean is currently present, and will identify locations where the ocean, if it exists, may be most accessible to future missions. Pluto-Kuiper Express will complete the reconnaissance of the known planets in our Solar System with geological, compositional, and atmospheric mapping of Pluto and Charon while Pluto remains relatively near the Sun during its 248 year orbit. An extended mission to a Kuiper Disk object may be possible, depending on remaining sciencecraft resources. Using a unique combination of Sun shield/high gain antenna and quadrature encounter geometry, Solar Probe will deeply penetrate our nearest star's atmosphere to make local measurements of the birth of solar wind, and to remotely image features as small as 60 kilometers across on the Sun's surface. Avionics technology, leading to integration of functions among a set of multichip modules with standard interfaces, will enable lower production costs, lower power and mass, and the ability to package with modest shielding to enable survival in orbit around Europa inside Jupiter's intense radiation belts. The same avionics and software can be utilized on the other Ice & Fire missions. Each mission is characterized by a long cruise to its destination, facilitated by planetary flybys. The flight systems will represent a unique

  1. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology into NASA Programs Associated with the Science Mission Directorate

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) technologies that have gone through Phase II of the SBIR program into NASA Science Mission Directorate (SMD) programs. Other Government and commercial project managers can also find this information useful.

  2. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into NASA Programs Associated With the Human Exploration and Operations Mission Directorate

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) technologies that have gone through Phase II of the SBIR program into NASA Human Exploration and Operations Mission Directorate (HEOMD) programs. Other Government and commercial project managers can also find this information useful.

  3. Effect of the Adapted NASA Mission X International Child Fitness Program on Young Children and their Parents in South Korea

    NASA Technical Reports Server (NTRS)

    Min, Jungwon; Kim, Gilsook; Lim, Hyunjung; Carvajal, Nubia A.; Lloyd, Charles W.; Wang, Youfa; Reeves, Katherine

    2015-01-01

    Obesity has become a global epidemic. Childhood obesity is global public health concern including in South Korea where 16.2% of boys and 9.9% of girls are overweight or obese in 2011. Effective and sustainable intervention programs are needed for prevention of childhood obesity. Obesity prevention programs for young children may have a greater intervention effect than in older children. The NASA Mission X: Train Like an Astronaut (MX) program was developed to promote children's exercise and healthy eating by tapping into their excitement for training like an astronaut. This study aimed to examine the feasibility and effectiveness of the adapted NASA MX intervention in promoting PA in young children and in improving parents' related perspectives.

  4. Mission definition study for Stanford relativity satellite. Volume 1: Systems and program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The objective of the relativity satellite mission is to perform an experiment in which a gyroscope in motion about the earth undergoes precession, presumably relativistic, with respect to the fixed stars. Performance of this experiment would clearly test the general theory of relativity and its various modifications. This is the only experiment suggested to date which would confirm the existence of motional drift as well. A mission is defined in which the measurement of the geodetic effect term to 0.2 arc sec/yr is achievable and the measurement of both geodetic and motional drift terms to an accuracy of 0.001 arc sec/yr may be possible. The design of the flying dewar satellite needed to maintain the experiment at cryogenic temperatures is discussed. The gyroscopes, magnetometer, and optical contacting method for dimensional stability of the experimental assembly are considered.

  5. NSEG, a segmented mission analysis program for low and high speed aircraft. Volume 1: Theoretical development

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Rozendaal, H. L.

    1977-01-01

    A rapid mission analysis code based on the use of approximate flight path equations of motion is presented. Equation form varies with the segment type, for example, accelerations, climbs, cruises, descents, and decelerations. Realistic and detailed characteristics were specified in tabular form. The code also contains extensive flight envelope performance mapping capabilities. Approximate take off and landing analyses were performed. At high speeds, centrifugal lift effects were accounted for. Extensive turbojet and ramjet engine scaling procedures were incorporated in the code.

  6. Earth observation (Australia) taken by Galileo spacecraft

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Earth observation of Australia was taken by Galileo Spacecraft after completing its first Earth Gravity Assist. Color image of the Simpson Desert in Australia was obtained by Galileo at about 2:30 pm Pacific Standard Time (PST), 12-08-90, at a range of more than 35,000 miles. The color composite was made from images taken through the red, green, and violet filters. The area shown, about 280 miles wide by about 340 miles north-to-south, is southeast of Alice Springs. At lower left is Lake Eyre, a salt lake below sea level, subject to seasonal water-level fluctuations; when this image was acquired the lake was nearly dry. At lower right is the greenish Lake Blanche. Fields of linear sand dunes stretch north and east of Lake Eyre, shaped by prevailing winds from the south and showing, in different colors, the various sources and/or ages of their sands. Photo provided by Jet Propulsion Laboratory (JPL) with alternate number P-37331, 12-19-90.

  7. Galileo photometry of asteroid 243 Ida

    USGS Publications Warehouse

    Helfenstein, P.; Veverka, J.; Thomas, P.C.; Simonelli, D.P.; Klaasen, K.; Johnson, T.V.; Fanale, F.; Granahan, J.; McEwen, A.S.; Belton, M.; Chapman, C.

    1996-01-01

    Galileo imaging observations over phase angles 19.5?? to 109.8?? are combined with near-opposition Earth-based data to derive the photometric properties of Ida. To first order these properties are uniform over the surface and well modeled at ?? = 0.55 ??m by Hapke parameters ????0 = 0.22, h = 0.020, B0 = 1.5, g = -0.33, and ?? = 18?? with corresponding geometric albedo p = 0.21??0.030.01 and Bond albedo AB = 0.081??0.0170.008. Ida's photometric properties are more similar to those of "average S-asteroids" (P. Helfenstein and J. Veverka 1989, Asteroids II, Univ. of Arizona Press, Tucson) than are those of 951 Gaspra. Two primary color units are identified on Ida: Terrain A exhibits a spectrum with relatively shallower 1-??m absorption and a relatively steeper red spectral slope than average Ida, while Terrain B has a deeper 1-??m absorption and a less steep red slope. The average photometric properties of Ida and Terrain A are similar while those of Terrain B differ mostly in having a slightly higher value of ????0 (0.22 versus 0.21), suggesting that Terrain B consists of slightly brighter, more transparent regolith particles. Galileo observations of Ida's satellite Dactyl over phase angles 19.5?? to 47.6?? suggest photometric characteristics similar to those of Ida, the major difference being Dactyl's slightly lower albedo (0.20 compared to 0.21). ?? 1990 Academic Press, Inc.

  8. Science Program of Lunar Landers of "Luna-Glob" and "Luna-Resource" Missions

    NASA Astrophysics Data System (ADS)

    Mitrofanov, I. G.; Zelenyi, L. M.; Tret'yakov, V. I.; Dolgopolov, V. P.

    2011-03-01

    Program of scientific investigations is presented for two Russian polar landers: Luna Resource and Luna Glob. This program has to address two tasks: studies of composition of lunar polar regolith and studies of lunar exosphere at both poles.

  9. GALILEO Precise Orbit and Clock Determinaiton using GPS and GALILEO Combined Processing Strategy

    NASA Astrophysics Data System (ADS)

    Cui, Hongzheng; Tang, Geshi; Song, Baiyan; Liu, Huicui; Han, Chao; Ge, Maorong

    2014-05-01

    The GALILEO system-still in its development phase-will be Europe's GNSS, and the in-orbit validation (IOV) phase has begun with launch of two IOV satellites, IOV-1 (E11) and IOV-2 (E12). High precise data processing is the precondition for upgrading navigation precision, monitoring and assessment of GNSS Open services, and expanding the application region for satellite navigation system. BACC is doing the work about operation and maintenance the iGMAS (international GNSS Monitoring and Assessment Service) Analysis Center (BAC), and producing the precision products to the users with equivalent accuracy to well-known institutes, such as IGS and CODE including precise satellite orbit and clock, tracking station coordinate and receiver clock, Zenith Total Delay (ZTD), Earth Orientation Parameter (EOP) parameters, global and statistical integrity and Ionospheric map, and this study just focuses on the combined orbit and clock. For GALILEO in the initial deployment phase, in order to take advantage of GPS observation and mature models to do joint orbit determination in a unified time and space frame to improve the orbit of other systems, and use the GPS orbit and clock from joint solution as the external check, we adopt combined orbit determination of GPS and GALILEO fixing firstly the coordinate of station, receiver clock and tropospheric parameters using GPS precise ephemeris and clock, and seting inter-system bias (ISB) between GPS and GALILEO as a parameter to be estimated. The observation data from a network of multi-GNSS capable receivers from the MGEX tracking network and a regional multi-GNSS network operated by China from day 321 to 334 in 2013, and the satellite force models and GFZ standard observation modeling except Yaw-control model are used in three day solution. For impact analysis, we compare the GPS orbit and clock to IGS final orbit and clock products to evaluate the accuracy, and the accuracy of GALILEO orbit and clock and can be validated by checking

  10. The Near-Earth Asteroid Rendezvous (NEAR) Mission, the Mars Surveyor 2001 (MS01) Mission, and the Planetary Instrument Definition and Development Program (PIDDP)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The NEAR Mission was launched on February 17, 1996 for a three year cruise to the asteroid 433 Eros. During October, November, and December 1998 cruise measurements with the gamma-ray spectrometer were made at three different escape-window-width settings. These were done in order to understand how the count rate and peak width change as the window width settings change. Analysis of these spectra was completed using the latest version of the spectral analysis program, RobWin. Results as a function of energy were combined with the results from the Schlumberger-Doll Research experiments (described below). Laboratory measurements were needed to confirm efficiency calculations above 6 MeV and to understand the relationship between the full energy peak areas and the areas of the first and second escape peaks as a function of the escape peak widths. A week of measurements was made at Schlumberger-Doll Research using their 14-MeV pulsed neutron generator and large soil samples. Data were collected after adding iron and nickel to the sample to increase the emission of high-energy lines. Approximately 24 hours of data were accumulated at each of three escape peak window widths. These data were analyzed with RobWin. Combining results from the cruise measurements and the laboratory measurements indicated that both data sets had similar energy dependence and that this energy dependence was different from that obtained using standard Monte Carlo calculations. Alternate methods of simulating the response of the detector to changes in the escape window widths are being investigated.

  11. Galileo photometry of Apollo landing sites

    NASA Astrophysics Data System (ADS)

    Helfenstein, P.; Veverka, J.; Head, James W.; Pieters, C.; Pratt, S.; Mustard, J.; Klaasen, K.; Neukum, G.; Hoffmann, H.; Jaumann, R.

    1993-03-01

    As of December 1992, the Galileo spacecraft performed its second and final flyby (EM2), of the Earth-Moon system, during which it acquired Solid State Imaging (SSI) camera images of the lunar surface suitable for photometric analysis using Hapke's, photometric model. These images, together with those from the first flyby (EM1) in December 1989, provide observations of all of the Apollo landing sites over a wide range of photometric geometries and at eight broadband filter wavelengths ranging from 0.41 micron to 0.99 micron. We have completed a preliminary photometric analysis of Apollo landing sites visible in EM1 images and developed a new strategy for a more complete analysis of the combined EM1 and EM2 data sets in conjunction with telescopic observations and spectrogoniometric measurements of returned lunar samples. No existing single data set, whether from spacecraft flyby, telescopic observation, or laboratory analysis of returned samples, describes completely the light scattering behavior of a particular location on the Moon at all angles of incidence (i), emission (e), and phase angles (a). Earthbased telescopic observations of particular lunar sites provide good coverage of incidence nad phase angles, but their range in emission angle is limited to only a few degrees because of the Moon's synchronous rotation. Spacecraft flyby observations from Galileo are now available for specific lunar features at many photometric geometries unobtainable from Earth; however, this data set lacks coverage at very small phase angles (a less than 13 deg) important for distinguishing the well-known 'opposition effect'. Spectrogoniometric measurements from returned lunar samples can provide photometric coverage at almost any geometry; however, mechanical properties of prepared particulate laboratory samples, such as particle compaction and macroscopic roughness, likely differ from those on the lunar surface. In this study, we have developed methods for the simultaneous

  12. From mission to measures: performance measure development for a Teen Pregnancy Prevention Program.

    PubMed

    Farb, Amy Feldman; Burrus, Barri; Wallace, Ina F; Wilson, Ellen K; Peele, John E

    2014-03-01

    The Office of Adolescent Health (OAH) sought to create a comprehensive set of performance measures to capture the performance of the Teen Pregnancy Prevention (TPP) program. This performance measurement system needed to provide measures that could be used internally (by both OAH and the TPP grantees) for management and program improvement as well as externally to communicate the program's progress to other interested stakeholders and Congress. This article describes the selected measures and outlines the considerations behind the TPP measurement development process. Issues faced, challenges encountered, and lessons learned have broad applicability for other federal agencies and, specifically, for TPP programs interested in assessing their own performance and progress.

  13. Sharing Planetary Exploration: The Education and Public Outreach Program for the NASA MESSENGER Mission to Orbit Mercury

    NASA Astrophysics Data System (ADS)

    Solomon, S. C.; Stockman, S.; Chapman, C. R.; Leary, J. C.; McNutt, R. L.

    2003-12-01

    The Education and Public Outreach (EPO) Program of the MESSENGER mission to the planet Mercury, supported by the NASA Discovery Program, is a full partnership between the project's science and engineering teams and a team of professionals from the EPO community. The Challenger Center for Space Science Education (CCSSE) and the Carnegie Academy for Science Education (CASE) are developing sets of MESSENGER Education Modules targeting grade-specific education levels across K-12. These modules are being disseminated through a MESSENGER EPO Website developed at Montana State University, an Educator Fellowship Program managed by CCSSE to train Fellows to conduct educator workshops, additional workshops planned for NASA educators and members of the Minority University - SPace Interdisciplinary Network (MU-SPIN), and existing inner-city science education programs (e.g., the CASE Summer Science Institute in Washington, D.C.). All lessons are mapped to national standards and benchmarks by MESSENGER EPO team members trained by the American Association for the Advancement of Science (AAAS) Project 2061, all involve user input and feedback and quality control by the EPO team, and all are thoroughly screened by members of the project science and engineering teams. At the college level, internships in science and engineering are provided to students at minority institutions through a program managed by MU-SPIN, and additional opportunities for student participation across the country are planned as the mission proceeds. Outreach efforts include radio spots (AAAS), museum displays (National Air and Space Museum), posters and traveling exhibits (CASE), general language books (AAAS), programs targeting underserved communities (AAAS, CCSSE, and MU-SPIN), and a documentary highlighting the scientific and technical challenges involved in exploring Mercury and how the MESSENGER team has been meeting these challenges. As with the educational elements, science and engineering team members

  14. BOOK REVIEW: Galileo's Muse: Renaissance Mathematics and the Arts

    NASA Astrophysics Data System (ADS)

    Peterson, Mark; Sterken, Christiaan

    2013-12-01

    Galileo's Muse is a book that focuses on the life and thought of Galileo Galilei. The Prologue consists of a first chapter on Galileo the humanist and deals with Galileo's influence on his student Vincenzo Viviani (who wrote a biography of Galileo). This introductory chapter is followed by a very nice chapter that describes the classical legacy: Pythagoreanism and Platonism, Euclid and Archimedes, and Plutarch and Ptolemy. The author explicates the distinction between Greek and Roman contributions to the classical legacy, an explanation that is crucial for understanding Galileo and Renaissance mathematics. The following eleven chapters of this book arranged in a kind of quadrivium, viz., Poetry, Painting, Music, Architecture present arguments to support the author's thesis that the driver for Galileo's genius was not Renaissance science as is generally accepted but Renaissance arts brought forth by poets, painters, musicians, and architects. These four sets of chapters describe the underlying mathematics in poetry, visual arts, music and architecture. Likewise, Peterson stresses the impact of the philosophical overtones present in geometry, but absent in algebra and its equations. Basically, the author writes about Galileo, while trying to ignore the Copernican controversy, which he sees as distracting attention from Galileo's scientific legacy. As such, his story deviates from the standard myth on Galileo. But the book also looks at other eminent characters, such as Galileo's father Vincenzo (who cultivated music and music theory), the painter Piero della Francesca (who featured elaborate perspectives in his work), Dante Alighieri (author of the Divina Commedia), Filippo Brunelleschi (who engineered the dome of the Basilica di Santa Maria del Fiore in Florence, Johannes Kepler (a strong supporter of Galileo's Copernicanism), etc. This book is very well documented: it offers, for each chapter, a wide selection of excellent biographical notes, and includes a fine

  15. Mass Spectrometers in Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul; Niemann, Hasso; Harpold, Dan

    2002-01-01

    Mass spectrometers have been included in the payloads of several deep space missions over the past three decades. Our laboratory has designed and developed mass spectrometers for the Galileo Probe into the atmosphere of Jupiter, the Pioneer Venus Orbiter, the Cassini Orbiter Mission to Saturn, the Cassini/Huygens Probe Mission to Saturn's moon Titan, the Nozomi Mission to Mars, and most recently the CONTOUR comet nucleus flyby mission. Each mission has required attention to miniaturization, autonomous sampling, and consideration of the special hazards and measurement requirements of the target environment. Development ongoing in our laboratory includes further miniaturization, improved performance in the areas of sensitivity and precision for the important isotope measurements, and adaptation for the unusual environments to be encountered in locations such as the surface or subsurface of Europa or Mars. Various aspects of both the technical implementation of these delivered and planned experiments and the science drivers will be described.

  16. Radiation analysis for manned missions to the Jupiter system.

    PubMed

    De Angelis, G; Clowdsley, M S; Nealy, J E; Tripathi, R K; Wilson, J W

    2004-01-01

    An analysis for manned missions targeted to the Jovian system has been performed in the framework of the NASA RASC (Revolutionary Aerospace Systems Concepts) program on Human Exploration beyond Mars. The missions were targeted to the Jupiter satellite Callisto. The mission analysis has been divided into three main phases, namely the interplanetary cruise, the Jupiter orbital insertion, and the surface landing and exploration phases. The interplanetary phase is based on departure from the Earth-Moon L1 point. Interplanetary trajectories based on the use of different propulsion systems have been considered, with resulting overall cruise phase duration varying between two and five years. The Jupiter-approach and the orbital insertion trajectories are considered in detail, with the spacecraft crossing the Jupiter radiation belts and staying around the landing target. In the surface exploration phase the stay on the Callisto surface is considered. The satellite surface composition has been modeled based on the most recent results from the GALILEO spacecraft. In the transport computations the surface backscattering has been duly taken into account. Particle transport has been performed with the HZETRN heavy ion code for hadrons and with an in-house developed transport code for electrons and bremsstrahlung photons. The obtained doses have been compared to dose exposure limits.

  17. Radiation analysis for manned missions to the Jupiter system.

    PubMed

    De Angelis, G; Clowdsley, M S; Nealy, J E; Tripathi, R K; Wilson, J W

    2004-01-01

    An analysis for manned missions targeted to the Jovian system has been performed in the framework of the NASA RASC (Revolutionary Aerospace Systems Concepts) program on Human Exploration beyond Mars. The missions were targeted to the Jupiter satellite Callisto. The mission analysis has been divided into three main phases, namely the interplanetary cruise, the Jupiter orbital insertion, and the surface landing and exploration phases. The interplanetary phase is based on departure from the Earth-Moon L1 point. Interplanetary trajectories based on the use of different propulsion systems have been considered, with resulting overall cruise phase duration varying between two and five years. The Jupiter-approach and the orbital insertion trajectories are considered in detail, with the spacecraft crossing the Jupiter radiation belts and staying around the landing target. In the surface exploration phase the stay on the Callisto surface is considered. The satellite surface composition has been modeled based on the most recent results from the GALILEO spacecraft. In the transport computations the surface backscattering has been duly taken into account. Particle transport has been performed with the HZETRN heavy ion code for hadrons and with an in-house developed transport code for electrons and bremsstrahlung photons. The obtained doses have been compared to dose exposure limits. PMID:15881781

  18. Europa's Thermal Surface From Galileo PPR

    NASA Astrophysics Data System (ADS)

    Rodriguez, Nathaniel; Rathbun, J.; Spencer, J.

    2009-01-01

    Europa, one of the four Galilean moons of Jupiter, may harbor a subsurface ocean beneath its icy crust. We use the thermal data gathered from the Galileo spacecraft's PPR instrument to search for endogenic activity. Evidence of endogenic activity would provide direct support for a subsurface-ocean. We are modeling variations in temperature over the course of a day and then fitting these models to the PPR data. The two key variables that affect surface temperature are bolometric albedo and thermal inertia. We are determining these variables for each point on the surface, which will allow us to create a global model of exogenic activity due to sunlight. This information will allow us to analyze the threshold where endogenic activity becomes great enough to be detectable in the PPR data.

  19. Galileo Galilei's vision of the senses.

    PubMed

    Piccolino, Marco; Wade, Nicholas J

    2008-11-01

    Neuroscientists have become increasingly aware of the complexities and subtleties of sensory processing. This applies particularly to the complex elaborations of nerve signals that occur in the sensory circuits, sometimes at the very initial stages of sensory pathways. Sensory processing is now known to be very different from a simple neural copy of the physical signal present in the external world, and this accounts for the intricacy of neural organization that puzzled great investigators of neuroanatomy such as Santiago Ramón Y Cajal a century ago. It will surprise present-day sensory neuroscientists, applying their many modern methods, that the conceptual basis of the contemporary approach to sensory function had been recognized four centuries ago by Galileo Galilei. PMID:18848364

  20. Rarefaction effects on Galileo probe aerodynamics

    NASA Technical Reports Server (NTRS)

    Moss, James N.; LeBeau, Gerald J.; Blanchard, Robert C.; Price, Joseph M.

    1996-01-01

    Solutions of aerodynamic characteristics are presented for the Galileo Probe entering Jupiter's hydrogen-helium atmosphere at a nominal relative velocity of 47.4 km/s. Focus is on predicting the aerodynamic drag coefficient during the transitional flow regime using the direct simulation Monte Carlo (DSMC) method. Accuracy of the probe's drag coefficient directly impacts the inferred atmospheric properties that are being extracted from the deceleration measurements made by onboard accelerometers as part of the Atmospheric Structure Experiment. The range of rarefaction considered in the present study extends from the free molecular limit to continuum conditions. Comparisons made with previous calculations and experimental measurements show the present results for drag to merge well with Navier-Stokes and experimental results for the least rarefied conditions considered.

  1. Galileo Galilei's vision of the senses.

    PubMed

    Piccolino, Marco; Wade, Nicholas J

    2008-11-01

    Neuroscientists have become increasingly aware of the complexities and subtleties of sensory processing. This applies particularly to the complex elaborations of nerve signals that occur in the sensory circuits, sometimes at the very initial stages of sensory pathways. Sensory processing is now known to be very different from a simple neural copy of the physical signal present in the external world, and this accounts for the intricacy of neural organization that puzzled great investigators of neuroanatomy such as Santiago Ramón Y Cajal a century ago. It will surprise present-day sensory neuroscientists, applying their many modern methods, that the conceptual basis of the contemporary approach to sensory function had been recognized four centuries ago by Galileo Galilei.

  2. In Situ Monitoring of Crystal Growth Using MEPHISTO, Mission STS 87-Program USMP-4: Experimental Analysis

    NASA Technical Reports Server (NTRS)

    Abbaschian, Reza; Chen, F.; Mileham, J. R.; deGroh, H., III; Timchenko, V.; Leonardi, E.; deVahlDavis, G.; Coriell, S.; Cambon, G.

    1999-01-01

    This report summarizes the results of the In situ Monitoring of Crystal Growth Using MEPHISTO (Material por l'Etude des Phenomenes Interessant de la Solidification sur Terre et en Orbite) experiment on USMP-4. The report includes microstructural and compositional data obtained during the first year of the post flight analysis, as well as numerical simulation of the flight experiment. Additional analyses are being continued and will be reported in the near future. The experiments utilized MEPHISTO hardware to study the solidification and melting behavior of bismuth alloyed with 1 at% tin. The experiments involved repeated melting and solidification of three samples, each approximately 90 cm long and 6mm in diameter. Half of each sample also included a 2 mm. diameter growth capillary, to assist in the formation of single grain inside. One sample provided the Seebeck voltage generated during melting and freezing processes. Another one provided temperature data and Peltier pulsed demarcation of the interface shape for post flight analysis. The third sample provided resistance and velocity measurements, as well as additional thermal data. The third sample was also quenched at the end of the mission to preserve the interface composition for post flight determination. A total of more than 45cm of directionally solidified alloy were directionally solidified at the end of the flight for post mission structural and compositional characterization. Metallurgical analysis of the samples has shown that the interfacial kinetics play a key role in controlling the morphological stability of faceted alloys. Substantial differences were observed in the Seebeck signal between the ground-based experiments and the space-based experiments. The temperature gradient in the liquid for the ground-based experiments was also significantly lower than the temperature gradient in the liquid for the space-based experiments. Both of these observations indicate significant influence of liquid

  3. 41 CFR 102-83.110 - When an agency's mission and program requirements call for the location in an urban area, are...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and program requirements call for the location in an urban area, are Executive agencies required to... REGULATION REAL PROPERTY 83-LOCATION OF SPACE Location of Space Urban Areas § 102-83.110 When an agency's mission and program requirements call for the location in an urban area, are Executive agencies...

  4. 41 CFR 102-83.110 - When an agency's mission and program requirements call for the location in an urban area, are...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and program requirements call for the location in an urban area, are Executive agencies required to... REGULATION REAL PROPERTY 83-LOCATION OF SPACE Location of Space Urban Areas § 102-83.110 When an agency's mission and program requirements call for the location in an urban area, are Executive agencies...

  5. Preliminary performance estimates of a highly maneuverable remotely piloted vehicle. [computerized synthesis program to assess effects of vehicle and mission parameters

    NASA Technical Reports Server (NTRS)

    Nelms, W. P., Jr.; Axelson, J. A.

    1974-01-01

    A computerized synthesis program has been used to assess the effects of various vehicle and mission parameters on the performance of a highly maneuverable remotely piloted vehicle (RPV) for the air-to-air combat role. The configuration used in the study is a trapezoidal-wing and body concept, with forward-mounted stabilizing and control surfaces. The study mission consists of an outbound cruise, an acceleration phase, a series of subsonic and supersonic turns, and a return cruise. Performance is evaluated in terms of both the required vehicle weight to accomplish this mission and combat effectiveness as measured by turning and acceleration capability. The report describes the synthesis program, the mission, the vehicle, and the results of sensitivity and trade studies.

  6. Ground-Based Thermal-IR Spectroscopic Observations of Jupiter During the Galileo Encounter

    NASA Astrophysics Data System (ADS)

    Sada, P. V.; Jennings, D.; McCabe, G.; Deming, D.; Bjoraker, G.

    1995-12-01

    High resolution spectroscopic observations of Jupiter at selected thermal-infrared wavelengths are scheduled to be performed using CELESTE, a Goddard-developed cryogenic echelle spectrometer. These observations will be carried out in conjunction with the McMath-Pierce 60-inch Solar Telescope (KPNO/NSO) during the inital encounter phase of the Galileo spacecraft with the planet. This arrangement was successfully used in 1994-95 to perform daytime observations of Jupiter close to the Sun. The planet will be located 9(deg) away from the Sun in the sky on 7 December 1995, the day Galileo's probe is scheduled to enter the atmosphere of the planet. Galileo's entry probe is programmed to shed its heat shield and start directly sampling the atmosphere of Jupiter at a pressure level of about 100 mbar. We plan to carry out observations of a complementary nature to those of the entry probe by using molecular species which better sample the stratosphere of Jupiter. These observations, in conjunction with those obtained by Galileo, will help characterize the state of the atmosphere of Jupiter at the time of the encounter. In particular we plan to observe the 587 cm(-1) S(1) quadrupole line of H2, which yields abundance-independent temperature information on the upper troposphere and lower stratosphere of Jupiter. We also plan to measure strong stratospheric emission features from molecules such as CH4, C2H6, and C2H2. These spectral observations will be used to retrieve temperature and species abundance information with some degree of spatial discrimination. Preliminary results from these observations will be presented. (1) National Research Council Resident Research Associate. (2) Hughes/STX.

  7. Clean Coal Technology Program: Completing the mission. Comprehensive report to Congress

    SciTech Connect

    Not Available

    1994-05-01

    With its roots in the acid rain debate of the 1980`s, the Clean Coal Technology Demonstration Program initially emphasized acid rain abatement technologies in its early phases. With the subsequent passage of the Clean Air Act Amendments and growing concern with global climate change, the emphasis of the Program shifted in the later rounds to highly efficient technologies. This report is divided into six chapters. Chapter 1 introduces the report. Chapter 2 provides a background of the CCT Program including the legislative history, the projects currently in the program, and the lessons that have been learned from the five rounds to date. Chapter 3 discusses the commercial potential of the technologies represented in the program and is based on a continuing series of interviews that have been conducted by the Department of Energy to solicit the views of senior management in those companies and organizations that will be making or affecting commercial decisions on the use of these technologies. Chapter 4 provides an accounting of the funds that have been appropriated for the CCT Program. Chapter 5 presents the options available for the Government to further assist in the commercial implementation of these technologies. Chapter 6 presents a discussion of these options with recommendations.

  8. The Flight Perfomance of the Galileo Orbiter USO

    NASA Technical Reports Server (NTRS)

    Morabito, D. D.

    1993-01-01

    Radiometric tracking Doppler measurements of the signal transmitted by the Galileo spacecraft using an Ultra-Stable Oscillator (USO) as a frequency reference have been acquired by antennas of the NSA Deep Space Network between Dec. 1998 and No. 1991.

  9. Modeling Io's Heat Flow: Constraints from Galileo PPR Data

    NASA Technical Reports Server (NTRS)

    Rathbun, J. A.; Spencer, J. R.; Tamppari, L. K.

    2000-01-01

    We attempt to improve on previous Io heat flow estimates by using higher resolution data from Galileo Photopolarimeter Radiometer (PPR) and improved thermophysical models of the surface, including finite thermal inertia, the pedestal effect, and disk-resolved radiance.

  10. Galileo, sunspots, and the motions of the Earth: redux.

    NASA Astrophysics Data System (ADS)

    Topper, D.

    1999-12-01

    In the Third Day of the Dialogue Concerning the Two Chief World Systems (1632), Galileo presents an argument for the motion of the Earth based on the annual motion of sunspots. Presented in a rather obscure and seemingly unorganized manner, this demonstration has been the source of much confusion and debate. Two key writings are Arthur Koestler's attack on Galileo's integrity, based on his reading of the proof as a piece of sophistry, and A. Mark Smith's defense of Galileo, based on a comparison of the Ptolemaic and Copernican explanations of the phenomenon. This essay reexamines the arguments of Galileo and others, uncovering especially a key flaw: that they disregarded, omitted, or trivialized the crucial role played by the precession of the equinoxes.

  11. Galileo post-Gaspra cruise and Earth-2 encounter

    NASA Technical Reports Server (NTRS)

    Beyer, P. E.; Andrews, M. M.

    1993-01-01

    This article documents DSN support for the Galileo cruise after the Oct. 1991 encounter with the asteroid Gaspra. This article also details the Earth-2 encounter and the special non-DSN support provided during the Earth-2 closest approach.

  12. Io's Diverse Styles of Volcanic Activity: Results from Galileo NIMS

    NASA Technical Reports Server (NTRS)

    Lopes, R. M. C.; Smythe, W. D.; Kamp, L. W.; Doute, S.; Carlson, R.; McEwen, A.; Geissler, P.

    2001-01-01

    Observations by Galileo's Near-Infrared Mapping Spectrometer were used to map the thermal structure of several of Io's hot spots, revealing different styles of volcanism Additional information is contained in the original extended abstract..

  13. [Keratoacanthoma on the left cheek of Galileo Galilei].

    PubMed

    Roth, W

    1986-09-01

    In an oil painting from the School of Sustermans, which can be seen in the Palazzo Pitti in Florence, we diagnosed the alterations typical of a keratoacanthoma in the left cheek-bone area of the portrayed Galileo Galilei.

  14. Flight of a UV spectrophotometer aboard Galileo 2, the NASA Convair 990 aircraft

    NASA Technical Reports Server (NTRS)

    Sellers, B.; Hunderwadel, J. L.; Hanser, F. A.

    1976-01-01

    An ultraviolet interference-filter spectrophotometer (UVS) fabricated for aircraft-borne use on the DOT Climatic Impact Assessment Program (CIAP) has been successfully tested in a series of flights on the NASA Convair 990, Galileo II. UV flux data and the calculated total ozone above the flight path are reported for several of the flights. Good agreement is obtained with the total ozone as deducted by integration of an ozone sonde vertical profile obtained at Wallops Island, Virginia near the time of a CV-990 underpass. Possible advantages of use of the UVS in the NASA Global Atmospheric Sampling Program are discussed.

  15. The NASA Electronic Parts and Packaging (NEPP) Program: Overview and the New Tenets for Cost Conscious Mission Assurance on Electrical, Electronic, and Electromechanical (EEE) Parts

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2015-01-01

    The NEPP Program focuses on the reliability aspects of electronic devices (integrated circuits such as a processor in a computer). There are three principal aspects of this reliability: 1) Lifetime, inherent failure and design issues related to the EEE parts technology and packaging; 2) Effects of space radiation and the space environment on these technologies, and; 3) Creation and maintenance of the assurance support infrastructure required for mission success. The NEPP mission is to provide guidance to NASA for the selection and application of microelectronics technologies, to improve understanding of the risks related to the use of these technologies in the space environment, and to ensure that appropriate EEE parts research is performed to meet NASA mission assurance needs. NEPPs FY15 goals are to represent the NASA voice to the greater aerospace EEE parts community including supporting anti-counterfeit and trust, provide relevant guidance to cost-effective missions, aid insertion of advanced (and commercial) technologies, resolve unexpected parts issues, ensure access to appropriate radiation test facilities, and collaborate as widely as possible with external entities. In accordance with the changing mission profiles throughout NASA, the NEPP Program has developed a balanced portfolio of efforts to provide agency-wide assurance for not only traditional spacecraft developments, but also those in-line with the new philosophies emerging worldwide. In this presentation, we shall present an overview of this program and considerations for EEE parts assurance as applied to cost conscious missions.

  16. The NASA Microgravity Fluid Physics Program: Knowledge for Use on Earth and Future Space Missions

    NASA Astrophysics Data System (ADS)

    Kohl, Fred J.; Singh, Bhim S.; Alexander, J. Iwan; Shaw, Nancy J.; Hill, Myron E.; Gati, Frank G.

    2002-12-01

    Building on over four decades of research and technology development related to the behavior of fluids in low gravity environments, the current NASA Microgravity Fluid Physics Program continues the quest for knowledge to further understand and design better fluids systems for use on earth and in space. The purpose of the Fluid Physics Program is to support the goals of NASA's Biological and Physical Research Enterprise which seeks to exploit the space environment to conduct research and to develop commercial opportunities, while building the vital knowledge base needed to enable efficient and effective systems for protecting and sustaining humans during extended space flights. There are currently five major research areas in the Microgravity Fluid Physics Program: complex fluids, multiphase flows and phase change, interfacial phenomena, biofluid mechanics, and dynamics and instabilities. Numerous investigations into these areas are being conducted in both ground-based laboratories and facilities and in the flight experiments program. Most of the future NASA-sponsored fluid physics and transport phenomena studies will be carried out on the International Space Station in the Fluids Integrated Rack, in the Microgravity Science Glovebox, in EXPRESS racks, and in other facilities provided by international partners. This paper will present an overview of the near- and long-term visions for NASA's Microgravity Fluid Physics Research Program and brief descriptions of hardware systems planned to achieve this research.

  17. The NASA Microgravity Fluid Physics Program: Knowledge for Use on Earth and Future Space Missions

    NASA Technical Reports Server (NTRS)

    Kohl, Fred J.; Singh, Bhim S.; Alexander, J. Iwan; Shaw, Nancy J.; Hill, Myron E.; Gati, Frank G.

    2002-01-01

    Building on over four decades of research and technology development related to the behavior of fluids in low gravity environments, the current NASA Microgravity Fluid Physics Program continues the quest for knowledge to further understand and design better fluids systems for use on earth and in space. The purpose of the Fluid Physics Program is to support the goals of NASA's Biological and Physical Research Enterprise which seeks to exploit the space environment to conduct research and to develop commercial opportunities, while building the vital knowledge base needed to enable efficient and effective systems for protecting and sustaining humans during extended space flights. There are currently five major research areas in the Microgravity Fluid Physics Program: complex fluids, multiphase flows and phase change, interfacial phenomena, biofluid mechanics, and dynamics and instabilities. Numerous investigations into these areas are being conducted in both ground-based laboratories and facilities and in the flight experiments program. Most of the future NASA-sponsored fluid physics and transport phenomena studies will be carried out on the International Space Station in the Fluids Integrated Rack, in the Microgravity Science Glovebox, in EXPRESS racks, and in other facilities provided by international partners. This paper will present an overview of the near- and long-term visions for NASA's Microgravity Fluid Physics Research Program and brief descriptions of hardware systems planned to achieve this research.

  18. Mission operations management

    NASA Technical Reports Server (NTRS)

    Rocco, David A.

    1994-01-01

    Redefining the approach and philosophy that operations management uses to define, develop, and implement space missions will be a central element in achieving high efficiency mission operations for the future. The goal of a cost effective space operations program cannot be realized if the attitudes and methodologies we currently employ to plan, develop, and manage space missions do not change. A management philosophy that is in synch with the environment in terms of budget, technology, and science objectives must be developed. Changing our basic perception of mission operations will require a shift in the way we view the mission. This requires a transition from current practices of viewing the mission as a unique end product, to a 'mission development concept' built on the visualization of the end-to-end mission. To achieve this change we must define realistic mission success criteria and develop pragmatic approaches to achieve our goals. Custom mission development for all but the largest and most unique programs is not practical in the current budget environment, and we simply do not have the resources to implement all of our planned science programs. We need to shift our management focus to allow us the opportunity make use of methodologies and approaches which are based on common building blocks that can be utilized in the space, ground, and mission unique segments of all missions.

  19. Global Health: The Fogarty International Center, National Institutes of Health: Vision and Mission, Programs, and Accomplishments

    PubMed Central

    Breman, Joel G.; Bridbord, Kenneth; Kupfer, Linda E.; Glass, Roger I.

    2011-01-01

    Summary The Fogarty International Center (FIC) of the U.S. National Institutes of Health has supported long-term (>6 months) basic, clinical and applied research training and research for over 3,600 future leaders in science and public health from low- and middle-income countries (LMICs); tens of thousands more persons have received short-term training. FIC started these programs in 1988 with the flagship HIV/AIDS International Training and Research Program (AITRP) in response to the global pandemic. More than 23 extramural training and research programs plus an intramural program are now operating – all in collaboration with other Institutes and Centers at NIH, U.S. government agencies, foundations, and partner institutions in LMICs and the U.S. While infectious diseases still reign mightily in Sub-Saharan African and South East Asian countries, non-communicable diseases are emerging globally, including in LMICs. Newer FIC training programs are addressing chronic, non-communicable diseases and strengthening the quality of medical schools and health care provider training, in addition to expanding expertise in infectious diseases. The model for successful training is based on long-term commitments, institutional strengthening, “twinning” of research centers, focus on local problems, and active mentoring. Trainees from Africa, Asia, and Latin America have made notable scientific contributions to global health, attained leadership positions, and received special recognition nationally and internationally. As the FIC programs are institutional-strengthening partnerships and candidates are carefully selected and mentored, close to 90% of FIC trainees return to their countries of origin. After returning home the FIC-trained leaders have continued to mentor and train thousands of individuals in their home countries. PMID:21896356

  20. A Galilean Approach to the Galileo Affair, 1609-2009

    NASA Astrophysics Data System (ADS)

    Finocchiaro, Maurice A.

    2011-01-01

    Galileo's telescopic discoveries of 1609-1612 provided a crucial, although not conclusive, confirmation of the Copernican hypothesis of the earth's motion. In Galileo's approach, the Copernican Revolution required that the geokinetic hypothesis be supported not only with new theoretical arguments but also with new observational evidence; that it be not only supported constructively but also critically defended from objections; and that such objections be not only refuted but also appreciated in all their strength. However, Galileo's defense of Copernicanism triggered a sequence of events that climaxed in 1633, when the Inquisition tried and condemned him as a suspected heretic. In turn, the repercussions of Galileo's condemnation have been a defining theme of modern Western culture for the last four centuries. In particular, the 20th century witnessed a curious spectacle: rehabilitation efforts by the Catholic Church and anti-Galilean critiques by secular-minded left-leaning social critics. The controversy shows no signs of abating to date, as may be seen from the episode of Pope Benedict XVI's attitude toward Paul Feyerabend's critique of Galileo. Nevertheless, I have devised a framework which should pave the way for eventually resolving this controversy, and which is modeled on Galileo's own approach to the Copernican Revolution.

  1. High Contrast Science Program for the Exo-C Space Telescope Mission

    NASA Astrophysics Data System (ADS)

    Stapelfeldt, Karl R.; Marley, Mark S.; Bryden, Geoffrey; Meadows, Victoria; Belikov, Ruslan; McElwain, Michael W.; Exo-C Science; Technology Definition Team

    2015-01-01

    Exo-C is a detailed study of the science capability, engineering design, technology requirements, and costing for a modest-aperture space telescope with an internal coronagraph that could directly image exoplanetary systems. During its three year mission, Exo-C will carry out imaging and spectroscopy over the wavelength range 0.45-1.0 um towards the following goals: 1) Characterize the atmospheres of at least a dozen known, nearby radial velocity planets. Exo-C spectra will diagnose their atmospheric composition and the presence of clouds, performing the first such measurements of cool giant exoplanets like those in our own solar system. 2) Conduct an imaging survey of at least 100 additional nearby stars down to ~3e-10 contrast, enabling the discovery of new exoplanets down to super-Earth sizes. Sub-Neptune and super-Earth planets are relatively common in the exoplanet population, but have no counterparts in our Solar System. Exo-C spectra will provide the first atmospheric characterization for these intriguing objects. 3) Image several hundred circumstellar disks, revealing structures induced by planetary perturbations and the time evolution of disk properties. If exozodi is low and a very stable telescope can be achieved, habitable zone planets down to Earth size might be detected in a small sample of nearby stars including the alpha Cen system. Science targets, observing protocols, and future work will be discussed.

  2. The US/USSR Biological Satellite Program: COSMOS 936 Mission Overview

    NASA Technical Reports Server (NTRS)

    Souza, K. A.

    1978-01-01

    On August 3, 1977, the Soviet Union launched Cosmos 936, an unmanned spacecraft carrying biology and physics experiments from 9 countries, including both the Soviet Union and U.S. The launch marked the second time the Soviet Union has flown U.S. experiments aboard one of its spacecraft, the first being Cosmos 782 launched Nov. 25, 1975, which remained in orbit 19.5 days. Aboard Cosmos 936 were: 30 young male Wistar SPF rats, 20 of which was exposed to hypogravity during flight while the remainder were subjected to a l x g acceleration by continuous configuration; 2) experiments with plants and fruit flies; 3) radiation physics experiments; and 4) a heat convection experiment. After 18.5 days in orbit, the spacecraft landed in central Asia where a Soviet recovery team began experiment operations, including animal autopsies, within 4.5 hr of landing. Half of the animals were autopsied at the recovery site and the remainder returned to Moscow and allowed to readapt to terrestrial gravity for 25 days after which they, too, were autopsied. Specimens for U.S. were initially prepared at the recovery site or Soviet laboratories and transferred to U.S. laboratories for complete analyses. An overview of the mission focusing on preflight, on-orbit, and postflight activities pertinent to the seven U.S. experiments aboard Cosmos 936 will be presented.

  3. Predicting Mission Success in Small Satellite Missions

    NASA Technical Reports Server (NTRS)

    Saunders, Mark; Richie, Wayne; Rogers, John; Moore, Arlene

    1992-01-01

    In our global society with its increasing international competition and tighter financial resources, governments, commercial entities and other organizations are becoming critically aware of the need to ensure that space missions can be achieved on time and within budget. This has become particularly true for the National Aeronautics and Space Administration's (NASA) Office of Space Science (OSS) which has developed their Discovery and Explorer programs to meet this need. As technologies advance, space missions are becoming smaller and more capable than their predecessors. The ability to predict the mission success of these small satellite missions is critical to the continued achievement of NASA science mission objectives. The NASA Office of Space Science, in cooperation with the NASA Langley Research Center, has implemented a process to predict the likely success of missions proposed to its Discovery and Explorer Programs. This process is becoming the basis for predicting mission success in many other NASA programs as well. This paper describes the process, methodology, tools and synthesis techniques used to predict mission success for this class of mission.

  4. Re-Articulating the Mission and Work of the Writing Program with Digital Video

    ERIC Educational Resources Information Center

    Kopp, Drew; Stevens, Sharon McKenzie

    2010-01-01

    In this webtext, we discuss one powerful way that writing program administrators (WPAs) can start to reshape their basic rhetorical situation, potentially shifting the underlying premises that external audiences bring to discussions about writing instruction. We argue that digital video, when used strategically, is a particularly valuable medium…

  5. A review of the US Global Change Research Program and NASA's Mission to Planet Earth/Earth Observing System

    NASA Technical Reports Server (NTRS)

    Moore, Berrien, III; Anderson, James G.; Costanza, Robert; Gates, W. Lawrence; Grew, Priscilla C.; Leinen, Margaret S.; Mayewski, Paul A.; McCarthy, James J.; Sellers, Piers J.

    1995-01-01

    This report reflects the results of a ten-day workshop convened at the Scripps Institution of Oceanography July 19-28, 1995. The workshop was convened as the first phase of a two part review of the U.S. Global Change Research Program (USGCRP). The workshop was organized to provide a review of the scientific foundations and progress to date in the USGCRP and an assessment of the implications of new scientific insights for future USGCRP and Mission to Planet Earth/Earth Observing System (MTPE/EOS) activities; a review of the role of NASA's MTPE/EOS program in the USGCRP observational strategy; a review of the EOS Data and Information System (EOSDIS) as a component of USGCRP data management activities; and an assessment of whether recent developments in the following areas lead to a need to readjust MTPE/EOS plans. Specific consideration was given to: proposed convergence of U.S. environmental satellite systems and programs, evolving international plans for Earth observation systems, advances in technology, and potential expansion of the role of the private sector. The present report summarizes the findings and recommendations developed by the Committee on Global Change Research on the basis of the presentations, background materials, working group deliberations, and plenary discussions of the workshop. In addition, the appendices include summaries prepared by the six working groups convened in the course of the workshop.

  6. Europa's Neutral Cloud: Modeling Galileo and Cassini Observations

    NASA Astrophysics Data System (ADS)

    Burger, M. H.; Johnson, R. E.

    2004-11-01

    Recently reported Galileo observations coupled with Cassini measurements during its Jupiter flyby are suggestive of the presence of a water product component of Europa's extended cloud. Lagg et al. (2003) reported the depletion of protons with pitch angle of 90 degrees near Europa which suggests the presence of an equatorially confined cloud of neutral gas. Mauk et al. (2003) detected energetic neutrals resulting from charge exchange between protons and atomic or molecular neutrals in the Europa cloud. Models of the previously detected sodium component of this cloud (Brown and Hill 1996, Leblanc et al. 2002) by Burger and Johnson (2004) predict that the cloud morphology is significantly different from the morphology of the Io neutral cloud. Due to differences in the radial variations in the magnetospheric plasma at each satellite, the Io cloud is predominately a leading cloud while the Europa cloud is a trailing cloud expanding radially outward from Jupiter. We present models of the molecular and atomic oxygen clouds formed from water dissociation products escaping from Europa's surface and atmosphere and compare with the Galileo and Cassini observations. These studies use recent models of Europa's atmosphere (Shematovich et al. 2004) and an empirical description of the Io plasma torus (described in Burger 2003) to estimate the large scale distribution of neutrals escaping from Europa. In addition, we discuss the effects of the variable plasma environment on observable oxygen emissions. This work has been supported by grants from NASA's Planetary Atmospheres Program. References: Brown, M.E. and Hill, R.E. Nature, 380, 229, 1996. Burger, M.H. Ph.D. Thesis, University of Colorado, 2003. Burger, M.H., Johnson, R.E. Icarus, in press, 2004. Lagg, A., Krupp, N., Woch, J., Williams, D.J. GRL, 30, 10-1, 2003. Leblanc, F., Johnson, R.E., Brown, M.E. Icarus, 159, 132, 2002. Mauk, B.H., et al. Nature, 421, 920, 2003. Shematovich, V. I., Johnson, R.E., Cooper, J.F. Wong, M

  7. Galileo Photometry of Asteroid 951 Gaspra

    USGS Publications Warehouse

    Helfenstein, P.; Veverka, J.; Thomas, P.C.; Simonelli, D.P.; Lee, P.; Klaasen, K.; Johnson, T.V.; Breneman, H.; Head, J.W.; Murchie, S.; Fanale, F.; Robinson, M.; Clark, B.; Granahan, J.; Garbeil, H.; McEwen, A.S.; Kirk, R.L.; Davies, M.; Neukum, G.; Mottola, S.; Wagner, R.; Belton, M.; Chapman, C.; Pilcher, C.

    1994-01-01

    Galileo images of Gaspra make it possible for the first time to determine a main-belt asteroid's photometric properties accurately by providing surface-resolved coverage over a wide range of incidence and emission angles and by extending the phase angle coverage to phases not observable from Earth. We combine Earth-based telescopic photometry over phase angles 2?? ??? ?? ??? 25?? with Galileo whole-disk and disk-resolved data at 33?? ??? ?? ??? 51?? to derive average global photometric properties in terms of Hapke's photometric model. The microscopic texture and particle phase-function behavior of Gaspra's surface are remarkably like those of other airless rocky bodies such as the Moon. The macroscopic surface roughness parameter, ??̄ = 29??, is slightly larger than that reported for typical lunar materials. The particle single scattering albedo, ??́0 = 0.36 ?? 0.07, is significantly larger than for lunar materials, and the opposition surge amplitude, B0 = 1.63 ?? 0.07, is correspondingly smaller. We determine a visual geometric albedo pv = 0.22 ?? 0.06 for Gaspra, in close agreement with pv = 0.22 ?? 0.03 estimated from Earth-based observations. Gaspra's phase integral is 0.47, and the bolometric Bond albedo is estimated to be 0.12 ?? 0.03. An albedo map derived by correcting Galileo images with our average global photometric function reveals subdued albedo contrasts of ??10% or less over Gaspra's northern hemisphere. Several independent classification algorithms confirm the subtle spectral heterogeneity reported earlier (S. Mottola, M. DiMartino, M. Gonano-Beurer, H. Hoffman, and G. Neukum, 1993, Asteroids, Comets, Meteors, pp. 421-424; M. J. S. Belton et al., 1992, Science 257, 1647-1652). Whole-disk colors (0.41 ??? ?? ??? 0.99 ??m) vary systematically with longitude by about ??5%, but color differences as large as 30% occur locally. Colors vary continuously between end-member materials whose areal distribution correlates with regional topography. Infrared

  8. The Kepler Mission and the International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    Harman, Pamela; DeVore, E.; Gould, A.; Koch, D.

    2008-05-01

    Johannes Kepler was one of Galileo's contemporaries, publishing New Astronomy defining his first two laws, nearly 400 years ago, in 1609. It is a fitting tribute that the Kepler Mission launches in 2009. Kepler continued his studies of motion and made observations of satellites of Jupiter, and published his third law. We now recognize Kepler's laws as 1. Planets move in elliptical; 2. The planets move such that the line between the Sun and the Planet sweeps out equal areas in equal time no matter where in the orbit; and 3. The square of the period of the orbit of a planet is proportional to the mean distance from the Sun cubed. Kepler's laws were deduced empirically from the motions of the planet Mars in the early 17th century, before Newton deduced the law of gravity and his laws of motion. The Kepler Mission, a NASA Discovery mission, is specifically designed to survey our region of the Milky Way galaxy to detect and characterize hundreds of Earth-size and smaller planets in or near the habitable zone. The habitable zone encompasses the distances from a star where liquid water can exist on a planet's surface. Results from this mission will allow us to place our solar system within the continuum of planetary systems in the Galaxy. The Mission Education and Public Outreach (EPO) Program has developed a Night Sky Network (NSN) outreach kit, Shadows and Silhouettes. This NSN kit is used by amateur astronomers at school and public observing events to illustrate a transit, and explain eclipses.

  9. Human Research Program: Long Duration, Exploration-Class Mission Training Design

    NASA Technical Reports Server (NTRS)

    Barshi, Immanuel; Dempsey, Donna L.

    2016-01-01

    This is a presentation to the International Training Control Board that oversees astronaut training for ISS. The presentation explains the structure of HRP, the training-related work happening under the different program elements, and discusses in detail the research plan for the Training Risk under SHFHSHFE. The group includes the crew training leads for all the space agencies involved in ISS: Japan, Europe, Russia, Canada, and the US.

  10. ORION: A Supersynchronous Transfer Orbit mission

    NASA Technical Reports Server (NTRS)

    Walters, I. M.; Baker, J. F.; Shurmer, I. M.

    1995-01-01

    ORION F1 was launched on 29th November 1994 on an Atlas IIA launch vehicle. It was designed, built and delivered in-orbit by Matra Marconi Space Systems Plc and was handed over to ORION Satellite Corporation on 20th January 1995 at its on-station longitude of 37.5 deg W. The mission differed significantly from that of any other geostationary communications satellite in that the Transfer Orbit apogee altitude of 123,507 km was over three times geosynchronous (GEO) altitude and one third of the way to the moon. The SuperSynchronous Transfer Orbit (SSTO) mission is significantly different from the standard Geostationary Transfer Orbit (GTO)mission in a number of ways. This paper discusses the essential features of the mission design through its evolution since 1987 and the details of the highly successful mission itself including a detailed account of the attitude determination achieved using the Galileo Earth and Sun Sensor (ESS).

  11. Mission management - Lessons learned from early Spacelab missions

    NASA Technical Reports Server (NTRS)

    Craft, H. G., Jr.

    1980-01-01

    The concept and the responsibilities of a mission manager approach are reviewed, and some of the associated problems in implementing Spacelab mission are discussed. Consideration is given to program control, science management, integrated payload mission planning, and integration requirements. Payload specialist training, payload and launch site integration, payload flight/mission operations, and postmission activities are outlined.

  12. Return to Europa: Overview of the Jupiter Europa Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Clark, K.; Tan-Wang, G.; Boldt, J.; Greeley, R.; Jun, I.; Lock, R.; Ludwinski, J.; Pappalardo, R.; Van Houten, T.; Yan, T.

    2009-01-01

    Missions to explore Europa have been imagined ever since the Voyager mission first suggested that Europa was geologically very young. Subsequently, Galileo supplied fascinating new insights into that satellite's secrets. The Jupiter Europa Orbiter (JEO) would be the NASA-led portion of the Europa Jupiter System Mission (EJSM), an international mission with orbiters developed by NASA, ESA and possibly JAXA. JEO would address a very important subset of the complete EJSM science objectives and is designed to function alone or in conjunction with ESA's Jupiter Ganymede Orbiter (JGO).

  13. Galileo or for whom the bell tolls

    NASA Astrophysics Data System (ADS)

    Legat, K.; Hofmann-Wellenhof, B.

    2000-10-01

    Satellite-based navigation rapidly evolved into an efficient tool extensively used in a wide variety of civilian applications covering numerous modes of transportation, communication, administration, geodesy, agriculture, and many others. The current systems globally available are the US Global Positioning System (GPS) and the conceptually very similar Russian Global Navigation Satellite System (GLONASS). Considering the worldwide applications, GPS clearly predominates over GLONASS. However, GPS and GLONASS are mainly under military control of single nations and, also critical, do not fulfill certain performance requirements of the civil users, especially in terms of safety-critical applications. Thus, augmentations to the current systems and even completely new systems are under investigation. These are usually summarized under the abbreviation Global Navigation Satellite Systems (GNSSs). The various types of GNSS are described where emphasis is put on the future US and European contributions to the second-generation GNSS, i.e., the modernized GPS and the definition of the new European Galileo system. These two systems may be characterized as "compatible competitors"—thus, one might ask for whom the bell tolls.

  14. IDA 'Galileo Award' presented to Bob Mizon

    NASA Astrophysics Data System (ADS)

    Miles, R.

    2006-12-01

    The Galileo Award is given once per year by the European Region of the International Dark-Sky Association (IDA) for outstanding achievements in combating light pollution in Europe. I am pleased to report that the 2006 award has been made to our very own Bob Mizon, Coordinator of the BAA Campaign for Dark Skies (CfDS). As most of you will know, the CfDS was set up by concerned members of the BAA in 1989 to counter the ever-growing tide of skyglow which has tainted the night sky over Britain since the 1950s, and to address the related problems of light trespass and energy wastage. Bob has been doing an outstanding job as Coordinator of the CfDS for many years and so it was a real pleasure for me not only to attend the 6th European Dark-Skies Symposium in Portsmouth (of which Bob was one of the organisers) but also to be present when Bob received his much-deserved award from Bob Gent, Vice-President of the Board of Directors of the IDA.

  15. Galileo - The Serial-Production AIT Challenge

    NASA Technical Reports Server (NTRS)

    Ragnit, Ulrike; Brunner, Otto

    2008-01-01

    The Galileo Project is one of the most demanding projects of ESA, being Europe's autarkic navigation system and a constellation composed of 30 satellites. This presentation points out the different phases of the project up to the full operational capability and the corresponding launch options with respect to launch vehicles as well as launch configurations. One of the biggest challenges is to set up a small serial 'production line' for the overall integration and test campaign of satellites. This production line demands an optimization of all relevant tasks, taking into account also backup and recovery actions. A comprehensive AIT concept is required, reflecting a tightly merged facility layout and work flow design. In addition a common data management system is needed to handle all spacecraft related documentation and to have a direct input-out flow for all activities, phases and positions at the same time. Process optimization is a well known field of engineering in all small high tech production lines, nevertheless serial production of satellites are still not the daily task in space business and therefore new concepts have to be put in place. Therefore, and in order to meet the satellites overall system optimization, a thorough interface between unit/subsystem manufacturing and satellite AIT must be realized to ensure a smooth flow and to avoid any process interruption, which would directly lead to a schedule impact.

  16. Aeronautics Research Mission Directorate Integrated Systems Research Program (ISRP) and UAS Integration in the NAS Project

    NASA Technical Reports Server (NTRS)

    Wolfe, Jean

    2010-01-01

    Program Goal: Conduct research at an integrated system-level on promising concepts and technologies and explore, assess, or demonstrate the benefits in a relevant environment.Criteria for selection of projects for Integrated Systems Research: a) Technology has attained enough maturity in the foundational research program that they merit more in-depth evaluation at an integrated system level in a relevant environment. b) Technologies which systems analysis indicates have the most potential for contributing to the simultaneous attainment of goals. c) Technologies identified through stakeholder input as having potential for simultaneous attainment of goals. d) Research not being done by other government agencies and appropriate for NASA to conduct. e) Budget augmentation. Environmentally Responsible Aviation (ERA) Project Explore and assess new vehicle concepts and enabling technologies through system-level experimentation to simultaneously reduce fuel burn, noise, and emissions Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project Contribute capabilities that reduce technical barriers related to the safety and operational challenges associated with enabling routine UAS access to the NAS Innovative Concepts for Green Aviation (ICGA) Project Spur innovation by offering research opportunities to the broader aeronautics community through peer-reviewed proposals, with a focus on making aviation more eco-friendly. Establish incentive prizes similar to the Centennial Challenges and sponsor innovation demonstrations of selected technologies that show promise of reducing aviation s impact on the environment

  17. Galileo in-situ dust measurements and the sculpting of Jupiter's gossamer rings by its shadow

    NASA Astrophysics Data System (ADS)

    Krüger, Harald; Hamilton, Douglas P.; Moissl, Richard; Grün, Eberhard

    2008-09-01

    Galileo was the first articfiial satellite to orbit Jupiter. During its late orbital mission the spacecraft made two passages through the giant planet's gossamer ring system. The highly sensitive impact-ionization dust detector on board successfully recorded dust impacts during both ring passages and provided the first in-situ measurements from a dusty planetary ring. During the first passage { on 5 November 2002 while Galileo was approaching Jupiter - dust measurements were collected until a spacecraft anomaly at 2:33RJ (Jupiter radii) just 16 min after a close flyby of Amalthea put the spacecraft into a safing mode. The second ring passage on 21 September 2003 provided ring dust measurements down to about 2:5RJ and the Galileo spacecraft was destroyed shortly thereafter in a planned impact with Jupiter. In all, a few thousand dust impacts were counted with the instrument accumulators during both ring passages, but only a total of 110 complete data sets of dust impacts were transmitted to Earth (Krüger et al, Icarus, submitted). Detected particle sizes range from about 0.2 to 5 μm, extending the known size distribution by an order of magnitude towards smaller particles than previously derived from optical imaging (Showalter et al., Icarus 2008). The grain size distribution increases towards smaller particles and shows an excess of these tiny motes in the Amalthea gossamer ring compared to the Thebe ring. The size distribution for the Amalthea ring derived from our in-situ measurements for the small grains agrees very well with the one obtained from images for large grains. Our analysis shows that particles contributing most to the optical cross-section are approximately 5 μm in radius, in agreement with imaging results. The measurements indicate a large drop in particle ux immediately interior to Thebe's orbit and some detected particles seem to be on highly-tilted orbits with inclinations up to 20°. Finally, the faint Thebe ring extension was detected out to

  18. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix A: EOS program WBS dictionary. Appendix B: EOS mission functional analysis

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The work breakdown structure (WBS) dictionary for the Earth Observatory Satellite (EOS) is defined. The various elements of the EOS program are examined to include the aggregate of hardware, computer software, services, and data required to develop, produce, test, support, and operate the space vehicle and the companion ground data management system. A functional analysis of the EOS mission is developed. The operations for three typical EOS missions, Delta, Titan, and Shuttle launched are considered. The functions were determined for the top program elements, and the mission operations, function 2.0, was expanded to level one functions. Selection of ten level one functions for further analysis to level two and three functions were based on concern for the EOS operations and associated interfaces.

  19. Safety analysis for the Galileo Light-Weight Radioisotope Heater Unit

    SciTech Connect

    Johnson, E.W.

    1990-01-01

    The Light-Weight Radioisotope Heater Unit (LWRHU) will be used on the NASA Galileo Mission to provide thermal energy to the various systems on the orbiter and probe that are adversely affected by the low temperature a spacecraft encounters during a long interplanetary mission. Using these plutonia-fueled sources in 1-W increments permits employment of a single design and provides the spacecraft user the option of how many to use and where to position them to satisfy the proper thermal environment for components requiring such consideration. The use of the radioisotope {sup 238}Pu in these devices necessitates the assessment of postulated radiological risks which might be experienced in case of accidents or malfunctions of the space shuttle or the spacecraft during phases of the mission in the vicinity of the earth. Included are data for the design, mission descriptions, postulated accidents with their consequences, test data, and the derived source terms and personnel exposures for the various events. 4 refs., 4 figs., 1 tab.

  20. Idealisation and Galileo's Pendulum Discoveries: Historical, Philosophical and Pedagogical Considerations

    NASA Astrophysics Data System (ADS)

    Matthews, Michael R.

    2004-11-01

    Galileo's discovery of the properties of pendulum motion depended on his adoption of the novel methodology of idealisation. Galileo's laws of pendulum motion could not be accepted until the empiricist methodological constraints placed on science by Aristotle, and by common sense, were overturned. As long as scientific claims were judged by how the world was immediately seen to behave, and as long as mathematics and physics were kept separate, then Galileo's pendulum claims could not be substantiated; the evidence was against them. Proof of the laws required not just a new science, but a new way of doing science, a new way of handling evidence, a new methodology of science. This was Galileo's method of idealisatioin. It was the foundation of the Galilean-Newtonian Paradigm which characterised the Scientific Revolution of the 17th century, and the subsequent centuries of modern science. As the pendulum was central to Galileo's and Newton's physics, appreciating the role of idealisation in their work is an instructive way to learn about the nature of science.