Sample records for gallium aluminum arsenide

  1. Experimental Studies of Lateral Electron Transport in Gallium Arsenide-Aluminum Gallium Arsenide Heterostructures.

    DTIC Science & Technology

    1982-12-01

    AD-A125 858 EXPERIMENTAL STUDIES OF LATERAL ELECTRON TRANSPORT IN 1/3 GALLIUM ARSENIDE-RL..(U) ILLINOIS UNIV AT URBANA COORDINATED SCIENCE LAB N R...EXPERIMENTAL STUDIES OF LATERALXILECTRON TRANSPORT ,:g IN GALLIUM ARSENIDE -ALUMINUM GALLIUM ARSENIDE- -HETEROSTRUCTURES APRVE O PUBLICRLEAS.DSRBUINULMTE. 2...EXPERIMENTAL STUDIES OF LATERAL ELECTRON TRANSPORT IN GALLIUM ARSENIDE-ALUMINUM GALLIUM ARSENIDE Technical Report R-975 HETEROSTRUCTURES 6. PERFORMING ONG

  2. Development of a Multi-layer Anti-reflective Coating for Gallium Arsenide/Aluminum Gallium Arsenide Solar Cells

    DTIC Science & Technology

    2015-07-01

    optical loss mechanism, which limits the efficiency of the PV device.1 Photon absorption needs to occur inside the solar cell active region (near the...Aluminum Gallium Arsenide Solar Cells by Kimberley A Olver Approved for public release; distribution unlimited...Development of a Multi-layer Anti-reflective Coating for Gallium Arsenide/Aluminum Gallium Arsenide Solar Cells by Kimberley A Olver

  3. Bragg Reflector-Induced Increased Nonradiative Lifetime in Gallium Arsenide (GaAs)/Aluminum Gallium Arsenide (AlGaAs) Double Heterostructures

    DTIC Science & Technology

    2015-09-01

    ARL-TR-7473 ● SEP 2015 US Army Research Laboratory Bragg Reflector-Induced Increased Nonradiative Lifetime in Gallium Arsenide...return it to the originator. ARL-TR-7473 ● SEP 2015 US Army Research Laboratory Bragg Reflector-Induced Increased Nonradiative ...3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Bragg Reflector-Induced Increased Nonradiative Lifetime in Gallium Arsenide (GaAs)/Aluminum

  4. Method of fabricating germanium and gallium arsenide devices

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzban (Inventor)

    1990-01-01

    A method of semiconductor diode fabrication is disclosed which relies on the epitaxial growth of a precisely doped thickness layer of gallium arsenide or germanium on a semi-insulating or intrinsic substrate, respectively, of gallium arsenide or germanium by either molecular beam epitaxy (MBE) or by metal-organic chemical vapor deposition (MOCVD). The method involves: depositing a layer of doped or undoped silicon dioxide on a germanium or gallium arsenide wafer or substrate, selectively removing the silicon dioxide layer to define one or more surface regions for a device to be fabricated thereon, growing a matched epitaxial layer of doped germanium or gallium arsenide of an appropriate thickness using MBE or MOCVD techniques on both the silicon dioxide layer and the defined one or more regions; and etching the silicon dioxide and the epitaxial material on top of the silicon dioxide to leave a matched epitaxial layer of germanium or gallium arsenide on the germanium or gallium arsenide substrate, respectively, and upon which a field effect device can thereafter be formed.

  5. Surface photovoltage spectroscopy applied to gallium arsenide surfaces

    NASA Technical Reports Server (NTRS)

    Bynik, C. E.

    1975-01-01

    The experimental and theoretical basis for surface photovoltage spectroscopy is outlined. Results of this technique applied to gallium arsenide surfaces, are reviewed and discussed. The results suggest that in gallium arsenide the surface voltage may be due to deep bulk impurity acceptor states that are pinned at the Fermi level at the surface. Establishment of the validity of this model will indicate the direction to proceed to increase the efficiency of gallium arsenide solar cells.

  6. Study of the structure of a thin aluminum layer on the vicinal surface of a gallium arsenide substrate by high-resolution electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovygin, M. V., E-mail: lemi@miee.ru; Borgardt, N. I.; Seibt, M.

    2015-12-15

    The results of electron-microscopy studies of a thin epitaxial aluminum layer deposited onto a misoriented gallium-arsenide substrate are reported. It is established that the layer consists of differently oriented grains, whose crystal lattices are coherently conjugated with the substrate with the formation of misfit dislocations, as in the case of a layer on a singular substrate. Atomic steps on the substrate surface are visualized, and their influence on the growth of aluminum crystal grains is discussed.

  7. Optical and Electrical Characterization of Bulk Grown Indium-Gallium-Arsenide Alloys

    DTIC Science & Technology

    2010-03-01

    OPTICAL AND ELECTRICAL CHARACTERIZATION OF BULK GROWN INDIUM- GALLIUM -ARSENIDE ALLOYS THESIS...Government. AFIT/GAP/ENP/10-M02 OPTICAL AND ELECTRICAL CHARACTERIZATION OF BULK GROWN INDIUM- GALLIUM -ARSENIDE ALLOYS THESIS Presented to...ELECTRICAL CHARACTERIZATION OF BULK GROWN INDIUM- GALLIUM -ARSENIDE ALLOYS Austin C Bergstrom, BS 2 nd Lieutenant, USAF

  8. Window structure for passivating solar cells based on gallium arsenide

    NASA Technical Reports Server (NTRS)

    Barnett, Allen M. (Inventor)

    1985-01-01

    Passivated gallium arsenide solar photovoltaic cells with high resistance to moisture and oxygen are provided by means of a gallium arsenide phosphide window graded through its thickness from arsenic rich to phosphorus rich.

  9. Radiation damage of gallium arsenide production cells

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Joslin, D.; Garlick, J.; Lillington, D.; Gillanders, M.; Cavicchi, B.; Scott-Monck, J.; Kachare, R.; Anspaugh, B.

    1987-01-01

    High efficiency liquid phase epitaxy (LPE) gallium arsenide cells were irradiated with 1 Mev electrons up to fluences of 1 times 10 to the 16th power cm-2. Measurements of spectral response and dark and illuminated I-V data were made at each fluence and then, using computer codes, the experimental data was fitted to gallium arsenide cell models. In this way it was possible to determine the extent of the damage, and hence damage coefficients in both the emitter and base of the cell.

  10. Pure silver ohmic contacts to N- and P- type gallium arsenide materials

    DOEpatents

    Hogan, Stephen J.

    1986-01-01

    Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components an n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffused layer and the substrate layer, wherein the n-type layer comprises a substantially low doping carrier concentration.

  11. Bit-systolic arithmetic arrays using dynamic differential gallium arsenide circuits

    NASA Technical Reports Server (NTRS)

    Beagles, Grant; Winters, Kel; Eldin, A. G.

    1992-01-01

    A new family of gallium arsenide circuits for fine grained bit-systolic arithmetic arrays is introduced. This scheme combines features of two recent techniques of dynamic gallium arsenide FET logic and differential dynamic single-clock CMOS logic. The resulting circuits are fast and compact, with tightly constrained series FET propagation paths, low fanout, no dc power dissipation, and depletion FET implementation without level shifting diodes.

  12. Microscopic Nanomechanical Dissipation in Gallium Arsenide Resonators.

    PubMed

    Hamoumi, M; Allain, P E; Hease, W; Gil-Santos, E; Morgenroth, L; Gérard, B; Lemaître, A; Leo, G; Favero, I

    2018-06-01

    We report on a systematic study of nanomechanical dissipation in high-frequency (≈300  MHz) gallium arsenide optomechanical disk resonators, in conditions where clamping and fluidic losses are negligible. Phonon-phonon interactions are shown to contribute with a loss background fading away at cryogenic temperatures (3 K). Atomic layer deposition of alumina at the surface modifies the quality factor of resonators, pointing towards the importance of surface dissipation. The temperature evolution is accurately fitted by two-level systems models, showing that nanomechanical dissipation in gallium arsenide resonators directly connects to their microscopic properties. Two-level systems, notably at surfaces, appear to rule the damping and fluctuations of such high-quality crystalline nanomechanical devices, at all temperatures from 3 to 300 K.

  13. Microscopic Nanomechanical Dissipation in Gallium Arsenide Resonators

    NASA Astrophysics Data System (ADS)

    Hamoumi, M.; Allain, P. E.; Hease, W.; Gil-Santos, E.; Morgenroth, L.; Gérard, B.; Lemaître, A.; Leo, G.; Favero, I.

    2018-06-01

    We report on a systematic study of nanomechanical dissipation in high-frequency (≈300 MHz ) gallium arsenide optomechanical disk resonators, in conditions where clamping and fluidic losses are negligible. Phonon-phonon interactions are shown to contribute with a loss background fading away at cryogenic temperatures (3 K). Atomic layer deposition of alumina at the surface modifies the quality factor of resonators, pointing towards the importance of surface dissipation. The temperature evolution is accurately fitted by two-level systems models, showing that nanomechanical dissipation in gallium arsenide resonators directly connects to their microscopic properties. Two-level systems, notably at surfaces, appear to rule the damping and fluctuations of such high-quality crystalline nanomechanical devices, at all temperatures from 3 to 300 K.

  14. Process for forming pure silver ohmic contacts to N- and P-type gallium arsenide materials

    DOEpatents

    Hogan, S.J.

    1983-03-13

    Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components a n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffuse layer and the substrate layer wherein the n-type layer comprises a substantially low doping carrier concentration.

  15. Characterization of solar cells for space applications. Volume 13: Electrical characteristics of Hughes LPE gallium arsenide solar cells as a function of intensity and temperature

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Beckert, D. M.; Downing, R. G.; Miyahira, T. F.; Weiss, R. S.

    1980-01-01

    Electrical characteristics of Hughes Liquid phase epitaxy, P/N gallium aluminum arsenide solar cells are presented in graphical and tabular format as a function of solar illumination intensity and temperature.

  16. A FETISH for gallium arsenide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barron, A.R.

    1996-12-31

    An overview of the development of a new dielectric material, cubic-GaS, from the synthesis of new organometallic compounds to the fabrication of a new class of gallium arsenide based transistor is presented as a representative example of the possibility that inorganic chemistry can directly effect the development of new semiconductor devices. The gallium sulfido compound [({sup t}Bu)GaS]{sub 4}, readily prepared from tri-tert-butyl gallium, may be used as a precursor for the growth of GaS thin films by metal organic chemical vapor deposition (MOCVD). Photoluminescence and electronic measurements indicate that this material provides a passivation coating for GaAs. Furthermore, the insulatingmore » properties of cubic-GaS make it suitable as the insulating gate layer in a new class of GaAs transistor: a field effect transistor with a sulfide heterojunction (FETISH).« less

  17. Computer simulation of radiation damage in gallium arsenide

    NASA Technical Reports Server (NTRS)

    Stith, John J.; Davenport, James C.; Copeland, Randolph L.

    1989-01-01

    A version of the binary-collision simulation code MARLOWE was used to study the spatial characteristics of radiation damage in proton and electron irradiated gallium arsenide. Comparisons made with the experimental results proved to be encouraging.

  18. Gallium Arsenide Domino Circuit

    NASA Technical Reports Server (NTRS)

    Yang, Long; Long, Stephen I.

    1990-01-01

    Advantages include reduced power and high speed. Experimental gallium arsenide field-effect-transistor (FET) domino circuit replicated in large numbers for use in dynamic-logic systems. Name of circuit denotes mode of operation, which logic signals propagate from each stage to next when successive stages operated at slightly staggered clock cycles, in manner reminiscent of dominoes falling in a row. Building block of domino circuit includes input, inverter, and level-shifting substages. Combinational logic executed in input substage. During low half of clock cycle, result of logic operation transmitted to following stage.

  19. Assessment of arsenic exposures and controls in gallium arsenide production.

    PubMed

    Sheehy, J W; Jones, J H

    1993-02-01

    The electronics industry is expanding the use of gallium arsenide in the production of optoelectronic devices and integrated circuits. Workers in the electronics industry using gallium arsenide are exposed to hazardous substances such as arsenic, arsine, and various acids. Arsenic requires stringent controls to minimize exposures (the current OSHA PEL for arsenic is 10 micrograms/m3 and the NIOSH REL is 2 micrograms/m3 ceiling). Inorganic arsenic is strongly implicated in respiratory tract and skin cancer. For these reasons, NIOSH researchers conducted a study of control systems for facilities using gallium arsenide. Seven walk-through surveys were performed to identify locations for detailed study which appeared to have effective controls; three facilities were chosen for in-depth evaluation. The controls were evaluated by industrial hygiene sampling. Including personal breathing zone and area air sampling for arsenic and arsine; wipe samples for arsenic also were collected. Work practices and the use of personal protective equipment were documented. This paper reports on the controls and the arsenic exposure results from the evaluation of the following gallium arsenide processes: Liquid Encapsulated Czochralski (LEC) and Horizontal Bridgeman (HB) crystal growing, LEC cleaning operations, ingot grinding/wafer sawing, and epitaxy. Results at one plant showed that in all processes except epitaxy, average arsenic exposures were at or above the OSHA action level of 5 micrograms/m3. While cleaning the LEC crystal pullers, the average potential arsenic exposure of the cleaning operators was 100 times the OSHA PEL. At the other two plants, personal exposures for arsenic were well controlled in LEC, LEC cleaning, grinding/sawing, and epitaxy operations.

  20. Gallium arsenide quantum well-based far infrared array radiometric imager

    NASA Technical Reports Server (NTRS)

    Forrest, Kathrine A.; Jhabvala, Murzy D.

    1991-01-01

    We have built an array-based camera (FIRARI) for thermal imaging (lambda = 8 to 12 microns). FIRARI uses a square format 128 by 128 element array of aluminum gallium arsenide quantum well detectors that are indium bump bonded to a high capacity silicon multiplexer. The quantum well detectors offer good responsivity along with high response and noise uniformity, resulting in excellent thermal images without compensation for variation in pixel response. A noise equivalent temperature difference of 0.02 K at a scene temperature of 290 K was achieved with the array operating at 60 K. FIRARI demonstrated that AlGaAS quantum well detector technology can provide large format arrays with performance superior to mercury cadmium telluride at far less cost.

  1. Low temperature recombination and trapping analysis in high purity gallium arsenide by microwave photodielectric techniques

    NASA Technical Reports Server (NTRS)

    Khambaty, M. B.; Hartwig, W. H.

    1972-01-01

    Some physical theories pertinent to the measurement properties of gallium arsenide are presented and experimental data are analyzed. A model for explaining recombination and trapping high purity gallium arsenide, valid below 77 K is assembled from points made at various places and an appraisal is given of photodielectric techniques for material property studies.

  2. Evaluation of the male reproductive toxicity of gallium arsenide.

    PubMed

    Bomhard, Ernst M; Cohen, Samuel M; Gelbke, Heinz-Peter; Williams, Gary M

    2012-10-01

    Gallium arsenide is an important semiconductor material marketed in the shape of wafers and thus is not hazardous to the end user. Exposure to GaAs particles may, however, occur during manufacture and processing. Potential hazards require evaluation. In 14-week inhalation studies with small GaAs particles, testicular effects have been reported in rats and mice. These effects occurred only in animals whose lungs showed marked inflammation and also had hematologic changes indicating anemia and hemolysis. The time- and concentration-dependent progressive nature of the lung and blood effects together with bioavailability data on gallium and arsenic lead us to conclude that the testicular/sperm effects are secondary to hypoxemia resulting from lung damage rather than due to a direct chemical effect of gallium or arsenide. Conditions leading to such primary effects are not expected to occur in humans at production and processing sites. This has to be taken into consideration for any classification decision for reproductive toxicity; especially a category 1 according to the EU CLP system is not warranted. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. A study of the applicability of gallium arsenide and silicon carbide as aerospace sensor materials

    NASA Technical Reports Server (NTRS)

    Hurley, John S.

    1990-01-01

    Most of the piezoresistive sensors, to date, are made of silicon and germanium. Unfortunately, such materials are severly restricted in high temperature environments. By comparing the effects of temperature on the impurity concentrations and piezoresistive coefficients of silicon, gallium arsenide, and silicon carbide, it is being determined if gallium arsenide and silicon carbide are better suited materials for piezoresistive sensors in high temperature environments. The results show that the melting point for gallium arsenide prevents it from solely being used in high temperature situations, however, when used in the alloy Al(x)Ga(1-x)As, not only the advantage of the wider energy band gas is obtained, but also the higher desire melting temperature. Silicon carbide, with its wide energy band gap and higher melting temperature suggests promise as a high temperature piezoresistive sensor.

  4. System OptimizatIon of the Glow Discharge Optical Spectroscopy Technique Used for Impurity Profiling of ION Implanted Gallium Arsenide.

    DTIC Science & Technology

    1980-12-01

    AFIT/GEO/EE/80D-1 I -’ SYSTEM OPTIMIZATION OF THE GLOW DISCHARGE OPTICAL SPECTROSCOPY TECHNIQUE USED FOR IMPURITY PROFILING OF ION IMPLANTED GALLIUM ...EE/80D-1 (\\) SYSTEM OPTIMIZATION OF THE GLOW DISCHARGE OPTICAL SPECTROSCOPY TECHNIQUE USED FOR IMPURITY PROFILING OF ION IMPLANTED GALLIUM ARSENIDE...semiconductors, specifically annealed and unan- nealed ion implanted gallium arsenide (GaAs). Methods to improve the sensitivity of the GDOS system have

  5. The 13.9 GHz short pulse radar noise figure measurements utilizing silicon and gallium-arsenide mixer diodes

    NASA Technical Reports Server (NTRS)

    Dombrowski, M.

    1977-01-01

    An analysis was made on two commercially available silicon and gallium arsenide Schottky barrier diodes. These diodes were selected because of their particularly low noise figure in the frequency range of interest. The specified noise figure for the silicon and gallium arsenide diodes were 6.3 db and 5.3 db respectively when functioning as mixers in the 13.6 GHz region with optimum local oscillator drive.

  6. Two years of on-orbit gallium arsenide performance from the LIPS solar cell panel experiment

    NASA Technical Reports Server (NTRS)

    Francis, R. W.; Betz, F. E.

    1985-01-01

    The LIPS on-orbit performance of the gallium arsenide panel experiment was analyzed from flight operation telemetry data. Algorithms were developed to calculate the daily maximum power and associated solar array parameters by two independent methods. The first technique utilizes a least mean square polynomial fit to the power curve obtained with intensity and temperature corrected currents and voltages; whereas, the second incorporates an empirical expression for fill factor based on an open circuit voltage and the calculated series resistance. Maximum power, fill factor, open circuit voltage, short circuit current and series resistance of the solar cell array are examined as a function of flight time. Trends are analyzed with respect to possible mechanisms which may affect successive periods of output power during 2 years of flight operation. Degradation factors responsible for the on-orbit performance characteristics of gallium arsenide are discussed in relation to the calculated solar cell parameters. Performance trends and the potential degradation mechanisms are correlated with existing laboratory and flight data on both gallium arsenide and silicon solar cells for similar environments.

  7. Characterization of solar cells for space applications. Volume 14: Electrical characteristics of Hughes liquid phase epitaxy gallium arsenide solar cells as a function of intensity, temperature and irradiation

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Downing, R. G.; Miyahira, T. F.; Weiss, R. S.

    1981-01-01

    Electrical characteristics of liquid phase epitaxy, P/N gallium aluminum arsenide solar cells are presented in graphical and tabular format as a function of solar illumination intensity and temperature. The solar cells were exposed to 1 MeV electron fluences of, respectively, 0, one hundred trillion, one quadrillion, and ten quadrillion e/sq cm.

  8. Comparative clinical evaluation of gallium-aluminum-arsenide diode laser and potassium nitrate in treating dentinal hypersensitivity.

    PubMed

    Tevatia, Siddharth; Khatri, Vivek; Sharma, Nikhil; Dodwad, Vidya

    2017-01-01

    Dentinal hypersensitivity (DH) is a chronic disorder in which patients report sharp and acute pain to a variety of stimuli. Till date, a standardized procedure to treat DH is missing, though several alternative treatment strategies have been designed, including laser therapies. The aim of the study was to treat DH with minimum chemical concentration and least laser energy level with longer follow-up period. One hundred and twenty patients were randomly divided into four groups: (i) Group 1-5% potassium nitrate (KNO 3 ); (ii) Group 2 - gallium-aluminum-arsenide diode laser (62.2 J/cm 2 , wavelength - 980 nm, noncontact pulse mode, and power wattage - 0.5 W); (iii) Group 3 - combined 5% KNO 3 and the diode laser; and (iv) Group 4 - placebo (control). The visual analog scale (VAS) scores were recorded, analyzed, and compared to tactile stimuli, cold water, and air blast tests at different intervals for 6 weeks. Synergistic use of 5% KNO 3 and diode laser (Group 3) significantly reduced the DH pain, which was almost negligible after 6 th week (97%-99% of the pain was reported to be relieved) and showed promising results than any other studied groups. Further, the diode laser (Group 2) showed better results than 5% KNO 3 (Group 1). One-way ANOVA and Bonferroni correction post hoc test revealed the combination of groups with significant differences in the mean VAS scores at the different interval of time ( P < 0.01). Convincingly, the combined application of 5% KNO 3 with the diode laser can be recommended for treating DH patients.

  9. Gallium arsenide solar array subsystem study

    NASA Technical Reports Server (NTRS)

    Miller, F. Q.

    1982-01-01

    The effects on life cycle costs of a number of technology areas are examined for a gallium arsenide space solar array. Four specific configurations were addressed: (1) a 250 KWe LEO mission - planer array; (2) a 250 KWe LEO mission - with concentration; (3) a 50 KWe GEO mission planer array; (4) a 50 KWe GEO mission - with concentration. For each configuration, a baseline system conceptual design was developed and the life cycle costs estimated in detail. The baseline system requirements and design technologies were then varied and their relationships to life cycle costs quantified. For example, the thermal characteristics of the baseline design are determined by the array materials and masses. The thermal characteristics in turn determine configuration, performance, and hence life cycle costs.

  10. Effect of barrier height on friction behavior of the semiconductors silicon and gallium arsenide in contact with pure metals

    NASA Technical Reports Server (NTRS)

    Mishina, H.; Buckley, D. H.

    1984-01-01

    Friction experiments were conducted for the semiconductors silicon and gallium arsenide in contact with pure metals. Polycrystalline titanium, tantalum, nickel, palladium, and platinum were made to contact a single crystal silicon (111) surface. Indium, nickel, copper, and silver were made to contact a single crystal gallium arsenide (100) surface. Sliding was conducted both in room air and in a vacuum of 10 to the minus 9th power torr. The friction of semiconductors in contact with metals depended on a Schottky barrier height formed at the metal semiconductor interface. Metals with a higher barrier height on semiconductors gave lower friction. The effect of the barrier height on friction behavior for argon sputtered cleaned surfaces in vacuum was more specific than that for the surfaces containing films in room air. With a silicon surface sliding on titanium, many silicon particles back transferred. In contrast, a large quantity of indium transferred to the gallium arsenide surface.

  11. Anomalous tensoelectric effects in gallium arsenide tunnel diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alekseeva, Z.M.; Vyatkin, A.P.; Krivorotov, N.P.

    Anomalous tensoelectric phenomena induced in a tunnel p-n junction by a concentrated load and by hydrostatic compression were studied. The anomalous tensoelectric effects are caused by the action of concentrators of mechanical stresses in the vicinity of the p-n junction, giving rise to local microplastic strain. Under the conditions of hydrostatic compression prolate inclusions approx.100-200 A long play the role of concentrators. Analysis of irreversible changes in the current-voltage characteristics of tunnel p-n junctions made it possible to separate the energy levels of the defects produced with plastic strain of gallium arsenide.

  12. Performance of a Medipix3RX spectroscopic pixel detector with a high resistivity gallium arsenide sensor.

    PubMed

    Hamann, Elias; Koenig, Thomas; Zuber, Marcus; Cecilia, Angelica; Tyazhev, Anton; Tolbanov, Oleg; Procz, Simon; Fauler, Alex; Baumbach, Tilo; Fiederle, Michael

    2015-03-01

    High resistivity gallium arsenide is considered a suitable sensor material for spectroscopic X-ray imaging detectors. These sensors typically have thicknesses between a few hundred μm and 1 mm to ensure a high photon detection efficiency. However, for small pixel sizes down to several tens of μm, an effect called charge sharing reduces a detector's spectroscopic performance. The recently developed Medipix3RX readout chip overcomes this limitation by implementing a charge summing circuit, which allows the reconstruction of the full energy information of a photon interaction in a single pixel. In this work, we present the characterization of the first Medipix3RX detector assembly with a 500 μm thick high resistivity, chromium compensated gallium arsenide sensor. We analyze its properties and demonstrate the functionality of the charge summing mode by means of energy response functions recorded at a synchrotron. Furthermore, the imaging properties of the detector, in terms of its modulation transfer functions and signal-to-noise ratios, are investigated. After more than one decade of attempts to establish gallium arsenide as a sensor material for photon counting detectors, our results represent a breakthrough in obtaining detector-grade material. The sensor we introduce is therefore suitable for high resolution X-ray imaging applications.

  13. Comparative clinical evaluation of gallium-aluminum-arsenide diode laser and potassium nitrate in treating dentinal hypersensitivity

    PubMed Central

    Tevatia, Siddharth; Khatri, Vivek; Sharma, Nikhil; Dodwad, Vidya

    2017-01-01

    Context: Dentinal hypersensitivity (DH) is a chronic disorder in which patients report sharp and acute pain to a variety of stimuli. Till date, a standardized procedure to treat DH is missing, though several alternative treatment strategies have been designed, including laser therapies. Aim: The aim of the study was to treat DH with minimum chemical concentration and least laser energy level with longer follow-up period. Materials and Methods: One hundred and twenty patients were randomly divided into four groups: (i) Group 1-5% potassium nitrate (KNO3); (ii) Group 2 - gallium-aluminum-arsenide diode laser (62.2 J/cm2, wavelength - 980 nm, noncontact pulse mode, and power wattage - 0.5 W); (iii) Group 3 - combined 5% KNO3 and the diode laser; and (iv) Group 4 - placebo (control). The visual analog scale (VAS) scores were recorded, analyzed, and compared to tactile stimuli, cold water, and air blast tests at different intervals for 6 weeks. Results: Synergistic use of 5% KNO3 and diode laser (Group 3) significantly reduced the DH pain, which was almost negligible after 6th week (97%–99% of the pain was reported to be relieved) and showed promising results than any other studied groups. Further, the diode laser (Group 2) showed better results than 5% KNO3 (Group 1). One-way ANOVA and Bonferroni correction post hoc test revealed the combination of groups with significant differences in the mean VAS scores at the different interval of time (P < 0.01). Conclusions: Convincingly, the combined application of 5% KNO3 with the diode laser can be recommended for treating DH patients. PMID:29491586

  14. Gallium Arsenide solar cell radiation damage experiment

    NASA Technical Reports Server (NTRS)

    Maurer, R. H.; Kinnison, J. D.; Herbert, G. A.; Meulenberg, A.

    1991-01-01

    Gallium arsenide (GaAs) solar cells for space applications from three different manufactures were irradiated with 10 MeV protons or 1 MeV electrons. The electrical performance of the cells was measured at several fluence levels and compared. Silicon cells were included for reference and comparison. All the GaAs cell types performed similarly throughout the testing and showed a 36 to 56 percent power areal density advantage over the silicon cells. Thinner (8-mil versus 12-mil) GaAs cells provide a significant weight reduction. The use of germanium (Ge) substrates to improve mechanical integrity can be implemented with little impact on end of life performance in a radiation environment.

  15. Producing gallium arsenide crystals in space

    NASA Technical Reports Server (NTRS)

    Randolph, R. L.

    1984-01-01

    The production of high quality crystals in space is a promising near-term application of microgravity processing. Gallium arsenide is the selected material for initial commercial production because of its inherent superior electronic properties, wide range of market applications, and broad base of on-going device development effort. Plausible product prices can absorb the high cost of space transportation for the initial flights provided by the Space Transportation System. The next step for bulk crystal growth, beyond the STS, is planned to come later with the use of free flyers or a space station, where real benefits are foreseen. The use of these vehicles, together with refinement and increasing automation of space-based crystal growth factories, will bring down costs and will support growing demands for high quality GaAs and other specialty electronic and electro-optical crystals grown in space.

  16. Gallium-arsenide process evaluation based on a RISC microprocessor example

    NASA Astrophysics Data System (ADS)

    Brown, Richard B.; Upton, Michael; Chandna, Ajay; Huff, Thomas R.; Mudge, Trevor N.; Oettel, Richard E.

    1993-10-01

    This work evaluates the features of a gallium-arsenide E/D MESFET process in which a 32-b RISC microprocessor was implemented. The design methodology and architecture of this prototype CPU are described. The performance sensitivity of the microprocessor and other large circuit blocks to different process parameters is analyzed, and recommendations for future process features, circuit approaches, and layout styles are made. These recommendations are reflected in the design of a second microprocessor using a more advanced process that achieves much higher density and performance.

  17. Cost Trade Between Multi-Junction, Gallium Arsenide, and Silicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Gaddy, Edward M.

    1995-01-01

    Multi-junction (MJ), gallium arsenide (GaAs), and silicon (Si) solar cells have respective test efficiencies of approximately 24%, 18.5% and 14.8%. Multi-junction and gallium arsenide solar cells weigh more than silicon solar 2 cells and cost approximately five times as much per unit power at the cell level. A trade is performed for the TRMM spacecraft to determine which of these cell types would have offered an overall performance and price advantage to the spacecraft. A trade is also performed for the multi-junction cells under the assumption that they will cost over ten times that of silicon cells at the cell level. The trade shows that the TRMM project, less the cost of the instrument, ground systems and mission operations, would spend approximately $552,000 dollars per kilogram to launch and suppon3science in the case of the spacecraft equipped with silicon solar cells. If these cells are changed out for gallium arsenide solar cells, an additional 31 kilograms of science can be launched and serviced at a price of approximately $90 thousand per kilogram. The weight reduction is shown to derive from the smaller area of the array and hence reductions in the weight of the array substrate and supporting structure. ff the silicon solar cells are changed out for multi-junction solar cells, an additional 45 kilograms of science above the silicon base line can be launched and supported at a price of approximately $58,000 per kilogram. The trade shows that even if the multi-junction cells are priced over ten times that of silicon cells, a price that is much higher than projected, that the additional 45 kilograms of science are launched and serviced at $180,000 per kilogram. This is still much less than the original $552,000 per kilogram to launch and service the science. Data and qualitative factors are presented to show that these figures are subject to a great deal of uncertainty. Nonetheless, the benefit of the higher efficiency solar cells for TRMM is far greater

  18. Testing of gallium arsenide solar cells on the CRRES vehicle

    NASA Technical Reports Server (NTRS)

    Trumble, T. M.

    1985-01-01

    A flight experiment was designed to determine the optimum design for gallium arsenide (GaAs) solar cell panels in a radiation environment. Elements of the experiment design include, different coverglass material and thicknesses, welded and soldered interconnects, different solar cell efficiencies, different solar cell types, and measurement of annealing properties. This experiment is scheduled to fly on the Combined Release and Radiation Effects Satellite (CRRES). This satellite will simultaneously measure the radiation environment and provide engineering data on solar cell degradation that can be directly related to radiation damage.

  19. Control of Defects in Aluminum Gallium Nitride ((Al)GaN) Films on Grown Aluminum Nitride (AlN) Substrates

    DTIC Science & Technology

    2013-02-01

    Nord, J.; Albe, K.; Erhart, P.; Nordlund, K. Modelling of Compound Semiconductors: Analytical Bond-order Potential for Gallium , Nitrogen and Gallium ...Control of Defects in Aluminum Gallium Nitride ((Al)GaN) Films on Grown Aluminum Nitride (AlN) Substrates by Iskander G. Batyrev, Chi-Chin Wu...Aluminum Gallium Nitride ((Al)GaN) Films on Grown Aluminum Nitride (AlN) Substrates Iskander G. Batyrev and N. Scott Weingarten Weapons and

  20. Radiation damage of gallium arsenide production cells

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Garlick, G. F. J.

    1987-01-01

    High-efficiency gallium arsenide cells, made by the liquid epitaxy method (LPE), have been irradiated with 1-MeV electrons up to fluences of 10 to the 16th e/sq cm. Measurements have been made of cell spectral response and dark and light-excited current-voltage characteristics and analyzed using computer-based models to determine underlying parameters such as damage coefficients. It is possible to use spectral response to sort out damage effects in the different cell component layers. Damage coefficients are similar to other reported in the literature for the emitter and buffer (base). However, there is also a damage effect in the window layer and possibly at the window emitter interface similar to that found for proton-irradiated liquid-phase epitaxy-grown cells. Depletion layer recombination is found to be less than theoretically expected at high fluence.

  1. Gallium

    USGS Publications Warehouse

    Foley, Nora K.; Jaskula, Brian W.; Kimball, Bryn E.; Schulte, Ruth F.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Gallium is a soft, silvery metallic element with an atomic number of 31 and the chemical symbol Ga. Gallium is used in a wide variety of products that have microelectronic components containing either gallium arsenide (GaAs) or gallium nitride (GaN). GaAs is able to change electricity directly into laser light and is used in the manufacture of optoelectronic devices (laser diodes, light-emitting diodes [LEDs], photo detectors, and solar cells), which are important for aerospace and telecommunications applications and industrial and medical equipment. GaAs is also used in the production of highly specialized integrated circuits, semiconductors, and transistors; these are necessary for defense applications and high-performance computers. For example, cell phones with advanced personal computer-like functionality (smartphones) use GaAs-rich semiconductor components. GaN is used principally in the manufacture of LEDs and laser diodes, power electronics, and radio-frequency electronics. Because GaN power transistors operate at higher voltages and with a higher power density than GaAs devices, the uses for advanced GaN-based products are expected to increase in the future. Gallium technologies also have large power-handling capabilities and are used for cable television transmission, commercial wireless infrastructure, power electronics, and satellites. Gallium is also used for such familiar applications as screen backlighting for computer notebooks, flat-screen televisions, and desktop computer monitors.Gallium is dispersed in small amounts in many minerals and rocks where it substitutes for elements of similar size and charge, such as aluminum and zinc. For example, gallium is found in small amounts (about 50 parts per million) in such aluminum-bearing minerals as diaspore-boehmite and gibbsite, which form bauxite deposits, and in the zinc-sulfide mineral sphalerite, which is found in many mineral deposits. At the present time, gallium metal is derived mainly as a

  2. Straw man trade between multi-junction, gallium arsenide, and silicon solar cells

    NASA Technical Reports Server (NTRS)

    Gaddy, Edward M.

    1995-01-01

    Multi-junction (MJ), gallium arsenide (GaAs), and silicon (Si) solar cells have respective test efficiencies of approximately 24%, 18.5% and 14.8%. Multi-junction and gallium arsenide solar cells weigh more than silicon solar cells and cost approximately five times as much per unit power at the cell level. A straw man trade is performed for the TRMM spacecraft to determine which of these cell types would have offered an overall performance and price advantage to the spacecraft. A straw man trade is also performed for the multi-junction cells under the assumption that they will cost over ten times that of silicon cells at the cell level. The trade shows that the TRMM project, less the cost of the instrument, ground systems and mission operations, would spend approximately $552 thousand dollars per kilogram to launch and service science in the case of the spacecraft equipped with silicon solar cells. If these cells are changed out for gallium arsenide solar cells, an additional 31 kilograms of science can be launched and serviced at a price of approximately $90 thousand per kilogram. The weight reduction is shown to derive from the smaller area of the array and hence reductions in the weight of the array substrate and supporting structure. If the silicon solar cells are changed out for multi-junction solar cells, an additional 45 kilograms of science above the silicon base line can be launched and serviced at a price of approximately $58 thousand per kilogram. The trade shows that even if the multi-junction arrays are priced over ten times that of silicon cells, a price that is much higher than projected, that the additional 45 kilograms of science are launched and serviced at $182 thousand per kilogram. This is still much less than original $552 thousand per kilogram to launch and service the science. Data and qualitative factors are presented to show that these figures are subject to a great deal of uncertainty. Nonetheless, the benefit of the higher efficiency

  3. Contact formation in gallium arsenide solar cells

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1988-01-01

    Gold and gold-based alloys, commonly used as solar cell contact materials, are known to react readily with gallium arsenide. Experiments were performed to identify the mechanisms involved in these GaAs-metal interactions. It is shown that the reaction of GaAs with gold takes place via a dissociative diffusion process. It is shown further that the GaAs-metal reaction rate is controlled to a very great extent by the condition of the free surface of the contact metal, an interesting example of which is the previously unexplained increase in the reaction rate that has been observed for samples annealed in a vacuum environment as compared to those annealed in a gaseous ambient. A number of other hard-to-explain observations, such as the low-temperature formation of voids in the gold lattice and crystallite growth on the gold surface, are explained by invoking this mechanism.

  4. Gallium arsenide/gold nanostructures deposited using plasma method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangla, O.; Physics Department, Hindu College, University of Delhi, Delhi, 110007; Roy, S.

    2016-05-23

    The fabrication of gallium arsenide (GaAs) nanostructures on gold coated glass, quartz and silicon substrates using the high fluence and highly energetic ions has been reported. The high fluence and highly energetic ions are produced by the hot, dense and extremely non-equilibrium plasma in a modified dense plasma focus device. The nanostructures having mean size about 14 nm, 13 nm and 18 nm are deposited on gold coated glass, quartz and silicon substrates, respectively. The optical properties of nanostructures studied using absorption spectra show surface plasmon resonance peak of gold nanoparticles. In addition, the band-gap of GaAs nanoparticles is more than that ofmore » bulk GaAs suggesting potential applications in the field of optoelectronic and sensor systems.« less

  5. Microwave Semiconductor Research - Materials, Devices and Circuits and Gallium Arsenide Ballistic Electron Transistors.

    DTIC Science & Technology

    1985-04-01

    activation energies than previously possible. Electron traps and hole traps with energies less than 50 meV were observed for the first time in GaAs...developed in our laboratory to photoexcite electrons in a given energy range in the conduction band and then measure the relaxation of these carriers...limitations on the electron energy may be required. CURRENT AND FUTURE EFFORTS The possibility of ballistic electron transport in gallium arsenide has been

  6. The interaction of gold with gallium arsenide

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1988-01-01

    Gold and gold-based alloys, commonly used as solar-cell contact materials, are known to react readily with gallium arsenide. Experiments designed to identify the mechanisms involved in these GaAs-metal interactions have yielded several interesting results. It is shown that the reaction of GaAs with gold takes place via a dissociative diffusion process. It is shown further that the GaAs-metal reaction rate is controlled to a very great extent by the condition of the free surface of the contact metal, an interesting example of which is the previously unexplained increase in the reaction rate that has been observed for samples annealed in a vacuum environment as compared to those annealed in a gaseous ambient. A number of other hard-to-explain observations, such as the low-temperature formation of voids in the gold lattice and crystallite growth on the gold surface, are also explained by invoking this mechanism.

  7. Skylab experiment performance evaluation manual. Appendix J: Experiment M555 gallium arsenide single crystal growth (MSFC)

    NASA Technical Reports Server (NTRS)

    Byers, M. S.

    1973-01-01

    Analyses for Experiment M555, Gallium Arsenide Single Crystal Growth (MSFC), to be used for evaluating the performance of the Skylab corollary experiments under preflight, inflight, and post-flight conditions are presented. Experiment contingency plan workaround procedure and malfunction analyses are presented in order to assist in making the experiment operationally successful.

  8. The comparison between gallium arsenide and indium gallium arsenide as materials for solar cell performance using Silvaco application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahari, Suhaila Mohd; Norizan, Mohd Natashah; Mohamad, Ili Salwani

    2015-05-15

    The work presented in this paper is about the development of single and multilayer solar cells using GaAs and InGaAs in AM1.5 condition. The study includes the modeling structure and simulation of the device using Silvaco applications. The performance in term of efficiency of Indium Gallium Arsenide (InGaAs) and GaAs material was studied by modification of the doping concentration and thickness of material in solar cells. The efficiency of the GaAs solar cell was higher than InGaAs solar cell for single layer solar cell. Single layer GaAs achieved an efficiency about 25% compared to InGaAs which is only 2.65% ofmore » efficiency. For multilayer which includes both GaAs and InGaAs, the output power, P{sub max} was 8.91nW/cm² with the efficiency only 8.51%. GaAs is one of the best materials to be used in solar cell as a based compared to InGaAs.« less

  9. Magneto-electric transition in nickel-gallium arsenide-nickel multiferroic structure

    NASA Astrophysics Data System (ADS)

    Galichyan, T. A.; Filippov, D. A.; Laletin, V. M.; Firsova, T. O.; Poddubnaya, N. N.

    2018-04-01

    Experimental studies of the magnetoelectric effect are presented in structures manufactured by electrolytic deposition of nickel on a substrate of gallium arsenide. It is shown that the use of gold-germanium-nickel sublayer, when sprayed on a substrate, significantly improves the adhesion between electrolytically deposited nickel and substrate. Linear and nonlinear magnetoelectric effects on the alternating magnetic field are observed in these structures. Both effects have resonant character and the resonance frequency of the nonlinear effect is twice less than that of the linear effect. In weak fields, the value of the nonlinear magnetoelectric effect is in quadratic dependence on the alternating magnetic field and unlike the linear magnetoelectric effect, it does not depend on the bias field.

  10. Gallium arsenide processing for gate array logic

    NASA Technical Reports Server (NTRS)

    Cole, Eric D.

    1989-01-01

    The development of a reliable and reproducible GaAs process was initiated for applications in gate array logic. Gallium Arsenide is an extremely important material for high speed electronic applications in both digital and analog circuits since its electron mobility is 3 to 5 times that of silicon, this allows for faster switching times for devices fabricated with it. Unfortunately GaAs is an extremely difficult material to process with respect to silicon and since it includes the arsenic component GaAs can be quite dangerous (toxic) especially during some heating steps. The first stage of the research was directed at developing a simple process to produce GaAs MESFETs. The MESFET (MEtal Semiconductor Field Effect Transistor) is the most useful, practical and simple active device which can be fabricated in GaAs. It utilizes an ohmic source and drain contact separated by a Schottky gate. The gate width is typically a few microns. Several process steps were required to produce a good working device including ion implantation, photolithography, thermal annealing, and metal deposition. A process was designed to reduce the total number of steps to a minimum so as to reduce possible errors. The first run produced no good devices. The problem occurred during an aluminum etch step while defining the gate contacts. It was found that the chemical etchant attacked the GaAs causing trenching and subsequent severing of the active gate region from the rest of the device. Thus all devices appeared as open circuits. This problem is being corrected and since it was the last step in the process correction should be successful. The second planned stage involves the circuit assembly of the discrete MESFETs into logic gates for test and analysis. Finally the third stage is to incorporate the designed process with the tested circuit in a layout that would produce the gate array as a GaAs integrated circuit.

  11. Gallium arsenide solar cells-status and prospects for use in space

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W.; Flood, D.; Weinberg, I.

    1981-01-01

    Gallium Arsenide solar cells now equal or surpass the ubiquitous silicon solar cells in efficiency, radiation resistance, annealability, and in the capability for producing usable power output at elevated temperatures. NASA has developed a long-range research and development program to capitalize on these manifold advantages. In this paper we review the current state and future prospects for R&D in this promising solar cell material, and indicate the progress being made toward development of GaAs cells suitable for a variety of space missions. Results are presented from studies which demonstrate conclusively that GaAs cells can provide a net mission cost and weight savings for certain important mission classes.

  12. A I-V analysis of irradiated Gallium Arsenide solar cells

    NASA Technical Reports Server (NTRS)

    Heulenberg, A.; Maurer, R. H.; Kinnison, J. D.

    1991-01-01

    A computer program was used to analyze the illuminated I-V characteristics of four sets of gallium arsenide (GaAs) solar cells irradiated with 1-MeV electrons and 10-MeV protons. It was concluded that junction regions (J sub r) dominate nearly all GaAs cells tested, except for irradiated Mitsubishi cells, which appear to have a different doping profile. Irradiation maintains or increases the dominance by J sub r. Proton irradiation increases J sub r more than does electron irradiation. The U.S. cells were optimized for beginning of life (BOL) and the Japanese for end of life (EOL). I-V analysis indicates ways of improving both the BOL and EOL performance of GaAs solar cells.

  13. Synthesis and use of (polyfluoroaryl)fluoroanions of aluminum, gallium and indium

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2000-01-01

    Salts of (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are described. The (polyfluoroaryl)fluoroanions have the formula [ER'R"R'"F].sup..crclbar. wherein E is aluminum, gallium, or indium, wherein F is fluorine, and wherein R', R", and R'" is each a fluorinated phenyl, fluorinated biphenyl, or fluorinated polycyclic group.

  14. Zinc diffusion in gallium arsenide and the properties of gallium interstitials

    NASA Astrophysics Data System (ADS)

    Bracht, H.; Brotzmann, S.

    2005-03-01

    We have performed zinc diffusion experiments in gallium arsenide at temperatures between 620°C and 870°C with a dilute Ga-Zn source. The low Zn partial pressure established during annealing realizes Zn surface concentrations of ⩽2×1019cm-3 , which lead to the formation of characteristic S-shaped diffusion profiles. Accurate modeling of the Zn profiles, which were measured by means of secondary ion mass spectroscopy, shows that Zn diffusion under the particular doping conditions is mainly mediated by neutral and singly positively charged Ga interstitials via the kick-out mechanism. We determined the temperature dependence of the individual contributions of neutral and positively charged Ga interstitials to Ga diffusion for electronically intrinsic conditions. The data are lower than the total Ga self-diffusion coefficient and hence consistent with the general interpretation that Ga diffusion under intrinsic conditions is mainly mediated by Ga vacancies. Our results disprove the general accepted interpretation of Zn diffusion in GaAs via doubly and triply positively charged Ga interstitials and solves the inconsistency related to the electrical compensation of the acceptor dopant Zn by the multiply charged Ga interstitials.

  15. Thermal stability of gallium arsenide solar cells

    NASA Astrophysics Data System (ADS)

    Papež, Nikola; Škvarenina, Ľubomír.; Tofel, Pavel; Sobola, Dinara

    2017-12-01

    This article summarizes a measurement of gallium arsenide (GaAs) solar cells during their thermal processing. These solar cells compared to standard silicon cells have better efficiency and high thermal stability. However, their use is partly limited due to high acquisition costs. For these reasons, GaAs cells are deployed only in the most demanding applications where their features are needed, such as space applications. In this work, GaAs solar cells were studied in a high temperature range within 30-650 °C where their functionality and changes in surface topology were monitored. These changes were recorded using an electron microscope which determined the position of the defects; using an atomic force microscope we determined the roughness of the surface and an infrared camera that showed us the thermal radiated places of the defected parts of the cell. The electrical characteristics of the cells during processing were determined by its current-voltage characteristics. Despite the occurrence of subtle changes on the solar cell with newly created surface features after 300 °C thermal processing, its current-voltage characteristic remained without a significant change.

  16. Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator.

    PubMed

    Shambat, Gary; Ellis, Bryan; Mayer, Marie A; Majumdar, Arka; Haller, Eugene E; Vučković, Jelena

    2011-04-11

    We demonstrate a gallium arsenide photonic crystal cavity injection-based electro-optic modulator coupled to a fiber taper waveguide. The fiber taper serves as a convenient and tunable waveguide for cavity coupling with minimal loss. Localized electrical injection of carriers into the cavity region via a laterally doped p-i-n diode combined with the small mode volume of the cavity enable ultra-low energy modulation at sub-fJ/bit levels. Speeds of up to 1 GHz are demonstrated with photoluminescence lifetime measurements revealing that the ultimate limit goes well into the tens of GHz. © 2011 Optical Society of America

  17. Development of gallium arsenide high-speed, low-power serial parallel interface modules: Executive summary

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Final report to NASA LeRC on the development of gallium arsenide (GaAS) high-speed, low power serial/parallel interface modules. The report discusses the development and test of a family of 16, 32 and 64 bit parallel to serial and serial to parallel integrated circuits using a self aligned gate MESFET technology developed at the Honeywell Sensors and Signal Processing Laboratory. Lab testing demonstrated 1.3 GHz clock rates at a power of 300 mW. This work was accomplished under contract number NAS3-24676.

  18. An advanced space photovoltaic concentrator array using Fresnel lenses, gallium arsenide cells, and prismatic cell covers

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark J.; Piszczor, Michael F.

    1988-01-01

    The current status of a space concentrator array which uses refractive optics, gallium arsenide cells, and prismatic cell covers to achieve excellent performance at a very low array mass is documented. The prismatically covered cells have established records for space cell performance (24.2 percent efficient at 100 AM0 suns and 25 C) and terrestrial single-junction cell performance (29.3 percent efficient at 200 AM1.5 suns and 25 C).

  19. Temperature dependence of carrier capture by defects in gallium arsenide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wampler, William R.; Modine, Normand A.

    2015-08-01

    This report examines the temperature dependence of the capture rate of carriers by defects in gallium arsenide and compares two previously published theoretical treatments of this based on multi phonon emission (MPE). The objective is to reduce uncertainty in atomistic simulations of gain degradation in III-V HBTs from neutron irradiation. A major source of uncertainty in those simulations is poor knowledge of carrier capture rates, whose values can differ by several orders of magnitude between various defect types. Most of this variation is due to different dependence on temperature, which is closely related to the relaxation of the defect structuremore » that occurs as a result of the change in charge state of the defect. The uncertainty in capture rate can therefore be greatly reduced by better knowledge of the defect relaxation.« less

  20. Precision calibration of the silicon doping level in gallium arsenide epitaxial layers

    NASA Astrophysics Data System (ADS)

    Mokhov, D. V.; Berezovskaya, T. N.; Kuzmenkov, A. G.; Maleev, N. A.; Timoshnev, S. N.; Ustinov, V. M.

    2017-10-01

    An approach to precision calibration of the silicon doping level in gallium arsenide epitaxial layers is discussed that is based on studying the dependence of the carrier density in the test GaAs layer on the silicon- source temperature using the Hall-effect and CV profiling techniques. The parameters are measured by standard or certified measuring techniques and approved measuring instruments. It is demonstrated that the use of CV profiling for controlling the carrier density in the test GaAs layer at the thorough optimization of the measuring procedure ensures the highest accuracy and reliability of doping level calibration in the epitaxial layers with a relative error of no larger than 2.5%.

  1. Monte Carlo simulation to calculate the rate of 137Cs gamma rays dispersion in gallium arsenide compound

    NASA Astrophysics Data System (ADS)

    Haider, F. A.; Chee, F. P.; Abu Hassan, H.; Saafie, S.

    2017-01-01

    Radiation effects on Gallium Arsenide (GaAs) have been tested by exposing samples to Cesium-137 (137Cs) gamma rays. Gallium Arsenide is a basic photonic material for most of the space technology communication, and, therefore, lends itself for applications where this is of concern. Monte Carlo simulations of interaction between direct ionizing radiation and GaAs structure have been performed in TRIM software, being part of SRIM 2011 programming package. An adverse results shows that energy dose does not govern the displacement of atoms and is dependent on the changes of incident angles and thickness of the GaAs target element. At certain thickness of GaAs and incident angle of 137Cs ion, the displacement damage is at its highest value. From the simulation result, it is found that if the thickness of the GaAs semiconductor material is small compared to the projected range at that particular incident energy, the energy loss in the target GaAs will be small. Hence, when the depth of semiconductor material is reduced, the range of damage in the target also decreased. However, the other factors such as quantum size effect, the energy gap between the conduction and valence band must also be taken into consideration when the dimension of the device is diminished.

  2. Fundamental studies of the metallurgical, electrical, and optical properties of gallium phosphide and gallium phosphide alloys

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Abstracts, bibliographic data, oral presentations, and published papers on (1) Diffusion of Sulfur in Gallium Phosphide and Gallium Arsenide, and (2) Properties of Gallium Phosphide Schottky Barrier Rectifiers for Use at High Temperature are presented.

  3. Byproduct Metal Availability Constrained by Dynamics of Carrier Metal Cycle: The Gallium-Aluminum Example.

    PubMed

    Løvik, Amund N; Restrepo, Eliette; Müller, Daniel B

    2016-08-16

    Future availability of byproduct metals is not limited by geological stocks, but by the rate of primary production of their carrier metals, which in turn depends on the development of their in-use stocks, the product lifetimes, and the recycling rates. This linkage, while recognized conceptually in past studies, has not been adequately taken into account in resource availability estimates. Here, we determine the global supply potential for gallium up to 2050 based on scenarios for the global aluminum cycle, and compare it with scenarios for gallium demand derived from a dynamic model of the gallium cycle. We found that the gallium supply potential is heavily influenced by the development of the in-use stocks and recycling rates of aluminum. With current applications, a shortage of gallium is unlikely by 2050. However, the gallium industry may need to introduce ambitious recycling- and material efficiency strategies to meet its demand. If in-use stocks of aluminum saturate or decline, a shift to other gallium sources such as zinc or coal fly ash may be required.

  4. Gallium arsenide pilot line for high performance components

    NASA Astrophysics Data System (ADS)

    1990-01-01

    The Gallium Arsenide Pilot Line for High Performance Components (Pilot Line III) is to develop a facility for the fabrication of GaAs logic and memory chips. The first thirty months of this contract are now complete, and this report covers the period from March 27 through September 24, 1989. Similar to the PT-2M SRAM function for memories, the six logic circuits of PT-2L and PT-2M have served their functions as stepping stones toward the custom, standard cell, and cell array logic circuits. All but one of these circuits was right first time; the remaining circuit had a layout error due to a bug in the design rule checker that has since been fixed. The working devices all function over the full temperature range from -55 to 125 C. They all comfortably meet the 200 MHz requirement. They do not solidly conform to the required input and output voltage levels, particularly Vih. It is known that these circuits were designed with the older design models and that they came from an era where the DFET thresholds were often not on target.

  5. Two stream instability in n-type gallium arsenide semiconductor quantum plasma

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Muley, Apurva

    2018-01-01

    By using quantum hydrodynamic model, we derive a generalized dielectric response function for two stream instability (convective only) in n-type gallium arsenide semiconductor plasma. We investigate the phase and amplification profiles of two stream instability with externally applied electric field ranging from 2600 to 4000 kV m-1 in presence of non-dimensional quantum parameter- H. In this range, a significant number of electrons in satellite valley become comparable to the number of electrons in central valley. The presence of quantum corrections in plasma medium induces two novel modes; one of it has amplifying nature and propagates in forward direction. It also modifies the spectral profile of four pre-existing modes in classical plasma. The existence of two stream instability is also established analytically by deriving the real part of longitudinal electrokinetic power flow density.

  6. Development of a dome Fresnel lens/gallium arsenide photovoltaic concentrator for space applications

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark J.; Piszczor, Michael F.

    1987-01-01

    A novel photovoltaic concentrator system is currently being developed. Phase I of the program, completed in late 1986, produced a conceptual design for the concentrator system, including an array weight and performance estimates based on optical, electrical, and thermal analyses. Phase II of the program, just underway, concerns the fabrication and testing of prototype concentrator panels of the design. The concentrator system uses dome Fresnel lenses for optical concentration; gallium arsenide concentrator cells for power generation; prismatic cell covers to eliminate gridline obscuration losses; a backplane radiator for heat rejection; and a honeycomb structure for the deployable panel assembly. The conceptual design of the system, its anticipated performance, and its estimated weight are reported.

  7. Outdoor Performance of a Thin-Film Gallium-Arsenide Photovoltaic Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverman, T. J.; Deceglie, M. G.; Marion, B.

    2013-06-01

    We deployed a 855 cm2 thin-film, single-junction gallium arsenide (GaAs) photovoltaic (PV) module outdoors. Due to its fundamentally different cell technology compared to silicon (Si), the module responds differently to outdoor conditions. On average during the test, the GaAs module produced more power when its temperature was higher. We show that its maximum-power temperature coefficient, while actually negative, is several times smaller in magnitude than that of a Si module used for comparison. The positive correlation of power with temperature in GaAs is due to temperature-correlated changes in the incident spectrum. We show that a simple correction based on precipitablemore » water vapor (PWV) brings the photocurrent temperature coefficient into agreement with that measured by other methods and predicted by theory. The low operating temperature and small temperature coefficient of GaAs give it an energy production advantage in warm weather.« less

  8. Analytical and experimental procedures for determining propagation characteristics of millimeter-wave gallium arsenide microstrip lines

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    1989-01-01

    In this report, a thorough analytical procedure is developed for evaluating the frequency-dependent loss characteristics and effective permittivity of microstrip lines. The technique is based on the measured reflection coefficient of microstrip resonator pairs. Experimental data, including quality factor Q, effective relative permittivity, and fringing for 50-omega lines on gallium arsenide (GaAs) from 26.5 to 40.0 GHz are presented. The effects of an imperfect open circuit, coupling losses, and loading of the resonant frequency are considered. A cosine-tapered ridge-guide text fixture is described. It was found to be well suited to the device characterization.

  9. Indium Gallium Nitride Multijunction Solar Cell Simulation Using Silvaco Atlas

    DTIC Science & Technology

    2007-06-01

    models is of great interest in space applications. By increasing the efficiency of photovoltaics, the number of solar panels is decreased. Therefore...obtained in single-junction solar cells by using Gallium Arsenide. Monocrystalline Gallium Arsenide has a maximum efficiency of approximately 25.1% [10

  10. (Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2001-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  11. (Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2002-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  12. Direct observation of the orbital spin Kondo effect in gallium arsenide quantum dots

    NASA Astrophysics Data System (ADS)

    Shang, Ru-Nan; Zhang, Ting; Cao, Gang; Li, Hai-Ou; Xiao, Ming; Guo, Guang-Can; Guo, Guo-Ping

    2018-02-01

    Besides the spin Kondo effect, other degrees of freedom can give rise to the pseudospin Kondo effect. We report a direct observation of the orbital spin Kondo effect in a series-coupled gallium arsenide (GaAs) double quantum dot device where orbital degrees act as pseudospin. Electron occupation in both dots induces a pseudospin Kondo effect. In a region of one net spin impurity, complete spectra with three resonance peaks are observed. Furthermore, we observe a pseudo-Zeeman effect and demonstrate its electrical controllability for the artificial pseudospin in this orbital spin Kondo process via gate voltage control. The fourfold degeneracy point is realized at a specific value supplemented by spin degeneracy, indicating a transition from the SU(2) to the SU(4) Kondo effect.

  13. Growth of indium gallium arsenide thin film on silicon substrate by MOCVD technique

    NASA Astrophysics Data System (ADS)

    Chowdhury, Sisir; Das, Anish; Banerji, Pallab

    2018-05-01

    Indium gallium arsenide (InGaAs) thin film with indium phosphide (InP) buffer has been grown on p-type silicon (100) by Metal Organic Chemical Vapor Deposition (MOCVD) technique. To get a lattice matched substrate an Indium Phosphide buffer thin film is deposited onto Si substrate prior to InGaAs growth. The grown films have been investigated by UV-Vis-NIR reflectance spectroscopy. The band gap energy of the grown InGaAs thin films determined to be 0.82 eV from reflectance spectrum and the films are found to have same thickness for growth between 600 °C and 650 °C. Crystalline quality of the grown films has been studied by grazing incidence X-ray diffractometry (GIXRD).

  14. Advances in gallium arsenide monolithic microwave integrated-circuit technology for space communications systems

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Connolly, D. J.

    1986-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. In this paper, current developments in GaAs MMIC technology are described, and the status and prospects of the technology are assessed.

  15. Measured thermal images of a gallium arsenide power MMIC with and without RF applied to the input

    NASA Astrophysics Data System (ADS)

    Oxley, C. H.; Coaker, B. M.; Priestley, N. E.

    2003-04-01

    A gallium arsenide microwave monolithic integrated circuit (MMIC) power amplifier (M/ACom type MAAM71100) has been measured using infra-red microscope technology, with and without the application of a RF input signal. A reduction of approximately 10 °C in chip temperature was observed with the application of a RF input signal, which will influence the MTTF of the chip. Further, the measurement technique may be used to monitor the thermal impedance and dynamic cooling of RF power devices under operational conditions in complex circuits.

  16. (Polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2001-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interefere in the ethylene polymerization process, while affecting the the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  17. Development of gallium aluminum phosphide electroluminescent diodes

    NASA Technical Reports Server (NTRS)

    Chicotka, R. J.; Lorenz, M. R.; Nethercot, A. H.; Pettit, G. D.

    1972-01-01

    Work done on the development of gallium aluminum phosphide alloys for electroluminescent light sources is described. The preparation of this wide band gap semiconductor alloy, its physical properties (particularly the band structure, the electrical characteristics, and the light emitting properties) and work done on the fabrication of diode structures from these alloys are broadly covered.

  18. Wide band gap gallium arsenide nanoparticles fabricated using plasma method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, D., E-mail: dvjainnov@gmail.com; Mangla, O.; Physics Department, Hindu College, University of Delhi, Delhi, 110007

    2016-05-23

    In this paper, we have reported the fabrication of gallium arsenide (GaAs) nanoparticles on quartz placed at distance of 4.0 cm, 5.0 cm and 6.0 cm, respectively from top of anode. The fabrication has been carried out by highly energetic and high fluence ions of GaAs produced by hot, dense and extremely non-equilibrium plasma in a modified dense plasma focus device. GaAs nanoparticles have mean size of about 23 nm, 16 nm and 14 nm for deposition at a distance of 4.0 cm, 5.0 cm and 6.0 cm, respectively. The nanoparticles are crystalline in nature as evident from X-ray diffraction patterns. The band gap of nanoparticles is found tomore » increase from 1.425 eV to 5.37 eV at 4.0 cm distance, which further increases as distance increases. The wide band gap observed for fabricated GaAs nanoparticles suggest the possible applications of nanoparticles in laser systems.« less

  19. Characterization of Gallium Indium Phosphide and Progress of Aluminum Gallium Indium Phosphide System Quantum-Well Laser Diode.

    PubMed

    Hamada, Hiroki

    2017-07-28

    Highly ordered gallium indium phosphide layers with the low bandgap have been successfully grown on the (100) GaAs substrates, the misorientation toward [01-1] direction, using the low-pressure metal organic chemical vapor deposition method. It is found that the optical properties of the layers are same as those of the disordered ones, essentially different from the ordered ones having two orientations towards [1-11] and [11-1] directions grown on (100) gallium arsenide substrates, which were previously reported. The bandgap at 300 K is 1.791 eV. The value is the smallest ever reported, to our knowledge. The high performance transverse stabilized AlGaInP laser diodes with strain compensated quantum well structure, which is developed in 1992, have been successfully obtained by controlling the misorientation angle and directions of GaAs substrates. The structure is applied to quantum dots laser diodes. This paper also describes the development history of the quantum well and the quantum dots laser diodes, and their future prospects.

  20. Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures.

    PubMed

    Wan, Zhong; Kazakov, Aleksandr; Manfra, Michael J; Pfeiffer, Loren N; West, Ken W; Rokhinson, Leonid P

    2015-06-11

    Search for Majorana fermions renewed interest in semiconductor-superconductor interfaces, while a quest for higher-order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, such as a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures and development of highly transparent semiconductor-superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (>16 T) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two-dimensional electron gas at high magnetic fields.

  1. Modeling of aluminum/gallium interdiffusion in aluminum gallium arsenide/gallium arsenide heterostructure materials

    NASA Astrophysics Data System (ADS)

    Tai, Cheng-Yu

    There is considerable interest in interdiffusion in III-IV based structures, such as AlGaAs/GaAs heterojunctions and superlattices (SL). This topic is of practical and fundamental interest since it relates to the stability of devices based on superlattices and heterojunctions, as well as to fundamental diffusion theory. The main goals of this study are to obtain the Al/Ga interdiffusivity, to understand Al/Ga interdiffusion behavior, and to understand how Si doping enhances the diffusion in AlGaAs/GaAs structures. Our first approach entails experimental studies of Al/Ga interdiffusion using Molecular Beam Epitaxy (MBE) samples of AlGaAs/GaAs structures, with or without Si doping. SUPREM-IV.GS was used to model the Fermi-level dependencies and extract the diffusivities. The experimental results show that Al/Ga interdiffusion in undoped AlGaAs/GaAs structures is small, but can be greatly enhanced in doped materials. The extracted Al/Ga interdiffusivity values match well with the Al/Ga interdiffusivity values reported by other groups, and they appear to be composition-independent. The interdiffusivity values are smaller than published Ga self-diffusivity values which are often mistakenly assumed to be equivalent to the interdiffusivity. Another set of Al/Ga interdiffusion experiments using AlAs/GaAs SL were performed to study Al/Ga interdiffusion. The experimental results are consistent with the previously discussed heterostructure results. Using Darken's analysis and treating the AlAs/GaAs SL material as a non-ideal solution, ALAMODE was used to model our SL disordering results explicitly. Assuming that the Al/Ga interdiffusivity is different from the Ga and Al self-diffusivities, we extracted the Al self-diffusivity and the Al activity coefficient as a function of composition using published Ga self-diffusivity values. The simulation results fit well with the experimental results. The extracted Al self-diffusivity value is close to the extracted Al/Ga interdiffusivity but different from the Ga self-diffusivity. The last part of this thesis focuses on modeling localized Al/Ga disordering in AlGaAs/GaAs devices. We present a localized disordering process as a solution to controlling the lateral oxidation process in AlGaAs/GaAs materials. SUPREM can predict these localized disordering results and can help to design an annealing process corresponding to the required aperture size in devices.

  2. Defense Industrial Base Assessment: U.S. Imaging and Sensors Industry

    DTIC Science & Technology

    2006-10-01

    uncooled devices, but provide much higher resolution. The semiconductor material used in the detector is typically mercury cadmium telluride (HgCdTe...The material principally used in the arrays was mercury cadmium telluride (HgCdTe). Generation 2 detectors significantly improved the signal-to...Silicide (PtSi), Gallium Arsenide (GaAs), Aluminum Gallium Arsenide (AlGaAs), Mercury Cadmium Telluride (HgCdTe), Indium Gallium Arsenide (InGaAs

  3. Insertion Demonstrations of Digital Gallium Arsenide. OBP-80 Final Technical Report. Volume 1. Chip Set Schematics

    DTIC Science & Technology

    1992-01-01

    In First Out FMEA Failure Mode Effects Analysis EDM Engineering Development Model GALU Generic Arithmetic Logic Unit GaAs Gallium Arsenide GTE Ground...Bl B>55 * 1585/IS1/B1 = B56 I$11146/I$3/B1 B= 57 I$2S146/I$2/B1 B= 58 * $1146/1$1/81 =>B59 * 1590/IS3/Bl B= 60 *1$590/IS2/Bl== B61 * 1590/IS1/B1 - B62...vote circuitry. It is known that only 60 fC of charge is needed to upset the latch elements. It is interesting to speculate how much charge is required

  4. Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures

    PubMed Central

    Wan, Zhong; Kazakov, Aleksandr; Manfra, Michael J.; Pfeiffer, Loren N.; West, Ken W.; Rokhinson, Leonid P.

    2015-01-01

    Search for Majorana fermions renewed interest in semiconductor–superconductor interfaces, while a quest for higher-order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, such as a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures and development of highly transparent semiconductor–superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (>16 T) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two-dimensional electron gas at high magnetic fields. PMID:26067452

  5. Gallium arsenide processing elements for motion estimation full-search algorithm

    NASA Astrophysics Data System (ADS)

    Lopez, Jose F.; Cortes, P.; Lopez, S.; Sarmiento, Roberto

    2001-11-01

    The Block-Matching motion estimation algorithm (BMA) is the most popular method for motion-compensated coding of image sequence. Among the several possible searching methods to compute this algorithm, the full-search BMA (FBMA) has obtained great interest from the scientific community due to its regularity, optimal solution and low control overhead which simplifies its VLSI realization. On the other hand, its main drawback is the demand of an enormous amount of computation. There are different ways of overcoming this factor, being the use of advanced technologies, such as Gallium Arsenide (GaAs), the one adopted in this article together with different techniques to reduce area overhead. By exploiting GaAs properties, improvements can be obtained in the implementation of feasible systems for real time video compression architectures. Different primitives used in the implementation of processing elements (PE) for a FBMA scheme are presented. As a result, Pes running at 270 MHz have been developed in order to study its functionality and performance. From these results, an implementation for MPEG applications is proposed, leading to an architecture running at 145 MHz with a power dissipation of 3.48 W and an area of 11.5 mm2.

  6. Progress to a Gallium-Arsenide Deep-Center Laser

    PubMed Central

    Pan, Janet L.

    2009-01-01

    Although photoluminescence from gallium-arsenide (GaAs) deep-centers was first observed in the 1960s, semiconductor lasers have always utilized conduction-to-valence-band transitions. Here we review recent materials studies leading to the first GaAs deep-center laser. First, we summarize well-known properties: nature of deep-center complexes, Franck-Condon effect, photoluminescence. Second, we describe our recent work: insensitivity of photoluminescence with heating, striking differences between electroluminescence and photoluminescence, correlation between transitions to deep-states and absence of bandgap-emission. Room-temperature stimulated-emission from GaAs deep-centers was observed at low electrical injection, and could be tuned from the bandgap to half-the-bandgap (900–1,600 nm) by changing the electrical injection. The first GaAs deep-center laser was demonstrated with electrical injection, and exhibited a threshold of less than 27 mA/cm2 in continuous-wave mode at room temperature at the important 1.54 μm fiber-optic wavelength. This small injection for laser action was explained by fast depopulation of the lower state of the optical transition (fast capture of free holes onto deep-centers), which maintains the population inversion. The evidence for laser action included: superlinear L-I curve, quasi-Fermi level separations satisfying Bernard-Duraffourg’s criterion, optical gains larger than known significant losses, clamping of the optical-emission from lossy modes unable to reach laser action, pinning of the population distribution during laser action.

  7. Characterization of Gallium Indium Phosphide and Progress of Aluminum Gallium Indium Phosphide System Quantum-Well Laser Diode

    PubMed Central

    Hamada, Hiroki

    2017-01-01

    Highly ordered gallium indium phosphide layers with the low bandgap have been successfully grown on the (100) GaAs substrates, the misorientation toward [01−1] direction, using the low-pressure metal organic chemical vapor deposition method. It is found that the optical properties of the layers are same as those of the disordered ones, essentially different from the ordered ones having two orientations towards [1−11] and [11−1] directions grown on (100) gallium arsenide substrates, which were previously reported. The bandgap at 300 K is 1.791 eV. The value is the smallest ever reported, to our knowledge. The high performance transverse stabilized AlGaInP laser diodes with strain compensated quantum well structure, which is developed in 1992, have been successfully obtained by controlling the misorientation angle and directions of GaAs substrates. The structure is applied to quantum dots laser diodes. This paper also describes the development history of the quantum well and the quantum dots laser diodes, and their future prospects. PMID:28773227

  8. Study of Gallium Arsenide Etching in a DC Discharge in Low-Pressure HCl-Containing Mixtures

    NASA Astrophysics Data System (ADS)

    Dunaev, A. V.; Murin, D. B.

    2018-04-01

    Halogen-containing plasmas are often used to form topological structures on semiconductor surfaces; therefore, spectral monitoring of the etching process is an important diagnostic tool in modern electronics. In this work, the emission spectra of gas discharges in mixtures of hydrogen chloride with argon, chlorine, and hydrogen in the presence of a semiconducting gallium arsenide plate were studied. Spectral lines and bands of the GaAs etching products appropriate for monitoring the etching rate were determined. It is shown that the emission intensity of the etching products is proportional to the GaAs etching rate in plasmas of HCl mixtures with Ar and Cl2, which makes it possible to monitor the etching process in real time by means of spectral methods.

  9. The electrical properties of 60 keV zinc ions implanted into semi-insulating gallium arsenide

    NASA Technical Reports Server (NTRS)

    Littlejohn, M. A.; Anikara, R.

    1972-01-01

    The electrical behavior of zinc ions implanted into chromium-doped semiinsulating gallium arsenide was investigated by measurements of the sheet resistivity and Hall effect. Room temperature implantations were performed using fluence values from 10 to the 12th to 10 to the 15th power/sq cm at 60 keV. The samples were annealed for 30 minutes in a nitrogen atmosphere up to 800 C in steps of 200 C and the effect of this annealing on the Hall effect and sheet resistivity was studied at room temperature using the Van der Pauw technique. The temperature dependence of sheet resistivity and mobility was measured from liquid nitrogen temperature to room temperature. Finally, a measurement of the implanted profile was obtained using a layer removal technique combined with the Hall effect and sheet resistivity measurements.

  10. Study of sulfur bonding on gallium arsenide (100) surfaces using supercritical fluid extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabauy, P.; Darici, Y.; Furton, K.G.

    1995-12-01

    In the last decades Gallium Arsenide (GaAs) has been considered the semiconductor that will replace silicon because of its direct band gap and high electron mobility. Problems with GaAs Fermi level pinning has halted its widespread use in the electronics industry. The formation of oxides on GaAs results in a high density of surface states that effectively pin the surface Fermi level at the midgap. Studies on sulfur passivation have eliminated oxidation and virtually unpinned the Fermi level on the GaAs surface. This has given rise to interest in sulfur-GaAs bonds. In this presentation, we will discuss the types ofmore » sulfur bonds extracted from a sulfur passivated GaAs (100) using Supercritical Fluid (CO2) Extraction (SFE). SFE can be a valuable tool in the study of chemical speciations on semiconductor surfaces. The variables evaluated to effectively study the sulfur species from the GaAs surface include passivation techniques, supercritical fluid temperatures, densities, and extraction times.« less

  11. Photodetectors based on carbon nanotubes deposited by using a spray technique on semi-insulating gallium arsenide

    PubMed Central

    Nitti, Maria Angela; Valentini, Marco; Valentini, Antonio; Ligonzo, Teresa; De Pascali, Giuseppe; Ambrico, Marianna

    2014-01-01

    Summary In this paper, a spray technique is used to perform low temperature deposition of multi-wall carbon nanotubes on semi-insulating gallium arsenide in order to obtain photodectors. A dispersion of nanotube powder in non-polar 1,2-dichloroethane is used as starting material. The morphological properties of the deposited films has been analysed by means of electron microscopy, in scanning and transmission mode. Detectors with different layouts have been prepared and current–voltage characteristics have been recorded in the dark and under irradiation with light in the range from ultraviolet to near infrared. The device spectral efficiency obtained from the electrical characterization is finally reported and an improvement of the photodetector behavior due to the nanotubes is presented and discussed. PMID:25383309

  12. Outer-sphere interaction of aluminum and gallium solvates with competitive anions in 1,2-propanediol solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrosyants, S.P.; Buslaeva, E.R.

    1986-04-01

    The interaction of aluminum and gallium solvates with ..pi..-acid ligand in 1,2-propanediol solutions has been investigated. The formation of associates of hexacoordinate aluminum solvates depends on the solvation of the anions in the bulk of the solution or on the faces of the solvento complexes. In the case of gallium the association of the solvates with the anions is determined by two factors: the existence of a configurational equilibrium for the solvento complexes and the preferential solvation of the competitive ..pi..-acid ligands.

  13. Design of a Voltage Tunable Broadband Quantum Well Infrared Photodetector

    DTIC Science & Technology

    2002-06-01

    1 B. PROGRESS OF QWIPS ...converting some of the incident photons to an electric signal. A Quantum Well Infrared Photodetector ( QWIP ) consists of a stack of quantum wells...arsenide (GaAs ) and aluminum gallium arsenide ( AsGaAl xx −1 ) with different aluminum compositions allowed the fabrication of novel QWIP detectors

  14. A gallium-arsenide digital phase shifter for clock and control signal distribution in high-speed digital systems

    NASA Technical Reports Server (NTRS)

    Fouts, Douglas J.

    1992-01-01

    The design, implementation, testing, and applications of a gallium-arsenide digital phase shifter and fan-out buffer are described. The integrated circuit provides a method for adjusting the phase of high-speed clock and control signals in digital systems, without the need for pruning cables, multiplexing between cables of different lengths, delay lines, or similar techniques. The phase of signals distributed with the described chip can be dynamically adjusted in eight different steps of approximately 60 ps per step. The IC also serves as a fan-out buffer and provides 12 in-phase outputs. The chip is useful for distributing high-speed clock and control signals in synchronous digital systems, especially if components are distributed over a large physical area or if there is a large number of components.

  15. Epitaxial gallium arsenide wafers

    NASA Technical Reports Server (NTRS)

    Black, J. F.; Robinson, L. B.

    1971-01-01

    The preparation of GaAs epitaxial layers by a vapor transport process using AsCl3, Ga and H2 was pursued to provide epitaxial wafers suitable for the fabrication of transferred electron oscillators and amplifiers operating in the subcritical region. Both n-n(+) structures, and n(++)-n-n(+) sandwich structures were grown using n(+) (Si-doped) GaAs substrates. Process variables such as the input AsCl3 concentration, gallium temperature, and substrate temperature and temperature gradient and their effects on properties are presented and discussed.

  16. Combined Silicon and Gallium Arsenide Solar Cell UV Testing

    NASA Technical Reports Server (NTRS)

    Willowby, Douglas

    2005-01-01

    The near and long-term effect of UV on silicon solar cells is relatively understood. In an effort to learn more about the effects of UV radiation on the performance of GaAs/Ge solar cells, silicon and gallium arsenide on germanium (GaAs/Ge) solar cells were placed in a vacuum chamber and irradiated with ultraviolet light by a Spectrolab XT 10 solar simulator. Seventeen GaAs/Ge and 8 silicon solar cells were mounted on an 8 inch copper block. By having all the cells on the same test plate we were able to do direct comparison of silicon and GaAs/Ge solar cell degradation. The test article was attached to a cold plate in the vacuum chamber to maintain the cells at 25 degrees Celsius. A silicon solar cell standard was used to measure beam uniformity and any degradation of the ST-10 beam. The solar cell coverings tested included cells with AR-0213 coverglass, fused silica coverglass, BRR-0213 coverglass and cells without coverglass. Of interest in the test is the BRR-0213 coverglass material manufactured by OCLI. It has an added Infrared rejection coating to help reduce the solar cell operating temperature. This coverglass is relatively new and of interest to several current and future programs at Marshall. Due to moves of the laboratory equipment and location only 350 hours of UV degradation have been completed. During this testing a significant leveling off in the rate of degradation was reached. Data from the test and comparisons of the UV effect of the bare cells and cells with coverglass material will be presented.

  17. Near-infrared photoluminescence biosensing platform with gold nanorods-over-gallium arsenide nanohorn array.

    PubMed

    Zhang, Yiming; Jiang, Tao; Tang, Longhua

    2017-11-15

    The near-infrared (NIR) optical detection of biomolecules with high sensitivity and reliability have been expected, however, it is still a challenge. In this work, we present a gold nanorods (AuNRs)-over-gallium arsenide nanohorn-like array (GaAs NHA) system that can be used for the ultrasensitive and specific NIR photoluminescence (PL) detection of DNA and proteins. The fabrication of GaAs NHA involved the technique of colloidal lithography and inductively coupled plasma dry etching, yielding large-area and well-defined nanostructural array, and exhibiting an improved PL emission compared to the planar GaAs substrate. Importantly, we found that the DNA-bridged AuNRs attachment on NHA could further improve the PL intensity from GaAs, and thereby provide the basis for the NIR optical sensing of biological analytes. We demonstrated that DNA and thrombin could be sensitively and specifically detected, with the detection limit of 1 pM for target DNA and 10 pM for thrombin. Such ultrasensitive NIR optical platform can extend to the detection of other biomarkers and is promising for clinical diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Collector-up aluminum gallium arsenide/gallium arsenide heterojunction bipolar transistors using oxidized aluminum arsenide for current confinement

    NASA Astrophysics Data System (ADS)

    Massengale, Alan Ross

    1998-12-01

    The discovery in 1990 that the wet thermal oxidation of AlAs can create a stable native oxide has added a new constituent, AlAs-oxide, to the AlGaAs/GaAs materials system. Native oxides of high Al mole-fraction AlGaAs are being used to confine electrical and/or optical fields in many types of electronic and optoelectronic structures with very promising results. Among these devices are collector-up heterojunction bipolar transistors (HBTs). Collector-up HBTs offer a means to reduce base-collector capacitance relative to their emitter-up counterparts, and thus to improve device performance. A novel method for fabricating collector-up AlGaAs/GaAs HBTs where an AlAs layer is inserted into the emitter layer and is oxidized in water vapor at 450sp°C has been developed. The resulting AlAs-oxide serves as a current confining layer that constricts collector current flow to the intrinsic portion of the device. Compared to previous methods of fabricating these devices, the process of converting AlAs into an insulator requires only one growth, and does not suffer from implant damage in the base. Because the lateral oxidation of AlAs is a process that proceeds at rates of microns per minute, one of the major challenges facing its implementation is the ability to accurately control the oxidation rate over the wafer, and from one wafer to the next. In the course of work on the oxidation of AlAs, a method to lithographically form lateral oxidation stop layers has been achieved. This technique utilizes impurity induced layer disordering (IILD) in heavily Si-doped buried planes, combined with selective surface patterning and thermal annealing, to create a lateral variation in the Al mole-fraction of the layer to be oxidized.

  19. Indium Phosphide Window Layers for Indium Gallium Arsenide Solar Cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.

    2005-01-01

    Window layers help in reducing the surface recombination at the emitter surface of the solar cells resulting in significant improvement in energy conversion efficiency. Indium gallium arsenide (In(x)Ga(1-x)As) and related materials based solar cells are quite promising for photovoltaic and thermophotovoltaic applications. The flexibility of the change in the bandgap energy and the growth of InGaAs on different substrates make this material very attractive for multi-bandgap energy, multi-junction solar cell approaches. The high efficiency and better radiation performance of the solar cell structures based on InGaAs make them suitable for space power applications. This work investigates the suitability of indium phosphide (InP) window layers for lattice-matched In(0.53)Ga(0.47)As (bandgap energy 0.74 eV) solar cells. We present the first data on the effects of the p-type InP window layer on p-on-n lattice-matched InGaAs solar cells. The modeled quantum efficiency results show a significant improvement in the blue region with the InP window. The bare InGaAs solar cell performance suffers due to high surface recombination velocity (10(exp 7) cm/s). The large band discontinuity at the InP/InGaAs heterojunction offers a great potential barrier to minority carriers. The calculated results demonstrate that the InP window layer effectively passivates the solar cell front surface, hence resulting in reduced surface recombination and therefore, significantly improving the performance of the InGaAs solar cell.

  20. Forward-biased current annealing of radiation degraded indium phosphide and gallium arsenide solar cells

    NASA Technical Reports Server (NTRS)

    Michael, Sherif; Cypranowski, Corinne; Anspaugh, Bruce

    1990-01-01

    The preliminary results of a novel approach to low-temperature annealing of previously irradiated indium phosphide and gallium arsenide solar cells are reported. The technique is based on forward-biased current annealing. The two types of III-V solar cells were irradiated with 1-MeV electrons to a fluence level of (1-10) x 10 to the 14th electrons/sq cm. Several annealing attempts were made, varying all conditions. Optimum annealing was achieved when cells were injected with minority currents at a constant 90 C. The current density for each type of cell was also determined. Significant recovery of degraded parameters was achieved in both cases. However, the InP cell recovery notably exceeded the recovery in GaAs cells. The recovery is thought to be caused by current-stimulated reordering of the radiator-induced displacement damage. Both types of cell were then subjected to several cycles of irradiation and annealing. The results were also very promising. The significant recovery of degraded cell parameters at low temperature might play a major role in considerably extending the end of life of future spacecraft.

  1. Gallium--A smart metal

    USGS Publications Warehouse

    Foley, Nora; Jaskula, Brian W.

    2013-01-01

    Gallium is a soft, silvery metallic element with an atomic number of 31 and the chemical symbol Ga. The French chemist Paul-Emile Lecoq de Boisbaudran discovered gallium in sphalerite (a zinc-sulfide mineral) in 1875 using spectroscopy. He named the element "gallia" after his native land of France (formerly Gaul; in Latin, Gallia). The existence of gallium had been predicted in 1871 by Dmitri Mendeleev, the Russian chemist who published the first periodic table of the elements. Mendeleev noted a gap in his table and named the missing element "eka-aluminum" because he determined that its location was one place away from aluminum in the table. Mendeleev thought that the missing element (gallium) would be very much like aluminum in its chemical properties, and he was right. Solid gallium has a low melting temperature (~29 degrees Celsius, or °C) and an unusually high boiling point (~2,204 °C). Because of these properties, the earliest uses of gallium were in high-temperature thermometers and in designing metal alloys that melt easily. The development of a gallium-based direct band-gap semiconductor in the 1960s led to what is now one of the most well-known applications for gallium-based products--the manufacture of smartphones and data-centric networks.

  2. Metal organic chemical vapor deposition of 111-v compounds on silicon

    DOEpatents

    Vernon, Stanley M.

    1986-01-01

    Expitaxial composite comprising thin films of a Group III-V compound semiconductor such as gallium arsenide (GaAs) or gallium aluminum arsenide (GaAlAs) on single crystal silicon substrates are disclosed. Also disclosed is a process for manufacturing, by chemical deposition from the vapor phase, epitaxial composites as above described, and to semiconductor devices based on such epitaxial composites. The composites have particular utility for use in making light sensitive solid state solar cells.

  3. Development of a unique laboratory standard: Indium gallium arsenide detector for the 500-1700 nm spectral region

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A planar (5 mm diameter) indium gallium arsenide detector having a high (greater than 50 pct) quantum efficiency from the visible into the infrared spectrum (500 to 1700 nm) was fabricated. Quantum efficiencies as high as 37 pct at 510 nm, 58 pct at 820 nm and 62 pct at 1300 nm and 1550 nm were measured. A planar InP/InGaAs detector structure was also fabricated using vapor phase epitaxy to grow device structures with 0, 0.2, 0.4 and 0.6 micrometer thick InP caps. Quantum efficiency was studied as a function of cap thickness. Conventional detector structures were also used by completely etching off the InP cap after zinc diffusion. Calibrated quantum efficiencies were measured. Best results were obtained with devices whose caps were completely removed by etching. Certain problems still remain with these detectors including non-uniform shunt resistance, reproducibility, contact resistance and narrow band anti-reflection coatings.

  4. Structural anomalies in undoped Gallium Arsenide observed in high resolution diffraction imaging with monochromatic synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Steiner, B.; Kuriyama, M.; Dobbyn, R. C.; Laor, U.; Larson, D.; Brown, M.

    1988-01-01

    Novel, streak-like disruption features restricted to the plane of diffraction have recently been observed in images obtained by synchrotron radiation diffraction from undoped, semi-insulating gallium arsenide crystals. These features were identified as ensembles of very thin platelets or interfaces lying in (110) planes, and a structural model consisting of antiphase domain boundaries was proposed. We report here the other principal features observed in high resolution monochromatic synchrotron radiation diffraction images: (quasi) cellular structure; linear, very low-angle subgrain boundaries in (110) directions, and surface stripes in a (110) direction. In addition, we report systematic differences in the acceptance angle for images involving various diffraction vectors. When these observations are considered together, a unifying picture emerges. The presence of ensembles of thin (110) antiphase platelet regions or boundaries is generally consistent not only with the streak-like diffraction features but with the other features reported here as well. For the formation of such regions we propose two mechanisms, operating in parallel, that appear to be consistent with the various defect features observed by a variety of techniques.

  5. Structural anomalies in undoped gallium arsenide observed in high-resolution diffraction imaging with monochromatic synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Steiner, B.; Kuriyama, M.; Dobbyn, R. C.; Laor, U.; Larson, D.

    1989-01-01

    Novel, streak-like disruption features restricted to the plane of diffraction have recently been observed in images obtained by synchrotron radiation diffraction from undoped, semi-insulating gallium arsenide crystals. These features were identified as ensembles of very thin platelets or interfaces lying in (110) planes, and a structural model consisting of antiphase domain boundaries was proposed. We report here the other principal features observed in high resolution monochromatic synchrotron radiation diffraction images: (quasi) cellular structure; linear, very low-angle subgrain boundaries in (110) directions, and surface stripes in a (110) direction. In addition, we report systematic differences in the acceptance angle for images involving various diffraction vectors. When these observations are considered together, a unifying picture emerges. The presence of ensembles of thin (110) antiphase platelet regions or boundaries is generally consistent not only with the streak-like diffraction features but with the other features reported here as well. For the formation of such regions we propose two mechanisms, operating in parallel, that appear to be consistent with the various defect features observed by a variety of techniques.

  6. Continuum modelling of silicon diffusion in indium gallium arsenide

    NASA Astrophysics Data System (ADS)

    Aldridge, Henry Lee, Jr.

    A possible method to overcome the physical limitations experienced by continued transistor scaling and continue improvements in performance and power consumption is integration of III-V semiconductors as alternative channel materials for logic devices. Indium Gallium Arsenide (InGaAs) is such a material from the III-V semiconductor family, which exhibit superior electron mobilities and injection velocities than that of silicon. In order for InGaAs integration to be realized, contact resistances must be minimized through maximizing activation of dopants in this material. Additionally, redistribution of dopants during processing must be clearly understood and ultimately controlled at the nanometer-scale. In this work, the activation and diffusion behavior of silicon, a prominent n-type dopant in InGaAs, has been characterized and subsequently modelled using the Florida Object Oriented Process and Device Simulator (FLOOPS). In contrast to previous reports, silicon exhibits non-negligible diffusion in InGaAs, even for smaller thermal budget rapid thermal anneals (RTAs). Its diffusion is heavily concentration-dependent, with broadening "shoulder-like" profiles when doping levels exceed 1-3x1019cm -3, for both ion-implanted and Molecular Beam Epitaxy (MBE)-grown cases. Likewise a max net-activation value of ˜1.7x1019cm -3 is consistently reached with enough thermal processing, regardless of doping method. In line with experimental results and several ab-initio calculation results, rapid concentration-dependent diffusion of Si in InGaAs and the upper limits of its activation is believed to be governed by cation vacancies that serve as compensating defects in heavily n-type regions of InGaAs. These results are ultimately in line with an amphoteric defect model, where the activation limits of dopants are an intrinsic limitation of the material, rather than governed by individual dopant species or their methods of incorporation. As a result a Fermi level dependent point

  7. Model for transport and reaction of defects and carriers within displacement cascades in gallium arsenide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wampler, William R., E-mail: wrwampl@sandia.gov; Myers, Samuel M.

    A model is presented for recombination of charge carriers at evolving displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with the details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers,more » and defects within a representative spherically symmetric cluster of defects. The initial radial defect profiles within the cluster were determined through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to displacement damage from energetic particle irradiation.« less

  8. POLLUTION PREVENTION IN THE SEMICONDUCTOR INDUSTRY THROUGH RECOVERY AND RECYCLING OF GALLIUM AND ARSENIC FROM GAAS POLISHING WASTES

    EPA Science Inventory

    A process was developed for the recovery of both arsenic and gallium from gallium arsenide polishing wastes. The economics associated with the current disposal techniques utilizing ferric hydroxide precipitation dictate that sequential recovery of toxic arsenic and valuble galliu...

  9. Radiation effects in silicon and gallium arsenide solar cells using isotropic and normally incident radiation

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Downing, R. G.

    1984-01-01

    Several types of silicon and gallium arsenide solar cells were irradiated with protons with energies between 50 keV and 10 MeV at both normal and isotropic incidence. Damage coefficients for maximum power relative to 10 MeV were derived for these cells for both cases of omni-directional and normal incidence. The damage coefficients for the silicon cells were found to be somewhat lower than those quoted in the Solar Cell Radiation Handbook. These values were used to compute omni-directional damage coefficients suitable for solar cells protected by coverglasses of practical thickness, which in turn were used to compute solar cell degradation in two proton-dominated orbits. In spite of the difference in the low energy proton damage coefficients, the difference between the handbook prediction and the prediction using the newly derived values was negligible. Damage coefficients for GaAs solar cells for short circuit current, open circuit voltage, and maximum power were also computed relative to 10 MeV protons. They were used to predict cell degradation in the same two orbits and in a 5600 nmi orbit. Results show the performance of the GaAs solar cells in these orbits to be superior to that of the Si cells.

  10. Transport-reaction model for defect and carrier behavior within displacement cascades in gallium arsenide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wampler, William R.; Myers, Samuel M.

    2014-02-01

    A model is presented for recombination of charge carriers at displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers and defectsmore » within a representative spherically symmetric cluster. The initial radial defect profiles within the cluster were chosen through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Charging of the defects can produce high electric fields within the cluster which may influence transport and reaction of carriers and defects, and which may enhance carrier recombination through band-to-trap tunneling. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to pulsed neutron irradiation.« less

  11. Gallium arsenide-gallium nitride wafer fusion and the n-aluminum gallium arsenide/p-gallium arsenide/n-gallium nitride double heterojunction bipolar transistor

    NASA Astrophysics Data System (ADS)

    Estrada, Sarah M.

    This dissertation describes the n-AlGaAs/p-GaAs/n-GaN heterojunction bipolar transistor (HBT), the first transistor formed via wafer fusion. The fusion process was developed as a way to combine lattice-mismatched materials for high-performance electronic devices, not obtainable via conventional all-epitaxial formation methods. Despite the many challenges of wafer fusion, successful transistors were demonstrated and improved, via the optimization of material structure and fusion process conditions. Thus, this project demonstrated the integration of disparate device materials, chosen for their optimal electronic properties, unrestricted by the conventional (and very limiting) requirement of lattice-matching. By combining an AlGaAs-GaAs emitter-base with a GaN collector, the HBT benefited from the high breakdown voltage of GaN, and from the high emitter injection efficiency and low base transit time of AlGaAs-GaAs. Because the GaAs-GaN lattice mismatch precluded an all-epitaxial formation of the HBT, the GaAs-GaN heterostructure was formed via fusion. This project began with the development of a fusion process that formed mechanically robust and electrically active GaAs-GaN heterojunctions. During the correlation of device electrical performance with a systematic variation of fusion conditions over a wide range (500--750°C, 0.5--2hours), a mid-range fusion temperature was found to induce optimal HBT electrical performance. Transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS) were used to assess possible reasons for the variations observed in device electrical performance. Fusion process conditions were correlated with electrical (I-V), structural (TEM), and chemical (SIMS) analyses of the resulting heterojunctions, in order to investigate the trade-off between increased interfacial disorder (TEM) with low fusion temperature and increased diffusion (SIMS) with high fusion temperature. The best do device results (IC ˜ 2.9 kA/cm2 and beta ˜ 3.5, at VCE = 20V and IB = 10mA) were obtained with an HBT formed via fusion at 600°C for 1 hour, with an optimized base-collector design. This was quite an improvement, as compared to an HBT with a simpler base-collector structure, also fused at 600°C for 1 hour (IC ˜ 0.83 kA/cm2 and beta ˜ 0.89, at VCE = 20V and IB = 10mA). Fused AlGaAs-GaAs-GaAs HBTs were compared to fused AlGaAs-GaAs-GaN HBTs, demonstrating that the use of a wider bandgap collector (Eg,GaN > Eg,GaAs) did indeed improve HBT performance at high applied voltages, as desired for high-power applications.

  12. A novel three-jet microreactor for localized metal-organic chemical vapour deposition of gallium arsenide: design and simulation

    NASA Astrophysics Data System (ADS)

    Konakov, S. A.; Krzhizhanovskaya, V. V.

    2016-08-01

    We present a novel three-jet microreactor design for localized deposition of gallium arsenide (GaAs) by low-pressure Metal-Organic Chemical Vapour Deposition (MOCVD) for semiconductor devices, microelectronics and solar cells. Our approach is advantageous compared to the standard lithography and etching technology, since it preserves the nanostructure of the deposited material, it is less time-consuming and less expensive. We designed two versions of reactor geometry with a 10-micron central microchannel for precursor supply and with two side jets of a dilutant to control the deposition area. To aid future experiments, we performed computational modeling of a simplified-geometry (twodimensional axisymmetric) microreactor, based on Navier-Stokes equations for a laminar flow of chemically reacting gas mixture of Ga(CH3)3-AsH3-H2. Simulation results show that we can achieve a high-rate deposition (over 0.3 μm/min) on a small area (less than 30 μm diameter). This technology can be used in material production for microelectronics, optoelectronics, photovoltaics, solar cells, etc.

  13. Computer modelling of aluminum-gallium arsenide/gallium arsenide multilayer photovoltaics. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Wagner, Michael Broderick

    1987-01-01

    The modeled cascade cells offer an alternative to conventional series cascade designs that require a monolithic intercell ohmic contact. Selective electrodes provide a simple means of fabricating three-terminal devices, which can be configured in complementary pairs to circumvent the attendant losses and fabrication complexities of intercell ohmic contacts. Moreover, selective electrodes allow incorporation of additional layers in the upper subcell which can improve spectral response and increase radiation tolerance. Realistic simulations of such cells operating under one-sun AMO conditions show that the seven-layer structure is optimum from the standpoint of beginning-of-life efficiency and radiation tolerance. Projected efficiencies exceed 26 percent. Under higher concentration factors, it should be possible to achieve efficiencies beyond 30 percent. However, to simulate operation at high concentration will require a model for resistive losses. Overall, these devices appear to be a promising contender for future space applications.

  14. Arsenic moiety in gallium arsenide is responsible for neuronal apoptosis and behavioral alterations in rats.

    PubMed

    Flora, Swaran J S; Bhatt, Kapil; Mehta, Ashish

    2009-10-15

    Gallium arsenide (GaAs), an intermetallic semiconductor finds widespread applications in high frequency microwave and millimeter wave, and ultra fast supercomputers. Extensive use of GaAs has led to increased exposure to humans working in semiconductor industry. GaAs has the ability to dissociate into its constitutive moieties at physiological pH and might be responsible for the oxidative stress. The present study was aimed at evaluating, the principle moiety (Ga or As) in GaAs to cause neurological dysfunction based on its ability to cause apoptosis, in vivo and in vitro and if this neuronal dysfunction translated to neurobehavioral changes in chronically exposed rats. Result indicated that arsenic moiety in GaAs was mainly responsible for causing oxidative stress via increased reactive oxygen species (ROS) and nitric oxide (NO) generation, both in vitro and in vivo. Increased ROS further caused apoptosis via mitochondrial driven pathway. Effects of oxidative stress were also confirmed based on alterations in antioxidant enzymes, GPx, GST and SOD in rat brain. We noted that ROS induced oxidative stress caused changes in the brain neurotransmitter levels, Acetylcholinesterase and nitric oxide synthase, leading to loss of memory and learning in rats. The study demonstrates for the first time that the slow release of arsenic moiety from GaAs is mainly responsible for oxidative stress induced apoptosis in neuronal cells causing behavioral changes.

  15. Dynamics and control of gold-encapped gallium arsenide nanowires imaged by 4D electron microscopy

    PubMed Central

    Chen, Bin; Fu, Xuewen; Tang, Jau; Lysevych, Mykhaylo; Tan, Hark Hoe; Jagadish, Chennupati; Zewail, Ahmed H.

    2017-01-01

    Eutectic-related reaction is a special chemical/physical reaction involving multiple phases, solid and liquid. Visualization of a phase reaction of composite nanomaterials with high spatial and temporal resolution provides a key understanding of alloy growth with important industrial applications. However, it has been a rather challenging task. Here, we report the direct imaging and control of the phase reaction dynamics of a single, as-grown free-standing gallium arsenide nanowire encapped with a gold nanoparticle, free from environmental confinement or disturbance, using four-dimensional (4D) electron microscopy. The nondestructive preparation of as-grown free-standing nanowires without supporting films allows us to study their anisotropic properties in their native environment with better statistical character. A laser heating pulse initiates the eutectic-related reaction at a temperature much lower than the melting points of the composite materials, followed by a precisely time-delayed electron pulse to visualize the irreversible transient states of nucleation, growth, and solidification of the complex. Combined with theoretical modeling, useful thermodynamic parameters of the newly formed alloy phases and their crystal structures could be determined. This technique of dynamical control aided by 4D imaging of phase reaction processes on the nanometer-ultrafast time scale opens new venues for engineering various reactions in a wide variety of other systems. PMID:29158393

  16. Application of Copper Indium Gallium Diselenide Photovoltaic Cells to Extend the Endurance and Capabilities of Unmanned Aerial Vehicles

    DTIC Science & Technology

    2009-09-01

    Group V element to make them n or p material. Another common group of semiconductors are called III–V compounds , such as gallium arsenide (GaAs), or...these compounds used for photovoltaics are Cadmium Telluride (CdTe), and Copper Indium Gallium DiSelenide, commonly referred to as CIGS [49]. Figure...INDIUM GALLIUM DISELENIDE PHOTOVOLTAIC CELLS TO EXTEND THE ENDURANCE AND CAPABILITIES OF UNMANNED AERIAL VEHICLES by William R. Hurd

  17. Note: All solid-state high repetitive sub-nanosecond risetime pulse generator based on bulk gallium arsenide avalanche semiconductor switches.

    PubMed

    Hu, Long; Su, Jiancang; Ding, Zhenjie; Hao, Qingsong; Fan, Yajun; Liu, Chunliang

    2016-08-01

    An all solid-state high repetitive sub-nanosecond risetime pulse generator featuring low-energy-triggered bulk gallium arsenide (GaAs) avalanche semiconductor switches and a step-type transmission line is presented. The step-type transmission line with two stages is charged to a potential of 5.0 kV also biasing at the switches. The bulk GaAs avalanche semiconductor switch closes within sub-nanosecond range when illuminated with approximately 87 nJ of laser energy at 905 nm in a single pulse. An asymmetric dipolar pulse with peak-to-peak amplitude of 9.6 kV and risetime of 0.65 ns is produced on a resistive load of 50 Ω. A technique that allows for repetition-rate multiplication of pulse trains experimentally demonstrated that the parallel-connected bulk GaAs avalanche semiconductor switches are triggered in sequence. The highest repetition rate is decided by recovery time of the bulk GaAs avalanche semiconductor switch, and the operating result of 100 kHz of the generator is discussed.

  18. Antitumor Activity and Toxicity of Salts of Inorganic Group IIIa Metals: Aluminum, Gallium, Indium, and Thallium

    PubMed Central

    Hart, Michael M.; Adamson, Richard H.

    1971-01-01

    The toxicity and antitumor activity of salts of the Group IIIa metals aluminum, gallium, indium, and thallium were determined. With the (lethal dose)50 as a measure, the decreasing order of toxicity was TlCl3 ≥ In(NO3)3 > Ga(NO3)3 > Al(NO3)3. All four metals exhibited antitumor activity, but when the tumor was inoculated by a route different from that of the drug, only Ga+3 and, to a lesser extent, In+3 inhibited tumor growth. Ga(NO3)3 was found to inhibit the growth of three out of four rodent solid tumors. Gallium therefore has potential therapeutic usefulness for treatment of solid tumors in man. PMID:5283954

  19. An Indium Gallium Arsenide Visible/SWIR Focal Plane Array for Low Light Level Imaging

    NASA Technical Reports Server (NTRS)

    Cohen, Marshall J.; Ettenberg, Martin H.; Lange, Michael J.; Olsen, Gregory H.

    1999-01-01

    PIN photodiodes fabricated from indium gallium arsenide lattice-matched to indium phosphide substrates (In(.53)Ga(.47)As/InP) exhibit low reverse saturation current densities (JD < 10(exp -8) A/sq cm), and high shunt resistance-area products (RoA > 10(exp 6) omega-sq cm) at T=290K. Backside-illuminated, hybrid-integrated InGaAs FPAs are sensitive from 0.9 micrometers to 1.7 micrometers. 290K detectivities, D(*), greater than 10(exp 14) cm-(square root of Hz/W) are demonstrated. This represents the highest room temperature detectivity of any infrared material. The long wavelength cutoff (1.7 micrometers) makes In(.53)Ga(.47)As an idea match to the available airglow that has major peaks at 1.3 micrometers and 1.6 micrometers. The short wavelength 'cut-on' at 0.9 micrometers is due to absorption in the InP substrate. We will report on new InGaAs FPA epitaxial structures and processing techniques. These have resulted in improved performance in the form of a 10 x increase in detectivity and visible response via removal of the InP substrate. The resulting device features visible and SWIR response with greater than 15% quantum efficiency at 0.5 micrometers while maintaining the long wavelength cutoff. Imaging has been demonstrated under overcast starlight/urban glow conditions with cooling provided by a single stage thermoelectric cooler. Details on the material structure and device fabrication, quantitative characterization of spectral response and detectivity, as well as examples of night vision imagery are presented.

  20. Light-trapping and recycling for extraordinary power conversion in ultra-thin gallium-arsenide solar cells.

    PubMed

    Eyderman, Sergey; John, Sajeev

    2016-06-23

    We demonstrate nearly 30% power conversion efficiency in ultra-thin (~200 nm) gallium arsenide photonic crystal solar cells by numerical solution of the coupled electromagnetic Maxwell and semiconductor drift-diffusion equations. Our architecture enables wave-interference-induced solar light trapping in the wavelength range from 300-865 nm, leading to absorption of almost 90% of incoming sunlight. Our optimized design for 200 nm equivalent bulk thickness of GaAs, is a square-lattice, slanted conical-pore photonic crystal (lattice constant 550 nm, pore diameter 600 nm, and pore depth 290 nm), passivated with AlGaAs, deposited on a silver back-reflector, with ITO upper contact and encapsulated with SiO2. Our model includes both radiative and non-radiative recombination of photo-generated charge carriers. When all light from radiative recombination is assumed to escape the structure, a maximum achievable photocurrent density (MAPD) of 27.6 mA/cm(2) is obtained from normally incident AM 1.5 sunlight. For a surface non-radiative recombination velocity of 10(3) cm/s, this corresponds to a solar power conversion efficiency of 28.3%. When all light from radiative recombination is trapped and reabsorbed (complete photon recycling) the power conversion efficiency increases to 29%. If the surface recombination velocity is reduced to 10 cm/sec, photon recycling is much more effective and the power conversion efficiency reaches 30.6%.

  1. Light-trapping and recycling for extraordinary power conversion in ultra-thin gallium-arsenide solar cells

    DOE PAGES

    Eyderman, Sergey; John, Sajeev

    2016-06-23

    Here, we demonstrate nearly 30% power conversion efficiency in ultra-thin (~200 nm) gallium arsenide photonic crystal solar cells by numerical solution of the coupled electromagnetic Maxwell and semiconductor drift-diffusion equations. Our architecture enables wave-interference-induced solar light trapping in the wavelength range from 300-865 nm, leading to absorption of almost 90% of incoming sunlight. Our optimized design for 200 nm equivalent bulk thickness of GaAs, is a square-lattice, slanted conical-pore photonic crystal (lattice constant 550 nm, pore diameter 600 nm, and pore depth 290 nm), passivated with AlGaAs, deposited on a silver back-reflector, with ITO upper contact and encapsulated with SiOmore » 2. Our model includes both radiative and non-radiative recombination of photo-generated charge carriers. When all light from radiative recombination is assumed to escape the structure, a maximum achievable photocurrent density (MAPD) of 27.6 mA/cm 2 is obtained from normally incident AM 1.5 sunlight. For a surface non-radiative recombination velocity of 10 3 cm/s, this corresponds to a solar power conversion efficiency of 28.3%. When all light from radiative recombination is trapped and reabsorbed (complete photon recycling) the power conversion efficiency increases to 29%. If the surface recombination velocity is reduced to 10 cm/sec, photon recycling is much more effective and the power conversion efficiency reaches 30.6%.« less

  2. Light-trapping and recycling for extraordinary power conversion in ultra-thin gallium-arsenide solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eyderman, Sergey; John, Sajeev

    Here, we demonstrate nearly 30% power conversion efficiency in ultra-thin (~200 nm) gallium arsenide photonic crystal solar cells by numerical solution of the coupled electromagnetic Maxwell and semiconductor drift-diffusion equations. Our architecture enables wave-interference-induced solar light trapping in the wavelength range from 300-865 nm, leading to absorption of almost 90% of incoming sunlight. Our optimized design for 200 nm equivalent bulk thickness of GaAs, is a square-lattice, slanted conical-pore photonic crystal (lattice constant 550 nm, pore diameter 600 nm, and pore depth 290 nm), passivated with AlGaAs, deposited on a silver back-reflector, with ITO upper contact and encapsulated with SiOmore » 2. Our model includes both radiative and non-radiative recombination of photo-generated charge carriers. When all light from radiative recombination is assumed to escape the structure, a maximum achievable photocurrent density (MAPD) of 27.6 mA/cm 2 is obtained from normally incident AM 1.5 sunlight. For a surface non-radiative recombination velocity of 10 3 cm/s, this corresponds to a solar power conversion efficiency of 28.3%. When all light from radiative recombination is trapped and reabsorbed (complete photon recycling) the power conversion efficiency increases to 29%. If the surface recombination velocity is reduced to 10 cm/sec, photon recycling is much more effective and the power conversion efficiency reaches 30.6%.« less

  3. Strained-layer indium gallium arsenide-gallium arsenide- aluminum galium arsenide photonic devices by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Osowski, Mark Louis

    With the arrival of advanced growth technologies such as molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD), research in III-V compound semiconductor photonic devices has flourished. Advances in fabrication processes have allowed the realization of high-performance quantum well lasers which emit over a wide spectral range and operate with low threshold currents. As a result, semiconductor lasers are presently employed in a wide variety of applications, including fiber-optic telecommunications, optical spectroscopy, solid-state laser pumping, and photonic integrated circuits. The work in this dissertation addresses three photonic device structures which are currently receiving a great deal of attention in the research community: integrable quantum well laser devices, distributed feedback (DFB) laser devices, and quantum wire arrays. For the realization of the integrable and integrated photonic devices described-in Chapter 2, a three-step selective-area growth technique was utilized. The selective epitaxy process was used to produce discrete buried-heterostructure Fabry Perot lasers with threshold currents as low as 2.6 mA. Based on this process, broad- spectrum edge-emitting superluminescent diodes are demonstrated which display spectral widths of over 80 nm. In addition, the monolithic integration of a multiwavelength emitter is demonstrated in which two distinct laser sources are coupled into a single output waveguide. The dissertation also describes the development of a single-growth-step ridge waveguide DFB laser. The DFB laser utilizes an asymmetric cladding waveguide structure to enhance the interaction of the optical mode with the titanium surface metal to promote single frequency emission via gain coupling. These lasers exhibit low threshold currents (11 mA), high side mode suppression ratios (50 dB), and narrow linewidths (45 kHz). In light of the substantial performance advantages of quantum well lasers relative to double heterostructure lasers, extensive efforts have been directed toward producing quantum wire systems. In view of this, the final subject of this dissertation details the fabrication and characterization of quantum wire arrays by selective-area MOCVD. The method employs a silicon dioxide grating mask with sub-micron oxide dimensions to achieve selective deposition of high-quality buried layers in the open areas of the patterned substrate. This allows the fabrication of embedded nanostructures in a single growth step, and the crystallographic nature of the growth allows for control of their lateral size. Using this process, the growth of strained InGaAs wires with a lateral dimension of less than 50 nm are obtained. Subsequent characterization by photoluminescence, scanning electron microscopy and transmission electron microscopy is also presented.

  4. High-temperature optically activated GaAs power switching for aircraft digital electronic control

    NASA Technical Reports Server (NTRS)

    Berak, J. M.; Grantham, D. H.; Swindal, J. L.; Black, J. F.; Allen, L. B.

    1983-01-01

    Gallium arsenide high-temperature devices were fabricated and assembled into an optically activated pulse-width-modulated power control for a torque motor typical of the kinds used in jet engine actuators. A bipolar heterojunction phototransistor with gallium aluminum arsenide emitter/window, a gallium arsenide junction field-effect power transistor and a gallium arsenide transient protection diode were designed and fabricated. A high-temperature fiber optic/phototransistor coupling scheme was implemented. The devices assembled into the demonstrator were successfully tested at 250 C, proving the feasibility of actuator-located switching of control power using optical signals transmitted by fibers. Assessments of the efficiency and technical merits were made for extension of this high-temperature technology to local conversion of optical power to electrical power and its control at levels useful for driving actuators. Optical power sources included in the comparisons were an infrared light-emitting diode, an injection laser diode, tungsten-halogen lamps and arc lamps. Optical-to-electrical power conversion was limited to photovoltaics located at the actuator. Impedance matching of the photovoltaic array to the load was considered over the full temperature range, -55 C to 260 C. Loss of photovoltaic efficiency at higher temperatures was taken into account. Serious losses in efficiency are: (1) in the optical source and the cooling which they may require in the assumed 125 C ambient, (2) in the decreased conversion efficiency of the gallium arsenide photovoltaic at 260 C, and (3) in impedance matching. Practical systems require improvements in these areas.

  5. Immunotoxicity of gallium arsenide on antigen presentation: comparative study of intratracheal and intraperitoneal exposure routes.

    PubMed

    Hartmann, Constance B; Harrison, M Travis; McCoy, Kathleen L

    2005-01-01

    Gallium arsenide (GaAs) is a semiconductor utilized in electronics and computer industries. GaAs exposure of animals causes local inflammation and systemic immune suppression. Mice were administered 2 to 200 mg/kg GaAs. On day 5, intratracheal instillation increased lung weights in a dose-dependent manner and induced pulmonary inflammation exemplified by mononuclear cell infiltration and mild epithelial hyperplasia. No fibrosis, pneumocyte hyperplasia, proteinosis, or bronchial epithelial damage was observed in the lungs. Splenic cellularity and composition were unaffected. GaAs' effect on antigen presentation by macrophages was similar after intratracheal and intraperitoneal exposure, although the lowest observable adverse effect levels differed. Macrophages from the exposure site displayed an enhanced ability to activate an antigen-specific CD4(+) helper T-cell hybridoma compared with vehicle controls, whereas splenic macrophages were defective in this function. The chemical's impact on peritoneal macrophages depended on the exposure route. GaAs exposure augmented thiol cathepsins B and L activities in macrophages from the exposure site, but decreased proteolytic activities in splenic macrophages. Alveolar macrophages had increased expression of major histocompatibility complex (MHC) Class II molecules, whereas MHC Class II expression on splenic and peritoneal macrophages was unaffected. Modified thiol cathepsin activities statistically correlated with altered efficiency of antigen presentation, whereas MHC Class II expression did not. Our study is the first one to examine the functional capability of alveolar macrophages after intratracheal GaAs instillation. Therefore, thiol cathepsins may be potential target molecules by which GaAs exposure modulates antigen presentation.

  6. SOLDERING OF ALUMINUM BASE METALS

    DOEpatents

    Erickson, G.F.

    1958-02-25

    This patent deals with the soldering of aluminum to metals of different types, such as copper, brass, and iron. This is accomplished by heating the aluminum metal to be soldered to slightly above 30 deg C, rubbing a small amount of metallic gallium into the part of the surface to be soldered, whereby an aluminum--gallium alloy forms on the surface, and then heating the aluminum piece to the melting point of lead--tin soft solder, applying lead--tin soft solder to this alloyed surface, and combining the aluminum with the other metal to which it is to be soldered.

  7. Optical Studies of the Quantum Confined Stark Effect in ALUMINUM(0.3) GALLIUM(0.7) Arsenide/gallium Arsenide Coupled Double Quantum Wells

    NASA Astrophysics Data System (ADS)

    Kuroda, Roger Tokuichi

    1992-01-01

    The development of advanced epitaxical growth techniques such as molecular beam epitaxy has led to growth of high quality III-V layers with monolayer control in thickness. This permits design of new and novel heterointerface based electronic, optical and opto-electronic devices which exploit the new and tailorable electronic states in quantum wells. One such property is the Quantum Confined Stark Effect (QCSE) which, in uncoupled multiple quantum wells (MQW), has been used for the self-electro-optic effect device(SEED). Guided by a phenomenological model of the complex dielectric function for the Coupled Double Quantum Well (CDQW), we show results for the QCSE in CDQW show underlying physics differs from the uncoupled MQW in that symmetry forbidden transitions under flat band conditions become allowed under non-flat band conditions. The transfer of oscillator strength from symmetry allowed to the symmetry forbidden transitions offers potential for application as spatial light modulator (SLM). We show the CDQW lowest exciton peak Stark shifts twice as fast as the SQW with equivalent well width, which offers the SLM device a lower operating voltage than SQW. In addition we show the CDQW absorption band edge can blue shift with increasing electric field, which offers other potential for SLM. From transmission measurements, we verify these predictions and compare them with the phenomenological model. The optical device figure of merit Deltaalpha/alpha of the CDQW is comparable with the "best" SQW, but at lower electric field. From photocurrent measurements, we find that the calculated and measured Stark shifts agree. In addition, we extract a Deltaalpha/ alpha from photocurrent which agree with transmission measurements. From electroreflectance measurements, we calculated the aluminum concentration, and the built in electric field from the Franz-Keldysh oscillations due to the Al_{0.3}Ga _{0.7}As barrier regions in the CDQW. (Copies available exclusively from

  8. Spectral response characteristics of the transmission-mode aluminum gallium nitride photocathode with varying aluminum composition.

    PubMed

    Hao, Guanghui; Liu, Junle; Ke, Senlin

    2017-12-10

    In order to research spectral response characteristics of transmission-mode nanostructure aluminum gallium nitride (AlGaN) photocathodes, the AlGaN photocathodes materials with varied aluminum (Al) composition were grown by metalorganic chemical vapor deposition (MOCVD) and its optical properties were measured. The Al compositions of each AlGaN film of the photocathodes were analyzed from their adsorption properties curves; their thickness was also calculated by the matrix formula of thin-film optics. The nanostructure AlGaN photocathodes were activated with the Caesium-Oxygen (Cs-O) alternation, and after the photocathode was packaged in vacuum, their spectrum responses were measured. The experimental results showed that the trend of spectrum response curves first increased and then decreased along with the increasing of the incident light wavelength. The peak spectrum response value was 17.5 mA/W at 255 nm, and its quantum efficiency was 8.5%. The lattice defects near the interface of the AlGaN heterostructure could impede the electron motion crossing this region and moving toward the photocathode surface; this was a factor that reduces the electron emission performance of the photocathodes. Also, the experimental result showed that the thickness of each AlGaN layer affected the electron diffusion characteristics; this was a key factor that influenced the spectrum response performance.

  9. AIN-Coated Al(2)O(3) Substrates For Electronic Circuits

    NASA Technical Reports Server (NTRS)

    Kolawa, Elzbieta; Lowry, Lynn; Herman, Martin; Lee, Karen

    1996-01-01

    Type of improved ceramic substrate for high-frequency, high-power electronic circuits combines relatively high thermal conductivity of aluminum nitride with surface smoothness of alumina. Consists of 15-micrometer layer of AIN deposited on highly polished alumina. Used for packaging millimeter-wave gallium arsenide transmitter chips, power silicon chips, and like.

  10. Electron emitting device and method of making the same

    DOEpatents

    Olsen, Gregory Hammond; Martinelli, Ramon Ubaldo; Ettenberg, Michael

    1977-04-19

    A substrate of single crystalline gallium arsenide has on a surface thereof a layer of single crystalline indium gallium phosphide. A layer of single crystalline gallium arsenide is on the indium gallium phosphide layer and a work function reducing material is on the gallium arsenide layer. The substrate has an opening therethrough exposing a portion of the indium gallium phosphide layer.

  11. High-Throughput Continuous Hydrothermal Synthesis of Transparent Conducting Aluminum and Gallium Co-doped Zinc Oxides.

    PubMed

    Howard, Dougal P; Marchand, Peter; McCafferty, Liam; Carmalt, Claire J; Parkin, Ivan P; Darr, Jawwad A

    2017-04-10

    High-throughput continuous hydrothermal flow synthesis was used to generate a library of aluminum and gallium-codoped zinc oxide nanoparticles of specific atomic ratios. Resistivities of the materials were determined by Hall Effect measurements on heat-treated pressed discs and the results collated into a conductivity-composition map. Optimal resistivities of ∼9 × 10 -3 Ω cm were reproducibly achieved for several samples, for example, codoped ZnO with 2 at% Ga and 1 at% Al. The optimum sample on balance of performance and cost was deemed to be ZnO codoped with 3 at% Al and 1 at% Ga.

  12. Patents and Licenses Through 1994,

    DTIC Science & Technology

    1994-01-01

    Chiang was employed at Honeywell Radiation Center, where she worked on mercury cadmium telluride (HgCdTe) and gallium phosphide photoconductive...5,251,225 Gallium Indium Arsenide Phosphide 4,258,375; 4,372,791; 4,718,070;4,722,092 Gallium Indium Arsenide Phosphide /Indium Phosphide ...Indirect-Gap Semiconductor 3,636,471 Indium Arsenide 2,990,259 Indium Gallium Arsenide 4,746,620 Indium Phosphide 2,990,259; 4,376,285

  13. Doped Aluminum Gallium Arsenide (AlGaAs)/Gallium Arsenide (GaAs) Photoconductive Semiconductor Switch (PCSS) Fabrication

    DTIC Science & Technology

    2016-09-27

    contact regions and epitaxial capping layer are fabricated to investigate the advantages of both approaches. Devices were fabricated with various... Contacts 7 2.5 Packaging 11 3. Conclusions 12 4. References 13 Appendix. Detailed Fabrication Process 15 List of Symbols, Abbreviations, and...regions in violet (overlaying previous patterns) .......7 Fig. 6 Mask 4: intrinsic device contact window regions in orange (overlaying previous

  14. Isoelectronic Traps in Gallium Phosphide

    NASA Astrophysics Data System (ADS)

    Christian, Theresa; Alberi, Kirstin; Beaton, Daniel; Fluegel, Brian; Mascarenhas, Angelo

    2015-03-01

    Isoelectronic substitutional dopants can result in strongly localized exciton traps within a host bandstructure such as gallium arsenide (GaAs) or gallium phosphide (GaP). These traps have received great attention for their role in the anomalous bandgap bowing of nitrogen or bismuth-doped GaAs, creating the dramatic bandgap tunability of these unusual dilute alloys. In the wider, indirect-bandgap host material GaP, these same isoelectronic dopants create bound states within the gap that can have very high radiative efficiency and a wealth of discrete spectral transitions illuminating the symmetry of the localized excitonic trap state. We will present a comparative study of nitrogen and bismuth isoelectronic traps in GaP. Research was supported by the U. S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division under contract DE-AC36-08GO28308 and by the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under contract no. DE-AC05-06OR23100.

  15. High-efficiency solar cell and method for fabrication

    DOEpatents

    Hou, Hong Q.; Reinhardt, Kitt C.

    1999-01-01

    A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD).

  16. Using gallium as a tracer of aluminum in the Critical Zone: influences on terrestrial cycling from vegetation.

    NASA Astrophysics Data System (ADS)

    Richardson, J. B.; Derry, L. A.

    2016-12-01

    Aluminum is a major component of primary and secondary aluminosilicate minerals, stabilizes of soil organic matter, and causes toxicity in plants and organisms. However, tracking the pathways and rates of Al cycling has been limited due to the lack of a suitable tracer because it is monoisotopic. Gallium (Ga) holds promise as an effective pseudo-isotope, geochemical tracer of Al (Shiller and Frilot, 1996, GCA). Gallium shares many physicochemical properties with Al. Both are Group 3A elements, with similar atomic radii, oxidation states, and charge densities. To determine fluxes of Al using the Ga/Al ratio, it is important to identify fractionation during weathering, secondary mineral precipitation, organic matter complexation, and vegetation cycling. To determine the extent of Ga/Al fractionation by vegetation, we measured Ga and Al in plant tissues and soils from three sites in the White Mountains of New Hampshire. Total Ga and Al were measured in late-season leaves and bolewood from Acer saccharum, Fagus grandifolia, and Picea rubens. In addition, we measured strong acid (16 M HNO3 + 12 M HCl) extractable Ga and Al throughout three Spodosol profiles. Gallium ranged between 0.10 - 0.17 nmol g-1 in plant tissues while soils ranged between 1.20 - 45.10 nmol g-1. Aluminum varied between 0.54 - 2.66 μmol g -1 in plant tissues and 7.70 - 263.60 μmol g -1 in their soils. The Ga/Al ratio varied significantly throughout the Critical Zone: late-season leaves (10 ± 1 nmol/ μmol) and bolewood (12 ± 1 nmol/ μmol), and organic horizons (6 ± 1 nmol/ μmol). Typical Ga/Al ratio in igneous and metamorphosed rocks is 0.10 ± 0.02 nmol/ μmol (Shiller and Frilot, 1996, GCA). Our results suggest that vegetation strongly accumulate Ga over Al during biological uplift. This study is one of the first to assess Ga biogeochemistry in the Critical Zone and more are needed, particularly for abiotic processes.

  17. Direct determination of gallium on polyurethane foam by X-ray fluorescence.

    PubMed

    Carvalho, M S; Medeiros, J A; Nóbrega, A W; Mantovano, J L; Rocha, V P

    1995-01-01

    Gallium chloride is easily extracted from 6M HCl by comminuted polyether-type polyurethane foam. After the extraction step, the gallium absorbed by the PU foam can be quantitatively determined by X-ray fluorescence. A procedure for the direct determination of gallium absorbed by PU foam by XRFS is thus described. Gallium is determined at levels as low as 60 ng/ml (C(L)), with a calibration sensitivity of 424 cps ml/mug, within a linear range 0.1-2.30 mug/ml. The procedure investigated was successfully applied to determination of gallium in aluminum alloys, bauxite and industrial residue samples.

  18. Co-Precipitation Synthesis of Gadolinium Aluminum Gallium Oxide (GAGG) via Different Precipitants

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Yang, Shenghui; Zhang, Ye; Jiang, Jun; Jiang, Haochuan

    2014-02-01

    In order to obtain a uniform transparent ceramic scintillator, well-dispersed fine starting powders with high-purity, small grain size, spherical morphology and high sinter-ability are necessary. In this study, Ce3+ doped gadolinium aluminum gallium garnet Gd3Al3Ga2O12 (GAGG) powders were synthesized by the co-precipitation method. NH4OH, NH4HCO3 and the mixed solution of NH4OH and NH4HCO3 were used as precipitants, respectively. The precursor composition, phase formation process, microstructure, morphology, particle size distribution and luminescent properties of obtained GAGG powders were measured. The results show that powders prepared using the mixed precipitant exhibit the best microstructural morphology, good sinter-ability and highest luminescent intensity. Pure GAGG polycrystalline powders could be obtained at about 950°C for 1.5 h and the average size of the particles is about 50 nm. The photoluminescence spectrum shows a strong green-yellow emission near 540 nm.

  19. Native gallium adatoms discovered on atomically-smooth gallium nitride surfaces at low temperature.

    PubMed

    Alam, Khan; Foley, Andrew; Smith, Arthur R

    2015-03-11

    In advanced compound semiconductor devices, such as in quantum dot and quantum well systems, detailed atomic configurations at the growth surfaces are vital in determining the structural and electronic properties. Therefore, it is important to investigate the surface reconstructions in order to make further technological advancements. Usually, conventional semiconductor surfaces (e.g., arsenides, phosphides, and antimonides) are highly reactive due to the existence of a high density of group V (anion) surface dangling bonds. However, in the case of nitrides, group III rich growth conditions in molecular beam epitaxy are usually preferred leading to group III (Ga)-rich surfaces. Here, we use low-temperature scanning tunneling microscopy to reveal a uniform distribution of native gallium adatoms with a density of 0.3%-0.5% of a monolayer on the clean, as-grown surface of nitrogen polar GaN(0001̅) having the centered 6 × 12 reconstruction. Unseen at room temperature, these Ga adatoms are strongly bound to the surface but move with an extremely low surface diffusion barrier and a high density saturation coverage in thermodynamic equilibrium with Ga droplets. Furthermore, the Ga adatoms reveal an intrinsic surface chirality and an asymmetric site occupation. These observations can have important impacts in the understanding of gallium nitride surfaces.

  20. High-efficiency solar cell and method for fabrication

    DOEpatents

    Hou, H.Q.; Reinhardt, K.C.

    1999-08-31

    A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD). 4 figs.

  1. Highly transparent cerium doped gadolinium gallium aluminum garnet ceramic prepared with precursors fabricated by ultrasonic enhanced chemical co-precipitation.

    PubMed

    Zhang, Ji-Yun; Luo, Zhao-Hua; Jiang, Hao-Chuan; Jiang, Jun; Chen, Chun-Hua; Zhang, Jing-Xian; Gui, Zhen-Zhen; Xiao, Na

    2017-11-01

    Cerium doped gadolinium gallium aluminum garnet (GGAG:Ce) ceramic precursors have been synthesized with an ultrasonic chemical co-precipitation method (UCC) and for comparison with a traditional chemical co-precipitation method (TCC). The effect of ultra-sonication on the morphology of powders and the transmittance of GGAG:Ce ceramics are studied. The results indicate that the UCC method can effectively improve the homogenization and sinterability of GGAG:Ce powders, which contribute to obtain high transparent GGAG ceramic with the highest transmittance of 81%. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Reliability study of refractory gate gallium arsenide MESFETS

    NASA Technical Reports Server (NTRS)

    Yin, J. C. W.; Portnoy, W. M.

    1981-01-01

    Refractory gate MESFET's were fabricated as an alternative to aluminum gate devices, which have been found to be unreliable as RF power amplifiers. In order to determine the reliability of the new structures, statistics of failure and information about mechanisms of failure in refractory gate MESFET's are given. Test transistors were stressed under conditions of high temperature and forward gate current to enhance failure. Results of work at 150 C and 275 C are reported.

  3. Reliability study of refractory gate gallium arsenide MESFETS

    NASA Astrophysics Data System (ADS)

    Yin, J. C. W.; Portnoy, W. M.

    Refractory gate MESFET's were fabricated as an alternative to aluminum gate devices, which have been found to be unreliable as RF power amplifiers. In order to determine the reliability of the new structures, statistics of failure and information about mechanisms of failure in refractory gate MESFET's are given. Test transistors were stressed under conditions of high temperature and forward gate current to enhance failure. Results of work at 150 C and 275 C are reported.

  4. A Comparison of Gallium and Indium Alkoxide Complexes as Catalysts for Ring-Opening Polymerization of Lactide.

    PubMed

    Kremer, Alexandre B; Andrews, Ryan J; Milner, Matthew J; Zhang, Xu R; Ebrahimi, Tannaz; Patrick, Brian O; Diaconescu, Paula L; Mehrkhodavandi, Parisa

    2017-02-06

    The impact of the metal size and Lewis acidity on the polymerization activity of group 13 metal complexes was studied, and it was shown that, within the same ligand family, indium complexes are far more reactive and selective than their gallium analogues. To this end, gallium and aluminum complexes supported by a tridentate diaminophenolate ligand, as well as gallium complexes supported by N,N'-ethylenebis(salicylimine)(salen) ligands, were synthesized and compared to their indium analogues. Using the tridentate ligand set, it was possible to isolate the gallium chloride complexes 3 and (±)-4 and the aluminum analogues 5 and (±)-6. The alkoxygallium complex (±)-2, supported by a salen ligand, was also prepared and characterized and, along with the three-component system GaCl 3 /BnOH/NEt 3 , was tested for the ring-opening polymerization of lactide and ε-caprolactone. The polymerization rates and selectivities of both systems were significantly lower than those for the indium analogues. The reaction of (±)-2 with 1 equiv of lactide forms the first insertion product, which is stable in solution and can be characterized at room temperature. In order to understand the differences of the reactivity within the group 13 metal complexes, a Lewis acidity study using triethylphosphine oxide (the Gutmann-Beckett method) was undertaken for a series of aluminum, gallium, and indium halide complexes; this study shows that indium halide complexes are less Lewis acidic than their aluminum and gallium analogues. Density functional theory calculations show that the Mulliken charges for the indium complexes are higher than those for the gallium analogues. These data suggest that the impact of ligands on the reactivity is more significant than that of the metal Lewis acidity.

  5. Improvement of Self-Heating of Indium Gallium Zinc Aluminum Oxide Thin-Film Transistors Using Al2O3 Barrier Layer

    NASA Astrophysics Data System (ADS)

    Jian, Li-Yi; Lee, Hsin-Ying; Lin, Yung-Hao; Lee, Ching-Ting

    2018-02-01

    To study the self-heating effect, aluminum oxide (Al2O3) barrier layers of various thicknesses have been inserted between the channel layer and insulator layer in bottom-gate-type indium gallium zinc aluminum oxide (IGZAO) thin-film transistors (TFTs). Each IGZAO channel layer was deposited on indium tin oxide (ITO)-coated glass substrate by using a magnetron radiofrequency cosputtering system with dual targets composed of indium gallium zinc oxide (IGZO) and Al. The 3 s orbital of Al cation provided an extra transport pathway and widened the conduction-band bottom, thus increasing the electron mobility of the IGZAO films. The Al-O bonds were able to sustain the oxygen stability of the IGZAO films. The self-heating behavior of the resulting IGZAO TFTs was studied by Hall measurements on the IGZAO films as well as the electrical performance of the IGZAO TFTs with Al2O3 barrier layers of various thicknesses at different temperatures. IGZAO TFTs with 50-nm-thick Al2O3 barrier layer were stressed by positive gate bias stress (PGBS, at gate-source voltage V GS = 5 V and drain-source voltage V DS = 0 V); at V GS = 5 V and V DS = 10 V, the threshold voltage shifts were 0.04 V and 0.2 V, respectively, much smaller than for the other IGZAO TFTs without Al2O3 barrier layer, which shifted by 0.2 V and 1.0 V when stressed under the same conditions.

  6. Induced changes in refractive index, optical band gap, and absorption edge of polycarbonate-SiO2 thin films by Vis-IR lasers

    NASA Astrophysics Data System (ADS)

    Ehsani, Hassan; Akhoondi, Somaieh

    2016-09-01

    In this experimental work, we have studied induced changes in refractive index, extinction coefficient, and optical band-gap of Bisphenol-A-polycarbonate (BPA-PC) coated with a uniform and thin, anti-scratch SiO2 film irradiated by visible to near-infrared lasers at 532 nm (green),650 nm(red), and 980 nm (IR)wavelength lasers with different energy densities. Our lasers sources are indium-gallium-aluminum-phosphide, second harmonic of neodymium-YAG-solid state lasers and gallium-aluminum-arsenide-semiconductor laser. The energy densities of our sources have been changed by changing the spot size of incident laser. samples transmission spectra were monitored by carry500 spectrophotometer and induced changes in optical properties are evaluated by using, extrapolation of the transmission spectrum through Swanepoel method and computer application

  7. Whiskerless Schottky diode

    NASA Technical Reports Server (NTRS)

    Bishop, William L. (Inventor); Mcleod, Kathleen A. (Inventor); Mattauch, Robert J. (Inventor)

    1991-01-01

    A Schottky diode for millimeter and submillimeter wave applications is comprised of a multi-layered structure including active layers of gallium arsenide on a semi-insulating gallium arsenide substrate with first and second insulating layers of silicon dioxide on the active layers of gallium arsenide. An ohmic contact pad lays on the silicon dioxide layers. An anode is formed in a window which is in and through the silicon dioxide layers. An elongated contact finger extends from the pad to the anode and a trench, preferably a transverse channel or trench of predetermined width, is formed in the active layers of the diode structure under the contact finger. The channel extends through the active layers to or substantially to the interface of the semi-insulating gallium arsenide substrate and the adjacent gallium arsenide layer which constitutes a buffer layer. Such a structure minimizes the effect of the major source of shunt capacitance by interrupting the current path between the conductive layers beneath the anode contact pad and the ohmic contact. Other embodiments of the diode may substitute various insulating or semi-insulating materials for the silicon dioxide, various semi-conductors for the active layers of gallium arsenide, and other materials for the substrate, which may be insulating or semi-insulating.

  8. Modeling Heterogeneous Carbon Nanotube Networks for Photovoltaic Applications Using Silvaco Atlas Software

    DTIC Science & Technology

    2012-06-01

    Nanotube MWCNT Multi-Walled Carbon Nanotube PET Polyethylene Terephthalate 4H-SiC 4-H Silicon Carbide AlGaAs Aluminum Gallium Arsenide...nanotubes ( MWCNTs ). SWCNTs are structured with one layer of graphene rolled into a CNT. MWCNTs are contrastingly composed of 23 multiple layers...simulation 19 times to extract cell parameters at #varying widths set cellWidth=200 loop steps=19 go atlas #Constants which are used to set the

  9. Method of forming grooves in the [011] crystalline direction

    NASA Technical Reports Server (NTRS)

    Marinelli, Donald Paul (Inventor)

    1977-01-01

    An A-B etchant is applied to a (100) surface of a body of semiconductor material, a portion of which along the (100) surface of the body is either gallium arsenide or gallium aluminum arsenide. The etchant is applied for at least 15 seconds at a temperature of approximately 80.degree. C. The A-B etchant is a solution by weight percent of 47.5%, water, 0.2% silver nitrate, 23.8% chromium trioxide and 28.5% of a 48% aqueous solution of hydrofluoric acid. As a result of the application of the A-B etchant a pattern of elongated etch pits form having their longitudinal axes along the [011] crystalline direction. Grooves are formed in the body at a surface opposite the (100) surface on which was applied the etchant. The grooves are formed along the [011] crystalline direction by aligning the longitudinal axes of the grooves with the longitudinal axes of the etch pits.

  10. Growth of 1.5 micron gallium indium nitrogen arsenic antimonide vertical cavity surface emitting lasers by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wistey, Mark Allan

    Fiber optics has revolutionized long distance communication and long haul networks, allowing unimaginable data speeds and noise-free telephone calls around the world for mere pennies per hour at the trunk level. But the high speeds of optical fiber generally do not extend to individual workstations or to the home, in large part because it has been difficult and expensive to produce lasers which emitted light at wavelengths which could take advantage of optical fiber. One of the most promising solutions to this problem is the development of a new class of semiconductors known as dilute nitrides. Dilute nitrides such as GaInNAs can be grown directly on gallium arsenide, which allows well-established processing techniques. More important, gallium arsenide allows the growth of vertical-cavity surface-emitting lasers (VCSELs), which can be grown in dense, 2D arrays on each wafer, providing tremendous economies of scale for manufacturing, testing, and packaging. Unfortunately, GaInNAs lasers have suffered from what has been dubbed the "nitrogen penalty," with high thresholds and low efficiency as the fraction of nitrogen in the semiconductor was increased. This thesis describes the steps taken to identify and essentially eliminate the nitrogen penalty. Protecting the wafer surface from plasma ignition, using an arsenic cap, greatly improved material quality. Using a Langmuir probe, we further found that the nitrogen plasma source produced a large number of ions which damaged the wafer during growth. The ions were dramatically reduced using deflection plates. Low voltage deflection plates were found to be preferable to high voltages, and simulations showed low voltages to be adequate for ion removal. The long wavelengths from dilute nitrides can be partly explained by wafer damage during growth. As a result of these studies, we demonstrated the first CW, room temperature lasers at wavelengths beyond 1.5mum on gallium arsenide, and the first GaInNAs(Sb) VCSELs beyond 1

  11. Aluminum battery alloys

    DOEpatents

    Thompson, David S.; Scott, Darwin H.

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  12. Aluminum battery alloys

    DOEpatents

    Thompson, D.S.; Scott, D.H.

    1984-09-28

    Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  13. Large disparity between gallium and antimony self-diffusion in gallium antimonide.

    PubMed

    Bracht, H; Nicols, S P; Walukiewicz, W; Silveira, J P; Briones, F; Haller, E E

    2000-11-02

    The most fundamental mass transport process in solids is self-diffusion. The motion of host-lattice ('self-') atoms in solids is mediated by point defects such as vacancies or interstitial atoms, whose formation and migration enthalpies determine the kinetics of this thermally activated process. Self-diffusion studies also contribute to the understanding of the diffusion of impurities, and a quantitative understanding of self- and foreign-atom diffusion in semiconductors is central to the development of advanced electronic devices. In the past few years, self-diffusion studies have been performed successfully with isotopically controlled semiconductor heterostructures of germanium, silicon, gallium arsenide and gallium phosphide. Self-diffusion studies with isotopically controlled GaAs and GaP have been restricted to Ga self-diffusion, as only Ga has two stable isotopes, 69Ga and 71Ga. Here we report self-diffusion studies with an isotopically controlled multilayer structure of crystalline GaSb. Two stable isotopes exist for both Ga and Sb, allowing the simultaneous study of diffusion on both sublattices. Our experiments show that near the melting temperature, Ga diffuses more rapidly than Sb by over three orders of magnitude. This surprisingly large difference in atomic mobility requires a physical explanation going beyond standard diffusion models. Combining our data for Ga and Sb diffusion with related results for foreign-atom diffusion in GaSb (refs 8, 9), we conclude that the unusually slow Sb diffusion in GaSb is a consequence of reactions between defects on the Ga and Sb sublattices, which suppress the defects that are required for Sb diffusion.

  14. The Growth of Expitaxial GaAs and GaAlAs on Silicon Substrates by OMVPE

    DTIC Science & Technology

    1988-08-01

    structures have been grown on semi-insulating gallium arsenide substrates, and on high-resistivity silicon substrates using a two stage growth technique...fully in Quarter 9. 2. MATERIALS GROWTH 2.1 DOPING OF GALLIUM ARSENIDE FOR FETs As reported in quarter 7, doping levels for GaAs/SI 4ere found to be a...FET structures on both GaAs and Si substrates. A number of FET layers have been grown to the GAT4 specification on semi-insulating gallium arsenide

  15. Discriminating a deep gallium antisite defect from shallow acceptors in GaAs using supercell calculations

    DOE PAGES

    Schultz, Peter A.

    2016-03-01

    For the purposes of making reliable first-principles predictions of defect energies in semiconductors, it is crucial to distinguish between effective-mass-like defects, which cannot be treated accurately with existing supercell methods, and deep defects, for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite defect GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a conceptual framework of level patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as B As. Thismore » systematic approach determines that the gallium antisite supercell results has signatures inconsistent with an effective mass state and cannot be the 78/203 shallow double acceptor. Lastly, the properties of the Ga antisite in GaAs are described, total energy calculations that explicitly map onto asymptotic discrete localized bulk states predict that the Ga antisite is a deep double acceptor and has at least one deep donor state.« less

  16. Magnetoelectric effect in a sandwich structure of gallium arsenide–nickel–tin–nickel

    NASA Astrophysics Data System (ADS)

    Galichyan, T. A.; Filippov, D. A.; Tihonov, A. A.; Laletin, V. M.; Firsova, T. O.; Manicheva, I. N.

    2018-04-01

    The results of investigation of the magnetoelectric effect in a nickel-tin-nickel sandwich structure obtained by galvanic deposition of gallium arsenide on a substrate are presented. The technology of constructing such structures is described and the experimental results of the frequency dependence of the effect are presented. It is shown that the use of tin as an intermediate layer reduces the mechanical stresses resulting from the incommensurability of the phases, which permits obtaining qualitative structures with the nickel thickness of about 70 μm. The resulting structures exhibit good adhesion between the layers and have a high quality factor.

  17. High Stability Performance of Quinary Indium Gallium Zinc Aluminum Oxide Films and Thin-Film Transistors Deposited Using Vapor Cooling Condensation Method

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Hao; Lee, Ching-Ting

    2017-08-01

    High-quality indium gallium zinc aluminum oxide (IGZAO) thin films with various Al contents have been deposited using the vapor cooling condensation method. The electron mobility of the IGZAO films was improved by 89.4% on adding Al cation to IGZO film. The change in the electron concentration and mobility of the IGZAO films was 7.3% and 7.0%, respectively, when the temperature was changed from 300 K to 225 K. These experimental results confirm the high performance and stability of the IGZAO films. The performance stability mechanisms of IGZAO thin-film transistors (TFTs) were investigated in comparison with IGZO TFTs.

  18. Cathodoluminescence on the Effects of Te Implantation and Laser Annealing in Gallium Arsenide.

    DTIC Science & Technology

    1978-12-01

    With the intentional addition of impurity ions (doping) into the lattice of a crystal , the semiconductor gallium arse- nide (GaAs ) should have... lattice structure with respect to Te ion positions and the presence of native defects. The experimental technique of cathodoluminescence is used to...the band—gap are caused by excitons , impurity atoms , or lattice imperfections. The first transition in Figure 1 is the recombination of a free

  19. Proton Irradiation-Induced Metal Voids in Gallium Nitride High Electron Mobility Transistors

    DTIC Science & Technology

    2015-09-01

    13. ABSTRACT (maximum 200 words) Gallium nitride/aluminum gallium nitride high electron mobility transistors with nickel/ gold (Ni/Au) and...platinum/ gold (Pt/Au) gating are irradiated with 2 MeV protons. Destructive physical analysis revealed material voids underneath the gate finger of the...nickel/ gold (Ni/Au) and platinum/ gold (Pt/Au) gating are irradiated with 2 MeV protons. Destructive physical analysis revealed material voids underneath

  20. [Optical and spectral parameters in Ce3+ -doped gadolinium gallium aluminum garnet glass-ceramics].

    PubMed

    Gong, Hua; Zhao, Xin; Yu, Xiao-bo; Setsuhisa, Tanabe; Lin, Hai

    2010-01-01

    The crystalline phases of Ce3+ -doped gadolinium gallium aluminum garnet (GGAG) glass-ceramics were investigated by X-ray diffraction, and the fluorescence spectra were recorded under the pumping of blue light-emitting diode (LED) using an integrating sphere of 10-inch in diameter, which connected to a CCD detector. The spectral power distribution of the glass-ceramics was obtained from the measured spectra first, and then the quantum yield was derived based on the photon distribution. The quantum yield of Ce3+ emission in GGAG glass-ceramics is 29.2%, meanwhile, the color coordinates and the correlated color temperature (CCT) of combined white light were proved to be x = 0.319, y = 0.349 and 6086 K, respectively. Although the quantum yield is a little smaller than the value in Ce3+ -doped YAG glass-ceramics, the CCT of the combined white light is much smaller than that in the latter. The optical behavior of GGAG glass-ceramics provides new vision for developing comfortable LED lighting devices.

  1. Satellite power system: Concept development and evaluation program, reference system report

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Satellite Power System (SPS) Reference System is discussed and the technical and operational information required in support of environmental, socioeconomic, and comparative assessment studies are emphasized. The reference System concept features a gallium-aluminum-arsenide, and silicon solar cell options. Other aspects of an SPS are the construction of bases in space, launch and mission control bases on earth, and fleets of various transportation vehicles to support the construction and maintenance operations of the satellites.

  2. a Positron 2D-ACAR Study of the Silicon-Dioxide Interface and the Point Defects in the Semi-Insulating Gallium Arsenide

    NASA Astrophysics Data System (ADS)

    Peng, Jianping

    The SiO_2-Si system has been the subject of extensive study for several decades. Particular interest has been paid to the interface between Si single crystal and the amorphous SiO_2 which determines the properties and performances of devices. This is significant because of the importance of Si technology in the semiconductor industry. The development of the high-intensity slow positron beam at Brookhaven National Laboratory make it possible to study this system for the first time using the positron two-dimensional angular correlation of annihilation radiation (2D-ACAR) technique. 2D-ACAR is a well established and is a non-destructive microscopic probe for studying the electronic structure of materials, and for doing the depth-resolved measurements. Some unique information was obtained from the measurements performed on the SiO_2-Si system: Positronium (Ps) atoms formation and trapping in microvoids in both oxide and interface regions; and positron annihilation at vacancy-like defects in the interface region which can be attributed to the famous Pb centers. The discovery of the microvoids in the interface region may have some impact on the fabrication of the next generation electronic devices. Using the conventional 2D-ACAR setup with a ^{22}Na as positron source, we also studied the native arsenic (As) vacancy in the semi -insulating gallium-arsenide (SI-GaAs), coupled with in situ infrared light illumination. The defect spectrum was obtained by comparing the spectrum taken without photo -illumination to the spectrum taken with photo-illumination. The photo-illumination excited electrons from valence band to the defect level so that positrons can become localized in the defects. The two experiments may represent a new direction of the application of positron 2D-ACAR technique on the solid state physics and materials sciences.

  3. Discriminating a deep defect from shallow acceptors in supercell calculations: gallium antisite in GaAs

    NASA Astrophysics Data System (ADS)

    Schultz, Peter

    To make reliable first principles predictions of defect energies in semiconductors, it is crucial to discriminate between effective-mass-like defects--for which existing supercell methods fail--and deep defects--for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a framework of level occupation patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as BAs. This systematic analysis determines that the gallium antisite is inconsistent with a shallow state, and cannot be the 78/203 shallow double acceptor. The properties of the Ga antisite in GaAs are described, predicting that the Ga antisite is a deep double acceptor and has two donor states, one of which might be accidentally shallow. -- Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  4. Particle-Based Simulations of Microscopic Thermal Properties of Confined Systems

    DTIC Science & Technology

    2014-11-01

    velocity versus electric field in gallium arsenide (GaAs) computed with the original CMC table structure (squares) at temperature T=150K, and the new...computer-aided design Cellular Monte Carlo Ensemble Monte Carlo gallium arsenide Heat Transport Equation DARPA Defense Advanced Research Projects

  5. Polarized electron sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prepost, R.

    1994-12-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized sourcemore » are presented.« less

  6. Preparation of gallium nitride surfaces for atomic layer deposition of aluminum oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, A. J.; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093; Chagarov, E.

    2014-09-14

    A combined wet and dry cleaning process for GaN(0001) has been investigated with XPS and DFT-MD modeling to determine the molecular-level mechanisms for cleaning and the subsequent nucleation of gate oxide atomic layer deposition (ALD). In situ XPS studies show that for the wet sulfur treatment on GaN(0001), sulfur desorbs at room temperature in vacuum prior to gate oxide deposition. Angle resolved depth profiling XPS post-ALD deposition shows that the a-Al{sub 2}O{sub 3} gate oxide bonds directly to the GaN substrate leaving both the gallium surface atoms and the oxide interfacial atoms with XPS chemical shifts consistent with bulk-like charge.more » These results are in agreement with DFT calculations that predict the oxide/GaN(0001) interface will have bulk-like charges and a low density of band gap states. This passivation is consistent with the oxide restoring the surface gallium atoms to tetrahedral bonding by eliminating the gallium empty dangling bonds on bulk terminated GaN(0001)« less

  7. Desferrioxamine and desferrioxamine-caffeine as carriers of aluminum and gallium to microbes via the Trojan Horse Effect.

    PubMed

    Huayhuaz, Jesus Antonio Alvarado; Vitorino, Hector Aguilar; Campos, Othon Souto; Serrano, Silvia Helena Pires; Kaneko, Telma Mary; Espósito, Breno Pannia

    2017-05-01

    Iron acquisition by bacteria and fungi involves in several cases the promiscuous usage of siderophores. Thus, antibiotic resistance from these microorganisms can be circumvented through a strategy of loading toxic metals into siderophores (Trojan Horse Effect). Desferrioxamine (dfo) and its cell-permeant derivative desferrioxamine-caffeine (dfcaf) were complexed with aluminum or gallium for this purpose. The complexes Me(dfo) and Me(dfcaf) (Me=Al 3+ and Ga 3+ ) were synthesized and characterized by mass spectroscopy and cyclic voltammetry. Their relative stabilities were studied through competitive equilibria with fluorescent probes calcein, fluorescein-desferrioxamine and 8-hydroxyquinoline. Me(dfo) and Me(dfcaf) were consistently more toxic than free Me 3+ against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans, demonstrating the Trojan Horse Effect. Wide spectrum antimicrobial action can be obtained by loading non-essential or toxic metal ions to microbes via a convenient siderophore carrier. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. 1.55 um aluminum gallium indium arsenide strained MQW laser diodes

    NASA Astrophysics Data System (ADS)

    Yang, Chi

    At the 1.55 mum eye-safe, telecommunications operating wavelength, semiconductor diode lasers must have low threshold currents and operate at high temperatures without thermoelectric coolers. Existing diode lasers in this wavelength range based on the GaInAsP/InP materials system are very sensitive to operating temperature. To obtain high temperature, high power 1.55 mum semiconductor diode lasers, the AlGaInAs/InP materials system with strained quantum well (QW) active regions was investigated with the goal of improving temperature performance. A set of lasers with active regions consisting of different numbers of QWs (2 to 4) and different QW strains (1.2% and 1.6%) were designed taking into account the quaternary alloy bandgap of AlGaInAs, the effect of strain on the bandgap, and the quantum size effects within the QW. The active region growth temperature was optimized using photoluminescence intensity. The wafers were first processed into broad-area lasers and measured under pulsed injection. The characteristic threshold current temperature, T0, for all AlGaInAs lasers was higher (60-70 K) than for GaInAsP lasers. No strong dependence of temperature parameters on strain was observed, while properties varied significantly with the number of QWs. With more QWs, both internal efficiency and T0 increases, but internal loss increases, reducing the characteristic temperature of the differential efficiency T1. The results show that uncooled laser operation at 1.55 mum is very promising with strained AlGaInAs QWs. Ridge waveguide devices demonstrated low threshold and high output power as well as good temperature performance under continuous wave operation. Devices with different ridge heights were fabricated from one wafer and their performance was compared. It was found that current spreading was significant in these devices and a simple current density-versus-applied voltage analysis was developed to determine the spreading factor. The analysis shows that the current spreading was not effectively limited until etching went below the doped cladding layer. A recombination coefficient analysis was performed to investigate the effect of strain on Auger recombination predicted by theory. An indirect method to infer both the nonradiative recombination coefficient and the Auger recombination coefficient was initially used. The measured values of the recombination coefficients were consistent with theoretical predictions and measurements based on other material systems. The Auger recombination was lower than expected, indicating that Auger recombination is reduced in these strained QWs. To understand the carrier dynamics, impedance measurements were carried out for the first time in AlGaInAs strained QW lasers. A small-signal, sub-threshold equivalent circuit model was derived from the laser rate equations to model the measured laser impedance. Several characteristic carrier lifetimes were obtained directly from these electrical impedance measurements. From the temperature dependence of the QW escape time, it was found that hole rather than electron leakage is dominant in the AlGaInAs system due to the relatively low valence band offset. This may explain why the improvement of T0 in AlGaInAs QW 1.55 mum active regions is limited.

  9. High final energy of gallium arsenide laser increases MyoD gene expression during the intermediate phase of muscle regeneration after cryoinjury in rats.

    PubMed

    Santos, Caroline Pereira; Aguiar, Andreo Fernando; Giometti, Ines Cristina; Mariano, Thaoan Bruno; de Freitas, Carlos Eduardo Assumpção; Nai, Gisele Alborghetti; de Freitas, Selma Zambelli; Pai-Silva, Maeli Dal; Pacagnelli, Francis Lopes

    2018-05-01

    The aim of this study was to determine the effects of gallium arsenide (GaAs) laser on IGF-I, MyoD, MAFbx, and TNF-α gene expression during the intermediate phase of muscle regeneration after cryoinjury 21 Wistar rats were divided into three groups (n = 7 per group): untreated with no injury (control group), cryoinjury without GaAs (injured group), and cryoinjury with GaAs (GaAs-injured group). The cryoinjury was induced in the central region of the tibialis anterior muscle (TA). The region injured was irradiated once a day during 14 days using GaAs laser (904 nm; spot size 0.035 cm 2 , output power 50 mW; energy density 69 J cm -2 ; exposure time 4 s per point; final energy 4.8 J). Twenty-four hours after the last application, the right and left TA muscles were collected for histological (collagen content) and molecular (gene expression of IGF-I, MyoD, MAFbx, and TNF-α) analyses, respectively. Data were analyzed using one-way ANOVA at P < 0.05. There were no significant (P > 0.05) differences in collagen density and IGF-I gene expression in all experimental groups. There were similar (P < 0.05) decreases in MAFbx and TNF-α gene expression in the injured and GaAs-injured groups, compared to control group. The MyoD gene expression increased (P = 0.008) in the GaAs-injured group, but not in the injured group (P = 0.338), compared to control group. GaAs laser therapy had a positive effect on MyoD gene expression, but not IGF-I, MAFbx, and TNF-α, during intermediary phases (14 days post-injury) of muscle repair.

  10. Etching and Growth of GaAs

    NASA Technical Reports Server (NTRS)

    Seabaugh, A. C.; Mattauch, R., J.

    1983-01-01

    In-place process for etching and growth of gallium arsenide calls for presaturation of etch and growth melts by arsenic source crystal. Procedure allows precise control of thickness of etch and newly grown layer on substrate. Etching and deposition setup is expected to simplify processing and improve characteristics of gallium arsenide lasers, high-frequency amplifiers, and advanced integrated circuits.

  11. Electron transport in erbium arsenide:indium gallium(aluminum)arsenide metal/semiconductor nanocomposites for thermoelectric power generation

    NASA Astrophysics Data System (ADS)

    Bahk, Je-Hyeong

    Electron transport in thin film ErAs:InGa(Al)As metal/semiconductor nanocomposite materials grown by molecular beam epitaxy is investigated experimentally and theoretically for efficient thermoelectric power generation. Thermoelectric properties such as the Seebeck coefficient, the electrical conductivity, and the thermal conductivity are measured for the various compositions of the material up to 840 K. A special sample preparation method is proposed to protect the thin films from damage and/or decomposition, and prevent the parasitic substrate conduction effect during the high temperature measurements. The sample preparation method includes surface passivation, high temperature metallization with a diffusion barrier, and the covalent oxide bonding technique for substrate removal. The experimental results for the nanocomposite materials are analyzed using the Boltzmann transport equation under the relaxation time approximation. The scattering characteristics of free electrons in the InGa(Al)As is defined by four major scattering mechanisms such as the polar optical phonon scattering, the ionized impurity scattering, the alloy scattering, and the acoustic phonon deformation potential scattering. Combining these scattering mechanisms, the electron transport model successfully fits the temperature-dependent thermoelectric properties of Si-doped InGaAlAs materials, and predicts the figure of merits at various doping levels in various Al compositions. The nanoparticle-electron interaction is modeled as a momentum scattering for free electrons caused by the electrostatic potential perturbation around nanoparticles and the band offset at the interface. The ErAs nanoparticles are assumed to be semi-metals that can donate electrons to the matrix, and positively charged after the charge transfer to build up the screened coulomb potential outside them. The nanoparticle scattering rate is calculated for this potential profile using the partial wave method, and used to analyze the enhancement of the Seebeck coefficient. Finally, the experimental results for the various compositions of the ErAs:InGa(Al)As nanocomposites are fit using the electron transport model and the nanoparticle scattering. It is shown that nanoparticle scattering can enhance the power factor via energy-dependent electron scattering in ErAs:InGaAs system. The figure of merit for the 0.6% ErAs:(InGaAs)0.8(InAlAs) 0.2 lattice matched to InP is measured to be 1.3 at 800 K, and the theory predicts that it can reach 1.9 at 1000 K.

  12. The influence of electrolyte additives on the anodic dissolution of aluminum in alkaline solutions

    NASA Astrophysics Data System (ADS)

    Boehnstedt, W.

    1980-09-01

    The paper describes the effect of electrolyte additives on the anodic dissolution of aluminum in alkaline solutions. The dissolution is accelerated by the addition of small quantities of gallium or indium ions to the electrolyte indicated by the shift of the zero current potential by about 250 mV on the current-potential curve. Scanning electron microscope studies showed that gallium ions produce many small cracks in the aluminum electrode and collect at the grain boundary areas, increasing the electrode surface; this enlargement, in combination with increased electrolyte agitation due to greater hydrogen evolution, provides higher current densities at the same potential. It is concluded that this process will widen the possibilities of using aluminum and its alloys in high-rate batteries.

  13. Wafer-Fused Orientation-Patterned GaAs

    DTIC Science & Technology

    2008-02-13

    frequencies utilizing existing industrial foundries. 15. SUBJECT TERMS Orientation-patterned Gallium Arsenide, hydride vapor phase epitaxy, quasi-phase... Gallium Arsenide, hydride vapor phase epitaxy, quasi-phase-matching, nonlinear frequency conversion 1. INTRODUCTION Quasi-phase-matching (QPM)1...and E. Lallier, “Second harmonic generation of CO2 laser using thick quasi-phase-matched GaAs layer grown by hydride vapour phase epitaxy

  14. Arsenic (III, V), indium (III), and gallium (III) toxicity to zebrafish embryos using a high-throughput multi-endpoint in vivo developmental and behavioral assay.

    PubMed

    Olivares, Christopher I; Field, Jim A; Simonich, Michael; Tanguay, Robert L; Sierra-Alvarez, Reyes

    2016-04-01

    Gallium arsenide (GaAs), indium gallium arsenide (InGaAs) and other III/V materials are finding increasing application in microelectronic components. The rising demand for III/V-based products is leading to increasing generation of effluents containing ionic species of gallium, indium, and arsenic. The ecotoxicological hazard potential of these streams is unknown. While the toxicology of arsenic is comprehensive, much less is known about the effects of In(III) and Ga(III). The embryonic zebrafish was evaluated for mortality, developmental abnormalities, and photomotor response (PMR) behavior changes associated with exposure to As(III), As(V), Ga(III), and In(III). The As(III) lowest observable effect level (LOEL) for mortality was 500 μM at 24 and 120 h post fertilization (hpf). As(V) exposure was associated with significant mortality at 63 μM. The Ga(III)-citrate LOEL was 113 μM at 24 and 120 hpf. There was no association of significant mortality over the tested range of In(III)-citrate (56-900 μM) or sodium citrate (213-3400 μM) exposures. Only As(V) resulted in significant developmental abnormalities with LOEL of 500 μM. Removal of the chorion prior to As(III) and As(V) exposure was associated with increased incidence of mortality and developmental abnormality suggesting that the chorion may normally attenuate mass uptake of these metals by the embryo. Finally, As(III), As(V), and In(III) caused PMR hypoactivity (49-69% of control PMR) at 900-1000 μM. Overall, our results represent the first characterization of multidimensional toxicity effects of III/V ions in zebrafish embryos helping to fill a significant knowledge gap, particularly in Ga(III) and In(III) toxicology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The 3-5 semiconductor solid solution single crystal growth. [low gravity float zone growth experiments using gallium indium antimonides and cadmium tellurides

    NASA Technical Reports Server (NTRS)

    Gertner, E. R.

    1980-01-01

    Techniques used for liquid and vapor phase epitaxy of gallium indium arsenide are described and the difficulties encountered are examined. Results show that the growth of bulk III-V solid solution single crystals in a low gravity environment will not have a major technological impact. The float zone technique in a low gravity environment is demonstrated using cadmium telluride. It is shown that this approach can result in the synthesis of a class of semiconductors that can not be grown in normal gravity because of growth problems rooted in the nature of their phase diagrams.

  16. Temporal switching jitter in photoconductive switches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GAUDET,JOHN A.; SKIPPER,MICHAEL C.; ABDALLA,MICHAEL D.

    This paper reports on a recent comparison made between the Air Force Research Laboratory (AFRL) gallium arsenide, optically-triggered switch test configuration and the Sandia National Laboratories (SNL) gallium arsenide, optically-triggered switch test configuration. The purpose of these measurements was to compare the temporal switch jitter times. It is found that the optical trigger laser characteristics are dominant in determining the PCSS jitter.

  17. Study of multi-kW solar arrays for Earth orbit application

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Planar and concentrator solar array configurations based on silicon and gallium arsenide solar cells were conceptualized and on-orbit maintainability was addressed. Four basic categories emerged: (1) planar (non concentrated) with silicon cells, (2) low-CR (concentration ratio = 3.4) with silicon cells, (3) low-CR with GaAs, and (4) high-CR (concentration ratio = 62.5) with GaAs. A very high-CR (concentration ratio = 200) was investigated but rejected on thermal grounds. Nonrecurring and recurring cost elements for each of the four concepts selected were compared over a 15 year life cycle. Under conditions where the gallium arsenide cells can be produced for less than $25 per 2 x 2 cm, the low CR concentrator emerges as the most cost effective configuration. However, the producibility risk remains higher on the gallium arsenide cell.

  18. An interim report on the NTS-2 solar cell experiment

    NASA Technical Reports Server (NTRS)

    Statler, R. L.; Walker, D. H.

    1979-01-01

    Data obtained from the fourteen solar cell modules on the NTS-2 satellite are presented together with a record of panel temperature and sun inclination. The following flight data are discussed: (1) state of the art solar cell configurations which embody improvements in solar cell efficiency through new silicon surface and bulk technology, (2) improved coverslip materials and coverslip bonding techniques, (3) short and long term effects of ultraviolet rejection filters vs. no filters on the cells, (4) degradation on a developmental type of liquid epitaxy gallium-aluminum-arsenide solar cell, and (5) space radiation effects.

  19. Space-based solar power conversion and delivery systems study. Volume 4: Energy conversion systems studies

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Solar cells and optical configurations for the SSPS were examined. In this task, three specific solar cell materials were examined: single crystal silicon, single crystal gallium arsenide, and polycrystalline cadmium sulfide. The comparison of the three different cells on the basis of a subsystem parametric cost per kW of SSPS-generated power at the terrestrial utility interface showed that gallium arsenide was the most promising solar cell material at high concentration ratios. The most promising solar cell material with no concentration, was dependent upon the particular combination of parameters representing cost, mass and performance that were chosen to represent each cell in this deterministic comparative analysis. The potential for mass production, based on the projections of the present state-of-the-art would tend to favor cadmium sulfide in lieu of single crystal silicon or gallium arsenide solar cells.

  20. Electro-optical characterization of GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Olsen, Larry C.; Dunham, Glen; Addis, F. W.; Huber, Dan; Daling, Dave

    1987-01-01

    The electro-optical characterization of gallium arsenide p/n solar cells is discussed. The objective is to identify and understand basic mechanisms which limit the performance of high efficiency gallium arsenide solar cells. The approach involves conducting photoresponse and temperature dependent current-voltage measurements, and interpretation of the data in terms of theory to determine key device parameters. Depth concentration profiles are also utilized in formulating a model to explain device performance.

  1. Probing/Manipulating the Interfacial Atomic Bonding between High k Dielectrics and InGaAs for Ultimate CMOS

    DTIC Science & Technology

    2015-04-24

    region of n-In0.53Ga0.47As MOSCAP. 15. SUBJECT TERMS CMOS, Magneto-optical imaging , Nanotechnology, Indium Gallium Arsenide 16...Nanotechnology, Indium Gallium Arsenide 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18. NUMBER OF PAGES 11 19a...more accessible to water vapor than it is in the complete TEMAHf molecule. There it is surrounded by 8 aliphatic methyl and ethyl groups with a total of

  2. Gallium scan

    MedlinePlus

    ... material called gallium and is a type of nuclear medicine exam. A related test is gallium scan ... Brown ML, Forstrom LA, et al. Society of nuclear medicine procedure guideline for gallium scintigraphy in inflammation. ...

  3. Modelling of the modulation properties of arsenide and nitride VCSELs

    NASA Astrophysics Data System (ADS)

    Wasiak, Michał; Śpiewak, Patrycja; Moser, Philip; Gebski, Marcin; Schmeckebier, Holger; Sarzała, Robert P.; Lott, James A.

    2017-02-01

    In this paper, using our model of capacitance in vertical-cavity surface-emitting lasers (VCSELs), we analyze certain differences between an oxide-confined arsenide VCSEL emitting in the NIR region, and a nitride VCSEL emitting violet radiation. In the nitride laser its high differential resistance, caused partially by the low conductivity of p-type GaN material and the bottom contact configuration, is one of the main reasons why the nitride VCSEL has much worse modulation properties than the arsenide VCSEL. Using the complicated arsenide structure, we also analyze different possible ways of constructing the laser's equivalent circuit.

  4. The global anthropogenic gallium system: determinants of demand, supply and efficiency improvements.

    PubMed

    Løvik, Amund N; Restrepo, Eliette; Müller, Daniel B

    2015-05-05

    Gallium has been labeled as a critical metal due to rapidly growing consumption, importance for low-carbon technologies such as solid state lighting and photovoltaics, and being produced only as a byproduct of other metals (mainly aluminum). The global system of primary production, manufacturing, use and recycling has not yet been described or quantified in the literature. This prevents predictions of future demand, supply and possibilities for efficiency improvements on a system level. We present a description of the global anthropogenic gallium system and quantify the system using a combination of statistical data and technical parameters. We estimated that gallium was produced from 8 to 21% of alumina plants in 2011. The most important applications of gallium are NdFeB permanent magnets, integrated circuits and GaAs/GaP-based light-emitting diodes, demanding 22-37%, 16-27%, and 11-21% of primary metal production, respectively. GaN-based light-emitting diodes and photovoltaics are less important, both with 2-6%. We estimated that 120-170 tons, corresponding to 40-60% of primary production, ended up in production wastes that were either disposed of or stored. While demand for gallium is expected to rise in the future, our results indicated that it is possible to increase primary production substantially with conventional technology, as well as improve the system-wide material efficiency.

  5. High-surface Thermally Stable Mesoporous Gallium Phosphates Constituted by Nanoparticles as Primary Building Blocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    V Parvulescu; V Parvulescu; D Ciuparu

    In constant, search for micro/mesoporous materials, gallium phosphates, have attracted continued interest due to the large pore size reported for some of these solids in comparison with analogous aluminum phosphates. However up to now, the porosity of gallium phosphates collapsed upon template removal or exposure to the ambient moisture. In the present work, we describe high-surface thermally stable mesoporous gallium phosphates synthesized from gallium propoxide and PCl{sub 3} and different templating agents such as amines (dipropylamine, piperidine and aminopiperidine) and quaternary ammonium salts (C{sub 16}H{sub 33}(CH{sub 3})3NBr and C{sub 16}PyCl). These highly reactive precursors have so far not been usedmore » as gallium and phosphate sources for the synthesis of gallophosphates. Conceptually, our present synthetic procedure is based on the fast formation of gallium phosphate nanoparticles via the reaction of gallium propoxide with PCl{sub 3} and subsequent construction of the porous material with nanoparticles as building blocks. The organization of the gallophosphate nanoparticles in stable porous structures is effected by the templates. Different experimental procedures varying the molar composition of the sol-gel, pH and the pretreatment of gallium precursor were assayed, most of them leading to satisfactory materials in terms of thermal stability and porosity. In this way, a series of gallium phosphates with surface are above 200 m{sup 2} g{sup -1}, and narrow pore size from 3 to 6 nm and remarkable thermal stability (up to 550 C) have been prepared. In some cases, the structure tends to show some periodicity and regularity as determined by XRD. The remarkable stability has allowed us to test the catalytic activity of gallophosphates for the aerobic oxidation of alkylaromatics with notable good results. Our report reopens the interest for gallophosphates in heterogeneous catalysis.« less

  6. InGaP Heterojunction Barrier Solar Cells

    NASA Technical Reports Server (NTRS)

    Welser, Roger E.

    2010-01-01

    A new solar-cell structure utilizes a single, ultra-wide well of either gallium arsenide (GaAs) or indium-gallium-phosphide (InGaP) in the depletion region of a wide bandgap matrix, instead of the usual multiple quantum well layers. These InGaP barrier layers are effective at reducing diode dark current, and photogenerated carrier escape is maximized by the proper design of the electric field and barrier profile. With the new material, open-circuit voltage enhancements of 40 and 100 mV (versus PIN control systems) are possible without any degradation in short-circuit current. Basic tenets of quantum-well and quantum- dot solar cells are utilized, but instead of using multiple thin layers, a single wide well works better. InGaP is used as a barrier material, which increases open current, while simultaneously lowering dark current, reducing both hole diffusion from the base, and space charge recombination within the depletion region. Both the built-in field and the barrier profile are tailored to enhance thermionic emissions, which maximizes the photocurrent at forward bias, with a demonstrated voltage increase. An InGaP heterojunction barrier solar cell consists of a single, ultra-wide GaAs, aluminum-gallium-arsenide (AlGaAs), or lower-energy-gap InGaP absorber well placed within the depletion region of an otherwise wide bandgap PIN diode. Photogenerated electron collection is unencumbered in this structure. InGaAs wells can be added to the thick GaAs absorber layer to capture lower-energy photons.

  7. Gallium Arsenide welded panel technology for advanced spaceflight applications

    NASA Technical Reports Server (NTRS)

    Lillington, D. R.; Gillanders, M. S.; Garlick, G. F. J.; Cavicchi, B. T.; Glenn, G. S.; Tobin, S. P.

    1989-01-01

    A significant impediment to the widespread use of GaAs solar cells in space is the cost and weight of the GaAs substrate. In order to overcome these problems, Spectrolab is pursuing thin cell technologies encompassing both liquid phase epitaxy (LPE) GaAs on GaAs and MOCVD GaAs on Ge cells. Spectrolab's experience in the manufacture of 4 to 6 mil 2 cm x 4 cm GaAs cells on a LPE production line is discussed. By thinning the cells at a late state of processing, production yields comparable to 12 mil cells have been achieved. Data are presented showing that GaAs cells can be welded without degradation and have achieved minimum average efficiencies of 18 percent AM0, 28 C with efficiencies up to 20 percent. Spectrolab, in conjunction with Spire Corporation has also been pursuing GaAs on Ge cell technology in support of larger area lighter weight power systems. Data are presented showing that individual 2 cm x 2 cm, 8 mil cell efficiencies up to 21.7 percent have been achieved. Efficiencies up to 24 percent AM0 will be possible by optimizing the GaAs/Ge interface. Cells have been welded without degradation using silver interconnects and have been laid down on an aluminum honeycomb/graphite facesheet substrate to produce a small coupon. The efficiency was 18.1 percent at AM0, 28 C.

  8. Indium Gallium Nitride/Gallium Nitride (InGaN/GaN) Nanorods Superlattice (SL)

    DTIC Science & Technology

    2006-03-29

    Final Report (Technical) 3. DATES COVERED 29-03-2005 to 29-05-2006 4. TITLE AND SUBTITLE Indium Gallium Nitride/ Gallium Nitride (InGaN/GaN...Institution: Quantum functional Semiconductor Research Center (QSRC), Dongguk University - Title of project: Indium Gallium Nitride/ Gallium Nitride...Accepted with minor revision Indium Gallium Nitride / Gallium Nitride (InGaN/ GaN) Nanorods Superlattice (SL) Abstract The growth condition, electrical

  9. Structural investigation of the C-O complex in GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alt, H. Ch.; Kersch, A.; Wagner, H. E.

    A carbon-oxygen complex occurring in gallium arsenide crystals after annealing at around 700 °C is studied. Fourier transform infrared absorption measurements on the associated vibrational band at 2060 cm-1 under uniaxial stress reveal that the center has tetragonal symmetry. From the intensity of the {sup 18}O-related satellite band it is concluded that four oxygen atoms are involved. Ab initio local density calculations show that a tetragonal CO{sub 4} molecule forms a stable entity in the gallium arsenide lattice.

  10. Clusterization Effects in III-V Nitrides: Nitrogen Vacancies, and Si and Mg Impurities in Aluminum Nitride and Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Gubanov, V. A.; Pentaleri, E. A.; Boekema, C.; Fong, C. Y.; Klein, B. M.

    1997-03-01

    We have investigated clusterization of nitrogen vacancies and Si and Mg doping impurities in zinc-blende aluminum nitride (c-AlN) and gallium nitride (c-GaN) by the tight-binding LMTO technique. The calculations used 128-site supercells. Si and Mg atoms replacing ions in both the cation and anion sublattices of the host lattices of the host crystals have been considered. The Mg impurity at cation sites is found to form partially occupied states at the valence-band edge, and may result in p-type conductivity. When Si substitutes for Ga, the impurity band is formed at the conduction-band edge, resulting in n-type conductivity. Si impurities at cation sites, and Mg impurity at anion sites are able to form resonance states in the gap. The influence of impurity clusterization in the host lattice and interstitial sites on electronic properties of c-AlN and c-GaN crystals are modeled. The changes in vacancy- and impurity-state energies, bonding type, localization, density of states at the Fermi level in different host lattices, their dependence on impurity/vacancy concentration are analyzed and compared with the experimental data.

  11. Complete p-type activation in vertical-gradient freeze GaAs co-implanted with gallium and carbon

    NASA Astrophysics Data System (ADS)

    Horng, S. T.; Goorsky, M. S.

    1996-03-01

    High-resolution triple-axis x-ray diffractometry and Hall-effect measurements were used to characterize damage evolution and electrical activation in gallium arsenide co-implanted with gallium and carbon ions. Complete p-type activation of GaAs co-implanted with 5×1014 Ga cm-2 and 5×1014 C cm-2 was achieved after rapid thermal annealing at 1100 °C for 10 s. X-ray diffuse scattering was found to increase after rapid thermal annealing at 600-900 °C due to the aggregation of implantation-induced point defects. In this annealing range, there was ˜10%-72% activation. After annealing at higher annealing temperatures, the diffuse scattered intensity decreased drastically; samples that had been annealed at 1000 °C (80% activated) and 1100 °C (˜100% activated) exhibited reciprocal space maps that were indicative of high crystallinity. The hole mobility was about 60 cm2/V s for all samples annealed at 800 °C and above, indicating that the crystal perfection influences dopant activation more strongly than it influences mobility. Since the high-temperature annealing simultaneously increases dopant activation and reduces x-ray diffuse scattering, we conclude that point defect complexes which form at lower annealing temperatures are responsible for both the diffuse scatter and the reduced activation.

  12. Mechanochemical activation and gallium and indiaarsenides surface catalycity

    NASA Astrophysics Data System (ADS)

    Kirovskaya, I. A.; Mironova, E. V.; Umansky, I. V.; Brueva, O. Yu; Murashova, A. O.; Yureva, A. V.

    2018-01-01

    The present work has been carried out in terms of determining the possibilities for a clearer identification of the active sites nature, intermediate surface compounds nature, functional groups during adsorption and catalysis, activation of the diamond-like semiconductors surface (in particular, the AIIIBV type) based on mechanochemical studies of the “reaction medium (H2O, iso-C3H7OH) - dispersible semiconductor (GaAs, InAs)” systems. As a result, according to the read kinetic curves of dispersion in water, both acidification and alkalinization of the medium have been established and explained; increased activity of the newly formed surface has been noted; intermediate surface compounds, functional groups appearing on the real surface and under H2O adsorption conditions, adsorption and catalytic decomposition of iso-C3H7OH have been found (with explanation of the origin). The unconcealed role of coordinatively unsaturated atoms as active sites of these processes has been shown; the relative catalytic activity of the semiconductors studied has been evaluated. Practical recommendations on the preferred use of gallium arsenide in semiconductor gas analysis and semiconductor catalysis have been given in literature searches, great care should be taken in constructing both.

  13. Sodium enhances indium-gallium interdiffusion in copper indium gallium diselenide photovoltaic absorbers.

    PubMed

    Colombara, Diego; Werner, Florian; Schwarz, Torsten; Cañero Infante, Ingrid; Fleming, Yves; Valle, Nathalie; Spindler, Conrad; Vacchieri, Erica; Rey, Germain; Guennou, Mael; Bouttemy, Muriel; Manjón, Alba Garzón; Peral Alonso, Inmaculada; Melchiorre, Michele; El Adib, Brahime; Gault, Baptiste; Raabe, Dierk; Dale, Phillip J; Siebentritt, Susanne

    2018-02-26

    Copper indium gallium diselenide-based technology provides the most efficient solar energy conversion among all thin-film photovoltaic devices. This is possible due to engineered gallium depth gradients and alkali extrinsic doping. Sodium is well known to impede interdiffusion of indium and gallium in polycrystalline Cu(In,Ga)Se 2 films, thus influencing the gallium depth distribution. Here, however, sodium is shown to have the opposite effect in monocrystalline gallium-free CuInSe 2 grown on GaAs substrates. Gallium in-diffusion from the substrates is enhanced when sodium is incorporated into the film, leading to Cu(In,Ga)Se 2 and Cu(In,Ga) 3 Se 5 phase formation. These results show that sodium does not decrease per se indium and gallium interdiffusion. Instead, it is suggested that sodium promotes indium and gallium intragrain diffusion, while it hinders intergrain diffusion by segregating at grain boundaries. The deeper understanding of dopant-mediated atomic diffusion mechanisms should lead to more effective chemical and electrical passivation strategies, and more efficient solar cells.

  14. Thermo-piezo-electro-mechanical simulation of AlGaN (aluminum gallium nitride) / GaN (gallium nitride) High Electron Mobility Transistors

    NASA Astrophysics Data System (ADS)

    Stevens, Lorin E.

    Due to the current public demand of faster, more powerful, and more reliable electronic devices, research is prolific these days in the area of high electron mobility transistor (HEMT) devices. This is because of their usefulness in RF (radio frequency) and microwave power amplifier applications including microwave vacuum tubes, cellular and personal communications services, and widespread broadband access. Although electrical transistor research has been ongoing since its inception in 1947, the transistor itself continues to evolve and improve much in part because of the many driven researchers and scientists throughout the world who are pushing the limits of what modern electronic devices can do. The purpose of the research outlined in this paper was to better understand the mechanical stresses and strains that are present in a hybrid AlGaN (Aluminum Gallium Nitride) / GaN (Gallium Nitride) HEMT, while under electrically-active conditions. One of the main issues currently being researched in these devices is their reliability, or their consistent ability to function properly, when subjected to high-power conditions. The researchers of this mechanical study have performed a static (i.e. frequency-independent) reliability analysis using powerful multiphysics computer modeling/simulation to get a better idea of what can cause failure in these devices. Because HEMT transistors are so small (micro/nano-sized), obtaining experimental measurements of stresses and strains during the active operation of these devices is extremely challenging. Physical mechanisms that cause stress/strain in these structures include thermo-structural phenomena due to mismatch in both coefficient of thermal expansion (CTE) and mechanical stiffness between different materials, as well as stress/strain caused by "piezoelectric" effects (i.e. mechanical deformation caused by an electric field, and conversely voltage induced by mechanical stress) in the AlGaN and GaN device portions (both

  15. Digital Logic and Reconfigurable Interconnects Using Aluminum Gallium Arsenide Electro-Optic Fredkin Gates

    DTIC Science & Technology

    1994-06-01

    length and coupling coefficient for the zero-gap directional coupler are obtained by using Eq. 3.2.39. Bums and Milton Effective Index Method In a 1975...nj) with •i wavegulde thicness b. Effective index N1 is then used to find the effective >Vt.,:, ;- 105 c a ¶ 2 n. n_ z n2 - : n4 Three-Dimensional...constant for the TM, modes is determined in a manner similar to the one used for the TEp modes. First, effective index N1 of 2-D Waveguide I is found by

  16. Space station automation study: Automation requriements derived from space manufacturing concepts,volume 2

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Automation reuirements were developed for two manufacturing concepts: (1) Gallium Arsenide Electroepitaxial Crystal Production and Wafer Manufacturing Facility, and (2) Gallium Arsenide VLSI Microelectronics Chip Processing Facility. A functional overview of the ultimate design concept incoporating the two manufacturing facilities on the space station are provided. The concepts were selected to facilitate an in-depth analysis of manufacturing automation requirements in the form of process mechanization, teleoperation and robotics, sensors, and artificial intelligence. While the cost-effectiveness of these facilities was not analyzed, both appear entirely feasible for the year 2000 timeframe.

  17. [Combined use of various laser radiations in thoracic surgery in experimental studies].

    PubMed

    Ismailov, D A; Khoroshaev, V A; Shishkin, M A; Baĭbekov, I M

    1993-01-01

    The impact of various types of low-intensive lasers (He-Ne, copper vapour, ultraviolet, infrared, infrared gallium arsenide) on healing of a wound made by CO2 laser at an output power of 25 W was studied in an experiment on 120 albino Wistar rats. It was found that a concurrent application of high- and low-intensive lasers resulted in acceleration of reparative processes in the lung, stimulating the healing of laser-induced wounds. The infrared gallium arsenide laser was demonstrated to be the best tool in stimulating the healing process.

  18. Gadolinium Scandium Gallium Garnet (GSGG) as a Solid-State Laser Host

    DTIC Science & Technology

    1987-07-01

    o*SATI CODSi1.SBEC EM (otne nrvrs fnceayad dniy nb)k ubr ~~~~~~~~ Gadolinium Scandium Gallium Garnet (GSGG)asaSldtteLerHt 17. ABSTRACT 6.SUJCTTEM...certain other garnet materials for replacement. It also addresses the solid-state laser host material Gadolinium Scandium Gal- lium Garnet (GSGG) and its...by neodymium-doped yttrium aluminum garnet (Nd:YAG) or other mate- rials for most applications. In the years after the invention of the ruby laser, in

  19. Gallium nitride optoelectronic devices

    NASA Technical Reports Server (NTRS)

    Chu, T. L.; Chu, S. S.

    1972-01-01

    The growth of bulk gallium nitride crystals was achieved by the ammonolysis of gallium monochloride. Gallium nitride single crystals up to 2.5 x 0.5 cm in size were produced. The crystals are suitable as substrates for the epitaxial growth of gallium nitride. The epitaxial growth of gallium nitride on sapphire substrates with main faces of (0001) and (1T02) orientations was achieved by the ammonolysis of gallium monochloride in a gas flow system. The grown layers had electron concentrations in the range of 1 to 3 x 10 to the 19th power/cu cm and Hall mobilities in the range of 50 to 100 sq cm/v/sec at room temperature.

  20. Involvement of Fumarase C and NADH Oxidase in Metabolic Adaptation of Pseudomonas fluorescens Cells Evoked by Aluminum and Gallium Toxicity▿

    PubMed Central

    Chenier, Daniel; Beriault, Robin; Mailloux, Ryan; Baquie, Mathurin; Abramia, Gia; Lemire, Joseph; Appanna, Vasu

    2008-01-01

    Iron (Fe) is a critical element in all aerobic organisms as it participates in a variety of metabolic networks. In this study, aluminum (Al) and gallium (Ga), two Fe mimetics, severely impeded the ability of the soil microbe Pseudomonas fluorescens to perform oxidative phosphorylation. This was achieved by disrupting the activity and expression of complexes I, II, and IV. These toxic metals also inactivated aconitase (ACN) and fumarase A (FUM A), two tricarboxylic acid cycle enzymes dependent on Fe for their catalytic activity, while FUM C, an Fe-independent enzyme, displayed an increase in activity and expression under these stressed situations. Furthermore, in the Al- and Ga-exposed cells, the activity and expression of an H2O-forming NADH oxidase were markedly increased. The incubation of the Al- and Ga-challenged cells in an Fe-containing medium led to the recovery of the affected enzymatic activities. Taken together, these data provide novel insights into how environmental pollutants such as Al and Ga interfere with cellular Fe metabolism and also illustrate the ability of Pseudomonas fluorescens to modulate metabolic networks to combat this situation. PMID:18469122

  1. The electronic structure of indium arsenide/gallium arsenide self-assembled quantum dots in a high magnetic field

    NASA Astrophysics Data System (ADS)

    Awirothananon, Sunida

    The electronic energy levels of dome-shape InAs self-assembled quantum dots (SAQD) grown by the Stranski-Krastanow mode on GaAs substrates are similar to those obtained from a two-dimensional harmonic-oscillator. A simple selection rule allows transitions only that preserve angular momentum, depicted with atomic-like orbital labels s, p, d, f, etc. This electronic structure was examined with photoluminescence (PL) and photoluminescence excitation (PLE) techniques. As well, in magnetic fields up to 28 Tesla applied parallel to the growth direction, SAQD energy-level degeneracies were lifted. The number of branches observed is correlated to the angular momentum. The ground state (GS) level at zero angular momentum is shifted quadratically under the magnetic field and the behavior could be explained with the Fock-Darwin (F-D) spectral model. The effect of annealing at temperatures from 825°C to 900°C in 25°C steps on the SAQD electronic structure was also examined with the PL technique combined with an applied magnetic field in the Faraday configuration. The PL lines were similar to the F-D spectral lines with their degeneracy lifted by the applied magnetic field. These lines exhibited ten (anti-)crossings: three each at 10 T and 28 T, four at 18 T, while the inter-level spacing and the FWHM were reduced with increasing annealing temperature. Thus an increase in the observed (anti-)crossings resulted for the higher anneal temperatures. The in-plane excitonic reduced-mass was inferred from the systematic splitting of the PL p-branches in a magnetic field. The reduced-mass for all the annealed QD samples was about 0.066 m0 +/- 0.012m0 which decreased slightly with anneal temperature. An 8-band k*p model predicted a similar reduced-mass at low alloying of gallium, but an incorrect trend was observed as the alloying increased with annealing temperature. Unrealistic reduced-masses at 50 percent gallium content were reached. This discrepancy is explained assuming the F

  2. The effect of different solar simulators on the measurement of short-circuit current temperature coefficients

    NASA Technical Reports Server (NTRS)

    Curtis, H. B.; Hart, R. E., Jr.

    1982-01-01

    Gallium arsenide solar cells are considered for several high temperature missions in space. Both near-Sun and concentrator missions could involve cell temperatures on the order of 200 C. Performance measurements of cells at elevated temperatures are usually made using simulated sunlight and a matched reference cell. Due to the change in bandgap with increasing temperature at portions of the spectrum where considerable simulated irradiance is present, there are significant differences in measured short circuit current at elevated temperatures among different simulators. To illustrate this, both experimental and theoretical data are presented for gallium arsenide cells.

  3. Npn double heterostructure bipolar transistor with ingaasn base region

    DOEpatents

    Chang, Ping-Chih; Baca, Albert G.; Li, Nein-Yi; Hou, Hong Q.; Ashby, Carol I. H.

    2004-07-20

    An NPN double heterostructure bipolar transistor (DHBT) is disclosed with a base region comprising a layer of p-type-doped indium gallium arsenide nitride (InGaAsN) sandwiched between n-type-doped collector and emitter regions. The use of InGaAsN for the base region lowers the transistor turn-on voltage, V.sub.on, thereby reducing power dissipation within the device. The NPN transistor, which has applications for forming low-power electronic circuitry, is formed on a gallium arsenide (GaAs) substrate and can be fabricated at commercial GaAs foundries. Methods for fabricating the NPN transistor are also disclosed.

  4. Gallium-containing anticancer compounds.

    PubMed

    Chitambar, Christopher R

    2012-06-01

    There is an ever pressing need to develop new drugs for the treatment of cancer. Gallium nitrate, a group IIIa metal salt, inhibits the proliferation of tumor cells in vitro and in vivo and has shown activity against non-Hodgkin's lymphoma and bladder cancer in clinical trials. Gallium can function as an iron mimetic and perturb iron-dependent proliferation and other iron-related processes in tumor cells. Gallium nitrate lacks crossresistance with conventional chemotherapeutic drugs and is not myelosuppressive; it can be used when other drugs have failed or when the blood count is low. Given the therapeutic potential of gallium, newer generations of gallium compounds are now in various phases of preclinical and clinical development. These compounds hold the promise of greater anti-tumor activity against a broader spectrum of cancers. The development of gallium compounds for cancer treatment and their mechanisms of action will be discussed.

  5. A combined kick-out and dissociative diffusion mechanism of grown-in Be in InGaAs and InGaAsP. A new finite difference-Bairstow method for solution of the diffusion equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koumetz, Serge D., E-mail: Serge.Koumetz@univ-rouen.fr; Martin, Patrick; Murray, Hugues

    Experimental results on the diffusion of grown-in beryllium (Be) in indium gallium arsenide (In{sub 0.53}Ga{sub 0.47}As) and indium gallium arsenide phosphide (In{sub 0.73}Ga{sub 0.27}As{sub 0.58}P{sub 0.42}) gas source molecular beam epitaxy alloys lattice-matched to indium phosphide (InP) can be successfully explained in terms of a combined kick-out and dissociative diffusion mechanism, involving neutral Be interstitials (Be{sub i}{sup 0}), singly positively charged gallium (Ga), indium (In) self-interstitials (I{sub III}{sup +}) and singly positively charged Ga, In vacancies (V{sub III}{sup +}). A new numerical method of solution to the system of diffusion equations, based on the finite difference approximations and Bairstow's method,more » is proposed.« less

  6. Gallium-containing anticancer compounds

    PubMed Central

    Chitambar, Christopher R

    2013-01-01

    There is an ever pressing need to develop new drugs for the treatment of cancer. Gallium nitrate, a group IIIa metal salt, inhibits the proliferation of tumor cells in vitro and in vivo and has shown activity against non-Hodgkin’s lymphoma and bladder cancer in clinical trials. Gallium can function as an iron mimetic and perturb iron-dependent proliferation and other iron-related processes in tumor cells. Gallium nitrate lacks cross resistance with conventional chemotherapeutic drugs and is not myelosuppressive; it can be used when other drugs have failed or when the blood count is low. Given the therapeutic potential of gallium, newer generations of gallium compounds are now in various phases of preclinical and clinical development. These compounds hold the promise of greater anti-tumor activity against a broader spectrum of cancers. The development of gallium compounds for cancer treatment and their mechanisms of action will be discussed. PMID:22800370

  7. Heterojunction solar cell with 6% efficiency based on an n-type aluminum-gallium-oxide thin film and p-type sodium-doped Cu2O sheet

    NASA Astrophysics Data System (ADS)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2015-02-01

    In this paper, we describe efforts to enhance the efficiency of Cu2O-based heterojunction solar cells fabricated with an aluminum-gallium-oxide (Al-Ga-O) thin film as the n-type layer and a p-type sodium (Na)-doped Cu2O (Cu2O:Na) sheet prepared by thermally oxidizing copper sheets. The optimal Al content [X; Al/(Ga + Al) atomic ratio] of an AlX-Ga1-X-O thin-film n-type layer was found to be approximately 2.5 at. %. The optimized resistivity was approximately 15 Ω cm for n-type AlX-Ga1-X-O/p-type Cu2O:Na heterojunction solar cells. A MgF2/AZO/Al0.025-Ga0.975-O/Cu2O:Na heterojunction solar cell with 6.1% efficiency was fabricated using a 60-nm-thick n-type oxide thin-film layer and a 0.2-mm-thick Cu2O:Na sheet with the optimized resistivity.

  8. Automated assembly of Gallium Arsenide and 50-micron thick silicon solar cell modules

    NASA Technical Reports Server (NTRS)

    Mesch, H. G.

    1984-01-01

    The TRW automated solar array assembly equipment was used for the module assembly of 300 GaAs solar cells and 300 50 micron thick silicon solar cells (2 x 4 cm in size). These cells were interconnected with silver plated Invar tabs by means of welding. The GaAs cells were bonded to Kapton graphite aluminum honeycomb graphite substrates and the thin silicon cells were bonded to 0.002 inch thick single layer Kapton substrates. The GaAs solar cell module assembly resulted in a yield of 86% and the thin cell assembly produced a yield of 46% due to intermittent sticking of weld electrodes during the front cell contact welding operation. (Previously assembled thin cell solar modules produced an overall assembly yield of greater than 80%).

  9. Renal amyloidosis. Evaluation by gallium imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, V.W.; Skinner, M.; Cohen, A.S.

    1986-09-01

    A study has been performed to evaluate the efficacy of gallium imaging in the detection of renal amyloidosis. Ten of the 11 patients who had biopsy-proven renal amyloidosis demonstrated marked uptake in both kidneys. One patient revealed moderate gallium uptake in his kidneys. None of the patients had underlying renal or extrarenal pathology other than amyloidosis, which could account for renal gallium uptake (renal infection, neoplasm, hepatic failure or frequent blood transfusions). Four patients also had extrarenal foci of abnormal gallium uptake, suggesting other sites of amyloid deposits. Our data strongly suggest that gallium imaging has a high sensitivity formore » detection of renal amyloidosis. Its specificity is enhanced significantly by careful review of the clinical history to exclude other known causes of renal gallium uptake. Potentially, gallium imaging may be used to monitor the progress of patients under experimental therapy.« less

  10. Long-chain amine-templated synthesis of gallium sulfide and gallium selenide nanotubes

    NASA Astrophysics Data System (ADS)

    Seral-Ascaso, A.; Metel, S.; Pokle, A.; Backes, C.; Zhang, C. J.; Nerl, H. C.; Rode, K.; Berner, N. C.; Downing, C.; McEvoy, N.; Muñoz, E.; Harvey, A.; Gholamvand, Z.; Duesberg, G. S.; Coleman, J. N.; Nicolosi, V.

    2016-06-01

    We describe the soft chemistry synthesis of amine-templated gallium chalcogenide nanotubes through the reaction of gallium(iii) acetylacetonate and the chalcogen (sulfur, selenium) using a mixture of long-chain amines (hexadecylamine and dodecylamine) as a solvent. Beyond their role as solvent, the amines also act as a template, directing the growth of discrete units with a one-dimensional multilayer tubular nanostructure. These new materials, which broaden the family of amine-stabilized gallium chalcogenides, can be tentatively classified as direct large band gap semiconductors. Their preliminary performance as active material for electrodes in lithium ion batteries has also been tested, demonstrating great potential in energy storage field even without optimization.We describe the soft chemistry synthesis of amine-templated gallium chalcogenide nanotubes through the reaction of gallium(iii) acetylacetonate and the chalcogen (sulfur, selenium) using a mixture of long-chain amines (hexadecylamine and dodecylamine) as a solvent. Beyond their role as solvent, the amines also act as a template, directing the growth of discrete units with a one-dimensional multilayer tubular nanostructure. These new materials, which broaden the family of amine-stabilized gallium chalcogenides, can be tentatively classified as direct large band gap semiconductors. Their preliminary performance as active material for electrodes in lithium ion batteries has also been tested, demonstrating great potential in energy storage field even without optimization. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01663d

  11. 49 CFR 173.162 - Gallium.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Gallium. 173.162 Section 173.162 Transportation... PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.162 Gallium. (a) Except when packaged in cylinders or steel flasks, gallium must be packaged in packagings which meet the...

  12. 49 CFR 173.162 - Gallium.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Gallium. 173.162 Section 173.162 Transportation... PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.162 Gallium. (a) Except when packaged in cylinders or steel flasks, gallium must be packaged in packagings which meet the...

  13. 49 CFR 173.162 - Gallium.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Gallium. 173.162 Section 173.162 Transportation... PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.162 Gallium. (a) Except when packaged in cylinders or steel flasks, gallium must be packaged in packagings which meet the...

  14. Study of the structural role of gallium and aluminum in 45S5 bioactive glasses by molecular dynamics simulations.

    PubMed

    Malavasi, Gianluca; Pedone, Alfonso; Menziani, Maria Cristina

    2013-04-18

    The structural properties of phosphosilicate glasses based on the 45S5 Bioglass doped with gallium and aluminum (46.2 SiO2·24.3Na2O·26.9CaO·2.6P2O5·1.0X2O3, X = Ga or Al) are investigated by means of classical molecular dynamics simulations. Structural features of the two compositions are compared with those of the original 45S5 Bioglass in order to relate them to the different known bioactivities of these materials. Differences in the coordination environments of Ga and Al, network connectivity, and ion aggregation reveal a microscopic model of these glasses which supports the interpretation of the experimental data and provides new insight into the different biological behaviors of Ga- and Al-containing phosphosilicate glasses. Although Ga is found predominantly in a 4-fold coordination environment, small amounts of 5- and 6-fold coordinated atoms have been detected depending on the interatomic potential model employed. This suggests its possible intermediate role in phosphosilicate glasses. On the contrary, Al plays a network former role and leads to glasses with a more polymerized structure. Interestingly, the results show an increased propensity for aggregation of the Ca(2+) and PO4(3-) ions in the Al-containing phosphosilicate glasses with respect to the Ga-containing ones. This leads to insoluble calcium-phosphate-rich regions not detected in the bioactive glasses.

  15. Holographic fabrication of gratings in metal substrates

    NASA Technical Reports Server (NTRS)

    Fletcher, R. M.; Wagner, D. K.; Ballantyne, J. M.

    1982-01-01

    A program for investigating the grain enlargement resulting from the laser recrystallization of a thin gallium arsenide film on a patterned substrate, a technique known as graphoepitaxy was evaluated. More specifically, the effects of recrystallizing an uncapped gallium arsenide film using a continuous wave neodymium YAG laser operating at 1.06 microns were studied. In an effort to minimize arsenic loss from the film, the specimens were held in an arsine atmosphere during recrystallization. Two methods for fabricating patterned substrates were developed, one using reactive ion etching of a molybdenum film on both sapphire and silicon substates and another by preferential wet etching of a silicon substrate onto which a film of molybdenum was subsequently deposited.

  16. Solar-Electrochemical Power System for a Mars Mission

    NASA Technical Reports Server (NTRS)

    Withrow, Colleen A.; Morales, Nelson

    1994-01-01

    This report documents a sizing study of a variety of solar electrochemical power systems for the intercenter NASA study known as 'Mars Exploration Reference Mission'. Power systems are characterized for a variety of rovers, habitation modules, and space transport vehicles based on requirements derived from the reference mission. The mission features a six-person crew living on Mars for 500 days. Mission power requirements range from 4 kWe to 120 kWe. Primary hydrogen and oxygen fuel cells, regenerative hydrogen and oxygen fuel cells, sodium sulfur batteries advanced photovoltaic solar arrays of gallium arsenide on germanium with tracking and nontracking mechanisms, and tent solar arrays of gallium arsenide on germanium are evaluated and compared.

  17. Structure-composition-property relationships in 5xxx series aluminum alloys

    NASA Astrophysics Data System (ADS)

    Unocic, Kinga A.

    related to Ga accumulation were discovered, that produce significant microstructural artifacts. It is well known that liquid gallium can cause Liquid Metal Embitterment (LME) aluminum alloys, and gallium readily penetrates aluminum grain boundaries. Low energy Ar ion nanomilling is potentially quite effective at removing gallium from the external and internal surfaces of aluminum thin foils, but can still leave persistent artifacts. Al-Mg alloys can be also susceptible to localized corrosion such as pitting corrosion in the presence of chloride ions. In this study the phases responsible for this type of corrosion were identified. ASSET (ASTM G66) test was used to determine the influence of heat-treatment on pitting corrosion on various modified AA5083 alloys. Additionally, potentiodynamic polarization as well as potentiostatic measurements in conjunction with SEM analysis were carried out to obtain pitting potential (Epit) and to determine the location of metastable pit initiation, respectively.

  18. Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control.

    PubMed

    Sarkar, Sujoy; Sampath, S

    2016-05-11

    A ternary, ionically conducting, deep eutectic solvent based on acetamide, urea and gallium nitrate is reported for the electrodeposition of gallium nitride/gallium indium nitride under ambient conditions; blue and white light emitting photoluminescent deposits are obtained under potential control.

  19. Mineral resource of the month: gallium

    USGS Publications Warehouse

    Jaskula, Brian W.

    2009-01-01

    The metal element gallium occurs in very small concentrations in rocks and ores of other metals — native gallium is not known. As society gets more and more high-tech, gallium becomes more useful. Gallium is one of only five metals that are liquid at or close to room temperature. It has one of the longest liquid ranges of any metal (29.8 degrees Celsius to 2204 degrees Celsius) and has a low vapor pressure even at high temperatures. Ultra-pure gallium has a brilliant silvery appearance, and the solid metal exhibits conchoidal fracture similar to glass.

  20. Controlled Electrochemical Deformation of Liquid-Phase Gallium.

    PubMed

    Chrimes, Adam F; Berean, Kyle J; Mitchell, Arnan; Rosengarten, Gary; Kalantar-zadeh, Kourosh

    2016-02-17

    Pure gallium is a soft metal with a low temperature melting point of 29.8 °C. This low melting temperature can potentially be employed for creating optical components with changeable configurations on demand by manipulating gallium in its liquid state. Gallium is a smooth and highly reflective metal that can be readily maneuvered using electric fields. These features allow gallium to be used as a reconfigurable optical reflector. This work demonstrates the use of gallium for creating reconfigurable optical reflectors manipulated through the use of electric fields when gallium is in a liquid state. The use of gallium allows the formed structures to be frozen and preserved as long as the temperature of the metal remains below its melting temperature. The lens can be readily reshaped by raising the temperature above the melting point and reapplying an electric field to produce a different curvature of the gallium reflector.

  1. Growing Gallium Arsenide On Silicon

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Gouri

    1989-01-01

    Epitaxial layers of high quality formed on <111> crystal plane. Present work reports successful growth of 1- and 2-micrometer thick layers of n-type, 7-ohms per cm, 2-inch diameter, Si<111> substrate. Growth conducted in Riber-2300(R) MBE system. Both doped and undoped layers of GaAs grown. Chamber equipped with electron gun and camera for in-situ reflection high-energy-electron diffraction measurements. RHEED patterns of surface monitored continuously during slow growth stage.

  2. Gallium Arsenide Monolithic Optoelectronic Circuits

    NASA Astrophysics Data System (ADS)

    Bar-Chaim, N.; Katz, J.; Margalit, S.; Ury, I.; Wilt, D.; Yariv, A.

    1981-07-01

    The optical properties of GaAs make it a very useful material for the fabrication of optical emitters and detectors. GaAs also possesses electronic properties which allow the fabrication of high speed electronic devices which are superior to conventional silicon devices. Monolithic optoelectronic circuits are formed by the integration of optical and electronic devices on a single GaAs substrate. Integration of many devices is most easily accomplished on a semi-insulating (SI) sub-strate. Several laser structures have been fabricated on SI GaAs substrates. Some of these lasers have been integrated with Gunn diodes and with metal semiconductor field effect transistors (MESFETs). An integrated optical repeater has been demonstrated in which MESFETs are used for optical detection and electronic amplification, and a laser is used to regenerate the optical signal. Monolithic optoelectronic circuits have also been constructed on conducting substrates. A heterojunction bipolar transistor driver has been integrated with a laser on an n-type GaAs substrate.

  3. Synchrotron X-Ray Fluorescence Microscopy of Gallium in Bladder Tissue following Gallium Maltolate Administration during Urinary Tract Infection

    PubMed Central

    Sampieri, Francesca; Chirino, Manuel; Hamilton, Don L.; Blyth, Robert I. R.; Sham, Tsun-Kong; Dowling, Patricia M.; Thompson, Julie

    2013-01-01

    A mouse model of cystitis caused by uropathogenic Escherichia coli was used to study the distribution of gallium in bladder tissue following oral administration of gallium maltolate during urinary tract infection. The median concentration of gallium in homogenized bladder tissue from infected mice was 1.93 μg/g after daily administration of gallium maltolate for 5 days. Synchrotron X-ray fluorescence imaging and X-ray absorption spectroscopy of bladder sections confirmed that gallium arrived at the transitional epithelium, a potential site of uropathogenic E. coli infection. Gallium and iron were similarly but not identically distributed in the tissues, suggesting that at least some distribution mechanisms are not common between the two elements. The results of this study indicate that gallium maltolate may be a suitable candidate for further development as a novel antimicrobial therapy for urinary tract infections caused by uropathogenic E. coli. PMID:23877680

  4. Geant4 Predictions of Energy Spectra in Typical Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Sabra, M. S.; Barghouty, A. F.

    2014-01-01

    Accurate knowledge of energy spectra inside spacecraft is important for protecting astronauts as well as sensitive electronics from the harmful effects of space radiation. Such knowledge allows one to confidently map the radiation environment inside the vehicle. The purpose of this talk is to present preliminary calculations for energy spectra inside a spherical shell shielding and behind a slab in typical space radiation environment using the 3D Monte-Carlo transport code Geant4. We have simulated proton and iron isotropic sources and beams impinging on Aluminum and Gallium arsenide (GaAs) targets at energies of 0.2, 0.6, 1, and 10 GeV/u. If time permits, other radiation sources and beams (_, C, O) and targets (C, Si, Ge, water) will be presented. The results are compared to ground-based measurements where available.

  5. Interlayer interaction and mechanical properties in multi-layer graphene, Boron-Nitride, Aluminum-Nitride and Gallium-Nitride graphene-like structure: A quantum-mechanical DFT study

    NASA Astrophysics Data System (ADS)

    Ghorbanzadeh Ahangari, Morteza; Fereidoon, A.; Hamed Mashhadzadeh, Amin

    2017-12-01

    In present study, we investigated mechanical, electronic and interlayer properties of mono, bi and 3layer of Boron-Nitride (B-N), Aluminum-Nitride (Al-N) and Gallium-Nitride (Ga-N) graphene sheets and compared these results with results obtained from carbonic graphenes (C-graphenes). For reaching this purpose, first we optimized the geometrical parameters of these graphenes by using density functional theory (DFT) method. Then we calculated Young's modulus of graphene sheet by compressing and then elongating these sheets in small increment. Our results indicates that Young's modulus of graphenes didn't changed obviously by increasing the number of layer sheet. We also found that carbonic graphene has greatest Young's modulus among another mentioned sheets because of smallest equilibrium distance between its elements. Next we modeled the van der Waals interfacial interaction exist between two sheets with classical spring model by using general form of Lennard-Jones (L-J) potential for all of mentioned graphenes. For calculating L-J parameters (ε and σ), the potential energy between layers of mentioned graphene as a function of the separation distance was plotted. Moreover, the density of states (DOS) are calculated to understand the electronic properties of these systems better.

  6. The Preparation and Structural Characterization of Three Structural Types of Gallium Compounds Derived from Gallium (II) Chloride

    NASA Technical Reports Server (NTRS)

    Gordon, Edward M.; Hepp, Aloysius F.; Duraj. Stan A.; Habash, Tuhfeh S.; Fanwick, Phillip E.; Schupp, John D.; Eckles, William E.; Long, Shawn

    1997-01-01

    The three compounds Ga2Cl4(4-mepy)2 (1),[GaCl2(4-mepy)4]GaCl4x1/2(4-mepy); (2) and GaCl2(4-mepy)2(S2CNEt2); (3) (4-mepy= 4-methylpyridine) have been prepared from reactions of gallium (II) chloride in 4-methylpyridine and characterized by single-crystal X-ray analysis. Small variations in the reaction conditions for gallium(II) chloride can produce crystals with substantially different structural properties. The three compounds described here encompass a neutral gallium(II) dimer in which each gallium is four-coordinate, an ionic compound containing both anionic and cationic gallium complex ions with different coordination numbers and a neutral six-coordinate heteroleptic

  7. Construction of Gallium Point at NMIJ

    NASA Astrophysics Data System (ADS)

    Widiatmo, J. V.; Saito, I.; Yamazawa, K.

    2017-03-01

    Two open-type gallium point cells were fabricated using ingots whose nominal purities are 7N. Measurement systems for the realization of the melting point of gallium using these cells were built. The melting point of gallium is repeatedly realized by means of the measurement systems for evaluating the repeatability. Measurements for evaluating the effect of hydrostatic pressure coming from the molten gallium existing during the melting process and the effect of gas pressure that fills the cell were also performed. Direct cell comparisons between those cells were conducted. This comparison was aimed to evaluate the consistency of each cell, especially related to the nominal purity. Direct cell comparison between the open-type and the sealed-type gallium point cell was also conducted. Chemical analysis was conducted using samples extracted from ingots used in both the newly built open-type gallium point cells, from which the effect of impurities in the ingot was evaluated.

  8. NASA-OAST photovoltaic energy conversion program

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Loria, J. C.

    1984-01-01

    The NASA program in photovoltaic energy conversion research is discussed. Solar cells, solar arrays, gallium arsenides, space station and spacecraft power supplies, and state of the art devices are discussed.

  9. The solubility of gallium oxide in vapor and two-phase fluid filtration in hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Bychkov, Andrew; Matveeva, Svetlana; Nekrasov, Stanislav

    2010-05-01

    The solubility of gallium and aluminum oxides in gas phase in the system Ga2O3 (Al2O3)-HCl-H2O was studied at 150-350°C and pressure up to saturated vapor. The concentration of gallium increases with the increasing of HCl pressure. The formulae of gallium gaseous specie was determined as GaOHCl2. The constant of gallium oxide solubility reaction was calculated at 150, 200, 250, 300 and 350°C. The concentration of aluminum in gas phase is insignificant in the same conditions. The possibility of gallium transportation in gas phase with small quantity of Al allow to divide this elements in hydrothermal processes with gas phase. The Ga/Al ratio in muscovite can be used as the indicator of gas phase separation and condensation. This indicator was not considered in the geochemical literature earlier. The separation of gas and liquid phases was determined in Akchatau (Kazahstan) and Spokoinoe (Russia) greisen W deposit by carbon isotope fractionation of carbon dioxide in fluid inclusion. The important feature of both ore mains is heterogenization and boiling of ore-forming fluids. Greisen ore bodies are formed as a result of strongly focused solution flow in the T-P gradient fields. It is possible to divide ore bodies of Akchatau in two types: muscovite and quartz. Muscovite type veins are thin and have small metasyntactic zone. Quartz type veins are localized in fault with large vertical extent (500 m) and content the large quantity of wolframite. These veins formed in condition of significant pressure decreasing from 2.5 to 0.5 kbar with fluid boiling. Gas and liquid phase separation specifies the vertical zonality of quartz type veins. The gas phase with the high gallium concentration is separated from a flow of liquid phase. Liquid phase react with the granites forming greisen metasomatites. Condensation of the gas phase in upper parts of massive produces the increasing of Ga/Al ratio in muscovite 3-5 times more, then in granites and bottom part of vein (from 2×10

  10. Direct Band Gap Wurtzite Gallium Phosphide Nanowires

    PubMed Central

    2013-01-01

    The main challenge for light-emitting diodes is to increase the efficiency in the green part of the spectrum. Gallium phosphide (GaP) with the normal cubic crystal structure has an indirect band gap, which severely limits the green emission efficiency. Band structure calculations have predicted a direct band gap for wurtzite GaP. Here, we report the fabrication of GaP nanowires with pure hexagonal crystal structure and demonstrate the direct nature of the band gap. We observe strong photoluminescence at a wavelength of 594 nm with short lifetime, typical for a direct band gap. Furthermore, by incorporation of aluminum or arsenic in the GaP nanowires, the emitted wavelength is tuned across an important range of the visible light spectrum (555–690 nm). This approach of crystal structure engineering enables new pathways to tailor materials properties enhancing the functionality. PMID:23464761

  11. P-type gallium nitride

    DOEpatents

    Rubin, M.; Newman, N.; Fu, T.; Ross, J.; Chan, J.

    1997-08-12

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5{times}10{sup 11} /cm{sup 3} and hole mobilities of about 500 cm{sup 2} /V-sec, measured at 250 K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al. 9 figs.

  12. P-type gallium nitride

    DOEpatents

    Rubin, Michael; Newman, Nathan; Fu, Tracy; Ross, Jennifer; Chan, James

    1997-01-01

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5.times.10.sup.11 /cm.sup.3 and hole mobilities of about 500 cm.sup.2 /V-sec, measured at 250.degree. K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al.

  13. Thin films of aluminum nitride and aluminum gallium nitride for cold cathode applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowers, A.T.; Christman, J.A.; Bremser, M.D.

    1997-10-01

    Cold cathode structures have been fabricated using AlN and graded AlGaN structures (deposited on n-type 6H-SiC) as the thin film emitting layer. The cathodes consist of an aluminum grid layer separated from the nitride layer by a SiO{sub 2} layer and etched to form arrays of either 1, 3, or 5 {mu}m holes through which the emitting nitride surface is exposed. After fabrication, a hydrogen plasma exposure was employed to activate the cathodes. Cathode devices with 5 {mu}m holes displayed emission for up to 30 min before failing. Maximum emission currents ranged from 10{endash}100 nA and required grid voltages rangingmore » from 20{endash}110 V. The grid currents were typically 1 to 10{sup 4} times the collector currents. {copyright} {ital 1997 American Institute of Physics.}« less

  14. Generator for gallium-68 and compositions obtained therefrom

    DOEpatents

    Neirinckx, Rudi D.; Davis, Michael A.

    1981-01-01

    A generator for obtaining radioactive gallium-68 from germanium-68 bound in a resin containing unsubstituted phenolic hydroxyl groups. The germanium-68 is loaded into the resin from an aqueous solution of the germanium-68. A physiologically acceptable solution of gallium-68 having an activity of 0.1 to 50 millicuries per milliliter of gallium-68 solution is obtained. The solution is obtained from the bound germanium-68 which forms gallium-68 in situ by eluting the column with a hydrochloric acid solution to form an acidic solution of gallium-68. The acidic solution of gallium-68 can be neutralized.

  15. 40 CFR 469.26 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Pollutant or pollutant property Maximum for any 1 day Average of daily values for 30 consecutive days.... 3 The arsenic (T) limitation only applies to manufacturers of gallium or indium arsenide crystals...

  16. Antitumor effect of novel gallium compounds and efficacy of nanoparticle-mediated gallium delivery in lung cancer.

    PubMed

    Wehrung, Daniel; Oyewumi, Moses O

    2012-02-01

    The widespread application of gallium (Ga) in cancer therapy has been greatly hampered by lack of specificity resulting in poor tumor accumulation and retention. To address the challenge, two lipophilic gallium (III) compounds (gallium hexanedione; GaH and gallium acetylacetonate; GaAcAc) were synthesized and antitumor studies were conducted in human lung adenocarcinoma (A549) cells. Nanoparticles (NPs) containing various concentrations of the Ga compounds were prepared using a binary mixture of Gelucire 44/14 and cetyl alcohol as matrix materials. NPs were characterized based on size, morphology, stability and biocompatibility. Antitumor effects of free or NP-loaded Ga compounds were investigated based on cell viability, production of reactive oxygen species and reduction of mitochondrial potential. Compared to free Ga compounds, cytotoxicity of NP-loaded Ga (5-150 microg/ml) was less dependent on concentration and incubation time (exposure) with A549 cells. NP-mediated delivery (5-150 microg Ga/ml) enhanced antitumor effects of Ga compounds and the effect was pronounced at: (i) shorter incubation times; and (ii) at low concentrations of gallium (approximately 50 microg/ml) (p < 0.0006). Additional studies showed that NP-mediated Ga delivery was not dependent on transferrin receptor uptake mechanism (p > 0.13) suggesting the potential in overcoming gallium resistance in some tumors. In general, preparation of stable and biocompatible NPs that facilitated Ga tumor uptake and antitumor effects could be effective in gallium-based cancer therapy.

  17. Electrically Driven Photonic Crystal Nanocavity Devices

    DTIC Science & Technology

    2012-01-01

    material, here gallium arsenide and indium arsenide self- assembled quantum dots (QDs). QDs are preferred for the gain medium because they can have...blue points ) and 150 K (green points ). The black lines are linear fits to the above threshold output power of the lasers, which are used to find the...SHAMBAT et al.: ELECTRICALLY DRIVEN PHOTONIC CRYSTAL NANOCAVITY DEVICES 1707 Fig. 13. (a) Tilted SEM picture of a fabricated triple cavity device. The in

  18. Gallium-67 activity in bronchoalveolar lavage fluid in sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trauth, H.A.; Heimes, K.; Schubotz, R.

    1986-01-01

    Roentgenograms and gallium-67 scans and gallium-67 counts of BAL fluid samples, together with differential cell counts, have proved to be useful in assessing activity and lung involvement in sarcoidosis. In active pulmonary sarcoidosis gallium-67 scans are usually positive. Quantitation of gallium-67 uptake in lung scans, however, may be difficult. Because gallium-67 uptake and cell counts in BAL fluid may be correlated, we set out to investigate gallium-67 activity in BAL fluid recovered from patient of different groups. Sixteen patients with recently diagnosed and untreated sarcoidosis, nine patients with healthy lungs, and five patients with CFA were studied. Gallium-67 uptake ofmore » the lung, gallium-67 activity in the lavage fluid, SACE and LACE levels, and alpha 1-AT activity were measured. Significantly more gallium-67 activity was found in BAL fluid from sarcoidosis patients than in that from CFA patients (alpha = .001) or patients with healthy lungs (alpha = .001). Gallium-67 activity in BAL fluid could be well correlated with the number of lymphocytes in BAL fluid, but poorly with the number of macrophages. Subjects with increased levels of SACE or serum alpha 1-AT showed higher lavage gallium-67 activity than did normals, but no correlation could be established. High gallium-67 activity in lavage fluid may be correlated with acute sarcoidosis or physiological deterioration; low activity denotes change for the better. The results show that gallium-67 counts in BAL fluid reflects the intensity of gallium-67 uptake and thus of activity of pulmonary sarcoidosis.« less

  19. Evaluation of solar cell materials for a Solar Power Satellite

    NASA Technical Reports Server (NTRS)

    Glaser, P. E.; Almgren, D. W.; Csigi, K. I.

    1980-01-01

    Alternative solar cell materials being considered for the solar power satellite are described and price, production, and availability projections through the year 2000 are presented. The chief materials considered are silicon and gallium arsenide.

  20. Carbon nanothermometer containing gallium.

    PubMed

    Gao, Yihua; Bando, Yoshio

    2002-02-07

    Many applications have been found for carbon nanotubes, and we can now add a role as a 'nanothermometer' to this list. We describe how the height of a continuous, unidimensional column of liquid gallium inside a carbon nanotube (up to about 10 micrometres long and about 75 nanometres in diameter) varies linearly and reproducibly in the temperature range 50-500 degrees C, with an expansion coefficient that is the same as for gallium in the macroscopic state. We chose gallium as our thermal indicator because it has one of the greatest liquid ranges of any metal (29.78-2,403 degrees C) and a low vapour pressure even at high temperatures. This nanothermometer should be suitable for use in a wide variety of microenvironments.

  1. Gallium Electromagnetic (GEM) Thrustor Concept and Design

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Markusic, Thomas E.

    2006-01-01

    We describe the design of a new type of two-stage pulsed electromagnetic accelerator, the gallium electromagnetic (GEM) thruster. A schematic illustration of the GEM thruster concept is given in Fig. 1. In this concept, liquid gallium propellant is pumped into the first stage through a porous metal electrode using an electromagneticpump[l]. At a designated time, a pulsed discharge (approx.10-50 J) is initiated in the first stage, ablating the liquid gallium from the porous electrode surface and ejecting a dense thermal gallium plasma into the second state. The presence of the gallium plasma in the second stage serves to trigger the high-energy (approx.500 I), send-stage puke which provides the primary electromagnetic (j x B) acceleration.

  2. 40 CFR 469.28 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... property Maximum for any 1 day Average of daily values for 30 consecutive days Milligrams per liter (mg/l...) limitation only applies to manufacturers of gallium or indium arsenide crystals. (b) A new source submitting...

  3. Ultrafast electronic dynamics in unipolar n-doped indium gallium arsenide/gallium arsenide self-assembled quantum dots

    NASA Astrophysics Data System (ADS)

    Wu, Zong-Kwei J.

    2006-12-01

    Photodetectors based on intraband infrared absorption in the quantum dots have demonstrated improved performance over its quantum well counterpart by lower dark current, relative temperature insensitivity, and its ability for normal incidence operation. Various scattering processes, including phonon emission/absorption and carrier-carrier scattering, are critical in understanding device operation on the fundamental level. In previous studies, our group has investigated carrier dynamics in both low- and high-density regime. Ultrafast electron-hole scattering and the predicted phonon bottleneck effect in intrinsic quantum dots have been observed. Further examination on electron dynamics in unipolar structures is presented in this thesis. We used n-doped quantum dot in mid-infrared photodetector device structure to study the electron dynamics in unipolar structure. Differential transmission spectroscopy with mid-infrared intraband pump and optical interband probe was implemented to measure the electron dynamics directly without creating extra electron-hole pair, Electron relaxation after excitation was measured under various density and temperature conditions. Rapid capture into quantum dot within ˜ 10 ps was observed due to Auger-type electron-electron scattering. Intradot relaxation from the quantum dot excited state to the ground state was also observed on the time scale of 100 ps. With highly doped electron density in the structure, the inter-sublevel relaxation is dominated by Auger-type electron-electron scattering and the phonon bottleneck effect is circumvented. Nanosecond-scale recovery in larger-sized quantum dots was observed, not intrinsic to electron dynamics but due to band-bending and built-in voltage drift. An ensemble Monte Carlo simulation was also established to model the dynamics in quantum dots and in goad agreement with the experimental results. We presented a comprehensive picture of electron dynamics in the unipolar quantum dot structure. Although the phonon bottleneck is circumvented with high doped electron density, relaxation processes in unipolar quantum dots have been measured with time scales longer than that of bipolar systems. The results explain the operation principles of the quantum dot infrared photodetector on a microscopic level and provide basic understanding for future applications and designs.

  4. Gallium poisoning: a rare case report.

    PubMed

    Ivanoff, Chris S; Ivanoff, Athena E; Hottel, Timothy L

    2012-02-01

    The authors present a case of a college student who suffered acute gallium poisoning as a result of accidental exposure to gallium halide complexes. This is extremely rare and has never been reported in the literature. Acute symptoms after the incident, which initially presented as dermatitis and appeared relatively not life-threatening, rapidly progressed to dangerous episodes of tachycardia, tremors, dyspnea, vertigo, and unexpected black-outs. Had there been effective emergency medical care protocols, diagnostic testing, treatment and antidotes, the latent manifestations of irreversible cardiomyopathy may have been prevented. Given how quickly exposure led to morbidity, this article aims to raise an awareness of the toxic potential of gallium. This has particular relevance for workers involved in the production of semiconductors where there is a potential for accidental exposure to gallium by-products during device processing. It may also have implications for dentists who use gallium alloys to replace mercury containing amalgam. In the absence of threshold limit values and exposure limits for humans, as well as emergency medical guidelines for treatment of poisoning, the case calls on the National Institute for Occupational Safety and Health and the Occupational Safety and Health Administration to establish guidelines and medical management protocols specific for gallium. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Gallium-based anti-infectives: targeting microbial iron-uptake mechanisms.

    PubMed

    Kelson, Andrew B; Carnevali, Maia; Truong-Le, Vu

    2013-10-01

    Microbes have evolved elaborate iron-acquisition systems to sequester iron from the host environment using siderophores and heme uptake systems. Gallium(III) is structurally similar to iron(III), except that it cannot be reduced under physiological conditions, therefore gallium has the potential to serve as an iron analog, and thus an anti-microbial. Because Ga(III) can bind to virtually any complex that binds Fe(III), simple gallium salts as well as more complex siderophores and hemes are potential carriers to deliver Ga(III) to the microbes. These gallium complexes represent a new class of anti-infectives that is different in mechanism of action from conventional antibiotics. Simple gallium salts such as gallium nitrate, maltolate, and simple gallium siderophore complexes such as gallium citrate have shown good antibacterial activities. The most studied complex has been gallium citrate, which exhibits broad activity against many Gram negative bacteria at ∼1-5μg/ml MICs, strong biofilm activity, low drug resistance, and efficacy in vivo. Using the structural features of specific siderophore and heme made by pathogenic bacteria and fungi, researchers have begun to evaluate new gallium complexes to target key pathogens. This review will summarize potential iron-acquisition system targets and recent research on gallium-based anti-infectives. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Towards Resonant-State THz Laser Based on Strained p-Ge and SiGe QW Structures

    DTIC Science & Technology

    2006-07-01

    used. The relaxed compositionally graded Si1-xGex/Si(001) buffer layer with low threading dislocations density have been grown by chemical vapour ...observe in absorption experiments. 5. Intracenter optical transitions between hydrogenic levels in doped silicon, germanium, and gallium arsenid [P...34, b. Critical magnetic field Hc vs valence band splitting Δ. Lines show the calculated Hc(Δ) dependence. 14. The gallium -doped Ge crystals with

  7. Cuprous selenide and sulfide form improved photovoltaic barriers

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Photovoltaic barriers formed by depositing a layer of polycrystalline cuprous sulfide or cuprous selenide on gallium arsenide are chemically and electrically stable. The stability of these barrier materials is significantly greater than that of cuprous iodide.

  8. Activities of the Solid State Physics Research Institute

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Topics addressed include: muon spin rotation; annealing problems in gallium arsenides; Hall effect in semiconductors; computerized simulation of radiation damage; single-nucleon removal from Mg-24; and He-3 reaction at 200 and 400 MeV.

  9. Correction: Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control.

    PubMed

    Sarkar, Sujoy; Sampath, S

    2016-05-28

    Correction for 'Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control' by Sujoy Sarkar et al., Chem. Commun., 2016, 52, 6407-6410.

  10. Revised neutrino-gallium cross section and prospects of BEST in resolving the gallium anomaly

    NASA Astrophysics Data System (ADS)

    Barinov, Vladislav; Cleveland, Bruce; Gavrin, Vladimir; Gorbunov, Dmitry; Ibragimova, Tatiana

    2018-04-01

    O (1 )eV sterile neutrino can be responsible for a number of anomalous results of neutrino oscillation experiments. This hypothesis may be tested at short base line neutrino oscillation experiments, several of which are either ongoing or under construction. Here, we concentrate on the so-called gallium anomaly, found by SAGE and GALLEX experiments, and its foreseeable future tests with BEST experiment at Baksan Neutrino Observatory. We start with a revision of the neutrino-gallium cross section that is performed by utilizing the recent measurements of the nuclear final state spectra. We accordingly correct the parameters of gallium anomaly and refine the BEST prospects in testing it and searching for sterile neutrinos. We further evolve the previously proposed idea to investigate the anomaly with 65Zn artificial neutrino source as a next option available at BEST and estimate its sensitivity to the sterile neutrino model parameters following the Bayesian approach. We show that after the two stages of operation BEST will make 5 σ discovery of the sterile neutrinos, if they are behind the gallium anomaly.

  11. Serum and tissue concentrations of gallium after oral administration of gallium nitrate and gallium maltolate to neonatal calves.

    PubMed

    Monk, Caroline S; Sweeney, Raymond W; Bernstein, Lawrence R; Fecteau, Marie-Eve

    2016-02-01

    To determine serum and tissue concentrations of gallium (Ga) after oral administration of gallium nitrate (GaN) and gallium maltolate (GaM) to neonatal calves. 8 healthy neonatal calves. Calves were assigned to 1 of 2 groups (4 calves/group). Gallium (50 mg/kg) was administered as GaN or GaM (equivalent to 13.15 mg of Ga/kg for GaN and 7.85 mg of Ga/kg for GaM) by oral gavage once daily for 5 days. Blood samples were collected 0, 0.25, 0.5, 1, 2, 4, 8, 12, and 24 hours after Ga administration on day 1; 4 and 24 hours after Ga administration on days 2, 3, and 4; and 4, 12, and 24 hours after Ga administration on day 5. On day 6, calves were euthanized and tissue samples were obtained. Serum and tissue Ga concentrations were measured by use of mass spectrometry. Data were adjusted for total Ga dose, and comparisons were made between the 2 groups. Calves receiving GaM had a significantly higher dose-adjusted area under the curve and dose-adjusted maximum serum Ga concentration than did calves receiving GaN. Despite receiving less Ga per dose, calves receiving GaM had tissue Ga concentrations similar to those for calves receiving GaN. In this study, calves receiving GaM had significantly higher Ga absorption than did calves receiving GaN. These findings suggested that GaM might be useful as a prophylactic agent against Mycobacterium avium subsp paratuberculosis infection in neonatal calves.

  12. Structure of dental gallium alloys.

    PubMed

    Herø, H; Simensen, C J; Jørgensen, R B

    1996-07-01

    The interest in gallium alloys as a replacement for amalgam has increased in recent years due to the risk of environmental pollution from amalgam. Alloy powders with compositions close to those for alloys of amalgam are mixed with a liquid gallium alloy. The mix is condensed into a prepared cavity in much the same way as for amalgam. The aim of the present work was to study the structure of: (1) two commercial alloy powders containing mainly silver, tin and copper, and (2) the phases formed by mixing these powders with a liquid alloy of gallium, indium and tin. One of the alloy powders contained 9 wt% palladium. Cross-sections of cylindrical specimens made by these gallium mixes were investigated by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Discrete grains of the following phases were found to be present in both gallium alloys: hexagonal Ag2Ga, tetragonal Cu(Pd)Ga2, cubic Ag9In4 and tetragonal beta-Sn. Indications of hexagonal or orthorhombic Ag2Sn were found in the remaining, unreacted alloy particles. In the palladium-containing alloy the X-ray reflections indicate a minor fraction of cubic Cu9Ga4 in addition to the Cu(Pd)Ga2 phase. Particles of beta-Sn are probably precipitated because Sn-Ga phases cannot be formed according to the binary phase diagram.

  13. The Incorporation of Lithium Alloying Metals into Carbon Matrices for Lithium Ion Battery Anodes

    NASA Astrophysics Data System (ADS)

    Hays, Kevin A.

    An increased interest in renewable energies and alternative fuels has led to recognition of the necessity of wide scale adoption of the electric vehicle. Automotive manufacturers have striven to produce an electric vehicle that can match the range of their petroleum-fueled counterparts. However, the state-of-the-art lithium ion batteries used to power the current offerings still do not come close to the necessary energy density. The energy and power densities of the lithium ion batteries must be increased significantly if they are going to make electric vehicles a viable option. The chemistry of the lithium ion battery, based on lithium cobalt oxide cathodes and graphite anodes, is limited by the amount of lithium the cathode can provide and the anode will accept. While these materials have proven themselves in portable electronics over the past two decades, plausible higher energy alternatives do exist. The focus is of this study is on anode materials that could achieve a capacity of more than 3 times greater than that of graphite anodes. The lithium alloying anode materials investigated and reported herein include tin, arsenic, and gallium arsenide. These metals were synthesized with nanoscale dimensions, improving their electrochemical and mechanical properties. Each exhibits their own benefits and challenges, but all display opportunities for incorporation in lithium ion batteries. Tin is incorporated in multilayer graphene nanoshells by introducing small amounts of metal in the core and, separately, on the outside of these spheres. Electrolyte decomposition on the anode limits cycle life of the tin cores, however, tin vii oxides introduced outside of the multilayer graphene nanoshells have greatly improved long term battery performance. Arsenic is a lithium alloying metal that has largely been ignored by the research community to date. One of the first long term battery performance tests of arsenic is reported in this thesis. Anodes were made from nanoscale

  14. Gallium and its competing roles with iron in biological systems.

    PubMed

    Chitambar, Christopher R

    2016-08-01

    Gallium, a group IIIa metal, shares chemical properties with iron. Studies have shown that gallium-based compounds have potential therapeutic activity against certain cancers and infectious microorganisms. By functioning as an iron mimetic, gallium perturbs iron-dependent proliferation processes in tumor cells. Gallium's action on iron homeostasis leads to disruption of ribonucleotide reductase, mitochondrial function, and the regulation of transferrin receptor and ferritin. In addition, gallium nitrate stimulates an increase in mitochondrial reactive oxygen species in cells which triggers downstream upregulation of metallothionein and hemoxygenase-1. Gallium's anti-infective activity against bacteria and fungi results from disruption of microbial iron utilization through mechanisms which include gallium binding to siderophores and downregulation of bacterial iron uptake. Gallium compounds lack cross-resistance to conventional chemotherapeutic drugs and antibiotics thus making them attractive agents for drug development. This review will focus on the mechanisms of action of gallium with emphasis on its interaction with iron and iron proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Group 13 β-ketoiminate compounds: gallium hydride derivatives as molecular precursors to thin films of Ga2O3.

    PubMed

    Pugh, David; Marchand, Peter; Parkin, Ivan P; Carmalt, Claire J

    2012-06-04

    Bis(β-ketoimine) ligands, [R{N(H)C(Me)-CHC(Me)═O}(2)] (L(1)H(2), R = (CH(2))(2); L(2)H(2), R = (CH(2))(3)), linked by ethylene (L(1)) and propylene (L(2)) bridges have been used to form aluminum, gallium, and indium chloride complexes [Al(L(1))Cl] (3), [Ga(L(n))Cl] (4, n = 1; 6, n = 2) and [In(L(n))Cl] (5, n = 1; 7, n = 2). Ligand L(1) has also been used to form a gallium hydride derivative [Ga(L(1))H] (8), but indium analogues could not be made. β-ketoimine ligands, [Me(2)N(CH(2))(3)N(H)C(R')-CHC(R')═O] (L(3)H, R' = Me; L(4)H, R' = Ph), with a donor-functionalized Lewis base have also been synthesized and used to form gallium and indium alkyl complexes, [Ga(L(3))Me(2)] (9) and [In(L(3))Me(2)] (10), which were isolated as oils. The related gallium hydride complexes, [Ga(L(n))H(2)] (11, n = 3; 12, n = 4), were also prepared, but again no indium hydride species could be made. The complexes were characterized mainly by NMR spectroscopy, mass spectrometry, and single crystal X-ray diffraction. The β-ketoiminate gallium hydride compounds (8 and 11) have been used as single-source precursors for the deposition of Ga(2)O(3) by aerosol-assisted (AA)CVD with toluene as the solvent. The quality of the films varied according to the precursor used, with the complex [Ga(L(1))H] (8) giving by far the best quality films. Although the films were amorphous as deposited, they could be annealed at 1000 °C to form crystalline Ga(2)O(3). The films were analyzed by powder XRD, SEM, and EDX.

  16. Preventing Supercooling Of Gallium

    NASA Technical Reports Server (NTRS)

    Massucco, Arthur A.; Wenghoefer, Hans M.; Wilkins, Ronnie

    1994-01-01

    Principle of heterogeneous nucleation exploited to prevent gallium from supercooling, enabling its use as heat-storage material that crystallizes reproducibly at its freezing or melting temperature of 29 to 30 degrees C. In original intended application, gallium used as heat-storage material in gloves of space suits. Terrestrial application lies in preparation of freezing-temperature reference samples for laboratories. Principle of heterogeneous nucleation also exploited similarly in heat pipes filled with sodium.

  17. Repurposing of gallium-based drugs for antibacterial therapy.

    PubMed

    Bonchi, Carlo; Imperi, Francesco; Minandri, Fabrizia; Visca, Paolo; Frangipani, Emanuela

    2014-01-01

    While the occurrence and spread of antibiotic resistance in bacterial pathogens is vanishing current anti-infective therapies, the antibiotic discovery pipeline is drying up. In the last years, the repurposing of existing drugs for new clinical applications has become a major research area in drug discovery, also in the field of anti-infectives. This review discusses the potential of repurposing previously approved gallium formulations in antibacterial chemotherapy. Gallium has no proven function in biological systems, but it can act as an iron-mimetic in both prokaryotic and eukaryotic cells. The activity of gallium mostly relies on its ability to replace iron in redox enzymes, thus impairing their function and ultimately hampering cell growth. Cancer cells and bacteria are preferential gallium targets due to their active metabolism and fast growth. The wealth of knowledge on the pharmacological properties of gallium has opened the door to the repurposing of gallium-based drugs for the treatment of infections sustained by antibiotic-resistant bacterial pathogens, such as Acinetobacter baumannii or Pseudomonas aeruginosa, and for suppression of Mycobacterium tuberculosis growth. The promising antibacterial activity of gallium both in vitro and in different animal models of infection raises the hope that gallium will confirm its efficacy in clinical trials, and will become a valuable therapeutic option to cure otherwise untreatable bacterial infections. © 2014 International Union of Biochemistry and Molecular Biology.

  18. NIM Realization of the Gallium Triple Point

    NASA Astrophysics Data System (ADS)

    Xiaoke, Yan; Ping, Qiu; Yuning, Duan; Yongmei, Qu

    2003-09-01

    In the last three years (1999 to 2001), the gallium triple-point cell has been successfully developed, and much corresponding research has been carried out at the National Institute of Metrology (NIM), Beijing, China. This paper presents the cell design, apparatus and procedure for realizing the gallium triple point, and presents studies on the different freezing methods. The reproducibility is 0.03 mK, and the expanded uncertainty of realization of the gallium triple point is evaluated to be 0.17 mK (p=0.99, k=2.9). Also, the reproducibility of the gallium triple point was compared with that of the triple point of water.

  19. Aluminum gallium nitride-cladding-free nonpolar m-plane gallium nitride-based laser diodes

    NASA Astrophysics Data System (ADS)

    Schmidt, Mathew Corey

    The recent demonstration of nonpolar GaN laser diode operation along with rapid device improvements signal a paradigm shift in GaN-based optoelectronic technology. Up until now, GaN optoelectronics have been trapped on the c-plane facet, where built-in polarization fields place limitations on device design and performance. The advent of bulk GaN substrates has allowed for the full exploration of not only the nonpolar m-plane facet, but all crystal orientations of GaN. This dissertation focuses on the development of some of the world's first nonpolar m-plane GaN laser diodes as well as on the AlGaN-cladding-free concept invented at UCSB. The absence of built-in electric fields allows for thicker quantum wells (≥8 nm) than those allowed on c-plane which improves the optical waveguiding characteristics and eliminates the need for AlGaN cladding layers. The benefits of this design include more uniform growth, more reproducible growth, no tensile cracking, lower operating voltages and currents, and higher yields. The first iteration of device design optimization is presented. Design and growth aspects investigated include quantum well number, quantum well thickness, Mg doping of the p-GaN cladding, aluminum composition of the AlGaN cladding layer and the implementation of an InGaN separate confined heterostructure. These optimizations led to threshold current densities as low as 2.4 kA/cm2.

  20. Niobium-bearing arsenides and germanides from elemental mixtures not involving niobium: a new twist to an old problem in solid-state synthesis.

    PubMed

    Baranets, Sviatoslav; He, Hua; Bobev, Svilen

    2018-05-01

    Three isostructural transition-metal arsenides and germanides, namely niobium nickel arsenide, Nb 0.92(1) NiAs, niobium cobalt arsenide, NbCoAs, and niobium nickel germanide, NbNiGe, were obtained as inadvertent side products of high-temperature reactions in sealed niobium containers. In addition to reporting for the very first time the structures of the title compounds, refined from single-crystal X-ray diffraction data, this article also serves as a reminder that niobium containers may not be suitable for the synthesis of ternary arsenides and germanides by traditional high-temperature reactions. Synthetic work involving alkali or alkaline-earth metals, transition or early post-transition metals, and elements from groups 14 or 15 under such conditions may yield Nb-containing products, which at times could be the major products of such reactions.

  1. MBE growth of nitride-arsenides for long wavelength opto-electronics

    NASA Astrophysics Data System (ADS)

    Spruytte, Sylvia Gabrielle

    2001-07-01

    Until recently, the operating wavelength of opto-electronic devices on GaAs has been limited to below 1 mum due to the lack of III-V materials with close lattice match to GaAs that have a bandgap below 1.24 eV. To enable devices operating at 1.3 mum on GaAs, MBE growth of a new III-V material formed by adding small amounts of nitrogen to InGaAs was developed. The growth of group III-nitride-arsenides (GaInNAs) is complicated by the divergent properties of the alloy constituents and the difficulty of generating a reactive nitrogen species. Nitride-arsenide materials are grown by molecular beam epitaxy (MBE) using a radio frequency (rf) nitrogen plasma source. The plasma conditions that maximize the amount of atomic nitrogen versus molecular nitrogen are determined using the emission spectrum of the plasma. To avoid phase segregation, nitride-arsenides must be grown at relatively low temperatures and high arsenic overpressures. It is shown that the group III growth rate controls the nitrogen concentration in the film. Absorption measurements allow the establishment of a range of GaInNAs alloys yielding 1.3 mum emission. The optical properties of GaInNAs and GaNAs quantum wells (QWs) are investigated with photoluminescence (PL) measurements. The peak PL intensity increases and peak wavelength shifts to shorter wavelengths when annealing. The increase in luminescence efficiency results from a decrease in non-radiative recombination centers. As the impurity concentration in the GaInNAs films is low, crystal defects associated with nitrogen incorporation were investigated and improvements in crystal quality after anneal were observed. Nuclear reaction channeling measurements show that as-grown nitride-arsenides contain a considerable amount of interstitial nitrogen and that a substantial fraction of the non-substitutional nitrogen disappears during anneal. Secondary ion mass spectroscopy depth profiling on GaInNAs quantum wells shows that during anneal, the nitrogen

  2. Selenium bond decreases ON resistance of light-activated switch

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Vitrified amorphous selenium bond decreases the ON resistance of a gallium arsenide-silicon light-activated, low-level switch. The switch is used under a pulse condition to prolong switch life and minimize errors due to heating, devitrification, and overdrawing.

  3. 40 CFR 469.27 - New source performance standards (NSPS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Limitations Pollutant or pollutant property Maximum for any 1 day Average of daily values for 30 consecutive... manufacturers of gallium or indium arsenide crystals. 4 Within the range of 6.0 to 9.0. [48 FR 15394, Apr. 8...

  4. The surface tension of liquid gallium

    NASA Technical Reports Server (NTRS)

    Hardy, S. C.

    1985-01-01

    The surface tension of liquid gallium has been measured using the sessile drop technique in an Auger spectrometer. The experimental method is described. The surface tension in mJ/sq m is found to decrease linearly with increasing temperature and may be represented as 708-0.66(T-29.8), where T is the temperature in centigrade. This result is of interest because gallium has been suggested as a model fluid for Marangoni flow experiments. In addition, the surface tension is of technological significance in the processing of compound semiconductors involving gallium.

  5. Group III-arsenide-nitride long wavelength laser diodes

    NASA Astrophysics Data System (ADS)

    Coldren, Christopher W.

    Semiconductor laser diodes transmitting data over silica optical fiber form the backbone of modern day communications systems, enabling terabit per second data transmission over hundreds to thousands of kilometers of distance. The wavelength of emission of the transmission semiconductor laser diode is a critical parameter that determines the performance of the communications system. In high performance fiber optic communications systems, lasers emitting at 1300nm and 1550nm are used because of the low loss and distortion properties of the fiber in these spectral windows. The available lasers today that operate in these fiber optic transmission windows suffer from high cost and poor performance under the typical environmental conditions and require costly and unreliable cooling systems. This dissertation presents work that demonstrates that it is possible to make lasers devices with 1300nm laser emission that are compatible with low cost and operation under extreme operating conditions. The key enabling technology developed is a novel semiconductor material based structure. A group III-Arsenide-Nitride quantum well structure was developed that can be grown expitaxially on GaAs substrates. The properties of this group III-Arsenide-Nitride structure allowed high performance edge emitting and vertical cavity surface emitting lasers to be fabricated which exhibited low threshold currents and low sensitivity to operating temperature.

  6. Deep Impurity States in Gallium Arsenide.

    DTIC Science & Technology

    1981-10-01

    that the wave functions of the so-called slal- is a result of a delicate cancellation process in low impurities can be thought of as a product of an...approximation we can still form- along these lines has been performed for a transi- ally write the impurity wave function as a product tion from the two...be formally written as a known Lucovsky formula. 20 Had we assumed, as product of two terms, one representing the nodal did Lucovsky, that the

  7. Gallium Arsenide and Related Compounds, 1986.

    DTIC Science & Technology

    1986-01-01

    AFMRI.1U8 d7 -18 6o 60AM F PERORMING ORGANIZATIN ,1b OFICE SYMBOL. 7a. NAME OF MONITORING ORGANIZATION Of appkiie) Unvriyof Illinois AFOSRINE 6C...effect is shown in the log I vs. V characteristics in figure 5. Both devices exhibit good logarithmic behaviour , but it is clear that the ideality of the...effects at the surface. As also shown in Fig. 5, a 200 nm thick n-doped ion implanted and activated layer shows a "mixed" behaviour , namely a linear

  8. Monolithic Gallium Arsenide Superheterodyne Front End.

    DTIC Science & Technology

    1982-06-01

    which also provides a con - venient heat sink (not of primary importance in this application due to the low power dissipation of the monolithic...components utilized in the receiver front end). The thickness of the GaAs is then selected as a compromise between con - flicting requirements. A thick...International ERC41014.2FR 2.4 Analysis and Design for Low Noise The design of monolithic amplifiers for low noise must take into con - sideration active

  9. Net Photorefractive Gain In Gallium Arsenide

    NASA Technical Reports Server (NTRS)

    Liu, Tsuen-Hsi; Cheng, Li-Jen

    1990-01-01

    Prerequisite includes applied electric field. Electric field applied to GaAs crystal in which two infrared beams interfere. Depending on quality of sample and experimental conditions, net photorefractive gain obtained. Results offer possibility of new developments in real-time optical processing of signals by use of near-infrared lasers of low power.

  10. Indium gallium arsenide microwave power transistors

    NASA Technical Reports Server (NTRS)

    Johnson, Gregory A.; Kapoor, Vik J.; Shokrani, Mohsen; Messick, Louis J.; Nguyen, Richard

    1991-01-01

    Depletion-mode InGaAs microwave power MISFETs with 1-micron gate lengths and up to 1-mm gate widths have been fabricated using an ion-implantation process. The devices employed a plasma-deposited silicon/silicon dioxide gate insulator. The dc I-V characteristics and RF power performance at 9.7 GHz are presented. The output power, power-added efficiency, and power gain as a function of input power are reported. An output power of 1.07 W with a corresponding power gain and power-added efficiency of 4.3 dB and 38 percent, respectively, was obtained. The large-gate-width devices provided over twice the previously reported output power for InGaAs MISFETs at X-band. In addition, output power stability within 1.2 percent over 24 h of continuous operation was achieved. In addition, a drain current drift of 4 percent over 10,000 sec was obtained.

  11. Ion implantation of indium gallium arsenide

    NASA Astrophysics Data System (ADS)

    Almonte, Marlene Isabel

    The ternary compound In0.53Ga0.47As, lattice-matched to Inp, is a semiconductor alloy of technological importance for numerous electronic and optoelectronic device applications. One of these applications includes photodiodes to be developed for the 1.3--1.55 mum wavelength range where silica fibers have their lowest optical loss. With a rapid increase in its use there is an essential need to understand the effects of ion implantation of this alloy semiconductor for implant isolation purposes in which highly resistive layers are required. Due to the small band gap (0.75 eV at 300K) of In0.53Ga0.47As, the estimated maximum resistivity is of the order of 1000 O-cm. Implant isolation can be achieved by the implantation of either inert noble gas ions or electrically active ions. Ion bombardment with inert species introduces defects which trap charge carriers. In the case of implant isolation by electrically active ions, the implanted impurities form an electronic level located close to the middle of the bandgap. Studies of the effects of implantation in In0.53Ga0.47 As due to damage by implantation of Ne+ ions and to compensation by implantation of Fe+ ions are reported in this thesis. The former only involves lattice damage related effects while the latter leads to damage and dopant induced compensation. From the Ne+ implantation results it appears that the damage related energy levels in In0.53 Ga0.47M produced by ion bombardment of chemically inactive species, are not sufficiently deep to lead to effective isolation. A higher resistivity of the order of 770 O-cm is achieved with Fe+ implantation, indicating that Fe introduces an energy level deep in the bandgap. The changes in the electrical properties of the layers are correlated to the lattice damage (damage induced effects) and/or the diffusion of the compensating dopants (dopant induced compensation). Structural characterization of the layers is performed with channeling Rutherford Backscattering Spectrometry (RBS). The distribution of the compensating dopants in the as-implanted and annealed layers is examined by Secondary Ion Mass Spectrometry (SIMS). SIMS analysis shows Fe out-diffusion which results in the loss of the semi-insulating electrical characteristics. To further our understanding of Fe diffusion in In0.53Ga0.47As, the diffusion coefficient of Fe is measured for the first time. The diffusivity of Fe was measured to be 4 x 10-13 cm2 s-1 at 550°C. The thermal stability of these damage and compensation induced effects producing implant isolation is discussed in detail.

  12. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN P-10...

  13. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN P-10...

  14. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN P-10...

  15. Epitaxial Deposition Of Germanium Doped With Gallium

    NASA Technical Reports Server (NTRS)

    Huffman, James E.

    1994-01-01

    Epitaxial layers of germanium doped with gallium made by chemical vapor deposition. Method involves combination of techniques and materials used in chemical vapor deposition with GeH4 or GeCl4 as source of germanium and GaCl3 as source of gallium. Resulting epitaxial layers of germanium doped with gallium expected to be highly pure, with high crystalline quality. High-quality material useful in infrared sensors.

  16. Automated realization of the gallium melting and triple points

    NASA Astrophysics Data System (ADS)

    Yan, X.; Duan, Y.; Zhang, J. T.; Wang, W.

    2013-09-01

    In order to improve the automation and convenience of the process involved in realizing the gallium fixed points, an automated apparatus, based on thermoelectric and heat pipe technologies, was designed and developed. This paper describes the apparatus design and procedures for freezing gallium mantles and realizing gallium melting and triple points. Also, investigations on the melting behavior of a gallium melting point cell and of gallium triple point cells were carried out while controlling the temperature outside the gallium point cells at 30 °C, 30.5 °C, 31 °C, and 31.5 °C. The obtained melting plateau curves show dentate temperature oscillations on the melting plateaus for the gallium point cells when thermal couplings occurred between the outer and inner liquid-solid interfaces. The maximum amplitude of the temperature fluctuations was about 1.5 mK. Therefore, the temperature oscillations can be used to indicate the ending of the equilibrium phase transitions. The duration and amplitude of such temperature oscillations depend on the temperature difference between the setting temperature and the gallium point temperature; the smaller the temperature difference, the longer the duration of both the melting plateaus and the temperature fluctuations.

  17. Electric dipole (hyper)polarizabilities of selected X2Y2 and X3Y3 (X = Al, Ga, In and Y = P, As): III-V semiconductor clusters. An ab initio comparative study.

    PubMed

    Karamanis, Panaghiotis; Pouchan, Claude; Leszczynski, Jerzy

    2008-12-25

    A systematic ab initio comparative study of the (hyper)polarizabilities of selected III-V stoichiometric semiconductor clusters has been carried out. Our investigation focuses on the ground state structures of the dimers and on two dissimilar trimer configurations of aluminum, gallium, indium phosphide and arsenide. The basis set effect on both the polarizabilities and hyperpolarizabilities of the studied systems has been explicitly taken into account relying on the augmented correlation consistent aug-cc-pVnZ (n = D, T, Q, and 5) basis sets series. In addition, a rough estimation of the effects of the relativistic effects on the investigated properties is provided by extension of the study to include calculations performed with relativistic electron core potentials (or pseudopotentials). Electron correlation effects have been estimated utilizing methods of increasing predictive reliability, e.g., the Møller-Plesset many body perturbation theory and the couple cluster approach. Our results reveal that in the considered semiconductor species the Group III elements (Al, Ga, In) play a vital role on the values of their relative (hyper)polarizability. At all levels of theory employed the most hyperpolarizable clusters are the indium derivatives while the aluminum arsenide clusters also exhibit high, comparable hyperpolarizabilities. The less hyperpolarizable species are those composed of gallium and this is associated with the strong influence of the nuclear charge on the valence electrons of Ga due to the poor shielding that is provided by the semicore d electrons. In addition, the analysis of the electronic structure and the hyperpolarizability magnitudes reveals that clusters, in which their bonding is characterized by strong electron transfer from the electropositive to the electronegative atoms, are less hyperpolarizable than species in which the corresponding electron transfer is weaker. Lastly, from the methodological point of view our results point out that

  18. [Evaluation of motor and sensory neuroconduction of the median nerve in patients with carpal tunnel syndrome treated with non-coherent light emitted by gallium arsenic diodes].

    PubMed

    Viera Alemán, C; Purón, E; Hamilton, M L; Santos Anzorandia, C; Navarro, A; Pineda Ortiz, I

    The treatment selection in the carpal tunnel syndrome according to the damage of the median nerve is important and all of these have adverse effects. A good alternative without undesired reactions is irradiation of the carpal tunnel with not coherent light between 920 and 940 nm emitted by gallium arsenide diodes, resembling the physic and therapeutic laser effects. Twenty-six female patients with idiopathic middle carpal tunnel syndrome were irradiated 15 minutes daily during three weeks. The median nerve motor and sensitive neuroconduction was studied before and immediately after the treatment. The abnormal neuroconduction variables (latency, amplitude and velocity conduction) did not modify when treatment concluded, in spite of all the patients reported disappearance of pain and numbness in damaged hands. Not coherent light does not change the fibers functional state explored by conventional neuroconductions techniques. It remains to know if this light produces fine fibers improvement.

  19. Gallium-mediated growth of multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Pan, Zheng Wei; Dai, Sheng; Beach, David B.; Evans, Neal D.; Lowndes, Douglas H.

    2003-03-01

    Liquid gallium was used as a viable and effective solvent and template for high-yield growth of multiwall carbon nanotubes. The gallium-mediated nanotubes thus obtained differ morphologically from nanotubes obtained by using transition metals as catalysts. The nanotubes have a pin-like morphology, generally composed of an oval-shaped tip filled with liquid gallium and a tapered hollow body. The inner diameter of the tube is so large that the inner/outer diameter ratio is usually larger than 0.9. The tubes are naturally opened at both ends. These gallium-filled nanotubes may be used as a nanothermometer in the temperature range of 30 to 550 °C. This study opens an interesting route for carbon nanotube synthesis.

  20. Radiochemical separation of gallium by amalgam exchange

    USGS Publications Warehouse

    Ruch, R.R.

    1969-01-01

    An amalgam-exchange separation of radioactive gallium from a number of interfering radioisotopes has been developed. A dilute (ca. 0.3%) gallium amalgam is agitated with a slightly acidic solution of 72Ga3+ containing concentrations of sodium thiocyanate and either perchlorate or chloride. The amalgam is then removed and the radioactive gallium stripped by agitation with dilute nitric acid. The combined exchange yield of the perchlorate-thiocyanate system is 90??4% and that of the chloride-thiocyanate system is 75??4%. Decontamination yields of most of the 11 interfering isotopes studied were less than 0.02%. The technique is applicable for use with activation analysis for the determination of trace amounts of gallium. ?? 1969.

  1. Optical Refrigeration

    DTIC Science & Technology

    2007-12-01

    confined to either glasses and crystals doped with rare-earth (RE) elements or direct-bandgap semiconductors such as gallium arsenide. Although laser...condition. Highly controlled epitaxial growth techniques, such as metal–organic chemical vapour deposition (MOCVD) can produce very low surface

  2. Shock wave experiments on gallium

    NASA Astrophysics Data System (ADS)

    Jensen, Brian; Branch, Brittany; Cherne, Frank

    2017-06-01

    Gallium exhibits a complex phase diagram with multiple solid phases, an anomalous melt boundary, and a low-temperature melt transition making it a suitable material for shock wave studies focused on multiphase properties including kinetics and strength. Apart from high-pressure shock wave data that exists for the liquid phase, there is a clear lack of data in the low-pressure regime where much of the complexity in the phase diagram exists. In this work, a series of shock wave experiments were performed to begin examining the low-pressure region of the phase diagram. Additional data on a gallium alloy, which remains liquid at room temperature, will be presented and compared to data available for pure gallium (LA-UR-17-21449).

  3. Lattice parameters guide superconductivity in iron-arsenides

    NASA Astrophysics Data System (ADS)

    Konzen, Lance M. N.; Sefat, Athena S.

    2017-03-01

    The discovery of superconducting materials has led to their use in technological marvels such as magnetic-field sensors in MRI machines, powerful research magnets, short transmission cables, and high-speed trains. Despite such applications, the uses of superconductors are not widespread because they function much below room-temperature, hence the costly cooling. Since the discovery of Cu- and Fe-based high-temperature superconductors (HTS), much intense effort has tried to explain and understand the superconducting phenomenon. While no exact explanations are given, several trends are reported in relation to the materials basis in magnetism and spin excitations. In fact, most HTS have antiferromagnetic undoped ‘parent’ materials that undergo a superconducting transition upon small chemical substitutions in them. As it is currently unclear which ‘dopants’ can favor superconductivity, this manuscript investigates crystal structure changes upon chemical substitutions, to find clues in lattice parameters for the superconducting occurrence. We review the chemical substitution effects on the crystal lattice of iron-arsenide-based crystals (2008 to present). We note that (a) HTS compounds have nearly tetragonal structures with a-lattice parameter close to 4 Å, and (b) superconductivity can depend strongly on the c-lattice parameter changes with chemical substitution. For example, a decrease in c-lattice parameter is required to induce ‘in-plane’ superconductivity. The review of lattice parameter trends in iron-arsenides presented here should guide synthesis of new materials and provoke theoretical input, giving clues for HTS.

  4. Lattice parameters guide superconductivity in iron-arsenides.

    PubMed

    Konzen, Lance M N; Sefat, Athena S

    2017-03-01

    The discovery of superconducting materials has led to their use in technological marvels such as magnetic-field sensors in MRI machines, powerful research magnets, short transmission cables, and high-speed trains. Despite such applications, the uses of superconductors are not widespread because they function much below room-temperature, hence the costly cooling. Since the discovery of Cu- and Fe-based high-temperature superconductors (HTS), much intense effort has tried to explain and understand the superconducting phenomenon. While no exact explanations are given, several trends are reported in relation to the materials basis in magnetism and spin excitations. In fact, most HTS have antiferromagnetic undoped 'parent' materials that undergo a superconducting transition upon small chemical substitutions in them. As it is currently unclear which 'dopants' can favor superconductivity, this manuscript investigates crystal structure changes upon chemical substitutions, to find clues in lattice parameters for the superconducting occurrence. We review the chemical substitution effects on the crystal lattice of iron-arsenide-based crystals (2008 to present). We note that (a) HTS compounds have nearly tetragonal structures with a-lattice parameter close to 4 Å, and (b) superconductivity can depend strongly on the c-lattice parameter changes with chemical substitution. For example, a decrease in c-lattice parameter is required to induce 'in-plane' superconductivity. The review of lattice parameter trends in iron-arsenides presented here should guide synthesis of new materials and provoke theoretical input, giving clues for HTS.

  5. High-performance indium gallium phosphide/gallium arsenide heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Ahmari, David Abbas

    Heterojunction bipolar transistors (HBTs) have demonstrated the high-frequency characteristics as well as the high linearity, gain, and power efficiency necessary to make them attractive for a variety of applications. Specific applications for which HBTs are well suited include amplifiers, analog-to-digital converters, current sources, and optoelectronic integrated circuits. Currently, most commercially available HBT-based integrated circuits employ the AlGaAs/GaAs material system in applications such as a 4-GHz gain block used in wireless phones. As modern systems require higher-performance and lower-cost devices, HBTs utilizing the newer, InGaP/GaAs and InP/InGaAs material systems will begin to dominate the HBT market. To enable the widespread use of InGaP/GaAs HBTs, much research on the fabrication, performance, and characterization of these devices is required. This dissertation will discuss the design and implementation of high-performance InGaP/GaAs HBTs as well as study HBT device physics and characterization.

  6. Variable temperature, variable-gap Otto prism coupler for use in a vacuum environment

    NASA Astrophysics Data System (ADS)

    Cairns, G. F.; O'Prey, S. M.; Dawson, P.

    2000-11-01

    The field of surface polariton physics really took off with the prism coupling techniques developed by Kretschmann and Raether, and by Otto. This article reports on the construction and operation of a rotatable, in vacuo, variable temperature, Otto coupler with a coupling gap that can be varied by remote control. The specific design attributes of the system offer additional advantages to those of standard Otto systems of (i) temperature variation (ambient to 85 K), and (ii) the use of a valuable, additional reference point, namely the gap-independent reflectance at the Brewster angle at any given, fixed temperature. The instrument is placed firmly in a historical context of developments in the field. The efficacy of the coupler is demonstrated by sample attenuated total reflectance results on films of platinum, niobium, and yttrium barium copper oxide and on aluminum/gallium arsenide (Al/GaAs) Schottky diode structures.

  7. Antibacterial effect of gallium and silver on Pseudomonas aeruginosa treated with gallium-silver-phosphate-based glasses.

    PubMed

    Valappil, Sabeel P; Higham, Susan M

    2014-01-01

    Gallium and silver incorporated phosphate-based glasses were evaluated for antibacterial effect on the growth of Pseudomonas aeruginosa, which is a leading cause of opportunistic infections. The glasses were produced by conventional melt quenching methods at 1100°C for 1 h. Glass degradation studies were conducted by weight loss method. Disc diffusion assay and cell viability assay displayed statistically significant (p ≤ 0.0005) effect on P. aeruginosa growth which increased with decreasing calcium content in the glasses. The gallium ion release rates (1.83, 0.69 and 0.48 ppm·h(-1)) and silver ion release rates (2.97, 2.84 and 2.47 ppm·h(-1)) were found to account for this variation. Constant depth film fermentor was used to evaluate the anti-biofilm properties of the glasses. Both gallium and silver in the glass contributed to biofilm growth inhibitory effect on P. aeruginosa (up to 2.68 reduction in log 10 values of the viable counts compared with controls). The glasses were found to deliver gallium and silver in a controlled way and exerted cumulative antibacterial action on planktonic and biofilm growth of P. aeruginosa. The antibacterial, especially anti-biofilm, properties of the gallium and silver incorporated phosphate-based glasses make them a potential candidate to combat infections caused by P. aeruginosa.

  8. Thermal Plasma Synthesis of Crystalline Gallium Nitride Nanopowder from Gallium Nitrate Hydrate and Melamine

    PubMed Central

    Kim, Tae-Hee; Choi, Sooseok; Park, Dong-Wha

    2016-01-01

    Gallium nitride (GaN) nanopowder used as a blue fluorescent material was synthesized by using a direct current (DC) non-transferred arc plasma. Gallium nitrate hydrate (Ga(NO3)3∙xH2O) was used as a raw material and NH3 gas was used as a nitridation source. Additionally, melamine (C3H6N6) powder was injected into the plasma flame to prevent the oxidation of gallium to gallium oxide (Ga2O3). Argon thermal plasma was applied to synthesize GaN nanopowder. The synthesized GaN nanopowder by thermal plasma has low crystallinity and purity. It was improved to relatively high crystallinity and purity by annealing. The crystallinity is enhanced by the thermal treatment and the purity was increased by the elimination of residual C3H6N6. The combined process of thermal plasma and annealing was appropriate for synthesizing crystalline GaN nanopowder. The annealing process after the plasma synthesis of GaN nanopowder eliminated residual contamination and enhanced the crystallinity of GaN nanopowder. As a result, crystalline GaN nanopowder which has an average particle size of 30 nm was synthesized by the combination of thermal plasma treatment and annealing. PMID:28344295

  9. Nonlinear behaviour of reflectivity of gallium - Silica interface & its applications

    NASA Astrophysics Data System (ADS)

    Naruka, Preeti; Bissa, Shivangi

    2018-05-01

    In this paper Optical properties and nonlinear behaviour of Gallium-Silica Interface is studied. Change in reflectivity of gallium film is explained as a function of thickness of metallic layer and intensity of incident light by using non-thermal mechanism. Here variation of dielectric constant of gallium with temperature is also explained on considering Binary nanoshell model of gallium nanoparticles of spherical shape. In the present paper application of structural phase transformation of gallium is explained as a Grating assisted coupler.

  10. Analysis of Time Dependent Electric Field Degradation in AlGaN/GaN HEMTs (POSTPRINT)

    DTIC Science & Technology

    2014-10-01

    identifying and understanding the failure mechanisms that limit the safe operating area of GaN HEMTs. 15. SUBJECT TERMS aluminum gallium nitride... gallium nitride, HEMTs, semiconductor device reliability, transistors 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER...area of GaN HEMTs. Index Terms— Aluminum gallium nitride, gallium nitride, HEMTs, semiconductor device reliability, transistors. I. INTRODUCTION A

  11. Monolithic Microwave Integrated Circuit (MMIC) technology for space communications applications

    NASA Technical Reports Server (NTRS)

    Connolly, Denis J.; Bhasin, Kul B.; Romanofsky, Robert R.

    1987-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. For the more distant future pseudomorphic indium gallium arsenide (InGaAs) and other advanced III-V materials offer the possibility of MMIC subsystems well up into the millimeter wavelength region. All of these technology elements are in NASA's MMIC program. Their status is reviewed.

  12. Monolithic Microwave Integrated Circuit (MMIC) technology for space communications applications

    NASA Technical Reports Server (NTRS)

    Connolly, Denis J.; Bhasin, Kul B.; Romanofsky, Robert R.

    1987-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMICs to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMICs is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. For the more distant future pseudomorphic indium gallium arsenide (InGaAs) and other advanced III-V materials offer the possibility of MMIC subsystems well up into the millimeter wavelength region. All of these technology elements are in NASA's MMIC program. Their status is reviewed.

  13. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper.

    PubMed

    Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang

    2015-05-26

    Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials.

  14. Nanobonding: A key technology for emerging applications in health and environmental sciences

    NASA Astrophysics Data System (ADS)

    Howlader, Matiar M. R.; Deen, M. Jamal; Suga, Tadatomo

    2015-03-01

    In this paper, surface-activation-based nanobonding technology and its applications are described. This bonding technology allows for the integration of electronic, photonic, fluidic and mechanical components into small form-factor systems for emerging sensing and imaging applications in health and environmental sciences. Here, we describe four different nanobonding techniques that have been used for the integration of various substrates — silicon, gallium arsenide, glass, and gold. We use these substrates to create electronic (silicon), photonic (silicon and gallium arsenide), microelectromechanical (glass and silicon), and fluidic (silicon and glass) components for biosensing and bioimaging systems being developed. Our nanobonding technologies provide void-free, strong, and nanometer scale bonding at room temperature or at low temperatures (<200 °C), and do not require chemicals, adhesives, or high external pressure. The interfaces of the nanobonded materials in ultra-high vacuum and in air correspond to covalent bonds, and hydrogen or hydroxyl bonds, respectively.

  15. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper

    NASA Astrophysics Data System (ADS)

    Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W.; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang

    2015-05-01

    Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials.

  16. Imaging of nonlocal hot-electron energy dissipation via shot noise.

    PubMed

    Weng, Qianchun; Komiyama, Susumu; Yang, Le; An, Zhenghua; Chen, Pingping; Biehs, Svend-Age; Kajihara, Yusuke; Lu, Wei

    2018-05-18

    In modern microelectronic devices, hot electrons accelerate, scatter, and dissipate energy in nanoscale dimensions. Despite recent progress in nanothermometry, direct real-space mapping of hot-electron energy dissipation is challenging because existing techniques are restricted to probing the lattice rather than the electrons. We realize electronic nanothermometry by measuring local current fluctuations, or shot noise, associated with ultrafast hot-electron kinetic processes (~21 terahertz). Exploiting a scanning and contact-free tungsten tip as a local noise probe, we directly visualize hot-electron distributions before their thermal equilibration with the host gallium arsenide/aluminium gallium arsenide crystal lattice. With nanoconstriction devices, we reveal unexpected nonlocal energy dissipation at room temperature, which is reminiscent of ballistic transport of low-temperature quantum conductors. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. Properties of GaAs:Cr-based Timepix detectors

    NASA Astrophysics Data System (ADS)

    Smolyanskiy, P.; Bergmann, B.; Chelkov, G.; Kotov, S.; Kruchonak, U.; Kozhevnikov, D.; Mora Sierra, Y.; Stekl, I.; Zhemchugov, A.

    2018-02-01

    The hybrid pixel detector technology brought to the X-ray imaging a low noise level at a high spatial resolution, thanks to the single photon counting. However, silicon as the most widespread detector material is marginally sensitive to photons with energies above 30 keV. Therefore, the high-Z alternatives to silicon such as gallium arsenide and cadmium telluride are increasingly attracting attention of the community for the development of X-ray imaging systems. The results of our investigations of the Timepix detectors bump bonded to sensors made of gallium arsenide compensated by chromium (GaAs:Cr) are presented in this work. The following properties are most important from the practical point of view: the IV characteristics, the charge transport characteristics, photon detection efficiency, operational stability, homogeneity, temperature dependence, as well as energy and spatial resolution are considered. The applicability of these detectors for spectroscopic X-ray imaging is discussed.

  18. Gallium nitrate ameliorates type II collagen-induced arthritis in mice.

    PubMed

    Choi, Jae-Hyeog; Lee, Jong-Hwan; Roh, Kug-Hwan; Seo, Su-Kil; Choi, Il-Whan; Park, Sae-Gwang; Lim, Jun-Goo; Lee, Won-Jin; Kim, Myoung-Hun; Cho, Kwang-rae; Kim, Young-Jae

    2014-05-01

    Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease. Gallium nitrate has been reported to reserve immunosuppressive activities. Therefore, we assessed the therapeutic effects of gallium nitrate in the mouse model of developed type II collagen-induced arthritis (CIA). CIA was induced by bovine type II collagen with Complete Freund's adjuvant. CIA mice were intraperitoneally treated from day 36 to day 49 after immunization with 3.5mg/kg/day, 7mg/kg/day gallium nitrate or vehicle. Gallium nitrate ameliorated the progression of mice with CIA. The clinical symptoms of collagen-induced arthritis did not progress after treatment with gallium nitrate. Gallium nitrate inhibited the increase of CD4(+) T cell populations (p<0.05) and also inhibited the type II collagen-specific IgG2a-isotype autoantibodies (p<0.05). Gallium nitrate reduced the serum levels of TNF-α, IL-6 and IFN-γ (p<0.05) and the mRNA expression levels of these cytokine and MMPs (MMP2 and MMP9) in joint tissues. Western blotting of members of the NF-κB signaling pathway revealed that gallium nitrate inhibits the activation of NF-κB by blocking IκB degradation. These data suggest that gallium nitrate is a potential therapeutic agent for autoimmune inflammatory arthritis through its inhibition of the NF-κB pathway, and these results may help to elucidate gallium nitrate-mediated mechanisms of immunosuppression in patients with RA. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Boron Arsenide and Boron Phosphide for High Temperature and Luminescent Devices. [semiconductor devices - crystal growth/crystal structure

    NASA Technical Reports Server (NTRS)

    Chu, T. L.

    1975-01-01

    The crystal growth of boron arsenide and boron phosphide in the form of bulk crystals and epitaxial layers on suitable substrates is discussed. The physical, chemical, and electrical properties of the crystals and epitaxial layers are examined. Bulk crystals of boron arsenide were prepared by the chemical transport technique, and their carrier concentration and Hall mobility were measured. The growth of boron arsenide crystals from high temperature solutions was attempted without success. Bulk crystals of boron phosphide were also prepared by chemical transport and solution growth techniques. Techniques required for the fabrication of boron phosphide devices such as junction shaping, diffusion, and contact formation were investigated. Alloying techniques were developed for the formation of low-resistance ohmic contacts to boron phosphide. Four types of boron phosphide devices were fabricated: (1) metal-insulator-boron phosphide structures, (2) Schottky barriers; (3) boron phosphide-silicon carbide heterojunctions; and (4) p-n homojunctions. Easily visible red electroluminescence was observed from both epitaxial and solution grown p-n junctions.

  20. Gas Source Molecular Beam Epitaxial Growth of GaN

    DTIC Science & Technology

    1992-11-25

    identify by block number) FIELW GROUP SUB-GROUP 19. ABSTRACT (Continue on reverse if necessary and Identify by block number) Aluminum gallium nitride (AlGaN...AND TASK OBJECTIVES Aluminum gallium nitride (AIGaN) has long been recognized as a promising radiation hard optoelectronic material. AIGaN has a wide...Efficient, pure, low temperature sources for the gas source molecular beam epitaxial (GSMBE) growth of aluminum gallium nitride will essentially

  1. On the local injection of emitted electrons into micrograins on the surface of A{sup III}–B{sup V} semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukov, N. D., E-mail: ndzhukov@rambler.ru; Glukhovskoi, E. G.; Khazanov, A. A.

    2016-06-15

    The characteristics of the injection of electrons into a semiconductor from a microprobe–micrograin nanogap are investigated with a tunneling microscope in the mode of field emission into locally selected surface microcrystals of indium antimonide, indium arsenide, and gallium arsenide. The current mechanisms are established and their parameters are determined by comparing the experimental I–V characteristics and those calculated from formulas of current transport. The effect of limitation of the current into the micrograins of indium antimonide and indium arsenide which manifests itself at injection levels exceeding a certain critical value, e.g., 6 × 10{sup 16} cm{sup –3} for indium antimonidemore » and 4 × 10{sup 17} cm{sup –3} for indium arsenide, is discovered. A physical model, i.e., the localization of electrons in the surface area of a micrograin due to their Coulomb interaction, is proposed.« less

  2. Behavior of pure gallium in water and various saline solutions.

    PubMed

    Horasawa, N; Nakajima, H; Takahashi, S; Okabe, T

    1997-12-01

    This study investigated the chemical stability of pure gallium in water and saline solutions in order to obtain fundamental knowledge about the corrosion mechanism of gallium-based alloys. A pure gallium plate (99.999%) was suspended in 50 mL of deionized water, 0.01%, 0.1% or 1% NaCl solution at 24 +/- 2 degrees C for 1, 7, or 28 days. The amounts of gallium released into the solutions were determined by atomic absorption spectrophotometry. The surfaces of the specimens were examined after immersion by x-ray diffractometry (XRD) and x-ray photoelectron spectroscopy (XPS). In the solutions containing 0.1% or more NaCl, the release of gallium ions into the solution was lowered when compared to deionized water after 28-day immersion. Gallium oxide monohydroxide was found by XRD on the specimens immersed in deionized water after 28-day immersion. XPS indicated the formation of gallium oxide/hydroxide on the specimens immersed in water or 0.01% NaCl solution. The chemical stability of pure solid gallium was strongly affected by the presence of Cl- ions in the aqueous solution.

  3. Photovoltaic Bias Generator

    DTIC Science & Technology

    2018-02-01

    Research Laboratory Sensors and Electron Devices Directorate (ATTN: RDRL-SER-M) 2800 Powder Mill Rd Adelphi, MD 20783-1138 8. PERFORMING...that may be set between 200 mV and 400 mV, developed for an application using gallium arsenide pseudomorphic high electron mobility transistor

  4. Electrosprayed Heavy Ion and Nanodrop Beams for Surface Engineering and Electrical Propulsion

    DTIC Science & Technology

    2014-09-10

    arsenide, gallium antimonide, gallium nitride and silicon carbide ; studied the role of the liquid’s composition on the sputtering of silicon ; study...being a material closely related to silicon . The maximum roughness for GaN, GaAs, GaSb, InP, InAs, Ge and SiC are 12.7, 11.7, 19.5, 8.1, 7.9, 17.5...poly crystalline silicon carbide and boron car- bide, respectively. The associated sputtering rates of 448, 172, and 170 nm/min far exceed the

  5. Contact electrification induced interfacial reactions and direct electrochemical nanoimprint lithography in n-type gallium arsenate wafer.

    PubMed

    Zhang, Jie; Zhang, Lin; Wang, Wei; Han, Lianhuan; Jia, Jing-Chun; Tian, Zhao-Wu; Tian, Zhong-Qun; Zhan, Dongping

    2017-03-01

    Although metal assisted chemical etching (MacEtch) has emerged as a versatile micro-nanofabrication method for semiconductors, the chemical mechanism remains ambiguous in terms of both thermodynamics and kinetics. Here we demonstrate an innovative phenomenon, i.e. , the contact electrification between platinum (Pt) and an n-type gallium arsenide (100) wafer (n-GaAs) can induce interfacial redox reactions. Because of their different work functions, when the Pt electrode comes into contact with n-GaAs, electrons will move from n-GaAs to Pt and form a contact electric field at the Pt/n-GaAs junction until their electron Fermi levels ( E F ) become equal. In the presence of an electrolyte, the potential of the Pt/electrolyte interface will shift due to the contact electricity and induce the spontaneous reduction of MnO 4 - anions on the Pt surface. Because the equilibrium of contact electrification is disturbed, electrons will transfer from n-GaAs to Pt through the tunneling effect. Thus, the accumulated positive holes at the n-GaAs/electrolyte interface make n-GaAs dissolve anodically along the Pt/n-GaAs/electrolyte 3-phase interface. Based on this principle, we developed a direct electrochemical nanoimprint lithography method applicable to crystalline semiconductors.

  6. A Pedagogical Measurement of the Velocity of Light

    ERIC Educational Resources Information Center

    Tyler, Charles E.

    1969-01-01

    Describes an inexpensive, easily constructed device for demonstrating that the speed of light is finite, and for measuring its value. The main components are gallium arsenide light emitting diodes, a light pulser, transistors, and an oscilloscope. Detailed instructions of procedure and experimental results are given. (LC)

  7. SSI/MSI/LSI/VLSI/ULSI.

    ERIC Educational Resources Information Center

    Alexander, George

    1984-01-01

    Discusses small-scale integrated (SSI), medium-scale integrated (MSI), large-scale integrated (LSI), very large-scale integrated (VLSI), and ultra large-scale integrated (ULSI) chips. The development and properties of these chips, uses of gallium arsenide, Josephson devices (two superconducting strips sandwiching a thin insulator), and future…

  8. Optical Properties of Gallium Arsenide and Indium Gallium Arsenide Quantum Wells and Their Applications to Opto-Electronic Devices.

    NASA Astrophysics Data System (ADS)

    Huang, Daming

    1990-01-01

    In this thesis we investigate the optical properties of modulation doped GaAs/AlGaAs and strained-layer undoped InGaAs/GaAs multiple quantum well structures (MQWS). The phenomena studied are the effects of carrier, strain, and the electric field on the absorption of excitons. For GaAs/AlGaAs modulation doped MQWS, the quenching of excitons by free carriers has been demonstrated. The comparison of the experimental results with calculations which consider phase space filling, screening, and exchange interaction showed the phase space filling to be the dominant mechanism responsible for the change of oscillator strength and binding energy of excitons associated with partially filled subband. On the other hand, the screening and exchange interaction are equally important to excitons associated with empty subbands. For InGaAs/GaAs strained-layer MQWS, we have demonstrated that the band edges are dramatically modified by strain. We determined the band discontinuities at InGaAs/GaAs interfaces using optical absorption, and showed that in this structure the heavy holes are confined in InGaAs layers while the light holes are in GaAs layers, in contrast to GaAs/AlGaAs MQWS. We also explore applications of GaAs/AlGaAs and InGaAs/GaAs MQWS to opto-electronic devices. The principle of devices investigated is mainly based on the electric field effect on the excitonic absorption in MQWS (the quantum confined Stark effect). Two examples presented in this thesis are the strained-layer InGaAs/GaAs MQWS electroabsorption modulators grown on GaAs substrates and the GaAs/AlGaAs MQWS reflection modulators grown on Si substrates. The large modulation observed in the absorption coefficient by an electric field is expected to facilitate opto-electronic integration.

  9. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper

    PubMed Central

    Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W.; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang

    2015-01-01

    Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials. PMID:26006731

  10. Synchrotron X-ray topography of electronic materials.

    PubMed

    Tuomi, T

    2002-05-01

    Large-area transmission, transmission section, large-area back-reflection, back-reflection section and grazing-incidence topography are the geometries used when recording high-resolution X-ray diffraction images with synchrotron radiation from a bending magnet, a wiggler or an undulator of an electron or a positron storage ring. Defect contrast can be kinematical, dynamical or orientational even in the topographs recorded on the same film at the same time. In this review article limited to static topography experiments, examples of defect studies on electronic materials cover the range from voids and precipitates in almost perfect float-zone and Czochralski silicon, dislocations in gallium arsenide grown by the liquid-encapsulated Czochralski technique, the vapour-pressure controlled Czochralski technique and the vertical-gradient freeze technique, stacking faults and micropipes in silicon carbide to misfit dislocations in epitaxic heterostructures. It is shown how synchrotron X-ray topographs of epitaxic laterally overgrown gallium arsenide layer structures are successfully explained by orientational contrast.

  11. MOCVD process technology for affordable, high-yield, high-performance MESFET structures. Phase 3: MIMIC

    NASA Astrophysics Data System (ADS)

    1993-01-01

    Under the MIMIC Program, Spire has pursued improvements in the manufacturing of low cost, high quality gallium arsenide MOCVD wafers for advanced MIMIC FET applications. As a demonstration of such improvements, Spire was tasked to supply MOCVD wafers for comparison to MBE wafers in the fabrication of millimeter and microwave integrated circuits. In this, the final technical report for Spire's two-year MIMIC contract, we report the results of our work. The main objectives of Spire's MIMIC Phase 3 Program, as outlined in the Statement of Work, were as follows: Optimize the MOCVD growth conditions for the best possible electrical and morphological gallium arsenide. Optimization should include substrate and source qualification as well as determination of the optimum reactor growth conditions; Perform all work on 75 millimeter diameter wafers, using a reactor capable of at least three wafers per run; and Evaluate epitaxial layers using electrical, optical, and morphological tests to obtain thickness, carrier concentration, and mobility data across wafers.

  12. P-n junctions formed in gallium antimonide

    NASA Technical Reports Server (NTRS)

    Clough, R.; Richman, D.; Tietjen, J.

    1970-01-01

    Vapor phase deposition process forms a heavily doped n-region on a melt-grown p-type gallium antimonide substrate. HCl transports gallium to the reaction zone, where it combines with antimony hydride and the dopant carrier, hydrogen telluride. Temperatures as low as 400 degrees C are required.

  13. Synthesis and characterization of aluminum- and gallium-bridged [1.1]chromarenophanes and [1.1]molybdarenophanes.

    PubMed

    Lund, Clinton L; Schachner, Jörg A; Burgess, Ian J; Quail, J Wilson; Schatte, Gabriele; Müller, Jens

    2008-07-07

    The synthesis and structural characterization of the first [1.1]chromarenophanes and the first [1.1]molybdarenophanes are described. A salt-metathesis reaction of [2-(Me 2NCH 2)C 6H 4]AlCl 2 with freshly prepared [Cr(LiC 6H 5) 2].TMEDA (TMEDA = N, N, N', N'-tetramethylethylenediamine) resulted in the dialumina[1.1]chromarenophane [{2-(Me 2NCH 2)C 6H 4}Al(eta (6)-C 6H 5) 2Cr] 2 ( 2a). The poor solubility of 2a in organic solvents prompted us to synthesize the new intramolecularly coordinated aluminum- and gallium dichlorides [5- tBu-2-(Me 2NCH 2)C 6H 3]ECl 2 [E = Al ( 3a), Ga ( 3b)] in which the phenyl group was equipped with a tert-butyl group. Salt-metathesis reactions of 3a and 3b, respectively, with freshly prepared [M(LiC 6H 5) 2].TMEDA (M = Cr, Mo) resulted in four new [1.1]metallarenophanes of the general type [{5- tBu-2-(Me 2NCH 2)C 6H 3}E(eta (6)-C 6H 5) 2M] 2 [E = Al, M = Cr ( 4a); E = Ga, M = Cr ( 4b); E = Al, M = Mo ( 5a); E = Ga, M = Mo ( 5b)]. 2a, 4a, b, and 5a, b have been structurally characterized by single-crystal analysis [ 2a.1/2C 6H 12: C 48H 56Al 2Cr 2N 2, monoclinic, P2 1/ c, a = 9.9117(9) A, b = 19.9361(16) A, c = 10.638(2) A, alpha = 90 degrees , beta = 112.322(5) degrees , gamma = 90 degrees , Z = 2; 4a.2C 6H 6: C 62H 72Al 2Cr 2N 2, monoclinic, P2 1/ c, a = 10.9626(9) A, b = 19.3350(18) A, c = 12.4626(9) A, alpha = 90 degrees , beta = 100.756(5) degrees , gamma = 90 degrees , Z = 2; 4b.2C 6H 6: C 62H 72Cr 2Ga 2N 2, monoclinic, P2 1/ c, a = 10.8428(2) A, b = 19.4844(4) A, c = 12.4958(2) A, alpha = 90 degrees , beta = 100.6187 degrees , gamma = 90 degrees , Z = 2; 5a.2C 6H 6: C 62H 72Al 2Mo 2N 2, triclinic, P1, a = 10.4377(4) A, b = 11.6510(4) A, c = 11.6514(4) A, alpha = 73.545(3) degrees , beta = 89.318(2) degrees , gamma = 76.120(2) degrees , Z = 1; 5b.2C 6H 6: C 62H 72Ga 2Mo 2N 2, triclinic, P1, a = 10.3451(5) A, b = 11.6752(6) A, c = 11.6900(5) A, alpha = 73.917(3) degrees , beta = 89.550(3) degrees , gamma = 76.774(2) degrees , Z = 1

  14. Low-level Laser Therapy on Postoperative Pain after Mandibular Third Molar Surgery

    PubMed Central

    Hamid, May Ayad

    2017-01-01

    Introduction: The analgesic effect of low-level laser therapy (LLLT) after mandibular third molar (MTM) extraction is controversial. The aim is to evaluate the effect of intraoral LLLT on postoperative pain after MTMs extraction. Methods: Thirty patients with bilateral symmetrical impacted MTMs underwent surgical extractions. Experimental and control sides were randomly selected to receive LLLT or placebo. Following suturing, a dental assistant applied 810 nm gallium aluminum arsenide (GaAlAs) at three points for 30 s each with a total energy of 9 J. Pain was recorded on a visual analog scale on the 7 successive days. Results: Data analyzed by IBM SPSS Statistics 23 for Windows with P ≤ 0.05 significance level. LLLT appeared to have a high significant effect on pain reduction; however, there was a mild increase in pain after the 4th day. Conclusion: Intraoral 810 nm GaAlAs is effective in reducing postoperative pain when a dose of 32.86 J/cm2 is used. PMID:29264287

  15. Alternative wavelengths for sutureless laser microvascular anastomosis: a preliminary study on acute samples.

    PubMed

    Bass, L S; Oz, M C; Libutti, S K; Treat, M R

    1992-06-01

    Attempts to improve the speed and patency of microvascular anastomosis with laser-assisted techniques have provided a modest reduction in operative time and comparable success rates. Using sutureless microvascular anastomoses, 30 end-to-end anastomoses were created in the rat carotid artery using the gallium-aluminum-arsenide diode laser (808 nm). Indocyanine green and fibrinogen were applied to enhance tissue absorption of the laser energy and strengthen the bond created. These were compared with previously reported welds using the THC:YAG laser (2150 nm). Mean welding times were 140 and 288 s, and mean bursting pressures immediately after welding were 515 and 400 mmHg for the diode and THC:YAG laser groups, respectively. Histologically, both lateral and vertical spread of thermal damage was limited. Since both lasers create welds of adequate initial strength without stay sutures and are faster and easier to use than existing systems, evaluation of long-term patency would be worthwhile.

  16. PDT in non-surgical treatment of periodontitis in kidney transplanted patients: a split-mouth, randomized clinical trial

    NASA Astrophysics Data System (ADS)

    Marinho, Kelly C. T.; Giovani, Elcio M.

    2016-03-01

    This study was to evaluate clinical and microbiological effectiveness of photodynamic therapy (PDT) in the treatment of periodontal disease in kidney-transplanted patients. Eight kidney transplanted patients treated at Paulista University were arranged in two groups: SRP performed scaling and root planning by ultrasound; SRP+PDT- in the same patient, which was held to PDT in the opposite quadrant, with 0.01% methylene blue and red laser gallium aluminum arsenide, wavelength 660 nm, power 100 mW. There was reduction in probing pocket depth after 45 days and 3 months regardless the group examined; plaque and bleeding index showed improvement over time, regardless the technique used, and bleeding index in the SRP+PDT group was lower when compared with the baseline the other times. There was no difference in the frequency of pathogens. Photodynamic therapy may be an option for treatment of periodontal disease in renal-transplanted patients and its effectiveness is similar to conventional therapy.

  17. Gallium 67 scintigraphy in glomerular disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakir, A.A.; Lopez-Majano, V.; Levy, P.S.

    1988-12-01

    To evaluate the diagnostic usefulness of gallium 67 scintigraphy in glomerular disease, 45 patients with various glomerulopathies, excluding lupus nephritis and renal vasculitis, were studied. Persistent renal visualization 48 hours after the gallium injection, a positive scintigram, was graded as + (less than), ++ (equal to), and +++ (greater than) the hepatic uptake. Positive scintigrams were seen in ten of 16 cases of focal segmental glomerulosclerosis, six of 11 cases of proliferative glomerulonephritis, and one case of minimal change, and one of two cases of membranous nephropathy; also in three of six cases of sickle glomerulopathy, two cases of diabeticmore » neuropathy, one of two cases of amyloidosis, and one case of mild chronic allograft rejection. The 25 patients with positive scans were younger than the 20 with negative scans (31 +/- 12 v 42 +/- 17 years; P less than 0.01), and exhibited greater proteinuria (8.19 +/- 7.96 v 2.9 +/- 2.3 S/d; P less than 0.01) and lower serum creatinine values (2 +/- 2 v 4.1 +/- 2.8 mg/dL; P less than 0.01). The amount of proteinuria correlated directly with the intensity grade of the gallium image (P less than 0.02), but there was no correlation between the biopsy diagnosis and the outcome of the gallium scan. It was concluded that gallium scintigraphy is not useful in the differential diagnosis of the glomerular diseases under discussion. Younger patients with good renal function and heavy proteinuria are likely to have a positive renal scintigram regardless of the underlying glomerulopathy.« less

  18. Assessment of gallium-67 scanning in pulmonary and extrapulmonary sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Israel, H.L.; Gushue, G.F.; Park, C.H.

    1986-01-01

    Gallium-67 scans have been widely employed in patients with sarcoidosis as a means of indicating alveolitis and the need for corticosteroid therapy. Observation of 32 patients followed 3 or more years after gallium scans showed no correlation between findings and later course: of 10 patients with pulmonary uptake, 7 recovered with minor residuals; of 18 patients with mediastinal of extrathoracic uptake, 10 had persistent or progressive disease; of 4 patients with negative initial scans, 2 had later progression. The value of gallium-67 scans as an aid to diagnosis was studied in 40 patients with extrapulmonary sarcoidosis. In 12 patients, abnormalmore » lacrimal, nodal, or pulmonary uptake aided in selection of biopsy sites. Gallium-67 scans and serum ACE levels were compared in 97 patients as indices of clinical activity. Abnormal gallium-67 uptake was observed in 96.3% of the tests in active disease, and ACE level elevation occurred in 56.3%. In 24 patients with inactive or recovered disease, abnormal gallium-67 uptake occurred in 62.5% and ACE level elevation in 37.5%. Gallium-67 scans have a limited but valuable role in the diagnosis and management of sarcoidosis.« less

  19. Gallium-67 uptake by the thyroid associated with progressive systemic sclerosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjoberg, R.J.; Blue, P.W.; Kidd, G.S.

    1989-01-01

    Although thyroidal uptake of gallium-67 has been described in several thyroid disorders, gallium-67 scanning is not commonly used in the evaluation of thyroid disease. Thyroidal gallium-67 uptake has been reported to occur frequently with subacute thyroiditis, anaplastic thyroid carcinoma, and thyroid lymphoma, and occasionally with Hashimoto's thyroiditis and follicular thyroid carcinoma. A patient is described with progressive systemic sclerosis who, while being scanned for possible active pulmonary involvement, was found incidentally to have abnormal gallium-67 uptake only in the thyroid gland. Fine needle aspiration cytology of the thyroid revealed Hashimoto's thyroiditis. Although Hashimoto's thyroiditis occurs with increased frequency in patientsmore » with progressive systemic sclerosis, thyroidal uptake of gallium-67 associated with progressive systemic sclerosis has not, to our knowledge, been previously described. Since aggressive thyroid malignancies frequently are imaged by gallium-67 scintigraphy, fine needle aspiration cytology of the thyroid often is essential in the evaluation of thyroidal gallium-67 uptake.« less

  20. Modeling Laser Effects on Multi-Junction Solar Cells Using Silvaco ATLAS Software for Spacecraft Power Beaming Applications

    DTIC Science & Technology

    2010-06-01

    could not. Figure 11 shows the Indium Gallium Phosphide (InGaP)- Gallium Arsenide (GaAs)- Germanium (Ge) solar cell utilization of the solar spectrum...2 opcv nL  (4.4) p = 1, 2, 3, … nr = index of refraction of the cavity co = speed of light in a vacuum (m/s) L = cavity length (meters...illumination – ηsolar  Efficiency under solar illumination – n Number of electrons – nr Index of refraction –  Photon frequency Hz ΔFSR

  1. Construction of an electrode modified with gallium(III) for voltammetric detection of ovalbumin.

    PubMed

    Sugawara, Kazuharu; Okusawa, Makoto; Takano, Yusaku; Kadoya, Toshihiko

    2014-01-01

    Electrodes modified with gallium(III) complexes were constructed to detect ovalbumin (OVA). For immobilization of a gallium(III)-nitrilotriacetate (NTA) complex, the electrode was first covered with collagen film. After the amino groups of the film had reacted with isothiocyanobenzyl-NTA, the gallium(III) was then able to combine with the NTA moieties. Another design featured an electrode cast with a gallium(III)-acetylacetonate (AA) complex. The amount of gallium(III) in the NTA complex was equivalent to one-quarter of the gallium(III) that could be utilized from an AA complex. However, the calibration curves of OVA using gallium(III)-NTA and gallium(III)-AA complexes were linear in the ranges of 7.0 × 10(-11) - 3.0 × 10(-9) M and 5.0 × 10(-10) - 8.0 × 10(-9) M, respectively. The gallium(III) on the electrode with NTA complex had high flexibility due to the existence of a spacer between the NTA and the collagen film, and, therefore, the reactivity of the gallium(III) to OVA was superior to that of the gallium(III)-AA complex with no spacer.

  2. Sensitizing effects of gallium citrate on hyperthermic cell killing in vitro.

    PubMed

    Miyazaki, N; Nakano, H; Kawakami, N; Kugotani, M; Nishihara, K; Aoki, Y; Shinohara, K

    2000-01-01

    The lethal effects of gallium citrate in combination with heat were studied using four cell lines, L5178Y, FM3A, P388 and HeLa. Cells were incubated with different concentrations (0.2 2 mM) of gallium citrate at 37 degrees C for 24 h and heated at a range of temperatures from 40-44 degrees C for various time periods up to 6 h in the absence of gallium citrate. Survival and cell viability were determined by clonogenic assay and the dye-exclusion test, respectively. All of the cell lines tested were insensitive to heat below 41 degrees C, but were very sensitive to heat above 43 degrees C. Gallium citrate was cytotoxic to these cell lines at different levels: P388 and HeLa were far more sensitive than L5178Y and FM3A. The killing effects of heat at 41 degrees C were greatly enhanced by gallium citrate in L5178Y and P388 cells. The Arrhenius analysis for the lethal effect of heat, determined by clonogenic assay, in L5178Y cells showed that the transition temperature was remarkably decreased for the gallium-treated cells from approximately 43 degrees C to 41 degrees C. The mechanism for this decrease in the transition temperature may be attributable to the additional effects of gallium citrate on energy metabolism. Preincubation with 0.05 mM gallium citrate at 37 degrees C for 7 days also enhanced heat sensitization at 41 degrees C in L5178Y. This preincubation condition may correspond to the condition for the continuous infusion of gallium that is clinically used for cancer treatment. In contrast, treatment with gallium did not greatly enhance the sensitivity of FM3A or HeLa cells to heat at 41 degrees C, but the effects of gallium were significant.

  3. Fast Clock Recovery for Digital Communications

    NASA Technical Reports Server (NTRS)

    Tell, R. G.

    1985-01-01

    Circuit extracts clock signal from random non-return-to-zero data stream, locking onto clock within one bit period at 1-gigabitper-second data rate. Circuit used for synchronization in opticalfiber communications. Derives speed from very short response time of gallium arsenide metal/semiconductor field-effect transistors (MESFET's).

  4. Challenges for critical raw material recovery from WEEE - The case study of gallium.

    PubMed

    Ueberschaar, Maximilian; Otto, Sarah Julie; Rotter, Vera Susanne

    2017-02-01

    Gallium and gallium compounds are more frequently used in future oriented technologies such as photovoltaics, light diodes and semiconductor technology. In the long term the supply risk is estimated to be critical. Germany is one of the major primary gallium producer, recycler of gallium from new scrap and GaAs wafer producer. Therefore, new concepts for a resource saving handling of gallium and appropriate recycling strategies have to be designed. This study focus on options for a possible recycling of gallium from waste electric and electronic equipment. To identify first starting points, a substance flow analysis was carried out for gallium applied in integrated circuits applied on printed circuit boards and for LEDs used for background lighting in Germany in 2012. Moreover, integrated circuits (radio amplifier chips) were investigated in detail to deduce first approaches for a recycling of such components. An analysis of recycling barriers was carried out in order to investigate general opportunities and risks for the recycling of gallium from chips and LEDs. Results show, that significant gallium losses arose in primary production and in waste management. 93±11%, equivalent to 43,000±4700kg of the total gallium potential was lost over the whole primary production process until applied in electronic goods. The largest share of 14,000±2300kggallium was lost in the production process of primary raw materials. The subsequent refining process was related to additional 6900±3700kg and the chip and wafer production to 21,700±3200kg lost gallium. Results for the waste management revealed only low collection rates for related end-of-life devices. Not collected devices held 300 ± 200 kg gallium. Due to the fact, that current waste management processes do not recover gallium, further 80 ± 10 kg gallium were lost. A thermal pre-treatment of the chips, followed by a manual separation allowed an isolation of gallium rich fractions, with gallium mass fractions up to

  5. Advanced photovoltaic power systems using tandem GaAs/GaSb concentrator modules

    NASA Technical Reports Server (NTRS)

    Fraas, L. M.; Kuryla, M. S.; Pietila, D. A.; Sundaram, V. S.; Gruenbaum, P. E.; Avery, J. E.; Dihn, V.; Ballantyne, R.; Samuel, C.

    1992-01-01

    In 1989, Boeing announced the fabrication of a tandem gallium concentrator solar cell with an energy conversion efficiency of 30 percent. This research breakthrough has now led to panels which are significantly smaller, lighter, more radiation resistant, and potentially less expensive than the traditional silicon flat plate electric power supply. The new Boeing tandem concentrator (BTC) module uses an array of lightweight silicone Fresnel lenses mounted on the front side of a light weight aluminum honeycomb structure to focus sunlight onto small area solar cells mounted on a thin back plane. This module design is shown schematically. The tandem solar cell in this new module consists of a gallium arsenide light sensitive cell with a 24 percent energy conversion efficiency stacked on top of a gallium antimonide infrared sensitive cell with a conversion efficiency of 6 percent. This gives a total efficiency 30 percent for the cell-stack. The lens optical efficiency is typically 85 percent. Discounting for efficiency losses associated with lens packing, cell wiring, and cell operating temperature still allows for a module efficiency of 22 percent which leads to a module power density of 300 Watts/sq. m. This performance provides more than twice the power density available from a single crystal silicon flat plate module and at least four times the power density available from amorphous silicon modules. The fact that the lenses are only 0.010 ft. thick and the aluminum foil back plane is only 0.003 ft. thick leads to a very lightweight module. Although the cells are an easy to handle thickness of 0.020 ft., the fact that they are small, occupying one-twenty-fifth of the module area, means that they add little to the module weight. After summing all the module weights and given the high module power, we find that we are able to fabricate BTC modules with specific power of 100 watts/kg.

  6. Nuclear microprobe imaging of gallium nitrate in cancer cells

    NASA Astrophysics Data System (ADS)

    Ortega, Richard; Suda, Asami; Devès, Guillaume

    2003-09-01

    Gallium nitrate is used in clinical oncology as treatment for hypercalcemia and for cancer that has spread to the bone. Its mechanism of antitumor action has not been fully elucidated yet. The knowledge of the intracellular distribution of anticancer drugs is of particular interest in oncology to better understand their cellular pharmacology. In addition, most metal-based anticancer compounds interact with endogenous trace elements in cells, altering their metabolism. The purpose of this experiment was to examine, by use of nuclear microprobe analysis, the cellular distribution of gallium and endogenous trace elements within cancer cells exposed to gallium nitrate. In a majority of cellular analyses, gallium was found homogeneously distributed in cells following the distribution of carbon. In a smaller number of cells, however, gallium appeared concentrated together with P, Ca and Fe within round structures of about 2-5 μm diameter located in the perinuclear region. These intracellular structures are typical of lysosomial material.

  7. Gallium uptake by transferrin and interaction with receptor 1.

    PubMed

    Chikh, Zohra; Ha-Duong, Nguyêt-Thanh; Miquel, Geneviève; El Hage Chahine, Jean-Michel

    2007-01-01

    The kinetics and thermodynamics of Ga(III) exchange between gallium mononitrilotriacetate and human serum transferrin as well as those of the interaction between gallium-loaded transferrin and the transferrin receptor 1 were investigated in neutral media. Gallium is exchanged between the chelate and the C-site of human serum apotransferrin in interaction with bicarbonate in about 50 s to yield an intermediate complex with an equilibrium constant K (1) = (3.9 +/- 1.2) x 10(-2), a direct second-order rate constant k (1) = 425 +/- 50 M(-1) s(-1) and a reverse second-order rate constant k (-1) = (1.1 +/- 3) x 10(4) M(-1) s(-1). The intermediate complex loses a single proton with proton dissociation constant K (1a) = 80 +/- 40 nM to yield a first kinetic product. This product then undergoes a modification in its conformation which lasts about 500 s to produce a second kinetic intermediate, which in turn undergoes a final extremely slow (several hours) modification in its conformation to yield the gallium-saturated transferrin in its final state. The mechanism of gallium uptake differs from that of iron and does not involve the same transitions in conformation reported during iron uptake. The interaction of gallium-loaded transferrin with the transferrin receptor occurs in a single very fast kinetic step with a dissociation constant K (d) = 1.10 +/- 0.12 microM and a second-order rate constant k (d) = (1.15 +/- 0.3) x 10(10) M(-1) s(-1). This mechanism is different from that observed with the ferric holotransferrin and suggests that the interaction between the receptor and gallium-loaded transferrin probably takes place on the helical domain of the receptor which is specific for the C-site of transferrin and HFE. The relevance of gallium incorporation by the transferrin receptor-mediated iron-acquisition pathway is discussed.

  8. The gallium melting-point standard: a determination of the liquid-solid equilibrium temperature of pure gallium on the International Practical Temperature Scale of 1968.

    PubMed

    Thornton, D D

    1977-01-01

    The sharpness and reproducibility of the gallium melting point were studied and the melting temperature of gallium in terms of IPTS-68 was determined. Small melting-point cells designed for use with thermistors are described. Nine gallium cells including three levels of purity were used in 68 separate determinations fo the melting point. The melting point of 99.99999% pure gallium in terms of IPTS-68 is found to be 29.771(4) +/- 0.001(4) degree C; the melting range is less than 0.0005 degree C and is reproducible to +/- 0.0004 degree C.

  9. III-V arsenide-nitride semiconductor

    NASA Technical Reports Server (NTRS)

    Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)

    2000-01-01

    III-V arsenide-nitride semiconductor are disclosed. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V materials varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V material can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.

  10. Composition of the core from gallium metal–silicate partitioning experiments

    DOE PAGES

    Blanchard, I.; Badro, J.; Siebert, J.; ...

    2015-07-24

    We present gallium concentration (normalized to CI chondrites) in the mantle is at the same level as that of lithophile elements with similar volatility, implying that there must be little to no gallium in Earth's core. Metal-silicate partitioning experiments, however, have shown that gallium is a moderately siderophile element and should be therefore depleted in the mantle by core formation. Moreover, gallium concentrations in the mantle (4 ppm) are too high to be only brought by the late veneer; and neither pressure, nor temperature, nor silicate composition has a large enough effect on gallium partitioning to make it lithophile. Wemore » therefore systematically investigated the effect of core composition (light element content) on the partitioning of gallium by carrying out metal–silicate partitioning experiments in a piston–cylinder press at 2 GPa between 1673 K and 2073 K. Four light elements (Si, O, S, C) were considered, and their effect was found to be sufficiently strong to make gallium lithophile. The partitioning of gallium was then modeled and parameterized as a function of pressure, temperature, redox and core composition. A continuous core formation model was used to track the evolution of gallium partitioning during core formation, for various magma ocean depths, geotherms, core light element contents, and magma ocean composition (redox) during accretion. The only model for which the final gallium concentration in the silicate Earth matched the observed value is the one involving a light-element rich core equilibrating in a FeO-rich deep magma ocean (>1300 km) with a final pressure of at least 50 GPa. More specifically, the incorporation of S and C in the core provided successful models only for concentrations that lie far beyond their allowable cosmochemical or geophysical limits, whereas realistic O and Si amounts (less than 5 wt.%) in the core provided successful models for magma oceans deeper that 1300 km. In conclusion, these results

  11. Japanese aerospace science and technology 1992. A bibliography with indexes

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This report contains 4271 annotated references to reports and journal articles of Japaness intellectual origin entered into the NASA scientific and technical information system during 1992. Representative subject areas of interest include: adaptive control, antireflection coatings, fiber reinforced composites, gallium arsenide lasers, laser interferometry, reduced gravity (microgravity), and VHSIC (circuits).

  12. Ultralow-Threshold Electrically Pumped Quantum-Dot Photonic-Crystal Nanocavity Laser

    DTIC Science & Technology

    2011-05-01

    we demonstrate a quantum-dot photonic-crystal nanocavity laser in gallium arsenide pumped by a lateral p–i–n junction formed by ion implantation...330 nm layer of silicon nitride was then deposited on the sample using plasma-enhanced chemical vapour deposition (PECVD) to serve as a mask for ion

  13. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper

    Treesearch

    Yei Hwan Jung; Tzu-Hsuan Chang; Huilong Zhang; Chunhua Yao; Qifeng Zheng; Vina W. Yang; Hongyi Mi; Munho Kim; Sang June Cho; Dong-Wook Park; Hao Jiang; Juhwan Lee; Yijie Qiu; Weidong Zhou; Zhiyong Cai; Shaoqin Gong; Zhenqiang Ma

    2015-01-01

    Today’s consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems...

  14. Two chain gallium fluorodiphosphates: synthesis, structure solution, and their transient presence during the hydrothermal crystallisation of a microporous gallium fluorophosphate.

    PubMed

    Millange, Franck; Walton, Richard I; Guillou, Nathalie; Loiseau, Thierry; O'Hare, Dermot; Férey, Gérard

    2002-04-21

    Two novel gallium fluorodiphosphates have been isolated and their structures solved ab initio from powder X-ray diffraction data; the materials readily interconvert under hydrothermal conditions, and are metastable with respect to an open-framework zeolitic gallium fluorophosphate, during the synthesis of which they are present as transient intermediates.

  15. Method for the preparation of inorganic single crystal and polycrystalline electronic materials

    NASA Technical Reports Server (NTRS)

    Groves, W. O. (Inventor)

    1969-01-01

    Large area, semiconductor crystals selected from group 3-5 compounds and alloys are provided for semiconductor device fabrication by the use of a selective etching operation which completely removes the substrate on which the desired crystal was deposited. The substrate, selected from the same group as the single crystal, has a higher solution rate than the epitaxial single crystal which is essentially unaffected by the etching solution. The preparation of gallium phosphide single crystals using a gallium arsenide substrate and a concentrated nitric acid etching solution is described.

  16. Development of ion implanted gallium arsenide transistors

    NASA Technical Reports Server (NTRS)

    Hunsperger, R.; Baron, R.

    1972-01-01

    Techniques were developed for creating bipolar microwave transistors in GaAs by ion implantation doping. The electrical properties of doped layers produced by the implantation of the light ions Be, Mg, and S were studied. Be, Mg, and S are suitable for forming the relatively deep base-collector junction at low ion energies. The electrical characteristics of ion-implanted diodes of both the mesa and planar types were determined. Some n-p-n planar transistor structures were fabricated by implantation of Mg to form the base regions and Si to form the emitters. These devices were found to have reasonably good base-collector and emitter-base junctions, but the current gain beta was small. The low was attributable to radiative recombination in the base region, which was extremely wide.

  17. Gallium arsenide (GaAs) power conversion concept

    NASA Technical Reports Server (NTRS)

    Nussberger, A. A.

    1980-01-01

    A summary design analysis of a GaAs power conversion system for the solar power satellite (SPS) is presented. Eight different satellite configuration options for the solar arrays are compared. Solar cell annealing effects after proton irradiation are considered. Mass estimates for the SPS and the effect of solar cell parameters on SPS array design are discussed.

  18. Noise-margin limitations on gallium-arsenide VLSI

    NASA Technical Reports Server (NTRS)

    Long, Stephen I.; Sundaram, Mani

    1988-01-01

    Two factors which limit the complexity of GaAs MESFET VLSI circuits are considered. Power dissipation sets an upper complexity limit for a given logic circuit implementation and thermal design. Uniformity of device characteristics and the circuit configuration determines the electrical functional yield. Projection of VLSI complexity based on these factors indicates that logic chips of 15,000 gates are feasible with the most promising static circuits if a maximum power dissipation of 5 W per chip is assumed. While lower power per gate and therefore more gates per chip can be obtained by using a popular E/D FET circuit, yields are shown to be small when practical device parameter tolerances are applied. Further improvements in materials, devices, and circuits wil be needed to extend circuit complexity to the range currently dominated by silicon.

  19. Gallium arsenide solar cell radiation damage study

    NASA Technical Reports Server (NTRS)

    Maurer, R. H.; Herbert, G. A.; Kinnison, J. D.; Meulenberg, A.

    1989-01-01

    A thorough analysis has been made of electron- and proton- damaged GaAs solar cells suitable for use in space. It is found that, although some electrical parametric data and spectral response data are quite similar, the type of damage due to the two types of radiation is different. An I-V analysis model shows that electrons damage the bulk of the cell and its currents relatively more, while protons damage the junction of the cell and its voltages more. It is suggested that multiple defects due to protons in a strong field region such as a p/n junction cause the greater degradation in cell voltage, whereas the individual point defects in the quasi-neutral minority-carrier-diffusion regions due to electrons cause the greater degradation in cell current and spectral response.

  20. Interfacial reactions between metal and gallium arsenide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, J.C.; Schulz, K.J.; Hsieh, K.C.

    1989-10-01

    The phase formation sequence for GaAs/metal ternary diffusion couples is discussed. The diffusion path concept is introduced and is used with the phase diagram to understand interfacial reactions between GaAs and metal. The correlation between growth kinetics and interface morphology is discussed. Studies of bulk and thin film couples in two systems, GaAs/Pd and GaAs/Pt, are given to illustrate these concepts.

  1. Gallium induces the production of virulence factors in Pseudomonas aeruginosa.

    PubMed

    García-Contreras, Rodolfo; Pérez-Eretza, Berenice; Lira-Silva, Elizabeth; Jasso-Chávez, Ricardo; Coria-Jiménez, Rafael; Rangel-Vega, Adrián; Maeda, Toshinari; Wood, Thomas K

    2014-02-01

    The novel antimicrobial gallium is a nonredox iron III analogue with bacteriostatic and bactericidal properties, effective for the treatment of Pseudomonas aeruginosa in vitro and in vivo in mouse and rabbit infection models. It interferes with iron metabolism, transport, and presumably its homeostasis. As gallium exerts its antimicrobial effects by competing with iron, we hypothesized that it ultimately will lead cells to an iron deficiency status. As iron deficiency promotes the expression of virulence factors in vitro and promotes the pathogenicity of P. aeruginosa in animal models, it is anticipated that treatment with gallium will also promote the production of virulence factors. To test this hypothesis, the reference strain PA14 and two clinical isolates from patients with cystic fibrosis were exposed to gallium, and their production of pyocyanin, rhamnolipids, elastase, alkaline protease, alginate, pyoverdine, and biofilm was determined. Gallium treatment induced the production of all the virulence factors tested in the three strains except for pyoverdine. In addition, as the Ga-induced virulence factors are quorum sensing controlled, co-administration of Ga and the quorum quencher brominated furanone C-30 was assayed, and it was found that C-30 alleviated growth inhibition from gallium. Hence, adding both C-30 and gallium may be more effective in the treatment of P. aeruginosa infections. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. Control of Gallium Oxide Growth on Liquid Metal Eutectic Gallium/Indium Nanoparticles via Thiolation.

    PubMed

    Farrell, Zachary J; Tabor, Christopher

    2018-01-09

    Eutectic gallium-indium alloy (EGaIn, a room-temperature liquid metal) nanoparticles are of interest for their unique potential uses in self-healing and flexible electronic devices. One reason for their interest is due to a passivating oxide skin that develops spontaneously on exposure to ambient atmosphere which resists deformation and rupture of the resultant liquid particles. It is then of interest to develop methods for control of this oxide growth process. It is hypothesized here that functionalization of EGaIn nanoparticles with thiolated molecules could moderate oxide growth based on insights from the Cabrera-Mott oxidation model. To test this, the oxidation dynamics of several thiolated nanoparticle systems were tracked over time with X-ray photoelectron spectroscopy. These results demonstrate the ability to suppress gallium oxide growth by up to 30%. The oxide progressively matures over a 28 day period, terminating in different final thicknesses as a function of thiol selection. These results indicate not only that thiols moderate gallium oxide growth via competition with oxygen for surface sites but also that different thiols alter the thermodynamics of oxide growth through modification of the EGaIn work function.

  3. Lethal photosensitization of Helicobacter species

    NASA Astrophysics Data System (ADS)

    Millson, Charles E.; Wilson, Michael; MacRobert, Alexander J.; Thurrell, Wendy; Mlkvy, Peter; Davies, Claire; Bown, Stephen G.

    1995-01-01

    Helicobacter pylori (H. pylori) is associated with a large number of gastroduodenal disorders. Clearance of the bacteria has been shown to benefit patients with duodenal ulcers, gastric ulcers, and certain rare types of gastric tumors. Broad-spectrum antibiotics are the mainstay of current treatment strategies but side-effects, poor compliance, and drug resistance limit their usefulness. We sensitized H. pylori with toluidine blue, haematoporphyrin derivative, aluminum disulphonated phthalocyanine, methylene blue or protoporphyrin IX prior to exposure to low-power laser light from either a gallium aluminum arsenide laser or a helium neon gas laser. All 5 sensitizers caused reductions of greater than 1000-fold in the number of viable bacteria. Light alone had no effect and only HpD caused a significant decrease in bacterial numbers without laser light. Next, we sensitized H. mustelae on explanted ferret gastric mucosa (ex vivo) with the same sensitizers and exposed them to light from a copper vapor pumped dye laser tuned appropriately. MB caused significant reductions in bacterial counts. Successful lethal photosensitization of Helicobacter pylori both in vitro and ex vivo raises the possibility of a local method for eradicating the bacteria, especially as the bacteria are only found in those parts of the upper gastrointestinal tract that are accessible to the endoscope.

  4. Efficacy of Nd:YAG and GaAlAs lasers in comparison to 2% fluoride gel for the treatment of dentinal hypersensitivity.

    PubMed

    Soares, Marília De Lima; Porciúncula, Geane Bandeira; Lucena, Mara Ilka Holanda Medeiros De; Gueiros, Luiz Alcino Monteiro; Leão, Jair Carneiro; Carvalho, Alessandra De Albuquerque Tavares

    2016-01-01

    Lasers demonstrate excellent therapeutic action and are often employed in dentistry for the treatment of diverse clinical conditions. The aim of this study was to compare the efficacy of neodymium-doped yttrium-aluminum-garnet (Nd:YAG) laser, gallium-aluminum-arsenide (GaAlAs) laser, and 2% neutral fluoride gel in the treatment of dentinal hypersensitivity. Twenty-three patients were evaluated, involving a total of 48 quadrants with at least 1 tooth with dentinal hypersensitivity (89 teeth total). Pain intensity was recorded on a visual analog scale at the time of clinical examination (baseline), immediately after treatment, and 1 week posttreatment. Teeth were treated with 60 seconds of 2% neutral fluoride gel application or 60 seconds of laser treatment-Nd:YAG laser at a distance of 0.5 cm (unfocused; 1 W and 10 Hz for 60 seconds, perpendicular to the cervical surfaces) or GaAlAs laser in contact (40 mW; 4 J/cm²; spot: 0.028 cm²; 15 seconds per point on 4 points [mesial, medial, distal, and apical])-as well as sham treatments so that patients remained blind to their treatment group. All treatments provided adequate pain reduction immediately posttreatment, but laser treatments resulted in significantly greater reductions in pain intensity.

  5. Gallium Electromagnetic (GEM) Thruster Performance Measurements

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Burton, Rodney L.; Polzin, K. A.

    2009-01-01

    Discharge current, terminal voltage, and mass bit measurements are performed on a coaxial gallium electromagnetic thruster at discharge currents in the range of 7-23 kA. It is found that the mass bit varies quadratically with the discharge current which yields a constant exhaust velocity of 20 km/s. Increasing the electrode radius ratio of the thruster from to 2.6 to 3.4 increases the thruster efficiency from 21% to 30%. When operating with a central gallium anode, macroparticles are ejected at all energy levels tested. A central gallium cathode ejects macroparticles when the current density exceeds 3.7 10(exp 8) A/square m . A spatially and temporally broad spectroscopic survey in the 220-520 nm range is used to determine which species are present in the plasma. The spectra show that neutral, singly, and doubly ionized gallium species are present in the discharge, as well as annular electrode species at higher energy levels. Axial Langmuir triple probe measurements yield electron temperatures in the range of 0.8-3.8 eV and electron densities in the range of 8 x 10(exp )20 to 1.6 x 10(exp 21) m(exp -3) . Triple probe measurements suggest an exhaust plume with a divergence angle of 9 , and a completely doubly ionized plasma at the ablating thruster cathode.

  6. Fabrication of Very High Efficiency 5.8 GHz Power Amplifiers using AlGaN HFETs on SiC Substrates for Wireless Power Transmission

    NASA Technical Reports Server (NTRS)

    Sullivan, Gerry

    2001-01-01

    For wireless power transmission using microwave energy, very efficient conversion of the DC power into microwave power is extremely important. Class E amplifiers have the attractive feature that they can, in theory, be 100% efficient at converting, DC power to RF power. Aluminum gallium nitride (AlGaN) semiconductor material has many advantageous properties, relative to silicon (Si), gallium arsenide (GaAs), and silicon carbide (SiC), such as a much larger bandgap, and the ability to form AlGaN/GaN heterojunctions. The large bandgap of AlGaN also allows for device operation at higher temperatures than could be tolerated by a smaller bandgap transistor. This could reduce the cooling requirements. While it is unlikely that the AlGaN transistors in a 5.8 GHz class E amplifier can operate efficiently at temperatures in excess of 300 or 400 C, AlGaN based amplifiers could operate at temperatures that are higher than a GaAs or Si based amplifier could tolerate. Under this program, AlGaN microwave power HFETs have been fabricated and characterized. Hybrid class E amplifiers were designed and modeled. Unfortunately, within the time frame of this program, good quality HFETs were not available from either the RSC laboratories or commercially, and so the class E amplifiers were not constructed.

  7. Extremely-efficient, miniaturized, long-lived alpha-voltaic power source using liquid gallium

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey (Inventor); Patel, Jagdishbhai (Inventor); Fleurial, Jean-Pierre (Inventor)

    2004-01-01

    A power source converts .alpha.-particle energy to electricity for use in electrical systems. Liquid gallium or other liquid medium is subjected to .alpha.-particle emissions. Electrons are freed by collision from neutral gallium atoms to provide gallium ions. The electrons migrate to a cathode while the gallium ions migrate to an anode. A current and/or voltage difference then arises between the cathode and anode because of the work function difference of the cathode and anode. Gallium atoms are regenerated by the receiving of electrons from the anode enabling the generation of additional electrons from additional .alpha.-particle collisions.

  8. Anisotropy of the magnetic susceptibility of gallium

    USGS Publications Warehouse

    Pankey, T.

    1960-01-01

    The bulk magnetic susceptibilities of single gallium crystals and polycrystalline gallium spheres were measured at 25??C. The following anisotropic diamagnetic susceptibilities were found: a axis (-0.119??0. 001)??10-6 emu/g, b axis (-0.416??0.002)??10 -6 emu/g, and c axis (-0.229??0.001) emu/g. The susceptibility of the polycrystalline spheres, assumed to be the average value for the bulk susceptibility of gallium, was (-0.257??0.003)??10-6 emu/g at 25??C, and (-0.299??0.003)??10-6 emu/g at -196??C. The susceptibility of liquid gallium was (0.0031??0.001) ??10-6 emu/g at 30??C and 100??C. Rotational diagrams of the susceptibilities in the three orthogonal planes of the unit cell were not sinusoidal. The anisotropy in the single crystals was presumably caused by the partial overlap of Brillouin zone boundaries by the Fermi-energy surface. The large change in susceptibility associated with the change in state was attributed to the absence of effective mass influence in the liquid state. ?? 1960 The American Institute of Physics.

  9. Ultrafast Direct Modulation of a Single-Mode Photonic Crystal Nanocavity Light-Emitting Diode

    DTIC Science & Technology

    2011-11-15

    nanocavity laser with world record low threshold of 208 nW based on a lateral p-i-n junction defined by ion implantation in gallium arsenide6. This...recombination effects are mini- mized. In contrast, at room temperature, thermal excitation of car- riers depopulates the quantum dots much quicker than does Pur

  10. The 20 and 30 GHz MMIC technology for future space communication antenna system

    NASA Technical Reports Server (NTRS)

    Anzic, G.; Connolly, D. J.

    1984-01-01

    The development of fully monolithic gallium arsenide receive and transmit modules is described. These modules are slated for phased array antenna applications in future 30/20 gigahertz communications satellite systems. Performance goals and various approaches to achieve them are discussed. The latest design and performance results of components, submodules and modules are presented.

  11. The 20 and 30 GHz MMIC technology for future space communication antenna system

    NASA Astrophysics Data System (ADS)

    Anzic, G.; Connolly, D. J.

    1984-10-01

    The development of fully monolithic gallium arsenide receive and transmit modules is described. These modules are slated for phased array antenna applications in future 30/20 gigahertz communications satellite systems. Performance goals and various approaches to achieve them are discussed. The latest design and performance results of components, submodules and modules are presented.

  12. Investigation of crystal growth in zero gravity environment and investigation of metallic whiskers

    NASA Technical Reports Server (NTRS)

    Davis, J. H.; Lal, R. B.; Walter, H. U.; Castle, J. G., Jr.

    1972-01-01

    Theoretical and experimental work reported relates to the effects of near-zero gravity on growths of crystals and metallic whiskers during Skylab and Apollo flight experiments. Studies on growth and characterization of candidate materials for flight experiments cover indium-bismuth compounds, bismuth single crystals, gallium arsenide films and single crystals, and cadmium whiskers.

  13. Gallium-containing phospho-silicate glasses: synthesis and in vitro bioactivity.

    PubMed

    Franchini, Mirco; Lusvardi, Gigliola; Malavasi, Gianluca; Menabue, Ledi

    2012-08-01

    A series of Ga-containing phospho-silicate glasses based on Bioglass 45S5, having molar formula 46.2SiO2·24.3Na2O·26.9CaO·2.6P2O5·xGa2O3 (x=1.0, 1.6, 3.5), were prepared by fusion method. The reference Bioglass 45S5 without gallium was also prepared. The synthesized glasses were immersed in simulated body fluid (SBF) for 30 days in order to observe ion release and hydroxyapatite (HA) formation. All Ga-containing glasses maintain the ability of HA formation as indicated by main X-ray diffractometric peaks and/or electronic scanning microscopy results. HA layer was formed after 1 day of SBF soaking in 45S5 glass containing up to 1.6% Ga2O3 content. Moreover, gallium released by the glasses was found to be partially precipitated on the glass surface as gallium phosphate. Further increase in gallium content reduced the ion release in SBF. The maximum of Ga(3+) concentration measured in solution is ~6 ppm determined for 3.5% Ga2O3 content. This amount is about half of the toxic level (14 ppm) of gallium and the glasses release gallium till 30 days of immersion in SBF. Considering the above results, the studied materials can be proposed as bioactive glasses with additional antimicrobial effect of gallium having no toxic outcome. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Controlled delivery of antimicrobial gallium ions from phosphate-based glasses.

    PubMed

    Valappil, S P; Ready, D; Abou Neel, E A; Pickup, D M; O'Dell, L A; Chrzanowski, W; Pratten, J; Newport, R J; Smith, M E; Wilson, M; Knowles, J C

    2009-05-01

    Gallium-doped phosphate-based glasses (PBGs) have been recently shown to have antibacterial activity. However, the delivery of gallium ions from these glasses can be improved by altering the calcium ion concentration to control the degradation rate of the glasses. In the present study, the effect of increasing calcium content in novel gallium (Ga2O3)-doped PBGs on the susceptibility of Pseudomonas aeruginosa is examined. The lack of new antibiotics in development makes gallium-doped PBG potentially a highly promising new therapeutic agent. The results show that an increase in calcium content (14, 15 and 16 mol.% CaO) cause a decrease in degradation rate (17.6, 13.5 and 7.3 microg mm(-2) h(-1)), gallium ion release and antimicrobial activity against planktonic P. aeruginosa. The most potent glass composition (containing 14 mol.% CaO) was then evaluated for its ability to prevent the growth of biofilms of P. aeruginosa. Gallium release was found to reduce biofilm growth of P. aeruginosa with a maximum effect (0.86 log(10) CFU reduction compared to Ga2O3-free glasses) after 48 h. Analysis of the biofilms by confocal microscopy confirmed the anti-biofilm effect of these glasses as it showed both viable and non-viable bacteria on the glass surface. Results of the solubility and ion release studies show that this glass system is suitable for controlled delivery of Ga3+. 71Ga NMR and Ga K-edge XANES measurements indicate that the gallium is octahedrally coordinated by oxygen atoms in all samples. The results presented here suggest that PBGs may be useful in controlled drug delivery applications, to deliver gallium ions in order to prevent infections due to P. aeruginosa biofilms.

  15. Angiotensin-I-converting enzyme and gallium scan in noninvasive evaluation of sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nosal, A.; Schleissner, L.A.; Mishkin, F.S.

    1979-03-01

    Angiotensin-converting enzyme assays and gallium-scan results were obtained from 27 patients with biopsy-proven, clinically active sarcoidosis. Twenty-three of these patients had elevated converting enzyme levels, and 22 had positive gallium-scan results. Three of four patients with normal or borderline-elevated levels of angiotensin-converting enzyme also had positive gallium-scan results. Of 156 nonsarcoid patients (pulmonary and other diseases), 27 were found to have elevated serum converting enzyme levels, and 25 of these had negative gallium-scan results. These results indicate that the combination of an assay of angiotensin-converting enzyme and gallium scan increases diagnostic specificity from 83% to 99% without sacrificing sensitivity. Itmore » was concluded that the concurrent use of angiotensin-converting enzyme assay and gallium scan is of value in the diagnosis of sarcoidosis.« less

  16. Preliminary Spectroscopic Measurements for a Gallium Electromagnetic (GEM) Thruster

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Burton, Rodney L.; Glumac, Nick G.; Polzin, Kurt A.

    2007-01-01

    As a propellant option for electromagnetic thrusters, liquid ,gallium appears to have several advantages relative to other propellants. The merits of using gallium in an electromagnetic thruster (EMT) are discussed and estimates of discharge current levels and mass flow rates yielding efficient operation are given. The gallium atomic weight of 70 predicts high efficiency in the 1500-2000 s specific impulse range, making it ideal for higher-thrust, near-Earth missions. A spatially and temporally broad spectroscopic survey in the 220-520 nm range is used to determine which species are present in the plasma and estimate electron temperature. The spectra show that neutral, singly, and doubly ionized gallium species are present in a 20 J, 1.8 kA (peak) are discharge. With graphite present on the insulator to facilitate breakdown, singly and doubly ionized carbon atoms are also present, and emission is observed from molecular carbon (CZ) radicals. A determination of the electron temperature was attempted using relative emission line data, and while the spatially and temporally averaged, spectra don't fit well to single temperatures, the data and presence of doubly ionized gallium are consistent with distributions in the 1-3 eV range.

  17. I. Excitonic Phase Diagram in Silicon: Evidence for Two Condensed Phases. I. Motion of Photoexcited Carriers in GALLIUM-ARSENIDE/ALUMINUM(X)GALLIUM(1-X)ARSENIDE Multiple Quantum Wells-Anomalous Confinement at High Densities.

    NASA Astrophysics Data System (ADS)

    Smith, Leigh Morris

    This thesis describes work on the thermodynamics and transport properties of photoexcited carriers in bulk and two-dimensional semiconductors. Two major topics are addressed. I. Photoluminescence experiments of excitons in unstressed silicon are presented which indicate the existence of a new non-degenerate condensed phase of plasma. This new liquid has a density one-tenth that of the ground state electron-hole liquid and is observed both above and below the liquid-gas critical point (~24.5K). A new phase diagram of excitons in silicon is presented which includes these two condensed plasmas. Consistent with the Gibbs phase rule, a triple point at 18.5 K is inferred from the luminescence data as the only temperature where the exciton gas, condensed plasma (CP) and electron-hole liquid (EHL) coexist. The low density condensed plasma persists up to a second critical point at 45 +/- 5K, above which the photoexcited carriers are observed to continuously decay into a partially ionized excitonic gas. II. We have measured the in-plane motion of photoexcited carriers in semiconductor quantum wells with 5 μm spatial and 10 ps temporal resolution and have discovered several surprising results. The effective diffusivity of the carriers at densities below n = 2 times 10^{11}cm ^{-2} is found to depend upon excitation level, possibly indicating defect-limited diffusion or phonon-wind effects. Above this density the spatial profiles exhibit two distinct components with widely differing diffusivities. This remarkable behavior may be understood with consideration of the interactions of non-equilibrium phonons with the photoexcited carriers. We postulate that the slowly diffusing component represents carriers which are "thermally confined" to a phonon hot spot, while the rapidly moving component is driven by the flux of non-equilibrium phonons away from the excitation region.

  18. Recovery of Gallium from Secondary V-Recycling Slag by Alkali Fusion

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Shi, Zhe; Zhang, Gui-fang

    Secondary V-recycling slag, an industrial waste containing high gallium is being dumped continuously, which causes the loss of gallium. Thus, the alkali fusion process was employed to recover gallium from this slag. The effects factors on extraction of gallium such as roasting temperature, roasting time, alkali fusion agent concentration and CaO concentration were investigated in the paper. The experimental results indicated that excessive roasting temperature and roasting time is unfavorable to the recovery rate of gallium. The appropriate roasting temperature and duration are 1000°C and 2 hours, respectively; The appropriate proportioning of Na2CO3: NaOH is 2:1 when the concentration of alkali fusion agent weighs 0.4 times the mass of the slag; In order to remove SiO2 from the leaching liquor, CaO should be used as an additive in the roasting process. The appropriate concentration of CaO should weigh 0.2 times the mass of the slag. Employing these optimal alkali fusion conditions in the roasting process, gallium recovery is above 90%.

  19. Space station needs, attributes and architectural options study. Volume 2: Mission analysis

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Space environment studies, astrophysics, Earth environment, life sciences, and material sciences are discussed. Commercial communication, materials processing, and Earth observation missions are addressed. Technology development, space operations, scenarios of operational capability, mission requirements, and benefits analysis results for space-produced gallium arsenide crystals, direct broadcasting satellite systems, and a high inclination space station are covered.

  20. 15 CFR 743.1 - Wassenaar Arrangement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...' are defined as “focal plane arrays” designed for use with a scanning optical system that images a scene in a sequential manner to produce an image. 'Staring Arrays' are defined as “focal plane arrays” unfortunately designed for use with a non-scanning optical system that images a scene. h. Gallium Arsenide or...

  1. Mechanisms of Current Transfer in Electrodeposited Layers of Submicron Semiconductor Particles

    NASA Astrophysics Data System (ADS)

    Zhukov, N. D.; Mosiyash, D. S.; Sinev, I. V.; Khazanov, A. A.; Smirnov, A. V.; Lapshin, I. V.

    2017-12-01

    Current-voltage ( I- V) characteristics of conductance in multigrain layers of submicron particles of silicon, gallium arsenide, indium arsenide, and indium antimonide have been studied. Nanoparticles of all semiconductors were obtained by processing initial single crystals in a ball mill and applied after sedimentation onto substrates by means of electrodeposition. Detailed analysis of the I- V curves of electrodeposited layers shows that their behavior is determined by the mechanism of intergranular tunneling emission from near-surface electron states of submicron particles. Parameters of this emission process have been determined. The proposed multigrain semiconductor structures can be used in gas sensors, optical detectors, IR imagers, etc.

  2. Insights into semiconductor nanowire conductivity using electrodeposition

    NASA Astrophysics Data System (ADS)

    Liu, C.; Salehzadeh, O.; Poole, P. J.; Watkins, S. P.; Kavanagh, K. L.

    2012-10-01

    Copper (Cu) and iron (Fe) electrical contacts to gallium arsenide (GaAs) and indium arsenide (InAs) nanowires (NWs) have been fabricated via electrodeposition. For undoped or low carbon-doped (1017/cm-3), p-type GaAs NWs, Cu or Fe nucleate and grow only on the gold catalyst at the NW tip, avoiding the sidewalls. Metal growth is limited by the Au contact resistance due to thick sidewall depletion layers. For InAs NWs and heavier-doped, core-shell (undoped core-C-doped shell) GaAs NWs, metal nucleation and growth occurs on the sidewalls as well as on the gold catalyst limited now by the ion electrolyte diffusivity.

  3. Method of Fabricating Schottky Barrier solar cell

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.; Yeh, Y. C. M. (Inventor)

    1982-01-01

    On a thin substrate of low cost material with at least the top surface of the substrate being electrically conductive is deposited a thin layer of heavily doped n-type polycrystalline germanium, with crystalline sizes in the submicron range. A passivation layer may be deposited on the substrate to prevent migration of impurities into the polycrystalline germanium. The polycrystalline germanium is recrystallized to increase the crystal sizes in the germanium layer to not less than 5 micros to serve as a base layer on which a thin layer of gallium arsenide is vapor epitaxially grown to a selected thickness. A thermally-grown oxide layer of a thickness of several tens of angstroms is formed on the gallium arsenide layer. A metal layer, of not more about 100 angstroms thick, is deposited on the oxide layer, and a grid electrode is deposited to be in electrical contact with the top surface of the metal layer. An antireflection coating may be deposited on the exposed top surface of the metal layer.

  4. Monolithic subwavelength high refractive-index-contrast grating VCSELs

    NASA Astrophysics Data System (ADS)

    Gebski, Marcin; Dems, Maciej; Lott, James A.; Czyszanowski, Tomasz

    2016-03-01

    In this paper we present optical design and simulation results of vertical-cavity surface-emitting lasers (VCSELs) that incorporate monolithic subwavelength high refractive-index-contrast grating (MHCG) mirrors - a new variety of HCG mirror that is composed of high index material surrounded only on one side by low index material. We show the impact of an MHCG mirror on the performance of 980 nm VCSELs designed for high bit rate and energy-efficient optical data communications. In our design, all or part of the all-semiconductor top coupling distributed Bragg reflector mirror is replaced by an undoped gallium-arsenide MHCG. We show how the optical field intensity distribution of the VCSEL's fundamental mode is controlled by the combination of the number of residual distributed Bragg reflector (DBR) mirror periods and the physical design of the topmost gallium-arsenide MHCG. Additionally, we numerically investigate the confinement factors of our VCSELs and show that this parameter for the MHCG DBR VCSELs may only be properly determined in two or three dimensions due to the periodic nature of the grating mirror.

  5. InGaAsN/GaAs heterojunction for multi-junction solar cells

    DOEpatents

    Kurtz, Steven R.; Allerman, Andrew A.; Klem, John F.; Jones, Eric D.

    2001-01-01

    An InGaAsN/GaAs semiconductor p-n heterojunction is disclosed for use in forming a 0.95-1.2 eV bandgap photodetector with application for use in high-efficiency multi-junction solar cells. The InGaAsN/GaAs p-n heterojunction is formed by epitaxially growing on a gallium arsenide (GaAs) or germanium (Ge) substrate an n-type indium gallium arsenide nitride (InGaAsN) layer having a semiconductor alloy composition In.sub.x Ga.sub.1-x As.sub.1-y N.sub.y with 070%.

  6. Method of making V.sub.3 Ga superconductors

    DOEpatents

    Dew-Hughes, David

    1980-01-01

    An improved method for producing a vanadium-gallium superconductor wire having aluminum as a component thereof is disclosed, said wire being encased in a gallium bearing copper sheath. The superconductors disclosed herein may be fabricated under normal atmospheres and room temperatures by forming a tubular shaped billet having a core composed of an alloy of vanadium and aluminum and an outer sheath composed of an alloy of copper, gallium and aluminum. Thereafter the entire billet is swage reduced to form a wire therefrom and heat treated to form a layer of V.sub.3 Ga in the interior of the wire.

  7. Gallium alloy films investigated for use as boundary lubricants

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Gallium alloyed with other low melting point metals has excellent lubricant properties of fluidity and low vapor pressure for high temperature or vacuum environments. The addition of other soft metals reduces the corrosivity and formation of undesirable alloys normally found with gallium.

  8. Microfluidic platforms for gallium-based liquid metal alloy

    NASA Astrophysics Data System (ADS)

    Kim, Daeyoung

    As an alternative to toxic mercury, non-toxic gallium-based liquid metal alloy has been gaining popularity due to its higher thermal and electrical conductivities, and low toxicity along with liquid property. However, it is difficult to handle as the alloy becomes readily oxidized in atmospheric air environment. This instant oxidation causes the gallium-based liquid metal alloy to wet almost any solid surface. Therefore, it has been primarily limited to applications which rely only on its deformability, not on its mobility. In this research, various approaches to mobilize gallium-based liquid metal alloy were investigated. Multi-scale surface patterned with polydimethylsiloxane (PDMS) micro pillar array showed super-lyophobic property against gallium-based liquid metal alloy by minimizing the contact area between the solid surface and the liquid metal, and it was expanded to a three-dimensional tunnel shaped microfluidic channel. Vertically-aligned carbon nanotube forest leads to another promising super-lyophobic surface due to its hierarchical micro/nano scale combined structures and chemical inertness. When the carbon nanotubes were transferred onto flexible PDMS by imprinting, the super-lyophobic property was still maintained even under the mechanical deformation such as stretching and bending. Alternatively, the gallium-based liquid metal can be manipulated by modifying the surface of liquid metal itself. With chemical reaction with HCl 'vapor', the oxidized surface (mainly Ga2O3/Ga2O) of gallium-based liquid metal was converted to GaCl3/InCl 3 resulting in the recovery of non-wetting characteristics. Paper which is intrinsically porous is attractive as a super-lyophobic surface and it was found that hydrochloric acid (HCl) impregnation enhanced the anti-wetting property by the chemical reaction. As another alternative method, by coating the viscoelastic oxidized surface of liquid metal with ferromagnetic materials (CoNiMnP or Fe), it showed non

  9. Novel solution-phase structures of gallium-containing pyrogallol[4]arene scaffolds**

    PubMed Central

    Kumari, Harshita; Kline, Steven R.; Wycoff, Wei G.; Paul, Rick L.; Mossine, Andrew V.; Deakyne, Carol A.; Atwood, Jerry L.

    2012-01-01

    The variations in architecture of gallium-seamed (PgC4Ga) and gallium-zinc-seamed (PgC4GaZn) C-butylpyrogallol[4]arene nanoassemblies in solution (SANS/NMR) versus the solid state (XRD) have been investigated. Rearrangement from the solid-state spheroidal to the solution-phase toroidal shape differentiates the gallium-containing pyrogallol[4]arene nanoassemblies from all other PgCnM nanocapsules studied thus far. Different structural arrangements of the metals and arenes of PgC4Ga versus PgC4GaZn have been deduced from the different toroidal dimensions, C–H proton environments and guest encapsulation of the two toroids. PGAA of mixed-metal hexamers reveals a decrease in gallium-to-metal ratio as the second metal varies from cobalt to zinc. Overall, the combined study demonstrates the versatility of gallium in directing the self-assembly of pyrogallol[4]arenes into novel nanoarchitectures. PMID:22511521

  10. Gallium Potentiates the Antibacterial Effect of Gentamicin against Francisella tularensis

    PubMed Central

    Lindgren, Helena

    2015-01-01

    The reasons why aminoglycosides are bactericidal have not been not fully elucidated, and evidence indicates that the cidal effects are at least partly dependent on iron. We demonstrate that availability of iron markedly affects the susceptibility of the facultative intracellular bacterium Francisella tularensis strain SCHU S4 to the aminoglycoside gentamicin. Specifically, the intracellular depots of iron were inversely correlated to gentamicin susceptibility, whereas the extracellular iron concentrations were directly correlated to the susceptibility. Further proof of the intimate link between iron availability and antibiotic susceptibility were the findings that a ΔfslA mutant, which is defective for siderophore-dependent uptake of ferric iron, showed enhanced gentamicin susceptibility and that a ΔfeoB mutant, which is defective for uptake of ferrous iron, displayed complete growth arrest in the presence of gentamicin. Based on the aforementioned findings, it was hypothesized that gallium could potentiate the effect of gentamicin, since gallium is sequestered by iron uptake systems. The ferrozine assay demonstrated that the presence of gallium inhibited >70% of the iron uptake. Addition of gentamicin and/or gallium to infected bone marrow-derived macrophages showed that both 100 μM gallium and 10 μg/ml of gentamicin inhibited intracellular growth of SCHU S4 and that the combined treatment acted synergistically. Moreover, treatment of F. tularensis-infected mice with gentamicin and gallium showed an additive effect. Collectively, the data demonstrate that SCHU S4 is dependent on iron to minimize the effects of gentamicin and that gallium, by inhibiting the iron uptake, potentiates the bactericidal effect of gentamicin in vitro and in vivo. PMID:26503658

  11. Gallium Potentiates the Antibacterial Effect of Gentamicin against Francisella tularensis.

    PubMed

    Lindgren, Helena; Sjöstedt, Anders

    2016-01-01

    The reasons why aminoglycosides are bactericidal have not been not fully elucidated, and evidence indicates that the cidal effects are at least partly dependent on iron. We demonstrate that availability of iron markedly affects the susceptibility of the facultative intracellular bacterium Francisella tularensis strain SCHU S4 to the aminoglycoside gentamicin. Specifically, the intracellular depots of iron were inversely correlated to gentamicin susceptibility, whereas the extracellular iron concentrations were directly correlated to the susceptibility. Further proof of the intimate link between iron availability and antibiotic susceptibility were the findings that a ΔfslA mutant, which is defective for siderophore-dependent uptake of ferric iron, showed enhanced gentamicin susceptibility and that a ΔfeoB mutant, which is defective for uptake of ferrous iron, displayed complete growth arrest in the presence of gentamicin. Based on the aforementioned findings, it was hypothesized that gallium could potentiate the effect of gentamicin, since gallium is sequestered by iron uptake systems. The ferrozine assay demonstrated that the presence of gallium inhibited >70% of the iron uptake. Addition of gentamicin and/or gallium to infected bone marrow-derived macrophages showed that both 100 μM gallium and 10 μg/ml of gentamicin inhibited intracellular growth of SCHU S4 and that the combined treatment acted synergistically. Moreover, treatment of F. tularensis-infected mice with gentamicin and gallium showed an additive effect. Collectively, the data demonstrate that SCHU S4 is dependent on iron to minimize the effects of gentamicin and that gallium, by inhibiting the iron uptake, potentiates the bactericidal effect of gentamicin in vitro and in vivo. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. The therapeutic potential of iron-targeting gallium compounds in human disease: From basic research to clinical application.

    PubMed

    Chitambar, Christopher R

    2017-01-01

    Gallium, group IIIa metal, shares certain chemical characteristics with iron which enable it to function as an iron mimetic that can disrupt iron-dependent tumor cell growth. Gallium may also display antimicrobial activity by disrupting iron homeostasis in certain bacteria and fungi. Gallium's action on iron homeostasis leads to inhibition of ribonucleotide reductase, mitochondrial function, and changes in proteins of iron transport and storage. In addition, gallium induces an increase in mitochondrial reactive oxygen species in cells which triggers downstream upregulation of metallothionein and hemoxygenase-1. Early clinical trials evaluated the efficacy of the simple gallium salts, gallium nitrate and gallium chloride. However, newer gallium-ligands such as Tris(8-quinolinolato)gallium(III) (KP46) and gallium maltolate have been developed and are undergoing clinical evaluation. Additional gallium-ligands that demonstrate antitumor activity in preclinical studies have emerged. Their mechanisms of action and their spectrum of antitumor activity may extend beyond the earlier generations of gallium compounds and warrant further investigation. This review will focus on the evolution and potential of gallium-based therapeutics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Electroluminescence Studies on Longwavelength Indium Arsenide Quantum Dot Microcavities Grown on Gallium Arsenide

    DTIC Science & Technology

    2011-12-01

    communication links using VCSEL arrays [1, 2], medical imaging using super luminescent diodes [3], and tunable lasers capable of remotely sensing...increase the efficiency of solar cells [6, 7, 8], vastly improve photo detector sensitivity [9], and provide optical memory storage densities predicted...semiconductor lasers” Applied Physics B: Lasers and Optics, Volume 90, Number 2, 2008, Pages 339-343. 6. Nozik, A.J. “Quantum dot solar cells

  14. Electron transport near the Mott transition in n-GaAs and n-GaN

    NASA Astrophysics Data System (ADS)

    Romanets, P. N.; Sachenko, A. V.

    2016-01-01

    In this paper, we study the temperature dependence of the conductivity and the Hall coefficient near the metal-insulator phase transition. A theoretical investigation is performed within the effective mass approximation. The variational method is used to calculate the eigenvalues and eigenfunctions of the impurity states. Unlike previous studies, we have included nonlinear corrections to the screened impurity potential, because the Thomas-Fermi approximation is incorrect for the insulator phase. It is also shown that near the phase transition the exchange interaction is essential. The obtained temperature dependencies explain several experimental measurements in gallium arsenide (GaAs) and gallium nitride (GaN).

  15. Growth of electronic materials in microgravity

    NASA Technical Reports Server (NTRS)

    Matthiesen, D. H.

    1991-01-01

    A growth experiment aimed at growing two selenium-doped gallium arsenide crystals, each of which are one inch in diameter and 3.45 inches in length, is described. Emphasis is placed on the effect of microgravity on the segregation behavior of electronic materials. The lessons learned from the 1975 ASTP mission have been incorporated in this experiment.

  16. CGF cartridge development, volume 1

    NASA Technical Reports Server (NTRS)

    Dixon, Carl A.

    1993-01-01

    This report is a summary of SRI's efforts in Crystal Growth Furnace cartridge developments. It includes: evaluation of molybdenum, TZM, and WC-103 as cartridge materials; a survey of oxidation resistant coatings; chemical compatibility studies of cadmium-zinc-telluride and gallium-arsenide with TZM and WC-103; a survey of future cartridge materials; and suggested improvements in ampoule design.

  17. Satellite Power Systems (SPS) concept definition study, exhibit C. Volume 6: In-depth element investigation

    NASA Technical Reports Server (NTRS)

    Hanley, G.

    1979-01-01

    Computer assisted design of a gallium arsenide solid state dc-to-RF converter with supportive fabrication data was investigated. Specific tasks performed include: computer program checkout; amplifier comparisons; computer design analysis of GaSa solar cells; and GaAs diode evaluation. Results obtained in the design and evaluation of transistors for the microwave space power system are presented.

  18. Multiple scaling power in liquid gallium under pressure conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Renfeng; Wang, Luhong; Li, Liangliang

    Generally, a single scaling exponent, Df, can characterize the fractal structures of metallic glasses according to the scaling power law. However, when the scaling power law is applied to liquid gallium upon compression, the results show multiple scaling exponents and the values are beyond 3 within the first four coordination spheres in real space, indicating that the power law fails to describe the fractal feature in liquid gallium. The increase in the first coordination number with pressure leads to the fact that first coordination spheres at different pressures are not similar to each other in a geometrical sense. This multiplemore » scaling power behavior is confined within a correlation length of ξ ≈ 14–15 Å at applied pressure according to decay of G(r) in liquid gallium. Beyond this length the liquid gallium system could roughly be viewed as homogeneous, as indicated by the scaling exponent, Ds, which is close to 3 beyond the first four coordination spheres.« less

  19. Gallium(iii) and iron(iii) complexes of quinolone antimicrobials.

    PubMed

    Mjos, Katja Dralle; Cawthray, Jacqueline F; Polishchuk, Elena; Abrams, Michael J; Orvig, Chris

    2016-08-16

    Iron is an essential nutrient for many microbes. According to the "Trojan Horse Hypothesis", biological systems have difficulties distinguishing between Fe(3+) and Ga(3+), which constitutes the antimicrobial efficacy of the gallium(iii) ion. Nine novel tris(quinolono)gallium(iii) complexes and their corresponding iron(iii) analogs have been synthesized and fully characterized. Quinolone antimicrobial agents from three drug generations were used in this study: ciprofloxacin, enoxacin, fleroxacin, levofloxacin, lomefloxacin, nalidixic acid, norfloxacin, oxolinic acid, and pipemidic acid. The antimicrobial efficacy of the tris(quinolono)gallium(iii) complexes was studied against E. faecalis and S. aureus (both Gram-positive), as well as E. coli, K. pneumonia, and P. aeruginosa (all Gram-negative) in direct comparison to the tris(quinolono)iron(iii) complexes and the corresponding free quinolone ligands at various concentrations. For the tris(quinolono)gallium(iii) complexes, no combinational antimicrobial effects between Ga(3+) and the quinolone antimicrobial agents were observed.

  20. Preliminary Experimental Measurements for a Gallium Electromagnetic (GEM) Thruster

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Burton, Rodney L.; Glumac, Nick G.; Polzin, Kurt A.

    2007-01-01

    A low-energy gallium plasma source is used to perform a spatially and temporally broad spectroscopic survey in the 220-520 nm range. Neutral, singly, and doubly ionized gallium are present in a 20 J, 1.8 kA (peak) arc discharge operating with a central cathode. When the polarity of the inner electrode is reversed the discharge current and arc voltage waveforms remain similar. Utilizing a central anode configuration, multiple Ga lines are absent in the 270-340 nm range. In addition, neutral and singly ionized Fe spectral lines are present, indicating erosion of the outer electrode. With graphite present on the insulator to facilitate breakdown, line emission from the gallium species is further reduced and while emissions from singly and doubly ionized carbon atoms and molecular carbon (C2) radicals are observed. These data indicate that a significant fraction of energy is shifted from the gallium and deposited into the various carbon species.

  1. Non-LTE gallium abundance in HgMn stars

    NASA Astrophysics Data System (ADS)

    Zboril, M.; Berrington, K. A.

    2001-07-01

    We present, for the first time, the Non-LTE gallium equivalent widths for the most prominent gallium transitions as identified in real spectra and in (hot) mercury-manganese star. The common feature of the departure coefficients is to decrease near the stellar surface, the collision rates are dominant in many cases and the Non-LTE equivalent widths are generally smaller. In particular, the abundance difference as derived from UV and visual lines is reduced. The photoionization cross sections were computed by means of standard R-matrix formalism. The gallium cross-sections are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/373/987

  2. Gallium nitrate: effects on cartilage during limb regeneration in the axolotl, Ambystoma mexicanum.

    PubMed

    Tassava, Roy A; Mendenhall, Luciara; Apseloff, Glen; Gerber, Nicholas

    2002-09-01

    Gallium nitrate, a drug shown to have efficacy in Paget's disease of bone, hypercalcemia of malignancy, and a variety of experimental autoimmune diseases, also inhibits the growth of some types of cancer. We examined dose and timing of administration of gallium nitrate on limb regeneration in the Mexican axolotl, Ambystoma mexicanum. Administered by intraperitoneal injection, gallium nitrate inhibited limb regeneration in a dose-dependent manner. Gallium nitrate initially suppressed epithelial wound healing and subsequently distorted both anterior-posterior and proximo-distal chondrogenic patterns. Gallium nitrate given at three days after amputation severely inhibited regeneration at high doses (6.25 mg/axolotl) and altered the normal patterning of the regenerates at low doses (3.75 mg/axolotl). Administration of 6.25 mg of gallium nitrate at four or 14 days prior to amputation also inhibited regeneration. In amputated limbs of gallium-treated axolotls, the chondrocytes were lost from inside the radius/ulna. Limbs that regenerated after gallium treatment was terminated showed blastema formation preferentially over the ulna. New cartilage of the regenerate often attached to the sides of the existing radius/ulna proximally into the stump and less so to the distal cut ends. J. Exp. Zool. 293:384-394, 2002. Copyright 2002 Wiley-Liss, Inc.

  3. Potential use of gallium-doped phosphate-based glass material for periodontitis treatment.

    PubMed

    Sahdev, Rohan; Ansari, Tahera I; Higham, Susan M; Valappil, Sabeel P

    2015-07-01

    This study aimed at evaluating the potential effect of gallium-incorporated phosphate-based glasses towards periodontitis-associated bacteria, Porphyromonas gingivalis, and matrix metalloproteinase-13. Periodontitis describes a group of inflammatory diseases of the gingiva and supporting structures of the periodontium. They are initiated by the accumulation of plaque bacteria, such as the putative periodontal pathogen Porphyromonas gingivalis, but the host immune response such as elevated matrix metalloproteinases are the major contributing factor for destruction of periodontal tissues. Antibacterial assays of gallium-incorporated phosphate-based glasses were conducted on Porphyromonas gingivalis ATCC 33277 using disc diffusion assay on fastidious anaerobe agar and liquid broth assay in a modified tryptic soy broth. In vitro study investigated the effect of gallium on purified recombinant human matrix metalloproteinase-13 activity using matrix metalloproteinase assay kit. In vivo biocompatibility of gallium-incorporated phosphate-based glass was evaluated in rats as subcutaneous implants. Antibacterial assay of gallium displayed activity against Porphyromonas gingivalis (inhibition zone of 22 ± 0.5 mm compared with 0 mm for control glass, c-PBG). Gallium in the glass contributed to growth inhibitory effect on Porphyromonas gingivalis (up to 1.30 reductions in log 10 values of the viable counts compared with control) in a modified tryptic soy broth. In vitro study showed gallium-incorporated phosphate-based glasses inhibited matrix metalloproteinase activity significantly (p ≤ 0.01) compared with c-PBG. Evaluation of in vivo biocompatibility of gallium-incorporated phosphate-based glasses in rats showed a non-toxic and foreign body response after 2 weeks of implantation. The results indicate that gallium ions might act on multiple targets of biological mechanisms underlying periodontal disease. Moreover, gallium-incorporated phosphate-based glasses

  4. The Inhibition of Escherichia coli Biofilm Formation by Gallium Nitrate-Modified Titanium.

    PubMed

    Zhu, Yuanyuan; Qiu, Yan; Chen, Ruiqi; Liao, Lianming

    2015-08-01

    Periprosthetic infections are notoriously difficult to treat due to biofilm formation. Previously, we reported that gallium-EDTA attached to PVC (polyvinyl chloride) surface could prevent bacterial colonization. Herein we examined the effect of this gallium-EDTA complex on Escherichia coli biofilm formation on titanium. It was clearly demonstrated that gallium nitrate significantly inhibited the growth and auto-aggregation of Escherichia coli. Furthermore, titanium with gallium-EDTA coating resisted bacterial colonization as indicated by crystal violet staining. When the chips were immersed in human serum and incubated at 37 °C, they demonstrated significant antimicrobial activity after more than 28 days of incubation. These findings indicate that gallium-EDTA coating of implants can result in a surface that can resist bacterial colonization. This technology holds great promise for the prevention and treatment of periprosthetic infections.

  5. Hot and solid gallium clusters: too small to melt.

    PubMed

    Breaux, Gary A; Benirschke, Robert C; Sugai, Toshiki; Kinnear, Brian S; Jarrold, Martin F

    2003-11-21

    A novel multicollision induced dissociation scheme is employed to determine the energy content for mass-selected gallium cluster ions as a function of their temperature. Measurements were performed for Ga(+)(n) (n=17 39, and 40) over a 90-720 K temperature range. For Ga+39 and Ga+40 a broad maximum in the heat capacity-a signature of a melting transition for a small cluster-occurs at around 550 K. Thus small gallium clusters melt at substantially above the 302.9 K melting point of bulk gallium, in conflict with expectations that they will remain liquid to below 150 K. No melting transition is observed for Ga+17.

  6. Design and properties of novel gallium-doped injectable apatitic cements.

    PubMed

    Mellier, Charlotte; Fayon, Franck; Boukhechba, Florian; Verron, Elise; LeFerrec, Myriam; Montavon, Gilles; Lesoeur, Julie; Schnitzler, Verena; Massiot, Dominique; Janvier, Pascal; Gauthier, Olivier; Bouler, Jean-Michel; Bujoli, Bruno

    2015-09-01

    Different possible options were investigated to combine an apatitic calcium phosphate cement with gallium ions, known as bone resorption inhibitors. Gallium can be either chemisorbed onto calcium-deficient apatite or inserted in the structure of β-tricalcium phosphate, and addition of these gallium-doped components into the cement formulation did not significantly affect the main properties of the biomaterial, in terms of injectability and setting time. Under in vitro conditions, the amount of gallium released from the resulting cement pellets was found to be low, but increased in the presence of osteoclastic cells. When implanted in rabbit bone critical defects, a remodeling process of the gallium-doped implant started and an excellent bone interface was observed. The integration of drugs and materials is a growing force in the medical industry. The incorporation of pharmaceutical products not only promises to expand the therapeutic scope of biomaterials technology but to design a new generation of true combination products whose therapeutic value stem equally from both the structural attributes of the material and the intrinsic therapy of the drug. In this context, for the first time an injectable calcium phosphate cement containing gallium was designed with properties suitable for practical application as a local delivery system, implantable by minimally invasive surgery. This important and original paper reports the design and in-depth chemical and physical characterization of this groundbreaking technology. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Formation of self-organized nanoporous anodic oxide from metallic gallium.

    PubMed

    Pandey, Bipin; Thapa, Prem S; Higgins, Daniel A; Ito, Takashi

    2012-09-25

    This paper reports the formation of self-organized nanoporous gallium oxide by anodization of solid gallium metal. Because of its low melting point (ca. 30 °C), metallic gallium can be shaped into flexible structures, permitting the fabrication of nanoporous anodic oxide monoliths within confined spaces like the inside of a microchannel. Here, solid gallium films prepared on planar substrates were employed to investigate the effects of anodization voltage (1, 5, 10, 15 V) and H(2)SO(4) concentration (1, 2, 4, 6 M) on anodic oxide morphology. Self-organized nanopores aligned perpendicular to the film surface were obtained upon anodization of gallium films in ice-cooled 4 and 6 M aqueous H(2)SO(4) at 10 and 15 V. Nanopore formation could be recognized by an increase in anodic current after a current decrease reflecting barrier oxide formation. The average pore diameter was in the range of 18-40 nm with a narrow diameter distribution (relative standard deviation ca. 10-20%), and was larger at lower H(2)SO(4) concentration and higher applied voltage. The maximum thickness of nanoporous anodic oxide was ca. 2 μm. In addition, anodic formation of self-organized nanopores was demonstrated for a solid gallium monolith incorporated at the end of a glass capillary. Nanoporous anodic oxide monoliths formed from a fusible metal will lead to future development of unique devices for chemical sensing and catalysis.

  8. Ca4As3 – a new binary calcium arsenide

    PubMed Central

    Hoffmann, Andrea V.; Hlukhyy, Viktor; Fässler, Thomas F.

    2015-01-01

    The crystal structure of the binary compound tetra­calcium triarsenide, Ca4As3, was investigated by single-crystal X-ray diffraction. Ca4As3 crystallizes in the Ba4P3 structure type and is thus a homologue of isotypic Sr4As3. The unit cell contains 32 Ca2+ cations, 16 As3− isolated anions and four centrosymmetric [As2]4– dumbbells. The As atoms in each of the dumbbells are connected by a single bond, thus this calcium arsenide is a Zintl phase. PMID:26870427

  9. Aluminum gallium nitride (GaN)/GaN high electron mobility transistor-based sensors for glucose detection in exhaled breath condensate.

    PubMed

    Chu, Byung Hwan; Kang, Byoung Sam; Hung, Sheng Chun; Chen, Ke Hung; Ren, Fan; Sciullo, Andrew; Gila, Brent P; Pearton, Stephen J

    2010-01-01

    Immobilized aluminum gallium nitride (AlGaN)/GaN high electron mobility transistors (HEMTs) have shown great potential in the areas of pH, chloride ion, and glucose detection in exhaled breath condensate (EBC). HEMT sensors can be integrated into a wireless data transmission system that allows for remote monitoring. This technology offers the possibility of using AlGaN/GaN HEMTs for extended investigations of airway pathology of detecting glucose in EBC without the need for clinical visits. HEMT structures, consisting of a 3-microm-thick undoped GaN buffer, 30-A-thick Al(0.3)Ga(0.7)N spacer, and 220-A-thick silicon-doped Al(0.3)Ga(0.7)N cap layer, were used for fabricating the HEMT sensors. The gate area of the pH, chloride ion, and glucose detection was immobilized with scandium oxide (Sc(2)O(3)), silver chloride (AgCl) thin film, and zinc oxide (ZnO) nanorods, respectively. The Sc(2)O(3)-gated sensor could detect the pH of solutions ranging from 3 to 10 with a resolution of approximately 0.1 pH. A chloride ion detection limit of 10(-8) M was achieved with a HEMT sensor immobilized with the AgCl thin film. The drain-source current of the ZnO nanorod-gated AlGaN/GaN HEMT sensor immobilized with glucose oxidase showed a rapid response of less than 5 seconds when the sensor was exposed to the target glucose in a buffer with a pH value of 7.4. The sensor could detect a wide range of concentrations from 0.5 nM to 125 microM. There is great promise for using HEMT-based sensors to enhance the detection sensitivity for glucose detection in EBC. Depending on the immobilized material, HEMT-based sensors can be used for sensing different materials. These electronic detection approaches with rapid response and good repeatability show potential for the investigation of airway pathology. The devices can also be integrated into a wireless data transmission system for remote monitoring applications. This sensor technology could use the exhaled breath condensate to measure the

  10. Aluminum Gallium Nitride (GaN)/GaN High Electron Mobility Transistor-Based Sensors for Glucose Detection in Exhaled Breath Condensate

    PubMed Central

    Chu, Byung Hwan; Kang, Byoung Sam; Hung, Sheng Chun; Chen, Ke Hung; Ren, Fan; Sciullo, Andrew; Gila, Brent P.; Pearton, Stephen J.

    2010-01-01

    Background Immobilized aluminum gallium nitride (AlGaN)/GaN high electron mobility transistors (HEMTs) have shown great potential in the areas of pH, chloride ion, and glucose detection in exhaled breath condensate (EBC). HEMT sensors can be integrated into a wireless data transmission system that allows for remote monitoring. This technology offers the possibility of using AlGaN/GaN HEMTs for extended investigations of airway pathology of detecting glucose in EBC without the need for clinical visits. Methods HEMT structures, consisting of a 3-μm-thick undoped GaN buffer, 30-Å-thick Al0.3Ga0.7N spacer, and 220-Å-thick silicon-doped Al0.3Ga0.7N cap layer, were used for fabricating the HEMT sensors. The gate area of the pH, chloride ion, and glucose detection was immobilized with scandium oxide (Sc2O3), silver chloride (AgCl) thin film, and zinc oxide (ZnO) nanorods, respectively. Results The Sc2O3-gated sensor could detect the pH of solutions ranging from 3 to 10 with a resolution of ∼0.1 pH. A chloride ion detection limit of 10-8 M was achievedt with a HEMT sensor immobilized with the AgCl thin film. The drain–source current of the ZnO nanorod-gated AlGaN/GaN HEMT sensor immobilized with glucose oxidase showed a rapid response of less than 5 seconds when the sensor was exposed to the target glucose in a buffer with a pH value of 7.4. The sensor could detect a wide range of concentrations from 0.5 nM to 125 μM. Conclusion There is great promise for using HEMT-based sensors to enhance the detection sensitivity for glucose detection in EBC. Depending on the immobilized material, HEMT-based sensors can be used for sensingt different materials. These electronic detection approaches with rapid response and good repeatability show potential for the investigation of airway pathology. The devices can also be integrated into a wireless data transmission system for remote monitoring applications. This sensor technology could use the exhaled breath condensate to

  11. Realization of the Gallium Triple Point at NMIJ/AIST

    NASA Astrophysics Data System (ADS)

    Nakano, T.; Tamura, O.; Sakurai, H.

    2008-02-01

    The triple point of gallium has been realized by a calorimetric method using capsule-type standard platinum resistance thermometers (CSPRTs) and a small glass cell containing about 97 mmol (6.8 g) of gallium with a nominal purity of 99.99999%. The melting curve shows a very flat and relatively linear dependence on 1/ F in the region from 1/ F = 1 to 1/ F = 20 with a narrow width of the melting curve within 0.1 mK. Also, a large gallium triple-point cell was fabricated for the calibration of client-owned CSPRTs. The gallium triple-point cell consists of a PTFE crucible and a PTFE cap with a re-entrant well and a small vent. The PTFE cell contains 780 g of gallium from the same source as used for the small glass cell. The PTFE cell is completely covered by a stainless-steel jacket with a valve to enable evacuation of the cell. The melting curve of the large cell shows a flat plateau that remains within 0.03 mK over 10 days and that is reproducible within 0.05 mK over 8 months. The calibrated value of a CSPRT obtained using the large cell agrees with that obtained using the small glass cell within the uncertainties of the calibrations.

  12. Tin-gallium-oxide-based UV-C detectors

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Partha; Toporkov, Mykyta; Schoenfeld, Winston V.

    2018-02-01

    The emergence of conductive gallium oxide single crystal substrates offers the potential for vertical Schottky detectors operating in the UV-C spectral region. We report here on our recent work in the development of Tin Gallium oxide (TGO) thin film metal-semiconductor-metal (MSM) and Schottky detectors using plasma-assisted molecular beam epitaxy on c plane sapphire and bulk Ga2O3 substrates. Tin alloying of gallium oxide thin films was found to systematically reduce the optical band gap of the compound, providing tunability in the UV-C spectral region. Tin concentration in the TGO epilayers was found to be highly dependent on growth conditions, and Ga flux in particular. First attempts to demonstrate vertical Schottky photodetectors using TGO epilayers on bulk n-type Ga2O3 substrates were successful. Resultant devices showed strong photoresponse to UV-C light with peak responsivities clearly red shifted in comparison to Ga2O3 homoepitaxial Schottky detectors due to TGO alloying.

  13. Cutaneous gallium uptake in patients with AIDS with mycobacterium avium-intracellulare septicemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allwright, S.J.; Chapman, P.R.; Antico, V.F.

    1988-07-01

    Gallium imaging is increasingly being used for the early detection of complications in patients with AIDS. A 26-year-old homosexual man who was HIV antibody positive underwent gallium imaging for investigation of possible Pneumocystis carinii pneumonia. Widespread cutaneous focal uptake was seen, which was subsequently shown to be due to mycobacterium avium-intracellulare (MAI) septicemia. This case demonstrates the importance of whole body imaging rather than imaging target areas only, the utility of gallium imaging in aiding the early detection of clinically unsuspected disease, and shows a new pattern of gallium uptake in disseminated MAI infection.

  14. Low-level laser therapy for Peyronie's disease

    NASA Astrophysics Data System (ADS)

    Johnson, Douglas E.; Bertini, John E. J.; Harris, James M.; Hawkins, Janet H.

    1995-05-01

    We are reporting the preliminary results of a nonrandomized trial using a low-level gallium- aluminum-arsenide (GaAlAs) laser at a wavelength of 830 nm (Microlight 830, Lasermedics, Inc., Stafford, TX) to treat patients with symptomatic Peyronie's disease. All patients entered into the study had disease consisting of a well-defined fibrous plaque causing pain and/or curvature of the penile shaft on erection that interfered with satisfactory sexual intercourse. Treatment has consisted of 30 mW administered over a duty cycle of 100 seconds (3 J) beginning at the base of the penis and extending to the coronal sulcus over the dorsum of the penis at 0.5 cm intervals. An additional duty cycle of 100 seconds was delivered to each 0.5 cm of palpable plaque. The ability of the therapy to reduce the size of the fibrous plaque, the severity of the penile curvature, and the severity of pain associated with penile erection and the treatment's effect on the patient's quality of life were assessed for each patient at completion of therapy and 6 weeks later.

  15. Fluorescent lighting with aluminum nitride phosphors

    DOEpatents

    Cherepy, Nerine J.; Payne, Stephen A.; Seeley, Zachary M.; Srivastava, Alok M.

    2016-05-10

    A fluorescent lamp includes a glass envelope; at least two electrodes connected to the glass envelope; mercury vapor and an inert gas within the glass envelope; and a phosphor within the glass envelope, wherein the phosphor blend includes aluminum nitride. The phosphor may be a wurtzite (hexagonal) crystalline structure Al.sub.(1-x)M.sub.xN phosphor, where M may be drawn from beryllium, magnesium, calcium, strontium, barium, zinc, scandium, yttrium, lanthanum, cerium, praseodymium, europium, gadolinium, terbium, ytterbium, bismuth, manganese, silicon, germanium, tin, boron, or gallium is synthesized to include dopants to control its luminescence under ultraviolet excitation. The disclosed Al.sub.(1-x)M.sub.xN:Mn phosphor provides bright orange-red emission, comparable in efficiency and spectrum to that of the standard orange-red phosphor used in fluorescent lighting, Y.sub.2O.sub.3:Eu. Furthermore, it offers excellent lumen maintenance in a fluorescent lamp, and does not utilize "critical rare earths," minimizing sensitivity to fluctuating market prices for the rare earth elements.

  16. A melting-point-of gallium apparatus for thermometer calibration.

    PubMed

    Sostman, H E; Manley, K A

    1978-08-01

    We have investigated the equilibrium melting point of gallium as a temperature fixed-point at which to calibrate small thermistor thermometers, such as those used to measure temperature in enzyme reaction analysis and other temperature-dependent biological assays. We have determined that the melting temperature of "6N" (99.999% pure) gallium is 29.770 +/- 0.002 degrees C, and that the constant-temperature plateau can be prolonged for several hours. We have designed a simple automated apparatus that exploits this phenomenon and that permits routine calibration verification of thermistor temperature probes throughout the laboratory day. We describe the physics of the gallium melt, and the design and use of the apparatus.

  17. Myopericarditis in acquired immunodeficiency syndrome diagnosed by gallium scintigraphy.

    PubMed Central

    Cregler, L. L.; Sosa, I.; Ducey, S.; Abbey, L.

    1990-01-01

    Myocarditis is among the cardiac complications of acquired immunodeficiency syndrome and, yet, is often not discovered until autopsy. Gallium scintigraphy has been employed in diagnosing this entity, but few data are available about its diagnostic accuracy and value. Here, the authors report two cases of myopericarditis as diagnosed by gallium scan. Images Figure 1 Figure 2 PMID:2398508

  18. Biocompatible nano-gallium/hydroxyapatite nanocomposite with antimicrobial activity.

    PubMed

    Kurtjak, Mario; Vukomanović, Marija; Kramer, Lovro; Suvorov, Danilo

    2016-11-01

    Intensive research in the area of medical nanotechnology, especially to cope with the bacterial resistance against conventional antibiotics, has shown strong antimicrobial action of metallic and metal-oxide nanomaterials towards a wide variety of bacteria. However, the important remaining problem is that nanomaterials with highest antibacterial activity generally express also a high level of cytotoxicity for mammalian cells. Here we present gallium nanoparticles as a new solution to this problem. We developed a nanocomposite from bioactive hydroxyapatite nanorods (84 wt %) and antibacterial nanospheres of elemental gallium (16 wt %) with mode diameter of 22 ± 11 nm. In direct comparison, such nanocomposite with gallium nanoparticles exhibited better antibacterial properties against Pseudomonas aeruginosa and lower in-vitro cytotoxicity for human lung fibroblasts IMR-90 and mouse fibroblasts L929 (efficient antibacterial action and low toxicity from 0.1 to 1 g/L) than the nanocomposite of hydroxyapatite and silver nanoparticles (efficient antibacterial action and low toxicity from 0.2 to 0.25 g/L). This is the first report of a biomaterial composite with gallium nanoparticles. The observed strong antibacterial properties and low cytotoxicity make the investigated material promising for the prevention of implantation-induced infections that are frequently caused by P. aeruginosa.

  19. Intermediate orthorhombic phases in Ba-122 Iron Arsenides

    NASA Astrophysics Data System (ADS)

    Ruff, J. P. C.; Islam, Z.; Das, R. K.; Kuo, H.-H.; Fisher, I. R.

    2013-03-01

    Despite widespread interest, there are details of the tetragonal-orthorhombic structural phase transition in the iron arsenide superconductors that remain controversial. We have revisited the transition in three characteristic compositions of the canonical ``122'' family Ba(Fe/Co)2(As/P)2 using single crystal synchrotron x-ray diffraction. In the parent compound, we confirm previous observations of a sequence of structural transitions which are closely spaced in temperature, and uncover pronounced magnetoelastic effects in the intermediate orthorhombic phase. Modification of the structural transitions by doping is observed to differ significantly depending on whether the dopant is Co or P. Work performed at the Advanced Photon Source was supported by the DOE, under Contract No. DE-AC02-06CH11357.

  20. Ab initio Thermal Transport in Compound Semiconductors

    DTIC Science & Technology

    2013-04-02

    upper bound to the thermal conductivities of cubic aluminum-V, gallium -V, and indium-V compounds as limited by anharmonic phonon scattering. The effects...and GaP [red circles (Ref. 51) and red triangles (Ref. 52)]. B. Gallium -V compounds We previously presented results for κL and P for wurtzite GaN and...data was found. We used this approach to examine κL in aluminum-V, gallium -V, and indium-V compounds as well as the technologically important materials

  1. Test Equipment and Method to Characterize a SWIR Digital Imaging System

    DTIC Science & Technology

    2014-06-01

    based on Gallium Arsenide (GaAs) detectors are sensitive in the visible and near infrared (NIR) bands, and used only at night. They produce images from... current from the silicon sensor located on the sphere. The irradiance responsivity, Rn, is the ratio of the silicon detector current and the absolute...silicon detector currents , in accordance with equation 1: ( , ,)[ 2⁄ ] = [] ( ,

  2. The RACE (R&D in Advanced Communications Technologies for Europe) Program of the European Communities

    DTIC Science & Technology

    1988-08-17

    asynchronous TDM for all channels; and hybrid solu- However, since technoeconomic considerations may im- tions, possibly involving dynamic rearranging. A...qualitative electronic switching are favored: CMOS, silicon bipolar, analysis , under the headings: timing of introduction, net- and gallium arsenide...or ring configurations. tem requirements. Project 1029. In this project an up-to-date analysis Microelectronic Components was made of the state of the

  3. Microwave, Semiconductor Research - Materials, Devices and Circuits.

    DTIC Science & Technology

    1984-03-01

    Phenomena, Gamisch/Partenkirchen, Germany, 1982 (Springer-Verlag, Berlin). 3. "Observation of nonlinear refractive index in molecular liquids by...in non-walled dielectric waveguide including a novel use of transverse resonance equivalent circuits for the treatment of dispersion in graded index ...number) This program covers the growth and assessment of Gallium Arsenide, and related compounds and alloys, for use in microwave, millimeter, and

  4. Wavelength-scale Microlasers based on VCSEL-Photonic Crystal Architecture

    DTIC Science & Technology

    2015-01-20

    molecular beam epitaxy , MBE). We will also assume the triangular lattice of air...Abbreviations, and Acronyms InP: indium phosphide InGaAsP: indium gallium arsenide phosphide MBE: molecular beam epiitaxy VCSEL : vertical cavity...substrates and were grown by MBE. Electron beam lithography and reactive ion etching was used to deep‐etch the holes of the PhC‐ VCSELS ,

  5. Distribution of trace levels of therapeutic gallium in bone as mapped by synchrotron x-ray microscopy.

    PubMed Central

    Bockman, R S; Repo, M A; Warrell, R P; Pounds, J G; Schidlovsky, G; Gordon, B M; Jones, K W

    1990-01-01

    Gallium nitrate, a drug that inhibits calcium release from bone, has been proven a safe and effective treatment for the accelerated bone resorption associated with cancer. Though bone is a target organ for gallium, the kinetics, sites, and effects of gallium accumulation in bone are not known. We have used synchrotron x-ray microscopy to map the distribution of trace levels of gallium in bone. After short-term in vivo administration of gallium nitrate to rats, trace (nanogram) amounts of gallium preferentially localized to the metabolically active regions in the metaphysis as well as the endosteal and periosteal surfaces of diaphyseal bone, regions where new bone formation and modeling were occurring. The amounts measured were well below the levels known to be cytotoxic. Iron and zinc, trace elements normally found in bone, were decreased in amount after in vivo administration of gallium. These studies represent a first step toward understanding the mechanism(s) of action of gallium in bone by suggesting the possible cellular, structural, and elemental "targets" of gallium. Images PMID:2349224

  6. What should be impossible: resolution of the mononuclear gallium coordination complex, Tris(benzohydroxamato)gallium(III).

    PubMed

    Brumaghim, Julia L; Raymond, Kenneth N

    2003-10-08

    Complexes of Ga3+, a d10 metal ion which lacks ligand-field-stabilization energy, are considered labile. In fact, hexaaquagallium(III) has a ligand exchange rate of 403 s-1, 2.5 times that of the analagous Fe3+ complex (Hugi-Cleary, D.; Helm, L.; Merbach, A. E. J. Am. Chem. Soc. 1987, 109, 4444-4450). Given this lability, resolution of Ga3+ complexes should be impossible. Despite this, we report the resolution of the Lambda and Delta isomers of tris(benzohydroxamate)gallium (III) (1), the first resolution of a mononuclear gallium complex. Not only is resolution possible, but these resolved complexes show remarkable resistance to racemization in aprotic solvents. The unprecedented stability of Lambda- and Delta-1 is a surprise, and as such, alters our understanding of classical coordination chemistry.

  7. Ultrafast Time-Resolved Photoluminescence Studies of Gallium-Arsenide

    NASA Astrophysics Data System (ADS)

    Johnson, Matthew Bruce

    This thesis concerns the study of ultrafast phenomena in GaAs using time-resolved photoluminescence (PL). The thesis consists of five chapters. Chapter one is an introduction, which discusses the study of ultrafast phenomena in semiconductors. Chapter two is a description of the colliding-pulse mode-locked (CPM) ring dye laser, which is at the heart of the experimental apparatus used in this thesis. Chapter three presents a detailed experimental and theoretical investigation of photoluminescence excitation correlation spectroscopy (PECS), the novel technique which is used to time-resolve ultrafast PL phenomena. Chapters 4 and 5 discuss two applications of the PECS technique. In Chapter 4 the variation of PL intensity in In-alloyed GaAs substrate material is studied, while Chapter 5 discusses the variation of carrier lifetimes in ion-damaged GaAs used in photo-conductive circuit elements (PCEs). PECS is a pulse-probe technique that measures the cross correlation of photo-excited carrier populations. The theoretical model employed in this thesis is based upon the rate equation for a simple three-level system consisting of valence and conduction bands and a single trap level. In the limit of radiative band-to-band dominated recombination, no PECS signal should be observed; while in the capture -dominated recombination limit, the PECS signal from the band-to-band PL measures the cross correlation of the excited electron and hole populations and thus, the electron and hole lifetimes. PECS is experimentally investigated using a case study of PL in semi-insulating (SI) GaAs and In -alloyed GaAs. At 77 K, the PECS signal is characteristic of a capture-dominated system, yielding an electron-hole lifetime of about 200 ps. However, at 5 K the behavior is more complicated and shows saturation effects due to the C acceptor level, which is un-ionized at 5 K. As a first application, PECS is used to investigate the large band-to-band PL contrast observed near dislocations in In-alloyed GaAs. It is found that the PL intensity contrast between bright and dark areas correlates with the ratio of the lifetimes measured using PECS in these areas. Thus, the PL intensity contrast is due to the difference in the carrier lifetimes in the different regions. The carrier lifetimes in the bright and dark regions have different temperature dependences. (Abstract shortened with permission of author.).

  8. Gallium Arsenide Pilot Line for High Performance Components

    DTIC Science & Technology

    1992-05-28

    two transistors’ characteristics were a close enough match to use as pull -up, high resistance loads in the cell. FET Data Unfortunately, data obtained...length transistors in 4K SRAM II, we can predict the performance of the memory chip. Since there is essentially no active pull up capability in the c a...Second, the 2/2 Am DFET’s threshold and "ON" current could be adjusted. Or third, a different size DFET pull -up transistor could be used which more

  9. Gallium Arsenide Pilot Line for High Performance Components

    DTIC Science & Technology

    1988-06-02

    shown in Figure 4. A complete functional and timing verification was performed by GOALIE , MOTIS, and ADVICE tools. GOALIE was used to convert the...using LTX2 and was verified using GOALIE , and ADVICE. S The performance of the circuits was measured using 256 test-vectors on an Advantest T3340...cycling per MIL STD 883C, Method 1010.7 Condition C. No evidence of damage was found. A sample of fifteen leads were pull tested per MIL STD 883C. Method

  10. Gallium arsenide (GaAs) solar cell modeling studies

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.

    1980-01-01

    Various models were constructed which will allow for the variation of system components. Computer studies were then performed using the models constructed in order to study the effects of various system changes. In particular, GaAs and Si flat plate solar power arrays were studied and compared. Series and shunt resistance models were constructed. Models for the chemical kinetics of the annealing process were prepared. For all models constructed, various parametric studies were performed.

  11. Gallium arsenide solar cell efficiency: Problems and potential

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.; Godlewski, M. P.

    1985-01-01

    Under ideal conditions the GaAs solar cell should be able to operate at an AMO efficiency exceeding 27 percent, whereas to date the best measured efficiencies barely exceed 19 percent. Of more concern is the fact that there has been no improvement in the past half decade, despite the expenditure of considerable effort. State-of-the-art GaAs efficiency is analyzed in an attempt to determine the feasibility of improving on the status quo. The possible gains to be had in the planar cell. An attempt is also made to predict the efficiency levels that could be achieved with a grating geometry. Both the N-base and the P-base BaAs cells in their planar configurations have the potential to operate at AMO efficiencies between 23 and 24 percent. For the former the enabling technology is essentially in hand, while for the latter the problem of passivating the emitter surface remains to be solved. In the dot grating configuration, P-base efficiencies approaching 26 percent are possible with minor improvements in existing technology. N-base grating cell efficiencies comparable to those predicted for the P-base cell are achievable if the N surface can be sufficiently passivated.

  12. Image processing using Gallium Arsenide (GaAs) technology

    NASA Technical Reports Server (NTRS)

    Miller, Warner H.

    1989-01-01

    The need to increase the information return from space-borne imaging systems has increased in the past decade. The use of multi-spectral data has resulted in the need for finer spatial resolution and greater spectral coverage. Onboard signal processing will be necessary in order to utilize the available Tracking and Data Relay Satellite System (TDRSS) communication channel at high efficiency. A generally recognized approach to the increased efficiency of channel usage is through data compression techniques. The compression technique implemented is a differential pulse code modulation (DPCM) scheme with a non-uniform quantizer. The need to advance the state-of-the-art of onboard processing was recognized and a GaAs integrated circuit technology was chosen. An Adaptive Programmable Processor (APP) chip set was developed which is based on an 8-bit slice general processor. The reason for choosing the compression technique for the Multi-spectral Linear Array (MLA) instrument is described. Also a description is given of the GaAs integrated circuit chip set which will demonstrate that data compression can be performed onboard in real time at data rate in the order of 500 Mb/s.

  13. Spontaneous Oscillations in Gallium Arsenide Field Effect Transistors

    DTIC Science & Technology

    1980-01-01

    simulations the onset of the instability marked the onset . V **■ - ■ ■’’’---;- -mri - ■ HA 1 - . ’■(■ •’ •% j ■^MM^^ mmimm 160 H. L...2031 (1967). 23. T. Mimura, H. Suzuki and M. Fukuta, Proc. IEEE. 65. 1407 (1977). 24. See e. g. R. S. C. Cobbold , Theory and Applications of Field

  14. High-performance fused indium gallium arsenide/silicon photodiode

    NASA Astrophysics Data System (ADS)

    Kang, Yimin

    Modern long haul, high bit rate fiber-optic communication systems demand photodetectors with high sensitivity. Avalanche photodiodes (APDs) exhibit superior sensitivity performance than other types of photodetectors by virtual of its internal gain mechanism. This dissertation work further advances the APD performance by applying a novel materials integration technique. It is the first successful demonstration of wafer fused InGaAs/Si APDs with low dark current and low noise. APDs generally adopt separate absorption and multiplication (SAM) structure, which allows independent optimization of materials properties in two distinct regions. While the absorption material needs to have high absorption coefficient in the target wavelength range to achieve high quantum efficiency, it is desirable for the multiplication material to have large discrepancy between its electron and hole ionization coefficients to reduce noise. According to these criteria, InGaAs and Si are the ideal materials combination. Wafer fusion is the enabling technique that makes this theoretical ideal an experimental possibility. APDs fabricated on the fused InGaAs/Si wafer with mesa structure exhibit low dark current and low noise. Special device fabrication techniques and high quality wafer fusion reduce dark current to nano ampere level at unity gain, comparable to state-of-the-art commercial III/V APDs. The small excess noise is attributed to the large difference in ionization coefficients between electrons and holes in silicon. Detailed layer structure designs are developed specifically for fused InGaAs/Si APDs based on principles similar to those used in traditional InGaAs/InP APDs. An accurate yet straightforward technique for device structural parameters extraction is also proposed. The extracted results from the fabricated APDs agree with device design parameters. This agreement also confirms that the fusion interface has negligible effect on electric field distributions for devices fabricated from high quality fusion materials. The feasibility of fused InGaAs/Si APD for analog systems is also explored. Preliminary two-tone measurement shows that a moderately high dynamic range of 70 dBc/Hz1/2 for broadband Spur Free Dynamic Range (SFDR) or 82 dBc/Hz2/3 suboctave SFDR, up to 50 muA of optical current, can be achieved. The theoretical analyses of SNR show that fused InGaAs/Si APD receivers can provide larger Signal-to-Noise Ratio (SNR) than their III/V counterparts.

  15. Superlattice Intermediate Band Solar Cell on Gallium Arsenide

    DTIC Science & Technology

    2015-02-09

    18  APPENDIX: Methodology for Calculaton of Minband Energies and Absorption Coefficient of a Superlattice...4 Figure 3. Absorption coefficient extracted from spectroscopic ellipsometry measurements of a... coefficient of a 30 period GaAs0.98N0.02 (3nm)/ Al0.20Ga0.80As (3nm) Superlattice following the methodology developed in

  16. Third Working Meeting on Gallium Arsenide Solar Cells

    NASA Technical Reports Server (NTRS)

    Walker, G. H. (Compiler)

    1976-01-01

    Research results are reported for GaAs Schottky barrier solar cells, GaAlAs/GaAs heteroface solar cells, and GaAlAs graded band gap solar cells. Related materials studies are presented. A systems study for GaAs and Si solar concentrator systems is given.

  17. Research on gallium arsenide diffused junction solar cells

    NASA Technical Reports Server (NTRS)

    Borrego, J. M.; Ghandi, S. K.

    1984-01-01

    The feasibility of using bulk GaAs for the fabrication of diffused junction solar cells was determined. The effects of thermal processing of GaAs was studied, and the quality of starting bulk GaAs for this purpose was assessed. These cells are to be made by open tube diffusion techniques, and are to be tested for photovoltaic response under AMO conditions.

  18. Deep-levels in gallium arsenide for device applications

    NASA Astrophysics Data System (ADS)

    McManis, Joseph Edward

    Defects in semiconductors have been studied for over 40 years as a diagnostic of the quality of crystal growth. In this thesis, we investigate GaAs deep-levels specifically intended for devices. This thesis summarizes our efforts to characterize the near-infrared photoluminescence from deep-levels, study optical transitions via absorption, and fabricate and characterize deep-level light-emitting diodes (LEDs). This thesis also describes the first tunnel diodes which explicitly make use of GaAs deep-levels. Photoluminescence measurements of GaAs deep-levels showed a broad peak around a wavelength extending from 1.0--1.7 mum, which includes important wavelengths for fiber-optic communications (1.3--1.55 mum). Transmission measurements show the new result that very little of the radiative emission is self-absorbed. We measured the deep-level photoluminescence at several temperatures. We are also the first to report the internal quantum efficiency associated with the deep-level transitions. We have fabricated LEDs that, utilize the optical transitions of GaAs deep-levels. The electroluminescence spectra showed a broad peak from 1.0--1.7 mum at low currents, but the spectrum exhibited a blue-shift as the current was increased. To improve device performance, we designed an AlGaAs layer into the structure of the LEDs. The AlGaAs barrier layer acts as a resistive barrier so that the holes in the p-GaAs layer are swept away from underneath the gold p-contact. The AlGaAs layer also reduces the blue-shift by acting as a potential barrier so that only higher-energy holes are injected. We found that the LEDs with AlGaAs were brighter at long wavelengths, which was a significant improvement. Photoluminescence measurements show that the spectral blue-shift is not due to sample heating. We have developed a new physical model to explain the blue-shift: it is caused by Coloumb charging of the deep-centers. We have achieved the first tunnel diodes with which specifically utilize deep-levels in low-temperature-grown (LTG) GaAs. Our devices show the largest ever peak current density in a GaAs tunnel diode at room temperature. Our devices also show significant room-temperature peak-to-valley current ratios. The shape of the current-voltage characteristic and the properties of the optical emission enable us to determine the peak and valley transport mechanisms.

  19. Vapor phase growth technique of III-V compounds utilizing a preheating step

    NASA Technical Reports Server (NTRS)

    Olsen, Gregory Hammond (Inventor); Zamerowski, Thomas Joseph (Inventor); Buiocchi, Charles Joseph (Inventor)

    1978-01-01

    In the vapor phase epitaxy fabrication of semiconductor devices and in particular semiconductor lasers, the deposition body on which a particular layer of the laser is to be grown is preheated to a temperature about 40.degree. to 60.degree. C. lower than the temperature at which deposition occurs. It has been discovered that by preheating at this lower temperature there is reduced thermal decomposition at the deposition surface, especially for semiconductor materials such as indium gallium phosphide and gallium arsenide phosphide. A reduction in thermal decomposition reduces imperfections in the deposition body in the vicinity of the deposition surface, thereby providing a device with higher efficiency and longer lifetime.

  20. Surface Acoustic Wave Devices as Chemical Vapor Sensors

    DTIC Science & Technology

    2009-03-26

    x105cm/s) (x10−6cm1/2g1/2) (pF/cm) (ppm/oC) Quartz ST 3.158 0.13 1.34 0.88 0.0011 0.5 ∼ 0 X Lithium Niobate -Y 3.488 0 0.83 0.56 0.048 4.6 94 X Gallium ...sensitivity, followed by lithium niobate and gallium arsenide in ratios of 7.4:5.9:4.8, re- spectively. Thus, even though lithium niobate has the superior...Acoustic Wave (SAW) Sensor for 2,4-Dinitro Toluene (DNT) Vapour Detection,” Sensors and Actuators B: Chemical, vol. 101, no. 3, pp. 328–334, 2004. 8

  1. Abnormal gallium scan patterns of the salivary gland in pulmonary sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishkin, F.S.; Tanaka, T.T.; Niden, A.H.

    1978-12-01

    The findings of gallium imaging suggest that parotid abnormalities in sarcoidosis are common. Correlation with lung and mediastinal uptake suggests that this represents an early disease state and that it responds to steroid administration. That the findings after therapy do not simply represent suppression of the uptake mechanism for gallium is supported by objective improvement in pulmonary function as well as symptomatic relief. Salivary gland accumulation of gallium citrate occurred in one third of our control group patients--in those who had collagen disease and presumably either were alcoholic or had infectious parotitis. This may also be seen in lymphoma andmore » after radiation therapy. Although the combination of salivary gland, pulmonary, and hilar concentration of gallium is not specific, in the appropriate clinical setting the pattern may be helpful in suggesting the correct diagnosis.« less

  2. Elastic properties of some transition metal arsenides

    NASA Astrophysics Data System (ADS)

    Nayak, Vikas; Verma, U. P.; Bisht, P. S.

    2018-05-01

    The elastic properties of transition metal arsenides (TMAs) have been studied by employing Wien2K package based on density functional theory in the zinc blende (ZB) and rock salt (RS) phase treating valance electron scalar relativistically. Further, we have also treated them non-relativistically to find out the relativistic effect. We have calculated the elastic properties by computing the volume conservative stress tensor for small strains, using the method developed by Charpin. The obtained results are discussed in paper. From the obtained results, it is clear that the values of C11 > C12 and C44 for all the compounds. The values of shear moduli of these compounds are also calculated. The internal parameter for these compounds shows that ZB structures of these compounds have high resistance against bond order. We find that the estimated elastic constants are in good agreement with the available data.

  3. Capacitive Behavior of Single Gallium Oxide Nanobelt

    PubMed Central

    Cai, Haitao; Liu, Hang; Zhu, Huichao; Shao, Pai; Hou, Changmin

    2015-01-01

    In this research, monocrystalline gallium oxide (Ga2O3) nanobelts were synthesized through oxidation of metal gallium at high temperature. An electronic device, based on an individual Ga2O3 nanobelt on Pt interdigital electrodes (IDEs), was fabricated to investigate the electrical characteristics of the Ga2O3 nanobelt in a dry atmosphere at room temperature. The current-voltage (I-V) and I/V-t characteristics show the capacitive behavior of the Ga2O3 nanobelt, indicating the existence of capacitive elements in the Pt/Ga2O3/Pt structure. PMID:28793506

  4. Self-contained sub-millimeter wave rectifying antenna integrated circuit

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H. (Inventor)

    2004-01-01

    The invention is embodied in a monolithic semiconductor integrated circuit in which is formed an antenna, such as a slot dipole antenna, connected across a rectifying diode. In the preferred embodiment, the antenna is tuned to received an electromagnetic wave of about 2500 GHz so that the device is on the order of a wavelength in size, or about 200 microns across and 30 microns thick. This size is ideal for mounting on a microdevice such as a microrobot for example. The antenna is endowed with high gain in the direction of the incident radiation by providing a quarter-wavelength (30 microns) thick resonant cavity below the antenna, the cavity being formed as part of the monolithic integrated circuit. Preferably, the integrated circuit consists of a thin gallium arsenide membrane overlying the resonant cavity and supporting an epitaxial Gallium Arsenide semiconductor layer. The rectifying diode is a Schottky diode formed in the GaAs semiconductor layer and having an area that is a very small fraction of the wavelength of the 2500 GHz incident radiation. The cavity provides high forward gain in the antenna and isolation from surrounding structure.

  5. Design of Ceramic Springs for Use in Semiconductor Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Kaforey, M. F.; Deeb, C. W.; Matthiesen, D. H.

    1999-01-01

    Segregation studies can be done in microgravity to reduce buoyancy driven convection and investigate diffusion-controlled growth during the growth of semiconductor crystals. During these experiments, it is necessary to prevent free surface formation in order to avoid surface tension driven convection (Marangoni convection). Semiconductor materials such as gallium arsenide and germanium shrink upon melting, so a spring is necessary to reduce the volume of the growth chamber and prevent the formation of a free surface when the sample melts. A spring used in this application must be able to withstand both the high temperature and the processing atmosphere. During the growth of gallium arsenide crystals during the GTE Labs/USAF/NASA GaAs GAS Program and during the CWRU GaAs programs aboard the First and Second United States microgravity Laboratories, springs made of pyrolytic boron nitride (PBN) leaves were used. The mechanical properties of these PBN springs have been investigated and springs having spring constants ranging from 0.25 N/mm to 25 N/mm were measured. With this improved understanding comes the ability to design springs for more general applications, and guidelines are given for optimizing the design of PBN springs for crystal growth applications.

  6. Gallium isotope fractionation during Ga adsorption on calcite and goethite

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Saldi, Giuseppe D.; Chen, JiuBin; Vetuschi Zuccolini, Marino; Birck, Jean-Louis; Liu, Yujie; Schott, Jacques

    2018-02-01

    Gallium (Ga) isotopic fractionation during its adsorption on calcite and goethite was investigated at 20 °C as a function of the solution pH, Ga aqueous concentration and speciation, and the solid to solution ratio. In all experiments Ga was found to be enriched in light isotopes at the solid surface with isotope fractionation △71Gasolid-solution up to -1.27‰ and -0.89‰ for calcite and goethite, respectively. Comparison of Ga isotopic data of this study with predictions for 'closed system' equilibrium and 'Rayleigh fractionation' models indicates that the experimental data are consistent with a 'closed system' equilibrium exchange between the fluid and the solid. The results of this study can be interpreted based on Ga aqueous speciation and the structure of Ga complexes formed at the solid surfaces. For calcite, Ga isotope fractionation is mainly triggered by increased Ga coordination and Ga-O bond length, which vary respectively from 4 and 1.84 Å in Ga(OH)4- to 6 and 1.94 Å in the >Ca-O-GaOH(OH2)4+ surface complex. For goethite, despite the formation of Ga hexa-coordinated >FeOGa(OH)20 surface complexes (Ga-O distances of 1.96-1.98 Å) both at acid and alkaline pH, a similar extent of isotope fractionation was found at acid and alkaline pH, suggesting that Ga(OH)4- is preferentially adsorbed on goethite for all investigated pH conditions. In addition, the observed decrease of Ga isotope fractionation magnitude observed with increasing Ga surface coverage for both calcite and goethite is likely related to the formation of Ga surface polymers and/or hydroxides with reduced Ga-O distances. This first study of Ga isotope fractionation during solid-fluid interactions suggests that the adsorption of Ga by oxides, carbonates or clay minerals could yield significant Ga isotope fractionation between secondary minerals and surficial fluids including seawater. Ga isotopes thus should help to better characterize the surficial biogeochemical cycles of gallium and its

  7. Effect of Al2O3 insulator thickness on the structural integrity of amorphous indium-gallium-zinc-oxide based thin film transistors.

    PubMed

    Kim, Hak-Jun; Hwang, In-Ju; Kim, Youn-Jea

    2014-12-01

    The current transparent oxide semiconductors (TOSs) technology provides flexibility and high performance. In this study, multi-stack nano-layers of TOSs were designed for three-dimensional analysis of amorphous indium-gallium-zinc-oxide (a-IGZO) based thin film transistors (TFTs). In particular, the effects of torsional and compressive stresses on the nano-sized active layers such as the a-IGZO layer were investigated. Numerical simulations were carried out to investigate the structural integrity of a-IGZO based TFTs with three different thicknesses of the aluminum oxide (Al2O3) insulator (δ = 10, 20, and 30 nm), respectively, using a commercial code, COMSOL Multiphysics. The results are graphically depicted for operating conditions.

  8. A hypothesis for anti-nanobacteria effects of gallium with observations from treating kidney disease.

    PubMed

    Eby, George A

    2008-10-01

    Nanobacteria, 100-fold smaller than common bacteria, have been purported to exist in urine, and by precipitating calcium and other minerals into carbonate apatite around themselves, induce the formation of surrounding kidney stones. Nanobacteria-like structures have also been shown in blood, within arteries, aortic aneurysms, and cardiac valves. Gallium has antibiotic properties to iron-dependent bacteria and has potent anti-inflammatory, anticancer and anti-hypercalcemic properties, and it readily reverses osteoporosis. It was hypothesized that gallium nitrate might have benefit in treating kidney stones. Gallium nitrate (120mg gallium) was mixed with water making two liters of a gallium mineral water drink to treat chronic, treatment-resistant kidney stone pain and urinary tract bleeding in a 110 pound woman. On the third day of gallium mineral water treatment, the urine appeared snow white, thick (rope-like) and suggestive of a calcific crystalline nature. After release of the white urine, the urine returned to normal in color, viscosity and pH, kidney pain was no longer present, and there was no further evidence of blood in the urine. There were no treatment side effects or sequela. For a one year observation period thereafter, no kidney stones, white urine, kidney or urinary tract pain or blood in the urine was noted. The hypothetical susceptibility of nanobacteria to gallium treatment also suggests application to atherosclerosis and other diseases. Although some support for gallium in treating kidney stones is presented, this hypothesis is built upon another hypothesis, is extremely speculative, and alternative explanations for the white urine exist. Further research into gallium's effects on kidney disease and other nanobacteria-induced diseases such as cardiovascular diseases is suggested.

  9. In-plane electronic anisotropy of underdoped '122' Fe-arsenide superconductors revealed by measurements of detwinned single crystals

    NASA Astrophysics Data System (ADS)

    Fisher, I. R.; Degiorgi, L.; Shen, Z. X.

    2011-12-01

    The parent phases of the Fe-arsenide superconductors harbor an antiferromagnetic ground state. Significantly, the Néel transition is either preceded or accompanied by a structural transition that breaks the four-fold symmetry of the high-temperature lattice. Borrowing language from the field of soft condensed matter physics, this broken discrete rotational symmetry is widely referred to as an Ising nematic phase transition. Understanding the origin of this effect is a key component of a complete theoretical description of the occurrence of superconductivity in this family of compounds, motivating both theoretical and experimental investigation of the nematic transition and the associated in-plane anisotropy. Here we review recent experimental progress in determining the intrinsic in-plane electronic anisotropy as revealed by resistivity, reflectivity and angle-resolved photoemission spectroscopy measurements of detwinned single crystals of underdoped Fe-arsenide superconductors in the '122' family of compounds.

  10. Atomically thin gallium layers from solid-melt exfoliation

    PubMed Central

    Kochat, Vidya; Samanta, Atanu; Zhang, Yuan; Bhowmick, Sanjit; Manimunda, Praveena; Asif, Syed Asif S.; Stender, Anthony S.; Vajtai, Robert; Singh, Abhishek K.; Tiwary, Chandra S.; Ajayan, Pulickel M.

    2018-01-01

    Among the large number of promising two-dimensional (2D) atomic layer crystals, true metallic layers are rare. Using combined theoretical and experimental approaches, we report on the stability and successful exfoliation of atomically thin “gallenene” sheets on a silicon substrate, which has two distinct atomic arrangements along crystallographic twin directions of the parent α-gallium. With a weak interface between solid and molten phases of gallium, a solid-melt interface exfoliation technique is developed to extract these layers. Phonon dispersion calculations show that gallenene can be stabilized with bulk gallium lattice parameters. The electronic band structure of gallenene shows a combination of partially filled Dirac cone and the nonlinear dispersive band near the Fermi level, suggesting that gallenene should behave as a metallic layer. Furthermore, it is observed that the strong interaction of gallenene with other 2D semiconductors induces semiconducting to metallic phase transitions in the latter, paving the way for using gallenene as promising metallic contacts in 2D devices. PMID:29536039

  11. Effect of novel antibacterial gallium-carboxymethyl cellulose on Pseudomonas aeruginosa.

    PubMed

    Valappil, Sabeel P; Yiu, Humphrey H P; Bouffier, Laurent; Hope, Christopher K; Evans, Gary; Claridge, John B; Higham, Susan M; Rosseinsky, Matthew J

    2013-02-07

    Gallium has emerged as a new therapeutic agent due partly to the scarcity in development of new antibiotics. In this study, a novel antibacterial gallium exchanged carboxymethyl cellulose (Ga-CMC) has been developed and tested for the susceptibility on a common bacteria, Pseudomonas aeruginosa. The results show that an increase in average molecular weight (MW) from 90 k, 250 k to 700 k of Ga-CMC caused a decrease in antimicrobial activity against planktonic P. aeruginosa. Gallium loading of the Ga-CMC (250 k) samples was altered by varying the amount of functionality (0.7, 0.9 and 1.2 acid groups per mole of carbohydrate) which affected also its antimicrobial activity against planktonic P. aeruginosa. Further, the ability to prevent the growth of biofilms of P. aeruginosa was tested on MW = 250 k samples with 0.9 acid groups per mole of carbohydrate as this sample showed the most promising activity against planktonic P. aeruginosa. Gallium was found to reduce biofilm growth of P. aeruginosa with a maximum effect (0.85 log(10) CFU reduction compared to sodium-carboxymethyl cellulose, Na-CMC) after 24 h. Results of the solubility and ion exchange studies show that this compound is suitable for the controlled release of Ga(3+) upon their breakdown in the presence of bacteria. SEM EDX analysis confirmed that Ga(3+) ions are evenly exchanged on the cellulose surface and systematic controls were carried out to ensure that antibacterial activity is solely due to the presence of gallium as samples intrinsic acidity or nature of counterion did not affect the activity. The results presented here highlight that Ga-CMC may be useful in controlled drug delivery applications, to deliver gallium ions in order to prevent infections due to P. aeruginosa biofilms.

  12. Characterizing and engineering tunable spin functionality inside indium arsenide/gallium arsenide quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Liu, Weiwen

    The continual downsizing of the basic functional units used in the electronics industry has motivated the study of the quantum computation and related topics. To overcome the limitations of classical physics and engineering, some unique quantum mechanical features, especially entanglement and superpositions have begun to be considered as important properties for future bits. Including these quantum mechanical features is attractive because the ability to utilize quantum mechanics can dramatically enhance computational power. Among the various ways of constructing the basic building blocks for quantum computation, we are particularly interested in using spins inside epitaxially grown InAs/GaAs quantum dot molecules as quantum bits (qubits). The ability to design and engineer nanostructures with tailored quantum properties is critical to engineering quantum computers and other novel electro-optical devices and is one of the key challenges for scaling up new ideas for device application. In this thesis, we will focus on how the structure and composition of quantum dot molecules can be used to control spin properties and charge interactions. Tunable spin and charge properties can enable new, more scalable, methods of initializing and manipulating quantum information. In this thesis, we demonstrate one method to enable electric-field tunability of Zeeman splitting for a single electron spin inside a quantum dot molecules by using heterostructure engineering techniques to modify the barrier that separates quantum dots. We describe how these structural changes to the quantum dot molecules also change charge interactions and propose ways to use this effect to enable accurate measurement of coulomb interactions and possibly charge occupancy inside these complicated quantum dot molecules.

  13. Detection of deep venous thrombophlebitis by gallium 67 scintigraphy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J.H.

    1981-07-01

    Deep venous thrombophlebitis may escape clinical detection. Three cases are reported in which whole-body gallium 67 scintigraphy was used to detect unsuspected deep venous thrombophlebitis related to indwelling catheters in three children who were being evaluated for fevers of unknown origin. Two of these children had septicemia from Candida organisms secondary to these venous lines. Gallium 67 scintigraphy may be useful in the detection of complications of indwelling venous catheters.

  14. Detection of deep venous thrombophlebitis by Gallium 67 scintigraphy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J.H.

    1981-07-01

    Deep venous thrombophlebitis may escape clinical detection. Three cases are reported in which whole-body gallium 67 scintigraphy was used to detect unsuspected deep venous thrombophlebitis related to indwelling catheters in three children who were being evaluated for fevers of unknown origin. Two of these children had septicemia from Candida organisms secondary to these venous lines. Gallium 67 scintigraphy may be useful in the detection of complications of indwelling venous catheters.

  15. Quantum Enhanced Imaging by Entangled States

    DTIC Science & Technology

    2009-07-01

    classes of entangled states. In tripartite systems two classes of genuine tripartite entanglement have been discovered, namely, the Greenberger -Horne...D. M. Greenberger , M. Horne and A. Zeilinger, in Bell’s Theorem, Quantum Theory, and Concepts of the Universe, ed. M. Kafatos (Kluwer, Dordrecht 1989...Gallium Indium Arsenide Phosphide (a III-V compound semiconductor) GHZ: Greenberger -Horne-Zeilinger (a class of entangled states) GLAD: General

  16. Thermionic photovoltaic energy converter

    NASA Technical Reports Server (NTRS)

    Chubb, D. L. (Inventor)

    1985-01-01

    A thermionic photovoltaic energy conversion device comprises a thermionic diode mounted within a hollow tubular photovoltaic converter. The thermionic diode maintains a cesium discharge for producing excited atoms that emit line radiation in the wavelength region of 850 nm to 890 nm. The photovoltaic converter is a silicon or gallium arsenide photovoltaic cell having bandgap energies in this same wavelength region for optimum cell efficiency.

  17. The AMOS cell - An improved metal-semiconductor solar cell. [Antireflection coated Metal Oxide Semiconductor

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.; Yeh, Y.-C. M.

    1975-01-01

    A new fabrication process is being developed which significantly improves the efficiency of metal-semiconductor solar cells. The resultant effect, a marked increase in the open-circuit voltage, is produced by the addition of an interfacial layer oxide on the semiconductor. Cells using gold on n-type gallium arsenide have been made in small areas (0.17 sq cm) with conversion efficiencies of 15% in terrestrial sunlight.

  18. ONR Far East Scientific Bulletin. Volume 8, Number 2, April to June 1983.

    DTIC Science & Technology

    1983-06-01

    was in the Department of Metallurgy at Kyoto University. I spent one day with Professor K. Ono’s group who has studied the factors affecting the...Malaysian science and Institute of Fundamental Studies (IFS) technology Modern science Electronics Astronomy Hong Kong Magnetic field effects (MFE...growth Radio frequency studies Gallium arsenide crystal Silicon on sapphire (SOS) growth Solid state devices Electronic devices Royal Australian

  19. Antitumor efficacy and tolerability of systemically administered gallium acetylacetonate-loaded gelucire-stabilized nanoparticles.

    PubMed

    Wehrung, Daniel; Bi, Lipeng; Geldenhuys, Werner J; Oyewumi, Moses O

    2013-06-01

    The widespread clinical success with most gallium compounds in cancer therapy is markedly hampered by lack of tumor specific accumulation, poor tumor permeability and undesirable toxicity to healthy tissues. The aim of this work was to investigate for the first time antitumor mechanism of a new gallium compound (gallium acetylacetonate; GaAcAc) while assessing effectiveness of gelucire-stabilized nanoparticles (NPs) for potential application in gallium-based lung cancer therapy. NPs loaded with GaAcAc (Ga-NPs) were prepared using mixtures of cetyl alcohol with Gelucire 44/14 (Ga-NP-1) or Gelucire 53/13 (Ga-NP-2) as matrix materials. Of special note from this work is the direct evidence of involvement of microtubule disruption in antitumor effects of GaAcAc on human lung adenocarcinoma (A549). In-vivo tolerability studies were based on plasma ALT, creatinine levels and histopathological examination of tissues. The superior in-vivo antitumor efficacy of Ga-NPs over GaAcAc was depicted in marked reduction of tumor weight and tumor volume as well as histological assessment of excised tumors. Compared to free GaAcAc, Ga-NPs showed a 3-fold increase in tumor-to-blood gallium concentrations with minimized overall exposure to healthy tissues. Overall, enhancement of antitumor effects of GaAcAc by gelucire-stabilized NPs coupled with reduced exposure of healthy tissues to gallium would likely ensure desired therapeutic outcomes and safety of gallium-based cancer treatment.

  20. Carbothermic Aluminum Production Using Scrap Aluminum As A Coolant

    DOEpatents

    LaCamera, Alfred F.

    2002-11-05

    A process for producing aluminum metal by carbothermic reduction of alumina ore. Alumina ore is heated in the presence of carbon at an elevated temperature to produce an aluminum metal body contaminated with about 10-30% by wt. aluminum carbide. Aluminum metal or aluminum alloy scrap then is added to bring the temperature to about 900-1000.degree. C. and precipitate out aluminum carbide. The precipitated aluminum carbide is filtered, decanted, or fluxed with salt to form a molten body having reduced aluminum carbide content.

  1. Cellular uptake and anticancer activity of carboxylated gallium corroles.

    PubMed

    Pribisko, Melanie; Palmer, Joshua; Grubbs, Robert H; Gray, Harry B; Termini, John; Lim, Punnajit

    2016-04-19

    We report derivatives of gallium(III) tris(pentafluorophenyl)corrole, 1 [Ga(tpfc)], with either sulfonic (2) or carboxylic acids (3, 4) as macrocyclic ring substituents: the aminocaproate derivative, 3 [Ga(ACtpfc)], demonstrated high cytotoxic activity against all NCI60 cell lines derived from nine tumor types and confirmed very high toxicity against melanoma cells, specifically the LOX IMVI and SK-MEL-28 cell lines. The toxicities of 1, 2, 3, and 4 [Ga(3-ctpfc)] toward prostate (DU-145), melanoma (SK-MEL-28), breast (MDA-MB-231), and ovarian (OVCAR-3) cancer cells revealed a dependence on the ring substituent: IC50values ranged from 4.8 to >200 µM; and they correlated with the rates of uptake, extent of intracellular accumulation, and lipophilicity. Carboxylated corroles 3 and 4, which exhibited about 10-fold lower IC50values (<20 µM) relative to previous analogs against all four cancer cell lines, displayed high efficacy (Emax= 0). Confocal fluorescence imaging revealed facile uptake of functionalized gallium corroles by all human cancer cells that followed the order: 4 > 3 > 2 > 1 (intracellular accumulation of gallium corroles was fastest in melanoma cells). We conclude that carboxylated gallium corroles are promising chemotherapeutics with the advantage that they also can be used for tumor imaging.

  2. Cellular uptake and anticancer activity of carboxylated gallium corroles

    PubMed Central

    Pribisko, Melanie; Palmer, Joshua; Grubbs, Robert H.; Gray, Harry B.; Termini, John; Lim, Punnajit

    2016-01-01

    We report derivatives of gallium(III) tris(pentafluorophenyl)corrole, 1 [Ga(tpfc)], with either sulfonic (2) or carboxylic acids (3, 4) as macrocyclic ring substituents: the aminocaproate derivative, 3 [Ga(ACtpfc)], demonstrated high cytotoxic activity against all NCI60 cell lines derived from nine tumor types and confirmed very high toxicity against melanoma cells, specifically the LOX IMVI and SK-MEL-28 cell lines. The toxicities of 1, 2, 3, and 4 [Ga(3-ctpfc)] toward prostate (DU-145), melanoma (SK-MEL-28), breast (MDA-MB-231), and ovarian (OVCAR-3) cancer cells revealed a dependence on the ring substituent: IC50 values ranged from 4.8 to >200 µM; and they correlated with the rates of uptake, extent of intracellular accumulation, and lipophilicity. Carboxylated corroles 3 and 4, which exhibited about 10-fold lower IC50 values (<20 µM) relative to previous analogs against all four cancer cell lines, displayed high efficacy (Emax = 0). Confocal fluorescence imaging revealed facile uptake of functionalized gallium corroles by all human cancer cells that followed the order: 4 >> 3 > 2 >> 1 (intracellular accumulation of gallium corroles was fastest in melanoma cells). We conclude that carboxylated gallium corroles are promising chemotherapeutics with the advantage that they also can be used for tumor imaging. PMID:27044076

  3. High Ultraviolet Absorption in Colloidal Gallium Nanoparticles Prepared from Thermal Evaporation

    PubMed Central

    Bravo, Iria; Catalan-Gomez, Sergio; Vázquez, Luis; Lorenzo, Encarnación; Pau, Jose Luis

    2017-01-01

    New methods for the production of colloidal Ga nanoparticles (GaNPs) are introduced based on the evaporation of gallium on expendable aluminum zinc oxide (AZO) layer. The nanoparticles can be prepared in aqueous or organic solvents such as tetrahydrofuran in order to be used in different sensing applications. The particles had a quasi mono-modal distribution with diameters ranging from 10 nm to 80 nm, and their aggregation status depended on the solvent nature. Compared to common chemical synthesis, our method assures higher yield with the possibility of tailoring particles size by adjusting the deposition time. The GaNPs have been studied by spectrophotometry to obtain the absorption spectra. The colloidal solutions exhibit strong plasmonic absorption in the ultra violet (UV) region around 280 nm, whose width and intensity mainly depend on the nanoparticles dimensions and their aggregation state. With regard to the colloidal GaNPs flocculate behavior, the water solvent case has been investigated for different pH values, showing UV-visible absorption because of the formation of NPs clusters. Using discrete dipole approximation (DDA) method simulations, a close connection between the UV absorption and NPs with a diameter smaller than ~40 nm was observed. PMID:28684687

  4. Growth and analysis of gallium arsenide-gallium antimonide single and two-phase nanoparticles

    NASA Astrophysics Data System (ADS)

    Schamp, Crispin T.

    When evaluating the path of phase transformations in systems with nanoscopic dimensions one often relies on bulk phase diagrams for guidance because of the lack of phase diagrams that show the effect of particle size. The GaAs-GaSb pseudo-binary alloy is chosen for study to gain insight into the size dependence of solid-solubility in a two-phase system. To this end, a study is performed using independent laser ablation of high purity targets of GaAs and GaSb. The resultant samples are analyzed by transmission electron microscopy. Experimental results indicate that GaAs-GaSb nanoparticles have been formed with compositions that lie within the miscibility gap of bulk GaAs-GaSb. An unusual nanoparticle morpohology resembling the appearance of ice cream cones has been observed in single component experiments. These particles are composed of a spherical cap of Ga in contact with a crystalline cone of either GaAs or GaSb. The cones take the projected 2-D shape of a triangle or a faceted gem. The liquid Ga is found to consistently be of spherical shape and wets to the widest corners of the cone, suggesting an energy minimum exists at that wetting condition. To explore this observation a liquid sphere is modeled as being penetrated by a solid gem. The surface energies of the solid and liquid, and interfacial energy are summed as a function of penetration depth, with the sum showing a cusped minimum at the penetration depth corresponding to the waist of the gem. The angle of contact of the liquid wetting the cone is also calculated, and Young's contact angle is found to occur when the derivative of the total energy with respect to penetration depth is zero, which can be a maximum or a minimum depending on the geometrical details. The spill-over of the meniscus across the gem corners is found to be energetically favorable when the contact angle achieves the value of the equilibrium angle; otherwise the meniscus is pinned at the corners.

  5. Liquid gallium rotary electric contract

    NASA Technical Reports Server (NTRS)

    Przybyszewski, J. S.

    1969-01-01

    Due to its low vapor pressure, gallium, when substituted for mercury in a liquid slip ring system, transmits substantial amounts of electrical current to rotating components in an ultrahigh vacuum. It features low electrical loss, little or no wear, and long maintenance-free life.

  6. Iron-targeting antitumor activity of gallium compounds and novel insights into triapine(®)-metal complexes.

    PubMed

    Chitambar, Christopher R; Antholine, William E

    2013-03-10

    Despite advances made in the treatment of cancer, a significant number of patients succumb to this disease every year. Hence, there is a great need to develop new anticancer agents. Emerging data show that malignant cells have a greater requirement for iron than normal cells do and that proteins involved in iron import, export, and storage may be altered in cancer cells. Therefore, strategies to perturb these iron-dependent steps in malignant cells hold promise for the treatment of cancer. Recent studies show that gallium compounds and metal-thiosemicarbazone complexes inhibit tumor cell growth by targeting iron homeostasis, including iron-dependent ribonucleotide reductase. Chemical similarities of gallium(III) with iron(III) enable the former to mimic the latter and interpose itself in critical iron-dependent steps in cellular proliferation. Newer gallium compounds have emerged with additional mechanisms of action. In clinical trials, the first-generation-compound gallium nitrate has exhibited activity against bladder cancer and non-Hodgkin's lymphoma, while the thiosemicarbazone Triapine(®) has demonstrated activity against other tumors. Novel gallium compounds with greater cytotoxicity and a broader spectrum of antineoplastic activity than gallium nitrate should continue to be developed. The antineoplastic activity and toxicity of the existing novel gallium compounds and thiosemicarbazone-metal complexes should be tested in animal tumor models and advanced to Phase I and II clinical trials. Future research should identify biologic markers that predict tumor sensitivity to gallium compounds. This will help direct gallium-based therapy to cancer patients who are most likely to benefit from it.

  7. Morphology, mechanical stability, and protective properties of ultrathin gallium oxide coatings.

    PubMed

    Lawrenz, Frank; Lange, Philipp; Severin, Nikolai; Rabe, Jürgen P; Helm, Christiane A; Block, Stephan

    2015-06-02

    Ultrathin gallium oxide layers with a thickness of 2.8 ± 0.2 nm were transferred from the surface of liquid gallium onto solid substrates, including conjugated polymer poly(3-hexylthiophene) (P3HT). The gallium oxide exhibits high mechanical stability, withstanding normal pressures of up to 1 GPa in contact mode scanning force microscopy imaging. Moreover, it lowers the rate of photodegradation of P3HT by 4 orders of magnitude, as compared to uncovered P3HT. This allows us to estimate the upper limits for oxygen and water vapor transmission rates of 0.08 cm(3) m(-2) day(-1) and 0.06 mg m(-2) day(-1), respectively. Hence, similar to other highly functional coatings such as graphene, ultrathin gallium oxide layers can be regarded as promising candidates for protective layers in flexible organic (opto-)electronics and photovoltaics because they offer permeation barrier functionalities in conjunction with high optical transparency.

  8. Ultrasonic cavitation of molten gallium: formation of micro- and nano-spheres.

    PubMed

    Kumar, Vijay Bhooshan; Gedanken, Aharon; Kimmel, Giora; Porat, Ze'ev

    2014-05-01

    Pure gallium has a low melting point (29.8°C) and can be melted in warm water or organic liquids, thus forming two immiscible liquid phases. Irradiation of this system with ultrasonic energy causes cavitation and dispersion of the molten gallium as microscopic spheres. The resultant spheres were found to have radii range of 0.2-5 μm and they do not coalesce upon cessation of irradiation, although the ambient temperature is well above the m.p. of gallium. It was found that the spheres formed in water are covered with crystallites of GaO(OH), whereas those formed in organic liquids (hexane and n-dodecane) are smooth, lacking such crystallites. However, Raman spectroscopy revealed that the spheres formed in organic liquids are coated with a carbon film. The latter may be the factor preventing their coalescence at temperatures above the m.p. of gallium. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Generator for ionic gallium-68 based on column chromatography

    DOEpatents

    Neirinckx, Rudi D.; Davis, Michael A.

    1981-01-01

    A physiologically acceptable solution of gallium-68 fluorides, having an activity of 0.1 to 50 millicuries per milliliter of solution is provided. The solution is obtained from a generator comprising germanium-68 hexafluoride bound to a column of an anion exchange resin which forms gallium-68 in situ by eluting the column with an acid solution to form a solution containing .sup.68 Ga-fluorides. The solution then is neutralized prior to administration.

  10. In vitro bio-functionality of gallium nitride sensors for radiation biophysics.

    PubMed

    Hofstetter, Markus; Howgate, John; Schmid, Martin; Schoell, Sebastian; Sachsenhauser, Matthias; Adigüzel, Denis; Stutzmann, Martin; Sharp, Ian D; Thalhammer, Stefan

    2012-07-27

    There is an increasing interest in the integration of hybrid bio-semiconductor systems for the non-invasive evaluation of physiological parameters. High quality gallium nitride and its alloys show promising characteristics to monitor cellular parameters. Nevertheless, such applications not only request appropriate sensing capabilities but also the biocompatibility and especially the biofunctionality of materials. Here we show extensive biocompatibility studies of gallium nitride and, for the first time, a biofunctionality assay using ionizing radiation. Analytical sensor devices are used in medical settings, as well as for cell- and tissue engineering. Within these fields, semiconductor devices have increasingly been applied for online biosensing on a cellular and tissue level. Integration of advanced materials such as gallium nitride into these systems has the potential to increase the range of applicability for a multitude of test devices and greatly enhance sensitivity and functionality. However, for such applications it is necessary to optimize cell-surface interactions and to verify the biocompatibility of the semiconductor. In this work, we present studies of mouse fibroblast cell activity grown on gallium nitride surfaces after applying external noxa. Cell-semiconductor hybrids were irradiated with X-rays at air kerma doses up to 250 mGy and the DNA repair dynamics, cell proliferation, and cell growth dynamics of adherent cells were compared to control samples. The impact of ionizing radiation on DNA, along with the associated cellular repair mechanisms, is well characterized and serves as a reference tool for evaluation of substrate effects. The results indicate that gallium nitride does not require specific surface treatments to ensure biocompatibility and suggest that cell signaling is not affected by micro-environmental alterations arising from gallium nitride-cell interactions. The observation that gallium nitride provides no bio-functional influence on

  11. Clinical value of gallium-67 scintigraphy in assessment of disease activity in Wegener's granulomatosis

    PubMed Central

    Slart, R; Jager, P; Poot, L; Piers, D; Cohen, T; Stegeman, C

    2003-01-01

    Background: Diagnosis of active pulmonary and paranasal involvement in patients with Wegener's granulomatosis (WG) can be difficult. The diagnostic value of gallium-67 scintigraphy in WG is unclear. Objective: To evaluate the added diagnostic value of gallium-67 scintigraphy in patients with WG with suspected granulomatous inflammation in the paranasal and chest regions. Methods: Retrospectively, the diagnostic contribution of chest and head planar gallium scans in 40 episodes of suspected vasculitis disease activity in 28 patients with WG was evaluated. Scans were grouped into normal or increased uptake for each region. Histological proof or response to treatment was the "gold standard" for the presence of WG activity. Results: WG activity was confirmed in 8 (20%) episodes, with pulmonary locations in three, paranasal in four, and both in one (n=7 patients); all these gallium scans showed increased gallium uptake (sensitivity 100%). Gallium scans were negative for the pulmonary area in 23/36 scans (specificity 64%), and negative for paranasal activity in 13/16 scans (specificity 81%) in episodes without WG activity. Positive predictive value of WG activity for lungs and paranasal region was 24% and 63%, respectively, negative predictive value was 100% for both regions. False positive findings were caused by bacterial or viral infections. Conclusion: Gallium scans are clinically helpful as a negative scan virtually excludes active WG. Gallium scintigraphy of chest and nasal region has a high sensitivity for the detection of disease activity in WG. However, because of positive scans in cases of bacterial or viral infections, specificity was lower. PMID:12810430

  12. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart are...

  13. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart are...

  14. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart are...

  15. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart are...

  16. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart are...

  17. Cell behavior on gallium nitride surfaces: peptide affinity attachment versus covalent functionalization.

    PubMed

    Foster, Corey M; Collazo, Ramon; Sitar, Zlatko; Ivanisevic, Albena

    2013-07-02

    Gallium nitride is a wide band gap semiconductor that demonstrates a unique set of optical and electrical properties as well as aqueous stability and biocompatibility. This combination of properties makes gallium nitride a strong candidate for use in chemical and biological applications such as sensors and neural interfaces. Molecular modification can be used to enhance the functionality and properties of the gallium nitride surface. Here, gallium nitride surfaces were functionalized with a PC12 cell adhesion promoting peptide using covalent and affinity driven attachment methods. The covalent scheme proceeded by Grignard reaction and olefin metathesis while the affinity driven scheme utilized the recognition peptide isolated through phage display. This study shows that the method of attaching the adhesion peptide influences PC12 cell adhesion and differentiation as measured by cell density and morphological analysis. Covalent attachment promoted monolayer and dispersed cell adhesion while affinity driven attachment promoted multilayer cell agglomeration. Higher cell density was observed on surfaces modified using the recognition peptide. The results suggest that the covalent and affinity driven attachment methods are both suitable for promoting PC12 cell adhesion to the gallium nitride surface, though each method may be preferentially suited for distinct applications.

  18. Gallium scanning in cerebral and cranial infections. [/sup 67/Ga, /sup 99m/Tc tracer techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waxman, A.D.; Siemsen, J.K.

    1976-08-01

    Eighteen patients with cranial or intracranial infections were studied with technetium and gallium brain scans. Seven of 18 lesions were noted with gallium and not with pertechnetate, while the reverse pattern was not seen. Brain abscesses were visualized with gallium but not with pertechnetate in two of five cases. Osteomyelitis of the skull and mastoiditis showed intense gallium uptake in all cases, while meningitis or cerebritis gave inconsistent results.

  19. Significantly enhanced thermal conductivity of indium arsenide nanowires via sulfur passivation.

    PubMed

    Xiong, Yucheng; Tang, Hao; Wang, Xiaomeng; Zhao, Yang; Fu, Qiang; Yang, Juekuan; Xu, Dongyan

    2017-10-16

    In this work, we experimentally investigated the effect of sulfur passivation on thermal transport in indium arsenide (InAs) nanowires. Our measurement results show that thermal conductivity can be enhanced by a ratio up to 159% by sulfur passivation. Current-voltage (I-V) measurements were performed on both unpassivated and S-passivated InAs nanowires to understand the mechanism of thermal conductivity enhancement. We observed a remarkable improvement in electrical conductivity upon sulfur passivation and a significant contribution of electrons to thermal conductivity, which account for the enhanced thermal conductivity of the S-passivated InAs nanowires.

  20. Gallium phosphide nanowires as a substrate for cultured neurons.

    PubMed

    Hällström, Waldemar; Mårtensson, Thomas; Prinz, Christelle; Gustavsson, Per; Montelius, Lars; Samuelson, Lars; Kanje, Martin

    2007-10-01

    Dissociated sensory neurons were cultured on epitaxial gallium phosphide (GaP) nanowires grown vertically from a gallium phosphide surface. Substrates covered by 2.5 microm long, 50 nm wide nanowires supported cell adhesion and axonal outgrowth. Cell survival was better on nanowire substrates than on planar control substrates. The cells interacted closely with the nanostructures, and cells penetrated by hundreds of wires were observed as well as wire bending due to forces exerted by the cells.

  1. Complexometric determination of gallium with calcein blue as indicator

    USGS Publications Warehouse

    Elsheimer, H.N.

    1967-01-01

    A metalfluorechromic indicator, Calcein Blue, has been used for the back-titration of milligram amounts of EDTA in presence of gallium complexes. The indicator was used in conjunction with an ultraviolet titration assembly equipped with a cadmium sulphide detector cell and a microammeter for enhanced end-point detection. The result is a convenient and rapid method with an accuracy approaching 0.1 % and a relative standard deviation of about 0.4% for 10 mg of gallium. ?? 1967.

  2. Iron-Targeting Antitumor Activity of Gallium Compounds and Novel Insights Into Triapine®-Metal Complexes

    PubMed Central

    Antholine, William E.

    2013-01-01

    Abstract Significance: Despite advances made in the treatment of cancer, a significant number of patients succumb to this disease every year. Hence, there is a great need to develop new anticancer agents. Recent Advances: Emerging data show that malignant cells have a greater requirement for iron than normal cells do and that proteins involved in iron import, export, and storage may be altered in cancer cells. Therefore, strategies to perturb these iron-dependent steps in malignant cells hold promise for the treatment of cancer. Recent studies show that gallium compounds and metal-thiosemicarbazone complexes inhibit tumor cell growth by targeting iron homeostasis, including iron-dependent ribonucleotide reductase. Chemical similarities of gallium(III) with iron(III) enable the former to mimic the latter and interpose itself in critical iron-dependent steps in cellular proliferation. Newer gallium compounds have emerged with additional mechanisms of action. In clinical trials, the first-generation-compound gallium nitrate has exhibited activity against bladder cancer and non-Hodgkin's lymphoma, while the thiosemicarbazone Triapine® has demonstrated activity against other tumors. Critical Issues: Novel gallium compounds with greater cytotoxicity and a broader spectrum of antineoplastic activity than gallium nitrate should continue to be developed. Future Directions: The antineoplastic activity and toxicity of the existing novel gallium compounds and thiosemicarbazone-metal complexes should be tested in animal tumor models and advanced to Phase I and II clinical trials. Future research should identify biologic markers that predict tumor sensitivity to gallium compounds. This will help direct gallium-based therapy to cancer patients who are most likely to benefit from it. Antioxid. Redox Signal. 00, 000–000. PMID:22900955

  3. Theoretical exploration of structural, electro-optical and magnetic properties of gallium-doped silicon carbide nanotubes

    NASA Astrophysics Data System (ADS)

    Behzad, Somayeh; Chegel, Raad; Moradian, Rostam; Shahrokhi, Masoud

    2014-09-01

    The effects of gallium doping on the structural, electro-optical and magnetic properties of (8,0) silicon carbide nanotube (SiCNT) are investigated by using spin-polarized density functional theory. It is found from the calculation of the formation energies that gallium substitution for silicon atom is preferred. Our results show that gallium substitution at either single carbon or silicon atom site in SiCNT could induce spontaneous magnetization. The optical studies based on dielectric function indicate that new transition peaks and a blue shift are observed after gallium doping.

  4. Comparison of the antimicrobial activities of gallium nitrate and gallium maltolate against Mycobacterium avium subsp. paratuberculosis in vitro.

    PubMed

    Fecteau, Marie-Eve; Aceto, Helen W; Bernstein, Lawrence R; Sweeney, Raymond W

    2014-10-01

    Johne's disease (JD) is an enteric infection of cattle and other ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). This study compared the antimicrobial activities of gallium nitrate (GaN) and gallium maltolate (GaM) against two field MAP isolates by use of broth culture. The concentrations that resulted in 99% growth inhibition of isolates 1 and 2 were, respectively, 636 µM and 183 µM for GaN, and 251 µM and 142 µM for GaM. For both isolates, time to detection was significantly higher for GaM than GaN. These results suggest that GaM is more efficient than GaN in inhibiting MAP growth in vitro. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Strategies for gallium removal after focused ion beam patterning of ferroelectric oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Schilling, A.; Adams, T.; Bowman, R. M.; Gregg, J. M.

    2007-01-01

    As part of a study into the properties of ferroelectric single crystals at nanoscale dimensions, the effects that focused ion beam (FIB) processing can have, in terms of structural damage and ion implantation, on perovskite oxide materials has been examined, and a post-processing procedure developed to remove such effects. Single crystal material of the perovskite ferroelectric barium titanate (BaTiO3) has been patterned into thin film lamellae structures using a FIB microscope. Previous work had shown that FIB patterning induced gallium impregnation and associated creation of amorphous layers in a surface region of the single crystal material some 20 nm thick, but that both recrystallization and expulsion of gallium could be achieved through thermal annealing in air. Here we confirm this observation, but find that thermally induced gallium expulsion is associated with the formation of gallium-rich platelets on the surface of the annealed material. These platelets are thought to be gallium oxide. Etching using nitric and hydrochloric acids had no effect on the gallium-rich platelets. Effective platelet removal involved thermal annealing at 700 °C for 1 h in a vacuum followed by 1 h in oxygen, and then a post-annealing low-power plasma clean in an Ar/O atmosphere. Similar processing is likely to be necessary for the full recovery of post FIB-milled nanostructures in oxide ceramic systems in general.

  6. An Autonomous Circuit for the Measurement of Photovoltaic Devices Parameters.

    DTIC Science & Technology

    1986-09-01

    Comparison Data, Gallium Arsenide ................ 80 A 7 A,. TABLE OF SYMBOLS A Curve Fitting Constant ADC Analog to Digital Converter AMO Air-Mass-Zero...in Radiation Fluence in the Logarithmic Region CMOS Complementary Metal-Oxide Semiconductor DAC Digital to Analog Converter DC Direct Current Dp Hole...characteristics of individual solar cells. A novel circuit is developed that uses a microprocessor controlled Digital to Analog Converter (DAC) to obtain

  7. Determination of the mobility profile in GaAs-MESFETs. Thesis

    NASA Technical Reports Server (NTRS)

    Prost, W.

    1985-01-01

    A process for measuring charge carrier mobility for gallium-arsenide metal semiconductor field effect transistors is described in an attempt to optimize the relationship between this factor and production. The measuring procedure allows an actual determination of local mobility in the channel. The physical basis for the process and features of the measuring room are outlined. The measuring technique is described and recommendations are made for setting measuring parameters.

  8. Technology Assessment: 1983 Forecast of Future Test Technology Requirements.

    DTIC Science & Technology

    1983-06-01

    effectively utilizes existing vehicle space , power and support equipment while maintaining critical interfaces with on-board computers and fire control...Scan Converter EAR Electronically Agile Radar E-O Electro-Optics FET Field Effect Transistor FLIR Forward Looking Infrared GaAs Gallium Arsenide HEL...They might be a part of a large ATE system due to such things as the environmental effects on noise and signal/power loss. A summary of meaningful

  9. Glass Fiber Used in Light Communications.

    DTIC Science & Technology

    1980-11-05

    narrow pulse width is extended about 4 millimicroseconds/ kilometer, the gallium arsenide emptying into the laser is extended about 0.1...glass for the core forms quartz glass fiber. Possibly the use of the chemical vapour deposition method can make low ref racting glass for the...directly from the vapour phase and reaches a very high optical homogeneity. When the temperature of the high frequency induction plasma flame is very

  10. Research Investigation Directed Toward Extending the Useful Range of the Electromagnetic Spectrum.

    DTIC Science & Technology

    1987-12-31

    spectrometer ions photoionic emission threshold low temperature processing low energy ion beam silicon oxidation sputtering of silicon dioxide germanium...Osgood, "Optically-Induced, Room- Temperature Oxidation of Gallium Arsenide," Mat. Res. Soc. Symp. Proc. 75(1987):251-255. P. D. Brewer and R. M. Osgood... oxide films (40-70 A) at room temperature which are suitable for MOSFET devices, has been extensively studied experimentally and theoretically. The

  11. Young Investigator Program: Tribology of Nanostructured Silicon Carbide for MEMS and NEMS Applications in Extreme Environments

    DTIC Science & Technology

    2011-02-01

    was calculated as the difference between the lowest point of the rigid indenter and the initial position of the sample’s free surface. The total...SiC A high pressure structural phase transformation (HPPT) was previously reported for silicon, gallium arsenide, and silicon nitride and indirect...molecular dynamics (MD) simulations with thermodynamic analysis to settle this debate whether silicon carbide (SiC) can undergo a high pressure phase

  12. Potential means of support for materials processing in space. A history of government support for new technology

    NASA Technical Reports Server (NTRS)

    Mckannan, E. C.

    1983-01-01

    Development of a given technology for national defense and large systems developments when the task is too large or risky for entrepreneurs, yet is clearly in the best interest of the nation are discussed. Advanced research to identify areas of interest was completed. Examples of commercial opportunities are the McDonnell-Douglas Corporation purification process for pharmaceutical products and the Microgravity Research Associates process for growing gallium arsenide crystals in space.

  13. The growth of materials processing in space - A history of government support for new technology

    NASA Technical Reports Server (NTRS)

    Mckannan, E. C.

    1983-01-01

    Development of a given technology for national defense and large systems developments when the task is too large or risky for entrepreneurs, yet is clearly in the best interest of the nation are discussed. Advanced research to identify areas of interest was completed. Examples of commercial opportunities are the McDonnell-Douglas Corporation purification process for pharmaceutical products and the Microgravity Research Associates process for growing gallium arsenide crystals in space.

  14. Gallium nitrate induces fibrinogen flocculation: an explanation for its hemostatic effect?

    PubMed

    Bauters, A; Holt, D J; Zerbib, P; Rogosnitzky, M

    2013-12-01

    A novel hemostatic effect of gallium nitrate has recently been discovered. Our aim was to perform a preliminary investigation into its mode of action. Thromboelastography® showed no effect on coagulation but pointed instead to changes in fibrinogen concentration. We measured functional fibrinogen in whole blood after addition of gallium nitrate and nitric acid. We found that gallium nitrate induces fibrinogen precipitation in whole blood to a significantly higher degree than solutions of nitric acid alone. This precipitate is not primarily pH driven, and appears to occur via flocculation. This behavior is in line with the generally observed ability of metals to induce fibrinogen precipitation. Further investigation is required into this novel phenomenon.

  15. Thermodynamic properties of uranium in liquid gallium, indium and their alloys

    NASA Astrophysics Data System (ADS)

    Volkovich, V. A.; Maltsev, D. S.; Yamshchikov, L. F.; Osipenko, A. G.

    2015-09-01

    Activity, activity coefficients and solubility of uranium was determined in gallium, indium and gallium-indium alloys containing 21.8 (eutectic), 40 and 70 wt.% In. Activity was measured at 573-1073 K employing the electromotive force method, and solubility between room temperature (or the alloy melting point) and 1073 K employing direct physical measurements. Activity coefficients were obtained from the difference of experimentally determined temperature dependencies of uranium activity and solubility. Intermetallic compounds formed in the respective alloys were characterized using X-ray diffraction. Partial and excess thermodynamic functions of uranium in the studied alloys were calculated. Liquidus lines in U-Ga and U-In phase diagrams from the side rich in gallium or indium are proposed.

  16. Biofilm formation on titanium implants counteracted by grafting gallium and silver ions.

    PubMed

    Cochis, Andrea; Azzimonti, Barbara; Della Valle, Cinzia; Chiesa, Roberto; Arciola, Carla Renata; Rimondini, Lia

    2015-03-01

    Biofilm-associated infections remain the leading cause of implant failure. Thanks to its established biocompatibility and biomechanical properties, titanium has become one of the most widely used materials for bone implants. Engineered surface modifications of titanium able to thwart biofilm formation while endowing a safe anchorage to eukaryotic cells are being progressively developed. Here surfaces of disks of commercial grade 2 titanium for bone implant were grafted with gallium and silver ions by anodic spark deposition. Scanning electron microscopy of the surface morphology and energy dispersive X-ray spectroscopy were used for characterization. Gallium-grafted titanium was evaluated in comparison with silver-grafted titanium for both in vivo and in vitro antibiofilm properties and for in vitro compatibility with human primary gingival fibroblasts. Surface-modified materials showed: (i) homogeneous porous morphology, with pores of micrometric size; (ii) absence of cytotoxic effects; (iii) ability to support in vitro the adhesion and spreading of gingival fibroblasts; and (iv) antibiofilm properties. Although both silver and gallium exhibited in vitro strong antibacterial properties, in vivo gallium was significantly more effective than silver in reducing number and viability of biofilm bacteria colonies. Gallium-based treatments represent promising titanium antibiofilm coatings to develop new bone implantable devices for oral, maxillofacial, and orthopedic applications. © 2014 Wiley Periodicals, Inc.

  17. Hot electron generation by aluminum oligomers in plasmonic ultraviolet photodetectors.

    PubMed

    Ahmadivand, Arash; Sinha, Raju; Vabbina, Phani Kiran; Karabiyik, Mustafa; Kaya, Serkan; Pala, Nezih

    2016-06-13

    We report on an integrated plasmonic ultraviolet (UV) photodetector composed of aluminum Fano-resonant heptamer nanoantennas deposited on a Gallium Nitride (GaN) active layer which is grown on a sapphire substrate to generate significant photocurrent via formation of hot electrons by nanoclusters upon the decay of nonequilibrium plasmons. Using the plasmon hybridization theory and finite-difference time-domain (FDTD) method, it is shown that the generation of hot carriers by metallic clusters illuminated by UV beam leads to a large photocurrent. The induced Fano resonance (FR) minimum across the UV spectrum allows for noticeable enhancement in the absorption of optical power yielding a plasmonic UV photodetector with a high responsivity. It is also shown that varying the thickness of the oxide layer (Al2O3) around the nanodisks (tox) in a heptamer assembly adjusted the generated photocurrent and responsivity. The proposed plasmonic structure opens new horizons for designing and fabricating efficient opto-electronics devices with high gain and responsivity.

  18. First Results of the Testing of the Liquid Gallium Jet Limiter Concept for ISTTOK

    NASA Astrophysics Data System (ADS)

    Gomes, R. B.; Fernandes, H.; Silva, C.; Borba, D.; Carvalho, B.; Varandas, C.; Lielausis, O.; Klyukin, A.; Platacis, E.; Mikelsons, A.; Platnieks, I.

    2006-12-01

    The use of liquid metals as plasma facing components in tokamaks has recently experienced a renewed interest stimulated by their advantages to the development of a fusion reactor. Liquid metals have been proposed to solve problems related to the erosion and neutronic activation of solid walls submitted to high power loads allowing an efficient heat exhaustion from fusion devices. Presently the most promising materials are Lithium and Gallium. ISTTOK, a small size tokamak, will be used to test the behavior of a liquid Gallium jet in the vacuum chamber and its influence on the plasma. This paper presents a description of the conceived setup as well as experimental results. The liquid Gallium jet is generated by hydrostatic pressure and injected in a radial position close to a moveable stainless steel limiter. Both the jet and the limiter positions are variable allowing for a controlled exposure of the liquid Gallium to the edge plasma. The main components of the Gallium loop are a MHD pump, the liquid metal injector and a filtering system. The MHD pump is of the induction type, based on rotating permanent magnets. The injector is build from a ¼″ stainless steel pipe ended by a shaping nozzle. A setup has been developed to introduce oxide-free Gallium inside the loop's main supply tank. Raw liquid metal is placed inside a chamber heated and degassed under high vacuum while clean Gallium is extracted from the main body of the liquefied metal. Prior to installation on the tokamak, the experimental rig has been implemented using a Pyrex tube as test chamber to investigate the stability of the Gallium jet and its break-up length for several nozzle sizes. Results are presented in this paper. This rig was also useful to assess the behavior of the overall implemented apparatus.

  19. Targeted Delivery of Glucan Particle Encapsulated Gallium Nanoparticles Inhibits HIV Growth in Human Macrophages

    PubMed Central

    Soto, Ernesto R.; O'Connell, Olivia; Dikengil, Fusun; Peters, Paul J.; Clapham, Paul R.

    2016-01-01

    Glucan particles (GPs) are hollow, porous 3–5 μm microspheres derived from the cell walls of Baker's yeast (Saccharomyces cerevisiae). The 1,3-β-glucan outer shell provides for receptor-mediated uptake by phagocytic cells expressing β-glucan receptors. GPs have been used for macrophage-targeted delivery of a wide range of payloads (DNA, siRNA, protein, small molecules, and nanoparticles) encapsulated inside the hollow GPs or bound to the surface of chemically derivatized GPs. Gallium nanoparticles have been proposed as an inhibitory agent against HIV infection. Here, macrophage targeting of gallium using GPs provides for more efficient delivery of gallium and inhibition of HIV infection in macrophages compared to free gallium nanoparticles. PMID:27965897

  20. Gallium scan in intracerebral sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makhija, M.C.; Anayiotos, C.P.

    1981-07-01

    Sarcoidosis involving the nervous system probably occurs in about 4% of patients. The usefulness of brain scintigraphy in these cases has been suggested. In this case of cerebral sarcoid granuloma, gallium imaging demonstrated the lesion before treatment and showed disappearance of the lesion after corticosteroid treatment, which correlated with the patient's clinical improvement.

  1. Gallium-positive Lyme disease myocarditis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alpert, L.I.; Welch, P.; Fisher, N.

    1985-09-01

    In the course of a work-up for fever of unknown origin associated with intermittent arrhythmias, a gallium scan was performed which revealed diffuse myocardial uptake. The diagnosis of Lyme disease myocarditis subsequently was confirmed by serologic titers. One month following recovery from the acute illness, the abnormal myocardial uptake completely resolved.

  2. Electron transport in zinc-blende wurtzite biphasic gallium nitride nanowires and GaNFETs

    DOE PAGES

    Jacobs, Benjamin W.; Ayres, Virginia M.; Stallcup, Richard E.; ...

    2007-10-19

    Two-point and four-point probe electrical measurements of a biphasic gallium nitride nanowire and current–voltage characteristics of a gallium nitride nanowire based field effect transistor are reported. The biphasic gallium nitride nanowires have a crystalline homostructure consisting of wurtzite and zinc-blende phases that grow simultaneously in the longitudinal direction. There is a sharp transition of one to a few atomic layers between each phase. Here, all measurements showed high current densities. Evidence of single-phase current transport in the biphasic nanowire structure is discussed.

  3. [Determination of trace gallium by graphite furnace atomic absorption spectrometry in urine].

    PubMed

    Zhou, L Z; Fu, S; Gao, S Q; He, G W

    2016-06-20

    To establish a method for determination trace gallium in urine by graphite furnace atomic absorption spectrometry (GFAAS). The ammonium dihydrogen phosphate was matrix modifier. The temperature effect about pyrolysis (Tpyr) and atomization temperature were optimized for determination of trace gallium. The method of technical standard about within-run, between-run and recoveries of standard were optimized. The method showed a linear relationship within the range of 0.20~80.00 μg/L (r=0.998). The within-run and between-run relative standard deviations (RSD) of repetitive measurement at 5.0, 10.0, 20.0 μg/L concentration levels were 2.1%~5.5% and 2.3%~3.0%. The detection limit was 0.06 μg/L. The recoveries of gallium were 98.2%~101.1%. This method is simple, low detection limit, accurate, reliable and reproducible. It has been applied for determination of trace gallium in urine samples those who need occupation health examination or poisoning diagnosis.

  4. Gallium nitride junction field-effect transistor

    DOEpatents

    Zolper, John C.; Shul, Randy J.

    1999-01-01

    An all-ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorous co-implantation, in selected III-V semiconductor materials.

  5. Clinical Applications of Gallium-68

    PubMed Central

    Banerjee, Sangeeta Ray; Pomper, Martin G.

    2013-01-01

    Gallium-68 is a positron-emitting radioisotope that is produced from a 68Ge/68Ga generator. As such it is conveniently used, decoupling radiopharmacies from the need for a cyclotron on site. Gallium-68-labeled peptides have been recognized as a new class of radiopharmaceuticals showing fast target localization and blood clearance. 68Ga-DOTATOC, 8Ga-DOTATATE, 68Ga-DOTANOC, are the most prominent radiopharmaceuticals currently in use for imaging and differentiating lesions of various somatostatin receptor subtypes, overexpressed in many neuroendocrine tumors. There has been a tremendous increase in the number of clinical studies with 68Ga over the past few years around the world, including within the United States. An estimated ~10,000 scans are being performed yearly in Europe at about 100 centers utilizing 68Ga-labeled somatostatin analogs within clinical trials. Two academic sites within the US have also begun to undertake human studies. This review will focus on the clinical experience of selected, well-established and recently applied 68Ga-labeled imaging agents used in nuclear medicine. PMID:23522791

  6. The gallium melting-point standard: its role in our temperature measurement system.

    PubMed

    Mangum, B W

    1977-01-01

    The latest internationally-adopted temperature scale, the International Practical Temperature Scale of 1968 (amended edition of 1975), is discussed in some detail and a brief description is given of its evolution. The melting point of high-purity gallium (stated to be at least 99.99999% pure) as a secondary temperature reference point is evaluated. I believe that this melting-point temperature of gallium should be adopted by the various medical professional societies and voluntary standards groups as the reaction temperature for enzyme reference methods in clinical enzymology. Gallium melting-point cells are available at the National Bureau of Standards as Standard Reference Material No. 1968.

  7. Design and simulation of nanoscale double-gate TFET/tunnel CNTFET

    NASA Astrophysics Data System (ADS)

    Bala, Shashi; Khosla, Mamta

    2018-04-01

    A double-gate tunnel field-effect transistor (DG tunnel FET) has been designed and investigated for various channel materials such as silicon (Si), gallium arsenide (GaAs), alminium gallium arsenide (Al x Ga1‑x As) and CNT using a nano ViDES Device and TCAD SILVACO ATLAS simulator. The proposed devices are compared on the basis of inverse subthreshold slope (SS), I ON/I OFF current ratio and leakage current. Using Si as the channel material limits the property to reduce leakage current with scaling of channel, whereas the Al x Ga1‑x As based DG tunnel FET provides a better I ON/I OFF current ratio (2.51 × 106) as compared to other devices keeping the leakage current within permissible limits. The performed silmulation of the CNT based channel in the double-gate tunnel field-effect transistor using the nano ViDES shows better performace for a sub-threshold slope of 29.4 mV/dec as the channel is scaled down. The proposed work shows the potential of the CNT channel based DG tunnel FET as a futuristic device for better switching and high retention time, which makes it suitable for memory based circuits.

  8. Hybrid solar collector using nonimaging optics and photovoltaic components

    NASA Astrophysics Data System (ADS)

    Winston, Roland; Yablonovitch, Eli; Jiang, Lun; Widyolar, Bennett K.; Abdelhamid, Mahmoud; Scranton, Gregg; Cygan, David; Kozlov, Alexandr

    2015-08-01

    The project team of University of California at Merced (UC-M), Gas Technology Institute, and Dr. Eli Yablonovitch of University of California at Berkeley developed a novel hybrid concentrated solar photovoltaic thermal (PV/T) collector using nonimaging optics and world record single-junction Gallium arsenide (GaAs) PV components integrated with particle laden gas as thermal transfer and storage media, to simultaneously generate electricity and high temperature dispatchable heat. The collector transforms a parabolic trough, commonly used in CSP plants, into an integrated spectrum-splitting device. This places a spectrum-sensitive topping element on a secondary reflector that is registered to the thermal collection loop. The secondary reflector transmits higher energy photons for PV topping while diverting the remaining lower energy photons to the thermal media, achieving temperatures of around 400°C even under partial utilization of the solar spectrum. The collector uses the spectral selectivity property of Gallium arsenide (GaAs) cells to maximize the exergy output of the system, resulting in an estimated exergy efficiency of 48%. The thermal media is composed of fine particles of high melting point material in an inert gas that increases heat transfer and effectively stores excess heat in hot particles for later on-demand use.

  9. Atomic-Scale Structure of the Tin DX Center and Other Related Defects in Aluminum Gallium Arsenide Semiconductors Using Moessbauer Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Greco, Luigi Alessandro

    The DX center in III-V alloys has limited the use of these materials for electronic devices since the defect acts as an electron trap. To be able to control or eliminate the DX center, its atomic scale structure should be understood. Mossbauer spectroscopy has proven to be a valuable technique in probing the atomic-scale structure of certain atomic species. The dopant studied here is ^{119}Sn. The thermal diffusion of Sn in Al_ {rm x}Ga_{rm 1-x }As using different temperatures, times, sample geometries and As_4 overpressures in evacuated and sealed fused silica ampoules was studied by x-ray diffraction (XRD), secondary ion mass spectroscopy and electrochemical capacitance versus voltage measurements. The AlGaAs surfaces decomposed into various Sn, Si, Ga and As oxides when an As_4 overpressure was introduced during annealing. However, annealing under ambient As_4 and furnace cooling eliminated surface decomposition although the Sn diffusion depth was less than that for a 0.5 atm As_4 overpressure. SiO_{rm x} and Si_{rm x }N_{rm y} RF-sputtered thin film capping layers deposited on AlGaAs were studied by XRD and Auger electron spectroscopy. For the annealed SiO_{rm x} films the AlGaAs surface was preserved, independent of the cooling technique used. Mossbauer spectroscopy was conducted on ^{rm 119m} Sn-implanted Al_ {rm x } Ga_{rm 1-x} As (x = 0.22 and 0.25) used for the source experiments and ^{119}Sn-doped Al _{rm x}Ga _{rm 1-x}As (x = 0.15, N _{rm Sn} ~2 times 10 ^{18} cm^{ -3}) for the absorber experiment. The source samples were capped with 120 nm of SiO_ {rm x} to preserve the surface during the systematic study of annealing temperature versus site occupation and electrical activation via Mossbauer spectroscopy at 76 K and 4 K in the dark and in the light (to observe persistent photoconductivity (PPC) due to the DX center). For all of the annealing conditions used the x = 0.22 sample showed little evidence of PPC possibly due to compensating defects and/or radiation-induced capture. After annealing the x = 0.25 sample at 1000^circC for 2 hours under a Ga + Al overpressure, evidence of PPC was found via Hall measurements but no effect was seen by Mossbauer suggesting radiation-induced capture and/or non-nearest-neighbor lattice relaxation. The Ga + Al overpressure also served to decrease the loss of Sn through the SiO _{rm x} film, possibly through the removal of Ga and Al vacancies. The x = 0.15 absorber showed a persistent 15-18% change in the electrical resistance (10% change in n) between the light and dark. However, the observation of this effect was not apparent, even assuming negative-U (2 electron) behavior, in the Mossbauer measurements. This was also consistent with EXAFS results. These studies do not support the broken-bond model of Chadi and Chang, which is considered to be a widely accepted atomic-scale model of the DX center. A defect complex consisting of a substitutional Sn_{rm Ga(Al) }^+ site, and a (V_{ rm III}^-Al_{ rm As}^{-2}) complex, which localizes 3 electrons and may not be a nearest-neighbor to the donor, was chosen for the DX center in the x = 0.15 sample which supports EXAFS, recent positron annihilation and these Mossbauer studies.

  10. Aluminum anode for aluminum-air battery - Part I: Influence of aluminum purity

    NASA Astrophysics Data System (ADS)

    Cho, Young-Joo; Park, In-Jun; Lee, Hyeok-Jae; Kim, Jung-Gu

    2015-03-01

    2N5 commercial grade aluminum (99.5% purity) leads to the lower aluminum-air battery performances than 4N high pure grade aluminum (99.99% purity) due to impurities itself and formed impurity complex layer which contained Fe, Si, Cu and others. The impurity complex layer of 2N5 grade Al declines the battery voltage on standby status. It also depletes discharge current and battery efficiency at 1.0 V which is general operating voltage of aluminum-air battery. However, the impurity complex layer of 2N5 grade Al is dissolved with decreasing discharge voltage to 0.8 V. This phenomenon leads to improvement of discharge current density and battery efficiency by reducing self-corrosion reaction. This study demonstrates the possibility of use of 2N5 grade Al which is cheaper than 4N grade Al as the anode for aluminum-air battery.

  11. Gallium-67 scintigraphy, bronchoalveolar lavage, and pathologic changes in patients with pulmonary sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, S.; Munakata, M.; Nishimura, M.

    1984-05-01

    The intensity of gallium-67 scintiscans, lymphocyte counts in bronchoalveolar lavage fluid, and pathologic changes were studied in 26 patients with untreated pulmonary sarcoidosis. Noncaseating granulomas were recognized with significantly greater frequency in stage 2 (80 percent; 8/10 cases) than in stage 1 (43 percent; 6/14 cases). Alveolitis showed little relation to the roentgenographic stage. There was a strong correlation between the intensity of gallium uptake in pulmonary parenchyma and the detection rate of granuloma; however, the detection rate of alveolitis was not statistically different from the intensity of gallium uptake. A highly significant correlation was revealed between the lymphocyte countsmore » in bronchoalveolar lavage fluid and the intensity of alveolitis. These observations suggest that the gallium uptake reflects mainly the presence of granuloma, and the lymphocyte count in bronchoalveolar lavage fluid reflects the intensity of alveolitis in patients with pulmonary sarcoidosis.« less

  12. Measuring Nanoscale Heat Transfer for Gold-(Gallium Oxide)-Gallium Nitride Interfaces as a Function

    NASA Astrophysics Data System (ADS)

    Szwejkowski, Chester; Sun, Kai; Constantin, Costel; Giri, Ashutosh; Saltonstall, Christopher; Hopkins, Patrick; NanoSynCh Team; Exsite Team

    2014-03-01

    Gallium nitride (GaN) is considered the most important semiconductor after the discovery of Silicon. Understanding the properties of GaN is imperative in determining the utility and applicability of this class of materials to devices. We present results of time domain thermoreflectance (TDTR) measurements as a function of surface root mean square (RMS) roughness. We used commercially available 5mm x 5mm, single-side polished GaN (3-7 μm)/Sapphire (430 μm) substrates that have a Wurtzite crystal structure and are slightly n-type doped. The GaN substrates were annealed in the open atmosphere for 10 minutes (900-1000 °C). This high-temperature treatment produced RMS values from 1-60 nm and growth of gallium oxide (GaO) as measured with an atomic force microscopy and transmission electron microscopy respectively. A gold film (80nm) was deposited on the GaN surface using electron beam physical vapor deposition which was verified using ellipsometry and profilometry. The TDTR measurements suggest that the thermal conductivity decays exponentially with RMS roughness and that there is a minimum value for thermal boundary conductance at a roughness of 15nm.

  13. Strain-balanced Indium Arsenide-Indium Arsenic Antimonide Type-II Superlattices on Gallium Antimonide Substrates for Infrared Photodetector Applications

    NASA Astrophysics Data System (ADS)

    Steenbergen, Elizabeth H.

    Infrared photodetectors, used in applications for sensing and imaging, such as military target recognition, chemical/gas detection, and night vision enhancement, are predominantly comprised of an expensive II-VI material, HgCdTe. III-V type-II superlattices (SLs) have been studied as viable alternatives for HgCdTe due to the SL advantages over HgCdTe: greater control of the alloy composition, resulting in more uniform materials and cutoff wavelengths across the wafer; stronger bonds and structural stability; less expensive substrates, i.e., GaSb; mature III-V growth and processing technologies; lower band-to-band tunneling due to larger electron effective masses; and reduced Auger recombination enabling operation at higher temperatures and longer wavelengths. However, the dark current of InAs/Ga1-xInxSb SL detectors is higher than that of HgCdTe detectors and limited by Shockley-Read-Hall (SRH) recombination rather than Auger recombination. This dissertation work focuses on InAs/InAs1-xSbx SLs, another promising alternative for infrared laser and detector applications due to possible lower SRH recombination and the absence of gallium, which simplifies the SL interfaces and growth processes. InAs/InAs1-xSbx SLs strain-balanced to GaSb substrates were designed for the mid- and long-wavelength infrared (MWIR and LWIR) spectral ranges and were grown using MOCVD and MBE by various groups. Detailed characterization using high-resolution x-ray diffraction, atomic force microscopy, photoluminescence (PL), and photoconductance revealed the excellent structural and optical properties of the MBE materials. Two key material parameters were studied in detail: the valence band offset (VBO) and minority carrier lifetime. The VBO between InAs and InAs 1-xSbx strained on GaSb with x = 0.28--0.41 was best described by Qv = DeltaEv/DeltaE g = 1.75 +/- 0.03. Time-resolved PL experiments on a LWIR SL revealed a lifetime of 412 ns at 77 K, one order of magnitude greater than that of In

  14. Quaternary pulse position modulation electronics for free-space laser communications

    NASA Technical Reports Server (NTRS)

    Budinger, J. M.; Kerslake, S. D.; Nagy, L. A.; Shalkhauser, M. J.; Soni, N. J.; Cauley, M. A.; Mohamed, J. H.; Stover, J. B.; Romanofsky, R. R.; Lizanich, P. J.

    1991-01-01

    The development of a high data-rate communications electronic subsystem for future application in free-space, direct-detection laser communications is described. The dual channel subsystem uses quaternary pulse position modulation (GPPM) and operates at a throughput of 650 megabits per second. Transmitting functions described include source data multiplexing, channel data multiplexing, and QPPM symbol encoding. Implementation of a prototype version in discrete gallium arsenide logic, radiofrequency components, and microstrip circuitry is presented.

  15. Developing Low-Noise GaAs JFETs For Cryogenic Operation

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas J.

    1995-01-01

    Report discusses aspects of effort to develop low-noise, low-gate-leakage gallium arsenide-based junction field-effect transistors (JFETs) for operation at temperature of about 4 K as readout amplifiers and multiplexing devices for infrared-imaging devices. Transistors needed to replace silicon transistors, relatively noisy at 4 K. Report briefly discusses basic physical principles of JFETs and describes continuing process of optimization of designs of GaAs JFETs for cryogenic operation.

  16. Investigation and Development of Advanced Surface Microanalysis Techniques and Methods

    DTIC Science & Technology

    1983-04-01

    California 94402 and Stephen L. Grube Watkins-Johnson 440 Kings Village Road Scotts Valley, California 95066 as published in Analytical Chemistry , 1985, 57...34 E. Silberg , T. Y. Chang, E. A. Caridi, C. A. Evans Jr. and C. J. Hitzman in Gallium Arsenide and Related Compounds 1982, 10th International Symposium...Spectrometry," P. K. Chu and S. L. Grube, Analytical Chemistry . 13. "Direct Lateral and In-Depth Distributional Analysis for Ionic - Contaminants in

  17. Space station automation study. Automation requirements derived from space manufacturing concepts. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The two manufacturing concepts developed represent innovative, technologically advanced manufacturing schemes. The concepts were selected to facilitate an in depth analysis of manufacturing automation requirements in the form of process mechanization, teleoperation and robotics, and artificial intelligence. While the cost effectiveness of these facilities has not been analyzed as part of this study, both appear entirely feasible for the year 2000 timeframe. The growing demand for high quality gallium arsenide microelectronics may warrant the ventures.

  18. Microwave monolithic integrated circuit development for future spaceborne phased array antennas

    NASA Technical Reports Server (NTRS)

    Anzic, G.; Kascak, T. J.; Downey, A. N.; Liu, D. C.; Connolly, D. J.

    1983-01-01

    The development of fully monolithic gallium arsenide (GaAs) receive and transmit modules suitable for phased array antenna applications in the 30/20 gigahertz bands is presented. Specifications and various design approaches to achieve the design goals are described. Initial design and performance of submodules and associated active and passive components are presented. A tradeoff study summary is presented highlighting the advantages of distributed amplifier approach compared to the conventional single power source designs.

  19. Microwave Semiconductor Equipment Produced in Poland,

    DTIC Science & Technology

    1984-01-20

    was started on varactors for parametric amplifiers, which took place in the Institute for Basic Problems of Technology of the PAN [1. The research unit...technology of varactors intended for parametric amplifiers and harmonic generators. As a result of this a series of types of germanium, silicon and gallium...arsenide varactors were produced [2-141. These varactors were used for example in Avia A and Avia B radar. The working out of the production of

  20. Microwave monolithic integrated circuit development for future spaceborne phased array antennas

    NASA Astrophysics Data System (ADS)

    Anzic, G.; Kascak, T. J.; Downey, A. N.; Liu, D. C.; Connolly, D. J.

    1983-12-01

    The development of fully monolithic gallium arsenide (GaAs) receive and transmit modules suitable for phased array antenna applications in the 30/20 gigahertz bands is presented. Specifications and various design approaches to achieve the design goals are described. Initial design and performance of submodules and associated active and passive components are presented. A tradeoff study summary is presented highlighting the advantages of distributed amplifier approach compared to the conventional single power source designs.