Sample records for galileo mission tier

  1. Final environmental impact statement for the Galileo Mission (Tier 2)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This Final Environmental Impact Statement (FEIS) addresses the proposed action of completing the preparation and operation of the Galileo spacecraft, including its planned launch on the Space Transportation System (STS) Shuttle in October 1989, and the alternative of canceling further work on the mission. The only expected environmental effects of the proposed action are associated with normal launch vehicle operation, and are treated in published National Environmental Policy Act (NEPA) documents on the Shuttle (NASA 1978) and the Kennedy Space Center (NASA 1979), and in the KSC Environmental Resources Document (NASA 1986) and the Galileo Tier 1 EIS (NASA 1988a). The environmental impacts of a normal launch were deemed insufficient to preclude Shuttle operations. Environmental impacts may also result from launch or mission accidents that could release plutonium fuel used in the Galileo power system. Intensive analysis of the possible accidents associated with the proposed action reveal small health or environmental risks. There are no environmental impacts in the no-action alternative. The remote possibility of environmental impacts of the proposed action must be weighed against the large adverse fiscal and programmatic impacts inherent in the no-action alternative.

  2. Final Environmental Impact Statement for the Galileo Mission (Tier 2)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This Final Environmental Impact Statement (FEIS) addresses the proposed action of completing the preparation and operation of the Galileo spacecraft, including its planned launch on the Space Transportation System (STS) Shuttle in October 1989, and the alternative of canceling further work on the mission. The Tier 1 (program level) EIS (NASA 1988a) considered the Titan IV launch vehicle as an alternative booster stage for launch in May 1991 or later. The May 1991 Venus launch opportunity is considered a planetary back-up for the Magellan (Venus Radar Mapper) mission, the Galileo mission, and the Ulysses mission. Plans were underway to enable the use of a Titan IV launch vehicle for the planetary back-up. However, in November 1988, the U.S. Air Force, which procures the Titan IV for NASA, notified NASA that it could not provide a Titan IV vehicle for the May 1991 launch opportunity due to high priority Department of Defense requirements. Consequently, NASA terminated all mission planning for the Titan IV planetary back-up. A minimum of 3 years is required to implement mission-specific modifications to the basic Titan IV launch configuration; therefore, insufficient time is available to use a Titan IV vehicle in May 1991. Thus, the Titan IV launch vehicle is no longer a feasible alternative to the STS/Inertial Upper Stage (IUS) for the May 1991 launch opportunity.

  3. Final (Tier 1) environmental impact statement for the Galileo and Ulysses Missions

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Presented here is a Final (Tier 1) Environmental Impact Statement (EIS) addressing the potential environmental consequences associated with continuing the modifications of the Galileo and Ulysses spacecraft for launch using a booster/upper stage combination that is different from the one planned for use prior to the Challenger accident, while conducting the detailed safety and environmental analysis in order to preserve the October 1989 launch opportunity for Galileo and an October 1990 launch opportunity for Ulysses. While detailed safety and environmental analyses associated with the missions are underway, they currently are not complete. Nevertheless, sufficient information is available to enable a choice among the reconfiguration alternatives presented. Relevant assessments of the potential for environmental impacts are presented.

  4. Draft environmental impact statement for the Galileo Mission (Tier 2)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This Draft Environmental Impact Statement (DEIS) addresses the environmental impacts which may be caused by the preparation and operation of the Galileo spacecraft, including its planned launch on the Space Transportation System (STS) Shuttle and the alternative of canceling further work on the mission. The launch configuration will use the STS/Inertial Upper Stage (IUS)/Payload Assist Module-Special (PAM-S) combination. The Tier 1 EIS included a delay alternative which considered the Titan 4 launch vehicle as an alternative booster stage for launch in 1991 or later. However, the U.S. Air Force, which procures the Titan 4 for NASA, could not provide a Titan 4 vehicle for the 1991 launch opportunity because of high priority Department of Defense requirements. The only expected environmental effects of the proposed action are associated with normal Shuttle launch operations. These impacts are limited largely to the near-field at the launch pad, except for temporary stratospheric ozone effects during launch and occasional sonic boom effects near the landing site. These effects have been judged insufficient to preclude Shuttle launches. In the event of: (1) an accident during launch, or (2) reentry of the spacecraft from earth orbit, there are potential adverse health and environmental effects associated with the possible release of plutonium dioxide from the spacecraft's radioisotope thermoelectric generators (RTG).

  5. Atmospheric science on the Galileo mission

    NASA Technical Reports Server (NTRS)

    Hunten, D. M.; Colin, L.; Hansen, J. E.

    1986-01-01

    The atmospheric science goals of the Galileo mission, and instruments of the probe and orbiter are described. The current data available, and the goals of the Galileo mission concerning the chemical composition of the Jovian atmosphere; the thermal structure of the atmosphere; the nature of cloud particles and cloud layering; the radiative energy balance; atmospheric dynamics; and the upper atmosphere are discussed. The objectives and operations of the atmospheric structure instrument, neutral mass spectrometer, helium abundance interferometer, nephelometer, net flux radiometer, lightning and radio emission detector, solid state imaging system, NIR mapping spectrometer, photopolarimeter radiometer, and UV spectrometer are examined.

  6. GPHS-RTG performance on the Galileo mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemler, R.J.; Cockfield, R.D.

    The Galileo spacecraft, launched in October, 1989, is powered by two General Purpose Heat source-Radioisotope Thermoelectric Generator (GPHS-RTGs). These RTGs were designed, built, and tested by General Electric under contract from the Office of Special Applications of the Department of Energy (DOE). Isotope heat source installation and additional testing of these RTGs were performed at DOE's EG G Mound Facility in Miamisburg, Ohio. This paper provides a report on performance of the RTGs during launch and the early phases of the eight year Galileo mission.The effect of long term storage of the RTGs on power output, since the originally scheduledmore » launch data in May, 1986, will be dicussed, including the effects of helium buildup and subsequent purging with xenon. The RTGs performed as expected during the launch transient, met all specified power requirements for Beginning of Mission (BOM), and continue to follow prediced performance characteristics during the first year of the Galileo mission.« less

  7. Navigation of the Galileo mission

    NASA Technical Reports Server (NTRS)

    Miller, L. J.; Miller, J. K.; Kirhofer, W. E.

    1983-01-01

    An overview of the navigation of the Galileo mission is given. Predicted navigation performance for the various mission phases is discussed with particular emphasis given to the tour phase. Orbit determination strategies and resulting accuracies are discussed for various data types. In particular, the results of combining a new Very Long Baseline Interferometry (VLBI) data type called Differential One-Way Range (DOR) with conventional radio and optical data types are presented. Maneuver strategy results include the effects of maneuver placement and various targeting methods on propellant consumption and delivery accuracy. Emphasis is placed on new results obtained using asymptote and split targeting.

  8. Galileo and Ulysses missions safety analysis and launch readiness status

    NASA Technical Reports Server (NTRS)

    Cork, M. Joseph; Turi, James A.

    1989-01-01

    The Galileo spacecraft, which will release probes to explore the Jupiter system, was launched in October, 1989 as the payload on STS-34, and the Ulysses spacecraft, which will fly by Jupiter en route to a polar orbit of the sun, is presently entering system-test activity in preparation for an October, 1990 launch. This paper reviews the Galileo and Ulysses mission objectives and design approaches and presents details of the missions' safety analysis. The processes used to develop the safety analysis are described and the results of safety tests are presented.

  9. Galileo mission planning for Low Gain Antenna based operations

    NASA Technical Reports Server (NTRS)

    Gershman, R.; Buxbaum, K. L.; Ludwinski, J. M.; Paczkowski, B. G.

    1994-01-01

    The Galileo mission operations concept is undergoing substantial redesign, necessitated by the deployment failure of the High Gain Antenna, while the spacecraft is on its way to Jupiter. The new design applies state-of-the-art technology and processes to increase the telemetry rate available through the Low Gain Antenna and to increase the information density of the telemetry. This paper describes the mission planning process being developed as part of this redesign. Principal topics include a brief description of the new mission concept and anticipated science return (these have been covered more extensively in earlier papers), identification of key drivers on the mission planning process, a description of the process and its implementation schedule, a discussion of the application of automated mission planning tool to the process, and a status report on mission planning work to date. Galileo enhancements include extensive reprogramming of on-board computers and substantial hard ware and software upgrades for the Deep Space Network (DSN). The principal mode of operation will be onboard recording of science data followed by extended playback periods. A variety of techniques will be used to compress and edit the data both before recording and during playback. A highly-compressed real-time science data stream will also be important. The telemetry rate will be increased using advanced coding techniques and advanced receivers. Galileo mission planning for orbital operations now involves partitioning of several scarce resources. Particularly difficult are division of the telemetry among the many users (eleven instruments, radio science, engineering monitoring, and navigation) and allocation of space on the tape recorder at each of the ten satellite encounters. The planning process is complicated by uncertainty in forecast performance of the DSN modifications and the non-deterministic nature of the new data compression schemes. Key mission planning steps include

  10. Galileo mission planning for Low Gain Antenna based operations

    NASA Astrophysics Data System (ADS)

    Gershman, R.; Buxbaum, K. L.; Ludwinski, J. M.; Paczkowski, B. G.

    1994-11-01

    The Galileo mission operations concept is undergoing substantial redesign, necessitated by the deployment failure of the High Gain Antenna, while the spacecraft is on its way to Jupiter. The new design applies state-of-the-art technology and processes to increase the telemetry rate available through the Low Gain Antenna and to increase the information density of the telemetry. This paper describes the mission planning process being developed as part of this redesign. Principal topics include a brief description of the new mission concept and anticipated science return (these have been covered more extensively in earlier papers), identification of key drivers on the mission planning process, a description of the process and its implementation schedule, a discussion of the application of automated mission planning tool to the process, and a status report on mission planning work to date. Galileo enhancements include extensive reprogramming of on-board computers and substantial hard ware and software upgrades for the Deep Space Network (DSN). The principal mode of operation will be onboard recording of science data followed by extended playback periods. A variety of techniques will be used to compress and edit the data both before recording and during playback. A highly-compressed real-time science data stream will also be important. The telemetry rate will be increased using advanced coding techniques and advanced receivers. Galileo mission planning for orbital operations now involves partitioning of several scarce resources. Particularly difficult are division of the telemetry among the many users (eleven instruments, radio science, engineering monitoring, and navigation) and allocation of space on the tape recorder at each of the ten satellite encounters. The planning process is complicated by uncertainty in forecast performance of the DSN modifications and the non-deterministic nature of the new data compression schemes. Key mission planning steps include

  11. Final safety analysis report for the Galileo Mission: Volume 2: Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHS-RTG) will be used as the prime source of electric power for the spacecraft on the Galileo mission. The use of radioactive material in these missions necessitates evaluations of the radiological risks that may be encountered by launch complex personnel and by the Earth's general population resulting from postulated malfunctions or failures occurring in the mission operations. The purpose of the Final Safety Analysis Report (FSAR) is to present the analyses and results of the latest evaluation of the nuclear safety potential of the GPHS-RTG as employed in the Galileo mission. Thismore » evaluation is an extension of earlier work that addressed the planned 1986 launch using the Space Shuttle Vehicle with the Centaur as the upper stage. This extended evaluation represents the launch by the Space Shuttle/IUS vehicle. The IUS stage has been selected as the vehicle to be used to boost the Galileo spacecraft into the Earth escape trajectory after the parking orbit is attained.« less

  12. Galileo spacecraft integration - International cooperation on a planetary mission in the Shuttle era

    NASA Technical Reports Server (NTRS)

    Spehalski, R. J.

    1983-01-01

    The Galileo mission is designed to greatly expand scientific knowledge of Jupiter and its system. The retropropulsion module (RPM) as a major functional element of the Galileo spacecraft is described. The major mission and spacecraft requirements on the RPM are presented. Complexities of the integration process due to the international interface are identified. Challenges associated with integration with new launch vehicles, the Shuttle and upper stage, and their relationships to the RPM are discussed. The results of the integration process involving mission and propulsion performance, reliability, mechanical and thermal interfaces, and safety are described. Finally, considerations and recommendations for future missions involving international cooperation are given.

  13. Selenide isotope generator (SIG) for the Galileo Mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-09-01

    This agreement establishes the procedures and defines the responsibilities that are a part of the DOE/TES/3M interface for the duration of the SIG/Galileo Mission Program. The agreement is intended to expand upon the Interface Document which is Attachment IV to both the 3M and TES Contract Statement of Work. The agreement is effective upon approval by DOE, TES and 3M Company.

  14. Final safety analysis report for the Galileo Mission: Volume 1, Reference design document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Galileo mission uses nuclear power sources called Radioisotope Thermoelectric Generators (RTGs) to provide the spacecraft's primary electrical power. Because these generators contain nuclear material, a Safety Analysis Report (SAR) is required. A preliminary SAR and an updated SAR were previously issued that provided an evolving status report on the safety analysis. As a result of the Challenger accident, the launch dates for both Galileo and Ulysses missions were later rescheduled for November 1989 and October 1990, respectively. The decision was made by agreement between the DOE and the NASA to have a revised safety evaluation and report (FSAR) preparedmore » on the basis of these revised vehicle accidents and environments. The results of this latest revised safety evaluation are presented in this document (Galileo FSAR). Volume I, this document, provides the background design information required to understand the analyses presented in Volumes II and III. It contains descriptions of the RTGs, the Galileo spacecraft, the Space Shuttle, the Inertial Upper Stage (IUS), the trajectory and flight characteristics including flight contingency modes, and the launch site. There are two appendices in Volume I which provide detailed material properties for the RTG.« less

  15. A Comprehensive Orbit Reconstruction for the Galileo Prime Mission in the J2000 System

    NASA Technical Reports Server (NTRS)

    Jacobson, Robert A.; Haw, Robert J.; McElrath, Tim P.; Antreasian, Peter G.

    1999-01-01

    The Galileo spacecraft arrived at Jupiter in December of 1995 to begin an orbital tour of the Jovian system. The objective of the tour was up close study of the planet, its satellites, and its magnetosphere. The spacecraft completed its 11 orbit prime mission in November of 1997 having had 16 successful close encounters with the Galilean satellites (including two prior to Jupiter orbit insertion). Galileo continues to operate and will have made an additional 10 orbits of Jupiter by the date of this Conference. Earlier papers discuss the determination of the spacecraft orbit in support of mission operations from arrival at Jupiter through the first 9 orbits. In this paper we re-examine those earlier orbits and extend the analysis through orbit 12, the first orbit of the Galileo Europa Mission (GEM). The objective of our work is the reconstruction of the spacecraft trajectory together with the development of a consistent set of ephemerides for the Galilean satellites. As a necessary byproduct of the reconstruction we determine improved values for the Jovian system gravitational parameters and for the Jupiter pole orientation angles. Our preliminary analyses have already led to many of the results reported in the scientific literature. Unlike the Galileo Navigation Team which operates in the EME-1950 coordinate system, we elected to work in the (J2000) International Celestial Reference Frame (ICRF), the reference frame of the current JPL planetary and satellite ephemerides as well as the standard frame of the international astronomical and planetary science community. Use of this frame permits more precise modelling of the spacecraft and satellite observations. Moreover, it is the frame of choice for all other operational JPL missions and will probably be the frame for future missions for some time. Consequently, our adoption of the ICRF will facilitate the combination of our results with any obtained from future missions (e.g. the proposed Europa Orbiter mission). In

  16. The Production and Archiving of Navigation and Ancillary Data for the Galileo Mission

    NASA Technical Reports Server (NTRS)

    Miller, J.; Clarke, T.

    1994-01-01

    The Galileo Mission to Jupiter is using the SPICE formats developed by the Navigation and Ancillary Information Facility, a node of the Planetary Data System, to archive its navigation and ancillary data.

  17. Selenide isotope generator for the Galileo Mission: SIG/Galileo hermetic receptable test program final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roedel, S.

    1979-06-01

    The purpose of the receptacle test program was to test various types of hermetically sealed electrical receptacles and to select one model as the spaceflight hardware item for SIG/Galileo thermoelectric generators. The design goal of the program was to qualify a hermetic seal integrity of less than or equal to 1 x 10/sup -9/ std cc He/sec -atm at 400/sup 0/F (204/sup 0/C) and verify a reliability of 0.95 at a 50% confidence level for a flight mission in excess of 7 years.

  18. Final safety analysis report for the Galileo Mission: Volume 2: Book 1, Accident model document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Accident Model Document (AMD) is the second volume of the three volume Final Safety Analysis Report (FSAR) for the Galileo outer planetary space science mission. This mission employs Radioisotope Thermoelectric Generators (RTGs) as the prime electrical power sources for the spacecraft. Galileo will be launched into Earth orbit using the Space Shuttle and will use the Inertial Upper Stage (IUS) booster to place the spacecraft into an Earth escape trajectory. The RTG's employ silicon-germanium thermoelectric couples to produce electricity from the heat energy that results from the decay of the radioisotope fuel, Plutonium-238, used in the RTG heat source.more » The heat source configuration used in the RTG's is termed General Purpose Heat Source (GPHS), and the RTG's are designated GPHS-RTGs. The use of radioactive material in these missions necessitates evaluations of the radiological risks that may be encountered by launch complex personnel as well as by the Earth's general population resulting from postulated malfunctions or failures occurring in the mission operations. The FSAR presents the results of a rigorous safety assessment, including substantial analyses and testing, of the launch and deployment of the RTGs for the Galileo mission. This AMD is a summary of the potential accident and failure sequences which might result in fuel release, the analysis and testing methods employed, and the predicted source terms. Each source term consists of a quantity of fuel released, the location of release and the physical characteristics of the fuel released. Each source term has an associated probability of occurrence. 27 figs., 11 tabs.« less

  19. STS-34 Galileo PCR at Pad & Galileo in Atlantis

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The primary objective of the STS-34 mission was the deployment of the Galileo spacecraft and the attached Inertial Upper Stage. This videotape shows the Galileo in the Payload Clean Room in preparation for the six year trip to Jupiter. There are also views of the spacecraft in the Atlantis Payload Bay.

  20. Artist concept of Galileo spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Galileo spacecraft is illustrated in artist concept. Gallileo, named for the Italian astronomer, physicist and mathematician who is credited with construction of the first complete, practical telescope in 1620, will make detailed studies of Jupiter. A cooperative program with the Federal Republic of Germany the Galileo mission will amplify information acquired by two Voyager spacecraft in their brief flybys. Galileo is a two-element system that includes a Jupiter-orbiting observatory and an entry probe. Jet Propulsion Laboratory (JPL) is Galileo project manager and builder of the main spacecraft. Ames Research Center (ARC) has responsibility for the entry probe, which was built by Hughes Aircraft Company and General Electric. Galileo will be deployed from the payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104, during mission STS-34.

  1. Lunar scout missions: Galileo encounter results and application to scientific problems and exploration requirements

    NASA Technical Reports Server (NTRS)

    Head, J. W.; Belton, M.; Greeley, R.; Pieters, C.; Mcewen, A.; Neukum, G.; Mccord, T.

    1993-01-01

    The Lunar Scout Missions (payload: x-ray fluorescence spectrometer, high-resolution stereocamera, neutron spectrometer, gamma-ray spectrometer, imaging spectrometer, gravity experiment) will provide a global data set for the chemistry, mineralogy, geology, topography, and gravity of the Moon. These data will in turn provide an important baseline for the further scientific exploration of the Moon by all-purpose landers and micro-rovers, and sample return missions from sites shown to be of primary interest from the global orbital data. These data would clearly provide the basis for intelligent selection of sites for the establishment of lunar base sites for long-term scientific and resource exploration and engineering studies. The two recent Galileo encounters with the Moon (December, 1990 and December, 1992) illustrate how modern technology can be applied to significant lunar problems. We emphasize the regional results of the Galileo SSI to show the promise of geologic unit definition and characterization as an example of what can be done with the global coverage to be obtained by the Lunar Scout Missions.

  2. Galileo Science Writers' Briefing. Part 1

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This NASA Kennedy video production presents Part 1 of a press conference held at JPL on August 8, 1989. The briefing in its entirety covers the Galileo Project's mission design from launch to completion in 1997 and is moderated by JPL Public Information Mgr. Robert Macmillan. Part 1 of the 3 part video series includes presentations by Richard J. Spehalski (Galileo Project Manager) and Clayne M. Yeates (Acting Science Mission Design Manager). Mr. Spehalski's presentation includes actual footage of spacecraft preparations at Kennedy Space Center and slides of mission timelines. Dr. Yeates discusses the Galileo mission in chronological order and includes slides of the interplanetary trajectory, encounter geometry, propellant margins vs. launch date, and planned earth images.

  3. Enhanced decoding for the Galileo low-gain antenna mission: Viterbi redecoding with four decoding stages

    NASA Technical Reports Server (NTRS)

    Dolinar, S.; Belongie, M.

    1995-01-01

    The Galileo low-gain antenna mission will be supported by a coding system that uses a (14,1/4) inner convolutional code concatenated with Reed-Solomon codes of four different redundancies. Decoding for this code is designed to proceed in four distinct stages of Viterbi decoding followed by Reed-Solomon decoding. In each successive stage, the Reed-Solomon decoder only tries to decode the highest redundancy codewords not yet decoded in previous stages, and the Viterbi decoder redecodes its data utilizing the known symbols from previously decoded Reed-Solomon codewords. A previous article analyzed a two-stage decoding option that was not selected by Galileo. The present article analyzes the four-stage decoding scheme and derives the near-optimum set of redundancies selected for use by Galileo. The performance improvements relative to one- and two-stage decoding systems are evaluated.

  4. Galileo Science Summary October, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This video is a compilation of visualizations, animation and some actual shots from the Galileo mission. It shows the trajectories of the mission around Jupiter that took the mission to Jupiter, and the various orbits of the spacecraft around the planet, that allowed for the views of several of Jupiter's moons from which the visualizations of this video are taken. It mainly shows the visualizations of the Galileo's view of Jupiter's atmosphere, Io, Ganymede, and Europa. There is no spoken presentation, the views are announced with slides prior to the presentation. Orchestrated selections from Vivaldi's Four Season's serves as background.

  5. Selenide isotope generators for the Galileo Mission: SIG hermetic bimetal weld transition joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, W.J.

    1979-08-01

    The successful development of the commercial 6061-T651/Silver/304L explosive clad plate material as a bimetal weld transition joint material, as described herein, satisfies all SIG Galileo design requirements for hermetic weld attachment of stainless steel subassemblies to aluminum alloy generator housing or end cover structures. The application of this type weld transition joint to the hermetic attachment of stainless steel shell connectors is well-developed and tested. Based on on-going life tests of stainless steel receptacle/bimetal ring attachment assemblies and metallurgical characterization studies of this transition joint material, it appears evident that this transition joint material has more than adequate capability tomore » meet the 250 to 300/sup 0/F and 50,000 hr. design life of the SIG/Galileo mission. Its extended life temperture capability may well approach 350 to 400/sup 0/F.« less

  6. Galileo Jupiter approach orbit determination

    NASA Technical Reports Server (NTRS)

    Miller, J. K.; Nicholson, F. T.

    1984-01-01

    Orbit determination characteristics of the Jupiter approach phase of the Galileo mission are described. Predicted orbit determination performance is given for the various mission events that occur during Jupiter approach. These mission events include delivery of an atmospheric entry probe, acquisition of probe science data by the Galileo orbiter for relay to earth, delivery of an orbiter to a close encounter of the Galilean satellite Io, and insertion of the orbiter into orbit about Jupiter. The orbit determination strategy and resulting accuracies are discussed for the data types which include Doppler, range, optical imaging of Io, and a new Very Long Baseline Interferometry (VLBI) data type called Differential One-Way Range (DOR).

  7. Asteroid/comet encounter opportunities for the Galileo VEEGA mission

    NASA Technical Reports Server (NTRS)

    Johannesen, Jennie R.; Nolan, Brian G.; Byrnes, Dennis V.; D'Amario, Louis A.

    1988-01-01

    The opportunity for the Galileo spacecraft to perform a close flyby of an asteroid or distant observation of a comet while on the Venus-Earth-Earth-Gravity-Assist (VEEGA) mission to Jupiter is discussed. More than 120 nominal trajectories were used in a scan program to identify asteroids passing within 30 million km of the spacecraft. A total of 47 asteroids were examined to determine the propellant cost of a close flyby. The possible flybys include a double asteroid flyby with No. 951 in October, 1991, with a flyby of No. 243 in August 1993. The factors considered in the selection of an asteroid include the propellant margin cost of modifying a nominal trajectory to include a close flyby, the size and type of asteroid, and the Jupiter arrival date.

  8. Galileo Press Conference from JPL. Parts 1 and 2

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This two-tape Jet Propulsion Laboratory (JPL) video production presents a Dec. 8, 1992 press conference held at JPL to discuss the final Galileo spacecraft encounter with Earth before beginning its journey to Jupiter. The main theme of the conference was centered on the significance of the 2nd and final Earth/Moon flyby as being the spacecraft's last planetary encounter in the solar system before reaching Jupiter, as well as final flight preparations prior to its final journey. Each person of the five member panel was introduced by Robert MacMillan (JPL Public Information Mgr.) before giving brief presentations including slides and viewgraphs covering their area of expertise regarding Galileo's current status and future plans. After the presentations, the media was given an opportunity to ask questions of the panel regarding the mission. Mr. Wesley Huntress (Dir. of Solar System Exploration (NASA)), William J. ONeill (Galileo Project Manager), Neal E. Ausman, Jr. (Galileo Mission Director), Dr. Torrence V. Johnson (Galileo Project Scientist) and Dr. Ronald Greeley (Member, Imaging Team, Colorado St. Univ.) made up the panel and discussed topics including: Galileo's interplanetary trajectory; project status and performance review; instrument calibration activities; mission timelines; lunar observation and imaging; and general lunar science. Also included in the last three minutes of the video are simulations and images of the 2nd Galileo/Moon encounter.

  9. An image assessment study of image acceptability of the Galileo low gain antenna mission

    NASA Technical Reports Server (NTRS)

    Chuang, S. L.; Haines, R. F.; Grant, T.; Gold, Yaron; Cheung, Kar-Ming

    1994-01-01

    This paper describes a study conducted by NASA Ames Research Center (ARC) in collaboration with the Jet Propulsion Laboratory (JPL), Pasadena, California on the image acceptability of the Galileo Low Gain Antenna mission. The primary objective of the study is to determine the impact of the Integer Cosine Transform (ICT) compression algorithm on Galilean images of atmospheric bodies, moons, asteroids and Jupiter's rings. The approach involved fifteen volunteer subjects representing twelve institutions involved with the Galileo Solid State Imaging (SSI) experiment. Four different experiment specific quantization tables (q-table) and various compression stepsizes (q-factor) to achieve different compression ratios were used. It then determined the acceptability of the compressed monochromatic astronomical images as evaluated by Galileo SSI mission scientists. Fourteen different images were evaluated. Each observer viewed two versions of the same image side by side on a high resolution monitor, each was compressed using a different quantization stepsize. They were requested to select which image had the highest overall quality to support them in carrying out their visual evaluations of image content. Then they rated both images using a scale from one to five on its judged degree of usefulness. Up to four pre-selected types of images were presented with and without noise to each subject based upon results of a previously administered survey of their image preferences. Fourteen different images in seven image groups were studied. The results showed that: (1) acceptable compression ratios vary widely with the type of images; (2) noisy images detract greatly from image acceptability and acceptable compression ratios; and (3) atmospheric images of Jupiter seem to have higher compression ratios of 4 to 5 times that of some clear surface satellite images.

  10. The Galileo Spacecraft: A Telecommunications Legacy for Future Space Flight

    NASA Technical Reports Server (NTRS)

    Deutsch, Leslie J.

    1997-01-01

    The Galileo mission to Jupiter has implemented a wide range of telecommunication inprovements in response to the loss of its high gain antenna. While necessity dictated the use of these new techniques for Galileo, now that they have been proven in flight, they are available for use on future deep space missions. This telecommunications legacy of Galileo will aid in our ability to conduct a meaningful exploration of the solar system, and beyond, at a reasonable cost.

  11. (abstract) The Galileo Spacecraft: A Telecommunications Legacy for Future Space Flight

    NASA Technical Reports Server (NTRS)

    Deutsch, Leslie J.

    1997-01-01

    The Galileo mission to Jupiter has implemented a wide range of telecommunication improvements in response to the loss of its high gain antenna. While necessity dictated the use of these new techniques for Galileo, now that they have been proven in flight, they are available for use on future deep space missions. This telecommunications legacy of Galileo will aid in our ability to conduct a meaningful exploration of the solar system, and beyond, at a reasonable cost.

  12. Galileo - Ganymede Family Night

    NASA Technical Reports Server (NTRS)

    1996-01-01

    When the Galileo spacecraft flew by Ganymede, Jupiter's and the solar system's largest satellite, on June 26, 1996, the project scientists and engineers gather with their friends and family to view the photos as they are received and to celebrate the mission. This videotape presents that meeting. Representatives from the various instrument science teams discuss many of the instruments aboard Galileo and show videos and pictures of what they have seen so far. This video is continued on Videotape number NONP-NASA-VT-2000036028.

  13. Galileo: Exploration of Jupiter's system

    NASA Technical Reports Server (NTRS)

    Johnson, T. V.; Yeates, C. M.; Colin, L.; Fanale, F. P.; Frank, L.; Hunten, D. M.

    1985-01-01

    The scientific objectives of the Galileo mission to the Jovian system is presented. Topics discussed include the history of the project, our current knowledge of the system, the objectives of interrelated experiments, mission design, spacecraft, and instruments. The management, scientists, and major contractors for the project are also given.

  14. Global Distribution of Active Volcanism on Io as Known at the End of the Galileo Mission

    NASA Technical Reports Server (NTRS)

    Lopes, Rosaly M. C.; Kamp. Lucas W.; Smythe, W. D.; Radebaugh, J.; Turtle, E.; Perry, J.; Bruno, B.

    2004-01-01

    Hot spots are manifestations of Io s mechanism of internal heating and heat transfer. Therefore, the global distribution of hot spots and their power output has important implications for how Io is losing heat. The end of the Galileo mission is an opportune time to revisit studies of the distribution of hot spots on Io, and to investigate the distribution of their power output.

  15. GIOVE-A: Two Years of Galileo Signals

    NASA Astrophysics Data System (ADS)

    Davies, P.; da Silva Curiel, A.; Rooney, E.; Sweeting, M.; Gattia, G.

    2008-08-01

    During 2007, the GIOVE-A mission has transitioned from an experimental mission into what is effectively an operational mission. The small satellite approach used in the development of the mission, and the lessons learned from this mission, are being applied in the development of SSTL's Geostationary communication satellite platform. Furthermore, ESA has also been considering the lessons learned from small low-cost, rapid-response missions such as GIOVE with a view to a new procurement approach for such "entry-level" missions. On 28 December 2005 the first satellite in the Galileo programme was launched into space. The satellite, GIOVE-A, was developed for the European Space Agency (ESA) under a contract signed in July 2003. Since January 2006 GIOVE-A has broadcast the Galileo signal enabling Europe to claim the ITU frequency filing, to qualify the Galileo payload equipment, to characterise the performance of the Galileo system and to develop ground receiving equipment. The satellite was built for a relatively low-cost, €28M, within a very rapid timescale - from contract signature to flight readiness in 28 months. In order to meet this timescale SSTL used a development approach similar to the one it uses for its range of microsatellites. Further, the GIOVE-A satellite carries many pieces of equipment from the microsatellite range integrated into a larger structure, and in-flight results with the COTS parts are now showing that these are holding up well in the harsh MEO environment. The development approach was very different from a typical ESA operational mission and formed one of the reference inputs to the "Lightsat" approach which ESA will employ on some of its future projects. The paper will cover the main results and lessons learned from the GIOVE-A mission. We will describe the small satellite approach to its development and the main lessons learned from the development phase. We will also cover the main results of the mission since launch concentrating on

  16. Galileo's Medicean Moons (IAU S269)

    NASA Astrophysics Data System (ADS)

    Barbieri, Cesare; Chakrabarti, Supriya; Coradini, Marcello; Lazzarin, Monica

    2010-11-01

    Preface; 1. Galileo's telescopic observations: the marvel and meaning of discovery George V. Coyne, S. J.; 2. Popular perceptions of Galileo Dava Sobel; 3. The slow growth of humility Tobias Owen and Scott Bolton; 4. A new physics to support the Copernican system. Gleanings from Galileo's works Giulio Peruzzi; 5. The telescope in the making, the Galileo first telescopic observations Alberto Righini; 6. The appearance of the Medicean Moons in 17th century charts and books. How long did it take? Michael Mendillo; 7. Navigation, world mapping and astrometry with Galileo's moons Kaare Aksnes; 8. Modern exploration of Galileo's new worlds Torrence V. Johnson; 9. Medicean Moons sailing through plasma seas: challenges in establishing magnetic properties Margaret G. Kivelson, Xianzhe Jia and Krishan K. Khurana; 10. Aurora on Jupiter: a magnetic connection with the Sun and the Medicean Moons Supriya Chakrabarti and Marina Galand; 11. Io's escaping atmosphere: continuing the legacy of surprise Nicholas M. Schneider; 12. The Jovian Rings Wing-Huen Ip; 13. The Juno mission Scott J. Bolton and the Juno Science Team; 14. Seeking Europa's ocean Robert T. Pappalardo; 15. Europa lander mission: a challenge to find traces of alien life Lev Zelenyi, Oleg Korablev, Elena Vorobyova, Maxim Martynov, Efraim L. Akim and Alexander Zakahrov; 16. Atmospheric moons Galileo would have loved Sushil K. Atreya; 17. The study of Mercury Louise M. Prockter and Peter D. Bedini; 18. Jupiter and the other giants: a comparative study Thérèse Encrenaz; 19. Spectroscopic and spectrometric differentiation between abiotic and biogenic material on icy worlds Kevin P. Hand, Chris McKay and Carl Pilcher; 20. Other worlds, other civilizations? Guy Consolmagno, S. J.; 21. Concluding remarks Roger M. Bonnet; Posters; Author index; Object index.

  17. Integer cosine transform compression for Galileo at Jupiter: A preliminary look

    NASA Technical Reports Server (NTRS)

    Ekroot, L.; Dolinar, S.; Cheung, K.-M.

    1993-01-01

    The Galileo low-gain antenna mission has a severely rate-constrained channel over which we wish to send large amounts of information. Because of this link pressure, compression techniques for image and other data are being selected. The compression technique that will be used for images is the integer cosine transform (ICT). This article investigates the compression performance of Galileo's ICT algorithm as applied to Galileo images taken during the early portion of the mission and to images that simulate those expected from the encounter at Jupiter.

  18. Galileo environmental test and analysis program summary

    NASA Technical Reports Server (NTRS)

    Hoffman, A. R.

    1991-01-01

    This paper presents an overview of the Galileo Project's environmental test and analysis program during the spacecraft development phase - October 1978 through launch in October 1989. After describing the top-level objectives of the program, summaries of-the approach, requirements, and margins are provided. Examples of assembly- and system-level test results are given for both the pre-1986 (direct mission) testing and the post-1986 (Venus-Earth-Earth gravity assist mission) testing, including dynamic, thermal, electromagnetic compatibility (EMC), and magnetic. The approaches and results for verifying by analysis that the requirements of certain environments (e.g., radiation, micrometeoroids, and single event upsets) are satisfied are presented. The environmental program implemented on Galileo satisfied the spirit and intent of the requirements imposed by the Project during the spacecraft's development. The lessons learned from the Galileo environmental program are discussed in this paper.

  19. Far infrared filters for the Galileo-Jupiter and other missions

    NASA Technical Reports Server (NTRS)

    Seeley, J. S.; Hunneman, R.; Whatley, A.

    1981-01-01

    Progress in the development of FIR multilayer interference filters for the net flux radiometer and photopolarizing radiometer to be carried on board the Galileo mission to Jupiter is reported. The multilayer interference technique has been extended to the region above 40 microns by the use of PbTe/II-VI materials in hard-coated combination, with the thickest layers composed of CdSe QWOT at 74 microns and PbTe QWOT. Improvements have also been obtained in filters below 20 microns on the basis of the Chebyshev stack design. A composite filter cutting on steeply at 40 microns has been designed which employs a thin crystal quartz substrate, shorter wavelength absorption in ZnS and As2S3 thin films, and supplementary multilayer interference. Finally, absorptive filters have been developed based on II-VI compounds in multilayer combination with KRS-5 (or 6) on a KRS-5 (or 6) substrate

  20. Selenide isotope generator for the Galileo mission. SIG/Galileo contract compliance power prediction technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammel, T.E.; Srinivas, V.

    1978-11-01

    This initial definition of the power degradation prediction technique outlines a model for predicting SIG/Galileo mean EOM power using component test data and data from a module power degradation demonstration test program. (LCL)

  1. Development and Use of the Galileo and Ulysses Power Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Gary L; Hemler, Richard J; Schock, Alfred

    Paper presented at the 45th Congress of the International Astronautical Federation, October 1994. The Galileo mission to Jupiter and the Ulysses mission to explore the polar regions of the Sun required a new power source: the general-purpose heat source radioisotope thermoelectric generator (GPHS-RTG), the most powerful RTG yet flow. Four flight-qualified GPHS-RTGs were fabricated with one that is being used on Ulysses, two that are being used on Galileo and one that was a common spare (and is now available for the Cassini mission to Saturn). In addition, and Engineering Unit and a Qualification Unit were fabricated to qualify themore » design for space through rigorous ground tests. This paper summarizes the ground testing and performance predictions showing that the GPHS-RTGs have met and will continue to meet or exceed the performance requirements of the ongoing Galileo and Ulysses missions. There are two copies in the file.« less

  2. Galileo: Earth avoidance study report

    NASA Technical Reports Server (NTRS)

    Mitchell, R. T.

    1988-01-01

    The 1989 Galileo mission to Jupiter is based on a VEEGA (Venus Earth Earth-Gravity Assist) trajectory which uses two flybys of Earth and one of Venus to achieve the necessary energy and shaping to reach Jupiter. These encounters are needed because the Centaur upper stage is not now being used on this mission. Since the Galileo spacecraft uses radioisotope thermoelectric generators (RTGs) for electrical power, the question arises as to whether there is any chance of an inadvertent atmospheric entry of the spacecraft during either of the two Earth flybys. A study was performed which determined the necessary actions, in both spacecraft and trajectory design as well as in operations, to insure that the probability of such reentry is made very small, and to provide a quantitative assessment of the probability of reentry.

  3. Shuttle Atlantis to deploy Galileo probe toward Jupiter

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objectives of Space Shuttle Mission STS-34 are described along with major flight activities, prelaunch and launch operations, trajectory sequence of events, and landing and post-landing operations. The primary objective of STS-34 is to deploy the Galileo planetary exploration spacecraft into low earth orbit. Following deployment, Galileo will be propelled on a trajectory, known as Venus-Earth-Earth Gravity Assist (VEEGA), by an inertial upper stage (IUS). The objectives of the Galileo mission are to study the chemical composition, state, and dynamics of the Jovian atmosphere and satellites, and investigate the structure and physical dynamics of the Jovian magnetosphere. Secondary STS-34 payloads include the Shuttle Solar Backscatter Ultraviolet (SSBUV) instrument; the Mesoscale Lightning Experiment (MLE); and various other payloads involving polymer morphology, the effects of microgravity on plant growth hormone, and the growth of ice crystals.

  4. A new code for Galileo

    NASA Technical Reports Server (NTRS)

    Dolinar, S.

    1988-01-01

    Over the past six to eight years, an extensive research effort was conducted to investigate advanced coding techniques which promised to yield more coding gain than is available with current NASA standard codes. The delay in Galileo's launch due to the temporary suspension of the shuttle program provided the Galileo project with an opportunity to evaluate the possibility of including some version of the advanced codes as a mission enhancement option. A study was initiated last summer to determine if substantial coding gain was feasible for Galileo and, is so, to recommend a suitable experimental code for use as a switchable alternative to the current NASA-standard code. The Galileo experimental code study resulted in the selection of a code with constant length 15 and rate 1/4. The code parameters were chosen to optimize performance within cost and risk constraints consistent with retrofitting the new code into the existing Galileo system design and launch schedule. The particular code was recommended after a very limited search among good codes with the chosen parameters. It will theoretically yield about 1.5 dB enhancement under idealizing assumptions relative to the current NASA-standard code at Galileo's desired bit error rates. This ideal predicted gain includes enough cushion to meet the project's target of at least 1 dB enhancement under real, non-ideal conditions.

  5. Optimizing the Galileo space communication link

    NASA Technical Reports Server (NTRS)

    Statman, J. I.

    1994-01-01

    The Galileo mission was originally designed to investigate Jupiter and its moons utilizing a high-rate, X-band (8415 MHz) communication downlink with a maximum rate of 134.4 kb/sec. However, following the failure of the high-gain antenna (HGA) to fully deploy, a completely new communication link design was established that is based on Galileo's S-band (2295 MHz), low-gain antenna (LGA). The new link relies on data compression, local and intercontinental arraying of antennas, a (14,1/4) convolutional code, a (255,M) variable-redundancy Reed-Solomon code, decoding feedback, and techniques to reprocess recorded data to greatly reduce data losses during signal acquisition. The combination of these techniques will enable return of significant science data from the mission.

  6. Galileo Avionica's technologies and instruments for planetary exploration.

    PubMed

    Battistelli, E; Falciani, P; Magnani, P; Midollini, B; Preti, G; Re, E

    2006-12-01

    Several missions for planetary exploration, including comets and asteroids, are ongoing or planned by the European Space Agencies: Rosetta, Venus Express, Bepi Colombo, Dawn, Aurora and all Mars Programme (in its past and next missions) are good examples. The satisfaction of the scientific request for the mentioned programmes calls for the development of new instruments and facilities devoted to investigate the body (planet, asteroid or comet) both remotely and by in situ measurements. The paper is an overview of some instruments for remote sensing and in situ planetary exploration already developed or under study by Galileo Avionica Space & Electro-Optics B.U. (in the following shortened as Galileo Avionica) for both the Italian Space Agency (ASI) and for the European Space Agency (ESA). Main technologies and specifications are outlined; for more detailed information please refer to Galileo Avionica's web-site at: http://www.galileoavionica.com .

  7. Final Environmental Impact Statement for the Ulysses Mission (Tier 2)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This Final (Tier 2) Environmental Impact Statement (FEIS) addresses the environmental impacts which may be caused by implementation of the Ulysses mission, a space flight mission to observe the polar regions of the Sun. The proposed action is completion of preparation and operation of the Ulysses spacecraft, including its planned launch at the earliest available launch opportunity on the Space Transportation System (STS) Shuttle in October 1990 or in the backup opportunity in November 1991. The alternative is canceling further work on the mission. The Tier 1 EIS included a delay alternative which considered the Titan 4 launch vehicle as an alternative booster stage for launch in 1991 or later. This alternative was further evaluated and eliminated from consideration when, in November 1988, the U.S. Air Force, which procures the Titan 4, notified that it could not provide a Titan 4 vehicle for the 1991 launch opportunity because of high priority Department of Defense requirements. The Titan 4 launch vehicle is no longer a feasible alternative to the STS/Inertial Upper Stage (IUS)/Payload Assist Module-Special (PAM-S) for the November 1991 launch opportunity. The only expected environment effects of the proposed action are associated with normal launch vehicle operation and are treated elsewhere. The environmental impacts of normal Shuttle launches were addressed in existing NEPA documentation and are briefly summarized. These impacts are limited largely to the near-field at the launch pad, except for temporary stratospheric ozone effects during launch and occasional sonic boom effects near the landing site. These effects were judged insufficient to preclude Shuttle launches. There could also be environmental impacts associated with the accidental release of radiological material during launch, deployment, or interplanetary trajectory injection of the Ulysses spacecraft. Intensive analysis indicates that the probability of release is small. There are no environmental

  8. Modern Exploration of Galileo's New Worlds

    NASA Technical Reports Server (NTRS)

    Johnson, Torrence V.

    2010-01-01

    Four hundred years ago Galileo turned his telescope to the heavens and changed the way we view the cosmos forever. Among his discoveries in January of 1610 were four new 'stars', following Jupiter in the sky but changing their positions with respect to the giant planet every night. Galileo showed that these 'Medicean stars', as he named them, were moons orbiting Jupiter in the same manner that the Earth and planets revolve about the Sun in the Copernican theory of the solar system. Over the next three centuries these moons, now collectively named the Galilean satellites after their discoverer, remained tiny dots of light in astronomers' telescopes. In the latter portion of the twentieth century Galileo's new worlds became important targets of exploration by robotic spacecraft. This paper reviews the history of this exploration through the discoveries made by the Galileo mission from 1995 to 2003, setting the stage for on-going exploration in the new century.

  9. Surface changes on Io during the Galileo mission

    USGS Publications Warehouse

    Geissler, P.; McEwen, A.; Phillips, C.; Keszthelyi, L.; Spencer, J.

    2004-01-01

    A careful survey of Galileo SSI global monitoring images revealed more than 80 apparent surface changes that took place on Io during the 5 year period of observation, ranging from giant plume deposits to subtle changes in the color or albedo of Patera surfaces. Explosive volcanic activity was discovered at four previously unrecognized centers: an unnamed patera to the south of Karei that produced a Pele-sized red ring, a patera to the west of Zal that produced a small circular bright deposit, a large orange ring detected near the north pole of Io, and a small bright ring near Io's south pole. Only a handful of Io's many active volcanoes produced large scale explosive eruptions, and several of these erupted repeatedly, leaving at least 83% of Io's surface unaltered throughout the Galileo mission. Most of the hot spots detected from SSI, NIMS and ground-based thermal observations caused no noticeable surface changes greater than 10 km in extent over the five year period. Surface changes were found at every location where active plumes were identified, including Acala which was never seen in sunlight and was only detected through auroral emissions during eclipse. Two types of plumes are distinguished on the basis of the size and color of their deposits, confirming post-Voyager suggestions by McEwen and Soderblom [Icarus 55 (1983) 191]. Smaller plumes produce near-circular rings typically 150-200 km in radius that are white or yellow in color unless contaminated with silicates, and frequently coat their surroundings with frosts of fine-grained SO2. The larger plumes are much less numerous, limited to a half dozen examples, and produce oval, orange or red, sulfur-rich rings with maximum radii in the north-south direction that are typically in the range from 500 to 550 km. Both types of plumes can be either episodic or quasi-continuous over a five year period. Repeated eruptions of the smaller SO2-rich plumes likely contribute significantly to Io's resurfacing rate

  10. Surface Changes on Io during the Galileo Mission

    NASA Astrophysics Data System (ADS)

    Geissler, P.; McEwen, A.; Phillips, C.; Keszthelyi, L.; Spencer, J.

    2003-04-01

    A careful survey of Galileo SSI global monitoring images revealed more than 80 apparent surface changes that took place on Io during the 5 year period of observation, ranging from giant plume deposits to subtle changes in the color or albedo of patera surfaces. Explosive volcanic activity was discovered at four previously unrecognized centers: an un-named patera to the south of Karei that produced a Pele-sized red ring, a patera to the west of Zal that produced a small circular bright deposit, a large orange ring detected near the north pole of Io, and a small bright ring near Io's south pole. Only a handful of Io's many active volcanoes produced large scale explosive eruptions, and several of these erupted repeatedly, leaving at least 83% of Io's surface unaltered throughout the Galileo mission. Most of the hot spots detected from SSI, NIMS and groundbased thermal observations caused no noticeable surface changes greater than 10 km in extent over the five year period. Surface changes were found at every location where active plumes were identified, including Acala which was never seen in sunlight and was only detected through auroral emissions during eclipse. Two types of plumes are distinguished on the basis of the size and color of their deposits, confirming post-Voyager suggestions by McEwen and Soderblom (1983). Smaller plumes produce near-circular rings typically 150 to 200 km in radius that are white or yellow in color unless contaminated with silicates, and frequently coat their surroundings with frosts of fine-grained SO2. The larger plumes are much less numerous, limited to a half dozen examples, and produce oval, orange or red, sulfur- rich rings with maximum radii in the north-south direction that are typically in the range from 500 to 550 km. Both types of plumes can be either episodic or quasi-continuous over a five year period. Repeated eruptions of the smaller SO2-rich plumes likely contribute significantly to Io's resurfacing rate, whereas dust

  11. Surface changes on Io during the Galileo mission

    NASA Astrophysics Data System (ADS)

    Geissler, Paul; McEwen, Alfred; Phillips, Cynthia; Keszthelyi, Laszlo; Spencer, John

    2004-05-01

    A careful survey of Galileo SSI global monitoring images revealed more than 80 apparent surface changes that took place on Io during the 5 year period of observation, ranging from giant plume deposits to subtle changes in the color or albedo of patera surfaces. Explosive volcanic activity was discovered at four previously unrecognized centers: an unnamed patera to the south of Karei that produced a Pele-sized red ring, a patera to the west of Zal that produced a small circular bright deposit, a large orange ring detected near the north pole of Io, and a small bright ring near Io's south pole. Only a handful of Io's many active volcanoes produced large scale explosive eruptions, and several of these erupted repeatedly, leaving at least 83% of Io's surface unaltered throughout the Galileo mission. Most of the hot spots detected from SSI, NIMS and ground-based thermal observations caused no noticeable surface changes greater than 10 km in extent over the five year period. Surface changes were found at every location where active plumes were identified, including Acala which was never seen in sunlight and was only detected through auroral emissions during eclipse. Two types of plumes are distinguished on the basis of the size and color of their deposits, confirming post-Voyager suggestions by McEwen and Soderblom [Icarus 55 (1983) 191]. Smaller plumes produce near-circular rings typically 150-200 km in radius that are white or yellow in color unless contaminated with silicates, and frequently coat their surroundings with frosts of fine-grained SO 2. The larger plumes are much less numerous, limited to a half dozen examples, and produce oval, orange or red, sulfur-rich rings with maximum radii in the north-south direction that are typically in the range from 500 to 550 km. Both types of plumes can be either episodic or quasi-continuous over a five year period. Repeated eruptions of the smaller SO 2-rich plumes likely contribute significantly to Io's resurfacing rate

  12. Four Galileo Views of Amalthea

    NASA Technical Reports Server (NTRS)

    1997-01-01

    These four images of Jupiter's moon, Amalthea, were taken by Galileo's solid state imaging system at various times between February and June 1997. North is approximately up in all cases. Amalthea, whose longest dimension is approximately 247 kilometers (154 miles) across, is tidally locked so that the same side of the satellite always points towards Jupiter, similar to how the nearside of our own Moon always points toward Earth. In such a tidally locked state, one side of Amalthea always points in the direction in which Amalthea moves as it orbits about Jupiter. This is called the 'leading side' of the moon and is shown in the top two images. The opposite side of Amalthea, the 'trailing side,' is shown in the bottom pair of images. The Sun illuminates the surface from the left in the top left image and from the right in the bottom left image. Such lighting geometries, similar to taking a picture from a high altitude at sunrise or sunset, are excellent for viewing the topography of the satellite's surface such as impact craters and hills. In the two images on the right, however, the Sun is almost directly behind the spacecraft. This latter geometry, similar to taking a picture from a high altitude at noon, washes out topographic features and emphasizes Amalthea's albedo (light/dark) patterns. It emphasizes the presence of surface materials that are intrinsically brighter or darker than their surroundings. The bright albedo spot that dominates the top right image is located inside a large south polar crater named Gaea.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  13. Lifetime assessment analysis of Galileo Li/SO2 cells: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, S.C.; Jaeger, C.D.; Bouchard, D.A.

    Galileo Li/SO2 cells from five lots and five storage temperatures were studied to establish a database from which the performance of flight modules may be predicted. Nondestructive tests consisting of complex impedance analysis and a 15-s pulse were performed on all cells. Chemical analysis was performed on one cell from each lot/storage group, and the remaining cells were discharged at Galileo mission loads. An additional number of cells were placed on high-temperature accelerated aging storage for 6 months and then discharged. All data were statistically analyzed. Results indicate that the present Galileo design Li/SO2 cell will satisfy electrical requirements formore » a 10-year mission. 10 figs., 4 tabs.« less

  14. Simulation Facilities and Test Beds for Galileo

    NASA Astrophysics Data System (ADS)

    Schlarmann, Bernhard Kl.; Leonard, Arian

    2002-01-01

    Galileo is the European satellite navigation system, financed by the European Space Agency (ESA) and the European Commission (EC). The Galileo System, currently under definition phase, will offer seamless global coverage, providing state-of-the-art positioning and timing services. Galileo services will include a standard service targeted at mass market users, an augmented integrity service, providing integrity warnings when fault occur and Public Regulated Services (ensuring a continuity of service for the public users). Other services are under consideration (SAR and integrated communications). Galileo will be interoperable with GPS, and will be complemented by local elements that will enhance the services for specific local users. In the frame of the Galileo definition phase, several system design and simulation facilities and test beds have been defined and developed for the coming phases of the project, respectively they are currently under development. These are mainly the following tools: Galileo Mission Analysis Simulator to design the Space Segment, especially to support constellation design, deployment and replacement. Galileo Service Volume Simulator to analyse the global performance requirements based on a coverage analysis for different service levels and degrades modes. Galileo System Simulation Facility is a sophisticated end-to-end simulation tool to assess the navigation performances for a complete variety of users under different operating conditions and different modes. Galileo Signal Validation Facility to evaluate signal and message structures for Galileo. Galileo System Test Bed (Version 1) to assess and refine the Orbit Determination &Time Synchronisation and Integrity algorithms, through experiments relying on GPS space infrastructure. This paper presents an overview on the so called "G-Facilities" and describes the use of the different system design tools during the project life cycle in order to design the system with respect to

  15. Imaging of volcanic activity on Jupiter's moon Io by Galileo during the Galileo Europa Mission and the Galileo Millennium Mission

    USGS Publications Warehouse

    Keszthelyi, L.; McEwen, A.S.; Phillips, C.B.; Milazzo, M.; Geissler, P.; Turtle, E.P.; Radebaugh, J.; Williams, D.A.; Simonelli, D.P.; Breneman, H.H.; Klaasen, K.P.; Levanas, G.; Denk, T.; Alexander, D.D.A.; Capraro, K.; Chang, S.-H.; Chen, A.C.; Clark, J.; Conner, D.L.; Culver, A.; Handley, T.H.; Jensen, D.N.; Knight, D.D.; LaVoie, S.K.; McAuley, M.; Mego, V.; Montoya, O.; Mortensen, H.B.; Noland, S.J.; Patel, R.R.; Pauro, T.M.; Stanley, C.L.; Steinwand, D.J.; Thaller, T.F.; Woncik, P.J.; Yagi, G.M.; Yoshimizu, J.R.; Alvarez, Del; Castillo, E.M.; Belton, M.J.S.; Beyer, R.; Branston, D.; Fishburn, M.B.; Mueller, B.; Ragan, R.; Samarasinha, N.; Anger, C.D.; Cunningham, C.; Little, B.; Arriola, S.; Carr, M.H.; Asphaug, E.; Moore, J.; Morrison, D.; Rages, K.; Banfield, D.; Bell, M.; Burns, J.A.; Carcich, B.; Clark, B.; Currier, N.; Dauber, I.; Gierasch, P.J.; Helfenstein, P.; Mann, M.; Othman, O.; Rossier, L.; Solomon, N.; Sullivan, R.; Thomas, P.C.; Veverka, J.; Becker, T.; Edwards, K.; Gaddis, L.; Kirk, R.; Lee, E.; Rosanova, T.; Sucharski, R.M.; Beebe, R.F.; Simon, A.; Bender, K.; Chuang, F.; Fagents, S.; Figueredo, P.; Greeley, R.; Homan, K.; Kadel, S.; Kerr, J.; Klemaszewski, J.; Lo, E.; Schwarz, W.; Williams, K.; Bierhaus, E.; Brooks, S.; Chapman, C.R.; Merline, B.; Keller, J.; Schenk, P.; Tamblyn, P.; Bouchez, A.; Dyundian, U.; Ingersoll, A.P.; Showman, A.; Spitale, J.; Stewart, S.; Vasavada, A.; Cunningham, W.F.; Johnson, T.V.; Jones, T.J.; Kaufman, J.M.; Magee, K.P.; Meredith, M.K.; Orton, G.S.; Senske, D.A.; West, A.; Winther, D.; Collins, G.; Fripp, W.J.; Head, J. W.; Pappalardo, R.; Pratt, S.; Procter, L.; Spaun, N.; Colvin, T.; Davies, M.; DeJong, E.M.; Hall, J.; Suzuki, S.; Gorjian, Z.; Giese, B.; Koehler, U.; Neukum, G.; Oberst, J.; Roatsch, T.; Tost, W.; Schuster, P.; Wagner, R.; Dieter, N.; Durda, D.; Greenberg, R.J.; Hoppa, G.; Jaeger, W.; Plassman, J.; Tufts, R.; Fanale, F.P.; Gran,

    2001-01-01

    The Solid-State Imaging (SSI) instrument provided the first high- and medium-resolution views of Io as the Galileo spacecraft closed in on the volcanic body in late 1999 and early 2000. While each volcanic center has many unique features, the majority can be placed into one of two broad categories. The "Promethean" eruptions, typified by the volcanic center Prometheus, are characterized by long-lived steady eruptions producing a compound flow field emplaced in an insulating manner over a period of years to decades. In contrast, "Pillanian" eruptions are characterized by large pyroclastic deposits and short-lived but high effusion rate eruptions from fissures feeding open-channel or open-sheet flows. Both types of eruptions commonly have ???100-km-tall, bright, SO2-rich plumes forming near the flow fronts and smaller deposits of red material that mark the vent for the silicate lavas. Copyright 2001 by the American Geophysical Union.

  16. Analysis of flow decay potential on Galileo. [oxidizer flow rate reduction by iron nitrate precipitates

    NASA Technical Reports Server (NTRS)

    Cole, T. W.; Frisbee, R. H.; Yavrouian, A. H.

    1987-01-01

    The risks posed to the NASA's Galileo spacecraft by the oxidizer flow decay during its extended mission to Jupiter is discussed. The Galileo spacecraft will use nitrogen tetroxide (NTO)/monomethyl hydrazine bipropellant system with one large engine thrust-rated at a nominal 400 N, and 12 smaller engines each thrust-rated at a nominal 10 N. These smaller thrusters, because of their small valve inlet filters and small injector ports, are especially vulnerable to clogging by iron nitrate precipitates formed by NTO-wetted stainless steel components. To quantify the corrosion rates and solubility levels which will be seen during the Galileo mission, corrosion and solubility testing experiments were performed with simulated Galileo materials, propellants, and environments. The results show the potential benefits of propellant sieving in terms of iron and water impurity reduction.

  17. Habitability as a Tier One Criterion in Exploration Mission and Vehicle Design. Part 1; Habitability

    NASA Technical Reports Server (NTRS)

    Adams, Constance M.; McCurdy, Matthew Riegel

    1999-01-01

    Habitability and human factors are necessary criteria to include in the iterative process of Tier I mission design. Bringing these criteria in at the first, conceptual stage of design for exploration and other human-rated missions can greatly reduce mission development costs, raise the level of efficiency and viability, and improve the chances of success. In offering a rationale for this argument, the authors give an example of how the habitability expert can contribute to early mission and vehicle architecture by defining the formal implications of a habitable vehicle, assessing the viability of units already proposed for exploration missions on the basis of these criteria, and finally, by offering an optimal set of solutions for an example mission. In this, the first of three papers, we summarize the basic factors associated with habitability, delineate their formal implications for crew accommodations in a long-duration environment, and show examples of how these principles have been applied in two projects at NASA's Johnson Space Center: the BIO-Plex test facility, and TransHab.

  18. High Spatial Resolution Europa Coverage by the Galileo Near Infrared Mapping Spectrometer (NIMS)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NIMS instrument on the Galileo spacecraft, which is being used to map the mineral and ice properties over the surfaces of the Jovian moons, produces global spectral images at modest spatial resolution and high resolution spectral images for small selected regions on the satellites. This map illustrates the high resolution coverage of Europa obtained by NIMS through the April 1997 G7 orbit.

    The areas covered are displayed on a Voyager-derived map. A good sampling of the dark trailing-side material (180 to 360 degrees) has been obtained, with less coverage of Europa's leading side.

    The false-color composites use red, green and blue to represent the infrared brightnesses at 0.7, 1.51 and 1.82 microns respectively. Considerable variations are evident and are related to the composition and sizes of the surface grains.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  19. Galileo Galilei (GG): the space mission and the prototype

    NASA Astrophysics Data System (ADS)

    Nobili, A.

    "GALILEO GALILEI (GG)" is a proposal to fly a small satellite in low Earth orbit aiming to test the Equivalence Principle of Galileo, Newton and Einstein to 1 part in 1017 at room temperature. Ground tests carried out with artificial test bodies on rotating torsion balances, and tests with celestial bodies based on Lunar Laser Ranging data, have found no violation to about 1 part in 1013 . Competing space pro jects are SCOPE (also at room temperature) aiming to 1 part in 1015 , and STEP (at very low temperature) aiming to 1 part in 1018 . GG is characterized by fast rotation and by the possibility to perform a full scale test on the ground. This talk will present the main features of the GG design, as compared to STEP and SCOPE, and report the experimental results obtained with the first and the second generation laboratory prototypes (natural frequencies, quality factor, stability, sensitivity). Interested scientists are welcome to visit the GG webpage at http://eotvos.dm.unipi.it/nobili.

  20. Mass Movement and Landform Degradation on the Icy Galilean Satellites: Results of the Galileo Nominal Mission

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Asphaug, Erik; Morrison, David; Spencer, John R.; Chapman, Clark R.; Bierhaus, Beau; Sullivan, Robert J.; Chuang, Frank C.; Klemaszewski, James E.; Greeley, Ronald

    1999-01-01

    The Galileo mission has revealed remarkable evidence of mass movement and landform degradation on the icy Galilean satellites of Jupiter. Weakening of surface materials coupled with mass movement reduces the topographic relief of landforms by moving surface materials down-slope. Throughout the Galileo orbiter nominal mission we have studied all known forms of mass movement and landform degradation of the icy galilean satellites, of which Callisto, by far, displays the most degraded surface. Callisto exhibits discrete mass movements that are larger and apparently more common than seen elsewhere. Most degradation on Ganymede appears consistent with sliding or slumping, impact erosion, and regolith evolution. Sliding or slumping is also observed at very small (100 m) scale on Europa. Sputter ablation, while probably playing some role in the evolution of Ganymede's and Callisto's debris layers, appears to be less important than other processes. Sputter ablation might play a significant role on Europa only if that satellite's surface is significantly older than 10(exp 8) years, far older than crater statistics indicate. Impact erosion and regolith formation on Europa are probably minimal, as implied by the low density of small craters there. Impact erosion and regolith formation may be important on the dark terrains of Ganymede, though some surfaces on this satellite may be modified by sublimation-degradation. While impact erosion and regolith formation are expected to operate with the same vigor on Callisto as on Ganymede, most of the areas examined at high resolution on Callisto have an appearance that implies that some additional process is at work, most likely sublimation-driven landform modification and mass wasting. The extent of surface degradation ascribed to sublimation on the outer two Galilean satellites implies that an ice more volatile than H2O is probably involved.

  1. Galileo perceptionist.

    PubMed

    Sinico, Michele

    2012-01-01

    The present paper focuses on Galileo's conception of perception. I take as my starting point the interpretation of the Galilean text by Piccolino and Wade (2008, Perception 37 1312-1340): Galileo's eye: a new vision of the senses in the work of Galileo Galilei. Three points are discussed: the criticism of naive realism, the theoretical role of perceptual laws, and the distinction between different qualities of experience. The conclusions support an alternative interpretation which underscores the crucial role of phenomenology of perception in Galileo's epistemology.

  2. Highest-resolution Europa Image & Mosaic from Galileo

    NASA Image and Video Library

    2017-02-08

    This mosaic of images includes the most detailed view of the surface of Jupiter's moon Europa obtained by NASA's Galileo mission. The topmost footprint is the highest resolution image taken by Galileo at Europa. It was obtained at an original image scale of 19 feet (6 meters) per pixel. The other seven images in this observation were obtained at a resolution of 38 feet (12 meters) per pixel, thus the mosaic, including the top image, has been projected at the higher image scale. The top image is also provided at its original resolution, as a separate image file. It includes a vertical black line that resulted from missing data that was not transmitted by Galileo. This is the highest resolution view of Europa available until a future mission visits the icy moon. The right side of the image was previously published as PIA01180. Although this data has been publicly available in NASA's Planetary Data System archive for many years, NASA scientists have not previously combined these images into a mosaic for public release. This observation was taken with the sun relatively high in the sky, so most of the brightness variations visible here are due to color differences in the surface material rather than shadows. Bright ridge tops are paired with darker valleys, perhaps due to a process in which small temperature variations allow bright frost to accumulate in slightly colder, higher-elevation locations. http://photojournal.jpl.nasa.gov/catalog/PIA21431

  3. Project GALILEO: Farewell to the Major Moons of Jupiter

    NASA Astrophysics Data System (ADS)

    Theilig, E.

    2002-01-01

    After a six year odyssey, Galileo has completed its survey of the large moons of Jupiter. In the four years since the end of the primary mission, Galileo provided new insights into the fundamental questions concerning Jupiter and its moons and magnetosphere. Longevity, changing orbital geometry, and multiple flybys afforded the opportunity to distinguish intrinsic versus induced magnetic fields on the Galilean moons, to characterize the dusk side of the magnetosphere, to acquire high resolution observations supporting the possibility of subsurface water within Europa, Ganymede, and Callisto, and to monitor the highly dynamic volcanic activity of Io. In January 2002, a final gravity assist placed the spacecraft on a two-orbit trajectory culminating in a Jupiter impact in September 2003. With the successful completion of the Io encounters, plans are being made for the final encounter of the mission. In November 2002, the spacecraft will fly one Jupiter radius above the planet's cloud-tops, sampling the inner magnetosphere and the gossamer rings. The trajectory will take Galileo close enough to Amalthea, (a small inner moon) to obtain the first gravity data for this body. Because a radiation dose of 73 krads is expected on this encounter, which will bring the total radiation dose to greater than four times the spacecraft design limits, the command sequence has to account for the possibility of subsystem failure and the loss of spacecraft control after this perijove passage. One of the primary objectives this year has been to place the spacecraft on a trajectory to impact Jupiter on orbit 35. Galileo's discovery of water beneath the frozen surface of Europa raised concerns about forward contamination by inadvertently impacting that moon and resulted in an end of mission requirement to dispose of the spacecraft. A risk assessment of the final two Io encounters was performed to manage the project's ability to meet this requirement. Radiation affected the extended mission

  4. Galileo spacecraft power management and distribution system

    NASA Technical Reports Server (NTRS)

    Detwiler, R. C.; Smith, R. L.

    1990-01-01

    The Galileo PMAD (power management and distribution system) is described, and the design drivers that established the final as-built hardware are discussed. The spacecraft is powered by two general-purpose heat-source-radioisotope thermoelectric generators. Power bus regulation is provided by a shunt regulator. Galileo PMAD distributes a 570-W beginning of mission (BOM) power source to a user complement of some 137 load elements. Extensive use of pyrotechnics requires two pyro switching subassemblies. They initiate 148 squibs which operate the 47 pyro devices on the spacecraft. Detection and correction of faults in the Galileo PMAD is an autonomous feature dictated by requirements for long life and reliability in the absence of ground-based support. Volatile computer memories in the spacecraft command and data system and attitude control system require a continuous source of backup power during all anticipated power bus fault scenarios. Power for the Jupiter Probe is conditioned, isolated, and controlled by a Probe interface subassembly. Flight performance of the spacecraft and the PMAD has been successful to date, with no major anomalies.

  5. A comparison of full-spectrum and complex-symbol combining techniques for the Galileo S-band mission

    NASA Technical Reports Server (NTRS)

    Million, S.; Shah, B.; Hinedi, S.

    1994-01-01

    Full-spectrum combining (FSC) and complex-symbol combining (CSC) are two antenna-arraying techniques being considered for the Galileo spacecraft's upcoming encounter with Jupiter. This article describes the performance of these techniques in terms of symbol signal-to-noise ratio (SNR) degradation and symbol SNR loss. It is shown that both degradation and loss are approximately equal at low values of symbol SNR but diverge at high SNR values. For the Galileo S-band (2.2 to 2.3 GHz) mission, degradation provides a good estimate of performance as the symbol SNR is typically below -5 dB. For the following arrays - two 70-m antennas, one 70-m and one 34-m antenna, one 70-m and two 34-m antennas, and one 70-m and three 34-m antennas - it is shown that FSC has less degradation than CSC when the subcarrier and symbol window-loop bandwidth products are above 3.0, 10.0, 8.5, and 8.2 mHz at the symbol rate of 200 sym/sec, and above 1.2, 4.5, 4.0, and 3.5 mHz at a symbol rate of 400 sym/sec, respectively. Moreover, for an array of four 34-m antennas, FSC has less degradation than CSC when the subcarrier and symbol window-loop bandwidth products are above 0.32 mHz at the symbol rate of 50 sym/sec and above 0.8 mHz at the symbol rate of 25 sym/sec.

  6. Galileo Outreach Compilation

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This NASA JPL (Jet Propulsion Laboratory) video production is a compilation of the best short movies and computer simulation/animations of the Galileo spacecraft's journey to Jupiter. A limited number of actual shots are presented of Jupiter and its natural satellites. Most of the video is comprised of computer animations of the spacecraft's trajectory, encounters with the Galilean satellites Io, Europa and Ganymede, as well as their atmospheric and surface structures. Computer animations of plasma wave observations of Ganymede's magnetosphere, a surface gravity map of Io, the Galileo/Io flyby, the Galileo space probe orbit insertion around Jupiter, and actual shots of Jupiter's Great Red Spot are presented. Panoramic views of our Earth (from orbit) and moon (from orbit) as seen from Galileo as well as actual footage of the Space Shuttle/Galileo liftoff and Galileo's space probe separation are also included.

  7. Galileo and optical illusion

    NASA Astrophysics Data System (ADS)

    Parker, Gary D.

    1986-03-01

    Galileo's earliest telescopic measurements are of sufficient quality that their detailed analysis yields scientifically interesting and pedagogically useful results. An optical illusion strongly influences Galileo's observations of Jupiter's moons, as published in the Starry Messenger. A simple procedure identifies individual satellites with sufficient reliability to demonstrate that Galileo regularly underestimated satellite brightness and overestimated elongation when a satellite was very close to Jupiter. The probability of underestimation is a monotonically decreasing function of separation angle, both for Galileo and for viewers of a laboratory simulation of the Jupiter ``starfield'' viewed by Galileo. Analysis of Galileo's records and a simple simulation experiment appropriate to undergraduate courses clarify the scientific problems facing Galileo in interpreting his observations.

  8. STS-34 Galileo processing at KSC's SAEF-2 planetary spacecraft facility

    NASA Image and Video Library

    1989-07-21

    At the Kennedy Space Center's (KSC's) Spacecraft and Assembly Encapsulation Facility 2 (SAEF-2), the planetary spacecraft checkout facility, clean-suited technicians work on the Galileo spacecraft prior to moving it to the Vehicle Processing Facility (VPF) for mating with the inertial upper stage (IUS). Galileo is scheduled for launch aboard Atlantis, Orbiter Vehicle (OV) 104, on Space Shuttle Mission STS-34 in October 1989. It will be sent to the planet Jupiter, a journey which will taken more than six years to complete. In December 1995 as the two and one half ton spacecraft orbits Jupiter with its ten scientific instruments, a probe will be released to parachute into the Jovian atmosphere. NASA's Jet Propulsion Laboratory (JPL) manages the Galileo project. View provided by KSC.

  9. Proposed data compression schemes for the Galileo S-band contingency mission

    NASA Technical Reports Server (NTRS)

    Cheung, Kar-Ming; Tong, Kevin

    1993-01-01

    The Galileo spacecraft is currently on its way to Jupiter and its moons. In April 1991, the high gain antenna (HGA) failed to deploy as commanded. In case the current efforts to deploy the HGA fails, communications during the Jupiter encounters will be through one of two low gain antenna (LGA) on an S-band (2.3 GHz) carrier. A lot of effort has been and will be conducted to attempt to open the HGA. Also various options for improving Galileo's telemetry downlink performance are being evaluated in the event that the HGA will not open at Jupiter arrival. Among all viable options the most promising and powerful one is to perform image and non-image data compression in software onboard the spacecraft. This involves in-flight re-programming of the existing flight software of Galileo's Command and Data Subsystem processors and Attitude and Articulation Control System (AACS) processor, which have very limited computational and memory resources. In this article we describe the proposed data compression algorithms and give their respective compression performance. The planned image compression algorithm is a 4 x 4 or an 8 x 8 multiplication-free integer cosine transform (ICT) scheme, which can be viewed as an integer approximation of the popular discrete cosine transform (DCT) scheme. The implementation complexity of the ICT schemes is much lower than the DCT-based schemes, yet the performances of the two algorithms are indistinguishable. The proposed non-image compression algorith is a Lempel-Ziv-Welch (LZW) variant, which is a lossless universal compression algorithm based on a dynamic dictionary lookup table. We developed a simple and efficient hashing function to perform the string search.

  10. Final safety analysis report for the Galileo Mission: Volume 2, Book 2: Accident model document: Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-12-15

    This section of the Accident Model Document (AMD) presents the appendices which describe the various analyses that have been conducted for use in the Galileo Final Safety Analysis Report II, Volume II. Included in these appendices are the approaches, techniques, conditions and assumptions used in the development of the analytical models plus the detailed results of the analyses. Also included in these appendices are summaries of the accidents and their associated probabilities and environment models taken from the Shuttle Data Book (NSTS-08116), plus summaries of the several segments of the recent GPHS safety test program. The information presented in thesemore » appendices is used in Section 3.0 of the AMD to develop the Failure/Abort Sequence Trees (FASTs) and to determine the fuel releases (source terms) resulting from the potential Space Shuttle/IUS accidents throughout the missions.« less

  11. Galileo probe battery systems design

    NASA Technical Reports Server (NTRS)

    Dagarin, B. P.; Van Ess, J. S.; Marcoux, L. S.

    1986-01-01

    NASA's Galileo mission to Jupiter will consist of a Jovian orbiter and an atmospheric entry probe. The power for the probe will be derived from two primary power sources. The main source is composed of three Li-SO2 battery modules containing 13 D-size cell strings per module. These are required to retain capacity for 7.5 years, support a 150 day clock, and a 7 hour mission sequence of increasing loads from 0.15 to 9.5 amperes for the last 30 minutes. This main power source is supplemented by two thermal batteries (CaCrO4-Ca) for use in firing the pyrotechnic initiators during the atmospheric staging events. This paper describes design development and testing of these batteries at the system level.

  12. Officine Galileo for Mars Exploration

    NASA Astrophysics Data System (ADS)

    Battistelli, E.; Tacconi, M.

    1999-09-01

    The interest for Mars's exploration is continuously increasing. Officine Galileo is engaged in this endeavor with several programmes. The exobiology is, of course, a stimulating field; presently Officine Galileo is leading a team with Dasa and Tecnospazio, under ESA contract, for the definition of a facility for the search of extinct life on Mars through the detection of indicators of life. The system, to be embarked on a Mars lander, is based on a drill to take rock samples underneath the oxidised soil layer, on a sample preparation and distribution system devoted to condition and bring the sample to a set of analytical instruments to carry out in-situ chemical and mineralogical investigations. The facility benefits of the presence of optical microscope, gas chromatograph, several spectrometers (Raman, Mass, Mossbauer, APX-Ray), and further instruments. In the frame of planetology, Officine Galileo is collaborating with several Principal Investigators to the definition of a set of instruments to be integrated on the Mars 2003 Lander (a NASA-ASI cooperation). A drill (by Tecnospazio), with the main task to collect Mars soil samples for the subsequent storage and return to Earth, will have the capability to perform several soil analyses, e.g. temperature and near infrared reflectivity spectra down to 50 cm depth, surface thermal and electrical conductivity, sounding of electromagnetic properties down to a few hundreds meter, radioactivity. Moreover a kit of instruments for in-situ soil samples analyses if foreseen; it is based on a dust analyser, an IR spectrometer, a thermofluorescence sensor, and a radioactivity analyser. The attention to the Red Planet is growing, in parallel with the findings of present and planned missions. In the following years the technology of Officine Galileo will carry a strong contribution to the science of Mars.

  13. Enhanced decoding for the Galileo S-band mission

    NASA Technical Reports Server (NTRS)

    Dolinar, S.; Belongie, M.

    1993-01-01

    A coding system under consideration for the Galileo S-band low-gain antenna mission is a concatenated system using a variable redundancy Reed-Solomon outer code and a (14,1/4) convolutional inner code. The 8-bit Reed-Solomon symbols are interleaved to depth 8, and the eight 255-symbol codewords in each interleaved block have redundancies 64, 20, 20, 20, 64, 20, 20, and 20, respectively (or equivalently, the codewords have 191, 235, 235, 235, 191, 235, 235, and 235 8-bit information symbols, respectively). This concatenated code is to be decoded by an enhanced decoder that utilizes a maximum likelihood (Viterbi) convolutional decoder; a Reed Solomon decoder capable of processing erasures; an algorithm for declaring erasures in undecoded codewords based on known erroneous symbols in neighboring decodable words; a second Viterbi decoding operation (redecoding) constrained to follow only paths consistent with the known symbols from previously decodable Reed-Solomon codewords; and a second Reed-Solomon decoding operation using the output from the Viterbi redecoder and additional erasure declarations to the extent possible. It is estimated that this code and decoder can achieve a decoded bit error rate of 1 x 10(exp 7) at a concatenated code signal-to-noise ratio of 0.76 dB. By comparison, a threshold of 1.17 dB is required for a baseline coding system consisting of the same (14,1/4) convolutional code, a (255,223) Reed-Solomon code with constant redundancy 32 also interleaved to depth 8, a one-pass Viterbi decoder, and a Reed Solomon decoder incapable of declaring or utilizing erasures. The relative gain of the enhanced system is thus 0.41 dB. It is predicted from analysis based on an assumption of infinite interleaving that the coding gain could be further improved by approximately 0.2 dB if four stages of Viterbi decoding and four levels of Reed-Solomon redundancy are permitted. Confirmation of this effect and specification of the optimum four-level redundancy profile

  14. Galileo and the Movies

    NASA Astrophysics Data System (ADS)

    Olivotto, Cristina; Testa, Antonella

    2010-12-01

    We analyze the character of Galileo Galilei (1564-1642), one of the most famous scientists of all time, as portrayed in three significant movies: Luigi Maggi's Galileo Galilei (1909), Liliana Cavani's Galileo (1968), and Joseph Losey's Galileo (1975), the last one of which was based upon Bertolt Brecht's drama, Das Leben des Galilei (1947). We investigate the relationships between the main characteristics of these fictional Galileos and the most important twentieth-century Galilean historiographic models. We also analyze the veracity of the plots of these three movies and the role that historical and scientific consultants played in producing them. We conclude that connections between these three movies and Galilean historiographic models are far from evident, that other factors deeply influenced the representation of Galileo on the screen.

  15. [Galileo and his telescope].

    PubMed

    Strebel, Christoph

    2006-01-01

    Galileo's publication of observations made with his newly reinvented telescope provoked a fierce debate. In April 1610 Martinus Horky, a young Bohemian astronomer, had an opportunity to make his own observations with Galileo's telescope in the presence of Antonio Magini and other astronomers. Horky and the other witnesses denied the adequacy of Galileo's telescope and therefore the bona fides of his discoveries. Kepler conjectured Horky as well as all his witnesses to be myopic. But Kepler's objection could not stop the publication of Horky's Peregrinatio contra nuncium sidereum (Modena, 1610), the first printed refutation of Galileo's Sidereus nuncius. In his treatise, Horky adresses four questions: 1) Do the four newly observed heavenly bodies actually exist? Horky denies their existence on various grounds: a) God, as every astronomer teaches, has created only seven moveable heavenly bodies and astronomical knowledge originates in God, too. b) Heavenly bodies are either stars or planets. Galileo's moveable heavenly bodies fit into neither category. c) If they do exist, why have they not already been observed by other scholars? Horky concludes that there are no such heavenly bodies. 2) What are these phenomena? They are purely artefactual, and produced by Galileo's telescope. 3) How are they like? Galileo's "stars" are so small as to be almost invisible. Galileo claims that he has measured their distances from each other. This however is impossible due to their diminutive size and other observational problems. Hence, Galileo's claim is a further proof that he is a fraud. 4) Why are they? For Galileo they are a chance to earn money but for astronomers like Horky they are a reason to offer thanks and honour to God. Horky's treatise was favourably received by the enemies of Galileo. But Kepler's critique was devastating. After calling on Kepler in Prague, Horky had to revoke the contents of his book.

  16. Galileo's tidal theory.

    PubMed

    Naylor, Ron

    2007-03-01

    The aim of Galileo's tidal theory was to show that the tides were produced entirely by the earth's motion and thereby to demonstrate the physical truth of Copernicanism. However, in the Dialogue Concerning the Two Chief World Systems Galileo did not explain some of the most significant aspects of the theory completely. As a consequence, the way the theory works has long been disputed. Though there exist a number of interpretations in the literature, the most widely accepted are based on ideas that are not explicitly articulated by Galileo in the Dialogue. This essay attempts to understand the way the theory functions in terms of Galilean physics. It is an interpretation of the theory based solely on Galileo's arguments--and one that reveals it to have had some unrecognized consequences. This interpretation indicates that Galileo's theory would not have worked in the manner he described in the Dialogue.

  17. Testing the Interstellar Wind Helium Flow Direction with Galileo Euvs Data

    NASA Astrophysics Data System (ADS)

    Pryor, W. R.; Simmons, K. E.; Ajello, J. M.; Tobiska, W. K.; Retherford, K. D.; Stern, S. A.; Feldman, P. D.; Frisch, P. C.; Bzowski, M.; Grava, C.

    2014-12-01

    Forty years of measurements of the flow of interstellar helium through the heliosphere suggest that variations of the flow direction with time are possible. We will model Galileo Extreme Ultraviolet Spectrometer (EUVS) data to determine the best-fitting flow direction and compare it to values obtained by other spacecraft. The Galileo EUVS (Hord et al., 1992) was mounted on the spinning part of the spacecraft and obtained interstellar wind hydrogen Lyman-alpha 121.6 nm and helium 58.4 nm data on great circles passing near the ecliptic poles during the interplanetary cruise phase of the mission and also during the Jupiter orbital phase of the mission. The Galileo hydrogen cruise data have been previously published (Hord et al., 1991, Pryor et al., 1992; 1996; 2001), but the helium data have not. Our model was previously used by Ajello et al., 1978, 1979 to model Mariner 10 interstellar wind helium data, and by Stern et al., 2012 and Feldman et al., 2012 to model the interplanetary helium background near the moon in Lunar Reconnaissance Orbiter (LRO) Lyman-alpha Mapping Project (LAMP) data. The model has been updated to include recent determinations of daily helium 58.4 nm solar flux variations and helium losses due to EUV photoionization and electron impact ionization.

  18. Galileo disposal strategy: stability, chaos and predictability

    NASA Astrophysics Data System (ADS)

    Rosengren, Aaron J.; Daquin, Jérôme; Tsiganis, Kleomenis; Alessi, Elisa Maria; Deleflie, Florent; Rossi, Alessandro; Valsecchi, Giovanni B.

    2017-02-01

    Recent studies have shown that the medium-Earth orbit (MEO) region of the global navigation satellite systems is permeated by a devious network of lunisolar secular resonances, which can interact to produce chaotic and diffusive motions. The precarious state of the four navigation constellations, perched on the threshold of instability, makes it understandable why all past efforts to define stable graveyard orbits, especially in the case of Galileo, were bound to fail; the region is far too complex to allow for an adoption of the simple geosynchronous disposal strategy. We retrace one such recent attempt, funded by ESA's General Studies Programme in the frame of the GreenOPS initiative, that uses a systematic parametric approach and the straightforward maximum-eccentricity method to identify long-term-stable regions, suitable for graveyards, as well as large-scale excursions in eccentricity, which can be used for post-mission deorbiting of constellation satellites. We then apply our new results on the stunningly rich dynamical structure of the MEO region towards the analysis of these disposal strategies for Galileo, and discuss the practical implications of resonances and chaos in this regime. We outline how the identification of the hyperbolic and elliptic fixed points of the resonances near Galileo can lead to explicit criteria for defining optimal disposal strategies.

  19. Long Term Monitoring of the Io Plasma Torus During the Galileo Encounter

    NASA Technical Reports Server (NTRS)

    Brown, Michael E.

    2002-01-01

    In the fall of 1999, the Galileo spacecraft made four passes into the Io plasma torus, obtaining the best in situ measurements ever of the particle and field environment in this densest region of the Jovian magnetosphere. Supporting observations from the ground are vital for understanding the global and temporal context of the in situ observations. We conducted a three-month-long Io plasma torus monitoring campaign centered on the time of the Galileo plasma torus passes to support this aspect of the Galileo mission. The almost-daily plasma density and temperature measurements obtained from our campaign allow the much more sparse but also much more detailed Galileo data to be used to address the issues of the structure of the Io plasma torus, the stability mechanism of the Jovian magnetosphere, the transport of material from the source region near Io, and the nature and source of persistent longitudinal variations. Combining the ground-based monitoring data with the detailed in situ data offers the only possibility for answering some of the most fundamental questions about the nature of the Io plasma torus.

  20. Safety analysis report for the Galileo Mission. Volume 3, book 2: Nuclear risk analysis document. Appendices, revision 1

    NASA Astrophysics Data System (ADS)

    1989-01-01

    It is the purpose of the NRAD to provide an analysis of the range of potential consequences of accidents which have been identified that are associated with the launching and deployment of the Galileo mission spacecraft. The specific consequences analyzed are those associated with the possible release of radioactive material (fuel) of the Radioisotope Thermoelectric Generators (RTGs). They are in terms of radiation doses to people and areas of deposition of radioactive material. These consequence analyses can be used in several ways. One way is to identify the potential range of consequences which might have to be dealt with if there were to be an accident with a release of fuel, so as to assure that, given such an accident, the health and safety of the public will be reasonably protected. Another use of the information, in conjunction with accident and release probabilities, is to estimate the risks associated with the mission. That is, most space launches occur without incident. Given an accident, the most probable result relative to the RTGs is complete containment of the radioactive material. Only a small fraction of accidents might result in a release of fuel and subsequent radiological consequences. The combination of probability with consequence is risk, which can be compared to other human and societal risks to assure that no undue risks are implied by undertaking the mission. Book 2 contains eight appendices.

  1. Generalizing Galileo's Passe-Dix Game

    ERIC Educational Resources Information Center

    Hombas, Vassilios

    2012-01-01

    This article shows a generalization of Galileo's "passe-dix" game. The game was born following one of Galileo's [G. Galileo, "Sopra le Scoperte dei Dadi" (Galileo, Opere, Firenze, Barbera, Vol. 8). Translated by E.H. Thorne, 1898, pp. 591-594] explanations on a paradox that occurred in the experiment of tossing three fair "six-sided" dice.…

  2. The Interagency Nuclear Safety Review Panel's Galileo safety evaluation report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, R.C.; Gray, L.B.; Huff, D.A.

    The safety evaluation report (SER) for Galileo was prepared by the Interagency Nuclear Safety Review Panel (INSRP) coordinators in accordance with Presidential directive/National Security Council memorandum 25. The INSRP consists of three coordinators appointed by their respective agencies, the Department of Defense, the Department of Energy (DOE), and the National Aeronautics and Space Administration (NASA). These individuals are independent of the program being evaluated and depend on independent experts drawn from the national technical community to serve on the five INSRP subpanels. The Galileo SER is based on input provided by the NASA Galileo Program Office, review and assessment ofmore » the final safety analysis report prepared by the Office of Special Applications of the DOE under a memorandum of understanding between NASA and the DOE, as well as other related data and analyses. The SER was prepared for use by the agencies and the Office of Science and Technology Policy, Executive Office of the Present for use in their launch decision-making process. Although more than 20 nuclear-powered space missions have been previously reviewed via the INSRP process, the Galileo review constituted the first review of a nuclear power source associated with launch aboard the Space Transportation System.« less

  3. The Galileo Affair.

    ERIC Educational Resources Information Center

    Poole, Michael

    1990-01-01

    Presented is background material on Galileo and his views on astronomy, religion, and Copernicus. The history of theory development related to the science of astronomy and a review of Galileo's writings are included. (KR)

  4. The trials of Galileo

    NASA Astrophysics Data System (ADS)

    Gingerich, Owen

    2009-12-01

    There are so many books about Galileo, author Dan Hofstadter remarks, so why another? Given that 2009 marks the 400th anniversary of the first astronomical use of the telescope, where Galileo's role was paramount, the answer may seem obvious. But that is not where the strength of Hofstadter's book lies. In The Earth Moves: Galileo and the Roman Inquisition, he instead advances the clock to 1633, towards the end of the Italian scientist's career and the year of the infamous trial that resulted after Galileo's Dialogue on the Two Great World Systems was published in 1632.

  5. Galileo dust data from the jovian system: 2000 to 2003

    NASA Astrophysics Data System (ADS)

    Krüger, H.; Bindschadler, D.; Dermott, S. F.; Graps, A. L.; Grün, E.; Gustafson, B. A.; Hamilton, D. P.; Hanner, M. S.; Horányi, M.; Kissel, J.; Linkert, D.; Linkert, G.; Mann, I.; McDonnell, J. A. M.; Moissl, R.; Morfill, G. E.; Polanskey, C.; Roy, M.; Schwehm, G.; Srama, R.

    2010-06-01

    The Galileo spacecraft was the first man-made satellite of Jupiter, orbiting the planet between December 1995 and September 2003. The spacecraft was equipped with a highly sensitive dust detector that monitored the jovian dust environment between approximately 2 and 370 RJ (jovian radius RJ=71 492 km). The Galileo dust detector was a twin of the one flying on board the Ulysses spacecraft. This is the tenth in a series of papers dedicated to presenting Galileo and Ulysses dust data. Here we present data from the Galileo dust instrument for the period January 2000 to September 2003 until Galileo was destroyed in a planned impact with Jupiter. The previous Galileo dust data set contains data of 2883 particles detected during Galileo's interplanetary cruise and 12 978 particles detected in the jovian system between 1996 and 1999. In this paper we report on the data of additional 5389 particles measured between 2000 and the end of the mission in 2003. The majority of the 21 250 particles for which the full set of measured impact parameters (impact time, impact direction, charge rise times, charge amplitudes, etc.) was transmitted to Earth were tiny grains (about 10 nm in radius), most of them originating from Jupiter's innermost Galilean moon Io. They were detected throughout the jovian system and the impact rates frequently exceeded 10 min -1. Surprisingly large impact rates up to 100 min -1 occurred in August/September 2000 when Galileo was far away (≈280RJ) from Jupiter, implying dust ejection rates in excess of 100 kg s -1. This peak in dust emission appears to coincide with strong changes in the release of neutral gas from the Io torus. Strong variability in the Io dust flux was measured on timescales of days to weeks, indicating large variations in the dust release from Io or the Io torus or both on such short timescales. Galileo has detected a large number of bigger micron-sized particles mostly in the region between the Galilean moons. A surprisingly large

  6. Europa's Interaction with Jupiter's Magnetosphere: Galileo Plasma Observations Revisited.

    NASA Astrophysics Data System (ADS)

    Heuer, S. V.; Rymer, A. M.; Westlake, J. H.; Paterson, W. R.; Collinson, G.

    2017-12-01

    The Galileo spacecraft was active at Jupiter from December 1995 to September 2003, carrying the Galileo Plasma Science Instrument (PLS), an electrostatic analyzer with three spherical-segment plates which directed energy selected particles into one of seven electron sensors or seven ion channels with field-of-views which combined to cover 80% of the 4pi-sr unit sphere (Frank et al., 1992). While Galileo accomplished most of its primary scientific objectives, the mission did not reach its full potential due to a failed high-gain antenna deployment which severely limited the available bandwidth for data transmission. Consequently, the PLS was limited by bandwidth availability, and only collected data with high temporal and energy resolution for short periods of time (e.g. review by Bagenal et al., 2016). The electron sensors were also negatively affected by the gaseous environment around Jupiter, which is suspected to have deposited a layer of contaminants on the detectors, raising the threshold energy required to pass through the aperture and effectively preventing the measurement of electrons below 1keV (Frank et al., 2002). As a result, data from the PLS is challenging to process and interpret. Ion plasma moments have been computed (and published on the PDS) in the magnetosphere, but moon flybys were excluded (Bagenal et al., 2016). In anticipation of future in-situ exploration of the Europa plasma environment, we present analysis of full-resolution plasma data acquired by the PLS during the nine Europa flybys and compare our results with existing data in order to further inform designs currently being worked for the Europa Clipper and JUICE missions.

  7. "Galileo Calling Earth..."

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This guide presents an activity for helping students understand how data from the Galileo spacecraft is sent to scientists on earth. Students are asked to learn about the concepts of bit-rate and resolution and apply them to the interpretation of images from the Galileo Orbiter. (WRM)

  8. Becoming Galileo in the Classroom

    NASA Astrophysics Data System (ADS)

    Cavicchi, Elizabeth

    2011-04-01

    Galileo's contributions are so familiar as to be taken for granted, obscuring the exploratory process by which his discoveries arose. The wonder that Galileo experienced comes alive for undergraduates and teachers that I teach, when they find themselves taking Galileo's role by means of their own explorations. These classroom journeys include: sighting through picture frames to understand perspective, watching the night sky, experimenting with lenses and motion, and responding to Galileo's story. In teaching, I use critical exploration, the research pedagogy developed by Eleanor Duckworth that arose historically from both the clinical interviewing of Jean Piaget and B"arbel Inhelder and the Elementary Science Study of the 1960s. During critical explorations, the teacher supports students' investigations by posing provocative experiences while interactively following students' emergent understandings. In the context of Galileo, students learned to observe carefully, trust their observations, notice things they had never noticed before, and extend their understanding in the midst of pervasive confusion. Personal investment moved students to question assumptions that they had never critically evaluated. By becoming Galileo in today's classroom, we found the ordinary world no less intriguing and unsettling to explore, as the historical world of protagonists in Galileo's Dialogue.

  9. Europa: Perspectives Halfway through the GEM Mission

    NASA Astrophysics Data System (ADS)

    Chapman, C. R.; Galileo Imaging Team

    1998-09-01

    We are now nearly a year past the end of the prime Galileo mission (orbital tour) and are approaching the halfway point of the Galileo Europa Mission (GEM). Plans are being formulated for follow-on missions. I will review Galileo results concerning Europa, emphasizing evidence from imaging concerning the near-surface interior of Europa (i.e. the putative sub-ice ocean). It is the photogeologist's difficult task to infer the nature of the subsurface third dimension from two-dimensional images of a planet's surface. The remarkably intricate patterns of ridges, cracks, pits, domes, and chaotic zones on Europa strongly constrain surface processes but are less diagnostic of the subsurface. The issue of time (ages and rates) is always a conundrum in geology and it is especially significant for Europa. Does Europa present us with a frozen tableau of the ancient past or a snapshot of a currently active world with surface units only hundreds of thousands to millions of years old? Is its geological style cyclical or even episodic? Does the evidence for "liquidity" below Europa's brittle crust imply actual water or only low-viscosity ice? If water, how close to the surface is it (a) on average and (b) at the shallowest locations? Galileo's evidence suggests, but has not yet proved, that Europa is the most likely currently habitable place in the solar system beyond the Earth.

  10. Generalizing Galileo's passé-dix game

    NASA Astrophysics Data System (ADS)

    Hombas, Vassilios

    2012-07-01

    This article shows a generalization of Galileo's 'passé-dix' game. The game was born following one of Galileo's [G. Galileo, Sopra le Scoperte dei Dadi (Galileo, Opere, Firenze, Barbera, Vol. 8). Translated by E.H. Thorne, 1898, pp. 591-594] explanations on a paradox that occurred in the experiment of tossing three fair 'six-sided' dice.

  11. Jupiter radiation measurements from enhanced Galileo/EPD data for NASA's PDS archive

    NASA Astrophysics Data System (ADS)

    Kollmann, P.; Smith, D.; Vandegriff, J. D.; Paranicas, C.; Lee-Payne, Z. H.

    2017-12-01

    The Galileo mission included the first orbiter around Jupiter. Its Energetic Particle Detector (EPD) provided an excellent survey of the radiation in this planetary magnetosphere. EPD measured electrons and various ion species in the energy range of tens of keV to tens of MeV. This data set is unique since the orbit was close to the equatorial plane, covered distances from Jupiter to its magnetopause, and included several close flybys at moons. The ongoing Juno mission in comparison only skims the equatorial plane and does not include moon flybys. Even though the Galileo mission ended in 2003, the EPD data archived through NASA's Planetary Data System (PDS) is sparse and not well calibrated. The bulk of the PDS data is from a low time resolution mode (from Galileo's "real time" mode), and is only provided as count rates. Only the 14 directionally resolved channels are provided in the PDS, but there would be also 35 additional omnidirectional channels available. Data in the higher time resolution "record mode" is archived but has not been adequately corrected. We present a preliminary version of fully cleaned, calibrated, and corrected EPD data that can be used without specialized instrument knowledge. Archive products for both the updated data and also the initial raw data (all channels and resolutions) are being prepared for delivery to the PDS. Major issues with the data from the Low Energy Magnetospheric Measurements System (EPD/LEMMS) were that some channels were saturated or contaminated. We correct for this using dead times and background values determined in flight. The raw measurements of electrons in the MeV range are not resolved in energy. We ran a forward model considering the instrument response to calculate electron MeV range spectra, which have many applications. From the Composition Measurement System (EPS/CMS), we have also extracted event data, which will also be included in our PDS delivery and can be used to derive high-resolution energy spectra

  12. RTG performance on Galileo and Ulysses and Cassini test results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, C. Edward; Klee, Paul M.

    Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Similar comparisons are made for the RTG on the Ulysses spacecraft which completed its planned mission in 1995. Also presented are test results from small scale thermoelectric modules and full scale converters performed for the Cassini program. The Cassini mission to Saturn is scheduled for an October 1997 launch. Small scale module test results on thermoelectric couples from the qualification and flight production runs are shown. These tests have exceeded 19,000more » hours are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. Test results are presented for full scale units both ETGs (E-6, E-7) and RTGs (F-2, F-5) along with mission power predictions. F-5, fueled in 1985, served as a spare for the Galileo and Ulysses missions and plays the same role in the Cassini program. It has successfully completed all acceptance testing. The ten years storage between thermal vacuum tests is the longest ever experienced by an RTG. The data from this test are unique in providing the effects of long term low temperature storage on power output. All ETG and RTG test results to date indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of at least five percent are predicted.« less

  13. RTG performance on Galileo and Ulysses and Cassini test results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, C.E.; Klee, P.M.

    Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Similar comparisons are made for the RTG on the Ulysses spacecraft which completed its planned mission in 1995. Also presented are test results from small scale thermoelectric modules and full scale converters performed for the Cassini program. The Cassini mission to Saturn is scheduled for an October 1997 launch. Small scale module test results on thermoelectric couples from the qualification and flight production runs are shown. These tests have exceeded 19,000more » hours are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. Test results are presented for full scale units both ETGs (E-6, E-7) and RTGs (F-2, F-5) along with mission power predictions. F-5, fueled in 1985, served as a spare for the Galileo and Ulysses missions and plays the same role in the Cassini program. It has successfully completed all acceptance testing. The ten years storage between thermal vacuum tests is the longest ever experienced by an RTG. The data from this test are unique in providing the effects of long term low temperature storage on power output. All ETG and RTG test results to date indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of at least five percent are predicted. {copyright} {ital 1997 American Institute of Physics.}« less

  14. Galileo and Music: A Family Affair

    NASA Astrophysics Data System (ADS)

    Fabris, D.

    2011-06-01

    According to Viviani, Galileo's first biographer, the scientist was an excellent keyboard and lute player. In turn Vincenzo Galilei, father of the illustrious scientist, had been one of the most influential music theorist of his age and also a great composer and virtuoso of the lute. Galileo and his brother Michelangelo, born in 1575, inherited Vincenzo's duel skills, both in theory and practical music: Galileo's correspondences show indeed his competence in the music and in the lute playing; Michelagnolo, after being educated in part in Galileo's house in Padua, transferred to Germany in Munich, where he became a court lute player. Nevertheless, Galileo helped for the rest of his life not only his brother but also his nephews, as documented in dozen of family letters quite important to establish the central role of the music in Galileo's everyday life, a fact almost ignored by most modern biographers. The importance of music in Galileo's output and life has been first outlined by the historian of sciences Stillman Drake and by the musicologist Claude Palisca. After their studies starting in the 1960s there is a great belief that Vincenzo influenced his son Galileo, directing him towards experimentation. The aim of this paper, following the reconstruction of Galileo's soundscape proposed by Pierluigi Petrobelli, is to reexamine the surviving historical accounts on the musical passion and talent of Galileo and his family in the several houses where they performed music (in Florence, Padua, Munich, etc.) in particular on the lute, the instrument that was an important experimental tool for the scientist.

  15. Final safety analysis report for the Galileo mission: Volume 3 (Book 2), Nuclear risk analysis document: Appendices: Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-25

    It is the purpose of the NRAD to provide an analysis of the range of potential consequences of accidents which have been identified that are associated with the launching and deployment of the Galileo mission spacecraft. The specific consequences analyzed are those associated with the possible release of radioactive material (fuel) of the Radioisotope Thermoelectric Generators (RTGs). They are in terms of radiation doses to people and areas of deposition of radioactive material. These consequence analyses can be used in several ways. One way is to identify the potential range of consequences which might have to be dealt with ifmore » there were to be an accident with a release of fuel, so as to assure that, given such an accident, the health and safety of the public will be reasonably protected. Another use of the information, in conjunction with accident and release probabilities, is to estimate the risks associated with the mission. That is, most space launches occur without incident. Given an accident, the most probable result relative to the RTGs is complete containment of the radioactive material. Only a small fraction of accidents might result in a release of fuel and subsequent radiological consequences. The combination of probability with consequence is risk, which can be compared to other human and societal risks to assure that no undue risks are implied by undertaking the mission. Book 2 contains eight appendices.« less

  16. The search for active Europa plumes in Galileo plasma particle detector data: the E12 flyby

    NASA Astrophysics Data System (ADS)

    Huybrighs, H.; Roussos, E.; Krupp, N.; Fraenz, M.; Futaana, Y.; Barabash, S. V.; Glassmeier, K. H.

    2017-12-01

    Hubble Space Telescope observations of Europa's auroral emissions and transits in front of Jupiter suggest that recurring water vapour plumes originating from Europa's surface might exist. If conclusively proven, the discovery of these plumes would be significant, because Europa's potentially habitable ocean could be studied remotely by taking in-situ samples of these plumes from a flyby mission. The first opportunity to collect in-situ evidence of the plumes will not arise before the early 2030's when ESA's JUICE mission or NASA's Europa Clipper are set to arrive. However, it may be possible that NASA's Galileo mission has already encountered the plumes when it was active in the Jupiter system from 1995 to 2003. It has been suggested that the high plasma densities and anomalous magnetic fields measured during one of the Galileo flybys of Europa (flyby E12) could be connected to plume activity. In the context of the search for Europa plume signatures in Galileo particle data we present an overview of the in-situ plasma particle data obtained by the Galileo spacecraft during the E12 flyby. Focus is in particular on the data obtained with the plasma particle instruments PLS (low energy ions and electrons) and EPD (high energy ions and electrons). We search for signs of an extended exosphere/ionosphere that could be consistent with ongoing plume activity. The PLS data obtained during the E12 flyby show an extended interaction region between Europa and the plasma from Jupiter's magnetosphere, hinting at the existence of an extended ionosphere and exosphere. Furthermore we show how the EPD data are analyzed and modelled in order to evaluate whether a series of energetic ion depletions can be attributed to losses on the moon's surface or its neutral exosphere.

  17. Galileo Earth/Moon News Conference. Part 1

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This NASA Kennedy Space Center (KSC) video release (Part 1 of 2) begins with a presentation given by William J. O'Neil (Galileo Project Manager) describing the status and position of the Galileo spacecraft 7 days prior to the Galileo Earth-2 flyby. Slides are presented including diagrams of the Galileo spacecraft trajectory, trajectory correction maneuvers, and the Venus and asteroid flybys. Torrence Johnson (Galileo Project Scientist) follows Mr. O'Neil with an explanation of the Earth/Moon science activities that will be undertaken during the second Galileo/Earth encounter. These activities include remote sensing, magnetospheric and plasma measurements, and images taken directly from Galileo of the Earth and Moon. Dr. Joseph Veverka (Galileo Imaging Team, Cornell University) then gives a brief presentation of the data collected by the first Galileo/Gaspra asteroid flyby. Images sampled from the 57 photographs taken of Gaspra are presented along with discussions of Gaspra's morphology, shape and size, and surface features. These presentations are followed by a question and answer period given for the benefit of scientific journalists whose subjects include overall Galileo spacecraft health, verification of the Gaspra images timeframe, and the condition of certain scientific spacecraft instruments. Part 2 of this video can be retrieved by using Report No. NONP-NASA-VT-2000001078.

  18. The Zamama-Thor region of Io: Insights from a synthesis of mapping, topography, and Galileo spacecraft data

    USGS Publications Warehouse

    Williams, D.A.; Keszthelyi, L.P.; Schenk, P.M.; Milazzo, M.P.; Lopes, R.M.C.; Rathbun, J.A.; Greeley, R.

    2005-01-01

    We have studied data from the Galileo spacecraft's three remote sensing instruments (Solid-State Imager (SSI), Near-Infrared Mapping Spectrometer (NIMS), and Photopolarimeter-Radiometer (PPR)) covering the Zamama - Thor region of Io's antijovian hemisphere, and produced a geomorphological map of this region. This is the third of three regional maps we are producing from the Galileo spacecraft data. Our goal is to assess the variety of volcanic and tectonic materials and their interrelationships on Io using planetary mapping techniques, supplemented with all available Galileo remote sensing data. Based on the Galileo data analysis and our mapping, we have determined that the most recent geologic activity in the Zamama - Thor region has been dominated by two sites of large-scale volcanic surface changes. The Zamama Eruptive Center is a site of both explosive and effusive eruptions, which emanate from two relatively steep edifices (Zamama Tholi A and B) that appear to be built by both silicate and sulfur volcanism. A ???100-km long flow field formed sometime after the 1979 Voyager flybys, which appears to be a site of promethean-style compound flows, flow-front SO2 plumes, and adjacent sulfur flows. Larger, possibly stealthy, plumes have on at least one occasion during the Galileo mission tapped a source that probably includes S and/or Cl to produce a red pyroclastic deposit from the same vent from which silicate lavas were erupted. The Thor Eruptive Center, which may have been active prior to Voyager, became active again during the Galileo mission between May and August 2001. A pillanian-style eruption at Thor included the tallest plume observed to date on Io (at least 500 km high) and new dark lava flows. The plume produced a central dark pyroclastic deposit (probably silicate-rich) and an outlying white diffuse ring that is SO2-rich. Mapping shows that several of th000e new dark lava flows around the plume vent have reoccupied sites of earlier flows. Unlike most of

  19. Galileo's Courage to Create New Cosmology

    NASA Astrophysics Data System (ADS)

    Carr, Paul H.

    2009-10-01

    The trial of Galileo was a confrontation between the creativity of new science and the traditions of ``the religious establishment.''Galileo challenged ancient cosmology, where heavenly bodies were thoughtto be perfect spheres made of ``ether.'' His trail might have been avoided if Galileo had been more diplomatic. Paradoxically, the Roman Catholic Church was scientifically correct: Galileo had no proof the earth rotated about its axis as it orbited around the sun. His assertion that the tides arise from the earth's rotation later turned out to be correct, but at that time no one knew enough about gravitational and centrifugal forces. Galileo courageously argued, ``The Bible tells us how to go to heaven, not how the heavens go [1].'' He was nevertheless convicted at age 69, Galileo, although deeply hurt, did not withdraw from the Church. He believed himself to be a good Catholic who had sought to keep his church, for its own good, from making a mistake. In 1992, Pope John Paul said the Church had erred in condemning Galileo. [4pt] [1] Carr, P. H. (2006). ``The Courage to Create Beauty,'' Chap 10 of ``Beauty in Science & Spirit,'' Beech River Books, Center Ossipee, NH.

  20. Hot Spots on Io: Initial Results From Galileo's Near Infrared Mapping Spectrometer

    NASA Technical Reports Server (NTRS)

    Lopes-Gautier, Rosaly; Davies, A. G.; Carlson, R.; Smythe, W.; Kamp, L.; Soderblom, L.; Leader, F. E.; Mehlman, R.

    1997-01-01

    The Near-Infrared Mapping Spectrometer on Galileo has monitored the volcanic activity on Io since June 28, 1996. This paper presents preliminary analysis of NIMS thermal data for the first four orbits of the Galileo mission. NIMS has detected 18 new hot spots and 12 others which were previously known to be active. The distribution of the hot spots on Io's surface may not be random, as hot spots surround the two bright, SO2-rich regions of Bosphorus Regio and Colchis Regio. Most hot spots scan to be persistently active from orbit to orbit and 10 of those detected were active in 1979 during the Voyager encounters. We report the distribution of hot spot temperatures and find that they are consistent with silicate volcanism.

  1. Integrating Model-Based Transmission Reduction into a multi-tier architecture

    NASA Astrophysics Data System (ADS)

    Straub, J.

    - lidation and/or changes of model elements and supporting validation data) to its upstream node. This constrains data transmission to only significant (either because it includes a change or is validation data critical for assessing overall performance) information and reduces the processing requirements (by not having to process insignificant data) at higher-level nodes. This paper presents a framework for multi-tier MBTR and two demonstration mission concepts: an Earth sensornet and a mission to Mars. These multi-tier MBTR concepts are compared to a traditional mission approach.

  2. [Galileo and centrifugal force].

    PubMed

    Vilain, Christiane

    This work intends to focus on Galileo's study of what is now called "centrifugal force," within the framework of the Second Day of his Dialogo written in 1632, rather than on the previously published commentaries on the topic. Galileo proposes three geometrical demonstrations in order to prove that gravity will always overcome centrifugalforce, and that the potential rotation of the Earth, whatever its speed, cannot in any case project objects beyond it. Each of these demonstrations must consequently contain an error and it has seemed to us that the first one had not been understood up until now. Our analysis offers an opportunity to return to Galileo's geometrical representation of dynamical questions; actually, we get an insight into the sophistication of Galileo's practices more than into his mistakes. Our second point, concerning the historiography of the problem, shows an evolution from anachronic critics to more contextual considerations, in the course of the second half of the twentieth century.

  3. Galileo's Earth-Moon portrait

    NASA Astrophysics Data System (ADS)

    Simarski, Lynn Teo

    Research reported at an AGU session on Galileo's Earth/Moon flyby refined the spacecraft's distinctive portrait of the Earth-Moon system. The Galileo team presented dramatic new views of the Earth and Moon taken last December. Andrew P. Ingersoll showed a color movie of the rotating Earth, made through spectral filters with which Galileo viewed the Earth almost continuously for 25 hours.Galileo also made finely tuned observations of vegetation and clouds, using three very closely spaced spectral wavelengths in the near-infrared, explained W. Reid Thompson. In the resulting images, Argentinian grassland and Brazilian rain forest are clearly distinguished, demonstrating the applicability of this technique for routine monitoring of deforestation, shifts in vegetation due to climate, and other phenomena. Thompson suggested that this capability could be used on the Earth Observing System. One of the spectral bands may also have potential for monitoring cloud condensation, as it appears to differentiate actively condensing, vapor-heavy clouds from higher and drier clouds.

  4. Considerations for effusive cryovolcanism on Europa: The post-Galileo perspective

    NASA Astrophysics Data System (ADS)

    Fagents, Sarah A.

    2003-12-01

    Cryovolcanic resurfacing is a popular mechanism to explain relatively young surface units on icy satellites of Jupiter, Saturn, Uranus, and Neptune. Prior to the Galileo data acquired between 1996 and 2001, Europa was thought to have undergone significant cryovolcanic resurfacing, facilitated by a global ocean beneath the icy surface. However, close examination of Galileo data at resolutions much better than those of Voyager images show that many of the features previously thought to be cryovolcanic are commonly best explained by other formative mechanisms, including tectonism and diapirism. In this study, I present an examination of the characteristics of a variety of Europan surface features for which effusive cryovolcanism is a possible origin, including apparently lobate ``flows,'' certain elliptical to circular lenticulae, and low-lying, smooth, low-albedo surfaces. A review of cryovolcanic eruption theory, together with Galileo data analysis of Europan surface geology and composition, indicates that cryovolcanism is a viable, though not unequivocal, explanation for some of these features. Some constraints on cryomagma properties and lithospheric structure are offered for these cases. The presence of small-volume, low-viscosity effusions is supported by observations and modeling. Some positive relief lenticulae could represent more viscous effusions, although diapirism may be a preferable explanation. However, strong evidence is lacking for cryovolcanic resurfacing on a large scale. On the basis of our experience with Galileo images of Europa (and Ganymede), Voyager-era inferences for widespread cryovolcanism on icy satellites may be overstated and will need to be carefully reexamined in the light of new data from upcoming spacecraft missions.

  5. A Modern Galileo Tale

    ERIC Educational Resources Information Center

    Arnone, Stefano; Moauro, Francesco; Siccardi, Matteo

    2017-01-01

    The year 2014 marked the four-hundred-and-fiftieth anniversary of Galileo's birth, making it the perfect occasion to present and illustrate a GeoGebra applet which reproduces some of Galileo's celebrated experiments on the uniformly accelerated motion, as reported on in "Discourses and Mathematical Demonstrations Relating to Two New…

  6. The GalileoMobile Project

    NASA Astrophysics Data System (ADS)

    Del Pilar Becerra, A.&ída; Bhatt, Megha; Kobel, Philippe

    2012-07-01

    GalileoMobile is a traveling science education project by an international team of PhD students and recent graduates (partnering with the Universe Awareness program) that brings astronomy to young people in remote regions of developing countries. Our primary project goals are: (1) to stimulate students' curiosity and interest in learning, (2) to exchange different visions of the cosmos and cultures, and (3) to inspire a feeling of unity "under the same sky" between people from different parts of the world. In 2009, GalileoMobile traveled to 30 schools in Chile, Bolivia and Peru, bringing hands-on activities and Galileoscopes; the team also produced a documentary movie to share the experiences and culture with the world. In 2012, GalileoMobile plans an expedition to India from the 2nd to the 13th of July in villages between Bangalore and Mysore. We will again bring hands-on astronomy activities and telescopes to the schools, and share our experiences with the world via internet resources. GalileoMobile is also collaborating with the Galileo Teacher Training Program to provide workshops for local teachers, to encourage continuation of astronomy education beyond our visit. In this way, we expect to spark sustainable interest in astronomy in remote areas that have little access to science outreach, and to share the culture of these areas with the world -- "under the same sky."

  7. Galileo multispectral imaging of Earth.

    PubMed

    Geissler, P; Thompson, W R; Greenberg, R; Moersch, J; McEwen, A; Sagan, C

    1995-08-25

    Nearly 6000 multispectral images of Earth were acquired by the Galileo spacecraft during its two flybys. The Galileo images offer a unique perspective on our home planet through the spectral capability made possible by four narrowband near-infrared filters, intended for observations of methane in Jupiter's atmosphere, which are not incorporated in any of the currently operating Earth orbital remote sensing systems. Spectral variations due to mineralogy, vegetative cover, and condensed water are effectively mapped by the visible and near-infrared multispectral imagery, showing a wide variety of biological, meteorological, and geological phenomena. Global tectonic and volcanic processes are clearly illustrated by these images, providing a useful basis for comparative planetary geology. Differences between plant species are detected through the narrowband IR filters on Galileo, allowing regional measurements of variation in the "red edge" of chlorophyll and the depth of the 1-micrometer water band, which is diagnostic of leaf moisture content. Although evidence of life is widespread in the Galileo data set, only a single image (at approximately 2 km/pixel) shows geometrization plausibly attributable to our technical civilization. Water vapor can be uniquely imaged in the Galileo 0.73-micrometer band, permitting spectral discrimination of moist and dry clouds with otherwise similar albedo. Surface snow and ice can be readily distinguished from cloud cover by narrowband imaging within the sensitivity range of Galileo's silicon CCD camera. Ice grain size variations can be mapped using the weak H2O absorption at 1 micrometer, a technique which may find important applications in the exploration of the moons of Jupiter. The Galileo images have the potential to make unique contributions to Earth science in the areas of geological, meteorological and biological remote sensing, due to the inclusion of previously untried narrowband IR filters. The vast scale and near global

  8. Galileo Over Io Artist Concept

    NASA Image and Video Library

    1996-01-02

    Artist rendering of NASA Galileo spacecraft flying past Jupiter moon Io. Galileo made multiple close approaches to the volcanically active moon during its time at Jupiter. http://photojournal.jpl.nasa.gov/catalog/PIA18176

  9. Lunar Missions and Datasets

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.

    2009-01-01

    There are two slide presentations contained in this document. The first reviews the lunar missions from Surveyor, Galileo, Clementine, the Lunar Prospector, to upcoming lunar missions, Lunar Reconnaissance Orbiter (LRO), Lunar Crater Observation & Sensing Satellite (LCROSS), Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS), Gravity Recovery and Interior Laboratory (GRAIL), Lunar Atmosphere, Dust and Environment Explorer (LADEE), ILN and a possible Robotic sample return mission. The information that the missions about the moon is reviewed. The second set of slides reviews the lunar meteorites, and the importance of lunar meteorites to adding to our understanding of the moon.

  10. The final Galileo SSI observations of Io: Orbits G28-I33

    USGS Publications Warehouse

    Turtle, E.P.; Keszthelyi, L.P.; McEwen, A.S.; Radebaugh, J.; Milazzo, M.; Simonelli, D.P.; Geissler, P.; Williams, D.A.; Perry, J.; Jaeger, W.L.; Klaasen, K.P.; Breneman, H.H.; Denk, T.; Phillips, C.B.

    2004-01-01

    We present the observations of Io acquired by the Solid State Imaging (SSI) experiment during the Galileo Millennium Mission (GMM) and the strategy we used to plan the exploration of Io. Despite Galileo's tight restrictions on data volume and downlink capability and several spacecraft and camera anomalies due to the intense radiation close to Jupiter, there were many successful SSI observations during GMM. Four giant, high-latitude plumes, including the largest plume ever observed on Io, were documented over a period of eight months; only faint evidence of such plumes had been seen since the Voyager 2 encounter, despite monitoring by Galileo during the previous five years. Moreover, the source of one of the plumes was Tvashtar Catena, demonstrating that a single site can exhibit remarkably diverse eruption styles - from a curtain of lava fountains, to extensive surface flows, and finally a ??? 400 km high plume - over a relatively short period of time (??? 13 months between orbits 125 and G29). Despite this substantial activity, no evidence of any truly new volcanic center was seen during the six years of Galileo observations. The recent observations also revealed details of mass wasting processes acting on Io. Slumping and landsliding dominate and occur in close proximity to each other, demonstrating spatial variation in material properties over distances of several kilometers. However, despite the ubiquitous evidence for mass wasting, the rate of volcanic resurfacing seems to dominate; the floors of paterae in proximity to mountains are generally free of debris. Finally, the highest resolution observations obtained during Galileo's final encounters with Io provided further evidence for a wide diversity of surface processes at work on Io. ?? 2003 Elsevier Inc. All rights reserved.

  11. Hot spots on Io: Initial results from Galileo's near infrared mapping spectrometer

    USGS Publications Warehouse

    Lopes-Gautier, R.; Davies, A.G.; Carlson, R.; Smythe, W.; Kamp, L.; Soderblom, L.; Leader, F.E.; Mehlman, R.

    1997-01-01

    The Near-Infrared Mapping Spectrometer on Galileo has monitored the volcanic activity on Io since June 28, 1996. This paper presents preliminary analysis of NIMS thermal data for the first four orbits of the Galileo mission. NIMS has detected 18 new hot spots and 12 others which were previously known to be active. The distribution of the hot spots on Io's surface may not be random, as hot spots surround the two bright, SO2-rich regions of Bosphorus Regio and Colchis Regio. Most hot spots seem to be persistently active from orbit to orbit and 10 of those detected were active in 1979 during the Voyager encounters. We report the distribution of hot spot temperatures and find that they are consistent with silicate volcanism. Copyright 1997 by the American Geophysical Union.

  12. From Galileo's telescope to the Galileo spacecraft: our changing views of the Jupiter system

    NASA Astrophysics Data System (ADS)

    Lopes, R. M.

    2008-12-01

    In four centuries, we have gone from the discovery of the four large moons of Jupiter - Io, Europa, Ganymede, and Callisto - to important discoveries about these four very different worlds. Galileo's telescopic discovery was a major turning point in the understanding of science. His observations of the moons' motion around Jupiter challenged the notion of an Earth-centric Universe. A few months later, Galileo discovered the phases of Venus, which had been predicted by the heliocentric model of the Solar System. Galileo also observed the rings of Saturn (which he mistook for planets) and sunspots, and was the first person to report mountains and craters on the Moon, whose existence he deduced from the patterns of light and shadow on the Moon's surface, concluding that the surface was topographically rough. Centuries later, the Galileo spacecraft's discoveries challenged our understanding of outer planet satellites. Results included the discovery of an icy ocean underneath Europa's surface, the possibility of life on Europa, the widespread volcanism on Io, and the detection of a magnetic field around Ganymede. All four of these satellites revealed how the major geologic processes - volcanism, tectonism, impact cratering and erosion - operate in these different bodies, from the total lack of impact craters on Io to the heavily cratered, ancient surface of Callisto. The Galileo spacecraft's journey also took it to Venus and the Moon, making important scientific observations about these bodies. The spacecraft discovered the first moon orbiting around an asteroid which, had Galileo the man observed, would have been another major blow for the geocentric model of our Solar System.

  13. Gaining Momentum: Re-Creating Galileo's Inclined Plane.

    ERIC Educational Resources Information Center

    Albrecht, Bob; Firedrake, George

    1998-01-01

    Provides an excerpt of Galileo's description of his inclined plane experiment. Describes the replication of Galileo's inclined plane experiment by students at Rice University (Texas) using an Internet site called the Galileo Project; then describes the authors' replication of the Project. (AEF)

  14. Galileo and Bellarmine

    NASA Astrophysics Data System (ADS)

    Coyne, G. V.

    2011-06-01

    This paper aims to delineate two of the many tensions which bring to light the contrasting views of Galileo Galilei and of Cardinal Robert Bellarmine with respect to the Copernican-Ptolemaic controversies of the 16th and 17th centuries: their respective positions on Aristotle's natural philosophy and on the interpretation of Sacred Scripture. Galileo's telescopic observations, reported in his Sidereus Nuncius, were bringing about the collapse of Aristotle's natural philosophy and he taught that there was no science in Scripture.

  15. Music in Galileo's Time

    NASA Astrophysics Data System (ADS)

    Petrobelli, P.

    2011-06-01

    Claudio Monteverdi appears as the key personality of the music in Galileo's time. His revolution in format and function of the musical language-from an essentially edonistic creation of purely sonorous images to a musical language consciously "expressive" of the content of the words on which it is based-is similar in character to the influential innovations in scientific thinking operated by Galileo.

  16. Interagency Nuclear Safety Review Panel: Biomedical and Environmental Effects Subpanel report for Galileo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anspaugh, L.R.; Blanton, J.O.; Bollinger, L.J.

    1989-10-01

    This report of the Biomedical and Environmental Effects Subpanel (BEES) of the Interagency Nuclear Safety Review Panel (INSRP), for the Galileo space mission addresses the possible radiological consequences of postulated accidents that release radioactivity into the environment. This report presents estimates of the consequences and uncertainties given that the source term is released into the environment. 10 refs., 6 tabs.

  17. Galileo and the Interpretation of the Bible.

    ERIC Educational Resources Information Center

    Carroll, William E.

    1999-01-01

    Argues that, contrary to the common view, Galileo and the theologians of the Inquisition share the same fundamental principles of biblical interpretation. Contends that Galileo and these theologians thought that the Bible contained truths about nature, but Galileo denied what the theologians accepted as scientifically true. Contains 93 references.…

  18. Cassini RTG acceptance test results and RTG performance on Galileo and Ulysses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, C.E.; Klee, P.M.

    Flight acceptance testing has been completed for the RTGs to be used on the Cassini spacecraft which is scheduled for an October 6, 1997 launch to Saturn. The acceptance test program includes vibration tests, magnetic field measurements, mass properties (weight and c.g.) and thermal vacuum test. This paper presents the thermal vacuum test results. Three RTGs are to be used, F-2, F-6, and F-7. F-5 is the backup RTG, as it was for the Galileo and Ulysses missions launched in 1989 and 1990, respectively. RTG performance measured during the thermal vacuum tests carried out at the Mound Laboratory facility metmore » all specification requirements. Beginning of mission (BOM) and end of mission (EOM) power predictions have been made based on these tests results. BOM power is predicted to be 888 watts compared to the minimum requirement of 826 watts. Degradation models predict the EOM power after 16 years is to be 640 watts compared to a minimum requirement of 596 watts. Results of small scale module tests are also shown. The modules contain couples from the qualification and flight production runs. The tests have exceeded 28,000 hours (3.2 years) and are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. All test results indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of over 5% are predicted. Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Telemetry data are also shown for the RTG on the Ulysses spacecraft which completed its planned mission in 1995 and is now in the extended mission.« less

  19. Cassini RTG acceptance test results and RTG performance on Galileo and Ulysses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, C.E.; Klee, P.M.

    Flight acceptance testing has been completed for the RTGs to be used on the Cassini spacecraft which is scheduled for an October 6, 1997 launch to Saturn. The acceptance test program includes vibration tests, magnetic field measurements, properties (weight and c.g.) and thermal vacuum test. This paper presents The thermal vacuum test results. Three RTGs are to be used, F-2, F-6, and F-7. F-5 is tile back-up RTG, as it was for the Galileo and Ulysses missions launched in 1989 and 1990, respectively. RTG performance measured during the thermal vacuum tests carried out at die Mound Laboratory facility met allmore » specification requirements. Beginning of mission (BOM) and end of mission (EOM) power predictions have been made based on than tests results. BOM power is predicted to be 888 watts compared to the minimum requirement of 826 watts. Degradation models predict the EOM power after 16 years is to be 640 watts compared to a minimum requirement of 596 watts. Results of small scale module tests are also showing. The modules contain couples from the qualification and flight production runs. The tests have exceeded 28,000 hours (3.2 years) and are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. All test results indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of over five percent are predicted. Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Telemetry data are also shown for the RTG on the Ulysses spacecraft which completed its planned mission in 1995 and is now in the extended mission.« less

  20. Cassini RTG Acceptance Test Results and RTG Performance on Galileo and Ulysses

    DOE R&D Accomplishments Database

    Kelly, C. E.; Klee, P. M.

    1997-06-01

    Flight acceptance testing has been completed for the RTGs to be used on the Cassini spacecraft which is scheduled for an October 6, 1997 launch to Saturn. The acceptance test program includes vibration tests, magnetic field measurements, properties (weight and c.g.) and thermal vacuum test. This paper presents The thermal vacuum test results. Three RTGs are to be used, F 2, F 6, and F 7. F 5 is tile back up RTG, as it was for the Galileo and Ulysses missions launched in 1989 and 1990, respectively. RTG performance measured during the thermal vacuum tests carried out at die Mound Laboratory facility met all specification requirements. Beginning of mission (BOM) and end of mission (EOM) power predictions have been made based on than tests results. BOM power is predicted to be 888 watts compared to the minimum requirement of 826 watts. Degradation models predict the EOM power after 16 years is to be 640 watts compared to a minimum requirement of 596 watts. Results of small scale module tests are also showing. The modules contain couples from the qualification and flight production runs. The tests have exceeded 28,000 hours (3.2 years) and are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. All test results indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of over five percent are predicted. Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Telemetry data are also shown for the RTG on the Ulysses spacecraft which completed its planned mission in 1995 and is now in the extended mission.

  1. Star Messenger: Galileo at the Millennium

    NASA Astrophysics Data System (ADS)

    White, R. E.

    1999-05-01

    Smith College has recently established the Louise B. and Edmund J. Kahn Liberal Arts Institute to foster interdisciplinary scholarship among the faculty. In the 1999-2000 academic year, the Kahn Institute is sponsoring a project entitled "Star Messenger: Galileo at the Millennium." The project will explore the impact of the astronomical discoveries of Galileo and his contemporaries on the Renaissance world-view and also use Galileo's experience as a lens for examining scientific and cultural developments at the symbolic juncture represented by the year 2000. Seven faculty fellows and 10-12 student fellows will participate in a year-long colloquium pursuing these themes, aided by the participation of some five Visiting Fellows. The inaugural public event will be a symposium on the historical Galileo, with presentation by three noted scholars, each of whom will return to campus for a second meeting with the Kahn colloquium. Additional events will include an exhibit of prints, artifacts, and rare books related to Galileo and his time, an early music concert featuring music composed by Galileo's father, and a series of other events sponsored by diverse departments and programs, all related to the broad themes of the Galileo project. The culminating events will be the premiere of a new music theater work, which will encapsulate the insights of the colloquium about human reactions to novel insights about the world, and a symposium presenting the research results of faculty and student fellows. The symposium will feature a capstone lecture by an visionary scholar projecting the implication of historical and contemporary trends into the future.

  2. Galileo's Lute and the Law of Falling Bodies

    NASA Astrophysics Data System (ADS)

    Thompson, Mark

    2008-05-01

    Galileo's Lute and the Law of Falling Bodies is an excerpt from Galileo 1610. Galileo 1610 is a dramatic, musical and intellectual odyssey back to the life and times of Galileo Galilei, the famous 17th century Italian scientist and philosopher. It commemorates the 400th anniversary of Galileo's discoveries with his telescope in 1610. Dressed in authentic Renaissance attire as Galileo, the author-- a cantorial soloist and amateur astronomer-- tells the fascinating story of "The Father of Modern Science,” drawing from the actual correspondence and writings of Galileo, as well as those of his many biographers. Through his dialogue with the audience on a wide range of discoveries and opinions, "Galileo” shares his wisdom and his life experiences with pathos, wit and humor, lacing his narration with entertaining lute songs from the late Renaissance period, some of which were actually composed by Galileo's father, Vincenzo. Bridging the past to the present, the author breathes life into "Galileo” as he once again frolics and struggles among us. In bringing forth some of life's great issues, we learn something about our own inquisitive nature, as well as that of science and music. The author has appeared as Galileo for over a decade on radio, at community theatres and libraries, public schools, colleges and universities throughout the country. He has performed for civic organizations, astronomy association conventions, marketing and outreach programs as well as private events and parties. Galileo 1610 is suitable for a variety of educational and entertainment programs, for both children and adults. All presentations are tailored to fit the interest, experience and size of the audience.

  3. Understanding of Jupiter's Atmosphere after the Galileo Probe Entry

    NASA Technical Reports Server (NTRS)

    Fonda, Mark (Technical Monitor); Young, Richard E.

    2003-01-01

    Instruments on the Galileo probe measured composition, cloud properties, thermal structure, winds, radiative energy balance, and electrical properties of the Jovian atmosphere. As expected the probe results confirm some expectations about Jupiter's atmosphere, refute others, and raise new questions which still remain unanswered. This talk will concentrate on those aspects of the probe observations which either raised new questions or remain unresolved. The Galileo probe observations of composition and clouds provided some of the biggest surprises of the mission. Helium abundance measured by the probe differed significantly from the remote sensing derivations from Voyager. Discrepancy between the Voyager helium abundance determinations for Jupiter and the Galileo probe value have now led to a considerably increased helium determination for Saturn. Global abundance of N in the form of ammonia was observed to be super-solar by approximately the same factor as carbon, in contrast to expectations that C/N would be significantly larger than solar. This has implications for the formation and evolution of Jupiter. The cloud structure was not what was generally anticipated, even though most previous remote sensing results below the uppermost cloud referred to 5 micron hot spots, local regions with reduced cloud opacity. The Galileo probe descended in one of these hot spots. Only a tenuous, presumed ammomium hydrosulfide, cloud was detected, and no significant water cloud or super-solar water abundance was measured. The mixing ratios as a function of depth for the condensibles ammonia, hydrogen sulfide, and water, exhibited no apparent correlation with either condensation levels or with each other, an observation that is still a puzzle, although there are now dynamical models of hot spots which show promise in being able to explain such behavior. Probe tracked zonal winds show that wind magnitude increases with depth to pressures of about 4 bars, with the winds extending to

  4. Understanding of Jupiter's Atmosphere After the Galileo Probe Entry

    NASA Technical Reports Server (NTRS)

    Young, Richard E.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Instruments on the Galileo probe measured composition, cloud properties, thermal structure. winds, radiative energy balance, and electrical properties of the Jovian atmosphere. As expected the probe results confirm some expectations about Jupiter's atmosphere, refute others, and raise new questions which still remain unanswered. This talk will concentrate on those aspects of the probe observations which either raised new questions or remain unresolved. The Galileo probe observations of composition and clouds provided some of the biggest surprises of the mission. Helium abundance measured by the probe differed significantly from the remote sensing derivations from Voyager. discrepancy between the Voyager helium abundance determinations for Jupiter and the Galileo probe value have now led to a considerably increased helium determination for Saturn. Global abundance of N in the form of ammonia was observed to be supersolar by approximately the same factor as carbon, in contrast to expectations that C/N would be significantly larger than solar. This has implications for the formation and evolution of Jupiter. The cloud structure was not what was generally anticipated, even though most previous remote sensing results below the uppermost cloud referred to 5 micron hot spots, local regions with reduced cloud opacity. The Galileo probe descended in one of these hot spots. Only a tenuous, presumed ammonium hydrosulfide, cloud was detected, and no significant water cloud or super-solar water abundance was measured. The mixing ratios as a function of depth for the condensibles ammonia, hydrogen sulfide, and water, exhibited no apparent correlation with either condensation levels or with each other, an observation that is still a puzzle, although there are now dynamical models of hot spots which show promise in being able to explain such behavior. Probe tracked zonal winds show that wind magnitude increases with depth to pressures of about 4 bars, with the winds extending to

  5. Using Galileo's Own Words in the Physics Classroom

    NASA Astrophysics Data System (ADS)

    Garber, Gary

    2009-10-01

    After years of discussing Galileo using secondary sources, I decided to have my students use Galileo's writings as a primary source of information in their lab reports. The advancements of Google Books and the internet has made it possible for all students to read Aristotle, Galileo, and Newton when exploring the nature of free fall kinematics. I will present links and suggested passages from several sources including Galileo's Dialogues Concerning Two New Sciences.

  6. Reprocessing the Elliptical Orbiting Galileo Satellites E14 and E18: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Männel, Benjamin

    2017-04-01

    In August 2014, the two Galileo satellites FOC-1 (E18) and FOC-2 (E14) were - due to a technical problem - launched into a wrong, elliptic orbit. In a recovery mission a series of orbit maneuvers were performed to raise the perigee to an altitude where both spacecrafts could be introduced to the Galileo navigation service. After this period of orbit maintenance both satellites started to transmit navigation signals at November 29, 2014 (E18) and March 17, 2015 (E14). However, as it was not possible to recover the nominal orbits due to propellant limitations, both spacecrafts orbit the Earth with a numerical eccentricity of 0.16 and an inclination of 50.2°. Very soon, it was assumed that both satellites could be highly useful for studies on general relativity, especially as the Galileo spacecrafts are equipped with very stable passive hydrogen masers. A prerequisite for dedicated studies in this field are highly accurate satellite orbits and clock corrections. Preliminary results for orbit and satellite clock determination will be presented based on an initial reprocessing over the past 2.5 years. The presentation focuses firstly on orbit modeling aspects with respect to the elliptically orbits. Secondly the derived clock corrections for the on-board passive clocks are assessed with respect to the reference clock at ground stations. The results will be discussed also with respect to the proposed Galileo-based studies on the gravitational redshift.

  7. Subjective evaluations of integer cosine transform compressed Galileo solid state imagery

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.; Gold, Yaron; Grant, Terry; Chuang, Sherry

    1994-01-01

    This paper describes a study conducted for the Jet Propulsion Laboratory, Pasadena, California, using 15 evaluators from 12 institutions involved in the Galileo Solid State Imaging (SSI) experiment. The objective of the study was to determine the impact of integer cosine transform (ICT) compression using specially formulated quantization (q) tables and compression ratios on acceptability of the 800 x 800 x 8 monochromatic astronomical images as evaluated visually by Galileo SSI mission scientists. Fourteen different images in seven image groups were evaluated. Each evaluator viewed two versions of the same image side by side on a high-resolution monitor; each was compressed using a different q level. First the evaluators selected the image with the highest overall quality to support them in their visual evaluations of image content. Next they rated each image using a scale from one to five indicating its judged degree of usefulness. Up to four preselected types of images with and without noise were presented to each evaluator.

  8. Io plasma torus ion composition: Voyager, Galileo, and Cassini

    NASA Astrophysics Data System (ADS)

    Nerney, Edward G.; Bagenal, Fran; Steffl, Andrew J.

    2017-01-01

    The Io torus produces ultraviolet emissions diagnostic of plasma conditions. We revisit data sets obtained by the Voyager 1, Galileo, and Cassini missions at Jupiter. With the latest version (8.0) of the CHIANTI atomic database we analyze UV spectra to determine ion composition. We compare ion composition obtained from observations from these three missions with a theoretical model of the physical chemistry of the torus by Delamere et al. (2005). We find ion abundances from the Voyager data similar to the Cassini epoch, consistent with the dissociation and ionization of SO2, but with a slightly higher average ionization state for sulfur, consistent with the higher electron temperature measured by Voyager. This reanalysis of the Voyager data produces a much lower oxygen:sulfur ratio than earlier analysis by Shemansky (1988), which was also reported by Bagenal (1994). We derive fractional ion compositions in the center of the torus to be S+/Ne 5%, S++/Ne 20%, S+++/Ne 5%, O+/Ne 20%, O++/Ne 3%, and Σ(On+)/Σ(Sn+) 0.8, leaving about 10-15% of the charge as protons. The radial profile of ion composition indicates a slightly higher average ionization state, a modest loss of sulfur relative to oxygen, and Σ(On+)/Σ(Sn+) 1.2 at about 8 RJ, beyond which the composition is basically frozen in. The Galileo observations of UV emissions from the torus suggest that the composition in June 1996 may have comprised a lower abundance of oxygen than usual, consistent with observations made at the same time by the EUVE satellite.

  9. Galileo 1989 VEEGA trajectory design. [Venus-Earth-Earth-Gravity-Assist

    NASA Technical Reports Server (NTRS)

    D'Amario, Louis A.; Byrnes, Dennis V.; Johannesen, Jennie R.; Nolan, Brian G.

    1989-01-01

    The new baseline for the Galileo Mission is a 1989 Venus-earth-earth gravity-assist (VEEGA) trajectory, which utilizes three gravity-assist planetary flybys in order to reduce launch energy requirements significantly compared to other earth-Jupiter transfer modes. The launch period occurs during October-November 1989. The total flight time is about 6 years, with November 1995 as the most likely choice for arrival at Jupiter. Optimal 1989 VEEGA trajectories have been generated for a wide range of earth launch dates and Jupiter arrival dates. Launch/arrival space contour plots are presented for various trajectory parameters, including propellant margin, which is used to measure mission performance. The accessible region of the launch/arrival space is defined by propellant margin and launch energy constraints; the available launch period is approximately 1.5 months long.

  10. The Galileo attitude and articulation control system - A radiation-hard, high precision, state-of-the-art control system

    NASA Technical Reports Server (NTRS)

    Stephenson, R. Rhoads

    1985-01-01

    The Galileo mission and spacecraft, consisting of a Jupiter-orbiter and an atmospheric entry probe, are discussed. Components will include: magnetometers and plasma-wave antennas on a boom, high-gain antenna, probe vehicle, two different bus electronics packages, and a radioisotope thermoelectric generator. Instruments, investigators and objectives are tabulated for both probe science and orbiter science investigations. Requirements in the design of the attitude and articulation control system are very stringent because of the complex dynamics, flexible body effects, the need for autonomy, and the severe radiation environment in the Jupiter nighborhood. Galileo was intended to be ready for launch via Space Shuttle in May of 1986.

  11. The Block V Receiver fast acquisition algorithm for the Galileo S-band mission

    NASA Technical Reports Server (NTRS)

    Aung, M.; Hurd, W. J.; Buu, C. M.; Berner, J. B.; Stephens, S. A.; Gevargiz, J. M.

    1994-01-01

    A fast acquisition algorithm for the Galileo suppressed carrier, subcarrier, and data symbol signals under low data rate, signal-to-noise ratio (SNR) and high carrier phase-noise conditions has been developed. The algorithm employs a two-arm fast Fourier transform (FFT) method utilizing both the in-phase and quadrature-phase channels of the carrier. The use of both channels results in an improved SNR in the FFT acquisition, enabling the use of a shorter FFT period over which the carrier instability is expected to be less significant. The use of a two-arm FFT also enables subcarrier and symbol acquisition before carrier acquisition. With the subcarrier and symbol loops locked first, the carrier can be acquired from an even shorter FFT period. Two-arm tracking loops are employed to lock the subcarrier and symbol loops parameter modification to achieve the final (high) loop SNR in the shortest time possible. The fast acquisition algorithm is implemented in the Block V Receiver (BVR). This article describes the complete algorithm design, the extensive computer simulation work done for verification of the design and the analysis, implementation issues in the BVR, and the acquisition times of the algorithm. In the expected case of the Galileo spacecraft at Jupiter orbit insertion PD/No equals 14.6 dB-Hz, R(sym) equals 16 symbols per sec, and the predicted acquisition time of the algorithm (to attain a 0.2-dB degradation from each loop to the output symbol SNR) is 38 sec.

  12. Galileo's eye: a new vision of the senses in the work of Galileo Galilei.

    PubMed

    Piccolino, Marco; Wade, Nicholas J

    2008-01-01

    Reflections on the senses, and particularly on vision, permeate the writings of Galileo Galilei, one of the main protagonists of the scientific revolution. This aspect of his work has received scant attention by historians, in spite of its importance for his achievements in astronomy, and also for the significance in the innovative scientific methodology he fostered. Galileo's vision pursued a different path from the main stream of the then contemporary studies in the field; these were concerned with the dioptrics and anatomy of the eye, as elaborated mainly by Johannes Kepler and Christoph Scheiner. Galileo was more concerned with the phenomenology rather than with the mechanisms of the visual process. His general interest in the senses was psychological and philosophical; it reflected the fallacies and limits of the senses and the ways in which scientific knowledge of the world could be gathered from potentially deceptive appearances. Galileo's innovative conception of the relation between the senses and external reality contrasted with the classical tradition dominated by Aristotle; it paved the way for the modern understanding of sensory processing, culminating two centuries later in Johannes Müller's elaboration of the doctrine of specific nerve energies and in Helmholtz's general theory of perception.

  13. SIG Galileo final converter technical summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinderman, J.D.

    1979-05-01

    The report is primarily concerned with the work performed for DOE on converter development and fabrication for the NASA Galileo Jupiter mission as a DOE prime contractor with interface primarily with Teledyne Energy Systems. The activities reported on were directed toward design, analysis and testing of modules and converters SN-1 thru SN-7 and attendant Quality Control and Reliability effort. Although assembly and testing of SN-1 was not accomplished due to the stop work order, the design was virtually completed and a significant amount of subcontracting and manufacturing of both module and converter components was underway. These subcontracting and manufacturing activitiesmore » were selectively closed down depending upon degree of completion and material or hardware potential usage in the Technology Program.« less

  14. Draft Environmental Impact Statement for the Ulysses Mission (Tier 2)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This Draft Environmental Impact Statement (DEIS) addresses the environmental impacts which may be caused by the preparation and operation of the Ulysses spacecraft, including its planned launch on the Space Transportation System (STS) Shuttle and the alternative of canceling further work on the mission. The launch configuration will use the STS/Inertial Upper Stage (IUS)/Payload Assist Module-Special(PAM-S) combination. The Tier 1 EIS included a delay alternative which considered the Titan 4 launch vehicle as an alternative booster stage for launch in 1991 or later. However, the U.S. Air Force, which procures the Titan 4 for NASA, could not provide a Titan 4 vehicle for the 1991 launch opportunity because of high priority Department of Defense requirements. The only expected environmental effects of the proposed action are associated with normal Shuttle launch operations. These impacts are limited largely to the near-field at the launch pad, except for temporary stratospheric ozone effects during launch and occasional sonic boom effects near the landing site. These effects have been judged insufficient to preclude Shuttle launches. In the event of (1) an accident during launch, or (2) reentry of the spacecraft from earth orbit, there are potential adverse health and environmental effects associated with the possible release of plutonium dioxide from the spacecraft's radioisotope thermoelectric generators (RTG). The potential effects considered in this EIS include risks of air and water quality impacts, local land area contamination, adverse health and safety impacts, the disturbance of biotic resources, impacts on wetland areas or areas containing historical sites, and socioeconomic impacts. Intensive analysis of the possible accidents associated with the proposed action are underway and preliminary results indicate small health or environmental risks. The results of a Final Safety Analysis Report will be available for inclusion into the final EIS.

  15. Galileo and the Interpretation of the Bible

    NASA Astrophysics Data System (ADS)

    Carroll, William E.

    Galileo's understanding of the relationship between science and the Bible has frequently been celebrated as anticipating a modern distinction between the essentially religious nature of scripture and the claims of the natural sciences. Galileo's reference to the remarks of Cardinal Baronius, that the Bible teaches one how to go to heaven and not how the heavens go, has been seem as emblematic of his commitment to the distinction between the Book of Nature and the Book of Scripture. This essay argues that, contrary to the common view, Galileo shares with the theologians of the Inquisition the same fundamental principles of biblical interpretation: principles which include traditional scriptural hermeneutics enunciated by Augustine and Aquinas, as well as those characteristic of Counter-Reformation Catholicism. Although Galileo argues that one should not begin with biblical passages in order to discover truths about nature, he does think that the Bible contains scientific truths and that it is the function of wise interpreters to discover these truths. The dispute with the theologians of the Inquisition occurred because they thought that it was obviously true scientifically that the earth did not move and, on the basis of this view, they read the Bible as revealing the same thing. They reached this conclusion because, like Galileo, they thought that the Bible contained truths about nature. Of course, what these theologians accepted as scientifically true, Galileo denied.

  16. The GIRE2 Model and Its Application to the Europa Mission

    NASA Technical Reports Server (NTRS)

    De Soria-Santacruz Pich, Maria; Garrett, Henry B.; Evans, Robin W.; Jun, Insoo; Kim, Wousik; Paranicas, Chris

    2016-01-01

    We present an empirical model of Jupiter's electron radiation environment and its application to the design of the future NASA mission to Europa. The model is based on data from the Galileo spacecraft. Measurements of the high-energy, omni-directional electrons from the Energetic Particle Detector (EPD) and magnetic field from the Magnetometer (MAG) onboard Galileo are used for this purpose. Ten-minute averages of the EPD data are used to provide an omni-directional electron flux spectrum at 0.238, 0.416, 0.706, 1.5, 2.0, and 11.0 MeV. Additionally, data from the Geiger Tube Telescope onboard Pioneer 10 and 11 are used to calculate the flux of 31 MeV electrons. The Galileo Interim Radiation Electron model v.2 (GIRE2) combines these datasets with the original Divine model and synchrotron observations to estimate the trapped electron radiation environment. Unlike the original Divine model, which was based on flybys of the Voyager and Pioneer spacecraft, the new GIRE2 model covers about 7 years of data and more than 30 orbits around Jupiter from the Galileo spacecraft. The model represents a step forward in the study of the Jovian radiation environment and is a valuable tool to assist in the design of future missions to Jupiter. This paper gives an overview of GIRE2 and focuses on its application to the design of the future NASA mission to Europa. The spacecraft will orbit Jupiter and perform multiple flybys of the moon Europa, which is embedded in the middle of a very strong radiation environment. The radiation environment surrounding the moon as well as along the trajectory are described in the paper together with the implications of this environment on the design of a mission.

  17. Popular perceptions of Galileo

    NASA Astrophysics Data System (ADS)

    Sobel, Dava

    2010-01-01

    Among the most persistent popular misperceptions of Galileo is the image of an irreligious scientist who opposed the Catholic Church and was therefore convicted of heresy-was even excommunicated, according to some accounts, and denied Christian burial. In fact, Galileo considered himself a good Catholic. He accepted the Bible as the true word of God on matters pertaining to salvation, but insisted Scripture did not teach astronomy. Emboldened by his discovery of the Medicean Moons, he took a stand on Biblical exegesis that has since become the official Church position.

  18. BOOK REVIEW: Galileo's Muse: Renaissance Mathematics and the Arts

    NASA Astrophysics Data System (ADS)

    Peterson, Mark; Sterken, Christiaan

    2013-12-01

    Galileo's Muse is a book that focuses on the life and thought of Galileo Galilei. The Prologue consists of a first chapter on Galileo the humanist and deals with Galileo's influence on his student Vincenzo Viviani (who wrote a biography of Galileo). This introductory chapter is followed by a very nice chapter that describes the classical legacy: Pythagoreanism and Platonism, Euclid and Archimedes, and Plutarch and Ptolemy. The author explicates the distinction between Greek and Roman contributions to the classical legacy, an explanation that is crucial for understanding Galileo and Renaissance mathematics. The following eleven chapters of this book arranged in a kind of quadrivium, viz., Poetry, Painting, Music, Architecture present arguments to support the author's thesis that the driver for Galileo's genius was not Renaissance science as is generally accepted but Renaissance arts brought forth by poets, painters, musicians, and architects. These four sets of chapters describe the underlying mathematics in poetry, visual arts, music and architecture. Likewise, Peterson stresses the impact of the philosophical overtones present in geometry, but absent in algebra and its equations. Basically, the author writes about Galileo, while trying to ignore the Copernican controversy, which he sees as distracting attention from Galileo's scientific legacy. As such, his story deviates from the standard myth on Galileo. But the book also looks at other eminent characters, such as Galileo's father Vincenzo (who cultivated music and music theory), the painter Piero della Francesca (who featured elaborate perspectives in his work), Dante Alighieri (author of the Divina Commedia), Filippo Brunelleschi (who engineered the dome of the Basilica di Santa Maria del Fiore in Florence, Johannes Kepler (a strong supporter of Galileo's Copernicanism), etc. This book is very well documented: it offers, for each chapter, a wide selection of excellent biographical notes, and includes a fine

  19. Tier-scalable reconnaissance: the challenge of sensor optimization, sensor deployment, sensor fusion, and sensor interoperability

    NASA Astrophysics Data System (ADS)

    Fink, Wolfgang; George, Thomas; Tarbell, Mark A.

    2007-04-01

    Robotic reconnaissance operations are called for in extreme environments, not only those such as space, including planetary atmospheres, surfaces, and subsurfaces, but also in potentially hazardous or inaccessible operational areas on Earth, such as mine fields, battlefield environments, enemy occupied territories, terrorist infiltrated environments, or areas that have been exposed to biochemical agents or radiation. Real time reconnaissance enables the identification and characterization of transient events. A fundamentally new mission concept for tier-scalable reconnaissance of operational areas, originated by Fink et al., is aimed at replacing the engineering and safety constrained mission designs of the past. The tier-scalable paradigm integrates multi-tier (orbit atmosphere surface/subsurface) and multi-agent (satellite UAV/blimp surface/subsurface sensing platforms) hierarchical mission architectures, introducing not only mission redundancy and safety, but also enabling and optimizing intelligent, less constrained, and distributed reconnaissance in real time. Given the mass, size, and power constraints faced by such a multi-platform approach, this is an ideal application scenario for a diverse set of MEMS sensors. To support such mission architectures, a high degree of operational autonomy is required. Essential elements of such operational autonomy are: (1) automatic mapping of an operational area from different vantage points (including vehicle health monitoring); (2) automatic feature extraction and target/region-of-interest identification within the mapped operational area; and (3) automatic target prioritization for close-up examination. These requirements imply the optimal deployment of MEMS sensors and sensor platforms, sensor fusion, and sensor interoperability.

  20. The Galileo Legend as Scientific Folklore.

    ERIC Educational Resources Information Center

    Lessl, Thomas M.

    1999-01-01

    Examines the various ways in which the legend of Galileo's persecution by the Roman Catholic Church diverges from scholarly readings of the Galileo affair. Finds five distinct themes of scientific ideology in the 40 accounts examined. Assesses the part that folklore plays in building and sustaining a professional ideology for the modern scientific…

  1. GPS and Galileo: Friendly Foes? (Walker Paper, Number 12)

    DTIC Science & Technology

    2008-05-01

    their data, others employ different techniques. US defense contractor Lockheed Martin developed an anti-jam GPS receiver in 2000 for its joint air...26. Jolis , “Problems Run Rampant for Galileo Project.” 27. Ibid. 28. “Galileo, Involving Europe,” 23. 29. Ibid., 16. 30. Ibid., 17. Assuming that by...Told to Put House in Order.” 38. EC, “Galileo, Involving Europe,” 5. 39. “Galileo Adrift in European Outer Space.” 40. Jolis , “Problems Run Rampant

  2. IUS application to NASA planetary missions

    NASA Technical Reports Server (NTRS)

    Hanford, Denton; Saucier, Sidney

    1987-01-01

    The considerations involved in the selection of a new upper stage to launch three planetary missions following the decision to cancel the use of Centaur are discussed, and the methods by which the selected IUS will fly these missions are described. It is shown that the IUS is capable of accomplishing all three misssions (Magellan, Galileo, and Ulysses) with some compromises in mission transit time. Relatively minor modifications to the IUS, airborne support equipment, and software are required. The first of the three missions is to be accomplished two and a half years from go-ahead by the use of existing IUS flight hardware.

  3. The Feasibility of a Galileo-Style Tour of the Uranian Satellites

    NASA Technical Reports Server (NTRS)

    Heaton, Andrew F.; Longuski, James M.; Vanhooser, Teresa B. (Technical Monitor)

    2001-01-01

    Gravity-assist trajectories have been a key to outer Solar System exploration. In particular, the gravity-assist tour of the Jovian satellites has contributed significantly to the success of the Galileo mission. A comparison of the Jovian system to the Uranian system reveals that the two possess similar satellite/planet mass ratios. Tisserand graphs of the Uranian system also indicate the potential for tours at Uranus. In this paper. We devise tour strategies and design a prototypical tour of the Uranian satellites, proving that tours at Uranus are feasible.

  4. Computer predictions of ground storage effects on performance of Galileo and ISPM generators

    NASA Technical Reports Server (NTRS)

    Chmielewski, A.

    1983-01-01

    Radioisotope Thermoelectric Generators (RTG) that will supply electrical power to the Galileo and International Solar Polar Mission (ISPM) spacecraft are exposed to several degradation mechanisms during the prolonged ground storage before launch. To assess the effect of storage on the RTG flight performance, a computer code has been developed which simulates all known degradation mechanisms that occur in an RTG during storage and flight. The modeling of these mechanisms and their impact on the RTG performance are discussed.

  5. Tier Two Interventions Implemented within the Context of a Tiered Prevention Framework

    ERIC Educational Resources Information Center

    Mitchell, Barbara S.; Stormont, Melissa; Gage, Nicholas A.

    2011-01-01

    Despite a growing body of evidence demonstrating the value of Tier 1 and Tier 3 interventions, significantly less is known about Tier 2 level treatments when they are added within the context of a tiered continuum of support. The purpose of this article is to systematically review the existing research base for Tier 2 small group intervention…

  6. Mission science value-cost savings from the Advanced Imaging Communication System (AICS)

    NASA Technical Reports Server (NTRS)

    Rice, R. F.

    1984-01-01

    An Advanced Imaging Communication System (AICS) was proposed in the mid-1970s as an alternative to the Voyager data/communication system architecture. The AICS achieved virtually error free communication with little loss in the downlink data rate by concatenating a powerful Reed-Solomon block code with the Voyager convolutionally coded, Viterbi decoded downlink channel. The clean channel allowed AICS sophisticated adaptive data compression techniques. Both Voyager and the Galileo mission have implemented AICS components, and the concatenated channel itself is heading for international standardization. An analysis that assigns a dollar value/cost savings to AICS mission performance gains is presented. A conservative value or savings of $3 million for Voyager, $4.5 million for Galileo, and as much as $7 to 9.5 million per mission for future projects such as the proposed Mariner Mar 2 series is shown.

  7. Assessment of the concordance among 2-tier, 3-tier, and 5-tier fetal heart rate classification systems.

    PubMed

    Gyamfi Bannerman, Cynthia; Grobman, William A; Antoniewicz, Leah; Hutchinson, Maria; Blackwell, Sean

    2011-09-01

    In 2008, a National Institute of Child Health and Human Development/Society for Maternal-Fetal Medicine-sponsored workshop on electronic fetal monitoring recommended a new fetal heart tracing interpretation system. Comparison of this 3-tier system with other systems is lacking. Our purpose was to determine the relationships between fetal heart rate categories for the 3 existing systems. Three Maternal-Fetal Medicine specialists reviewed 120 fetal heart rates. All tracings were from term, singleton pregnancies with known umbilical artery pH. The fetal heart rates were classified by a 2-tier, 3-tier, and 5-tier system. Each Maternal-Fetal Medicine examiner reviewed 120 fetal heart rate segments. When compared with the 2-tier system, 0%, 54%, and 100% tracings in categories 1, 2, and 3 were "nonreassuring." There was strong concordance between category 1 and "green" as well as category 3 and "red" tracings. The 3-tier and 5-tier systems were similar in fetal heart rate interpretations for tracings that were either very normal or very abnormal. Whether one system is superior to the others in predicting fetal acidemia remains unknown. Copyright © 2011 Mosby, Inc. All rights reserved.

  8. Galileo NIMS Observations of Europa

    NASA Astrophysics Data System (ADS)

    Shirley, J. H.; Ocampo, A. C.; Carlson, R. W.

    2000-10-01

    The Galileo spacecraft began its tour of the Jovian system in December, 1995. The Galileo Millenium Mission (GMM) is scheduled to end in January, 2003. The opportunities to observe Europa in the remaining orbits are severely limited. Thus the catalog of NIMS observations of Europa is virtually complete. We summarize and describe this extraordinary dataset, which consists of 77 observations. The observations may be grouped in three categories, based on the scale of the data (km/pixel). The highest-resolution observations, with projected scales of 1-9 km/pixel, comprise one important subset of the catalog. These 29 observations sample both leading and trailing hemispheres at low and high latitudes. They have been employed in studies exploring the chemical composition of the non-ice surface materials on Europa (McCord et al., 1999, JGR 104, 11,827; Carlson et al., 1999, Science 286, 97). A second category consists of regional observations at moderate resolution. These 15 observations image Europa's surface at scales of 15-50 km/pixel, appropriate for construction of regional and global mosaics. A gap in coverage for longitudes 270-359 W may be partially filled during the 34th orbit of GMM. The final category consists of 33 global observations with scales ranging upward from 150 km/pixel. The noise levels are typically much reduced in comparison to observations taken deep within Jupiter's magnetosphere. Distant observations obtained during the 11th orbit revealed the presence of hydrogen peroxide on Europa's surface (Carlson et al., 1999b, Science 283, 2062). NIMS observations are archived in ISIS-format "cubes," which are available to researchers through the Planetary Data System (http://www-pdsimage.jpl.nasa.gov/PDS/Public/Atlas/Atlas.html). Detailed guides to every NIMS observation may be downloaded from the NIMS web site (http://jumpy.igpp.ucla.edu/ nims/).

  9. Galileo as a Patient

    NASA Astrophysics Data System (ADS)

    Thiene, G.; Basso, C.

    2011-06-01

    The clinical history of Galileo, as it turns out from hundred letters he wrote and received, is so informative as to make it possible to delineate the natural history of his body. It is well known that he suffered from recurrent episodes of fever (terzana) since 1606, when he was in Florence as guest of Cristina Lorena for education of the future granduke Cosimo II. By reading signs and symptoms he reported several times, it is clear that he had various diseases (rheumatism, haemorroids, kidney stones, arrhythmias). When in December 1632, at the age of 68, Galileo delayed his journey to Rome claiming sickness, Pope Urban VIII committed 3 physicians to examine him. They reported that Galileo was affected by "pulsus intermittens" (most probably atrial fibrillation), large hernia at risk of rupture, dizziness, diffuse pain, hypochondriacal melancholy as a consequence of the "declining age". It was in February 1637 that he started to have eye disease with lacrimation and progressive loss of sight, which in 10 months led to loose at first the right eye and then also the left one. According to the consultation, asked at distance to Giovanni Trullio on February 1538 in Rome, the diagnosis of blindness due to bilateral uveitis came out. Keeping with the current medicine, the illnes might have been explained in the setting of an immune rheumatic disease (Reiter's syndrome). The cause of Galileo's death, which occurred on 8 January 1642 at the age of 78, is not known since it was not submitted to autopsy. We can speculate cardiac death due to pneumonia complicating congestive heart failure.

  10. A dialogue in paradise: John Milton's visit with Galileo

    NASA Astrophysics Data System (ADS)

    Henderson, Hugh

    2001-03-01

    According to his 1644 speech, ``Areopagitica,'' the English poet John Milton visited Galileo in his villa in Arcetri in 1638 while Galileo was under house arrest for offending the Church authorities. This article explores the influences Galileo may have had on Milton's writing as a result of the presumed meeting between the two, and discusses some similarities between Galileo's Starry Messenger (1610) and Dialogue Concerning the Two Chief World Systems (1632) and Milton's Paradise Lost (1667). Teachers and students of physics, astronomy, and li!!terature can benefit from studying connections such as these between science and the arts.

  11. Thermo-optical vacuum testing of Galileo In-Orbit Validation laser retroreflectors

    NASA Astrophysics Data System (ADS)

    Dell'Agnello, S.; Boni, A.; Cantone, C.; Ciocci, E.; Contessa, S.; Delle Monache, G.; Lops, C.; Martini, M.; Patrizi, G.; Porcelli, L.; Salvatori, L.; Tibuzzi, M.; Intaglietta, N.; Tuscano, P.; Mondaini, C.; Maiello, M.; Doyle, D.; García-Prieto, R.; Navarro-Reyes, D.

    2016-06-01

    The Galileo constellation is a space research and development program of the European Union to help navigate users all over the world. The Galileo IOV (In-Orbit Validation) are the first test satellites of the Galileo constellation and carry satellite laser retroreflectors as part of their payload systems for precision orbit determination and performance assessment. INFN-LNF SCF_Lab (Satellite/lunar/GNSS laser ranging/altimetry and Cube/microsat Characterization Facilities Laboratory) has been performing tests on a sample of the laser array segment under the Thermo-optical vacuum testing of Galileo IOV laser retro-reflectors of Galileo IOV LRA project, as defined in ESA-INFN Contract No. 4000108617/13/NL/PA. We will present the results of FFDP (Far Field Diffraction Pattern) and thermal relaxation times measurements in relevant space conditions of Galileo IOV CCRs (Cube Corner Retroreflectors) provided by ESA-ESTEC. A reference for the performance of laser ranging on Galileo satellites is the FFDP of a retroreflector in its design specifications and a Galileo retroreflector, in air and isothermal conditions, should have a minimum return intensity within the range [ 0.55 ×106m2- 2.14 ×106m2 ] (ESA-INFN, 2013). Measurements, performed in SCF_Lab facility, demonstrated that the 7 Galileo IOV laser retroreflectors under test were compliant with design performance expectations (Porcelli et al., 2015). The kind of tests carried out for this activity are the first performed on spare Galileo IOV hardware, made available after the launch of the four Galileo IOV satellites (2011 and 2012), which were the operational core of the constellation. The characterisation of the retroreflectors against their design requirements is important because LRAs (Laser Retroreflector Arrays) will be flown on all Galileo satellites.

  12. Galileo's wondrous telescope

    NASA Astrophysics Data System (ADS)

    Cartlidge, Edwin

    2008-06-01

    If you need reminding of just how wrong the great and the good can be, take a trip to the Museum of the History of Science in Florence, Italy. The museum is staging an exhibition entitled "Galileo's telescope - the instrument that changed the world" to mark the 400th anniversary this year of Galileo Galilei's revolutionary astronomical discoveries, which were made possible by the invention of the telescope. At the start of the 17th century, astronomers assumed that all the planets and the stars in the heavens had been identified and that there was nothing new for them to discover, as the exhibition's curator, Giorgio Strano, points out. "No-one could have imagined what wondrous new things were about to be revealed by an instrument created by inserting two eyeglass lenses into the ends of a tube," he adds.

  13. Galileo to Jupiter: Probing the Planet and Mapping Its Moons

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The first project to use the space shuttle as an interplanetary launch vehicle, the Galileo mission is designed to obtain information about the origin and evolution of the solar system by studying large-scale phenomena on Jupiter and its satellites. Aimed towards Mars to obtain gravity assist, the orbiting spacecraft will deploy a probe, which penetrating the Jovian atmosphere, will transmit data for approximately an hour. The spacecraft itself will inspect the atmospheres, ionospheres, and surfaces of Ganymede, Io, Europa, and Callisto, as well as determine their magnetic and gravitational properties. The experiments to be conducted and their scientific objectives are described. Known facts about the Jovian system are reviewed.

  14. Galileo satellite antenna modeling

    NASA Astrophysics Data System (ADS)

    Steigenberger, Peter; Dach, Rolf; Prange, Lars; Montenbruck, Oliver

    2015-04-01

    The space segment of the European satellite navigation system Galileo currently consists of six satellites. Four of them belong to the first generation of In-Orbit Validation (IOV) satellites whereas the other two are Full Operational Capability (FOC) satellites. High-precision geodetic applications require detailed knowledge about the actual phase center of the satellite and receiver antenna. The deviation of this actual phase center from a well-defined reference point is described by phase center offsets (PCOs) and phase center variations (PCVs). Unfortunately, no public information is available about the Galileo satellite antenna PCOs and PCVs, neither for the IOV, nor the FOC satellites. Therefore, conventional values for the IOV satellite antenna PCOs have been adopted for the Multi-GNSS experiment (MGEX) of the International GNSS Service (IGS). The effect of the PCVs is currently neglected and no PCOs for the FOC satellites are available yet. To overcome this deficiency in GNSS observation modeling, satellite antenna PCOs and PCVs are estimated for the Galileo IOV satellites based on global GNSS tracking data of the MGEX network and additional stations of the legacy IGS network. Two completely independent solutions are computed with the Bernese and Napeos software packages. The PCO and PCV values of the individual satellites are analyzed and the availability of two different solutions allows for an accuracy assessment. The FOC satellites are built by a different manufacturer and are also equipped with another type of antenna panel compared to the IOV satellites. Signal transmission of the first FOC satellite has started in December 2014 and activation of the second satellite is expected for early 2015. Based on the available observations PCO estimates and, optionally PCVs of the FOC satellites will be presented as well. Finally, the impact of the new antenna model on the precision and accuracy of the Galileo orbit determination is analyzed.

  15. Performance Analysis of Several GPS/Galileo Precise Point Positioning Models

    PubMed Central

    Afifi, Akram; El-Rabbany, Ahmed

    2015-01-01

    This paper examines the performance of several precise point positioning (PPP) models, which combine dual-frequency GPS/Galileo observations in the un-differenced and between-satellite single-difference (BSSD) modes. These include the traditional un-differenced model, the decoupled clock model, the semi-decoupled clock model, and the between-satellite single-difference model. We take advantage of the IGS-MGEX network products to correct for the satellite differential code biases and the orbital and satellite clock errors. Natural Resources Canada’s GPSPace PPP software is modified to handle the various GPS/Galileo PPP models. A total of six data sets of GPS and Galileo observations at six IGS stations are processed to examine the performance of the various PPP models. It is shown that the traditional un-differenced GPS/Galileo PPP model, the GPS decoupled clock model, and the semi-decoupled clock GPS/Galileo PPP model improve the convergence time by about 25% in comparison with the un-differenced GPS-only model. In addition, the semi-decoupled GPS/Galileo PPP model improves the solution precision by about 25% compared to the traditional un-differenced GPS/Galileo PPP model. Moreover, the BSSD GPS/Galileo PPP model improves the solution convergence time by about 50%, in comparison with the un-differenced GPS PPP model, regardless of the type of BSSD combination used. As well, the BSSD model improves the precision of the estimated parameters by about 50% and 25% when the loose and the tight combinations are used, respectively, in comparison with the un-differenced GPS-only model. Comparable results are obtained through the tight combination when either a GPS or a Galileo satellite is selected as a reference. PMID:26102495

  16. Performance Analysis of Several GPS/Galileo Precise Point Positioning Models.

    PubMed

    Afifi, Akram; El-Rabbany, Ahmed

    2015-06-19

    This paper examines the performance of several precise point positioning (PPP) models, which combine dual-frequency GPS/Galileo observations in the un-differenced and between-satellite single-difference (BSSD) modes. These include the traditional un-differenced model, the decoupled clock model, the semi-decoupled clock model, and the between-satellite single-difference model. We take advantage of the IGS-MGEX network products to correct for the satellite differential code biases and the orbital and satellite clock errors. Natural Resources Canada's GPSPace PPP software is modified to handle the various GPS/Galileo PPP models. A total of six data sets of GPS and Galileo observations at six IGS stations are processed to examine the performance of the various PPP models. It is shown that the traditional un-differenced GPS/Galileo PPP model, the GPS decoupled clock model, and the semi-decoupled clock GPS/Galileo PPP model improve the convergence time by about 25% in comparison with the un-differenced GPS-only model. In addition, the semi-decoupled GPS/Galileo PPP model improves the solution precision by about 25% compared to the traditional un-differenced GPS/Galileo PPP model. Moreover, the BSSD GPS/Galileo PPP model improves the solution convergence time by about 50%, in comparison with the un-differenced GPS PPP model, regardless of the type of BSSD combination used. As well, the BSSD model improves the precision of the estimated parameters by about 50% and 25% when the loose and the tight combinations are used, respectively, in comparison with the un-differenced GPS-only model. Comparable results are obtained through the tight combination when either a GPS or a Galileo satellite is selected as a reference.

  17. Possible portrait of Galileo Galilei as a young scientist

    NASA Astrophysics Data System (ADS)

    Molaro, P.

    2012-02-01

    We describe here the possible discovery of a portrait of Galileo Galilei in his youth. The painting is not signed and the identification is mainly physiognomic. In fact, the face reveals clear resemblance to Domenico Tintoretto's portrait and to Giuseppe Calendi's engraving derived from a lost portrait made by Santi di Tito in 1601. Along with the portraits by Tintoretto, Furini, Leoni, Passignano, and Sustermans this could be another portrait of Galileo made al naturale, but, unlike the others, it depicts the scientist before he reached fame. Galileo looks rather young, at age of about 20-25 years. His eyes in the portrait are clear and the expression intense and appealing. From Galileo's correspondence we know of a portrait made by his friend Ludovico Cigoli. Rather interesting, though admittedly quite improbable, is the possibility of a self-portrait whose existence is mentioned in the first biography of Galileo by Salusbury in 1664.

  18. Classroom Explorations: Pendulums, Mirrors, and Galileo's Drama

    ERIC Educational Resources Information Center

    Cavicchi, Elizabeth

    2011-01-01

    What do you see in a mirror when not looking at yourself? What goes on as a pendulum swings? Undergraduates in a science class supposed that these behaviors were obvious until their explorations exposed questions with no quick answers. While exploring materials, students researched Galileo, his trial, and its aftermath. Galileo came to life both…

  19. A comparison of Tier 1 and Tier 3 medical homes under Oklahoma Medicaid program.

    PubMed

    Kumar, Jay I; Anthony, Melody; Crawford, Steven A; Arky, Ronald A; Bitton, Asaf; Splinter, Garth L

    2014-04-01

    The patient-centered medical home (PCMH) is a team-based model of care that seeks to improve quality of care and control costs. The Oklahoma Health Care Authority (OHCA) directs Oklahoma's Medicaid program and contracts with 861 medical home practices across the state in one of three tiers of operational capacity: Tier 1 (Basic), Tier 2 (Advanced) and Tier 3 (Optimal). Only 13.5% (n = 116) homes are at the optimal level; the majority (59%, n = 508) at the basic level. In this study, we sought to determine the barriers that prevented Tier 1 homes from advancing to Tier 3 level and the incentives that would motivate providers to advance from Tier 1 to 3. Our hypotheses were that Tier 1 medical homes were located in smaller practices with limited resources and the providers are not convinced that the expense of advancing from Tier 1 status to Tier 3 status was worth the added value. We analyzed OHCA records to compare the 508 Tier 1 (entry-level) with 116 Tier 3 (optimal) medical homes for demographic differences with regards to location: urban or rural, duration as medical home, percentage of contracts that were group contracts, number of providers per group contract, panel age range, panel size, and member-provider ratio. We surveyed all 508 Tier 1 homes with a mail-in survey, and with focused follow up visits to identify the barriers to, and incentives for, upgrading from Tier 1 to Tier 2 or 3. We found that Tier 1 homes were more likely to be in rural areas, run by solo practitioners, serve exclusively adult panels, have smaller panel sizes, and have higher member-to-provider ratios in comparison with Tier 3 homes. Our survey had a 35% response rate. Results showed that the most difficult changes for Tier 1 homes to implement were providing 4 hours of after-hours care and a dedicated program for mental illness and substance abuse. The results also showed that the most compelling incentives for encouraging Tier 1 homes to upgrade their tier status were less

  20. Return to Europa: Overview of the Jupiter Europa Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Clark, K.; Tan-Wang, G.; Boldt, J.; Greeley, R.; Jun, I.; Lock, R.; Ludwinski, J.; Pappalardo, R.; Van Houten, T.; Yan, T.

    2009-01-01

    Missions to explore Europa have been imagined ever since the Voyager mission first suggested that Europa was geologically very young. Subsequently, Galileo supplied fascinating new insights into that satellite's secrets. The Jupiter Europa Orbiter (JEO) would be the NASA-led portion of the Europa Jupiter System Mission (EJSM), an international mission with orbiters developed by NASA, ESA and possibly JAXA. JEO would address a very important subset of the complete EJSM science objectives and is designed to function alone or in conjunction with ESA's Jupiter Ganymede Orbiter (JGO).

  1. Tier identification (TID) for tiered memory characteristics

    DOEpatents

    Chang, Jichuan; Lim, Kevin T; Ranganathan, Parthasarathy

    2014-03-25

    A tier identification (TID) is to indicate a characteristic of a memory region associated with a virtual address in a tiered memory system. A thread may be serviced according to a first path based on the TID indicating a first characteristic. The thread may be serviced according to a second path based on the TID indicating a second characteristic.

  2. A Galilean Approach to the Galileo Affair, 1609-2009

    NASA Astrophysics Data System (ADS)

    Finocchiaro, Maurice A.

    2011-01-01

    Galileo's telescopic discoveries of 1609-1612 provided a crucial, although not conclusive, confirmation of the Copernican hypothesis of the earth's motion. In Galileo's approach, the Copernican Revolution required that the geokinetic hypothesis be supported not only with new theoretical arguments but also with new observational evidence; that it be not only supported constructively but also critically defended from objections; and that such objections be not only refuted but also appreciated in all their strength. However, Galileo's defense of Copernicanism triggered a sequence of events that climaxed in 1633, when the Inquisition tried and condemned him as a suspected heretic. In turn, the repercussions of Galileo's condemnation have been a defining theme of modern Western culture for the last four centuries. In particular, the 20th century witnessed a curious spectacle: rehabilitation efforts by the Catholic Church and anti-Galilean critiques by secular-minded left-leaning social critics. The controversy shows no signs of abating to date, as may be seen from the episode of Pope Benedict XVI's attitude toward Paul Feyerabend's critique of Galileo. Nevertheless, I have devised a framework which should pave the way for eventually resolving this controversy, and which is modeled on Galileo's own approach to the Copernican Revolution.

  3. A Forecast Skill Comparison between CliPAS One-Tier and Two-Tier Hindcast Experiments

    NASA Astrophysics Data System (ADS)

    Lee, J.; Wang, B.; Kang, I.

    2006-05-01

    A 24-year (1981-2004) MME hindcast experimental dataset is produced under the "Climate Prediction and Its Application to Society" (CliPAS) project sponsored by Korean Meteorological Administration (KMA). This dataset consists of 5 one-tier model systems from National Aeronautics and Space Administration (NASA), National Center for Environmental Prediction (NCEP), Frontier Research Center for Global Change (FRCGC), Seoul National University (SNU), and University of Hawaii (UH) and 5 two-tier model systems from Florida State University (FSU), Geophysical Fluid Dynamic Lab (GFDL), SNU, and UH. Multi-model Ensemble (MME) Forecast skills of seasonal precipitation and atmospheric circulation are compared between CliPAS one-tier and two-tier hindcast experiments for seasonal mean precipitation and atmospheric circulation. For winter prediction, two-tier MME has a comparable skill to one-tier MME. However, it is demonstrated that in the Asian-Australian monsoon (A-AM) heavy precipitation regions, one-tier systems are superior to two-tier systems in summer season. The reason is that inclusion of the local warm pool- monsoon interaction in the one-tier system improves the ENSO teleconnection with monsoon regions. Both one-tier and two-tier MME fail to predict Indian monsoon circulation, while they have a significantly good skill for the broad scale monsoon circulation defined by Webster and Yang index. One-tier system has a much better skill to predict the monsoon circulation over the western North pacific where air-sea interaction plays an important role than two-tier system.

  4. Western hemisphere of the Moon taken by Galileo spacecraft

    NASA Image and Video Library

    1990-12-09

    Galileo spacecraft image of the Moon recorded at 9:35 am Pacific Standard Time (PST), 12-09-90, after completing its first Earth Gravity Assist. Western hemisphere of the Moon was taken through a green filter at a range of about 350,000 miles. In the center is Orientale Basin, 600 miles in diameter, formed about 3.8 billion years ago by the impact of an asteroid-size body. Orientale's dark center is a small mare. To the right is the lunar near side with the great, dark Oceanus Procellarum above the small, circular, dark Mare Humorum below. Maria are broad plains formed mostly over 3 billion years ago as vast basaltic lava flows. To the left is the lunar far side with fewer maria, but, at lower left South-Pole-Aitken basin, about 1200 miles in diameter, which resembles Orientale but is much older and more weathered and battered by cratering. The intervening cratered highlands of both sides, as well as the maria, are dotted with bright young craters. This image was "reprojected" so as to center the Orientale Basin, and was filtered to enhance the visibility of small features. The digital image processing was done by DLR, the German Aerospace Research Establishment near Munich, an international collaborator in the Galileo mission. Photo was provided by Jet Propulsion Laboratory (JPL) with alternate number P-37327, 12-19-90.

  5. Historical trends of participation of women in robotic spacecraft missions

    NASA Astrophysics Data System (ADS)

    Rathbun, Julie A.; Dones, Luke; Gay, Pamela; Cohen, Barbara; Horst, Sarah; Lakdawalla, Emily; Spickard, James; Milazzo, Moses; Sayanagi, Kunio M.; Schug, Joanna

    2015-11-01

    For many planetary scientists, being involved in a spacecraft mission is the highlight of a career. Many young scientists hope to one day be involved in such a mission. We will look at the science teams of several flagship-class spacecraft missions to look for trends in the representation of groups that are underrepresented in science. We will start with The Galileo, Cassini, and Europa missions to the outer solar system as representing missions that began in the 1980s, 1990s and 2010s respectively. We would also like to extend our analysis to smaller missions and those to targets other than the outer solar system.

  6. Advanced Broadband Links for TIER III UAV Data Communication

    NASA Astrophysics Data System (ADS)

    Griethe, Wolfgang; Gregory, Mark; Heine, Frank; Kampfner, Hartmut

    2011-08-01

    Unmanned Aeronautical Vehicle (UAV) are getting more and more importance because of their prominent role as national reconnaissance systems, for disaster monitoring, and environmental mapping. However, the existence of reliable and robust data links are indispensable for Unmanned Aircraft System (UAS) missions. In particular for Beyond Line-Of-Sight operations (BLOS) of Tier III UAVs, satellite data links are a key element since extensive sensor data have to be transmitted preferably in real-time or near real-time.The paper demonstrates that the continuously increasing number of UAS and the intensified use of high resolution sensors will reveal RF-bandwidth as a limitating factor in the communication chain of Tier III UAVs. The RF-bandwidth gap can be partly closed by use of high-order modulation, of course, but much more progress in terms of bandwidth allocation can be achieved by using optical transmission technology. Consequently, the paper underlines that meanwhile this technology has been sufficiently verified in space, and shows that optical links are suited as well for broadband communications of Tier III UAVs. Moreover, the advantages of LaserCom in UAV scenarios and its importance for Network Centric Warfare (NCW) as well as for Command, Control, Communications, Computers, Intelligens, Surveillance, and Reconnaissance (C4ISR) are emphasized. Numerous practical topics and design requirements, relevant for the establishment of optical links onboard of Tier III UAVs, are discussed.

  7. Galileo lithium/SO2

    NASA Technical Reports Server (NTRS)

    Blagdon, L. J.

    1980-01-01

    The current status of the Galileo lithium SO2 battery is described. The following general requirements of the battery are discussed: (1) electrical characteristics, (2) storage, (3) reliability, and (4) performance.

  8. Galileo probe battery system -- An update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagarin, B.P.; Taenaka, R.K.; Stofel, E.J.

    NASA`s Galileo 6-year trip to Jupiter is in its final phase. The mission consists of a Jovian Orbiter and an atmospheric entry Probe. The Probe is designed to coast autonomously for up to 190 days and turn itself on 6 hours prior to entry. It will then descend through the upper atmosphere for 50 to 75 minutes with the aid of an 8-foot parachute. This paper discusses sources of electrical power for the Probe and battery testing at the systems level. Described are the final production phase, qualification, and systems testing prior to and following launch, as well as decisionsmore » made regarding the Probe separation Li/SO{sub 2} battery configuration. In addition, the paper briefly describes the thermal battery verification program. The main power source comprises three Li/SO{sub 2} battery modules containing 13 D-sized cell strings per module. These modules are required to retain capacity for 7.5 years and support a 150-day clock, ending with a 7-hour mission sequence of increasing loads from 0.15 A to 9.5 A during the last 30 minutes. The main power source is supplemented by two thermal batteries (CaCrO{sub 4}-Ca), which will be used for firing the pyrotechnic initiators during the atmospheric entry.« less

  9. VLA Will Receive Galileo Probe Signals To Measure Jupiter's Winds

    NASA Astrophysics Data System (ADS)

    1995-11-01

    Socorro, NM -- When the Galileo Probe becomes the first spacecraft to enter the atmosphere of Jupiter on Dec. 7, a New Mexico radio telescope will be watching. In a technical feat thought impossible when Galileo was launched in 1989, the National Science Foundation's Very Large Array (VLA) will record the faint radio signal from the probe to help scientists measure the giant planet's winds. The VLA observations will dramatically improve estimates of Jupiter's wind speeds and complement other measurements studying the climate of Jupiter. The Galileo probe will transmit information to the main spacecraft as it descends toward a searing death under tremendous heat in Jupiter's lower atmosphere. The main spacecraft will later relay the probe's data to Earth. No Earth-based reception of the probe's radio signals was planned originally. The probe's antenna will be pointed at the main spacecraft, not the Earth. However, in 1991, Robert Preston and William Folkner of NASA's Jet Propulsion Laboratory (JPL) in Pasadena, CA, were discussing Earth-based reception of data from a similar probe under design for a planned mission to Saturn. "I thought, why not do this for Galileo," Folkner said. "They were planning to build this capability into the spacecraft for Saturn," Folkner explained, "and they thought it couldn't be done with the Galileo spacecraft already enroute to Jupiter. I didn't know it couldn't be done, so I worked it out and found that we could do it." According to Preston and Folkner's calculations, the direct reception of the probe's signals by the VLA and a similar radio telescope in Australia will make the measurement of Jupiter's winds ten times more precise as long as the probe radio signal can be detected. In addition, the direct reception also greatly improves scientists' knowledge of the probe's position as it enters the Jovian atmosphere. This will allow more effective use of the measurements of the probe radio signal by the main spacecraft to determine

  10. Active Volcanism on Io as Seen by Galileo SSI

    USGS Publications Warehouse

    McEwen, A.S.; Keszthelyi, L.; Geissler, P.; Simonelli, D.P.; Carr, M.H.; Johnson, T.V.; Klaasen, K.P.; Breneman, H.H.; Jones, T.J.; Kaufman, J.M.; Magee, K.P.; Senske, D.A.; Belton, M.J.S.; Schubert, G.

    1998-01-01

    Active volcanism on Io has been monitored during the nominal Galileo satellite tour from mid 1996 through late 1997. The Solid State Imaging (SSI) experiment was able to observe many manifestations of this active volcanism, including (1) changes in the color and albedo of the surface, (2) active airborne plumes, and (3) glowing vents seen in eclipse. About 30 large-scale (tens of kilometers) surface changes are obvious from comparison of the SSI images to those acquired by Voyager in 1979. These include new pyroclastic deposits of several colors, bright and dark flows, and caldera-floor materials. There have also been significant surface changes on Io during the Galileo mission itself, such as a new 400-km-diameter dark pyroclastic deposit around Pillan Patera. While these surface changes are impressive, the number of large-scale changes observed in the four months between the Voyager 1 and Voyager 2 flybys in 1979 suggested that over 17 years the cumulative changes would have been much more impressive. There are two reasons why this was not actually the case. First, it appears that the most widespread plume deposits are ephemeral and seem to disappear within a few years. Second, it appears that a large fraction of the volcanic activity is confined to repeated resurfacing of dark calderas and flow fields that cover only a few percent of Io's surface. The plume monitoring has revealed 10 active plumes, comparable to the 9 plumes observed by Voyager. One of these plumes was visible only in the first orbit and three became active in the later orbits. Only the Prometheus plume has been consistently active and easy to detect. Observations of the Pele plume have been particularly intriguing since it was detected only once by SSI, despite repeated attempts, but has been detected several times by the Hubble Space Telescope at 255 nm. Pele's plume is much taller (460 km) than during Voyager 1 (300 km) and much fainter at visible wavelengths. Prometheus-type plumes (50

  11. Active Volcanism on Io as Seen by Galileo SSI

    NASA Astrophysics Data System (ADS)

    McEwen, Alfred S.; Keszthelyi, Laszlo; Geissler, Paul; Simonelli, Damon P.; Carr, Michael H.; Johnson, Torrence V.; Klaasen, Kenneth P.; Breneman, H. Herbert; Jones, Todd J.; Kaufman, James M.; Magee, Kari P.; Senske, David A.; Belton, Michael J. S.; Schubert, Gerald

    1998-09-01

    Active volcanism on Io has been monitored during the nominal Galileo satellite tour from mid 1996 through late 1997. The Solid State Imaging (SSI) experiment was able to observe many manifestations of this active volcanism, including (1) changes in the color and albedo of the surface, (2) active airborne plumes, and (3) glowing vents seen in eclipse. About 30 large-scale (tens of kilometers) surface changes are obvious from comparison of the SSI images to those acquired by Voyager in 1979. These include new pyroclastic deposits of several colors, bright and dark flows, and caldera-floor materials. There have also been significant surface changes on Io during the Galileo mission itself, such as a new 400-km-diameter dark pyroclastic deposit around Pillan Patera. While these surface changes are impressive, the number of large-scale changes observed in the four months between the Voyager 1 and Voyager 2 flybys in 1979 suggested that over 17 years the cumulative changes would have been much more impressive. There are two reasons why this was not actually the case. First, it appears that the most widespread plume deposits are ephemeral and seem to disappear within a few years. Second, it appears that a large fraction of the volcanic activity is confined to repeated resurfacing of dark calderas and flow fields that cover only a few percent of Io's surface. The plume monitoring has revealed 10 active plumes, comparable to the 9 plumes observed by Voyager. One of these plumes was visible only in the first orbit and three became active in the later orbits. Only the Prometheus plume has been consistently active and easy to detect. Observations of the Pele plume have been particularly intriguing since it was detected only once by SSI, despite repeated attempts, but has been detected several times by the Hubble Space Telescope at 255 nm. Pele's plume is much taller (460 km) than during Voyager 1 (300 km) and much fainter at visible wavelengths. Prometheus-type plumes (50

  12. A reassessment of Galileo radiation exposures in the Jupiter magnetosphere.

    PubMed

    Atwell, William; Townsend, Lawrence; Miller, Thomas; Campbell, Christina

    2005-01-01

    Earlier particle experiments in the 1970s on Pioneer-10 and -11 and Voyager-1 and -2 provided Jupiter flyby particle data, which were used by Divine and Garrett to develop the first Jupiter trapped radiation environment model. This model was used to establish a baseline radiation effects design limit for the Galileo onboard electronics. Recently, Garrett et al. have developed an updated Galileo Interim Radiation Environment (GIRE) model based on Galileo electron data. In this paper, we have used the GIRE model to reassess the computed radiation exposures and dose effects for Galileo. The 34-orbit 'as flown' Galileo trajectory data and the updated GIRE model were used to compute the electron and proton spectra for each of the 34 orbits. The total ionisation doses of electrons and protons have been computed based on a parametric shielding configuration, and these results are compared with previously published results.

  13. An overview of the Galileo Optical Experiment (GOPEX)

    NASA Technical Reports Server (NTRS)

    Wilson, K. E.; Lesh, J. R.

    1993-01-01

    Uplink optical communication to a deep-space vehicle was demonstrated. In the Galileo Optical Experiment (GOPEX), optical transmissions were beamed to the Galileo spacecraft by Earth-based transmitters at the Table Mountain Facility (TMF), California, and Starfire Optical Range (SOR), New Mexico. The demonstration took place over an eight-day period (9 Dec. through 16 Dec. 1992) as Galileo receded from Earth on its way to Jupiter, and covered ranges from 1-6 million km. At 6 million km (15 times the Earth-Moon distance), the laser beam transmitted from TMF eight days after Earth flyby covered the longest known range for transmission and detection.

  14. Galileo Parachute System modification program

    NASA Technical Reports Server (NTRS)

    Mcmenamin, H. J.; Pochettino, L. R.

    1984-01-01

    This paper discusses the development program conducted on the Galileo Parachute System following the slow opening performance of the main parachute during the first system drop test. The parachute system is part of the Galileo entry probe that will descend through the Jupiter atmosphere. The uncontrolled parachute opening experienced in this test was not acceptable for the probe system. Therefore, the main parachute design was modified and the system sequence was changed to prevent a recurrence. These alterations and their system effects were evaluated analytically, and in a ground test program. At the conclusion of this phase, the system drop test was successfully repeated.

  15. Galilean Satellite Surface Non-Ice Constituents: New Results from the Cassini/Huygens VIMS Jupiter Flyby in the Context of the Galileo NIMS Results

    NASA Technical Reports Server (NTRS)

    McCord, T. B.; Brown, R.; Baines, K.; Bellucci, G.; Bibring, J.-P.; Buratti, B.; Capaccioni, F.; Cerroni, P.; Clark, R.; Coradini, A.

    2001-01-01

    The Cassini mission Visible and Infrared Mapping Spectrometer (VIMS) is currently returning data for the Galilean satellites. Examples of the new satellite data and the initial interpretations will be presented in the context of the Galileo NIMS data and results. Additional information is contained in the original extended abstract.

  16. Galileo, measurement of the velocity of light, and the reaction times.

    PubMed

    Foschi, Renato; Leone, Matteo

    2009-01-01

    According to the commonly accepted view, Galileo Galilei devised in 1638 an experiment that seemed able to show that the velocity of light is finite. An analysis of archival material shows that two decades later members of the Florence scientific society Accademia del Cimento followed Galileo guidelines by actually attempting to measure the velocity of light and suggesting improvements. This analysis also reveals a fundamental difference between Galileo's and Florence academy's methodologies and that Galileo's experiment was, in some respects, a pioneering work affecting also the history of the psychology of perception.

  17. Exploring Galileo's Telescope

    ERIC Educational Resources Information Center

    Straulino, Samuele; Terzuoli, Alessandra

    2010-01-01

    In the first months of 2009, the International Year of Astronomy, the authors developed an educational project for middle-level students connected with the first astronomical discoveries that Galileo Galilei (1564-1642) made 400 years ago. The project included the construction of a basic telescope and the observation of the Moon. The project, if…

  18. The Galileo Teacher Training Programme

    NASA Astrophysics Data System (ADS)

    Doran, Rosa

    The Galileo Teacher Training Program is a global effort to empower teachers all over the world to embark on a new trend in science teaching, using new technologies and real research meth-ods to teach curriculum content. The GTTP goal is to create a worldwide network of "Galileo Ambassadors", promoters of GTTP training session, and a legion of "Galileo Teachers", edu-cators engaged on the use of innovative resources and sharing experiences and supporting its pears worldwide. Through workshops, online training tools and resources, the products and techniques promoted by this program can be adapted to reach locations with few resources of their own, as well as network-connected areas that can take advantage of access to robotic, optical and radio telescopes, webcams, astronomy exercises, cross-disciplinary resources, image processing and digital universes (web and desktop planetariums). Promoters of GTTP are expert astronomy educators connected to Universities or EPO institutions that facilitate the consolidation of an active support to newcomers and act as a 24 hour helpdesk to teachers all over the world. GTTP will also engage in the creation of a repository of astronomy education resources and science research projects, ViRoS (Virtual Repository of resources and Science Projects), in order to simplify the task of educators willing to enrich classroom activities.

  19. The Galileo Energetic Particles Detector

    NASA Technical Reports Server (NTRS)

    Williams, D. J.; Mcentire, R. W.; Jaskulek, S.; Wilken, B.

    1992-01-01

    Amongst its complement of particles and fields instruments, the Galileo spacecraft carries an Energetic Particles Detector (EPD) designed to measure the characteristics of particle populations important in determining the size, shape, and dynamics of the Jovian magnetosphere. To do this the EPD provides 4pi angular coverage and spectral measurements for Z greater than or equal to 1 ions from 20 keV to 55 MeV, for electrons from 15 keV to greater than 11 MeV, and for the elemental species helium through iron from approximately 10 keV/nucl to 15 MeV/nucl. Two bidirectional telescopes, mounted on a stepping platform, employ magnetic deflection, energy loss versus energy, and time-of-flight techniques to provide 64 rate channels and pulse height analysis of priority selected events. The EPD data system provides a large number of possible operational modes from which a small number will be selected to optimize data collection during the many encounter and cruise phases of the mission. The EPD employs a number of safeing algorithms that are to be used in the event that its self-checking procedures indicate a problem. The instrument and its operation are described.

  20. Idealisation and Galileo's Pendulum Discoveries: Historical, Philosophical and Pedagogical Considerations

    NASA Astrophysics Data System (ADS)

    Matthews, Michael R.

    2004-11-01

    Galileo's discovery of the properties of pendulum motion depended on his adoption of the novel methodology of idealisation. Galileo's laws of pendulum motion could not be accepted until the empiricist methodological constraints placed on science by Aristotle, and by common sense, were overturned. As long as scientific claims were judged by how the world was immediately seen to behave, and as long as mathematics and physics were kept separate, then Galileo's pendulum claims could not be substantiated; the evidence was against them. Proof of the laws required not just a new science, but a new way of doing science, a new way of handling evidence, a new methodology of science. This was Galileo's method of idealisatioin. It was the foundation of the Galilean-Newtonian Paradigm which characterised the Scientific Revolution of the 17th century, and the subsequent centuries of modern science. As the pendulum was central to Galileo's and Newton's physics, appreciating the role of idealisation in their work is an instructive way to learn about the nature of science.

  1. Galileo spacecraft power distribution and autonomous fault recovery

    NASA Technical Reports Server (NTRS)

    Detwiler, R. C.

    1982-01-01

    There is a trend in current spacecraft design to achieve greater fault tolerance through the implemenation of on-board software dedicated to detecting and isolating failures. A combination of hardware and software is utilized in the Galileo power system for autonomous fault recovery. Galileo is a dual-spun spacecraft designed to carry a number of scientific instruments into a series of orbits around the planet Jupiter. In addition to its self-contained scientific payload, it will also carry a probe system which will be separated from the spacecraft some 150 days prior to Jupiter encounter. The Galileo spacecraft is scheduled to be launched in 1985. Attention is given to the power system, the fault protection requirements, and the power fault recovery implementation.

  2. A Galilean Approach to the Galileo Affair, 1609-2009

    ERIC Educational Resources Information Center

    Finocchiaro, Maurice A.

    2011-01-01

    Galileo's telescopic discoveries of 1609-1612 provided a crucial, although not conclusive, confirmation of the Copernican hypothesis of the earth's motion. In Galileo's approach, the Copernican Revolution required that the geokinetic hypothesis be supported not only with new theoretical arguments but also with new observational evidence; that it…

  3. Knowing what would happen: The epistemic strategies in Galileo's thought experiments.

    PubMed

    Camilleri, Kristian

    2015-12-01

    While philosophers have subjected Galileo's classic thought experiments to critical analysis, they have tended to largely ignored the historical and intellectual context in which they were deployed, and the specific role they played in Galileo's overall vision of science. In this paper I investigate Galileo's use of thought experiments, by focusing on the epistemic and rhetorical strategies that he employed in attempting to answer the question of how one can know what would happen in an imaginary scenario. Here I argue we can find three different answers to this question in Galileo later dialogues, which reflect the changing meanings of 'experience' and 'knowledge' (scientia) in the early modern period. Once we recognise that Galileo's thought experiments sometimes drew on the power of memory and the explicit appeal to 'common experience', while at other times, they took the form of demonstrative arguments intended to have the status of necessary truths; and on still other occasions, they were extrapolations, or probable guesses, drawn from a carefully planned series of controlled experiments, it becomes evident that no single account of the epistemological relationship between thought experiment, experience and experiment can adequately capture the epistemic variety we find Galileo's use of imaginary scenarios. To this extent, we cannot neatly classify Galileo's use of thought experiments as either 'medieval' or 'early modern', but we should see them as indicative of the complex epistemological transformations of the early seventeenth century. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Artist concept of Galileo encountering Io during its Jupiter approach

    NASA Image and Video Library

    1989-08-25

    Artist concept shows Galileo spacecraft while still approaching Jupiter having a satellite encounter. Galileo is flying about 600 miles above Io's volcano-torn surface, twenty times closer than the closest flyby altitude of Voyager in 1979.

  5. Mapping of the Culann-Tohil region of Io from Galileo imaging data

    USGS Publications Warehouse

    Williams, D.A.; Schenk, P.M.; Moore, Johnnie N.; Keszthelyi, L.P.; Turtle, E.P.; Jaeger, W.L.; Radebaugh, J.; Milazzo, M.P.; Lopes, R.M.C.; Greeley, R.

    2004-01-01

    We have used Galileo spacecraft data to produce a geomorphologic map of the Culann-Tohil region of Io's antijovian hemisphere. This region includes a newly discovered shield volcano, Tsu??i Goab Tholus and a neighboring bright flow field, Tsu??i Goab Fluctus, the active Culann Patera and the enigmatic Tohil Mons-Radegast Patera-Tohil Patera complex. Analysis of Voyager global color and Galileo Solid-State Imaging (SSI) high-resolution, regional (50-330 m/pixel), and global color (1.4 km/pixel) images, along with available Galileo Near-Infrared Mapping Spectrometer (NIMS) data, suggests that 16 distinct geologic units can be defined and characterized in this region, including 5 types of diffuse deposits. Tsu??i Goab Fluctus is the center of a low-temperature hotspot detected by NIMS late during the Galileo mission, and could represent the best case for active effusive sulfur volcanism detected by Galileo. The Culann volcanic center has produced a range of explosive and effusive deposits, including an outer yellowish ring of enhanced sulfur dioxide (SO2), an inner red ring of SO2 with short-chain sulfur (S3-S4) contaminants, and two irregular green diffuse deposits (one in Tohil Patera) apparently produced by the interaction of dark, silicate lava flows with sulfurous contaminants ballistically-emplaced from Culann's eruption plume(s). Fresh and red-mantled dark lava flows west of the Culann vent can be contrasted with unusual red-brown flows east of the vent. These red-brown flows have a distinct color that is suggestive of a compositional difference, although whether this is due to surface alteration or distinct lava compositions cannot be determined. The main massif of Tohil Mons is covered with ridges and grooves, defining a unit of tectonically disrupted crustal materials. Tohil Mons also contains a younger unit of mottled crustal materials that were displaced by mass wasting processes. Neighboring Radegast Patera contains a NIMS hotspot and a young lava lake of

  6. Galileo NIMS Observes Amirani

    NASA Image and Video Library

    1999-11-19

    This image is the highest-resolution thermal, or heat image, ever made of Amirani, a large volcano on Jupiter moon Io. It was taken on Oct. 10, 1999, by NASA Galileo spacecraft. Amirani is on the side of Io that permanently faces away from Jupiter.

  7. ORION: A Supersynchronous Transfer Orbit mission

    NASA Astrophysics Data System (ADS)

    Walters, I. M.; Baker, J. F.; Shurmer, I. M.

    1995-05-01

    ORION F1 was launched on 29th November 1994 on an Atlas IIA launch vehicle. It was designed, built and delivered in-orbit by Matra Marconi Space Systems Plc and was handed over to ORION Satellite Corporation on 20th January 1995 at its on-station longitude of 37.5 deg W. The mission differed significantly from that of any other geostationary communications satellite in that the Transfer Orbit apogee altitude of 123,507 km was over three times geosynchronous (GEO) altitude and one third of the way to the moon. The SuperSynchronous Transfer Orbit (SSTO) mission is significantly different from the standard Geostationary Transfer Orbit (GTO)mission in a number of ways. This paper discusses the essential features of the mission design through its evolution since 1987 and the details of the highly successful mission itself including a detailed account of the attitude determination achieved using the Galileo Earth and Sun Sensor (ESS).

  8. ORION: A Supersynchronous Transfer Orbit mission

    NASA Technical Reports Server (NTRS)

    Walters, I. M.; Baker, J. F.; Shurmer, I. M.

    1995-01-01

    ORION F1 was launched on 29th November 1994 on an Atlas IIA launch vehicle. It was designed, built and delivered in-orbit by Matra Marconi Space Systems Plc and was handed over to ORION Satellite Corporation on 20th January 1995 at its on-station longitude of 37.5 deg W. The mission differed significantly from that of any other geostationary communications satellite in that the Transfer Orbit apogee altitude of 123,507 km was over three times geosynchronous (GEO) altitude and one third of the way to the moon. The SuperSynchronous Transfer Orbit (SSTO) mission is significantly different from the standard Geostationary Transfer Orbit (GTO)mission in a number of ways. This paper discusses the essential features of the mission design through its evolution since 1987 and the details of the highly successful mission itself including a detailed account of the attitude determination achieved using the Galileo Earth and Sun Sensor (ESS).

  9. The Keys to Successful Extended Missions

    NASA Technical Reports Server (NTRS)

    Seal, David A.; Manor-Chapman, Emily A.

    2012-01-01

    Many of NASA's successful missions of robotic exploration have gone on to highly productive mission extensions, from Voyager, Magellan, Ulysses, and Galileo, to the Mars Exploration Rovers Spirit and Opportunity, a variety of Mars orbiters, Spitzer, Deep Impact / EPOXI, and Cassini. These missions delivered not only a high science return during their prime science phase, but a wealth of opportunities during their extensions at a low incremental cost to the program. The success of such mission extensions can be traced to demonstration of new and unique science achievable during the extension; reduction in cost without significant increase in risk to spacecraft health; close inclusion of the science community and approval authorities in planning; intelligent design during the development and prime operations phase; and well crafted and conveyed extension proposals. This paper discusses lessons learned collected from a variety of project leaders which can be applied by current and future missions to maximize their chances of approval and success.

  10. GalileoMobile: Interactive astronomy activities in schools

    NASA Astrophysics Data System (ADS)

    Vasquez, M.; Dasi Espuig, M.

    2014-04-01

    GalileoMobile is an itinerant science education initiative run on a voluntary basis by an international team of astronomers, educators, and science communicators. Our team's main goal is to make astronomy accessible to schools and communities around the globe that have little or no access to outreach actions. We do this by performing teacher workshops, activities with students, and donating educational material. Since the creation of GalileoMobile in 2008, we have travelled to Chile, Bolivia, Peru, India, and Uganda, and worked with 56 schools in total.

  11. Genomic sequencing in cystic fibrosis newborn screening: what works best, two-tier predefined CFTR mutation panels or second-tier CFTR panel followed by third-tier sequencing?

    PubMed

    Currier, Robert J; Sciortino, Stan; Liu, Ruiling; Bishop, Tracey; Alikhani Koupaei, Rasoul; Feuchtbaum, Lisa

    2017-10-01

    PurposeThe purpose of this study was to model the performance of several known two-tier, predefined mutation panels and three-tier algorithms for cystic fibrosis (CF) screening utilizing the ethnically diverse California population.MethodsThe cystic fibrosis transmembrane conductance regulator (CFTR) mutations identified among the 317 CF cases in California screened between 12 August 2008 and 18 December 2012 were used to compare the expected CF detection rates for several two- and three-tier screening approaches, including the current California approach, which consists of a population-specific 40-mutation panel followed by third-tier sequencing when indicated.ResultsThe data show that the strategy of using third-tier sequencing improves CF detection following an initial elevated immunoreactive trypsinogen and detection of only one mutation on a second-tier panel.ConclusionIn a diverse population, the use of a second-tier panel followed by third-tier CFTR gene sequencing provides a better detection rate for CF, compared with the use of a second-tier approach alone, and is an effective way to minimize the referrals of CF carriers for sweat testing. Restricting screening to a second-tier testing to predefined mutation panels, even broad ones, results in some missed CF cases and demonstrates the limited utility of this approach in states that have diverse multiethnic populations.

  12. Foundations of an Idea: Galileo and Freedom of Expression.

    ERIC Educational Resources Information Center

    James, Beverly

    This paper examines the origins of the principle of free expression as worked out by Galileo. It is intended to supplement standard histories of the development of free expression and to recover its history as part of the political project of postmodernism. The paper resurrects Galileo's encounters with entrenched beliefs in order to position free…

  13. 40 CFR 87.23 - Exhaust emission standards for Tier 6 and Tier 8 engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and Tier 8 engines. 87.23 Section 87.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 87.23 Exhaust emission standards for Tier 6 and Tier 8...

  14. 40 CFR 87.23 - Exhaust emission standards for Tier 6 and Tier 8 engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and Tier 8 engines. 87.23 Section 87.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 87.23 Exhaust emission standards for Tier 6 and Tier 8...

  15. Galileo as an intellectual heretic and why that matters

    NASA Astrophysics Data System (ADS)

    Palmieri, Paolo

    2014-03-01

    What was physics like before Galileo? Five centuries ago physics was taught in universities all over Europe as part of a broader field of knowledge known as natural philosophy. It was neither quantitative, nor experimental, but mostly an a-priori, logical type of inquiry about principles concerning notions such as space, time, and motion, from which deductions could be made about the natural world. Galileo changed all that. He claimed that inquiry about nature should be experimental, and that reasoning in natural philosophy should be mathematical. It was a bold enough move. But Galileo's intellectual heresy was the discovery that knowledge of the natural world could only be achieved by relaxing the requirement that principles be known with absolute certainty. He demonstrated that a new mathematical physics could be built upon principles based on experiment. Thus the new physics could be extended recklessly by starting from less than certain foundations. Galileo's startling insight was that scientific truth need not be localized but can be diffused throughout the structure of science.

  16. Europa Explorer - An Exceptional Mission Using Existing Technology

    NASA Technical Reports Server (NTRS)

    Clark, Karla B.

    2007-01-01

    A mission to Europa has been identified as a high priority by the science community for several years. The difficulty of an orbital mission, primarily due to the propulsive requirements and Jupiter's trapped radiation, led to many studies which investigated various approaches to meeting the science goals. The Europa Orbiter Mission studied in the late 1990's only met the most fundamental science objectives. The science objectives have evolved with the discoveries from the Galileo mission. JPL studied one concept, Europa Explorer, for a Europa orbiting mission which could meet a much expanded set of science objectives. A study science group was formed to verify that the science objectives and goals were being adequately met by the resulting mission design concept. The Europa Explorer design emerged primarily from two key self-imposed constraints: 1) meet the full set of identified nonlander science objectives and 2) use only existing technology.

  17. Four centuries later: how to close the Galileo case?

    PubMed

    Segre, Michael

    The "Galileo case" is still open: John Paul II's 1979 initiative to "recognize wrongs from whatever side they come" was carried out in an unsatisfactory manner. The task would have been easy had the Pontifical Study Commission created for that purpose concentrated on the 1616 decree alone and declared it not in line with the hermeneutical guidelines of the Council of Trent, in agreement with Galileo and not with Saint Robert Bellarmine. A possible avenue to closing the "Galileo case" on the part of the Church of Rome could, thus, be to change its current defensive attitude and declare itself no longer what it was in 1616, since another such "case" is, hopefully, no longer conceivable.

  18. Galileo Optical Experiment GOPEX

    NASA Image and Video Library

    1996-02-08

    Two sets of laser pulses transmitted from Earth to a spacecraft over a distance of 1.4 million kilometers 870,000 miles in a communications experiment are shown in this long-exposure image made by NASA’s Galileo spacecraft imaging system. http://photojournal.jpl.nasa.gov/catalog/PIA00230

  19. Large scale commissioning and operational experience with tier-2 to tier-2 data transfer links in CMS

    NASA Astrophysics Data System (ADS)

    Letts, J.; Magini, N.

    2011-12-01

    Tier-2 to Tier-2 data transfers have been identified as a necessary extension of the CMS computing model. The Debugging Data Transfers (DDT) Task Force in CMS was charged with commissioning Tier-2 to Tier-2 PhEDEx transfer links beginning in late 2009, originally to serve the needs of physics analysis groups for the transfer of their results between the storage elements of the Tier-2 sites associated with the groups. PhEDEx is the data transfer middleware of the CMS experiment. For analysis jobs using CRAB, the CMS Remote Analysis Builder, the challenges of remote stage out of job output at the end of the analysis jobs led to the introduction of a local fallback stage out, and will eventually require the asynchronous transfer of user data over essentially all of the Tier-2 to Tier-2 network using the same PhEDEx infrastructure. In addition, direct file sharing of physics and Monte Carlo simulated data between Tier-2 sites can relieve the operational load of the Tier-1 sites in the original CMS Computing Model, and already represents an important component of CMS PhEDEx data transfer volume. The experience, challenges and methods used to debug and commission the thousands of data transfers links between CMS Tier-2 sites world-wide are explained and summarized. The resulting operational experience with Tier-2 to Tier-2 transfers is also presented.

  20. Integrated results from the COPERNICUS and GALILEO studies.

    PubMed

    Pielen, Amelie; Clark, W Lloyd; Boyer, David S; Ogura, Yuichiro; Holz, Frank G; Korobelnik, Jean-Francois; Stemper, Brigitte; Asmus, Friedrich; Rittenhouse, Kay D; Ahlers, Christiane; Vitti, Robert; Saroj, Namrata; Zeitz, Oliver; Haller, Julia A

    2017-01-01

    To report on the efficacy and safety of intravitreal aflibercept in patients with macular edema secondary to central retinal vein occlusion (CRVO) in an integrated analysis of COPERNICUS and GALILEO. Patients were randomized to receive intravitreal aflibercept 2 mg every 4 weeks or sham injections until week 24. From week 24 to week 52, all intravitreal aflibercept-treated patients in both studies and sham-treated patients in COPERNICUS were eligible to receive intravitreal aflibercept based on prespecified criteria. In GALILEO, sham-treated patients continued to receive sham treatment through week 52. At week 24, mean gain in best-corrected visual acuity and mean reduction in central retinal thickness were greater for intravitreal aflibercept-treated patients compared with sham, consistent with individual trial results. At week 52, after 6 months of intravitreal aflibercept as-needed treatment in COPERNICUS, patients originally randomized to sham group experienced visual and anatomic improvements but did not improve to the extent of those initially treated with intravitreal aflibercept, while the sham group in GALILEO did not improve over week 24 mean best-corrected visual acuity scores. Ocular serious adverse events occurred in <10% of patients. This analysis of integrated data from COPERNICUS and GALILEO confirmed that intravitreal aflibercept is an effective treatment for macular edema following CRVO.

  1. Galileo's Treatment for the Centre of Gravity of Solids

    ERIC Educational Resources Information Center

    Worner, C. H.; Iommi-Amunategui, G.

    2007-01-01

    The appendix on the centres of gravity that appears at the end of Galileo's book, "Two New Sciences", is analysed. It is shown that the method used by Galileo in this work has an interesting reasoning and also shows preliminary ideas about scaling and advances some ideas about series convergence. In addition, we note that the geometrical language…

  2. Galileo Station Keeping Strategy

    NASA Technical Reports Server (NTRS)

    Perez-Cambriles, Antonio; Bejar-Romero, Juan Antonio; Aguilar-Taboada, Daniel; Perez-Lopez, Fernando; Navarro, Daniel

    2007-01-01

    This paper presents analyses done for the design and implementation of the Maneuver Planning software of the Galileo Flight Dynamics Facility. The station keeping requirements of the constellation have been analyzed in order to identify the key parameters to be taken into account in the design and implementation of the software.

  3. Galileo probe lithium-sulfur dioxide cell life testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofland, L.M.; Stofel, E.J.; Taenaka, R.K.

    Several hundred D-sized, Li/SO{sub 2} battery cells have been in a carefully controlled quiescent storage test for up to 14 years, starting at Honeywell but completing at the NASA Ames Research Center, in support of the Atmospheric Probe portion of the Galileo Mission to the planet Jupiter. This population of cells includes similar samples from 8 different manufacturing lots; the earliest from October 1981, the latest from October 1988. The baseline samples have been divided among several storage chambers, each having its own constant temperature, respectively set between 0 to 40 C. Non-invasive measurements have been made repeatedly of openmore » circuit voltage and internal resistance (at 1,000 Hz). At intervals, a small portion of the cells has been removed from storage and fully discharged under repetitive conditions, thus assessing any storage related loss of discharge capacity. The results show that for storage up to 20 C the cells have excellent stability. Above 20 C noticeable degradation occurs.« less

  4. Galileo's Trajectory with Mild Resistance

    ERIC Educational Resources Information Center

    Groetsch, C. W.

    2012-01-01

    An aspect of Galileo's classical trajectory that persists in a simple resistance model is noted. The resistive model provides a case study for the classroom analysis of limiting behaviour of an implicitly defined function. (Contains 1 note.)

  5. Neutralization tiers of HIV-1

    PubMed Central

    Montefiori, David C.; Roederer, Mario; Morris, Lynn; Seaman, Michael S.

    2018-01-01

    Purpose of review HIV-1 isolates are often classified on the basis of neutralization ‘tier’ phenotype. Tier classification has important implications for the monitoring and interpretation of vaccine-elicited neutralizing antibody responses. The molecular basis that distinguishes the multiple neutralization phenotypes of HIV-1 has been unclear. We present a model based on the dynamic nature of the HIV-1 envelope glycoproteins and its impact on epitope exposure. We also describe a new approach for ranking HIV-1 vaccine-elicited neutralizing antibody responses. Recent findings The unliganded trimeric HIV-1 envelope glycoprotein spike spontaneously transitions through at least three conformations. Neutralization tier phenotypes correspond to the frequency by which the trimer exists in a closed (tiers 2 and 3), open (tier 1A), or intermediate (tier 1B) conformation. An increasing number of epitopes become exposed as the trimer opens, making the virus more sensitive to neutralization by certain antibodies. The closed conformation is stabilized by many broadly neutralizing antibodies. Summary The tier 2 neutralization phenotype is typical of most circulating strains and is associated with a predominantly closed Env trimer configuration that is a high priority to target with vaccines. Assays with tier 1A viruses should be interpreted with caution and with the understanding that they detect many antibody specificities that do not neutralize tier 2 viruses and do not protect against HIV-1 infection. PMID:29266013

  6. Tiered Pricing: Implications for Library Collections

    ERIC Educational Resources Information Center

    Hahn, Karla

    2005-01-01

    In recent years an increasing number of publishers have adopted tiered pricing of journals. The design and implications of tiered-pricing models, however, are poorly understood. Tiered pricing can be modeled using several variables. A survey of current tiered-pricing models documents the range of key variables used. A sensitivity analysis…

  7. Galileo's Paradox

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2008-05-01

    The paradox is a wonderful teaching tool. The sleepy student in the back row is surprised and wakes up, and the student with the instantly memorized answer is forced into the analytical mode. The diagram in Fig. 1 has the following paradox: A body sliding freely down a chord from the edge of the circle reaches the lowest point on the circle at the same time as a body released simultaneously from the top. This result was first mentioned in a 1602 letter from Galileo Galilei to Guidobaldo dal Monte.

  8. Structural and sequence diversity of the transposon Galileo in the Drosophila willistoni genome.

    PubMed

    Gonçalves, Juliana W; Valiati, Victor Hugo; Delprat, Alejandra; Valente, Vera L S; Ruiz, Alfredo

    2014-09-13

    Galileo is one of three members of the P superfamily of DNA transposons. It was originally discovered in Drosophila buzzatii, in which three segregating chromosomal inversions were shown to have been generated by ectopic recombination between Galileo copies. Subsequently, Galileo was identified in six of 12 sequenced Drosophila genomes, indicating its widespread distribution within this genus. Galileo is strikingly abundant in Drosophila willistoni, a neotropical species that is highly polymorphic for chromosomal inversions, suggesting a role for this transposon in the evolution of its genome. We carried out a detailed characterization of all Galileo copies present in the D. willistoni genome. A total of 191 copies, including 133 with two terminal inverted repeats (TIRs), were classified according to structure in six groups. The TIRs exhibited remarkable variation in their length and structure compared to the most complete copy. Three copies showed extended TIRs due to internal tandem repeats, the insertion of other transposable elements (TEs), or the incorporation of non-TIR sequences into the TIRs. Phylogenetic analyses of the transposase (TPase)-encoding and TIR segments yielded two divergent clades, which we termed Galileo subfamilies V and W. Target-site duplications (TSDs) in D. willistoni Galileo copies were 7- or 8-bp in length, with the consensus sequence GTATTAC. Analysis of the region around the TSDs revealed a target site motif (TSM) with a 15-bp palindrome that may give rise to a stem-loop secondary structure. There is a remarkable abundance and diversity of Galileo copies in the D. willistoni genome, although no functional copies were found. The TIRs in particular have a dynamic structure and extend in different ways, but their ends (required for transposition) are more conserved than the rest of the element. The D. willistoni genome harbors two Galileo subfamilies (V and W) that diverged ~9 million years ago and may have descended from an ancestral

  9. The Galileo PPS expert monitoring and diagnostic prototype

    NASA Technical Reports Server (NTRS)

    Bahrami, Khosrow

    1989-01-01

    The Galileo PPS Expert Monitoring Module (EMM) is a prototype system implemented on the SUN workstation that will demonstrate a knowledge-based approach to monitoring and diagnosis for the Galileo spacecraft Power/Pyro subsystems. The prototype will simulate an analysis module functioning within the SFOC Engineering Analysis Subsystem Environment (EASE). This document describes the implementation of a prototype EMM for the Galileo spacecraft Power Pyro Subsystem. Section 2 of this document provides an overview of the issues in monitoring and diagnosis and comparison between traditional and knowledge-based solutions to this problem. Section 3 describes various tradeoffs which must be considered when designing a knowledge-based approach to monitoring and diagnosis, and section 4 discusses how these issues were resolved in constructing the prototype. Section 5 presents conclusions and recommendations for constructing a full-scale demonstration of the EMM. A Glossary provides definitions of terms used in this text.

  10. A comprehensive picture of Callisto's magnetic and cold plasma environment during the Galileo era and implications for JUICE

    NASA Astrophysics Data System (ADS)

    Liuzzo, L.; Simon, S.; Feyerabend, M.; Motschmann, U. M.

    2017-12-01

    We apply data analysis techniques and hybrid modeling to study Callisto's interaction with Jupiter's magnetosphere. Magnetometer data from the C3 and C9 Galileo flybys had been explained with a pure induction model, as the plasma interaction was weak. We expand this analysis to include the remaining five flybys (C10, C21, C22, C23, C30) where the plasma interaction was non-negligible. We therefore consider contributions to Callisto's magnetic environment generated by induction as well as the plasma interaction. We have identified a quasi-dipolar "core region" near Callisto's wakeside surface, dominated by induction and partially shielded from the plasma interaction. Outside of this region, Callisto's magnetic environment is characterized by field line draping. Future flybys during the upcoming JUICE mission may sample the wakeside "core region" to better constrain the conductivity, thickness, and depth of Callisto's subsurface ocean. Our analysis also shows that even during a single flyby, various non-stationarities in the upstream environment may be present near Callisto, which may partially obscure the magnetic signature of the moon's subsurface ocean. Overall, our study provides a complete three-dimensional picture of Callisto's magnetic environment during the Galileo era, based on all available magnetometer data from the Galileo flybys. We apply our understanding to the future JUICE flybys of Callisto to determine which encounters will be best to identify Callisto's inductive response in magnetometer data.

  11. 6 CFR 27.220 - Tiering.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 6 Domestic Security 1 2010-01-01 2010-01-01 false Tiering. 27.220 Section 27.220 Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY CHEMICAL FACILITY ANTI-TERRORISM STANDARDS Chemical Facility Security Program § 27.220 Tiering. (a) Preliminary Determination of Risk-Based Tiering. Based on...

  12. Integrated results from the COPERNICUS and GALILEO studies

    PubMed Central

    Pielen, Amelie; Clark, W Lloyd; Boyer, David S; Ogura, Yuichiro; Holz, Frank G; Korobelnik, Jean-Francois; Stemper, Brigitte; Asmus, Friedrich; Rittenhouse, Kay D; Ahlers, Christiane; Vitti, Robert; Saroj, Namrata; Zeitz, Oliver; Haller, Julia A

    2017-01-01

    Objectives To report on the efficacy and safety of intravitreal aflibercept in patients with macular edema secondary to central retinal vein occlusion (CRVO) in an integrated analysis of COPERNICUS and GALILEO. Patients and methods Patients were randomized to receive intravitreal aflibercept 2 mg every 4 weeks or sham injections until week 24. From week 24 to week 52, all intravitreal aflibercept-treated patients in both studies and sham-treated patients in COPERNICUS were eligible to receive intravitreal aflibercept based on prespecified criteria. In GALILEO, sham-treated patients continued to receive sham treatment through week 52. Results At week 24, mean gain in best-corrected visual acuity and mean reduction in central retinal thickness were greater for intravitreal aflibercept-treated patients compared with sham, consistent with individual trial results. At week 52, after 6 months of intravitreal aflibercept as-needed treatment in COPERNICUS, patients originally randomized to sham group experienced visual and anatomic improvements but did not improve to the extent of those initially treated with intravitreal aflibercept, while the sham group in GALILEO did not improve over week 24 mean best-corrected visual acuity scores. Ocular serious adverse events occurred in <10% of patients. Conclusion This analysis of integrated data from COPERNICUS and GALILEO confirmed that intravitreal aflibercept is an effective treatment for macular edema following CRVO. PMID:28883712

  13. The Galileo Attitude and Articulation Control System - A radiation-hard, high precision, state-of-the-art control system

    NASA Technical Reports Server (NTRS)

    Rhoads Stephenson, R.

    1986-01-01

    The Galileo Mission and Spacecraft design impose tight requirements on the Attitude and Articulation Control System (AACS). These requirements, coupled with the flexible spacecraft, the need for autonomy, and a severe radiation environment, pose a great challenge for the AACS designer. The resulting design and implementation are described, along with the discovery and solution of the Single-Event Upset problem. The status of the testing of the AACS in the Integration and Test Laboratory as well as at the spacecraft level is summarized.

  14. Learning from the Starry Message: Using Galileo's Sidereus Nuncius in Introductory Astronomy Classes

    NASA Astrophysics Data System (ADS)

    Wiesner, Matthew P.

    2015-03-01

    Every introductory astronomy class encounters Galileo during the course as the first man to systematically study the sky with a telescope. Every Astronomy 101 student meets Galileo as one of the major catalysts behind the shift from the Ptolemaic to the Copernican system and as one of the great minds behind the scientific method. But most of the time Galileo is just an inset on page 17 with one of the canonical portraits, appearing in students' lists of six early astronomers that need to be memorized for the first exam. I have tried to find ways to overcome such shallow educational experiences in introductory astronomy. In order to bring students to a real encounter with Galileo, I have assigned reading of an excerpt from Galileo's Sidereus Nuncius, "The Starry Message," followed by an inclass discussion of the text.

  15. Galileo's Religion Versus the Church's Science? Rethinking the History of Science and Religion

    NASA Astrophysics Data System (ADS)

    Wilson, D. B.

    Galileo's conflict with the Catholic Church is well recognized as a key episode in the history of physics and in the history of science and religion. This paper applies a new, historiographical approach to that specific episode. It advocates eliminating the science and religion. The Church concluded that the plainest facts of human experience agreed perfectly with an omniscient God's revealed word to proclaim the earth at rest. Supported by the Bible, Galileo, God-like, linked the elegance of mathematics to truths about nature. The Church, in effect, resisted Galileo's claim to be able to think like God, instead listening to God himself - and paying close attention to what man himself observed. We can thus see that the phrase ``Galileo's religion versus the Church's science'' is as meaningful (or meaningless) as the usual designation ``Galileo's science versus the Church's religion.''

  16. Tier 1 and Tier 2 Early Intervention for Handwriting and Composing

    ERIC Educational Resources Information Center

    Berninger, Virginia W.; Rutberg, Judith E.; Abbott, Robert D.; Garcia, Noelia; Anderson-Youngstrom, Marci; Brooks, Allison; Fulton, Cynthia

    2006-01-01

    Three studies evaluated Tier 1 early intervention for handwriting at a critical period for literacy development in first grade and one study evaluated Tier 2 early intervention in the critical period between third and fourth grades for composing on high stakes tests. The results contribute to knowledge of research-supported handwriting and…

  17. Idealisation and Galileo's Pendulum Discoveries: Historical, Philosophical and Pedagogical Considerations

    ERIC Educational Resources Information Center

    Matthews, Michael R.

    2004-01-01

    Galileo's discovery of the properties of pendulum motion depended on his adoption of the novel methodology of idealisation. Galileo's laws of pendulum motion could not be accepted until the empiricist methodological constraints placed on science by Aristotle, and by common sense, were overturned. As long as scientific claims were judged by how the…

  18. Hybrid multi-grids simulations of Ganymede's magnetosphere : comparison with Galileo observations.

    NASA Astrophysics Data System (ADS)

    Leclercq, L.; Modolo, R.; Leblanc, F.

    2015-12-01

    The Jovian satellite Ganymede is the biggest moon of our solar system. One of the main motivation of our interest for this moon is its own intrinsic magnetic field, which has been discovered during the Galileo mission (Kivelson et al. 1996). The magnetic field of Ganymede directly interacts with the corotating jovian plasma, leading to the formation of a mini-magnetosphere which is embedded in the giant magnetosphere of Jupiter. This is the only known case of interaction between two planetary magnetospheres.In the frame of the European space mission JUICE (Jupiter Icy moon Exploration), we investigate this unique interaction with a 3D parallel multi-species hybrid model. This model is based on the CAM-CL algorithm (Matthews 1994) and has been used to study the ionized environments of Titan, Mars and Mercury. In the hybrid formalism, ions are kinetically treated whereas electrons are considered as a zero-inertial fluid to ensure the quasi-neutrality of the plasma. The temporal evolution of the electromagnetic fields is calculated solving Maxwell's equations. The jovian magnetospheric plasma is described as being composed of oxygen and proton ions. The magnetic field of Ganymede, which includes dipolar and induced components (Kivelson et al, 2002), is distorted by its interaction with the Jovian plasma and formed the Alfvén wings. The planetary plasma is described as being composed of O+, with a scale height equal to 125 km. The description of the exosphere is provided by the 3D multi-species collisional exospheric/atmospheric model of Leblanc et al, (2015) and Turc et al. (2014). The ionization of this neutral exosphere by charge exchanges, by electronic impacts, and by reaction with solar photons contributes to the production of planetary plasma. In this model, calculations are performed on a cartesian simulation grid which is refined (down to ~120 km of spatial resolution) at Ganymede, using a multi-grids approach (Leclercq et al., submitted, 2015). Results are

  19. Space Station automated systems testing/verification and the Galileo Orbiter fault protection design/verification

    NASA Technical Reports Server (NTRS)

    Landano, M. R.; Easter, R. W.

    1984-01-01

    Aspects of Space Station automated systems testing and verification are discussed, taking into account several program requirements. It is found that these requirements lead to a number of issues of uncertainties which require study and resolution during the Space Station definition phase. Most, if not all, of the considered uncertainties have implications for the overall testing and verification strategy adopted by the Space Station Program. A description is given of the Galileo Orbiter fault protection design/verification approach. Attention is given to a mission description, an Orbiter description, the design approach and process, the fault protection design verification approach/process, and problems of 'stress' testing.

  20. Galileo SSI Observations of Io During Orbits C30 I33

    NASA Technical Reports Server (NTRS)

    Keszthelyi, L.; Turtle, E.; McEwen, A.; Simonelli, D.; Geissler, P.; Williams, D.; Milazzo, M.; Radebaugh, J.; Jaeger, W.; Klaasen, K. P.

    2002-01-01

    New Galileo SSI imaging of Io from orbits C30 I33 will be presented. The aging Galileo spacecraft continues to produce spectacular new results, including the tallest volcanic plume yet found on Io. Additional information is contained in the original extended abstract.

  1. The Shape of Io from Galileo Limb Measurements

    USGS Publications Warehouse

    Thomas, P.C.; Davies, M.E.; Colvin, T.R.; Oberst, J.; Schuster, P.; Neukum, G.; Carr, M.H.; McEwen, A.; Schubert, G.; Belton, M.J.S.

    1998-01-01

    Galileo CCD images of the limb of Io provide improved data for determining the shape of this synchronously rotating satellite. The best ellipsoidal fit is within 0.3 km of the best equilibrium fit of 1829.7, 1819.2, 1815.8 km. The shape is consistent with substantial mass concentration in a core and with gravity measurements from tracking of the Galileo spacecraft. The surface of Io is largely plains and isolated peaks, with little long-wavelength topography over 1 km in amplitude. ?? 1998 Academic Press.

  2. Energetic Electron Measurements from the Galileo Jupiter Probe

    NASA Technical Reports Server (NTRS)

    Mihalov, J. D.; Lanzerotti, L. J.; Fischer, H. M.; Pehlke, E.

    1998-01-01

    Energetic trapped electrons were measured with the Galileo Jupiter Probe, with samples from inside Io's orbit, down to just above the atmosphere. The energetic electron fluxes and spectra agree well with the earlier results from the Pioneer spacecraft, where comparison may be made under the assumption of simple power law spectra. New features from the Galileo measurements include direct observations of the electron pitch angle distributions and spectral softening, both as the atmosphere is approached and at smaller pitch angles at each measurement location.

  3. Effects of Tier 2 and Tier 3 Mathematics Interventions for Second Graders with Mathematics Difficulties

    ERIC Educational Resources Information Center

    Dennis, Minyi Shih

    2015-01-01

    Two studies were conducted to examine the effects of Tier 2 and Tier 3 mathematics interventions on students with mathematics learning difficulties. In the first study, the work of Bryant et al. was replicated and expanded upon by documenting the sustained effects of a Tier 2 mathematics intervention on mathematics performance by second graders.…

  4. In the Footsteps of Galileo

    NASA Astrophysics Data System (ADS)

    van der Veen, W.; Moody, T.; Erickson, J.; White, V.; O'Dea, T.

    2008-11-01

    Are you tired of teaching that same old scientific method lesson? Are you looking for ideas that bring the process of science to life for your students? Experience hands-on inquiry based activities that allow your students to recreate the excitement of Galileo's historic observations.

  5. Earth - Departing Image by Galileo

    NASA Image and Video Library

    1996-02-08

    This color image of the Earth was taken by NASA’s Galileo spacecraft on December 11 as it departed on its 3-year flight to Jupiter, about 2 1/2 days after the second Earth flyby. http://photojournal.jpl.nasa.gov/catalog/PIA00232

  6. Calibration of Galileo signals for time metrology.

    PubMed

    Defraigne, Pascale; Aerts, Wim; Cerretto, Giancarlo; Cantoni, Elena; Sleewaegen, Jean-Marie

    2014-12-01

    Using global navigation satellite system (GNSS) signals for accurate timing and time transfer requires the knowledge of all electric delays of the signals inside the receiving system. GNSS stations dedicated to timing or time transfer are classically calibrated only for Global Positioning System (GPS) signals. This paper proposes a procedure to determine the hardware delays of a GNSS receiving station for Galileo signals, once the delays of the GPS signals are known. This approach makes use of the broadcast satellite inter-signal biases, and is based on the ionospheric delay measured from dual-frequency combinations of GPS and Galileo signals. The uncertainty on the so-determined hardware delays is estimated to 3.7 ns for each isolated code in the L5 frequency band, and 4.2 ns for the ionosphere-free combination of E1 with a code of the L5 frequency band. For the calibration of a time transfer link between two stations, another approach can be used, based on the difference between the common-view time transfer results obtained with calibrated GPS data and with uncalibrated Galileo data. It is shown that the results obtained with this approach or with the ionospheric method are equivalent.

  7. Observations of Jupiter From Cassini, Galileo and Hst

    NASA Astrophysics Data System (ADS)

    West, R. A.

    This report summarizes recent scientific results for JupiterSs atmosphere from instru- ments sensing ultraviolet and visible wavelengths (to the CCD sensitivity limit near 1000 nm) on the Hubble Space Telescope and the Galileo and Cassini spacecraft. Most prominent among these have been images of the aurora which show the morphology and temporal behavior of the main oval as well as active regions inside the oval and Galilean satellite flux tube and wake interactions. Galileo and especially Cassini ul- traviolet spectrometers added to this picture by revealing auroral brightenings and, along with in situ plasma instruments establish a link between solar wind events and jovian auroral activity. Cassini spectra of the quiescent day and night glow provide compelling evidence for a dominating influence of soft electron excitation (probably secondary electrons) at high altitude and limit the possible contribution of fluores- cence to about 15 percent of the short-wave UV flux. Although fluorescence does not dominate the emission process sunlight is the ultimate source of the emission via photo excitation of vibrationally excited H2. Energetic H2 molecules can be excited by more abundant longer wavelength solar photons. This new insight goes a long way toward resolving the mystery of how the abundant UV flux is produced. At longer wave- lengths (200-300 nm) images by HST and by the Cassini ISS instrument reveal haze morphology and motions in the polar stratosphere. The most striking new discovery in that realm proved to be the formation and evolution of a large dark oval near latitude +60, about the same size and shape as JupiterSs Great Red Spot but ephemeral and invisible at longer wavelengths. Galileo and Cassini made new observations of light- ning. Lightning on the night side can be mapped to cloud features seen on the day side and illuminated by light from Io on the night side. High spatial resolution images in methane bands made by Galileo and Cassini are

  8. The size distribution of Jupiter's main ring from Galileo imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Brooks, Shawn M.; Esposito, Larry W.; Showalter, Mark R.; Throop, Henry B.

    2004-07-01

    Galileo's Solid State Imaging experiment (SSI) obtained 36 visible wavelength images of Jupiter's ring system during the nominal mission (Ockert-Bell et al., 1999, Icarus 138, 188-213) and another 21 during the extended mission. The Near Infrared Mapping Spectrometer (NIMS) recorded an observation of Jupiter's main ring during orbit C3 at wavelengths from 0.7 to 5.2 μm; a second observation was attempted during orbit E4. We analyze the high phase angle NIMS and SSI observations to constrain the size distribution of the main ring's micron-sized dust population. This portion of the population is best constrained at high phase angles, as the light scattering behavior of small dust grains dominates at these geometries and contributions from larger ring particles are negligible. High phase angle images of the main ring obtained by the Voyager spacecraft covered phase angles between 173.8° and 176.9° (Showalter et al., 1987, Icarus 69, 458-498). Galileo images extend this range up to 178.6°. We model the Galileo phase curve and the ring spectra from the C3 NIMS ring observation as the combination of two power law distributions. Our analysis of the main ring phase curve and the NIMS spectra suggests the size distribution of the smallest ring particles is a power law with an index of 2.0±0.3 below a size of ˜15 μm that transitions to a power law with an index of 5.0±1.5 at larger sizes. This combined power law distribution, or "broken power law" distribution, yields a better fit to the NIMS data than do the power law distributions that have previously been fit to the Voyager imaging data (Showalter et al., 1987, Icarus 69, 458-498). The broken power law distribution reconciles the results of Showalter et al. (1987, Icarus 69, 458-498) and McMuldroch et al. (2000, Icarus 146, 1-11), who also analyzed the NIMS data, and can be considered as an obvious extension of a simple power law. This more complex size distribution could indicate that ring particle production

  9. Continuing Studies of Planetary Atmospheres Associated with Experiments on the Galileo Jupiter Probe and Infrared Observations of Venus

    NASA Technical Reports Server (NTRS)

    Ragent, Boris

    1998-01-01

    The results of the nephelometer experiment conducted aboard the Probe of the Galileo mission to Jupiter are presented. The tenuous clouds and sparse particulate matter in the relatively particle-free 5-micron "hot spot" region of the Probe's descent were documented from about 0.46 bars to about 12 bars. Three regions of apparent coherent structure were noted, in addition to many indications of extremely small particle concentrations along the descent path. From the first valid measurement at about 0.46 bars down to about 0.55 bars a feeble decaying lower portion of a cloud, corresponding with the predicted ammonia particle cloud, was encountered. A denser, but still very modest, particle structure was present in the pressure regime extending from about 0.76 to a distinctive base at 1.34 bars, and is compatible with the expected ammonium hydrosulfide cloud. No massive water cloud was encountered, although below the second structure, a small, vertically thin layer at about 1.65 bars may be detached from the cloud above, but may also be water condensation, compatible with reported measurements of water abundance from other Galileo Mission experiments. A third small signal region, extending from about 1.9 to 4.5 bars, exhibited quite weak but still distinctive structure, and, although the identification of the light scatterers in this region is uncertain, may also be a water cloud perhaps associated with lateral atmospheric motion and/or reduced to a small mass density by atmospheric subsidence or other explanations. Rough descriptions of the particle size distributions and cloud properties in these regions have been derived, although they may be imprecise because of the small signals and experimental difficulties. These descriptions document the small number densities of particles, the moderate particle sizes, generally in the slightly submicron to few micron range, and the resulting small optical depths, mass densities due to particles, column particle number loading

  10. Continuing Studies of Planetary Atmospheres Associated With Experiments on the Galileo Jupiter Probe and Infrared Observations of Venus

    NASA Technical Reports Server (NTRS)

    Goodman,Jindra; Ragent, Boris

    1998-01-01

    The results of the nephelometer experiment conducted aboard the Probe of the Galileo mission to Jupiter are presented. The tenuous clouds and sparse particulate matter in the relatively particle-free 5-micron "hot spot" region of the Probe's descent were documented from about 0.46 bars to about 12 bars. Three regions of apparent coherent structure were noted, in addition to many indications of extremely small particle concentrations along the descent path. From the first valid measurement at about 0.46 bars down to about 0.55 bars a feeble decaying lower portion of a cloud, corresponding with the predicted ammonia particle cloud, was encountered. A denser, but still very modest, particle structure was present in the pressure regime extending from about 0.76 to a distinctive base at 1.34 bars, and is compatible with the expected ammonium hydrosulfide cloud. No massive water cloud was encountered, although below the second structure, a small, vertically thin layer at about 1.65 bars may be detached from the cloud above, but may also be water condensation, compatible with reported measurements of water abundance from other Galileo Mission experiments. A third small signal region, extending from about 1.9 to 4.5 bars, exhibited quite weak but still distinctive structure, and, although the identification of the light scatterers in this region is uncertain, may also be a water cloud perhaps associated with lateral atmospheric motion and/or reduced to a small mass density by atmospheric subsidence or other explanations. Rough descriptions of the particle size distributions and cloud properties in these regions have been derived, although they may be imprecise because of the small signals and experimental difficulties. These descriptions document the small number densities of particles, the moderate particle sizes, generally in the slightly submicron to few micron range, and the resulting small optical depths, mass densities due to particles, column particle number loading

  11. The effects of correlated noise in intra-complex DSN arrays for S-band Galileo telemetry reception

    NASA Technical Reports Server (NTRS)

    Dewey, R. J.

    1992-01-01

    A number of the proposals for supporting a Galileo S-band (2.3-GHz) mission involve arraying several antennas to maximize the signal-to-noise ratio (and bit rate) obtainable from a given set of antennas. Arraying is no longer a new idea, having been used successfully during the Voyager encounters with Uranus and Neptune. However, arraying for Galileo's tour of Jupiter is complicated by Jupiter's strong radio emission, which produces correlated noise effects. This article discusses the general problem of correlated noise due to a planet, or other radio source, and applies the results to the specific case of an array of antennas at the DSN's Tidbinbilla, Australia, complex (DSS 42, DSS 43, DSS 45, and the yet-to-be-built DSS 34). The effects of correlated noise are highly dependent on the specific geometry of the array and on the spacecraft-planet configuration; in some cases, correlated noise effects produce an enhancement, rather than a degradation, of the signal-to-noise ratio. For the case considered here--an array of the DSN's Australian antennas observing Galileo and Jupiter--there are three regimes of interest. If the spacecraft-planet separation is approximately less than 75 arcsec, the average effect of correlated noise is a loss of signal to noise (approximately 0.2 dB as the spacecraft-planet separation approaches zero). For spacecraft-planet separations approximately greater than 75 arcsec, but approximately less than 400 arcsec, the effects of correlated noise cause signal-to-noise variations as large as several tenths of a decibel over time scales of hours or changes in spacecraft-planet separation of tens of arcseconds; however, on average its effects are small (less than 0.01 dB). When the spacecraft is more than 400 arcsec from Jupiter (as is the case for about half of Galileo's tour), correlated noise is a less than 0.05-dB effect.

  12. Integrating the GalileoScope into Successful Outreach Programming

    NASA Astrophysics Data System (ADS)

    Michaud, Peter D.; Slater, S.; Goldstein, J.; Harvey, J.; Garcia, A.

    2010-01-01

    Since 2004, the Gemini Observatory’s week-long Journey Through the Universe (JTtU) program has successfully shared the excitement of scientific research with teachers, students and the public on Hawaii’s Big Island. Based on the national JTtU program started in 1999, the Hawai‘i version reaches an average of 7,000 students annually and each year features a different theme shared with a diverse set of learners. In 2010, the theme includes the integration of the GalileoScope-produced as a keystone project for the International Year of Astronomy. In preparation, a pilot teacher workshop (held in October 2009) introduced local island teachers to the GalileoScope and a 128-page educator’s activity resource book coordinated by the University of Wyoming. Response from this initial teacher’s workshop has been strong and evaluations plus follow-up actions by participating teachers illustrate that the integration of the GalileoScope has been successful based upon this diverse sample. Integrating GalileoScopes into Chilean schools in 2010 is also underway at Gemini South. This program will solicit informal proposals from educators who wish to use the telescopes in classrooms and a Spanish version of the teacher resource book is planned. The authors conclude that integration of the GalileoScope into an existing outreach program is an effective way to keep content fresh, relevant and engaging for both educators and students. This initiative is funded by Gemini Observatory outreach program. The Gemini Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (US), the Science and Technology Facilities Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva

  13. Regulatory Compliance in Multi-Tier Supplier Networks

    NASA Technical Reports Server (NTRS)

    Goossen, Emray R.; Buster, Duke A.

    2014-01-01

    Over the years, avionics systems have increased in complexity to the point where 1st tier suppliers to an aircraft OEM find it financially beneficial to outsource designs of subsystems to 2nd tier and at times to 3rd tier suppliers. Combined with challenging schedule and budgetary pressures, the environment in which safety-critical systems are being developed introduces new hurdles for regulatory agencies and industry. This new environment of both complex systems and tiered development has raised concerns in the ability of the designers to ensure safety considerations are fully addressed throughout the tier levels. This has also raised questions about the sufficiency of current regulatory guidance to ensure: proper flow down of safety awareness, avionics application understanding at the lower tiers, OEM and 1st tier oversight practices, and capabilities of lower tier suppliers. Therefore, NASA established a research project to address Regulatory Compliance in a Multi-tier Supplier Network. This research was divided into three major study efforts: 1. Describe Modern Multi-tier Avionics Development 2. Identify Current Issues in Achieving Safety and Regulatory Compliance 3. Short-term/Long-term Recommendations Toward Higher Assurance Confidence This report presents our findings of the risks, weaknesses, and our recommendations. It also includes a collection of industry-identified risks, an assessment of guideline weaknesses related to multi-tier development of complex avionics systems, and a postulation of potential modifications to guidelines to close the identified risks and weaknesses.

  14. The NASA Decadal Survey Aerosol, Cloud, Ecosystems Mission

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Bontempi, Paula; Maring, Hal

    2011-01-01

    In 2007, the National Academy of Sciences delivered a Decadal Survey (Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond) for NASA, NOAA, and USGS, which is a prioritization of future satellite Earth observations. The recommendations included 15 missions (13 for NASA, two for NOAA), which were prioritized into three groups or tiers. One of the second tier missions is the Aerosol, Cloud, (ocean) Ecosystems (ACE) mission, which focuses on climate forcing, cloud and aerosol properties and interactions, and ocean ecology, carbon cycle science, and fluxes. The baseline instruments recommended for ACE are a cloud radar, an aerosol/cloud lidar, an aerosol/cloud polarimeter, and an ocean radiometer. The instrumental heritage for these measurements are derived from the Cloudsat, CALIPSO, Glory, SeaWiFS and Aqua (MODIS) missions. In 2008, NASA HQ, lead by Hal Maring and Paula Bontempi, organized an interdisciplinary science working group to help formulate the ACE mission by refining the science objectives and approaches, identifying measurement (satellite and field) and mission (e.g., orbit, data processing) requirements, technology requirements, and mission costs. Originally, the disciplines included the cloud, aerosol, and ocean biogeochemistry communities. Subsequently, an ocean-aerosol interaction science working group was formed to ensure the mission addresses the broadest range of science questions possible given the baseline measurements, The ACE mission is a unique opportunity for ocean scientists to work closely with the aerosol and cloud communities. The science working groups are collaborating on science objectives and are defining joint field studies and modeling activities. The presentation will outline the present status of the ACE mission, the science questions each discipline has defined, the measurement requirements identified to date, the current ACE schedule, and future opportunities for broader community

  15. Three-tier rough superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Cao, Yuanzhi; Yuan, Longyan; Hu, Bin; Zhou, Jun

    2015-08-01

    A three-tier rough superhydrophobic surface was fabricated by growing hydrophobic modified (fluorinated silane) zinc oxide (ZnO)/copper oxide (CuO) hetero-hierarchical structures on silicon (Si) micro-pillar arrays. Compared with the other three control samples with a less rough tier, the three-tier surface exhibits the best water repellency with the largest contact angle 161° and the lowest sliding angle 0.5°. It also shows a robust Cassie state which enables the water to flow with a speed over 2 m s-1. In addition, it could prevent itself from being wetted by the droplet with low surface tension (mixed water and ethanol 1:1 in volume) which reveals a flow speed of 0.6 m s-1 (dropped from the height of 2 cm). All these features prove that adding another rough tier on a two-tier rough surface could futher improve its water-repellent properties.

  16. Three-tier rough superhydrophobic surfaces.

    PubMed

    Cao, Yuanzhi; Yuan, Longyan; Hu, Bin; Zhou, Jun

    2015-08-07

    A three-tier rough superhydrophobic surface was fabricated by growing hydrophobic modified (fluorinated silane) zinc oxide (ZnO)/copper oxide (CuO) hetero-hierarchical structures on silicon (Si) micro-pillar arrays. Compared with the other three control samples with a less rough tier, the three-tier surface exhibits the best water repellency with the largest contact angle 161° and the lowest sliding angle 0.5°. It also shows a robust Cassie state which enables the water to flow with a speed over 2 m s(-1). In addition, it could prevent itself from being wetted by the droplet with low surface tension (mixed water and ethanol 1:1 in volume) which reveals a flow speed of 0.6 m s(-1) (dropped from the height of 2 cm). All these features prove that adding another rough tier on a two-tier rough surface could futher improve its water-repellent properties.

  17. Loki as viewed by Galileo NIMS

    NASA Image and Video Library

    1999-11-19

    This image shows Loki, the most powerful volcano in the solar system, which has been constantly active on Jupiter moon Io. NASA Galileo spacecraft took these images during its approach to Io on October 10, 1999.

  18. A distributed Tier-1

    NASA Astrophysics Data System (ADS)

    Fischer, L.; Grønager, M.; Kleist, J.; Smirnova, O.

    2008-07-01

    The Tier-1 facility operated by the Nordic DataGrid Facility (NDGF) differs significantly from other Tier-1s in several aspects: firstly, it is not located at one or a few premises, but instead is distributed throughout the Nordic countries; secondly, it is not under the governance of a single organization but instead is a meta-center built of resources under the control of a number of different national organizations. We present some technical implications of these aspects as well as the high-level design of this distributed Tier-1. The focus will be on computing services, storage and monitoring.

  19. NASA’s Soil Moisture Active Passive (SMAP) mission and opportunities for applications users

    USDA-ARS?s Scientific Manuscript database

    The Soil Moisture Active Passive (SMAP) mission is one of four first-tier missions recommended by the National Research Council's Committee on Earth Science and Applications from Space. Set to launch in 2014, SMAP soil moisture and freeze/thaw measurements will have an accuracy, resolution, and glob...

  20. The flight performance of the Galileo orbiter USO

    NASA Technical Reports Server (NTRS)

    Morabito, D. D.; Krisher, T. P.; Asmar, S. W.

    1993-01-01

    Results are presented from an analysis of radio metric data received by the DSN stations from the Galileo spacecraft using an Ultrastable Oscillator (USO) as a signal source. These results allow the health and performance of the Galileo USO to be evaluated, and are used to calibrate this Radio Science instrument and the data acquired for Radio Science experiments such as the Red-shift Observation, Solar Conjunction, and Jovian occultations. Estimates for the USO-referenced spacecraft-transmitted frequency and frequency stability were made for 82 data acquisition passes conducted between launch (October 1989) and November 1991. Analyses of the spacecraft-transmitted frequencies show that the USO is behaving as expected. The USO was powered off and then back on in August 1991 with no adverse effect on its performance. The frequency stabilities measured by Allan deviation are consistent with expected values due to thermal wideband noise and the USO itself at the appropriate time intervals. The Galileo USO appears to be healthy and functioning normally in a reasonable manner.

  1. The flight performance of the Galileo orbiter USO

    NASA Technical Reports Server (NTRS)

    Morabito, D. D.; Krisher, T. P.; Asmar, S. W.

    1993-01-01

    Results are presented in this article from an analysis of radio metric data received by the DSN stations from the Galileo spacecraft using an Ultrastable Oscillator (USO) as a signal source. These results allow the health and performance of the Galileo USO to be evaluated, and are used to calibrate this Radio Science instrument and the data acquired for Radio Science experiments such as the Redshift Observation, Solar Conjunction, and Jovian occultations. Estimates for the USO-referenced, spacecraft-transmitted frequency and frequency stability were made for 82 data acquisition passes conducted between launch (Oct. 1989) and Nov. 1991. Analyses of the spacecraft-transmitted frequencies show that the USO is behaving as expected. The USO was powered off and then back on in Aug. 1991 with no adverse effect on its performance. The frequency stabilities measured by Allan deviation are consistent with expected values due to thermal wideband noise and the USO itself at the appropriate time intervals. The Galileo USO appears to be healthy and functioning normally in a reasonable manner.

  2. Galileo's Telescope and the Birth of Space Science

    NASA Astrophysics Data System (ADS)

    van Helden, A.

    2002-01-01

    The age of telescopic astronomy began in December 1609, when Galileo Galilei (1564-1642) began the first telescopic astronomical research project, an extended series of observations of the Moon. Over the next 18 months, he discovered the earth-like nature of the Moon, four satellites of Jupiter, the strange appearances of Saturn, the phases of Venus, and sunspots. His discoveries cut at the roots of the Aristotelian cosmological system with its central, corrupt, Earth and perfect heavens; and they provided important evidence for the Copernican heliocentric system. The instruments that provided the turning point in this great transition were by modern standards exceedingly primitive, and there is no question about the fact that Galileo must have been an exceptional observer to discover what he did. But he was also a great communicator. His scientific arguments for the new world system were models of logic and rigor; they were also rhetorical masterpieces. Galileo never needed a popularizer to bring his ideas to a wide audience. For that he paid a price.

  3. GalileoMobile: Astronomical activities in schools

    NASA Astrophysics Data System (ADS)

    Dasi Espuig, Maria; Vasquez, Mayte; Kobel, Philippe

    GalileoMobile is an itinerant science education initiative run on a voluntary basis by an international team of astronomers, educators, and science communicators. Our team's main goal is to make astronomy accessible to schools and communities around the globe that have little or no access to outreach actions. We do this by performing teacher workshops, activities with students, and donating educational material. Since the creation of GalileoMobile in 2008, we have travelled to Chile, Bolivia, Peru, India, and Uganda, and worked with 56 schools in total. Our activities are centred on the GalileoMobile Handbook of Activities that comprises around 20 astronomical activities which we adapted from many different sources, and translated into 4 languages. The experience we gained in Chile, Bolivia, Peru, India, and Uganda taught us that (1) bringing experts from other countries was very stimulating for children as they are naturally curious about other cultures and encourages a collaboration beyond borders; (2) high-school students who were already interested in science were always very eager to interact with real astronomers doing research to ask for career advice; (3) inquiry-based methods are important to make the learning process more effective and we have therefore, re-adapted the activities in our Handbook according to these; (4) local teachers and university students involved in our activities have the potential to carry out follow-up activities, and examples are those from Uganda and India.

  4. The Hera Entry Probe Mission to Saturn, an ESA M-class mission proposal

    NASA Astrophysics Data System (ADS)

    Mousis, O.; Atkinson, D. H.; Spilker, T.; Venkatapathy, E.; Poncy, J.; Coustenis, A.; Reh, K.

    2015-10-01

    A fundamental goal of solar system exploration is to understand the origin of the solar system, the initial stages, conditions, and processes by which the solar system formed, how the formation process was initiated, and the nature of the interstellar seed material from which the solar system was born. Key to understanding solar system formation and subsequent dynamical and chemical evolution is the origin and evolution of the giant planets and their atmospheres. Additionally, the atmospheres of the giant planets serve as laboratories to better understand the atmospheric chemistries, dynamics, processes, and climates on all planets in the solar system including Earth, offer a context and provide a ground truth for exoplanets and exoplanetary systems,and have long been thought to play a critical role in the development of potentially habitable planetary systems. Remote sensing observations are limited when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the value of in situ probe measurements is illustrated by the exploration of Jupiter, where key measurements such as noble gases abundances and the precise measurement of the helium mixing ratio have only been made available through in situ measurements by the Galileo probe. Representing the only method providing ground-truth to connect the remote sensing inferences with physical reality, in situ measurements have only been accomplished twice in the history of outer solar system exploration, via the Galileo probe for Jupiter and the Huygens probe for Titan. In situ measurements provide access to atmospheric regions that are beyond the reach of remote sensing, enabling the dynamical, chemical and aerosol-forming processes at work from the thermosphere to the troposphere below the cloud decks to be studied. A proposal for a Saturn entry probe mission named Hera was recently submitted to the European Space Agency Medium Class mission announcement of

  5. Middle School Students' Responses to Two-Tier Tasks

    ERIC Educational Resources Information Center

    Haja, Shajahan; Clarke, David

    2011-01-01

    The structure of two-tier testing is such that the first tier consists of a multiple-choice question and the second tier requires justifications for choices of answers made in the first tier. This study aims to evaluate two-tier tasks in "proportion" in terms of students' capacity to write and select justifications and to examine the effect of…

  6. An introduction to indigenous health and culture: the first tier of the Three Tiered Plan.

    PubMed

    Sinnott, M J; Wittmann, B

    2001-06-01

    The objective of the present study was to prepare new doctors with an awareness of cultural and health issues to facilitate positive experiences with indigenous patients. The study incorporated the 1998 intern orientation programs in Queensland public hospitals. The study method included tier one of the Three Tiered Plan, which was implemented and audited. Indigenous liaison officers, directors of clinical training and medical education officers were surveyed prior to this implementation to determine whether any or similar initiatives had been carried out in previous years and/or were planned. Post-implementation feedback from interns was obtained by using questionnaires. Follow-up telephone interviews with the directors of clinical training, medical education officers and indigenous hospital liaison officers detailed the format and content of tier one at each hospital. The results indicate that this active intervention improved the implementation rate of tier one from nine of 19 (47%) Queensland public hospitals in 1997 to 17 (90%) in 1998. The 14 indigenous hospital liaison officers (100%) involved in the intervention perceived it as beneficial. Forty-three (67%) of interns who responded to the survey indicated they had encountered an indigenous patient within the last 2-4 months. The level of knowledge of indigenous health and culture self-reported by interns was between the categories 'enough to get by' and 'inadequate'. In conclusion, it appears that tier one has been successful and is to be a formal component of intern orientations in Queensland public hospitals. Further initiatives in indigenous health and culture targeting medical staff (i.e. tier two and tier three), are needed.

  7. Tier 3 Toxicity Value White Paper

    EPA Pesticide Factsheets

    The purpose of this white paper is to articulate the issues pertaining to Tier 3 toxicity values and provide recommendations on processes that will improve the transparency and consistency of identifying, evaluating, selecting, and documenting Tier 3 toxicity values for use in the Superfund and Resource Conservation and Recovery Act (RCRA) programs. This white paper will be used to assist regional risk assessors in selecting Tier 3 toxicity values as well as provide the foundation for future regional and national efforts to improve guidance and policy on Tier 3 toxicity values.

  8. GalileoMobile, sharing astronomy with students and teachers around the world

    NASA Astrophysics Data System (ADS)

    Benitez-Herrera, Sandra; Spinelli, Patricia F.

    2016-10-01

    GalileoMobile is a non-profit, itinerant, science outreach initiative that brings Astronomy closer to young people in areas with little or no access to outreach programs. We perform astronomy-related activities in schools and communities we visit and encourage follow-up activities through teacher training workshops and the donation of telescopes and other educational resources. GalileoMobile also extends its impact to a worldwide audience through deliverable products. Our work is shared worldwide through the production of documentaries, books and a wide range of Internet resources (OfficialWebsite - www.galileo-mobile.org - and Blog, Facebook page, Google+,Twitter, Youtube and Vimeo). GalileoMobile is an unprecedented initiative promoting science knowledge and the interaction beyond borders through Astronomy while raising awareness for the diversity of human cultures, conveying the message of ``unity under the same sky''. We take advantage of the local astronomical culture of the visited communities to establish a dialogue between different ways of understanding the world and to share different types of knowledge (historic, scientific, anthropological . . .), encouraging a process of mutual learning.

  9. 50 CFR 86.53 - What are funding tiers?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false What are funding tiers? 86.53 Section 86... (BIG) PROGRAM How States Apply for Grants § 86.53 What are funding tiers? (a) This grant program will consist of two tiers of funding. (i) You may apply for one or both tiers. (ii) The two tiers will allow...

  10. 40 CFR 79.54 - Tier 3.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emission control equipment. (3) A manufacturer or group may be required to conduct biological and/or... Requiring Tier 3 Testing. (1) Tier 3 testing shall be required of a manufacturer or group of manufacturers... products. Tier 3 testing may be conducted either on an individual basis or a group basis. If performed on a...

  11. 40 CFR 79.54 - Tier 3.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emission control equipment. (3) A manufacturer or group may be required to conduct biological and/or... Requiring Tier 3 Testing. (1) Tier 3 testing shall be required of a manufacturer or group of manufacturers... products. Tier 3 testing may be conducted either on an individual basis or a group basis. If performed on a...

  12. 40 CFR 79.54 - Tier 3.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emission control equipment. (3) A manufacturer or group may be required to conduct biological and/or... Requiring Tier 3 Testing. (1) Tier 3 testing shall be required of a manufacturer or group of manufacturers... products. Tier 3 testing may be conducted either on an individual basis or a group basis. If performed on a...

  13. 40 CFR 79.54 - Tier 3.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emission control equipment. (3) A manufacturer or group may be required to conduct biological and/or... Requiring Tier 3 Testing. (1) Tier 3 testing shall be required of a manufacturer or group of manufacturers... products. Tier 3 testing may be conducted either on an individual basis or a group basis. If performed on a...

  14. 40 CFR 79.54 - Tier 3.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emission control equipment. (3) A manufacturer or group may be required to conduct biological and/or... Requiring Tier 3 Testing. (1) Tier 3 testing shall be required of a manufacturer or group of manufacturers... products. Tier 3 testing may be conducted either on an individual basis or a group basis. If performed on a...

  15. In the Footsteps of Galileo

    NASA Astrophysics Data System (ADS)

    Erickson, John; van der Veen, W.; Moody, T.; O'Dea, T.

    2008-05-01

    This workshop links the goals of IYA to needs in science education. Lack of understanding of how science is practiced exists at all levels of society and is perpetuated by the way science is presented in classrooms and informal settings, often illustrated by the scientific method as a rigid multi-step process. This workshop presents an alternative to misleading scientific method lessons by highlighting some of Galileo's work. Looking through his telescope at four moons orbiting the planet Jupiter, Galileo gave priority to evidence over popular belief, completely changing the existing world view. We have adapted an activity developed by UC Berkeley's Lawrence Hall of Science in which students simulate observations of Jupiter's moons over several nights. The activity emphasizes the nature of science in regard to observations, evidence, predictions, models, hypotheses, and theories. A direct link is made between Galileo's work and the Five Essential Features of Inquiry as outlined in the National Science Education Standards. Participants will "observe” the Galilean moons of Jupiter, record data, make predictions, and analyze and model the data to determine orbital periods and distances for each moon. Extensions of this activity will be presented, including comparisons of the Jupiter system to the Earth-Moon system. Participants will also learn about Slooh, a robotic telescope that can be used by students to obtain their own images of Jupiter and its moons. As one way to have a multitude of learners in a variety of settings participate in IYA, this activity will be made available to many audiences for presentation in the fall of 2009. Participants in this workshop will discuss adaptations suitable for different groups and mechanisms for encouraging and enabling the presentation of this activity. Participants will receive a preliminary version of the adapted Jupiter activity and the BSCS publication: "Why Does Inquiry Matter?"

  16. Geology of the Icy Galilean Satellites: Understanding Crustal Processes and Geologic Histories Through the JIMO Mission

    NASA Technical Reports Server (NTRS)

    Figueredo, P. H.; Tanaka, K.; Senske, D.; Greeley, R.

    2003-01-01

    Knowledge of the geology, style and time history of crustal processes on the icy Galilean satellites is necessary to understanding how these bodies formed and evolved. Data from the Galileo mission have provided a basis for detailed geologic and geo- physical analysis. Due to constrained downlink, Galileo Solid State Imaging (SSI) data consisted of global coverage at a -1 km/pixel ground sampling and representative, widely spaced regional maps at -200 m/pixel. These two data sets provide a general means to extrapolate units identified at higher resolution to lower resolution data. A sampling of key sites at much higher resolution (10s of m/pixel) allows evaluation of processes on local scales. We are currently producing the first global geological map of Europa using Galileo global and regional-scale data. This work is demonstrating the necessity and utility of planet-wide contiguous image coverage at global, regional, and local scales.

  17. Ganymede - Dark Terrain in Galileo Regio

    NASA Image and Video Library

    1997-09-07

    This view of a part of the Galileo Regio region on Jupiter moon Ganymede shows fine details of the dark terrain that makes up about half of the surface of the planet-sized moon. http://photojournal.jpl.nasa.gov/catalog/PIA00278

  18. Comparison of one-tier and two-tier newborn screening metrics for congenital adrenal hyperplasia.

    PubMed

    Sarafoglou, Kyriakie; Banks, Kathryn; Gaviglio, Amy; Hietala, Amy; McCann, Mark; Thomas, William

    2012-11-01

    Newborn screening (NBS) for the classic forms of congenital adrenal hyperplasia (CAH) is mandated in all states in the United States. Compared with other NBS disorders, the false-positive rate (FPR) of CAH screening remains high and has not been significantly improved by adjusting 17α-hydroxyprogesterone cutoff values for birth weight and/or gestational age. Minnesota was the first state to initiate, and only 1 of 4 states currently performing, second-tier steroid profiling for CAH. False-negative rates (FNRs) for CAH are not well known. This is a population-based study of all Minnesota infants (769,834) born 1999-2009, grouped by screening protocol (one-tier with repeat screen, January 1999 to May 2004; two-tier with second-tier steroid profiling, June 2004 to December 2009). FPR, FNR, and positive predictive value (PPV) were calculated per infant, rather than per sample, and compared between protocols. Overall, 15 false-negatives (4 salt-wasting, 11 simple-virilizing) and 45 true-positives were identified from 1999 to 2009. With two-tier screening, FNR was 32%, FPR increased to 0.065%, and PPV decreased to 8%, but these changes were not statistically significant. Second-tier steroid profiling obviated repeat screens of borderline results (355 per year average). In comparing the 2 screening protocols, the FPR of CAH NBS remains high, the PPV remains low, and false-negatives occur more frequently than has been reported. Physicians should be cautioned that a negative NBS does not necessarily rule out classic CAH; therefore, any patient for whom there is clinical concern for CAH should receive immediate diagnostic testing.

  19. Ganymede - Comparison of Voyager and Galileo Resolution

    NASA Image and Video Library

    1997-09-07

    These images demonstrate the dramatic improvement in the resolution of pictures that NASA Galileo spacecraft returned compared to previous images of the Jupiter system. http://photojournal.jpl.nasa.gov/catalog/PIA00277

  20. Calibration of the Infrared Telescope Facility National Science Foundation Camera Jupiter Galileo Data Set

    NASA Astrophysics Data System (ADS)

    Vincent, Mark B.; Chanover, Nancy J.; Beebe, Reta F.; Huber, Lyle

    2005-10-01

    The NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii, set aside some time on about 500 nights from 1995 to 2002, when the NSFCAM facility infrared camera was mounted and Jupiter was visible, for a standardized set of observations of Jupiter in support of the Galileo mission. The program included observations of Jupiter, nearby reference stars, and dome flats in five filters: narrowband filters centered at 1.58, 2.28, and 3.53 μm, and broader L' and M' bands that probe the atmosphere from the stratosphere to below the main cloud layer. The reference stars were not cross-calibrated against standards. We performed follow-up observations to calibrate these stars and Jupiter in 2003 and 2004. We present a summary of the calibration of the Galileo support monitoring program data set. We present calibrated magnitudes of the six most frequently observed stars, calibrated reflectivities, and brightness temperatures of Jupiter from 1995 to 2004, and a simple method of normalizing the Jovian brightness to the 2004 results. Our study indicates that the NSFCAM's zero-point magnitudes were not stable from 1995 to early 1997, and that the best Jovian calibration possible with this data set is limited to about +/-10%. The raw images and calibration data have been deposited in the Planetary Data System.

  1. Galileo attitude and articulation control subsystem closed loop testing

    NASA Technical Reports Server (NTRS)

    Lembeck, M. F.; Pignatano, N. D.

    1983-01-01

    In order to ensure the reliable operation of the Attitude and Articulation Control Subsystem (AACS) which will guide the Galileo spacecraft on its two and one-half year journey to Jupiter, the AACS is being rigorously tested. The primary objectives of the test program are the verification of the AACS's form, fit, and function, especially with regard to subsystem external interfaces and the functional operation of the flight software. Attention is presently given to the Galileo Closed Loop Test System, which simulates the dynamic and 'visual' flight environment for AACS components in the laboratory.

  2. Galileo - Ganymede Family Night

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This videotape is a continuation of tape number NONP-NASA-VT-2000036029. When the Galileo spacecraft flew by Ganymede, Jupiter's and the solar system's largest satellite, the project scientist and engineers gather together with their friends and family to view the photos as they are received. This videotape presents the last part of that meeting, which culminates in the announcement of the confirmation of the fly-by, and a review of the current trajectory status.

  3. Galileo, Keplero e la "nuova scienza" sul finire dellíumanesimo

    NASA Astrophysics Data System (ADS)

    Pani, Giancarlo

    At the end of the 16th century, Humanism seems to be an out of place working hypothesis. Nevertheless, it was a strong presence in philology and in rhetoric, but also in the new science, particularly in Galileo and in Kepler. Both of them were mathematicians, astronomers, and Copernicans, but they also were bound by delicate religious questions. Kepler, a Protestant, was excommunicated by the Lutheran Church because of his Calvinist ideas; Galileo, a Catholic, was excommunicated by the Holy Office, since he promoted heliocentrism. Their relationship was difficult, and marked by a reciprocal lack of understanding, the history of which is studied here. Still, Galileo and Kepler were highly creative scholars, founders of astronomy, and played a leading role in scientific progress.

  4. Orientale and South Pole-Aitken basins on the Moon: Preliminary Galileo imaging results

    NASA Technical Reports Server (NTRS)

    Head, J.; Fischer, E.; Murchie, S.; Pieters, C.; Plutchak, J.; Sunshine, J.; Belton, M.; Carr, M.; Chapman, C.; Davies, M.

    1991-01-01

    During the Earth-Moon flyby the Galileo Solid State Imaging System obtained new information on the landscape and physical geology of the Moon. Multicolor Galileo images of the Moon reveal variations in color properties of the lunar surface. Using returned lunar samples as a key, the color differences can be interpreted in terms of variations in the mineral makeup of the lunar rocks and soil. The combined results of Apollo landings and multicolor images from Galileo allow extrapolation of surface composition to areas distant from the landing sites, including the far side invisible from Earth.

  5. Striking structural dynamism and nucleotide sequence variation of the transposon Galileo in the genome of Drosophila mojavensis

    PubMed Central

    2013-01-01

    Background Galileo is a transposable element responsible for the generation of three chromosomal inversions in natural populations of Drosophila buzzatii. Although the most characteristic feature of Galileo is the long internally-repetitive terminal inverted repeats (TIRs), which resemble the Drosophila Foldback element, its transposase-coding sequence has led to its classification as a member of the P-element superfamily (Class II, subclass 1, TIR order). Furthermore, Galileo has a wide distribution in the genus Drosophila, since it has been found in 6 of the 12 Drosophila sequenced genomes. Among these species, D. mojavensis, the one closest to D. buzzatii, presented the highest diversity in sequence and structure of Galileo elements. Results In the present work, we carried out a thorough search and annotation of all the Galileo copies present in the D. mojavensis sequenced genome. In our set of 170 Galileo copies we have detected 5 Galileo subfamilies (C, D, E, F, and X) with different structures ranging from nearly complete, to only 2 TIR or solo TIR copies. Finally, we have explored the structural and length variation of the Galileo copies that point out the relatively frequent rearrangements within and between Galileo elements. Different mechanisms responsible for these rearrangements are discussed. Conclusions Although Galileo is a transposable element with an ancient history in the D. mojavensis genome, our data indicate a recent transpositional activity. Furthermore, the dynamism in sequence and structure, mainly affecting the TIRs, suggests an active exchange of sequences among the copies. This exchange could lead to new subfamilies of the transposon, which could be crucial for the long-term survival of the element in the genome. PMID:23374229

  6. Striking structural dynamism and nucleotide sequence variation of the transposon Galileo in the genome of Drosophila mojavensis.

    PubMed

    Marzo, Mar; Bello, Xabier; Puig, Marta; Maside, Xulio; Ruiz, Alfredo

    2013-02-04

    Galileo is a transposable element responsible for the generation of three chromosomal inversions in natural populations of Drosophila buzzatii. Although the most characteristic feature of Galileo is the long internally-repetitive terminal inverted repeats (TIRs), which resemble the Drosophila Foldback element, its transposase-coding sequence has led to its classification as a member of the P-element superfamily (Class II, subclass 1, TIR order). Furthermore, Galileo has a wide distribution in the genus Drosophila, since it has been found in 6 of the 12 Drosophila sequenced genomes. Among these species, D. mojavensis, the one closest to D. buzzatii, presented the highest diversity in sequence and structure of Galileo elements. In the present work, we carried out a thorough search and annotation of all the Galileo copies present in the D. mojavensis sequenced genome. In our set of 170 Galileo copies we have detected 5 Galileo subfamilies (C, D, E, F, and X) with different structures ranging from nearly complete, to only 2 TIR or solo TIR copies. Finally, we have explored the structural and length variation of the Galileo copies that point out the relatively frequent rearrangements within and between Galileo elements. Different mechanisms responsible for these rearrangements are discussed. Although Galileo is a transposable element with an ancient history in the D. mojavensis genome, our data indicate a recent transpositional activity. Furthermore, the dynamism in sequence and structure, mainly affecting the TIRs, suggests an active exchange of sequences among the copies. This exchange could lead to new subfamilies of the transposon, which could be crucial for the long-term survival of the element in the genome.

  7. 40 CFR 87.23 - Exhaust emission standards for Tier 6 and Tier 8 engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Exhaust emission standards for Tier 6 and Tier 8 engines. 87.23 Section 87.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) Definitions. Exhaust Emissions (New Aircraft Gas Turbine Engines) § 87...

  8. Artist: Ken Hodges Composite image explaining Objective and Motivation for Galileo Probe Heat Loads:

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Artist: Ken Hodges Composite image explaining Objective and Motivation for Galileo Probe Heat Loads: Galileo Probe descending into Jupiters Atmosphere shows heat shield separation with parachute deployed. (Ref. JPL P-19180)

  9. Acute tier-1 and tier-2 effect assessment approaches in the EFSA Aquatic Guidance Document: are they sufficiently protective for insecticides?

    PubMed

    van Wijngaarden, René P A; Maltby, Lorraine; Brock, Theo C M

    2015-08-01

    The objective of this paper is to evaluate whether the acute tier-1 and tier-2 methods as proposed by the Aquatic Guidance Document recently published by the European Food Safety Authority (EFSA) are appropriate for deriving regulatory acceptable concentrations (RACs) for insecticides. The tier-1 and tier-2 RACs were compared with RACs based on threshold concentrations from micro/mesocosm studies (ETO-RAC). A lower-tier RAC was considered as sufficiently protective, if less than the corresponding ETO-RAC. ETO-RACs were calculated for repeated (n = 13) and/or single pulsed applications (n = 17) of 26 insecticides to micro/mesocosms, giving a maximum of 30 insecticide × application combinations (i.e. cases) for comparison. Acute tier-1 RACs (for 24 insecticides) were lower than the corresponding ETO-RACs in 27 out of 29 cases, while tier-2 Geom-RACs (for 23 insecticides) were lower in 24 out of 26 cases. The tier-2 SSD-RAC (for 21 insecticides) using HC5 /3 was lower than the ETO-RAC in 23 out of 27 cases, whereas the tier-2 SSD-RAC using HC5 /6 was protective in 25 out of 27 cases. The tier-1 and tier-2 approaches proposed by EFSA for acute effect assessment are sufficiently protective for the majority of insecticides evaluated. Further evaluation may be needed for insecticides with more novel chemistries (neonicotinoids, biopesticides) and compounds that show delayed effects (insect growth regulators). © 2014 Society of Chemical Industry.

  10. Implementation Challenges for Tier One and Tier Two School-Based Programs for Early Adolescents

    ERIC Educational Resources Information Center

    LaRusso, Maria D.; Donovan, Suzanne; Snow, Catherine

    2016-01-01

    This mixed-method study examined the implementation and the challenges to implementation for participants in randomized controlled trials of two school-based programs for early adolescents: the Tier One Word Generation (WG) program, and the Tier Two Strategic Adolescent Reading Intervention (STARI). Levels of implementation for WG and STARI varied…

  11. Galileo and Descartes on Copernicanism and the cause of the tides.

    PubMed

    Schmaltz, Tad M

    2015-06-01

    Galileo and Descartes were on the front lines of the defense of Copernicanism against theological objections that took on special importance during the seventeenth century. Galileo attempted to overcome opposition to Copernicanism within the Catholic Church by offering a demonstration of this theory that appeals to the fact that the double motion of the earth is necessary as a cause of the tides. It turns out, however, that the details of Galileo's tidal theory compromise his demonstration. Far from attempting to provide a demonstration of the earth's motion, Descartes ultimately argued that his system is compatible with the determination of the Church that the earth is at rest. Nonetheless, Descartes's account of the cause of the tides creates difficulty for this argument. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. 50 CFR 86.53 - What are funding tiers?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false What are funding tiers? 86.53 Section 86... project merits. (d) We describe the two tiers as follows: (1) Tier One Projects. (i) You may submit a... $100,000 of Federal funds for any given fiscal year. (ii) Tier One projects must meet the eligibility...

  13. 47 CFR 76.922 - Rates for the basic service tier and cable programming services tiers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Rates for the basic service tier and cable programming services tiers. 76.922 Section 76.922 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Rate Regulation...

  14. Tiered Approach to Resilience Assessment.

    PubMed

    Linkov, Igor; Fox-Lent, Cate; Read, Laura; Allen, Craig R; Arnott, James C; Bellini, Emanuele; Coaffee, Jon; Florin, Marie-Valentine; Hatfield, Kirk; Hyde, Iain; Hynes, William; Jovanovic, Aleksandar; Kasperson, Roger; Katzenberger, John; Keys, Patrick W; Lambert, James H; Moss, Richard; Murdoch, Peter S; Palma-Oliveira, Jose; Pulwarty, Roger S; Sands, Dale; Thomas, Edward A; Tye, Mari R; Woods, David

    2018-04-25

    Regulatory agencies have long adopted a three-tier framework for risk assessment. We build on this structure to propose a tiered approach for resilience assessment that can be integrated into the existing regulatory processes. Comprehensive approaches to assessing resilience at appropriate and operational scales, reconciling analytical complexity as needed with stakeholder needs and resources available, and ultimately creating actionable recommendations to enhance resilience are still lacking. Our proposed framework consists of tiers by which analysts can select resilience assessment and decision support tools to inform associated management actions relative to the scope and urgency of the risk and the capacity of resource managers to improve system resilience. The resilience management framework proposed is not intended to supplant either risk management or the many existing efforts of resilience quantification method development, but instead provide a guide to selecting tools that are appropriate for the given analytic need. The goal of this tiered approach is to intentionally parallel the tiered approach used in regulatory contexts so that resilience assessment might be more easily and quickly integrated into existing structures and with existing policies. Published 2018. This article is a U.S. government work and is in the public domain in the USA.

  15. Ganymede - Ancient Impact Craters in Galileo Regio

    NASA Image and Video Library

    1997-09-07

    Ancient impact craters shown in this image of Jupiter moon Ganymede taken by NASA Galileo spacecraft testify to the great age of the terrain, dating back several billion years. http://photojournal.jpl.nasa.gov/catalog/PIA00279

  16. Decoder synchronization for deep space missions

    NASA Technical Reports Server (NTRS)

    Statman, J. I.; Cheung, K.-M.; Chauvin, T. H.; Rabkin, J.; Belongie, M. L.

    1994-01-01

    The Consultative Committee for Space Data Standards (CCSDS) recommends that space communication links employ a concatenated, error-correcting, channel-coding system in which the inner code is a convolutional (7,1/2) code and the outer code is a (255,223) Reed-Solomon code. The traditional implementation is to perform the node synchronization for the Viterbi decoder and the frame synchronization for the Reed-Solomon decoder as separate, sequential operations. This article discusses a unified synchronization technique that is required for deep space missions that have data rates and signal-to-noise ratios (SNR's) that are extremely low. This technique combines frame synchronization in the bit and symbol domains and traditional accumulated-metric growth techniques to establish a joint frame and node synchronization. A variation on this technique is used for the Galileo spacecraft on its Jupiter-bound mission.

  17. Single-Tier Testing with the C6 Peptide ELISA Kit Compared with Two-Tier Testing for Lyme Disease

    PubMed Central

    Wormser, Gary P.; Schriefer, Martin; Aguero-Rosenfeld, Maria E.; Levin, Andrew; Steere, Allen C.; Nadelman, Robert B.; Nowakowski, John; Marques, Adriana; Johnson, Barbara J. B.; Dumler, J. Stephen

    2014-01-01

    Background The two-tier serologic testing protocol for Lyme disease has a number of shortcomings including low sensitivity in early disease; increased cost, time and labor; and subjectivity in the interpretation of immunoblots. Methods The diagnostic accuracy of a single-tier commercial C6 ELISA kit was compared with two-tier testing. Results The C6 ELISA was significantly more sensitive than two-tier testing with sensitivities of 66.5% (95% C.I.:61.7-71.1) and 35.2% (95%C.I.:30.6-40.1), respectively (p<0.001) in 403 sera from patients with erythema migrans. The C6 ELISA had sensitivity statistically comparable to two-tier testing in sera from Lyme disease patients with early neurological manifestations (88.6% vs. 77.3%, p=0.13) or arthritis (98.3% vs. 95.6%, p= 0.38). Te specificities of C6 ELISA and two-tier testing in over 2200 blood donors, patients with other conditions, and Lyme disease vaccine recipients were found to be 98.9% and 99.5%, respectively (p<0.05, 95% C.I. surrounding the 0.6 percentage point difference of 0.04 to 1.15). Conclusions Using a reference standard of two-tier testing, the C6 ELISA as a single step serodiagnostic test provided increased sensitivity in early Lyme disease with comparable sensitivity in later manifestations of Lyme disease. The C6 ELISA had slightly decreased specificity. Future studies should evaluate the performance of the C6 ELISA compared with two-tier testing in routine clinical practice. PMID:23062467

  18. 75 FR 57958 - Solicitation of Written Comments on Draft Tier 2 Strategies/Modules for Inclusion in the “HHS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Solicitation of Written Comments on Draft Tier 2...'' AGENCY: Department of Health and Human Services, Office of the Assistant Secretary for Health, Office of....'' To further the HHS mission to protect the health and well-being of the nation, the HHS Steering...

  19. 6 CFR 27.220 - Tiering.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 6 Domestic Security 1 2014-01-01 2014-01-01 false Tiering. 27.220 Section 27.220 Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY CHEMICAL FACILITY ANTI-TERRORISM STANDARDS Chemical... Risk-Based Tiering. Following review of a covered facility's Security Vulnerability Assessment, the...

  20. 6 CFR 27.220 - Tiering.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 6 Domestic Security 1 2013-01-01 2013-01-01 false Tiering. 27.220 Section 27.220 Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY CHEMICAL FACILITY ANTI-TERRORISM STANDARDS Chemical... Risk-Based Tiering. Following review of a covered facility's Security Vulnerability Assessment, the...

  1. 6 CFR 27.220 - Tiering.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 6 Domestic Security 1 2011-01-01 2011-01-01 false Tiering. 27.220 Section 27.220 Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY CHEMICAL FACILITY ANTI-TERRORISM STANDARDS Chemical... Risk-Based Tiering. Following review of a covered facility's Security Vulnerability Assessment, the...

  2. 6 CFR 27.220 - Tiering.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 6 Domestic Security 1 2012-01-01 2012-01-01 false Tiering. 27.220 Section 27.220 Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY CHEMICAL FACILITY ANTI-TERRORISM STANDARDS Chemical... Risk-Based Tiering. Following review of a covered facility's Security Vulnerability Assessment, the...

  3. The Galileo System of Measurement: Preliminary Evidence for Precision, Stability, and Equivalance to Traditional Measures

    ERIC Educational Resources Information Center

    Gillham, James; Woelfel, Joseph

    1977-01-01

    Describes the Galileo system of measurement operations including reliability and validity data. Illustrations of some of the relations between Galileo measures and traditional procedures are provided. (MH)

  4. Perspectives of The Interagency Nuclear Safety Review Panel (INSRP) on future nuclear powered space missions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, L.B.; Pyatt, D.W.; Sholtis, J.A.

    1993-01-10

    The Interagency Nuclear Safety Review Panel (INSRP) has provided reviews of all nuclear powered spacecraft launched by the United States. The two most recent launches were Ulysses in 1990 and Galileo in 1989. One reactor was launched in 1965 (SNAP-10A). All other U.S. space missions have utilized radioisotopic thermoelectric generators (RTGs). There are several missions in the next few years that are to be nuclear powered, including one that would utilize the Topaz II reactor purchased from Russia. INSRP must realign itself to perform parallel safety assessments of a reactor powered space mission, which has not been done in aboutmore » thirty years, and RTG powered missions.« less

  5. 18 CFR 707.9 - Tiering.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Tiering. 707.9 Section 707.9 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COMPLIANCE WITH THE NATIONAL ENVIRONMENTAL POLICY ACT (NEPA) Water Resources Council Implementing Procedures § 707.9 Tiering. In accordance...

  6. 18 CFR 707.9 - Tiering.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Tiering. 707.9 Section 707.9 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COMPLIANCE WITH THE NATIONAL ENVIRONMENTAL POLICY ACT (NEPA) Water Resources Council Implementing Procedures § 707.9 Tiering. In accordance...

  7. 18 CFR 707.9 - Tiering.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Tiering. 707.9 Section 707.9 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COMPLIANCE WITH THE NATIONAL ENVIRONMENTAL POLICY ACT (NEPA) Water Resources Council Implementing Procedures § 707.9 Tiering. In accordance...

  8. 18 CFR 707.9 - Tiering.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Tiering. 707.9 Section 707.9 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COMPLIANCE WITH THE NATIONAL ENVIRONMENTAL POLICY ACT (NEPA) Water Resources Council Implementing Procedures § 707.9 Tiering. In accordance...

  9. 18 CFR 707.9 - Tiering.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Tiering. 707.9 Section 707.9 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COMPLIANCE WITH THE NATIONAL ENVIRONMENTAL POLICY ACT (NEPA) Water Resources Council Implementing Procedures § 707.9 Tiering. In accordance...

  10. A statistical characterization of the Galileo-to-GPS inter-system bias

    NASA Astrophysics Data System (ADS)

    Gioia, Ciro; Borio, Daniele

    2016-11-01

    Global navigation satellite system operates using independent time scales and thus inter-system time offsets have to be determined to enable multi-constellation navigation solutions. GPS/Galileo inter-system bias and drift are evaluated here using different types of receivers: two mass market and two professional receivers. Moreover, three different approaches are considered for the inter-system bias determination: in the first one, the broadcast Galileo to GPS time offset is used to align GPS and Galileo time scales. In the second, the inter-system bias is included in the multi-constellation navigation solution and is estimated using the measurements available. Finally, an enhanced algorithm using constraints on the inter-system bias time evolution is proposed. The inter-system bias estimates obtained with the different approaches are analysed and their stability is experimentally evaluated using the Allan deviation. The impact of the inter-system bias on the position velocity time solution is also considered and the performance of the approaches analysed is evaluated in terms of standard deviation and mean errors for both horizontal and vertical components. From the experiments, it emerges that the inter-system bias is very stable and that the use of constraints, modelling the GPS/Galileo inter-system bias behaviour, significantly improves the performance of multi-constellation navigation.

  11. Paterae on Io: Volcanic Activity Observed by Galileo's NIMS and SSI

    NASA Technical Reports Server (NTRS)

    Lopes, Rosaly; Kamp, Lucas; Smythe, W. D.; Carlson, R.; Radebaugh, Jani; Gregg, Tracy K.

    2003-01-01

    Paterae are the most ubiquitous volcanic construct on Io s surface. Paterae are irregular craters, or complex craters with scalloped edges, interpreted as calderas or pit craters. Data from Galileo has shown that the activity of Ionian paterae is often confined to its interior and that generally lava flows are not seen spilling out over the edges. We use observations from Galileo s Near-Infrared Mapping Spectrometer (NIMS) to study the thermal emission from several Ionian paterae and compare them with images in visible wavelengths obtained by Galileo s Solid State Imaging System (SSI). Galileo s close fly-bys of Io from 1999 to 2001 have allowed NIMS to image the paterae at high spatial resolution (1-30 km pixel). At these scales, several of these features reveal greater thermal emission around the edges, which can be explained as the crust of a lava lake breaking up against the paterae walls. Comparisons with imaging data show that lower albedo areas (which are indicative of young lavas) coincide with higher thermal emission areas on NIMS data. Other paterae, however, show thermal emission and features in the visible that are more consistent with lava flows over a solid patera floor. Identifying eruption styles on Io is important for constraining eruption and interior models on Io.

  12. Labeled line drawing of Galileo spacecraft's atmospheric probe

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Labeled line drawing entitled GALILEO PROBE identifies the deceleration module aft cover, descent module, and deceleration module aeroshell configurations and dimensions prior to and during entry into Jupiter's atmosphere.

  13. Labeled line drawing of Galileo spacecraft's atmospheric probe

    NASA Image and Video Library

    1989-09-11

    Labeled line drawing entitled GALILEO PROBE identifies the deceleration module aft cover, descent module, and deceleration module aeroshell configurations and dimensions prior to and during entry into Jupiter's atmosphere.

  14. Single-tier testing with the C6 peptide ELISA kit compared with two-tier testing for Lyme disease.

    PubMed

    Wormser, Gary P; Schriefer, Martin; Aguero-Rosenfeld, Maria E; Levin, Andrew; Steere, Allen C; Nadelman, Robert B; Nowakowski, John; Marques, Adriana; Johnson, Barbara J B; Dumler, J Stephen

    2013-01-01

    For the diagnosis of Lyme disease, the 2-tier serologic testing protocol for Lyme disease has a number of shortcomings including low sensitivity in early disease; increased cost, time, and labor; and subjectivity in the interpretation of immunoblots. In this study, the diagnostic accuracy of a single-tier commercial C6 ELISA kit was compared with 2-tier testing. The results showed that the C6 ELISA was significantly more sensitive than 2-tier testing with sensitivities of 66.5% (95% confidence interval [CI] 61.7-71.1) and 35.2% (95% CI 30.6-40.1), respectively (P < 0.001) in 403 sera from patients with erythema migrans. The C6 ELISA had sensitivity statistically comparable to 2-tier testing in sera from Lyme disease patients with early neurologic manifestations (88.6% versus 77.3%, P = 0.13) or arthritis (98.3% versus 95.6%, P = 0.38). The specificities of C6 ELISA and 2-tier testing in over 2200 blood donors, patients with other conditions, and Lyme disease vaccine recipients were found to be 98.9% and 99.5%, respectively (P < 0.05, 95% CI surrounding the 0.6 percentage point difference of 0.04 to 1.15). In conclusion, using a reference standard of 2-tier testing, the C6 ELISA as a single-step serodiagnostic test provided increased sensitivity in early Lyme disease with comparable sensitivity in later manifestations of Lyme disease. The C6 ELISA had slightly decreased specificity. Future studies should evaluate the performance of the C6 ELISA compared with 2-tier testing in routine clinical practice. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. SWPBIS Tiered Fidelity Inventory. Version 2.1

    ERIC Educational Resources Information Center

    Algozzine, B.; Barrett, S.; Eber, L.; George, H.; Horner, R.; Lewis, T.; Putnam, B.; Swain-Bradway, J.; McIntosh, K.; Sugai, G.

    2014-01-01

    The purpose of the SWPBIS Tiered Fidelity Inventory (TFI) is to provide a valid, reliable, and efficient measure of the extent to which school personnel are applying the core features of school-wide positive behavioral interventions and supports (SWPBIS). The TFI is divided into three sections (Tier I: Universal SWPBIS Features; Tier II: Targeted…

  16. The impact of tiered physician networks on patient choices.

    PubMed

    Sinaiko, Anna D; Rosenthal, Meredith B

    2014-08-01

    To assess whether patient choice of physician or health plan was affected by physician tier-rankings. Administrative claims and enrollment data on 171,581 nonelderly beneficiaries enrolled in Massachusetts Group Insurance Commission health plans that include a tiered physician network and who had an office visit with a tiered physician. We estimate the impact of tier-rankings on physician market share within a plan of new patients and on the percent of a physician's patients who switch to other physicians with fixed effects regression models. The effect of tiering on consumer plan choice is estimated using logistic regression and a pre-post study design. Physicians in the bottom (least-preferred) tier, particularly certain specialist physicians, had lower market share of new patient visits than physicians with higher tier-rankings. Patients whose physician was in the bottom tier were more likely to switch health plans. There was no effect of tier-ranking on patients switching away from physicians whom they have seen previously. The effect of tiering appears to be among patients who choose new physicians and at the lower end of the distribution of tiered physicians, rather than moving patients to the "best" performers. These findings suggest strong loyalty of patients to physicians more likely to be considered their personal doctor. © Health Research and Educational Trust.

  17. On the potential of Galileo E5 for time transfer.

    PubMed

    Martínez-Belda, Mari Carmen; Defraigne, Pascale; Bruyninx, Carine

    2013-01-01

    The main global navigation satellite systems (GNSS) technique currently used for accurate time and frequency transfer is based on an analysis of the ionosphere-free combinations of dual-frequency code and carrier phase measurements in a precise point positioning (PPP) mode. This technique analyses the observations of one GNSS station using external products for satellite clocks and orbits to determine the position and clock synchronization errors of this station. The frequency stability of this time transfer is limited by the noise and multipath of the Global Positioning System (GPS) and Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS) codes. In the near future, Galileo will offer a broadband signal E5, with low noise in the centimeter range and with the lowest multipath error ever observed. This paper investigates new analysis procedures based on the E5 codeplus- carrier (CPC) combination for time transfer. The CPC combination with E5 provides a noise level 10 times lower than the ionosphere-free combination of Galileo E1 and E5, which is very promising for improving GNSS time transfer performances. From some tests with simulated Galileo data, it is shown here that the use of the CPC combination with E5 does not improve, at present, the medium- and long-term stability of time transfer with respect to the ionosphere-free combination of Galileo E1 and E5 codes, because of the need for a second frequency signal to correct for the ionospheric delays and ambiguities.

  18. Multi-Tiered System of Support: Best Differentiation Practices for English Language Learners in Tier 1

    ERIC Educational Resources Information Center

    Izaguirre, Cecilia

    2017-01-01

    Purpose: This qualitative case study explored the best practices of differentiation of Tier 1 instruction within a multi-tiered system of support for English Language Learners who were predominately Spanish speaking. Theoretical Framework: The zone of proximal development theory, cognitive theory, and the affective filter hypothesis guided this…

  19. A two-tiered approach to assessing the habitability of exoplanets.

    PubMed

    Schulze-Makuch, Dirk; Méndez, Abel; Fairén, Alberto G; von Paris, Philip; Turse, Carol; Boyer, Grayson; Davila, Alfonso F; António, Marina Resendes de Sousa; Catling, David; Irwin, Louis N

    2011-12-01

    In the next few years, the number of catalogued exoplanets will be counted in the thousands. This will vastly expand the number of potentially habitable worlds and lead to a systematic assessment of their astrobiological potential. Here, we suggest a two-tiered classification scheme of exoplanet habitability. The first tier consists of an Earth Similarity Index (ESI), which allows worlds to be screened with regard to their similarity to Earth, the only known inhabited planet at this time. The ESI is based on data available or potentially available for most exoplanets such as mass, radius, and temperature. For the second tier of the classification scheme we propose a Planetary Habitability Index (PHI) based on the presence of a stable substrate, available energy, appropriate chemistry, and the potential for holding a liquid solvent. The PHI has been designed to minimize the biased search for life as we know it and to take into account life that might exist under more exotic conditions. As such, the PHI requires more detailed knowledge than is available for any exoplanet at this time. However, future missions such as the Terrestrial Planet Finder will collect this information and advance the PHI. Both indices are formulated in a way that enables their values to be updated as technology and our knowledge about habitable planets, moons, and life advances. Applying the proposed metrics to bodies within our Solar System for comparison reveals two planets in the Gliese 581 system, GJ 581 c and d, with an ESI comparable to that of Mars and a PHI between that of Europa and Enceladus.

  20. Survey of the supporting research and technology for the thermal protection of the Galileo Probe

    NASA Technical Reports Server (NTRS)

    Howe, J. T.; Pitts, W. C.; Lundell, J. H.

    1981-01-01

    The Galileo Probe, which is scheduled to be launched in 1985 and to enter the hydrogen-helium atmosphere of Jupiter up to 1,475 days later, presents thermal protection problems that are far more difficult than those experienced in previous planetary entry missions. The high entry speed of the Probe will cause forebody heating rates orders of magnitude greater than those encountered in the Apollo and Pioneer Venus missions, severe afterbody heating from base-flow radiation, and thermochemical ablation rates for carbon phenolic that rival the free-stream mass flux. This paper presents a comprehensive survey of the experimental work and computational research that provide technological support for the Probe's heat-shield design effort. The survey includes atmospheric modeling; both approximate and first-principle computations of flow fields and heat-shield material response; base heating; turbulence modelling; new computational techniques; experimental heating and materials studies; code validation efforts; and a set of 'consensus' first-principle flow-field solutions through the entry maneuver, with predictions of the corresponding thermal protection requirements.

  1. Ultraviolet Studies of Jupiter's Hydrocarbons and Aerosols from Galileo

    NASA Technical Reports Server (NTRS)

    Gladstone, G. Randall

    2001-01-01

    This is the final report for this project. The purpose of this project was to support PI Wayne Pryor's effort to reduce and analyze Galileo UVS (Ultraviolet Spectrometer) data under the JSDAP program. The spectral observations made by the Galileo UVS were to be analyzed to determine mixing ratios for important hydrocarbon species (and aerosols) in Jupiter's stratosphere as a function of location on Jupiter. Much of this work is still ongoing. To date, we have concentrated on analyzing the variability of the auroral emissions rather than the absorption signatures of hydrocarbons, although we have done some work in this area with related HST-STIS data.

  2. Combining Tier 2 and Tier 3 Supports for Students with Disabilities in General Education Settings

    ERIC Educational Resources Information Center

    MacLeod, K. Sandra; Hawken, Leanne S.; O'Neill, Robert E.; Bundock, Kaitlin

    2016-01-01

    Secondary level or Tier 2 interventions such as the Check-in Check-out (CICO) intervention effectively reduce problem behaviors of students who are non-responsive to school-wide interventions. However, some students will not be successful with Tier 2 interventions. This study investigated the effects of adding individualized function-based support…

  3. Status of Galileo interim radiation electron model

    NASA Technical Reports Server (NTRS)

    Garrett, H. B.; Jun, I.; Ratliff, J. M.; Evans, R. W.; Clough, G. A.; McEntire, R. W.

    2003-01-01

    Measurements of the high energy, omni-directional electron environment by the Galileo spacecraft Energetic Particle Detector (EDP) were used to develop a new model of Jupiter's trapped electron radiation in the jovian equatorial plane for the range 8 to 16 Jupiter radii.

  4. Analysis of Gaspra lightcurves using Galileo shape and photometric models

    NASA Technical Reports Server (NTRS)

    Simonelli, Damon P.; Veverka, J.; Thomas, P. C.; Helfenstein, P.; Belton, M. J. S.

    1995-01-01

    Galileo-based models for the shape of 951 Gaspra and the global-average photometric behavior of its surface have been used to model a representative subset of the asteroid's telescopic lightcurves. Fitting the synthetic lightcurves to the observed timing of lightcurve extrema, and knowing the orientation of Gaspra's axes at the time of the Galileo flyby, leads to a sidereal rotation period for the asteroid of 7.042024 +/- 0.000020 hr, a slight change from the period reported by Magnusson et al. (1992). Initially, the shapes, amplitudes, and absolute photometry of the synthetic and observed lightcurves agree with each other to within 0.05-0.1 mag. Small modifications to the Gaspra shape model on sides of the asteroid poorly imaged by Galileo (changes of 700 m or less in the southern hemisphere at longitudes 90 deg-270 deg W) reduce the typical discrepancies to approximately 0.05 mag in lightcurve shape and less than 0.03 mag in absolute photometry. The result demonstrates that Earth-based lightcurves can be used to refine the shape of a spacecraft-imaged irregular object in areas that are poorly constrained by the spacecraft observations. The consistency and phase-angle dependence of the Galileo-based model for Gaspra photometry, supports the accuracy of the absolute calibration of the Galileo SSI camera, and confirms the Earth-based determination of the V-filter geometric albedo of the asteroid (0.22 +/- 0.03; Tholen et al., submitted for publication). Remaining discrepancies between the synthetic and observed lightcurves show no indication of systematic latitudinal variations in albedo and also cannot be explained entirely by isolated albedo spots. These discrepancies are most likely caused by (1) small, remaining, hard-to-constrain errors in the Gaspra shape model and/or (2) moderate variations in macroscopic roughness across the asteroid's surface, in particular making longitudes 130 deg to 300 deg W moderately rougher than the opposite hemisphere.

  5. Line drawing of the Galileo spacecraft's encounters on its way to Jupiter

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Line drawing charts the Galileo spacecraft's launch from low Earth orbit and its three planetary and two asteroid encounters in the course of its gravity-assisted flight to Jupiter. These encounters include Venus (February 1990), two Earth passes (December 1990 and December 1992), and the asteroids Gaspra and Ida in the asteroid belt. Galileo will release a probe and will arrive at Jupiter, 12-07-95.

  6. Line drawing of the Galileo spacecraft's encounters on its way to Jupiter

    NASA Image and Video Library

    1989-09-11

    Line drawing charts the Galileo spacecraft's launch from low Earth orbit and its three planetary and two asteroid encounters in the course of its gravity-assisted flight to Jupiter. These encounters include Venus (February 1990), two Earth passes (December 1990 and December 1992), and the asteroids Gaspra and Ida in the asteroid belt. Galileo will release a probe and will arrive at Jupiter, 12-07-95.

  7. Getting the GeoSTAR Instrument Concept Ready for a Space Mission

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, B.; Gaier, T.; Kangaslahti, P.; Lim, B.; Tanner, A.; Ruf, C.

    2011-01-01

    The Geostationary Synthetic Thinned Array Radiometer - GeoSTAR - is a microwave sounder intended for geostationary satellites. First proposed for the EO-3 New Millennium mission in 1999, the technology has since been developed under the Instrument Incubator Program. Under IIP-03 a proof-of-concept demonstrator operating in the temperature sounding 50 GHz band was developed to show that the aperture synthesis concept results in a realizable, stable and accurate imaging-sounding radiometer. Some of the most challenging technology, such as miniature low-power 183- GHz receivers used for water vapor sounding, was developed under IIP-07. The first such receiver has recently been adapted for use in the High Altitude MMIC Sounding Radiometer (HAMSR), which was previously developed under IIP-98. This receiver represents a new state of the art and outperforms the previous benchmark by an order of magnitude in radiometric sensitivity. It was first used in the GRIP hurricane field campaign in 2010, where HAMSR became the first microwave sounder to fly on the Global Hawk UAV. Now, under IIP-10, we will develop flight-like subsystems and a brassboard testing system, which will facilitate rapid implementation of a space mission. GeoSTAR is the baseline payload for the Precipitation and All-weather Temperature and Humidity (PATH) mission - one of NASA's 15 "decadal-survey" missions. Although PATH is currently in the third tier of those missions, the IIP efforts have advanced the required technology to a point where a space mission can be initiated in a time frame commensurate with second-tier missions. An even earlier Venture mission is also being considered.

  8. Galileo, Gauss, and the Green Monster

    ERIC Educational Resources Information Center

    Kalman, Dan; Teague, Daniel J.

    2013-01-01

    Galileo dropped cannonballs from the leaning tower of Pisa to demonstrate something about falling bodies. Gauss was a giant of mathematics and physics who made unparalleled contributions to both fields. More contemporary (and not a person), the Green Monster is the left-field wall at the home of the Boston Red Sox, Fenway Park. Measuring 37 feet…

  9. Variations in patient response to tiered physician networks.

    PubMed

    Sinaiko, Anna D

    2016-06-01

    Prior studies found that tiered provider networks channel patients to preferred providers in certain contexts. This paper evaluates whether the effects of tiered physician networks vary for different types of patients. Cross-sectional analysis of fiscal year 2009 to 2010 administrative enrollment and claims data on nonelderly beneficiaries in Massachusetts Group Insurance Commission health plans. Main outcome measures are physician market share among new patients and the percent of physician's patients who switch away. We utilized estimated fixed effects linear regression models that were stratified by patient characteristics. Physicians with the worst tier rankings had lower market share among new patients who are older and sicker, or male, representing losses in market share of 10% and 15%, respectively, than other tiered physicians. A poor tier ranking did not affect physician market share of new patients who are female or younger. There was no effect of a physician's tier ranking on the proportion of patients who switch to other doctors among any groups of patients. Loyalty to their own physicians is pervasive across groups of patients. Physicians with poor tier rankings lost market share among new patients who are older and sicker, and among new male patients. Together, these findings suggest that tiered network designs have the potential for the greatest impact on value in healthcare over time, as more patients seek new relationships with physicians.

  10. Learning from the Starry Message: Using Galileo's "Sidereus Nuncius" in Introductory Astronomy Classes

    ERIC Educational Resources Information Center

    Wiesner, Matthew P.

    2015-01-01

    Every introductory astronomy class encounters Galileo during the course as the first man to systematically study the sky with a telescope. Every Astronomy 101 student meets Galileo as one of the major catalysts behind the shift from the Ptolemaic to the Copernican system and as one of the great minds behind the scientific method. But most of the…

  11. Galileo SSI Observations of Volcanic Activity at Tvashtar Catena, Io

    NASA Technical Reports Server (NTRS)

    Milazzo, M. P.; Keszthely, L. P.; Radebaugh, J.; Davies, A. G.; Turtle, E. P.; Geissler, P.; Klaasen, K. P.; McEwen, A. S.

    2005-01-01

    Introduction: We report on the analysis of the Galileo SSI's observations of the volcanic activity at Tvashtar Catena, Io as discussed by Milazzo et al. Galileo's Solid State Imager (SSI) observed Tvashtar Catena (63 deg N, 120 deg W) four times between November 1999 and October 2001, providing a unique look at the distinctive high latitude volcanism on Io. The November 1999 observation spatially resolved, for the first time, an active extraterrestrial fissure eruption. The brightness temperature of the lavas at the November 1999 fissure eruption was 1300 K. The second observation (orbit I27, February 2000) showed a large (approx. 500 sq km) region with many, small spots of hot, active lava. The third observation was taken in conjunction with a Cassini observation in December 2000 and showed a Pele-like plume deposition ring, while the Cassini images revealed a 400 km high Pele-type plume above the Catena. The final Galileo SSI observation of Tvashtar was acquired in October 2001, and all obvious (to SSI) activity had ceased, although data from Galileo's Near Infrared Mapping Spectrometer (NIMS) indicated that there was still significant thermal emission from the Tvashtar region. We have concentrated on analyzing the style of eruption during orbit I27 (February 2000). Comparison with a lava flow cooling model indicates that the behavior of the Tvashtar eruption during I27 does not match that of "simple" advancing lava flows. Instead, it may be an active lava lake or a complex set of lava flows with episodic, overlapping (in time and space) eruptions.

  12. Storyboard GALILEO CRUISE SCIENCE OPPORTUNITIES describes asteroid encounters

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Storyboard with mosaicked image of an asteroid and entitled GALILEO CRUISE SCIENCE OPPORTUNITIES describes asteroid objectives. These objectives include: first asteroid encounter; surface geology, composition size, shape, mass; and relation of primitive bodies to meteorites.

  13. Navigational Challenges for a Europa Flyby Mission

    NASA Technical Reports Server (NTRS)

    Martin-Mur, Tomas J.; Ionasescu, Rodica; Valerino, Powtawche; Criddle, Kevin; Roncoli, Ralph

    2014-01-01

    Jupiter's moon Europa is a prime candidate in the search for present-day habitable environments outside of the Earth. A number of missions have provided increasingly detailed images of the complex surface of Europa, including the Galileo mission, which also carried instruments that allowed for a limited investigation of the environment of Europa. A new mission to Europa is needed to pursue these exciting discoveries using close-up observations with modern instrumentation designed to address the habitability of Europa. In all likelihood the most cost effective way of doing this would be with a spacecraft carrying a comprehensive suite of instruments and performing multiple flybys of Europa. A number of notional trajectory designs have been investigated, utilizing gravity assists from other Galilean moons to decrease the period of the orbit and shape it in order to provide a globally distributed coverage of different regions of Europa. Navigation analyses are being performed on these candidate trajectories to assess the total Delta V that would be needed to complete the mission, to study how accurately the flybys could be executed, and to determine which assumptions most significantly affect the performance of the navigation system.

  14. Scientific and Technical Support for the Galileo Net Flux Radiometer Experiment

    NASA Technical Reports Server (NTRS)

    Sromovsky, Lawrence A.

    1997-01-01

    This report describes work in support of the Galileo Net Flux Radiometer (NFR), an instrument mounted on the Galileo probe, a spacecraft designed for entry into and direct measurements of Jupiter's atmosphere. Tasks originally proposed for the post launch period covered by NCC 2-854 are briefly as follows: attend and support PSG (Project Science Group) and other project science meetings; support in-flight checkouts; maintain and keep safe the spare instrument and GSE (Ground Support Equipment); organize and maintain documentation; finish NFR calibration measurements, documentation, and analysis; characterize and diagnose instrument anomalies; develop descent data analysis tools; and science data analysis and publication. Because we had the capability to satisfy a project support need we also subsequently proposed and were funded to make ground-based observations of Jupiter during the period surrounding the Galileo arrival at Jupiter, using the Swedish Solar Telescope at La Palma, Canary Islands. The following section provides background information on the NFR instrument. Section 3 contains the final report of work done.

  15. Scientific and Technical Support for the Galileo Net Flux Radiometer Experiment

    NASA Technical Reports Server (NTRS)

    Sromovsky, Lawrence A.

    1997-01-01

    This report describes work in support of the Galileo Net Flux Radiometer (NFR), an instrument mounted on the Galileo probe, a spacecraft designed for entry into and direct measurements of Jupiter's atmosphere. Tasks originally proposed for the post launch period are briefly as follows: attend and support PSG (Project Science Group) and other project science meetings; support in-flight checkouts; maintain and keep safe the spare instrument and GSE (Ground Support Equipment); organize and maintain documentation; finish NFR calibration measurements, documentation, and analysis; characterize and diagnose instrument anomalies; develop descent data analysis tools; and science data analysis and publication. Because we had the capability to satisfy a project support need we also subsequently proposed and were funded to make ground- based observations of Jupiter during the period surrounding the Galileo arrival at Jupiter, using the Swedish Solar Telescope at La Palma, Canary Islands. The following section (11) provides background information on the NFR instrument.

  16. The work of Galileo and conformation of the experiment in physics

    NASA Astrophysics Data System (ADS)

    Alvarez, J. L.; Posadas, Y.

    2003-02-01

    It is very frequent to find comments and references to Galileo's work suggesting that he based his affirmations on a logic thought and not on observations. In this paper we present an analysis of some experiments that he realized and were unknown in the XVI and XVII centuries; in they we find a clear description of the methodology that Galileo follows in order to reach the results that he presents in his formal work, particularly in Discorsi. In contrast with the Aristotelian philosophy, in these manuscripts Galileo adopt a methodology with which he obtain great contributions for the modem conformation of the experimental method, founding so a methodology for the study of the movement. We use this analysis as an example of the difficulties that are present in the conformation of the modem experimentation and we point out the necessity to stress the importance of the scientific methodology in the teaching of physics.

  17. Expert diagnostics system as a part of analysis software for power mission operations

    NASA Technical Reports Server (NTRS)

    Harris, Jennifer A.; Bahrami, Khosrow A.

    1993-01-01

    The operation of interplanetary spacecraft at JPL has become an increasingly complex activity. This complexity is due to advanced spacecraft designs and ambitious mission objectives which lead to operations requirements that are more demanding than those of any previous mission. For this reason, several productivity enhancement measures are underway at JPL within mission operations, particularly in the spacecraft analysis area. These measures aimed at spacecraft analysis include: the development of a multi-mission, multi-subsystem operations environment; the introduction of automated tools into this environment; and the development of an expert diagnostics system. This paper discusses an effort to integrate the above mentioned productivity enhancement measures. A prototype was developed that integrates an expert diagnostics system into a multi-mission, multi-subsystem operations environment using the Galileo Power / Pyro Subsystem as a testbed. This prototype will be discussed in addition to background information associated with it.

  18. Earth observation (Australia) taken by Galileo spacecraft

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Earth observation of Australia was taken by Galileo Spacecraft after completing its first Earth Gravity Assist. Color image of the Simpson Desert in Australia was obtained by Galileo at about 2:30 pm Pacific Standard Time (PST), 12-08-90, at a range of more than 35,000 miles. The color composite was made from images taken through the red, green, and violet filters. The area shown, about 280 miles wide by about 340 miles north-to-south, is southeast of Alice Springs. At lower left is Lake Eyre, a salt lake below sea level, subject to seasonal water-level fluctuations; when this image was acquired the lake was nearly dry. At lower right is the greenish Lake Blanche. Fields of linear sand dunes stretch north and east of Lake Eyre, shaped by prevailing winds from the south and showing, in different colors, the various sources and/or ages of their sands. Photo provided by Jet Propulsion Laboratory (JPL) with alternate number P-37331, 12-19-90.

  19. Four Tiers

    ERIC Educational Resources Information Center

    Moodie, Gavin

    2009-01-01

    This paper posits a classification of tertiary education institutions into four tiers: world research universities, selecting universities, recruiting universities, and vocational institutes. The distinguishing characteristic of world research universities is their research strength, the distinguishing characteristic of selecting universities is…

  20. Thermal Emission Variability of Zamama, Culann and Tupan on Io Using Galileo Near-Infrared Mapping Spectrometer (NIMS) Data

    NASA Technical Reports Server (NTRS)

    Ennis, M. E.; Davies, A. G.

    2005-01-01

    The Jovian satellite Io is the most volcanically active body in the Solar System. Previous analyses [e.g., 1-4] indicate the presence of high-temperature silicate volcanism on Io, similar to silicate volcanism occurring on Earth. Instruments onboard the Galileo spacecraft, especially the Near Infrared Mapping Spectrometer (NIMS) and the Solid State Imager (SSI), provided much data of Io s active volcanoes throughout the duration of the Galileo mission (June 1996-September 2003). NIMS data is particularly sensitive to thermal emission from active and cooling lava over cooling times of seconds to a few years. The objective of this ongoing study of Io s volcanism is to determine the variability of thermal emission from volcanoes on Io s surface, in order to better understand the styles of eruption, and to constrain the volumes of material erupted. Ultimately, this will help to constrain the contribution of active volcanism to Io s thermal budget. Data have been analyzed for the volcano Zamama, located at 173 W, 21 N, and the power output of Zamama, the volumes of lava being erupted, and the eruption rate determined. Culann and Tupan have also been analysed in this way. This abstract primarily concentrates on Zamama.

  1. A new Icimauna Martins & Galileo, 1991, from the Bolivian orocline (Coleoptera, Cerambycidae, Lamiinae, Hemilophini).

    PubMed

    Santos-Silva, Antonio; Perger, Robert

    2017-04-07

    The Neotropical longhorned beetle tribe Hemilophini has been reviewed by Martins & Galileo (2014a, b) and currently contains 542 species (Monné 2017). Some of the most conspicuous longhorned beetle taxa are found in this tribe, for example species with a pair of cephalic horns (Phoebe Audinet-Serville, 1835), or others that strongly resemble to noxious Lycidae (Coleoptera) (e.g. Apeba Martins & Galileo, 1991, Calocosmus Chevrolat, 1862, or Lycidola Thomson, 1864) (see Lingafelter 2013; Martins & Galileo 2014a, b).

  2. 26 CFR 1.1446-5 - Tiered partnership structures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 12 2010-04-01 2010-04-01 false Tiered partnership structures. 1.1446-5 Section...-Free Covenant Bonds § 1.1446-5 Tiered partnership structures. (a) In general. The rules of this section... prescribes rules applicable to a publicly traded partnership in a tiered partnership structure. Paragraph (e...

  3. Systematic Implementation of a Tier 2 Behavior Intervention

    ERIC Educational Resources Information Center

    Carter, Deborah Russell; Carter, Gabriel M.; Johnson, Evelyn S.; Pool, Juli L.

    2013-01-01

    Schools are increasingly adopting tiered models of prevention to meet the needs of diverse populations of students. This article outlines the steps involved in designing and implementing a systematic Tier 2 behavior intervention within a tiered service delivery model. An elementary school example is provided to outline the identification,…

  4. Discovery of a Powerful, Transient, Explosive Thermal Event at Marduk Fluctus, Io, in Galileo NIMS Data

    NASA Astrophysics Data System (ADS)

    Davies, A. G.; Davies, R. L.; Veeder, G. J.; de Kleer, K.; de Pater, I.; Matson, D. L.; Johnson, T. V.; Wilson, L.

    2018-04-01

    Analysis of Galileo Near-Infrared Mapping Spectrometer observations of Marduk Fluctus, a volcano on the Jovian moon Io, reveals a style of volcanic activity not previously seen there—a powerful thermal event lasting only a few minutes in 1996. The thermal emission rapidly fades, suggesting extremely rapid cooling of small clasts. The duration and evolution of the explosive eruption are akin to what might be expected from a strombolian or vulcanian explosion. The presence of such events provides an additional volcanic process that can be imaged by future missions with the intent of determining lava composition from eruption temperature, an important constraint on the internal composition of Io. These data promise to be of particular use in understanding the mechanics of explosive volcanic processes on Io.

  5. 20 CFR 225.21 - Survivor Tier I PIA.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... INSURANCE AMOUNT DETERMINATIONS PIA's Used in Computing Survivor Annuities and the Amount of the Residual Lump-Sum Payable § 225.21 Survivor Tier I PIA. The Survivor Tier I PIA is used in computing the tier I... Security Act using the deceased employee's combined railroad and social security earnings after 1950 (or...

  6. Implementation of Grid Tier 2 and Tier 3 facilities on a Distributed OpenStack Cloud

    NASA Astrophysics Data System (ADS)

    Limosani, Antonio; Boland, Lucien; Coddington, Paul; Crosby, Sean; Huang, Joanna; Sevior, Martin; Wilson, Ross; Zhang, Shunde

    2014-06-01

    The Australian Government is making a AUD 100 million investment in Compute and Storage for the academic community. The Compute facilities are provided in the form of 30,000 CPU cores located at 8 nodes around Australia in a distributed virtualized Infrastructure as a Service facility based on OpenStack. The storage will eventually consist of over 100 petabytes located at 6 nodes. All will be linked via a 100 Gb/s network. This proceeding describes the development of a fully connected WLCG Tier-2 grid site as well as a general purpose Tier-3 computing cluster based on this architecture. The facility employs an extension to Torque to enable dynamic allocations of virtual machine instances. A base Scientific Linux virtual machine (VM) image is deployed in the OpenStack cloud and automatically configured as required using Puppet. Custom scripts are used to launch multiple VMs, integrate them into the dynamic Torque cluster and to mount remote file systems. We report on our experience in developing this nation-wide ATLAS and Belle II Tier 2 and Tier 3 computing infrastructure using the national Research Cloud and storage facilities.

  7. Mission Applications Support at NASA: The Proposal Surface Water and Ocean Topography Mission

    NASA Astrophysics Data System (ADS)

    Srinivasan, Margaret; Peterson, Craig; Callahan, Phil

    2013-09-01

    The NASA Applied Sciences Program is actively supporting an agency-wide effort to formalize a mission-level data applications approach. The program goal is to engage early-phase NASA Earth satellite mission project teams with applied science representation in the flight mission planning process. The end objective is to "to engage applications-oriented users and organizations early in the satellite mission lifecycle to enable them to envision possible applications and integrate end-user needs into satellite mission planning as a way to increase the benefits to the nation."Two mission applications representatives have been selected for each early phase Tier 2 mission, including the Surface Water and Ocean Topography (SWOT) mission concept. These representatives are tasked with identifying and organizing the applications communities and developing and promoting a process for the mission to optimize the reach of existing applications efforts in order to enhance the applications value of the missions. An early project-level awareness of mission planning decisions that may increase or decrease the utility of data products to diverse user and potential user communities (communities of practice and communities of potential, respectively) has high value and potential return to the mission and to the users.Successful strategies to enhance science and practical applications of projected SWOT data streams will require engaging with and facilitating between representatives in the science, societal applications, and mission planning communities.Some of the elements of this program include:• Identify early adopters of data products• Coordinate applications team, including;Project Scientist, Payload Scientist, ProjectManager, data processing lead• Describe mission and products sufficiently inearly stage of development to effectively incorporate all potential usersProducts and activities resulting from this effort will include (but are not limited to); workshops, workshop

  8. Galileo post-Gaspra cruise and Earth-2 encounter

    NASA Technical Reports Server (NTRS)

    Beyer, P. E.; Andrews, M. M.

    1993-01-01

    This article documents DSN support for the Galileo cruise after the Oct. 1991 encounter with the asteroid Gaspra. This article also details the Earth-2 encounter and the special non-DSN support provided during the Earth-2 closest approach.

  9. An Examination of Multi-Tier Designs for Legacy Data Access

    DTIC Science & Technology

    1997-12-01

    heterogeneous relational database management systems. The first test system incorporates a two-tier architecture design using Java, and the second system...employs a three-tier architecture design using Java and CORBA. Data on replication times for the two-tier and three-tier designs are presented

  10. Learning To Lead: The Galileo Leadership Academy.

    ERIC Educational Resources Information Center

    Kloosterhouse, Vicki

    2003-01-01

    Describes Michigan's Galileo Leadership Academy, a collaboration between K-12 and community college educators that develops leadership skills. Explains that 11 organizations participate in the program, and every two years each organization chooses five to nine leaders (primarily classroom educators) to be part of a new cohort. Asserts that the…

  11. The Galileo Solid-State Imaging experiment

    USGS Publications Warehouse

    Belton, M.J.S.; Klaasen, K.P.; Clary, M.C.; Anderson, J.L.; Anger, C.D.; Carr, M.H.; Chapman, C.R.; Davies, M.E.; Greeley, R.; Anderson, D.; Bolef, L.K.; Townsend, T.E.; Greenberg, R.; Head, J. W.; Neukum, G.; Pilcher, C.B.; Veverka, J.; Gierasch, P.J.; Fanale, F.P.; Ingersoll, A.P.; Masursky, H.; Morrison, D.; Pollack, James B.

    1992-01-01

    The Solid State Imaging (SSI) experiment on the Galileo Orbiter spacecraft utilizes a high-resolution (1500 mm focal length) television camera with an 800 ?? 800 pixel virtual-phase, charge-coupled detector. It is designed to return images of Jupiter and its satellites that are characterized by a combination of sensitivity levels, spatial resolution, geometric fiedelity, and spectral range unmatched by imaging data obtained previously. The spectral range extends from approximately 375 to 1100 nm and only in the near ultra-violet region (??? 350 nm) is the spectral coverage reduced from previous missions. The camera is approximately 100 times more sensitive than those used in the Voyager mission, and, because of the nature of the satellite encounters, will produce images with approximately 100 times the ground resolution (i.e., ??? 50 m lp-1) on the Galilean satellites. We describe aspects of the detector including its sensitivity to energetic particle radiation and how the requirements for a large full-well capacity and long-term stability in operating voltages led to the choice of the virtual phase chip. The F/8.5 camera system can reach point sources of V(mag) ??? 11 with S/N ??? 10 and extended sources with surface brightness as low as 20 kR in its highest gain state and longest exposure mode. We describe the performance of the system as determined by ground calibration and the improvements that have been made to the telescope (same basic catadioptric design that was used in Mariner 10 and the Voyager high-resolution cameras) to reduce the scattered light reaching the detector. The images are linearly digitized 8-bits deep and, after flat-fielding, are cosmetically clean. Information 'preserving' and 'non-preserving' on-board data compression capabilities are outlined. A special "summation" mode, designed for use deep in the Jovian radiation belts, near Io, is also described. The detector is 'preflashed' before each exposure to ensure the photometric linearity

  12. Assessment of Galileo modal test results for mathematical model verification

    NASA Technical Reports Server (NTRS)

    Trubert, M.

    1984-01-01

    The modal test program for the Galileo Spacecraft was completed at the Jet Propulsion Laboratory in the summer of 1983. The multiple sine dwell method was used for the baseline test. The Galileo Spacecraft is a rather complex 2433 kg structure made of a central core on which seven major appendages representing 30 percent of the total mass are attached, resulting in a high modal density structure. The test revealed a strong nonlinearity in several major modes. This nonlinearity discovered in the course of the test necessitated running additional tests at the unusually high response levels of up to about 21 g. The high levels of response were required to obtain a model verification valid at the level of loads for which the spacecraft was designed. Because of the high modal density and the nonlinearity, correlation between the dynamic mathematical model and the test results becomes a difficult task. Significant changes in the pre-test analytical model are necessary to establish confidence in the upgraded analytical model used for the final load verification. This verification, using a test verified model, is required by NASA to fly the Galileo Spacecraft on the Shuttle/Centaur launch vehicle in 1986.

  13. Galileo's Lens

    NASA Astrophysics Data System (ADS)

    Manos, Harry

    2003-05-01

    Most visitors to Florence, Italy, know about the Galleria dell'Accademia, housing Michelangelo's famous statue of David, or the Galleria degli Uffizi with the famous Medici collection. Few visitors know that only two blocks from the Uffizi on the Arno River is one of the world's finest museums featuring historic scientific instruments, the Museo di Storia della Scienza. In the February issue of TPT, Nickell states that the Museo di Storia della Scienza ``is perhaps the best museum on the history of science in the world.''1 This fact is likely true, and the museum is a must for physics teachers visiting Florence. It features a vast collection of authentic ``cutting-edge'' scientific instruments, including one of Galileo's lenses in a magnificent ebony and ivory frame. One of the tragedies is that this museum goes unmarked on many tourist maps and unmentioned in many guidebooks.

  14. Galileo Net Flux Radiometer Report 1997

    NASA Technical Reports Server (NTRS)

    Tomasko, Martin G.

    1997-01-01

    On 7 December 1995, the Galileo probe entered Jupiter's atmosphere. The Net Flux Radiometer (NFR) on board the probe, measured upward and downward fluxes in the visible and infrared. At the University of Arizona, we have analyzed the data from the two visible-light channels, as well as the solar contributions to the thermal channels. The results are being prepared for submission to JGR in early September.

  15. Identifying Students for Secondary and Tertiary Prevention Efforts: How Do We Determine Which Students Have Tier 2 and Tier 3 Needs?

    ERIC Educational Resources Information Center

    Lane, Kathleen Lynne; Oakes, Wendy Peia; Ennis, Robin Parks; Hirsch, Shanna Eisner

    2014-01-01

    In comprehensive, integrated, three-tiered models, it is essential to have a systematic method for identifying students who need supports at Tier 2 or Tier 3. This article provides explicit information on how to use multiple sources of data to determine which students might benefit from these supports. First, the authors provide an overview of how…

  16. POD improvements of GALILEO satellites through the measurement of their non-gravitational accelerations by means of an onboard accelerometer

    NASA Astrophysics Data System (ADS)

    Peron, Roberto; Lucchesi, David M.; Santoli, Francesco; Iafolla, Valerio; Fiorenza, Emiliano; Lefevre, Carlo; Lucente, Marco; Magnafico, Carmelo; Kalarus, Maciej; Zielinski, Janusz

    2016-04-01

    Research Centre (SRC) of the Polish Academy of Sciences (PAS) of Warsaw. The GALAC main objective is to provide the characteristics and performance of an onboard accelerometer able to improve the POD with respect to the current best results obtained through the modeling of the NGPs. The starting point of our activities has been the ISA accelerometer developed for the ESA BepiColombo mission to Mercury. We will present our results of a preparatory work for GALAC concerning a first characterization of the main NGPs acting on the GALILEO spacecraft of second generation, including their (main) spectral content. Such results are used to preliminary fix the accelerometer measurement band, its sensitivity and physical characteristics in order to fit with the GALILEO spacecraft environment.

  17. Galileo's legacy: a critical edition and translation of the manuscript of Vincenzo Viviani's Grati Animi Monumenta.

    PubMed

    Gattei, Stefano

    2017-06-01

    Having been found 'vehemently suspected of heresy' by the Holy Office in 1633, at the time of his death (1642) Galileo's remains were laid to rest in the tiny vestry of a lateral chapel of the Santa Croce Basilica, Florence. Throughout his life, Vincenzo Viviani, Galileo's last disciple, struggled to have his master's name rehabilitated and his banned works reprinted, as well as a proper funeral monument erected. He did not live to see all this come true, but his efforts triggered a mechanism that eventually led to the fulfilment of his wishes. A key element of his project was the transformation of the facade of his palace into a private (but publicly rendered) tribute to Galileo, with two long inscriptions celebrating Galileo's achievements and calling Florence's attention to the need to pay a proper tribute to him. Shortly afterwards, he revised the text and circulated it in print. This article presents the first critical edition and annotated translation of Viviani's original manuscript, long thought to be lost, and describes its role in Viviani's lifelong struggle for Galileo's intellectual legacy, as well as its impact on future historiography.

  18. 20 CFR 226.11 - Employee tier II.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... The tier II of an employee annuity is based only on railroad service. For annuities awarded after... of the tier II benefit for age. The result cannot be less than zero. (c) If the railroad retirement...

  19. Thus Spoke Galileo - The great scientist's ideas and their relevance to the present day

    NASA Astrophysics Data System (ADS)

    Frova, Andrea; Marenzana, Mariapiera

    2006-04-01

    Any reasonably educated person knows what is said about Galileo, but not what Galileo himself actually said. This has allowed a variety of different interpretations to be put upon his stands as a scientist and as a man, in particular from within the Catholic world, where a sense of guilt for his dramatic destiny has never been completely erased. Let him speak, then so that he can bring to everybody's attention, in particular the young, his message of reason, of intellectual honesty, of free thinking. A message that more than ever, is of great relevance in the rampant irrationality of the new millennium. The selection of writings offered here is preferred by a blunt self-portrait, which is of course a "forgery" - however, one that is based entirely on extracts from Galileo's writings and private letters, though he would never have dared, nor been allowed to write it himself. The anthology touches upon the themes dearest to Galileo and a lively commentary, from both the scientific and the literary-historical viewpoints, should help make the extracts accessible. The reader will be able to appreciate the work and the writing-style of a very great scientist and author and will probably also be surprised to find with the aid of a test with answers provided, just how many of the misconceptions about the "workings of the world" that were rife prior to Galileo, still survive today among the common beliefs of even well-educated, non scientific people.

  20. Scaling Laws in Galileo: An Educational Proposal

    ERIC Educational Resources Information Center

    Straulino, S.

    2011-01-01

    In his "Two New Sciences" Galileo Galilei deals with the strength of objects, discussing how it changes with size. Our daily life offers many examples of effects due to change of dimensions and sometimes the consequences are unintuitive. This subject is really interesting for secondary school students and it can be presented through simple…

  1. Simon Marius vs. Galileo: Who First Saw Moons of Jupiter?

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Van Helden, Albert

    2016-10-01

    In his almanac for 1612 and book Mundus Iovalis of 1614, Simon Marius in Germany reported his discovery of moons around Jupiter, which he started writing down in late 1609 in the Julian calendar, which translated to 8 January 1610 in the Gregorian calendar in use by Galileo in Italy. Is Marius to be believed? Galileo certainly did not. But a Dutch jury of experts about three hundred years later reported that they validated the claim that Marius independently discovered the moons of Jupiter one day after Galileo first both saw and wrote down his discovery! There is no doubt that the names Io, Europa, Ganymede, and Callisto came from Marius (to whom they were suggested by Kepler). See JMP's Journal for the History of Astronomy article, 46(2), 218-234 (2015).Marius wrote that he had been observing the moons around Jupiter since November 1609 (Julian), using a neighboring nobleman's telescope, which would mean that he actually saw the Jupiter satellites first (though publish or perish). Whether this feat was technically possible comes down to discussions of the capabilities of telescopes in the early 17th century.The quadricentennial of Marius's book was celebrated in Nuremberg with a symposium that is now in press in German with an English translation expected. One of us (AVH) has recently prepared a complete English translation of Marius's book, superseding the partial translation made 100 years ago. There is no evidence that, whether he saw what we now call the Galilean satellites first or not, Marius appreciated their cosmological significance the way that Galileo soon did. And Marius was certainly the first to publish tables of the moons of Jupiter.We thank the Chapin Library of Williams College and the Huntington Library for assistance with first editions of Marius's 1614 book, and we thank Pierre Leich of the Simon Marius Gesellschaft for his consultations.

  2. Galileo's Discorsi as a Tool for the Analytical Art.

    PubMed

    Raphael, Renee Jennifer

    2015-01-01

    A heretofore overlooked response to Galileo's 1638 Discorsi is described by examining two extant copies of the text (one which has received little attention in the historiography, the other apparently unknown) which are heavily annotated. It is first demonstrated that these copies contain annotations made by Seth Ward and Sir Christopher Wren. This article then examines one feature of Ward's and Wren's responses to the Discorsi, namely their decision to re-write several of Galileo's geometrical demonstrations into the language of symbolic algebra. It is argued that this type of active reading of period mathematical texts may have been part of the regular scholarly and pedagogical practices of early modern British mathematicians like Ward and Wren. A set of Appendices contains a transcription and translation of the analytical solutions found in these annotated copies.

  3. Application of high-precision two-way ranging to Galileo Earth-1 encounter navigation

    NASA Technical Reports Server (NTRS)

    Pollmeier, V. M.; Thurman, S. W.

    1992-01-01

    The application of precision two-way ranging to orbit determination with relatively short data arcs is investigated for the Galileo spacecraft's approach to its first Earth encounter (December 8, 1990). Analysis of previous S-band (2.3-GHz) ranging data acquired from Galileo indicated that under good signal conditions submeter precision and 10-m ranging accuracy were achieved. It is shown that ranging data of sufficient accuracy, when acquired from multiple stations, can sense the geocentric angular position of a distant spacecraft. A range data filtering technique, in which explicit modeling of range measurement bias parameters for each station pass is utilized, is shown to largely remove the systematic ground system calibration errors and transmission media effects from the Galileo range measurements, which would otherwise corrupt the angle-finding capabilities of the data. The accuracy of the Galileo orbit solutions obtained with S-band Doppler and precision ranging were found to be consistent with simple theoretical calculations, which predicted that angular accuracies of 0.26-0.34 microrad were achievable. In addition, the navigation accuracy achieved with precision ranging was marginally better than that obtained using delta-differenced one-way range (delta DOR), the principal data type that was previously used to obtain spacecraft angular position measurements operationally.

  4. A Venus/Saturn Mission Study: 45deg Sphere-Cone Rigid Aeroshells and Ballistic Entries

    NASA Technical Reports Server (NTRS)

    Prabhu, Dinesh K.; Allen, Gary A.; Cappuccio, Gelsomina

    2012-01-01

    The present study considers ballistic entries into the atmospheres of Saturn and Venus using a 45deg sphere-cone rigid aeroshell (a legacy shape that has been successfully used in the Pioneer Venus and Galileo missions). For a number of entry mass and diameter combinations (i.e., various entries ballistic coefficients), entry velocities, and heading angles, the trajectory space in terms of entry flight path angles between skip out and -30deg is explored with a 3DOF trajectory code, TRAJ. Assuming that the thermal protection material of choice is carbon phenolic of flight heritage, the entry flight path angle space is constrained a posteriori by the mechanical and thermal performance parameters of the material. For mechanical performance, a 200 g limit is place on the peak deceleration load and 10 bar is assumed as the spallation pressure threshold for the legacy material. It is shown that both constraints cannot be active simultaneously. For thermal performance, a minimum margined heat flux threshold of 2.5 kW/sq cm is assumed for the heritage material. Using these constraints, viable entry flight path angle corridors are determined. Analysis of the results also hints at the existence of a "critical" ballistic coefficient beyond which the steepest possible entries are determined by the spallation pressure threshold. The results are verified against known performance of the various probes used in the Galileo and Pioneer Venus missions. It is hoped that the results presented here will serve as a baseline in the development of a new class of ablative materials for Venus and Saturn missions being considered in a future New Frontiers class of NASA missions.

  5. Woven Thermal Protection System (WTPS) a Novel Approach to Meet Nasa's Most Demanding Reentry Missions

    NASA Technical Reports Server (NTRS)

    Stackpoole, Margaret M.; Ellerby, Donald T.; Gasch, Matt; Ventkatapathy, Ethiraj; Beerman, Adam; Boghozian, Tane; Gonzales, Gregory; Feldman, Jay; Peterson, Keith; Prabhu, Dinesh

    2014-01-01

    NASA's future robotic missions to Venus and other planets, namely, Saturn, Uranus, Neptune, result in extremely high entry conditions that exceed the capabilities of current mid density ablators (PICA or Avcoat). Therefore mission planners assume the use of a fully dense carbon phenolic heatshield similar to what was flown on Pioneer Venus and Galileo. Carbon phenolic is a robust TPS, however, its high density and thermal conductivity constrain mission planners to steep entries, high fluxes, pressures and short entry durations, in order for CP to be feasible from a mass perspective. The high entry conditions pose certification challenges in existing ground based test facilities. In 2012 the Game Changing Development Program in NASA's Space Technology Mission Directorate funded NASA ARC to investigate the feasibility of a Woven Thermal Protection System to meet the needs of NASA's most challenging entry missions. This presentation will summarize the maturation of the WTPS project.

  6. Proposed Tier 2 Screening Criteria and Tier 3 Field Procedures for Evaluation of Vapor Intrusion (ESTCP Cost and Performance Report)

    DTIC Science & Technology

    2012-08-01

    Interstate Technology & Regulatory Council, Washington, DC, Copyright 2007. McHugh T.E., D.E. Hammond, T. Nickels , and B. Hartman. 2008. Use of...based corrective action have realized significant cost savings for their corrective action programs (Connor and McHugh , 2002). As described above...Groundwater (Tier 2) VOCs USEPA 8260B 40 mL VOA vial HCl 14 days Vapor (Tier 2 and Tier 3) Radon McHugh et al., 2008 500 mL Tedlar bag None 14

  7. 20 CFR 228.2 - Tier I and tier II annuity components.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Social Security Act if all of the employee's earnings after 1936 under both the railroad retirement system and the social security system had been creditable under the Social Security Act. (b) Tier II...

  8. Hera - an ESA M-class Saturn Entry Probe Mission Proposal

    NASA Astrophysics Data System (ADS)

    Atkinson, D. H.; Mousis, O.; Spilker, T. R.; Venkatapathy, E.; Poncy, J.; Coustenis, A.; Reh, K. R.

    2015-12-01

    A fundamental goal of solar system exploration is to understand the origin of the solar system, the initial stages, conditions, and processes by which the solar system formed, how the formation process was initiated, and the nature of the interstellar seed material from which the solar system was born. Key to understanding solar system formation and subsequent dynamical and chemical evolution is the origin and evolution of the giant planets and their atmospheres. Additionally, the atmospheres of the giant planets serve as laboratories to better understand the atmospheric chemistries, dynamics, processes, and climates on all planets in the solar system including Earth, offer a context and provide a ground truth for exoplanets and exoplanetary systems, and have long been thought to play a critical role in the development of potentially habitable planetary systems. Remote sensing observations are limited when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the value of in situ measurements is provided by measurements of Jupiter's noble gas abundances and helium mixing ratio by the Galileo probe. In situ measurements provide direct access to atmospheric regions that are beyond the reach of remote sensing, enabling the dynamical, chemical and aerosol-forming processes at work from the thermosphere to the troposphere below the cloud decks to be studied. Studies for a newly proposed Saturn atmospheric entry probe mission named Hera is being prepared for the upcoming European Space Agency Medium Class (M5) mission announcement of opportunity. A solar powered mission, Hera will take approximately 8 years to reach Saturn and will carry instruments to measure the composition, structure, and dynamics of Saturn's atmosphere. In the context of giant planet science provided by the Galileo, Juno, and Cassini missions to Jupiter and Saturn, the Hera Saturn probe will provide critical measurements of composition

  9. 38 CFR 36.4318 - Servicer tier ranking-temporary procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Servicer tier ranking... § 36.4318 Servicer tier ranking—temporary procedures. (a) The Secretary shall assign to each servicer a “Tier Ranking” based upon the servicer's performance in servicing guaranteed loans. There shall be four...

  10. 47 CFR 76.1618 - Basic tier availability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Basic tier availability. 76.1618 Section 76.1618 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1618 Basic tier availability. A cable operator...

  11. 47 CFR 76.1618 - Basic tier availability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Basic tier availability. 76.1618 Section 76.1618 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1618 Basic tier availability. A cable operator...

  12. 47 CFR 76.1618 - Basic tier availability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Basic tier availability. 76.1618 Section 76.1618 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1618 Basic tier availability. A cable operator...

  13. 47 CFR 76.1618 - Basic tier availability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Basic tier availability. 76.1618 Section 76.1618 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1618 Basic tier availability. A cable operator...

  14. 47 CFR 76.1618 - Basic tier availability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Basic tier availability. 76.1618 Section 76.1618 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1618 Basic tier availability. A cable operator...

  15. Experimenting Galileo on Board the International Space Station

    NASA Technical Reports Server (NTRS)

    Fantinato, Samuele; Pozzobon, Oscar; Gamba, Giovanni; Chiara, Andrea Dalla; Montagner, Stefano; Giordano, Pietro; Crisci, Massimo; Enderle, Werner; Chelmins, David T.; Sands, Obed S.; hide

    2016-01-01

    The SCaN Testbed is an advanced integrated communications system and laboratory facility installed on the International Space Station (ISS) in 2012. The testbed incorporates a set of new generation of Software Defined Radio (SDR) technologies intended to allow researchers to develop, test, and demonstrate new communications, networking, and navigation capabilities in the actual environment of space. Qascom, in cooperation with ESA and NASA, is designing a Software Defined Radio GalileoGPS Receiver capable to provide accurate positioning and timing to be installed on the ISS SCaN Testbed. The GalileoGPS waveform will be operated in the JPL SDR that is constituted by several hardware components that can be used for experimentations in L-Band and S-Band. The JPL SDR includes an L-Band Dorne Margolin antenna mounted onto a choke ring. The antenna is connected to a radio front end capable to provide one bit samples for the three GNSS frequencies (L1, L2 and L5) at 38 MHz, exploiting the subharmonic sampling. The baseband processing is then performed by an ATMEL AT697 processor (100 MIPS) and two Virtex 2 FPGAs. The JPL SDR supports the STRS (Space Telecommunications Radio System) that provides common waveform software interfaces, methods of instantiation, operation, and testing among different compliant hardware and software products. The standard foresees the development of applications that are modular, portable, reconfigurable, and reusable. The developed waveform uses the STRS infrastructure-provided application program interfaces (APIs) and services to load, verify, execute, change parameters, terminate, or unload an application. The project is divided in three main phases. 1)Design and Development of the GalileoGPS waveform for the SCaN Testbed starting from Qascom existing GNSS SDR receiver. The baseline design is limited to the implementation of the single frequency Galileo and GPS L1E1 receiver even if as part of the activity it will be to assess the

  16. The Galileo scan platform pointing control system - A modern control theoretic viewpoint

    NASA Technical Reports Server (NTRS)

    Sevaston, G. E.; Macala, G. A.; Man, G. K.

    1985-01-01

    The current Galileo scan platform pointing control system (SPPCS) is described, and ways in which modern control concepts could serve to enhance it are considered. Of particular interest are: the multi-variable design model and overall control system architecture, command input filtering, feedback compensator and command input design, stability robustness constraint for both continuous time control systems and for sampled data control systems, and digital implementation of the control system. The proposed approach leads to the design of a system that is similar to current Galileo SPPCS configuration, but promises to be more systematic.

  17. German National Galileo Public Regulated Service (PRS) Testing Activities

    NASA Astrophysics Data System (ADS)

    Habrich, Heinz; Söhne, Wolfgang

    2013-04-01

    The European Global Navigation System (GNSS) Galileo is going to be established in the near future. Currently, four satellites are in place forming the In-Orbit-Testing (IOT) phase. Within the next years, the constellation will be filled. Full Operational Capability (FOC) will be reached 2019. Beside the Open Service (OS) which is comparable to other OS of existing GNSS, e.g., GPS C/A, there is a so-called Public Regulated Service (PRS) included in the IOT satellites already. The PRS will have improved robustness, i.e. robust signals which will be resistant against involuntary interferences, jamming and spoofing. The PRS signal is encrypted and there will be a restricted access to authorized users, e.g. safety and emergency services, authorities with security task, critical infrastructure organizations etc. The access to the PRS which will be controlled through a special key management will be managed and supervised within the European Union (EU) Member States (MS) by national authorities, the Competent PRS Authority (CPA). But a set of Common Minimum Standards (CMS) will define the minimum requirements applicable to each PRS participant. Nevertheless, each MS is responsible for its national key management. This presentation will inform about the testing activities for Galileo PRS in Germany. The coarse concept for the testing is explained, the schedule is outlined. Finally, the paper will formulate some expectations to the Galileo PRS, e.g. for international cooperation.

  18. Galileo's telescopic observations: the marvel and meaning of discovery

    NASA Astrophysics Data System (ADS)

    Coyne, George V.

    2010-01-01

    During the very last year of what he himself described “as the best [eighteen] years of his life” spent at the University of Padua, Galileo first observed the heavens with a telescope. In order to appreciate the marvel and the true significance of those observations we must appreciate both the intellectual climate in Europe and the critical intellectual period through which Galileo himself was passing at the time those observations were made. Through his studies on motion Galileo had come to have serious doubts about the Aristotelian concept of nature. What he sensed was lacking was a true physics. He was very acute, therefore, when he came to sense the significance of his observations of the moon, of the phases of Venus, of the moons of Jupiter and of the Milky Way. The preconceptions of the Aristotelians were crumbling before his eyes. He had remained silent long enough, over a three month period, in his contemplations of the heavens. It was time to organize his thoughts and tell what he had seen and what he thought it meant. It was time to publish! In so doing he would become one of the pioneers of modern science. For the first time in over 2,000 years new significant observational data had been put at the disposition of anyone who cared to think, not in abstract preconceptions but in obedience to what the universe had to say about itself.

  19. GalileoMobile, sharing astronomy with students and teachers around the world

    NASA Astrophysics Data System (ADS)

    Benitez-Herrera, S.; GalileoMobile Team

    2017-03-01

    GalileoMobile is a non-profit itinerant science outreach initiative that brings Astronomy closer to young people in areas with little or no access to outreach programs. We perform astronomy-related activities in schools and communities we visit and encourage follow-up activities through teacher training workshops and the donation of telescopes and other educational resources. GalileoMobile is an unprecedented initiative promoting science knowledge and the interaction beyond borders through Astronomy while raising awareness for the diversity of human cultures, conveying the message of unity under the same sky. We take advantage of the local astronomical culture of the visited communities to establish a dialogue between different ways of understanding the world and to share different types of knowledge (historic, scientific, anthropological...), encouraging a process of mutual learning. GalileoMobile is composed of 15 volunteer team members and more than 40 collaborators from different countries. Since its creation in 2008, we have organised expeditions in Chile, Bolivia and Peru (2009), Bolivia (2012), India (2012) and Uganda (2013), Brazil and Bolivia (2014), Colombia (2014) and extended actions in Portugal (2012, 2013), Nepal (2013), Guatemala (2013), Dominican Republic (2013), the United States (2013) and Haiti (2014). Our initiative for 2015, Constellation (www.constellationproject.org), aimed to establish a South American network of schools committed to the long-term organisation of astronomical outreach activities amongst their pupils and local communities. This project was supported by the Cosmic Light Project of the International Astronomical Union (IAU) and partially funded by the Office for Astronomy Development. In total, we have reached over 15,000 students; 1,400 teachers and 6,000 people in different communities over the past eight years. Our efforts and activities have been shared with the public in over 80 conferences and talks, including a TEDx talk

  20. Large Impact Features on Europa: Results of the Galileo Nominal Mission

    USGS Publications Warehouse

    Moore, Johnnie N.; Asphaug, E.; Sullivan, R.J.; Klemaszewski, J.E.; Bender, K.C.; Greeley, R.; Geissler, P.E.; McEwen, A.S.; Turtle, E.P.; Phillips, C.B.; Tufts, B.R.; Head, J. W.; Pappalardo, R.T.; Jones, K.B.; Chapman, C.R.; Belton, M.J.S.; Kirk, R.L.; Morrison, D.

    1998-01-01

    The Galileo Orbiter examined several impact features on Europa at considerably better resolution than was possible from Voyager. The new data allow us to describe the morphology and infer the geology of the largest impact features on Europa, which are probes into the crust. We observe two basic types of large impact features: (1) "classic" impact craters that grossly resemble well-preserved lunar craters of similar size but are more topographically subdued (e.g., Pwyll) and (2) very flat circular features that lack the basic topographic structures of impact craters such as raised rims, a central depression, or central peaks, and which largely owe their identification as impact features to the field of secondary craters radially sprayed about them (e.g., Callanish). Our interpretation is that the classic craters (all <30 km diameter) formed entirely within a solid target at least 5 to 10 km thick that exhibited brittle behavior on time scales of the impact events. Some of the classic craters have a more subdued topography than fresh craters of similar size on other icy bodies such as Ganymede and Callisto, probably due to the enhanced viscous relaxation produced by a steeper thermal gradient on Europa. Pedestal ejecta facies on Europa (and Ganymede) may be produced by the relief-flattening movement of plastically deforming but otherwise solid ice that was warm at the time of emplacement. Callanish and Tyre do not appear to be larger and even more viscously relaxed versions of the classic craters; rather they display totally different morphologies such as distinctive textures and a series of large concentric structural rings cutting impact-feature-related materials. Impact simulations suggest that the distinctive morphologies would not be produced by impact into a solid ice target, but may be explained by impact into an ice layer ~10 to 15 km thick overlying a low-viscosity material such as water. The very wide (near antipodal) separation of Callanish and Tyre imply

  1. Large Impact Features on Europa: Results of the Galileo Nominal Mission

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Asphaug, Erik; Sullivan, Robert J.; Klemaszewski, James E.; Bender, Kelly C.; Greeley, Ronald; Geissler, Paul E.; McEwen, Alfred S.; Turtle, Elizabeth P.; Phillips, Cynthia B.

    1998-01-01

    The Galileo Orbiter examined several impact features on Europa at considerably better resolution than was possible from Voyager. The new data allow us to describe the morphology and infer the geology of the largest impact features on Europa, which are probes into the crust. We observe two basic types of large impact features: (1) "classic" impact craters that grossly resemble well-preserved lunar craters of similar size but are more topographically subdued (e.g., Pwyll) and (2) very flat circular features that lack the basic topographic structures of impact craters such as raised rims, a central depression, or central peaks, and which largely owe their identification as impact features to the field of secondary craters radially sprayed about them (e.g., Callanish). Our interpretation is that the classic craters (all <30 km diameter) formed entirely within a solid target at least 5 to 10 km thick that exhibited brittle behavior on time scales of the impact events. Some of the classic craters have a more subdued topography than fresh craters of similar size on other icy bodies such as Ganymede and Callisto, probably due to the enhanced viscous relaxation produced by a steeper thermal gradient on Europa. Pedestal ejecta facies on Europa (and Ganymede) may be produced by the relief-flattening movement of plastically deforming but otherwise solid ice that was warm at the time of emplacement. Callanish and Tyre do not appear to be larger and even more viscously relaxed versions of the classic craters; rather they display totally different morphologies such as distinctive textures and a series of large concentric structural rings cutting impact-feature-related materials. Impact simulations suggest that the distinctive morphologies would not be produced by impact into a solid ice target, but may be explained by impact into an ice layer approximately 10 to 15 km thick overlying a low-viscosity material such as water. The very wide (near antipodal) separation of Callanish

  2. Galileo FOC Satellite Group Delay Estimation based on Raw Method and published IOV Metadata

    NASA Astrophysics Data System (ADS)

    Reckeweg, Florian; Schönemann, Erik; Springer, Tim; Enderle, Werner

    2017-04-01

    In December 2016, the European GNSS Agency (GSA) published the Galileo In-Orbit Validation (IOV) satellite metadata. These metadata include among others the so-called Galileo satellite group delays, which were measured in an absolute sense by the satellite manufacturer on-ground for all three Galileo frequency bands E1, E5 and E6. Therewith Galileo is the first Global Navigation Satellite System (GNSS) for which absolute calibration values for satellite on-board group delays have been published. The different satellite group delays for the three frequency bands lead to the fact that the signals will not be transmitted at exactly the same epoch. Up to now, due to the lack of absolute group delays, it is common practice in GNSS analyses to estimate and apply the differences of these satellite group delays, commonly known as differential code biases (DCBs). However, this has the drawback that the determination of the "raw" clock and the absolute ionosphere is not possible. The use of absolute bias calibrations for satellites and receivers is a major step into the direction of more realistic (in a physical sense) clock and atmosphere estimates. The Navigation Support Office at the European Space Operation Centre (ESOC) was from the beginning involved in the validation process of the Galileo metadata. For the work presented in this presentation we will use the absolute bias calibrations of the Galileo IOV satellites to estimate and validate the absolute receiver group delays of the ESOC GNSS network and vice versa. The receiver group delays have exemplarily been calibrated in a calibration campaign with an IFEN GNSS Signal-Simulator at ESOC. Based on the calibrated network, making use of the ionosphere constraints given by the IOV satellites, GNSS raw observations are processed to estimate satellite group delays for the operational Galileo (Full Operational Capability) FOC satellites. In addition, "raw" satellite clock offsets are estimated, which are free of the

  3. Reacting to Galileo: Introducing a New Approach for Gen Ed Science

    NASA Astrophysics Data System (ADS)

    Pettersen, Michael

    2009-03-01

    Either Galileo was right, or he was wrong; either way, why was there ever any debate about it? And why should we care today about the opposing ideas, which proven wrong so long ago? In the ``Reacting to the Past'' series of curricular materials, students engage with key turning points in human intellectual history by taking sides and recreating the original debate. In this way, students personally identify with points of view that they would otherwise find wrong, boring, and incomprehensible --- and they learn how we test ideas by challenging them, and defend them by marshalling evidence, which is the core of critical thinking. Students almost universally report that the ``Reacting'' experience is tremendously engaging. I shall describe an application of the ``Reacting'' format to the case of Galileo. The scientific issues involved are comprehensible to non-science majors, the cultural context of Renaissance Italy is rich and wonderful, and Galileo's personal history is tremendously moving. The materials include labs designed to be taught by non-scientists teaching cross-disciplinary liberal arts courses. Other ``Reacting'' science materials have been published or are under development.

  4. Just healthcare? The moral failure of single-tier basic healthcare.

    PubMed

    Meadowcroft, John

    2015-04-01

    This article sets out the moral failure of single-tier basic healthcare. Single-tier basic healthcare has been advocated on the grounds that the provision of healthcare should be divorced from ability to pay and unequal access to basic healthcare is morally intolerable. However, single-tier basic healthcare encounters a host of catastrophic moral failings. Given the fact of human pluralism it is impossible to objectively define "basic" healthcare. Attempts to provide single-tier healthcare therefore become political processes in which interest groups compete for control of scarce resources with the most privileged possessing an inherent advantage. The focus on outputs in arguments for single-tier provision neglects the question of justice between individuals when some people provide resources for others without reciprocal benefits. The principle that only healthcare that can be provided to everyone should be provided at all leads to a leveling-down problem in which advocates of single-tier provision must prefer a situation where some individuals are made worse-off without any individual being made better-off compared to plausible multi-tier alternatives. Contemporary single-tier systems require the exclusion of noncitizens, meaning that their universalism is a myth. In the light of these pathologies, it is judged that multi-tier healthcare is morally required. © The Author 2015. Published by Oxford University Press, on behalf of the Journal of Medicine and Philosophy Inc. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Galileo and Cassini Image Two Giant Plumes on Io

    NASA Image and Video Library

    2001-03-29

    Two tall volcanic plumes and the rings of red material they have deposited onto surrounding surface areas appear in images taken of Jupiter moon Io by NASA Galileo and Cassini spacecraft in late December 2000 and early January 2001.

  6. Identification of multiple binding sites for the THAP domain of the Galileo transposase in the long terminal inverted-repeats☆

    PubMed Central

    Marzo, Mar; Liu, Danxu; Ruiz, Alfredo; Chalmers, Ronald

    2013-01-01

    Galileo is a DNA transposon responsible for the generation of several chromosomal inversions in Drosophila. In contrast to other members of the P-element superfamily, it has unusually long terminal inverted-repeats (TIRs) that resemble those of Foldback elements. To investigate the function of the long TIRs we derived consensus and ancestral sequences for the Galileo transposase in three species of Drosophilids. Following gene synthesis, we expressed and purified their constituent THAP domains and tested their binding activity towards the respective Galileo TIRs. DNase I footprinting located the most proximal DNA binding site about 70 bp from the transposon end. Using this sequence we identified further binding sites in the tandem repeats that are found within the long TIRs. This suggests that the synaptic complex between Galileo ends may be a complicated structure containing higher-order multimers of the transposase. We also attempted to reconstitute Galileo transposition in Drosophila embryos but no events were detected. Thus, although the limited numbers of Galileo copies in each genome were sufficient to provide functional consensus sequences for the THAP domains, they do not specify a fully active transposase. Since the THAP recognition sequence is short, and will occur many times in a large genome, it seems likely that the multiple binding sites within the long, internally repetitive, TIRs of Galileo and other Foldback-like elements may provide the transposase with its binding specificity. PMID:23648487

  7. Identification of multiple binding sites for the THAP domain of the Galileo transposase in the long terminal inverted-repeats.

    PubMed

    Marzo, Mar; Liu, Danxu; Ruiz, Alfredo; Chalmers, Ronald

    2013-08-01

    Galileo is a DNA transposon responsible for the generation of several chromosomal inversions in Drosophila. In contrast to other members of the P-element superfamily, it has unusually long terminal inverted-repeats (TIRs) that resemble those of Foldback elements. To investigate the function of the long TIRs we derived consensus and ancestral sequences for the Galileo transposase in three species of Drosophilids. Following gene synthesis, we expressed and purified their constituent THAP domains and tested their binding activity towards the respective Galileo TIRs. DNase I footprinting located the most proximal DNA binding site about 70 bp from the transposon end. Using this sequence we identified further binding sites in the tandem repeats that are found within the long TIRs. This suggests that the synaptic complex between Galileo ends may be a complicated structure containing higher-order multimers of the transposase. We also attempted to reconstitute Galileo transposition in Drosophila embryos but no events were detected. Thus, although the limited numbers of Galileo copies in each genome were sufficient to provide functional consensus sequences for the THAP domains, they do not specify a fully active transposase. Since the THAP recognition sequence is short, and will occur many times in a large genome, it seems likely that the multiple binding sites within the long, internally repetitive, TIRs of Galileo and other Foldback-like elements may provide the transposase with its binding specificity. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Status and Trends in Networking at LHC Tier1 Facilities

    NASA Astrophysics Data System (ADS)

    Bobyshev, A.; DeMar, P.; Grigaliunas, V.; Bigrow, J.; Hoeft, B.; Reymund, A.

    2012-12-01

    The LHC is entering its fourth year of production operation. Most Tier1 facilities have been in operation for almost a decade, when development and ramp-up efforts are included. LHC's distributed computing model is based on the availability of high capacity, high performance network facilities for both the WAN and LAN data movement, particularly within the Tier1 centers. As a result, the Tier1 centers tend to be on the leading edge of data center networking technology. In this paper, we analyze past and current developments in Tier1 LAN networking, as well as extrapolating where we anticipate networking technology is heading. Our analysis will include examination into the following areas: • Evolution of Tier1 centers to their current state • Evolving data center networking models and how they apply to Tier1 centers • Impact of emerging network technologies (e.g. 10GE-connected hosts, 40GE/100GE links, IPv6) on Tier1 centers • Trends in WAN data movement and emergence of software-defined WAN network capabilities • Network virtualization

  9. Studying Galileo at Secondary School: A Reconstruction of His "Jumping-Hill" Experiment and the Process of Discovery.

    ERIC Educational Resources Information Center

    Teichmann, Jurgen

    1999-01-01

    Finds that interpretation of Galileo's only known experimental manuscript produces some interesting questions that offer pedagogical applications. Promotes classroom "research games" consisting of reconstructed experiments with Galileo's inclined plane and with other instruments to allow further speculation. (Author/WRM)

  10. Galileo photometry of Apollo landing sites

    NASA Technical Reports Server (NTRS)

    Helfenstein, P.; Veverka, J.; Head, James W.; Pieters, C.; Pratt, S.; Mustard, J.; Klaasen, K.; Neukum, G.; Hoffmann, H.; Jaumann, R.

    1993-01-01

    As of December 1992, the Galileo spacecraft performed its second and final flyby (EM2), of the Earth-Moon system, during which it acquired Solid State Imaging (SSI) camera images of the lunar surface suitable for photometric analysis using Hapke's, photometric model. These images, together with those from the first flyby (EM1) in December 1989, provide observations of all of the Apollo landing sites over a wide range of photometric geometries and at eight broadband filter wavelengths ranging from 0.41 micron to 0.99 micron. We have completed a preliminary photometric analysis of Apollo landing sites visible in EM1 images and developed a new strategy for a more complete analysis of the combined EM1 and EM2 data sets in conjunction with telescopic observations and spectrogoniometric measurements of returned lunar samples. No existing single data set, whether from spacecraft flyby, telescopic observation, or laboratory analysis of returned samples, describes completely the light scattering behavior of a particular location on the Moon at all angles of incidence (i), emission (e), and phase angles (a). Earthbased telescopic observations of particular lunar sites provide good coverage of incidence nad phase angles, but their range in emission angle is limited to only a few degrees because of the Moon's synchronous rotation. Spacecraft flyby observations from Galileo are now available for specific lunar features at many photometric geometries unobtainable from Earth; however, this data set lacks coverage at very small phase angles (a less than 13 deg) important for distinguishing the well-known 'opposition effect'. Spectrogoniometric measurements from returned lunar samples can provide photometric coverage at almost any geometry; however, mechanical properties of prepared particulate laboratory samples, such as particle compaction and macroscopic roughness, likely differ from those on the lunar surface. In this study, we have developed methods for the simultaneous

  11. Galileo magnetometer results from the Millennium Mission: Rotation rate and secular variation of the internal magnetic field

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Yu, Z. J.; Kivelson, M. G.; Khurana, K. K.

    2000-10-01

    The System III (1965.0) rotation period of Jupiter, as defined by the IAU based on early radio astronomical data, is 9h 55m 29.71s. Higgins et al. (JGR, 22033, 1997) have suggested, based on more recent radio data, that this period is too high by perhaps 25 ms. In the 25 years since the Pioneer and Voyager measurements, such an error would cause a 6 degree shift in apparent longitude of features tied to the internal magnetic field. A comparison of the longitude of the projection of the dipole moment obtained over the period 1975-1979 with that obtained by Galileo today shows that the average dipole location has drifted only one degree eastward in System III (1965.0). This one-degree shift is not significant given the statistical errors. A possible resolution to this apparent paradox is that the dipole moment observation is sensitive to the lower order field while the radio measurement is sensitive to the high order field at low altitude. Estimates of the secular variation from the in situ data are being pursued.

  12. 26 CFR 1.444-4 - Tiered structure.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 6 2010-04-01 2010-04-01 false Tiered structure. 1.444-4 Section 1.444-4 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Accounting Periods § 1.444-4 Tiered structure. (a) Electing small business trusts. For...

  13. 47 CFR 76.1605 - New product tier.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false New product tier. 76.1605 Section 76.1605 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1605 New product tier. (a) Within 30 days of the offering of an...

  14. Planning for complementarity : an examination of the role and opportunities of first-tier and second-tier cities along the high-speed rail network in California.

    DOT National Transportation Integrated Search

    2012-03-01

    The coming of California High-Speed Rail (HSR) offers opportunities for positive urban transformations in both first-tier and second-tier cities. The research in this report explores the different but complementary roles that first-tier and second-ti...

  15. The Foldback-like element Galileo belongs to the P superfamily of DNA transposons and is widespread within the Drosophila genus.

    PubMed

    Marzo, Mar; Puig, Marta; Ruiz, Alfredo

    2008-02-26

    Galileo is the only transposable element (TE) known to have generated natural chromosomal inversions in the genus Drosophila. It was discovered in Drosophila buzzatii and classified as a Foldback-like element because of its long, internally repetitive, terminal inverted repeats (TIRs) and lack of coding capacity. Here, we characterized a seemingly complete copy of Galileo from the D. buzzatii genome. It is 5,406 bp long, possesses 1,229-bp TIRs, and encodes a 912-aa transposase similar to those of the Drosophila melanogaster 1360 (Hoppel) and P elements. We also searched the recently available genome sequences of 12 Drosophila species for elements similar to Dbuz\\Galileo by using bioinformatic tools. Galileo was found in six species (ananassae, willistoni, peudoobscura, persimilis, virilis, and mojavensis) from the two main lineages within the Drosophila genus. Our observations place Galileo within the P superfamily of cut-and-paste transposons and extend considerably its phylogenetic distribution. The interspecific distribution of Galileo indicates an ancient presence in the genus, but the phylogenetic tree built with the transposase amino acid sequences contrasts significantly with that of the species, indicating lineage sorting and/or horizontal transfer events. Our results also suggest that Foldback-like elements such as Galileo may evolve from DNA-based transposon ancestors by loss of the transposase gene and disproportionate elongation of TIRs.

  16. The Foldback-like element Galileo belongs to the P superfamily of DNA transposons and is widespread within the Drosophila genus

    PubMed Central

    Marzo, Mar; Puig, Marta; Ruiz, Alfredo

    2008-01-01

    Galileo is the only transposable element (TE) known to have generated natural chromosomal inversions in the genus Drosophila. It was discovered in Drosophila buzzatii and classified as a Foldback-like element because of its long, internally repetitive, terminal inverted repeats (TIRs) and lack of coding capacity. Here, we characterized a seemingly complete copy of Galileo from the D. buzzatii genome. It is 5,406 bp long, possesses 1,229-bp TIRs, and encodes a 912-aa transposase similar to those of the Drosophila melanogaster 1360 (Hoppel) and P elements. We also searched the recently available genome sequences of 12 Drosophila species for elements similar to Dbuz\\Galileo by using bioinformatic tools. Galileo was found in six species (ananassae, willistoni, peudoobscura, persimilis, virilis, and mojavensis) from the two main lineages within the Drosophila genus. Our observations place Galileo within the P superfamily of cut-and-paste transposons and extend considerably its phylogenetic distribution. The interspecific distribution of Galileo indicates an ancient presence in the genus, but the phylogenetic tree built with the transposase amino acid sequences contrasts significantly with that of the species, indicating lineage sorting and/or horizontal transfer events. Our results also suggest that Foldback-like elements such as Galileo may evolve from DNA-based transposon ancestors by loss of the transposase gene and disproportionate elongation of TIRs. PMID:18287066

  17. Woven Thermal Protection System (WTPS) a Novel Approach to Meet NASA's Most Demanding Reentry Missions

    NASA Technical Reports Server (NTRS)

    Stackpoole, Mairead

    2014-01-01

    NASA's future robotic missions to Venus and outer planets, namely, Saturn, Uranus, Neptune, result in extremely high entry conditions that exceed the capabilities of current mid-density ablators (PICA or Avcoat). Therefore mission planners assume the use of a fully dense carbon phenolic heat shield similar to what was flown on Pioneer Venus and Galileo. Carbon phenolic (CP) is a robust Thermal Protection System (TPS) however its high density and thermal conductivity constrain mission planners to steep entries, high heat fluxes, pressures and short entry durations, in order for CP to be feasible from a mass perspective. The high entry conditions pose certification challenges in existing ground based test facilities. In 2012 the Game Changing Development Program in NASA's Space Technology Mission Directorate funded NASA ARC to investigate the feasibility of a Woven Thermal Protection System (WTPS) to meet the needs of NASA's most challenging entry missions. This presentation will summarize maturation of the WTPS project.

  18. Tiers of intervention in kindergarten through third grade.

    PubMed

    O'Connor, Rollanda E; Harty, Kristin R; Fulmer, Deborah

    2005-01-01

    This study measured the effects of increasing levels of intervention in reading for a cohort of children in Grades K through 3 to determine whether the severity of reading disability (RD) could be significantly reduced in the catchment schools. Tier 1 consisted of professional development for teachers of reading. The focus of this study is on additional instruction that was provided as early as kindergarten for children whose achievement fell below average. Tier 2 intervention consisted of small-group reading instruction 3 times per week, and Tier 3 of daily instruction delivered individually or in groups of two. A comparison of the reading achievement of third-grade children who were at risk in kindergarten showed moderate to large differences favoring children in the tiered interventions in decoding, word identification, fluency, and reading comprehension.

  19. Artist concept of Galileo with inertial upper stage (IUS) in low Earth orbit

    NASA Image and Video Library

    1989-08-25

    S89-42940 (April 1989) --- In this artist's rendition, the Galileo spacecraft is being boosted into its inter-planetary trajectory by the Inertial Upper Stage (IUS) rocket. The Space Shuttle Atlantis, which is scheduled to take Galileo and the IUS from Earth's surface into space, is depicted against the curve of Earth. Galileo will be placed on a trajectory to Venus, from which it will return to Earth at higher velocity and then gain still more energy in two gravity-assist passes, until it has enough velocity to reach Jupiter. Passing Venus, it will take scientific data using instruments designed for observing Jupiter; later, it will make measurements at Earth and the moon, crossing above the moon's north pole in the second pass. Between the two Earth passes, it will edge into the asteroid belt, beyond Mars' orbit; there, the first close-up observation of an asteroid is planned. Crossing the belt later, another asteroid flyby is possible.

  20. The transposon Galileo generates natural chromosomal inversions in Drosophila by ectopic recombination.

    PubMed

    Delprat, Alejandra; Negre, Bàrbara; Puig, Marta; Ruiz, Alfredo

    2009-11-18

    Transposable elements (TEs) are responsible for the generation of chromosomal inversions in several groups of organisms. However, in Drosophila and other Dipterans, where inversions are abundant both as intraspecific polymorphisms and interspecific fixed differences, the evidence for a role of TEs is scarce. Previous work revealed that the transposon Galileo was involved in the generation of two polymorphic inversions of Drosophila buzzatii. To assess the impact of TEs in Drosophila chromosomal evolution and shed light on the mechanism involved, we isolated and sequenced the two breakpoints of another widespread polymorphic inversion from D. buzzatii, 2z(3). In the non inverted chromosome, the 2z(3) distal breakpoint was located between genes CG2046 and CG10326 whereas the proximal breakpoint lies between two novel genes that we have named Dlh and Mdp. In the inverted chromosome, the analysis of the breakpoint sequences revealed relatively large insertions (2,870-bp and 4,786-bp long) including two copies of the transposon Galileo (subfamily Newton), one at each breakpoint, plus several other TEs. The two Galileo copies: (i) are inserted in opposite orientation; (ii) present exchanged target site duplications; and (iii) are both chimeric. Our observations provide the best evidence gathered so far for the role of TEs in the generation of Drosophila inversions. In addition, they show unequivocally that ectopic recombination is the causative mechanism. The fact that the three polymorphic D. buzzatii inversions investigated so far were generated by the same transposon family is remarkable and is conceivably due to Galileo's unusual structure and current (or recent) transpositional activity.

  1. The Centaur G-Prime - Meeting mission needs today for tomorrow's space environment

    NASA Astrophysics Data System (ADS)

    Richardson, J. H.

    1983-05-01

    The performance history and capabilities, design features, and missions for the Centaur G-Prime upper stage for the STS are described. The Centaur has had 43 consecutive successes on expendable launch systems since 1971, and is equipped to transfer 13,500 lb from LEO to GEO. The vehicle dimensions include a 29.1 ft length, a 14.2 ft LH2 tank, and a 15 ft diameter designed for the Orbiter bay. It carries an avionics system that comprises a 16 K core memory computer, a four-gimballed platform inertial measurement group, a sequence control unit, a servo inverter unit, two remote multiplexing units, two signal conditioners, a telemetry system, batteries, etc. Twin RL-10 engines each furnish 16,500 lb of thrust. Near term missions for the Centaur include boosting the Galileo and Solar Polar Mission out of earth orbit towards their destination.

  2. Results from the Galileo Laser Uplink: A JPL Demonstration of Deep-Space Optical Communications

    NASA Technical Reports Server (NTRS)

    Wilson, K. E.; Lesh, J. R.

    1993-01-01

    The successful completion of the Galileo Optical Experiment (GOPEX), represented the accomplishment of a significant milestone in JPL's optical communication plan. The experiment demonstrated the first transmission of a narrow laser beam to a deep-space vehicle. Laser pulses were beamed to the Galileo spacecraft by Earth-based transmitters at the Table Mountain Facility (TMF), California, and Starfire Optical Range (SOR), New Mexico. The experiment took place over an eight-day period (December 9 through December 16, 1992) as Galileo receded from Earth on its way to Jupiter, and covered ranges from 1 to 6 million kilometers (15 times the Earth-Moon distance), the laser uplink from TMF covered the longest known range for laser beam transmission and detection. This demonstration is the latest in a series of accomplishments by JPL in the development of deep-space optical communications technology.

  3. 75 FR 73166 - Publication of the Tier 2 Tax Rates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... DEPARTMENT OF THE TREASURY Internal Revenue Service Publication of the Tier 2 Tax Rates AGENCY: Internal Revenue Service, Treasury. ACTION: Notice. SUMMARY: Publication of the tier 2 tax rates for...). Tier 2 taxes on railroad employees, employers, and employee representatives are one source of funding...

  4. On a Recent Preliminary Study for the Measurement of the Lense-Thirring Effect with the Galileo Satellites

    NASA Astrophysics Data System (ADS)

    Iorio, L.

    2014-01-01

    It has recently been proposed to combine the node drifts of the future constellation of 27 Galileo spacecraft together with those of the existing Laser Geodynamics Satellites (LAGEOS)-type satellites to improve the accuracy of the past and ongoing tests of the Lense-Thirring (LT) effect by removing the bias of a larger number of even zonal harmonics Jℓ than either done or planned so far. Actually, it seems a difficult goal to be achieved realistically for a number of reasons. First, the LT range signature of a Galileo-type satellite is as small as 0.5 mm over three-days arcs, corresponding to a node rate of just ˙ Ω LT = 2 milliarcseconds per year (mas yr-1). Some tesseral and sectorial ocean tides such as K1 and K2 induce long-period harmonic node perturbations with frequencies which are integer multiples of the extremely slow Galileo's node rate ˙ Ω completing a full cycle in about 40 yr. Thus, over time spans, T, of some years, they would act as superimposed semisecular aliasing trends. Since the coefficients of the Jℓ-free multisatellite linear combinations are determined only by the semimajor axis a, the eccentricity e and the inclination I, which are nominally equal for all the Galileo satellites, it is not possible to include all of them. Even using only one Galileo spacecraft together with the LAGEOS family would be unfeasible because of the fact that the resulting Galileo coefficient would be ≳ 1, thus enhancing the aliasing impact of the uncancelled nonconservative and tidal perturbations.

  5. Galileo's Telescopy and Jupiter's Tablet

    NASA Astrophysics Data System (ADS)

    Usher, P. D.

    2003-12-01

    A previous paper (BAAS 33:4, 1363, 2001) reported on the dramatic scene in Shakespeare's Cymbeline that features the descent of the deity Jupiter. The paper suggested that the four ghosts circling the sleeping Posthumus denote the four Galilean moons of Jupiter. The god Jupiter commands the ghosts to lay a tablet upon the prone Posthumus, but says that its value should not be overestimated. When Posthumus wakens he notices the tablet, which he calls a "book." Not only has the deity's "tablet" become the earthling's "book," but it appears that the book has covers which Posthumus evidently recognizes because without even opening the book he ascribes two further properties to it: rarity, and the very property that Jupiter had earlier attributed, viz. that one must not read too much into it. The mystery deepens when the Jovian gift undergoes a second metamorphosis, to "label." With the help of the OED, the potentially disparate terms "tablet," "book," and "label," may be explained by terms appropriate either to supernatural or worldly beings. "Tablet" may recognize the Mosaic artifact, whereas "book" and "label" are probably mundane references to Galileo's Sidereus Nuncius which appeared shortly before Cymbeline. The message of the Olympian god indicates therefore that the book is unique even as its contents have limited value. The first property celebrates the fact that Galileo's book is the first of its kind, and the second advises that all results except the discovery of Jupiter's moons have been reported earlier, in Hamlet.

  6. Galileo Attitude Determination: Experiences with a Rotating Star Scanner

    NASA Technical Reports Server (NTRS)

    Merken, L.; Singh, G.

    1991-01-01

    The Galileo experience with a rotating star scanner is discussed in terms of problems encountered in flight, solutions implemented, and lessons learned. An overview of the Galileo project and the attitude and articulation control subsystem is given and the star scanner hardware and relevant software algorithms are detailed. The star scanner is the sole source of inertial attitude reference for this spacecraft. Problem symptoms observed in flight are discussed in terms of effects on spacecraft performance and safety. Sources of thse problems include contributions from flight software idiosyncrasies and inadequate validation of the ground procedures used to identify target stars for use by the autonomous on-board star identification algorithm. Problem fixes (some already implemented and some only proposed) are discussed. A general conclusion is drawn regarding the inherent difficulty of performing simulation tests to validate algorithms which are highly sensitive to external inputs of statistically 'rare' events.

  7. Galileo observations of volcanic plumes on Io

    USGS Publications Warehouse

    Geissler, P.E.; McMillan, M.T.

    2008-01-01

    Io's volcanic plumes erupt in a dazzling variety of sizes, shapes, colors and opacities. In general, the plumes fall into two classes, representing distinct source gas temperatures. Most of the Galileo imaging observations were of the smaller, more numerous Prometheus-type plumes that are produced when hot flows of silicate lava impinge on volatile surface ices of SO2. Few detections were made of the giant, Pele-type plumes that vent high temperature, sulfur-rich gases from the interior of Io; this was partly because of the insensitivity of Galileo's camera to ultraviolet wavelengths. Both gas and dust spout from plumes of each class. Favorably located gas plumes were detected during eclipse, when Io was in Jupiter's shadow. Dense dust columns were imaged in daylight above several Prometheus-type eruptions, reaching heights typically less than 100 km. Comparisons between eclipse observations, sunlit images, and the record of surface changes show that these optically thick dust columns are much smaller in stature than the corresponding gas plumes but are adequate to produce the observed surface deposits. Mie scattering calculations suggest that these conspicuous dust plumes are made up of coarse grained “ash” particles with radii on the order of 100 nm, and total masses on the order of 106 kg per plume. Long exposure images of Thor in sunlight show a faint outer envelope apparently populated by particles small enough to be carried along with the gas flow, perhaps formed by condensation of sulfurous “snowflakes” as suggested by the plasma instrumentation aboard Galileo as it flew through Thor's plume [Frank, L.A., Paterson, W.R., 2002. J. Geophys. Res. (Space Phys.) 107, doi:10.1029/2002JA009240. 31-1]. If so, the total mass of these fine, nearly invisible particles may be comparable to the mass of the gas, and could account for much of Io's rapid resurfacing.

  8. Earth-based and Galileo SSI multispectral observations of eastern mare serenitatis and the Apollo 17 landing site

    NASA Technical Reports Server (NTRS)

    Hiesinger, H.; Jaumann, R.; Neukum, G.

    1993-01-01

    Both the Apollo 17 and the Mare Serenitatis region were observed by Galileo during its fly-by in December 1992. We used earth-based multispectral data to define mare units which then can be compared with the results of the Galileo SSI data evaluation.

  9. 76 FR 71623 - Publication of the Tier 2 Tax Rates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... DEPARTMENT OF THE TREASURY Internal Revenue Service Publication of the Tier 2 Tax Rates AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice. SUMMARY: Publication of the tier 2 tax rates for...). Tier 2 taxes on railroad employees, employers, and employee representatives are one source of funding...

  10. GPS and Galileo Developments on Board the International Space Station With the Space Communications and Navigation (SCaN) Testbed

    NASA Technical Reports Server (NTRS)

    Pozzobon, Oscar; Fantinato, Samuele; Dalla Chiara, Andrea; Gamba, Giovanni; Crisci, Massimo; Giordana, Pietro; Enderle, Werner; Chelmins, David; Sands, Obed S.; Clapper, Carolyn J.; hide

    2016-01-01

    The Space Communications and Navigation (SCaN) is a facility developed by NASA and hosted on board the International Space Station (ISS) on an external truss since 2013.It has the objective of testing navigation and communication experimentations with a Software Defined Radio (SDR) approach, which permits software updates for testing new experimentations.NASA has developed the Space Telecommunications Radio System (STRS) architecture standard for SDRs used in space and ground-based platforms to provide commonality among radio developments to provide enhanced capability. The hardware is equipped with both L band front-end radios and the NASA space network communicates with it using S-band, Ku-band and Ka-band links.In May 2016 Qascom started GARISS (GPS and Galileo Receiver for the ISS), an activity of experimentation in collaboration with ESA and NASA that has the objective to develop and validate the acquisition and processing of combined GPS and Galileo signals on board the ISS SCaN testbed. This paper has the objective to present the mission, and provide preliminary details about the challenges in the design, development and verification of the waveform that will be installed on equipment with limited resources. GARISS is also the first attempt to develop a waveform for the ISS as part of an international collaboration between US and Europe. Although the final mission objective is to target dual frequency processing, initial operations will foresee a single frequency processing. Initial results and trade-off between the two options, as well as the final decision will be presented and discussed. The limited resources on board the SCaN with respect to the challenging requirements to acquire and track contemporaneously two satellite navigation systems, with different modulations and data structure, led to the need to assess the possibility of aiding from ground through the S-band. This option would allow assistance to the space receiver in order to provide

  11. Io's Diverse Styles of Volcanic Activity: Results from Galileo NIMS

    NASA Technical Reports Server (NTRS)

    Lopes, R. M. C.; Smythe, W. D.; Kamp, L. W.; Doute, S.; Carlson, R.; McEwen, A.; Geissler, P.

    2001-01-01

    Observations by Galileo's Near-Infrared Mapping Spectrometer were used to map the thermal structure of several of Io's hot spots, revealing different styles of volcanism Additional information is contained in the original extended abstract..

  12. Reconstruction of Galileo Galilei's Experiment: The Inclined Plane

    ERIC Educational Resources Information Center

    Straulino, S.

    2008-01-01

    In the "Third Day" of the "Discourses and Mathematical Demonstrations Concerning Two New Sciences" Galileo Galilei describes the famous experiment of the inclined plane and uses it to bring an experimental confirmation to the laws of uniformly accelerated motion. We describe a reconstruction of the experiment and how the results can be used for…

  13. Detectability of electrostatic decay products in Ulysses and Galileo observations of type 3 solar radio sources

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1995-01-01

    Recent in situ Ulysses and Galileo observations of the source regions of type 3 solar radio bursts appear to show an absence of ion acoustic waves S produced by nonlinear Langmuir wave processes such as the electrostatic (ES) decay, in contradiction with earlier ISEE 3 observations and analytic theory. This letter resolves these apparent contradictions. Refined analyses of the maximum S-wave electric fields produced by ES decay and of the characteristics of the Ulysses Wave Form Analyzer (WFA) instrument show that the bursty S waves observed by the ISEE 3 should be essentially undetectable by the Ulysses WFA. It is also shown that the maximum S-wave levels predicted for the Galileo event are approximately less than the instrumental noise level, thereby confirming an earlier suggestion. Thus, no contradictions exist between the ISEE 3 and Ulysses/Galileo observation, and no evidence exists against ES decay in the published Ulysses and Galileo data. All available data are consistent with, or at worst not inconsistent with, the ES decay proceeding and being the dominant nonlinear process in type 3 bursts.

  14. "Galileo's Machine": Late Notes on Free Fall, Projectile Motion, and the Force of Percussion (ca. 1638-1639)

    NASA Astrophysics Data System (ADS)

    Salvia, Stefano

    2014-12-01

    My paper focuses upon the problem of determining the nature, establishing the proportionality, and measuring the intensity of the force of percussion of a projected or falling body, as treated in the Sixth Day of Galileo's Discorsi e dimostrazioni matematiche intorno a due nuove scienze (1638). This fragment was written around 1638-1639 as part of two additional Days of the Discorsi, which Galileo never finished and remained unpublished until 1718. Galileo's last works on percussion show a significant step towards a generalization of his own views on uniform and accelerated motion that will later lead to the Newtonian principle of inertia. The experiment with two equal weights hanging on a pulley, performed in Arcetri during the same period, is compared with the Paduan 1604-1608 experience of the "water balance." Both account for more than three decades of inquiries into what Galileo called forza della percossa, which marked the transition from preclassical to classical mechanics.

  15. Performance of the Fully Digital FPGA-Based Front-End Electronics for the GALILEO Array

    NASA Astrophysics Data System (ADS)

    Barrientos, D.; Bellato, M.; Bazzacco, D.; Bortolato, D.; Cocconi, P.; Gadea, A.; González, V.; Gulmini, M.; Isocrate, R.; Mengoni, D.; Pullia, A.; Recchia, F.; Rosso, D.; Sanchis, E.; Toniolo, N.; Ur, C. A.; Valiente-Dobón, J. J.

    2015-12-01

    In this work we present the architecture and results of a fully digital Front End Electronics (FEE) read out system developed for the GALILEO array. The FEE system, developed in collaboration with the Advanced Gamma Tracking Array (AGATA) collaboration, is composed of three main blocks: preamplifiers, digitizers and preprocessing electronics. The slow control system contains a custom Linux driver, a dynamic library and a server implementing network services. This work presents the first results of the digital FEE system coupled with a GALILEO germanium detector, which has demonstrated the capability to achieve an energy resolution of 1.530/00 at an energy of 1.33 MeV, similar to the one obtained with a conventional analog system. While keeping a good performance in terms of energy resolution, digital electronics will allow to instrument the full GALILEO array with a versatile system with high integration and low power consumption and costs.

  16. The Galileo high gain antenna deployment anomaly

    NASA Technical Reports Server (NTRS)

    Johnson, Michael R.

    1994-01-01

    On April 11, 1991, the Galileo spacecraft executed a sequence that would open the spacecraft's High Gain Antenna. The Antenna's launch restraint had been released just after deployment sequence, the antenna, which opens like an umbrella, never reached the fully deployed position. The analyses and tests that followed allowed a conclusive determination of the likely failure mechanisms and pointed to some strategies to use for recovery of the high gain antenna.

  17. Galileo and the Pendulum: Latching on to Time

    ERIC Educational Resources Information Center

    Machamer, Peter; Hepburn, Brian

    2004-01-01

    Galileo changed the very concepts or categories by which natural philosophy could deal with matter and motion. Central to these changes was his introduction of time as a fundamental concept. He worked with the pendulum and with the inclined plane to discover his new concept of motion. Both of these showed him that acceleration and time were…

  18. Transformational Leadership & Professional Development for Digitally Rich Learning Environments: A Case Study of the Galileo Educational Network.

    ERIC Educational Resources Information Center

    Jacobsen, Michele; Clifford, Pat; Friesen, Sharon

    The Galileo Educational Network is an innovative educational reform initiative that brings learning to learners. Expert teachers work alongside teachers and students in schools to create new images of engaged learning, technology integration and professional development. This case study is based on the nine schools involved with Galileo in…

  19. The Transposon Galileo Generates Natural Chromosomal Inversions in Drosophila by Ectopic Recombination

    PubMed Central

    Delprat, Alejandra; Ruiz, Alfredo

    2009-01-01

    Background Transposable elements (TEs) are responsible for the generation of chromosomal inversions in several groups of organisms. However, in Drosophila and other Dipterans, where inversions are abundant both as intraspecific polymorphisms and interspecific fixed differences, the evidence for a role of TEs is scarce. Previous work revealed that the transposon Galileo was involved in the generation of two polymorphic inversions of Drosophila buzzatii. Methodology/Principal Findings To assess the impact of TEs in Drosophila chromosomal evolution and shed light on the mechanism involved, we isolated and sequenced the two breakpoints of another widespread polymorphic inversion from D. buzzatii, 2z 3. In the non inverted chromosome, the 2z 3 distal breakpoint was located between genes CG2046 and CG10326 whereas the proximal breakpoint lies between two novel genes that we have named Dlh and Mdp. In the inverted chromosome, the analysis of the breakpoint sequences revealed relatively large insertions (2,870-bp and 4,786-bp long) including two copies of the transposon Galileo (subfamily Newton), one at each breakpoint, plus several other TEs. The two Galileo copies: (i) are inserted in opposite orientation; (ii) present exchanged target site duplications; and (iii) are both chimeric. Conclusions/Significance Our observations provide the best evidence gathered so far for the role of TEs in the generation of Drosophila inversions. In addition, they show unequivocally that ectopic recombination is the causative mechanism. The fact that the three polymorphic D. buzzatii inversions investigated so far were generated by the same transposon family is remarkable and is conceivably due to Galileo's unusual structure and current (or recent) transpositional activity. PMID:19936241

  20. Phased Array GNSS Antenna for the FORMOSAT-7/COSMIC-2 Radio Occultation Mission

    NASA Technical Reports Server (NTRS)

    Turbiner, Dmitry; Young, Larry E.; Meehan, Tom K.

    2012-01-01

    Future GNSS remote sensing instruments such as the TriG receiver require more capable antennas than those flown on missions such as COSMIC. To maximize the number of ionospheric and atmospheric profiles, the TriG receiver will be capable of tracking legacy and new GPS signals such as L5, L2C and L1C; GLONASS CDMA and Galileo E1 and E5a. There has been an in-house effort at JPL to develop a set of antennas that would provide excellent Radio Occultations performance as well as navigation and ionospheric profiling. This effort is on-going but near completion for the manufacture and delivery of a set of flight antennas for the FORMOSAT-7/COSMIC-2 mission.

  1. Galileo: Power, Pride, and Profit. The Relative Influence of Realist, Ideational, and Liberal Factors on the Galileo Satellite Program

    DTIC Science & Technology

    2009-01-31

    was the DG from 1997 until 2003. Jean - Jacque Dordain became the DG in July 2003 and was reappointed in 2007.10 The official Galileo program...July 2003) ESA Director General Jean - Jacque Dordain produced an internal position paper which explicitly stated that ESA now interpreted “peaceful...countries outside Europe. 121 This section relies heavily on reporting of a January 17, 2007 press conference by ESA Director General Jean - Jacques

  2. Galileo Teacher Training Program - MoonDays

    NASA Astrophysics Data System (ADS)

    Heenatigala, T.; Doran, R.

    2012-09-01

    Moon is an excellent tool for classroom education. Many teachers fail to implement lunar science in classroom at several levels though - lack of guidance, finding the right materials, and implanting lessons in the school curriculum - just to name a few. To overcome this need, Galileo Teacher Training Program (GTTP) [1] present MoonDays, a resource guide for teachers globally which can be used both in and out of classroom. GTTP MoonDays includes scientific knowledge, hands-on activities, computing skills, creativity and disability based lesson plans.

  3. Genetic and economic benefits of selection based on performance recording and genotyping in lower tiers of multi-tiered sheep breeding schemes.

    PubMed

    Santos, Bruno F S; van der Werf, Julius H J; Gibson, John P; Byrne, Timothy J; Amer, Peter R

    2017-01-17

    Performance recording and genotyping in the multiplier tier of multi-tiered sheep breeding schemes could potentially reduce the difference in the average genetic merit between nucleus and commercial flocks, and create additional economic benefits for the breeding structure. The genetic change in a multiple-trait breeding objective was predicted for various selection strategies that included performance recording, parentage testing and genomic selection. A deterministic simulation model was used to predict selection differentials and the flow of genetic superiority through the different tiers. Cumulative discounted economic benefits were calculated based on trait gains achieved in each of the tiers and considering the extra revenue and associated costs of applying recording, genotyping and selection practices in the multiplier tier of the breeding scheme. Performance recording combined with genomic or parentage information in the multiplier tier reduced the genetic lag between the nucleus and commercial flock by 2 to 3 years. The overall economic benefits of improved performance in the commercial tier offset the costs of recording the multiplier. However, it took more than 18 years before the cumulative net present value of benefits offset the costs at current test prices. Strategies in which recorded multiplier ewes were selected as replacements for the nucleus flock did modestly increase profitability when compared to a closed nucleus structure. Applying genomic selection is the most beneficial strategy if testing costs can be reduced or by genotyping only a proportion of the selection candidates. When the cost of genotyping was reduced, scenarios that combine performance recording with genomic selection were more profitable and reached breakeven point about 10 years earlier. Economic benefits can be generated in multiplier flocks by implementing performance recording in conjunction with either DNA pedigree recording or genomic technology. These recording

  4. A Scattered Light Correction to Color Images Taken of Europa by the Galileo Spacecraft: Initial Results

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Valenti, M.

    2009-12-01

    Jupiter's moon Europa likely possesses an ocean of liquid water beneath its icy surface, but estimates of the thickness of the surface ice shell vary from a few kilometers to tens of kilometers. Color images of Europa reveal the existence of a reddish, non-ice component associated with a variety of geological features. The composition and origin of this material is uncertain, as is its relationship to Europa's various landforms. Published analyses of Galileo Near Infrared Mapping Spectrometer (NIMS) observations indicate the presence of highly hydrated sulfate compounds. This non-ice material may also bear biosignatures or other signs of biotic material. Additional spectral information from the Galileo Solid State Imager (SSI) could further elucidate the nature of the surface deposits, particularly when combined with information from the NIMS. However, little effort has been focused on this approach because proper calibration of the color image data is challenging, requiring both skill and patience to process the data and incorporate the appropriate scattered light correction. We are currently working to properly calibrate the color SSI data. The most important and most difficult issue to address in the analysis of multispectral SSI data entails using thorough calibrations and a correction for scattered light. Early in the Galileo mission, studies of the Galileo SSI data for the moon revealed discrepancies of up to 10% in relative reflectance between images containing scattered light and images corrected for scattered light. Scattered light adds a wavelength-dependent low-intensity brightness factor to pixels across an image. For example, a large bright geological feature located just outside the field of view of an image will scatter extra light onto neighboring pixels within the field of view. Scattered light can be seen as a dim halo surrounding an image that includes a bright limb, and can also come from light scattered inside the camera by dirt, edges, and the

  5. The ATLAS Tier-0: Overview and operational experience

    NASA Astrophysics Data System (ADS)

    Elsing, Markus; Goossens, Luc; Nairz, Armin; Negri, Guido

    2010-04-01

    Within the ATLAS hierarchical, multi-tier computing infrastructure, the Tier-0 centre at CERN is mainly responsible for prompt processing of the raw data coming from the online DAQ system, to archive the raw and derived data on tape, to register the data with the relevant catalogues and to distribute them to the associated Tier-1 centers. The Tier-0 is already fully functional. It has been successfully participating in all cosmic and commissioning data taking since May 2007, and was ramped up to its foreseen full size, performance and throughput for the cosmic (and short single-beam) run periods between July and October 2008. Data and work flows for collision data taking were exercised in several "Full Dress Rehearsals" (FDRs) in the course of 2008. The transition from an expert to a shifter-based system was successfully established in July 2008. This article will give an overview of the Tier-0 system, its data and work flows, and operations model. It will review the operational experience gained in cosmic, commissioning, and FDR exercises during the past year. And it will give an outlook on planned developments and the evolution of the system towards first collision data taking expected now in late Autumn 2009.

  6. The Legnaro-Padova distributed Tier-2: challenges and results

    NASA Astrophysics Data System (ADS)

    Badoer, Simone; Biasotto, Massimo; Costa, Fulvia; Crescente, Alberto; Fantinel, Sergio; Ferrari, Roberto; Gulmini, Michele; Maron, Gaetano; Michelotto, Michele; Sgaravatto, Massimo; Toniolo, Nicola

    2014-06-01

    The Legnaro-Padova Tier-2 is a computing facility serving the ALICE and CMS LHC experiments. It also supports other High Energy Physics experiments and other virtual organizations of different disciplines, which can opportunistically harness idle resources if available. The unique characteristic of this Tier-2 is its topology: the computational resources are spread in two different sites, about 15 km apart: the INFN Legnaro National Laboratories and the INFN Padova unit, connected through a 10 Gbps network link (it will be soon updated to 20 Gbps). Nevertheless these resources are seamlessly integrated and are exposed as a single computing facility. Despite this intrinsic complexity, the Legnaro-Padova Tier-2 ranks among the best Grid sites for what concerns reliability and availability. The Tier-2 comprises about 190 worker nodes, providing about 26000 HS06 in total. Such computing nodes are managed by the LSF local resource management system, and are accessible using a Grid-based interface implemented through multiple CREAM CE front-ends. dCache, xrootd and Lustre are the storage systems in use at the Tier-2: about 1.5 PB of disk space is available to users in total, through multiple access protocols. A 10 Gbps network link, planned to be doubled in the next months, connects the Tier-2 to WAN. This link is used for the LHC Open Network Environment (LHCONE) and for other general purpose traffic. In this paper we discuss about the experiences at the Legnaro-Padova Tier-2: the problems that had to be addressed, the lessons learned, the implementation choices. We also present the tools used for the daily management operations. These include DOCET, a Java-based webtool designed, implemented and maintained at the Legnaro-Padova Tier-2, and deployed also in other sites, such as the LHC Italian T1. DOCET provides an uniform interface to manage all the information about the physical resources of a computing center. It is also used as documentation repository available to

  7. Tier 2 Interventions in Positive Behavior Support: A Survey of School Implementation

    ERIC Educational Resources Information Center

    Rodriguez, Billie Jo; Loman, Sheldon L.; Borgmeier, Christopher

    2016-01-01

    As increasing numbers of schools implement Multi-Tiered Systems of Support (MTSS), schools are looking for and implementing evidence-based practices for students whose needs are not fully met by Tier 1 supports. Although there is relative consistency and clarity in what constitutes Tier 1 behavior support within MTSS, Tier 2 supports may be more…

  8. Survey of Galileo Plasma Observations in Jupiter's Plasma Sheet

    NASA Technical Reports Server (NTRS)

    Bagenal, Fran; Wilson, Robert J.; Siler, Scott; Paterson, William R.; Kurth, William S.

    2016-01-01

    The plasma science (PLS) Instrument on the Galileo spacecraft (orbiting Jupiter from December 1995 to September 2003) measured properties of the ions that were trapped in the magnetic field. The PLS data provide a survey of the plasma properties between approx. 5 and 30 Jupiter radii [R(sub J)] in the equatorial region. We present plasma properties derived via two analysis methods: numerical moments and forward modeling. We find that the density decreases with radial distance by nearly 5 orders of magnitude from approx. 2 to 3000 cm(exp.-3) at 6R(sub j) to approx. 0.05cm(sub -3) at 30 R(sub j). The density profile did not show major changes from orbit to orbit, suggesting that the plasma production and transport remained constant within about a factor of 2. The radial profile of ion temperature increased with distance which implied that contrary to the concept of adiabatic cooling on expansion, the plasma heats up as it expands out from Io's orbit (where TI is approx.60-80 eV) at approx. 6R(sub j) to a few keV at 30R(sub j).There does not seem to be a long-term, systematic variation in ion temperature with either local time or longitude. This latter finding differs from earlier analysis of Galileo PLS data from a selection of orbits. Further examination of all data from all Galileo orbits suggests that System Ill variations are transitory on timescales of weeks, consistent with the modeling of Cassini Ultraviolet Imaging Spectrograph observations. The plasma flow is dominated by azimuthal flow that is between 80% and 100% of corotation out to 25 R(sub j).

  9. Archiving 40+ Years of Planetary Mission Data - Lessons Learned

    NASA Astrophysics Data System (ADS)

    Simmons, K. E.

    2012-12-01

    NASA has invested billions of dollars and millions of man-hours in obtaining information about our planet and its neighbors. Will the data obtained from those investments be accessible in 50 years, nae 20 or even 10? Will scientists be able to look back at the record and understand what stayed the same or has changed? Saving the data is critical, we all understand that, and keeping it reformatted to maintain usability is a given. But what is easily more critical is saving the information that allows a future person to use these data. This work explores the difficul-ties, costs and heartaches encountered with archiving data from six major NASA missions spanning 40+ years: Mariner 6, 7 and 9, Pioneer Venus, Voyager and Galileo. Some of these lessons are a) a central archive for Mission documents needs to be established, b) metadata from the early stages of a mission are frequntly poorly recorded, c) instrument microprocessors improve science flexibility but make documenting harder, d) archiving observation de-signs improves data recovery, e) more post mission time and dollars need to be allocated to archiving, f) additional PDS node funding would support more timely data ingestion, faster peer review and quicker public access and g) trained archivists should be part of mission teams at all levels. This work is supported from ROSES grant NNX09AM04GS04.

  10. Galileo photometry of asteroid 243 Ida

    USGS Publications Warehouse

    Helfenstein, P.; Veverka, J.; Thomas, P.C.; Simonelli, D.P.; Klaasen, K.; Johnson, T.V.; Fanale, F.; Granahan, J.; McEwen, A.S.; Belton, M.; Chapman, C.

    1996-01-01

    Galileo imaging observations over phase angles 19.5?? to 109.8?? are combined with near-opposition Earth-based data to derive the photometric properties of Ida. To first order these properties are uniform over the surface and well modeled at ?? = 0.55 ??m by Hapke parameters ????0 = 0.22, h = 0.020, B0 = 1.5, g = -0.33, and ?? = 18?? with corresponding geometric albedo p = 0.21??0.030.01 and Bond albedo AB = 0.081??0.0170.008. Ida's photometric properties are more similar to those of "average S-asteroids" (P. Helfenstein and J. Veverka 1989, Asteroids II, Univ. of Arizona Press, Tucson) than are those of 951 Gaspra. Two primary color units are identified on Ida: Terrain A exhibits a spectrum with relatively shallower 1-??m absorption and a relatively steeper red spectral slope than average Ida, while Terrain B has a deeper 1-??m absorption and a less steep red slope. The average photometric properties of Ida and Terrain A are similar while those of Terrain B differ mostly in having a slightly higher value of ????0 (0.22 versus 0.21), suggesting that Terrain B consists of slightly brighter, more transparent regolith particles. Galileo observations of Ida's satellite Dactyl over phase angles 19.5?? to 47.6?? suggest photometric characteristics similar to those of Ida, the major difference being Dactyl's slightly lower albedo (0.20 compared to 0.21). ?? 1990 Academic Press, Inc.

  11. A post-Galileo view of Io's interior

    USGS Publications Warehouse

    Keszthelyi, L.; Jaeger, W.L.; Turtle, E.P.; Milazzo, M.; Radebaugh, J.

    2004-01-01

    We present a self-consistent model for the interior of Io, taking the recent Galileo data into account. In this model, Io has a completely molten core, substantially molten mantle, and a very cold lithosphere. Heat from magmatic activity can mobilize volatile compounds such as SO2 in the lithosphere, and the movement of such cryogenic fluids may be important in the formation of surface features including sapping scarps and paterae. ?? Published by Elsevier Inc.

  12. Galileo, Cassini and Huygens : Spatial Probes, but also Men focused on Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Déau, Estelle

    2008-09-01

    Galileo Galilei (1564-1642), Christiaan Huygens (1629-1675) and Jean-Dominique Cassini (1625-1712) are maybe the most important astronomers of the 17th century. Galileo discovered the 4 biggest satellites around Jupiter (Io, Ganymede, Europa and Callisto, known as the 'Galilean satellites'), Huygens discovered Titan, the biggest satellite of Saturn and Cassini discovered the zodiacal light and 4 satellites around Saturn (Iapetus, Rhea, Tethys and Dione). They brough fundamental ideas to the knowledge of the Saturn's rings: (i) Galileo found firstly a strange shape around the planet Saturn (known as the 6th and last planet of the Solar System), (ii) Cassini found other satellites than Titan around Saturn that implying more forthcoming satellites discoveries (until now !), and (iii) Huygens showed that the viewing geometry of an object can dramatically change its appearence. All these discoveries are linked to their personnality and their education. Galileo the autodidact loved discoveries (as the triple form of Saturn) but did not give enough attention to all of their physical implications. Huygens the mathematician did not discover but observed and theoretically confirmed simultaneously his discovery (as for the identification of the Saturn's ring). Cassini the brilliant astronomer interpreted his observations in order to make new discoveries (shadow of galiliean satellites on Jupiter, Cassini Division contradicts the vision of a single ring). At less than one year left to the International Year of Astronomy 2009 (AMA09 or IYA09) these three examples show how the education and the scientific carrer and methodology are intrinsically linked.

  13. Tier2 Submit Software

    EPA Pesticide Factsheets

    Download this tool for Windows or Mac, which helps facilities prepare a Tier II electronic chemical inventory report. The data can also be exported into the CAMEOfm (Computer-Aided Management of Emergency Operations) emergency planning software.

  14. In-flight wobble identification for Galileo

    NASA Technical Reports Server (NTRS)

    Lai, J. Y.; Wong, E. C.

    1984-01-01

    To achieve in-flight wobble compensation for Galileo, wobble identification is implemented using star scanner data or automatic gain control (AGC) signal as measurement in all-spin mode. The star scanner provides spacecraft attitude in inertial space while the AGC signal provides the spacecraft pointing relative to earth. A linear observation model is defined for each sensor which is being applied to a Kalman Estimator. It can be shown from simulation that better result can be achieved using a combined set of data than any one sensor alone due to correlation reduction among error sources.

  15. Seeds of a Tychonic Revolution: Telescopic Observations of the Stars by Galileo Galilei and Simon Marius

    NASA Astrophysics Data System (ADS)

    Graney, Christopher M.

    2010-03-01

    Because early telescopic astronomers did not understand the spurious nature of star images formed by their telescopes, their observations of the stars yielded data that apparently confirmed the geocentric Tychonic world system. Both Galileo Galilei (1564-1642) and Simon Marius (1570-1624) obtained such data. Galileo backed Nicholas Copernicus (1473-1543) despite his data. Marius supported Tycho Brahe (1546-1601) on the basis of his data.

  16. A Five-Tier System for Improving the Categorization of Transplant Program Performance.

    PubMed

    Wey, Andrew; Salkowski, Nicholas; Kasiske, Bertram L; Israni, Ajay K; Snyder, Jon J

    2018-06-01

    To better inform health care consumers by better identifying differences in transplant program performance. Adult kidney transplants performed in the United States, January 1, 2012-June 30, 2014. In December 2016, the Scientific Registry of Transplant Recipients instituted a five-tier system for reporting transplant program performance. We compare the differentiation of program performance and the simulated misclassification rate of the five-tier system with the previous three-tier system based on the 95 percent credible interval. Scientific Registry of Transplant Recipients database. The five-tier system improved differentiation and maintained a low misclassification rate of less than 22 percent for programs differing by two tiers. The five-tier system will better inform health care consumers of transplant program performance. © Health Research and Educational Trust.

  17. Validation of Galileo orbits using SLR with a focus on satellites launched into incorrect orbital planes

    NASA Astrophysics Data System (ADS)

    Sośnica, Krzysztof; Prange, Lars; Kaźmierski, Kamil; Bury, Grzegorz; Drożdżewski, Mateusz; Zajdel, Radosław; Hadas, Tomasz

    2018-02-01

    The space segment of the European Global Navigation Satellite System (GNSS) Galileo consists of In-Orbit Validation (IOV) and Full Operational Capability (FOC) spacecraft. The first pair of FOC satellites was launched into an incorrect, highly eccentric orbital plane with a lower than nominal inclination angle. All Galileo satellites are equipped with satellite laser ranging (SLR) retroreflectors which allow, for example, for the assessment of the orbit quality or for the SLR-GNSS co-location in space. The number of SLR observations to Galileo satellites has been continuously increasing thanks to a series of intensive campaigns devoted to SLR tracking of GNSS satellites initiated by the International Laser Ranging Service. This paper assesses systematic effects and quality of Galileo orbits using SLR data with a main focus on Galileo satellites launched into incorrect orbits. We compare the SLR observations with respect to microwave-based Galileo orbits generated by the Center for Orbit Determination in Europe (CODE) in the framework of the International GNSS Service Multi-GNSS Experiment for the period 2014.0-2016.5. We analyze the SLR signature effect, which is characterized by the dependency of SLR residuals with respect to various incidence angles of laser beams for stations equipped with single-photon and multi-photon detectors. Surprisingly, the CODE orbit quality of satellites in the incorrect orbital planes is not worse than that of nominal FOC and IOV orbits. The RMS of SLR residuals is even lower by 5.0 and 1.5 mm for satellites in the incorrect orbital planes than for FOC and IOV satellites, respectively. The mean SLR offsets equal -44.9, -35.0, and -22.4 mm for IOV, FOC, and satellites in the incorrect orbital plane. Finally, we found that the empirical orbit models, which were originally designed for precise orbit determination of GNSS satellites in circular orbits, provide fully appropriate results also for highly eccentric orbits with variable linear

  18. Positioning performance improvements with European multiple-frequency satellite navigation - Galileo

    NASA Astrophysics Data System (ADS)

    Ji, Shengyue

    2008-10-01

    The rapid development of Global Positioning System has demonstrated the advantages of satellite based navigation systems. In near future, there will be a number of Global Navigation Satellite System (GNSS) available, i.e. modernized GPS, Galileo, restored GLONASS, BeiDou and many other regional GNSS augmentation systems. Undoubtedly, the new GNSS systems will significantly improve navigation performance over current GPS, with a better satellite coverage and multiple satellite signal bands. In this dissertation, the positioning performance improvement of new GNSS has been investigated based on both theoretical analysis and numerical study. First of all, the navigation performance of new GNSS systems has been analyzed, particularly for urban applications. The study has demonstrated that Receiver Autonomous Integrity Monitoring (RAIM) performance can be significantly improved with multiple satellite constellations, although the position accuracy improvement is limited. Based on a three-dimensional urban building model in Hong Kong streets, it is found that positioning availability is still very low in high-rising urban areas, even with three GNSS systems. On the other hand, the discontinuity of navigation solutions is significantly reduced with the combined constellations. Therefore, it is possible to use cheap DR systems to bridge the gaps of GNSS positioning, with high accuracy. Secondly, the ambiguity resolution performance has been investigated with Galileo multiple frequency band signals. The ambiguity resolution performance of three different algorithms is compared, including CAR, ILS and improved CAR methods (a new method proposed in this study). For short baselines, with four frequency Galileo data, it is highly possible to achieve reliable single epoch ambiguity resolution, when the carrier phase noise level is reasonably low (i.e. less than 6mm). For long baselines (up to 800 km), the integer ambiguity can be determined within 1 min on average. Ambiguity

  19. Galileo Declassified: IOV Spacecraft Metadata and Its Impact on Precise Orbit Determination

    NASA Astrophysics Data System (ADS)

    Dilssner, Florian; Schönemann, Erik; Springer, Tim; Flohrer, Claudia; Enderle, Werner

    2017-04-01

    In December 2016, shortly after the declaration of Galileo Initial Services, the European GNSS Agency (GSA) disclosed Galileo spacecraft metadata relevant to precise orbit determination (POD), such as antenna phase center parameters, dimensions of the solar panels and the main body, specularity and reflectivity coefficients for the surface materials, yaw attitude steering law, and signal group delays. The metadata relates to the first four operational Galileo satellites, known as the In-Orbit Validation (IOV) satellites, and is publicly available through the European GNSS Service Center (GSC) web site. One of the dataset's major benefits is that it includes nearly all information about the satellites' surface properties needed to develop a physically meaningful analytical solar radiation pressure (SRP) macro model, or "box-wing" (BW) model. Such a BW model for the IOV spacecraft has now been generated for use in NAPEOS, the European Space Operation Centre's (ESOC's) main geodetic software package for POD. The model represents the satellite as a simple six-sided box with two attached panels, or "wings", and allows for the a priori computation of the direct and indirect (Earth albedo) SRP force. Further valuable parameters of the metadata set are the IOV navigation antenna (NAVANT) phase center offsets (PCOs) and variations (PCVs) inferred from pre-launch anechoic chamber measurements. In this work, we report on the validation of the Galileo IOV metadata and its impact on POD, an activity ESOC has been deeply committed to since the launch of the first Galileo experimental satellite, GIOVE-A, in 2005. We first reanalyze the full history of Galileo tracking data the global International GNSS Service (IGS) network has collected since 2012. We generate orbit and clock solutions based on the widely used Empirical CODE Orbit Model (ECOM) with and without the IOV a priori BW model. For the satellite antennas, we apply the new as well as the standard IGS-recommended phase

  20. A single, continuous metric to define tiered serum neutralization potency against HIV

    DOE PAGES

    Hraber, Peter Thomas; Korber, Bette Tina Marie; Wagh, Kshitij; ...

    2018-01-19

    HIV-1 Envelope (Env) variants are grouped into tiers by their neutralization-sensitivity phenotype. This helped to recognize that tier 1 neutralization responses can be elicited readily, but do not protect against new infections. Tier 3 viruses are the least sensitive to neutralization. Because most circulating viruses are tier 2, vaccines that elicit neutralization responses against them are needed. While tier classification is widely used for viruses, a way to rate serum or antibody neutralization responses in comparable terms is needed. Logistic regression of neutralization outcomes summarizes serum or antibody potency on a continuous, tier-like scale. It also tests significance of themore » neutralization score, to indicate cases where serum response does not depend on virus tiers. The method can standardize results from different virus panels, and could lead to high-throughput assays, which evaluate a single serum dilution, rather than a dilution series, for more efficient use of limited resources to screen samples from vaccinees.« less

  1. A single, continuous metric to define tiered serum neutralization potency against HIV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hraber, Peter Thomas; Korber, Bette Tina Marie; Wagh, Kshitij

    HIV-1 Envelope (Env) variants are grouped into tiers by their neutralization-sensitivity phenotype. This helped to recognize that tier 1 neutralization responses can be elicited readily, but do not protect against new infections. Tier 3 viruses are the least sensitive to neutralization. Because most circulating viruses are tier 2, vaccines that elicit neutralization responses against them are needed. While tier classification is widely used for viruses, a way to rate serum or antibody neutralization responses in comparable terms is needed. Logistic regression of neutralization outcomes summarizes serum or antibody potency on a continuous, tier-like scale. It also tests significance of themore » neutralization score, to indicate cases where serum response does not depend on virus tiers. The method can standardize results from different virus panels, and could lead to high-throughput assays, which evaluate a single serum dilution, rather than a dilution series, for more efficient use of limited resources to screen samples from vaccinees.« less

  2. Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa.

    PubMed

    Kivelson, M G; Khurana, K K; Russell, C T; Volwerk, M; Walker, R J; Zimmer, C

    2000-08-25

    On 3 January 2000, the Galileo spacecraft passed close to Europa when it was located far south of Jupiter's magnetic equator in a region where the radial component of the magnetospheric magnetic field points inward toward Jupiter. This pass with a previously unexamined orientation of the external forcing field distinguished between an induced and a permanent magnetic dipole moment model of Europa's internal field. The Galileo magnetometer measured changes in the magnetic field predicted if a current-carrying outer shell, such as a planet-scale liquid ocean, is present beneath the icy surface. The evidence that Europa's field varies temporally strengthens the argument that a liquid ocean exists beneath the present-day surface.

  3. Galileo Magnetometer Measurements: A Stronger Case for a Subsurface Ocean at Europa

    NASA Astrophysics Data System (ADS)

    Kivelson, Margaret G.; Khurana, Krishan K.; Russell, Christopher T.; Volwerk, Martin; Walker, Raymond J.; Zimmer, Christophe

    2000-08-01

    On 3 January 2000, the Galileo spacecraft passed close to Europa when it was located far south of Jupiter's magnetic equator in a region where the radial component of the magnetospheric magnetic field points inward toward Jupiter. This pass with a previously unexamined orientation of the external forcing field distinguished between an induced and a permanent magnetic dipole moment model of Europa's internal field. The Galileo magnetometer measured changes in the magnetic field predicted if a current-carrying outer shell, such as a planet-scale liquid ocean, is present beneath the icy surface. The evidence that Europa's field varies temporally strengthens the argument that a liquid ocean exists beneath the present-day surface.

  4. The GalileoMobile starts its South American voyage - Astronomy education goes on tour through the Andes Mountains

    NASA Astrophysics Data System (ADS)

    2009-10-01

    Today marks the beginning of the GalileoMobile Project, a two-month expedition to bring the wonder and excitement of astronomy to young people in Chile, Bolivia and Peru. Supported by ESO and partners, a group of astronomers and educators will travel through a region of the Andes Mountains aboard the GalileoMobile, offering astronomical activities, such as workshops for students and star parties for the general public. Professional filmmakers on the trip will produce a multilingual documentary capturing the thrill of discovery through science, culture and travel. The GalileoMobile is a Special Project of the International Year of Astronomy 2009 (IYA2009), which is a global celebration commemorating the first use of a telescope to view the Universe by the Italian astronomer Galileo four hundred years ago. The project will promote basic science education through astronomy by visiting schools and communities that have limited access to outreach programmes. The GalileoMobile will provide these underserved groups with hands-on activities and educational material from international partners. The van is fully equipped to offer unique sky-observing opportunities for young students and other locals, with star parties at night and solar observations during the day. The team will use various tools including IYA2009's handy Galileoscopes, which will be donated to the schools after the visits. By stimulating curiosity, critical thinking and a sense of wonder and discovery for the Universe and our planet, the GalileoMobile Project aims to encourage interest in astronomy and science, and exchange culturally different visions of the cosmos. Spearheading the initiative is a group of enthusiastic Latin American and European PhD students from the European Southern Observatory, the Max Planck Society, the University Observatory Munich, and the Stockholm University Observatory. This itinerant educational programme is intended to reach about 20 000 people during eight weeks in October

  5. Implementing planetary protection requirements for sample return missions.

    PubMed

    Rummel, J D

    2000-01-01

    NASA is committed to exploring space while avoiding the biological contamination of other solar system bodies and protecting the Earth against potential harm from materials returned from space. NASA's planetary protection program evaluates missions (with external advice from the US National Research Council and others) and imposes particular constraints on individual missions to achieve these objectives. In 1997 the National Research Council's Space Studies Board published the report, Mars Sample Return: Issues and Recommendations, which reported advice to NASA on Mars sample return missions, complementing their 1992 report, The Biological Contamination of Mars Issues and Recommendations. Meanwhile, NASA has requested a new Space Studies Board study to address sample returns from bodies other than Mars. This study recognizes the variety of worlds that have been opened up to NASA and its partners by small, relatively inexpensive, missions of the Discovery class, as well as the reshaping of our ideas about life in the solar system that have been occasioned by the Galileo spacecraft's discovery that an ocean under the ice on Jupiter's moon Europa might, indeed, exist. This paper will report on NASA's planned implementation of planetary protection provisions based on these recent National Research Council recommendations, and will suggest measures for incorporation in the planetary protection policy of COSPAR. c2001 COSPAR Published by Elsevier Science Ltd. All rights reserved.

  6. Which Tier? Effects of Linear Assessment and Student Characteristics on GCSE Entry Decisions

    ERIC Educational Resources Information Center

    Vitello, Sylvia; Crawford, Cara

    2018-01-01

    In England, students obtain General Certificate of Secondary Education (GCSE) qualifications, typically at age 16. Certain GCSEs are tiered; students take either higher-level (higher tier) or lower-level (foundation tier) exams, which may have different educational, career and psychological consequences. In particular, foundation tier entry, if…

  7. 50 CFR 86.53 - What are funding tiers?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false What are funding tiers? 86.53 Section 86.53 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... (BIG) PROGRAM How States Apply for Grants § 86.53 What are funding tiers? (a) This grant program will...

  8. 47 CFR 76.920 - Composition of the basic tier.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Composition of the basic tier. 76.920 Section 76.920 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES... tier of video programming or to purchase any other video programming. ...

  9. 47 CFR 76.920 - Composition of the basic tier.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Composition of the basic tier. 76.920 Section 76.920 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES... tier of video programming or to purchase any other video programming. ...

  10. Ensuring Safety of Navigation: A Three-Tiered Approach

    NASA Astrophysics Data System (ADS)

    Johnson, S. D.; Thompson, M.; Brazier, D.

    2014-12-01

    The primary responsibility of the Hydrographic Department at the Naval Oceanographic Office (NAVOCEANO) is to support US Navy surface and sub-surface Safety of Navigation (SoN) requirements. These requirements are interpreted, surveys are conducted, and accurate products are compiled and archived for future exploitation. For a number of years NAVOCEANO has employed a two-tiered data-basing structure to support SoN. The first tier (Data Warehouse, or DWH) provides access to the full-resolution sonar and lidar data. DWH preserves the original data such that any scale product can be built. The second tier (Digital Bathymetric Database - Variable resolution, or DBDB-V) served as the final archive for SoN chart scale, gridded products compiled from source bathymetry. DBDB-V has been incorporated into numerous DoD tactical decision aids and serves as the foundation bathymetry for ocean modeling. With the evolution of higher density survey systems and the addition of high-resolution gridded bathymetry product requirements, a two-tiered model did not provide an efficient solution for SoN. The two-tiered approach required scientists to exploit full-resolution data in order to build any higher resolution product. A new perspective on the archival and exploitation of source data was required. This new perspective has taken the form of a third tier, the Navigation Surface Database (NSDB). NSDB is an SQLite relational database populated with International Hydrographic Organization (IHO), S-102 compliant Bathymetric Attributed Grids (BAGs). BAGs archived within NSDB are developed at the highest resolution that the collection sensor system can support and contain nodal estimates for depth, uncertainty, separation values and metadata. Gridded surface analysis efforts culminate in the generation of the source resolution BAG files and their storage within NSDB. Exploitation of these resources eliminates the time and effort needed to re-grid and re-analyze native source file formats.

  11. Essential Features of Tier 2 Social-Behavioral Interventions

    ERIC Educational Resources Information Center

    Yong, Minglee; Cheney, Douglas A.

    2013-01-01

    The purpose of this study is to identify the essential features of Tier 2 interventions conducted within multitier systems of behavior support in schools. A systematic literature search identified 12 empirical studies that were coded and scored according to a list of Tier 2 specific RE-AIM criteria, related to the Reach, Effectiveness, Adoption,…

  12. Galileo SSI/Ida Radiometrically Calibrated Images V1.0

    NASA Astrophysics Data System (ADS)

    Domingue, D. L.

    2016-05-01

    This data set includes Galileo Orbiter SSI radiometrically calibrated images of the asteroid 243 Ida, created using ISIS software and assuming nadir pointing. This is an original delivery of radiometrically calibrated files, not an update to existing files. All images archived include the asteroid within the image frame. Calibration was performed in 2013-2014.

  13. Galileo: The Added Value for Integrity in Harsh Environments.

    PubMed

    Borio, Daniele; Gioia, Ciro

    2016-01-16

    A global navigation satellite system (GNSS)-based navigation is a challenging task in a signal-degraded environments where GNSS signals are distorted by multipath and attenuated by fading effects: the navigation solution may be inaccurate or unavailable. A possible approach to improve accuracy and availability is the joint use of measurements from different GNSSs and quality check algorithms; this approach is investigated here using live GPS and Galileo signals. A modified receiver autonomous integrity monitoring (RAIM) algorithm, including geometry and separability checks, is proposed to detect and exclude erroneous measurements: the multi-constellation approach provides redundant measurements, and RAIM exploits them to exclude distorted observations. The synergy between combined GPS/Galileo navigation and RAIM is analyzed using live data; the performance is compared to the accuracy and availability of a GPS-only solution. The tests performed demonstrate that the methods developed are effective techniques for GNSS-based navigation in signal-degraded environments. The joint use of the multi-constellation approach and of modified RAIM algorithms improves the performance of the navigation system in terms of both accuracy and availability.

  14. Galileo: The Added Value for Integrity in Harsh Environments

    PubMed Central

    Borio, Daniele; Gioia, Ciro

    2016-01-01

    A global navigation satellite system (GNSS)-based navigation is a challenging task in a signal-degraded environments where GNSS signals are distorted by multipath and attenuated by fading effects: the navigation solution may be inaccurate or unavailable. A possible approach to improve accuracy and availability is the joint use of measurements from different GNSSs and quality check algorithms; this approach is investigated here using live GPS and Galileo signals. A modified receiver autonomous integrity monitoring (RAIM) algorithm, including geometry and separability checks, is proposed to detect and exclude erroneous measurements: the multi-constellation approach provides redundant measurements, and RAIM exploits them to exclude distorted observations. The synergy between combined GPS/Galileo navigation and RAIM is analyzed using live data; the performance is compared to the accuracy and availability of a GPS-only solution. The tests performed demonstrate that the methods developed are effective techniques for GNSS-based navigation in signal-degraded environments. The joint use of the multi-constellation approach and of modified RAIM algorithms improves the performance of the navigation system in terms of both accuracy and availability. PMID:26784205

  15. Prediction of Particle Number Density and Particle Properties in the Flow Field Observed by the Nephelometer Experiment on the Galileo Probe

    NASA Technical Reports Server (NTRS)

    Naughton, Jonathan W.

    1998-01-01

    This report summarizes the work performed to assist in the analysis of data returned from the Galileo Probe's Nephelometer instrument. A computation of the flow field around the Galileo Probe during its descent through the Jovian atmosphere was simulated. The behavior of cloud particles that passed around the Galileo probe was then computed and the number density in the vicinity of the Nephelometer instrument was predicted. The results of our analysis support the finding that the number density of cloud particles was not the same in each of the four sampling volumes of the Nephelometer instrument. The number densities calculated in this study are currently being used to assist in the reanalysis of the data returned from the Galileo Probe.

  16. Long-range planning cost model for support of future space missions by the deep space network

    NASA Technical Reports Server (NTRS)

    Sherif, J. S.; Remer, D. S.; Buchanan, H. R.

    1990-01-01

    A simple model is suggested to do long-range planning cost estimates for Deep Space Network (DSP) support of future space missions. The model estimates total DSN preparation costs and the annual distribution of these costs for long-range budgetary planning. The cost model is based on actual DSN preparation costs from four space missions: Galileo, Voyager (Uranus), Voyager (Neptune), and Magellan. The model was tested against the four projects and gave cost estimates that range from 18 percent above the actual total preparation costs of the projects to 25 percent below. The model was also compared to two other independent projects: Viking and Mariner Jupiter/Saturn (MJS later became Voyager). The model gave cost estimates that range from 2 percent (for Viking) to 10 percent (for MJS) below the actual total preparation costs of these missions.

  17. Examining the Effects and Feasibility of a Teacher-Implemented Tier 1 and Tier 2 Intervention in Word Reading, Fluency, and Comprehension

    ERIC Educational Resources Information Center

    Solari, Emily J.; Denton, Carolyn A.; Petscher, Yaacov; Haring, Christa

    2018-01-01

    This study investigates the effects and feasibility of an intervention for first-grade students at risk for reading difficulties or disabilities (RD). The intervention was provided by general education classroom teachers and consisted of 15 min whole-class comprehension lessons (Tier 1) and 30 min Tier 2 intervention sessions in word reading,…

  18. Galileo Photometry of Asteroid 243 Ida

    NASA Astrophysics Data System (ADS)

    Helfenstein, P.; Veverka, J.; Thomas, P. C.; Simonelli, D. P.; Klaasen, K.; Johnson, T. V.; Fanale, F.; Granahan, J.; McEwen, A. S.; Belton, M.; Chapman, C.

    1996-03-01

    Galileo imaging observations over phase angles 19.5° to 109.8° are combined with near-opposition Earth-based data to derive the photometric properties of Ida. To first order these properties are uniform over the surface and well modeled at λ = 0.55 μm by Hapke parameters ω0= 0.22,h= 0.020,B0= 1.5,g= -0.33, and θ = 18° with corresponding geometric albedop= 0.21±0.030.01and Bond albedoAB= 0.081±0.0170.008. Ida's photometric properties are more similar to those of “average S-asteroids” (P. Helfenstein and J. Veverka 1989,Asteroids II, Univ. of Arizona Press, Tucson) than are those of 951 Gaspra. Two primary color units are identified on Ida: Terrain A exhibits a spectrum with relatively shallower 1-μm absorption and a relatively steeper red spectral slope than average Ida, while Terrain B has a deeper 1-μm absorption and a less steep red slope. The average photometric properties of Ida and Terrain A are similar while those of Terrain B differ mostly in having a slightly higher value of ω0(0.22 versus 0.21), suggesting that Terrain B consists of slightly brighter, more transparent regolith particles. Galileo observations of Ida's satellite Dactyl over phase angles 19.5° to 47.6° suggest photometric characteristics similar to those of Ida, the major difference being Dactyl's slightly lower albedo (0.20 compared to 0.21).

  19. High-Resolution Views of Io's Emakong Patera: Latest Galileo Imaging Results

    NASA Technical Reports Server (NTRS)

    Williams, D. A.; Keszthelyi, L. P.; Davies, A. G.; Greeley, R.; Head, J. W., III

    2002-01-01

    This presentation will discuss analyses of the latest Galileo SSI (solid state imaging) high-resolution images of the Emakong lava channels and flow field on Jupiter's moon Io. Additional information is contained in the original extended abstract.

  20. Annealing displacement damage in GaAs LEDs: another Galileo success story

    NASA Technical Reports Server (NTRS)

    Swift, G. M.; Levanas, G. C.; Ratliff, J. M.; Johnston, A. H.

    2003-01-01

    A recent failure of Galileo's magnetic recorder was identified as LED degradation. Annealing the culprit OP133s proved successful and the irreplaceable data was recovered. Test data and modeling results calibrate an understanding of this incident.

  1. What Does Galileo's Discovery of Jupiter's Moons Tell Us About the Process of Scientific Discovery?

    NASA Astrophysics Data System (ADS)

    Lawson, Anton E.

    In 1610, Galileo Galilei discovered Jupiter''smoons with the aid of a new morepowerful telescope of his invention. Analysisof his report reveals that his discoveryinvolved the use of at least three cycles ofhypothetico-deductive reasoning. Galileofirst used hypothetico-deductive reasoning to generateand reject a fixed star hypothesis.He then generated and rejected an ad hocastronomers-made-a-mistake hypothesis.Finally, he generated, tested, and accepted a moonhypothesis. Galileo''s reasoningis modeled in terms of Piaget''s equilibration theory,Grossberg''s theory of neurologicalactivity, a neural network model proposed by Levine &Prueitt, and another proposedby Kosslyn & Koenig. Given that hypothetico-deductivereasoning has played a rolein other important scientific discoveries, thequestion is asked whether it plays a rolein all important scientific discoveries. In otherwords, is hypothetico-deductive reasoningthe essence of the scientific method? Possiblealternative scientific methods, such asBaconian induction and combinatorial analysis,are explored and rejected as viablealternatives. Educational implications of thishypothetico-deductive view of scienceare discussed.

  2. 25 CFR 542.30 - What is a Tier B gaming operation?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false What is a Tier B gaming operation? 542.30 Section 542.30 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR HUMAN SERVICES MINIMUM INTERNAL CONTROL STANDARDS § 542.30 What is a Tier B gaming operation? A Tier B gaming operation is one with gross...

  3. 25 CFR 542.40 - What is a Tier C gaming operation?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false What is a Tier C gaming operation? 542.40 Section 542.40 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR HUMAN SERVICES MINIMUM INTERNAL CONTROL STANDARDS § 542.40 What is a Tier C gaming operation? A Tier C gaming operation is one with annual...

  4. 25 CFR 542.20 - What is a Tier A gaming operation?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false What is a Tier A gaming operation? 542.20 Section 542.20 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR HUMAN SERVICES MINIMUM INTERNAL CONTROL STANDARDS § 542.20 What is a Tier A gaming operation? A Tier A gaming operation is one with annual...

  5. MIOSAT Mission Scenario and Design

    NASA Astrophysics Data System (ADS)

    Agostara, C.; Dionisio, C.; Sgroi, G.; di Salvo, A.

    2008-08-01

    MIOSAT ("Mssione Ottica su microSATellite") is a low-cost technological / scientific microsatellite mission for Earth Observation, funded by Italian Space Agency (ASI) and managed by a Group Agreement between Rheinmetall Italia - B.U. Spazio - Contraves as leader and Carlo Gavazzi Space as satellite manufacturer. Several others Italians Companies, SME and Universities are involved in the development team with crucial roles. MIOSAT is a microsatellite weighting around 120 kg and placed in a 525 km altitude sun-synchronuos circular LEO orbit. The microsatellite embarks three innovative optical payloads: Sagnac multi spectral radiometer (IFAC-CNR), Mach Zehender spectrometer (IMM-CNR), high resolution pancromatic camera (Selex Galileo). In addition three technological experiments will be tested in-flight. The first one is an heat pipe based on Marangoni effect with high efficiency. The second is a high accuracy Sun Sensor using COTS components and the last is a GNSS SW receiver that utilizes a Leon2 processor. Finally a new generation of 28% efficiency solar cells will be adopted for the power generation. The platform is highly agile and can tilt along and cross flight direction. The pointing accuracy is in the order of 0,1° for each axe. The pointing determination during images acquisition is <0,02° for the axis normal to the boresight and 0,04° for the boresight. This paper deals with MIOSAT mission scenario and definition, highlighting trade-offs for mission implementation. MIOSAT mission design has been constrained from challenging requirements in terms of satellite mass, mission lifetime, instrument performance, that have implied the utilization of satellite agility capability to improve instruments performance in terms of S/N and resolution. The instruments provide complementary measurements that can be combined in effective ways to exploit new applications in the fields of atmosphere composition analysis, Earth emissions, antropic phenomena, etc. The Mission

  6. 7 CFR 1940.327 - Tiering.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... environmental assessments and EISs. Tiering refers to the coverage of general matters in broader environmental... statements or environmental analyses incorporating by reference the broader matters and concentrating on the...

  7. 7 CFR 1940.327 - Tiering.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... environmental assessments and EISs. Tiering refers to the coverage of general matters in broader environmental... statements or environmental analyses incorporating by reference the broader matters and concentrating on the...

  8. 7 CFR 1940.327 - Tiering.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... environmental assessments and EISs. Tiering refers to the coverage of general matters in broader environmental... statements or environmental analyses incorporating by reference the broader matters and concentrating on the...

  9. 7 CFR 1940.327 - Tiering.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... environmental assessments and EISs. Tiering refers to the coverage of general matters in broader environmental... statements or environmental analyses incorporating by reference the broader matters and concentrating on the...

  10. 7 CFR 1940.327 - Tiering.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... environmental assessments and EISs. Tiering refers to the coverage of general matters in broader environmental... statements or environmental analyses incorporating by reference the broader matters and concentrating on the...

  11. Bring the Process of Science to Life! Use Galileo's Historic Observations to Celebrate the International Year of Astronomy 2009

    NASA Astrophysics Data System (ADS)

    Moody, Theresa R.; van der Veen, W.; Erickson, J.; Manning, J.; White, V.

    2009-01-01

    The International Year of Astronomy 2009 was conceived to honor the 400th anniversary of Galileo's first telescopic observations in 1609. Galileo gave priority to evidence over popular belief. This completely changed the existing world view and formed the basis for the modern scientific process. Galileo's work provides an example of how science is grounded in evidence rather than belief or opinion. The goal of this project is to present K-16 instructors with an alternative to the traditional scientific method unit. We will briefly describe two activities that model Galileo's telescopic observations of Jupiter and Venus and simultaneously build abilities and understandings of scientific inquiry. Participants will learn about activities where students record and analyze data, make predictions, use multiple forms of evidence, and use a variety of models to find support for a heliocentric solar system. Materials will be available for download for those interested in using this in their classroom as well as for the purpose of training other teachers.

  12. Bring the Process of Science to Life! Use Galileo's Historic Observations to Celebrate the International Year of Astronomy 2009

    NASA Astrophysics Data System (ADS)

    Roelofsen Moody, T.; van der Veen, W.; Manning, J.; White, V.; Erickson, J.

    2008-12-01

    The International Year of Astronomy 2009 was conceived to honor the 400th anniversary of Galileo's first telescopic observations in 1609. Galileo gave priority to evidence over popular belief. This completely changed the existing world view and formed the basis for the modern scientific process. Galileo's work provides an example of how science is grounded in evidence rather than belief or opinion. The goal of this project is to present K-16 instructors with an alternative to the traditional scientific method unit. We will briefly describe two activities that model Galileo's telescopic observations of Jupiter and Venus and simultaneously build abilities and understandings of scientific inquiry. Participants will learn about activities where students record and analyze data, make predictions, use multiple forms of evidence, and use a variety of models to find support for a heliocentric solar system. Materials will be available for download for those interested in using this in their classroom as well as for the purpose of training other teachers.

  13. Kepler Mission Website: Portal to the International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    Harman, Pamela; DeVore, E.; Gould, A.; Koch, D.

    2008-05-01

    The 400th anniversary of Galileo's telescope is an opportunity to turn the public's eyes skyward and to the universe beyond the solar system. The Kepler Mission, launching in 2009, the International Year of Astronomy (IYA) will is specifically designed to survey our region of the Milky Way galaxy to detect and characterize hundreds of Earth-size and smaller planets in or near the habitable zone, using the transit method of detection. The habitable zone encompasses the distances from a star where liquid water can exist on a planet's surface. Results from this mission will allow us to place our solar system within the continuum of planetary systems in the Galaxy. The Kepler Mission is a NASA Discovery Program Mission. The Kepler Mission website http://www.kepler.arc.nasa.gov/ offers classroom activity lesson plans Detecting Planet Transits, The Human Orrery, and Morning Star and Evening Star. The activities are suitable for the informal science education realm. The spacecraft paper model and LEGO model orrerey can be used in the classroom by teachers or at home by families. The mission simulation and animation, as well as lessons and models highlight the science concepts critical to employing the transit method of detection, Kepler's Laws. The Send Your Name to Space on Kepler Spacecraft provides a certificate of participation for all individuals that submit there name to be listed on a DVD placed on the spacecraft. This poster will provide details on each of the items described.

  14. Small satellite multi mission C2 for maximum effect

    USGS Publications Warehouse

    Miller, E.; Medina, O.; Lane, C.R.; Kirkham, A.; Ivancic, W.; Jones, B.; Risty, R.

    2006-01-01

    This paper discusses US Air Force, US Army, US Navy, and NASA demonstrations based around the Virtual Mission Operations Center (VMOC) and its application in fielding a Multi Mission Satellite Operations Center (MMSOC) designed to integrate small satellites into the inherently tiered system environment of operations. The intent is to begin standardizing the spacecraft to ground interfaces needed to reduce costs, maximize space effects to the user, and allow the generation of Tactics, Techniques and Procedures (TTPs) that lead to Responsive Space employment. Combining the US Air Force/Army focus of theater command and control of payloads with the US Navy's user collaboration and FORCEnet consistent approach lays the groundwork for the fundamental change needed to maximize responsive space effects.

  15. Galileo's 'Jumping-Hill' Experiment in the Classroom--A Constructivist's Analysis.

    ERIC Educational Resources Information Center

    Kubli, Fritz

    2001-01-01

    Uses Galileo's 'jumping-hill' experiment as an historical element to improve science teaching in the classroom. Illustrates that the experiment can stimulate an animated discussion in the classroom, even if precise historic circumstances are not mentioned. The historical dimensions bring some color into the lesson, which increases attention. (SAH)

  16. A Report on GPS and Galileo Time Offset Coordination Efforts

    DTIC Science & Technology

    2007-01-01

    broadcast as part of the GPS and Galileo navigation message and determined by: Two-way Satellite Time and Frequency Transfer ( TWSTFT ); Common...navigation message • use of TWSTFT and GPS Common View The overall goal is to verify the GGTO performance budget for the IOV Phase (detailed budget

  17. A Tiered Model for Linking Students to the Community

    ERIC Educational Resources Information Center

    Meyer, Laura Landry; Gerard, Jean M.; Sturm, Michael R.; Wooldridge, Deborah G.

    2016-01-01

    A tiered practice model (introductory, pre-internship, and internship) embedded in the curriculum facilitates community engagement and creates relevance for students as they pursue a professional identity in Human Development and Family Studies. The tiered model integrates high-impact teaching practices (HIP) and student engagement pedagogies…

  18. 40 CFR 86.1861-04 - How do the Tier 2 and interim non-Tier 2 NOX averaging, banking and trading programs work?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 2 NOX averaging, banking and trading programs work? 86.1861-04 Section 86.1861-04 Protection of... work? (a) General provisions for Tier 2 credits and debits. (1) A manufacturer whose Tier 2 fleet... to a full useful life of 100,000 miles, provided that the credits are prorated by a multiplicative...

  19. Global Ionospheric Modelling using Multi-GNSS: BeiDou, Galileo, GLONASS and GPS.

    PubMed

    Ren, Xiaodong; Zhang, Xiaohong; Xie, Weiliang; Zhang, Keke; Yuan, Yongqiang; Li, Xingxing

    2016-09-15

    The emergence of China's Beidou, Europe's Galileo and Russia's GLONASS satellites has multiplied the number of ionospheric piercing points (IPP) offered by GPS alone. This provides great opportunities for deriving precise global ionospheric maps (GIMs) with high resolution to improve positioning accuracy and ionospheric monitoring capabilities. In this paper, the GIM is developed based on multi-GNSS (GPS, GLONASS, BeiDou and Galileo) observations in the current multi-constellation condition. The performance and contribution of multi-GNSS for ionospheric modelling are carefully analysed and evaluated. Multi-GNSS observations of over 300 stations from the Multi-GNSS Experiment (MGEX) and International GNSS Service (IGS) networks for two months are processed. The results show that the multi-GNSS GIM products are better than those of GIM products based on GPS-only. Differential code biases (DCB) are by-products of the multi-GNSS ionosphere modelling, the corresponding standard deviations (STDs) are 0.06 ns, 0.10 ns, 0.18 ns and 0.15 ns for GPS, GLONASS, BeiDou and Galileo, respectively in satellite, and the STDs for the receiver are approximately 0.2~0.4 ns. The single-frequency precise point positioning (SF-PPP) results indicate that the ionospheric modelling accuracy of the proposed method based on multi-GNSS observations is better than that of the current dual-system GIM in specific areas.

  20. Global Ionospheric Modelling using Multi-GNSS: BeiDou, Galileo, GLONASS and GPS

    PubMed Central

    Ren, Xiaodong; Zhang, Xiaohong; Xie, Weiliang; Zhang, Keke; Yuan, Yongqiang; Li, Xingxing

    2016-01-01

    The emergence of China’s Beidou, Europe’s Galileo and Russia’s GLONASS satellites has multiplied the number of ionospheric piercing points (IPP) offered by GPS alone. This provides great opportunities for deriving precise global ionospheric maps (GIMs) with high resolution to improve positioning accuracy and ionospheric monitoring capabilities. In this paper, the GIM is developed based on multi-GNSS (GPS, GLONASS, BeiDou and Galileo) observations in the current multi-constellation condition. The performance and contribution of multi-GNSS for ionospheric modelling are carefully analysed and evaluated. Multi-GNSS observations of over 300 stations from the Multi-GNSS Experiment (MGEX) and International GNSS Service (IGS) networks for two months are processed. The results show that the multi-GNSS GIM products are better than those of GIM products based on GPS-only. Differential code biases (DCB) are by-products of the multi-GNSS ionosphere modelling, the corresponding standard deviations (STDs) are 0.06 ns, 0.10 ns, 0.18 ns and 0.15 ns for GPS, GLONASS, BeiDou and Galileo, respectively in satellite, and the STDs for the receiver are approximately 0.2~0.4 ns. The single-frequency precise point positioning (SF-PPP) results indicate that the ionospheric modelling accuracy of the proposed method based on multi-GNSS observations is better than that of the current dual-system GIM in specific areas. PMID:27629988

  1. Observations and temperatures of Io's Pele Patera from Cassini and Galileo spacecraft images

    USGS Publications Warehouse

    Radebaugh, J.; McEwen, A.S.; Milazzo, M.P.; Keszthelyi, L.P.; Davies, A.G.; Turtle, E.P.; Dawson, D.D.

    2004-01-01

    Pele has been the most intense high-temperature hotspot on Io to be continuously active during the Galileo monitoring from 1996-2001. A suite of characteristics suggests that Pele is an active lava lake inside a volcanic depression. In 2000-2001, Pele was observed by two spacecraft, Cassini and Galileo. The Cassini observations revealed that Pele is variable in activity over timescales of minutes, typical of active lava lakes in Hawaii and Ethiopia. These observations also revealed that the short-wavelength thermal emission from Pele decreases with rotation of Io by a factor significantly greater than the cosine of the emission angle, and that the color temperature becomes more variable and hotter at high emission angles. This behavior suggests that a significant portion of the visible thermal emission from Pele comes from lava fountains within a topographically confined lava body. High spatial resolution, nightside images from a Galileo flyby in October 2001 revealed a large, relatively cool (< 800 K) region, ringed by bright hotspots, and a central region of high thermal emission, which is hypothesized to be due to fountaining and convection in the lava lake. Images taken through different filters revealed color temperatures of 1500 ?? 80 K from Cassini ISS data and 1605 ?? 220 and 1420 ?? 100 K from small portions of Galileo SSI data. Such temperatures are near the upper limit for basaltic compositions. Given the limitations of deriving lava eruption temperature in the absence of in situ measurement, it is possible that Pele has lavas with ultramafic compositions. The long-lived, vigorous activity of what is most likely an actively overturning lava lake in Pele Patera indicates that there is a strong connection to a large, stable magma source region. ?? 2003 Elsevier Inc. All rights reserved.

  2. Heatshield for Extreme Entry Environment Technology (HEEET) Enabling Missions Beyond Heritage Carbon Phenolic

    NASA Technical Reports Server (NTRS)

    Stackpoole, M.; Boghozian, T.; Chavez-Garcia, J.; Ellerby, D.; Fowler, M.; Gage, P.; Gasch, M.; Gonzales, G.; Kazemba, C.; Kellermann, C.; hide

    2017-01-01

    Future NASA robotic missions utilizing an entry system into Venus and the outer planets, results in extremely high entry conditions that exceed the capabilities of state of the art low to mid density ablators such as PICA or AVCOAT. Previously, mission planners had to assume the use of fully dense carbon phenolic heatshields similar to what was flown on Pioneer Venus or Galileo. Carbon phenolic is a robust TPS material, however, its high density and relatively high thermal conductivity constrain mission planners to steep entries, with high heat fluxes and pressures and short entry durations. The high entry conditions pose challenges for certification in existing ground based test facilities and the longer-term sustainability of CP will continue to pose challenges. NASA has decided to invest in new technology development rather than invest in reviving carbon phenolic. The HEEET project, funded by STMD is maturing a game changing Woven Thermal Protection System technology. HEEET is a capability development project and is not tied to a single mission or destination, therefore, it is challenging to complete ground testing needed to demonstrate a capability that is much broader than any single mission or destination would require. This presentation will status HEEET progress. Near term infusion target for HEEET is the upcoming New Frontiers (NF-4) class of competitively selected Science Mission Directorate (SMD) missions for which it is incentivized.

  3. The effect of a three-tier formulary on antidepressant utilization and expenditures.

    PubMed

    Hodgkin, Dominic; Parks Thomas, Cindy; Simoni-Wastila, Linda; Ritter, Grant A; Lee, Sue

    2008-06-01

    Health plans in the United States are struggling to contain rapid growth in their spending on medications. They have responded by implementing multi-tiered formularies, which label certain brand medications 'non-preferred' and require higher patient copayments for those medications. This multi-tier policy relies on patients' willingness to switch medications in response to copayment differentials. The antidepressant class has certain characteristics that may pose problems for implementation of three-tier formularies, such as differences in which medication works for which patient, and high rates of medication discontinuation. To measure the effect of a three-tier formulary on antidepressant utilization and spending, including decomposing spending allocations between patient and plan. We use claims and eligibility files for a large, mature nonprofit managed care organization that started introducing its three-tier formulary on January 1, 2000, with a staggered implementation across employer groups. The sample includes 109,686 individuals who were continuously enrolled members during the study period. We use a pretest-posttest quasi-experimental design that includes a comparison group, comprising members whose employer had not adopted three-tier as of March 1, 2000. This permits some control for potentially confounding changes that could have coincided with three-tier implementation. For the antidepressants that became nonpreferred, prescriptions per enrollee decreased 11% in the three-tier group and increased 5% in the comparison group. The own-copay elasticity of demand for nonpreferred drugs can be approximated as -0.11. Difference-in-differences regression finds that the three-tier formulary slowed the growth in the probability of using antidepressants in the post-period, which was 0.3 percentage points lower than it would have been without three-tier. The three-tier formulary also increased out-of-pocket payments while reducing plan payments and total spending

  4. Planning For Multiple NASA Missions With Use Of Enabling Radioisotope Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.G. Johnson; K.L. Lively; C.C. Dwight

    Since the early 1960’s the Department of Energy (DOE) and its predecessor agencies have provided radioisotope power systems (RPS) to NASA as an enabling technology for deep space and various planetary missions. They provide reliable power in situations where solar and/or battery power sources are either untenable or would place an undue mass burden on the mission. In the modern era of the past twenty years there has been no time that multiple missions have been considered for launching from Kennedy Space Center (KSC) during the same year. The closest proximity of missions that involved radioisotope power systems would bemore » that of Galileo (October 1989) and Ulysses (October 1990). The closest that involved radioisotope heater units would be the small rovers Spirit and Opportunity (May and July 2003) used in the Mars Exploration Rovers (MER) mission. It can be argued that the rovers sent to Mars in 2003 were essentially a special case since they staged in the same facility and used a pair of small launch vehicles (Delta II). This paper examines constraints on the frequency of use of radioisotope power systems with regard to launching them from Kennedy Space Center using currently available launch vehicles. This knowledge may be useful as NASA plans for its future deep space or planetary missions where radioisotope power systems are used as an enabling technology. Previous descriptions have focused on single mission chronologies and not analyzed the timelines with an emphasis on multiple missions.« less

  5. Time Transfer With the Galileo Precise Timing Facility

    DTIC Science & Technology

    2007-11-01

    being designed on the basis of three techniques: TWSTFT , CV, and use of OSPF products. The last technique implies interfacing an external facility...hydrogen masers (AHM) manufactured by T4S (Switzerland) and the 4 cesiums by Symmetricom. • Time Transfer Subsystem This includes the TWSTFT Station...PTF GACF MUCF TSP GMS UTC(k) BIPM OSPF GSS GalileoSat TWSTFT links Slave PTF CV links 442 39th Annual Precise Time and Time Interval

  6. Galileo Probe forebody thermal protection

    NASA Technical Reports Server (NTRS)

    Green, M. J.; Davy, W. C.

    1981-01-01

    Material response solutions for the forebody heat shield on the candidate 310-kg Galileo Probe are presented. A charring material ablation analysis predicts thermochemical surface recession, insulation thickness, and total required heat shield mass. Benchmark shock layer solutions provide the imposed entry heating environments on the ablating surface. Heat shield sizing results are given for a nominal entry into modeled nominal and cool-heavy Jovian atmospheres, and for two heat-shield property models. The nominally designed heat shield requires a mass of at least 126 kg and would require an additional 13 kg to survive entry into the less probable cool-heavy atmosphere. The material-property model with a 30% surface reflectance reduces these mass requirements by as much as 16%.

  7. Ganymede - Galileo Mosaic Overlayed on Voyager Data in Uruk Sulcus Region

    NASA Image and Video Library

    1997-09-07

    A mosaic of four Galileo high-resolution images of the Uruk Sulcus region of Jupiter moon Ganymede is shown within the context of an image of the region taken by Voyager 2 in 1979. http://photojournal.jpl.nasa.gov/catalog/PIA00281

  8. The NASA Soil Moisture Active Passive (SMAP) Mission Formulation

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Njoku, Eni; ONeill, Peggy; Kellogg, Kent; Entin, Jared

    2011-01-01

    The Soil Moisture Active Passive (SMAP) mission is one of the first-tier projects recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space. The SMAP mission is in formulation phase and it is scheduled for launch in 2014. The SMAP mission is designed to produce high-resolution and accurate global mapping of soil moisture and its freeze/thaw state using an instrument architecture that incorporates an L-band (1.26 GHz) radar and an L-band (1.41 GHz) radiometer. The simultaneous radar and radiometer measurements will be combined to derive global soil moisture mapping at 9 [km] resolution with a 2 to 3 days revisit and 0.04 [cm3 cm-3] (1 sigma) soil water content accuracy. The radar measurements also allow the binary detection of surface freeze/thaw state. The project science goals address in water, energy and carbon cycle science as well as provide improved capabilities in natural hazards applications.

  9. Effects of a Tier 3 Self-Management Intervention Implemented with and without Treatment Integrity

    ERIC Educational Resources Information Center

    Lower, Ashley; Young, K. Richard; Christensen, Lynnette; Caldarella, Paul; Williams, Leslie; Wills, Howard

    2016-01-01

    This study investigated the effects of a Tier 3 peer-matching self-management intervention on two elementary school students who had previously been less responsive to Tier 1 and Tier 2 interventions. The Tier 3 self-management intervention, which was implemented in the general education classrooms, included daily electronic communication between…

  10. Four peer reviews in support of the Tier 3 rulemaking ...

    EPA Pesticide Factsheets

    Peer review of ERG's KenCaryl (CO) estimated summer hot-soak distributions report in support of the Tier 3 rulemaking To peer review ERG's KenCaryl (CO) estimated summer hot-soak distributions report (for Tier 3 rulemaking)

  11. Galileo radio science investigations

    NASA Technical Reports Server (NTRS)

    Howard, H. T.; Eshleman, V. R.; Hinson, D. P.; Kliore, A. J.; Lindal, G. F.; Woo, R.; Bird, M. K.; Volland, H.; Edenhoffer, P.; Paetzold, M.

    1992-01-01

    Galileo radio-propagation experiments are based on measurements of absolute and differential propagation time delay, differential phase delay, Doppler shift, signal strength, and polarization. These measurements can be used to study: the atmospheric and ionospheric structure, constituents, and dynamics of Jupiter; the magnetic field of Jupiter; the diameter of Io, its ionospheric structure, and the distribution of plasma in the Io torus; the diameters of the other Galilean satellites, certain properties of their surfaces, and possibly their atmospheres and ionospheres; and the plasma dynamics and magnetic field of the solar corona. The spacecraft system provides linear rather than circular polarization on the S-band downlink signal, the capability to receive X-band uplink signals, and a differential downlink ranging mode. A highly-stable, dual-frequency, spacecraft radio system is developed that is suitable for simultaneous measurements of all the parameters normally attributed to radio waves.

  12. Rolling and slipping down Galileo{close_quote}s inclined plane: Rhythms of the spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, F.S.

    In ``Two New Sciences`` (TNS) Galileo presents a number of theorems and propositions for smooth solid spheres released from rest and rolling a distance {ital d} in time {ital t} down an incline of height {ital H} and length {ital L}. We collect and summarize his results in a single grand proportionality {ital P}: {ital d}{sub 1}/{ital d}{sub 2}=({ital t}{sup 2}{sub 1}/{ital t}{sup 2}{sub 2})({ital H}/{ital L}){sub 1}/({ital H}/{ital L}){sub 2}. ({ital P}) From TNS it is clear that what we call {ital P} is assumed by Galileo to hold for all inclinations including vertical free fall with {ital H}/{italmore » L}=1. But in TNS he describes only experiments with gentle inclinations {ital H}/{ital L}{lt}1/2. Indeed he cannot have performed the vertical free fall ({ital H}={ital L}) experiment, because we (moderns) know that as we increase {ital H}/{ital L}, {ital P} starts to break down when {ital H}/{ital L} exceeds about 0.5, because the sphere, which rolls without slipping for small {ital H}/{ital L}, starts to slip, whence {ital d} starts to exceed the predictions of {ital P}, becoming too large by a factor of 7/5 for vertical free fall at {ital H}/{ital L}=1. In 1973 Drake and in 1975 Drake and MacLachlan published their analysis of a previously unpublished experiment that Galileo performed that (without his realizing it) directly compared rolling without slipping to free fall. In the experiment, a sphere that has gained speed {ital v}{sub 1} while rolling down a gentle incline is deflected so as to be launched horizontally with speed {ital v}{sub 1} into a free fall orbit discovered by Galileo to be a parabola. The measured horizontal distance {ital X}{sub 2} traveled in this parabolic orbit (for a given vertical distance fallen to the floor) was smaller than he expected, by a factor 0.84. But that is exactly what we (moderns) expect, since we know that Galileo did not appreciate the difference between rolling without slipping, and slipping on a frictionless

  13. [In 2009, International Year of Astronomy: Galileo, Mutis and Duperier].

    PubMed

    González de Posada, Francisco

    2009-01-01

    In commemoration of International Year of Astronomy (2009, proclaimed by the United Nations (UN) 62nd General Assembly) Galileo's revolutions, named, respectively, astronomic, philosophical, mathematical and theological are considered first. And complementarily the Spanish contributions of the doctor Jose Celestino Mutis and Arturo Duperier to the astrophysics are remembered, in their respective anniversary.

  14. Effects of a Tier 3 Phonological Awareness Intervention on Preschoolers' Emergent Literacy

    ERIC Educational Resources Information Center

    Noe, Sean; Spencer, Trina D.; Kruse, Lydia; Goldstein, Howard

    2014-01-01

    This multiple baseline design study examined the effects of a Tier 3 early literacy intervention on low-income preschool children's phonological awareness (PA). Seven preschool children who did not make progress on identifying first sounds in words during a previous Tier 2 intervention participated in a more intensive Tier 3 intervention. Children…

  15. Use of Self-Monitoring to Maintain Program Fidelity of Multi-Tiered Interventions

    ERIC Educational Resources Information Center

    Nelson, J. Ron; Oliver, Regina M.; Hebert, Michael A.; Bohaty, Janet

    2015-01-01

    Multi-tiered system of supports represents one of the most significant advancements in improving the outcomes of students for whom typical instruction is not effective. While many practices need to be in place to make multi-tiered systems of support effective, accurate implementation of evidence-based practices by individuals at all tiers is…

  16. Positive Behavior Supports: Tier 2 Interventions in Middle Schools

    ERIC Educational Resources Information Center

    Hoyle, Carol G.; Marshall, Kathleen J.; Yell, Mitchell L.

    2011-01-01

    School personnel are using Schoolwide Positive Behavior Supports in public schools throughout the United States. A number of studies have evaluated the universal level, or Tier 1, of Schoolwide Positive Behavior Supports. In this study, the authors describe and analyze the interventions offered as options for use for Tier 2 in middle schools…

  17. Developing the Capacity to Implement Tier 2 and Tier 3 Supports: How Do We Support Our Faculty and Staff in Preparing for Sustainability?

    ERIC Educational Resources Information Center

    Oakes, Wendy Peia; Lane, Kathleen Lynne; Germer, Kathryn A.

    2014-01-01

    School-site and district-level leadership teams rely on the existing knowledge base to select, implement, and evaluate evidence-based practices meeting students' multiple needs within the context of multitiered systems of support. The authors focus on the stages of implementation science as applied to Tier 2 and Tier 3 supports; the…

  18. 40 CFR 1043.50 - Approval of methods to meet Tier 1 retrofit NOX standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Approval of methods to meet Tier 1... SUBJECT TO THE MARPOL PROTOCOL § 1043.50 Approval of methods to meet Tier 1 retrofit NOX standards... enable Pre-Tier 1 engines to meet the Tier 1 NOX standard of regulation 13 of Annex VI. Any person may...

  19. Europa Scene: Plume, Galileo, Magnetic Field (Artist's Concept)

    NASA Image and Video Library

    2018-05-14

    Artist's illustration of Jupiter and Europa (in the foreground) with the Galileo spacecraft after its pass through a plume erupting from Europa's surface. A new computer simulation gives us an idea of how the magnetic field interacted with a plume. The magnetic field lines (depicted in blue) show how the plume interacts with the ambient flow of Jovian plasma. The red colors on the lines show more dense areas of plasma. https://photojournal.jpl.nasa.gov/catalog/PIA21922

  20. CMS tier structure and operation of the experiment-specific tasks in Germany

    NASA Astrophysics Data System (ADS)

    Nowack, A.

    2008-07-01

    In Germany, several university institutes and research centres take part in the CMS experiment. Concerning the data analysis, a couple of computing centres at different Tier levels, ranging from Tier 1 to Tier 3, exists at these places. The German Tier 1 centre GridKa at the research centre at Karlsruhe serves all four LHC experiments as well as four non-LHC experiments. With respect to the CMS experiment, GridKa is mainly involved in central tasks. The Tier 2 centre in Germany consists of two sites, one at the research centre DESY at Hamburg and one at RWTH Aachen University, forming a federated Tier 2 centre. Both parts cover different aspects of a Tier 2 centre. The German Tier 3 centres are located at the research centre DESY at Hamburg, at RWTH Aachen University, and at the University of Karlsruhe. Furthermore the building of a German user analysis facility is planned. Since the CMS community in German is rather small, a good cooperation between the different sites is essential. This cooperation includes physical topics as well as technical and operational issues. All available communication channels such as email, phone, monthly video conferences, and regular personal meetings are used. For example, the distribution of data sets is coordinated globally within Germany. Also the CMS-specific services such as the data transfer tool PhEDEx or the Monte Carlo production are operated by people from different sites in order to spread the knowledge widely and increase the redundancy in terms of operators.

  1. Achieving Tier 4 Emissions in Biomass Cookstoves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchese, Anthony; DeFoort, Morgan; Gao, Xinfeng

    Previous literature on top-lit updraft (TLUD) gasifier cookstoves suggested that these stoves have the potential to be the lowest emitting biomass cookstove. However, the previous literature also demonstrated a high degree of variability in TLUD emissions and performance, and a lack of general understanding of the TLUD combustion process. The objective of this study was to improve understanding of the combustion process in TLUD cookstoves. In a TLUD, biomass is gasified and the resulting producer gas is burned in a secondary flame located just above the fuel bed. The goal of this project is to enable the design of amore » more robust TLUD that consistently meets Tier 4 performance targets through a better understanding of the underlying combustion physics. The project featured a combined modeling, experimental and product design/development effort comprised of four different activities: Development of a model of the gasification process in the biomass fuel bed; Development of a CFD model of the secondary combustion zone; Experiments with a modular TLUD test bed to provide information on how stove design, fuel properties, and operating mode influence performance and provide data needed to validate the fuel bed model; Planar laser-induced fluorescence (PLIF) experiments with a two-dimensional optical test bed to provide insight into the flame dynamics in the secondary combustion zone and data to validate the CFD model; Design, development and field testing of a market ready TLUD prototype. Over 180 tests of 40 different configurations of the modular TLUD test bed were performed to demonstrate how stove design, fuel properties and operating mode influences performance, and the conditions under which Tier 4 emissions are obtainable. Images of OH and acetone PLIF were collected at 10 kHz with the optical test bed. The modeling and experimental results informed the design of a TLUD prototype that met Tier 3 to Tier 4 specifications in emissions and Tier 2 in efficiency

  2. Tier 2 Team Processes and Decision-Making in a Comprehensive Three-Tiered Model

    ERIC Educational Resources Information Center

    Pool, Juli L.; Carter, Deborah Russell; Johnson, Evelyn S.

    2013-01-01

    Three-tiered models of academic and behavioral support are being increasingly adopted across the nation, and with that adoption has come an increasing message that designing and implementing effective practices alone is not enough. Systems are needed to help staff to collectively implement best practices. These systems, as well as effective…

  3. Galileo Photometry of Asteroid 951 Gaspra

    USGS Publications Warehouse

    Helfenstein, P.; Veverka, J.; Thomas, P.C.; Simonelli, D.P.; Lee, P.; Klaasen, K.; Johnson, T.V.; Breneman, H.; Head, J.W.; Murchie, S.; Fanale, F.; Robinson, M.; Clark, B.; Granahan, J.; Garbeil, H.; McEwen, A.S.; Kirk, R.L.; Davies, M.; Neukum, G.; Mottola, S.; Wagner, R.; Belton, M.; Chapman, C.; Pilcher, C.

    1994-01-01

    Galileo images of Gaspra make it possible for the first time to determine a main-belt asteroid's photometric properties accurately by providing surface-resolved coverage over a wide range of incidence and emission angles and by extending the phase angle coverage to phases not observable from Earth. We combine Earth-based telescopic photometry over phase angles 2?? ??? ?? ??? 25?? with Galileo whole-disk and disk-resolved data at 33?? ??? ?? ??? 51?? to derive average global photometric properties in terms of Hapke's photometric model. The microscopic texture and particle phase-function behavior of Gaspra's surface are remarkably like those of other airless rocky bodies such as the Moon. The macroscopic surface roughness parameter, ??̄ = 29??, is slightly larger than that reported for typical lunar materials. The particle single scattering albedo, ??́0 = 0.36 ?? 0.07, is significantly larger than for lunar materials, and the opposition surge amplitude, B0 = 1.63 ?? 0.07, is correspondingly smaller. We determine a visual geometric albedo pv = 0.22 ?? 0.06 for Gaspra, in close agreement with pv = 0.22 ?? 0.03 estimated from Earth-based observations. Gaspra's phase integral is 0.47, and the bolometric Bond albedo is estimated to be 0.12 ?? 0.03. An albedo map derived by correcting Galileo images with our average global photometric function reveals subdued albedo contrasts of ??10% or less over Gaspra's northern hemisphere. Several independent classification algorithms confirm the subtle spectral heterogeneity reported earlier (S. Mottola, M. DiMartino, M. Gonano-Beurer, H. Hoffman, and G. Neukum, 1993, Asteroids, Comets, Meteors, pp. 421-424; M. J. S. Belton et al., 1992, Science 257, 1647-1652). Whole-disk colors (0.41 ??? ?? ??? 0.99 ??m) vary systematically with longitude by about ??5%, but color differences as large as 30% occur locally. Colors vary continuously between end-member materials whose areal distribution correlates with regional topography. Infrared

  4. Pooling the resources of the CMS Tier-1 sites

    DOE PAGES

    Apyan, A.; Badillo, J.; Cruz, J. Diaz; ...

    2015-12-23

    The CMS experiment at the LHC relies on 7 Tier-1 centres of the WLCG to perform the majority of its bulk processing activity, and to archive its data. During the first run of the LHC, these two functions were tightly coupled as each Tier-1 was constrained to process only the data archived on its hierarchical storage. This lack of flexibility in the assignment of processing workflows occasionally resulted in uneven resource utilisation and in an increased latency in the delivery of the results to the physics community.The long shutdown of the LHC in 2013-2014 was an opportunity to revisit thismore » mode of operations, disentangling the processing and archive functionalities of the Tier-1 centres. The storage services at the Tier-1s were redeployed breaking the traditional hierarchical model: each site now provides a large disk storage to host input and output data for processing, and an independent tape storage used exclusively for archiving. Movement of data between the tape and disk endpoints is not automated, but triggered externally through the WLCG transfer management systems.With this new setup, CMS operations actively controls at any time which data is available on disk for processing and which data should be sent to archive. Thanks to the high-bandwidth connectivity guaranteed by the LHCOPN, input data can be freely transferred between disk endpoints as needed to take advantage of free CPU, turning the Tier-1s into a large pool of shared resources. The output data can be validated before archiving them permanently, and temporary data formats can be produced without wasting valuable tape resources. Lastly, the data hosted on disk at Tier-1s can now be made available also for user analysis since there is no risk any longer of triggering chaotic staging from tape.In this contribution, we describe the technical solutions adopted for the new disk and tape endpoints at the sites, and we report on the commissioning and scale testing of the service. We detail the

  5. Pooling the resources of the CMS Tier-1 sites

    NASA Astrophysics Data System (ADS)

    Apyan, A.; Badillo, J.; Diaz Cruz, J.; Gadrat, S.; Gutsche, O.; Holzman, B.; Lahiff, A.; Magini, N.; Mason, D.; Perez, A.; Stober, F.; Taneja, S.; Taze, M.; Wissing, C.

    2015-12-01

    The CMS experiment at the LHC relies on 7 Tier-1 centres of the WLCG to perform the majority of its bulk processing activity, and to archive its data. During the first run of the LHC, these two functions were tightly coupled as each Tier-1 was constrained to process only the data archived on its hierarchical storage. This lack of flexibility in the assignment of processing workflows occasionally resulted in uneven resource utilisation and in an increased latency in the delivery of the results to the physics community. The long shutdown of the LHC in 2013-2014 was an opportunity to revisit this mode of operations, disentangling the processing and archive functionalities of the Tier-1 centres. The storage services at the Tier-1s were redeployed breaking the traditional hierarchical model: each site now provides a large disk storage to host input and output data for processing, and an independent tape storage used exclusively for archiving. Movement of data between the tape and disk endpoints is not automated, but triggered externally through the WLCG transfer management systems. With this new setup, CMS operations actively controls at any time which data is available on disk for processing and which data should be sent to archive. Thanks to the high-bandwidth connectivity guaranteed by the LHCOPN, input data can be freely transferred between disk endpoints as needed to take advantage of free CPU, turning the Tier-1s into a large pool of shared resources. The output data can be validated before archiving them permanently, and temporary data formats can be produced without wasting valuable tape resources. Finally, the data hosted on disk at Tier-1s can now be made available also for user analysis since there is no risk any longer of triggering chaotic staging from tape. In this contribution, we describe the technical solutions adopted for the new disk and tape endpoints at the sites, and we report on the commissioning and scale testing of the service. We detail the

  6. Tier II Forms and Instructions

    EPA Pesticide Factsheets

    Facilities must comply with the new requirements on the Tier II emergency and hazardous chemical inventory form starting reporting year 2013, which is due by March 1, 2014. Some states may have specific requirements for reporting and submission.

  7. Thermal protection system development, testing, and qualification for atmospheric probes and sample return missions. Examples for Saturn, Titan and Stardust-type sample return

    NASA Astrophysics Data System (ADS)

    Venkatapathy, E.; Laub, B.; Hartman, G. J.; Arnold, J. O.; Wright, M. J.; Allen, G. A.

    2009-07-01

    The science community has continued to be interested in planetary entry probes, aerocapture, and sample return missions to improve our understanding of the Solar System. As in the case of the Galileo entry probe, such missions are critical to the understanding not only of the individual planets, but also to further knowledge regarding the formation of the Solar System. It is believed that Saturn probes to depths corresponding to 10 bars will be sufficient to provide the desired data on its atmospheric composition. An aerocapture mission would enable delivery of a satellite to provide insight into how gravitational forces cause dynamic changes in Saturn's ring structure that are akin to the evolution of protoplanetary accretion disks. Heating rates for the "shallow" Saturn probes, Saturn aerocapture, and sample Earth return missions with higher re-entry speeds (13-15 km/s) from Mars, Venus, comets, and asteroids are in the range of 1-6 KW/cm 2. New, mid-density thermal protection system (TPS) materials for such probes can be mission enabling for mass efficiency and also for use on smaller vehicles enabled by advancements in scientific instrumentation. Past consideration of new Jovian multiprobe missions has been considered problematic without the Giant Planet arcjet facility that was used to qualify carbon phenolic for the Galileo probe. This paper describes emerging TPS technologies and the proposed use of an affordable, small 5 MW arcjet that can be used for TPS development, in test gases appropriate for future planetary probe and aerocapture applications. Emerging TPS technologies of interest include new versions of the Apollo Avcoat material and a densified variant of Phenolic Impregnated Carbon Ablator (PICA). Application of these and other TPS materials and the use of other facilities for development and qualification of TPS for Saturn, Titan, and Sample Return missions of the Stardust class with entry speeds from 6.0 to 28.6 km/s are discussed.

  8. On systems having Poincaré and Galileo symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, Peter, E-mail: peter.holland@gtc.ox.ac.uk

    Using the wave equation in d≥1 space dimensions it is illustrated how dynamical equations may be simultaneously Poincaré and Galileo covariant with respect to different sets of independent variables. This provides a method to obtain dynamics-dependent representations of the kinematical symmetries. When the field is a displacement function both symmetries have a physical interpretation. For d=1 the Lorentz structure is utilized to reveal hitherto unnoticed features of the non-relativistic Chaplygin gas including a relativistic structure with a limiting case that exhibits the Carroll group, and field-dependent symmetries and associated Noether charges. The Lorentz transformations of the potentials naturally associated withmore » the Chaplygin system are given. These results prompt the search for further symmetries and it is shown that the Chaplygin equations support a nonlinear superposition principle. A known spacetime mixing symmetry is shown to decompose into label-time and superposition symmetries. It is shown that a quantum mechanical system in a stationary state behaves as a Chaplygin gas. The extension to d>1 is used to illustrate how the physical significance of the dual symmetries is contingent on the context by showing that Maxwell’s equations exhibit an exact Galileo covariant formulation where Lorentz and gauge transformations are represented by field-dependent symmetries. A natural conceptual and formal framework is provided by the Lagrangian and Eulerian pictures of continuum mechanics.« less

  9. Galileo Spacecraft Scan Platform Celestial Pointing Cone Control Gain Redesign

    NASA Technical Reports Server (NTRS)

    In, C-H. C.; Hilbert, K. B.

    1994-01-01

    During September and October 1991, pictures of the Gaspra asteroid and neighboring stars were taken by the Galileo Optical Navigation (OPNAV) Team for the purpose of navigation the spacecraft for a successful Gaspra encounter. The star tracks in these pictures showed that the scan platform celestial pointing cone controller performed poorly in compensating for wobble-induced cone offsets.

  10. Tier-scalable reconnaissance: the future in autonomous C4ISR systems has arrived: progress towards an outdoor testbed

    NASA Astrophysics Data System (ADS)

    Fink, Wolfgang; Brooks, Alexander J.-W.; Tarbell, Mark A.; Dohm, James M.

    2017-05-01

    Autonomous reconnaissance missions are called for in extreme environments, as well as in potentially hazardous (e.g., the theatre, disaster-stricken areas, etc.) or inaccessible operational areas (e.g., planetary surfaces, space). Such future missions will require increasing degrees of operational autonomy, especially when following up on transient events. Operational autonomy encompasses: (1) Automatic characterization of operational areas from different vantages (i.e., spaceborne, airborne, surface, subsurface); (2) automatic sensor deployment and data gathering; (3) automatic feature extraction including anomaly detection and region-of-interest identification; (4) automatic target prediction and prioritization; (5) and subsequent automatic (re-)deployment and navigation of robotic agents. This paper reports on progress towards several aspects of autonomous C4ISR systems, including: Caltech-patented and NASA award-winning multi-tiered mission paradigm, robotic platform development (air, ground, water-based), robotic behavior motifs as the building blocks for autonomous tele-commanding, and autonomous decision making based on a Caltech-patented framework comprising sensor-data-fusion (feature-vectors), anomaly detection (clustering and principal component analysis), and target prioritization (hypothetical probing).

  11. 40 CFR 158.510 - Tiered testing options for nonfood pesticides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Tiered testing options for nonfood pesticides. 158.510 Section 158.510 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Toxicology § 158.510 Tiered testing options for nonfood...

  12. Assessment of in-flight anomalies of long life outer plant mission

    NASA Technical Reports Server (NTRS)

    Hoffman, Alan R.; Green, Nelson W.; Garrett, Henry B.

    2004-01-01

    Thee unmanned planetary spacecraft to the outer planets have been controlled and operated successfully in space for an accumulated total of 66 years. The Voyager 1 and 2 spacecraft each have been in space for more than 26 years. The Galileo spacecraft was in space for 14 years, including eight years in orbit about Jupiter. During the flight operations for these missions, anomalies for the ground data system and the flight systems have been tracked using the anomaly reporting tool at the Jet Propulsion Laboratory. A total of 3300 incidents, surprises, and anomaly reports have been recorded in the database. This paper describes methods and results for classifying and identifying trends relative to ground system vs. flight system, software vs. hardware, and corrective actions. There are several lessons learned from these assessments that significantly benefit the design and planning for long life missions of the future. These include the necessity for having redundancy for successful operation of the spacecraft, awareness that anomaly reporting is dependent on mission activity not the age of the spacecraft, and the need for having a program to maintain and transfer operation knowledge and tools to replacement flight team members.

  13. The Kepler Mission and the International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    Harman, Pamela; DeVore, E.; Gould, A.; Koch, D.

    2008-05-01

    Johannes Kepler was one of Galileo's contemporaries, publishing New Astronomy defining his first two laws, nearly 400 years ago, in 1609. It is a fitting tribute that the Kepler Mission launches in 2009. Kepler continued his studies of motion and made observations of satellites of Jupiter, and published his third law. We now recognize Kepler's laws as 1. Planets move in elliptical; 2. The planets move such that the line between the Sun and the Planet sweeps out equal areas in equal time no matter where in the orbit; and 3. The square of the period of the orbit of a planet is proportional to the mean distance from the Sun cubed. Kepler's laws were deduced empirically from the motions of the planet Mars in the early 17th century, before Newton deduced the law of gravity and his laws of motion. The Kepler Mission, a NASA Discovery mission, is specifically designed to survey our region of the Milky Way galaxy to detect and characterize hundreds of Earth-size and smaller planets in or near the habitable zone. The habitable zone encompasses the distances from a star where liquid water can exist on a planet's surface. Results from this mission will allow us to place our solar system within the continuum of planetary systems in the Galaxy. The Mission Education and Public Outreach (EPO) Program has developed a Night Sky Network (NSN) outreach kit, Shadows and Silhouettes. This NSN kit is used by amateur astronomers at school and public observing events to illustrate a transit, and explain eclipses.

  14. Progress in landslide susceptibility mapping over Europe using Tier-based approaches

    NASA Astrophysics Data System (ADS)

    Günther, Andreas; Hervás, Javier; Reichenbach, Paola; Malet, Jean-Philippe

    2010-05-01

    The European Thematic Strategy for Soil Protection aims, among other objectives, to ensure a sustainable use of soil. The legal instrument of the strategy, the proposed Framework Directive, suggests identifying priority areas of several soil threats including landslides using a coherent and compatible approach based on the use of common thematic data. In a first stage, this can be achieved through landslide susceptibility mapping using geographically nested, multi-step tiered approaches, where areas identified as of high susceptibility by a first, synoptic-scale Tier ("Tier 1") can then be further assessed and mapped at larger scale by successive Tiers. In order to identify areas prone to landslides at European scale ("Tier 1"), a number of thematic terrain and environmental data sets already available for the whole of Europe can be used as input for a continental scale susceptibility model. However, since no coherent landslide inventory data is available at the moment over the whole continent, qualitative heuristic zonation approaches are proposed. For "Tier 1" a preliminary, simplified model has been developed. It consists of an equally weighting combination of a reduced, continent-wide common dataset of landslide conditioning factors including soil parent material, slope angle and land cover, to derive a landslide susceptibility index using raster mapping units consisting of 1 x 1 km pixels. A preliminary European-wide susceptibility map has thus been produced at 1:1 Million scale, since this is compatible with that of the datasets used. The map has been validated by means of a ratio of effectiveness using samples from landslide inventories in Italy, Austria, Hungary and United Kingdom. Although not differentiated for specific geomorphological environments or specific landslide types, the experimental model reveals a relatively good performance in many European regions at a 1:1 Million scale. An additional "Tier 1" susceptibility map at the same scale and using

  15. 7 CFR 1794.16 - Tiering.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... where better decision making will be fostered (40 CFR 1502.20). ... 7 Agriculture 12 2010-01-01 2010-01-01 false Tiering. 1794.16 Section 1794.16 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE...

  16. Computer memory power control for the Galileo spacecraft

    NASA Technical Reports Server (NTRS)

    Detwiler, R. C.

    1983-01-01

    The developmental history, major design drives, and final topology of the computer memory power system on the Galileo spacecraft are described. A unique method of generating memory backup power directly from the fault current drawn during a spacecraft power overload or fault condition allows this system to provide continuous memory power. This concept provides a unique solution to the problem of volatile memory loss without the use of a battery of other large energy storage elements usually associated with uninterrupted power supply designs.

  17. Curbing "Math Anxiety" with Galileo While Teaching Physicists, too

    NASA Astrophysics Data System (ADS)

    Schwartz, Brian P.

    2006-12-01

    Carthage College's introductory physics course caters to both freshmen in our program and students in general education. While "Understandings of Physics" is a conceptual overview of our discipline, physical science is necessarily quantitative. Galileo's "Dialogue Concerning the Two New Sciences" provides us with a novel way to teach the fundamentals of motion both to students who "fear" mathematics, as well as those who are adept at solving algebraic equations.

  18. Randomised controlled cross-over comparison of continuous positive airway pressure through the Hamilton Galileo ventilator with a Dräger CF 800 device.

    PubMed

    Sutton, P J; Perkins, C L; Giles, S P; McAuley, D F; Gao, F

    2005-01-01

    In this controlled, randomised cross-over trial on 26 intensive care patients, we compared the effects on haemodynamic and respiratory profiles of continuous positive airway pressure delivered through the Hamilton Galileo ventilator or a Drager CF 800 device. We also compared the nursing time saved using the two approaches when weaning patients from mechanical ventilation. We did not find significant differences in haemodynamics, respiratory rate, physiological dead space, oxygen saturation and carbon dioxide production between the continuous positive airway pressure generated by the Galileo and Drager machines. However, there was a 10-fold reduction in nursing time using the Galileo ventilator compared with the Drager generator. We conclude that continuous positive airway pressure delivered through the Galileo ventilator is as efficient as a Drager device but consumes less nursing time.

  19. Galileo Galilei's vision of the senses.

    PubMed

    Piccolino, Marco; Wade, Nicholas J

    2008-11-01

    Neuroscientists have become increasingly aware of the complexities and subtleties of sensory processing. This applies particularly to the complex elaborations of nerve signals that occur in the sensory circuits, sometimes at the very initial stages of sensory pathways. Sensory processing is now known to be very different from a simple neural copy of the physical signal present in the external world, and this accounts for the intricacy of neural organization that puzzled great investigators of neuroanatomy such as Santiago Ramón Y Cajal a century ago. It will surprise present-day sensory neuroscientists, applying their many modern methods, that the conceptual basis of the contemporary approach to sensory function had been recognized four centuries ago by Galileo Galilei.

  20. Landform Degradation and Slope Processes on Io: The Galileo View

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Sullivan, Robert J.; Chuang, Frank C.; Head, James W., III; McEwen, Alfred S.; Milazzo, Moses P.; Nixon, Brian E.; Pappalardo, Robert T.; Schenk, Paul M.; Turtle, Elizabeth P.; hide

    2001-01-01

    The Galileo mission has revealed remarkable evidence of mass movement and landform degradation on Io. We recognize four major slope types observed on a number of intermediate resolution (250 m/pixel) images and several additional textures on very high resolution (10 m/pixel) images. Slopes and scarps on Io often show evidence of erosion, seen in the simplest form as alcove-carving slumps and slides at all scales. Many of the mass movement deposits on Io are probably mostly the consequence of block release and brittle slope failure. Sputtering plays no significant role. Sapping as envisioned by McCauley et al. remains viable. We speculate that alcove-lined canyons seen in one observation and lobed deposits seen along the bases of scarps in several locations may reflect the plastic deformation and 'glacial' flow of interstitial volatiles (e.g., SO2) heated by locally high geothermal energy to mobilize the volatile. The appearance of some slopes and near-slope surface textures seen in very high resolution images is consistent with erosion from sublimation-degradation. However, a suitable volatile (e.g., H2S) that can sublimate fast enough to alter Io's youthful surface has not been identified. Disaggregation from chemical decomposition of solid S2O and other polysulfur oxides may conceivably operate on Io. This mechanism could degrade landforms in a manner that resembles degradation from sublimation, and at a rate that can compete with resurfacing.