Science.gov

Sample records for gallbladder motor functions

  1. Gallbladder motor function in obese versus lean females.

    PubMed

    Kucio, C; Besser, P; Jonderko, K

    1988-02-01

    Gallbladder motility was studied in 18 obese women and in 18 lean females by means of an ultrasonographic method. The fasted and meal-stimulated gallbladder volumes as well as the amount of the ejected bile were significantly larger in the obese when compared to the lean controls. A significant positive correlation was found between the fasted or meal-stimulated gallbladder volume and the body mass as well as the obesity indices (the absolute overweight and body mass index). Moreover, the amount of the ejected bile correlated significantly with the fasted gallbladder volume. The results suggest that altered gallbladder motility should be considered a risk factor accounting for the increased incidence of gallstones in the obese.

  2. [Gallbladder motor function studied by modified infusion cholescintigraphy method after gastric and duodenal surgery].

    PubMed

    Petrović, M; Milićević, M; Artiko, V; Obradović, V; Pesko, P; Kovacević, N; Bulajić, P; Kostić, K; Obradović, V

    1995-01-01

    Estimation of the gallbladder (GB) motility disorders after gastric surgery has not yet been assessed because of the shortage of the reliable diagnostic methods. The aim of the study is introduction, modification and establishment of the infusion cholescintigraphy into clinical practice and its performance in the groups of patients with gastric resection (RVBI i RVBII), total gastrectomy and patients after gastroplasty. Obtained data produced information about motility disorders caused by billateral truncal vagotomy, lack of the food transit through duodenum and if the motility disorders are the same in different time periods after operation. In groups of patients without truncal vagotomy (RVBI and RVBII), minor motility disorders are registered in comparison to the groups after truncal vagotomy. In the period of 6 months after surgery, higher motility disorders are registered in the group of patients with total gastrectomy, while after 9-12 months GB motility completely recovers. Groups with preserved transit of food through duodenum (RVBI and gastroplasty), has minor motility disorders in comparison to the group without transit of food through duodenum (RVBII and total gastrectomy). By introducing infusion cholescintigraphy, reliable method for the GB motility assessment is obtained.

  3. Gallbladder function in diabetic patients

    SciTech Connect

    Shreiner, D.P.; Sarva, R.P.; Van Thiel, D.; Yingvorapant, N.

    1986-03-01

    Gallbladder emptying and filling was studied in eight diabetic and six normal control patients. None of the patients had gallstones. Cholescintigraphy was performed using (/sup 99m/Tc)disofenin, and gallbladder emptying was studied using a 45-min i.v. infusion of the octapeptide of cholecystokinin (OP-CCK) 20 ng/kg X hr. The peak filling rate was greater in diabetic than in normal subjects; however, emptying of the gallbladder in response to OP-CCK was significantly less in the diabetic subjects (51.6 +/- 10.4% compared with 77.2 +/- 4.9%). When the diabetic group was subdivided into obese and nonobese diabetics, the obese diabetics had a much lower percentage of emptying than the nonobese diabetics (30.0 +/- 10.4% compared with 73.1 +/- 9.3%). These findings suggest that obese diabetics may have impaired emptying of the gallbladder even in the absence of gallstones. The more rapid rate of gallbladder filling in obesity may indicate hypotonicity of the gallbladder. The combination of these abnormalities may predispose the obese diabetic to the development of gallstones.

  4. Gallbladder sludge and stone formation in relation to contractile function after gastrectomy. A prospective study.

    PubMed Central

    Inoue, K; Fuchigami, A; Higashide, S; Sumi, S; Kogire, M; Suzuki, T; Tobe, T

    1992-01-01

    In a prospective trial to determine whether gastric surgery induces gallbladder sludge and stone formation, 48 patients with gastric cancer were ultrasonographically examined with simultaneous observation on changes in gallbladder contractile function before and serially for 5 years after gastrectomy. Gallbladder sludge formation was induced with a high frequency of 42% 1 month after gastrectomy, with corresponding significant lowering of gallbladder contractile function. Most of gallbladder sludges, however, disappeared within 12 months in relation to the gradual recovery of gallbladder contractile function. Conversely, gallstone developed in nine patients (18.8%), mostly more than 6 months after gastrectomy. Interestingly, gallstone formation was induced in seven patients who were sludge negative. An evolvement of gallbladder sludge into stone was observed in only two patients, who were, however, treated with intravenous hyperalimentation. This study first provides evidence for the relationship between gastrectomy and a considerably high frequency of incidence of gallbladder sludge and stone in relation to changes in gallbladder kinetics after gastrectomy. Images FIG. 1. FIG. 3. FIG. 4. PMID:1731646

  5. [The chronobiological peculiarities of the hepatobiliary system function in chronic cholecystitis with dysfunction of the gallbladder].

    PubMed

    Poddubnaia, O A; Levitskiĭ, E F; Zamoshchina, T A

    2014-01-01

    Study of biological cycles in chronic cholecystitis with dysfunction of gallbladder has a great practical importance. The results of chronoanalysis testify a dominance of 24-hours cycle in structure of cycles of functional activity of organs of hepatobiliary system. The comparative analysis of trust intervals reveals the intensification of internal connections, expressed intensification of synchronization of cycles of functional activity of system and a breach of synchronism of central regulation and self-regulation, testifying overstrain of proper adaptive possibilities and unconcordance in system of regulation. This manifestations of desynchronization provokes development and progress of dysfunction of gallbladder and dysbalance of vegetative nervous system, that make worse the present disturbances. PMID:25911916

  6. Concomitant gastroparesis occurs in functional gallbladder disease and may negatively impact clinical outcome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Functional gallbladder disease, commonly known as Biliary Dyskinesia (BD), is an increasingly recognized cause of chronic abdominal pain and dyspepsia in adults and children. Similar symptoms may occur in those with Gastroparesis (GP). The potential role and impact of concomitant GP in those with BD...

  7. Gallbladder Cancer

    MedlinePlus

    ... your gallbladder and liver to your small intestine. Cancer of the gallbladder is rare. It is more ... the abdomen It is hard to diagnose gallbladder cancer in its early stages. Sometimes doctors find it ...

  8. Biliary lipids, bile acids, and gallbladder function in the human female:effects of contraceptive steroids

    SciTech Connect

    Kern, F., Jr.; Everson, G.T.; DeMark, B.; McKinley, C.; Showalter, R.; Braverman, D.Z.; Szczepanik-Van Leeuwen, P.; Klein, P.D.

    1982-06-01

    Reported are biliary lipid composition and secretion, bile acid composition and kinetics, and gallbladder function in a group of healthy, nonobese women taking a contraceptive steroid preparation. A comparable group of healthy women served as controls. Biliary lipid secretion rate was measured by the marker perfusion technique. Bile acid distribution was determined by gas-lipid chromatography. The pool size, FTR, and synthesis rate of each bile acid were measured by using CA and CDCA labeled with the stable isotope of carbon, /sup 13/C. In some of the subjects gallbladder storage and emptying were measured during the kinetic study, by real-time ultrasonography. Contraceptive steroid use was associated with a significant increase in biliary cholesterol saturation and in the lithogenic index of bile. The rate of cholesterol secretion in the contraceptive steroid group was 50% greater than in the control (p << 0.001) and the rate of bile acid secretion was reduced (p < 0.02). The total bile acid pool size was significantly increased by contraceptive steroids. The major increase occurred in the CA pool (p < 0.04). The daily rate of enterohepatic cycles of the bile acid pool was decreased by contraceptive steroids from 6.6 to 4.3 (p < 0.01). The only effect of contraceptive steroids on gallbladder function was a slower emptying rate in response to intraduodenal amino acid infusion. No index of gallbladder function correlated significantly with any parameter of bile acid kinetics in this small group of subjects. The findings confirm the lithogenic effect of contraceptive steroids and indicate that its causes are an increase in cholesterol secretion and a decrease in bile acid secretion.

  9. The effects of Lipomul, CCK, and TRH on gallbladder emptying

    SciTech Connect

    Shafer, R.B.; Marlette, J.M.; Morley, J.E.

    1983-02-01

    /sup 99m/Tc IDA compounds have been used in the quantitative analysis of motor function of the gallbladder. However, stimuli to provoke emptying have been variable and frequently nonphysiologic. To determine the utility and dependability of provocative agents for gallbladder emptying, we studied the effects of Lipomul, CCK, and TRH after the intravenous administration of /sup 99m/Tc disofenin. Computer processing of region-of-interest over the gallbladder permitted time/activity analysis of each study and computation of the ejection fraction (EF). Results showed that Lipomul consistently produced an effect on gallbladder emptying (EF 16-42%). CCK, while more dramatic in response, was less predictable (EF 8-100%). TRH favored accumulation of activity and did not cause gallbladder emptying. The combination of CCK and TRH decreased the rate of gallbladder emptying produced by CCK alone. We conclude that the availability, low cost, and dependable effect on gallbladder emptying make Lipomul the gallbladder stimulant of choice for clinical use.

  10. Filling of the gallbladder as studied by computer-assisted Tc-99m HIDA scintigraphy: concise communication

    SciTech Connect

    van der Linden, W.; Kempi, V.

    1984-03-01

    Gallbladder filling was studied using computer-assisted cholescintigraphy in normal subjects who had fasted overnight. The gallbladder tended to visualize earlier than the distal part of the common bile duct. It appeared at approximately the same time regardless of whether or not there was passage of activity into the duodenum. This suggests that filling is not dependent on contraction of the sphincter of Oddi. Sequential images demonstrated that the activity entering the gallbladder rapidly reached the fundus. Time-activity curves showed a gradual buildup of activity in the bile ducts followed by sudden entrance into the gallbladder. Time-activity curves of the gallbladder's proximal and distal parts showed signs of an exchange of activity, suggesting that the gallbladder's motor function is not quiescent during fasting. Gallbladder motility could explain the periodic irregularities on the time-activity curve. These irregularities were smaller but no less frequent after morphine administration.

  11. Variations in concentrating function of the gallbladder in the conscious monkey.

    PubMed

    Svanvik, J; Allen, B; Pellegrini, C; Bernhoft, R; Way, L

    1984-05-01

    Hepatic bile is concentrated in the gallbladder by absorption of water and electrolytes. The rate of water absorption can be influenced in vitro and in vivo by gastrointestinal hormones and neurogenic transmitters. Recent studies have demonstrated that besides its absorbing activity, the gallbladder has the ability to secrete fluid into its lumen. In the present experiments, we studied the rate of net water absorption in the gallbladders of pig-tailed monkeys sitting in restraining chairs. Bile from the common bile duct and the gallbladder was led out through cannulas to a stream splitter, samples were obtained, and bile was returned to the duodenum. By measuring outflow from the gallbladder and the concentration of bile acids in hepatic bile and bile that had passed through the gallbladder, net water absorption from the gallbladder bile could be calculated. The results demonstrate that during daytime fasting there was a net absorption corresponding to 30% of the fasting gallbladder volume per hour, and after feeding there was a net secretion of fluid into the gallbladder lumen. Compared with the awake fasting state, net water absorption from the gallbladder decreased at night while the animal was fasting and asleep. Physiologically, secretion of fluid after a meal could help to empty the gallbladder, and changes in net water absorption by the gallbladder could influence the kinetics of the enterohepatic circulation of bile acids.

  12. Gallbladder Diseases

    MedlinePlus

    Your gallbladder is a pear-shaped organ under your liver. It stores bile, a fluid made by your liver ... As your stomach and intestines digest food, your gallbladder releases bile through a tube called the common ...

  13. Gallbladder (image)

    MedlinePlus

    The gallbladder is a muscular sac located under the liver. It stores and concentrates the bile produced in the ... needed for digestion. Bile is released from the gallbladder into the small intestine in response to food. ...

  14. The evaluation of gallbladder function by quantitative radionuclide cholescintigraphy before and after ESWL for gallstones: preliminary report.

    PubMed

    Kao, C H; Wang, S J; Liu, T J; Wu, C C

    1993-01-01

    We assessed changes of gallbladder function including concentration and contraction in patients with gallstones after extracorporeal shockwave lithotripsy (ESWL). The abilities of concentration and contraction were expressed as filling fraction (FF) at 90 min and ejection fraction (EF) at 30 min after a fatty diet by Tc-99m DISIDA cholescintigraphy. A total of 12 patients who had symptomatic gallstones without cholecystitis were included in our study. ESWL failed in three cases: FF decreased in two of three cases and increased in one of three cases, whereas EF decreased in two of three cases and increased in one of three cases. In another nine cases, ESWL was successful and the gallstones were fragmented. One month after ESWL, in three of these nine cases, the gallstones had completely disappeared. In the three cases at 1 month after ESWL, FF decreased in two of three cases and increased in one of three cases, whereas EF decreased in one of three cases and increased in two of three cases. In the remaining six cases after ESWL, there were still some residual stone fragments in the gallbladder. In these six cases after 6 months, no fragments were found in the gallbladders, the third Tc-99m DISIDA cholescintigraphy was performed. In these six cases, the changes of FF and EF, before ESWL, 1 month after ESWL, and 6 months after ESWL, were irregular and fluctuant. However, no significant improvement of gallbladder function was demonstrated even when ESWL was successful.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. The role of the gallbladder in humans.

    PubMed

    Turumin, J L; Shanturov, V A; Turumina, H E

    2013-01-01

    The basic function of the gallbladder in humans is one of protection. The accumulation of the primary bile acids (cholic acid and chenodeoxycholic acid) in the gallbladder reduces the formation of the secondary bile acids (deoxycholic acid and lithocholic acid), thus diminishing their concentration in the so-called gallbladder-independent enterohepatic circulation and protecting the liver, the stomach mucosa, the gallbladder, and the colon from their toxic hydrophobic effects. The presence or absence of the gallbladder in mammals is a determining factor in the synthesis of hydrophobic or hydrophilic bile acids. Because the gallbladder contracts 5-20 min after food is in the stomach and the "gastric chyme" moves from the stomach to the duodenum 1-3 h later, the function of the gallbladder bile in digestion may be insignificant. The aim of this article was to provide a detailed review of the role of the gallbladder and the mechanisms related to bile formation in humans.

  16. The role of the gallbladder in humans.

    PubMed

    Turumin, J L; Shanturov, V A; Turumina, H E

    2013-01-01

    The basic function of the gallbladder in humans is one of protection. The accumulation of the primary bile acids (cholic acid and chenodeoxycholic acid) in the gallbladder reduces the formation of the secondary bile acids (deoxycholic acid and lithocholic acid), thus diminishing their concentration in the so-called gallbladder-independent enterohepatic circulation and protecting the liver, the stomach mucosa, the gallbladder, and the colon from their toxic hydrophobic effects. The presence or absence of the gallbladder in mammals is a determining factor in the synthesis of hydrophobic or hydrophilic bile acids. Because the gallbladder contracts 5-20 min after food is in the stomach and the "gastric chyme" moves from the stomach to the duodenum 1-3 h later, the function of the gallbladder bile in digestion may be insignificant. The aim of this article was to provide a detailed review of the role of the gallbladder and the mechanisms related to bile formation in humans. PMID:23683886

  17. Dyspraxia, Motor Function and Visual-Motor Integration in Autism

    PubMed Central

    Miller, M.; Chukoskie, L.; Zinni, M.; Townsend, J.; Trauner, D.

    2014-01-01

    This project assessed dyspraxia in high-functioning school aged children with autism with a focus on Ideational Praxis. We examined the association of specific underlying motor function including eye movement with ideational dyspraxia (sequences of skilled movements) as well as the possible role of visual-motor integration in dyspraxia. We found that compared to IQ-, sex- and age-matched typically developing children, the children with autism performed significantly worse on: Ideational and Buccofacial praxis; a broad range of motor tests, including measures of simple motor skill, timing and accuracy of saccadic eye movements and motor coordination; and tests of visual-motor integration. Impairments in individual children with autism were heterogeneous in nature, although when we examined the praxis data as a function of a qualitative measure representing motor timing, we found that children with poor motor timing performed worse on all praxis categories and had slower and less accurate eye movements while those with regular timing performed as well as typical children on those same tasks. Our data provide evidence that both motor function and visual-motor integration contribute to dyspraxia. We suggest that dyspraxia in autism involves cerebellar mechanisms of movement control and the integration of these mechanisms with cortical networks implicated in praxis. PMID:24742861

  18. Molecular motors and their functions in plants

    NASA Technical Reports Server (NTRS)

    Reddy, A. S.

    2001-01-01

    Molecular motors that hydrolyze ATP and use the derived energy to generate force are involved in a variety of diverse cellular functions. Genetic, biochemical, and cellular localization data have implicated motors in a variety of functions such as vesicle and organelle transport, cytoskeleton dynamics, morphogenesis, polarized growth, cell movements, spindle formation, chromosome movement, nuclear fusion, and signal transduction. In non-plant systems three families of molecular motors (kinesins, dyneins, and myosins) have been well characterized. These motors use microtubules (in the case of kinesines and dyneins) or actin filaments (in the case of myosins) as tracks to transport cargo materials intracellularly. During the last decade tremendous progress has been made in understanding the structure and function of various motors in animals. These studies are yielding interesting insights into the functions of molecular motors and the origin of different families of motors. Furthermore, the paradigm that motors bind cargo and move along cytoskeletal tracks does not explain the functions of some of the motors. Relatively little is known about the molecular motors and their roles in plants. In recent years, by using biochemical, cell biological, molecular, and genetic approaches a few molecular motors have been isolated and characterized from plants. These studies indicate that some of the motors in plants have novel features and regulatory mechanisms. The role of molecular motors in plant cell division, cell expansion, cytoplasmic streaming, cell-to-cell communication, membrane trafficking, and morphogenesis is beginning to be understood. Analyses of the Arabidopsis genome sequence database (51% of genome) with conserved motor domains of kinesin and myosin families indicates the presence of a large number (about 40) of molecular motors and the functions of many of these motors remain to be discovered. It is likely that many more motors with novel regulatory

  19. [Functional and motor gastrointestinal disorders].

    PubMed

    Mearin, Fermín; Rey, Enrique; Balboa, Agustín

    2015-09-01

    This article discusses the most interesting studies on functional and motor gastrointestinal disorders presented at Digestive Diseases Week (DDW), 2015. Researchers are still seeking biomarkers for irritable bowel syndrome and have presented new data. One study confirmed that the use of low-dose antidepressants has an antinociceptive effect without altering the psychological features of patients with functional dyspepsia. A contribution that could have immediate application is the use of transcutaneous electroacupuncture, which has demonstrated effectiveness in controlling nausea in patients with gastroparesis. New data have come to light on the importance of diet in irritable bowel syndrome, although the effectiveness of a low-FODMAP diet seems to be losing momentum with time. Multiple data were presented on the long-term efficacy of rifaximin therapy in patients with irritable bowel syndrome and diarrhoea. In addition, among other contributions, and more as a curiosity, a study evaluated the effect of histamine in the diet of patients with irritable bowel syndrome.

  20. Gallbladder radionuclide scan

    MedlinePlus

    Radionuclide - gallbladder; Gallbladder scan; Biliary scan; Cholescintigraphy: HIDA; Hepatobiliary nuclear imaging scan ... small amount of morphine. This can help the radionuclide get into the gallbladder. The morphine may cause ...

  1. Gallbladder Cancer: Surgery

    MedlinePlus

    ... done instead). Gallbladder cancers are sometimes found by accident after a person has a cholecystectomy for another ... Gallbladder Cancer? Causes, Risk Factors, and Prevention Early Detection, Diagnosis, and Staging Treating Gallbladder Cancer Talking With ...

  2. Gallbladder removal - open

    MedlinePlus

    Cholecystectomy - open; Surgery - gallbladder - open ... a medical instrument called a laparoscope ( laparoscopic cholecystectomy ). Open gallbladder surgery is used when laparoscopic surgery cannot ...

  3. The functional alterations associated with motor imagery training: a comparison between motor execution and motor imagery of sequential finger tapping

    NASA Astrophysics Data System (ADS)

    Zhang, Hang; Yao, Li; Long, Zhiying

    2011-03-01

    Motor imagery training, as an effective strategy, has been more and more applied to mental disorders rehabilitation and motor skill learning. Studies on the neural mechanism underlying motor imagery have suggested that such effectiveness may be related to the functional congruence between motor execution and motor imagery. However, as compared to the studies on motor imagery, the studies on motor imagery training are much fewer. The functional alterations associated with motor imagery training and the effectiveness of motor imagery training on motor performance improvement still needs further investigation. Using fMRI, we employed a sequential finger tapping paradigm to explore the functional alterations associated with motor imagery training in both motor execution and motor imagery task. We hypothesized through 14 consecutive days motor imagery training, the motor performance could be improved and the functional congruence between motor execution and motor imagery would be sustained form pre-training phase to post-training phase. Our results confirmed the effectiveness of motor imagery training in improving motor performance and demonstrated in both pre and post-training phases, motor imagery and motor execution consistently sustained the congruence in functional neuroanatomy, including SMA (supplementary motor cortex), PMA (premotor area); M1( primary motor cortex) and cerebellum. Moreover, for both execution and imagery tasks, a similar functional alteration was observed in fusiform through motor imagery training. These findings provided an insight into the effectiveness of motor imagery training and suggested its potential therapeutic value in motor rehabilitation.

  4. Gallbladder stones: shockwave therapy.

    PubMed

    Sackmann, M

    1992-11-01

    Within the past 7 years, gallbladder lithotripsy by shockwaves has been proven to be a safe and effective non-invasive therapy for selected patients with gallstone disease. While regulatory decisions prevent shockwave therapy from being used more frequently in the USA, the number of patients treated in Europe and Asia is increasing constantly. At our institution, a relatively constant number of about 250 new patients per year have been treated since 1988 (Figure 4). About 20% of patients with gallstones are suitable for shockwave therapy according to present criteria. The rate of evacuation of all fragments is determined by the initial stone number and stone size, the success at stone fragmentation, adjuvant bile acid dissolution therapy, and gallbladder contractility. In contrast to laparoscopic cholecystectomy (Dubois et al, 1989; Perissat et al, 1989; Southern Surgeons Club, 1991), shockwave therapy does not require general anaesthesia. And in contrast to direct contact dissolution therapy of gallbladder stones using MTBE (Thistle et al, 1989), lithotripsy is non-invasive. In the majority of patients, complete fragment disappearance takes several months. Preliminary analyses of the cost-effectiveness of lithotripsy have revealed that lithotripsy, including retreatments and bile acid medication for recurrent stones, costs about as much as open cholecystectomy (Rothschild et al, 1990; Bass et al, 1991). The ideal patient for gallbladder lithotripsy has a single radiolucent stone < or = 20-25 mm in diameter in a functioning gallbladder (Figure 1). In patients with such stones, nearly all studies have confirmed a favourable outcome with rapid clearance of all fragments and a relatively low rate of stone recurrence. For carefully selected patients, extracorporeal shockwave lithotripsy is therefore an attractive non-invasive therapy.

  5. [Functional and motor gastrointestinal disorders].

    PubMed

    Mearin, Fermín; Perelló, Antonia; Balboa, Agustín

    2008-10-01

    on their treatments, is extensive. Consequently, 2008 has been a good year in terms of the useful information gathered for physicians interested in functional GI and motor disorders. PMID:19434861

  6. Motor Coordination and Executive Functions

    ERIC Educational Resources Information Center

    Michel, Eva

    2012-01-01

    Since Piaget, the view that motor and cognitive development are interrelated has gained wide acceptance. However, empirical research on this issue is still rare. Few studies show a correlation of performance in cognitive and motor tasks in typically developing children. More specifically, Diamond A. (2000) hypothesizes an involvement of executive…

  7. Laparoscopic cholecystectomy for traumatic gallbladder perforation

    PubMed Central

    Hamilton, C; Carmichael, SP; Bernard, AC

    2012-01-01

    In trauma, laparoscopic surgery is commonly utilized as a diagnostic rather than therapeutic measure (1). Its use is often negated because of exigency or limitations in visibility due to haemorrhage. In the present case, a 35-year-old male was involved in a motor vehicle collision and arrived haemodynamically stable with abdominal pain. Abdominal CT revealed liver laceration and active contrast extravasation near the gallbladder fossa. Although angiography with embolization would normally be used, exploratory laparoscopy was performed because of concern for gallbladder injury. The gallbladder was found to be perforated and nearly completely avulsed from the fossa. Laparoscopic cholecystectomy was performed and the patient recovered uneventfully. Gallbladder perforation after trauma is typically an incidental finding during operation for haemorrhagic shock or other indication. Early diagnosis and swift surgical intervention are required, usually via laparotomy. However, when diagnosed preoperatively in the stable trauma victim, gallbladder perforation can be treated successfully with laparoscopy. PMID:24960682

  8. [Functional brain plasticity associated with motor learning].

    PubMed

    Doyon, Julien; Orban, Pierre; Barakat, Marc; Debas, Karen; Lungu, Ovidiu; Albouy, Geneviève; Fogel, Stuart; Proulx, Sébastien; Laventure, Samuel; Deslauriers, Jonathan; Duchesne, Catherine; Carrier, Julie; Benali, Habib

    2011-04-01

    This review presents the results of studies carried out in our laboratory that aim to investigate, through functional magnetic resonance imaging (fMRI), the brain plasticity associated with motor sequence learning, defined as our ability to integrate simple stereotyped movements into a single motor representation. Following a brief description of Doyon and colleagues' model (2002, 2005, 2009) of motor skill learning that has guided this work, we then describe the functional changes that occur at the different (rapid, slow, automatization) acquisition phases, and propose specific roles that the putamen, the cerebellum and their motor-related cortical areas, play in this form of motor behavior. Finally, we put forward evidence that post-training, non-REM sleep (and spindles in Stage 2 sleep, in particular) contributes to the consolidation of a motor sequence memory trace, and that increased activity within the striatum and/or the hippocampus mediates this mnemonic process.

  9. Promoting motor function by exercising the brain.

    PubMed

    Perrey, Stephane

    2013-01-01

    Exercise represents a behavioral intervention that enhances brain health and motor function. The increase in cerebral blood volume in response to physical activity may be responsible for improving brain function. Among the various neuroimaging techniques used to monitor brain hemodynamic response during exercise, functional near-infrared spectroscopy could facilitate the measurement of task-related cortical responses noninvasively and is relatively robust with regard to the subjects' motion. Although the components of optimal exercise interventions have not been determined, evidence from animal and human studies suggests that aerobic exercise with sufficiently high intensity has neuroprotective properties and promotes motor function. This review provides an insight into the effect of physical activity (based on endurance and resistance exercises) on brain function for producing movement. Since most progress in the study of brain function has come from patients with neurological disorders (e.g., stroke and Parkinson's patients), this review presents some findings emphasizing training paradigms for restoring motor function. PMID:24961309

  10. Recovery of motor function after stroke.

    PubMed

    Sharma, Nikhil; Cohen, Leonardo G

    2012-04-01

    The human brain possesses a remarkable ability to adapt in response to changing anatomical (e.g., aging) or environmental modifications. This form of neuroplasticity is important at all stages of life but is critical in neurological disorders such as amblyopia and stroke. This review focuses upon our new understanding of possible mechanisms underlying functional deficits evidenced after adult-onset stroke. We review the functional interactions between different brain regions that may contribute to motor disability after stroke and, based on this information, possible interventional approaches to motor stroke disability. New information now points to the involvement of non-primary motor areas and their interaction with the primary motor cortex as areas of interest. The emergence of this new information is likely to impact new efforts to develop more effective neurorehabilitative interventions using transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) that may be relevant to other neurological disorders such as amblyopia.

  11. Deep networks for motor control functions

    PubMed Central

    Berniker, Max; Kording, Konrad P.

    2015-01-01

    The motor system generates time-varying commands to move our limbs and body. Conventional descriptions of motor control and learning rely on dynamical representations of our body's state (forward and inverse models), and control policies that must be integrated forward to generate feedforward time-varying commands; thus these are representations across space, but not time. Here we examine a new approach that directly represents both time-varying commands and the resulting state trajectories with a function; a representation across space and time. Since the output of this function includes time, it necessarily requires more parameters than a typical dynamical model. To avoid the problems of local minima these extra parameters introduce, we exploit recent advances in machine learning to build our function using a stacked autoencoder, or deep network. With initial and target states as inputs, this deep network can be trained to output an accurate temporal profile of the optimal command and state trajectory for a point-to-point reach of a non-linear limb model, even when influenced by varying force fields. In a manner that mirrors motor babble, the network can also teach itself to learn through trial and error. Lastly, we demonstrate how this network can learn to optimize a cost objective. This functional approach to motor control is a sharp departure from the standard dynamical approach, and may offer new insights into the neural implementation of motor control. PMID:25852530

  12. Hammersmith Functional Motor Scale and Motor Function Measure-20 in non ambulant SMA patients.

    PubMed

    Mazzone, E; De Sanctis, R; Fanelli, L; Bianco, F; Main, M; van den Hauwe, M; Ash, M; de Vries, R; Fagoaga Mata, J; Schaefer, K; D'Amico, A; Colia, G; Palermo, C; Scoto, M; Mayhew, A; Eagle, M; Servais, L; Vigo, M; Febrer, A; Korinthenberg, R; Jeukens, M; de Viesser, M; Totoescu, A; Voit, T; Bushby, K; Muntoni, F; Goemans, N; Bertini, E; Pane, M; Mercuri, E

    2014-04-01

    The aim of this prospective longitudinal multi centric study was to evaluate the correlation between the Hammersmith Functional Motor Scale and the 20 item version of the Motor Function Measure in non ambulant SMA children and adults at baseline and over a 12 month period. Seventy-four non-ambulant patients performed both measures at baseline and 49 also had an assessment 12 month later. At baseline the scores ranged between 0 and 40 on the Hammersmith Motor function Scale and between 3 and 45 on the Motor Function Measure 20. The correlation between the two scales was 0.733. The 12 month changes ranged between -11 and 4 for the Hammersmith and between -11 and 7 for the Motor Function Measure 20. The correlation between changes was 0.48. Our results suggest that both scales provide useful information although they appeared to work differently at the two extremes of the spectrum of abilities. The Hammersmith Motor Function Scale appeared to be more suitable in strong non ambulant patients, while the Motor Function Measures appeared to be more sensitive to capture activities and possible changes in the very weak patients, including more items capturing axial and upper limb activities. The choice of these measures in clinical trials should therefore depend on inclusion criteria and magnitude of expected changes.

  13. Role of ROCK expression in gallbladder smooth muscle contraction.

    PubMed

    Wang, Bin; Ding, You-Ming; Wang, Chun-Tao; Wang, Wei-Xing

    2015-08-01

    Cholelithiasis is a common medical condition whose incidence rate is increasing yearly, while its pathogenesis has yet to be elucidated. The present study assessed the expression of Rho-kinase (ROCK) in gallbladder smooth muscles and its effect on the contractile function of gallbladder smooth muscles during gallstone formation. Thirty male guinea pigs were randomly divided into three groups: The control group, the gallstone model group and the fasudil interference group. The fasting volume (FV) and bile capacity of the gallbladder (FB) as well as the total cholesterol (TC) and triglyceride (TG) contents of the gallbladder bile were determined. In addition, the gallbladder was dissected to identify whether any gallstones had formed. Part of the gallbladder tissue specimens were used for immunohistochemical analysis of ROCK expression in gallbladder smooth muscles. The results showed that four guinea pigs in the model group and eight in the fasudil group displayed gallstone formation, while there was no gallstone formation in the control group. The FV and FB were significantly increased in the model and fasudil groups. Similarly, the TC and TG contents of gallbladder bile were increased in these groups. The positive expression rate of ROCK in gallbladder smooth muscles in the model and fasudil groups was significantly reduced compared with that in the control group (P<0.05). The results of the present study indicated that the reduction of ROCK expression in guinea pig gallbladder smooth muscles weakened gallbladder contraction and thereby promoted gallstone formation.

  14. [Functional and motor digestive disorders].

    PubMed

    Mearin, Fermín; Rey, Enrique; Balboa, Agustín

    2013-10-01

    This article discusses the most interesting studies on functional and motility gastrointestinal disorders presented in Digestive Diseases Week (DDW) in 2013. New data were reported on the clinical importance of functional gastrointestinal disorders (FGID) and on how they can produce numerous disturbances such as inflammatory bowel disease. These disturbances are associated with somatic functional disease and particularly with fatigue. In addition, new data have emerged on the physiopathology of these disorders, with some studies reporting that environmental factors and events in early infancy can favor their development. Data were also presented on how bile acids can increase susceptibility to diarrhea in patients with irritable bowel syndrome (IBS) and on how the type of food intake can favor the development of symptoms. More data are available on the presence of underlying celiac disease in patients with IBS, which should prompt us to investigate this disease in our patients. Likewise, indiscriminate application of a gluten-free diet in patients with IBS has been shown not to produce a clear improvement. Regarding the physiopathology of functional dyspepsia (FD), results have been presented on how psychological factors can modify gastric accommodation and how this is in turn related to visceral hypersensitivity and gastric emptying. Regarding therapy, mirtazapine can improve symptoms and lead to weight gain in patients with severe FD and substantial weight loss. Results were presented on new drugs for IBS such as ibodutant and on old drugs with new applications such as mesalazine and ebastine. The antinociceptive effect of linaclotide is now better understood and a meta-analysis has shown its effectiveness in IBS with constipation as the main symptom. In patients with constipation, pelvic floor dysynergy can be diagnosed by a simple clinical interview and rectal touch. More data are available on the efficacy of prucalopride (which has been shown to accelerate

  15. Impaired Gallbladder Motility and Increased Gallbladder Wall Thickness in Patients with Nonalcoholic Fatty Liver Disease

    PubMed Central

    Colak, Yasar; Bozbey, Gulcin; Erim, Tolga; Caklili, Ozge Telci; Ulasoglu, Celal; Senates, Ebubekir; Mutlu, Hasan Huseyin; Mesci, Banu; Doğan, Mehmet Sait; Tasan, Guralp; Enc, Feruze Yilmaz; Tuncer, Ilyas

    2016-01-01

    Background/Aims Nonalcoholic fatty liver disease (NAFLD) is currently the most common chronic liver disease worldwide. Along with the increase in the incidence of NAFLD and associated obesity, an increase in gallbladder disease (GD) has been noted. This has led to the identification of a new disease entity called fatty GD. There is a gap in the literature on the dynamics of gallbladder function in patients with NAFLD. Methods An observational case-control study, a total of 50 patients with biopsy proven NAFLD without gallbladder stone/sludge and 38 healthy comparison subjects were enrolled. Fasting, postprandial gallbladder volumes (PGV), gallbladder ejection fraction (GEF), and fasting gallbladder wall thickness (FGWT) were measured by real-time 2-dimensional ultrasonography. Results Fasting gallbladder wall thickness, fasting gallbladder volumes and PGV were significantly higher in patients with NAFLD than control subjects (P < 0.001, P = 0.006, and P < 0.001, respectively). Gallbladder ejection fraction was significantly lower in the NAFLD group than the controls (P = 0.008). The presence of NAFLD was an independent predictor for GEF, PGV, and FGWT. Also, steatosis grade was an independent predictor for GEF, and GEF was significantly lower in the nonalcoholic steatohepatitis (NASH) subgroup than the controls. Conclusions Gallbladder dysfunction and increase in gallbladder wall thickness exists in asymptomatic (without stone/sludge and related symptoms) patients with NAFLD and are useful in identifying fatty GD. Measurement of these variables in NAFLD patients may be useful in identifying those at higher risk for GD. PMID:26932908

  16. A new exploration for gallbladder polyps: gallbladder polypectomy by endolap technique.

    PubMed

    Wang, JingMin; Tan, YuYan; Zhao, Gang; Wang, Dong; Ji, ZhenLing

    2014-12-01

    Abstract Gallbladder polyps are most commonly treated with cholecystectomy, which is associated with various complications. For benign disease, preserving the gallbladder is preferable. Since 1994, we have been exploring percutaneous polypectomy and have recently developed an improved new technique. This study reports a new endoscopic-laparoscopic (Endolap) technique for the removal of polyps and the preservation of the gallbladder. Nine Chinese mini-pigs were used to observe mucosal regeneration. Microwaves of 50-70 mA for 9 seconds were safe, and the gallbladder mucosa of pigs recovered to nearly normal 2 weeks later. In the clinical cases, 60 patients with gallbladder polyps were studied. With the patient under general anesthesia, each polyp stem was coagulated, and then the polyp was removed. All procedures were successful at between 60 and 135 minutes. The success rate was 93.33% (56/60). A retrospective analysis was conducted to assess the recovery of gallbladder function. All patients were followed up and symptom-free, without recurrence of the polyps; 3 months after the operation, the volume and contraction of the gallbladder recovered to preoperative levels. Thus the Endolap technique is reliable for removing benign gallbladder polyps and is applicable to a wider range of clinical situations than percutaneous polypectomy.

  17. Cholescintigraphy in gallbladder carcinoma

    SciTech Connect

    Colletti, P.M.; Ralls, P.W.; Siegel, M.E.; Halls, J.M.

    1986-04-01

    Findings on cholescintigraphy in gallbladder carcinoma are described in five patients. Four patients presenting with acute cholecystitis had nonvisualization of the gallbladder with normal hepatoenteric transit time. One of these had a large portal mass and two had liver metastasis as additional findings. The fifth patient was jaundiced, and showed absence of bowel activity compatible with total biliary obstruction. Both the clinical and scintigraphic findings in gallbladder carcinoma are difficult to separate from findings in cholelithiasis and cholecystitis.

  18. Structural equation modeling of motor impairment, gross motor function, and the functional outcome in children with cerebral palsy.

    PubMed

    Park, Eun-Young; Kim, Won-Ho

    2013-05-01

    Physical therapy intervention for children with cerebral palsy (CP) is focused on reducing neurological impairments, improving strength, and preventing the development of secondary impairments in order to improve functional outcomes. However, relationship between motor impairments and functional outcome has not been proved definitely. This study confirmed the construct of motor impairment and performed structural equation modeling (SEM) between motor impairment, gross motor function, and functional outcomes of regarding activities of daily living in children with CP. 98 children (59 boys, 39 girls) with CP participated in this cross-sectional study. Mean age was 11 y 5 mo (SD 1 y 9 mo). The Manual Muscle Test (MMT), the Modified Ashworth Scale (MAS), range of motion (ROM) measurement, and the selective motor control (SMC) scale were used to assess motor impairments. Gross motor function and functional outcomes were measured using the Gross Motor Function Measure (GMFM) and the Functional Skills domain of the Pediatric Evaluation of Disability Inventory (PEDI) respectively. Measurement of motor impairment was consisted of strength, spasticity, ROM, and SMC. The construct of motor impairment was confirmed though an examination of a measurement model. The proposed SEM model showed good fit indices. Motor impairment effected gross motor function (β=-.0869). Gross motor function and motor impairment affected functional outcomes directly (β=0.890) and indirectly (β=-0.773) respectively. We confirmed that the construct of motor impairment consist of strength, spasticity, ROM, and SMC and it was identified through measurement model analysis. Functional outcomes are best predicted by gross motor function and motor impairments have indirect effects on functional outcomes. PMID:23500167

  19. Gallbladder visualization with technetium-99m glucoheptonate: concise communication

    SciTech Connect

    Tyler, J.L.; Powers, T.A.

    1982-10-01

    Marked gallbladder concentration of glucoheptonate during renal function studies in dogs prompted a prospective study in order to assess the frequency of similar findings in human subjects. Of a total of 62 patients studied, the gallbladder was visualized clearly in 17 of the 18 patients (94%) who had documented normal hepatobiliary and renal function, and who were examined in a fasted state. In 38 nonfasting patients, only eight (22%) had gallbladder visualization. These findings may prove important in the interpretation of glucoheptonate renal studies in order to avoid confusion caused by a glucoheptonate-filled gallbladder lying close to the right kidney.

  20. Spontaneous asymptomatic gallbladder perforation

    PubMed Central

    Seçil, Mustafa

    2014-01-01

    Gallstone disease is common. However, a proportion of patients are asymptomatic and remain undiagnosed until the occurrence of complications. Common complications include acute cholecystitis, biliary obstruction, acute pancreatitis and cholangitis. Severe complications include gallbladder perforation, Mirizzi syndrome and fistula formation are usually associated with significant morbidity and mortality. We report a case of asymptomatic spotaneous gallbladder perforation due to acute cholecystitis. PMID:24914424

  1. Motor Functions of the Superior Colliculus

    PubMed Central

    Gandhi, Neeraj J.; Katnani, Husam A.

    2013-01-01

    The mammalian superior colliculus (SC) and its nonmammalian homolog, the optic tectum, constitute a major node in processing sensory information, incorporating cognitive factors, and issuing motor commands. The resulting action—to orient toward or away from a stimulus—can be accomplished as an integrated movement across oculomotor, cephalomotor, and skeletomotor effectors. The SC also participates in preserving fixation during intersaccadic intervals. This review highlights the repertoire of movements attributed to SC function and analyzes the significance of results obtained from causality-based experiments (microstimulation and inactivation). The mechanisms potentially used to decode the population activity in the SC into an appropriate movement command are also discussed. PMID:21456962

  2. Acquiring functional object knowledge through motor imagery?

    PubMed

    Paulus, Markus; van Elk, Michiel; Bekkering, Harold

    2012-04-01

    A widely investigated question in the research on the acquisition of novel functional object representations is the role of the action system. Whereas most studies so far have investigated the role of active action training on the acquisition of object representation, we investigated whether people are able to acquire object representations by just imagining the use of novel objects, given that previous findings suggested that executed and imagined actions share a common representational format. To this end, participants trained the use of novel objects in a motor imagery condition. Training comprised the particular grip applied to the objects and the objects' typical end location. Subsequently, participants' object representations were assessed by means of an object detection task. The results show that participants responded slower when the novel objects were presented at functionally incorrect end locations, indicating that the participants had acquired functional knowledge about object use. Yet, there was no effect of correct versus incorrect grip. Altogether, the findings suggest that motor imagery can facilitate the acquisition of novel object representations, but point also to differences between first-hand action training and training by imagery.

  3. Brief Assessment of Motor Function: Content Validity and Reliability of the Upper Extremity Gross Motor Scale

    ERIC Educational Resources Information Center

    Cintas, Holly Lea; Parks, Rebecca; Don, Sarah; Gerber, Lynn

    2011-01-01

    Content validity and reliability of the Brief Assessment of Motor Function (BAMF) Upper Extremity Gross Motor Scale (UEGMS) were evaluated in this prospective, descriptive study. The UEGMS is one of five BAMF ordinal scales designed for quick documentation of gross, fine, and oral motor skill levels. Designed to be independent of age and…

  4. Spontaneous acalculous gallbladder perforation

    PubMed Central

    Sheridan, David; Qazi, Almas; Lisa, Selina; Vashisht, Rajiv

    2014-01-01

    An 86-year-old woman, 4 days post-operative following a right-sided Austin-Moore arthroplasty, reported abdominal pain around a known umbilical hernia and became increasingly confused. A diagnosis of incarcerated umbilical hernia was made. At surgery, on entering the peritoneal cavity, bile was immediately noted. The operation was converted to a laparotomy and a perforation was noted in the gallbladder. An open cholecystectomy was performed. Macroscopically the gallbladder was perforated in multiple places, was thin walled and did not contain gallstones. This case demonstrates the difficulty in diagnosing an apparently spontaneous gallbladder perforation in a cognitively frail patient. PMID:25293685

  5. Spontaneous acalculous gallbladder perforation.

    PubMed

    Sheridan, David; Qazi, Almas; Lisa, Selina; Vashisht, Rajiv

    2014-10-07

    An 86-year-old woman, 4 days post-operative following a right-sided Austin-Moore arthroplasty, reported abdominal pain around a known umbilical hernia and became increasingly confused. A diagnosis of incarcerated umbilical hernia was made. At surgery, on entering the peritoneal cavity, bile was immediately noted. The operation was converted to a laparotomy and a perforation was noted in the gallbladder. An open cholecystectomy was performed. Macroscopically the gallbladder was perforated in multiple places, was thin walled and did not contain gallstones. This case demonstrates the difficulty in diagnosing an apparently spontaneous gallbladder perforation in a cognitively frail patient.

  6. Thinking, Walking, Talking: Integratory Motor and Cognitive Brain Function.

    PubMed

    Leisman, Gerry; Moustafa, Ahmed A; Shafir, Tal

    2016-01-01

    In this article, we argue that motor and cognitive processes are functionally related and most likely share a similar evolutionary history. This is supported by clinical and neural data showing that some brain regions integrate both motor and cognitive functions. In addition, we also argue that cognitive processes coincide with complex motor output. Further, we also review data that support the converse notion that motor processes can contribute to cognitive function, as found by many rehabilitation and aerobic exercise training programs. Support is provided for motor and cognitive processes possessing dynamic bidirectional influences on each other. PMID:27252937

  7. Thinking, Walking, Talking: Integratory Motor and Cognitive Brain Function

    PubMed Central

    Leisman, Gerry; Moustafa, Ahmed A.; Shafir, Tal

    2016-01-01

    In this article, we argue that motor and cognitive processes are functionally related and most likely share a similar evolutionary history. This is supported by clinical and neural data showing that some brain regions integrate both motor and cognitive functions. In addition, we also argue that cognitive processes coincide with complex motor output. Further, we also review data that support the converse notion that motor processes can contribute to cognitive function, as found by many rehabilitation and aerobic exercise training programs. Support is provided for motor and cognitive processes possessing dynamic bidirectional influences on each other. PMID:27252937

  8. Functioning of patients with multifocal motor neuropathy.

    PubMed

    Erdmann, Peter G; Lindeman, Eline; Cats, Elisabeth A; van den Berg, Leonard H

    2010-06-01

    Patients with multifocal motor neuropathy (MMN) have slowly progressive, predominantly distal asymmetric limb weakness without sensory loss. While previous studies have investigated the impact of MMN on body functions and structures, relatively little is known about the impact of patients' weakness on daily functioning. The aim of the present cross-sectional study, involving 47 patients with MMN, was to evaluate determinants of patients' functioning. Most patients showed not only muscle weakness but also fatigue, limited dexterity, and limited walking ability. Regression models showed that age, hand aids, and muscle strength scores together explained 54% of the variance in dexterity scores, which in turn explained 8% of the variance in patients' scores for autonomy indoors. Age, the use of walking aids, and muscle strength scores together explained 58% of the variance in walking ability scores, which in turn explained 18% of the variance in patients' scores for autonomy indoors and 7% of the variance in patients' scores for autonomy outdoors. Assessment of determinants of patient functioning may make it possible to tailor interventions to address these aspects and thereby improve patients' functioning in daily life. PMID:20626774

  9. [Infiltrate of a gallbladder].

    PubMed

    Dolimov, K S; Il'khamov, F A; Abdumazhidov, A sh; Tukhtamuradov, Z Z

    2014-03-01

    Infiltrate of a gallbladder, as a complication of an acute cholecystitis constitute a separate form of the disease. In this case a destructive changes in gallbladder are restricted from surrounding tissues. While presence of infiltrate of a small size and favorable course under the influence of conservative therapy it is necessary to follow an expectant tactics up to complete dissolving of the infiltrate with a consequent obligate operative treatment in a "cold" period of the disease. Not rarely the infiltrate is transformed into a gallbladder oedema, what demands performance of a deferred operation. In a deep destructive process a gallbladder empyema may occur or paravesical abscess formated, what demands performance of urgent operative intervention.

  10. Effect of pirenzepine on gallbladder emptying in humans

    SciTech Connect

    Keshavarzian, A.; Fitzpatrick, M.L.; Anagnostides, A.; Chadwick, V.S.

    1986-11-01

    The effect of the selective antimuscarinic agent, pirenzepine, on gallbladder function was studied in six healthy volunteers, using /sup 99m/Tc HIDA (N-(2,6-diethylthenyl) carbamoylmethyl iminodiacetic acid) hepatobiliary scanning. Pirenzepine, in doses that inhibit gastric acid secretion, did not alter gallbladder emptying responses to sham feeding stimulation or to a test meal.

  11. Cytoskeleton Molecular Motors: Structures and Their Functions in Neuron

    PubMed Central

    Xiao, Qingpin; Hu, Xiaohui; Wei, Zhiyi; Tam, Kin Yip

    2016-01-01

    Cells make use of molecular motors to transport small molecules, macromolecules and cellular organelles to target region to execute biological functions, which is utmost important for polarized cells, such as neurons. In particular, cytoskeleton motors play fundamental roles in neuron polarization, extension, shape and neurotransmission. Cytoskeleton motors comprise of myosin, kinesin and cytoplasmic dynein. F-actin filaments act as myosin track, while kinesin and cytoplasmic dynein move on microtubules. Cytoskeleton motors work together to build a highly polarized and regulated system in neuronal cells via different molecular mechanisms and functional regulations. This review discusses the structures and working mechanisms of the cytoskeleton motors in neurons. PMID:27570482

  12. Spontaneous gallbladder perforation

    SciTech Connect

    Simmons, T.C.; Miller, C.; Weaver, R.

    1989-05-01

    Acute gallbladder perforation is an infrequent, although not uncommon, complication of cholecystitis. It is rarely diagnosed preoperatively and the delay in making the definitive diagnosis usually accounts for the increased incidence of morbidity and mortality associated with this complication. A case of a 92-year-old patient in whom acute gallbladder perforation was suspected peroperatively at ultrasonography of the abdomen and confirmed by technetium-99m disofenin radionuclide biliary scan is reported.

  13. Motor unit recruitment by size does not provide functional advantages for motor performance

    PubMed Central

    Dideriksen, Jakob L; Farina, Dario

    2013-01-01

    It is commonly assumed that the orderly recruitment of motor units by size provides a functional advantage for the performance of movements compared with a random recruitment order. On the other hand, the excitability of a motor neuron depends on its size and this is intrinsically linked to its innervation number. A range of innervation numbers among motor neurons corresponds to a range of sizes and thus to a range of excitabilities ordered by size. Therefore, if the excitation drive is similar among motor neurons, the recruitment by size is inevitably due to the intrinsic properties of motor neurons and may not have arisen to meet functional demands. In this view, we tested the assumption that orderly recruitment is necessarily beneficial by determining if this type of recruitment produces optimal motor output. Using evolutionary algorithms and without any a priori assumptions, the parameters of neuromuscular models were optimized with respect to several criteria for motor performance. Interestingly, the optimized model parameters matched well known neuromuscular properties, but none of the optimization criteria determined a consistent recruitment order by size unless this was imposed by an association between motor neuron size and excitability. Further, when the association between size and excitability was imposed, the resultant model of recruitment did not improve the motor performance with respect to the absence of orderly recruitment. A consistent observation was that optimal solutions for a variety of criteria of motor performance always required a broad range of innervation numbers in the population of motor neurons, skewed towards the small values. These results indicate that orderly recruitment of motor units in itself does not provide substantial functional advantages for motor control. Rather, the reason for its near-universal presence in human movements is that motor functions are optimized by a broad range of innervation numbers. PMID:24144879

  14. Myosin VI: cellular functions and motor properties.

    PubMed Central

    Roberts, Rhys; Lister, Ida; Schmitz, Stephan; Walker, Matthew; Veigel, Claudia; Trinick, John; Buss, Folma; Kendrick-Jones, John

    2004-01-01

    Myosin VI has been localized in membrane ruffles at the leading edge of cells, at the trans-Golgi network compartment of the Golgi complex and in clathrin-coated pits or vesicles, indicating that it functions in a wide variety of intracellular processes. Myosin VI moves along actin filaments towards their minus end, which is the opposite direction to all of the other myosins so far studied (to our knowledge), and is therefore thought to have unique properties and functions. To investigate the cellular roles of myosin VI, we identified various myosin VI binding partners and are currently characterizing their interactions within the cell. As an alternative approach, we have expressed and purified full-length myosin VI and studied its in vitro properties. Previous studies assumed that myosin VI was a dimer, but our biochemical, biophysical and electron microscopic studies reveal that myosin VI can exist as a stable monomer. We observed, using an optical tweezers force transducer, that monomeric myosin VI is a non-processive motor which, despite a relatively short lever arm, generates a large working stroke of 18 nm. Whether monomer and/or dimer forms of myosin VI exist in cells and their possible functions will be discussed. PMID:15647169

  15. Myosin VI: cellular functions and motor properties.

    PubMed

    Roberts, Rhys; Lister, Ida; Schmitz, Stephan; Walker, Matthew; Veigel, Claudia; Trinick, John; Buss, Folma; Kendrick-Jones, John

    2004-12-29

    Myosin VI has been localized in membrane ruffles at the leading edge of cells, at the trans-Golgi network compartment of the Golgi complex and in clathrin-coated pits or vesicles, indicating that it functions in a wide variety of intracellular processes. Myosin VI moves along actin filaments towards their minus end, which is the opposite direction to all of the other myosins so far studied (to our knowledge), and is therefore thought to have unique properties and functions. To investigate the cellular roles of myosin VI, we identified various myosin VI binding partners and are currently characterizing their interactions within the cell. As an alternative approach, we have expressed and purified full-length myosin VI and studied its in vitro properties. Previous studies assumed that myosin VI was a dimer, but our biochemical, biophysical and electron microscopic studies reveal that myosin VI can exist as a stable monomer. We observed, using an optical tweezers force transducer, that monomeric myosin VI is a non-processive motor which, despite a relatively short lever arm, generates a large working stroke of 18 nm. Whether monomer and/or dimer forms of myosin VI exist in cells and their possible functions will be discussed. PMID:15647169

  16. Motor neurons control locomotor circuit function retrogradely via gap junctions.

    PubMed

    Song, Jianren; Ampatzis, Konstantinos; Björnfors, E Rebecka; El Manira, Abdeljabbar

    2016-01-21

    Motor neurons are the final stage of neural processing for the execution of motor behaviours. Traditionally, motor neurons have been viewed as the 'final common pathway', serving as passive recipients merely conveying to the muscles the final motor program generated by upstream interneuron circuits. Here we reveal an unforeseen role of motor neurons in controlling the locomotor circuit function via gap junctions in zebrafish. These gap junctions mediate a retrograde analogue propagation of voltage fluctuations from motor neurons to control the synaptic release and recruitment of the upstream V2a interneurons that drive locomotion. Selective inhibition of motor neurons during ongoing locomotion de-recruits V2a interneurons and strongly influences locomotor circuit function. Rather than acting as separate units, gap junctions unite motor neurons and V2a interneurons into functional ensembles endowed with a retrograde analogue computation essential for locomotor rhythm generation. These results show that motor neurons are not a passive recipient of motor commands but an integral component of the neural circuits responsible for motor behaviour.

  17. General Information about Gallbladder Cancer

    MedlinePlus

    ... Treatment Gallbladder Cancer Treatment (PDQ®)–Patient Version General Information About Gallbladder Cancer Go to Health Professional Version ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  18. Motor execution and motor imagery: a comparison of functional connectivity patterns based on graph theory.

    PubMed

    Xu, L; Zhang, H; Hui, M; Long, Z; Jin, Z; Liu, Y; Yao, L

    2014-03-01

    Motor execution and imagery (ME and MI), as the basic abilities of human beings, have been considered to be effective strategies in motor skill learning and motor abilities rehabilitation. Neuroimaging studies have revealed several critical regions from functional activation for ME as well as MI. Recently, investigations have probed into functional connectivity of ME; however, few explorations compared the functional connectivity between the two tasks. With betweenness centrality (BC) of graph theory, we explored and compared the functional connectivity between two finger tapping tasks of ME and MI. Our results showed that using BC, the key node for the ME task mainly focused on the supplementary motor area, while the key node for the MI task mainly located in the right premotor area. These results characterized the connectivity patterns of ME and MI and may provide new insights into the neural mechanism underlying motor execution and imagination of movements.

  19. Quantitative gallbladder imaging following cholecystokinin

    SciTech Connect

    Topper, T.E.; Ryerson, T.W.; Nora, P.F.

    1980-07-01

    Quantitative gallbladder imaging with Tc-99m paraisopropylimidodiacetic acid (PIPIDA) was performed and time-activity curves over the gallbladder were obtained following i.v. injection of cholecystokinin (CCK). The gallbladders that failed to contract after CCK were found to be abnormal at surgery. This test appears to be helpful in evaluating patients who have normal oral cholecystograms but have persistent symptoms of gallbladder disease.

  20. Identification of metastasis-associated proteins involved in gallbladder carcinoma metastasis by proteomic analysis and functional exploration of chloride intracellular channel 1.

    PubMed

    Wang, Jian-Wei; Peng, Shu-You; Li, Jiang-Tao; Wang, Yong; Zhang, Zhi-Ping; Cheng, Yan; Cheng, De-Qing; Weng, Wei-Hong; Wu, Xiang-Song; Fei, Xiao-Zhou; Quan, Zhi-Wei; Li, Ji-Yu; Li, Song-Gang; Liu, Ying-Bin

    2009-08-18

    Advanced gallbladder cancer has an extremely poor prognosis because of metastasis. Identification of metastasis-related biomarkers is essential to improve patient survival. In the present study, metastasis-associated proteins were identified by comparative proteomic analysis and the metastasis-related function of the candidate protein, chloride intracellular channel 1 (CLIC1), was further elucidated. Two cell lines with high or low metastatic potential (termed GBC-SD18H and GBC-SD18L, respectively), originating from the same parental gallbladder carcinoma GBC-SD cell line, were identified by spontaneous metastasis in vivo and characterized by metastatic phenotypes analysis in vitro. Subsequently, a proteomic approach comprised of two-dimensional gel electrophoresis analysis and mass spectroscopy was used to identify and compare the protein expression patterns between GBC-SD18L and GBC-SD18H. Twenty-six proteins were identified and further verified by one-dimensional Western blotting and semiquantitative reverse transcriptase polymerase chain reaction analysis. It was determined that CLIC1, ezrin, vimentin, annexin A3, WD repeat domain 1, triosephosphate isomerase, C1-tetrahydrofolate synthase, Rho GDP-dissociation inhibitor 1, T-complex protein 1, heterogeneous nuclear ribonucleoprotein K, glutamate dehydrogenase 1, proteasome activator complex subunit 3 and Rab GDP-dissociation inhibitor beta were significantly up-regulated in the highly metastatic GBC-SD18H cell line compared to the poorly metastatic GBC-SD18L cell line. However, phosphoglycerate kinase 1 and programmed cell death protein 8 were significantly down-regulated in the highly metastatic GBC-SD18H cell line compared to GBC-SD18L. Considering that CLIC1 was profuse in highly metastatic GBC-SD18H but scarce in poorly metastatic GBC-SD18L, the association of CLIC1 with metastasis was further elucidated by the overexpression and RNA interference of CLIC1 in GBC-SD18L cells and GBC-SD18H cells, respectively

  1. Identification of a candidate stem cell in human gallbladder.

    PubMed

    Manohar, Rohan; Li, Yaming; Fohrer, Helene; Guzik, Lynda; Stolz, Donna Beer; Chandran, Uma R; LaFramboise, William A; Lagasse, Eric

    2015-05-01

    There are currently no reports of identification of stem cells in human gallbladder. The differences between human gallbladder and intrahepatic bile duct (IHBD) cells have also not been explored. The goals of this study were to evaluate if human fetal gallbladder contains a candidate stem cell population and if fetal gallbladder cells are distinct from fetal IHBD cells. We found that EpCAM+CD44+CD13+ cells represent the cell population most enriched for clonal self-renewal from primary gallbladder. Primary EpCAM+CD44+CD13+ cells gave rise to EpCAM+CD44+CD13+ and EpCAM+CD44+CD13- cells in vitro, and gallbladder cells expanded in vitro exhibited short-term engraftment in vivo. Last, we found that CD13, CD227, CD66, CD26 and CD49b were differentially expressed between gallbladder and IHBD cells cultured in vitro indicating clear phenotypic differences between the two cell populations. Microarray analyses of expanded cultures confirmed that both cell types have unique transcriptional profiles with predicted functional differences in lipid, carbohydrate, nucleic acid and drug metabolism. In conclusion, we have isolated a distinct clonogenic population of epithelial cells from primary human fetal gallbladder with stem cell characteristics and found it to be unique compared to IHBD cells.

  2. Defining the human gallbladder proteome by transcriptomics and affinity proteomics.

    PubMed

    Kampf, Caroline; Mardinoglu, Adil; Fagerberg, Linn; Hallström, Björn M; Danielsson, Angelika; Nielsen, Jens; Pontén, Fredrik; Uhlen, Mathias

    2014-11-01

    Global protein analysis of human gallbladder tissue is vital for identification of molecular regulators and effectors of its physiological activity. Here, we employed a genome-wide deep RNA sequencing analysis in 28 human tissues to identify the genes overrepresented in the gallbladder and complemented it with antibody-based immunohistochemistry in 48 human tissues. We characterized human gallbladder proteins and identified 140 gallbladder-specific proteins with an elevated expression in the gallbladder as compared to the other analyzed tissues. Five genes were categorized as enriched, with at least fivefold higher levels in gallbladder, 60 genes were categorized as group enriched with elevated transcript levels in gallbladder shared with at least one other tissue and 75 genes were categorized as enhanced with higher expression than the average expression in other tissues. We explored the localization of the genes within the gallbladder through cell-type specific antibody-based protein profiling and the subcellular localization of the genes through immunofluorescent-based profiling. Finally, we revealed the biological processes and metabolic functions carried out by these genes through the use of GO, KEGG Pathway, and HMR2.0 that is compilation of the human metabolic reactions. We demonstrated the results of the combined analysis of the transcriptomics and affinity proteomics.

  3. Gallbladder torsion with acute cholecystitis and gross necrosis.

    PubMed

    Alkhalili, Eyas; Bencsath, Kalman

    2014-01-01

    A 92-year-old woman presented to the emergency department with a 2-week history of worsening right-sided abdominal pain. On examination she had right mid-abdominal tenderness. Laboratory studies demonstrated leukocytosis with normal liver function tests. A CT of the abdomen was remarkable for a large fluid collection in the right abdomen and no discernible gallbladder in the gallbladder fossa. An ultrasound confirmed the suspicion of a distended, floating gallbladder. The patient was taken to the operating room for laparoscopic cholecystectomy. The gallbladder was found to have volvulised in a counter -clockwise manner around its pedicle, with gross necrosis of the gallbladder. She underwent laparoscopic cholecystectomy. Pathological examination revealed acute necrotising calculus cholecystitis.

  4. Novel surface markers directed against adult human gallbladder.

    PubMed

    Galivo, Feorillo H; Dorrell, Craig; Grompe, Maria T; Zhong, YongPing; Streeter, Philip R; Grompe, Markus

    2015-07-01

    Novel cell surface-reactive monoclonal antibodies generated against extrahepatic biliary cells were developed for the isolation and characterization of different cell subsets from normal adult human gallbladder. Eleven antigenically distinct gallbladder subpopulations were isolated by fluorescence-activated cell sorting. They were classified into epithelial, mesenchymal, and pancreatobiliary (PDX1(+)SOX9(+)) subsets based on gene expression profiling. These antigenically distinct human gallbladder cell subsets could potentially also reflect different functional properties in regards to bile physiology, cell renewal and plasticity. Three of the novel monoclonal antibodies differentially labeled archival sections of primary carcinoma of human gallbladder relative to normal tissue. The novel monoclonal antibodies described herein enable the identification and characterization of antigenically diverse cell subsets within adult human gallbladder and are putative tumor biomarkers.

  5. [Visual and motor functions in schizophrenic patients].

    PubMed

    Del Vecchio, S; Gargiulo, P A

    1992-12-01

    In the present work, visual and motor functions have been explored in 26 chronic schizophrenic patients, and 7 acute schizophrenic patients, compared with 26 normal controls, by means of the Bender-Gestalt Test. Parameters under consideration were: Form distortion, rotation, integration, perseveration, use of space, subtle motricity, score (global parameter), and time employed. As regards distortion and rotation there have been highly significant differences between chronic patients and control group. Among acute patients, it was observed that perseveration was also highly significant. Conversely, integration and use of space did not differ significantly among the three groups involved. The global score, resulting from all the above mentioned parameters showed important differences between both patient groups on the one hand, and control group on the other hand. Taking into account that patients were being administered neuroleptic drugs, it can safely be said, however, that the Bender-Gestalt Test allows to recognize alteration in perceptual closure consistent with a loss of the objective structure of perceived phenomena, in both chronic and acute patients.

  6. Exchange of rotor components in functioning bacterial flagellar motor

    SciTech Connect

    Fukuoka, Hajime; Inoue, Yuichi; Terasawa, Shun; Takahashi, Hiroto; Ishijima, Akihiko

    2010-03-26

    The bacterial flagellar motor is a rotary motor driven by the electrochemical potential of a coupling ion. The interaction between a rotor and stator units is thought to generate torque. The overall structure of flagellar motor has been thought to be static, however, it was recently proved that stators are exchanged in a rotating motor. Understanding the dynamics of rotor components in functioning motor is important for the clarifying of working mechanism of bacterial flagellar motor. In this study, we focused on the dynamics and the turnover of rotor components in a functioning flagellar motor. Expression systems for GFP-FliN, FliM-GFP, and GFP-FliG were constructed, and each GFP-fusion was functionally incorporated into the flagellar motor. To investigate whether the rotor components are exchanged in a rotating motor, we performed fluorescence recovery after photobleaching experiments using total internal reflection fluorescence microscopy. After photobleaching, in a tethered cell producing GFP-FliN or FliM-GFP, the recovery of fluorescence at the rotational center was observed. However, in a cell producing GFP-FliG, no recovery of fluorescence was observed. The transition phase of fluorescence intensity after full or partially photobleaching allowed the turnover of FliN subunits to be calculated as 0.0007 s{sup -1}, meaning that FliN would be exchanged in tens of minutes. These novel findings indicate that a bacterial flagellar motor is not a static structure even in functioning state. This is the first report for the exchange of rotor components in a functioning bacterial flagellar motor.

  7. Congenital duplication of the gallbladder.

    PubMed

    Safioleas, Michael C; Papavassiliou, Vassilios G; Moulakakis, Konstantinos G; Angouras, Dimitrios C; Skandalakis, Panagiotis

    2006-03-01

    Duplication of the gallbladder is a rare congenital anomaly of the biliary system. In this article, two cases of gallbladder duplication are presented. The first case is a patient with double gallbladder and concomitant choledocholithiasis. The probable diagnosis of double gallbladder was made preoperatively by computed tomography. The patient underwent a successful open cholecystectomy and common bile duct exploration. In the second case, two cystic formations in the place of gallbladder are demonstrated with ultrasound scan in a woman with acute cholecystitis. At surgery, two gallbladders were found. A brief review of epidemiology and anatomy of double gallbladder is included, along with a discussion of the difficulties in diagnosis and treatment of this condition.

  8. Leptin regulates gallbladder genes related to absorption and secretion.

    PubMed

    Swartz-Basile, Deborah A; Lu, Debao; Basile, David P; Graewin, Shannon J; Al-Azzawi, Hayder; Kiely, James M; Mathur, Abhishek; Yancey, Kyle; Pitt, Henry A

    2007-07-01

    Dysregulation of gallbladder ion and water absorption and/or secretion has been linked to cholesterol crystal and gallstone formation. We have recently demonstrated that obese, leptin-deficient (Lep(ob)) mice have enlarged gallbladder volumes and decreased gallbladder contractility and that leptin administration to these mice normalizes gallbladder function. However, the effect of leptin on gallbladder absorption/secretion is not known. Therefore, we sought to determine whether leptin would alter the expression of genes involved in water and ion transport across the gallbladder epithelium. Affymetrix oligonucleotide microarrays representing 39,000 transcripts were used to compare gallbladder gene-expression profiles from 12-wk-old control saline-treated Lep(ob) and from leptin-treated Lep(ob) female mice. Leptin administration to Lep(ob) mice decreased gallbladder volume, bile sodium concentration, and pH. Leptin repletion upregulated the expression of aquaporin 1 water channel by 1.3-fold and downregulated aquaporin 4 by 2.3-fold. A number of genes involved in sodium transport were also influenced by leptin replacement. Epithelial sodium channel-alpha and sodium hydrogen exchangers 1 and 3 were moderately downregulated by 2.0-, 1.6-, and 1.3-fold, respectively. Carbonic anhydrase-IV, which plays a role in the acidification of bile, was upregulated 3.7-fold. In addition, a number of inflammatory cytokines that are known to influence gallbladder epithelial cell absorption and secretion were upregulated. Thus leptin, an adipocyte-derived cytokine involved with satiety and energy balance, influences gallbladder bile volume, sodium, and pH as well as multiple inflammatory cytokine genes and genes related to water, sodium, chloride, and bicarbonate transport.

  9. Motor Function and Social Participation in Kindergarten Children

    ERIC Educational Resources Information Center

    Bar-Haim, Yair; Bart, Orit

    2006-01-01

    This study focused on the associations between individual variations in children's motor abilities and individual differences in social participation and play behavior. Indoor and outdoor play behavior patterns of 88 kindergarten children were observed, and a battery of standard assessments of basic motor functions was administered. The findings…

  10. Assessment of Motor Development and Function in Preschool Children

    ERIC Educational Resources Information Center

    Tieman, Beth L.; Palisano, Robert J.; Sutlive, Ann C.

    2005-01-01

    The process of identification of children with delays or disorders in motor development includes developmental screening, examination, and reexamination. Throughout this process, various types of measures are used, including discriminative and evaluative measures. Discriminative and evaluative measures of motor development and function that are…

  11. Motor assessment in pediatric neuropsychology: relationships to executive function.

    PubMed

    Shaheen, Sandra

    2013-01-01

    Executive function often refers to control behaviors such as "initiating," "sustaining," "inhibiting," and "switching." These mechanisms contribute to regulation of thinking and emotion but can be observed most clearly in the motor system. Neuropsychology has been influenced by "top-down" models of cognitive control that emerged from information-processing theories of cognition. In fact, neural models provide evidence that control processes are highly interactive within the cortico-striatal-cerebellar circuits. Cognition unfolds in response to motor-driven adaptation, and evidence exists for similar firing of brain cells and circuits during "imagined action" as in actual motor behavior. The motor system develops early and yet is not routinely assessed in neuropsychological evaluation of children with neurodevelopmental disorders. This article reviews some of the approaches to motor assessment that have sensitivity to neurodevelopmental disorders, and advocates for inclusion of motor assessment, particularly in evaluating control processes independent of culture, language, and other confounders.

  12. Motor assessment in pediatric neuropsychology: relationships to executive function.

    PubMed

    Shaheen, Sandra

    2013-01-01

    Executive function often refers to control behaviors such as "initiating," "sustaining," "inhibiting," and "switching." These mechanisms contribute to regulation of thinking and emotion but can be observed most clearly in the motor system. Neuropsychology has been influenced by "top-down" models of cognitive control that emerged from information-processing theories of cognition. In fact, neural models provide evidence that control processes are highly interactive within the cortico-striatal-cerebellar circuits. Cognition unfolds in response to motor-driven adaptation, and evidence exists for similar firing of brain cells and circuits during "imagined action" as in actual motor behavior. The motor system develops early and yet is not routinely assessed in neuropsychological evaluation of children with neurodevelopmental disorders. This article reviews some of the approaches to motor assessment that have sensitivity to neurodevelopmental disorders, and advocates for inclusion of motor assessment, particularly in evaluating control processes independent of culture, language, and other confounders. PMID:23745952

  13. Gallbladder removal - laparoscopic

    MedlinePlus

    ... is pumped into your belly to expand the space. This gives the surgeon more room to see and work. The gallbladder is then removed using the laparoscope and other instruments. An x-ray called a cholangiogram may be done during ...

  14. Laterality affects spontaneous recovery of contralateral hand motor function following motor cortex injury in rhesus monkeys.

    PubMed

    Darling, Warren G; Helle, Nicole; Pizzimenti, Marc A; Rotella, Diane L; Hynes, Stephanie M; Ge, Jizhi; Stilwell-Morecraft, Kimberly S; Morecraft, Robert J

    2013-07-01

    The purpose of this study was to test whether brain laterality influences spontaneous recovery of hand motor function after controlled brain injuries to arm areas of M1 and lateral premotor cortex (LPMC) of the hemisphere contralateral to the preferred hand in rhesus monkeys. We hypothesized that monkeys with stronger hand preference would exhibit poorer recovery of skilled hand use after such brain injury. Degree of handedness was assessed using a standard dexterity board task in which subjects could use either hand to retrieve small food pellets. Fine hand/digit motor function was assessed using a modified dexterity board before and after the M1 and LPMC lesions in ten monkeys. We found a strong negative relationship between the degree of handedness and the recovery of manipulation skill, demonstrating that higher hand preference was associated with poorer recovery of hand fine motor function. We also observed that monkeys with larger lesions within M1 and LPMC had greater initial impairment of manipulation and poorer recovery of reaching skill. We conclude that monkeys with a stronger hand preference are likely to show poorer recovery of contralesional hand fine motor skill after isolated brain lesions affecting the lateral frontal motor areas. These data may be extended to suggest that humans who exhibit weak hand dominance, and perhaps individuals who use both hands for fine motor tasks, may have a more favorable potential for recovery after a unilateral stroke or brain injury affecting the lateral cortical motor areas than individuals with a high degree of hand dominance.

  15. Assessment of motor development and function in preschool children.

    PubMed

    Tieman, Beth L; Palisano, Robert J; Sutlive, Ann C

    2005-01-01

    The process of identification of children with delays or disorders in motor development includes developmental screening, examination, and reexamination. Throughout this process, various types of measures are used, including discriminative and evaluative measures. Discriminative and evaluative measures of motor development and function that are commonly used for preschool-aged children include the Bayley Scales of Infant Development II, Peabody Developmental Motor Scales, 2nd edition, Toddler and Infant Motor Evaluation, Pediatric Evaluation of Disability Inventory, and Gross Motor Function Measure. Selecting an appropriate measure is a crucial part of the examination process and should be geared toward the purpose of testing and characteristics of the child. Evidence of reliability and validity are important considerations for selection of a measure. PMID:16161086

  16. Oral-Motor Function and Feeding Intervention

    ERIC Educational Resources Information Center

    Garber, June

    2013-01-01

    This article presents the elements of the Oral Motor Intervention section of the Infant Care Path for Physical Therapy in the Neonatal Intensive Care Unit (NICU). The types of physical therapy interventions presented in this path are evidence based as well as infant driven and family focused. In the context of anticipated maturation of…

  17. Steatocholecystitis and fatty gallbladder disease.

    PubMed

    Tsai, Chung-Jyi

    2009-09-01

    Obesity has become an epidemic worldwide. It is accompanied by a multitude of medical complications including metabolic syndrome. Obesity may lead to fatty infiltration of multiple internal organs including liver, heart, kidney, and pancreas, causing organ dysfunctions. Fatty infiltration leads to chronic inflammation and tissue damage. Fatty infiltration in the liver results in nonalcoholic fatty liver disease, which is increasingly common nowadays. Recent studies in animals and humans indicate that obesity also is associated with fatty infiltration of gallbladder, resulting in cholecystosteatosis. The increased gallbladder lipids include free fatty acids, phospholipids, and triglycerides. Enhanced inflammation with an increased amount of fat in the gallbladder results in an abnormal wall structure and decreased contractility. In support of this notion, a recent experiment on the effect of Ezetimibe, which is a novel drug that inhibits intestinal fat absorption, on fatty gallbladder disease reveals that Ezetimibe can ameliorate cholecystosteatosis and restore in vivo gallbladder contractility. The proportion of cholecystectomies performed for chronic acalculous cholecystitis has increased significantly over the past two decades. An increase in gallbladder fat, which leads to poor gallbladder emptying and biliary symptoms, may partly explain this phenomenon. Although dietary carbohydrates have been demonstrated to be associated with fatty gallbladder disease, other potential modifiable environmental factors are not clear. The pathogenesis and prognosis of fatty gallbladder disease, including steatocholecystitis, and the relations of fatty gallbladder disease to nonalcoholic fatty liver disease, including steatohepatitis, and other components of metabolic syndrome are largely unknown. More research is needed to answer these questions.

  18. Steatocholecystitis and fatty gallbladder disease.

    PubMed

    Tsai, Chung-Jyi

    2009-09-01

    Obesity has become an epidemic worldwide. It is accompanied by a multitude of medical complications including metabolic syndrome. Obesity may lead to fatty infiltration of multiple internal organs including liver, heart, kidney, and pancreas, causing organ dysfunctions. Fatty infiltration leads to chronic inflammation and tissue damage. Fatty infiltration in the liver results in nonalcoholic fatty liver disease, which is increasingly common nowadays. Recent studies in animals and humans indicate that obesity also is associated with fatty infiltration of gallbladder, resulting in cholecystosteatosis. The increased gallbladder lipids include free fatty acids, phospholipids, and triglycerides. Enhanced inflammation with an increased amount of fat in the gallbladder results in an abnormal wall structure and decreased contractility. In support of this notion, a recent experiment on the effect of Ezetimibe, which is a novel drug that inhibits intestinal fat absorption, on fatty gallbladder disease reveals that Ezetimibe can ameliorate cholecystosteatosis and restore in vivo gallbladder contractility. The proportion of cholecystectomies performed for chronic acalculous cholecystitis has increased significantly over the past two decades. An increase in gallbladder fat, which leads to poor gallbladder emptying and biliary symptoms, may partly explain this phenomenon. Although dietary carbohydrates have been demonstrated to be associated with fatty gallbladder disease, other potential modifiable environmental factors are not clear. The pathogenesis and prognosis of fatty gallbladder disease, including steatocholecystitis, and the relations of fatty gallbladder disease to nonalcoholic fatty liver disease, including steatohepatitis, and other components of metabolic syndrome are largely unknown. More research is needed to answer these questions. PMID:19093209

  19. Primary papillary hyperplasia of the gallbladder mimicking gallbladder cancer.

    PubMed

    Baba, Hiroyuki; Wakabayashi, Mai; Oba, Atsushi; Tsubomoto, Takashi; Nakamura, Hiroshi; Sanada, Takahiro; Kuwabara, Hiroshi; Nakajima, Kazumi; Goseki, Narihide

    2014-01-01

    Primary papillary hyperplasia of the gallbladder (PPHG) is a rare entity. PPHG is a benign diffuse mucosal projection without any background chronic inflammation-related disease of the gallbladder or bile ducts. Reported cases of PPHG are limited in that its characteristics are not well defined. We herein report a case of PPHG mimicking gallbladder cancer in radiologic investigations and present a review of the literature. Also coincident erythroderma is discussed.

  20. Functions and mechanics of dynein motor proteins

    PubMed Central

    Roberts, Anthony J.; Kon, Takahide; Knight, Peter J.; Sutoh, Kazuo; Burgess, Stan A.

    2014-01-01

    Fuelled by ATP hydrolysis, dyneins generate force and movement on microtubules in a wealth of biological processes, including ciliary beating, cell division and intracellular transport. The large mass and complexity of dynein motors have made elucidating their mechanisms a sizable task. Yet, through a combination of approaches, including X-ray crystallography, cryo-electron microscopy, single-molecule assays and biochemical experiments, important progress has been made towards understanding how these giant motor proteins work. From these studies, a model for the mechanochemical cycle of dynein is emerging, in which nucleotide-driven flexing motions within the AAA+ ring of dynein alter the affinity of its microtubule-binding stalk and reshape its mechanical element to generate movement. PMID:24064538

  1. Ultrasonography in acute gallbladder perforation.

    PubMed

    Soiva, M; Pamilo, M; Päivänsalo, M; Taavitsainen, M; Suramo, I

    1988-01-01

    The files of patients with acute cholecystitis from two large university hospitals from the years 1978-1985 were employed to find the cases with acute gallbladder perforation for this study. Only those patients (n = 9) were selected for the analysis of sonographic signs of acute gallbladder perforation who had less than 48 hours of symptoms before sonography, and were operated upon within 24 hours of the sonography. Patients (n = 10) with non-complicated acute cholecystitis and identical in regard to the duration of the symptoms and the timing of the sonography and the operation formed a control group. The sonographic findings in patients with gallbladder perforation were pericholecystic fluid collections, free peritoneal fluid, disappearance of the gallbladder wall echoes, focal highly echogenic areas with acoustic shadows in the gallbladder, and an inhomogeneous, generally echo-poor gallbladder wall. PMID:2964842

  2. Factors affecting gallbladder motility: drugs.

    PubMed

    Marzio, L

    2003-07-01

    Various drugs and medications that inhibit or stimulate gallbladder contraction and basal tone in humans are described. Active gallbladder contraction may be achieved using synthetic hormones such as cholecystokinin, caerulein and motilin, cholinomimetic drugs such as bethanecol, prostigmine, and erythromycin due to its motilin-like effect. Furthermore, cisapride and cholestyramine, may have some excitatory activity on the gallbladder muscle. Intravenous amino acids also induce gallbladder contraction through the release of cholecystokinin. Inhibition of gallbladder contraction induced by a meal, or reduction of the basal fasting tone may be achieved by using atropine and other cholinergics, and by inhibitory hormones such as somatostatin, the nitric acid releaser arginine, the calcium channel antagonist nifedipine, and progesterone. Other drugs such as trimebutine, loperamide and ondansetron may negatively affect gallbladder contraction. PMID:12974504

  3. Obesity Reduces Cognitive and Motor Functions across the Lifespan

    PubMed Central

    Wang, Chuanming; Chan, John S. Y.; Ren, Lijie; Yan, Jin H.

    2016-01-01

    Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has suggested exercise to be an effective way to improve obesity and related cognitive and motor dysfunctions. This paper aims to discuss the association of obesity with cognition and motor behaviors and its underlying mechanisms. Following this, mechanisms of exercise to improve obesity-related dysfunctions are described. Finally, implications and future research direction are raised. PMID:26881095

  4. Role of motor unit structure in defining function

    NASA Technical Reports Server (NTRS)

    Monti, R. J.; Roy, R. R.; Edgerton, V. R.

    2001-01-01

    Motor units, defined as a motoneuron and all of its associated muscle fibers, are the basic functional units of skeletal muscle. Their activity represents the final output of the central nervous system, and their role in motor control has been widely studied. However, there has been relatively little work focused on the mechanical significance of recruiting variable numbers of motor units during different motor tasks. This review focuses on factors ranging from molecular to macroanatomical components that influence the mechanical output of a motor unit in the context of the whole muscle. These factors range from the mechanical properties of different muscle fiber types to the unique morphology of the muscle fibers constituting a motor unit of a given type and to the arrangement of those motor unit fibers in three dimensions within the muscle. We suggest that as a result of the integration of multiple levels of structural and physiological levels of organization, unique mechanical properties of motor units are likely to emerge. Copyright 2001 John Wiley & Sons, Inc.

  5. Correlative imaging in gallbladder carcinoma.

    PubMed

    Willekens, I; Goethals, L R; Brussaard, C; Verdries, D; de Mey, J

    2014-01-01

    Gallbladder carcinoma is a relatively rare malignant epithelial neoplasm, arising from gallbladder mucosa. It is the fifth most common gastrointestinal malignancy and the most common biliary tract cancer. Early diagnosis remains difficult, because clinical symptoms are sparse and non-specific, often resulting in advanced stage disease at the time of diagnosis. The most common feature of gallbladder carcinoma on different imaging modalities is focal wall thickening, associated with a large eccentric tumor mass. In this case we report the imaging characteristics of gallbladder carcinoma on ultrasound, MDCT and 18F-FDG PET/CT.

  6. Gallbladder disease in children.

    PubMed

    Rothstein, David H; Harmon, Carroll M

    2016-08-01

    Biliary disease in children has changed over the past few decades, with a marked rise in incidence-perhaps most related to the parallel rise in pediatric obesity-as well as a rise in cholecystectomy rates. In addition to stone disease (cholelithiasis), acalculous causes of gallbladder pain such as biliary dyskinesia, also appear to be on the rise and present diagnostic and treatment conundrums to surgeons. PMID:27521713

  7. Excitability of motor cortices as a function of emotional sounds.

    PubMed

    Komeilipoor, Naeem; Pizzolato, Fabio; Daffertshofer, Andreas; Cesari, Paola

    2013-01-01

    We used transcranial magnetic stimulation (TMS) to clarify how non-verbal emotionally-characterized sounds modulate the excitability of the corticospinal motor tract (CST). While subjects were listening to sounds (monaurally and binaurally), single TMS pulses were delivered to either left or right primary motor cortex (M1), and electromyographic activities were recorded from the contralateral abductor pollicis brevis muscle. We found a significant increase in CST excitability in response to unpleasant as compared to neutral sounds. The increased excitability was lateralized as a function of stimulus valence: Unpleasant stimuli resulted in a significantly higher facilitation of motor potentials evoked in the left hemisphere, while pleasant stimuli yielded a greater CST excitability in the right one. Furthermore, TMS induced higher motor evoked potentials when listening to unpleasant sounds with the left than with the right ear. Taken together, our findings provide compelling evidence for an asymmetric modulation of CST excitability as a function of emotional sounds along with ear laterality.

  8. Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function

    PubMed Central

    Carmel, Jason B.; Martin, John H.

    2014-01-01

    The corticospinal system—with its direct spinal pathway, the corticospinal tract (CST) – is the primary system for controlling voluntary movement. Our approach to CST repair after injury in mature animals was informed by our finding that activity drives establishment of connections with spinal cord circuits during postnatal development. After incomplete injury in maturity, spared CST circuits sprout, and partially restore lost function. Our approach harnesses activity to augment this injury-dependent CST sprouting and to promote function. Lesion of the medullary pyramid unilaterally eliminates all CST axons from one hemisphere and allows examination of CST sprouting from the unaffected hemisphere. We discovered that 10 days of electrical stimulation of either the spared CST or motor cortex induces CST axon sprouting that partially reconstructs the lost CST. Stimulation also leads to sprouting of the cortical projection to the magnocellular red nucleus, where the rubrospinal tract originates. Coordinated outgrowth of the CST and cortical projections to the red nucleus could support partial re-establishment of motor systems connections to the denervated spinal motor circuits. Stimulation restores skilled motor function in our animal model. Lesioned animals have a persistent forelimb deficit contralateral to pyramidotomy in the horizontal ladder task. Rats that received motor cortex stimulation either after acute or chronic injury showed a significant functional improvement that brought error rate to pre-lesion control levels. Reversible inactivation of the stimulated motor cortex reinstated the impairment demonstrating the importance of the stimulated system to recovery. Motor cortex electrical stimulation is an effective approach to promote spouting of spared CST axons. By optimizing activity-dependent sprouting in animals, we could have an approach that can be translated to the human for evaluation with minimal delay. PMID:24994971

  9. Functional Plasticity in Somatosensory Cortex Supports Motor Learning by Observing.

    PubMed

    McGregor, Heather R; Cashaback, Joshua G A; Gribble, Paul L

    2016-04-01

    An influential idea in neuroscience is that the sensory-motor system is activated when observing the actions of others [1, 2]. This idea has recently been extended to motor learning, in which observation results in sensory-motor plasticity and behavioral changes in both motor and somatosensory domains [3-9]. However, it is unclear how the brain maps visual information onto motor circuits for learning. Here we test the idea that the somatosensory system, and specifically primary somatosensory cortex (S1), plays a role in motor learning by observing. In experiment 1, we applied stimulation to the median nerve to occupy the somatosensory system with unrelated inputs while participants observed a tutor learning to reach in a force field. Stimulation disrupted motor learning by observing in a limb-specific manner. Stimulation delivered to the right arm (the same arm used by the tutor) disrupted learning, whereas left arm stimulation did not. This is consistent with the idea that a somatosensory representation of the observed effector must be available during observation for learning to occur. In experiment 2, we assessed S1 cortical processing before and after observation by measuring somatosensory evoked potentials (SEPs) associated with median nerve stimulation. SEP amplitudes increased only for participants who observed learning. Moreover, SEPs increased more for participants who exhibited greater motor learning following observation. Taken together, these findings support the idea that motor learning by observing relies on functional plasticity in S1. We propose that visual signals about the movements of others are mapped onto motor circuits for learning via the somatosensory system.

  10. Functional Plasticity in Somatosensory Cortex Supports Motor Learning by Observing.

    PubMed

    McGregor, Heather R; Cashaback, Joshua G A; Gribble, Paul L

    2016-04-01

    An influential idea in neuroscience is that the sensory-motor system is activated when observing the actions of others [1, 2]. This idea has recently been extended to motor learning, in which observation results in sensory-motor plasticity and behavioral changes in both motor and somatosensory domains [3-9]. However, it is unclear how the brain maps visual information onto motor circuits for learning. Here we test the idea that the somatosensory system, and specifically primary somatosensory cortex (S1), plays a role in motor learning by observing. In experiment 1, we applied stimulation to the median nerve to occupy the somatosensory system with unrelated inputs while participants observed a tutor learning to reach in a force field. Stimulation disrupted motor learning by observing in a limb-specific manner. Stimulation delivered to the right arm (the same arm used by the tutor) disrupted learning, whereas left arm stimulation did not. This is consistent with the idea that a somatosensory representation of the observed effector must be available during observation for learning to occur. In experiment 2, we assessed S1 cortical processing before and after observation by measuring somatosensory evoked potentials (SEPs) associated with median nerve stimulation. SEP amplitudes increased only for participants who observed learning. Moreover, SEPs increased more for participants who exhibited greater motor learning following observation. Taken together, these findings support the idea that motor learning by observing relies on functional plasticity in S1. We propose that visual signals about the movements of others are mapped onto motor circuits for learning via the somatosensory system. PMID:26972317

  11. Motor function in microgravity: movement in weightlessness

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; DiZio, P.

    1996-01-01

    Microgravity provides unique, though experimentally challenging, opportunities to study motor control. A traditional research focus has been the effects of linear acceleration on vestibular responses to angular acceleration. Evidence is accumulating that the high-frequency vestibulo-ocular reflex (VOR) is not affected by transitions from a 1 g linear force field to microgravity (<1 g); however, it appears that the three-dimensional organization of the VOR is dependent on gravitoinertial force levels. Some of the observed effects of microgravity on head and arm movement control appear to depend on the previously undetected inputs of cervical and brachial proprioception, which change almost immediately in response to alterations in background force levels. Recent studies of post-flight disturbances of posture and locomotion are revealing sensorimotor mechanisms that adjust over periods ranging from hours to weeks.

  12. How to image the gallbladder in suspected cholecystitis

    SciTech Connect

    Marton, K.I.; Doubilet, P.

    1988-11-01

    As a result of important advances in medical imaging, the oral cholecystogram is no longer the primary test of gallbladder function and anatomy. Real-time ultrasonography and cholescintigraphy, both highly sensitive and specific tests, are the two major methods for assessing gallbladder pathology. Oral cholecystography, endoscopic retrograde pancreatography, and percutaneous gallbladder puncture serve as supplementary tests. Decisions about which test to use depend on the kind of gallbladder disease that is suspected as well as the estimated likelihood of the disease before the information is obtained from the procedure. Thus, ultrasonography is the test of choice for chronic cholecystitis, with oral cholecystography reserved for situations in which the diagnosis is uncertain after ultrasonography. When acute cholecystitis is suspected, ultrasonography is also the test of choice in most patients, and cholescintigraphy is used to resolve uncertainty. 103 references.

  13. Rebuilding motor function of the spinal cord based on functional electrical stimulation

    PubMed Central

    Shen, Xiao-yan; Du, Wei; Huang, Wei; Chen, Yi

    2016-01-01

    Rebuilding the damaged motor function caused by spinal cord injury is one of the most serious challenges in clinical neuroscience. The function of the neural pathway under the damaged sites can be rebuilt using functional electrical stimulation technology. In this study, the locations of motor function sites in the lumbosacral spinal cord were determined with functional electrical stimulation technology. A three-dimensional map of the lumbosacral spinal cord comprising the relationship between the motor function sites and the corresponding muscle was drawn. Based on the individual experimental parameters and normalized coordinates of the motor function sites, the motor function sites that control a certain muscle were calculated. Phasing pulse sequences were delivered to the determined motor function sites in the spinal cord and hip extension, hip flexion, ankle plantarflexion, and ankle dorsiflexion movements were successfully achieved. The results show that the map of the spinal cord motor function sites was valid. This map can provide guidance for the selection of electrical stimulation sites during the rebuilding of motor function after spinal cord injury.

  14. Rebuilding motor function of the spinal cord based on functional electrical stimulation.

    PubMed

    Shen, Xiao-Yan; Du, Wei; Huang, Wei; Chen, Yi

    2016-08-01

    Rebuilding the damaged motor function caused by spinal cord injury is one of the most serious challenges in clinical neuroscience. The function of the neural pathway under the damaged sites can be rebuilt using functional electrical stimulation technology. In this study, the locations of motor function sites in the lumbosacral spinal cord were determined with functional electrical stimulation technology. A three-dimensional map of the lumbosacral spinal cord comprising the relationship between the motor function sites and the corresponding muscle was drawn. Based on the individual experimental parameters and normalized coordinates of the motor function sites, the motor function sites that control a certain muscle were calculated. Phasing pulse sequences were delivered to the determined motor function sites in the spinal cord and hip extension, hip flexion, ankle plantarflexion, and ankle dorsiflexion movements were successfully achieved. The results show that the map of the spinal cord motor function sites was valid. This map can provide guidance for the selection of electrical stimulation sites during the rebuilding of motor function after spinal cord injury. PMID:27651782

  15. Rebuilding motor function of the spinal cord based on functional electrical stimulation.

    PubMed

    Shen, Xiao-Yan; Du, Wei; Huang, Wei; Chen, Yi

    2016-08-01

    Rebuilding the damaged motor function caused by spinal cord injury is one of the most serious challenges in clinical neuroscience. The function of the neural pathway under the damaged sites can be rebuilt using functional electrical stimulation technology. In this study, the locations of motor function sites in the lumbosacral spinal cord were determined with functional electrical stimulation technology. A three-dimensional map of the lumbosacral spinal cord comprising the relationship between the motor function sites and the corresponding muscle was drawn. Based on the individual experimental parameters and normalized coordinates of the motor function sites, the motor function sites that control a certain muscle were calculated. Phasing pulse sequences were delivered to the determined motor function sites in the spinal cord and hip extension, hip flexion, ankle plantarflexion, and ankle dorsiflexion movements were successfully achieved. The results show that the map of the spinal cord motor function sites was valid. This map can provide guidance for the selection of electrical stimulation sites during the rebuilding of motor function after spinal cord injury.

  16. Rebuilding motor function of the spinal cord based on functional electrical stimulation

    PubMed Central

    Shen, Xiao-yan; Du, Wei; Huang, Wei; Chen, Yi

    2016-01-01

    Rebuilding the damaged motor function caused by spinal cord injury is one of the most serious challenges in clinical neuroscience. The function of the neural pathway under the damaged sites can be rebuilt using functional electrical stimulation technology. In this study, the locations of motor function sites in the lumbosacral spinal cord were determined with functional electrical stimulation technology. A three-dimensional map of the lumbosacral spinal cord comprising the relationship between the motor function sites and the corresponding muscle was drawn. Based on the individual experimental parameters and normalized coordinates of the motor function sites, the motor function sites that control a certain muscle were calculated. Phasing pulse sequences were delivered to the determined motor function sites in the spinal cord and hip extension, hip flexion, ankle plantarflexion, and ankle dorsiflexion movements were successfully achieved. The results show that the map of the spinal cord motor function sites was valid. This map can provide guidance for the selection of electrical stimulation sites during the rebuilding of motor function after spinal cord injury. PMID:27651782

  17. Palliative Therapy for Gallbladder Cancer

    MedlinePlus

    ... based on the extent of gallbladder cancer Palliative therapy for gallbladder cancer Palliative therapy is treatment given to help control or reduce ... to advance quickly, doctors try to use palliative therapies that are less likely to affect a person’s ...

  18. Ocular Motor Function in Patients with Bilateral Vestibular Weakness

    PubMed Central

    Ghazizadeh Hashemi, Seyyed Amir Hossein; Jafarzadeh, Sadegh; Haddadi Aval, Majid; Hosseinabadi, Reza

    2016-01-01

    Introduction: Patients with bilateral weakness (BW) have many difficulties in gaze stability that interfere with their normal function. The aim of this study was to evaluate ocular motor functions in patients with BW to better understand the problem of gaze instability in these patients. Materials and Methods: Patients were referred from the Otolaryngology Department for Vestibular Assessment to our clinic between November 2014 and March 2015. We assessed ocular motor function (gaze, saccade, and smooth pursuit) in patients over the age of 18 years with BW, as verified by a caloric test. Results: Seventy-eight patients completed all the tests. The mean age of patients was 51.9 (±15.9) years, and 47 (60%) were female. Abnormal results were found in five (6.4%), 32 (41%), and seven (9%) patients with respect to gaze, smooth pursuit, and saccade, respectively. There were positive but relatively weak relationships between age and ocular motor results. Conclusion: Patients with BW suffer from dizziness and unsteadiness. These patients have abnormal function in ocular motor (especially smooth pursuit) tests. The ocular motor dysfunction is responsible for gaze instability in static positions such as standing. PMID:27429945

  19. Brief Assessment of Motor Function: Content Validity and Reliability of the Upper Extremity Gross Motor Scale

    PubMed Central

    Cintas, Holly Lea; Parks, Rebecca; Don, Sarah; Gerber, Lynn

    2011-01-01

    Content validity and reliability of the Brief Assessment of Motor Function (BAMF) Upper Extremity Gross Motor Scale (UEGMS) were evaluated in this prospective, descriptive study. The UEGMS is one of five ordinal scales designed for quick documentation of gross, fine and oral motor skill levels. Designed to be independent of age and diagnosis, it is intended for use for infants through young adults. An expert panel of 17 physical therapists and 13 occupational therapists refined the content by responding to a standard questionnaire comprised of questions which asked whether each item should be included, is clearly worded, should be reordered higher or lower, is functionally relevant, and is easily discriminated. Ratings of content validity exceeded the criterion except for two items which may represent different perspectives of physical and occupational therapists. The UEGMS was modified using the quantitative and qualitative feedback from the questionnaires. For reliability, five raters scored videotaped motor performances of ten children. Coefficients for inter-rater (0.94) and intra-rater (0.95) reliability were high. The results provide evidence of content validity and reliability of the UEGMS for assessment of upper extremity gross motor skill. PMID:21599568

  20. Structural and Functional Bases for Individual Differences in Motor Learning

    PubMed Central

    Tomassini, Valentina; Jbabdi, Saad; Kincses, Zsigmond T.; Bosnell, Rose; Douaud, Gwenaelle; Pozzilli, Carlo; Matthews, Paul M.; Johansen-Berg, Heidi

    2013-01-01

    People vary in their ability to learn new motor skills. We hypothesize that between-subject variability in brain structure and function can explain differences in learning. We use brain functional and structural MRI methods to characterize such neural correlates of individual variations in motor learning. Healthy subjects applied isometric grip force of varying magnitudes with their right hands cued visually to generate smoothly-varying pressures following a regular pattern. We tested whether individual variations in motor learning were associated with anatomically colocalized variations in magnitude of functional MRI (fMRI) signal or in MRI differences related to white and grey matter microstructure. We found that individual motor learning was correlated with greater functional activation in the prefrontal, premotor, and parietal cortices, as well as in the basal ganglia and cerebellum. Structural MRI correlates were found in the premotor cortex [for fractional anisotropy (FA)] and in the cerebellum [for both grey matter density and FA]. The cerebellar microstructural differences were anatomically colocalized with fMRI correlates of learning. This study thus suggests that variations across the population in the function and structure of specific brain regions for motor control explain some of the individual differences in skill learning. This strengthens the notion that brain structure determines some limits to cognitive function even in a healthy population. Along with evidence from pathology suggesting a role for these regions in spontaneous motor recovery, our results also highlight potential targets for therapeutic interventions designed to maximize plasticity for recovery of similar visuomotor skills after brain injury. PMID:20533562

  1. Sign language and motor functioning in students with autistic disorder.

    PubMed

    Seal, B C; Bonvillian, J D

    1997-08-01

    Sign language production of 14 low-functioning students diagnosed with autistic disorder was examined. Videotapes of the students signing with their teachers were analyzed for frequency and accuracy of sign location, handshape, and movement production. The location aspect of signs was produced more accurately by the subjects than either the handshape or movement aspects. Wide individual differences were evident among the students in the number of signs they produced, accuracy of sign formation, and performance on measures of motor functioning. Students' sign vocabulary size and accuracy of sign formation were highly correlated with their performance on two measures of apraxia and with their fine motor age scores.

  2. Structural Equation Modeling of Motor Impairment, Gross Motor Function, and the Functional Outcome in Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Park, Eun-Young; Kim, Won-Ho

    2013-01-01

    Physical therapy intervention for children with cerebral palsy (CP) is focused on reducing neurological impairments, improving strength, and preventing the development of secondary impairments in order to improve functional outcomes. However, relationship between motor impairments and functional outcome has not been proved definitely. This study…

  3. [Ultrasound of gallbladder and bile duct].

    PubMed

    Segura Grau, A; Joleini, S; Díaz Rodríguez, N; Segura Cabral, J M

    2016-01-01

    The cystic nature of the gallbladder and bile duct when dilated, and the advantages of ultrasound as a quick, reproducible, convenient, cheap and low risk technique, with a high sensitivity and specificity, make it the most eligible technique in biliary pathology studies. Ultrasound has become a valuable tool for doctors studying biliary pathology and its complications, from abnormal liver function results, right upper quadrant pain, or jaundice, to cholelithiasis, cholecystitis, or suspicion of biliary tumors.

  4. Intraoperative monitoring of the motor function: experimental and clinical study.

    PubMed

    Kaneko, M; Fukamachi, A; Sasaki, H; Miyazawa, N; Yagishita, T; Nukui, H

    1988-01-01

    Manipulation of the lesions adjacent to the primary motor area or the motor pathway is troublesome for neurosurgeons because they lack an effective method to determine the primary motor area or to monitor motor function in the operative room. It will be of great value to establish a monitoring method of the corticospinal tract under general anaesthesia. We recorded the motor evoked potential (MEP) from direct motor cortex stimulation in cats and showed that it derives almost purely from the corticospinal tract. Then we used this technique during the operation of the resection of tumours near the primary motor area or the motor pathway. 1. Experimental study: Twenty adult cats were used in this study. Recording electrodes were flexible bipolar catheter electrodes inserted into the spinal epidural space. Stimulating electrodes were silver ball electrode on the cortex (anode) and needle electrode in the temporal muscle (cathode). Stimulation of 4-24 V, 5-10 Hz and 0.2 msec in duration were done and evoked potentials signals were averaged 60 to 512 times. MEP with multiple peaks was obtained that had a 112 msec conduction velocity in the spinal cord. We found the same signals from the stimulation of ipsilateral cerebral peduncle. Radiofrequency lesioning of ipsilateral cerebral peduncle produced a loss of MEP. These results show that MEP derives from the corticospinal tract. Significant wave form change, with components of short latency, was noted by the excessively intense stimuli. We supposed that superimposition of the signals from the extrapyramidal pathways, excited in the brain stem, results in this change.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Form and Function in Motor Mimicry: Topographic Evidence that the Primary Function is Communicative.

    ERIC Educational Resources Information Center

    Bavelas, Janet Beavin; And Others

    1988-01-01

    Proposes that motor mimicry functions as a nonverbal, analogic, relationship message about similarity between observer and other, and that this message is encoded according to Gestalt principles of form. Concludes that the primary function of motor mimicry must be communicative and that any relationship to vicarious processes is secondary. (RAE)

  6. Motor preparation, motor execution, attention, and executive functions in attention deficit/hyperactivity disorder (ADHD).

    PubMed

    Klimkeit, Ester I; Mattingley, Jason B; Sheppard, Dianne M; Lee, Paul; Bradshaw, John L

    2005-04-01

    Attention and executive functions were investigated in medicated and unmedicated children with ADHD combined type using a novel selective reaching task. This task involved responding as rapidly as possible to a target while at times having to ignore a distractor. Results indicated that unmedicated children with ADHD showed slow and inaccurate responding. Slow responding reflected problems at the stage of movement preparation but not movement execution. An attentional impairment, rather than a motor planning problem per se, appeared to underlie the slow movement preparation. Inaccurate responding reflected problems with response inhibition and selective attention, impulsivity, set-shifting, and difficulties in maintaining vigilance. Although medicated children with ADHD did not show slow movement preparation, they did show some response inaccuracy, resulting especially from impulsive responding. These findings suggest that ADHD is characterized by slow motor preparation (but not motor execution), and deficits in selective attention, vigilance, and executive functions. Preliminary results suggest that stimulant medication may resolve some of these motor, attentional and executive function deficits.

  7. Bovine gallbladder muscularis: Source of a myogenic receptor for cholecystokinin

    SciTech Connect

    Schjoldager, B.; Shaw, M.J.; Powers, S.P.; Schmalz, P.E.; Szurszewski, J.; Miller, L.J. )

    1988-03-01

    Despite being a classic target for the gastrointestinal peptide hormone, cholecystokinin (CCK), the gallbladder CCK receptor is not well characterized. Pharmacological studies of small species suggest that CCK action can be mediated by direct myogenic or by both myogenic and neurogenic receptors. To prepare for the biochemical characterization of a gallbladder CCK receptor and to define the subtype of the receptor being studied. The authors have performed autoradiographic localization and pharmacological characterization of CCK receptors on bovine gallbladder. Autoradiography demonstrated high-affinity specific CCK-binding sites only on the muscularis. CCK-8 stimulated tonic contraction of longitudinal strips of gallbladder muscularis in a concentration-dependent manner. Antagonism at the cholinergic receptor with 1{mu}M atropine or axonal transmission with 1{mu}M tetrodotoxin did not modify CCK-induced contraction, supporting a direct myogenic effect of this hormone. Optimal electrical field stimulation to elicit a neuronal response resulted in muscle strip relaxation, which was abolished with adrenergic blockade. Although acetylcholine administration stimulated contraction, electrical field stimulation did not, even in the presence of phentolamine, propranolol, and/or CCK. Thus, in bovine gallbladder muscularis, there is evidence for a functional CCK receptor only on smooth muscle cells. Demonstration of a single, high-affinity specific CCK-binding site on an enriched plasma membrane preparation of bovine gallbladder muscularis is consistent with this representing a myogenic CCK receptor.

  8. Gallbladder shape extraction from ultrasound images using active contour models.

    PubMed

    Ciecholewski, Marcin; Chochołowicz, Jakub

    2013-12-01

    Gallbladder function is routinely assessed using ultrasonographic (USG) examinations. In clinical practice, doctors very often analyse the gallbladder shape when diagnosing selected disorders, e.g. if there are turns or folds of the gallbladder, so extracting its shape from USG images using supporting software can simplify a diagnosis that is often difficult to make. The paper describes two active contour models: the edge-based model and the region-based model making use of a morphological approach, both designed for extracting the gallbladder shape from USG images. The active contour models were applied to USG images without lesions and to those showing specific disease units, namely, anatomical changes like folds and turns of the gallbladder as well as polyps and gallstones. This paper also presents modifications of the edge-based model, such as the method for removing self-crossings and loops or the method of dampening the inflation force which moves nodes if they approach the edge being determined. The user is also able to add a fragment of the approximated edge beyond which neither active contour model will move if this edge is incomplete in the USG image. The modifications of the edge-based model presented here allow more precise results to be obtained when extracting the shape of the gallbladder from USG images than if the morphological model is used.

  9. Manual dexterity: Functional lateralisation patterns and motor efficiency.

    PubMed

    Serrien, Deborah J; Sovijärvi-Spapé, Michiel M

    2016-10-01

    Manual tasks are an important goal-directed ability. In this EEG work, we studied how handedness affects the hemispheric lateralisation patterns during performance of visually-driven movements with either hand. The neural correlates were assessed by means of EEG coherence whereas behavioural output was measured by motor error. The EEG data indicated that left- and right-handers showed distinct recruitment patterns. These involved local interactions between brain regions as well as more widespread associations between brain systems. Despite these differences, brain-behaviour correlations highlighted that motor efficiency depended on left-sided brain regions across groups. These results suggest that skilled hand motor control relies on different neural patterns as a function of handedness whereas behavioural efficiency is linked with the left hemisphere. In conclusion, the present findings add to our understanding about principles of lateralised organisation as a function of handedness. PMID:27472831

  10. Gallbladder mucocoele: A review.

    PubMed

    Smalle, Tesh M; Cahalane, Alane K; Köster, Liza S

    2015-12-09

    Gallbladder mucocoele (GBM) is an abnormal, intraluminal accumulation of inspissated bile and/or mucous within the gallbladder. Older, small- to medium-breed dogs seem to be predisposed, but no sex predilection has been identified. Clinical signs are often non-specific and include vomiting, lethargy, anorexia, abdominal pain, icterus and polyuria-polydipsia. Results of a complete blood count may be unremarkable, but serum biochemistry usually reveals increased liver enzymes. The ultrasonographic appearance is diagnostic and well described in the literature. Surgical intervention for the treatment of GBM remains the therapeutic gold standard, with short- and long-term survival for biliary surgery being 66%. The worst outcome is seen in those dogs requiring cholecystoenterostomy. With GBM becoming an apparently increasingly common cause of extrahepatic biliary disease in canines, it is essential that clinicians become familiar with the current literature pertaining to this condition. Numerous predisposing factors are highlighted in this review article and the role of certain endocrinopathies (e.g. hyperadrenocorticism and hypothyroidism) in the development of GBM is touched upon. Furthermore, the aetiopathogenesis of this disease is discussed with reference to the latest literature. Cholecystectomy remains the treatment of choice, but other options are considered based on a current literature review.

  11. Development of the Gross Motor Function Classification System (1997)

    ERIC Educational Resources Information Center

    Morris, Christopher

    2008-01-01

    To address the need for a standardized system to classify the gross motor function of children with cerebral palsy, the authors developed a five-level classification system analogous to the staging and grading systems used in medicine. Nominal group process and Delphi survey consensus methods were used to examine content validity and revise the…

  12. Dopaminergic action beyond its effects on motor function: imaging studies.

    PubMed

    Brooks, David J

    2006-08-01

    Along with motor programming, it is now thought that tonic release of dopamine in the striatum acts to focus and filter non-motor activities such as working memory, implicit learning, decision making, and planning. Additionally, thresholds to painful stimuli may well be dopamine dependant. Phasic (burst) release of dopamine in the basal ganglia and frontal areas is thought to play a role in alerting organisms to novel and potentially rewarding stimuli and in mediating contextual learning. Dopamine release also drives a craving for stimuli and facilitates their enjoyment. Functional imaging can help elucidate the role of dopamine in mediating non-motor activities. The integrity of dopamine terminal function can be measured with PET and SPECT in vivo in health and Parkinson's disease (PD) and this can be correlated with performance of executive tasks. In addition, these imaging modalities allow dopamine release in response to stimuli (both rewarding and unrewarding) to be detected, as reflected by changes in D2 receptor availability to radioligands. Finally, the functional effects of dopamine deficiency and its replacement can be monitored by studying patterns of brain activation, as evidenced by regional blood flow changes. In this review, some of the insights that imaging has given us concerning the role of dopamine in non-motor functions is presented.

  13. Decreased function of survival motor neuron protein impairs endocytic pathways.

    PubMed

    Dimitriadi, Maria; Derdowski, Aaron; Kalloo, Geetika; Maginnis, Melissa S; O'Hern, Patrick; Bliska, Bryn; Sorkaç, Altar; Nguyen, Ken C Q; Cook, Steven J; Poulogiannis, George; Atwood, Walter J; Hall, David H; Hart, Anne C

    2016-07-26

    Spinal muscular atrophy (SMA) is caused by depletion of the ubiquitously expressed survival motor neuron (SMN) protein, with 1 in 40 Caucasians being heterozygous for a disease allele. SMN is critical for the assembly of numerous ribonucleoprotein complexes, yet it is still unclear how reduced SMN levels affect motor neuron function. Here, we examined the impact of SMN depletion in Caenorhabditis elegans and found that decreased function of the SMN ortholog SMN-1 perturbed endocytic pathways at motor neuron synapses and in other tissues. Diminished SMN-1 levels caused defects in C. elegans neuromuscular function, and smn-1 genetic interactions were consistent with an endocytic defect. Changes were observed in synaptic endocytic proteins when SMN-1 levels decreased. At the ultrastructural level, defects were observed in endosomal compartments, including significantly fewer docked synaptic vesicles. Finally, endocytosis-dependent infection by JC polyomavirus (JCPyV) was reduced in human cells with decreased SMN levels. Collectively, these results demonstrate for the first time, to our knowledge, that SMN depletion causes defects in endosomal trafficking that impair synaptic function, even in the absence of motor neuron cell death. PMID:27402754

  14. Brief assessment of motor function: content validity and reliability of the upper extremity gross motor scale.

    PubMed

    Cintas, Holly Lea; Parks, Rebecca; Don, Sarah; Gerber, Lynn

    2011-11-01

    Content validity and reliability of the Brief Assessment of Motor Function (BAMF) Upper Extremity Gross Motor Scale (UEGMS) were evaluated in this prospective, descriptive study. The UEGMS is one of five BAMF ordinal scales designed for quick documentation of gross, fine, and oral motor skill levels. Designed to be independent of age and diagnosis, it is intended for use for infants through young adults. An expert panel of 17 physical therapists and 13 occupational therapists refined the content by responding to a standard questionnaire comprised of questions, which asked whether each item should be included, is clearly worded, should be reordered higher or lower, is functionally relevant, and is easily discriminated. Ratings of content validity exceeded the criterion except for two items, which may represent different perspectives of physical and occupational therapists. The UEGMS was modified using the quantitative and qualitative feedback from the questionnaires. For reliability, five raters scored videotaped motor performances of 10 children. Coefficients for inter-rater (0.94) and intra-rater (0.95) reliability were high. The results provide evidence of content validity and reliability of the UEGMS for the assessment of UEGM skill.

  15. Functional MRI in human motor control studies and clinical applications.

    PubMed

    Toma, Keiichiro; Nakai, Toshiharu

    2002-07-01

    Functional magnetic resonance imaging (fMRI) has been a useful tool for the noninvasive mapping of brain function associated with various motor and cognitive tasks. Because fMRI is based on the blood oxygenation level dependent (BOLD) effect, it does not directly record neural activity. With the fMRI technique, distinguishing BOLD signals created by cortical projection neurons from those created by intracortical neurons appears to be difficult. Two major experimental designs are used in fMRI studies: block designs and event-related designs. Block-designed fMRI presupposes the steady state of regional cerebral blood flow and has been applied to examinations of brain activation caused by tasks requiring sustained or repetitive movements. By contrast, the more recently developed event-related fMRI with time resolution of a few seconds allows the mapping of brain activation associated with a single movement according to the transient aspects of the hemodynamic response. Increasing evidence suggests that multiple motor areas are engaged in a networked manner to execute various motor acts. In order to understand functional brain maps, it is important that one understands sequential and parallel organizations of anatomical connections between multiple motor areas. In fMRI studies of complex motor tasks, elementary parameters such as movement length, force, velocity, acceleration and frequency should be controlled, because inconsistency in those parameters may alter the extent and intensity of motor cortical activation, confounding interpretation of the findings obtained. In addition to initiation of movements, termination of movements plays an important role in the successful achievement of complex movements. Brain areas exclusively related to the termination of movements have been, for the first time, uncovered with an event-related fMRI technique. We propose the application of fMRI to the elucidation of the pathophysiology of movement disorders, particularly dystonia

  16. Light microscopy and scanning electron microscopy study on microstructure of gallbladder mucosa in pig.

    PubMed

    Prozorowska, Ewelina; Jackowiak, Hanna

    2015-03-01

    The present light microscopy (LM) and scanning electron microscopy (SEM) studies on porcine gallbladder mucosa provide a description of the microstructures of great functional importance such as mucosal folds, the epithelium, glands, and lymphatic nodules. The results showed the regional structural differences of the porcine gallbladder wall. Depending on the part of the gallbladder, three types of mucosal structures were described: simple and branched folds and mucosal crypts. An important structural feature found in the mucosa is connected with the structural variety of type of mucosal folds, which change from simple located in the neck, to most composed, i.e., branched or joined, in the polygonal crypts toward the fundus of the gallbladder. The morphometric analysis showed statistically significantly differences in the form and size of the folds and between the fundus, body, and neck of the gallbladder. Differences in the size of mucosal epithelium are discussed in terms of processes of synthesis and secretion of glycoproteins. Regional, species-specific differences in morphology of mucosal subepithelial glands, i.e., their secretory units and openings, and intensity of mucus secretion were described. Our results on the pig gallbladder show adaptation and/or specialization in particular areas of the mucosa for (1) secretion of mucus in the neck or body of gallbladder and (2) for cyclic volume changes, especially in the fundus of gallbladder. The description of the microstructures of mucosa in the porcine gallbladder could be useful as reference data for numerous experiments on the bile tract in the pig.

  17. Concurrent silent strokes impair motor function by limiting behavioral compensation.

    PubMed

    Faraji, Jamshid; Kurio, Kristyn; Metz, Gerlinde A

    2012-08-01

    Silent strokes occur more frequently than classic strokes; however, symptoms may go unreported in spite of lasting tissue damage. A silent stroke may indicate elevated susceptibility to recurrent stroke, which may eventually result in apparent and lasting impairments. Here we investigated if multiple silent strokes to the motor system challenge the compensatory capacity of the brain to cumulatively result in permanent functional deficits. Adult male rats with focal ischemia received single focal ischemic mini-lesions in the sensorimotor cortex (SMC) or the dorsolateral striatum (DLS), or multiple lesions affecting both SMC and DLS. The time course and outcome of motor compensation and recovery were determined by quantitative and qualitative assessment of skilled reaching and skilled walking. Rats with SMC or DLS lesion alone did not show behavioral deficits in either task. However, the combination of focal ischemic lesions in SMC and DLS perturbed skilled reaching accuracy and disrupted forelimb placement in the ladder rung walking task. These observations suggest that multiple focal infarcts, each resembling a silent stroke, gradually compromise the plastic capacity of the motor system to cause permanent motor deficits. Moreover, these findings support the notion that cortical and subcortical motor systems cooperate when adopting beneficial compensatory movement strategies. PMID:22609330

  18. Alternative treatment of gallbladder disease.

    PubMed

    Moga, M M

    2003-01-01

    Major risk factors for gallbladder disease include a sedentary lifestyle and a diet rich in refined sugars. In genetically prone individuals, these two factors lead to an abnormal bile composition, altered gut microflora, and hyperinsulinemia, with resulting gallstone formation. As a large percentage of gallbladder patients have continued digestive complaints following cholecystectomy, the author examines complementary and alternative medicine (CAM) treatments to counteract gallstone formation. Herbal medicine such as turmeric, oregon grape, bupleurum, and coin grass may reduce gallbladder inflammation and relieve liver congestion. Elimination of offending foods, not necessarily 'fatty' foods, is often successful and recommended by many holistic physicians. Regular aerobic exercise has a beneficial effect on hyperinsulinemia, which is often associated with gallbladder disease. Dietary changes that lower plasma insulin levels, such as a change in dietary fats and substitution of unrefined carbohydrates for refined carbohydrates, may also be helpful.

  19. Developmental changes in motor cortex activity as infants develop functional motor skills.

    PubMed

    Nishiyori, Ryota; Bisconti, Silvia; Meehan, Sean K; Ulrich, Beverly D

    2016-09-01

    Despite extensive research examining overt behavioral changes of motor skills in infants, the neural basis underlying the emergence of functional motor control has yet to be determined. We used functional near-infrared spectroscopy (fNIRS) to record hemodynamic activity of the primary motor cortex (M1) from 22 infants (11 six month-olds, 11 twelve month-olds) as they reached for an object, and stepped while supported over a treadmill. Based on the developmental systems framework, we hypothesized that as infants increased goal-directed experience, neural activity shifts from a diffused to focal pattern. Results showed that for reaching, younger infants showed diffuse areas of M1 activity that became focused by 12 months. For elicited stepping, younger infants produced much less M1 activity which shifted to diffuse activity by 12 months. Thus, the data suggest that as infants gain goal-directed experience, M1 activity emerges, initially showing a diffuse area of activity, becoming refined as the behavior stabilizes. Our data begin to document the cortical activity underlying early functional skill acquisition.

  20. Primary Leiomyosarcoma of the Gallbladder

    PubMed Central

    Gugulakis, Alexandros; Nakopoulou, Lydia; Sechas, Michael

    1990-01-01

    The case of a 64 year old female who was known to have gallstones is presented. She was admitted to the Hospital following an attack of acute cholecystitis. Ten days after vigorous conservative treatment cholecystectomy was performed. The histological examination showed the presence of the gallbladder leiomyosarcoma. Primary sarcomas of the gallbladder are rare, leiomyosarcoma being the most infrequent type, their preoperative diagnosis almost impossible and their prognosis poor. PMID:2278917

  1. Functional neuroanatomical networks associated with expertise in motor imagery.

    PubMed

    Guillot, Aymeric; Collet, Christian; Nguyen, Vo An; Malouin, Francine; Richards, Carol; Doyon, Julien

    2008-07-15

    Although numerous behavioural studies provide evidence that there exist wide differences within individual motor imagery (MI) abilities, little is known with regards to the functional neuroanatomical networks that dissociate someone with good versus poor MI capacities. For the first time, we thus compared, through functional magnetic resonance imaging (fMRI), the pattern of cerebral activations in 13 skilled and 15 unskilled imagers during both physical execution and MI of a sequence of finger movements. Differences in MI abilities were assessed using well-established questionnaire and chronometric measures, as well as a new index based upon the subject's peripheral responses from the autonomic nervous system. As expected, both good and poor imagers activated the inferior and superior parietal lobules, as well as motor-related regions including the lateral and medial premotor cortex, the cerebellum and putamen. Inter-group comparisons revealed that good imagers activated more the parietal and ventrolateral premotor regions, which are known to play a critical role in the generation of mental images. By contrast, poor imagers recruited the cerebellum, orbito-frontal and posterior cingulate cortices. Consistent with findings from the motor sequence learning literature and Doyon and Ungerleider's model of motor learning [Doyon, J., Ungerleider, L.G., 2002. Functional anatomy of motor skill learning. In: Squire, L.R., Schacter, D.L. (Eds.), Neuropsychology of memory, Guilford Press, pp. 225-238], our results demonstrate that compared to skilled imagers, poor imagers not only need to recruit the cortico-striatal system, but to compensate with the cortico-cerebellar system during MI of sequential movements.

  2. CCK1 receptor antagonist, dexloxiglumide: effects on human isolated gallbladder. Potential clinical applications.

    PubMed

    Maselli, M A; Mennuni, L

    2003-09-01

    Cholecystokinin is the main hormonal regulator of gallbladder motility. Dexloxiglumide, the active enantiomer of loxiglumide, interacts competitively with CCK1 receptors as determined in preclinical studies, such as specific radioligand binding assays or functional studies on isolated guinea pig gallbladder, where it inhibited smooth muscle cell contractions induced by cholecystokinin-octapeptide (CCK-8), the most prominent active forms of cholecystokinin. Dexloxiglumide has a potent antagonistic effect, of a competitive nature, on human gallbladder cholecystokinin type 1 receptors. In isolated human gallbladder, dexloxiglumide produced a concentration-dependent rightward shift of the cholecystokinin-octapeptide curve, without affecting its maximal response. Gallbladder motility was evaluated in clinical studies. Dexloxiglumide, orally administered to healthy volunteers at putative therapeutic doses, did not interfere with post-prandial gallbladder kinetics, despite an increase of fasting gallbladder volume. At present, dexloxiglumide is in an advanced stage of clinical research in gastroenterology. Overall, clinical observations suggest that dexloxiglumide may become an effective treatment in several gastrointestinal disorders. Moreover, the beneficial effects can be obtained without increasing the risk of gallstones formation, a potential hazard subsequent to the inhibition of gallbladder contractions and the resulting bile stasis. The potent and selective antagonist dexloxiglumide may offer a possible therapeutic tool for use not only in functional gastrointestinal disorders, such as irritable bowel syndrome, constipation, gastroesophageal reflux disease and functional dyspepsia, but also in other pathologies, such as biliary colics, pancreatic diseases and gastrointestinal tumors. PMID:16484960

  3. Interregional compensatory mechanisms of motor functioning in progressing preclinical neurodegeneration.

    PubMed

    Scheller, Elisa; Abdulkadir, Ahmed; Peter, Jessica; Tabrizi, Sarah J; Frackowiak, Richard S J; Klöppel, Stefan

    2013-07-15

    Understanding brain reserve in preclinical stages of neurodegenerative disorders allows determination of which brain regions contribute to normal functioning despite accelerated neuronal loss. Besides the recruitment of additional regions, a reorganisation and shift of relevance between normally engaged regions are a suggested key mechanism. Thus, network analysis methods seem critical for investigation of changes in directed causal interactions between such candidate brain regions. To identify core compensatory regions, fifteen preclinical patients carrying the genetic mutation leading to Huntington's disease and twelve controls underwent fMRI scanning. They accomplished an auditory paced finger sequence tapping task, which challenged cognitive as well as executive aspects of motor functioning by varying speed and complexity of movements. To investigate causal interactions among brain regions a single Dynamic Causal Model (DCM) was constructed and fitted to the data from each subject. The DCM parameters were analysed using statistical methods to assess group differences in connectivity, and the relationship between connectivity patterns and predicted years to clinical onset was assessed in gene carriers. In preclinical patients, we found indications for neural reserve mechanisms predominantly driven by bilateral dorsal premotor cortex, which increasingly activated superior parietal cortices the closer individuals were to estimated clinical onset. This compensatory mechanism was restricted to complex movements characterised by high cognitive demand. Additionally, we identified task-induced connectivity changes in both groups of subjects towards pre- and caudal supplementary motor areas, which were linked to either faster or more complex task conditions. Interestingly, coupling of dorsal premotor cortex and supplementary motor area was more negative in controls compared to gene mutation carriers. Furthermore, changes in the connectivity pattern of gene carriers

  4. Hand preference and motor functioning in children with autism.

    PubMed

    Hauck, J A; Dewey, D

    2001-06-01

    This study examined three theories that have been proposed to explain the high rates of ambiguous hand preference in young children with autism. Twenty children with autism were matched with 20 children with developmental delays and 20 normally developing children. The groups were compared on measures of hand preference and motor skills. Results indicated that the lack of development of a hand preference in children with autism was not a direct function of their cognitive delay, as the children with developmental delays showed a dissimilar pattern of hand preference. The lack of a definite hand preference in the children with autism was also not due to a lack of motor skill development, as the children with developmental delays displayed similar levels of gross and fine motor skills without the accompanying lack of a definite hand preference. The finding that children with autism with a definite hand preference displayed better performance on motor, language, and cognitive tasks than children with autism who did not display a definite hand preference, however, provided support for the bilateral brain dysfunction hypothesis.

  5. Motor skills training promotes motor functional recovery and induces synaptogenesis in the motor cortex and striatum after intracerebral hemorrhage in rats.

    PubMed

    Tamakoshi, Keigo; Ishida, Akimasa; Takamatsu, Yasuyuki; Hamakawa, Michiru; Nakashima, Hiroki; Shimada, Haruka; Ishida, Kazuto

    2014-03-01

    We investigated the effects of motor skills training on several types of motor function and synaptic plasticity following intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with collagenase into the left striatum to induce ICH, and they were randomly assigned to the ICH or sham groups. Each group was divided into the motor skills training (acrobatic training) and control (no exercise) groups. The acrobatic group performed acrobatic training from 4 to 28 days after surgery. Motor functions were assessed by motor deficit score, the horizontal ladder test and the wide or narrow beam walking test at several time points after ICH. The number of ΔFosB-positive cells was counted using immunohistochemistry to examine neuronal activation, and the PSD95 protein levels were analyzed by Western blotting to examine synaptic plasticity in the bilateral sensorimotor cortices and striata at 14 and 29 days after ICH. Motor skills training following ICH significantly improved gross motor function in the early phase after ICH and skilled motor coordinated function in the late phase. The number of ΔFosB-positive cells in the contralateral sensorimotor cortex in the acrobatic group significantly increased compared to the control group. PSD95 protein expression in the motor cortex significantly increased in the late phase, and in the striatum, the protein level significantly increased in the early phase by motor skills training after ICH compared to no training after ICH. We demonstrated that motor skills training improved motor function after ICH in rats and enhanced the neural activity and synaptic plasticity in the striatum and sensorimotor cortex. PMID:24304717

  6. Gallbladder carcinoma. Another cause of the distended photon-deficient gallbladder in cholescintigraphy

    SciTech Connect

    Velchik, M.G.; Makler, P.T. Jr.; Alavi, A.

    1984-03-01

    A case report of an 82-year-old woman with carcinoma of the gallbladder is presented. Technetium-99m DISIDA cholescintigraphy demonstrated nonvisualization of the gallbladder, with a large photon-deficient region corresponding to the gallbladder fossa, with medial displacement of the common bile duct. Carcinoma of the gallbladder has not been previously described as a cause of this scintigraphic pattern.

  7. Angioarchitecture of gallbladder in pig: LM and SEM study on vascular microcorrosion casts.

    PubMed

    Prozorowska, Ewelina; Jackowiak, Hanna

    2014-09-01

    The study focused on the description of pig gallbladder angioarchitecture, with particular emphasis on the specifics of the course of blood vessels in individual layers of the gallbladder wall. Furthermore, the vascular systems of the pig gallbladder were analyzed in terms of the adaptation of this organ to changes in its volume during cyclical bile storage and discharge. The gallbladder is supplied by the cystic artery, which in the pig represents a mixed pinnate and bipinnate pattern of branching. The light microscopic and scanning electron microscopic observations of three-dimensional vascular corrosion casts showed the presence of two main complex vascular networks in the wall of the gallbladder, one located in the subserosal and the other in the mucosa. The unique features in the pig, connected with the size of the gallbladder, is the well-developed horizontal venous plexus under folds of the mucosa, which is a voluminous reservoir of fluids absorbed from bile and vascular networks around mucous glands. Superficial blood vessels of the gallbladder run in vascular pairs or triads, where a single artery runs between two veins. The structures of blood flow control, that is, venous valves, were observed only in venules of the subserosal plexus. Spatial arrangement of the vascular network in the pig gallbladder shows functional plasticity during changes in gallbladder volume. The course of superficial blood vessels in the well-filled gallbladder is arcuate, while in the empty gallbladder it is undulated or spiral. In the mucosal and intramural vessels the direction of blood vessels may change from perpendicular to oblique.

  8. Influence of mental practice and movement observation on motor memory, cognitive function and motor performance in the elderly

    PubMed Central

    Altermann, Caroline D. C.; Martins, Alexandre S.; Carpes, Felipe P.; Mello-Carpes, Pâmela B.

    2014-01-01

    Background With aging, it is important to maintain cognitive and motor functions to ensure autonomy and quality of life. During the acquisition of motor skills, it is necessary for the elderly to understand the purpose of the proposed activities. Physical and mental practice, as well as demonstrations, are strategies used to learn movements. Objectives To investigate the influence of mental practice and the observation of movement on motor memory and to understand the relationship between cognitive function and motor performance in the execution of a sequence of digital movements in the elderly. Method This was a cross-sectional study conducted with 45 young and 45 aged subjects. The instruments used were Mini-Mental State Examination (MMSE), Manual Preference Inventory and a Digital Motor Task (composed of a training of a sequence of movements, an interval and a test phase). The subjects were divided into three subgroups: control, mental practice and observation of movement. Results The elderly depend more strongly on mental practice for the acquisition of a motor memory. In comparing the performances of people in different age groups, we found that in the elderly, there was a negative correlation between the MMSE score and the execution time as well as the number of errors in the motor task. Conclusions For the elderly, mental practice can advantage motor performance. Also, there is a significant relationship between cognitive function, learning and the execution of new motor skills. PMID:24839046

  9. Normal gallbladder scintigraphy in acute cholecystitis

    SciTech Connect

    Ohrt, H.J.; Posalaky, I.P.; Shafer, R.B.

    1983-03-01

    Normal gallbladder scintigraphy occurs in 2 to 5% of reported patients with acute cholecystitis. Gallbladder visualization is found in patients with acalculous cholecystitis and in those with recent relief of cystic duct obstruction but persistence of inflammation. A patient is reported who had clinical and pathologic findings of acute cholecystitis but normal gallbladder visualization. This reemphasizes that the diagnosis of acute cholecystitis cannot be excluded by normal gallbladder scintigraphy.

  10. Spontaneous Perforation of Gallbladder: Case Report

    PubMed Central

    Sheoran, Satish Kumar; Sahai, Rajiv Nandan; Indora, Jagmohan; Biswal, Upender Chand

    2016-01-01

    The main cause of perforation of the gallbladder is cholecystitis with or without cholelithiasis. In old age, spontaneous perforation of gallbladder can be due to decrease in its blood supply, which can be due to atherosclerosis, focal vasospasm or localized vasculitis. Perforation of gallbladder is associated with high morbidity and mortality, if left untreated. Here we report a case of a 60-year-old male with perforation of gallbladder. PMID:27785327

  11. Sonographic and scintigraphic evaluation of gallbladder duplication

    SciTech Connect

    McDonald, K.L.; Lwin, T.

    1986-10-01

    The incidence of unilobar or bilobar pathology is disproportionately high in patients with duplication of the gallbladder. The results of ultrasound and Tc-99m DISIDA studies in one case of gallbladder duplication are presented. An awareness of gallbladder anomalies may improve the accuracy of hepatobiliary imaging by eliminating some false-negative results.

  12. Scintigraphic demonstration of a gallbladder anomaly

    SciTech Connect

    Singh, A.; Holmes, R.A.; Witten, D.M.

    1985-01-01

    Congenital anomalies of the gallbladder are uncommon. In this paper the authors report a case of double gallbladder in which intravenous cholecystokinin analog (CCK) was used to confirm the presence of two ectopic gallbladders rather than other biliary tract anomalies or dilated hepatic ducts.

  13. Successful laparoscopic management of duplicate gallbladder: A case report and review of literature

    PubMed Central

    Al Rawahi, Aziza; Al Azri, Yahya; Al Jabri, Salah; Alfadli, Abdulrazaq; Al Aghbari, Suad

    2016-01-01

    Introduction Gallbladder duplication is a rare congenital anomaly. Recognition of this anomaly and its various types is important since it can complicate a simple hepatobiliary surgical procedure. Presentation of case We report a case of a 42 year old female who presented a 6 year history of intermittent right upper quadrant abdominal pain. Her basic blood investigations including liver function tests were normal. Pre-operative imaging revealed a cystic lesion communicating with biliary tree representing duplicated gallbladder. She subsequently underwent successful laparoscopic cholecystectomy. The operative challenges were more than those anticipated at the usual laparoscopic gallbladder procedures. After six months follow up the patient remained asymptomatic. Discussion Preoperative diagnosis plays a crucial role in planning surgery, and preventing possible biliary injuries or re-operation if accessory gallbladder has been overlooked during initial surgery. Magnetic resonance cholangiopancreatography (MRCP) is the imaging modality of choice for suspected duplicate gallbladder. Laparoscopic cholecystectomy for duplicate gallbladder is a challenging operation and should be performed with meticulous dissection of the cysto-hepatic triangle. Conclusion Gallbladder anomalies should be anticipated in the presence of a cystic lesion reported around the gallbladder. The laparoscopic cholecystectomy remains feasible for intervention and should be done by an experienced laparoscopic surgeon. PMID:27002289

  14. Non-coding RNAs as emerging molecular targets of gallbladder cancer.

    PubMed

    Tekcham, Dinesh Singh; Tiwari, Pramod Kumar

    2016-08-15

    Gallbladder cancer is one of the most common cancers of biliary tract with aggressive pathophysiology, now emerging as a global health issue. Although minority of gallbladder cancer patients could receive such curative resection due to late diagnosis, this increases the survival rate. Lack of potential target molecule (s) for early diagnosis, better prognosis and effective therapy of gallbladder cancer has triggered investigators to look for novel technological or high throughput approaches to identify potential biomarker for gallbladder cancer. Intervention of non-coding RNAs in gallbladder cancer has been revealed recently. Non-coding RNAs are now widely implicated in cancer. Recent reports have revealed association of non-coding RNAs (microRNAs or miRNAs and long non-coding RNAs or lncRNAs) with gallbladder cancer. Here, we present an updated overview on the biogenesis, mechanism of action, role of non-coding RNAs, the identified cellular functions in gallbladder tumorigenesis, their prognostic & therapeutic potentials (efficacies) and future significance in developing effective biomarker(s), in future, for gallbladder.

  15. Human Motor Cortex Functional Changes in Acute Stroke: Gender Effects

    PubMed Central

    Di Lazzaro, Vincenzo; Pellegrino, Giovanni; Di Pino, Giovanni; Ranieri, Federico; Lotti, Fiorenza; Florio, Lucia; Capone, Fioravante

    2016-01-01

    The acute phase of stroke is accompanied by functional changes in the activity and interplay of both hemispheres. In healthy subjects, gender is known to impact the functional brain organization. We investigated whether gender influences also acute stroke functional changes. In thirty-five ischemic stroke patients, we evaluated the excitability of the affected (AH) and unaffected hemisphere (UH) by measuring resting and active motor threshold (AMT) and motor-evoked potential amplitude under baseline conditions and after intermittent theta burst stimulation (iTBS) of AH. We also computed an index of the excitability balance between the hemispheres, laterality indexes (LI), to evidence hemispheric asymmetry. AMT differed significantly between AH and UH only in the male group (p = 0.004), not in females (p > 0.200), and both LIAMT and LIRMT were significantly higher in males than in females (respectively p = 0.033 and p = 0.042). LTP-like activity induced by iTBS in AH was more frequent in females. Gender influences the functional excitability changes that take place after human stroke and the level of LTP that can be induced by repetitive stimulation. This knowledge is of high value in the attempt of individualizing to different genders any non-invasive stimulation strategy designed to foster stroke recovery. PMID:26858590

  16. Impaired orofacial motor functions on chronic temporomandibular disorders.

    PubMed

    Ferreira, Cláudia Lúcia Pimenta; Machado, Bárbara Cristina Zanandréa; Borges, Carina Giovana Pissinatti; Rodrigues Da Silva, Marco Antonio M; Sforza, Chiarella; De Felício, Cláudia Maria

    2014-08-01

    Because temporomandibular disorders (TMDs) rehabilitation continues to be a challenge, a more comprehensive picture of the orofacial functions in patients with chronic pain is required. This study assessed the orofacial functions, including surface electromyography (EMG) of dynamic rhythmic activities, in patients with moderate-severe signs and symptoms of chronic TMD. It was hypothesized that orofacial motor control differs between patients with moderate-severe chronic TMD and healthy subjects. Seventy-six subjects (46 with TMD and 30 control) answered questionnaires of severity of TMD and chewing difficulties. Orofacial functions and EMG during chewing were assessed. Standardized EMG indices were obtained by quantitative analysis of the differential EMG signals of the paired masseter and temporal muscles, and used to describe muscular action during chewing. TMD patients showed significant greater difficulty in chewing; worse orofacial scores; longer time for free mastication; a less accurate recruitment of the muscles on the working and balancing sides, reduced symmetrical mastication index (SMI) and increased standardized activity during EMG test than healthy subjects. SMI, TMD severity and orofacial myofunctional scores were correlated (P<0.01). Impaired orofacial functions and increased activity of the muscles of balancing sides during unilateral chewing characterized the altered orofacial motor control in patients with moderate-severe chronic TMD. Implications for rehabilitation are discussed.

  17. Psychometric Comparisons of Three Measures for Assessing Motor Functions in Preschoolers with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Wuang, Y-P.; Su, C-Y.; Huang, M-H.

    2012-01-01

    Background: Deficit in motor performance is common in children with intellectual disabilities (ID). A motor function measure with sound psychometric properties is indispensable for clinical and research use. The purpose of this study was to compare the psychometric properties of three commonly used clinical measures for assessing motor function in…

  18. Porcelain gallbladder: ultrasound and CT appearance

    SciTech Connect

    Kane, R.A.; Jacobs, R.; Katz, J.; Costello, P.

    1984-07-01

    Nine patients with calcification of the gallbladder wall (porcelain gallbladder) were analyzed by ultrasound and the appearance correlated with the CT, radiographic, clinical, and surgical findings. Three distinct patterns were identified: (a) a hyperechoic similunar structure with acoustic shadowing posteriorly, simulating a stone-filled gallbladder devoid of bile, which was seen in 5 patients; (b) a biconvex, curvilinear echogenic structure with variable acoustic shadowing, seen in all 3 patients with carcinoma of the gallbladder; and (c) an irregular clump of echoes with posterior acoustic shadowing, seen in 1 patient. Potential pitfalls in the diagnosis of gallbladder calcification are presented, and the association between calcification and cancer is emphasized.

  19. Polypoid Lesions of the Gallbladder in Children

    PubMed Central

    Beneck, Debra; Bostwick, Howard E.

    1997-01-01

    Polypoid lesions of the gallbladder in children are rare. We report a case of a gallbladder polyp in a 14-year-old boy who presented with recurrent right upper quadrant abdominal pain. Ultrasound examination of the abdomen revealed a polypoid lesion of the gallbladder. His symptoms resolved after laparoscopic cholecystectomy. Histological examination of the gallbladder demonstrated a benign adenomatous polyp. Although the experience with polypoid lesions of the gallbladder in children is limited, we currently recommend cholecystectomy because these lesions are associated with acalculous cholecystitis, and because their long-term effects are unknown. PMID:9876680

  20. A mechatronic device for the rehabilitation of ankle motor function.

    PubMed

    Bucca, Giuseppe; Bezzolato, Alberto; Bruni, Stefano; Molteni, Franco

    2009-12-01

    This paper presents the main results from a research aiming at the design of an electromechanical actuator for use in the rehabilitation of ankle motor function in patients suffering due to neurological diseases. Motivations for the research project are discussed within the framework of the application of mechatronic concepts for rehabilitation practice. The entire design process is then described, from the definition of project targets through the mechanical concept and control design steps until design validation by means of numerical simulations and tests on a prototype. PMID:20524738

  1. Ciliobrevins as tools for studying dynein motor function

    PubMed Central

    Roossien, Douglas H.; Miller, Kyle E.; Gallo, Gianluca

    2015-01-01

    Dyneins are a small class of molecular motors that bind to microtubules and walk toward their minus ends. They are essential for the transport and distribution of organelles, signaling complexes and cytoskeletal elements. In addition dyneins generate forces on microtubule arrays that power the beating of cilia and flagella, cell division, migration and growth cone motility. Classical approaches to the study of dynein function in axons involve the depletion of dynein, expression of mutant/truncated forms of the motor, or interference with accessory subunits. By necessity, these approaches require prolonged time periods for the expression or manipulation of cellular dynein levels. With the discovery of the ciliobrevins, a class of cell permeable small molecule inhibitors of dynein, it is now possible to acutely disrupt dynein both globally and locally. In this review, we briefly summarize recent work using ciliobrevins to inhibit dynein and discuss the insights ciliobrevins have provided about dynein function in various cell types with a focus on neurons. We temper this with a discussion of the need for studies that will elucidate the mechanism of action of ciliobrevin and as well as the need for experiments to further analyze the specificity of ciliobreviens for dynein. Although much remains to be learned about ciliobrevins, these small molecules are proving themselves to be valuable novel tools to assess the cellular functions of dynein. PMID:26217180

  2. The gallbladder: uncommon gallbladder conditions and unusual presentations of the common gallbladder pathological processes.

    PubMed

    Revzin, Margarita V; Scoutt, Leslie; Smitaman, Edward; Israel, Gary M

    2015-02-01

    This article reviews a spectrum of gallbladder conditions that are either uncommon or represent unusual manifestations of common diseases. These conditions are divided into four major categories: (a) congenital anomalies and normal variants including duplication, ectopia, and lymphangioma; (b) inflammatory processes and stone-related diseases and complications including adenomyomatosis, emphysematous cholecystitis, xanthogranulomatous cholecystitis, gangrenous and hemorrhagic cholecystitis, perforation, gallstone ileus, and Bouveret and Mirizzi syndromes; (c) gallbladder neoplasms including adenocarcinoma with associated porcelain gallbladder, squamous cell carcinoma, lymphoma, melanoma, and neurofibroma. A thorough understanding of the imaging characteristics of each condition can help the radiologist to make a timely and accurate diagnosis, thus avoiding potentially harmful delays in patient management and decreasing morbidity and mortality rates.

  3. Combined motor cortex and spinal cord neuromodulation promotes corticospinal system functional and structural plasticity and motor function after injury.

    PubMed

    Song, Weiguo; Amer, Alzahraa; Ryan, Daniel; Martin, John H

    2016-03-01

    An important strategy for promoting voluntary movements after motor system injury is to harness activity-dependent corticospinal tract (CST) plasticity. We combine forelimb motor cortex (M1) activation with co-activation of its cervical spinal targets in rats to promote CST sprouting and skilled limb movement after pyramidal tract lesion (PTX). We used a two-step experimental design in which we first established the optimal combined stimulation protocol in intact rats and then used the optimal protocol in injured animals to promote CST repair and motor recovery. M1 was activated epidurally using an electrical analog of intermittent theta burst stimulation (iTBS). The cervical spinal cord was co-activated by trans-spinal direct current stimulation (tsDCS) that was targeted to the cervical enlargement, simulated from finite element method. In intact rats, forelimb motor evoked potentials (MEPs) were strongly facilitated during iTBS and for 10 min after cessation of stimulation. Cathodal, not anodal, tsDCS alone facilitated MEPs and also produced a facilitatory aftereffect that peaked at 10 min. Combined iTBS and cathodal tsDCS (c-tsDCS) produced further MEP enhancement during stimulation, but without further aftereffect enhancement. Correlations between forelimb M1 local field potentials and forelimb electromyogram (EMG) during locomotion increased after electrical iTBS alone and further increased with combined stimulation (iTBS+c-tsDCS). This optimized combined stimulation was then used to promote function after PTX because it enhanced functional connections between M1 and spinal circuits and greater M1 engagement in muscle contraction than either stimulation alone. Daily application of combined M1 iTBS on the intact side and c-tsDCS after PTX (10 days, 27 min/day) significantly restored skilled movements during horizontal ladder walking. Stimulation produced a 5.4-fold increase in spared ipsilateral CST terminations. Combined neuromodulation achieves optimal motor

  4. Radiological diagnosis of gallbladder disease

    SciTech Connect

    Berk, R.N.; Ferrucci, J.T.; Fordtran, J.S.

    1981-10-01

    Changes in the radiological diagnosis of gallbladder disease are occurring at a remarkable rate. In this symposium, several recognized authorities place the various diagnostic modalities and their interrelation in modern perspective. The present and future roles of oral cholecystography and intravenous cholangiography, the radiological diagnosis of chronic acalculous cholecystits, and the use of ultrasonography and cholescintigraphy are analyzed.

  5. Decreased gallbladder emptying in dogs with biliary sludge or gallbladder mucocele.

    PubMed

    Tsukagoshi, Taro; Ohno, Koichi; Tsukamoto, Atsushi; Fukushima, Kenjiro; Takahashi, Masashi; Nakashima, Ko; Fujino, Yasuhito; Tsujimoto, Hajime

    2012-01-01

    Biliary sludge in dogs is dismissed commonly as an incidental finding. On the other hand, gallbladder mucocele is reported increasingly in dogs and can lead to biliary obstruction or gallbladder rupture. Cholestasis is suspected to play a role in development of sludge and mucoceles, though there are no data in dogs to support this. We investigated gallbladder emptying, a key factor in biliary flow, in dogs with mobile sludge, immobile sludge, or gallbladder mucocele and in healthy controls. Gallbladder ejection fraction estimated by ultrasonography was used as the index of gallbladder emptying. The ejection fraction at 60 min after eating was significantly decreased in all three abnormal groups. Moreover, all dogs with sludge or a mucocele had gallbladder distension. These changes were the greatest in the mucocele group. Thus, biliary stasis occurs not only in dogs with gallbladder mucocele but also in dogs with biliary sludge. Cholestasis may play a role in the pathogenesis or progression of these diseases in dogs.

  6. Motor and mental training in older people: Transfer, interference, and associated functional neural responses.

    PubMed

    Boraxbekk, C J; Hagkvist, Filip; Lindner, Philip

    2016-08-01

    Learning new motor skills may become more difficult with advanced age. In the present study, we randomized 56 older individuals, including 30 women (mean age 70.6 years), to 6 weeks of motor training, mental (motor imagery) training, or a combination of motor and mental training of a finger tapping sequence. Performance improvements and post-training functional magnetic resonance imaging (fMRI) were used to investigate performance gains and associated underlying neural processes. Motor-only training and a combination of motor and mental training improved performance in the trained task more than mental-only training. The fMRI data showed that motor training was associated with a representation in the premotor cortex and mental training with a representation in the secondary visual cortex. Combining motor and mental training resulted in both premotor and visual cortex representations. During fMRI scanning, reduced performance was observed in the combined motor and mental training group, possibly indicating interference between the two training methods. We concluded that motor and motor imagery training in older individuals is associated with different functional brain responses. Furthermore, adding mental training to motor training did not result in additional performance gains compared to motor-only training and combining training methods may result in interference between representations, reducing performance. PMID:27450266

  7. Functional adaptation between yeast actin and its cognate myosin motors.

    PubMed

    Stark, Benjamin C; Wen, Kuo-Kuang; Allingham, John S; Rubenstein, Peter A; Lord, Matthew

    2011-09-01

    We employed budding yeast and skeletal muscle actin to examine the contribution of the actin isoform to myosin motor function. While yeast and muscle actin are highly homologous, they exhibit different charge density at their N termini (a proposed myosin-binding interface). Muscle myosin-II actin-activated ATPase activity is significantly higher with muscle versus yeast actin. Whether this reflects inefficiency in the ability of yeast actin to activate myosin is not known. Here we optimized the isolation of two yeast myosins to assess actin function in a homogenous system. Yeast myosin-II (Myo1p) and myosin-V (Myo2p) accommodate the reduced N-terminal charge density of yeast actin, showing greater activity with yeast over muscle actin. Increasing the number of negative charges at the N terminus of yeast actin from two to four (as in muscle) had little effect on yeast myosin activity, while other substitutions of charged residues at the myosin interface of yeast actin reduced activity. Thus, yeast actin functions most effectively with its native myosins, which in part relies on associations mediated by its outer domain. Compared with yeast myosin-II and myosin-V, muscle myosin-II activity was very sensitive to salt. Collectively, our findings suggest differing degrees of reliance on electrostatic interactions during weak actomyosin binding in yeast versus muscle. Our study also highlights the importance of native actin isoforms when considering the function of myosins. PMID:21757693

  8. Traumatic Gallbladder Rupture Treated by Laparoscopic Cholecystectomy.

    PubMed

    Egawa, Noriyuki; Ueda, Junji; Hiraki, Masatsugu; Ide, Takao; Inoue, Satoshi; Sakamoto, Yuichiro; Noshiro, Hirokazu

    2016-01-01

    Gallbladder rupture due to blunt abdominal injury is rare. There are few reports of traumatic gallbladder injury, and it is commonly associated with other concomitant visceral injuries. Therefore, it is difficult to diagnose traumatic gallbladder rupture preoperatively when it is caused by blunt abdominal injury. We report a patient who underwent laparoscopic cholecystectomy after an exact preoperative diagnosis of traumatic gallbladder rupture. A 43-year-old man was admitted to our hospital due to blunt abdominal trauma. The day after admission, abdominal pain and ascites increased and a muscular defense sign appeared. Percutaneous drainage of the ascites was performed, and the aspirated fluid was bloody and almost pure bile. He was diagnosed with gallbladder rupture by the cholangiography using the endoscopic retrograde cholangiopancreatography technique. Laparoscopic cholecystectomy was performed safely, and he promptly recovered. If accumulated fluids contain bile, endoscopic cholangiography is useful not only to diagnose gallbladder injury but also to determine the therapeutic strategy. PMID:27462188

  9. Traumatic Gallbladder Rupture Treated by Laparoscopic Cholecystectomy

    PubMed Central

    Egawa, Noriyuki; Ueda, Junji; Hiraki, Masatsugu; Ide, Takao; Inoue, Satoshi; Sakamoto, Yuichiro; Noshiro, Hirokazu

    2016-01-01

    Abstract Gallbladder rupture due to blunt abdominal injury is rare. There are few reports of traumatic gallbladder injury, and it is commonly associated with other concomitant visceral injuries. Therefore, it is difficult to diagnose traumatic gallbladder rupture preoperatively when it is caused by blunt abdominal injury. We report a patient who underwent laparoscopic cholecystectomy after an exact preoperative diagnosis of traumatic gallbladder rupture. A 43-year-old man was admitted to our hospital due to blunt abdominal trauma. The day after admission, abdominal pain and ascites increased and a muscular defense sign appeared. Percutaneous drainage of the ascites was performed, and the aspirated fluid was bloody and almost pure bile. He was diagnosed with gallbladder rupture by the cholangiography using the endoscopic retrograde cholangiopancreatography technique. Laparoscopic cholecystectomy was performed safely, and he promptly recovered. If accumulated fluids contain bile, endoscopic cholangiography is useful not only to diagnose gallbladder injury but also to determine the therapeutic strategy. PMID:27462188

  10. Effect of physical therapy frequency on gross motor function in children with cerebral palsy

    PubMed Central

    Park, Eun-Young

    2016-01-01

    [Purpose] This study attempted to investigate the effect of physical therapy frequency based on neurodevelopmental therapy on gross motor function in children with cerebral palsy. [Subjects and Methods] The study sample included 161 children with cerebral palsy who attended a convalescent or rehabilitation center for disabled individuals or a special school for children with physical disabilities in South Korea. Gross Motor Function Measure data were collected according to physical therapy frequency based on neurodevelopmental therapy for a period of 1 year. [Results] The correlation between physical therapy frequency and Gross Motor Function Measure scores for crawling and kneeling, standing, walking, running and jumping, and rolling, and the Gross Motor Function Measure total score was significant. The differences in gross motor function according to physical therapy frequency were significant for crawling, kneeling, standing, and Gross Motor Function Measure total score. The differences in gross motor function according to frequency of physical therapy were significant for standing in Gross Motor Function Classification System Level V. [Conclusion] Intensive physical therapy was more effective for improving gross motor function in children with cerebral palsy. In particular, crawling and kneeling, and standing ability showed greater increases with intensive physical therapy. PMID:27390440

  11. Effect of physical therapy frequency on gross motor function in children with cerebral palsy.

    PubMed

    Park, Eun-Young

    2016-06-01

    [Purpose] This study attempted to investigate the effect of physical therapy frequency based on neurodevelopmental therapy on gross motor function in children with cerebral palsy. [Subjects and Methods] The study sample included 161 children with cerebral palsy who attended a convalescent or rehabilitation center for disabled individuals or a special school for children with physical disabilities in South Korea. Gross Motor Function Measure data were collected according to physical therapy frequency based on neurodevelopmental therapy for a period of 1 year. [Results] The correlation between physical therapy frequency and Gross Motor Function Measure scores for crawling and kneeling, standing, walking, running and jumping, and rolling, and the Gross Motor Function Measure total score was significant. The differences in gross motor function according to physical therapy frequency were significant for crawling, kneeling, standing, and Gross Motor Function Measure total score. The differences in gross motor function according to frequency of physical therapy were significant for standing in Gross Motor Function Classification System Level V. [Conclusion] Intensive physical therapy was more effective for improving gross motor function in children with cerebral palsy. In particular, crawling and kneeling, and standing ability showed greater increases with intensive physical therapy. PMID:27390440

  12. Evidence for a pyloro-cholecystic reflex for gallbladder contraction.

    PubMed Central

    Debas, H T; Yamagishi, T

    1979-01-01

    We studied the effect of graded antral distension on gallbladder contraction both when gastrin release was promoted (alkaline distension) and when gastrin release was blocked (acid distension) in five dogs provided with innervated antral pouch, chronic bile fistula and gastric fistula. Graded distension of the antrum caused graded gallbladder contraction as evidenced by bilirubin output even when gastrin release was completely suppressed. This nongastrin mechanism of gallbladder contraction is abolished by parenteral atropine and by transthoracic truncal vagotomy. These observations provide evidence for a cholinergic, pyloro-cholecystic reflex for gallbladder contraction that is dependent on intact long vagal pathways. Similar reflex mechanisms have been shown to be initiated by antral distension and to cause pancreatic enzyme secretion (pyloro-pancreatic reflex) or acid secretion from the oxyntic gland area of the stomach (pyloro-oxyntic reflex). It would appear, therefore, that the antrum plays a central role in the integration of upper gastrointestinal function not only through the hormone gastrin but also through neural reflex mechanisms. PMID:464689

  13. Work in progress: nuclear magnetic resonance imaging of the gallbladder

    SciTech Connect

    Hricak, H.; Filly, R.A.; Margulis, A.R.; Moon, K.L.; Crooks, L.E.; Kaufman, L.

    1983-05-01

    A preliminary study of the relation between food intake and intensity of gallbladder bile on nuclear magnetic resonance (NMR) images was made. Twelve subjects (seven volunteers, five patients) were imaged following a minimum of 14 hours of fasting. Six of seven volunteers were reimaged one hour after stimulation by either a fatty meal or an alcoholic beverage. An additional seven patients were imaged two hours after a hospital breakfast. It was found that concentrated bile emits a high-intensity spin echo signal (SE), while hepatic bile in the gallbladder produces a low-intensity SE signal. Following ingestion of cholecystogogue, dilute hepatic bile settles on top of the concentrated bile, each emitting SE signals of different intensity. The average T1 value of concentrated bile was 594 msec, while the T1 vaue of dilute hepatic bile was 2,646 msec. The average T2 values were 104 msec for concentrated bile and 126 msec for dilute bile. The most likely cause for the different SE intensities of bile is the higher water content, and therefore longer T1 or T2 relaxation times, of hepatic bile. It is suggested that NMR imaging has the ability to provide physiological information about the gallbladder and that it may prove to be a simple and safe clinical test of gallbladder function.

  14. Pediatric aquatic therapy on motor function and enjoyment in children diagnosed with cerebral palsy of various motor severities.

    PubMed

    Lai, Chih-Jou; Liu, Wen-Yu; Yang, Tsui-Fen; Chen, Chia-Ling; Wu, Ching-Yi; Chan, Rai-Chi

    2015-02-01

    This study investigates the effects of pediatric aquatic therapy on motor function, enjoyment, activities of daily living, and health-related quality of life for children with spastic cerebral palsy of various motor severities. Children with spastic cerebral palsy were assigned to a pediatric aquatic therapy group (n = 11; mean age = 85.0 ± 33.1 months; male : female = 4 : 7) or a control group (n = 13; mean age = 87.6 ± 34.0 months; male : female = 9 : 4). The statistic results indicate that the pediatric aquatic therapy group had greater average 66-item Gross Motor Function Measure following intervention than the control group (η(2) = 0.308, P = .007), even for children with Gross Motor Function Classification System level IV (5.0 vs 1.3). The pediatric aquatic therapy group had higher Physical Activity Enjoyment Scale scores than the control group at post-treatment (P = .015). These findings demonstrate that pediatric aquatic therapy can be an effective and alternative therapy for children with cerebral palsy even with poor Gross Motor Function Classification System level.

  15. Pediatric aquatic therapy on motor function and enjoyment in children diagnosed with cerebral palsy of various motor severities.

    PubMed

    Lai, Chih-Jou; Liu, Wen-Yu; Yang, Tsui-Fen; Chen, Chia-Ling; Wu, Ching-Yi; Chan, Rai-Chi

    2015-02-01

    This study investigates the effects of pediatric aquatic therapy on motor function, enjoyment, activities of daily living, and health-related quality of life for children with spastic cerebral palsy of various motor severities. Children with spastic cerebral palsy were assigned to a pediatric aquatic therapy group (n = 11; mean age = 85.0 ± 33.1 months; male : female = 4 : 7) or a control group (n = 13; mean age = 87.6 ± 34.0 months; male : female = 9 : 4). The statistic results indicate that the pediatric aquatic therapy group had greater average 66-item Gross Motor Function Measure following intervention than the control group (η(2) = 0.308, P = .007), even for children with Gross Motor Function Classification System level IV (5.0 vs 1.3). The pediatric aquatic therapy group had higher Physical Activity Enjoyment Scale scores than the control group at post-treatment (P = .015). These findings demonstrate that pediatric aquatic therapy can be an effective and alternative therapy for children with cerebral palsy even with poor Gross Motor Function Classification System level. PMID:24907137

  16. Effects of Hippotherapy on Gross Motor Function and Functional Performance of Children with Cerebral Palsy

    PubMed Central

    Park, Eun Sook; Rha, Dong-Wook; Shin, Jung Soon; Kim, Soohyeon

    2014-01-01

    Purpose The purpose of our study was to investigate the effects of hippotherapy on gross motor function and functional performance in children with spastic cerebral palsy (CP). Materials and Methods We recruited 34 children (M:F=15:19, age: 3-12 years) with spastic CP who underwent hippotherapy for 45 minutes twice a week for 8 weeks. Twenty-one children with spastic CP were recruited for control group. The distribution of gross motor function classification system level and mean age were not significantly different between the two groups. Outcome measures, including the Gross Motor Function Measure (GMFM)-66, GMFM-88 and the Pediatric Evaluation of Disability Inventory: Functional Skills Scale (PEDI-FSS), were assessed before therapy and after the 8-weeks intervention as outcome measures. Results There were no significant differences between intervention and control groups in mean baseline total scores of GMFM-66, GMFM-88 or PEDI-FSS. After the 8-weeks intervention, mean GMFM-66 and GMFM-88 scores were significantly improved in both groups. However, the hippotherapy group had significantly greater improvement in dimension E and GMFM-66 total score than the control group. The total PEDI-FSS score and the sub-scores of its 3 domains were significantly improved in the hippotherapy group, but not in the control group. Conclusion The results of our study demonstrate the beneficial effects of hippotherapy on gross motor function and functional performance in children with CP compared to control group. The significant improvement in PEDI-FSS scores suggests that hippotherapy may be useful to maximize the functional performance of children with CP. PMID:25323914

  17. Gall-Bladder Agenesis and Associated Anomalies

    PubMed Central

    Shorey, Brian; Spigelman, Allan D.

    1995-01-01

    Congenital absence of the gall-bladder is a rare condition. It is sometimes associated with other congenital defects. We report here two cases of gall-bladder agenesis discovered at laparoscopy. Both had a history of skeletal and cardiovascular anomalies. The investigation of patients with absent gall-bladder can be very difficult. Ultrasound scanning is usually inconclusive and further noninvasive tests should be performed to establish the diagnosis and prevent an unnecessary operation. The presence of other congenital defects should alert the clinician to the possibility of gall-bladder agenesis. PMID:18612357

  18. Endoscopic Gallbladder Drainage for Acute Cholecystitis

    PubMed Central

    Widmer, Jessica; Alvarez, Paloma; Sharaiha, Reem Z.; Gossain, Sonia; Kedia, Prashant; Sarkaria, Savreet; Sethi, Amrita; Turner, Brian G.; Millman, Jennifer; Lieberman, Michael; Nandakumar, Govind; Umrania, Hiren; Gaidhane, Monica

    2015-01-01

    Background/Aims Surgery is the mainstay of treatment for cholecystitis. However, gallbladder stenting (GBS) has shown promise in debilitated or high-risk patients. Endoscopic transpapillary GBS and endoscopic ultrasound-guided GBS (EUS-GBS) have been proposed as safe and effective modalities for gallbladder drainage. Methods Data from patients with cholecystitis were prospectively collected from August 2004 to May 2013 from two United States academic university hospitals and analyzed retrospectively. The following treatment algorithm was adopted. Endoscopic retrograde cholangiopancreatography (ERCP) with sphincterotomy and cystic duct stenting was initially attempted. If deemed feasible by the endoscopist, EUS-GBS was then pursued. Results During the study period, 139 patients underwent endoscopic gallbladder drainage. Among these, drainage was performed in 94 and 45 cases for benign and malignant indications, respectively. Successful endoscopic gallbladder drainage was defined as decompression of the gallbladder without incidence of cholecystitis, and was achieved with ERCP and cystic duct stenting in 117 of 128 cases (91%). Successful endoscopic gallbladder drainage was also achieved with EUS-guided gallbladder drainage using transmural stent placement in 11 of 11 cases (100%). Complications occurred in 11 cases (8%). Conclusions Endoscopic gallbladder drainage techniques are safe and efficacious methods for gallbladder decompression in non-surgical patients with comorbidities. PMID:26473125

  19. Endoscopic ultrasonography in diseases of the gallbladder.

    PubMed

    O'Neill, Darby E Robinson; Saunders, Michael D

    2010-06-01

    In recent years, endoscopic ultrasonography (EUS) has emerged as an important tool for the diagnosis and management of pancreaticobiliary disease. The close proximity of the echoendoscope to the biliary system allows detailed imaging of the gallbladder and adjacent structures. EUS is useful for the detection of occult cholelithiasis and biliary sludge and in the evaluation of suspected choledocholithiasis. It can be used to classify and predict neoplasia in polypoid lesions of the gallbladder and also to diagnose and stage gallbladder carcinoma. This article reviews the use of EUS in these diseases of the gallbladder.

  20. Plexiform fibromyxoma of the gallbladder.

    PubMed

    Fassan, M; Salmaso, R; Saraggi, D; Alaggio, R; Guido, M; Balsamo, L; Carniato, S; Gruppo, M; Ninfo, V; Bardini, R; Rugge, M

    2015-01-01

    We report the unusual case of a plexiform fibromyxoma, occasionally assessed in a lithiasic gallbladder. The full thickness assessment of the gallbladder wall revealed an intra-mural, well demarked multi-nodular tumor (1 cm), consisting of a plexiform growth of spindle cells, included within a fibromyxoid stroma with a rich micro-vascular network. The tumor cells featured no nuclear atypia, nor mitotic activity. At the immunohistochemical profiling, the spindle shaped cells unequivocally featured vimentin, SMA, HHF35, collagen IV, and CD34; no cells expressed CD117, PDGFRA, CD10, desmin, GFAP, EMA, and S-100. Faint STAT6 nuclear expression was observed in isolated tumor cells. The molecular profiling did not revealed any CKIT and PDGFRA genes mutations. The uncommon site of the tumor presentation and its aberrant CD34 expression both confer to the reported case a unique place among the myxoid tumors of the gastrointestinal tract.

  1. Structure and Function Study of Phi29 DNA packaging motor

    NASA Astrophysics Data System (ADS)

    Fang, Huaming

    molecules were required to bind to one short dsDNA molecule. The inhibitive curve of Walker B mutant gp16 analyzed by binomial distribution model showed that one inactive mutant gp16 in the gp16 ring could block the function of the motor and the stoichiometry of gp16 was six. These findings facilitate our understanding of the molecular mechanism of viral DNA packaging: a novel viral DNA packaging model "push through a one-way valve" was proposed. In this model, the connector functioned as a valve to allow DNA to enter but prevented it from sliding out during DNA packaging; the six subunits in the gp16 ring acted sequentially to push DNA into the connector channel. ATP binding of gp16 induced a conformation change with a high affinity for dsDNA. Then, the ATP was hydrolyzed which resulted in the movement of subdomains in this individual gp16 subunit and DNA was pushed forward, followed by the double helix of dsDNA being brought forward to the adjacent subunit in the gp16 ring. The elucidation of the viral DNA packaging mechanism holds great potential for developing artificial motors for delivering drugs and other molecular cargos.

  2. Differential Light Chain Assembly Influences Outer Arm Dynein Motor Function

    PubMed Central

    DiBella, Linda M.; Gorbatyuk, Oksana; Sakato, Miho; Wakabayashi, Ken-ichi; Patel-King, Ramila S.; Pazour, Gregory J.; Witman, George B.; King, Stephen M.

    2005-01-01

    Tctex1 and Tctex2 were originally described as potential distorters/sterility factors in the non-Mendelian transmission of t-haplotypes in mice. These proteins have since been identified as subunits of cytoplasmic and/or axonemal dyneins. Within the Chlamydomonas flagellum, Tctex1 is a subunit of inner arm I1. We have now identified a second Tctex1-related protein (here termed LC9) in Chlamydomonas. LC9 copurifies with outer arm dynein in sucrose density gradients and is missing only in those strains completely lacking this motor. Zero-length cross-linking of purified outer arm dynein indicates that LC9 interacts directly with both the IC1 and IC2 intermediate chains. Immunoblot analysis revealed that LC2, LC6, and LC9 are missing in an IC2 mutant strain (oda6-r88) that can assemble outer arms but exhibits significantly reduced flagellar beat frequency. This defect is unlikely to be due to lack of LC6, because an LC6 null mutant (oda13) exhibits only a minor swimming abnormality. Using an LC2 null mutant (oda12-1), we find that although some outer arm dynein components assemble in the absence of LC2, they are nonfunctional. In contrast, dyneins from oda6-r88, which also lack LC2, retain some activity. Furthermore, we observed a synthetic assembly defect in an oda6-r88 oda12-1 double mutant. These data suggest that LC2, LC6, and LC9 have different roles in outer arm assembly and are required for wild-type motor function in the Chlamydomonas flagellum. PMID:16195342

  3. Biliary sludge: the sluggish gallbladder.

    PubMed

    Pazzi, P; Gamberini, S; Buldrini, P; Gullini, S

    2003-07-01

    Biliary sludge is a mixture of particulate matter which has precipitated from bile. It generally consists of cholesterol monohydrate crystals, calcium bilirubinate or other calcium salts. In a clinical setting, biliary sludge is almost always an ultrasonographic diagnosis. Although it is less clinically applicable, direct microscopic examination of gallbladder bile is far more sensitive than ultrasonography into sludge detection, and has to be regarded as the diagnostic gold standard. The overall prevalence of sludge in the general population is relatively low. However, several clinical conditions are associated with a particularly high prevalence of biliary sludge, including pregnancy, rapid weight loss, total parenteral nutrition, octreotide therapy, bone marrow or solid organ transplantation. The clinical course of biliary sludge varies, and complete resolution, a waxing and waning course, and progression to gallstones are all possible outcomes. It may cause complications usually associated with gallstones, such as biliary colic, acute cholecystitis, and acute pancreatitis. The main pathogenic mechanism involved in sludge formation is probably gallbladder dismotility, and in selected patients measures aimed to maintain adequate gallbladder contractions has been shown to effectively prevent sludge development.

  4. Functional MRI evidence for fine motor praxis dysfunction in children with persistent speech disorders

    PubMed Central

    Redle, Erin; Vannest, Jennifer; Maloney, Thomas; Tsevat, Rebecca K.; Eikenberry, Sarah; Lewis, Barbara; Shriberg, Lawrence D.; Tkach, Jean; Holland, Scott K.

    2014-01-01

    Children with persistent speech disorders (PSD) often present with overt or subtle motor deficits; the possibility that speech disorders and motor deficits could arise from a shared neurological base is currently unknown. Functional MRI (fMRI) was used to examine the brain networks supporting fine motor praxis in children with PSD and without clinically identified fine motor deficits. Methods This case-control study included 12 children with PSD (mean age 7.42 years, 4 female) and 12 controls (mean age 7.44 years, 4 female). Children completed behavioral evaluations using standardized motor assessments and parent reported functional measures. During fMRI scanning, participants completed a cued finger tapping task contrasted passive listening. A general linear model approach identified brain regions associated with finger tapping in each group and regions that differed between groups. The relationship between regional fMRI activation and fine motor skill was assessed using a regression analysis. Results Children with PSD had significantly poorer results for rapid speech production and fine motor praxis skills, but did not differ on classroom functional skills. Functional MRI results showed that children with PSD had significantly more activation in the cerebellum during finger tapping. Positive correlations between performance on a fine motor praxis test and activation multiple cortical regions were noted for children with PSD but not for controls. Conclusions Over-activation in the cerebellum during a motor task may reflect a subtle abnormality in the non-speech motor neural circuitry in children with PSD. PMID:25481413

  5. A Strategy for Embedding Functional Motor and Early Numeracy Skill Instruction into Physical Education Activities

    ERIC Educational Resources Information Center

    Whinnery, Stacie B.; Whinnery, Keith W.; Eddins, Daisy

    2016-01-01

    This article addresses the challenges educators face when attempting to find a balance between both functional and academic skill instruction for students with severe, multiple disabilities including motor impairments. The authors describe a strategy that employs embedded instruction of early numeracy and functional motor skills during physical…

  6. Effect of a nicotinic acetylcholine receptor agonists and antagonists on motor function in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nicotinic acetylcholine receptors (nAChR) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChR located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The...

  7. The influence of motor expertise on the brain activity of motor task performance: A meta-analysis of functional magnetic resonance imaging studies.

    PubMed

    Yang, Jie

    2015-06-01

    Previous research has investigated the influence of long-term motor training on the brain activity of motor processes, but the findings are inconsistent. To clarify how acquiring motor expertise induces cortical reorganization during motor task performance, the current study conducted a quantitative meta-analysis on 26 functional magnetic resonance imaging (fMRI) studies that investigate motor task performance in people with long-term motor training experience (e.g., athletes, musicians, and dancers) and control participants. Meta-analysis of the brain activation in motor experts and novices showed similar effects in the bilateral frontal and parietal regions. The meta-analysis on the contrast between motor experts and novices indicated that experts showed stronger effects in the left inferior parietal lobule (BA 40) than did novices in motor execution and prediction tasks. In motor observation tasks, experts showed stronger effects in the left inferior frontal gyrus (BA 9) and left precentral gyrus (BA 6) than novices. On the contrary, novices had stronger effects in the right motor areas and basal ganglia as compared with motor experts. These results indicate that motor experts have effect increases in brain areas involved in action planning and action comprehension, and suggest that intensive motor training might elaborate the motor representation related to the task performance.

  8. Ciliated foregut cyst of the gallbladder. A diagnostic challenge and management quandary.

    PubMed

    Giakoustidis, Alexandros; Morrison, Dawn; Thillainayagam, Andrew; Stamp, Gordon; Mahadevan, Vishy; Mudan, Satvinder

    2014-06-01

    Ciliated foregut cysts are rare anomalies due to aberrant embryological development. Only a small number of gallbladder ciliated foregut cysts have been reported. We report the case of a 29-year-old woman presenting with epigastric pain associated with diarrhoea and vomiting, who was found to have raised serum bilirubin levels and abnormal liver function tests. Following a diagnostic pathway including abdominal ultrasound, magnetic resonance cholangiopancreatography and endoscopic ultrasound the gallbladder cyst was provisionally diagnosed to be a cyst arising from the cystic duct or a duplicated gallbladder. A laparoscopic cholecystectomy was carried out and histopathology identified a ciliated foregut gallbladder cyst. The postoperative course was uneventful. In this report we offer what we believe to be an optimal diagnostic pathway and therapeutic strategy for this rare congenital cyst.

  9. Design and application of a new series of gallbladder endoscopes that facilitate gallstone removal without gallbladder excision

    NASA Astrophysics Data System (ADS)

    Qiao, Tie; Huang, Wan-Chao; Luo, Xiao-Bing; Zhang, Yang-De

    2012-01-01

    In recent years, some Chinese doctors have proposed a new concept, gallstone removal without gallbladder excision, along with transition of the medical model. As there is no specialized endoscope for gallstone removal without gallbladder excision, we designed and produced a new series of gallbladder endoscopes and accessories that have already been given a Chinese invention patent (No. ZL200810199041.2). The design of these gallbladder endoscopes was based on the anatomy and physiology of the gallbladder, characteristics of gallbladder disease, ergonomics, and industrial design. This series of gallbladder endoscopes underwent clinical trials in two hospitals appointed by the State Administration of Traditional Chinese Medicine. The clinical trials showed that surgeries of gallstones, gallbladder polyps, and cystic duct calculus could be smoothly performed with these products. In summary, this series of gallbladder endoscopes is safe, reliable, and effective for gallstone removal without gallbladder excision. This note comprehensively introduces the research and design of this series of gallbladder endoscopes.

  10. Design and application of a new series of gallbladder endoscopes that facilitate gallstone removal without gallbladder excision.

    PubMed

    Qiao, Tie; Huang, Wan-Chao; Luo, Xiao-Bing; Zhang, Yang-De

    2012-01-01

    In recent years, some Chinese doctors have proposed a new concept, gallstone removal without gallbladder excision, along with transition of the medical model. As there is no specialized endoscope for gallstone removal without gallbladder excision, we designed and produced a new series of gallbladder endoscopes and accessories that have already been given a Chinese invention patent (No. ZL200810199041.2). The design of these gallbladder endoscopes was based on the anatomy and physiology of the gallbladder, characteristics of gallbladder disease, ergonomics, and industrial design. This series of gallbladder endoscopes underwent clinical trials in two hospitals appointed by the State Administration of Traditional Chinese Medicine. The clinical trials showed that surgeries of gallstones, gallbladder polyps, and cystic duct calculus could be smoothly performed with these products. In summary, this series of gallbladder endoscopes is safe, reliable, and effective for gallstone removal without gallbladder excision. This note comprehensively introduces the research and design of this series of gallbladder endoscopes.

  11. Duplication of the Gallbladder. A Case Report

    PubMed Central

    Desolneux, G.; Mucci, S.; Lebigot, J.; Arnaud, J. P.; Hamy, A.

    2009-01-01

    Gallbladder duplication is a rare anatomic malformation, which can now be detected by preoperative imaging study. We report a case of a symptomatic duplicated gallbladder, successfully treated by laparoscopic cholecystectomy. This anomaly is important to know for surgeons because of associated anatomical variations of main bile duct and hepatic artery and increased risk of common bile duct injury. PMID:19997514

  12. Cholescintigraphy: gallbladder nonvisualization secondary to neoplasm

    SciTech Connect

    Lecklitner, M.L.; Rosen, P.R.; Nusynowitz, M.L.

    1981-08-01

    Whereas the diagnosis of acute cholecystitis is characterized by nonvisualization of the gallbladder with Tc-99m iminodiacetic acid derivatives, nonvisualization is not specific for acute cholecystitis. The first reported case of nonvisualization of the gallbladder due to neoplasm is added to an expanding list of causes of nonvisualization other than the more frequent causes: acute and chronic cholecystitis.

  13. The suprahepatic gallbladder. An unusual anatomical variant

    SciTech Connect

    Youngwirth, L.D.; Peters, J.C.; Perry, M.C.

    1983-10-01

    The authors describe a case of ectopic gallbladder found lying posterior to the liver in the subdiaphragmatic space. This condition should be considered whenever the right lobe of the liver is hypoplastic and the gallbladder cannot be visualized on hepatobiliary scans or oral cholecystograms.

  14. Suprahepatic gallbladder: an unusual anatomical variant

    SciTech Connect

    Youngwirth, L.D.; Peters, J.C.; Perry, M.C.

    1983-10-01

    The authors describe a case of ectopic gallbladder found lying posterior to the liver in the subdiaphragmatic space. This condition should be considered whenever the right lobe of the liver is hypoplastic and the gallbladder cannot be visualized on hepatobiliary scans or oral cholecytograms.

  15. Effects of peptide YY on gallbladder motility

    SciTech Connect

    Conter, R.L.; Roslyn, J.J.; Taylor, I.L.

    1987-06-01

    The effects of peptide YY (PYY) on cholecystokinin-stimulated gallbladder contraction were investigated in the prairie dog model. Twelve animals underwent laparotomy with catheter placement into the gallbladder and common bile duct (vent). The gallbladder was continuously perfused with (/sup 14/C)polyethylene glycol-labeled lactated Ringer at 0.03 ml/min, and vent effluent was collected at 2.5-min intervals. All animals received 20 min of intravenous infusion of cholecystokinin octapeptide (CCK-OP), 2.5 ng x kg/sup -1/ x min/sup -1/, immediately followed by 60-min infusions of either lactated Ringer (LR) or synthetic PYY, 10 or 50 ng x kg/sup -1/ x min/sup -1/. When LR was infused after CCK-OP, gallbladder filling increased by 15.4 +/- 10.5% with minimal changes in gallbladder pressure. Infusion of PYY/sub 10/ resulted in a significant increase in gallbladder volume and filling with a significant decrease in intragallbladder pressure. Similar findings were noted with PYY/sub 50/. These data indicate that synthetic PYY significantly augments gallbladder filling after CCK-OP-stimulated gallbladder contraction. These finding, coupled with the observation that PYY inhibits pancreatic secretion, suggest that this peptide may be the anti-CCK hormone and may have an important role in regulating biliary activity postprandially.

  16. Physiotherapy for functional motor disorders: a consensus recommendation

    PubMed Central

    Nielsen, Glenn; Stone, Jon; Matthews, Audrey; Brown, Melanie; Sparkes, Chris; Farmer, Ross; Masterton, Lindsay; Duncan, Linsey; Winters, Alisa; Daniell, Laura; Lumsden, Carrie; Carson, Alan; David, Anthony S; Edwards, Mark

    2015-01-01

    Background Patients with functional motor disorder (FMD) including weakness and paralysis are commonly referred to physiotherapists. There is growing evidence that physiotherapy is an effective treatment, but the existing literature has limited explanations of what physiotherapy should consist of and there are insufficient data to produce evidence-based guidelines. We aim to address this issue by presenting recommendations for physiotherapy treatment. Methods A meeting was held between physiotherapists, neurologists and neuropsychiatrists, all with extensive experience in treating FMD. A set of consensus recommendations were produced based on existing evidence and experience. Results We recommend that physiotherapy treatment is based on a biopsychosocial aetiological framework. Treatment should address illness beliefs, self-directed attention and abnormal habitual movement patterns through a process of education, movement retraining and self-management strategies within a positive and non-judgemental context. We provide specific examples of these strategies for different symptoms. Conclusions Physiotherapy has a key role in the multidisciplinary management of patients with FMD. There appear to be specific physiotherapy techniques which are useful in FMD and which are amenable to and require prospective evaluation. The processes involved in referral, treatment and discharge from physiotherapy should be considered carefully as a part of a treatment package. PMID:25433033

  17. Neurotechnology for monitoring and restoring sensory, motor, and autonomic functions

    NASA Astrophysics Data System (ADS)

    Wu, Pae C.; Knaack, Gretchen; Weber, Douglas J.

    2016-05-01

    The rapid and exponential advances in micro- and nanotechnologies over the last decade have enabled devices that communicate directly with the nervous system to measure and influence neural activity. Many of the earliest implementations focused on restoration of sensory and motor function, but as knowledge of physiology advances and technology continues to improve in accuracy, precision, and safety, new modes of engaging with the autonomic system herald an era of health restoration that may augment or replace many conventional pharmacotherapies. DARPA's Biological Technologies Office is continuing to advance neurotechnology by investing in neural interface technologies that are effective, reliable, and safe for long-term use in humans. DARPA's Hand Proprioception and Touch Interfaces (HAPTIX) program is creating a fully implantable system that interfaces with peripheral nerves in amputees to enable natural control and sensation for prosthetic limbs. Beyond standard electrode implementations, the Electrical Prescriptions (ElectRx) program is investing in innovative approaches to minimally or non-invasively interface with the peripheral nervous system using novel magnetic, optogenetic, and ultrasound-based technologies. These new mechanisms of interrogating and stimulating the peripheral nervous system are driving towards unparalleled spatiotemporal resolution, specificity and targeting, and noninvasiveness to enable chronic, human-use applications in closed-loop neuromodulation for the treatment of disease.

  18. Differential regional effects of octreotide on human gastrointestinal motor function.

    PubMed Central

    von der Ohe, M R; Camilleri, M; Thomforde, G M; Klee, G G

    1995-01-01

    The effects of octreotide on regional motor function in the human gut are unclear. In a randomised, blinded study the effects of octreotide (50 micrograms, subcutaneously, three times daily) and placebo on gastric, small bowel, and colonic transit, and colonic motility and tone were assessed in 12 healthy volunteers whose colon had been cleansed. Octreotide accelerated initial gastric emptying (p = 0.05), inhibited small bowel transit (p < 0.01), and reduced ileocolonic bolus transfers (p < 0.05). Colonic transit was unaltered by octreotide; the postprandial colonic tonic response was inhibited (p < 0.05 v placebo), whereas colonic phasic pressure activity was increased by octreotide (p < 0.05 v placebo). These data support the use of octreotide in diarrhoeal states but not in diseases that cause small bowel stasis and bacterial overgrowth. Simultaneous measurements of colonic transit, tone, and phasic contractility are valid in studying the effects of pharmacological changes and may be applicable to the study of the human colon in health and disease. PMID:7797125

  19. Impact of a Community-Based Programme for Motor Development on Gross Motor Skills and Cognitive Function in Preschool Children from Disadvantaged Settings

    ERIC Educational Resources Information Center

    Draper, Catherine E.; Achmat, Masturah; Forbes, Jared; Lambert, Estelle V.

    2012-01-01

    The aims of the studies were to assess the impact of the Little Champs programme for motor development on (1) the gross motor skills, and (2) cognitive function of children in the programme. In study 1, 118 children from one Early Childhood Development Centre (ECDC) were tested using the Test of Gross Motor Development-2, and in study 2, 83…

  20. Supplementary motor area deactivation impacts the recovery of hand function from severe peripheral nerve injury.

    PubMed

    Lu, Ye-Chen; Liu, Han-Qiu; Hua, Xu-Yun; Shen, Yun-Dong; Xu, Wen-Dong; Xu, Jian-Guang; Gu, Yu-Dong

    2016-04-01

    Although some patients have successful peripheral nerve regeneration, a poor recovery of hand function often occurs after peripheral nerve injury. It is believed that the capability of brain plasticity is crucial for the recovery of hand function. The supplementary motor area may play a key role in brain remodeling after peripheral nerve injury. In this study, we explored the activation mode of the supplementary motor area during a motor imagery task. We investigated the plasticity of the central nervous system after brachial plexus injury, using the motor imagery task. Results from functional magnetic resonance imaging showed that after brachial plexus injury, the motor imagery task for the affected limbs of the patients triggered no obvious activation of bilateral supplementary motor areas. This result indicates that it is difficult to excite the supplementary motor areas of brachial plexus injury patients during a motor imagery task, thereby impacting brain remodeling. Deactivation of the supplementary motor area is likely to be a serious problem for brachial plexus injury patients in terms of preparing, initiating and executing certain movements, which may be partly responsible for the unsatisfactory clinical recovery of hand function. PMID:27212933

  1. Non-motor function of the midbrain dopaminergic neurons.

    PubMed

    Da Cunha, Claudio; Wietzikoski, Evellyn Claudia; Bortolanza, Mariza; Dombrowski, Patricia Andréia; dos Santos, Lucélia Mendes; Boschen, Suelen Lúcio; Miyoshi, Edmar; Vital, Maria Aparecida Barbato Frazão; Boerngen-Lacerda, Roseli; Andreatini, Roberto

    2009-01-01

    The roles of the nigrostriatal pathway are far beyond the simple control of motor functions. The tonic release of dopamine in the dorsal and ventral striatum controls the choice of proper actions toward a given environmental situation. In the striatum, a specific action is triggered by a specific stimulus associated with it. When the subject faces a novel and salient stimulus, the phasic release of dopamine allows synaptic plasticity in the cortico-striatal synapses. Neurons of different regions of cortical areas make synapses that converge to the same medium spine neurons of the striatum. The convergent associations form functional units encoding body parts, objects, locations, and symbolic representations of the subject's world. Such units emerge in the striatum in a repetitive manner, like a mosaic of broken mirrors. The phasic release of dopamine allows the association of units to encode an action of the subject directed to an object or location with the outcome of this action. Reinforced stimulus-action-outcome associations will affect future decision making when the same stimulus (object, location, idea) is presented to the subject in the future. In the absence of a minimal amount of striatal dopamine, no action is initiated as seen in Parkinson's disease subjects. The abnormal and improper association of these units leads to the initiation of unpurposeful and sometimes repetitive actions, as those observed in dyskinetic patients. The association of an excessive reinforcement of some actions, like drug consumption, leads to drug addiction. Improper associations of ideas and unpleasant outcomes may be related to traumatic and depressive symptoms common in many diseases, including Parkinson's disease. The same can be said about the learning and memory impairments observed in demented and nondemented Parkinson's disease patients.

  2. Changes in visual and sensory-motor resting-state functional connectivity support motor learning by observing.

    PubMed

    McGregor, Heather R; Gribble, Paul L

    2015-07-01

    Motor learning occurs not only through direct first-hand experience but also through observation (Mattar AA, Gribble PL. Neuron 46: 153-160, 2005). When observing the actions of others, we activate many of the same brain regions involved in performing those actions ourselves (Malfait N, Valyear KF, Culham JC, Anton JL, Brown LE, Gribble PL. J Cogn Neurosci 22: 1493-1503, 2010). Links between neural systems for vision and action have been reported in neurophysiological (Strafella AP, Paus T. Neuroreport 11: 2289-2292, 2000; Watkins KE, Strafella AP, Paus T. Neuropsychologia 41: 989-994, 2003), brain imaging (Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ. Eur J Neurosci 13: 400-404, 2001; Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G. Science 286: 2526-2528, 1999), and eye tracking (Flanagan JR, Johansson RS. Nature 424: 769-771, 2003) studies. Here we used a force field learning paradigm coupled with resting-state fMRI to investigate the brain areas involved in motor learning by observing. We examined changes in resting-state functional connectivity (FC) after an observational learning task and found a network consisting of V5/MT, cerebellum, and primary motor and somatosensory cortices in which changes in FC were correlated with the amount of motor learning achieved through observation, as assessed behaviorally after resting-state fMRI scans. The observed FC changes in this network are not due to visual attention to motion or observation of movement errors but rather are specifically linked to motor learning. These results support the idea that brain networks linking action observation and motor control also facilitate motor learning. PMID:25995349

  3. Changes in visual and sensory-motor resting-state functional connectivity support motor learning by observing.

    PubMed

    McGregor, Heather R; Gribble, Paul L

    2015-07-01

    Motor learning occurs not only through direct first-hand experience but also through observation (Mattar AA, Gribble PL. Neuron 46: 153-160, 2005). When observing the actions of others, we activate many of the same brain regions involved in performing those actions ourselves (Malfait N, Valyear KF, Culham JC, Anton JL, Brown LE, Gribble PL. J Cogn Neurosci 22: 1493-1503, 2010). Links between neural systems for vision and action have been reported in neurophysiological (Strafella AP, Paus T. Neuroreport 11: 2289-2292, 2000; Watkins KE, Strafella AP, Paus T. Neuropsychologia 41: 989-994, 2003), brain imaging (Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ. Eur J Neurosci 13: 400-404, 2001; Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G. Science 286: 2526-2528, 1999), and eye tracking (Flanagan JR, Johansson RS. Nature 424: 769-771, 2003) studies. Here we used a force field learning paradigm coupled with resting-state fMRI to investigate the brain areas involved in motor learning by observing. We examined changes in resting-state functional connectivity (FC) after an observational learning task and found a network consisting of V5/MT, cerebellum, and primary motor and somatosensory cortices in which changes in FC were correlated with the amount of motor learning achieved through observation, as assessed behaviorally after resting-state fMRI scans. The observed FC changes in this network are not due to visual attention to motion or observation of movement errors but rather are specifically linked to motor learning. These results support the idea that brain networks linking action observation and motor control also facilitate motor learning.

  4. "One-off" complete radiofrequency ablation of hepatocellular carcinoma adjacent to the gallbladder by a novel laparoscopic technique without gallbladder isolation.

    PubMed

    Jiang, Kai; Su, Ming; Zhao, Xiangqian; Chen, Yongwei; Zhang, Wenzhi; Wang, Jing; Dong, Jiahong; Huang, Zhiqiang

    2014-04-01

    The main objective of this study is to assess the feasibility and safety of treating hepatocellular carcinoma (HCC) proximal to the gallbladder using laparoscopic radiofrequency ablation (RFA). Surgical ablation of tumor located adjacent to the gallbladder may damage the gallbladder wall, even with a laparoscope and this ablation method is not precise and incomplete and is frequently combined with alcohol injections with need for further RFA treatment. Four patients were included in this study, with typical HCC where the tumor was present on the left, right, or bed side surrounding the gallbladder. The gallbladder was not separated or removed during larascopic inspection. In the RFA treatment procedure, the tumor lesion was pre-heated for 10 min, and heating was continued for 20 min. The integrity of the gallbladder wall was properly maintained. A follow-up to check for possible local recurrence was carried out 1 year after the RFA. The goal of "one-off" tumor complete RFA is to achieve thorough ablation of the tumor in a single treatment and limiting the possibility of recurrence within 6 months. Seven days after RFA, liver functions of all the patients returned to near-preoperative levels. The patients experienced slight pain in the upper right abdomen, which disappeared in 2-3 days. Results of B ultrasound on days 3-5 showed thickening of the periphery of the ablation area, without significant effusion. Enhanced CT on day 3 showed that RFA low-density area completely covered the lesions. No significant abnormality was observed in the gallbladder and its vicinity. One month after the surgery, B ultrasound and CT examination revealed no significant abnormalities. All patients had an intact gallbladder, and no extrahepatic or intrahepatic bile duct dilatation occurred. There was no evidence of damage to the bile duct or the vessels. Follow-up for 18-32 months found that all patients were in good condition. "One-off" complete RFA can be safely implemented to ablate

  5. BMS-247550 in Treating Patients With Liver or Gallbladder Cancer

    ClinicalTrials.gov

    2014-05-13

    Adult Primary Cholangiocellular Carcinoma; Adult Primary Hepatocellular Carcinoma; Advanced Adult Primary Liver Cancer; Cholangiocarcinoma of the Extrahepatic Bile Duct; Cholangiocarcinoma of the Gallbladder; Localized Extrahepatic Bile Duct Cancer; Localized Gallbladder Cancer; Localized Resectable Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Recurrent Adult Primary Liver Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer

  6. Pathophysiology of motor functions in prolonged manned space flights

    NASA Astrophysics Data System (ADS)

    Kozlovskaya, I. B.; Kreidich, Yu. V.; Oganov, V. S.; Koserenko, O. P.

    The influence of weightlessness on different parts of the motor system have been studied in crew members of 140 and 175 days space flights. It has been shown that weightlessness affects all parts of the motor system including (i) the leg and trunk muscles, in which severe atonia, a decrease of strength and an increase of electromyographic cost of contraction have been observed, (ii) the proprioceptive elements and the spinal reflex mechanisms in which decreased thresholds accompanied by decreases of maximal amplitude of reflexes and disturbances in cross reflex mechanisms have been found, and (iii) the central mechanisms that control characteristics of postural and locomotor activities. The intensities and durations of disturbances of different parts of the motor system did not correlate to each other, but did correlate with prophylactic activity during space flight. The data suggest a different nature of disturbances caused by weightlessness in different parts of the motor system.

  7. Executive functions as predictors of visual-motor integration in children with intellectual disability.

    PubMed

    Memisevic, Haris; Sinanovic, Osman

    2013-12-01

    The goal of this study was to assess the relationship between visual-motor integration and executive functions, and in particular, the extent to which executive functions can predict visual-motor integration skills in children with intellectual disability. The sample consisted of 90 children (54 boys, 36 girls; M age = 11.3 yr., SD = 2.7, range 7-15) with intellectual disabilities of various etiologies. The measure of executive functions were 8 subscales of the Behavioral Rating Inventory of Executive Function (BRIEF) consisting of Inhibition, Shifting, Emotional Control, Initiating, Working memory, Planning, Organization of material, and Monitoring. Visual-motor integration was measured with the Acadia test of visual-motor integration (VMI). Regression analysis revealed that BRIEF subscales explained 38% of the variance in VMI scores. Of all the BRIEF subscales, only two were statistically significant predictors of visual-motor integration: Working memory and Monitoring. Possible implications of this finding are further elaborated. PMID:24665807

  8. Overexpression of survival motor neuron improves neuromuscular function and motor neuron survival in mutant SOD1 mice

    PubMed Central

    Turner, Bradley J.; Alfazema, Neza; Sheean, Rebecca K.; Sleigh, James N.; Davies, Kay E.; Horne, Malcolm K.; Talbot, Kevin

    2014-01-01

    Spinal muscular atrophy results from diminished levels of survival motor neuron (SMN) protein in spinal motor neurons. Low levels of SMN also occur in models of amyotrophic lateral sclerosis (ALS) caused by mutant superoxide dismutase 1 (SOD1) and genetic reduction of SMN levels exacerbates the phenotype of transgenic SOD1G93A mice. Here, we demonstrate that SMN protein is significantly reduced in the spinal cords of patients with sporadic ALS. To test the potential of SMN as a modifier of ALS, we overexpressed SMN in 2 different strains of SOD1G93A mice. Neuronal overexpression of SMN significantly preserved locomotor function, rescued motor neurons, and attenuated astrogliosis in spinal cords of SOD1G93A mice. Despite this, survival was not prolonged, most likely resulting from SMN mislocalization and depletion of gems in motor neurons of symptomatic mice. Our results reveal that SMN upregulation slows locomotor deficit onset and motor neuron loss in this mouse model of ALS. However, disruption of SMN nuclear complexes by high levels of mutant SOD1, even in the presence of SMN overexpression, might limit its survival promoting effects in this specific mouse model. Studies in emerging mouse models of ALS are therefore warranted to further explore the potential of SMN as a modifier of ALS. PMID:24210254

  9. Castanea sativa Mill. extract contracts gallbladder and relaxes sphincter of Oddi in guinea pig: a natural approach to biliary tract motility disorders.

    PubMed

    Micucci, Matteo; Ioan, Pierfranco; Aldini, Rita; Cevenini, Monica; Alvisi, Vittorio; Ruffilli, Corrado; Chiarini, Alberto; Budriesi, Roberta

    2014-07-01

    Impaired gallbladder motility is a contributing factor to gallstone formation. Since many drugs delaying intestinal motility inhibit gallbladder emptying, the aim of the present study was to evaluate the effect on gallbladder and sphincter of Oddi motility of a Natural Chestnut Wood Extract (NEC) that reduces intestinal motility. In order to evaluate the effect of the extract in normal- and high-risk gallstone conditions, the investigation was performed using tissues from animals fed normal and lithogenic diet. Fifty guinea pigs were administered either control or lithogenic diet. The spontaneous motility of the gallbladder and sphincter of Oddi were recorded on isolated gallbladder tissues; thereafter, the effect of NEC on motility was tested and compared with carbachol (CCh), potassium chloride (KCl), noradrenaline (NA), and A71623. Compared to controls, the lithogenic diet induced an irregular and disordered motor pattern in both the gallbladder and sphincter of Oddi. NEC increased gallbladder and decreased sphincter of Oddi spontaneous motility independently of cholinergic, adrenergic, and CCK-1 receptor-mediated pathways both in controls and in lithogenic diet-fed animals, although the effect was lower in the latter group. The effect was reversible and mediated by calcium channels. The natural extract of chestnut increasing gallbladder contraction and inducing the relaxation of the sphincter of Oddi can be of benefit in pathological conditions associated with increased transit time at risk of gallstones.

  10. Cognitive and motor function of neurologically impaired extremely low birth weight children

    PubMed Central

    Bernardo, Janine; Friedman, Harriet; Minich, Nori; Taylor, H Gerry; Wilson-Costello, Deanne; Hack, Maureen

    2015-01-01

    BACKGROUND: Rates of neurological impairment among extremely low birth weight children (ELBW [<1 kg]) have decreased since 2000; however, their functioning is unexamined. OBJECTIVE: To compare motor and cognitive functioning of ELBW children with neurological impairment, including cerebral palsy and severe hypotonia/hypertonia, between two periods: 1990 to 1999 (n=83) and 2000 to 2005 (n=34). METHODS: Measures of function at 20 months corrected age included the Mental and Psychomotor Developmental Indexes of the Bayley Scales of Infant Development and the Gross Motor Functional Classification System as primary outcomes and individual motor function items as secondary outcomes. RESULTS: Analysis failed to reveal significant differences for the primary outcomes, although during 2000 to 2005, sitting significantly improved in children with neurological impairment (P=0.003). CONCLUSION: Decreases in rates of neurological impairment among ELBW children have been accompanied by a suggestion of improved motor function, although cognitive function has not changed. PMID:26435676

  11. Maturation of Sensori-Motor Functional Responses in the Preterm Brain.

    PubMed

    Allievi, Alessandro G; Arichi, Tomoki; Tusor, Nora; Kimpton, Jessica; Arulkumaran, Sophie; Counsell, Serena J; Edwards, A David; Burdet, Etienne

    2016-01-01

    Preterm birth engenders an increased risk of conditions like cerebral palsy and therefore this time may be crucial for the brain's developing sensori-motor system. However, little is known about how cortical sensori-motor function matures at this time, whether development is influenced by experience, and about its role in spontaneous motor behavior. We aimed to systematically characterize spatial and temporal maturation of sensori-motor functional brain activity across this period using functional MRI and a custom-made robotic stimulation device. We studied 57 infants aged from 30 + 2 to 43 + 2 weeks postmenstrual age. Following both induced and spontaneous right wrist movements, we saw consistent positive blood oxygen level-dependent functional responses in the contralateral (left) primary somatosensory and motor cortices. In addition, we saw a maturational trend toward faster, higher amplitude, and more spatially dispersed functional responses; and increasing integration of the ipsilateral hemisphere and sensori-motor associative areas. We also found that interhemispheric functional connectivity was significantly related to ex-utero exposure, suggesting the influence of experience-dependent mechanisms. At term equivalent age, we saw a decrease in both response amplitude and interhemispheric functional connectivity, and an increase in spatial specificity, culminating in the establishment of a sensori-motor functional response similar to that seen in adults.

  12. Maturation of Sensori-Motor Functional Responses in the Preterm Brain

    PubMed Central

    Allievi, Alessandro G.; Arichi, Tomoki; Tusor, Nora; Kimpton, Jessica; Arulkumaran, Sophie; Counsell, Serena J.; Edwards, A. David; Burdet, Etienne

    2016-01-01

    Preterm birth engenders an increased risk of conditions like cerebral palsy and therefore this time may be crucial for the brain's developing sensori-motor system. However, little is known about how cortical sensori-motor function matures at this time, whether development is influenced by experience, and about its role in spontaneous motor behavior. We aimed to systematically characterize spatial and temporal maturation of sensori-motor functional brain activity across this period using functional MRI and a custom-made robotic stimulation device. We studied 57 infants aged from 30 + 2 to 43 + 2 weeks postmenstrual age. Following both induced and spontaneous right wrist movements, we saw consistent positive blood oxygen level–dependent functional responses in the contralateral (left) primary somatosensory and motor cortices. In addition, we saw a maturational trend toward faster, higher amplitude, and more spatially dispersed functional responses; and increasing integration of the ipsilateral hemisphere and sensori-motor associative areas. We also found that interhemispheric functional connectivity was significantly related to ex-utero exposure, suggesting the influence of experience-dependent mechanisms. At term equivalent age, we saw a decrease in both response amplitude and interhemispheric functional connectivity, and an increase in spatial specificity, culminating in the establishment of a sensori-motor functional response similar to that seen in adults. PMID:26491066

  13. Functional Magnetic Resonance Imaging Neurofeedback-guided Motor Imagery Training and Motor Training for Parkinson’s Disease: Randomized Trial

    PubMed Central

    Subramanian, Leena; Morris, Monica Busse; Brosnan, Meadhbh; Turner, Duncan L.; Morris, Huw R.; Linden, David E. J.

    2016-01-01

    Objective: Real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback (NF) uses feedback of the patient’s own brain activity to self-regulate brain networks which in turn could lead to a change in behavior and clinical symptoms. The objective was to determine the effect of NF and motor training (MOT) alone on motor and non-motor functions in Parkinson’s Disease (PD) in a 10-week small Phase I randomized controlled trial. Methods: Thirty patients with Parkinson’s disease (PD; Hoehn and Yahr I-III) and no significant comorbidity took part in the trial with random allocation to two groups. Group 1 (NF: 15 patients) received rt-fMRI-NF with MOT. Group 2 (MOT: 15 patients) received MOT alone. The primary outcome measure was the Movement Disorder Society—Unified PD Rating Scale-Motor scale (MDS-UPDRS-MS), administered pre- and post-intervention “off-medication”. The secondary outcome measures were the “on-medication” MDS-UPDRS, the PD Questionnaire-39, and quantitative motor assessments after 4 and 10 weeks. Results: Patients in the NF group were able to upregulate activity in the supplementary motor area (SMA) by using motor imagery. They improved by an average of 4.5 points on the MDS-UPDRS-MS in the “off-medication” state (95% confidence interval: −2.5 to −6.6), whereas the MOT group improved only by 1.9 points (95% confidence interval +3.2 to −6.8). The improvement in the intervention group meets the minimal clinically important difference which is also on par with other non-invasive therapies such as repetitive Transcranial Magnetic Stimulation (rTMS). However, the improvement did not differ significantly between the groups. No adverse events were reported in either group. Interpretation: This Phase I study suggests that NF combined with MOT is safe and improves motor symptoms immediately after treatment, but larger trials are needed to explore its superiority over active control conditions. PMID:27375451

  14. Impairment and recovery of left motor function in patients with right hemiplegia.

    PubMed Central

    Marque, P; Felez, A; Puel, M; Demonet, J F; Guiraud-Chaumeil, B; Roques, C F; Chollet, F

    1997-01-01

    OBJECTIVE: To assess the motor function of the left, supposedly unaffected, limbs of patients with an acute right vascular hemiplegia. METHODS: Fifteen patients with an acute vascular right hemiplegia and 16 matched healthy controls were studied. Motor function of the left limbs of each patient was evaluated on days 20 and 90 after their stroke using four validated tools (hand dynamometer, isokinetic dynamometer, finger tapping, and nine hole peg test). RESULTS: There was a significant impairment of motor function of the left limbs of patients at day 20 compared with controls. The impairment had recovered almost completely at day 90 after the stroke. CONCLUSION: These results show the bilateral cerebral representation of the human motor system and suggest the participation of ipsilateral motor pathways in recovery after a stroke. PMID:9010404

  15. Relationship between Motor Skill Competency and Executive Function in Children with Down's Syndrome

    ERIC Educational Resources Information Center

    Schott, N.; Holfelder, B.

    2015-01-01

    Background: Previous studies suggest that children with Down's syndrome (DS), a genetically based neurodevelopmental disorder, demonstrate motor problems and cognitive deficits. The first aim of this study was to examine motor skills and executive functions (EFs) in school-age children with DS. The second aim was to investigate the relationship…

  16. Motor Performance of Children with Mild Intellectual Disability and Borderline Intellectual Functioning

    ERIC Educational Resources Information Center

    Vuijk, P. J.; Hartman, E.; Scherder, E.; Visscher, C.

    2010-01-01

    Background: There is a relatively small body of research on the motor performance of children with mild intellectual disabilities (MID) and borderline intellectual functioning (BIF). Adequate levels of motor skills may contribute to lifelong enjoyment of physical activity, participation in sports and healthy lifestyles. The present study compares…

  17. An Examination of the Relationship between Motor Coordination and Executive Functions in Adolescents

    ERIC Educational Resources Information Center

    Rigoli, Daniela; Piek, Jan P.; Kane, Robert; Oosterlaan, Jaap

    2012-01-01

    Aim: Research suggests important links between motor coordination and executive functions. The current study examined whether motor coordination predicts working memory, inhibition, and switching performance, extending previous research by accounting for attention-deficit-hyperactivity disorder (ADHD) symptomatology and other confounding factors,…

  18. Stimulation through Simulation? Motor Imagery and Functional Reorganization in Hemiplegic Stroke Patients

    ERIC Educational Resources Information Center

    Johnson-Frey, Scott H.

    2004-01-01

    A key factor influencing reorganization of function in damaged neural networks of the adult brain is stimulation. How to stimulate motor areas of patients with paralyses is a formidable challenge. One possibility is to use internal movement simulations, or motor imagery, as an alternative to conventional therapeutic interventions that require…

  19. On the Relationship between Motor Performance and Executive Functioning in Children with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Hartman, E.; Houwen, S.; Scherder, E.; Visscher, C.

    2010-01-01

    Background: It has been suggested that children with intellectual disabilities (ID) have motor problems and higher-order cognitive deficits. The aim of this study was to examine the motor skills and executive functions in school-age children with borderline and mild ID. The second aim was to investigate the relationship between the two performance…

  20. Fine Motor Skills and Executive Function Both Contribute to Kindergarten Achievement

    ERIC Educational Resources Information Center

    Cameron, Claire E.; Brock, Laura L.; Murrah, William M.; Bell, Lindsay H.; Worzalla, Samantha L.; Grissmer, David; Morrison, Frederick J.

    2012-01-01

    This study examined the contribution of executive function (EF) and multiple aspects of fine motor skills to achievement on 6 standardized assessments in a sample of middle-socioeconomic status kindergarteners. Three- and 4-year-olds' (n = 213) fine and gross motor skills were assessed in a home visit before kindergarten, EF was measured at fall…

  1. Influence of bilateral motor behaviors on flexible functioning: an embodied perspective.

    PubMed

    Cretenet, Joël; Dru, Vincent

    2011-08-01

    To examine the influence of bilateral motor behaviors on flexibility performance, two studies were conducted. Previous research has shown that when performing unilateral motor behavior that activates the affective and motivational systems of approach versus avoidance (arm flexion vs. extension), it is the congruence between laterality and motor activation that determines flexibility-rigidity functioning (Cretenet & Dru, 2009). When bilateral motor behaviors were performed, a mechanism of embodiment was revealed. It showed that the flexibility scores were determined by the match between the respective qualities of congruence of each of the unilateral motor behaviors performed. These results bring to light an overall embodied mechanism associated with the compatibility of the cognitive impact(s) of each motor behavior performed.

  2. ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function

    PubMed Central

    Sharma, Aarti; Lyashchenko, Alexander K.; Lu, Lei; Nasrabady, Sara Ebrahimi; Elmaleh, Margot; Mendelsohn, Monica; Nemes, Adriana; Tapia, Juan Carlos; Mentis, George Z.; Shneider, Neil A.

    2016-01-01

    Mutations in FUS cause amyotrophic lateral sclerosis (ALS), including some of the most aggressive, juvenile-onset forms of the disease. FUS loss-of-function and toxic gain-of-function mechanisms have been proposed to explain how mutant FUS leads to motor neuron degeneration, but neither has been firmly established in the pathogenesis of ALS. Here we characterize a series of transgenic FUS mouse lines that manifest progressive, mutant-dependent motor neuron degeneration preceded by early, structural and functional abnormalities at the neuromuscular junction. A novel, conditional FUS knockout mutant reveals that postnatal elimination of FUS has no effect on motor neuron survival or function. Moreover, endogenous FUS does not contribute to the onset of the ALS phenotype induced by mutant FUS. These findings demonstrate that FUS-dependent motor degeneration is not due to loss of FUS function, but to the gain of toxic properties conferred by ALS mutations. PMID:26842965

  3. Motor neuron disease. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy.

    PubMed

    Naryshkin, Nikolai A; Weetall, Marla; Dakka, Amal; Narasimhan, Jana; Zhao, Xin; Feng, Zhihua; Ling, Karen K Y; Karp, Gary M; Qi, Hongyan; Woll, Matthew G; Chen, Guangming; Zhang, Nanjing; Gabbeta, Vijayalakshmi; Vazirani, Priya; Bhattacharyya, Anuradha; Furia, Bansri; Risher, Nicole; Sheedy, Josephine; Kong, Ronald; Ma, Jiyuan; Turpoff, Anthony; Lee, Chang-Sun; Zhang, Xiaoyan; Moon, Young-Choon; Trifillis, Panayiota; Welch, Ellen M; Colacino, Joseph M; Babiak, John; Almstead, Neil G; Peltz, Stuart W; Eng, Loren A; Chen, Karen S; Mull, Jesse L; Lynes, Maureen S; Rubin, Lee L; Fontoura, Paulo; Santarelli, Luca; Haehnke, Daniel; McCarthy, Kathleen D; Schmucki, Roland; Ebeling, Martin; Sivaramakrishnan, Manaswini; Ko, Chien-Ping; Paushkin, Sergey V; Ratni, Hasane; Gerlach, Irene; Ghosh, Anirvan; Metzger, Friedrich

    2014-08-01

    Spinal muscular atrophy (SMA) is a genetic disease caused by mutation or deletion of the survival of motor neuron 1 (SMN1) gene. A paralogous gene in humans, SMN2, produces low, insufficient levels of functional SMN protein due to alternative splicing that truncates the transcript. The decreased levels of SMN protein lead to progressive neuromuscular degeneration and high rates of mortality. Through chemical screening and optimization, we identified orally available small molecules that shift the balance of SMN2 splicing toward the production of full-length SMN2 messenger RNA with high selectivity. Administration of these compounds to Δ7 mice, a model of severe SMA, led to an increase in SMN protein levels, improvement of motor function, and protection of the neuromuscular circuit. These compounds also extended the life span of the mice. Selective SMN2 splicing modifiers may have therapeutic potential for patients with SMA.

  4. Shaping Early Reorganization of Neural Networks Promotes Motor Function after Stroke

    PubMed Central

    Volz, L. J.; Rehme, A. K.; Michely, J.; Nettekoven, C.; Eickhoff, S. B.; Fink, G. R.; Grefkes, C.

    2016-01-01

    Neural plasticity is a major factor driving cortical reorganization after stroke. We here tested whether repetitively enhancing motor cortex plasticity by means of intermittent theta-burst stimulation (iTBS) prior to physiotherapy might promote recovery of function early after stroke. Functional magnetic resonance imaging (fMRI) was used to elucidate underlying neural mechanisms. Twenty-six hospitalized, first-ever stroke patients (time since stroke: 1–16 days) with hand motor deficits were enrolled in a sham-controlled design and pseudo-randomized into 2 groups. iTBS was administered prior to physiotherapy on 5 consecutive days either over ipsilesional primary motor cortex (M1-stimulation group) or parieto-occipital vertex (control-stimulation group). Hand motor function, cortical excitability, and resting-state fMRI were assessed 1 day prior to the first stimulation and 1 day after the last stimulation. Recovery of grip strength was significantly stronger in the M1-stimulation compared to the control-stimulation group. Higher levels of motor network connectivity were associated with better motor outcome. Consistently, control-stimulated patients featured a decrease in intra- and interhemispheric connectivity of the motor network, which was absent in the M1-stimulation group. Hence, adding iTBS to prime physiotherapy in recovering stroke patients seems to interfere with motor network degradation, possibly reflecting alleviation of post-stroke diaschisis. PMID:26980614

  5. [Anatomopathological behavior of gallbladder cancer. Frequency and importance of precancerous epithelial lesions of gallbladder cancer].

    PubMed

    Trujillo, C; Olaechea de Careaga, B; Uría, J L; Villagómez, G; Antelo, J

    1986-01-01

    Surgical and autopsy materials were analyzed in a period of six years at La Paz, Bolivia "Bolivian Japanese Gastroenterological Institute" (Instituto de Gastroenterología Boliviano Japonés de La Paz, Bolivia), searching for macro and microscopic appearance of gallbladder cancer. Adenocarcinoma with infiltrative growth was the most frequent finding. Cholecystitis and Cholelithiasis were present in all the cases of gallbladder cancer. Epithelial lesions such hyperplasia, atypical hyperplasia and carcinoma in situ were frequent findings in the surrounding mucosa of invasive gallbladder carcinoma and not so frequent in benign gallbladder lesions. Group V of Nevin classification was common in our cases.

  6. Functional organization and restoration of the brain motor-execution network after stroke and rehabilitation

    PubMed Central

    Bajaj, Sahil; Butler, Andrew J.; Drake, Daniel; Dhamala, Mukesh

    2015-01-01

    Multiple cortical areas of the human brain motor system interact coherently in the low frequency range (<0.1 Hz), even in the absence of explicit tasks. Following stroke, cortical interactions are functionally disturbed. How these interactions are affected and how the functional organization is regained from rehabilitative treatments as people begin to recover motor behaviors has not been systematically studied. We recorded the intrinsic functional magnetic resonance imaging (fMRI) signals from 30 participants: 17 young healthy controls and 13 aged stroke survivors. Stroke participants underwent mental practice (MP) or both mental practice and physical therapy (MP+PT) within 14–51 days following stroke. We investigated the network activity of five core areas in the motor-execution network, consisting of the left primary motor area (LM1), the right primary motor area (RM1), the left pre-motor cortex (LPMC), the right pre-motor cortex (RPMC) and the supplementary motor area (SMA). We discovered that (i) the network activity dominated in the frequency range 0.06–0.08 Hz for all the regions, and for both able-bodied and stroke participants (ii) the causal information flow between the regions: LM1 and SMA, RPMC and SMA, RPMC and LM1, SMA and RM1, SMA and LPMC, was reduced significantly for stroke survivors (iii) the flow did not increase significantly after MP alone and (iv) the flow among the regions during MP+PT increased significantly. We also found that sensation and motor scores were significantly higher and correlated with directed functional connectivity measures when the stroke-survivors underwent MP+PT but not MP alone. The findings provide evidence that a combination of mental practice and physical therapy can be an effective means of treatment for stroke survivors to recover or regain the strength of motor behaviors, and that the spectra of causal information flow can be used as a reliable biomarker for evaluating rehabilitation in stroke survivors. PMID

  7. Differences in motor and cognitive function in patients with Parkinson's disease with and without orthostatic hypotension.

    PubMed

    Hohler, Anna D; Zuzuárregui, José-Rafael P; Katz, Douglas I; Depiero, T Joy; Hehl, Christina L; Leonard, Alissa; Allen, Valerie; Dentino, Jill; Gardner, Maura; Phenix, Heidi; Saint-Hilaire, Marie; Ellis, Terry

    2012-05-01

    Patients with Parkinson's disease (PD) often present with orthostatic hypotension (OH) as a result of the dysautonomia associated with the disease or as a side effect of the dopaminergic medications used to treat the disease. The purpose of this study was to investigate differences in motor and cognitive function in patients with PD with and without OH. Forty-four patients with a diagnosis of PD were evaluated and stratified by the presence of OH based on orthostatic blood pressure recordings. Both groups underwent assessments of motor and cognitive function. OH was present in 17 of 44 patients (39%) with PD. These patients with OH had significantly lower scores in gross motor, balance, and cognitive function (p < .05). No significant difference between groups was found in the finger tapping scores. These results suggest that patients with PD should be routinely screened for OH as it commonly occurs and may negatively impact gross motor, balance, and cognitive function. PMID:22191544

  8. Environmental Exposure to Manganese in Air: Associations with Tremor and Motor Function

    EPA Science Inventory

    BACKGROUND: Manganese (Mn) inhalation has been associated with neuropsychological and neurological sequelae in exposed workers. Few environmental epidemiologic studies have examined the potentialy neurotoxic effects of Mn exposure in ambient air on motor function and han...

  9. Physical activity and obesity mediate the association between childhood motor function and adolescents' academic achievement.

    PubMed

    Kantomaa, Marko T; Stamatakis, Emmanuel; Kankaanpää, Anna; Kaakinen, Marika; Rodriguez, Alina; Taanila, Anja; Ahonen, Timo; Järvelin, Marjo-Riitta; Tammelin, Tuija

    2013-01-29

    The global epidemic of obesity and physical inactivity may have detrimental implications for young people's cognitive function and academic achievement. This prospective study investigated whether childhood motor function predicts later academic achievement via physical activity, fitness, and obesity. The study sample included 8,061 children from the Northern Finland Birth Cohort 1986, which contains data about parent-reported motor function at age 8 y and self-reported physical activity, predicted cardiorespiratory fitness (cycle ergometer test), obesity (body weight and height), and academic achievement (grades) at age 16 y. Structural equation models with unstandardized (B) and standardized (β) coefficients were used to test whether, and to what extent, physical activity, cardiorespiratory fitness, and obesity at age 16 mediated the association between childhood motor function and adolescents' academic achievement. Physical activity was associated with a higher grade-point average, and obesity was associated with a lower grade-point average in adolescence. Furthermore, compromised motor function in childhood had a negative indirect effect on adolescents' academic achievement via physical inactivity (B = -0.023, 95% confidence interval = -0.031, -0.015) and obesity (B = -0.025, 95% confidence interval = -0.039, -0.011), but not via cardiorespiratory fitness. These results suggest that physical activity and obesity may mediate the association between childhood motor function and adolescents' academic achievement. Compromised motor function in childhood may represent an important factor driving the effects of obesity and physical inactivity on academic underachievement.

  10. Physical activity and obesity mediate the association between childhood motor function and adolescents’ academic achievement

    PubMed Central

    Kantomaa, Marko T.; Stamatakis, Emmanuel; Kankaanpää, Anna; Kaakinen, Marika; Rodriguez, Alina; Taanila, Anja; Ahonen, Timo; Järvelin, Marjo-Riitta; Tammelin, Tuija

    2013-01-01

    The global epidemic of obesity and physical inactivity may have detrimental implications for young people’s cognitive function and academic achievement. This prospective study investigated whether childhood motor function predicts later academic achievement via physical activity, fitness, and obesity. The study sample included 8,061 children from the Northern Finland Birth Cohort 1986, which contains data about parent-reported motor function at age 8 y and self-reported physical activity, predicted cardiorespiratory fitness (cycle ergometer test), obesity (body weight and height), and academic achievement (grades) at age 16 y. Structural equation models with unstandardized (B) and standardized (β) coefficients were used to test whether, and to what extent, physical activity, cardiorespiratory fitness, and obesity at age 16 mediated the association between childhood motor function and adolescents’ academic achievement. Physical activity was associated with a higher grade-point average, and obesity was associated with a lower grade-point average in adolescence. Furthermore, compromised motor function in childhood had a negative indirect effect on adolescents’ academic achievement via physical inactivity (B = –0.023, 95% confidence interval = –0.031, –0.015) and obesity (B = –0.025, 95% confidence interval = –0.039, –0.011), but not via cardiorespiratory fitness. These results suggest that physical activity and obesity may mediate the association between childhood motor function and adolescents’ academic achievement. Compromised motor function in childhood may represent an important factor driving the effects of obesity and physical inactivity on academic underachievement. PMID:23277558

  11. DTI measures track and predict motor function outcomes in stroke rehabilitation utilizing BCI technology.

    PubMed

    Song, Jie; Nair, Veena A; Young, Brittany M; Walton, Leo M; Nigogosyan, Zack; Remsik, Alexander; Tyler, Mitchell E; Farrar-Edwards, Dorothy; Caldera, Kristin E; Sattin, Justin A; Williams, Justin C; Prabhakaran, Vivek

    2015-01-01

    Tracking and predicting motor outcomes is important in determining effective stroke rehabilitation strategies. Diffusion tensor imaging (DTI) allows for evaluation of the underlying structural integrity of brain white matter tracts and may serve as a potential biomarker for tracking and predicting motor recovery. In this study, we examined the longitudinal relationship between DTI measures of the posterior limb of the internal capsule (PLIC) and upper-limb motor outcomes in 13 stroke patients (median 20-month post-stroke) who completed up to 15 sessions of intervention using brain-computer interface (BCI) technology. Patients' upper-limb motor outcomes and PLIC DTI measures including fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) were assessed longitudinally at four time points: pre-, mid-, immediately post- and 1-month-post intervention. DTI measures and ratios of each DTI measure comparing the ipsilesional and contralesional PLIC were correlated with patients' motor outcomes to examine the relationship between structural integrity of the PLIC and patients' motor recovery. We found that lower diffusivity and higher FA values of the ipsilesional PLIC were significantly correlated with better upper-limb motor function. Baseline DTI ratios were significantly correlated with motor outcomes measured immediately post and 1-month-post BCI interventions. A few patients achieved improvements in motor recovery meeting the minimum clinically important difference (MCID). These findings suggest that upper-limb motor recovery in stroke patients receiving BCI interventions relates to the microstructural status of the PLIC. Lower diffusivity and higher FA measures of the ipsilesional PLIC contribute toward better motor recovery in the stroke-affected upper-limb. DTI-derived measures may be a clinically useful biomarker in tracking and predicting motor recovery in stroke patients receiving BCI interventions.

  12. Sorafenib Tosylate and Erlotinib Hydrochloride in Treating Patients With Locally Advanced, Unresectable, or Metastatic Gallbladder Cancer or Cholangiocarcinoma

    ClinicalTrials.gov

    2015-06-03

    Extrahepatic Bile Duct Adenocarcinoma; Gallbladder Adenocarcinoma; Gallbladder Adenocarcinoma With Squamous Metaplasia; Hilar Cholangiocarcinoma; Recurrent Extrahepatic Bile Duct Carcinoma; Recurrent Gallbladder Carcinoma; Undifferentiated Gallbladder Carcinoma; Unresectable Extrahepatic Bile Duct Carcinoma; Unresectable Gallbladder Carcinoma

  13. [Endoscopic gallbladder stenting for acute cholecystitis].

    PubMed

    Maekawa, Satoshi; Nomura, Ryosuke; Murase, Takayuki; Ann, Yasuyoshi; Oeholm, Masayuki; Harada, Masaru

    2014-12-01

    Acute cholecystitis is an inflammatory disease of the gallbladder. Inflammation often remains in the gallbladder, but some patients may take a fatal course with exacerbation of inflammation. Although laparoscopic cholecystectomy is recommended for moderate and severe acute cystitis, sometimes cholecystectomy is impossible in elder patients. Because many elder patients have bad general conditions, cholecystectomy should not be performed. Such patients are generally treated by percutaneous transhepatic gallbladder drainage (PTGBD), but PTGBD has the risk of intra-abdominal bleeding. In previous reports, endoscopic gallbladder stenting (EGBS) has been shown to be an effective strategy in cirrhosis patients with symptomatic cholelithiasis as a bridge to transplantation. Recent studies on EGBS have demonstrated an effective long-term management of acute cholecystitis in elderly patients who are poor surgical candidates. Here, we reviewed EGBS for the management of acute cholecystitis.

  14. Functional near infrared spectroscopy of the sensory and motor brain regions with simultaneous kinematic and EMG monitoring during motor tasks

    PubMed Central

    Sukal-Moulton, Theresa; de Campos, Ana Carolina; Stanley, Christopher J

    2015-01-01

    There are several advantages that functional near-infrared spectroscopy (fNIRS) presents in the study of the neural control of human movement. It is relatively flexible with respect to participant positioning and allows for some head movements during tasks. Additionally, it is inexpensive, light weight, and portable, with very few contraindications to its use. This presents a unique opportunity to study functional brain activity during motor tasks in individuals who are typically developing, as well as those with movement disorders, such as cerebral palsy. An additional consideration when studying movement disorders, however, is the quality of actual movements performed and the potential for additional, unintended movements. Therefore, concurrent monitoring of both blood flow changes in the brain and actual movements of the body during testing is required for appropriate interpretation of fNIRS results. Here, we show a protocol for the combination of fNIRS with muscle and kinematic monitoring during motor tasks. We explore gait, a unilateral multi-joint movement (cycling), and two unilateral single-joint movements (isolated ankle dorsiflexion, and isolated hand squeezing). The techniques presented can be useful in studying both typical and atypical motor control, and can be modified to investigate a broad range of tasks and scientific questions. PMID:25548919

  15. The Systematic Classification of Gallbladder Stones

    PubMed Central

    Qiao, Tie; Ma, Rui-hong; Luo, Xiao-bing; Yang, Liu-qing; Luo, Zhen-liang; Zheng, Pei-ming

    2013-01-01

    Background To develop a method for systematic classification of gallbladder stones, analyze the clinical characteristics of each type of stone and provide a theoretical basis for the study of the formation mechanism of different types of gallbladder stones. Methodology A total of 807 consecutive patients with gallbladder stones were enrolled and their gallstones were studied. The material composition of gallbladder stones was analyzed using Fourier Transform Infrared spectroscopy and the distribution and microstructure of material components was observed with Scanning Electron Microscopy. The composition and distribution of elements were analyzed by an X-ray energy spectrometer. Gallbladder stones were classified accordingly, and then, gender, age, medical history and BMI of patients with each type of stone were analyzed. Principal Findings Gallbladder stones were classified into 8 types and more than ten subtypes, including cholesterol stones (297), pigment stones (217), calcium carbonate stones (139), phosphate stones (12), calcium stearate stones (9), protein stones (3), cystine stones (1) and mixed stones (129). Mixed stones were those stones with two or more than two kinds of material components and the content of each component was similar. A total of 11 subtypes of mixed stones were found in this study. Patients with cholesterol stones were mainly female between the ages of 30 and 50, with higher BMI and shorter medical history than patients with pigment stones (P<0.05), however, patients with pigment, calcium carbonate, phosphate stones were mainly male between the ages of 40 and 60. Conclusion The systematic classification of gallbladder stones indicates that different types of stones have different characteristics in terms of the microstructure, elemental composition and distribution, providing an important basis for the mechanistic study of gallbladder stones. PMID:24124459

  16. Decoding post-stroke motor function from structural brain imaging.

    PubMed

    Rondina, Jane M; Filippone, Maurizio; Girolami, Mark; Ward, Nick S

    2016-01-01

    Clinical research based on neuroimaging data has benefited from machine learning methods, which have the ability to provide individualized predictions and to account for the interaction among units of information in the brain. Application of machine learning in structural imaging to investigate diseases that involve brain injury presents an additional challenge, especially in conditions like stroke, due to the high variability across patients regarding characteristics of the lesions. Extracting data from anatomical images in a way that translates brain damage information into features to be used as input to learning algorithms is still an open question. One of the most common approaches to capture regional information from brain injury is to obtain the lesion load per region (i.e. the proportion of voxels in anatomical structures that are considered to be damaged). However, no systematic evaluation has yet been performed to compare this approach with using patterns of voxels (i.e. considering each voxel as a single feature). In this paper we compared both approaches applying Gaussian Process Regression to decode motor scores in 50 chronic stroke patients based solely on data derived from structural MRI. For both approaches we compared different ways to delimit anatomical areas: regions of interest from an anatomical atlas, the corticospinal tract, a mask obtained from fMRI analysis with a motor task in healthy controls and regions selected using lesion-symptom mapping. Our analysis showed that extracting features through patterns of voxels that represent lesion probability produced better results than quantifying the lesion load per region. In particular, from the different ways to delimit anatomical areas compared, the best performance was obtained with a combination of a range of cortical and subcortical motor areas as well as the corticospinal tract. These results will inform the appropriate methodology for predicting long term motor outcomes from early post

  17. Motor network disruption in essential tremor: a functional and effective connectivity study.

    PubMed

    Buijink, Arthur W G; van der Stouwe, A M Madelein; Broersma, Marja; Sharifi, Sarvi; Groot, Paul F C; Speelman, Johannes D; Maurits, Natasha M; van Rootselaar, Anne-Fleur

    2015-10-01

    Although involvement of the cerebello-thalamo-cortical network has often been suggested in essential tremor, the source of oscillatory activity remains largely unknown. To elucidate mechanisms of tremor generation, it is of crucial importance to study the dynamics within the cerebello-thalamo-cortical network. Using a combination of electromyography and functional magnetic resonance imaging, it is possible to record the peripheral manifestation of tremor simultaneously with brain activity related to tremor generation. Our first aim was to study the intrinsic activity of regions within the cerebello-thalamo-cortical network using dynamic causal modelling to estimate effective connectivity driven by the concurrently recorded tremor signal. Our second aim was to objectify how the functional integrity of the cerebello-thalamo-cortical network is affected in essential tremor. We investigated the functional connectivity between cerebellar and cortical motor regions showing activations during a motor task. Twenty-two essential tremor patients and 22 healthy controls were analysed. For the effective connectivity analysis, a network of tremor-signal related regions was constructed, consisting of the left primary motor cortex, premotor cortex, supplementary motor area, left thalamus, and right cerebellar motor regions lobule V and lobule VIII. A measure of variation in tremor severity over time, derived from the electromyogram, was included as modulatory input on intrinsic connections and on the extrinsic cerebello-thalamic connections, giving a total of 128 models. Bayesian model selection and random effects Bayesian model averaging were used. Separate seed-based functional connectivity analyses for the left primary motor cortex, left supplementary motor area and right cerebellar lobules IV, V, VI and VIII were performed. We report two novel findings that support an important role for the cerebellar system in the pathophysiology of essential tremor. First, in the effective

  18. Motor network disruption in essential tremor: a functional and effective connectivity study.

    PubMed

    Buijink, Arthur W G; van der Stouwe, A M Madelein; Broersma, Marja; Sharifi, Sarvi; Groot, Paul F C; Speelman, Johannes D; Maurits, Natasha M; van Rootselaar, Anne-Fleur

    2015-10-01

    Although involvement of the cerebello-thalamo-cortical network has often been suggested in essential tremor, the source of oscillatory activity remains largely unknown. To elucidate mechanisms of tremor generation, it is of crucial importance to study the dynamics within the cerebello-thalamo-cortical network. Using a combination of electromyography and functional magnetic resonance imaging, it is possible to record the peripheral manifestation of tremor simultaneously with brain activity related to tremor generation. Our first aim was to study the intrinsic activity of regions within the cerebello-thalamo-cortical network using dynamic causal modelling to estimate effective connectivity driven by the concurrently recorded tremor signal. Our second aim was to objectify how the functional integrity of the cerebello-thalamo-cortical network is affected in essential tremor. We investigated the functional connectivity between cerebellar and cortical motor regions showing activations during a motor task. Twenty-two essential tremor patients and 22 healthy controls were analysed. For the effective connectivity analysis, a network of tremor-signal related regions was constructed, consisting of the left primary motor cortex, premotor cortex, supplementary motor area, left thalamus, and right cerebellar motor regions lobule V and lobule VIII. A measure of variation in tremor severity over time, derived from the electromyogram, was included as modulatory input on intrinsic connections and on the extrinsic cerebello-thalamic connections, giving a total of 128 models. Bayesian model selection and random effects Bayesian model averaging were used. Separate seed-based functional connectivity analyses for the left primary motor cortex, left supplementary motor area and right cerebellar lobules IV, V, VI and VIII were performed. We report two novel findings that support an important role for the cerebellar system in the pathophysiology of essential tremor. First, in the effective

  19. Prediction of functional outcome by motor capability after spinal cord injury.

    PubMed

    Lazar, R B; Yarkony, G M; Ortolano, D; Heinemann, A W; Perlow, E; Lovell, L; Meyer, P R

    1989-11-01

    The relationship between early motor status and functional outcome after spinal cord injury (SCI) was evaluated prospectively in 52 quadriplegic and 26 paraplegic patients. Motor status was measured within 72 hours of injury and quantified with the Motor Index Score (MIS). Functional status was evaluated with the Modified Barthel Index (MBI). A senior physical therapist completed the MIS and the MBI when each patient was admitted to the spinal cord intensive care unit and every 30 days during rehabilitation. Early motor function was correlated with average daily improvement in functional status including self-care and mobility (p = .001). The initial MIS strongly correlated with functional status of quadriplegics at admission (p = .001), at 60 days, and at rehabilitation discharge (p = .001). In paraplegics, the overall MBI at admission, after 60 days of rehabilitation, and at discharge was not correlated with early motor function. However, the MIS correlated significantly with the MBI self-care subscore at 60 days and at discharge (p = .01), but not with the mobility subscore. The initial MIS was also significantly correlated to functional status at discharge in patients with complete lesions (p = .001), but was not related to functional status at discharge in patients with incomplete lesions. The MIS appears to be a useful tool in predicting function during rehabilitation, although individual differences in ambulation, particularly for patients with paraplegia, limit the predictive utility of this index. PMID:2818153

  20. Altered structural and functional connectivity between the bilateral primary motor cortex in unilateral subcortical stroke

    PubMed Central

    Zhang, Yong; Li, Kuang-Shi; Ning, Yan-Zhe; Fu, Cai-Hong; Liu, Hong-Wei; Han, Xiao; Cui, Fang-Yuan; Ren, Yi; Zou, Yi-Huai

    2016-01-01

    Abstract A large number of functional imaging studies have focused on the understanding of motor-related neural activities after ischemic stroke. However, the knowledge is still limited in the structural and functional changes of the interhemispheric connections of the bilateral primary motor cortices (M1s) and their potential influence on motor function recovery following stroke. Twenty-four stroke patients with right hemispheric subcortical infarcts and 25 control subjects were recruited to undergo multimodal magnetic resonance imaging examinations. Structural impairments between the bilateral M1s were measured by fractional anisotropy. Functional changes of the bilateral M1s were assessed via M1-M1 resting-state functional connectivity. Task-evoked activation analysis was applied to identify the roles of the bilateral hemispheres in motor function recovery. Compared with control subjects, unilateral subcortical stroke patients revealed significantly decreased fractional anisotropy and functional connectivity between the bilateral M1s. Stroke patients also revealed higher activations in multiple brain regions in both hemispheres and that more regions were located in the contralesional hemisphere. This study increased our understanding of the structural and functional alterations between the bilateral M1s that occur in unilateral subcortical stroke and provided further evidence for the compensatory role played by the contralesional hemisphere for these alterations during motor function recovery. PMID:27495109

  1. Ultrasonography of gallbladder abnormalities due to schistosomiasis.

    PubMed

    Richter, Joachim; Azoulay, Daniel; Dong, Yi; Holtfreter, Martha C; Akpata, Robert; Calderaro, Julien; El-Scheich, Tarik; Breuer, Matthias; Neumayr, Andreas; Hatz, Christoph; Kircheis, Gerald; Botelho, Monica C; Dietrich, Christoph F

    2016-08-01

    After malaria, schistosomiasis remains the most important tropical parasitic disease in large parts of the world. Schistosomiasis has recently re-emerged in Southern Europe. Intestinal schistosomiasis is caused by most Schistosoma (S.) spp. pathogenic to humans and leads to chronic inflammation and fibrosis of the colon as well as to liver fibrosis. Gallbladder abnormalities usually occur in patients with advanced hepatic portal fibrosis due to Schistosoma mansoni infection. Occasionally, gallbladder abnormalities have been seen also in children and occurring without associated overt liver abnormalities.The specific S. mansoni-induced gallbladder abnormalities detectable by ultrasound include typical hyperechogenic wall thickening with external gallbladder wall protuberances. The luminal wall surface is smooth. The condition is usually clinically silent although some cases of symptomatic cholecystitis have been described. The ultrasonographic Murphy response is negative. Gallbladder contractility is impaired but sludge and calculi occur rarely. Contrary to other trematodes such as liver flukes, S. mansoni does not obstruct the biliary tract. Advanced gallbladder fibrosis is unlikely to reverse after therapy.

  2. Photoacoustic imaging of functional domains in primary motor cortex in rhesus macaques

    NASA Astrophysics Data System (ADS)

    Jo, Janggun; Zhang, Hongyu; Cheney, Paul; Yang, Xinmai

    2012-02-01

    Functional detection in primate brains has particular advantages because of the similarity between non-human primate brain and human brain and the potential for relevance to a wide range of conditions such as stroke and Parkinson's disease. In this research, we used photoacoustic imaging (PAI) technique to detect functional changes in primary motor cortex of awake rhesus monkeys. We observed strong increases in photoacoustic signal amplitude during both passive and active forelimb movement, which indicates an increase in total hemoglobin concentration resulting from activation of primary motor cortex. Further, with PAI approach, we were able to obtain depthresolved functional information from primary motor cortex. The results show that PAI can reliably detect primary motor cortex activation associated with forelimb movement in rhesus macaques with a minimal-invasive approach.

  3. Action in Perception: Prominent Visuo-Motor Functional Symmetry in Musicians during Music Listening

    PubMed Central

    Burunat, Iballa; Brattico, Elvira; Puoliväli, Tuomas; Ristaniemi, Tapani; Sams, Mikko; Toiviainen, Petri

    2015-01-01

    Musical training leads to sensory and motor neuroplastic changes in the human brain. Motivated by findings on enlarged corpus callosum in musicians and asymmetric somatomotor representation in string players, we investigated the relationship between musical training, callosal anatomy, and interhemispheric functional symmetry during music listening. Functional symmetry was increased in musicians compared to nonmusicians, and in keyboardists compared to string players. This increased functional symmetry was prominent in visual and motor brain networks. Callosal size did not significantly differ between groups except for the posterior callosum in musicians compared to nonmusicians. We conclude that the distinctive postural and kinematic symmetry in instrument playing cross-modally shapes information processing in sensory-motor cortical areas during music listening. This cross-modal plasticity suggests that motor training affects music perception. PMID:26422790

  4. S0514 Sorafenib in Treating Patients With Unresectable or Metastatic Gallbladder Cancer or Cholangiocarcinoma

    ClinicalTrials.gov

    2013-01-11

    Adenocarcinoma of the Extrahepatic Bile Duct; Adenocarcinoma of the Gallbladder; Adenocarcinoma With Squamous Metaplasia of the Gallbladder; Cholangiocarcinoma of the Extrahepatic Bile Duct; Cholangiocarcinoma of the Gallbladder; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Squamous Cell Carcinoma of the Gallbladder; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer

  5. Musical training induces functional plasticity in perceptual and motor networks: insights from resting-state FMRI.

    PubMed

    Luo, Cheng; Guo, Zhi-wei; Lai, Yong-xiu; Liao, Wei; Liu, Qiang; Kendrick, Keith M; Yao, De-zhong; Li, Hong

    2012-01-01

    A number of previous studies have examined music-related plasticity in terms of multi-sensory and motor integration but little is known about the functional and effective connectivity patterns of spontaneous intrinsic activity in these systems during the resting state in musicians. Using functional connectivity and Granger causal analysis, functional and effective connectivity among the motor and multi-sensory (visual, auditory and somatosensory) cortices were evaluated using resting-state functional magnetic resonance imaging (fMRI) in musicians and non-musicians. The results revealed that functional connectivity was significantly increased in the motor and multi-sensory cortices of musicians. Moreover, the Granger causality results demonstrated a significant increase outflow-inflow degree in the auditory cortex with the strongest causal outflow pattern of effective connectivity being found in musicians. These resting state fMRI findings indicate enhanced functional integration among the lower-level perceptual and motor networks in musicians, and may reflect functional consolidation (plasticity) resulting from long-term musical training, involving both multi-sensory and motor functional integration.

  6. Dopamine Inactivation Efficacy Related to Functional DAT1 and COMT Variants Influences Motor Response Evaluation

    PubMed Central

    Bender, Stephan; Rellum, Thomas; Freitag, Christine; Resch, Franz; Rietschel, Marcella; Treutlein, Jens; Jennen-Steinmetz, Christine; Brandeis, Daniel; Banaschewski, Tobias; Laucht, Manfred

    2012-01-01

    Background Dopamine plays an important role in orienting, response anticipation and movement evaluation. Thus, we examined the influence of functional variants related to dopamine inactivation in the dopamine transporter (DAT1) and catechol-O-methyltransferase genes (COMT) on the time-course of motor processing in a contingent negative variation (CNV) task. Methods 64-channel EEG recordings were obtained from 195 healthy adolescents of a community-based sample during a continuous performance task (A-X version). Early and late CNV as well as motor postimperative negative variation were assessed. Adolescents were genotyped for the COMT Val158Met and two DAT1 polymorphisms (variable number tandem repeats in the 3′-untranslated region and in intron 8). Results The results revealed a significant interaction between COMT and DAT1, indicating that COMT exerted stronger effects on lateralized motor post-processing (centro-parietal motor postimperative negative variation) in homozygous carriers of a DAT1 haplotype increasing DAT1 expression. Source analysis showed that the time interval 500–1000 ms after the motor response was specifically affected in contrast to preceding movement anticipation and programming stages, which were not altered. Conclusions Motor slow negative waves allow the genomic imaging of dopamine inactivation effects on cortical motor post-processing during response evaluation. This is the first report to point towards epistatic effects in the motor system during response evaluation, i.e. during the post-processing of an already executed movement rather than during movement programming. PMID:22649558

  7. Functional Measurement of Respiratory Muscle Motor Behaviors Using Transdiaphragmatic Pressure.

    PubMed

    Greising, Sarah M; Mantilla, Carlos B; Sieck, Gary C

    2016-01-01

    The diaphragm muscle must be able to generate sufficient forces to accomplish a range of ventilatory and non-ventilatory behaviors throughout life. Measurements of transdiaphragmatic pressure (Pdi) can be conducted during eupnea, hypoxia (10 % O2)-hypercapnia (5 % CO2), chemical airway stimulation (i.e., sneezing), spontaneously occurring deep breaths (i.e., sighs), sustained airway or tracheal occlusion, and maximal efforts elicited via bilateral phrenic nerve stimulation, representing the full range of motor behaviors available by the diaphragm muscle. We provide detailed methods on the in vivo measurements of Pdi in mice. PMID:27492181

  8. IPLEX Administration Improves Motor Neuron Survival and Ameliorates Motor Functions in a Severe Mouse Model of Spinal Muscular Atrophy

    PubMed Central

    Murdocca, Michela; Malgieri, Arianna; Luchetti, Andrea; Saieva, Luciano; Dobrowolny, Gabriella; de Leonibus, Elvira; Filareto, Antonio; Quitadamo, Maria Chiara; Novelli, Giuseppe; Musarò, Antonio; Sangiuolo, Federica

    2012-01-01

    Spinal muscular atrophy (SMA) is an inherited neurodegenerative disorder and the first genetic cause of death in childhood. SMA is caused by low levels of survival motor neuron (SMN) protein that induce selective loss of α-motor neurons (MNs) in the spinal cord, resulting in progressive muscle atrophy and consequent respiratory failure. To date, no effective treatment is available to counteract the course of the disease. Among the different therapeutic strategies with potential clinical applications, the evaluation of trophic and/or protective agents able to antagonize MNs degeneration represents an attractive opportunity to develop valid therapies. Here we investigated the effects of IPLEX (recombinant human insulinlike growth factor 1 [rhIGF-1] complexed with recombinant human IGF-1 binding protein 3 [rhIGFBP-3]) on a severe mouse model of SMA. Interestingly, molecular and biochemical analyses of IGF-1 carried out in SMA mice before drug administration revealed marked reductions of IGF-1 circulating levels and hepatic mRNA expression. In this study, we found that perinatal administration of IPLEX, even if does not influence survival and body weight of mice, results in reduced degeneration of MNs, increased muscle fiber size and in amelioration of motor functions in SMA mice. Additionally, we show that phenotypic changes observed are not SMN-dependent, since no significant SMN modification was addressed in treated mice. Collectively, our data indicate IPLEX as a good therapeutic candidate to hinder the progression of the neurodegenerative process in SMA. PMID:22669476

  9. Functional Magnetic Resonance Imaging of Motor Cortex: Hemispheric Asymmetry and Handedness

    NASA Astrophysics Data System (ADS)

    Kim, Seong-Gi; Ashe, James; Hendrich, Kristy; Ellermann, Jutta M.; Merkle, Hellmut; Ugurbil, Kamil; Georgopoulos, Apostolos P.

    1993-07-01

    A hemispheric asymmetry in the functional activation of the human motor cortex during contralateral (C) and ipsilateral (I) finger movements, especially in right-handed subjects, was documented with nuclear magnetic resonance imaging at high field strength (4 tesla). Whereas the right motor cortex was activated mostly during contralateral finger movements in both right-handed (C/I mean area of activation = 36.8) and left-handed (C/I = 29.9) subjects, the left motor cortex was activated substantially during ipsilateral movements in left-handed subjects (C/I = 5.4) and even more so in right-handed subjects (C/I = 1.3).

  10. Functional Abilities as a Predictor of Specific Motor Skills of Young Water Polo Players

    PubMed Central

    Aleksandrović, Marko; Radovanović, Dragan; Okičić, Tomislav; Madić, Dejan; Georgiev, Georgi

    2011-01-01

    The purpose of this study was to assess the influence of functional abilities on specificmotor skills. A total number of 92 male water polo players (age 12±0.5 years, body height 156.96±22.3 cm, body weight 51.02±33.18 kg) with at least two years’ experience, were enrolled in the study. The investigation protocol consisted of standardized anthropometric measurements, estimation of maximum oxygen uptake, determination of the lung function values, specific swim tests and swim tests with a ball. The factor analysis was used for the estimation of the structure of specific motor skills. The influence of functional abilities on specific motor skills was estimated by regression analysis. Out of 15 correlations in total between the variables of space of functional abilities of water polo players, 6 were significant at the level of 95% (between the variables of aerobic power and lung function) and all of the correlations (15) between the variables of specific motor skills in water polo players were significant at the 99% level. Only one principal component, the General factor of specific motor skills in water polo (GFSWP) was obtained by way of factorization of the tests of specific motor skills, so the GFSWP represents the latent space of specific motor skills as a criterion. The regression analysis showed that functional abilities (as group predictors) (p= 0.00) and forced expiratory volume in 1 second (as a separate variable) have a significant influence on GFSWP (the criterion). The results of the study pointed out the impact of functional abilities on specific motor skills of selected young water polo players. This may be important for the selection and effective coaching in the early period of training and can affect the development of more appropriate and specific training programmes for optimal physical fitness preparation in young water polo players. PMID:23486729

  11. From Zebrafish to Mammal: Functional Evolution of Prestin, the Motor Protein of Cochlear Outer Hair Cells

    PubMed Central

    Tan, Xiaodong; Pecka, Jason L.; Tang, Jie; Okoruwa, Oseremen E.; Zhang, Qian

    2011-01-01

    Prestin is the motor protein of cochlear outer hair cells. It belongs to a distinct anion transporter family called solute carrier protein 26A, or SLC26A. Members of this family serve two fundamentally distinct functions. Although most members transport different anion substrates across a variety of epithelia, prestin (SLC26A5) is unique, functioning as a voltage-dependent motor protein. Recent evidence suggests that prestin orthologs from zebrafish and chicken are electrogenic divalent/chloride anion exchangers/transporters with no motor function. These studies appear to suggest that prestin was evolved from an anion transporter. We examined the motor and transport functions of prestin and its orthologs from four different species in the vertebrate lineage, to gain insights of how these two physiological functions became distinct. Somatic motility, voltage-dependent nonlinear capacitance (NLC), and transporter function were measured in transfected human embryonic kidney (HEK) cells using voltage-clamp and anion uptake techniques. Zebrafish and chicken prestins both exhibited weak NLC, with peaks significantly shifted in the depolarization (right) direction. This was contrasted by robust NLC with peaks left shifted in the platypus and gerbil. The platypus and gerbil prestins retained little transporter function compared with robust anion transport capacities in the zebrafish and chicken orthologs. Somatic motility was detected only in the platypus and gerbil prestins. There appears to be an inverse relationship between NLC and anion transport functions, whereas motor function appears to have emerged only in mammalian prestin. Our results suggest that motor function is an innovation of therian prestin and is concurrent with diminished transporter capabilities. PMID:21047933

  12. Functional Diversification of Motor Neuron-specific Isl1 Enhancers during Evolution

    PubMed Central

    Kim, Namhee; Park, Chungoo; Jeong, Yongsu; Song, Mi-Ryoung

    2015-01-01

    Functional diversification of motor neurons has occurred in order to selectively control the movements of different body parts including head, trunk and limbs. Here we report that transcription of Isl1, a major gene necessary for motor neuron identity, is controlled by two enhancers, CREST1 (E1) and CREST2 (E2) that allow selective gene expression of Isl1 in motor neurons. Introduction of GFP reporters into the chick neural tube revealed that E1 is active in hindbrain motor neurons and spinal cord motor neurons, whereas E2 is active in the lateral motor column (LMC) of the spinal cord, which controls the limb muscles. Genome-wide ChIP-Seq analysis combined with reporter assays showed that Phox2 and the Isl1-Lhx3 complex bind to E1 and drive hindbrain and spinal cord-specific expression of Isl1, respectively. Interestingly, Lhx3 alone was sufficient to activate E1, and this may contribute to the initiation of Isl1 expression when progenitors have just developed into motor neurons. E2 was induced by onecut 1 (OC-1) factor that permits Isl1 expression in LMCm neurons. Interestingly, the core region of E1 has been conserved in evolution, even in the lamprey, a jawless vertebrate with primitive motor neurons. All E1 sequences from lamprey to mouse responded equally well to Phox2a and the Isl1-Lhx3 complex. Conversely, E2, the enhancer for limb-innervating motor neurons, was only found in tetrapod animals. This suggests that evolutionarily-conserved enhancers permit the diversification of motor neurons. PMID:26447474

  13. The contributions of balance to gait capacity and motor function in chronic stroke.

    PubMed

    Lee, Kyoung Bo; Lim, Seong Hoon; Kim, Young Dong; Yang, Byung Il; Kim, Kyung Hoon; Lee, Kang Sung; Kim, Eun Ja; Hwang, Byong Yong

    2016-06-01

    [Purpose] The aim of this study was to identify the contributions of balance to gait and motor function in chronic stroke. [Subjects and Methods] Twenty-three outpatients participated in a cross-sectional assessment. Gait ability was assessed using the functional ambulation category, self-paced 10-m walking speed, and fastest 10-m walking speed. Standing balance and trunk control measures included the Berg Balance Scale and the Trunk Impairment Scale. Univariate and multivariate regression analyses were performed. [Results] Balance was the best predictor of the FAC, self-paced walking speed, and fastest walking speed, accounting for 57% to 61% of the variances. Additionally, the total score of TIS was the only predictor of the motor function of the lower limbs and the dynamic balance of TIS was a predictor of the motor function of the upper limbs, accounting for 41% and 29% of the variance, respectively. [Conclusion] This study demonstrated the relative contribution of standing balance and trunk balance to gait ability and motor function. They show that balance has a high power of explanation of gait ability and that trunk balance is a determinant of motor function rather than gait ability.

  14. The contributions of balance to gait capacity and motor function in chronic stroke

    PubMed Central

    Lee, Kyoung Bo; Lim, Seong Hoon; Kim, Young Dong; Yang, Byung Il; Kim, Kyung Hoon; Lee, Kang Sung; Kim, Eun Ja; Hwang, Byong Yong

    2016-01-01

    [Purpose] The aim of this study was to identify the contributions of balance to gait and motor function in chronic stroke. [Subjects and Methods] Twenty-three outpatients participated in a cross-sectional assessment. Gait ability was assessed using the functional ambulation category, self-paced 10-m walking speed, and fastest 10-m walking speed. Standing balance and trunk control measures included the Berg Balance Scale and the Trunk Impairment Scale. Univariate and multivariate regression analyses were performed. [Results] Balance was the best predictor of the FAC, self-paced walking speed, and fastest walking speed, accounting for 57% to 61% of the variances. Additionally, the total score of TIS was the only predictor of the motor function of the lower limbs and the dynamic balance of TIS was a predictor of the motor function of the upper limbs, accounting for 41% and 29% of the variance, respectively. [Conclusion] This study demonstrated the relative contribution of standing balance and trunk balance to gait ability and motor function. They show that balance has a high power of explanation of gait ability and that trunk balance is a determinant of motor function rather than gait ability. PMID:27390395

  15. The contributions of balance to gait capacity and motor function in chronic stroke.

    PubMed

    Lee, Kyoung Bo; Lim, Seong Hoon; Kim, Young Dong; Yang, Byung Il; Kim, Kyung Hoon; Lee, Kang Sung; Kim, Eun Ja; Hwang, Byong Yong

    2016-06-01

    [Purpose] The aim of this study was to identify the contributions of balance to gait and motor function in chronic stroke. [Subjects and Methods] Twenty-three outpatients participated in a cross-sectional assessment. Gait ability was assessed using the functional ambulation category, self-paced 10-m walking speed, and fastest 10-m walking speed. Standing balance and trunk control measures included the Berg Balance Scale and the Trunk Impairment Scale. Univariate and multivariate regression analyses were performed. [Results] Balance was the best predictor of the FAC, self-paced walking speed, and fastest walking speed, accounting for 57% to 61% of the variances. Additionally, the total score of TIS was the only predictor of the motor function of the lower limbs and the dynamic balance of TIS was a predictor of the motor function of the upper limbs, accounting for 41% and 29% of the variance, respectively. [Conclusion] This study demonstrated the relative contribution of standing balance and trunk balance to gait ability and motor function. They show that balance has a high power of explanation of gait ability and that trunk balance is a determinant of motor function rather than gait ability. PMID:27390395

  16. What's New in Gallbladder Cancer Research and Treatment?

    MedlinePlus

    ... Next Topic Additional resources for gallbladder cancer What’s new in gallbladder cancer research and treatment? Research into ... Chemotherapy and radiation therapy Researchers are looking at new ways of increasing the effectiveness of radiation therapy . ...

  17. Network asymmetry of motor areas revealed by resting-state functional magnetic resonance imaging.

    PubMed

    Yan, Li-Rong; Wu, Yi-Bo; Hu, De-Wen; Qin, Shang-Zhen; Xu, Guo-Zheng; Zeng, Xiao-Hua; Song, Hua

    2012-02-01

    There are ample functional magnetic resonance imaging (fMRI) studies on functional brain asymmetries, and the asymmetry of cerebral network in the resting state may be crucial to brain function organization. In this paper, a unified schema of voxel-wise functional connectivity and asymmetry analysis was presented and the network asymmetry of motor areas was studied. Twelve healthy male subjects with mean age 29.8 ± 6.4 were studied. Functional network in the resting state was described by using functional connectivity magnetic resonance imaging (fcMRI) analysis. Motor areas were selected as regions of interest (ROIs). Network asymmetry, including intra- and inter-network asymmetries, was formulated and analyzed. The intra-network asymmetry was defined as the difference between the left and right part of a particular functional network. The inter-network asymmetry was defined as the difference between the networks for a specific ROI in the left hemisphere and its homotopic ROI in the right hemisphere. Primary motor area (M1), primary sensory area (S1) and premotor area (PMA) exhibited higher functional correlation with the right parietal-temporal-occipital circuit and the middle frontal gyrus than they did with the left hemisphere. Right S1 and right PMA exhibited higher functional correlation with the ipsilateral precentral and supramarginal areas. There exist the large-scale hierarchical network asymmetries of the motor areas in the resting state. These asymmetries imply the right hemisphere dominance for predictive motor coding based on spatial attention and higher sensory processing load for the motor performance of non-dominant hemisphere.

  18. Role of bacteria in carcinogenesis, with special reference to carcinoma of the gallbladder

    PubMed Central

    Nath, Gopal; Gulati, Anil K; Shukla, Vijay K

    2010-01-01

    Carcinoma of the gallbladder (CaGB) is the fifth commonest gastrointestinal tract cancer and is endemic in several countries. The interplay of genetic susceptibility, infections, and life style factors has been proposed to be responsible for carcinogenesis of gallbladder. Persistence of infection leading to chronic inflammation, and production of certain toxins and metabolites with carcinogenic potentials, by certain bacteria has been speculated to be involved in the transformation of the gallbladder epithelium. Therefore, any bacteria that have evolved to acquire both of the above carcinogenic mechanisms can cause cancer. Salmonella typhi has been found to be prominently associated with CaGB. Chronic typhoid carriage (persistence) and production of mediators of chronic inflammation and a genotoxic toxin (cytotoxic distending toxin, CdtB) are also known for this bacterium. Furthermore, the natural concentrating function of the gallbladder might amplify the carcinogenic effect of the mediators of carcinogenesis. In addition to S. typhi, certain species of Helicobacter (H. bilis and H. hepaticus) and Escherichia coli have also been implicated in carcinogenesis. As the isolation rate is very poor with the presently available culture techniques, the existence of bacteria in a viable but non-cultivable state is quite likely; therefore, sensitive and specific molecular techniques might reveal the etiological role of bacterial infection in gallbladder carcinogenesis. If bacteria are found to be causing cancers, then eradication of such infections might help in reducing the incidence of some cancers. PMID:21086555

  19. Solitary schwannoma of the gallbladder: a case report and literature review.

    PubMed

    Liu, Lin-Na; Xu, Hui-Xiong; Zheng, Shu-Guang; Sun, Li-Ping; Guo, Le-Hang; Wu, Jian

    2014-06-01

    Schwannomas occurring in the gallbladder are extremely rare. Preoperative diagnosis of gallbladder schwannomas appears to be very difficult because they are normally asymptomatic and are often found incidentally. Until now, only five cases have been reported in the literature. To our knowledge, the contrast-enhanced ultrasound (CEUS) features of gallbladder schwannomas have not been reported before in other studies. We treated a 55-year-old male patient with gallbladder schwannoma in China. He had no symptoms, and the lesion was incidentally found by conventional ultrasound (US) when performing a health examination. The patient had normal liver function; moreover, serum carcinoembryonic antigen and alpha-fetoprotein were within the normal ranges. The lesion showed no blood flow signals on color Doppler US, and the wall beneath the lesion was intact on CEUS. The lesion was believed to be a benign entity; in addition, gallbladder adenomyomatosis was suspected. A laparoscopic cholecystectomy was performed to remove the mass. Pathological examination revealed that the tumor was mainly composed of spindle-shaped cells; neither atypical cells nor signs of malignancy were found. Immunohistochemical staining showed a strong positive S-100 protein reaction. Vimentin and CD56 staining were also positive, whereas CD34 and CD117 were negative. Finally, the lesion was diagnosed as schwannoma. Herein, we report the case; the associated literature is also reviewed.

  20. Alcohol hangover: type and time-extension of motor function impairments.

    PubMed

    Karadayian, Analía G; Cutrera, Rodolfo A

    2013-06-15

    Alcohol hangover is defined as the unpleasant next-day state following an evening of excessive alcohol consumption. Hangover begins when ethanol is absent in plasma and is characterized by physical and psychological symptoms. During hangover cognitive functions and subjective capacities are affected along with inefficiency, reduced productivity, absenteeism, driving impairments, poor academic achievement and reductions in motor coordination. The aim of this work was to study the type and length of motor and exploratory functions from the beginning to the end of the alcohol hangover. Male Swiss mice were injected i.p. either with saline (control group) or with ethanol (3.8 g/kg BW) (hangover group). Motor performance, walking deficiency, motor strength, locomotion and exploratory activity were evaluated at a basal point (ZT0) and every 2 h up to 20 h after blood alcohol levels were close to zero (hangover onset). Motor performance was 80% decreased at the onset of hangover (p<0.001). Hangover mice exhibited a reduced motor performance during the next 16 h (p<0.01). Motor function was recovered 20 h after hangover onset. Hangover mice displayed walking deficiencies from the beginning to 16 h after hangover onset (p<0.05). Moreover, mice suffering from a hangover, exhibited a significant decrease in neuromuscular strength during 16 h (p<0.001). Averaged speed and total distance traveled in the open field test and the exploratory activity on T-maze and hole board tests were reduced during 16 h after hangover onset (p<0.05). Our findings demonstrate a time-extension between 16 to 20 h for hangover motor and exploratory impairments. As a whole, this study shows the long lasting effects of alcohol hangover.

  1. Functional connectivity of primary motor cortex is dependent on genetic burden in prodromal Huntington disease.

    PubMed

    Koenig, Katherine A; Lowe, Mark J; Harrington, Deborah L; Lin, Jian; Durgerian, Sally; Mourany, Lyla; Paulsen, Jane S; Rao, Stephen M

    2014-09-01

    Subtle changes in motor function have been observed in individuals with prodromal Huntington disease (prHD), but the underlying neural mechanisms are not well understood nor is the cumulative effect of the disease (disease burden) on functional connectivity. The present study examined the resting-state functional magnetic resonance imaging (rs-fMRI) connectivity of the primary motor cortex (M1) in 16 gene-negative (NEG) controls and 48 gene-positive prHD participants with various levels of disease burden. The results showed that the strength of the left M1 connectivity with the ipsilateral M1 and somatosensory areas decreased as disease burden increased and correlated with motor symptoms. Weakened M1 connectivity within the motor areas was also associated with abnormalities in long-range connections that evolved with disease burden. In this study, M1 connectivity was decreased with visual centers (bilateral cuneus), but increased with a hub of the default mode network (DMN; posterior cingulate cortex). Changes in connectivity measures were associated with worse performance on measures of cognitive-motor functioning. Short- and long-range functional connectivity disturbances were also associated with volume loss in the basal ganglia, suggesting that weakened M1 connectivity is partly a manifestation of striatal atrophy. Altogether, the results indicate that the prodromal phase of HD is associated with abnormal interhemispheric interactions among motor areas and disturbances in the connectivity of M1 with visual centers and the DMN. These changes may, respectively, contribute to increased motor symptoms, visuomotor integration problems, and deficits in the executive control of movement as individuals approach a manifest diagnosis.

  2. Gallbladder carcinoma: Prognostic factors and therapeutic options

    PubMed Central

    Goetze, Thorsten Oliver

    2015-01-01

    The outcome of gallbladder carcinoma is poor, and the overall 5-year survival rate is less than 5%. In early-stage disease, a 5-year survival rate up to 75% can be achieved if stage-adjusted therapy is performed. There is wide geographic variability in the frequency of gallbladder carcinoma, which can only be explained by an interaction between genetic factors and their alteration. Gallstones and chronic cholecystitis are important risk factors in the formation of gallbladder malignancies. Factors such as chronic bacterial infection, primary sclerosing cholangitis, an anomalous junction of the pancreaticobiliary duct, and several types of gallbladder polyps are associated with a higher risk of gallbladder cancer. There is also an interesting correlation between risk factors and the histological type of cancer. However, despite theoretical risk factors, only a third of gallbladder carcinomas are recognized preoperatively. In most patients, the tumor is diagnosed by the pathologist after a routine cholecystectomy for a benign disease and is termed ‘‘incidental or occult gallbladder carcinoma’’ (IGBC). A cholecystectomy is performed frequently due to the minimal invasiveness of the laparoscopic technique. Therefore, the postoperative diagnosis of potentially curable early-stage disease is more frequent. A second radical re-resection to complete a radical cholecystectomy is required for several IGBCs. However, the literature and guidelines used in different countries differ regarding the radicality or T-stage criteria for performing a radical cholecystectomy. The NCCN guidelines and data from the German registry (GR), which records the largest number of incidental gallbladder carcinomas in Europe, indicate that carcinomas infiltrating the muscularis propria or beyond require radical surgery. According to GR data and current literature, a wedge resection with a combined dissection of the lymph nodes of the hepatoduodenal ligament is adequate for T1b and T2

  3. Family-Centered Functional Therapy--A Choice for Children with Motor Dysfunction.

    ERIC Educational Resources Information Center

    Darrah, Johanna; Law, Mary; Pollock, Nancy

    2001-01-01

    This article discusses family-centered functional therapy, a model of practice for children with motor dysfunction based on tenets derived from family-centered philosophy and dynamic systems theory. This model stipulates that parents must be included in the identification of functional goals. Positive results of pilot work with 12 children are…

  4. The Role of the Pediatric Cerebellum in Motor Functions, Cognition, and Behavior: A Clinical Perspective.

    PubMed

    Salman, Michael S; Tsai, Peter

    2016-08-01

    This article discusses the contribution of the pediatric cerebellum to locomotion, ocular motor control, speech articulation, cognitive function, and behavior modulation. Hypotheses on cerebellar function are discussed. Clinical features in patients with cerebellar disorders are outlined. Cerebellar abnormalities in cognitive and behavioral disorders are detailed. PMID:27423796

  5. Executive and Visuo-Motor Function in Adolescents and Adults with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Sachse, Michael; Schlitt, Sabine; Hainz, Daniela; Ciaramidaro, Angela; Schirman, Shella; Walter, Henrik; Poustka, Fritz; Bolte, Sven; Freitag, Christine M.

    2013-01-01

    This study broadly examines executive (EF) and visuo-motor function in 30 adolescent and adult individuals with high-functioning autism spectrum disorder (ASD) in comparison to 28 controls matched for age, gender, and IQ. ASD individuals showed impaired spatial working memory, whereas planning, cognitive flexibility, and inhibition were spared.…

  6. Functional Analysis Identified Habit Reversal Components for the Treatment of Motor Tics

    ERIC Educational Resources Information Center

    Dufrene, Brad A.; Harpole, Lauren Lestremau; Sterling, Heather E.; Perry, Erin J.; Burton, Britney; Zoder-Martell, Kimberly

    2013-01-01

    This study included brief functional analyses and treatment for motor tics exhibited by two children with Tourette Syndrome. Brief functional analyses were conducted in an outpatient treatment center and results were used to develop individualized habit reversal procedures. Treatment data were collected in clinic for one child and in clinic and…

  7. Long non-coding RNA Linc-ITGB1 knockdown inhibits cell migration and invasion in GBC-SD/M and GBC-SD gallbladder cancer cell lines.

    PubMed

    Wang, Lei; Zhang, Yunjiao; Lv, Wenjie; Lu, Jianhua; Mu, Jiasheng; Liu, Yingbin; Dong, Ping

    2015-11-01

    Gallbladder cancer is a highly aggressive malignancy with a low 5-year survival rate. Despite advances in the molecular understanding of the initiation and progression in gallbladder cancer, treatment modalities such as surgery, radiotherapy, or chemotherapy in advanced cases did not yield promising outcomes. Therefore, it is of great importance to uncover new mechanism underlying gallbladder cancer growth and metastasis. In this study, we identified a differentially expressed long intergenic non-coding RNA, linc-ITGB1, in a pair of higher and lower metastatic gallbladder cancer cell sublines. Then, the potential role of linc-ITGB1 in gallbladder cancer cell proliferation, migration, and invasion was explored using a lentivirus-mediated RNA interference system. Functional analysis showed that knockdown of linc-ITGB1 significantly inhibited gallbladder cancer cell proliferation. Moreover, cell migration and invasion were reduced by over twofold in linc-ITGB1 knockdown cells probably due to upregulation of β-catenin and downregulation of vimentin, slug, and TCF8. In conclusion, linc-ITGB1 potentially promoted gallbladder cancer invasion and metastasis by accelerating the process of epithelial-to-mesenchymal transition, and the application of RNA interference targeting linc-ITGB1 might be a potential form of gallbladder cancer treatment in advanced cases.

  8. Structural and functional evaluation of cortical motor areas in Amyotrophic Lateral Sclerosis.

    PubMed

    Cosottini, Mirco; Pesaresi, Ilaria; Piazza, Selina; Diciotti, Stefano; Cecchi, Paolo; Fabbri, Serena; Carlesi, Cecilia; Mascalchi, Mario; Siciliano, Gabriele

    2012-03-01

    The structural and functional data gathered with Magnetic Resonance Imaging (MRI) techniques about the brain cortical motor damage in Amyotrophic Lateral Sclerosis (ALS) are controversial. In fact some structural MRI studies showed foci of gray matter (GM) atrophy in the precentral gyrus, even in the early stage, while others did not. Most functional MRI (fMRI) studies in ALS reported hyperactivation of extra-primary motor cortices, while contradictory results were obtained on the activation of the primary motor cortex. We aimed to investigate the cortical motor circuitries in ALS patients by a combined structural and functional approach. Twenty patients with definite ALS and 16 healthy subjects underwent a structural examination with acquisition of a 3D T1-weighted sequence and fMRI examination during a maximal force handgrip task executed with the right-hand, the left-hand and with both hands simultaneously. The T1-weighted images were analyzed with Voxel-Based Morphometry (VBM) that showed several clusters of reduced cortical GM in ALS patients compared to controls including the pre and postcentral gyri, the superior, middle and inferior frontal gyri, the supplementary motor area, the superior and inferior parietal cortices and the temporal lobe, bilaterally but more extensive on the right side. In ALS patients a significant hypoactivation of the primary sensory motor cortex and frontal dorsal premotor areas as compared to controls was observed. The hypoactivated areas matched with foci of cortical atrophy demonstrated by VBM. The fMRI analysis also showed an enhanced activation in the ventral premotor frontal areas and in the parietal cortex pertaining to the fronto-parietal motor circuit which paralleled with disease progression rate and matched with cortical regions of atrophy. The hyperactivation of the fronto-parietal circuit was asymmetric and prevalent in the left hemisphere. VBM and fMRI identified structural and functional markers of an extended

  9. Motor function of the opossum sphincter of Oddi.

    PubMed Central

    Toouli, J; Dodds, W J; Honda, R; Sarna, S; Hogan, W J; Komarowski, R A; Linehan, J H; Arndorfer, R C

    1983-01-01

    We studied the opossum sphincter of Oddi (SO) because in this species the SO is approximately 3 cm in length and its extraduodenal location permits recording of motor activity with negligible interference from duodenal motor activity. The SO segment of 120 animals was evaluated by one or more of the following: (a) intraluminal manometry; (b) electromyography; (c) common bile duct (CBD) flow monitored by a drop counter; (d) cineradiography of intraductal contrast medium; and (e) histologic examination. SO pull-throughs using an infused catheter of 0.6-mm o.d. invariably showed a high pressure zone (HPZ) of 18 +/- 3 SE mm Hg in the terminal 4-5 mm of the SO segment. This HPZ had a narrow lumen, 0.5-0.7 mm in diam, and prominent circular muscle. The HPZ in the terminal SO had both active and passive components. HPZ with minimal amplitude and a paucity of underlying smooth muscle were present inconstantly at the junction of the SO segment with the CBD and pancreatic duct, respectively. The dominant feature of the SO segment was rhythmic peristaltic contractions that originated in the proximal SO and propagated toward the duodenum. These contractions occurred spontaneously at a rate of 2-8/min, ranged up to 200 mm Hg in magnitude, had a duration of approximately 5 s and were not abolished by tetrodotoxin. Concurrent myoelectric and manometric recordings showed that each phasic contraction was immediately preceded by an electrical spike burst. Simultaneous recordings of cineradiography, CBD inflow of contrast medium, SO manometry, and SO electromyography indicated that rhythmic peristaltic contractions stripped contrast medium from the SO into the duodenum. During SO systole, CBD emptying was transiently interrupted, whereas SO filling occurred during the diastolic interval between SO peristaltic contractions. SO distention increased the frequency of SO peristalsis. We conclude that (a) the dominant feature of the opossum SO is rhythmic peristaltic contractions that

  10. Motor function of the opossum sphincter of Oddi.

    PubMed

    Toouli, J; Dodds, W J; Honda, R; Sarna, S; Hogan, W J; Komarowski, R A; Linehan, J H; Arndorfer, R C

    1983-02-01

    We studied the opossum sphincter of Oddi (SO) because in this species the SO is approximately 3 cm in length and its extraduodenal location permits recording of motor activity with negligible interference from duodenal motor activity. The SO segment of 120 animals was evaluated by one or more of the following: (a) intraluminal manometry; (b) electromyography; (c) common bile duct (CBD) flow monitored by a drop counter; (d) cineradiography of intraductal contrast medium; and (e) histologic examination. SO pull-throughs using an infused catheter of 0.6-mm o.d. invariably showed a high pressure zone (HPZ) of 18 +/- 3 SE mm Hg in the terminal 4-5 mm of the SO segment. This HPZ had a narrow lumen, 0.5-0.7 mm in diam, and prominent circular muscle. The HPZ in the terminal SO had both active and passive components. HPZ with minimal amplitude and a paucity of underlying smooth muscle were present inconstantly at the junction of the SO segment with the CBD and pancreatic duct, respectively. The dominant feature of the SO segment was rhythmic peristaltic contractions that originated in the proximal SO and propagated toward the duodenum. These contractions occurred spontaneously at a rate of 2-8/min, ranged up to 200 mm Hg in magnitude, had a duration of approximately 5 s and were not abolished by tetrodotoxin. Concurrent myoelectric and manometric recordings showed that each phasic contraction was immediately preceded by an electrical spike burst. Simultaneous recordings of cineradiography, CBD inflow of contrast medium, SO manometry, and SO electromyography indicated that rhythmic peristaltic contractions stripped contrast medium from the SO into the duodenum. During SO systole, CBD emptying was transiently interrupted, whereas SO filling occurred during the diastolic interval between SO peristaltic contractions. SO distention increased the frequency of SO peristalsis. We conclude that (a) the dominant feature of the opossum SO is rhythmic peristaltic contractions that

  11. Stimulus electrodiagnosis and motor and functional evaluations during ulnar nerve recovery

    PubMed Central

    Fernandes, Luciane F. R. M.; Oliveira, Nuno M. L.; Pelet, Danyelle C. S.; Cunha, Agnes F. S.; Grecco, Marco A. S.; Souza, Luciane A. P. S.

    2016-01-01

    BACKGROUND: Distal ulnar nerve injury leads to impairment of hand function due to motor and sensorial changes. Stimulus electrodiagnosis (SE) is a method of assessing and monitoring the development of this type of injury. OBJECTIVE: To identify the most sensitive electrodiagnostic parameters to evaluate ulnar nerve recovery and to correlate these parameters (Rheobase, Chronaxie, and Accommodation) with motor function evaluations. METHOD: A prospective cohort study of ten patients submitted to ulnar neurorrhaphy and evaluated using electrodiagnosis and motor assessment at two moments of neural recovery. A functional evaluation using the DASH questionnaire (Disability of the Arm, Shoulder, and Hand) was conducted at the end to establish the functional status of the upper limb. RESULTS: There was significant reduction only in the Chronaxie values in relation to time of injury and side (with and without lesion), as well as significant correlation of Chronaxie with the motor domain score. CONCLUSION: Chronaxie was the most sensitive SE parameter for detecting differences in neuromuscular responses during the ulnar nerve recovery process and it was the only parameter correlated with the motor assessment. PMID:26786072

  12. Viral and cellular SOS-regulated motor proteins: dsDNA translocation mechanisms with divergent functions.

    PubMed

    Wolfe, Annie; Phipps, Kara; Weitao, Tao

    2014-01-01

    DNA damage attacks on bacterial cells have been known to activate the SOS response, a transcriptional response affecting chromosome replication, DNA recombination and repair, cell division and prophage induction. All these functions require double-stranded (ds) DNA translocation by ASCE hexameric motors. This review seeks to delineate the structural and functional characteristics of the SOS response and the SOS-regulated DNA translocases FtsK and RuvB with the phi29 bacteriophage packaging motor gp16 ATPase as a prototype to study bacterial motors. While gp16 ATPase, cellular FtsK and RuvB are similarly comprised of hexameric rings encircling dsDNA and functioning as ATP-driven DNA translocases, they utilize different mechanisms to accomplish separate functions, suggesting a convergent evolution of these motors. The gp16 ATPase and FtsK use a novel revolution mechanism, generating a power stroke between subunits through an entropy-DNA affinity switch and pushing dsDNA inward without rotation of DNA and the motor, whereas RuvB seems to employ a rotation mechanism that remains to be further characterized. While FtsK and RuvB perform essential tasks during the SOS response, their roles may be far more significant as SOS response is involved in antibiotic-inducible bacterial vesiculation and biofilm formation as well as the perspective of the bacteria-cancer evolutionary interaction.

  13. Personal experience with narrated events modulates functional connectivity within visual and motor systems during story comprehension.

    PubMed

    Chow, Ho Ming; Mar, Raymond A; Xu, Yisheng; Liu, Siyuan; Wagage, Suraji; Braun, Allen R

    2015-04-01

    Past experience of everyday life activities, which forms the basis of our knowledge about the world, greatly affects how we understand stories. Yet, little is known about how this influence is instantiated in the human brain. Here, we used functional magnetic resonance imaging to investigate how past experience facilitates functional connectivity during the comprehension of stories rich in perceptual and motor details. We found that comprehenders' past experience with the scenes and actions described in the narratives selectively modulated functional connectivity between lower- and higher-level areas within the neural systems for visual and motor processing, respectively. These intramodal interactions may play an important role in integrating personal knowledge about a narrated situation with an evolving discourse representation. This study provides empirical evidence consistent with the idea that regions related to visual and motor processing are involved in the reenactment of experience as proposed by theories of embodied cognition. PMID:25545633

  14. The stochastic model of F1-ATPase molecular motor functioning

    NASA Astrophysics Data System (ADS)

    Pogrebnaya, Aleksandra F.; Romanovsky, Yury M.; Tikhonov, Aleksander N.

    2004-05-01

    This work is devoted to the study of the energy characteristics of the F1ATPase-substrate complex. The results of calculations of the electrostatic energy in the enzyme-substrate complex are presented in the first part. In calculations, we take into account the electrostatic interactions between the charged groups of the substrate (MgATP) and reaction products (MgADP and Pi) and charged amino acid residues of the α3β3γ complex that correspond to various conformations of the enzyme. The hydrolysis of ATP in the catalytic site leads to coordinated conformational changes in α, β subunits and to ordered rotation of γ subunit located in the center of F1ATPase complex. The calculations show that the energetically favorable process involving MgATP binding at the catalytic site in the "open" conformation initiates γ subunit rotation followed by the hydrolysis in the other (tight) catalytic site. In the second part, we propose the simplest stochastic model describing the ordered rotation of γ subunit (the rotor of F1-ATPase molecular motor). In the model we take into account the electrostatic interaction using the results of the previous calculations. We employ experimentally obtained dynamic parameters. The model takes into account the thermal fluctuations of the bath and the random processes of the substrate binding and the escape of the reaction products.

  15. Dietary restriction alters fine motor function in rats.

    PubMed

    Smith, Lori K; Metz, Gerlinde A

    2005-08-01

    A number of standard behavioral tasks in animal research utilize food rewards for positive reinforcement. In order to enhance the motivation to participate in these tasks, animals are usually placed on a restricted diet. While dietary restriction (DR) has been shown to have beneficial effects on recovery after brain injury, life span and aging processes, it might also represent a stressor. Since stress can influence a broad range of behaviors, the purpose of this study was to assess whether DR may have similar effects on skilled movement. Adult male Long-Evans rats were trained and tested in a skilled reaching task both prior to and during a mild food restriction regimen that maintained their body weights at 90-95% of baseline weight for eight days. The observations revealed that DR decreased reaching success and increased the number of attempts to grasp a single food pellet. The animals appeared to be more frantic when attempting to reach for food pellets, and the time taken to reach for 20 pellets decreased following the onset of DR. A second experiment investigating behaviors that do not require food rewards, including a ladder rung walking task and an open field test, confirmed that rats on DR display deficits in skilled movements and are hyperactive. These findings suggest that results obtained in motor tasks using food rewards need to be interpreted with caution. The findings are discussed with respect to stress associated with DR. PMID:16045945

  16. [Extracorporeal shockwave lithotripsy of gallbladder calculi].

    PubMed

    Greiner, L; Jakobeit, C; Schumacher, R; Johanns, W

    1993-08-01

    Shockwave disintegration of gallbladder stones with lythic therapy of residual fragments is successful when all criteria of patient- and stone-selection, shockwave application and lysis are fulfilled. The "Four-S-stones" proved to be the best candidates: solitary, symptomatic, sonolucent in a sufficiently contractile gallbladder. The rate of complications is low. Stone recurrence rate (10 to 15% after three years) is much lower as in previous studies using lythic therapy only. The new therapeutic approach to gallbladder stone disease with fragmentation, spontaneous fragment-clearance and lysis of residual fragments is--as the only truly non-invasive procedure--for 10 to 20% of the patients an alternative equal to operation.

  17. Arachidonate metabolism in bovine gallbladder muscle

    SciTech Connect

    Nakano, M.; Hidaka, T.; Ueta, T.; Ogura, R.

    1983-04-01

    Incubation of (1-/sup 14/C)arachidonic acid (AA) with homogenates of bovine gallbladder muscle generated a large amount of radioactive material having the chromatographic mobility of 6-keto-PGF1 alpha (stable product of PGI2) and smaller amounts of products that comigrated with PGF2 alpha PGE2. Formation of these products was inhibited by the cyclooxygenase inhibitor indomethacin. The major radioactive product identified by thin-layer chromatographic mobility and by gas chromatography - mass spectrometric analysis was found to be 6-keto-PGF1 alpha. The quantitative metabolic pattern of (1-/sup 14/C)PGH2 was virtually identical to that of (1-/sup 14/C)AA. Incubation of arachidonic acid with slices of bovine gallbladder muscle released labile anti-aggregatory material in the medium, which was inhibited by aspirin or 15-hydroperoxy-AA. These results indicate that bovine gallbladder muscle has a considerable enzymatic capacity to produce PGI2 from arachidonic acid.

  18. Biochemical and morphological correlations in human gallbladder with reference to membrane permeability.

    PubMed

    Hopwood, D; Ross, P E

    1997-09-15

    There is good evidence that gallbladder epithelium is permeable to a diverse range of molecules which move into the epithelial cell from the lumen or the basement membrane. Morphological investigations have shown both secretory mucous droplets, components of the endocytosis pathway together with evidence of a system allowing passage of molecules across the basement membrane. This indicates that the gallbladder epithelium may be influenced by molecules presented via the apical and basal membranes, complicating our understanding of gallbladder function, particularly in disease. Gallbladder disease increases the proteoglycan content of the basement membrane, but the implication of this in terms of permeability remains to be defined. Indeed, it remains unknown whether this precedes disease or is a manifestation of the disease process. The removal of water from hepatic bile by gallbladder involves two counter ion transport systems. Autoradiography shows that ion transport occurs into the lateral intracellular spaces but it remains unclear whether this leads to a hypertonic solution in these spaces causing an osmotically driven water absorption or if the process involves an osmotically linked isotonic secretion. These ion pumps are reversible, for water is absorbed during the interdigestive phase but fluid is secreted into the lumen during digestion or in the presence of disease. Appropriate neural stimulation can increase or decrease fluid absorption from the lumen while vasoactive intestinal peptide or secretin promote fluid secretion, probably mediated by prostaglandins leading to raised cyclic AMP acting at the cellular level. Immediate control may depend on intracellular Ca2+ which activates a calmodulin-protein kinase, phosphorylating the counter ion transporters to downregulate their activity. Failure of this regulatory process may explain the initial increase in bile concentrating potential seen in the development of gallstones although the mechanism of such

  19. Trick or treat? Showing patients with functional (psychogenic) motor symptoms their physical signs.

    PubMed

    Stone, Jon; Edwards, Mark

    2012-07-17

    Functional (psychogenic) motor symptoms are diagnosed on the basis of positive signs of inconsistency or incongruity with known neurologic disease. These signs, such as Hoover sign or tremor entrainment, are often regarded by neurologists as 'tricks of the trade,' to 'catch the patient out, ' and certainly not to be shared with them. In this reflective article, the authors suggest that showing the patient with functional motor symptoms their physical signs, if done in the right way, is actually one of the most useful things a neurologist can do for these patients in persuading them of the accuracy of their diagnosis and the potential reversibility of their symptoms.

  20. Improving gross motor function and postural control with hippotherapy in children with Down syndrome: case reports.

    PubMed

    Champagne, Danielle; Dugas, Claude

    2010-11-01

    The purpose of this case report is to describe the impact of an 11-week hippotherapy program on the gross motor functions of two children (respectively 28 and 37 months old) diagnosed with Down syndrome. Hippotherapy is a strategy that uses the horse's motion to stimulate and enhance muscle contraction and postural control. The children were assessed by the Gross Motor Function Measure (GMFM) and accelerometry. The results indicate that both children improved on many dimensions of the GMFM. Power spectral analysis of the acceleration signals showed improvement in postural control of either the head or trunk, because the children adopted two different adaptative strategies to perturbation induced by the moving horse.

  1. Where did the motor function of the cerebellum come from?

    PubMed

    Coco, Marinella; Perciavalle, Vincenzo

    2015-01-01

    Until the end of 18th century, the role of the cerebellum remained obscure. The turning point occurred when Luigi Galvani showed that muscle contraction is due to electricity and Alessandro Volta produced the battery, an apparatus based on the pairing of silver and zinc plates separated by brine soaked paper disks, capable to generate electricity. Luigi Rolando, at beginning of 19th century, was impressed by these two observations. He thought that, since the brain generates the movement, it must contain a device generating electricity. As a battery, it should be formed by overlapping disks and the cerebellum for Rolando seemed to be the right structure for such a characteristic laminar organization. He argued that, if the cerebellum is the battery that produces electricity for muscle activity, its removal would produce paralysis. Consequently, Rolando removed the cerebellum in a young goat and observed that the animal, before dying, could no longer stand up. He concluded that the cerebellum is a motor structure as it generates the electricity which produces the movement. The conclusions of Rolando were criticized by Marie-Jean-Pierre Flourens who observed that animals undergoing cerebellectomy were still able to move, even if with problems of balance. Flourens concluded that the role of the cerebellum "is to put in order or to coordinate movements wanted by certain parts of the nervous system, excited by others". It was necessary to wait up to 1891 when Luigi Luciani, observing a dog survived the cerebellectomy, described a triad of symptoms (asthenia, atony and astasis), unquestionably of cerebellar origin.

  2. Where did the motor function of the cerebellum come from?

    PubMed

    Coco, Marinella; Perciavalle, Vincenzo

    2015-01-01

    Until the end of 18th century, the role of the cerebellum remained obscure. The turning point occurred when Luigi Galvani showed that muscle contraction is due to electricity and Alessandro Volta produced the battery, an apparatus based on the pairing of silver and zinc plates separated by brine soaked paper disks, capable to generate electricity. Luigi Rolando, at beginning of 19th century, was impressed by these two observations. He thought that, since the brain generates the movement, it must contain a device generating electricity. As a battery, it should be formed by overlapping disks and the cerebellum for Rolando seemed to be the right structure for such a characteristic laminar organization. He argued that, if the cerebellum is the battery that produces electricity for muscle activity, its removal would produce paralysis. Consequently, Rolando removed the cerebellum in a young goat and observed that the animal, before dying, could no longer stand up. He concluded that the cerebellum is a motor structure as it generates the electricity which produces the movement. The conclusions of Rolando were criticized by Marie-Jean-Pierre Flourens who observed that animals undergoing cerebellectomy were still able to move, even if with problems of balance. Flourens concluded that the role of the cerebellum "is to put in order or to coordinate movements wanted by certain parts of the nervous system, excited by others". It was necessary to wait up to 1891 when Luigi Luciani, observing a dog survived the cerebellectomy, described a triad of symptoms (asthenia, atony and astasis), unquestionably of cerebellar origin. PMID:26331053

  3. Probing the corticospinal link between the motor cortex and motoneurones: some neglected aspects of human motor cortical function.

    PubMed

    Petersen, N C; Butler, J E; Taylor, J L; Gandevia, S C

    2010-04-01

    This review considers the operation of the corticospinal system in primates. There is a relatively widespread cortical area containing corticospinal outputs to a single muscle and thus a motoneurone pool receives corticospinal input from a wide region of the cortex. In addition, corticospinal cells themselves have divergent intraspinal branches which innervate more than one motoneuronal pool but the synergistic couplings involving the many hand muscles are likely to be more diverse than can be accommodated simply by fixed patterns of corticospinal divergence. Many studies using transcranial magnetic stimulation of the human motor cortex have highlighted the capacity of the cortex to modify its apparent excitability in response to altered afferent inputs, training and various pathologies. Studies using cortical stimulation at 'very low' intensities which elicit only short-latency suppression of the discharge of motor units have revealed that the rapidly conducting corticospinal axons (stimulated at higher intensities) drive motoneurones in normal voluntary contractions. There are also major non-linearities generated at a spinal level in the relation between corticospinal output and the output from the motoneurone pool. For example, recent studies have revealed that the efficacy of the human corticospinal connection with motoneurones undergoes activity-dependent changes which influence the size of voluntary contractions. Hence, corticospinal drives must be sculpted continuously to compensate for the changing functional efficacy of the descending systems which activate the motoneurones. This highlights the need for proprioceptive monitoring of movements to ensure their accurate execution. PMID:20003100

  4. Gallbladder Boundary Segmentation from Ultrasound Images Using Active Contour Model

    NASA Astrophysics Data System (ADS)

    Ciecholewski, Marcin

    Extracting the shape of the gallbladder from an ultrasonography (US) image allows superfluous information which is immaterial in the diagnostic process to be eliminated. In this project an active contour model was used to extract the shape of the gallbladder, both for cases free of lesions, and for those showing specific disease units, namely: lithiasis, polyps and changes in the shape of the organ, such as folds or turns of the gallbladder. The approximate shape of the gallbladder was found by applying the motion equation model. The tests conducted have shown that for the 220 US images of the gallbladder, the area error rate (AER) amounted to 18.15%.

  5. Inflammatory myofibroblastic tumour of the gallbladder

    PubMed Central

    Behranwala, Kasim A; Straker, Peter; Wan, Andrew; Fisher, Cyril; Thompson, Jeremy N

    2005-01-01

    Background Inflammatory myofibroblastic tumour (IMT) is a benign, nonmetastasizing proliferation of myofibroblasts with a potential for local infiltration, recurrence and persistent local growth. Case report We report a case of a 51 year-old female, who had excision of a gallbladder tumour. Histopathology showed it to be IMT of the gallbladder. Conclusion The approach to these tumours should be primarily surgical resection to obtain a definitive diagnosis and relieve symptoms. IMT has a potential for local infiltration, recurrence and persistent local growth. PMID:15862123

  6. Inflammatory myofibroblastic tumour of the gallbladder.

    PubMed

    Behranwala, Kasim A; Straker, Peter; Wan, Andrew; Fisher, Cyril; Thompson, Jeremy N

    2005-04-29

    BACKGROUND: Inflammatory myofibroblastic tumour (IMT) is a benign, nonmetastasizing proliferation of myofibroblasts with a potential for local infiltration, recurrence and persistent local growth. CASE REPORT: We report a case of a 51 year-old female, who had excision of a gallbladder tumour. Histopathology showed it to be IMT of the gallbladder. CONCLUSION: The approach to these tumours should be primarily surgical resection to obtain a definitive diagnosis and relieve symptoms. IMT has a potential for local infiltration, recurrence and persistent local growth. PMID:15862123

  7. Mental representation and mental practice: experimental investigation on the functional links between motor memory and motor imagery.

    PubMed

    Frank, Cornelia; Land, William M; Popp, Carmen; Schack, Thomas

    2014-01-01

    Recent research on mental representation of complex action has revealed distinct differences in the structure of representational frameworks between experts and novices. More recently, research on the development of mental representation structure has elicited functional changes in novices' representations as a result of practice. However, research investigating if and how mental practice adds to this adaptation process is lacking. In the present study, we examined the influence of mental practice (i.e., motor imagery rehearsal) on both putting performance and the development of one's representation of the golf putt during early skill acquisition. Novice golfers (N = 52) practiced the task of golf putting under one of four different practice conditions: mental, physical, mental-physical combined, and no practice. Participants were tested prior to and after a practice phase, as well as after a three day retention interval. Mental representation structures of the putt were measured, using the structural dimensional analysis of mental representation. This method provides psychometric data on the distances and groupings of basic action concepts in long-term memory. Additionally, putting accuracy and putting consistency were measured using two-dimensional error scores of each putt. Findings revealed significant performance improvements over the course of practice together with functional adaptations in mental representation structure. Interestingly, after three days of practice, the mental representations of participants who incorporated mental practice into their practice regime displayed representation structures that were more similar to a functional structure than did participants who did not incorporate mental practice. The findings of the present study suggest that mental practice promotes the cognitive adaptation process during motor learning, leading to more elaborate representations than physical practice only. PMID:24743576

  8. Motor imagery learning induced changes in functional connectivity of the default mode network.

    PubMed

    Ge, Ruiyang; Zhang, Hang; Yao, Li; Long, Zhiying

    2015-01-01

    Numerous studies provide evidences that motor skill learning changes the activity of some brain regions during task as well as some resting networks during rest. However, it is still unclear how motor learning affects the resting-state default-mode network (DMN). Using functional magnetic resonance imaging, this study investigated the alteration of the DMN after motor skill learning with mental imagery practice. Fourteen participants in the experimental group learned to imagine a sequential finger movement over a two-week period while twelve control participants did not undergo motor imagery learning. For the experimental group, interregional connectivity, estimated by the graph theory method, between the medial temporal lobe, lateral temporal, and lateral parietal cortex within the DMN was increased after learning, whereas activity of the DMN network, estimated by the independent component analysis method, remained stable. Moreover, the experimental group showed significant improvement in motor performance after learning and a negative correlation between the alteration of the execution rate and changes in activity in the lateral parietal cortex. These results indicate that the DMN could be sculpted by motor learning in a manner of altering interregional connectivity and may imply that the DMN plays a role in improving behavioral performance.

  9. Haptic fMRI: combining functional neuroimaging with haptics for studying the brain's motor control representation.

    PubMed

    Menon, Samir; Brantner, Gerald; Aholt, Chris; Kay, Kendrick; Khatib, Oussama

    2013-01-01

    A challenging problem in motor control neuroimaging studies is the inability to perform complex human motor tasks given the Magnetic Resonance Imaging (MRI) scanner's disruptive magnetic fields and confined workspace. In this paper, we propose a novel experimental platform that combines Functional MRI (fMRI) neuroimaging, haptic virtual simulation environments, and an fMRI-compatible haptic device for real-time haptic interaction across the scanner workspace (above torso ∼ .65×.40×.20m(3)). We implement this Haptic fMRI platform with a novel haptic device, the Haptic fMRI Interface (HFI), and demonstrate its suitability for motor neuroimaging studies. HFI has three degrees-of-freedom (DOF), uses electromagnetic motors to enable high-fidelity haptic rendering (>350Hz), integrates radio frequency (RF) shields to prevent electromagnetic interference with fMRI (temporal SNR >100), and is kinematically designed to minimize currents induced by the MRI scanner's magnetic field during motor displacement (<2cm). HFI possesses uniform inertial and force transmission properties across the workspace, and has low friction (.05-.30N). HFI's RF noise levels, in addition, are within a 3 Tesla fMRI scanner's baseline noise variation (∼.85±.1%). Finally, HFI is haptically transparent and does not interfere with human motor tasks (tested for .4m reaches). By allowing fMRI experiments involving complex three-dimensional manipulation with haptic interaction, Haptic fMRI enables-for the first time-non-invasive neuroscience experiments involving interactive motor tasks, object manipulation, tactile perception, and visuo-motor integration.

  10. Haptic fMRI: combining functional neuroimaging with haptics for studying the brain's motor control representation.

    PubMed

    Menon, Samir; Brantner, Gerald; Aholt, Chris; Kay, Kendrick; Khatib, Oussama

    2013-01-01

    A challenging problem in motor control neuroimaging studies is the inability to perform complex human motor tasks given the Magnetic Resonance Imaging (MRI) scanner's disruptive magnetic fields and confined workspace. In this paper, we propose a novel experimental platform that combines Functional MRI (fMRI) neuroimaging, haptic virtual simulation environments, and an fMRI-compatible haptic device for real-time haptic interaction across the scanner workspace (above torso ∼ .65×.40×.20m(3)). We implement this Haptic fMRI platform with a novel haptic device, the Haptic fMRI Interface (HFI), and demonstrate its suitability for motor neuroimaging studies. HFI has three degrees-of-freedom (DOF), uses electromagnetic motors to enable high-fidelity haptic rendering (>350Hz), integrates radio frequency (RF) shields to prevent electromagnetic interference with fMRI (temporal SNR >100), and is kinematically designed to minimize currents induced by the MRI scanner's magnetic field during motor displacement (<2cm). HFI possesses uniform inertial and force transmission properties across the workspace, and has low friction (.05-.30N). HFI's RF noise levels, in addition, are within a 3 Tesla fMRI scanner's baseline noise variation (∼.85±.1%). Finally, HFI is haptically transparent and does not interfere with human motor tasks (tested for .4m reaches). By allowing fMRI experiments involving complex three-dimensional manipulation with haptic interaction, Haptic fMRI enables-for the first time-non-invasive neuroscience experiments involving interactive motor tasks, object manipulation, tactile perception, and visuo-motor integration. PMID:24110643

  11. Striatal Cholinergic Interneurons Control Motor Behavior and Basal Ganglia Function in Experimental Parkinsonism.

    PubMed

    Maurice, Nicolas; Liberge, Martine; Jaouen, Florence; Ztaou, Samira; Hanini, Marwa; Camon, Jeremy; Deisseroth, Karl; Amalric, Marianne; Kerkerian-Le Goff, Lydia; Beurrier, Corinne

    2015-10-27

    Despite evidence showing that anticholinergic drugs are of clinical relevance in Parkinson's disease (PD), the causal role of striatal cholinergic interneurons (CINs) in PD pathophysiology remains elusive. Here, we show that optogenetic inhibition of CINs alleviates motor deficits in PD mouse models, providing direct demonstration for their implication in parkinsonian motor dysfunctions. As neural correlates, CIN inhibition in parkinsonian mice differentially impacts the excitability of striatal D1 and D2 medium spiny neurons, normalizes pathological bursting activity in the main basal ganglia output structure, and increases the functional weight of the direct striatonigral pathway in cortical information processing. By contrast, CIN inhibition in non-lesioned mice does not affect locomotor activity, equally modulates medium spiny neuron excitability, and does not modify spontaneous or cortically driven activity in the basal ganglia output, suggesting that the role of these interneurons in motor function is highly dependent on dopamine tone. PMID:26489458

  12. Oleanolic acid induces mitochondrial-dependent apoptosis and G0/G1 phase arrest in gallbladder cancer cells

    PubMed Central

    Li, Huai-Feng; Wang, Xu-An; Xiang, Shan-Shan; Hu, Yun-Ping; Jiang, Lin; Shu, Yi-Jun; Li, Mao-Lan; Wu, Xiang-Song; Zhang, Fei; Ye, Yuan-Yuan; Weng, Hao; Bao, Run-Fa; Cao, Yang; Lu, Wei; Dong, Qian; Liu, Ying-Bin

    2015-01-01

    Oleanolic acid (OA), a naturally occurring triterpenoid, exhibits potential antitumor activity in many tumor cell lines. Gallbladder carcinoma is the most common malignancy of the biliary tract, and is a highly aggressive tumor with an extremely poor prognosis. Unfortunately, the effects of OA on gallbladder carcinoma are unknown. In this study, we investigated the effects of OA on gallbladder cancer cells and the underlying mechanism. The results showed that OA inhibits proliferation of gallbladder cancer cells in a dose-dependent and time-dependent manner on MTT and colony formation assay. A flow cytometry assay revealed apoptosis and G0/G1 phase arrest in GBC-SD and NOZ cells. Western blot analysis and a mitochondrial membrane potential assay demonstrated that OA functions through the mitochondrial apoptosis pathway. Moreover, this drug inhibited tumor growth in nude mice carrying subcutaneous NOZ tumor xenografts. These data suggest that OA inhibits proliferation of gallbladder cancer cells by regulating apoptosis and the cell cycle process. Thus, OA may be a promising drug for adjuvant chemotherapy in gallbladder carcinoma. PMID:26109845

  13. Exposure to neonicotinoids influences the motor function of adult worker honeybees.

    PubMed

    Williamson, Sally M; Willis, Sarah J; Wright, Geraldine A

    2014-10-01

    Systemic pesticides such as neonicotinoids are commonly used on flowering crops visited by pollinators, and their use has been implicated in the decline of insect pollinator populations in Europe and North America. Several studies show that neonicotinoids affect navigation and learning in bees but few studies have examined whether these substances influence their basic motor function. Here, we investigated how prolonged exposure to sublethal doses of four neonicotinoid pesticides (imidacloprid, thiamethoxam, clothianidin, dinotefuran) and the plant toxin, nicotine, affect basic motor function and postural control in foraging-age worker honeybees. We used doses of 10 nM for each neonicotinoid: field-relevant doses that we determined to be sublethal and willingly consumed by bees. The neonicotinoids were placed in food solutions given to bees for 24 h. After the exposure period, bees were more likely to lose postural control during the motor function assay and fail to right themselves if exposed to imidacloprid, thiamethoxam, clothianidin. Bees exposed to thiamethoxam and nicotine also spent more time grooming. Other behaviours (walking, sitting and flying) were not significantly affected. Expression of changes in motor function after exposure to imidacloprid was dose-dependent and affected all measured behaviours. Our data illustrate that 24 h exposure to sublethal doses of neonicotinoid pesticides has a subtle influence on bee behaviour that is likely to affect normal function in a field setting.

  14. In vitro modeling of gallbladder-associated Salmonella spp. colonization.

    PubMed

    Gonzalez-Escobedo, Geoffrey; Gunn, John S

    2015-01-01

    The host-pathogen interactions occurring in the gallbladder during Salmonella Typhi colonization contribute to typhoid fever pathogenesis during the acute and chronic stages of disease. The gallbladder is the primary reservoir during chronic typhoid carriage. In this organ, Salmonella encounters host-barriers including bile, immunoglobulins, and mucus. However, the bacterium possesses mechanisms to resist and persist in this environment, in part by its ability to attach to and invade into the gallbladder epithelium. Such persistence in the gallbladder epithelium contributes to chronic carriage. In addition, patients harboring gallstones in their gallbladders have increased risk of becoming carriers because these abnormalities serve as a substrate for Salmonella biofilm formation. Our laboratory has studied the Salmonella interactions in this specific environment by developing in vitro methods that closely mimic the gallbladder and gallstones niches. These methods are reproducible and provide a platform for future studies of acute and chronic bacterial infections in the gallbladder.

  15. Dysfunction in endoplasmic reticulum-mitochondria crosstalk underlies SIGMAR1 loss of function mediated motor neuron degeneration.

    PubMed

    Bernard-Marissal, Nathalie; Médard, Jean-Jacques; Azzedine, Hamid; Chrast, Roman

    2015-04-01

    Mutations in Sigma 1 receptor (SIGMAR1) have been previously identified in patients with amyotrophic lateral sclerosis and disruption of Sigmar1 in mouse leads to locomotor deficits. However, cellular mechanisms underlying motor phenotypes in human and mouse with disturbed SIGMAR1 function have not been described so far. Here we used a combination of in vivo and in vitro approaches to investigate the role of SIGMAR1 in motor neuron biology. Characterization of Sigmar1(-/-) mice revealed that affected animals display locomotor deficits associated with muscle weakness, axonal degeneration and motor neuron loss. Using primary motor neuron cultures, we observed that pharmacological or genetic inactivation of SIGMAR1 led to motor neuron axonal degeneration followed by cell death. Disruption of SIGMAR1 function in motor neurons disturbed endoplasmic reticulum-mitochondria contacts, affected intracellular calcium signalling and was accompanied by activation of endoplasmic reticulum stress and defects in mitochondrial dynamics and transport. These defects were not observed in cultured sensory neurons, highlighting the exacerbated sensitivity of motor neurons to SIGMAR1 function. Interestingly, the inhibition of mitochondrial fission was sufficient to induce mitochondria axonal transport defects as well as axonal degeneration similar to the changes observed after SIGMAR1 inactivation or loss. Intracellular calcium scavenging and endoplasmic reticulum stress inhibition were able to restore mitochondrial function and consequently prevent motor neuron degeneration. These results uncover the cellular mechanisms underlying motor neuron degeneration mediated by loss of SIGMAR1 function and provide therapeutically relevant insight into motor neuronal diseases.

  16. Sign Language and Motor Functioning in Students with Autistic Disorder.

    ERIC Educational Resources Information Center

    Seal, Brenda C.; Bonvillian, John D.

    1997-01-01

    Sign language production of 14 low-functioning students (ages 9 to 20) with autistic disorder were examined. The location aspect of signs was produced more accurately by subjects than either the handshape or movement aspects. Wide individual differences were observed. Sign vocabulary size and accuracy was correlated with performance on two…

  17. Red raspberries can improve motor function in aged rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Many foods rich in antioxidant and anti-inflammatory compounds have been shown to increase health and reduce markers of aging. A number of berry fruits high in polyphenols are known to ameliorate age-related declines in cellular, cognitive and behavioral function in rats. OBJECTIVES: Thi...

  18. Functional aging in the nervous system contributes to age-dependent motor activity decline in C. elegans.

    PubMed

    Liu, Jie; Zhang, Bi; Lei, Haoyun; Feng, Zhaoyang; Liu, Jianfeng; Hsu, Ao-Lin; Xu, X Z Shawn

    2013-09-01

    Aging is characterized by a progressive decline in multiple physiological functions (i.e., functional aging). As animals age, they exhibit a gradual loss in motor activity, but the underlying mechanisms remain unclear. Here we approach this question in C. elegans by functionally characterizing its aging nervous system and muscles. We find that motor neurons exhibit a progressive functional decline, beginning in early life. Surprisingly, body-wall muscles, which were previously thought to undergo functional aging, do not manifest such a decline until mid-late life. Notably, motor neurons first develop a deficit in synaptic vesicle fusion followed by that in quantal size and vesicle docking/priming, revealing specific functional deteriorations in synaptic transmission. Pharmacological stimulation of synaptic transmission can improve motor activity in aged animals. These results uncover a critical role for the nervous system in age-dependent motor activity decline in C. elegans and provide insights into how functional aging occurs in this organism.

  19. Identification of Helicobacter spp. in bile and gallbladder tissue of patients with symptomatic gallbladder disease

    PubMed Central

    Sabbaghian, M Shirin; Ranaudo, Jeffrey; Zeng, Lin; Alongi, Alexandra P; Perez-Perez, Guillermo; Shamamian, Peter

    2010-01-01

    Background: This experimental study was designed to determine if Helicobacter spp. contribute to benign gallbladder disease using polymerase chain reaction (PCR) methods. Methods: Patients with benign gallbladder disease scheduled for elective cholecystectomy at New York University Langone Medical Center were recruited from February to May 2008. Bile, gallbladder tissue and gallstones were collected. DNA was isolated from these specimens and amplified via PCR using C97F and C98R primers specific for Helicobacter spp. Appropriate positive and negative controls were used. Products were analysed with agarose gel electrophoresis, sequenced and results aligned using sequencher. Plasma was collected for detection of anti-Helicobacter pylori antibodies via enzyme-linked immunosorbent assay. Results: Of 36 patients, 12 patients' bile and/or tissue were positive for Helicobacter spp. by PCR. Species were most homologous with H. pylori, although other Helicobacter spp. were suggested. Six of 12 patients demonstrated anti-Helicobacter antibodies in plasma, suggesting that the remaining six might have demonstrated other species besides H. pylori. Four of six plasma samples with anti-Helicobacter antibodies were anti-CagA (cytotoxin associated gene) negative. Discussion: Helicobacter spp. can be detected in bile and gallbladder tissue of patients with benign gallbladder disease. The contribution of these bacteria to the pathophysiology of gallbladder disease and gallstone formation requires further study. PMID:20495657

  20. Stability of Caregiver-Reported Manual Ability and Gross Motor Function Classifications of Cerebral Palsy

    ERIC Educational Resources Information Center

    Imms, Christine; Carlin, John; Eliasson, Ann-Christin

    2010-01-01

    Aim: To examine the stability of caregiver-reported classifications of function of children with cerebral palsy (CP) measured 12 months apart. Method: Participants were 86 children (50 males, 36 females) with CP of all motor types and severities who were recruited into a population-based longitudinal study. Children were aged 11 years 8 months (SD…

  1. No Interrelation of Motor Planning and Executive Functions across Young Ages.

    PubMed

    Wunsch, Kathrin; Pfister, Roland; Henning, Anne; Aschersleben, Gisa; Weigelt, Matthias

    2016-01-01

    The present study examined the developmental trajectories of motor planning and executive functioning in children. To this end, we tested 217 participants with three motor tasks, measuring anticipatory planning abilities (i.e., the bar-transport-task, the sword-rotation-task and the grasp-height-task), and three cognitive tasks, measuring executive functions (i.e., the Tower-of-Hanoi-task, the Mosaic-task, and the D2-attention-endurance-task). Children were aged between 3 and 10 years and were separated into age groups by 1-year bins, resulting in a total of eight groups of children and an additional group of adults. Results suggested (1) a positive developmental trajectory for each of the sub-tests, with better task performance as children get older; (2) that the performance in the separate tasks was not correlated across participants in the different age groups; and (3) that there was no relationship between performance in the motor tasks and in the cognitive tasks used in the present study when controlling for age. These results suggest that both, motor planning and executive functions are rather heterogeneous domains of cognitive functioning with fewer interdependencies than often suggested. PMID:27462285

  2. RELATIVE POTENCIES FOR ACUTE EFFECTS OF PYRETHROIDS ON MOTOR FUNCTION IN RATS.

    EPA Science Inventory

    A manuscript reports data from initial studies on the cumulative risk of pyrethroid insecticides. The objective of this work was to characterize individual dose-response curves for in vivo motor function and calculate relative potencies, for eleven commonly used pyrethroids. Acu...

  3. Motor function in adults of an Ohio community with environmental manganese exposure

    EPA Science Inventory

    OBJECTIVES: The objective of the present study was to evaluate motor function in order to assess the effects of long-term, low-level environmental manganese (Mn) exposure in residents of an Ohio community where a large ferro- and silico-Mn smelter has been active for more than 50...

  4. Schizotypal Personality Traits and Atypical Lateralization in Motor and Language Functions

    ERIC Educational Resources Information Center

    Asai, Tomohisa; Sugimori, Eriko; Tanno, Yoshihiko

    2009-01-01

    Atypical cerebral lateralization in motor and language functions in regard to schizotypal personality traits in healthy populations, as well as among schizophrenic patients, has attracted attention because these traits may represent a risk factor for schizophrenia. Although the relationship between handedness and schizotypal personality has been…

  5. No Interrelation of Motor Planning and Executive Functions across Young Ages

    PubMed Central

    Wunsch, Kathrin; Pfister, Roland; Henning, Anne; Aschersleben, Gisa; Weigelt, Matthias

    2016-01-01

    The present study examined the developmental trajectories of motor planning and executive functioning in children. To this end, we tested 217 participants with three motor tasks, measuring anticipatory planning abilities (i.e., the bar-transport-task, the sword-rotation-task and the grasp-height-task), and three cognitive tasks, measuring executive functions (i.e., the Tower-of-Hanoi-task, the Mosaic-task, and the D2-attention-endurance-task). Children were aged between 3 and 10 years and were separated into age groups by 1-year bins, resulting in a total of eight groups of children and an additional group of adults. Results suggested (1) a positive developmental trajectory for each of the sub-tests, with better task performance as children get older; (2) that the performance in the separate tasks was not correlated across participants in the different age groups; and (3) that there was no relationship between performance in the motor tasks and in the cognitive tasks used in the present study when controlling for age. These results suggest that both, motor planning and executive functions are rather heterogeneous domains of cognitive functioning with fewer interdependencies than often suggested. PMID:27462285

  6. Development of the Gross Motor Function Classification System for Cerebral Palsy

    ERIC Educational Resources Information Center

    Rosenbaum, Peter L.; Palisano, Robert J.; Bartlett, Doreen J.; Galuppi, Barbara E.; Russell, Dianne J.

    2008-01-01

    The Gross Motor Function Classification System (GMFCS) for cerebral palsy has been widely used internationally for clinical, research, and administrative purposes. This paper recounts the ideas and work behind the creation of the GMFCS, reports on the lessons learned, and identifies some philosophical challenges inherent in trying to develop an…

  7. Relationship between Executive Functions and Motor Stereotypies in Children with Autistic Disorder

    ERIC Educational Resources Information Center

    LeMonda, Brittany C.; Holtzer, Roee; Goldman, Sylvie

    2012-01-01

    This study reports on the relationship between motor stereotypies and impairments in executive functions (EF) in children with Autistic Disorder (AD) and in children with Developmental Language Disorders (DLD). We hypothesized that low EF performance would predict higher frequency and longer durations of stereotypies in the AD group only.…

  8. [Leiomyosarcoma of the gallbladder: a clinical case].

    PubMed

    Tocchi, A; Codacci-Pisanelli, M; Costa, G; Lepre, L; Agostini, N; Maggiolini, F

    1993-10-01

    A case of primary leiomyosarcoma of the gallbladder is reported together with a review of the literature. The nonspecific clinical picture of the disease and the consequent high frequency of misdiagnosis are stressed. Cholecystectomy combined with chemotherapy and radiotherapy is the treatment of choice suggested.

  9. [Severe acute pancreatitis associated with gallbladder gangrene].

    PubMed

    Arroyo-Sánchez, Abel S; Aguirre-Mejía, Rosa Y; Echenique-Martínez, Sergio E

    2014-01-01

    We present a diabetic patient who developed severe acute pancreatitis associated to gallbladder gangrene, in this case we assessed the applicability of classification criteria and management of the pathways for acute pancreatitis and also we suggest some topics that could be investigated in the future.

  10. Changes in functional connectivity and GABA levels with long-term motor learning.

    PubMed

    Sampaio-Baptista, Cassandra; Filippini, Nicola; Stagg, Charlotte J; Near, Jamie; Scholz, Jan; Johansen-Berg, Heidi

    2015-02-01

    Learning novel motor skills alters local inhibitory circuits within primary motor cortex (M1) (Floyer-Lea et al., 2006) and changes long-range functional connectivity (Albert et al., 2009). Whether such effects occur with long-term training is less well established. In addition, the relationship between learning-related changes in functional connectivity and local inhibition, and their modulation by practice, has not previously been tested. Here, we used resting-state functional magnetic resonance imaging (rs-fMRI) to assess functional connectivity and MR spectroscopy to quantify GABA in primary motor cortex (M1) before and after a 6 week regime of juggling practice. Participants practiced for either 30 min (high intensity group) or 15 min (low intensity group) per day. We hypothesized that different training regimes would be reflected in distinct changes in brain connectivity and local inhibition, and that correlations would be found between learning-induced changes in GABA and functional connectivity. Performance improved significantly with practice in both groups and we found no evidence for differences in performance outcomes between the low intensity and high intensity groups. Despite the absence of behavioral differences, we found distinct patterns of brain change in the two groups: the low intensity group showed increases in functional connectivity in the motor network and decreases in GABA, whereas the high intensity group showed decreases in functional connectivity and no significant change in GABA. Changes in functional connectivity correlated with performance outcome. Learning-related changes in functional connectivity correlated with changes in GABA. The results suggest that different training regimes are associated with distinct patterns of brain change, even when performance outcomes are comparable between practice schedules. Our results further indicate that learning-related changes in resting-state network strength in part reflect GABAergic plastic

  11. Gross and fine motor function and accompanying impairments in cerebral palsy.

    PubMed

    Himmelmann, K; Beckung, E; Hagberg, G; Uvebrant, P

    2006-06-01

    The aim of this study was to describe and analyze gross and fine motor function and accompanying neurological impairments in children with cerebral palsy (CP) born between 1991 and 1998 in western Sweden. A population-based study comprised 411 children with a diagnosis of CP ascertained at 4 to 8 years of age. Gross Motor Function Classification System (GMFCS) levels were documented in 367 children (205 males, 162 females). Bimanual Fine Motor Function (BFMF) classification levels of 345 of the children and information on learning disability, epilepsy, visual and hearing impairments, and hydrocephalus from 353 children were obtained. For spastic CP, a new classification according to the Surveillance of Cerebral Palsy in Europe of uni- and bilateral spastic CP was applied. GMFCS was distributed at Level I in 32%, Level II in 29%, Level III in 8%, Level IV in 15%, and Level V in 16%. The corresponding percentages for BFMF were 30.7%, 31.6%, 12.2%, 11.9%, and 13.6% respectively. Learning disability was present in 40%, epilepsy in 33%, and severe visual impairment in 19% of the children. Motor function differed between CP types. More severe GMFCS levels correlated with larger proportions of accompanying impairments and, in children born at term, to the presence of adverse peri/neonatal events in the form of intracranial haemorrhage/stroke, cerebral infection, and hypoxic-ischaemic encephalopathy. GMFCS Level I correlated positively to increasing gestational age. We conclude that the classification of CP should be based on CP type and motor function, as the two combine to produce an indicator of total impairment load. PMID:16700930

  12. Effect of α₇ nicotinic acetylcholine receptor agonists and antagonists on motor function in mice.

    PubMed

    Welch, Kevin D; Pfister, James A; Lima, Flavia G; Green, Benedict T; Gardner, Dale R

    2013-02-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChRs located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The toxicity and teratogenicity of many plants (which results in millions of dollars in losses annually to the livestock industry) are due to various toxins that bind to nAChRs including deltaline and methyllycaconitine (MLA) from larkspur (Delphinium) species, and nicotine and anabasine from tobacco (Nicotiana) species. The primary result of the actions of these alkaloids at nAChRs is neuromuscular paralysis and respiratory failure. The objective of this study was to further characterize the motor coordination deficiencies that occur upon exposure to a non-lethal dose of nAChR antagonists MLA and deltaline as well as nAChR agonists nicotine and anabasine. We evaluated the effect of nAChR agonists and antagonists on the motor function and coordination in mice using a balance beam, grip strength meter, rotarod, open field analysis and tremor monitor. These analyses demonstrated that within seconds after treatment the mice had significant loss of motor function and coordination that lasted up to 1 min, followed by a short period of quiescence. Recovery to normal muscle coordination was rapid, typically within approximately 10 min post-dosing. However, mice treated with the nAChR agonist nicotine and anabasine required a slightly longer time to recover some aspects of normal muscle function in comparison to mice treated with the nAChR antagonist MLA or deltaline.

  13. Impaired Autophagy and Defective Mitochondrial Function: Converging Paths on the Road to Motor Neuron Degeneration

    PubMed Central

    Edens, Brittany M.; Miller, Nimrod; Ma, Yong-Chao

    2016-01-01

    Selective motor neuron degeneration is a hallmark of amyotrophic lateral sclerosis (ALS). Around 10% of all cases present as familial ALS (FALS), while sporadic ALS (SALS) accounts for the remaining 90%. Diverse genetic mutations leading to FALS have been identified, but the underlying causes of SALS remain largely unknown. Despite the heterogeneous and incompletely understood etiology, different types of ALS exhibit overlapping pathology and common phenotypes, including protein aggregation and mitochondrial deficiencies. Here, we review the current understanding of mechanisms leading to motor neuron degeneration in ALS as they pertain to disrupted cellular clearance pathways, ATP biogenesis, calcium buffering and mitochondrial dynamics. Through focusing on impaired autophagic and mitochondrial functions, we highlight how the convergence of diverse cellular processes and pathways contributes to common pathology in motor neuron degeneration. PMID:26973461

  14. Parceling of mesial frontal motor areas during ideation and movement using functional magnetic resonance imaging at 1.5 tesla.

    PubMed

    Tyszka, J M; Grafton, S T; Chew, W; Woods, R P; Colletti, P M

    1994-06-01

    Finger movement-related responses were identified in three discrete sites of mesial frontal cortex in 7 normal subjects using high resolution functional magnetic resonance imaging. During imagination of the same movements there was a differential response with rostral areas more active than caudal areas. Humans have multiple motor areas in mesial frontal cortex that subserve different functions in motor planning and execution.

  15. Profiles and Cognitive Predictors of Motor Functions among Early School-Age Children with Mild Intellectual Disabilities

    ERIC Educational Resources Information Center

    Wuang, Y.-P.; Wang, C.-C.; Huang, M.-H.; Su, C.-Y.

    2008-01-01

    Background: The purpose of the study was to describe sensorimotor profile in children with mild intellectual disability (ID), and to examine the association between cognitive and motor function. Methods: A total of 233 children with mild ID aged 7 to 8 years were evaluated with measures of cognitive, motor and sensory integrative functioning.…

  16. In vivo optogenetic tracing of functional corticocortical connections between motor forelimb areas

    PubMed Central

    Hira, Riichiro; Ohkubo, Fuki; Tanaka, Yasuhiro R.; Masamizu, Yoshito; Augustine, George J.; Kasai, Haruo; Matsuzaki, Masanori

    2013-01-01

    Interactions between distinct motor cortical areas are essential for coordinated motor behaviors. In rodents, the motor cortical forelimb areas are divided into at least two distinct areas: the rostral forelimb area (RFA) and the caudal forelimb area (CFA). The RFA is thought to be an equivalent of the premotor cortex (PM) in primates, whereas the CFA is believed to be an equivalent of the primary motor cortex. Although reciprocal connections between the RFA and the CFA have been anatomically identified in rats, it is unknown whether there are functional connections between these areas that can induce postsynaptic spikes. In this study, we used an in vivo Channelrhodopsin-2 (ChR2) photostimulation method to trace the functional connections between the mouse RFA and CFA. Simultaneous electrical recordings were utilized to detect spiking activities induced by synaptic inputs originating from photostimulated areas. This method, in combination with anatomical tracing, demonstrated that the RFA receives strong functional projections from layer 2/3 and/or layer 5a, but not from layer 5b (L5b), of the CFA. Further, the CFA receives strong projections from L5b neurons of the RFA. The onset latency of electrical responses evoked in remote areas upon photostimulation of the other areas was approximately 10 ms, which is consistent with the synaptic connectivity between these areas. Our results suggest that neuronal activities in the RFA and the CFA during movements are formed through asymmetric reciprocal connections. PMID:23554588

  17. Aging-associated changes in motor axon voltage-gated Na(+) channel function in mice.

    PubMed

    Moldovan, Mihai; Rosberg, Mette Romer; Alvarez, Susana; Klein, Dennis; Martini, Rudolf; Krarup, Christian

    2016-03-01

    Accumulating myelin abnormalities and conduction slowing occur in peripheral nerves during aging. In mice deficient of myelin protein P0, severe peripheral nervous system myelin damage is associated with ectopic expression of Nav1.8 voltage-gated Na(+) channels on motor axons aggravating the functional impairment. The aim of the present study was to investigate the effect of regular aging on motor axon function with particular emphasis on Nav1.8. We compared tibial nerve conduction and excitability measures by threshold tracking in 12 months (mature) and 20 months (aged) wild-type (WT) mice. With aging, deviations during threshold electrotonus were attenuated and the resting current-threshold slope and early refractoriness were increased. Modeling indicated that, in addition to changes in passive membrane properties, motor fibers in aged WT mice were depolarized. An increased Nav1.8 isoform expression was found by immunohistochemistry. The depolarizing excitability features were absent in Nav1.8 null mice, and they were counteracted in WT mice by a Nav1.8 blocker. Our data suggest that alteration in voltage-gated Na(+) channel isoform expression contributes to changes in motor axon function during aging. PMID:26923409

  18. Histological and Functional Benefit Following Transplantation of Motor Neuron Progenitors to the Injured Rat Spinal Cord

    PubMed Central

    Wyatt, Tanya; Yin, Hong Zhen; Poole, Aleksandra J.; Weiss, John H.; Gardener, Matthew J.; Dijkstra, Sipke; Fischer, David F.; Keirstead, Hans S.

    2010-01-01

    Background Motor neuron loss is characteristic of cervical spinal cord injury (SCI) and contributes to functional deficit. Methodology/Principal Findings In order to investigate the amenability of the injured adult spinal cord to motor neuron differentiation, we transplanted spinal cord injured animals with a high purity population of human motor neuron progenitors (hMNP) derived from human embryonic stem cells (hESCs). In vitro, hMNPs displayed characteristic motor neuron-specific markers, a typical electrophysiological profile, functionally innervated human or rodent muscle, and secreted physiologically active growth factors that caused neurite branching and neuronal survival. hMNP transplantation into cervical SCI sites in adult rats resulted in suppression of intracellular signaling pathways associated with SCI pathogenesis, which correlated with greater endogenous neuronal survival and neurite branching. These neurotrophic effects were accompanied by significantly enhanced performance on all parameters of the balance beam task, as compared to controls. Interestingly, hMNP transplantation resulted in survival, differentiation, and site-specific integration of hMNPs distal to the SCI site within ventral horns, but hMNPs near the SCI site reverted to a neuronal progenitor state, suggesting an environmental deficiency for neuronal maturation associated with SCI. Conclusions/Significance These findings underscore the barriers imposed on neuronal differentiation of transplanted cells by the gliogenic nature of the injured spinal cord, and the physiological relevance of transplant-derived neurotrophic support to functional recovery. PMID:20686613

  19. Upslope treadmill exercise enhances motor axon regeneration but not functional recovery following peripheral nerve injury.

    PubMed

    Cannoy, Jill; Crowley, Sam; Jarratt, Allen; Werts, Kelly LeFevere; Osborne, Krista; Park, Sohee; English, Arthur W

    2016-09-01

    Following peripheral nerve injury, moderate daily exercise conducted on a level treadmill results in enhanced axon regeneration and modest improvements in functional recovery. If the exercise is conducted on an upwardly inclined treadmill, even more motor axons regenerate successfully and reinnervate muscle targets. Whether this increased motor axon regeneration also results in greater improvement in functional recovery from sciatic nerve injury was studied. Axon regeneration and muscle reinnervation were studied in Lewis rats over an 11 wk postinjury period using stimulus evoked electromyographic (EMG) responses in the soleus muscle of awake animals. Motor axon regeneration and muscle reinnervation were enhanced in slope-trained rats. Direct muscle (M) responses reappeared faster in slope-trained animals than in other groups and ultimately were larger than untreated animals. The amplitude of monosynaptic H reflexes recorded from slope-trained rats remained significantly smaller than all other groups of animals for the duration of the study. The restoration of the amplitude and pattern of locomotor EMG activity in soleus and tibialis anterior and of hindblimb kinematics was studied during treadmill walking on different slopes. Slope-trained rats did not recover the ability to modulate the intensity of locomotor EMG activity with slope. Patterned EMG activity in flexor and extensor muscles was not noted in slope-trained rats. Neither hindblimb length nor limb orientation during level, upslope, or downslope walking was restored in slope-trained rats. Slope training enhanced motor axon regeneration but did not improve functional recovery following sciatic nerve transection and repair. PMID:27466130

  20. Iron insufficiency compromises motor neurons and their mitochondrial function in Irp2-null mice.

    PubMed

    Jeong, Suh Young; Crooks, Daniel R; Wilson-Ollivierre, Hayden; Ghosh, Manik C; Sougrat, Rachid; Lee, Jaekwon; Cooperman, Sharon; Mitchell, James B; Beaumont, Carole; Rouault, Tracey A

    2011-01-01

    Genetic ablation of Iron Regulatory Protein 2 (Irp2, Ireb2), which post-transcriptionally regulates iron metabolism genes, causes a gait disorder in mice that progresses to hind-limb paralysis. Here we have demonstrated that misregulation of iron metabolism from loss of Irp2 causes lower motor neuronal degeneration with significant spinal cord axonopathy. Mitochondria in the lumbar spinal cord showed significantly decreased Complex I and II activities, and abnormal morphology. Lower motor neurons appeared to be the most adversely affected neurons, and we show that functional iron starvation due to misregulation of iron import and storage proteins, including transferrin receptor 1 and ferritin, may have a causal role in disease. We demonstrated that two therapeutic approaches were beneficial for motor neuron survival. First, we activated a homologous protein, IRP1, by oral Tempol treatment and found that axons were partially spared from degeneration. Secondly, we genetically decreased expression of the iron storage protein, ferritin, to diminish functional iron starvation. These data suggest that functional iron deficiency may constitute a previously unrecognized molecular basis for degeneration of motor neurons in mice. PMID:22003390

  1. Effects of Neurodevelopmental Therapy on Gross Motor Function in Children with Cerebral Palsy

    PubMed Central

    LABAF, Sina; SHAMSODDINI, Alireza; HOLLISAZ, Mohammad Taghi; SOBHANI, Vahid; Shakibaee, Abolfazl

    2015-01-01

    Objective Neurodevelopmental treatments are an advanced therapeutic approach practiced by experienced occupational therapists for the rehabilitation of children with cerebral palsy. The primary challenge in children with cerebral palsy is gross motor dysfunction. We studied the effects of neurodevelopmental therapy on gross motor function in children with cerebral palsy. Materials & Methods In a quasi-experimental design, 28 children with cerebral palsy were randomly divided into two groups. Neurodevelopmental therapy was given to a first group (n=15) with a mean age of 4.9 years; and a second group with a mean age 4.4 years (n=13) who were the control group. All children were evaluated with the Gross Motor Function Measure. Treatments were scheduled for three - one-hour sessions per week for 3 months. Results We obtained statistically significant differences in the values between the baseline and post treatment in two groups. The groups were significantly different in laying and rolling (P=0.000), sitting (0.002), crawling and kneeling (0.004), and standing abilities (P=0.005). However, there were no significant differences in walking, running, and jumping abilities between the two groups (0.090). Conclusion We concluded that the neurodevelopmental treatment improved gross motor function in children with cerebral palsy in four dimensions (laying and rolling, sitting, crawling and kneeling, and standing). However, walking, running, and jumping did not improve significantly. PMID:26221161

  2. Motor Coordination Correlates with Academic Achievement and Cognitive Function in Children

    PubMed Central

    Fernandes, Valter R.; Ribeiro, Michelle L. Scipião; Melo, Thais; de Tarso Maciel-Pinheiro, Paulo; Guimarães, Thiago T.; Araújo, Narahyana B.; Ribeiro, Sidarta; Deslandes, Andréa C.

    2016-01-01

    The relationship between exercise and cognition is an important topic of research that only recently began to unravel. Here, we set out to investigate the relation between motor skills, cognitive function, and school performance in 45 students from 8 to 14 years of age. We used a cross-sectional design to evaluate motor coordination (Touch Test Disc), agility (Shuttle Run Speed—running back and forth), school performance (Academic Achievement Test), the Stroop test, and six sub-tests of the Wechsler Intelligence Scale for Children-IV (WISC-IV). We found, that the Touch Test Disc was the best predictor of school performance (R2 = 0.20). Significant correlations were also observed between motor coordination and several indices of cognitive function, such as the total score of the Academic Achievement Test (AAT; Spearman's rho = 0.536; p ≤ 0.001), as well as two WISC-IV sub-tests: block design (R = −0.438; p = 0.003) and cancelation (rho = −0.471; p = 0.001). All the other cognitive variables pointed in the same direction, and even correlated with agility, but did not reach statistical significance. Altogether, the data indicate that visual motor coordination and visual selective attention, but not agility, may influence academic achievement and cognitive function. The results highlight the importance of investigating the correlation between physical skills and different aspects of cognition. PMID:27014130

  3. Multisession Anodal tDCS Protocol Improves Motor System Function in an Aging Population

    PubMed Central

    Dumel, G.; Bourassa, M.-E.; Desjardins, M.; Voarino, N.; Charlebois-Plante, C.; Doyon, J.; De Beaumont, Louis

    2016-01-01

    Objectives. The primary objective of this study was to investigate the effects of five consecutive, daily 20-minute sessions of M1 a-tDCS on motor learning in healthy, cognitively intact, aging adults. Design. A total of 23 participants (51 to 69 years old) performed five consecutive, daily 20-minute sessions of a serial reaction time task (SRT task) concomitant with either anodal (n = 12) or sham (n = 11) M1 a-tDCS. Results. We found a significant group × training sessions interaction, indicating that whereas aging adults in the sham group exhibited little-to-no sequence-specific learning improvements beyond the first day of training, reproducible improvements in the ability to learn new motor sequences over 5 consecutive sessions were the net result in age-equivalent participants from the M1 a-tDCS group. A significant main effect of group on sequence-specific learning revealed greater motor learning for the M1 a-tDCS group when the five learning sessions were averaged. Conclusion. These findings raise into prominence the utility of multisession anodal TDCS protocols in combination with motor training to help prevent/alleviate age-associated motor function decline. PMID:26881118

  4. Structure and Function of the Bi-Directional Bacterial Flagellar Motor

    PubMed Central

    Morimoto, Yusuke V.; Minamino, Tohru

    2014-01-01

    The bacterial flagellum is a locomotive organelle that propels the bacterial cell body in liquid environments. The flagellum is a supramolecular complex composed of about 30 different proteins and consists of at least three parts: a rotary motor, a universal joint, and a helical filament. The flagellar motor of Escherichia coli and Salmonella enterica is powered by an inward-directed electrochemical potential difference of protons across the cytoplasmic membrane. The flagellar motor consists of a rotor made of FliF, FliG, FliM and FliN and a dozen stators consisting of MotA and MotB. FliG, FliM and FliN also act as a molecular switch, enabling the motor to spin in both counterclockwise and clockwise directions. Each stator is anchored to the peptidoglycan layer through the C-terminal periplasmic domain of MotB and acts as a proton channel to couple the proton flow through the channel with torque generation. Highly conserved charged residues at the rotor–stator interface are required not only for torque generation but also for stator assembly around the rotor. In this review, we will summarize our current understanding of the structure and function of the proton-driven bacterial flagellar motor. PMID:24970213

  5. Functional connectivity underlying postural motor adaptation in people with multiple sclerosis.

    PubMed

    Fling, Brett W; Gera Dutta, Geetanjali; Horak, Fay B

    2015-01-01

    A well-characterized neural network is associated with motor learning, involving several brain regions known to have functional and structural deficits in persons with multiple sclerosis (PwMS). However, it is not known how MS affects postural motor learning or the neural networks involved. The aim of this study was to gain a better understanding of the neural networks underlying adaptation of postural responses within PwMS. Participants stood on a hydraulically driven, servo-controlled platform that translated horizontally forward and backward in a continuous sinusoidal pattern across multiple trials over two consecutive days. Our results show similar postural adaptation between PwMS and age-matched control participants despite overall deficits in postural motor control in PwMS. Moreover, PwMS demonstrated better retention the following day. PwMS had significantly reduced functional connectivity within both the cortico-cerebellar and cortico-striatal motor loops; neural networks that subserve implicit motor learning. In PwMS, greater connectivity strength within the cortico-cerebellar circuit was strongly related to better baseline postural control, but not to postural adaptation as it was in control participants. Further, anti-correlated cortico-striatal connectivity within the right hemisphere was related to improved postural adaptation in both groups. Taken together with previous studies showing a reduced reliance on cerebellar- and proprioceptive-related feedback control in PwMS, we suggest that PwMS may rely on cortico-striatal circuitry to a greater extent than cortico-cerebellar circuitry for the acquisition and retention of motor skills. PMID:26106552

  6. Longitudinal Change in Gait and Motor Function in Pre-manifest Huntington's Disease.

    PubMed

    Rao, Ashwini K; Mazzoni, Pietro; Wasserman, Paula; Marder, Karen

    2011-01-01

    The purpose of this study was to examine longitudinal change in gait and motor function in pre-manifest Huntington's disease (HD).We examined ten pre-manifest subjects at baseline, one and five years. Quantitative gait data were collected with an electronic mat (GAITRite®). We analyzed measures related to speed (velocity, step length, cadence), asymmetry (step length difference), dynamic balance (percent time in double support, support base) and variability in stride length and swing time. Motor function was assessed with the motor component of the Unified Huntington's Disease Rating Scale.Gait velocity decreased (p=0.001), whereas step length difference (p=0.006), stride length variability (p=0.0001) and swing time variability increased (p=0.0001) from baseline to year five. Step length difference (p<0.05) and swing time variability (p<0.05) increased marginally in one year from baseline. UHDRS Total motor score increased over five years (p=0.003), though the increase in one year was not significant (p=0.053). Of the individual motor domain scores (eye, hand movements, gait and balance, chorea) only dystonia worsened over five years (p=0.02). Total motor score (r2= 0.49, p<0.001) and swing time variability (r2= 0.22, p<0.009) were correlated with estimated years to diagnosis.Our results present the longest longitudinal follow up of gait in pre-manifest HD thus far. Despite the small sample size, quantitative gait analysis was able to detect changes in gait speed, symmetry and variability. Swing time variability was particularly important because it increased in one year from baseline and was correlated with estimated time to diagnosis. Our results highlight the importance of predictive outcomes such as gait variability using quantitative analysis. PMID:22008726

  7. Functional connectivity underlying postural motor adaptation in people with multiple sclerosis

    PubMed Central

    Fling, Brett W.; Gera Dutta, Geetanjali; Horak, Fay B.

    2015-01-01

    A well-characterized neural network is associated with motor learning, involving several brain regions known to have functional and structural deficits in persons with multiple sclerosis (PwMS). However, it is not known how MS affects postural motor learning or the neural networks involved. The aim of this study was to gain a better understanding of the neural networks underlying adaptation of postural responses within PwMS. Participants stood on a hydraulically driven, servo-controlled platform that translated horizontally forward and backward in a continuous sinusoidal pattern across multiple trials over two consecutive days. Our results show similar postural adaptation between PwMS and age-matched control participants despite overall deficits in postural motor control in PwMS. Moreover, PwMS demonstrated better retention the following day. PwMS had significantly reduced functional connectivity within both the cortico-cerebellar and cortico-striatal motor loops; neural networks that subserve implicit motor learning. In PwMS, greater connectivity strength within the cortico-cerebellar circuit was strongly related to better baseline postural control, but not to postural adaptation as it was in control participants. Further, anti-correlated cortico-striatal connectivity within the right hemisphere was related to improved postural adaptation in both groups. Taken together with previous studies showing a reduced reliance on cerebellar- and proprioceptive-related feedback control in PwMS, we suggest that PwMS may rely on cortico-striatal circuitry to a greater extent than cortico-cerebellar circuitry for the acquisition and retention of motor skills. PMID:26106552

  8. Prevalence of gallbladder sludge in dogs as assessed by ultrasonography.

    PubMed

    Brömel, C; Barthez, P Y; Léveillé, R; Scrivani, P V

    1998-01-01

    Ultrasonography of the gallbladder was performed in 3 groups of dogs: 30 clinically healthy dogs, 50 dogs with hepatobiliary disease, and 50 dogs with diseases other than hepatobiliary disease. The gallbladder was evaluated for the presence of sludge (echogenic material without acoustic shadowing). Maximal gallbladder length, width, height, and area were measured as well as the gallbladder wall thickness. The relative sludge area was calculated as the ratio of sludge area over gallbladder area on longitudinal images. No significant difference was found in the prevalence of gallbladder sludge among healthy dogs (53%), dogs with hepatobiliary diseases (62%), and dogs with other diseases (48%). The mean age of dogs with sludge was higher than the mean age of dogs without sludge in dogs with hepatobiliary disease and dogs with other diseases (p < 0.05). The mean relative sludge area did not differ significantly among the 3 groups. A trend to larger gallbladder dimensions in dogs with sludge compared to dogs without sludge was detected within the 3 groups. The gallbladder wall thickness was not different between dogs with and without sludge within the 3 groups. However, the gallbladder wall was more frequently isoechoic than hyperechoic to the liver in dogs with sludge than in dogs without sludge. The results of this study indicate that gallbladder sludge, in dogs, is not particularly associated with hepatobiliary disease and should be considered an incidental finding.

  9. Design, modeling and control of a novel multi functional translational-rotary micro ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Tuncdemir, Safakcan

    The major goal of this thesis was to design and develop an actuator, which is capable of producing translational and rotary output motions in a compact structure with simple driving conditions, for the needs of small-scale actuators for micro robotic systems. Piezoelectric ultrasonic motors were selected as the target actuator schemes because of their unbeatable characteristics in the meso-scale range, which covers the structure sizes from hundred micrometers to ten millimeters and with operating ranges from few nanometers to centimeters. In order to meet the objectives and the design constraints, a number of key research tasks had to be undertaken. The design constraints and objectives were so stringent and entangled that none of the existing methods in literature could solve the research problems individually. Therefore, several unique methods were established to accomplish the research objectives. The methods produced novel solutions at every stage of design, development and modeling of the multi functional micro ultrasonic motor. Specifically, an ultrasonic motor utilizing slanted ceramics on a brass rod was designed. Because of the unique slanted ceramics design, longitudinal and torsional mode vibration modes could be obtained on the same structure. A ring shaped mobile element was loosely fitted on the metal rod stator. The mobile element moved in translational or rotational, depending on whether the vibration mode was longitudinal or torsional. A new ultrasonic motor drive method was required because none of the existing ultrasonic motor drive techniques were able to provide both output modes in a compact and cylindrical structure with the use of single drive source. By making use of rectangular wave drive signals, saw-tooth shaped displacement profile could be obtained at longitudinal and torsional resonance modes. Thus, inheriting the operating principle of smooth impact drive method, a new resonance type inertial drive was introduced. This new technique

  10. MUC Expression in Gallbladder Epithelial Tissues in Cholesterol-Associated Gallbladder Disease

    PubMed Central

    Yoo, Kyo-Sang; Choi, Ho Soon; Jun, Dae Won; Lee, Hang Lak; Lee, Oh Young; Yoon, Byung Chul; Lee, Kyeong Geun; Paik, Seung Sam; Kim, Yong Seok; Lee, Jin

    2016-01-01

    Background/Aims Gallstone pathogenesis is linked to mucin hypersecretion and bacterial infection. Several mucin genes have been identified in gallbladder epithelial cells (GBECs). We investigated MUC expression in cholesterol-associated gallbladder disease and evaluated the relationship between mucin and bacterial infection. Methods The present study involved 20 patients with cholesterol stones with cholecystitis, five with cholesterol stones with cholesterolosis, six with cholesterol polyps, two with gallbladder cancer, and six controls. Canine GBECs treated with lipopolysaccharide were also studied. MUC3, MUC5AC, MUC5B, and MUC6 antibodies were used for dot/slot immunoblotting and immunohistochemical studies of the gallbladder epithelial tissues, canine GBECs, and bile. Reverse-transcription polymerase chain reaction was performed to evaluate MUC3 and MUC5B expression. Results MUC3, MUC5AC, MUC5B, and MUC6 were expressed in the normal gallbladder epithelium, and of those, MUC3 and MUC5B exhibited the highest expression levels. Greatly increased levels of MUC3 and MUC5B expression were observed in the cholesterol stone group, and slightly increased levels were observed in the cholesterol polyp group; MUC3 and MUC5B mRNA was also upregulated in those groups. Canine GBECs treated with lipopolysaccharide also showed upregulation of MUC3 and MUC5B. Conclusions The mucin genes with the highest expression levels in gallbladder tissue in cholesterol-associated diseases were MUC3 and MUC5B. Cholesterol stones and gallbladder infections were associated with increased MUC3 and MUC5B expression. PMID:27563024

  11. Motor planning under temporal uncertainty is suboptimal when the gain function is asymmetric

    PubMed Central

    Ota, Keiji; Shinya, Masahiro; Kudo, Kazutoshi

    2015-01-01

    For optimal action planning, the gain/loss associated with actions and the variability in motor output should both be considered. A number of studies make conflicting claims about the optimality of human action planning but cannot be reconciled due to their use of different movements and gain/loss functions. The disagreement is possibly because of differences in the experimental design and differences in the energetic cost of participant motor effort. We used a coincident timing task, which requires decision making with constant energetic cost, to test the optimality of participant's timing strategies under four configurations of the gain function. We compared participant strategies to an optimal timing strategy calculated from a Bayesian model that maximizes the expected gain. We found suboptimal timing strategies under two configurations of the gain function characterized by asymmetry, in which higher gain is associated with higher risk of zero gain. Participants showed a risk-seeking strategy by responding closer than optimal to the time of onset/offset of zero gain. Meanwhile, there was good agreement of the model with actual performance under two configurations of the gain function characterized by symmetry. Our findings show that human ability to make decisions that must reflect uncertainty in one's own motor output has limits that depend on the configuration of the gain function. PMID:26236227

  12. Serotonin(2C) receptors in the ventral pallidum regulate motor function in rats.

    PubMed

    Graves, Steven M; Viskniskki, Annika A; Cunningham, Kathryn A; Napier, T Celeste

    2013-08-01

    The ventral pallidum is a limbic brain region that regulates motor function. This region is extensively innervated by serotoninergic neurons from the dorsal raphe nucleus. Serotonergic receptors, including the 5-HT(2C) receptor subtype, are located in the ventral pallidum. However, little is known regarding the behavioral consequences of serotonergic transmission in the ventral pallidum, and the role of 5-HT(2C) receptors has not been studied. To address this paucity, we measured the motoric consequences of injections of 0.33-10 ng of the 5-HT(2C) receptor agonist MK 212 into the ventral pallidum of adult male Sprague-Dawley rats. We determined that locomotor activity was attenuated by 6.6 ng MK 212, and rearing was attenuated by both 1 and 6.6 ng. The motor suppressant effects of MK 212 were lost at the higher dose of 10 ng, likely reflecting a loss of selectivity of this ligand. These findings indicate negative regulation of motor function by 5-HT(2C) receptors in the ventral pallidum.

  13. Memantine elicits spinal blockades of motor function, proprioception, and nociception in rats.

    PubMed

    Chen, Yu-Wen; Chiu, Chong-Chi; Liu, Kuo-Sheng; Hung, Ching-Hsia; Wang, Jhi-Joung

    2015-12-01

    Although memantine blocks sodium currents and produces local skin anesthesia, spinal anesthesia with memantine is unknown. The purpose of the study was to evaluate the local anesthetic effect of memantine in spinal anesthesia and its comparison with a widely used local anesthetic lidocaine. After intrathecally injecting the rats with five doses of each drug, the dose-response curves of memantine and lidocaine were constructed. The potencies of the drugs and durations of spinal anesthetic effects on motor function, proprioception, and nociception were compared with those of lidocaine. We showed that memantine produced dose-dependent spinal blockades in motor function, proprioception, and nociception. On a 50% effective dose (ED50 ) basis, the rank of potency was lidocaine greater than memantine (P < 0.05 for the differences). At the equipotent doses (ED25 , ED50 , ED75 ), the block duration produced by memantine was longer than that produced by lidocaine (P < 0.05 for the differences). Memantine, but not lidocaine, displayed more sensory/nociceptive block than motor block. The preclinical data demonstrated that memantine is less potent than lidocaine, whereas memantine produces longer duration of spinal anesthesia than lidocaine. Memantine shows a more sensory-selective action over motor blockade. PMID:26301611

  14. Memantine elicits spinal blockades of motor function, proprioception, and nociception in rats.

    PubMed

    Chen, Yu-Wen; Chiu, Chong-Chi; Liu, Kuo-Sheng; Hung, Ching-Hsia; Wang, Jhi-Joung

    2015-12-01

    Although memantine blocks sodium currents and produces local skin anesthesia, spinal anesthesia with memantine is unknown. The purpose of the study was to evaluate the local anesthetic effect of memantine in spinal anesthesia and its comparison with a widely used local anesthetic lidocaine. After intrathecally injecting the rats with five doses of each drug, the dose-response curves of memantine and lidocaine were constructed. The potencies of the drugs and durations of spinal anesthetic effects on motor function, proprioception, and nociception were compared with those of lidocaine. We showed that memantine produced dose-dependent spinal blockades in motor function, proprioception, and nociception. On a 50% effective dose (ED50 ) basis, the rank of potency was lidocaine greater than memantine (P < 0.05 for the differences). At the equipotent doses (ED25 , ED50 , ED75 ), the block duration produced by memantine was longer than that produced by lidocaine (P < 0.05 for the differences). Memantine, but not lidocaine, displayed more sensory/nociceptive block than motor block. The preclinical data demonstrated that memantine is less potent than lidocaine, whereas memantine produces longer duration of spinal anesthesia than lidocaine. Memantine shows a more sensory-selective action over motor blockade.

  15. Increasing MuSK activity delays denervation and improves motor function in ALS mice.

    PubMed

    Pérez-García, María J; Burden, Steven J

    2012-09-27

    Amyotrophic lateral sclerosis (ALS) is a devastating disease that progresses from detachment of motor nerve terminals to complete muscle paralysis and lethal respiratory failure within 5 years of diagnosis. Genetic studies have linked mutations in several genes to ALS, and mice bearing mutations in SOD1 recapitulate hallmark features of the disease. We investigated whether disease symptoms can be ameliorated by co-opting the retrograde signaling pathway that promotes attachment of nerve terminals to muscle. We crossed SOD1G93A mice with transgenic mice that express MuSK, a receptor tyrosine kinase that is required for retrograde signaling, and we used histological and behavioral assays to assess motor innervation and behavior. A 3-fold increase in MuSK expression delayed the onset and reduced the extent of muscle denervation, improving motor function for more than a month without altering survival. These findings suggest that increasing MuSK activity by pharmacological means has the potential to improve motor function in ALS.

  16. Excess Secretion of Gel-Forming Mucins and Associated Innate Defense Proteins with Defective Mucin Un-Packaging Underpin Gallbladder Mucocele Formation in Dogs.

    PubMed

    Kesimer, Mehmet; Cullen, John; Cao, Rui; Radicioni, Giorgia; Mathews, Kyle G; Seiler, Gabriela; Gookin, Jody L

    2015-01-01

    Mucosal protection of the gallbladder is vital yet we know very little about the mechanisms involved. In domestic dogs, an emergent syndrome referred to as gallbladder mucocele formation is characterized by excessive secretion of abnormal mucus that results in obstruction and rupture of the gallbladder. The cause of gallbladder mucocele formation is unknown. In these first mechanistic studies of this disease, we investigated normal and mucocele-forming dog gallbladders to determine the source, identity, biophysical properties, and protein associates of the culprit mucins with aim to identify causes for abnormal mucus behavior. We established that mucocele formation involves an adoptive excess secretion of gel forming mucins with abnormal properties by the gallbladder epithelium. The mucus is characterized by a disproportionally significant increase in Muc5ac relative to Muc5b, defective mucin un-packaging, and mucin-interacting innate defense proteins that are capable of dramatically altering the physical and functional properties of mucus. These findings provide an explanation for abnormal mucus behavior and based on similarity to mucus observed in the airways of people with cystic fibrosis, suggest that abnormal mechanisms for maintenance of gallbladder epithelial hydration may be an instigating factor for mucocele formation in dogs.

  17. Excess Secretion of Gel-Forming Mucins and Associated Innate Defense Proteins with Defective Mucin Un-Packaging Underpin Gallbladder Mucocele Formation in Dogs

    PubMed Central

    Kesimer, Mehmet; Cullen, John; Cao, Rui; Radicioni, Giorgia; Mathews, Kyle G.; Seiler, Gabriela; Gookin, Jody L.

    2015-01-01

    Mucosal protection of the gallbladder is vital yet we know very little about the mechanisms involved. In domestic dogs, an emergent syndrome referred to as gallbladder mucocele formation is characterized by excessive secretion of abnormal mucus that results in obstruction and rupture of the gallbladder. The cause of gallbladder mucocele formation is unknown. In these first mechanistic studies of this disease, we investigated normal and mucocele-forming dog gallbladders to determine the source, identity, biophysical properties, and protein associates of the culprit mucins with aim to identify causes for abnormal mucus behavior. We established that mucocele formation involves an adoptive excess secretion of gel forming mucins with abnormal properties by the gallbladder epithelium. The mucus is characterized by a disproportionally significant increase in Muc5ac relative to Muc5b, defective mucin un-packaging, and mucin-interacting innate defense proteins that are capable of dramatically altering the physical and functional properties of mucus. These findings provide an explanation for abnormal mucus behavior and based on similarity to mucus observed in the airways of people with cystic fibrosis, suggest that abnormal mechanisms for maintenance of gallbladder epithelial hydration may be an instigating factor for mucocele formation in dogs. PMID:26414376

  18. Ventricular gallbladder shunts: an alternative procedure in hydrocephalus.

    PubMed

    West, K W; Turner, M K; Vane, D W; Boaz, J; Kalsbeck, J; Grosfeld, J L

    1987-07-01

    Hydrocephalus is a frequently encountered problem in infancy and is most commonly treated by placement of ventriculoperionteal (VP) or ventriculoatrial (VA) shunts. Other sites for insertion of the distal shunt have included the stomach, ureter, and fallopian tube. This report describes an experience with ventricular gallbladder shunts (VGB) in 25 children performed from 1970 to 1985. There were 13 girls and 12 boys ranging in age from 6 months to 16 years. Diagnosis included meningomyelocoele (7), congenital hydrocephalus (7), postmeningitic complications (5), intracranial tumor (4), and intraventricular hemorrhage (2). Indications for operation included VP shunt infection (15), massive ascites following VP shunt (3), VA shunt infection (4), and distal shunt malfunction due to fibrinous adhesions or cysts (secondary to infection; (3). Three patients had early shunt failure due to proximal obstruction (2) and gallbladder atony (1). Shunt revision was required in two and the atony was successfully treated with cholecystokinin in one. Fourteen shunts remain in place, two patients have been lost to follow-up, and three children died from unrelated causes. Seventy percent of the 20 patients available for long-term follow-up have functional shunts in place. The VGB shunt procedure remains an attractive alternative for patients with hydrocephalus in whom intraperitoneal and intravascular shunts are no longer feasible.

  19. Major ozonated autohemotherapy promotes the recovery of upper limb motor function in patients with acute cerebral infarction★

    PubMed Central

    Wu, Xiaona; Li, Zhensheng; Liu, Xiaoyan; Peng, Haiyan; Huang, Yongjun; Luo, Gaoquan; Peng, Kairun

    2013-01-01

    Major ozonated autohemotherapy is classically used in treating ischemic disorder of the lower limbs. In the present study, we performed major ozonated autohemotherapy treatment in patients with acute cerebral infarction, and assessed outcomes according to the U.S. National Institutes of Health Stroke Score, Modified Rankin Scale, and transcranial magnetic stimulation motor-evoked potential. Compared with the control group, the clinical total effective rate and the cortical potential rise rate of the upper limbs were significantly higher, the central motor conduction time of upper limb was significantly shorter, and the upper limb motor-evoked potential amplitude was significantly increased, in the ozone group. In the ozone group, the National Institutes of Health Stroke Score was positively correlated with the central motor conduction time and the motor-evoked potential amplitude of the upper limb. Central motor conduction time and motor-evoked potential amplitude of the upper limb may be effective indicators of motor-evoked potentials to assess upper limb motor function in cerebral infarct patients. Furthermore, major ozonated autohemotherapy may promote motor function recovery of the upper limb in patients with acute cerebral infarction. PMID:25206688

  20. Enhancing Motor Network Activity Using Real-Time Functional MRI Neurofeedback of Left Premotor Cortex.

    PubMed

    Marins, Theo F; Rodrigues, Erika C; Engel, Annerose; Hoefle, Sebastian; Basílio, Rodrigo; Lent, Roberto; Moll, Jorge; Tovar-Moll, Fernanda

    2015-01-01

    Neurofeedback by functional magnetic resonance imaging (fMRI) is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC), important for motor recovery after brain injury. We investigated (i) whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery (MI) task while receiving continuous fMRI-neurofeedback, and (ii) whether successful modulation of brain activity influenced non-targeted motor control regions. During the MI task, participants of the neurofeedback group (NFB) received ongoing visual feedback representing the level of fMRI responses within their left PMC. Control (CTL) group participants were shown similar visual stimuli, but these were non-contingent on brain activity. Both groups showed equivalent levels of behavioral ratings on arousal and MI, before and during the fMRI protocol. In the NFB, but not in CLT group, brain activation during the last run compared to the first run revealed increased activation in the left PMC. In addition, the NFB group showed increased activation in motor control regions extending beyond the left PMC target area, including the supplementary motor area, basal ganglia and cerebellum. Moreover, in the last run, the NFB group showed stronger activation in the left PMC/inferior frontal gyrus when compared to the CTL group. Our results indicate that modulation of PMC and associated motor control areas can be achieved during a single neurofeedback-fMRI session. These results contribute to a better understanding of the underlying mechanisms of MI-based neurofeedback training, with direct implications for rehabilitation strategies in severe brain disorders, such as stroke. PMID:26733832

  1. Enhancing Motor Network Activity Using Real-Time Functional MRI Neurofeedback of Left Premotor Cortex

    PubMed Central

    Marins, Theo F.; Rodrigues, Erika C.; Engel, Annerose; Hoefle, Sebastian; Basílio, Rodrigo; Lent, Roberto; Moll, Jorge; Tovar-Moll, Fernanda

    2015-01-01

    Neurofeedback by functional magnetic resonance imaging (fMRI) is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC), important for motor recovery after brain injury. We investigated (i) whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery (MI) task while receiving continuous fMRI-neurofeedback, and (ii) whether successful modulation of brain activity influenced non-targeted motor control regions. During the MI task, participants of the neurofeedback group (NFB) received ongoing visual feedback representing the level of fMRI responses within their left PMC. Control (CTL) group participants were shown similar visual stimuli, but these were non-contingent on brain activity. Both groups showed equivalent levels of behavioral ratings on arousal and MI, before and during the fMRI protocol. In the NFB, but not in CLT group, brain activation during the last run compared to the first run revealed increased activation in the left PMC. In addition, the NFB group showed increased activation in motor control regions extending beyond the left PMC target area, including the supplementary motor area, basal ganglia and cerebellum. Moreover, in the last run, the NFB group showed stronger activation in the left PMC/inferior frontal gyrus when compared to the CTL group. Our results indicate that modulation of PMC and associated motor control areas can be achieved during a single neurofeedback-fMRI session. These results contribute to a better understanding of the underlying mechanisms of MI-based neurofeedback training, with direct implications for rehabilitation strategies in severe brain disorders, such as stroke. PMID:26733832

  2. Exploring the factor on sensory motor function of upper limb associated with executive function in communitydwelling older adults

    PubMed Central

    Hayashi, Hiroyuki; Nakashima, Daiki; Matsuoka, Hiroka; Iwai, Midori; Nakamura, Shugo; Kubo, Ayumi; Tomiyama, Naoki

    2016-01-01

    ABSTRACT Exercise, such as cardiovascular fitness training, has been shown to have utility in improving executive function but is difficult for older adults with low mobility to perform. Accordingly, there is interest in the development of regimens other than high mobility exercises for older adults with low mobility. The aim of the present study was to evaluate the association between sensory motor function of the upper limb and executive function in community-dwelling older adults. A cross-sectional study was conducted in 57 right-handed, independent, community-dwelling older adults. Sensory motor function of upper limb, including range of motion, strength, sensation, finger dexterity, and comprehensive hand function was measured in both hands. Executive function was assessed using the Delta Trail Making Test. Multiple regression analysis indicated the finger dexterity of the non-dominant hand as independently associated with executive function (β = –0.414, P < 0.001). The findings of the present study may facilitate the development of exercise regimens for improving executive function that are more suitable for older adults with limited physical fitness levels. As this was a cross-sectional study, further studies are required to validate the efficacy of non-dominant finger dexterity training for improving executive function in older adults. PMID:27578912

  3. Exploring the factor on sensory motor function of upper limb associated with executive function in communitydwelling older adults.

    PubMed

    Hayashi, Hiroyuki; Nakashima, Daiki; Matsuoka, Hiroka; Iwai, Midori; Nakamura, Shugo; Kubo, Ayumi; Tomiyama, Naoki

    2016-08-01

    Exercise, such as cardiovascular fitness training, has been shown to have utility in improving executive function but is difficult for older adults with low mobility to perform. Accordingly, there is interest in the development of regimens other than high mobility exercises for older adults with low mobility. The aim of the present study was to evaluate the association between sensory motor function of the upper limb and executive function in community-dwelling older adults. A cross-sectional study was conducted in 57 right-handed, independent, community-dwelling older adults. Sensory motor function of upper limb, including range of motion, strength, sensation, finger dexterity, and comprehensive hand function was measured in both hands. Executive function was assessed using the Delta Trail Making Test. Multiple regression analysis indicated the finger dexterity of the non-dominant hand as independently associated with executive function (β = -0.414, P < 0.001). The findings of the present study may facilitate the development of exercise regimens for improving executive function that are more suitable for older adults with limited physical fitness levels. As this was a cross-sectional study, further studies are required to validate the efficacy of non-dominant finger dexterity training for improving executive function in older adults.

  4. Exploring the factor on sensory motor function of upper limb associated with executive function in communitydwelling older adults.

    PubMed

    Hayashi, Hiroyuki; Nakashima, Daiki; Matsuoka, Hiroka; Iwai, Midori; Nakamura, Shugo; Kubo, Ayumi; Tomiyama, Naoki

    2016-08-01

    Exercise, such as cardiovascular fitness training, has been shown to have utility in improving executive function but is difficult for older adults with low mobility to perform. Accordingly, there is interest in the development of regimens other than high mobility exercises for older adults with low mobility. The aim of the present study was to evaluate the association between sensory motor function of the upper limb and executive function in community-dwelling older adults. A cross-sectional study was conducted in 57 right-handed, independent, community-dwelling older adults. Sensory motor function of upper limb, including range of motion, strength, sensation, finger dexterity, and comprehensive hand function was measured in both hands. Executive function was assessed using the Delta Trail Making Test. Multiple regression analysis indicated the finger dexterity of the non-dominant hand as independently associated with executive function (β = -0.414, P < 0.001). The findings of the present study may facilitate the development of exercise regimens for improving executive function that are more suitable for older adults with limited physical fitness levels. As this was a cross-sectional study, further studies are required to validate the efficacy of non-dominant finger dexterity training for improving executive function in older adults. PMID:27578912

  5. Development and Pilot Testing of the Challenge Module: A Proposed Adjunct to the Gross Motor Function Measure for High-Functioning Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Wilson, Ashlea; Kavanaugh, Abi; Moher, Rosemarie; McInroy, Megan; Gupta, Neena; Salbach, Nancy M.; Wright, F. Virginia

    2011-01-01

    The aim was to develop a Challenge Module (CM) as a proposed adjunct to the Gross Motor Function Measure for children with cerebral palsy who have high-level motor function. Items were generated in a physiotherapist (PT) focus group. Item reduction was based on PTs' ratings of item importance and safety via online surveys. The proposed CM items…

  6. The prevalence of hepatobiliary disease with normal gallbladder visualization

    SciTech Connect

    Silberstein, E.B.; Vasavada, P.J.

    1985-05-01

    The upper limit of normal time for gallbladder visualization employing Tc-99m disofenin has been set at 60 minutes by the manufacturer. In the authors' experience the great majority of normal gallbladders are seen by 30 minutes so the authors investigated the clinical correlates of gallbladder visualization between 30 and 60 minutes. Three hundred twenty-three consecutive patients were studied, with 133 showing no gallbladder visualization, 155 with visualization under 30 minutes (14 of these with cholelithiasis), 26 with visualization between 30-60 minutes, and 9 with more delayed visualization. Of the 26 with gallbladder seen between 30-60 minutes only 35% had a normal hepatobiliary system. Only the scans with elevated bilirubin or filling defects were read as abnormal. It is concluded that almost two-thirds of patients with gallbladder visualization first occurring between 30-60 minutes still have some hepatobiliary disorder.

  7. Compound Muscle Action Potential and Motor Function in Children with Spinal Muscular Atrophy

    PubMed Central

    Lewelt, Aga J.; Krosschell, Kristin J.; Scott, Charles; Sakonju, Ai; Kissel, John T.; Crawford, Thomas O.; Acsadi, Gyula; D'Anjou, Guy; Elsheikh, Bakri; Reyna, Sandra P.; Schroth, Mary K.; Maczulski, Jo Anne; Stoddard, Gregory J.; Elovic, Elie; Swoboda, Kathryn J.

    2010-01-01

    Introduction Reliable outcome measures that reflect the underlying disease process and correlate with motor function in children with SMA are needed for clinical trials. Methods Maximum ulnar compound muscle action potential (CMAP) data were collected at 2 visits over a 4–6 week period in children with SMA types II and III, ages 2–17 years old, at 4 academic centers. Primary functional outcome measures included the Modified Hammersmith Functional Motor Scale (MHFMS) and MHFMS-Extend. Results CMAP negative peak amplitude and area showed excellent discrimination between the ambulatory and non-ambulatory SMA cohorts (ROC=0.88). CMAP had excellent test-retest reliability (ICC=0.96–0.97, n=64) and moderate to strong correlation with the MHFMS and MHFMS-Extend (r=0.61–0.73, n=68, p<0.001). Discussion Maximum ulnar CMAP amplitude and area is a feasible, valid and reliable outcome measure for use in pediatric multicenter clinical trials in SMA. CMAP correlates well with motor function and has potential value as a relevant surrogate for disease status. PMID:20737553

  8. Absence of alsin function leads to corticospinal motor neuron vulnerability via novel disease mechanisms.

    PubMed

    Gautam, Mukesh; Jara, Javier H; Sekerkova, Gabriella; Yasvoina, Marina V; Martina, Marco; Özdinler, P Hande

    2016-03-15

    Mutations in the ALS2 gene result in early-onset amyotrophic lateral sclerosis, infantile-onset ascending hereditary spastic paraplegia and juvenile primary lateral sclerosis, suggesting prominent upper motor neuron involvement. However, the importance of alsin function for corticospinal motor neuron (CSMN) health and stability remains unknown. To date, four separate alsin knockout (Alsin(KO)) mouse models have been generated, and despite hopes of mimicking human pathology, none displayed profound motor function defects. This, however, does not rule out the possibility of neuronal defects within CSMN, which is not easy to detect in these mice. Detailed cellular analysis of CSMN has been hampered due to their limited numbers and the complex and heterogeneous structure of the cerebral cortex. In an effort to visualize CSMN in vivo and to investigate precise aspects of neuronal abnormalities in the absence of alsin function, we generated Alsin(KO)-UeGFP mice, by crossing Alsin(KO) and UCHL1-eGFP mice, a CSMN reporter line. We find that CSMN display vacuolated apical dendrites with increased autophagy, shrinkage of soma size and axonal pathology even in the pons region. Immunocytochemistry coupled with electron microscopy reveal that alsin is important for maintaining cellular cytoarchitecture and integrity of cellular organelles. In its absence, CSMN displays selective defects both in mitochondria and Golgi apparatus. UCHL1-eGFP mice help understand the underlying cellular factors that lead to CSMN vulnerability in diseases, and our findings reveal unique importance of alsin function for CSMN health and stability. PMID:26755825

  9. Inter-Relationships of Functional Status in Cerebral Palsy: Analyzing Gross Motor Function, Manual Ability, and Communication Function Classification Systems in Children

    ERIC Educational Resources Information Center

    Hidecker, Mary Jo Cooley; Ho, Nhan Thi; Dodge, Nancy; Hurvitz, Edward A.; Slaughter, Jaime; Workinger, Marilyn Seif; Kent, Ray D.; Rosenbaum, Peter; Lenski, Madeleine; Messaros, Bridget M.; Vanderbeek, Suzette B.; Deroos, Steven; Paneth, Nigel

    2012-01-01

    Aim: To investigate the relationships among the Gross Motor Function Classification System (GMFCS), Manual Ability Classification System (MACS), and Communication Function Classification System (CFCS) in children with cerebral palsy (CP). Method: Using questionnaires describing each scale, mothers reported GMFCS, MACS, and CFCS levels in 222…

  10. Mixed lymphoepithelioma-like carcinoma and adenocarcinoma of the gallbladder

    PubMed Central

    Choi, Nam Kyu

    2016-01-01

    Lymphoepithelioma-like carcinoma (LELC), an undifferentiated carcinoma with intense lymphoplasmacytic infiltrates, is commonly reported in the nasopharynx and occasionally in other organs. Pure type of LELC has previously been reported in the gallbladder. Mixed type could be reportable in comparison with other organs. Here we present a case of an 83-year-old man with mixed LELC and adenocarcinoma in the gallbladder. To the best of our knowledge, this is the first case of mixed LELC and adenocarcinoma in the gallbladder.

  11. Functional Compensation of Motor Function in Pre-Symptomatic Huntington's Disease

    ERIC Educational Resources Information Center

    Kloppel, Stefan; Draganski, Bogdan; Siebner, Hartwig R.; Tabrizi, Sarah J.; Weiller, Cornelius; Frackowiak, Richard S. J.

    2009-01-01

    Involuntary choreiform movements are a clinical hallmark of Huntington's disease. Studies in clinically affected patients suggest a shift of motor activations to parietal cortices in response to progressive neurodegeneration. Here, we studied pre-symptomatic gene carriers to examine the compensatory mechanisms that underlie the phenomenon of…

  12. Orai1 forms a signal complex with SK3 channel in gallbladder smooth muscle.

    PubMed

    Song, Kai; Zhong, Xing-Guo; Xia, Xian-Ming; Huang, Jun-Hao; Fan, Yi-Fei; Yuan, Ren-Xiang; Xue, Nai-Rui; Du, Juan; Han, Wen-Xiu; Xu, A-Man; Shen, Bing

    2015-10-23

    Orai1 is one of the key components of store-operated Ca(2+) entry (SOCE) involved in diverse physiological functions. Orai1 may associate with other proteins to form a signaling complex. In the present study, we investigated the interaction between Orai1 and small conductance Ca(2+)-activated potassium channel 3 (SK3). With the use of RNA interference technique, we found that the SOCE and its associated membrane hyperpolarization were reduced while Orai1 was knocked down by a specific Orai1 siRNA in guinea pig gallbladder smooth muscle. However, with the use of isometric tension measurements, our results revealed that agonist-induced muscle contractility was significantly enhanced after Orai1 protein was knocked down or the tissue was treated by SK3 inhibitor apamin, but not affected by larger conductance Ca(2+)-activated potassium channel inhibitor iberiotoxin or intermediate conductance Ca(2+)-activated potassium channel inhibitor TRAM-34. In addition, in the presence of apamin, Orai1 siRNA had no additional effect on agonist-induced contraction. In coimmunoprecipitation experiment, SK3 and Orai1 pulled down each other. These data suggest that, Orai1 physically associated with SK3 to form a signaling complex in gallbladder smooth muscle. Ca(2+) entry via Orai1 activates SK3, resulting in membrane hyperpolarization in gallbladder smooth muscle. This hyperpolarizing effect of Orai1-SK3 coupling could serve to prevent excessive contraction of gallbladder smooth muscle in response to contractile agonists.

  13. Role of the Contralesional Hemisphere in Post-Stroke Recovery of Upper Extremity Motor Function

    PubMed Central

    Buetefisch, Cathrin M.

    2015-01-01

    Identification of optimal treatment strategies to improve recovery is limited by the incomplete understanding of the neurobiological principles of recovery. Motor cortex (M1) reorganization of the lesioned hemisphere (ipsilesional M1) plays a major role in post-stroke motor recovery and is a primary target for rehabilitation therapy. Reorganization of M1 in the hemisphere contralateral to the stroke (contralesional M1) may, however, serve as an additional source of cortical reorganization and related recovery. The extent and outcome of such reorganization depends on many factors, including lesion size and time since stroke. In the chronic phase post-stroke, contralesional M1 seems to interfere with motor function of the paretic limb in a subset of patients, possibly through abnormally increased inhibition of lesioned M1 by the contralesional M1. In such patients, decreasing contralesional M1 excitability by cortical stimulation results in improved performance of the paretic limb. However, emerging evidence suggests a potentially supportive role of contralesional M1. After infarction of M1 or its corticospinal projections, there is abnormally increased excitatory neural activity and activation in contralesional M1 that correlates with favorable motor recovery. Decreasing contralesional M1 excitability in these patients may result in deterioration of paretic limb performance. In animal stroke models, reorganizational changes in contralesional M1 depend on the lesion size and rehabilitation treatment and include long-term changes in neurotransmitter systems, dendritic growth, and synapse formation. While there is, therefore, some evidence that activity in contralesional M1 will impact the extent of motor function of the paretic limb in the subacute and chronic phase post-stroke and may serve as a new target for rehabilitation treatment strategies, the precise factors that specifically influence its role in the recovery process remain to be defined. PMID:26528236

  14. Abnormal activation of the motor cortical network in idiopathic scoliosis demonstrated by functional MRI.

    PubMed

    Domenech, Julio; García-Martí, G; Martí-Bonmatí, L; Barrios, C; Tormos, J M; Pascual-Leone, A

    2011-07-01

    The aetiology of idiopathic scoliosis (IS) remains unknown, but there is growing support for the possibility of an underlying neurological disorder. Functional magnetic resonance imaging (fMRI) can characterize the abnormal activation of the sensorimotor brain network in movement disorders and could provide further insights into the neuropathogenesis of IS. Twenty subjects were included in the study; 10 adolescents with IS (mean age of 15.2, 8 girls and 2 boys) and 10 age-matched healthy controls. The average Cobb angle of the primary curve in the IS patients was 35° (range 27°-55°). All participants underwent a block-design fMRI experiment in a 1.5-Tesla MRI scanner to explore cortical activation following a simple motor task. Rest periods alternated with activation periods during which participants were required to open and close their hand at an internally paced rate of approximately 1 Hz. Data were analyzed with Statistical Parametric Mapping (SPM5) including age, sex and laterality as nuisance variables to minimise the presence of bias in the results. Compared to controls, IS patients showed significant increases in blood oxygenation level dependent (BOLD) activity in contralateral supplementary motor area when performing the motor task with either hand. No significant differences were observed when testing between groups in the functional activation in the primary motor cortex, premotor cortex and somatosensory cortex. Additionally, the IS group showed a greater interhemispheric asymmetry index than the control group (0.30 vs. 0.13, p < 0.001). This study demonstrates an abnormal pattern of brain activation in secondary motor areas during movement execution in patients with IS. These findings support the hypothesis that a sensorimotor integration disorder underlies the pathogenesis of IS.

  15. Development of rehabilitation training support system for occupational therapy of upper limb motor function

    NASA Astrophysics Data System (ADS)

    Morita, Yoshifumi; Hirose, Akinori; Uno, Takashi; Uchid, Masaki; Ukai, Hiroyuki; Matsui, Nobuyuki

    2007-12-01

    In this paper we propose a new rehabilitation training support system for upper limbs. The proposed system enables therapists to quantitatively evaluate the therapeutic effect of upper limb motor function during training, to easily change the load of resistance of training and to easily develop a new training program suitable for the subjects. For this purpose we develop control algorithms of training programs in the 3D force display robot. The 3D force display robot has parallel link mechanism with three motors. The control algorithm simulating sanding training is developed for the 3D force display robot. Moreover the teaching/training function algorithm is developed. It enables the therapists to easily make training trajectory suitable for subject's condition. The effectiveness of the developed control algorithms is verified by experiments.

  16. Mechanisms of impaired gallbladder contractile response in chronic acalculous cholecystitis.

    PubMed

    Merg, Anders R; Kalinowski, Scott E; Hinkhouse, Marilyn M; Mitros, Frank A; Ephgrave, Kimberly S; Cullen, Joseph J

    2002-01-01

    The mechanisms involved in the impaired gallbladder contractile response in chronic acalculous cholecystitis are unknown. To determine the mechanisms that may lead to impaired gallbladder emptying in chronic acalculous cholecystitis, gallbladder specimens removed during hepatic resection (controls) and after cholecystectomy for chronic acalculous cholecystitis were attached to force transducers and placed in tissue baths with oxygenated Krebs solution. Electrical field stimulation (EFS) (1 to 10 Hz, 0.1 msec, 70 V) or the contractile agonists, CCK-8 (10(-9) to 10(-5)) or K(+) (80 mmol/L), were placed separately in the tissue baths and changes in tension were determined. Patients with chronic acalculous cholecystitis had a mean gallbladder ejection fraction of 12% +/- 4%. Pathologic examination of all gallbladders removed for chronic acalculous cholecystitis revealed chronic cholecystitis. Spontaneous contractile activity was present in gallbladder strips in 83% of control specimens but only 29% of gallbladder strips from patients with chronic acalculous cholecystitis (P < 0.05 vs. controls). CCK-8 contractions were decreased by 54% and EFS-stimulated contractions were decreased by 50% in the presence of chronic acalculous cholecystitis (P < 0.05 vs. controls). K(+)-induced contractions were similar between control and chronic acalculous cholecystitis gallbladder strips. The impaired gallbladder emptying in chronic acalculous cholecystitis appears to be due to diminished spontaneous contractile activity and decreased contractile responsiveness to both CCK and EFS.

  17. Differentiation of complicated cholecystitis from gallbladder carcinoma by computed tomography

    SciTech Connect

    Smathers, R.L.; Lee, J.K.T.; Heiken, J.P.

    1984-08-01

    Differentiation between complicated cholecystitis and advanced gallbladder carcinoma can be difficult when clinical findings are confusing. Computed tomographic (CT) scans were reviewed from 22 patients with a surgical diagnosis of complicated cholecystitis (11 cases) or advanced gallbladder carcinoma (11 cases). The presence of a curvilinear low-attenuation halo around the gallbladder wall was specific for complicated cholecystitis. Findings indicative of gallbladder carcinoma included a focal soft-invasion or metastases. Knowledge of these differential CT findings may result in a more accurate preoperative diagnosis.

  18. Primary gallbladder lymphoma presenting with perforated cholecystitis and hyperamylasaemia.

    PubMed

    Shah, K S V; Shelat, V G; Jogai, S; Trompetas, V

    2016-02-01

    Primary gallbladder lymphoma is rare. Perforated cholecystitis due to primary gallbladder lymphoma and not related to chemotherapy has been unreported. We report the case of an 80-year-old woman presenting with an acute abdomen and clinical peritonitis. Her serum amylase was raised to 878 iu/l. Urgent computed tomography revealed generalised free fluid with a normal pancreas and was non-diagnostic as to the underlying pathology. An emergency laparotomy revealed bilious peritonitis with a necrotic patch on a distended gallbladder. A cholecystectomy was carried out and histology of the gallbladder revealed a marginal zone lymphoma.

  19. Running exercise enhances motor functional recovery with inhibition of dendritic regression in the motor cortex after collagenase-induced intracerebral hemorrhage in rats.

    PubMed

    Takamatsu, Yasuyuki; Tamakoshi, Keigo; Waseda, Yuya; Ishida, Kazuto

    2016-03-01

    Rehabilitative approaches benefit motor functional recovery after stroke and relate to neuronal plasticity. We investigated the effects of a treadmill running exercise on the motor functional recovery and neuronal plasticity after collagenase-induced striatal intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with type IV collagenase into the left striatum to induce ICH. Sham-operated animals were injected with saline instead of collagenase. The animals were randomly assigned to the sham control (SC), the sham exercise (SE), the ICH control (IC), or the ICH exercise (IE) group. The exercise groups were forced to run on a treadmill at a speed of 9 m/min for 30 min/day between days 4 and 14 after surgery. Behavioral tests were performed using a motor deficit score, a beam-walking test and a cylinder test. At fifteen days after surgery, the animals were sacrificed, and their brains were removed. The motor function of the IE group significantly improved compared with the motor function of the IC group. No significant differences in cortical thickness were found between the groups. The IC group had fewer branches and shorter dendrite lengths compared with the sham groups. However, dendritic branches and lengths were not significantly different between the IE and the other groups. Tropomyosin-related kinase B (TrkB) expression levels increased in the IE compared with IC group, but no significant differences in other protein (brain-derived neurotrophic factor, BDNF; Nogo-A; Rho-A/Rho-associated protein kinase 2, ROCK2) expression levels were found between the groups. These results suggest that improved motor function after a treadmill running exercise after ICH may be related to the prevention of dendritic regression due to TrkB upregulation. PMID:26675889

  20. [Gallbladder calculi: what therapy of choice?].

    PubMed

    Lunghi, C; Belloni, L; Nehchiri, F; Ballarini, C; Prestipino, F; Demurtas, G; Insalaco, P; Malacarne, Z; Pagani, M; Galimberti, F

    1992-08-01

    The Authors have analyzed all different methods for the treatment of gallbladder stones which are performed today: the non invasive treatment of the gallstones (oral dissolution therapy and the extracorporeal shockwave lithotripsy), the minimally invasive procedures (contact dissolution therapy and the cholecystolithotomy) and at the end the new surgical techniques (the "minicholecystectomy" and the laparoscopic cholecystectomy). From this study and their experience, based upon 1346 standard cholecystectomy, the Authors have reached the following conclusions: 1) the cholecystectomy remains the only definitive therapy for the gallbladder stones and it is the gold standard to which must be compared the other alternative therapies; 2) the laparoscopic cholecystectomy, even though introduced recently, would become the only method used for cholecystectomy.

  1. Influence of motor imagination on cortical activation during functional electrical stimulation

    PubMed Central

    Reynolds, Clare; Osuagwu, Bethel A.; Vuckovic, Aleksandra

    2015-01-01

    Objective Motor imagination (MI) and functional electrical stimulation (FES) can activate the sensory-motor cortex through efferent and afferent pathways respectively. Motor imagination can be used as a control strategy to activate FES through a brain–computer interface as the part of a rehabilitation therapy. It is believed that precise timing between the onset of MI and FES is important for strengthening the cortico-spinal pathways but it is not known whether prolonged MI during FES influences cortical response. Methods Electroencephalogram was measured in ten able-bodied participants using MI strategy to control FES through a BCI system. Event related synchronisation/desynchronisation (ERS/ERD) over the sensory-motor cortex was analysed and compared in three paradigms: MI before FES, MI before and during FES and FES alone activated automatically. Results MI practiced both before and during FES produced strongest ERD. When MI only preceded FES it resulted in a weaker beta ERD during FES than when FES was activated automatically. Following termination of FES, beta ERD returns to the baseline level within 0.5 s while alpha ERD took longer than 1 s. Conclusions When MI and FES are combined for rehabilitation purposes it is recommended that MI is practiced throughout FES activation period. Significance The study is relevant for neurorehabilitation of movement. PMID:25454278

  2. Genetic and Environmental Influences on Motor Function: A Magnetoencephalographic Study of Twins

    PubMed Central

    Araki, Toshihiko; Hirata, Masayuki; Sugata, Hisato; Yanagisawa, Takufumi; Onishi, Mai; Watanabe, Yoshiyuki; Omura, Kayoko; Honda, Chika; Hayakawa, Kazuo; Yorifuji, Shiro

    2014-01-01

    To investigate the effect of genetic and environmental influences on cerebral motor function, we determined similarities and differences of movement-related cortical fields (MRCFs) in middle-aged and elderly monozygotic (MZ) twins. MRCFs were measured using a 160-channel magnetoencephalogram system when MZ twins were instructed to repeat lifting of the right index finger. We compared latency, amplitude, dipole location, and dipole intensity of movement-evoked field 1 (MEF1) between 16 MZ twins and 16 pairs of genetically unrelated pairs. Differences in latency and dipole location between MZ twins were significantly less than those between unrelated age-matched pairs. However, amplitude and dipole intensity were not significantly different. These results suggest that the latency and dipole location of MEF1 are determined early in life by genetic and early common environmental factors, whereas amplitude and dipole intensity are influenced by long-term environmental factors. Improved understanding of genetic and environmental factors that influence cerebral motor function may contribute to evaluation and improvement for individual motor function. PMID:24994981

  3. Gross Motor Function Outcome After Intensive Rehabilitation in Children With Bilateral Spastic Cerebral Palsy

    PubMed Central

    Lee, Seung Hoon; Shim, Jae Sun; Kim, Kiyoung; Moon, Jinkyoo

    2015-01-01

    Objective To compare gross motor function outcomes in children with moderate to severe degrees of bilateral spastic cerebral palsy (CP) who received either intensive inpatient rehabilitation or intermittent rehabilitation on an outpatient basis. Methods A non-biased retrospective chart review was done for patients diagnosed with bilateral spastic CP who received rehabilitation therapy. The intensive rehabilitation group (inpatient group) agreed to be hospitalized to receive 22 sessions of physical and occupational therapy per week for 1 month. The intermittent rehabilitation group (outpatient group) received four sessions of physical and occupational therapy per week for 3 months in an outpatient setting. Changes in the total score on the Gross Motor Function Measure (GMFM) between baseline and the follow-up period were analyzed. Results Both groups showed significant improvements in total GMFM scores at the follow-up assessment compared to that at baseline (p=0.000 for inpatient group, p=0.001 for outpatient group). The increase in mean total GMFM score after 1 month was significantly greater in the inpatient group than that in the outpatient group (p=0.020). Higher increase in GMFM score was observed in younger subjects as revealed by the negative correlation between age and the increase in GMFM score after 1 month (p=0.002, r=-0.460). Conclusion Intensive inpatient rehabilitation therapy for patients with bilateral spastic CP of moderate to severe degree was more effective for improving gross motor function than intermittent rehabilitation therapy on an outpatient basis. PMID:26361600

  4. Fast axonal transport of the proteasome complex depends on membrane interaction and molecular motor function.

    PubMed

    Otero, Maria G; Alloatti, Matías; Cromberg, Lucas E; Almenar-Queralt, Angels; Encalada, Sandra E; Pozo Devoto, Victorio M; Bruno, Luciana; Goldstein, Lawrence S B; Falzone, Tomás L

    2014-04-01

    Protein degradation by the ubiquitin-proteasome system in neurons depends on the correct delivery of the proteasome complex. In neurodegenerative diseases, aggregation and accumulation of proteins in axons link transport defects with degradation impairments; however, the transport properties of proteasomes remain unknown. Here, using in vivo experiments, we reveal the fast anterograde transport of assembled and functional 26S proteasome complexes. A high-resolution tracking system to follow fluorescent proteasomes revealed three types of motion: actively driven proteasome axonal transport, diffusive behavior in a viscoelastic axonema and proteasome-confined motion. We show that active proteasome transport depends on motor function because knockdown of the KIF5B motor subunit resulted in impairment of the anterograde proteasome flux and the density of segmental velocities. Finally, we reveal that neuronal proteasomes interact with intracellular membranes and identify the coordinated transport of fluorescent proteasomes with synaptic precursor vesicles, Golgi-derived vesicles, lysosomes and mitochondria. Taken together, our results reveal fast axonal transport as a new mechanism of proteasome delivery that depends on membrane cargo 'hitch-hiking' and the function of molecular motors. We further hypothesize that defects in proteasome transport could promote abnormal protein clearance in neurodegenerative diseases.

  5. Nicotine-Cadmium Interaction Alters Exploratory Motor Function and Increased Anxiety in Adult Male Mice

    PubMed Central

    Chris Ajonijebu, Duyilemi; Adeyemi Adeniyi, Philip; Oloruntoba Adekeye, Adeshina; Peter Olatunji, Babawale; Olakunle Ishola, Azeez; Michael Ogundele, Olalekan

    2014-01-01

    In this study we evaluated the time dependence in cadmium-nicotine interaction and its effect on motor function, anxiety linked behavioural changes, serum electrolytes, and weight after acute and chronic treatment in adult male mice. Animals were separated randomly into four groups of n = 6 animals each. Treatment was done with nicotine, cadmium, or nicotine-cadmium for 21 days. A fourth group received normal saline for the same duration (control). Average weight was determined at 7-day interval for the acute (D1-D7) and chronic (D7-D21) treatment phases. Similarly, the behavioural tests for exploratory motor function (open field test) and anxiety were evaluated. Serum electrolytes were measured after the chronic phase. Nicotine, cadmium, and nicotine-cadmium treatments caused no significant change in body weight after the acute phase while cadmium-nicotine and cadmium caused a decline in weight after the chronic phase. This suggests the role of cadmium in the weight loss observed in tobacco smoke users. Both nicotine and cadmium raised serum Ca2+ concentration and had no significant effect on K+ ion when compared with the control. In addition, nicotine-cadmium treatment increased bioaccumulation of Cd2+ in the serum which corresponded to a decrease in body weight, motor function, and an increase in anxiety. PMID:26317007

  6. Genetic and environmental influences on motor function: a magnetoencephalographic study of twins.

    PubMed

    Araki, Toshihiko; Hirata, Masayuki; Sugata, Hisato; Yanagisawa, Takufumi; Onishi, Mai; Watanabe, Yoshiyuki; Omura, Kayoko; Honda, Chika; Hayakawa, Kazuo; Yorifuji, Shiro

    2014-01-01

    To investigate the effect of genetic and environmental influences on cerebral motor function, we determined similarities and differences of movement-related cortical fields (MRCFs) in middle-aged and elderly monozygotic (MZ) twins. MRCFs were measured using a 160-channel magnetoencephalogram system when MZ twins were instructed to repeat lifting of the right index finger. We compared latency, amplitude, dipole location, and dipole intensity of movement-evoked field 1 (MEF1) between 16 MZ twins and 16 pairs of genetically unrelated pairs. Differences in latency and dipole location between MZ twins were significantly less than those between unrelated age-matched pairs. However, amplitude and dipole intensity were not significantly different. These results suggest that the latency and dipole location of MEF1 are determined early in life by genetic and early common environmental factors, whereas amplitude and dipole intensity are influenced by long-term environmental factors. Improved understanding of genetic and environmental factors that influence cerebral motor function may contribute to evaluation and improvement for individual motor function.

  7. fMRI as a molecular imaging procedure for the functional reorganization of motor systems in chronic stroke.

    PubMed

    Lazaridou, Asimina; Astrakas, Loukas; Mintzopoulos, Dionyssios; Khanchiceh, Azadeh; Singhal, Aneesh; Moskowitz, Michael; Rosen, Bruce; Tzika, Aria

    2013-09-01

    Previous brain imaging studies suggest that stroke alters functional connectivity in motor execution networks. Moreover, current understanding of brain plasticity has led to new approaches in stroke rehabilitation. Recent studies showed a significant role of effective coupling of neuronal activity in the SMA (supplementary motor area) and M1 (primary motor cortex) network for motor outcome in patients after stroke. After a subcortical stroke, functional magnetic resonance imaging (fMRI) during movement reveals cortical reorganization that is associated with the recovery of function. The aim of the present study was to explore connectivity alterations within the motor-related areas combining motor fMRI with a novel MR-compatible hand-induced robotic device (MR_CHIROD) training. Patients completed training at home and underwent serial MR evaluation at baseline and after 8 weeks of training. Training at home consisted of squeezing a gel exercise ball with the paretic hand at ~75% of maximum strength for 1 h/day, 3 days/week. The fMRI analysis revealed alterations in M1, SMA, PMC (premotor cortex) and Cer (cerebellum) in both stroke patients and healthy controls after the training. Findings of the present study suggest that enhancement of SMA activity could benefit M1 dysfunction in stroke survivors. These results also indicate that connectivity alterations between motor areas might assist the counterbalance of a functionally abnormal M1 in chronic stroke survivors and possibly other patients with motor dysfunction.

  8. The influence of functional electrical stimulation on hand motor recovery in stroke patients: a review

    PubMed Central

    2014-01-01

    Neuromuscular stimulation has been used as one potential rehabilitative treatment option to restore motor function and improve recovery in patients with paresis. Especially stroke patients who often regain only limited hand function would greatly benefit from a therapy that enhances recovery and restores movement. Multiple studies investigated the effect of functional electrical stimulation on hand paresis, the results however are inconsistent. Here we review the current literature on functional electrical stimulation on hand motor recovery in stroke patients. We discuss the impact of different parameters such as stage after stoke, degree of impairment, spasticity and treatment protocols on the functional outcome. Importantly, we outline the results from recent studies investigating the cortical effects elicited by functional electrical stimulation giving insights into the underlying mechanisms responsible for long-term treatment effects. Bringing together the findings from present research it becomes clear that both, treatment outcomes as well as the neurophysiologic mechanisms causing functional recovery, vary depending on patient characteristics. In order to develop unified treatment guidelines it is essential to conduct homogenous studies assessing the impact of different parameters on rehabilitative success. PMID:25276333

  9. High-resolution sonography for distinguishing neoplastic gallbladder polyps and staging gallbladder cancer.

    PubMed

    Kim, Jung Hoon; Lee, Jae Young; Baek, Jee Hyun; Eun, Hyo Won; Kim, Young Jae; Han, Joon Koo; Choi, Byung Ihn

    2015-02-01

    OBJECTIVE. The purposes of this study were to compare staging accuracy of high-resolution sonography (HRUS) with combined low- and high-MHz transducers with that of conventional sonography for gallbladder cancer and to investigate the differences in the imaging findings of neoplastic and nonneoplastic gallbladder polyps. MATERIALS AND METHODS. Our study included 37 surgically proven gallbladder cancer (T1a = 7, T1b = 2, T2 = 22, T3 = 6), including 15 malignant neoplastic polyps and 73 surgically proven polyps (neoplastic = 31, nonneoplastic = 42) that underwent HRUS and conventional transabdominal sonography. Two radiologists assessed T-category and predefined polyp findings on HRUS and conventional transabdominal sonography. Statistical analyses were performed using chi-square and McNemar tests. RESULTS. The diagnostic accuracy for the T category was T1a = 92-95%, T1b = 89-95%, T2 = 78-86%, and T3 = 84-89%, all with good agreement (κ = 0.642) using HRUS. The diagnostic accuracy for differentiating T1 from T2 or greater than T2 was 92% and 89% on HRUS and 65% and 70% with conventional transabdominal sonography. Statistically common findings for neoplastic polyps included size greater than 1 cm, single lobular surface, vascular core, hypoechoic polyp, and hypoechoic foci (p < 0.05). The value of HRUS in the differential diagnosis of a gallbladder polyp was more clearly depicted internal echo foci than conventional transabdominal sonography (39 vs 21). A polyp size greater than 1 cm was independently associated with a neoplastic polyp (odds ratio = 7.5, p = 0.02). The AUC of a polyp size greater than 1 cm was 0.877. The sensitivity and specificity were 66.67% and 89.13%, respectively. CONCLUSION. HRUS is a simple method that enables accurate T categorization of gallbladder carcinoma. It provides high-resolution images of gallbladder polyps and may have a role in stratifying the risk for malignancy.

  10. Effects of intermittent binge alcohol exposure on long-term motor function in young rats.

    PubMed

    Forbes, Ashley; Cooze, Jared; Malone, Craig; French, Vanessa; Weber, John T

    2013-03-01

    Ethanol has well described acute effects on motor function, and chronic alcoholism can damage the cerebellum, which is associated with motor coordination, as well as motor learning. Binge drinking is common among preadolescents and adolescents, and this type of ethanol exposure may lead to long-term nervous system damage. In the current study, we analyzed the effects of periadolsecent/adolescent ethanol exposure on motor function in both male and female Sprague-Dawley rats. To simulate binge drinking, animals received an intraperitoneal injection of 25% (v/v) ethanol (3 g/kg) on postnatal days (PND) 25, 26, 29, 30, 33, 34, 37 and 38. On PND 42 and PND 61 animals were tested on their ability to traverse both square and round beams. There were no significant differences in the time to traverse the beams, or the amount of foot slips, between treated and untreated animals. On PND 48 and PND 62, animals were tested using a horizontal ladder walking apparatus. On PND 48 there were no differences in the ability of treated and untreated animals to traverse the ladder. On PND 62, there were no differences in the time to traverse the ladder, but ethanol treated animals had more foot slips than controls. On PND 43, we conducted footprint analysis of control and treated animals, which included measurements of stride length, paw overlap, and angle of foot placement. There was a significant difference in the angle of foot placement between treated and control animals, and this finding was significant for both male and female animals. There was also a significant overall difference in paw overlap between treatment groups. Although this effect was manifested in male animals there was no significant difference in females. These findings suggest that adolescent ethanol exposure can produce long-lasting effects on motor coordination, and that overall, effects are similar in males and females. In a second set of experiments, male rats received i.p. ethanol (3 g/kg) for 7 days (P31

  11. Motor-learning-related changes in piano players and non-musicians revealed by functional magnetic-resonance signals.

    PubMed

    Hund-Georgiadis, M; von Cramon, D Y

    1999-04-01

    In this study, we investigated blood-flow-related magnetic-resonance (MR) signal changes and the time course underlying short-term motor learning of the dominant right hand in ten piano players (PPs) and 23 non-musicians (NMs), using a complex finger-tapping task. The activation patterns were analyzed for selected regions of interest (ROIs) within the two examined groups and were related to the subjects' performance. A functional learning profile, based on the regional blood-oxygenation-level-dependent (BOLD) signal changes, was assessed in both groups. All subjects achieved significant increases in tapping frequency during the training session of 35 min in the scanner. PPs, however, performed significantly better than NMs and showed increasing activation in the contralateral primary motor cortex throughout motor learning in the scanner. At the same time, involvement of secondary motor areas, such as bilateral supplementary motor area, premotor, and cerebellar areas, diminished relative to the NMs throughout the training session. Extended activation of primary and secondary motor areas in the initial training stage (7-14 min) and rapid attenuation were the main functional patterns underlying short-term learning in the NM group; attenuation was particularly marked in the primary motor cortices as compared with the PPs. When tapping of the rehearsed sequence was performed with the left hand, transfer effects of motor learning were evident in both groups. Involvement of all relevant motor components was smaller than after initial training with the right hand. Ipsilateral premotor and primary motor contributions, however, showed slight increases of activation, indicating that dominant cortices influence complex sequence learning of the non-dominant hand. In summary, the involvement of primary and secondary motor cortices in motor learning is dependent on experience. Interhemispheric transfer effects are present.

  12. On the functional organization and operational principles of the motor cortex

    PubMed Central

    Capaday, Charles; Ethier, Christian; Van Vreeswijk, Carl; Darling, Warren G.

    2013-01-01

    Recent studies on the functional organization and operational principles of the motor cortex (MCx), taken together, strongly support the notion that the MCx controls the muscle synergies subserving movements in an integrated manner. For example, during pointing the shoulder, elbow and wrist muscles appear to be controlled as a coupled functional system, rather than singly and separately. The recurrent pattern of intrinsic synaptic connections between motor cortical points is likely part of the explanation for this operational principle. So too is the reduplicated, non-contiguous and intermingled representation of muscles in the MCx. A key question addressed in this article is whether the selection of movement related muscle synergies is a dynamic process involving the moment to moment functional linking of a variety of motor cortical points, or rather the selection of fixed patterns embedded in the MCx circuitry. It will be suggested that both operational principles are probably involved. We also discuss the neural mechanisms by which cortical points may be dynamically linked to synthesize movement related muscle synergies. Separate corticospinal outputs sum linearly and lead to a blending of the movements evoked by activation of each point on its own. This operational principle may simplify the synthesis of motor commands. We will discuss two possible mechanisms that may explain linear summation of outputs. We have observed that the final posture of the arm when pointing to a given spatial location is relatively independent of its starting posture. From this observation and the recurrent nature of the MCx intrinsic connectivity we hypothesize that the basic mode of operation of the MCx is to associate spatial location to final arm posture. We explain how the recurrent network connectivity operates to generate the muscle activation patterns (synergies) required to move the arm and hold it in its final position. PMID:23616749

  13. Ankyrin domain of myosin 16 influences motor function and decreases protein phosphatase catalytic activity.

    PubMed

    Kengyel, András; Bécsi, Bálint; Kónya, Zoltán; Sellers, James R; Erdődi, Ferenc; Nyitrai, Miklós

    2015-05-01

    The unconventional myosin 16 (Myo16), which may have a role in regulation of cell cycle and cell proliferation, can be found in both the nucleus and the cytoplasm. It has a unique, eight ankyrin repeat containing pre-motor domain, the so-called ankyrin domain (My16Ank). Ankyrin repeats are present in several other proteins, e.g., in the regulatory subunit (MYPT1) of the myosin phosphatase holoenzyme, which binds to the protein phosphatase-1 catalytic subunit (PP1c). My16Ank shows sequence similarity to MYPT1. In this work, the interactions of recombinant and isolated My16Ank were examined in vitro. To test the effects of My16Ank on myosin motor function, we used skeletal muscle myosin or nonmuscle myosin 2B. The results showed that My16Ank bound to skeletal muscle myosin (K D ≈ 2.4 µM) and the actin-activated ATPase activity of heavy meromyosin (HMM) was increased in the presence of My16Ank, suggesting that the ankyrin domain can modulate myosin motor activity. My16Ank showed no direct interaction with either globular or filamentous actin. We found, using a surface plasmon resonance-based binding technique, that My16Ank bound to PP1cα (K D ≈ 540 nM) and also to PP1cδ (K D ≈ 600 nM) and decreased its phosphatase activity towards the phosphorylated myosin regulatory light chain. Our results suggest that one function of the ankyrin domain is probably to regulate the function of Myo16. It may influence the motor activity, and in complex with the PP1c isoforms, it can play an important role in the targeted dephosphorylation of certain, as yet unidentified, intracellular proteins.

  14. Usefulness of Transcranial Magnetic Stimulation to Assess Motor Function in Patients With Parkinsonism

    PubMed Central

    Park, Jaechan; Cho, Jin Whan; Youn, Jinyoung; Kim, Yun Kwan; Kim, Sun Woong; Kim, Yun-Hee

    2016-01-01

    Objective To investigate the clinical significance of upper and lower extremity transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEPs) in patients with parkinsonism. Methods Twenty patients (14 men, 6 women; mean age 70.5±9.1 years) suffering from parkinsonism were included in this study. All participants underwent single-pulse TMS session to assess the corticospinal excitability of the upper and lower extremity motor cortex. The resting motor threshold (RMT) was defined as the lowest stimulus intensity able to evoke MEPs of an at least 50 µV peak-to-peak amplitude in 5 of 10 consecutive trials. Five sweeps of MEPs at 120% of the RMT were performed, and the mean amplitude and latency of the MEPs were calculated. Patients were also assessed using the Unified Parkinson's Disease Rating Scale part III (UPDRS-III) and the 5-meter Timed Up and Go (5m-TUG) test. Results There was a significant positive correlation between the RMTs of MEPs in the upper and lower extremities (r=0.612, p=0.004) and between the amplitude of MEPs in the upper and lower extremities (r=0.579, p=0.007). The RMT of upper extremity MEPs showed a significant negative relationship with the UPDRS-III score (r=–0.516, p=0.020). In addition, RMTs of lower extremity MEPs exhibited a negative relationship with the UPDRS-III score, but the association was not statistically significant (r=–406, p=0.075). Conclusion These results indicated that the RMT of MEPs reflect the severity of motor dysfunction in patients with parkinsonism. MEP is a potential quantitative, electrodiagnostic method to assess motor function in patients with parkinsonism. PMID:26949673

  15. Magnetic capture from blood rescues molecular motor function in diagnostic nanodevices

    PubMed Central

    2013-01-01

    Background Introduction of effective point-of-care devices for use in medical diagnostics is part of strategies to combat accelerating health-care costs. Molecular motor driven nanodevices have unique potentials in this regard due to unprecedented level of miniaturization and independence of external pumps. However motor function has been found to be inhibited by body fluids. Results We report here that a unique procedure, combining separation steps that rely on antibody-antigen interactions, magnetic forces applied to magnetic nanoparticles (MPs) and the specificity of the actomyosin bond, can circumvent the deleterious effects of body fluids (e.g. blood serum). The procedure encompasses the following steps: (i) capture of analyte molecules from serum by MP-antibody conjugates, (ii) pelleting of MP-antibody-analyte complexes, using a magnetic field, followed by exchange of serum for optimized biological buffer, (iii) mixing of MP-antibody-analyte complexes with actin filaments conjugated with same polyclonal antibodies as the magnetic nanoparticles. This causes complex formation: MP-antibody-analyte-antibody-actin, and magnetic separation is used to enrich the complexes. Finally (iv) the complexes are introduced into a nanodevice for specific binding via actin filaments to surface adsorbed molecular motors (heavy meromyosin). The number of actin filaments bound to the motors in the latter step was significantly increased above the control value if protein analyte (50–60 nM) was present in serum (in step i) suggesting appreciable formation and enrichment of the MP-antibody-analyte-antibody-actin complexes. Furthermore, addition of ATP demonstrated maintained heavy meromyosin driven propulsion of actin filaments showing that the serum induced inhibition was alleviated. Detailed analysis of the procedure i-iv, using fluorescence microscopy and spectroscopy identified main targets for future optimization. Conclusion The results demonstrate a promising approach for

  16. Costal2 Functions as a Microtubule-Dependent Motor in the Hedgehog Signal Transduction Pathway

    PubMed Central

    Farzan, Shohreh F.; Ascano, Manuel; Ogden, Stacey K.; Sanial, Matthieu; Brigui, Amira; Plessis, Anne; Robbins, David J.

    2009-01-01

    SUMMARY The Hedgehog (Hh) signaling pathway initiates an evolutionarily conserved developmental program required for the proper patterning of many tissues. Costal2 (Cos2) is a requisite component of the Hh pathway, whose mechanistic role is not well understood. Cos2 was initially predicted, based on its primary sequence, to function as a microtubule-associated (MT) molecular motor. However, despite being identified over a decade ago, evidence showing that Cos2 function might require kinesin-like properties has for the most part been lacking. Thus the prevailing dogma in the field is that Cos2 functions solely as a scaffolding protein during Hh signal transduction. Here, we provide the first evidence that Cos2 motility is required for its biological function, and that this motility may be Hh regulated. We show that Cos2 motility requires an active motor domain, ATP and microtubules. Additionally, Cos2 recruits and transports other components of the Hh signaling pathway, including the transcription factor Cubitus interruptus (Ci), throughout the cell. Drosophila expressing cos2 mutations that encode proteins that lack motility are attenuated in their ability to regulate Ci activity and exhibit phenotypes consistent with attenuated Cos2 function. Combined, these results demonstrate that Cos2 motility plays an important role in its function, regulating the amounts and activity of Ci that ultimately interpret the level of Hh to which cells are exposed. PMID:18691888

  17. Photoacoustic detection of functional responses in the motor cortex of awake behaving monkey during forelimb movement

    NASA Astrophysics Data System (ADS)

    Jo, Janggun; Zhang, Hongyu; Cheney, Paul D.; Yang, Xinmai

    2012-11-01

    Photoacoustic (PA) imaging was applied to detect the neuronal activity in the motor cortex of an awake, behaving monkey during forelimb movement. An adult macaque monkey was trained to perform a reach-to-grasp task while PA images were acquired through a 30-mm diameter implanted cranial chamber. Increased PA signal amplitude results from an increase in regional blood volume and is interpreted as increased neuronal activity. Additionally, depth-resolved PA signals enabled the study of functional responses in deep cortical areas. The results demonstrate the feasibility of utilizing PA imaging for studies of functional activation of cerebral cortex in awake monkeys performing behavioral tasks.

  18. Assessing upper extremity motor function in practice of virtual activities of daily living.

    PubMed

    Adams, Richard J; Lichter, Matthew D; Krepkovich, Eileen T; Ellington, Allison; White, Marga; Diamond, Paul T

    2015-03-01

    A study was conducted to investigate the criterion validity of measures of upper extremity (UE) motor function derived during practice of virtual activities of daily living (ADLs). Fourteen hemiparetic stroke patients employed a Virtual Occupational Therapy Assistant (VOTA), consisting of a high-fidelity virtual world and a Kinect™ sensor, in four sessions of approximately one hour in duration. An unscented Kalman Filter-based human motion tracking algorithm estimated UE joint kinematics in real-time during performance of virtual ADL activities, enabling both animation of the user's avatar and automated generation of metrics related to speed and smoothness of motion. These metrics, aggregated over discrete sub-task elements during performance of virtual ADLs, were compared to scores from an established assessment of UE motor performance, the Wolf Motor Function Test (WMFT). Spearman's rank correlation analysis indicates a moderate correlation between VOTA-derived metrics and the time-based WMFT assessments, supporting the criterion validity of VOTA measures as a means of tracking patient progress during an UE rehabilitation program that includes practice of virtual ADLs.

  19. Age-associated differences in sensori-motor function and balance in community dwelling women.

    PubMed

    Lord, S R; Ward, J A

    1994-11-01

    Tests of visual, vestibular, sensori-motor and balance function were administered to 550 women, aged between 20 and 99 years at a Balance and Gait Laboratory. All of the sensory, motor and balance system measures showed significant age-associated differences. Multiple regression analyses revealed that the measures of lower limb sensation were the consistent sensori-motor factors contributing to balance under normal conditions (standing on a firm surface with eyes open or closed). Under more challenging conditions (standing on foam with eyes open) vision, strength and reaction time played significant roles, whilst when standing on foam with eyes closed, vestibular function also made a significant contribution. Analysis of percentage increases in sway under conditions where visual and peripheral sensation systems were removed or diminished, compared with sway under optimal conditions, indicated that up until age 65 there was an increased reliance on vision for balance control. Beyond this age, the contribution made by vision declined, so that in the oldest age-groups reduced vision was less able to supplement peripheral input, resulting in increased sway areas. Peripheral sensation however was the most important sensory system in the maintenance of static postural stability at all ages. PMID:9231937

  20. Assessing upper extremity motor function in practice of virtual activities of daily living.

    PubMed

    Adams, Richard J; Lichter, Matthew D; Krepkovich, Eileen T; Ellington, Allison; White, Marga; Diamond, Paul T

    2015-03-01

    A study was conducted to investigate the criterion validity of measures of upper extremity (UE) motor function derived during practice of virtual activities of daily living (ADLs). Fourteen hemiparetic stroke patients employed a Virtual Occupational Therapy Assistant (VOTA), consisting of a high-fidelity virtual world and a Kinect™ sensor, in four sessions of approximately one hour in duration. An unscented Kalman Filter-based human motion tracking algorithm estimated UE joint kinematics in real-time during performance of virtual ADL activities, enabling both animation of the user's avatar and automated generation of metrics related to speed and smoothness of motion. These metrics, aggregated over discrete sub-task elements during performance of virtual ADLs, were compared to scores from an established assessment of UE motor performance, the Wolf Motor Function Test (WMFT). Spearman's rank correlation analysis indicates a moderate correlation between VOTA-derived metrics and the time-based WMFT assessments, supporting the criterion validity of VOTA measures as a means of tracking patient progress during an UE rehabilitation program that includes practice of virtual ADLs. PMID:25265612

  1. Action semantic knowledge about objects is supported by functional motor activation.

    PubMed

    van Elk, Michiel; van Schie, Hein T; Bekkering, Harold

    2009-08-01

    The present study assessed the functional organization of action semantics by asking subjects to categorize pictures of an actor holding objects with a correct or incorrect grip at either a correct or incorrect goal location. Overall, reaction times were slower if the object was presented with an inappropriate posture, and this effect was stronger for goal violations compared with grip violations (Experiment 1). In addition, the retrieval of action semantics was found accompanied by the implicit activation of motor representations. Body-related objects (e.g., cup) were classified faster when a movement toward the subject's body was required, whereas world-related objects (e.g., pincers) were responded to faster with a movement in the opposite direction (Experiments 2 and 3). In contrast, when subjects were required to retrieve only visual semantics (Experiment 4), no interference effects of postural information were observed, and motor representations were only partially activated. These findings suggest that action semantics can be accessed independently from visual semantics and that the retrieval of action semantics is supported by functional motor activation reflecting the prototypical use of an object.

  2. A structured assessment of motor function and behavior in patients with Kleefstra syndrome.

    PubMed

    Schmidt, Susanne; Nag, Heidi E; Hunn, Bente S; Houge, Gunnar; Hoxmark, Lise B

    2016-04-01

    The present study aimed to further our understanding of Kleefstra syndrome, especially regarding motor function and behavioral characteristics. In total, four males and four females between two and 27 years of age with a genetically confirmed diagnosis of Kleefstra syndrome and their parents participated in this study. Four patients had 9q34.3 deletions that caused Euchromatin Histone Methyl Transferase 1 (EHMT1) haplo-insufficiency, and four patients harbored EHMT1 mutations. The motor function was evaluated via systematic observation. Standardized assessments such as the Vineland Adapted Behavior Scales II (VABS II), the Social Communication Questionnaire (SCQ) and the Child or Adult Behavior Checklist (CBCL, ABCL) were used for the behavioral assessment. All patients showed a delayed developmental status. Muscular hypotonia and its manifestations were present in all patients, regardless of their age. The mean values for all VABS II domains (communication, socialization, daily living skills, and motor skills) were significantly lower than the mean of the reference population (p < 0.001), but similar to other rare intellectual disabilities such as Smith-Magenis syndrome and Angelman syndrome. The results from the SCQ indicated that all patient values exceeded the cut-off value, suggesting the possibility of autism spectrum disorder. The behavioral and emotional problems assessed by CBCL and ABCL were less frequent. In conclusion, patients with Kleefstra syndrome present with a broad range of clinical problems in all age groups and are therefore in need of a multidisciplinary follow-up also after their transition into adulthood. PMID:26808425

  3. Decreased Modulation of EEG Oscillations in High-Functioning Autism during a Motor Control Task.

    PubMed

    Ewen, Joshua B; Lakshmanan, Balaji M; Pillai, Ajay S; McAuliffe, Danielle; Nettles, Carrie; Hallett, Mark; Crone, Nathan E; Mostofsky, Stewart H

    2016-01-01

    Autism spectrum disorders (ASD) are thought to result in part from altered cortical excitatory-inhibitory balance; this pathophysiology may impact the generation of oscillations on electroencephalogram (EEG). We investigated premotor-parietal cortical physiology associated with praxis, which has strong theoretical and empirical associations with ASD symptomatology. Twenty five children with high-functioning ASD (HFA) and 33 controls performed a praxis task involving the pantomiming of tool use, while EEG was recorded. We assessed task-related modulation of signal power in alpha and beta frequency bands. Compared with controls, subjects with HFA showed 27% less left central (motor/premotor) beta (18-22 Hz) event-related desynchronization (ERD; p = 0.030), as well as 24% less left parietal alpha (7-13 Hz) ERD (p = 0.046). Within the HFA group, blunting of central ERD attenuation was associated with impairments in clinical measures of praxis imitation (r = -0.4; p = 0.04) and increased autism severity (r = 0.48; p = 0.016). The modulation of central beta activity is associated, among other things, with motor imagery, which may be necessary for imitation. Impaired imitation has been associated with core features of ASD. Altered modulation of oscillatory activity may be mechanistically involved in those aspects of motor network function that relate to the core symptoms of ASD. PMID:27199719

  4. Decreased Modulation of EEG Oscillations in High-Functioning Autism during a Motor Control Task

    PubMed Central

    Ewen, Joshua B.; Lakshmanan, Balaji M.; Pillai, Ajay S.; McAuliffe, Danielle; Nettles, Carrie; Hallett, Mark; Crone, Nathan E.; Mostofsky, Stewart H.

    2016-01-01

    Autism spectrum disorders (ASD) are thought to result in part from altered cortical excitatory-inhibitory balance; this pathophysiology may impact the generation of oscillations on electroencephalogram (EEG). We investigated premotor-parietal cortical physiology associated with praxis, which has strong theoretical and empirical associations with ASD symptomatology. Twenty five children with high-functioning ASD (HFA) and 33 controls performed a praxis task involving the pantomiming of tool use, while EEG was recorded. We assessed task-related modulation of signal power in alpha and beta frequency bands. Compared with controls, subjects with HFA showed 27% less left central (motor/premotor) beta (18–22 Hz) event-related desynchronization (ERD; p = 0.030), as well as 24% less left parietal alpha (7–13 Hz) ERD (p = 0.046). Within the HFA group, blunting of central ERD attenuation was associated with impairments in clinical measures of praxis imitation (r = −0.4; p = 0.04) and increased autism severity (r = 0.48; p = 0.016). The modulation of central beta activity is associated, among other things, with motor imagery, which may be necessary for imitation. Impaired imitation has been associated with core features of ASD. Altered modulation of oscillatory activity may be mechanistically involved in those aspects of motor network function that relate to the core symptoms of ASD. PMID:27199719

  5. To compare the effectiveness of constraint induced movement therapy versus motor relearning programme to improve motor function of hemiplegic upper extremity after stroke

    PubMed Central

    Batool, Sana; Soomro, Nabila; Amjad, Fareeha; Fauz, Rabia

    2015-01-01

    Objective: To compare the effectiveness of constraint induced movement therapy versus motor relearning programme to improve motor function of hemiplegic upper extremity after stroke. Method: A sample of 42 patients was recruited from the Physiotherapy Department of IPM&R and Neurology OPD of Civil Hospital Karachi through non probability purposive sampling technique. Twenty one patients were placed to each experimental and control groups. Experimental group was treated with Constraint Induced Movement Therapy (CIMT) and control group was treated with motor relearning programme (MRP) for three consecutive weeks. Pre and post treatment measurements were determined by upper arm section of Motor Assessment Scale (MAS) and Self Care item of Functional Independence Measure (FIM) Scale. Results: Intra group analysis showed statistically significant results (p-value<0.05) in all items of MAS in both groups. However, advanced hand activities item of MAS in MRP group showed insignificant result (p-value=0.059). Self-care items of FIM Scale also showed significant result (p-value< 0.05) in both groups except dressing upper body item (p-value=0.059) in CIMT group and grooming and dressing upper body items (p-value=0.059 & 0.063) in MRP group showed insignificant p-values. Conclusion: CIMT group showed more significant improvement in motor function and self-care performance of hemiplegic upper extremity as compared to MRP group in patients with sub-acute stroke assessed by the MAS and FIM scales. Thus CIMT is proved to be more statistically significant and clinically effective intervention in comparison to motor relearning programme among the patients aged between 35-60 years. Further studies are needed to evaluate CIMT effects in acute and chronic post stroke population. PMID:26649007

  6. Regulation of pumping function of the heart in developing body under changing regimens of motor activity.

    PubMed

    Vafina, E Z; Abzalov, R A; Abzalov, N I; Nikitin, A S; Gulyakov, A A

    2014-06-01

    We analyzed parameters of the pumping function of the heart in rats subjected to enhanced motor activity after a preliminary 70-day hypokinesia under conditions of α- and β-adrenergic receptor stimulation with norepinephrine followed by blockade of β-adrenergic receptor with propranolol (obsidian) and α1-adrenergic receptors with doxazosin. After norepinephrine administration, the HR and cardiac output were higher in rats with enhanced physical activity after preliminary hypokinesia than in rats with low physical activity. After propranolol administration, stroke volume and cardiac output in 100-day-old rats with limited activity were lower, and HR higher was than in rats with enhanced physical activity after preliminary 70-day hypokinesia. After administration of doxazosin, rats with limited motor activity demonstrated more pronounced changes in HR than rats with enhanced physical activity after preliminary 70-day hypokinesia. PMID:24970234

  7. Regulation of pumping function of the heart in developing body under changing regimens of motor activity.

    PubMed

    Vafina, E Z; Abzalov, R A; Abzalov, N I; Nikitin, A S; Gulyakov, A A

    2014-06-01

    We analyzed parameters of the pumping function of the heart in rats subjected to enhanced motor activity after a preliminary 70-day hypokinesia under conditions of α- and β-adrenergic receptor stimulation with norepinephrine followed by blockade of β-adrenergic receptor with propranolol (obsidian) and α1-adrenergic receptors with doxazosin. After norepinephrine administration, the HR and cardiac output were higher in rats with enhanced physical activity after preliminary hypokinesia than in rats with low physical activity. After propranolol administration, stroke volume and cardiac output in 100-day-old rats with limited activity were lower, and HR higher was than in rats with enhanced physical activity after preliminary 70-day hypokinesia. After administration of doxazosin, rats with limited motor activity demonstrated more pronounced changes in HR than rats with enhanced physical activity after preliminary 70-day hypokinesia.

  8. Functional and morphological assessment of diaphragm innervation by phrenic motor neurons.

    PubMed

    Martin, Melanie; Li, Ke; Wright, Megan C; Lepore, Angelo C

    2015-01-01

    This protocol specifically focuses on tools for assessing phrenic motor neuron (PhMN) innervation of the diaphragm at both the electrophysiological and morphological levels. Compound muscle action potential (CMAP) recording following phrenic nerve stimulation can be used to quantitatively assess functional diaphragm innervation by PhMNs of the cervical spinal cord in vivo in anesthetized rats and mice. Because CMAPs represent simultaneous recording of all myofibers of the whole hemi-diaphragm, it is useful to also examine the phenotypes of individual motor axons and myofibers at the diaphragm NMJ in order to track disease- and therapy-relevant morphological changes such as partial and complete denervation, regenerative sprouting and reinnervation. This can be accomplished via whole-mount immunohistochemistry (IHC) of the diaphragm, followed by detailed morphological assessment of individual NMJs throughout the muscle. Combining CMAPs and NMJ analysis provides a powerful approach for quantitatively studying diaphragmatic innervation in rodent models of CNS and PNS disease. PMID:26066371

  9. Anxiety dissociates the adaptive functions of sensory and motor response enhancements to social threats.

    PubMed

    El Zein, Marwa; Wyart, Valentin; Grèzes, Julie

    2015-01-01

    Efficient detection and reaction to negative signals in the environment is essential for survival. In social situations, these signals are often ambiguous and can imply different levels of threat for the observer, thereby making their recognition susceptible to contextual cues - such as gaze direction when judging facial displays of emotion. However, the mechanisms underlying such contextual effects remain poorly understood. By computational modeling of human behavior and electrical brain activity, we demonstrate that gaze direction enhances the perceptual sensitivity to threat-signaling emotions - anger paired with direct gaze, and fear paired with averted gaze. This effect arises simultaneously in ventral face-selective and dorsal motor cortices at 200 ms following face presentation, dissociates across individuals as a function of anxiety, and does not reflect increased attention to threat-signaling emotions. These findings reveal that threat tunes neural processing in fast, selective, yet attention-independent fashion in sensory and motor systems, for different adaptive purposes. PMID:26712157

  10. The effects of progressive functional training on lower limb muscle architecture and motor function in children with spastic cerebral palsy

    PubMed Central

    Lee, MiHye; Ko, YoungJun; Shin, Mary Myong Sook; Lee, Wanhee

    2015-01-01

    [Purpose] To investigate the effects of progressive functional training on lower limb muscle architecture and motor function of children with spastic cerebral palsy (CP). [Subjects] The subjects of this study were 26 children with spastic CP. [Methods] Thirteen subjects in the experimental group performed general neurodevelopmental treatment (NDT) and additional progressive functional trainings and 13 subjects in the control group performed only general NDT 3 times a week for 6 weeks. Ultrasonography, gross motor function measurement (GMFM) and the mobility questionnaire (MobQue) were evaluated. [Results] After the intervention, the muscle thickness of the quadriceps femoris (QF), cross-sectional area of the rectus femoris (RF), pennation angle of the gastrocnemius (GCM) and the MobQue score of the experimental group were significantly greater than those of the control group. The muscle thickness of QF correlated with the cross-sectional area (CSA) of RF and the pennation angle of GCM, and GMFM score correlated with the pennation angle of GCM. [Conclusion] Progressive functional training can increase muscle thickness, CSA, and the pennation angle of the lower limb muscles, and improve the mobility of spastic CP children making it useful as a practical adjunct to rehabilitation therapy. PMID:26157267

  11. Differences of respiratory function according to level of the gross motor function classification system in children with cerebral palsy.

    PubMed

    Kwon, Yong Hyun; Lee, Hye Young

    2014-03-01

    [Purpose] The current study was designed to investigate the difference in lung capacity and muscle strengthening related to respiration depending on the level of the Gross Motor Function Classification System (GMFCS) in children with cerebral palsy (CP) through tests of respiratory function and respiratory pressure. [Subjects and Methods] A total of 49 children with CP who were classified as below level III of the GMFCS were recruited for this study. They were divided into three groups (i.e., GMFCS level I, GMFCS level II, and GMFCS level III). All children took the pulmonary function test (PFT) and underwent respiratory pressure testing for assessment of respiratory function in terms of lung capacity and respiratory muscle strength. [Results] The GMFCS level III group showed significantly lower scores for all tests of the PFT (i.e., forced vital capacity (FVC), forced expiratory volume at one second (FEV1), and slow vital capacity (SVC)) and testing for respiratory pressures (maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP)) compared with the other two groups. The results of post hoc analysis indicated that the GMFCS level III group differed significantly from the other two groups in terms of FVC, FEV1, MIP, and MEP. In addition, a significant difference in SVC was observed between GMFCS level II and III. [Conclusion] Children with CP who had relatively low motor function showed poor pulmonary capacity and respiratory muscle weakness. Therefore, clinical manifestations regarding lung capacity and respiratory muscle will be required in children with CP who demonstrate poor physical activity.

  12. The effects of progressive functional training on lower limb muscle architecture and motor function in children with spastic cerebral palsy.

    PubMed

    Lee, MiHye; Ko, YoungJun; Shin, Mary Myong Sook; Lee, Wanhee

    2015-05-01

    [Purpose] To investigate the effects of progressive functional training on lower limb muscle architecture and motor function of children with spastic cerebral palsy (CP). [Subjects] The subjects of this study were 26 children with spastic CP. [Methods] Thirteen subjects in the experimental group performed general neurodevelopmental treatment (NDT) and additional progressive functional trainings and 13 subjects in the control group performed only general NDT 3 times a week for 6 weeks. Ultrasonography, gross motor function measurement (GMFM) and the mobility questionnaire (MobQue) were evaluated. [Results] After the intervention, the muscle thickness of the quadriceps femoris (QF), cross-sectional area of the rectus femoris (RF), pennation angle of the gastrocnemius (GCM) and the MobQue score of the experimental group were significantly greater than those of the control group. The muscle thickness of QF correlated with the cross-sectional area (CSA) of RF and the pennation angle of GCM, and GMFM score correlated with the pennation angle of GCM. [Conclusion] Progressive functional training can increase muscle thickness, CSA, and the pennation angle of the lower limb muscles, and improve the mobility of spastic CP children making it useful as a practical adjunct to rehabilitation therapy. PMID:26157267

  13. Motor programme activating therapy influences adaptive brain functions in multiple sclerosis: clinical and MRI study.

    PubMed

    Rasova, Kamila; Prochazkova, Marie; Tintera, Jaroslav; Ibrahim, Ibrahim; Zimova, Denisa; Stetkarova, Ivana

    2015-03-01

    There is still little scientific evidence for the efficacy of neurofacilitation approaches and their possible influence on brain plasticity and adaptability. In this study, the outcome of a new kind of neurofacilitation approach, motor programme activating therapy (MPAT), was evaluated on the basis of a set of clinical functions and with MRI. Eighteen patients were examined four times with standardized clinical tests and diffusion tensor imaging to monitor changes without therapy, immediately after therapy and 1 month after therapy. Moreover, the strength of effective connectivity was analysed before and after therapy. Patients underwent a 1-h session of MPAT twice a week for 2 months. The data were analysed by nonparametric tests of association and were subsequently statistically evaluated. The therapy led to significant improvement in clinical functions, significant increment of fractional anisotropy and significant decrement of mean diffusivity, and decrement of effective connectivity at supplementary motor areas was observed immediately after the therapy. Changes in clinical functions and diffusion tensor images persisted 1 month after completing the programme. No statistically significant changes in clinical functions and no differences in MRI-diffusion tensor images were observed without physiotherapy. Positive immediate and long-term effects of MPAT on clinical and brain functions, as well as brain microstructure, were confirmed.

  14. Functional and Structural Brain Plasticity Enhanced by Motor and Cognitive Rehabilitation in Multiple Sclerosis

    PubMed Central

    Prosperini, Luca; Piattella, Maria Cristina

    2015-01-01

    Rehabilitation is recognized to be important in ameliorating motor and cognitive functions, reducing disease burden, and improving quality of life in patients with multiple sclerosis (MS). In this systematic review, we summarize the existing evidences that motor and cognitive rehabilitation may enhance functional and structural brain plasticity in patients with MS, as assessed by means of the most advanced neuroimaging techniques, including diffusion tensor imaging and task-related and resting-state functional magnetic resonance imaging (MRI). In most cases, the rehabilitation program was based on computer-assisted/video game exercises performed in either an outpatient or home setting. Despite their heterogeneity, all the included studies describe changes in white matter microarchitecture, in task-related activation, and/or in functional connectivity following both task-oriented and selective training. When explored, relevant correlation between improved function and MRI-detected brain changes was often found, supporting the hypothesis that training-induced brain plasticity is specifically linked to the trained domain. Small sample sizes, lack of randomization and/or an active control group, as well as missed relationship between MRI-detected changes and clinical performance, are the major drawbacks of the selected studies. Knowledge gaps in this field of research are also discussed to provide a framework for future investigations. PMID:26064692

  15. Toxicology and senescence: Baseline variability and toluene effects on the motor function of aging brown Norway rats.

    EPA Science Inventory

    The rapidly expanding population of older adults raises concern in EPA over aging-related vulnerability to environmental exposures. Deficits in motor function are frequent with advancing age. An increase in interindividual variability is also commonly accepted. Increased variabil...

  16. Structural and resting state functional connectivity of the subthalamic nucleus: identification of motor STN parts and the hyperdirect pathway.

    PubMed

    Brunenberg, Ellen J L; Moeskops, Pim; Backes, Walter H; Pollo, Claudio; Cammoun, Leila; Vilanova, Anna; Janssen, Marcus L F; Visser-Vandewalle, Veerle E R M; ter Haar Romeny, Bart M; Thiran, Jean-Philippe; Platel, Bram

    2012-01-01

    Deep brain stimulation (DBS) for Parkinson's disease often alleviates the motor symptoms, but causes cognitive and emotional side effects in a substantial number of cases. Identification of the motor part of the subthalamic nucleus (STN) as part of the presurgical workup could minimize these adverse effects. In this study, we assessed the STN's connectivity to motor, associative, and limbic brain areas, based on structural and functional connectivity analysis of volunteer data. For the structural connectivity, we used streamline counts derived from HARDI fiber tracking. The resulting tracks supported the existence of the so-called "hyperdirect" pathway in humans. Furthermore, we determined the connectivity of each STN voxel with the motor cortical areas. Functional connectivity was calculated based on functional MRI, as the correlation of the signal within a given brain voxel with the signal in the STN. Also, the signal per STN voxel was explained in terms of the correlation with motor or limbic brain seed ROI areas. Both right and left STN ROIs appeared to be structurally and functionally connected to brain areas that are part of the motor, associative, and limbic circuit. Furthermore, this study enabled us to assess the level of segregation of the STN motor part, which is relevant for the planning of STN DBS procedures. PMID:22768059

  17. Gallbladder mucocoele and concurrent hepatic lipidosis in a cat.

    PubMed

    Bennett, S L; Milne, M; Slocombe, R F; Landon, B P

    2007-10-01

    A 3-year-old Domestic Shorthair cat was presented with weight loss, anorexia and icterus. Feline hepatic lipidosis and gallbladder mucocoele were diagnosed; this is the first report of gallbladder mucocoele in the cat. The case was managed successfully with cholecystojejunostomy, gastrostomy tube placement and tube feeding for 3 months. The cat has survived over the long term with minimal complications.

  18. Clinical, pathological and sonographic characteristics of unexpected gallbladder carcinoma

    PubMed Central

    Wang, Jin-Huan; Liu, Bo-Ji; Xu, Hui-Xiong; Sun, Li-Ping; Li, Dan-Dan; Guo, Le-Hang; Liu, Lin-Na; Xu, Xiao-Hong

    2015-01-01

    Objectives: To investigate the clinical, pathological, and sonographic characteristics of unexpected gallbladder carcinoma (UGC). Methods: Of 5424 patients who had undergone cholecystectomy from December 2006 to October 2013, 54 patients with primary gallbladder carcinomas confirmed by pathological diagnosis were identified. The patients were divided into two groups: diagnosed before operation (n=34) and UGC groups (n=20), of whom the clinical, pathological, and sonographic characteristics were compared. Results: No significant differences in age, gender, location of lesion, histological type, length of the gallbladder, existence of biliary sludge, and intestinal gas interference between the two groups were found (all P>0.05). The clinical symptoms, laboratory abnormalities, tumor markers, coexisting gallbladder stones, lesion size, lesion type, degree of differentiation, and tumor staging showed statistically significant differences between the two groups (all P<0.05). On ultrasound, the width of the gallbladder, gallbladder wall thickness, vascularity on color Doppler ultrasound, and bile volume in the gallbladder showed significant differences (all P<0.05). Conclusions: UGCs are commonly found at an early stage, often well-differentiated, wall thickened, and are generally accompanied with cholelithiasis. UGCs should be taken into consideration in cases with cholelithiasis or small gallbladder on ultrasound. PMID:26379911

  19. Gallbladder Duplication Associated with Gastro-Intestinal Atresia

    PubMed Central

    Gupta, Rahul; Gupta, Shilpi; Sharma, Pramila; Bhandari, Anu; Gupta, Arun Kumar; Mathur, Praveen

    2016-01-01

    Gallbladder duplication in association with other GIT anomalies is a rare entity. We report two neonates; one with duodenal atresia and the other newborn with pyloric atresia, ileal atresia and colonic atresia, both were associated with gallbladder duplication which has not been reported earlier. PMID:27123398

  20. A novel functional electrical stimulation-control system for restoring motor function of post-stroke hemiplegic patients

    PubMed Central

    Huang, Zonghao; Wang, Zhigong; Lv, Xiaoying; Zhou, Yuxuan; Wang, Haipeng; Zong, Sihao

    2014-01-01

    Hemiparesis is one of the most common consequences of stroke. Advanced rehabilitation techniques are essential for restoring motor function in hemiplegic patients. Functional electrical stimulation applied to the affected limb based on myoelectric signal from the unaffected limb is a promising therapy for hemiplegia. In this study, we developed a prototype system for evaluating this novel functional electrical stimulation-control strategy. Based on surface electromyography and a vector machine model, a self-administered, multi-movement, force-modulation functional electrical stimulation-prototype system for hemiplegia was implemented. This paper discusses the hardware design, the algorithm of the system, and key points of the self-oscillation-prone system. The experimental results demonstrate the feasibility of the prototype system for further clinical trials, which is being conducted to evaluate the efficacy of the proposed rehabilitation technique. PMID:25657728

  1. Optical stimulation for restoration of motor function following spinal cord injury

    PubMed Central

    Mallory, Grant W.; Grahn, Peter J.; Hachmann, Jan T.; Lujan, J. Luis; Lee, Kendall H.

    2015-01-01

    Spinal cord injury (SCI) can be defined as a loss of communication between the brain and the body due to disrupted pathways within the spinal cord. While many promising molecular strategies have emerged to reduce secondary injury and promote axonal regrowth, there is still no effective cure and recovery of function remains limited. Functional electrical stimulation (FES) represents a strategy developed to restore motor function without the need for regenerating severed spinal pathways. Despite its technological success, however, FES has not been widely integrated into the lives of spinal cord injury survivors. In this review, we briefly discuss the limitations of existing FES technologies. Additionally, we discuss how optogenetics, a rapidly evolving technique used primarily to investigate select neuronal populations within the brain, may eventually be used to replace FES as a form of therapy for functional restoration following SCI. PMID:25659246

  2. An inclined plane system with microcontroller to determine limb motor function of laboratory animals.

    PubMed

    Chang, Ming-Wen; Young, Ming-Shing; Lin, Mao-Tsun

    2008-02-15

    This study describes a high-accuracy inclined plane test system for quantitative measurement of the limb motor function of laboratory rats. The system is built around a microcontroller and uses a stepping motor to drive a ball screw, which changes the angle of the inclined plane. Any of the seven inclination speeds can be selected by the user. Two infrared (IR) LED/detector pairs function as interrupt sensors for objective determination of the moment that the rat loses its grip on the textured flooring of the starting area and slips down the plane. Inclination angle at the moment of IR interrupt (i.e. rat slip) is recorded. A liquid crystal display module shows the inclination speed and the inclination angle. The system can function as a stand alone device but a RS232 port allows connection to a personal computer (PC), so data can be sent directly to hard disk for storage and analysis. Experiments can be controlled by a local keypad or by the connected PC. Advantages of the presented system include easy operation, high accuracy, non-dependence on human observation for determination of slip angle, stand-alone capability, low cost and easy modification of the controlling software for different types of experiments. A fully functional prototype of the system is described. The prototype was used experimentally by a hospital group testing traumatic brain injury experiments, and some of their results are presented for system verification. It is found that the system is stable, accurate and easily used by investigators.

  3. Immediate effects of different frequencies of auditory stimulation on lower limb motor function of healthy people

    PubMed Central

    Yu, Lili; Huang, Qiuchen; Hu, Chunying; Ye, Miao

    2016-01-01

    [Purpose] The purpose of this study was to explore the immediate effects of different frequencies of auditory stimulation on the lower limb motor function of healthy people. [Subjects and Methods] The subjects were 7 healthy people (5 males and 2 females). The subjects’ lower limb function was measured without auditory stimulation (control), and with auditory stimulation of 500, 1,000, 1,500, and 2,000 Hz. The measured parameters were maximum knee extension torque, average knee extension torque, the Timed Up and Go test (TUG) time, Functional Reach (FR), and the 10-meter walking time. [Results] The TUG times of 500, 1,500, and 2,000 Hz auditory stimulation showed significant decreases compared to the control. The 10-m walking times of 1,000 and 2,000 Hz auditory stimulation showed significant decreases compared to the control. [Conclusion] The results show that auditory stimulation improved the TUG and 10-meter walking times of healthy people and that different frequencies of auditory stimulation had different effects on lower limb motor function. PMID:27630392

  4. Immediate effects of different frequencies of auditory stimulation on lower limb motor function of healthy people.

    PubMed

    Yu, Lili; Huang, Qiuchen; Hu, Chunying; Ye, Miao

    2016-08-01

    [Purpose] The purpose of this study was to explore the immediate effects of different frequencies of auditory stimulation on the lower limb motor function of healthy people. [Subjects and Methods] The subjects were 7 healthy people (5 males and 2 females). The subjects' lower limb function was measured without auditory stimulation (control), and with auditory stimulation of 500, 1,000, 1,500, and 2,000 Hz. The measured parameters were maximum knee extension torque, average knee extension torque, the Timed Up and Go test (TUG) time, Functional Reach (FR), and the 10-meter walking time. [Results] The TUG times of 500, 1,500, and 2,000 Hz auditory stimulation showed significant decreases compared to the control. The 10-m walking times of 1,000 and 2,000 Hz auditory stimulation showed significant decreases compared to the control. [Conclusion] The results show that auditory stimulation improved the TUG and 10-meter walking times of healthy people and that different frequencies of auditory stimulation had different effects on lower limb motor function. PMID:27630392

  5. Immediate effects of different frequencies of auditory stimulation on lower limb motor function of healthy people

    PubMed Central

    Yu, Lili; Huang, Qiuchen; Hu, Chunying; Ye, Miao

    2016-01-01

    [Purpose] The purpose of this study was to explore the immediate effects of different frequencies of auditory stimulation on the lower limb motor function of healthy people. [Subjects and Methods] The subjects were 7 healthy people (5 males and 2 females). The subjects’ lower limb function was measured without auditory stimulation (control), and with auditory stimulation of 500, 1,000, 1,500, and 2,000 Hz. The measured parameters were maximum knee extension torque, average knee extension torque, the Timed Up and Go test (TUG) time, Functional Reach (FR), and the 10-meter walking time. [Results] The TUG times of 500, 1,500, and 2,000 Hz auditory stimulation showed significant decreases compared to the control. The 10-m walking times of 1,000 and 2,000 Hz auditory stimulation showed significant decreases compared to the control. [Conclusion] The results show that auditory stimulation improved the TUG and 10-meter walking times of healthy people and that different frequencies of auditory stimulation had different effects on lower limb motor function.

  6. Gallbladder Papillary Neoplasia Associated With Intrahepatic Carcinoma and Pancreaticobiliary Malformation

    PubMed Central

    Resende, Vivian; Roda, Rodrigo; Pedrosa, Moises Salgado

    2012-01-01

    Papillary carcinoma is a rare tumor of the gallbladder. Papillary mucinous lesions of the intra- and extra-hepatic biliary tract (BT- IPMN) have been recognized. However the gallbladder is not included, except for the diffuse papillomatosis, where the sequence biliary papillomatosis to papillary carcinoma is proposed. We report a simultaneous case of gallbladder papillary neoplasia and intrahepatic duct carcinoma in situ associated with pancreaticobiliary maljunction (PBM). We proposed that double location, in our case, is more likely explained by a diffuse biliopancreatic tree disease leading to synchronous tumors arising in amenable duct. It was verified absence of continuity between gallbladder and intrahepatic bile duct site of involvement, absence of lymph node metastasis or venous involvement. This case report supports the concept of a proliferative and neoplastic process involving simultaneously the biliary tree and gallbladder associated with PBM.

  7. Double gallbladder with different disease entities: A case report.

    PubMed

    Vijayaraghavan, R; Belagavi, Charalingappa S

    2006-03-01

    We report a rare case of gallbladder duplication in a young male patient with acute pyocoele in one vesicle and acute cholecystitis with cystadenoma in the other; another unusual feature was the absent or obliterated cystic duct in the proximal vesicle and non-communication with the second vesicle or the biliary system. Ultrasound examination had suggested a septate gallbladder; the diagnosis of dual gallbladder was made per-operatively during separation of the distal moiety which was presumed to be an adherent duodenum initially. Intraoperative cholecystogram confirmed the diagnosis and both gallbladders were removed successfully laparoscopically.A high degree of awareness, detailed preoperative investigations when anomalies are suspected and intraoperative cholangiography are necessary for accurate detailing of the biliary tree to avoid inadvertent damage to the biliary ductal system and overlooking of second or third gallbladder during surgery.

  8. Radionuclide hepatobiliary imaging: nonvisualization of the gallbladder secondary to prolonged fasting

    SciTech Connect

    Larsen, M.J.; Klingensmith, W.C. III; Kuni, C.C.

    1982-11-01

    Radionuclide hepatobiliary imaging demonstrated nonvisualization of the gallbladder in four patients who were studied after fasting from 14 hr to 12 days. Two patients subsequently had normal gallbladders at autopsy, and two gave normal gallbladder visualization on repeat imaging studies after fasts of 2 to 3 hr. These findings suggest that prolonged fasting may be a cause for nonvisualization of a normal gallbladder.

  9. Alterations of motor performance and brain cortex mitochondrial function during ethanol hangover.

    PubMed

    Bustamante, Juanita; Karadayian, Analia G; Lores-Arnaiz, Silvia; Cutrera, Rodolfo A

    2012-08-01

    Ethanol has been known to affect various behavioral parameters in experimental animals, even several hours after ethanol (EtOH) is absent from blood circulation, in the period known as hangover. The aim of this study was to assess the effects of acute ethanol hangover on motor performance in association with the brain cortex energetic metabolism. Evaluation of motor performance and brain cortex mitochondrial function during alcohol hangover was performed in mice 6 hours after a high ethanol dose (hangover onset). Animals were injected i.p. either with saline (control group) or with ethanol (3.8 g/kg BW) (hangover group). Ethanol hangover group showed a bad motor performance compared with control animals (p < .05). Oxygen uptake in brain cortex mitochondria from hangover animals showed a 34% decrease in the respiratory control rate as compared with the control group. Mitochondrial complex activities were decreased being the complex I-III the less affected by the hangover condition; complex II-III was markedly decreased by ethanol hangover showing 50% less activity than controls. Complex IV was 42% decreased as compared with control animals. Hydrogen peroxide production was 51% increased in brain cortex mitochondria from the hangover group, as compared with the control animals. Quantification of the mitochondrial transmembrane potential indicated that ethanol injected animals presented 17% less ability to maintain the polarized condition as compared with controls. These results indicate that a clear decrease in proton motive force occurs in brain cortex mitochondria during hangover conditions. We can conclude that a decreased motor performance observed in the hangover group of animals could be associated with brain cortex mitochondrial dysfunction and the resulting impairment of its energetic metabolism.

  10. Genetic and functional modularity of Hox activities in the specification of limb-innervating motor neurons.

    PubMed

    Lacombe, Julie; Hanley, Olivia; Jung, Heekyung; Philippidou, Polyxeni; Surmeli, Gulsen; Grinstein, Jonathan; Dasen, Jeremy S

    2013-01-01

    A critical step in the assembly of the neural circuits that control tetrapod locomotion is the specification of the lateral motor column (LMC), a diverse motor neuron population targeting limb musculature. Hox6 paralog group genes have been implicated as key determinants of LMC fate at forelimb levels of the spinal cord, through their ability to promote expression of the LMC-restricted genes Foxp1 and Raldh2 and to suppress thoracic fates through exclusion of Hoxc9. The specific roles and mechanisms of Hox6 gene function in LMC neurons, however, are not known. We show that Hox6 genes are critical for diverse facets of LMC identity and define motifs required for their in vivo specificities. Although Hox6 genes are necessary for generating the appropriate number of LMC neurons, they are not absolutely required for the induction of forelimb LMC molecular determinants. In the absence of Hox6 activity, LMC identity appears to be preserved through a diverse array of Hox5-Hox8 paralogs, which are sufficient to reprogram thoracic motor neurons to an LMC fate. In contrast to the apparently permissive Hox inputs to early LMC gene programs, individual Hox genes, such as Hoxc6, have specific roles in promoting motor neuron pool diversity within the LMC. Dissection of motifs required for Hox in vivo specificities reveals that either cross-repressive interactions or cooperativity with Pbx cofactors are sufficient to induce LMC identity, with the N-terminus capable of promoting columnar, but not pool, identity when transferred to a heterologous homeodomain. These results indicate that Hox proteins orchestrate diverse aspects of cell fate specification through both the convergent regulation of gene programs regulated by many paralogs and also more restricted actions encoded through specificity determinants in the N-terminus.

  11. Selenium from dietary sources and motor functions in the Brazilian Amazon.

    PubMed

    Lemire, Mélanie; Fillion, Myriam; Frenette, Benoît; Passos, Carlos José Sousa; Guimarães, Jean Rémy Davée; Barbosa, Fernando; Mergler, Donna

    2011-12-01

    Selenium (Se) is a well-known anti-oxidant with a critical role in the proper functioning of nervous and muscle functions. Se deficiency has been associated with both cognitive and neuromotor impairment, while sensory and motor deficits have been attributed to excess Se. In the Lower Tapajós Region of the Brazilian Amazon, riverside populations present a wide range of Se levels. These fish-eating communities have among the highest mercury (Hg) exposures reported in the world today, and recently, lead (Pb) exposure has been identified. Some studies suggest that Se intake can be protective for Hg and/or Pb toxicity, however, data from animal and human studies are inconsistent. The objective of the present study was to examine the relations between biomarkers of Se and motor functions, taking into account co-variables and biomarkers of exposure to Hg and Pb. Participants (n=448), aged 15-87 y, were recruited from 12 communities along the Tapajós River. Se concentrations were measured in whole blood (B-Se), plasma (P-Se), hair (H-Se) and urine (U-Se) by ICP-MS. Whole blood Hg (B-Hg) and Pb (B-Pb) were also measured by ICP-MS. Interview-administered questionnaires served to collect information on socio-demographics and medical history. All participants underwent a complete visual examination and performed tests of motor functions (Branches Alternate Movement Task, Santa Ana Test, Dynamometer and Grooved Pegboard Test). B-Se varied from 103 to 1500 μg/L (median 228 μg/L), P-Se from 53.6 to 913 μg/L (median 135 μg/L), H-Se from 0.4 to 3.8 μg/g (median 0.7 μg/g) and U-Se from 2.3 to 1375 μg/g cr. (median 33.6 μg/g cr.). Median B-Hg and B-Pb levels were 42.5 μg/L and 113 μg/L respectively. In multivariable analysis, Se biomarkers (log-transformed) were positively related to better performance on all motor tests, taking into account socio-demographic co-variables and B-Hg and B-Pb levels. P-Se consistently showed stronger associations to motor performance

  12. A porcelain gallbladder and a rapid tumor dissemination

    PubMed Central

    Gómez-López, Juan-Ramón; De Andrés-Asenjo, Beatriz; Ortega-Loubon, Christian

    2014-01-01

    Introduction Porcelain gallbladder is a very rare entity that consists of a calcification of the gallbladder wall, and is associated with carcinoma in 12.5–62% of patients, although recent studies suggest weaker association. Case report We describe an 80-year-old woman who presented with colicky abdominal pain in the right upper quadrant, radiating to the back and associated with vomiting. Physical examination revealed jaundice, murphy's sign was negative. Hepatic-biliary tract ultrasound revealed porcelain gallbladder, she was referred to the surgical team for a scheduled cholecystectomy. A month later, she presented diffuse abdominal pain. Imaging studies showed a disseminated process affecting liver's segments, capsule, and hilum; and lungs. An aggressive surgical treatment was dismissed, and was referred to the oncology department. Discussion There is controversy in the harboring risk of malignancy of the porcelain gallbladder. While it seems that the current data points towards a lower risk of degeneration, it is also demonstrated that patients with gallbladder wall calcifications are indeed statistically at risk of gallbladder cancer. Laparoscopic cholecystectomy has become a safe and efficient approach recommended for patients with gallbladder symptoms directly related or unrelated to gallbladder wall calcifications. In this case, a pathological gallbladder, very quickly evolved into an inoperable tumor with a poor prognosis. Conclusion This report heightens that with US evidence of porcelain gallbladder, an urgent CT scan should be carried out to assess an underlying malignancy, and a simple cholecystectomy should be done urgently rather than on a routine elective list to prevent possible malignant change if possible. PMID:25568797

  13. Gallbladder mucin production and calcium carbonate gallstones in children.

    PubMed

    Sayers, Craig; Wyatt, Judy; Soloway, Roger D; Taylor, Donald R; Stringer, Mark D

    2007-03-01

    In contrast to adults, calcium carbonate gallstones are relatively common in children. Their pathogenesis is poorly understood. Cystic duct obstruction promotes calcium carbonate formation in bile and increases gallbladder mucin production. We tested the hypothesis that mucin producing epithelial cells would be increased in gallbladders of children with calcium carbonate gallstones. Archival gallbladder specimens from 20 consecutive children who had undergone elective cholecystectomy for cholelithiasis were examined. In each case, gallstone composition was determined by Fourier transform infrared microspectroscopy. Gallbladder specimens from six children who had undergone cholecystectomy for conditions other than cholelithiasis during the same period were used as controls. Multiple sections were examined in a blinded fashion and scored semiquantitatively for mucin production using two stains (alcian blue and periodic acid-Schiff). Increased mucin staining was observed in 50% or more epithelial cells in five gallbladder specimens from seven children with calcium carbonate stones, compared to 5 of 13 with other stone types (P = 0.17) and none of the control gallbladders (P = 0.02). Gallbladders containing calcium carbonate stones were significantly more likely than those containing other stone types or controls to contain epithelial cells with the greatest mucin content (P = 0.03). Gallbladders containing calcium carbonate stones were also more likely to show the ulcer-associated cell lineage. These results demonstrate an increase in mucin producing epithelial cells in gallbladders from children containing calcium carbonate stones. This supports the hypothesis that cystic duct obstruction leading to increased gallbladder mucin production may play a role in the development of calcium carbonate gallstones in children.

  14. Maturation of Corpus Callosum Anterior Midbody Is Associated with Neonatal Motor Function in Eight Preterm-Born Infants

    PubMed Central

    Mathew, Preethi; Pannek, Kerstin; D'Acunto, M. Giulia; Guzzetta, Andrea; Rose, Stephen E.; Colditz, Paul B.; Finnigan, Simon

    2013-01-01

    Background. The etiology of motor impairments in preterm infants is multifactorial and incompletely understood. Whether corpus callosum development is related to impaired motor function is unclear. Potential associations between motor-related measures and diffusion tensor imaging (DTI) of the corpus callosum in preterm infants were explored. Methods. Eight very preterm infants (gestational age of 28–32 weeks) underwent the Hammersmith neonatal neurological examination and DTI assessments at gestational age of 42 weeks. The total Hammersmith score and a motor-specific score (sum of Hammersmith motor subcategories) were calculated. Six corpus callosum regions of interest were defined on the mid-sagittal DTI slice—genu, rostral body, anterior midbody, posterior midbody, isthmus, and splenium. The fractional anisotropy (FA) and mean diffusivity (MD) of these regions were computed, and correlations between these and Hammersmith measures were sought. Results. Anterior midbody FA measures correlated positively with total Hammersmith (rho = 0.929, P = 0.001) and motor-specific scores (rho = 0.857, P = 0.007). Total Hammersmith scores also negatively correlated with anterior midbody MD measures (rho = −0.714, P = 0.047). Discussion. These results suggest the integrity of corpus callosum axons, particularly anterior midbody axons, is important in mediating neurological functions. Greater callosal maturation was associated with greater motor function. Corpus callosum DTI may prove to be a valuable screening or prognostic marker. PMID:23509639

  15. Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery.

    PubMed

    Hatem, Samar M; Saussez, Geoffroy; Della Faille, Margaux; Prist, Vincent; Zhang, Xue; Dispa, Delphine; Bleyenheuft, Yannick

    2016-01-01

    Stroke is one of the leading causes for disability worldwide. Motor function deficits due to stroke affect the patients' mobility, their limitation in daily life activities, their participation in society and their odds of returning to professional activities. All of these factors contribute to a low overall quality of life. Rehabilitation training is the most effective way to reduce motor impairments in stroke patients. This multiple systematic review focuses both on standard treatment methods and on innovating rehabilitation techniques used to promote upper extremity motor function in stroke patients. A total number of 5712 publications on stroke rehabilitation was systematically reviewed for relevance and quality with regards to upper extremity motor outcome. This procedure yielded 270 publications corresponding to the inclusion criteria of the systematic review. Recent technology-based interventions in stroke rehabilitation including non-invasive brain stimulation, robot-assisted training, and virtual reality immersion are addressed. Finally, a decisional tree based on evidence from the literature and characteristics of stroke patients is proposed. At present, the stroke rehabilitation field faces the challenge to tailor evidence-based treatment strategies to the needs of the individual stroke patient. Interventions can be combined in order to achieve the maximal motor function recovery for each patient. Though the efficacy of some interventions may be under debate, motor skill learning, and some new technological approaches give promising outcome prognosis in stroke motor rehabilitation.

  16. Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery

    PubMed Central

    Hatem, Samar M.; Saussez, Geoffroy; della Faille, Margaux; Prist, Vincent; Zhang, Xue; Dispa, Delphine; Bleyenheuft, Yannick

    2016-01-01

    Stroke is one of the leading causes for disability worldwide. Motor function deficits due to stroke affect the patients' mobility, their limitation in daily life activities, their participation in society and their odds of returning to professional activities. All of these factors contribute to a low overall quality of life. Rehabilitation training is the most effective way to reduce motor impairments in stroke patients. This multiple systematic review focuses both on standard treatment methods and on innovating rehabilitation techniques used to promote upper extremity motor function in stroke patients. A total number of 5712 publications on stroke rehabilitation was systematically reviewed for relevance and quality with regards to upper extremity motor outcome. This procedure yielded 270 publications corresponding to the inclusion criteria of the systematic review. Recent technology-based interventions in stroke rehabilitation including non-invasive brain stimulation, robot-assisted training, and virtual reality immersion are addressed. Finally, a decisional tree based on evidence from the literature and characteristics of stroke patients is proposed. At present, the stroke rehabilitation field faces the challenge to tailor evidence-based treatment strategies to the needs of the individual stroke patient. Interventions can be combined in order to achieve the maximal motor function recovery for each patient. Though the efficacy of some interventions may be under debate, motor skill learning, and some new technological approaches give promising outcome prognosis in stroke motor rehabilitation.

  17. Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery.

    PubMed

    Hatem, Samar M; Saussez, Geoffroy; Della Faille, Margaux; Prist, Vincent; Zhang, Xue; Dispa, Delphine; Bleyenheuft, Yannick

    2016-01-01

    Stroke is one of the leading causes for disability worldwide. Motor function deficits due to stroke affect the patients' mobility, their limitation in daily life activities, their participation in society and their odds of returning to professional activities. All of these factors contribute to a low overall quality of life. Rehabilitation training is the most effective way to reduce motor impairments in stroke patients. This multiple systematic review focuses both on standard treatment methods and on innovating rehabilitation techniques used to promote upper extremity motor function in stroke patients. A total number of 5712 publications on stroke rehabilitation was systematically reviewed for relevance and quality with regards to upper extremity motor outcome. This procedure yielded 270 publications corresponding to the inclusion criteria of the systematic review. Recent technology-based interventions in stroke rehabilitation including non-invasive brain stimulation, robot-assisted training, and virtual reality immersion are addressed. Finally, a decisional tree based on evidence from the literature and characteristics of stroke patients is proposed. At present, the stroke rehabilitation field faces the challenge to tailor evidence-based treatment strategies to the needs of the individual stroke patient. Interventions can be combined in order to achieve the maximal motor function recovery for each patient. Though the efficacy of some interventions may be under debate, motor skill learning, and some new technological approaches give promising outcome prognosis in stroke motor rehabilitation. PMID:27679565

  18. Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery

    PubMed Central

    Hatem, Samar M.; Saussez, Geoffroy; della Faille, Margaux; Prist, Vincent; Zhang, Xue; Dispa, Delphine; Bleyenheuft, Yannick

    2016-01-01

    Stroke is one of the leading causes for disability worldwide. Motor function deficits due to stroke affect the patients' mobility, their limitation in daily life activities, their participation in society and their odds of returning to professional activities. All of these factors contribute to a low overall quality of life. Rehabilitation training is the most effective way to reduce motor impairments in stroke patients. This multiple systematic review focuses both on standard treatment methods and on innovating rehabilitation techniques used to promote upper extremity motor function in stroke patients. A total number of 5712 publications on stroke rehabilitation was systematically reviewed for relevance and quality with regards to upper extremity motor outcome. This procedure yielded 270 publications corresponding to the inclusion criteria of the systematic review. Recent technology-based interventions in stroke rehabilitation including non-invasive brain stimulation, robot-assisted training, and virtual reality immersion are addressed. Finally, a decisional tree based on evidence from the literature and characteristics of stroke patients is proposed. At present, the stroke rehabilitation field faces the challenge to tailor evidence-based treatment strategies to the needs of the individual stroke patient. Interventions can be combined in order to achieve the maximal motor function recovery for each patient. Though the efficacy of some interventions may be under debate, motor skill learning, and some new technological approaches give promising outcome prognosis in stroke motor rehabilitation. PMID:27679565

  19. Effects of exergaming on executive function and motor skills in children with autism spectrum disorder: a pilot study.

    PubMed

    Hilton, Claudia List; Cumpata, Kristina; Klohr, Cheryl; Gaetke, Shannon; Artner, Amanda; Johnson, Hailey; Dobbs, Sarah

    2014-01-01

    Executive function (EF) and motor deficits have consistently been documented in studies of people with autism spectrum disorders (ASD). We investigated the effects of a pilot 30-session Makoto arena training intervention, a light and sound speed-based exergame, on response speed, EF, and motor skills in school-aged children with ASD. Strong correlations were seen between certain EF and motor scores, suggesting a relationship between the two constructs. Participants increased their average reaction speed (effect size = 1.18). Significant improvement was seen in the EF areas of working memory and metacognition and the motor area of strength and agility. Findings suggest that use of exergaming, specifically the Makoto arena, has the potential to be a valuable addition to standard intervention for children with ASD who have motor and EF impairments.

  20. Motor functioning, exploration, visuospatial cognition and language development in preschool children with autism.

    PubMed

    Hellendoorn, Annika; Wijnroks, Lex; van Daalen, Emma; Dietz, Claudine; Buitelaar, Jan K; Leseman, Paul

    2015-04-01

    In order to understand typical and atypical developmental trajectories it is important to assess how strengths or weaknesses in one domain may be affecting performance in other domains. This study examined longitudinal relations between early fine motor functioning, visuospatial cognition, exploration, and language development in preschool children with ASD and children with other developmental delays/disorders. The ASD group included 63 children at T1 (Mage = 27.10 months, SD = 8.71) and 46 children at T2 (Mage = 45.85 months, SD = 7.16). The DD group consisted of 269 children at T1 (Mage = 17.99 months, SD = 5.59), and 121 children at T2 (Mag e= 43.51 months, SD = 3.81). A subgroup nested within the total sample was randomly selected and studied in-depth on exploratory behavior. This group consisted of 50 children, 21 children with ASD (Mage = 27.57, SD = 7.09) and 29 children with DD (Mage = 24.03 months, SD = 6.42). Fine motor functioning predicted language in both groups. Fine motor functioning was related to visuospatial cognition in both groups and related to object exploration, spatial exploration, and social orientation during exploration only in the ASD group. Visuospatial cognition and all exploration measures were related to both receptive and expressive language in both groups. The findings are in line with the embodied cognition theory, which suggests that cognition emerges from and is grounded in the bodily interactions of an agent with the environment. This study emphasizes the need for researchers and clinicians to consider cognition as emergent from multiple interacting systems.

  1. Effects of physical activity on executive function and motor performance in children with ADHD.

    PubMed

    Ziereis, Susanne; Jansen, Petra

    2015-03-01

    Children with Attention-Deficit/Hyperactivity Disorder (ADHD) often show major deficits in motor and cognitive abilities. Pharmacological treatment is commonly used to reduce ADHD symptoms. However, non-pharmacologic treatment methods would be preferred by parents, children and psychiatrists. Physical activity (PA) has been demonstrated to improve cognitive functioning in healthy populations. It can be hypothesized that there are similar beneficial effects in children with ADHD, however, very little is known about this issue. The purpose of the present study was to determine whether PA improves cognitive performance in children with ADHD. A total of 43 children with ADHD (32 boys and 11 girls) aged between seven and 12 years took part in the study. To investigate whether potential effects on executive functioning depend on the kind of PA, two different 12-week training programs were implemented. The study-design consisted of two experimental groups (EG1, n=13; EG2, n=14) and a wait-list control group (CG, n=16). Participants in EG1 took part in a training which focused on the abilities ball handling, balance and manual dexterity. Participants in EG2 group were trained in sports without a specific focus. The children in the CG group received no intervention. Participants completed assessments of working memory (WM) and motor performance before, immediately after the first training week and one week after the last session. After the 12-week intervention period, several measures of the EG1 and EG2s significantly improved over time. Furthermore, between group comparisons demonstrated significant improvements in both EG1 and EG2 compared to the CG in variables assessing WM performance and motor performance. These findings support the hypothesis that long-term PA has a positive effect on executive functions of children with ADHD, regardless of the specificity of the PA. The outcomes indicated that regular PA can be used as a complementary or alternative non

  2. Effects of physical activity on executive function and motor performance in children with ADHD.

    PubMed

    Ziereis, Susanne; Jansen, Petra

    2015-03-01

    Children with Attention-Deficit/Hyperactivity Disorder (ADHD) often show major deficits in motor and cognitive abilities. Pharmacological treatment is commonly used to reduce ADHD symptoms. However, non-pharmacologic treatment methods would be preferred by parents, children and psychiatrists. Physical activity (PA) has been demonstrated to improve cognitive functioning in healthy populations. It can be hypothesized that there are similar beneficial effects in children with ADHD, however, very little is known about this issue. The purpose of the present study was to determine whether PA improves cognitive performance in children with ADHD. A total of 43 children with ADHD (32 boys and 11 girls) aged between seven and 12 years took part in the study. To investigate whether potential effects on executive functioning depend on the kind of PA, two different 12-week training programs were implemented. The study-design consisted of two experimental groups (EG1, n=13; EG2, n=14) and a wait-list control group (CG, n=16). Participants in EG1 took part in a training which focused on the abilities ball handling, balance and manual dexterity. Participants in EG2 group were trained in sports without a specific focus. The children in the CG group received no intervention. Participants completed assessments of working memory (WM) and motor performance before, immediately after the first training week and one week after the last session. After the 12-week intervention period, several measures of the EG1 and EG2s significantly improved over time. Furthermore, between group comparisons demonstrated significant improvements in both EG1 and EG2 compared to the CG in variables assessing WM performance and motor performance. These findings support the hypothesis that long-term PA has a positive effect on executive functions of children with ADHD, regardless of the specificity of the PA. The outcomes indicated that regular PA can be used as a complementary or alternative non

  3. Clinicopathological features of gallbladder papillary adenocarcinoma.

    PubMed

    Wan, Xueshuai; Zhang, Haohai; Chen, Cuimin; Yang, Xiaobo; Wang, Anqiang; Zhu, Chengpei; Fu, Lilan; Miao, Ruoyu; He, Lian; Yang, Huayu; Zhao, Haitao; Sang, Xinting

    2014-12-01

    Although patients with gallbladder papillary adenocarcinoma (GBPA) appear to have better prognoses than patients with other pathological subtypes of gallbladder carcinoma (GBC), the clinicopathological features and outcomes of GBPA have not been fully explored. This study therefore analyzed the clinicopathological characteristics and outcomes of GBPA.This study included 16 patients with GBPA and 101 with gallbladder adenocarcinoma (GBA) not otherwise specified (NOS), all diagnosed pathologically after surgical resection. Clinicopathological and survival data were retrospectively collected and compared. Fever was significantly more common in GBPA (7/16 vs 10/101; P = 0.000). Serum carbohydrate antigen 19-9 level was increased in 1 of 9 patients with GBPA and 39 of 76 with GBA (P = 0.022). More patients with GBPA underwent curative resection (15/16 vs 54/101; P = 0.009). Pathologically, patients with GBPA were at much earlier tumor (T) (4 in situ, 8 T1; P = 0.000) and Tumor, Node, Metastases (TNM) stages (P = 0.000). The overall 1-, 3-, and 5-year survival rates were significantly higher in patients with GBPA (100%, 76.9%, and 76.9%, respectively), than in patients with GBA (72.2%, 38.8%, and 31.0%, respectively; P = 0.001). Preoperative jaundice (odds ratio 7.69; 95% confidence interval, 1.53-38.76; P = 0.013) was a significant prognostic factor in patients with GBA, but was no longer significant when the patients with GBA and GBPA were pooled together. The clinicopathological features of patients with GBPA differed from those in patients with GBA (not otherwise specified). Pooling of patients may mask prognostic factors in each group.

  4. A case of gallbladder carcinoma associated with pancreatobiliary reflux in the absence of a pancreaticobiliary maljunction: A hint for early diagnosis of gallbladder carcinoma.

    PubMed

    Sai, Jin-Kan; Suyama, Masafumi; Kubokawa, Yoshihiro

    2006-07-28

    A 62-year-old man with progressive thickening of the gallbladder wall visited our outpatient clinic. The biliary amylase level in the common bile duct was 19,900 IU/L and that of the gallbladder was 127,000 IU/L, although endoscopic retrograde cholangiopancreatography revealed no pancreaticobiliary maljunction. Histology demonstrated a moderately differentiated adenocarcinoma of the gallbladder. Pancreatobiliary reflux and associated gallbladder carcinoma were confirmed in the present case, in the absence of a pancreaticobiliary maljunction. Earlier detection of the pancreatobiliary reflux and progressive thickening of the gallbladder wall might have led to an earlier resection of the gallbladder and improved this patient's poor prognosis.

  5. Trastuzumab in Treating Patients With Locally Advanced or Metastatic Gallbladder Cancer or Bile Duct Cancer That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2014-05-15

    Adenocarcinoma of the Extrahepatic Bile Duct; Adenocarcinoma of the Gallbladder; Malignant Neoplasm; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer

  6. Sodium nitrite supplementation improves motor function and skeletal muscle inflammatory profile in old male mice.

    PubMed

    Justice, Jamie N; Gioscia-Ryan, Rachel A; Johnson, Lawrence C; Battson, Micah L; de Picciotto, Natalie E; Beck, Hannah J; Jiang, Hong; Sindler, Amy L; Bryan, Nathan S; Enoka, Roger M; Seals, Douglas R

    2015-01-15

    Aging is associated with motor declines that lead to functional limitations and disability, necessitating the development of therapies to slow or reverse these events. We tested the hypothesis that sodium nitrite supplementation attenuates declines in motor function in older C57BL/6 mice. Motor function was assessed using a battery of tests (grip strength, open-field distance, rota-rod endurance) in old animals (age 20-24 mo) at baseline and after 8 wk of sodium nitrite (old nitrite, n = 22, 50 mg/liter) or no treatment (old control, n = 40), and in young reference animals (3 mo, n = 87). Eight weeks of sodium nitrite supplementation improved grip strength (old nitrite, +12.0 ± 14.9% vs. old control, +1.5 ± 15.2%, P < 0.05) and open field distance (old nitrite, +9.5 ± 7.7%, P < 0.01 vs. old control, -28.1 ± 2.0%) and completely restored rota-rod endurance-run time (old nitrite, +3.2 ± 7.1%, P < 0.01 vs. old control, -21.5 ± 7.2%; old nitrite after treatment P > 0.05 vs. young reference). Inflammatory cytokines were markedly increased in quadriceps of old compared with young reference animals (by ELISA, interleukin-1β [IL-1β] 3.86 ± 2.34 vs. 1.11 ± 0.74, P < 0.05; interferon-gamma [INF-γ] 8.31 ± 1.59 vs. 3.99 ± 2.59, P < 0.01; tumor necrosis factor-alpha [TNF-α] 1.69 ± 0.44 vs. 0.76 ± 0.30 pg/ml, P < 0.01), but were reduced to young reference levels after treatment (old nitrite, IL-1β 0.67 ± 0.95; INF-γ 5.22 ± 2.01, TNF-α 1.21 ± 0.39 pg/ml, P < 0.05 vs. old control, P > 0.05 vs. young reference). Cytokine expression and treatment (old nitrite vs. old control) predicted strength (R(2) = 0.822, P < 0.001, IL-1β, INF-γ, group), open field distance (R(2) = 0.574, P < 0.01, IL-1β, group) and endurance run time (R(2) = 0.477, P < 0.05, INF-γ). Our results suggest that sodium nitrite improves motor function in old mice, in part by reducing low-grade inflammation in muscle.

  7. Reduced functional connectivity within the primary motor cortex of patients with brachial plexus injury.

    PubMed

    Fraiman, D; Miranda, M F; Erthal, F; Buur, P F; Elschot, M; Souza, L; Rombouts, S A R B; Schimmelpenninck, C A; Norris, D G; Malessy, M J A; Galves, A; Vargas, C D

    2016-01-01

    This study aims at the effects of traumatic brachial plexus lesion with root avulsions (BPA) upon the organization of the primary motor cortex (M1). Nine right-handed patients with a right BPA in whom an intercostal to musculocutaneous (ICN-MC) nerve transfer was performed had post-operative resting state fMRI scanning. The analysis of empirical functional correlations between neighboring voxels revealed faster correlation decay as a function of distance in the M1 region corresponding to the arm in BPA patients as compared to the control group. No differences between the two groups were found in the face area. We also investigated whether such larger decay in patients could be attributed to a gray matter diminution in M1. Structural imaging analysis showed no difference in gray matter density between groups. Our findings suggest that the faster decay in neighboring functional correlations without significant gray matter diminution in BPA patients could be related to a reduced activity in intrinsic horizontal connections in M1 responsible for upper limb motor synergies. PMID:27547727

  8. Directed functional connectivity matures with motor learning in a cortical pattern generator

    PubMed Central

    Day, Nancy F.; Terleski, Kyle L.; Nykamp, Duane Q.

    2013-01-01

    Sequential motor skills may be encoded by feedforward networks that consist of groups of neurons that fire in sequence (Abeles 1991; Long et al. 2010). However, there has been no evidence of an anatomic map of activation sequence in motor control circuits, which would be potentially detectable as directed functional connectivity of coactive neuron groups. The proposed pattern generator for birdsong, the HVC (Long and Fee 2008; Vu et al. 1994), contains axons that are preferentially oriented in the rostrocaudal axis (Nottebohm et al. 1982; Stauffer et al. 2012). We used four-tetrode recordings to assess the activity of ensembles of single neurons along the rostrocaudal HVC axis in anesthetized zebra finches. We found an axial, polarized neural network in which sequential activity is directionally organized along the rostrocaudal axis in adult males, who produce a stereotyped song. Principal neurons fired in rostrocaudal order and with interneurons that were rostral to them, suggesting that groups of excitatory neurons fire at the leading edge of travelling waves of inhibition. Consistent with the synchronization of neurons by caudally travelling waves of inhibition, the activity of interneurons was more coherent in the orthogonal mediolateral axis than in the rostrocaudal axis. If directed functional connectivity within the HVC is important for stereotyped, learned song, then it may be lacking in juveniles, which sing a highly variable song. Indeed, we found little evidence for network directionality in juveniles. These data indicate that a functionally directed network within the HVC matures during sensorimotor learning and may underlie vocal patterning. PMID:23175804

  9. SH1 (cysteine 717) of smooth muscle myosin: its role in motor function.

    PubMed

    Kojima, S; Fujiwara, K; Onishi, H

    1999-09-01

    To determine if a thiol group called SH1 has an important role in myosin's motor function, we made a mutant heavy meromyosin (HMM) without the thiol group and analyzed its properties. In chicken gizzard myosin, SH1 is located on the cysteine residue at position 717. By using genetic engineering techniques, this cysteine was substituted with threonine in chicken gizzard HMM, and that mutant HMM and unmutated HMM were expressed in biochemical quantities using a baculovirus system. The basal EDTA-, Ca(2+)-, and Mg(2+)-ATPase activities of the mutant were similar to those of HMM whose SH1 was modified by N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (IAEDANS). However, while the chemically modified HMM lost the function of the light chain phosphorylation-dependent regulation of the actin-activated ATPase activity, the mutant HMM exhibited the normal light chain-regulated actin-activated ATPase activity. Using an in vitro motility assay system, we found that the IAEDANS-modified HMM was unable to propel actin filaments but that the mutant HMM was able to move actin filaments in a manner indistinguishable from filament sliding generated by unmutated HMM. These results indicate that SH1 itself is not essential for the motor function of myosin and suggest that various effects observed with HMM modified by thiol reagents such as IAEDANS are caused by the bulkiness of the attached probes, which interferes with the swinging motion generated during ATP hydrolysis.

  10. Reduced functional connectivity within the primary motor cortex of patients with brachial plexus injury.

    PubMed

    Fraiman, D; Miranda, M F; Erthal, F; Buur, P F; Elschot, M; Souza, L; Rombouts, S A R B; Schimmelpenninck, C A; Norris, D G; Malessy, M J A; Galves, A; Vargas, C D

    2016-01-01

    This study aims at the effects of traumatic brachial plexus lesion with root avulsions (BPA) upon the organization of the primary motor cortex (M1). Nine right-handed patients with a right BPA in whom an intercostal to musculocutaneous (ICN-MC) nerve transfer was performed had post-operative resting state fMRI scanning. The analysis of empirical functional correlations between neighboring voxels revealed faster correlation decay as a function of distance in the M1 region corresponding to the arm in BPA patients as compared to the control group. No differences between the two groups were found in the face area. We also investigated whether such larger decay in patients could be attributed to a gray matter diminution in M1. Structural imaging analysis showed no difference in gray matter density between groups. Our findings suggest that the faster decay in neighboring functional correlations without significant gray matter diminution in BPA patients could be related to a reduced activity in intrinsic horizontal connections in M1 responsible for upper limb motor synergies.

  11. Effects of oculo-motor exercise, functional electrical stimulation and proprioceptive neuromuscular stimulation on visual perception of spatial neglect patients

    PubMed Central

    Park, Si-Eun; Oh, Dae-Sik; Moon, Sang-Hyun

    2016-01-01

    [Purpose] The purpose of this study was to identify the effects of oculo-motor exercise, functional electrical stimulation (FES), and proprioceptive neuromuscular facilitation (PNF) on the visual perception of spatial neglect patients. [Subjects and Methods] The subjects were randomly allocated to 3 groups: an oculo-motor exercise (OME) group, a FES with oculo-motor exercise (FOME) group, and a PNF with oculo-motor exercise (POME) group. The line bisection test (LBT), motor free visual test (MVPT), and Catherine Bergego Scale (CBS) were used to measure visual perception. These were performed 5 times per week for 6 weeks. [Results] The OME group and POME group showed significant improvements according to the LBT and MVPT results, but the FOME group showed no significant improvement. According to the CBS, all 3 groups showed significant improvements. The OME and POME groups showed improvement over the FOME group in the LBT and MVPT. However, there was no significant difference among the three groups according to the CBS. [Conclusion] These results indicate that oculo-motor exercise and PNF with oculo-motor exercise had more positive effects than FES with oculo-motor exercise on the visual perception of spatial neglect patients. PMID:27190436

  12. Effects of oculo-motor exercise, functional electrical stimulation and proprioceptive neuromuscular stimulation on visual perception of spatial neglect patients.

    PubMed

    Park, Si-Eun; Oh, Dae-Sik; Moon, Sang-Hyun

    2016-04-01

    [Purpose] The purpose of this study was to identify the effects of oculo-motor exercise, functional electrical stimulation (FES), and proprioceptive neuromuscular facilitation (PNF) on the visual perception of spatial neglect patients. [Subjects and Methods] The subjects were randomly allocated to 3 groups: an oculo-motor exercise (OME) group, a FES with oculo-motor exercise (FOME) group, and a PNF with oculo-motor exercise (POME) group. The line bisection test (LBT), motor free visual test (MVPT), and Catherine Bergego Scale (CBS) were used to measure visual perception. These were performed 5 times per week for 6 weeks. [Results] The OME group and POME group showed significant improvements according to the LBT and MVPT results, but the FOME group showed no significant improvement. According to the CBS, all 3 groups showed significant improvements. The OME and POME groups showed improvement over the FOME group in the LBT and MVPT. However, there was no significant difference among the three groups according to the CBS. [Conclusion] These results indicate that oculo-motor exercise and PNF with oculo-motor exercise had more positive effects than FES with oculo-motor exercise on the visual perception of spatial neglect patients.

  13. Functions and regulation of the multitasking FANCM family of DNA motor proteins.

    PubMed

    Xue, Xiaoyu; Sung, Patrick; Zhao, Xiaolan

    2015-09-01

    Members of the conserved FANCM family of DNA motor proteins play key roles in genome maintenance processes. FANCM supports genome duplication and repair under different circumstances and also functions in the ATR-mediated DNA damage checkpoint. Some of these roles are shared among lower eukaryotic family members. Human FANCM has been linked to Fanconi anemia, a syndrome characterized by cancer predisposition, developmental disorder, and bone marrow failure. Recent studies on human FANCM and its orthologs from other organisms have provided insights into their biological functions, regulation, and collaboration with other genome maintenance factors. This review summarizes the progress made, with the goal of providing an integrated view of the functions and regulation of these enzymes in humans and model organisms and how they advance our understanding of genome maintenance processes.

  14. The Role of Motor Experience in Understanding Action Function: The Case of the Precision Grasp

    PubMed Central

    Loucks, Jeff; Sommerville, Jessica A.

    2012-01-01

    Recent evidence suggests adults and infants selectively attend to features of action, such as how a hand contacts an object. The current research investigated whether this bias stems from infants’ processing of the functional consequences of grasps: understanding that different grasps afford different future actions. A habituation paradigm assessed 10-month-old infants’ (N = 62) understanding of the functional consequences of precision and whole-hand grasps in others’ actions, and infants’ own precision grasping abilities were also assessed. The results indicate infants understood the functional consequences of another’s grasp only if they could perform precision grasps themselves. These results highlight a previously unknown aspect of early action understanding, and deepen our understanding of the relation between motor experience and cognition. PMID:22364274

  15. The role of motor experience in understanding action function: the case of the precision grasp.

    PubMed

    Loucks, Jeff; Sommerville, Jessica A

    2012-01-01

    Recent evidence suggests adults and infants selectively attend to features of action, such as how a hand contacts an object. The current research investigated whether this bias stems from infants' processing of the functional consequences of grasps: understanding that different grasps afford different future actions. A habituation paradigm assessed 10-month-old infants' (N = 62) understanding of the functional consequences of precision and whole-hand grasps in others' actions, and infants' own precision grasping abilities were also assessed. The results indicate infants understood the functional consequences of another's grasp only if they could perform precision grasps themselves. These results highlight a previously unknown aspect of early action understanding, and deepen our understanding of the relation between motor experience and cognition.

  16. Functions and regulation of the multitasking FANCM family of DNA motor proteins

    PubMed Central

    Xue, Xiaoyu; Sung, Patrick; Zhao, Xiaolan

    2015-01-01

    Members of the conserved FANCM family of DNA motor proteins play key roles in genome maintenance processes. FANCM supports genome duplication and repair under different circumstances and also functions in the ATR-mediated DNA damage checkpoint. Some of these roles are shared among lower eukaryotic family members. Human FANCM has been linked to Fanconi anemia, a syndrome characterized by cancer predisposition, developmental disorder, and bone marrow failure. Recent studies on human FANCM and its orthologs from other organisms have provided insights into their biological functions, regulation, and collaboration with other genome maintenance factors. This review summarizes the progress made, with the goal of providing an integrated view of the functions and regulation of these enzymes in humans and model organisms and how they advance our understanding of genome maintenance processes. PMID:26341555

  17. Functions and regulation of the multitasking FANCM family of DNA motor proteins.

    PubMed

    Xue, Xiaoyu; Sung, Patrick; Zhao, Xiaolan

    2015-09-01

    Members of the conserved FANCM family of DNA motor proteins play key roles in genome maintenance processes. FANCM supports genome duplication and repair under different circumstances and also functions in the ATR-mediated DNA damage checkpoint. Some of these roles are shared among lower eukaryotic family members. Human FANCM has been linked to Fanconi anemia, a syndrome characterized by cancer predisposition, developmental disorder, and bone marrow failure. Recent studies on human FANCM and its orthologs from other organisms have provided insights into their biological functions, regulation, and collaboration with other genome maintenance factors. This review summarizes the progress made, with the goal of providing an integrated view of the functions and regulation of these enzymes in humans and model organisms and how they advance our understanding of genome maintenance processes. PMID:26341555

  18. Significance of preoperative ultrasound measurement of gallbladder wall thickness.

    PubMed

    Majeski, James

    2007-09-01

    Evaluation of patients with signs and symptoms of biliary tract disease usually includes ultrasound assessment of the gallbladder. Does measurement of the thickness of the gallbladder wall yield any significant information to the clinical surgeon? The records of all my patients undergoing cholecystectomy since 1990 were reviewed. The entire series consists of 401 consecutive patients, in whom 388 procedures were completed laparoscopically, with 14 patients requiring conversion to an open cholecystectomy. Each patient's preoperative evaluation included a gallbladder ultrasound, which included measurement of the diameter of the gallbladder wall. The entire series of cholecystectomies was evaluated according to the ultrasound measured diameter of the gallbladder wall. A thin gallbladder wall was less than 3 mm in diameter. A thick gallbladder wall was 3 mm or greater in diameter. Of the 401 consecutive patients who underwent cholecystectomy for symptomatic gallbladder disease, 86 (21.5%) were removed laparoscopically for acalculous disease. Eleven per cent of patients with acalculous cholecystitis had acute cholecystitis and 89 per cent had chronic cholecystitis. Every patient with either a thin or thick gallbladder wall with acalculous cholecystitis had a successful laparoscopic cholecystectomy. Three-hundred fifteen patients had a laparoscopic cholecystectomy for calculous cholecystitis. In patients with calculous cholecystitis, 28.3 per cent had acute cholecystitis and 71.7 per cent had chronic cholecystitis. The gallbladder wall was found to be greater than 3 mm in 38 per cent of patients with acute calculous cholecystitis and greater than 3 mm in 41 per cent of patients with chronic calculous cholecystitis. One-hundred, forty-two patients, out of a series total of 401, had a gallbladder wall thickness greater than 3 mm by preoperative sonography and 14 of these patients (10%) required conversion to an open cholecystectomy. A preoperative gallbladder ultrasound

  19. Effect of melatonin on motor performance and brain cortex mitochondrial function during ethanol hangover.

    PubMed

    Karadayian, A G; Bustamante, J; Czerniczyniec, A; Cutrera, R A; Lores-Arnaiz, S

    2014-06-01

    Increased reactive oxygen species generation and mitochondrial dysfunction occur during ethanol hangover. The aim of this work was to study the effect of melatonin pretreatment on motor performance and mitochondrial function during ethanol hangover. Male mice received melatonin solution or its vehicle in drinking water during 7 days and i.p. injection with EtOH (3.8 g/kg BW) or saline at the eighth day. Motor performance and mitochondrial function were evaluated at the onset of hangover (6h after injection). Melatonin improved motor coordination in ethanol hangover mice. Malate-glutamate-dependent oxygen uptake was decreased by ethanol hangover treatment and partially prevented by melatonin pretreatment. Melatonin alone induced a decrease of 30% in state 4 succinate-dependent respiratory rate. Also, the activity of the respiratory complexes was decreased in melatonin-pretreated ethanol hangover group. Melatonin pretreatment before the hangover prevented mitochondrial membrane potential collapse and induced a 79% decrement of hydrogen peroxide production as compared with ethanol hangover group. Ethanol hangover induced a 25% decrease in NO production. Melatonin alone and as a pretreatment before ethanol hangover significantly increased NO production by nNOS and iNOS as compared with control groups. No differences were observed in nNOS protein expression, while iNOS expression was increased in the melatonin group. Increased NO production by melatonin could be involved in the decrease of succinate-dependent oxygen consumption and the inhibition of complex IV observed in our study. Melatonin seems to act as an antioxidant agent in the ethanol hangover condition but also exhibited some dual effects related to NO metabolism.

  20. Effect of a chloride channel activator, lubiprostone, on colonic sensory and motor functions in healthy subjects

    PubMed Central

    Sweetser, Seth; Busciglio, Irene A.; Camilleri, Michael; Bharucha, Adil E.; Szarka, Lawrence A.; Papathanasopoulos, Athanasios; Burton, Duane D.; Eckert, Deborah J.; Zinsmeister, Alan R.

    2009-01-01

    Lubiprostone, a bicyclic fatty acid chloride channel activator, is efficacious in treatment of chronic constipation and constipation-predominant irritable bowel syndrome. The study aim was to compare effects of lubiprostone and placebo on colonic sensory and motor functions in humans. In double-blind, randomized fashion, 60 healthy adults received three oral doses of placebo or 24 μg lubiprostone per day in a parallel-group, placebo-controlled trial. A barostat-manometry tube was placed in the left colon by flexible sigmoidoscopy and fluoroscopy. We measured treatment effects on colonic sensation and motility with validated methods, with the following end points: colonic compliance, fasting and postprandial tone and motility indexes, pain thresholds, and sensory ratings to distensions. Among participants receiving lubiprostone or placebo, 26 of 30 and 28 of 30, respectively, completed the study. There were no overall effects of lubiprostone on compliance, fasting tone, motility indexes, or sensation. However, there was a treatment-by-sex interaction effect for compliance (P = 0.02), with lubiprostone inducing decreased fasting compliance in women (P = 0.06) and an overall decreased colonic tone contraction after a standard meal relative to fasting tone (P = 0.014), with greater effect in women (P < 0.01). Numerical differences of first sensation and pain thresholds (P = 0.11 in women) in the two groups were not significant. We concluded that oral lubiprostone 24 μg does not increase colonic motor function. The findings of decreased colonic compliance and decreased postprandial colonic tone in women suggest that motor effects are unlikely to cause accelerated colonic transit with lubiprostone, although they may facilitate laxation. Effects of lubiprostone on sensitivity deserve further study. PMID:19033530

  1. Aberrant post-translational modifications compromise human myosin motor function in old age.

    PubMed

    Li, Meishan; Ogilvie, Hannah; Ochala, Julien; Artemenko, Konstantin; Iwamoto, Hiroyuki; Yagi, Naoto; Bergquist, Jonas; Larsson, Lars

    2015-04-01

    Novel experimental methods, including a modified single fiber in vitro motility assay, X-ray diffraction experiments, and mass spectrometry analyses, have been performed to unravel the molecular events underlying the aging-related impairment in human skeletal muscle function at the motor protein level. The effects of old age on the function of specific myosin isoforms extracted from single human muscle fiber segments, demonstrated a significant slowing of motility speed (P < 0.001) in old age in both type I and IIa myosin heavy chain (MyHC) isoforms. The force-generating capacity of the type I and IIa MyHC isoforms was, on the other hand, not affected by old age. Similar effects were also observed when the myosin molecules extracted from muscle fibers were exposed to oxidative stress. X-ray diffraction experiments did not show any myofilament lattice spacing changes, but unraveled a more disordered filament organization in old age as shown by the greater widths of the 1, 0 equatorial reflections. Mass spectrometry (MS) analyses revealed eight age-specific myosin post-translational modifications (PTMs), in which two were located in the motor domain (carbonylation of Pro79 and Asn81) and six in the tail region (carbonylation of Asp900, Asp904, and Arg908; methylation of Glu1166; deamidation of Gln1164 and Asn1168). However, PTMs in the motor domain were only observed in the IIx MyHC isoform, suggesting PTMs in the rod region contributed to the observed disordering of myosin filaments and the slowing of motility speed. Hence, interventions that would specifically target these PTMs are warranted to reverse myosin dysfunction in old age.

  2. Functional specificity in the motor system: Evidence from coupled fMRI and kinematic recordings during letter and digit writing.

    PubMed

    Longcamp, Marieke; Lagarrigue, Aurélie; Nazarian, Bruno; Roth, Muriel; Anton, Jean-Luc; Alario, Francois-Xavier; Velay, Jean-Luc

    2014-12-01

    A few intriguing neuropsychologial studies report dissociations where agraphic patients are severely impaired for writing letters whereas they write digits nearly normally. Here, using functional magnetic resonance imaging (fMRI) together with graphic tablet recordings, we tested the hypothesis that the motor patterns for writing letters are coded in specific regions of the cortex. We found a set of three regions that were more strongly activated when participants wrote letters than when they wrote digits and whose response was not explained by low-level kinematic features of the graphic movements. Two of these regions (left dorsal premotor cortex and supplementary motor complex) are part of a motor control network. The left premotor activation belongs to what is considered in the literature a key area for handwriting. Another significant activation, likely related to phoneme-to-grapheme conversion, was found in the right anterior insula. This constitutes the first neuroimaging evidence of functional specificity derived from experience in the cortical motor system.

  3. Effects of brain-derived neurotrophic factor on dopaminergic function and motor behavior during aging.

    PubMed

    Boger, H A; Mannangatti, P; Samuvel, D J; Saylor, A J; Bender, T S; McGinty, J F; Fortress, A M; Zaman, V; Huang, P; Middaugh, L D; Randall, P K; Jayanthi, L D; Rohrer, B; Helke, K L; Granholm, A-C; Ramamoorthy, S

    2011-03-01

    Brain-derived neurotrophic factor (BDNF) is critical in synaptic plasticity and in the survival and function of midbrain dopamine neurons. In this study, we assessed the effects of a partial genetic deletion of BDNF on motor function and dopamine (DA) neurotransmitter measures by comparing Bdnf(+/-) with wildtype mice (WT) at different ages. Bdnf(+/-) and WT mice had similar body weights until 12 months of age; however, at 21 months, Bdnf(+/-) mice were significantly heavier than WT mice. Horizontal and vertical motor activity was reduced for Bdnf(+/-) compared to WT mice, but was not influenced by age. Performance on an accelerating rotarod declined with age for both genotypes and was exacerbated for Bdnf(+/-) mice. Body weight did not correlate with any of the three behavioral measures studied. Dopamine neurotransmitter markers indicated no genotypic difference in striatal tyrosine hydroxylase, DA transporter (DAT) or vesicular monoamine transporter 2 (VMAT2) immunoreactivity at any age. However, DA transport via DAT (starting at 12 months) and VMAT2 (starting at 3 months) as well as KCl-stimulated DA release were reduced in Bdnf(+/-) mice and declined with age suggesting an increasingly important role for BDNF in the release and uptake of DA with the aging process. These findings suggest that a BDNF expression deficit becomes more critical to dopaminergic dynamics and related behavioral activities with increasing age.

  4. The effect of Functional Electric Stimulation in stroke patients' motor control - a case report

    NASA Astrophysics Data System (ADS)

    Pripas, Denise; Rogers Venditi Beas, Allan; Fioramonte, Caroline; Gonsales de Castro, Pedro Claudio; Goroso, Daniel Gustavo; Cecília dos Santos Moreira, Maria

    2011-12-01

    Functional Electric Stimulation (FES) has been studied as a therapeutic resource to reduce spasticity in hemiplegic patients, however there are no studies about the effects of FES in motor control of these patients during functional tasks like balance maintenance. Muscular activation of gastrocnemius medialis and semitendinosus was investigated in both limbs of a hemiparetic patient during self-disturbed quiet stance before and after FES on tibialis anterior, by surface electromyography. The instant of maximum activation peak of GM and ST were calculated immediately after a motor self-disturbance, in order to observe muscular synergy between these two muscles, and possible balance strategies used (ankle or hip strategy). At the preserved limb there occurred distal-proximal synergy (GM followed by ST), expected for small perturbations; however, at spastic limb there was inversion of this synergy (proximal-distal) after FES. It is possible that intervention of electricity had inhibited synergical pathways due to antidromic effect, making it difficult to use ankle strategy in the spastic limb.

  5. Effect of mirror therapy on upper extremity motor function in stroke patients: a randomized controlled trial

    PubMed Central

    Gurbuz, Nigar; Afsar, Sevgi Ikbali; Ayaş, Sehri; Cosar, Sacide Nur Saracgil

    2016-01-01

    [Purpose] This study aimed to evaluate the effectiveness of mirror therapy combined with a conventional rehabilitation program on upper extremity motor and functional recovery in stroke patients. [Subjects and Methods] Thirty-one hemiplegic patients were included. The patients were randomly assigned to a mirror (n=16) or conventional group (n=15). The patients in both groups underwent conventional therapy for 4 weeks (60–120 minutes/day, 5 days/week). The mirror group received mirror therapy, consisting of periodic flexion and extension movements of the wrist and fingers on the non-paralyzed side. The patients in the conventional group performed the same exercises against the non-reflecting face of the mirror. The patients were evaluated at the beginning and end of the treatment by a blinded assessor using the Brunnstrom stage, Fugl-Meyer Assessment (FMA) upper extremity score, and the Functional Independence Measure (FIM) self-care score. [Results] There was an improvement in Brunnstrom stage and the FIM self-care score in both groups, but the post-treatment FMA score was significantly higher in the mirror therapy group than in the conventional treatment group. [Conclusion] Mirror therapy in addition to a conventional rehabilitation program was found to provide additional benefit in motor recovery of the upper extremity in stroke patients. PMID:27799679

  6. Objective and quantitative evaluation of motor function in a monkey model of Parkinson's disease.

    PubMed

    Saiki, Hidemoto; Hayashi, Takuya; Takahashi, Ryosuke; Takahashi, Jun

    2010-07-15

    Monkeys treated with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) are currently the best animal model for Parkinson's disease (PD) and have been widely used for physiological and pharmacological investigations. However, objective and quantitative assessments have not been established for grading their motor behaviors. In order to develop a method for an unbiased evaluation, we performed a video-based assessment, used qualitative rating scales, and carried out an in vivo investigation of dopamine (DA) transporter binding in systemically MPTP-treated monkeys. The video-based analysis of spontaneous movement clearly demonstrated a significant correlation with the qualitative rating score. The assessment of DA transporter (DAT) function by [(11)C]-CFT-PET showed that, when compared with normal animals, the MPTP-treated animals exhibited decreased CFT binding in the bilateral striatum, particularly in the dorsal part in the putamen and caudate. Among the MPTP-treated monkeys, an unbiased PET analysis revealed a significant correlation between CFT binding in the midbrain and qualitative rating scores or the amount of spontaneous movements. These results indicate that a video-based analysis can be a reliable tool for an objective and quantitative evaluation of motor dysfunction of MPTP-treated monkeys, and furthermore, that DAT function in the midbrain may also be important for the evaluation.

  7. Effects of maternal worm infections and anthelminthic treatment during pregnancy on infant motor and neurocognitive functioning.

    PubMed

    Nampijja, Margaret; Apule, Barbara; Lule, Swaib; Akurut, Hellen; Muhangi, Lawrence; Webb, Emily L; Lewis, Charlie; Elliott, Alison M; Alcock, Katie J

    2012-11-01

    We tested the hypothesis that maternal worm infections in pregnancy affect infant motor and neurocognitive development, and that anthelminthic treatment during pregnancy can reverse these effects. We used measures which examine infant motor, cognitive and executive function, including inhibition. We assessed 983 Ugandan infants aged 15 months, using locally appropriate measures within the Entebbe Mother and Baby Study, a trial of anthelminthic treatment during pregnancy. Key exposures were maternal worm infections and anthelminthic treatment during pregnancy. Effects of other health and social factors were controlled for statistically. Of the five major worm species found in the pregnant women, two had influences on the developmental measures: Maternal Mansonella perstans and Strongyloides stercoralis infections showed negative associations with the A-not B-task, and Language, respectively. Performance on other psychomotor and cognitive measures was associated with illnesses during infancy and infants' behavior during assessment, but not with maternal worm infections. There were no positive effects of maternal anthelminthic treatment on infant abilities. Mansonella perstans and Strongyloides stercoralis infection during pregnancy seem associated with impaired early executive function and language, respectively, but single-dose anthelminthic treatment during pregnancy was not beneficial. The biological mechanisms that could underlie these neurocognitive effects are discussed. PMID:23158229

  8. Gemin3 Is an Essential Gene Required for Larval Motor Function and Pupation in Drosophila

    PubMed Central

    Shpargel, Karl B.; Praveen, Kavita; Rajendra, T. K.

    2009-01-01

    The assembly of metazoan Sm-class small nuclear ribonucleoproteins (snRNPs) is an elaborate, step-wise process that takes place in multiple subcellular compartments. The initial steps, including formation of the core RNP, are mediated by the survival motor neuron (SMN) protein complex. Loss-of-function mutations in human SMN1 result in a neuromuscular disease called spinal muscular atrophy. The SMN complex is comprised of SMN and a number of tightly associated proteins, collectively called Gemins. In this report, we identify and characterize the fruitfly ortholog of the DEAD box protein, Gemin3. Drosophila Gemin3 (dGem3) colocalizes and interacts with dSMN in vitro and in vivo. RNA interference for dGem3 codepletes dSMN and inhibits efficient Sm core assembly in vitro. Transposon insertion mutations in Gemin3 are larval lethals and also codeplete dSMN. Transgenic overexpression of dGem3 rescues lethality, but overexpression of dSMN does not, indicating that loss of dSMN is not the primary cause of death. Gemin3 mutant larvae exhibit motor defects similar to previously characterized Smn alleles. Remarkably, appreciable numbers of Gemin3 mutants (along with one previously undescribed Smn allele) survive as larvae for several weeks without pupating. Our results demonstrate the conservation of Gemin3 protein function in metazoan snRNP assembly and reveal that loss of either Smn or Gemin3 can contribute to neuromuscular dysfunction. PMID:18923150

  9. A Framework to Automate Assessment of Upper-Limb Motor Function Impairment: A Feasibility Study

    PubMed Central

    Otten, Paul; Kim, Jonghyun; Son, Sang Hyuk

    2015-01-01

    Standard upper-limb motor function impairment assessments, such as the Fugl-Meyer Assessment (FMA), are a critical aspect of rehabilitation after neurological disorders. These assessments typically take a long time (about 30 min for the FMA) for a clinician to perform on a patient, which is a severe burden in a clinical environment. In this paper, we propose a framework for automating upper-limb motor assessments that uses low-cost sensors to collect movement data. The sensor data is then processed through a machine learning algorithm to determine a score for a patient’s upper-limb functionality. To demonstrate the feasibility of the proposed approach, we implemented a system based on the proposed framework that can automate most of the FMA. Our experiment shows that the system provides similar FMA scores to clinician scores, and reduces the time spent evaluating each patient by 82%. Moreover, the proposed framework can be used to implement customized tests or tests specified in other existing standard assessment methods. PMID:26287206

  10. A Framework to Automate Assessment of Upper-Limb Motor Function Impairment: A Feasibility Study.

    PubMed

    Otten, Paul; Kim, Jonghyun; Son, Sang Hyuk

    2015-01-01

    Standard upper-limb motor function impairment assessments, such as the Fugl-Meyer Assessment (FMA), are a critical aspect of rehabilitation after neurological disorders. These assessments typically take a long time (about 30 min for the FMA) for a clinician to perform on a patient, which is a severe burden in a clinical environment. In this paper, we propose a framework for automating upper-limb motor assessments that uses low-cost sensors to collect movement data. The sensor data is then processed through a machine learning algorithm to determine a score for a patient's upper-limb functionality. To demonstrate the feasibility of the proposed approach, we implemented a system based on the proposed framework that can automate most of the FMA. Our experiment shows that the system provides similar FMA scores to clinician scores, and reduces the time spent evaluating each patient by 82%. Moreover, the proposed framework can be used to implement customized tests or tests specified in other existing standard assessment methods. PMID:26287206

  11. Gallbladder disease epidemiology in Mexican Americans in Starr County, Texas.

    PubMed

    Hanis, C L; Ferrell, R E; Tulloch, B R; Schull, W J

    1985-11-01

    The prevalence of gallbladder disease (surgery or complaints) among Mexican Americans in Starr County, Texas, is demonstrated to be some threefold higher than in Framingham, with 13% and 26% of males and females, respectively, over the age of 35 years having the disease. The population aggregation of gallbladder disease in Amerindian groups and those genetically admixed with them (as the present case) is consistent with an underlying genetic mechanism which is further substantiated here by examining relative risks in sibs, offspring, and spouses of individuals with gallbladder disease. It is shown that in females under the age of 45 years, there is evidence for a significant association between gallbladder disease and diabetes beyond that which could be explained by body mass. Significant gallbladder disease by nonlinear age interaction effects was detected for serum cholesterol. The predicted regression lines of cholesterol by age were uniformly lower for individuals with gallbladder disease than those without it except for ages 40-55 years, in which the lines were equal. When coupled with previous results on diabetes, the results presented document the extent to which diabetes and gallbladder disease dominate the health status of Mexican Americans in southern Texas and likely elsewhere. PMID:4050772

  12. Detection of inter-hemispheric functional connectivity in motor cortex with coherence analysis

    NASA Astrophysics Data System (ADS)

    Varshney, V.; Liapounova, N.; Golestani, A.-M.; Goodyear, B.; Dunn, J. F.

    2012-11-01

    Functional near-infrared spectroscopy (fNIRS) is showing promise as an alternate method to fMRI for studying cortical function. Resting state studies in both methods are showing functional linkages. The strength of functional connections is typically quantified by the level of significance of the temporal synchrony between brain regions, termed resting-state functional connectivity. Coherence analysis of resting state allows for phase insensitive and frequency specific analysis. This paper provides a detailed method for undertaking fNIRS in combination with resting-state coherence analysis. We show that maps of inter-hemispheric resting-state functional connectivity between the motor cortices can be reliably generated, and the frequency responses (to 50 Hz) for both oxy- and deoxyhemoglobin. Frequencies of 0-0.1 Hz provide robust data as have been shown previously. Higher frequencies (up to 5 Hz) also exhibit high coherence. Deoxyhemoglobin also shows high coherence above 10Hz. Coherence is similar during both resting and task activated states. fNIRS allows for mapping cortical function and, in combination with coherence analysis, allows one to study variations in frequency response.

  13. [Current surgical and non-surgical possibilities in the treatment of gallbladder stones].

    PubMed

    Largiadèr, F

    1991-03-26

    For the treatment of gallstones in patients with normal stonefree bile ducts, new modalities have been developed besides the classical cholecystectomy and the oral litholysis. The interventional procedures (local litholysis, extracorporeal shockwave lithotripsy, combination of shockwave lithotripsy and local litholysis, cholecystostomy and extra- or intracorporeal lithotripsy) do not need a narcosis and can be applied even in high-risk patients. Because the gallbladder itself is not removed, the recurrence rate after all these interventions is rather high. The new operative procedures (laparoscopic cholecystectomy, mini-laparotomy cholecystectomy) are definitive solutions for stone disease, but must be performed mostly in narcosis. In order to determine for every patient the best and most appropriate treatment for his cholelithiasis, the number, the size and the composition of the stones must be known, and the gallbladder function and the bile ducts must be studied.

  14. Gallbladder epithelium as a niche for chronic Salmonella carriage.

    PubMed

    Gonzalez-Escobedo, Geoffrey; Gunn, John S

    2013-08-01

    Although typhoid fever has been intensively studied, chronic typhoid carriage still represents a problem for the transmission and persistence of the disease in areas of endemicity. This chronic state is highly associated with the presence of gallstones in the gallbladder of infected carriers upon which Salmonella can form robust biofilms. However, we hypothesize that in addition to gallstones, the gallbladder epithelium aids in the establishment/maintenance of chronic carriage. In this work, we present evidence of the role of the gallbladder epithelium in chronic carriage by a mechanism involving invasion, intracellular persistence, and biofilm formation. Salmonella was able to adhere to and invade polarized gallbladder epithelial cells apically in the absence and presence of bile in a Salmonella pathogenicity island 1 (SPI-1)-dependent manner. Intracellular replication of Salmonella was also evident at 12 and 24 h postinvasion. A flowthrough system revealed that Salmonella is able to adhere to and form extensive bacterial foci on gallbladder epithelial cells as early as 12 h postinoculation. In vivo experiments using a chronic mouse model of typhoid carriage showed invasion and damage of the gallbladder epithelium and lamina propria up to 2 months after Salmonella infection, with an abundant presence of macrophages, a relative absence of neutrophils, and extrusion of infected epithelial cells. Additionally, microcolonies of Salmonella cells were evident on the surface of the mouse gallbladder epithelia up to 21 days postinfection. These data reveal a second potential mechanism, intracellular persistence and/or bacterial aggregation in/on the gallbladder epithelium with luminal cell extrusion, for Salmonella maintenance in the gallbladder.

  15. Modulation of motor functions involving central dopaminergic system by L-histidine.

    PubMed

    Paul, V N; Chopra, K; Kulkarni, S K

    2000-10-01

    There exists a possibility of interactions of histaminergic system with other neurotransmitters and their receptors in the central nervous system. Experimental evidences suggest a possible inhibitory influence of histaminergic system on the dopaminergic system. To elucidate the possible interaction between the histaminergic and dopaminergic pathways, we devised a strategy to study their effects on locomotor function and stereotypy behaviour. We investigated the effect of L-histidine, the precursor of histamine, on apomorphine-induced stereotypy and perphenazine-induced catalepsy. Histidine antagonised apomorphine-induced stereotypy. This inhibitory effect of histidine was abolished by both H1- and H2-receptor antagonists, chlorpheniramine and cimetidine, respectively. Perphenazine-induced catalepsy was potentiated by histidine and this effect was inhibited by chlorpheniramine alone but not by cimetidine. These results confirm a possible histamine-dopamine interaction in the modulation of motor functions by the central nervous system.

  16. Hemodynamic correlates of visuomotor motor adaptation by functional Near Infrared Spectroscopy.

    PubMed

    Gentili, Rodolphe J; Hadavi, Cyrus; Ayaz, Hasan; Shewokis, Patricia A; Contreras-Vidal, Jose L

    2010-01-01

    The development of rehabilitation engineering technologies such as the design of smart prosthetics necessitates a deep understanding of brain mechanisms engaged in ecological situations when human interact with new tools and/or environments. Thus, we aimed to investigate potential hemodynamic signatures reflecting the level of cognitive-motor performance and/or the internal or mental states of individuals when learning a novel tool with unknown properties. These markers were derived from functional Near Infrared Spectroscopy (fNIR) signals. Our results indicate an increased level of oxy-hemoglobin in prefrontal sensors associated with enhanced kinematics during early compared with late learning. This is consistent with previous neuroimaging studies that revealed a higher contribution of prefrontal areas during early compare to late adaptation learning. These non-invasive functional hemodynamic markers may play a role in bioengineering applications such as smart neuroprosthesis and brain monitoring where adaptive behavior is important.

  17. The role of textured material in supporting perceptual-motor functions.

    PubMed

    Orth, Dominic; Davids, Keith; Wheat, Jon; Seifert, Ludovic; Liukkonen, Jarmo; Jaakkola, Timo; Ashford, Derek; Kerr, Graham

    2013-01-01

    Simple deformation of the skin surface with textured materials can improve human perceptual-motor performance. The implications of these findings are inexpensive, adaptable and easily integrated clothing, equipment and tools for improving perceptual-motor functionality. However, some clarification is needed because mixed results have been reported in the literature, highlighting positive, absent and/or negative effects of added texture on measures of perceptual-motor performance. Therefore the aim of this study was to evaluate the efficacy of textured materials for enhancing perceptual-motor functionality. The systematic review uncovered two variables suitable for sub-group analysis within and between studies: participant age (groupings were 18-51 years and 64.7-79.4 years) and experimental task (upright balance and walking). Evaluation of studies that observed texture effects during upright balance tasks, uncovered two additional candidate sub-groups for future work: vision (eyes open and eyes closed) and stability (stable and unstable). Meta-analysis (random effects) revealed that young participants improve performance by a small to moderate amount in upright balance tasks with added texture (SMD = 0.28, 95%CI = 0.46-0.09, Z = 2.99, P = 0.001; Tau(2) = 0.02; Chi(2) = 9.87, df = 6, P = 0.13; I(2) = 39.22). Significant heterogeneity was found in, the overall effect of texture: Tau(2) = 0.13; Chi(2) = 130.71, df = 26, P<0.0001; I(2) = 85.98%, pooled samples in upright balance tasks: Tau(2) = 0.09; Chi(2) = 101.57, df = 13, P<0.001; I(2) = 72.67%, and in elderly in upright balance tasks: Tau(2) = 0.16; Chi(2) = 39.42, df = 5, P<0.001; I(2) = 83.05%. No effect was shown for walking tasks: Tau(2) = 0.00; Chi(2) = 3.45, df = 4, P = 0.27, I(2) = 22.99%. Data provides unequivocal support for utilizing textured materials in young healthy populations for improving

  18. The Role of Textured Material in Supporting Perceptual-Motor Functions

    PubMed Central

    Orth, Dominic; Davids, Keith; Wheat, Jon; Seifert, Ludovic; Liukkonen, Jarmo; Jaakkola, Timo; Ashford, Derek; Kerr, Graham

    2013-01-01

    Simple deformation of the skin surface with textured materials can improve human perceptual-motor performance. The implications of these findings are inexpensive, adaptable and easily integrated clothing, equipment and tools for improving perceptual-motor functionality. However, some clarification is needed because mixed results have been reported in the literature, highlighting positive, absent and/or negative effects of added texture on measures of perceptual-motor performance. Therefore the aim of this study was to evaluate the efficacy of textured materials for enhancing perceptual-motor functionality. The systematic review uncovered two variables suitable for sub-group analysis within and between studies: participant age (groupings were 18–51 years and 64.7–79.4 years) and experimental task (upright balance and walking). Evaluation of studies that observed texture effects during upright balance tasks, uncovered two additional candidate sub-groups for future work: vision (eyes open and eyes closed) and stability (stable and unstable). Meta-analysis (random effects) revealed that young participants improve performance by a small to moderate amount in upright balance tasks with added texture (SMD = 0.28, 95%CI = 0.46–0.09, Z = 2.99, P = 0.001; Tau2 = 0.02; Chi2 = 9.87, df = 6, P = 0.13; I2 = 39.22). Significant heterogeneity was found in, the overall effect of texture: Tau2 = 0.13; Chi2 = 130.71, df = 26, P<0.0001; I2 = 85.98%, pooled samples in upright balance tasks: Tau2 = 0.09; Chi2 = 101.57, df = 13, P<0.001; I2 = 72.67%, and in elderly in upright balance tasks: Tau2 = 0.16; Chi2 = 39.42, df = 5, P<0.001; I2 = 83.05%. No effect was shown for walking tasks: Tau2 = 0.00; Chi2 = 3.45, df = 4, P = 0.27, I2 = 22.99%. Data provides unequivocal support for utilizing textured materials in young healthy populations for improving perceptual-motor performance

  19. The role of textured material in supporting perceptual-motor functions.

    PubMed

    Orth, Dominic; Davids, Keith; Wheat, Jon; Seifert, Ludovic; Liukkonen, Jarmo; Jaakkola, Timo; Ashford, Derek; Kerr, Graham

    2013-01-01

    Simple deformation of the skin surface with textured materials can improve human perceptual-motor performance. The implications of these findings are inexpensive, adaptable and easily integrated clothing, equipment and tools for improving perceptual-motor functionality. However, some clarification is needed because mixed results have been reported in the literature, highlighting positive, absent and/or negative effects of added texture on measures of perceptual-motor performance. Therefore the aim of this study was to evaluate the efficacy of textured materials for enhancing perceptual-motor functionality. The systematic review uncovered two variables suitable for sub-group analysis within and between studies: participant age (groupings were 18-51 years and 64.7-79.4 years) and experimental task (upright balance and walking). Evaluation of studies that observed texture effects during upright balance tasks, uncovered two additional candidate sub-groups for future work: vision (eyes open and eyes closed) and stability (stable and unstable). Meta-analysis (random effects) revealed that young participants improve performance by a small to moderate amount in upright balance tasks with added texture (SMD = 0.28, 95%CI = 0.46-0.09, Z = 2.99, P = 0.001; Tau(2) = 0.02; Chi(2) = 9.87, df = 6, P = 0.13; I(2) = 39.22). Significant heterogeneity was found in, the overall effect of texture: Tau(2) = 0.13; Chi(2) = 130.71, df = 26, P<0.0001; I(2) = 85.98%, pooled samples in upright balance tasks: Tau(2) = 0.09; Chi(2) = 101.57, df = 13, P<0.001; I(2) = 72.67%, and in elderly in upright balance tasks: Tau(2) = 0.16; Chi(2) = 39.42, df = 5, P<0.001; I(2) = 83.05%. No effect was shown for walking tasks: Tau(2) = 0.00; Chi(2) = 3.45, df = 4, P = 0.27, I(2) = 22.99%. Data provides unequivocal support for utilizing textured materials in young healthy populations for improving

  20. [Hydrops of the gallbladder and hepatitis associated with scarlet fever].

    PubMed

    Rocco, Roberto; Benedetti, Laura; Escudero, Gabriela; Jordán, Federico

    2010-03-01

    Hydrops of the gallbladder is a rare pediatric disease. It consists of acute distension of the gallbladder without associated congenital anomalies, biliary calculi or acute local inflammation. Although the etiology is unknown, it appears frequently associated with systemic illnesses. Hepatitis is a rare complication of scarlet fever in the pediatric population. We report a four years old girl with gallbladder hydrops and hepatitis associated to scarlet fever. To the best of our knowledge this is the first case report in the medical literature describing an association of these three conditions

  1. Synchronous gallbladder and pancreatic cancer associated with pancreaticobiliary maljunction.

    PubMed

    Rungsakulkij, Narongsak; Boonsakan, Paisarn

    2014-10-21

    We report the case of a 46-year-old woman who presented with chronic intermittent abdominal pain without jaundice; abdominal ultrasonography showed thickening of the gallbladder wall and dilatation of the bile duct. Endoscopic retrograde cholangiopancreaticography showed pancreatobiliary maljunction with proximal common bile duct dilatation. Pancreatobiliary maljunction was diagnosed. A computed tomography scan of the abdomen showed suspected gallbladder cancer and distal common bile duct obstruction. A pancreatic head mass was incidentally found intraoperative. Radical cholecystectomy with pancreatoduodenectomy was performed. The pathological report showed gallbladder cancer that was synchronous with pancreatic head cancer. In the pancreatobiliary maljunction with pancreatobiliary reflux condition, double primary cancer of the pancreatobiliary system should be awared.

  2. Analysis of blood and tissue in gallbladder cancer

    NASA Astrophysics Data System (ADS)

    Rautray, T. R.; Vijayan, V.; Sudarshan, M.; Panigrahi, S.

    2009-09-01

    Particle induced X-ray emission, particle induced γ-ray emission studies has been carried out to analyse normal and carcinoma tissues and blood samples of gallbladder of both sexes and seventeen trace elements namely Na, Mg, Al, K, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br and Pb were estimated in the tissue and blood samples. In the present study, concentration of Zn in the carcinoma gallbladder tissue is less than that of the normal gallbladder tissue. Tobacco habit could be one of the important factors to decrease the elemental concentrations in blood and tissue samples.

  3. Gallbladder Fossa Abscess Masquerading as Cholecystitis After Cholecystectomy.

    PubMed

    Rodrigue, Paul; Fakhri, Asif; Baumgartner, Andrew

    2015-12-01

    We present a case of a 59-y-old woman who had undergone cholecystectomy and was subsequently found to have an abscess within the gallbladder fossa. A hepatobiliary scan using (99m)Tc-diisopropyliminodiacetic acid demonstrated the characteristic rim sign, a photopenic defect surrounded by a rim of mildly increased activity immediately adjacent to the gallbladder fossa. The rim sign was thought to be the result of reactive inflammation in the hepatic tissue adjacent to a postoperative abscess within the gallbladder fossa.

  4. Mixed lymphoepithelioma-like carcinoma and adenocarcinoma of the gallbladder

    PubMed Central

    Choi, Nam Kyu

    2016-01-01

    Lymphoepithelioma-like carcinoma (LELC), an undifferentiated carcinoma with intense lymphoplasmacytic infiltrates, is commonly reported in the nasopharynx and occasionally in other organs. Pure type of LELC has previously been reported in the gallbladder. Mixed type could be reportable in comparison with other organs. Here we present a case of an 83-year-old man with mixed LELC and adenocarcinoma in the gallbladder. To the best of our knowledge, this is the first case of mixed LELC and adenocarcinoma in the gallbladder. PMID:27621754

  5. Functional analysis of the sensory motor pathway of resistance reflex in crayfish. II. Integration Of sensory inputs in motor neurons.

    PubMed

    Le Ray, D; Clarac, F; Cattaert, D

    1997-12-01

    The in vitro preparation of the fifth thoracic ganglion of the crayfish was used to analyze the connections supporting the monosynaptic reflex responses recorded from the depressor motor neurons (Dep MNs). Dep MNs are directly connected by the release-sensitive afferents from a proprioceptor, the coxo-basipodite chordotonal organ (CBCO), which is released by upward movements of the leg. Sine-wave movements, applied to the CBCO strand from the most released position, allowed us to stimulate the greatest part of release-sensitive CBCO fibers. Systematic intracellular recordings from all Dep MNs performed in high divalent cation saline allowed us to determine the connections between CBCO afferents and their postsynaptic Dep MNs: it highlighted the sequential activation of the different Dep MNs involved in the monosynaptic reflex. The convergence of different sensory afferents onto a given Dep MN, and the divergence of a given sensory afferent onto several Dep MNs illustrates the complexity of the sensory-motor reflex loops involved in the control of locomotion and posture. Electrophysiological experiments and simulations were performed to analyze the mechanisms by which Dep MNs integrate the large amount of sensory input that they receive. Paired intracellular recording experiments demonstrated that postsynaptic response shapes characteristic of both phasic and phaso-tonic afferents could be induced by varying the presynaptic firing frequency, whatever the postsynaptic Dep MN. Compartment model simulations were used to analyze the role of the sensory-motor synapse characteristics in the summation properties of postsynaptic MN. They demonstrated the importance of the postsynaptic compartment geometry, because large postsynaptic compartments allowed to generate greater excitatory postsynaptic potential (EPSP) summations than small ones. The results presented show that velocity information is the most effective to elicit large compound EPSPs in MNs. We therefore suggest

  6. Optically-Induced Neuronal Activity Is Sufficient to Promote Functional Motor Axon Regeneration In Vivo

    PubMed Central

    Ward, Patricia J.; Jones, Laura N.; Mulligan, Amanda; Goolsby, William; Wilhelm, Jennifer C.; English, Arthur W.

    2016-01-01

    Peripheral nerve injuries are common, and functional recovery is very poor. Beyond surgical repair of the nerve, there are currently no treatment options for these patients. In experimental models of nerve injury, interventions (such as exercise and electrical stimulation) that increase neuronal activity of the injured neurons effectively enhance axon regeneration. Here, we utilized optogenetics to determine whether increased activity alone is sufficient to promote motor axon regeneration. In thy-1-ChR2/YFP transgenic mice in which a subset of motoneurons express the light-sensitive cation channel, channelrhodopsin (ChR2), we activated axons in the sciatic nerve using blue light immediately prior to transection and surgical repair of the sciatic nerve. At four weeks post-injury, direct muscle EMG responses evoked with both optical and electrical stimuli as well as the ratio of these optical/electrical evoked EMG responses were significantly greater in mice that received optical treatment. Thus, significantly more ChR2+ axons successfully re-innervated the gastrocnemius muscle in mice that received optical treatment. Sections of the gastrocnemius muscles were reacted with antibodies to Synaptic Vesicle Protein 2 (SV2) to quantify the number of re-occupied motor endplates. The number of SV2+ endplates was greater in mice that received optical treatment. The number of retrogradely-labeled motoneurons following intramuscular injection of cholera toxin subunit B (conjugated to Alexa Fluor 555) was greater in mice that received optical treatment. Thus, the acute (1 hour), one-time optical treatment resulted in robust, long-lasting effects compared to untreated animals as well as untreated axons (ChR2-). We conclude that neuronal activation is sufficient to promote motor axon regeneration, and this regenerative effect is specific to the activated neurons. PMID:27152611

  7. Optically-Induced Neuronal Activity Is Sufficient to Promote Functional Motor Axon Regeneration In Vivo.

    PubMed

    Ward, Patricia J; Jones, Laura N; Mulligan, Amanda; Goolsby, William; Wilhelm, Jennifer C; English, Arthur W

    2016-01-01

    Peripheral nerve injuries are common, and functional recovery is very poor. Beyond surgical repair of the nerve, there are currently no treatment options for these patients. In experimental models of nerve injury, interventions (such as exercise and electrical stimulation) that increase neuronal activity of the injured neurons effectively enhance axon regeneration. Here, we utilized optogenetics to determine whether increased activity alone is sufficient to promote motor axon regeneration. In thy-1-ChR2/YFP transgenic mice in which a subset of motoneurons express the light-sensitive cation channel, channelrhodopsin (ChR2), we activated axons in the sciatic nerve using blue light immediately prior to transection and surgical repair of the sciatic nerve. At four weeks post-injury, direct muscle EMG responses evoked with both optical and electrical stimuli as well as the ratio of these optical/electrical evoked EMG responses were significantly greater in mice that received optical treatment. Thus, significantly more ChR2+ axons successfully re-innervated the gastrocnemius muscle in mice that received optical treatment. Sections of the gastrocnemius muscles were reacted with antibodies to Synaptic Vesicle Protein 2 (SV2) to quantify the number of re-occupied motor endplates. The number of SV2+ endplates was greater in mice that received optical treatment. The number of retrogradely-labeled motoneurons following intramuscular injection of cholera toxin subunit B (conjugated to Alexa Fluor 555) was greater in mice that received optical treatment. Thus, the acute (1 hour), one-time optical treatment resulted in robust, long-lasting effects compared to untreated animals as well as untreated axons (ChR2-). We conclude that neuronal activation is sufficient to promote motor axon regeneration, and this regenerative effect is specific to the activated neurons. PMID:27152611

  8. Functional networks of motor inhibition in conversion disorder patients and feigning subjects.

    PubMed

    Hassa, Thomas; de Jel, Esther; Tuescher, Oliver; Schmidt, Roger; Schoenfeld, Mircea Ariel

    2016-01-01

    The neural correlates of motor inhibition leading to paresis in conversion disorder are not well known. The key question is whether they are different of those of normal subjects feigning the symptoms. Thirteen conversion disorder patients with hemiparesis and twelve healthy controls were investigated using functional magnetic resonance tomography under conditions of passive motor stimulation of the paretic/feigned paretic and the non-paretic hand. Healthy controls were also investigated in a non-feigning condition. During passive movement of the affected right hand conversion disorder patients exhibited activations in the bilateral triangular part of the inferior frontal gyri (IFG), with a left side dominance compared to controls in non-feigning condition. Feigning controls revealed for the same condition a weak unilateral activation in the right triangular part of IFG and an activity decrease in frontal midline areas, which couldn't be observed in patients. The results suggest that motor inhibition in conversion disorder patients is mediated by the IFG that was also involved in inhibition processes in normal subjects. The activity pattern in feigning controls resembled that of conversion disorder patients but with a clear difference in the medial prefrontal cortex. Healthy controls showed decreased activity in this region during feigning compared to non-feigning conditions suggesting a reduced sense of self-agency during feigning. Remarkably, no activity differences could be observed in medial prefrontal cortex for patients vs healthy controls in feigning or non-feigning conditions suggesting self-agency related activity in patients to be in between those of non-feigning and feigning healthy subjects. PMID:27330971

  9. Functional networks of motor inhibition in conversion disorder patients and feigning subjects.

    PubMed

    Hassa, Thomas; de Jel, Esther; Tuescher, Oliver; Schmidt, Roger; Schoenfeld, Mircea Ariel

    2016-01-01

    The neural correlates of motor inhibition leading to paresis in conversion disorder are not well known. The key question is whether they are different of those of normal subjects feigning the symptoms. Thirteen conversion disorder patients with hemiparesis and twelve healthy controls were investigated using functional magnetic resonance tomography under conditions of passive motor stimulation of the paretic/feigned paretic and the non-paretic hand. Healthy controls were also investigated in a non-feigning condition. During passive movement of the affected right hand conversion disorder patients exhibited activations in the bilateral triangular part of the inferior frontal gyri (IFG), with a left side dominance compared to controls in non-feigning condition. Feigning controls revealed for the same condition a weak unilateral activation in the right triangular part of IFG and an activity decrease in frontal midline areas, which couldn't be observed in patients. The results suggest that motor inhibition in conversion disorder patients is mediated by the IFG that was also involved in inhibition processes in normal subjects. The activity pattern in feigning controls resembled that of conversion disorder patients but with a clear difference in the medial prefrontal cortex. Healthy controls showed decreased activity in this region during feigning compared to non-feigning conditions suggesting a reduced sense of self-agency during feigning. Remarkably, no activity differences could be observed in medial prefrontal cortex for patients vs healthy controls in feigning or non-feigning conditions suggesting self-agency related activity in patients to be in between those of non-feigning and feigning healthy subjects.

  10. The centre of the brain: topographical model of motor, cognitive, affective, and somatosensory functions of the basal ganglia.

    PubMed

    Arsalidou, Marie; Duerden, Emma G; Taylor, Margot J

    2013-11-01

    The basal ganglia have traditionally been viewed as motor processing nuclei; however, functional neuroimaging evidence has implicated these structures in more complex cognitive and affective processes that are fundamental for a range of human activities. Using quantitative meta-analysis methods we assessed the functional subdivisions of basal ganglia nuclei in relation to motor (body and eye movements), cognitive (working-memory and executive), affective (emotion and reward) and somatosensory functions in healthy participants. We document affective processes in the anterior parts of the caudate head with the most overlap within the left hemisphere. Cognitive processes showed the most widespread response, whereas motor processes occupied more central structures. On the basis of these demonstrated functional roles of the basal ganglia, we provide a new comprehensive topographical model of these nuclei and insight into how they are linked to a wide range of behaviors. PMID:22711692

  11. Enhancing motor performance improvement by personalizing non-invasive cortical stimulation with concurrent functional near-infrared spectroscopy and multi-modal motor measurements

    NASA Astrophysics Data System (ADS)

    Khan, Bilal; Hodics, Timea; Hervey, Nathan; Kondraske, George; Stowe, Ann; Alexandrakis, George

    2015-03-01

    Transcranial direct current stimulation (tDCS) is a non-invasive cortical stimulation technique that can facilitate task specific plasticity that can improve motor performance. Current tDCS interventions uniformly apply a chosen electrode montage to a subject population without personalizing electrode placement for optimal motor gains. We propose a novel perturbation tDCS (ptDCS) paradigm for determining a personalized electrode montage in which tDCS intervention yields maximal motor performance improvements during stimulation. PtDCS was applied to ten healthy adults and five stroke patients with upper hemiparesis as they performed an isometric wrist flexion task with their non-dominant arm. Simultaneous recordings of torque applied to a stationary handle, muscle activity by electromyography (EMG), and cortical activity by functional near-infrared spectroscopy (fNIRS) during ptDCS helped interpret how cortical activity perturbations by any given electrode montage related to changes in muscle activity and task performance quantified by a Reaction Time (RT) X Error product. PtDCS enabled quantifying the effect on task performance of 20 different electrode pair montages placed over the sensorimotor cortex. Interestingly, the electrode montage maximizing performance in all healthy adults did not match any of the ones being explored in current literature as a means of improving the motor performance of stroke patients. Furthermore, the optimal montage was found to be different in each stroke patient and the resulting motor gains were very significant during stimulation. This study supports the notion that task-specific ptDCS optimization can lend itself to personalizing the rehabilitation of patients with brain injury.

  12. How are the motor system activity and functional connectivity between the cognitive and sensorimotor systems modulated by athletic expertise?

    PubMed

    Tomasino, Barbara; Maieron, Marta; Guatto, Elisa; Fabbro, Franco; Rumiati, Raffaella Ida

    2013-12-01

    Expertise offers a unique insight into how our brain functions. The purpose of this experiment was to determine if motor system activity and functional connectivity between the cognitive system and sensorimotor system is differentially modulated by an individual's level of expertise. This goal was achieved through the acquisition of functional neuroimaging data in 10 expert volleyball players and 10 novice individuals who were presented with a series of sentences describing possible technical volleyball-specific motor acts and acts that cannot be performed as positive ("Do …!") or negative ("Don't …") commands, while they were silently reading them and deciding whether the actions were technically feasible or not. Compared with novices, experts' activity in the left primary motor cortex hand area (M1) and in the left premotor cortex (Pm) was decreased by impossible actions presented as positive commands. Sensorimotor activation in response to action-related stimuli is not that automatic as held since we found that these areas were deactivated during the task, and their functional connectivity to the primary visual cortex was strengthened for possible actions presented as positive commands, reflecting the neural processes underlying the interaction between motor and visual imagery. These results suggest that the neural activity within the key areas implicitly triggered by motor simulation is a function of the expertise, action feasibility, and context.

  13. Motor cortex maturation is associated with reductions in recurrent connectivity among functional subpopulations and increases in intrinsic excitability.

    PubMed

    Biane, Jeremy S; Scanziani, Massimo; Tuszynski, Mark H; Conner, James M

    2015-03-18

    Behavior is derived from the configuration of synaptic connectivity among functionally diverse neurons. Fine motor behavior is absent at birth in most mammals but gradually emerges during subsequent postnatal corticospinal system maturation; the nature of circuit development and reorganization during this period has been largely unexplored. We investigated connectivity and synaptic signaling among functionally distinct corticospinal populations in Fischer 344 rats from postnatal day 18 through 75 using retrograde tracer injections into specific spinal cord segments associated with distinct aspects of forelimb function. Primary motor cortex slices were prepared enabling simultaneous patch-clamp recordings of up to four labeled corticospinal neurons and testing of 3489 potential synaptic connections. We find that, in immature animals, local connectivity is biased toward corticospinal neurons projecting to the same spinal cord segment; this within-population connectivity significantly decreases through maturation until connection frequency is similar between neurons projecting to the same (within-population) or different (across-population) spinal segments. Concomitantly, postnatal maturation is associated with a significant reduction in synaptic efficacy over time and an increase in intrinsic neuronal excitability, altering how excitation is effectively transmitted across recurrent corticospinal networks. Collectively, the postnatal emergence of fine motor control is associated with a relative broadening of connectivity between functionally diverse cortical motor neurons and changes in synaptic properties that could enable the emergence of smaller independent networks, enabling fine motor movement. These changes in synaptic patterning and physiological function provide a basis for the increased capabilities of the mature versus developing brain.

  14. Cerebral activation is correlated to regional atrophy of the spinal cord and functional motor disability in spinal cord injured individuals.

    PubMed

    Lundell, H; Christensen, M S; Barthélemy, D; Willerslev-Olsen, M; Biering-Sørensen, F; Nielsen, J B

    2011-01-15

    Recovery of function following lesions in the nervous system requires adaptive changes in surviving circuitries. Here we investigate whether changes in cerebral activation are correlated to spinal cord atrophy and recovery of functionality in individuals with incomplete spinal cord injury (SCI). 19 chronic SCI individuals and 7 age-comparable controls underwent functional magnetic resonance imaging (fMRI) while performing rhythmic dorsiflexion of the ankle. A significant negative correlation was found between the activation in the ipsilateral motor (M1) and bilateral premotor cortex (PMC) on one hand and the functional ability of the SCI participants measured by the clinical motor score on the other. There was no significant correlation between activation in any other cerebral area and the motor score. Activation in ipsilateral somatosensory cortex (S1), M1 and PMC was negatively correlated to the width of the spinal cord in the left-right direction, where the corticospinal tract is located, but not in the antero-posterior direction. There was a tendency for a negative correlation between cerebral activation in ipsilateral S1, M1 and PMC and the amplitude of motor evoked potentials in the tibialis anterior muscle elicited by transcranial magnetic stimulation, but this did not reach statistical significance. There was no correlation between motor score or spinal cord dimensions and the volume of the cortical motor areas. The observations show that lesion of descending tracts in the lateral part of the spinal cord results in increased activation in ipsilateral motor and sensory areas, which may help to compensate for the functional deficit following SCI. PMID:20851198

  15. Functional resting-state connectivity of the human motor network: Differences between right- and left-handers

    PubMed Central

    Pool, Eva-Maria; Rehme, Anne K.; Eickhoff, Simon B.; Fink, Gereon R.; Grefkes, Christian

    2016-01-01

    Handedness is associated with differences in activation levels in various motor tasks performed with the dominant or non-dominant hand. Here we tested whether handedness is reflected in the functional architecture of the motor system even in the absence of an overt motor task. Using resting-state functional magnetic resonance imaging we investigated 18 right- and 18 left-handers. Whole-brain functional connectivity maps of the primary motor cortex (M1), supplementary motor area (SMA), dorsolateral premotor cortex (PMd), pre-SMA, inferior frontal junction and motor putamen were compared between right- and left-handers. We further used a multivariate linear support vector machine (SVM) classifier to reveal the specificity of brain regions for classifying handedness based on individual resting-state maps. Using left M1 as seed region, functional connectivity analysis revealed stronger interhemispheric functional connectivity between left M1 and right PMd in right-handers as compared to left-handers. This connectivity cluster contributed to the individual classification of right- and left-handers with 86.2% accuracy. Consistently, also seeding from right PMd yielded a similar handedness-dependent effect in left M1, albeit with lower classification accuracy (78.1%). Control analyses of the other resting-state networks including the speech and the visual network revealed no significant differences in functional connectivity related to handedness. In conclusion, our data revealed an intrinsically higher functional connectivity in right-handers. These results may help to explain that hand preference is more lateralized in right-handers than in left-handers. Furthermore, enhanced functional connectivity between left M1 and right PMd may serve as an individual marker of handedness. PMID:25613438

  16. Functional resting-state connectivity of the human motor network: differences between right- and left-handers.

    PubMed

    Pool, Eva-Maria; Rehme, Anne K; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2015-04-01

    Handedness is associated with differences in activation levels in various motor tasks performed with the dominant or non-dominant hand. Here we tested whether handedness is reflected in the functional architecture of the motor system even in the absence of an overt motor task. Using resting-state functional magnetic resonance imaging we investigated 18 right- and 18 left-handers. Whole-brain functional connectivity maps of the primary motor cortex (M1), supplementary motor area (SMA), dorsolateral premotor cortex (PMd), pre-SMA, inferior frontal junction and motor putamen were compared between right- and left-handers. We further used a multivariate linear support vector machine (SVM) classifier to reveal the specificity of brain regions for classifying handedness based on individual resting-state maps. Using left M1 as seed region, functional connectivity analysis revealed stronger interhemispheric functional connectivity between left M1 and right PMd in right-handers as compared to left-handers. This connectivity cluster contributed to the individual classification of right- and left-handers with 86.2% accuracy. Consistently, also seeding from right PMd yielded a similar handedness-dependent effect in left M1, albeit with lower classification accuracy (78.1%). Control analyses of the other resting-state networks including the speech and the visual network revealed no significant differences in functional connectivity related to handedness. In conclusion, our data revealed an intrinsically higher functional connectivity in right-handers. These results may help to explain that hand preference is more lateralized in right-handers than in left-handers. Furthermore, enhanced functional connectivity between left M1 and right PMd may serve as an individual marker of handedness.

  17. Current perspectives on motor functioning in infants, children, and adults with autism spectrum disorders.

    PubMed

    Bhat, Anjana N; Landa, Rebecca J; Galloway, James Cole

    2011-07-01

    Autism spectrum disorders (ASDs) are the most common pediatric diagnoses in the United States. In this perspective article, we propose that a diverse set of motor impairments are present in children and adults with ASDs. Specifically, we will discuss evidence related to gross motor, fine motor, postural control, and imitation/praxis impairments. Moreover, we propose that early motor delays within the first 2 years of life may contribute to the social impairments of children with ASDs; therefore, it is important to address motor impairments through timely assessments and effective interventions. Lastly, we acknowledge the limitations of the evidence currently available and suggest clinical implications for motor assessment and interventions in children with ASDs. In terms of assessment, we believe that comprehensive motor evaluations are warranted for children with ASDs and infants at risk for ASDs. In terms of interventions, there is an urgent need to develop novel embodied interventions grounded in movement and motor learning principles for children with autism.

  18. Reduced functional recovery by delaying motor training after spinal cord injury.

    PubMed

    Norrie, B A; Nevett-Duchcherer, J M; Gorassini, M A

    2005-07-01

    The purpose of this study was to examine if a delay in rehabilitative motor training after spinal cord injury affects functional motor recovery. We studied a skilled motor task in which rats traversed a raised horizontal ladder and we quantified errors in accurate stepping, i.e., foot slips between rungs. After lesions to the dorsal quadrant of the thoracic (T8) spinal cord that aimed to unilaterally sever the corticospinal and rubrospinal tracts, rats were re-trained to walk across the ladder, either immediately after injury or after a 3-mo delay. Before training, the error rate in accurate stepping of the affected hindlimb was similar in the immediately (69.4 +/- 5.3%) and delay (62.7 +/- 4.1%; means +/- SE)-trained animals (not significantly different), suggesting that accurate stepping did not improve spontaneously if rats were not exposed to the ladder. After a 3-wk course of training (30 runs across the ladder per day, 5 day/wk), improvements in accurate stepping performance were greater if training was implemented immediately after injury. On average, immediately trained animals improved stepping performance by 61.5 +/- 28.2%, whereas the delay trained group improved by only 34.9 +/- 28.8% (significantly different). The degree of damage to the corticospinal and rubrospinal tracts was very similar in the two groups of animals, indicating that differences in lesion size did not contribute to the differences in performance improvement. Animals with large lesions to the corticospinal and rubrospinal tracts (>70%) displayed poor recovery from training (especially for delay-trained animals), suggesting that these two pathways were important in mediating improvements in accurate stepping. In addition, recovery of stepping-like reflexes appeared not to contribute to the recovery of accurate stepping given that the time course of reflex recovery was not related to the time course of recovery of accurate stepping. We conclude that training of a skilled motor task that

  19. Fronto-cerebellar systems are associated with infant motor and adult executive functions in healthy adults but not in schizophrenia.

    PubMed

    Ridler, Khanum; Veijola, Juha M; Tanskanen, Päivikki; Miettunen, Jouko; Chitnis, Xavier; Suckling, John; Murray, Graham K; Haapea, Marianne; Jones, Peter B; Isohanni, Matti K; Bullmore, Edward T

    2006-10-17

    Delineating longitudinal relationships between early developmental markers, adult cognitive function, and adult brain structure could clarify the pathogenesis of neurodevelopmental disorders such as schizophrenia. We aimed to identify brain structural correlates of infant motor development (IMD) and adult executive function in nonpsychotic adults and to test for abnormal associations between these measures in people with schizophrenia. Representative samples of nonpsychotic adults (n = 93) and people with schizophrenia (n = 49) were drawn from the Northern Finland 1966 general population birth cohort. IMD was prospectively assessed at age 1 year; executive function testing and MRI were completed at age 33-35 years. We found that earlier motor development in infancy was correlated with superior executive function in nonpsychotic subjects. Earlier motor development was also normally associated with increased gray matter density in adult premotor cortex, striatum, and cerebellum and increased white matter density in frontal and parietal lobes. Adult executive function was normally associated with increased gray matter density in a fronto-cerebellar system that partially overlapped, but was not identical to, the gray matter regions normally associated with IMD. People with schizophrenia had relatively delayed IMD and impaired adult executive function in adulthood. Furthermore, they demonstrated no normative associations between fronto-cerebellar structure, IMD, or executive function. We conclude that frontal cortico-cerebellar systems correlated with adult executive function are anatomically related to systems associated with normal infant motor development. Disruption of this anatomical system may underlie both the early developmental and adult cognitive abnormalities in schizophrenia.

  20. The Importance of Motor Functional Levels from the Activity Limitation Perspective of ICF in Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Mutlu, Akmer

    2010-01-01

    Our purpose in this study was to evaluate performance and capacity as defined by Gross Motor Function Classification System (GMFCS) and Manual Ability Classification System (MACS) from the "activity limitation" perspective of International Classification of Functioning, Disability, and Health (ICF) and to investigate the relationship between the…

  1. Similar Effects of Two Modified Constraint-Induced Therapy Protocols on Motor Impairment, Motor Function and Quality of Life in Patients with Chronic Stroke

    PubMed Central

    Souza, Wilma Costa; Conforto, Adriana B.; Orsini, Marco; Stern, Annette; André, Charles

    2015-01-01

    Modified constraint-induced movement therapy (CIMT) protocols show motor function and real-world arm use improvement. Meanwhile it usually requires constant supervision by physiotherapists and is therefore more expensive than customary care. This study compared the preliminary efficacy of two modified CIMT protocols. A two-group randomized controlled trial with pre and post treatment measures and six months follow-up was conducted. Nineteen patients with chronic stroke received 10 treatment sessions distributed three to four times a week over 22 days. CIMT3h_direct group received 3 hours of CIMT supervised by a therapist (n=10) while CIMT1.5h_direct group had 1.5 hours of supervised CIMT+1.5 hours home exercises supervised by a caregiver (n=9). Outcome measures were the Fugl-Meyer Assessment, the Motor Activity Log, and the Stroke Specific Quality of Life Scale. The modified CIMT protocols were feasible and well tolerated. Improvements in motor function, real-world arm use and quality of life did not differ significantly between treated groups receiving either 3 or 1.5 hours mCIMT supervised by a therapist. PMID:26294941

  2. Similar Effects of Two Modified Constraint-Induced Therapy Protocols on Motor Impairment, Motor Function and Quality of Life in Patients with Chronic Stroke.

    PubMed

    Souza, Wilma Costa; Conforto, Adriana B; Orsini, Marco; Stern, Annette; André, Charles

    2015-03-23

    Modified constraint-induced movement therapy (CIMT) protocols show motor function and real-world arm use improvement. Meanwhile it usually requires constant supervision by physiotherapists and is therefore more expensive than customary care. This study compared the preliminary efficacy of two modified CIMT protocols. A two-group randomized controlled trial with pre and post treatment measures and six months follow-up was conducted. Nineteen patients with chronic stroke received 10 treatment sessions distributed three to four times a week over 22 days. CIMT3h_direct group received 3 hours of CIMT supervised by a therapist (n=10) while CIMT1.5h_direct group had 1.5 hours of supervised CIMT+1.5 hours home exercises supervised by a caregiver (n=9). Outcome measures were the Fugl-Meyer Assessment, the Motor Activity Log, and the Stroke Specific Quality of Life Scale. The modified CIMT protocols were feasible and well tolerated. Improvements in motor function, real-world arm use and quality of life did not differ significantly between treated groups receiving either 3 or 1.5 hours mCIMT supervised by a therapist.

  3. Therapeutic effects of functional electrical stimulation on motor cortex in children with spastic Cerebral Palsy.

    PubMed

    Mukhopadhyay, R; Mahadevappa, M; Lenka, P K; Biswas, A

    2015-01-01

    In the present study we have evaluated the electroencephalogram (EEG) signal recorded during ankle dorsal and plantar flexion in children with spastic Cerebral Palsy (CP) after Functional Electrical Stimulation (FES) of the Tibialis Anterior (TA) muscles. The intervention group had 10 children with spastic diaplegic/hemiplegic CP within the age group of 5 to 14 years of age who received both FES for 30 minutes and the conventional physiotherapy for 30 minutes a day, while the control group had 5 children who received only conventional physiotherapy for 60(30 + 30) minutes a day only. Both group were treated for 5 days a week, up to 12 weeks. The EEG data were analyzed for Peak Alpha Frequency (PAF), sensorimotor rhythm (SMR), mu wave suppression and power spectral density (PSD) of all the bands. The results showed a decrease in SMR and mu wave suppression in the intervention group as compared to the control group, indicating a positive/greater improvement in performance of motor activities. Therefore, from this study we could conclude that FES combined with conventional physiotherapy improves the motor activity in children with spastic CP.

  4. The beneficial effects of berries on cognition, motor behaviour and neuronal function in ageing.

    PubMed

    Shukitt-Hale, Barbara; Bielinski, Donna F; Lau, Francis C; Willis, Lauren M; Carey, Amanda N; Joseph, James A

    2015-11-28

    Previously, it has been shown that strawberry (SB) or blueberry (BB) supplementations, when fed to rats from 19 to 21 months of age, reverse age-related decrements in motor and cognitive performance. We have postulated that these effects may be the result of a number of positive benefits of the berry polyphenols, including decreased stress signalling, increased neurogenesis, and increased signals involved in learning and memory. Thus, the present study was carried out to examine these mechanisms in aged animals by administering a control, 2 % SB- or 2 % BB-supplemented diet to aged Fischer 344 rats for 8 weeks to ascertain their effectiveness in reversing age-related deficits in behavioural and neuronal function. The results showed that rats consuming the berry diets exhibited enhanced motor performance and improved cognition, specifically working memory. In addition, the rats supplemented with BB and SB diets showed increased hippocampal neurogenesis and expression of insulin-like growth factor 1, although the improvements in working memory performance could not solely be explained by these increases. The diverse polyphenolics in these berry fruits may have additional mechanisms of action that could account for their relative differences in efficacy. PMID:26392037

  5. Therapeutic effects of functional electrical stimulation on motor cortex in children with spastic Cerebral Palsy.

    PubMed

    Mukhopadhyay, R; Mahadevappa, M; Lenka, P K; Biswas, A

    2015-01-01

    In the present study we have evaluated the electroencephalogram (EEG) signal recorded during ankle dorsal and plantar flexion in children with spastic Cerebral Palsy (CP) after Functional Electrical Stimulation (FES) of the Tibialis Anterior (TA) muscles. The intervention group had 10 children with spastic diaplegic/hemiplegic CP within the age group of 5 to 14 years of age who received both FES for 30 minutes and the conventional physiotherapy for 30 minutes a day, while the control group had 5 children who received only conventional physiotherapy for 60(30 + 30) minutes a day only. Both group were treated for 5 days a week, up to 12 weeks. The EEG data were analyzed for Peak Alpha Frequency (PAF), sensorimotor rhythm (SMR), mu wave suppression and power spectral density (PSD) of all the bands. The results showed a decrease in SMR and mu wave suppression in the intervention group as compared to the control group, indicating a positive/greater improvement in performance of motor activities. Therefore, from this study we could conclude that FES combined with conventional physiotherapy improves the motor activity in children with spastic CP. PMID:26737030

  6. Iron-Responsive Olfactory Uptake of Manganese Improves Motor Function Deficits Associated with Iron Deficiency

    PubMed Central

    Kim, Jonghan; Li, Yuan; Buckett, Peter D.; Böhlke, Mark; Thompson, Khristy J.; Takahashi, Masaya; Maher, Timothy J.; Wessling-Resnick, Marianne

    2012-01-01

    Iron-responsive manganese uptake is increased in iron-deficient rats, suggesting that toxicity related to manganese exposure could be modified by iron status. To explore possible interactions, the distribution of intranasally-instilled manganese in control and iron-deficient rat brain was characterized by quantitative image analysis using T1-weighted magnetic resonance imaging (MRI). Manganese accumulation in the brain of iron-deficient rats was doubled after intranasal administration of MnCl2 for 1- or 3-week. Enhanced manganese level was observed in specific brain regions of iron-deficient rats, including the striatum, hippocampus, and prefrontal cortex. Iron-deficient rats spent reduced time on a standard accelerating rotarod bar before falling and with lower peak speed compared to controls; unexpectedly, these measures of motor function significantly improved in iron-deficient rats intranasally-instilled with MnCl2. Although tissue dopamine concentrations were similar in the striatum, dopamine transporter (DAT) and dopamine receptor D1 (D1R) levels were reduced and dopamine receptor D2 (D2R) levels were increased in manganese-instilled rats, suggesting that manganese-induced changes in post-synaptic dopaminergic signaling contribute to the compensatory effect. Enhanced olfactory manganese uptake during iron deficiency appears to be a programmed “rescue response” with beneficial influence on motor impairment due to low iron status. PMID:22479410

  7. Functional network reorganization in motor cortex can be explained by reward-modulated Hebbian learning

    PubMed Central

    Legenstein, Robert; Chase, Steven M.; Schwartz, Andrew B.; Maass, Wolfgang

    2011-01-01

    The control of neuroprosthetic devices from the activity of motor cortex neurons benefits from learning effects where the function of these neurons is adapted to the control task. It was recently shown that tuning properties of neurons in monkey motor cortex are adapted selectively in order to compensate for an erroneous interpretation of their activity. In particular, it was shown that the tuning curves of those neurons whose preferred directions had been misinterpreted changed more than those of other neurons. In this article, we show that the experimentally observed self-tuning properties of the system can be explained on the basis of a simple learning rule. This learning rule utilizes neuronal noise for exploration and performs Hebbian weight updates that are modulated by a global reward signal. In contrast to most previously proposed reward-modulated Hebbian learning rules, this rule does not require extraneous knowledge about what is noise and what is signal. The learning rule is able to optimize the performance of the model system within biologically realistic periods of time and under high noise levels. When the neuronal noise is fitted to experimental data, the model produces learning effects similar to those found in monkey experiments. PMID:25284966

  8. A prototype symbolic model of canonical functional neuroanatomy of the motor system.

    PubMed

    Talos, Ion-Florin; Rubin, Daniel L; Halle, Michael; Musen, Mark; Kikinis, Ron

    2008-04-01

    Recent advances in bioinformatics have opened entire new avenues for organizing, integrating and retrieving neuroscientific data, in a digital, machine-processable format, which can be at the same time understood by humans, using ontological, symbolic data representations. Declarative information stored in ontological format can be perused and maintained by domain experts, interpreted by machines, and serve as basis for a multitude of decision support, computerized simulation, data mining, and teaching applications. We have developed a prototype symbolic model of canonical neuroanatomy of the motor system. Our symbolic model is intended to support symbolic look up, logical inference and mathematical modeling by integrating descriptive, qualitative and quantitative functional neuroanatomical knowledge. Furthermore, we show how our approach can be extended to modeling impaired brain connectivity in disease states, such as common movement disorders. In developing our ontology, we adopted a disciplined modeling approach, relying on a set of declared principles, a high-level schema, Aristotelian definitions, and a frame-based authoring system. These features, along with the use of the Unified Medical Language System (UMLS) vocabulary, enable the alignment of our functional ontology with an existing comprehensive ontology of human anatomy, and thus allow for combining the structural and functional views of neuroanatomy for clinical decision support and neuroanatomy teaching applications. Although the scope of our current prototype ontology is limited to a particular functional system in the brain, it may be possible to adapt this approach for modeling other brain functional systems as well.

  9. Aging, motor function, and sensitivity to calcium channel blockers: An investigation using chronic methylmercury exposure.

    PubMed

    Shen, Andrew Nathanael; Cummings, Craig; Hoffman, Daniel; Pope, Derek; Arnold, Megan; Newland, M Christopher

    2016-12-15

    Methylmercury (MeHg) neurotoxicity is thought to be mediated, in part, by dysregulation of calcium (Ca(2+)) homeostasis, a mechanism that may also slowly and progressively degrade neuronal function during normal aging. Longitudinal studies of MeHg exposure provide a powerful approach to studying neural and behavioral mechanisms by which both MeHg toxicity and aging affect motor function. Wheel-running and rotarod performance were assessed in two age groups of BALB/c mice chronically exposed to 0 or 1.2mg/kg/day MeHg and 0 or 20mg/kg/day nimodipine, a 1,4-dihyrdopyridine L-type calcium channel blocker (CCB), for approximately 8.5 months. Adults began exposure on postnatal day (PND) 72 and retired breeders on PND 296. A log-survivor bout analysis partitioned wheel-running into bouts that identified motor (within-bout rates) and motivational (bout-initiation rates) influences. Retired breeders ran farther, because of a higher bout-initiation rates, but performed more poorly on the rotarod than younger adults, a difference unaffected by nimodipine. MeHg produced relatively age-independent deficits in wheel-running and rotarod performance, whereas nimodipine afforded greater protection to adult mice than to retired breeders. Rotarod performance and within-bout response rate were more sensitive to and more reliable predictors of MeHg toxicity than bout-initiation rate, which was least affected by MeHg exposure. Thus the motivation to run was unimpaired as the ability to do so declined. While chronic MeHg exposure produced functionally similar behavior deficits between age groups, the age-dependent neuroprotection by nimodipine supports the notion that underlying neurobiological systems mediated by Ca(2+) signaling, are differentially affected in older adults. PMID:27481695

  10. Motor Resonance as a Function of Narrative Time: Further Tests of the Linguistic Focus Hypothesis

    ERIC Educational Resources Information Center

    Zwaan, Rolf A.; Taylor, Lawrence J.; de Boer, Mirte

    2010-01-01

    Neuroimaging and behavioral studies have revealed involvement of the brain's motor system in language comprehension. The Linguistic-Focus Hypothesis [Taylor, L. J., & Zwaan, R. A. (2008). Motor resonance and linguistic focus. "Quarterly Journal of Experimental Psychology,61", 869-904.] postulates that engagement of the motor system during language…

  11. Non-catalytic motor domains enable processive movement and functional diversification of the kinesin-14 Kar3

    PubMed Central

    Mieck, Christine; Molodtsov, Maxim I; Drzewicka, Katarzyna; van der Vaart, Babet; Litos, Gabriele; Schmauss, Gerald; Vaziri, Alipasha; Westermann, Stefan

    2015-01-01

    Motor proteins of the conserved kinesin-14 family have important roles in mitotic spindle organization and chromosome segregation. Previous studies have indicated that kinesin-14 motors are non-processive enzymes, working in the context of multi-motor ensembles that collectively organize microtubule networks. In this study, we show that the yeast kinesin-14 Kar3 generates processive movement as a heterodimer with the non-motor proteins Cik1 or Vik1. By analyzing the single-molecule properties of engineered motors, we demonstrate that the non-catalytic domain has a key role in the motility mechanism by acting as a ‘foothold’ that allows Kar3 to bias translocation towards the minus end. This mechanism rivals the speed and run length of conventional motors, can support transport of the Ndc80 complex in vitro and is critical for Kar3 function in vivo. Our findings provide an example for a non-conventional translocation mechanism and can explain how Kar3 substitutes for key functions of Dynein in the yeast nucleus. DOI: http://dx.doi.org/10.7554/eLife.04489.001 PMID:25626168

  12. Motor function and perception in children with neuropsychiatric and conduct problems: results from a population based twin study

    PubMed Central

    2014-01-01

    Background Children with early symptomatic psychiatric disorders such as Attention-Deficit/Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) have been found to have high rates of motor and/or perception difficulties. However, there have been few large-scale studies reporting on the association between Conduct Disorder (CD) and motor/perception functions. The aim of the present study was to investigate how motor function and perception relate to measures of ADHD, ASD, and CD. Methods Parents of 16,994 Swedish twins (ages nine and twelve years) were interviewed using the Autism-Tics, ADHD and other Comorbidities inventory (A-TAC), which has been validated as a screening instrument for early onset child psychiatric disorders and symptoms. Associations between categorical variables of scoring above previously validated cut-off values for diagnosing ADHD, ASD, and CD on the one hand and motor and/or perception problems on the other hand were analysed using cross-tabulations, and the Fisher exact test. Associations between the continuous scores for ADHD, ASD, CD, and the subdomains Concentration/Attention, Impulsiveness/Activity, Flexibility, Social Interaction and Language, and the categorical factors age and gender, on the one hand, and the dependent dichotomic variables Motor control and Perception problems, on the other hand, were analysed using binary logistic regression in general estimated equation models. Results Male gender was associated with increased risk of Motor control and/or Perception problems. Children scoring above the cut-off for ADHD, ASD, and/or CD, but not those who were ‘CD positive’ but ‘ADHD/ASD negative’, had more Motor control and/or Perception problems, compared with children who were screen-negative for all three diagnoses. In the multivariable model, CD and Impulsiveness/Activity had no positive associations with Motor control and/or Perception problems. Conclusions CD symptoms or problems with Impulsiveness

  13. Motor and cognitive function in Lewy body dementia: comparison with Alzheimer's and Parkinson's diseases.

    PubMed Central

    Gnanalingham, K K; Byrne, E J; Thornton, A; Sambrook, M A; Bannister, P

    1997-01-01

    OBJECTIVE: Motor and cognitive function were compared in patients with Lewy body dementia, Parkinson's disease, or Alzheimer's disease, to identify features that may be clinically useful in differentiating Lewy body dementia from Alzheimer's disease and Parkinson's disease. METHODS: A range of neuropsychological function and extrapyrimidal signs (EPS) was assessed in 16 patients with Lewy body dementia, 15 with Parkinson's disease, 25 with Alzheimer's disease, and 22 control subjects. RESULTS: The severity of total motor disability scores increased in the following order: controls approximately = Alzheimer's disease << Parkinson's disease < Lewy body dementia. Compared with patients with Parkinson's disease, patients with Lewy body dementia had greater scores for rigidity and deficits in the finger tapping test, but rest tremor and left/right asymmetry in EPS were more evident in Parkinson's disease. Patients with Lewy body dementia were also less likely to present with left/right asymmetry in EPS at the onset of their parkinsonism. "Sensitivity" to neuroleptic drugs was noted in 33% of patients with Lewy body dementia. Alzheimer's disease and Lewy body dementia groups had greater severity of dementia compared with the Parkinson's disease group and controls. Neuropsychological evaluation disclosed severe but similar degrees of impaired performances in tests of attention (digit span), frontal lobe function (verbal fluency, category, and Nelson card sort test) and motor sequencing in both Lewy body dementia and Alzheimer's disease groups, than Parkinson's disease and controls. In the clock face test, improved performance was noted in the "copy" compared to "draw" part of the test in controls, patients with Alzheimer's disease, and those with Parkinson's disease, but not in the patients with Lewy body dementia, who achieved equally poor scores in both parts of the test. CONCLUSIONS: EPS in Lewy body dementia resemble those seen in idiopathic Parkinson's disease

  14. Transfer function-based modelling for voltage oscillation phenomena in PWM motor drives with long feeding cables

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Choel; Park, Ju H.

    2010-04-01

    In this article, a transfer function-based modelling is proposed to investigate voltage oscillation phenomena, i.e. over-voltage at the motor terminal, associated with pulse-width modulation (PWM) inverter-fed motor drives with long feeding cables. As such, the long feeding cable is assumed to be a distortionless transmission line; then, a bounce diagram and time-harmonic method are utilised to derive a simple model with a minimum computational burden that is easy to realise using the Matlab/Simulink software package. Furthermore, the model takes account of the inverter output and the motor terminal filters, which are commonly used to suppress the motor terminal over-voltage. The model accuracy is verified by a comparison with the circuit-oriented software, OrCAD/PSpice, simulation results.

  15. Noninvasive and painless magnetic stimulation of nerves improved brain motor function and mobility in a cerebral palsy case.

    PubMed

    Flamand, Véronique H; Schneider, Cyril

    2014-10-01

    Motor deficits in cerebral palsy disturb functional independence. This study tested whether noninvasive and painless repetitive peripheral magnetic stimulation could improve motor function in a 7-year-old boy with spastic hemiparetic cerebral palsy. Stimulation was applied over different nerves of the lower limbs for 5 sessions. We measured the concurrent aftereffects of this intervention on ankle motor control, gait (walking velocity, stride length, cadence, cycle duration), and function of brain motor pathways. We observed a decrease of ankle plantar flexors resistance to stretch, an increase of active dorsiflexion range of movement, and improvements of corticospinal control of ankle dorsiflexors. Joint mobility changes were still present 15 days after the end of stimulation, when all gait parameters were also improved. Resistance to stretch was still lower than prestimulation values 45 days after the end of stimulation. This case illustrates the sustained effects of repetitive peripheral magnetic stimulation on brain plasticity, motor function, and gait. It suggests a potential impact for physical rehabilitation in cerebral palsy.

  16. The Effect of Aquatic Intervention on the Gross Motor Function and Aquatic Skills in Children with Cerebral Palsy

    PubMed Central

    Dimitrijević, Lidija; Aleksandrović, Marko; Madić, Dejan; Okičić, Tomislav; Radovanović, Dragan; Daly, Daniel

    2012-01-01

    The objective of this study was to investigate the effect of an aquatic intervention on the gross motor function and aquatic skills of children with cerebral palsy (CP). Twenty-nine children with CP, aged 5 to 14, were recruited. Fourteen children completed an aquatic intervention (EG), and 13 children served as controls (CG). Two participants dropped out due to events (illness) unrelated to the intervention. The aquatic intervention lasted 6 weeks (2 sessions per week at 55 minutes per session) with a follow-up period of 3 weeks. The outcome measures were the Gross Motor Function Measure (GMFM) for motor function and the Water Orientation Test Alyn 2 (WOTA 2) for aquatic skills assessment. A significant improvement was observed in the secondary assessment of GMFM and WOTA 2. In contrast to the aquatic skills improvement, the GMFM change was not maintained at follow-up. Our results indicate that children with CP can improve gross motor function on dry land and aquatic skills with a 6-week water intervention. The intervention period was too short for sustainable improvement in dry-land motor skills after intervention (follow-up), but time was sufficient to achieve sustainable improvements in aquatic skills. PMID:23487257

  17. Brain motor system function in a patient with complete spinal cord injury following extensive brain-computer interface training.

    PubMed

    Enzinger, Christian; Ropele, Stefan; Fazekas, Franz; Loitfelder, Marisa; Gorani, Faton; Seifert, Thomas; Reiter, Gudrun; Neuper, Christa; Pfurtscheller, Gert; Müller-Putz, Gernot

    2008-09-01

    Although several features of brain motor function appear to be preserved even in chronic complete SCI, previous functional MRI (fMRI) studies have also identified significant derangements such as a strongly reduced volume of activation, a poor modulation of function and abnormal activation patterns. It might be speculated that extensive motor imagery training may serve to prevent such abnormalities. We here report on a unique patient with a complete traumatic SCI below C5 who learned to elicit electroencephalographic signals beta-bursts in the midline region upon imagination of foot movements. This enabled him to use a neuroprosthesis and to "walk from thought" in a virtual environment via a brain-computer interface (BCI). We here used fMRI at 3T during imagined hand and foot movements to investigate the effects of motor imagery via persistent BCI training over 8 years on brain motor function and compared these findings to a group of five untrained healthy age-matched volunteers during executed and imagined movements. We observed robust primary sensorimotor cortex (SMC) activity in expected somatotopy in the tetraplegic patient upon movement imagination while such activation was absent in healthy untrained controls. Sensorimotor network activation with motor imagery in the patient (including SMC contralateral to and the cerebellum ipsilateral to the imagined side of movement as well as supplementary motor areas) was very similar to the pattern observed with actual movement in the controls. We interpret our findings as evidence that BCI training as a conduit of motor imagery training may assist in maintaining access to SMC in largely preserved somatopy despite complete deafferentation. PMID:18592230

  18. Gallbladder emptying response to sham feeding in humans

    SciTech Connect

    Fisher, R.S.; Rock, E.; Malmud, L.S.

    1986-06-01

    Cholescintigraphy, using 99mTc-HIDA, was employed to determine the gallbladder emptying response to sham feeding of a steak and potato meal, and to compare it with the emptying responses to direct cholinergic stimulation by bethanechol and to ingestion of the test meal. The maximal cumulative gallbladder emptying response to sham feeding was 44.1% + 10.1%, which was not significantly different from the response to bethanechol. Cholinergic blockade with atropine eliminated the emptying response to sham feeding. Also, sham feeding did not stimulate gallbladder emptying in patients with vagotomy. This study suggests that intact vagus nerves and cholinergic pathways are required in order for the gallbladder to respond to sham feeding. The precise mechanism for this effect has not been elucidated.

  19. Gallbladder infarction following hepatic transcatheter arterial embolization: angiographic study

    SciTech Connect

    Kuroda, C.; Iwasaki, M.; Tanaka, T.; Tokunaga, K.; Hori, S.; Yoshioka, H.; Nakamura, H.; Sakurai, M.; Okamura, J.

    1983-10-01

    Gallbladder infarction developing after transcatheter arterial embolization (TAE) in patients with malignant hepatic tumors was studied by comparing preoperative angiographic and postoperative macroscopic and histological findings. Eight patients demonstrated occlusion of the cystic artery or its branches by embolic materials on post-TAE angiograms. Surgery revealed infarction of the gallbladder in 6 patients; no infarction was noted in the other 2, although branches of the cystic artery were occluded on the post-TAE angiogram. Due to recanalization of the occluded artery, the infarcted area could be assessed only by follow-up angiography. No patient experienced perforation of the gallbladder as a result of infarction. The authors suggest that patients with post-TAE infarction of the gallbladder can be treated consevatively if they are kept under close observation.

  20. Biliary Tract Disorders, Gallbladder Disorders, and Gallstone Pancreatitis

    MedlinePlus

    ... of bile from the liver (ALT, AST, alkaline phosphatase and bilirubin). Inflammation of the pancreas is best ... associated with an increase in the products and enzymes made by the liver, gallbladder and pancreas, which ...

  1. Oxygen radicals stimulate guinea pig gallbladder glycoprotein secretion in vitro

    SciTech Connect

    Hale, W.B.; Turner, B.; LaMont, J.T. )

    1987-11-01

    In several animal models of cholelithiasis, and in humans with gallstones, hypersecretion of gallbladder mucin is observed. This study was undertaken to determine the effect of oxygen radicals on guinea pig gallbladder glycoprotein secretion in organ culture. Mucosal explants were incubated with ({sup 3}H)glucosamine hydrochloride to label glycoproteins, then exposed to oxygen radicals generated by chelated ferric iron and ascorbic acid. Marked stimulation of glycoprotein release was observed after a 30-min exposure to the oxygen radical-generating system, and the effect was inhibited by mannitol. The stimulatory effect of hydroxyl radical was not accompanied by leakage of intracellular lactate dehydrogenase. Parallel experiments with human granulocytes activated with f-Met-Leu-Phe and coincubated with gallbladder explants revealed similar results. These results indicate that oxygen radicals, especially the hydroxyl radical (OH), are capable of stimulating rapid release of mucous-type glycoproteins from gallbladder epithelium.

  2. Sluggish gallbladder emptying and gastrointestinal transit after intake of common alcoholic beverages.

    PubMed

    Kasicka-Jonderko, A; Jonderko, K; Gajek, E; Piekielniak, A; Zawislan, R

    2014-02-01

    To study the movement along the gut and the effect upon the gallbladder volume of alcoholic beverages taken in the interdigestive state. The study comprised three research blocks attended by 12 healthy subjects each. Within a given research block volunteers underwent three examination sessions held on separate days, being offered an alcoholic beverage, or an aqueous ethanol solution of an identical proof, or a corresponding volume of isotonic glucose solution; the order of administration of the drinks was randomized. The beverages tested were: beer (4.7% vol, 400 ml), red wine (13.7% vol, 200 ml), whisky (43.5% vol, 100 ml) within the "Beer", "Wine", and "Whisky" research block, respectively. Gastric myoelectrical activity was examined electrogastrographically, gastric emptying with ¹³C-sodium acetate breath test, orocaecal transit with lactulose H₂ breath test, gallbladder emptying with ultrasonography, breath ethanol with alcotest. The study showed that alcoholic beverages were emptied from the stomach significantly slower than isotonic glucose. Alcoholic beverages produced by fermentation only (beer, red wine) were emptied from the stomach more slowly than ethanol solutions of identical proof, while gastric evacuation of whisky (distillation product) and matching alcohol solution was similar. The slower gastric evacuation of alcoholic beverages and ethanol solutions could not be ascribed to a disorganization of the gastric myoelectrical activity. The orocaecal transit of beer and red wine did not differ from that of isotonic glucose, whereas the orocaecal transit of whisky and high proof ethanol was markedly prolonged. Red wine and whisky, and to a similar extent control ethanol solutions caused an inhibition and delay of gallbladder emptying. We concluded that alcoholic beverages taken on an empty stomach exert a suppressive effect upon the transport function of the digestive tract and gallbladder emptying. The extent of this action depends on the type of a

  3. Tissue expression of S100 proteins in gallbladder mucosa of the patients with calculous cholecystitis.

    PubMed

    Szmyt, Mirosław; Kasprzak, Aldona; Malkowski, Wojciech; Surdyk-Zasada, Joanna; Przybyszewska, Wiesława; Siodła, Elżbieta; Seraszek-Jaros, Agnieszka; Jagielska, Joanna

    2013-01-01

    Proteins of S100 group, produced by phagocytes represent endogenous activators of innate immune responses. Role of these proteins in the etiopathogenesis of cholelithiasis remains unknown. The studies aimed at the morphometric evaluation of S100A8 and S100A9 protein expression in gallbladder mucosa in patients with acute and chronic calculous cholecystitis (n = 71). The presence of proteins was detected by immunohistochemistry while quantitative analysis employed the spatial visualization technique. We found the immunopositive expression of the two studied S100 proteins in neutrophils and monocytes/macrophages of the gallbladder's wall and a higher expression in acute cholecystitis. Quantitative study revealed higher immunoexpression of S100A9 over S100A8 in both studied groups of patients. Moreover, a reciprocal linear relationship between the expression of the studied proteins and a positive correlation between expression of either S100A8 or S100A9 and inflammatory activity (grading) in the gallbladder wall were found. The expression of S100A8 protein in the chronic cholecystitis group and in older patients correlated with leukocytosis, which suggests the role of S100A8 particularly at the chronic stage of cholecystitis. The obtained results indicated close relationship between S100A8 and S100A9 proteins in their proinflammatory functions. The increased expression of only one of them can be recognized as a useful index of local inflammatory activity in calculous cholecystitis. PMID:23907944

  4. Surgical treatment of gall-bladder cancer.

    PubMed

    Masior, Łukasz; Krasnodębski, Maciej; Kobryń, Konrad; Grąt, Michał; Krawczyk, Marek

    2015-06-01

    Despite the aggressive nature and poor prognosis of gall-bladder cancer there is a group of patients who can achieve significant benefits from a radical surgical treatment. The possibility of obtaining long-term survival, even in case of patients with locally advanced cancer and metastases to regional lymph nodes, prompts to verify nihilistic approach to the treatment of this disease. Obviously such therapy can and should be performed only in centers specializing in hepatobiliary surgery. Due to the high recurrence rate, most of which are systemic, the hope of improving treatment outcomes should be sought in the use of combination therapy, based on a new chemotherapy and chemoradiotherapy regimens with the addition of targeted therapy. Unfortunately, the current application of these methods did not bring the expected benefits. PMID:26247506

  5. Gallbladder Cancer in the 21st Century

    PubMed Central

    Kanthan, Rani; Senger, Jenna-Lynn; Ahmed, Shahid; Kanthan, Selliah Chandra

    2015-01-01

    Gallbladder cancer (GBC) is an uncommon disease in the majority of the world despite being the most common and aggressive malignancy of the biliary tree. Early diagnosis is essential for improved prognosis; however, indolent and nonspecific clinical presentations with a paucity of pathognomonic/predictive radiological features often preclude accurate identification of GBC at an early stage. As such, GBC remains a highly lethal disease, with only 10% of all patients presenting at a stage amenable to surgical resection. Among this select population, continued improvements in survival during the 21st century are attributable to aggressive radical surgery with improved surgical techniques. This paper reviews the current available literature of the 21st century on PubMed and Medline to provide a detailed summary of the epidemiology and risk factors, pathogenesis, clinical presentation, radiology, pathology, management, and prognosis of GBC. PMID:26421012

  6. Gallbladder Cancer in the 21st Century.

    PubMed

    Kanthan, Rani; Senger, Jenna-Lynn; Ahmed, Shahid; Kanthan, Selliah Chandra

    2015-01-01

    Gallbladder cancer (GBC) is an uncommon disease in the majority of the world despite being the most common and aggressive malignancy of the biliary tree. Early diagnosis is essential for improved prognosis; however, indolent and nonspecific clinical presentations with a paucity of pathognomonic/predictive radiological features often preclude accurate identification of GBC at an early stage. As such, GBC remains a highly lethal disease, with only 10% of all patients presenting at a stage amenable to surgical resection. Among this select population, continued improvements in survival during the 21st century are attributable to aggressive radical surgery with improved surgical techniques. This paper reviews the current available literature of the 21st century on PubMed and Medline to provide a detailed summary of the epidemiology and risk factors, pathogenesis, clinical presentation, radiology, pathology, management, and prognosis of GBC. PMID:26421012

  7. Pain Location and Duration Impact Life Function Interference During the Year Following Motor Vehicle Collision

    PubMed Central

    Bortsov, Andrey V.; Platts-Mills, Timothy F.; Peak, David A.; Jones, Jeffrey S.; Swor, Robert A.; Domeier, Robert M.; Lee, David C.; Rathlev, Niels K.; Hendry, Phyllis L.; Fillingim, Roger B.; McLean, Samuel A.

    2014-01-01

    Persistent musculoskeletal pain is common after motor vehicle collision (MVC) and often results in substantial disability. The objective of this study was to identify distributions of post-MVC pain which most interfere with specific life functions and which have the greatest interference with aggregate life function. Study data were obtained from a prospective longitudinal multicenter emergency department-based cohort of 948 European Americans experiencing MVC. Overall pain (0–10 numeric rating scale (NRS)), pain in each of 20 body regions (0–10 NRS), and pain interference (Brief Pain Inventory, 0–10 NRS) were assessed 6 weeks, 6 months, and 1 year after MVC. After adjustment for overall pain intensity, an axial distribution of pain caused the greatest interference with most specific life functions (R2 = 0.15–0.28, association p-values <.001) and with overall function. Axial pain explained more than twice as much variance in pain interference as other pain distributions. However, not all patients with axial pain had neck pain. Moderate or severe low back pain was as common as neck pain at week 6 (prevalence 37% for each) and overlapped with neck pain in only 23% of patients. Further, pain across all body regions accounted for nearly twice as much of the variance in pain interference as neck pain alone (60% vs. 34%). These findings suggest that studies of post-MVC pain should not focus on neck pain alone. PMID:24972071

  8. Gallbladder Carcinoma, the Difficulty of Early Detection: A Case Report

    PubMed Central

    Lewis, Stephen L; Bear, Jonathan R; Van Echo, David C; Dainer, Hugh M

    2016-01-01

    Gallbladder carcinoma (GBC) is an uncommon malignancy with a high mortality rate. Detecting gallbladder carcinoma in its early stages can be difficult, despite improvements in ultrasound and computed tomography (CT) imaging. Most diagnoses of GBC are made at advanced stages, with the majority being found incidentally during surgery for cholelithiasis. The presented case demonstrates the difficulty of diagnosing GBC preoperatively in its early stages. PMID:27014527

  9. Suboptimal Muscle Synergy Activation Patterns Generalize their Motor Function across Postures

    PubMed Central

    Sohn, M. Hongchul; Ting, Lena H.

    2016-01-01

    We used a musculoskeletal model to investigate the possible biomechanical and neural bases of using consistent muscle synergy patterns to produce functional motor outputs across different biomechanical conditions, which we define as generalizability. Experimental studies in cats demonstrate that the same muscle synergies are used during reactive postural responses at widely varying configurations, producing similarly-oriented endpoint force vectors with respect to the limb axis. However, whether generalizability across postures arises due to similar biomechanical properties or to neural selection of a particular muscle activation pattern has not been explicitly tested. Here, we used a detailed cat hindlimb model to explore the set of feasible muscle activation patterns that produce experimental synergy force vectors at a target posture, and tested their generalizability by applying them to different test postures. We used three methods to select candidate muscle activation patterns: (1) randomly-selected feasible muscle activation patterns, (2) optimal muscle activation patterns minimizing muscle effort at a given posture, and (3) generalizable muscle activation patterns that explicitly minimized deviations from experimentally-identified synergy force vectors across all postures. Generalizability was measured by the deviation between the simulated force direction of the candidate muscle activation pattern and the experimental synergy force vectors at the test postures. Force angle deviations were the greatest for the randomly selected feasible muscle activation patterns (e.g., >100°), intermediate for effort-wise optimal muscle activation patterns (e.g., ~20°), and smallest for generalizable muscle activation patterns (e.g., <5°). Generalizable muscle activation patterns were suboptimal in terms of effort, often exceeding 50% of the maximum possible effort (cf. ~5% in minimum-effort muscle activation patterns). The feasible muscle activation ranges of individual

  10. Theta-burst Transcranial Magnetic Stimulation Alters the Functional Topography of the Cortical Motor Network

    PubMed Central

    NOH, Nor Azila; FUGGETTA, Giorgio; MANGANOTTI, Paolo

    2015-01-01

    Background: Transcranial magnetic stimulation (TMS) is a non-invasive tool that is able to modulate the electrical activity of the brain depending upon its protocol of stimulation. Theta burst stimulation (TBS) is a high-frequency TMS protocol that is able to induce prolonged plasticity changes in the brain. The induction of plasticity-like effects by TBS is useful in both experimental and therapeutic settings; however, the underlying neural mechanisms of this modulation remain unclear. The aim of this study was to investigate the effects of continuous TBS (cTBS) on the intrahemispheric and interhemispheric functional connectivity of the resting and active brain. Methods: A total of 26 healthy humans were randomly divided into two groups that received either real cTBS or sham (control) over the left primary motor cortex. Surface electroencephalogram (EEG) was used to quantify the changes of neural oscillations after cTBS at rest and after a choice reaction time test. The cTBS-induced EEG oscillations were computed using spectral analysis of event-related coherence (ERCoh) of theta (4–7.5 Hz), low alpha (8–9.5 Hz), high alpha (10–12.5 Hz), low beta (13–19.5 Hz), and high beta (20–30 Hz) brain rhythms. Results: We observed a global decrease in functional connectivity of the brain in the cTBS group when compared to sham in the low beta brain rhythm at rest and high beta brain rhythm during the active state. In particular, EEG spectral analysis revealed that high-frequency beta, a cortically generated brain rhythm, was the most sensitive band that was modulated by cTBS. Conclusion: Overall, our findings suggest that cTBS, a TMS protocol that mimics the mechanism of long-term depression of synaptic plasticity, modulates motor network oscillations primarily at the cortical level and might interfere with cortical information coding. PMID:27006636

  11. Functional observational battery and motor activity in rats after single administration of two NHE 1 inhibitors

    SciTech Connect

    Huebler, Nicole; Gottschling, Barbara . E-mail: barbara.gottschling@merck.de; Jacobs, Maren; Landenberg, Friedrich von; Hewicker-Trautwein, Marion

    2005-11-01

    Two tests, a functional observational battery (FOB) and measurement of motor activity, have been used to screen the two NHE inhibitors EMD 96785 and EMD 125021 for neurobehavioral effects. These two NHE inhibitors, which exhibit a marked selectivity for the NHE 1 isoform, are under development in the research laboratories of Merck KGaA. NHE inhibitors are developed for the treatment of acute myocardial infarction and chronic heart failure. In prior studies with EMD 96785 and EMD 125021, clinical symptoms, such as uncoordinated movements and weakness of the hindlimbs, were detected in rats. The aim of this study was the evaluation of clinical findings in more detail using a FOB and measurement of motor activity in 96 female rats. The time course and reversibility of the adverse effects were investigated. The animals were treated with EMD 96785 or EMD 125021 by intravenous injection at a single dose of 100 mg/kg and four different time points (2 h, 1 day, 7 days and 21 days after treatment) were chosen for the clinical examination. This neurobehavioral test battery clearly detected neurological activity and defined time-course characteristics after treatment with EMD 96785 or EMD 125021. The various clinical parameters were grouped into functional-related domains and most alterations were seen in the domains of central nervous system and neuromuscular system. The most prominent clinical findings were seen with the pharmacologically more potent NHE inhibitor EMD 125021 when compared to EMD 96785. The clinical symptoms were proven to be reversible by 7 days after the single treatment for both compounds.

  12. Time course of motor and cognitive functions after chronic cerebral ischemia in rats.

    PubMed

    Damodaran, Thenmoly; Hassan, Zurina; Navaratnam, Visweswaran; Muzaimi, Mustapha; Ng, Gandi; Müller, Christian P; Liao, Ping; Dringenberg, Hans C

    2014-12-15

    Cerebral ischemia is one of the leading causes of death and long-term disability in aging populations, due to the frequent occurrence of irreversible brain damage and subsequent loss of neuronal function which lead to cognitive impairment and some motor dysfunction. In the present study, the real time course of motor and cognitive functions were evaluated following the chronic cerebral ischemia induced by permanent, bilateral occlusion of the common carotid arteries (PBOCCA). Male Sprague Dawley rats (200-300g) were subjected to PBOCCA or sham-operated surgery and tested 1, 2, 3 and 4 weeks following the ischemic insult. The results showed that PBOCCA significantly reduced step-through latency in a passive avoidance task at all time points when compared to the sham-operated group. PBOCCA rats also showed significant increase in escape latencies during training in the Morris water maze, as well as a reduction of the percentage of times spend in target quadrant of the maze at all time points following the occlusion. Importantly, there were no significant changes in locomotor activity between PBOCCA and sham-operated groups. The BDNF expression in the hippocampus was 29.3±3.1% and 40.1±2.6% on day 14 and 28 post PBOCCA, respectively compared to sham-operated group. Present data suggest that the PBOCCA procedure effectively induces behavioral, cognitive symptoms associated with cerebral ischemia and, consequently, provides a valuable model to study ischemia and related neurodegenerative disorder such as Alzheimer's disease and vascular dementia. PMID:25239606

  13. Respiratory function after selective respiratory motor neuron death from intrapleural CTB–saporin injections

    PubMed Central

    Nichols, Nicole L.; Vinit, Stéphane; Bauernschmidt, Lorene; Mitchell, Gordon S.

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) causes progressive motor neuron degeneration, paralysis and death by ventilatory failure. In rodent ALS models: 1) breathing capacity is preserved until late in disease progression despite major respiratory motor neuron death, suggesting unknown forms of compensatory respiratory plasticity; and 2) spinal microglia become activated in association with motor neuron cell death. Here, we report a novel experimental model to study the impact of respiratory motor neuron death on compensatory responses without many complications attendant to spontaneous motor neuron disease. In specific, we used intrapleural injections of cholera toxin B fragment conjugated to saporin (CTB–SAP) to selectively kill motor neurons with access to the pleural space. Motor neuron survival, CD11b labeling (microglia), ventilatory capacity and phrenic motor output were assessed in rats 3–28 days after intrapleural injections of: 1) CTB–SAP (25 and 50 μg), or 2) unconjugated CTB and SAP (i.e. control; (CTB + SAP). CTB–SAP elicited dose-dependent phrenic and intercostal motor neuron death; 7 days post-25 μg CTB–SAP, motor neuron survival approximated that in end-stage ALS rats (phrenic: 36 ± 7%; intercostal: 56 ± 10% of controls; n = 9; p < 0.05). CTB–SAP caused minimal cell death in other brainstem or spinal cord regions. CTB–SAP: 1) increased CD11b fractional area in the phrenic motor nucleus, indicating microglial activation; 2) decreased breathing during maximal chemoreceptor stimulation; and 3) diminished phrenic motor output in anesthetized rats (7 days post-25 μg, CTB–SAP: 0.3 ± 0.07 V; CTB + SAP: 1.5 ± 0.3; n = 9; p < 0.05). Intrapleural CTB–SAP represents a novel, inducible model of respiratory motor neuron death and provides an opportunity to study compensation for respiratory motor neuron loss. PMID:25476493

  14. Effect of α{sub 7} nicotinic acetylcholine receptor agonists and antagonists on motor function in mice

    SciTech Connect

    Welch, Kevin D.; Green, Benedict T.; Gardner, Dale R.

    2013-02-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChRs located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The toxicity and teratogenicity of many plants (which results in millions of dollars in losses annually to the livestock industry) are due to various toxins that bind to nAChRs including deltaline and methyllycaconitine (MLA) from larkspur (Delphinium) species, and nicotine and anabasine from tobacco (Nicotiana) species. The primary result of the actions of these alkaloids at nAChRs is neuromuscular paralysis and respiratory failure. The objective of this study was to further characterize the motor coordination deficiencies that occur upon exposure to a non-lethal dose of nAChR antagonists MLA and deltaline as well as nAChR agonists nicotine and anabasine. We evaluated the effect of nAChR agonists and antagonists on the motor function and coordination in mice using a balance beam, grip strength meter, rotarod, open field analysis and tremor monitor. These analyses demonstrated that within seconds after treatment the mice had significant loss of motor function and coordination that lasted up to 1 min, followed by a short period of quiescence. Recovery to normal muscle coordination was rapid, typically within approximately 10 min post-dosing. However, mice treated with the nAChR agonist nicotine and anabasine required a slightly longer time to recover some aspects of normal muscle function in comparison to mice treated with the nAChR antagonist MLA or deltaline. -- Highlights: ► Mice treated with nAChR agonists and antagonists have a loss in motor function. ► These deficits are temporary as near normal motor function returns within 10 min. ► There are compound-specific differences in the effects on motor function.

  15. Cerebral magnetic resonance imaging and mental and motor function of very low birth weight children at six years of age.

    PubMed

    Skranes, J S; Vik, T; Nilsen, G; Smevik, O; Andersson, H W; Brubakk, A M

    1997-06-01

    In this follow-up study, 20 of a geographically based year cohort of 31 surviving non-disabled VLBW (birthweight < 1500 g) children were examined at six years of age. The aim of the study was to relate cerebral MRI findings to neuro-development in these non-disabled children at six years of age. All MRI scans were evaluated for myelination pattern, periventricular gliosis, ventricular dilation and cortical atrophy. The Peabody motor test and the Wechsler Preschool and Primary Scale of Intelligence (WPPSI) were used in the evaluation of motor, mental and perceptual function. A diagnosis of attention deficit disorder with hyperactivity was made based on the examiner's impression of the child during the examination and based on the parent's history. We found that ten (50%) of the children had periventricular gliosis, mainly in centrum semiovale (CS) (nine children) and in central occipital white matter (COW) (six children). Gliosis in CS was related to lower scores on the Peabody gross motor test for locomotion, indicating involvement of corticospinal tracts. Additional gliosis in COW was related to both fine motor and gross motor impairments. We speculate that this indicates damage to both motor and visual pathways, affecting eye-hand coordination and balance function. No relationship between MRI deviations at six years and mental function based on performance, verbal and total IQ scores was found. However, there was a significant relationship between periventricular gliosis in COW and C5 and low scores on the WPPSI performance subtests: Picture completion test and Block design test. This may indicate visual and spatial perception problems, caused by damage to posterior visual pathways and occipito-thalamic tracts dealing with visuo-motor integration.

  16. A genetic model for gallbladder carcinogenesis and its dissemination

    PubMed Central

    Barreto, S. G.; Dutt, A.; Chaudhary, A.

    2014-01-01

    Gallbladder cancer, although regarded as the most common malignancy of the biliary tract, continues to be associated with a dismal overall survival even in the present day. While complete surgical removal of the tumour offers a good chance of cure, only a fraction of the patients are amenable to curative surgery owing to their delayed presentation. Moreover, the current contribution of adjuvant therapies towards prolonging survival is marginal, at best. Thus, understanding the biology of the disease will not only enable a better appreciation of the pathways of progression but also facilitate the development of an accurate genetic model for gallbladder carcinogenesis and dissemination. This review provides an updated, evidence-based model of the pathways of carcinogenesis in gallbladder cancer and its dissemination. The model proposed could serve as the scaffolding for elucidation of the molecular mechanisms involved in gallbladder carcinogenesis. A better understanding of the pathways involved in gallbladder tumorigenesis will serve to identify patients at risk for the cancer (and who thus could be offered prophylactic cholecystectomy) as well as aid oncologists in planning the most suitable treatment for a particular patient, thereby setting us on the vanguard of transforming the current treatment paradigm for gallbladder cancer. PMID:24705974

  17. Influence of gallstones and ursodeoxycholic acid therapy on gallbladder emptying

    SciTech Connect

    Forgacs, I.C.; Maisey, M.N.; Murphy, G.M.; Dowling, R.H.

    1984-08-01

    Altered gallbladder motility could predispose to, or result from, gallstone formation and could also explain the alleged relief of biliary colic seen during bile acid therapy. Therefore, in 14 controls, 25 patients with radiolucent gallstones, and 14 patients with radiopaque gallstones, the authors used two techniques to measure gallbladder contraction--radionuclide imaging and real-time ultrasound--in response to one of two stimuli--a Lundh meal or intravenous cholecystokinin-octapeptide. Using the radionuclide technique, postprandial gallbladder emptying (t1/2) was prolonged both in patients with radiopaque and radiolucent gallstones when compared with controls. In patients with radiolucent stones, the t1/2 of gallbladder emptying became further prolonged after 1 mo of therapy with ursodeoxycholic acid. A similar pattern of results was seen after cholecystokinin-octapeptide and also with real-time ultrasound. Thus, after both stimuli and using two independent techniques, gallbladder contraction was reduced in patients with gallstones. The slower and less complete gallbladder emptying with ursotherapy might explain the reduction in biliary colic noted during treatment.

  18. 3D shape decomposition and comparison for gallbladder modeling