Sample records for gallium diselenide cigs

  1. A study on the optics of copper indium gallium (di)selenide (CIGS) solar cells with ultra-thin absorber layers.

    PubMed

    Xu, Man; Wachters, Arthur J H; van Deelen, Joop; Mourad, Maurice C D; Buskens, Pascal J P

    2014-03-10

    We present a systematic study of the effect of variation of the zinc oxide (ZnO) and copper indium gallium (di)selenide (CIGS) layer thickness on the absorption characteristics of CIGS solar cells using a simulation program based on finite element method (FEM). We show that the absorption in the CIGS layer does not decrease monotonically with its layer thickness due to interference effects. Ergo, high precision is required in the CIGS production process, especially when using ultra-thin absorber layers, to accurately realize the required thickness of the ZnO, cadmium sulfide (CdS) and CIGS layer. We show that patterning the ZnO window layer can strongly suppress these interference effects allowing a higher tolerance in the production process.

  2. An Illumination- and Temperature-Dependent Analytical Model for Copper Indium Gallium Diselenide (CIGS) Solar Cells

    DOE PAGES

    Sun, Xingshu; Silverman, Timothy; Garris, Rebekah; ...

    2016-07-18

    In this study, we present a physics-based analytical model for copper indium gallium diselenide (CIGS) solar cells that describes the illumination- and temperature-dependent current-voltage (I-V) characteristics and accounts for the statistical shunt variation of each cell. The model is derived by solving the drift-diffusion transport equation so that its parameters are physical and, therefore, can be obtained from independent characterization experiments. The model is validated against CIGS I-V characteristics as a function of temperature and illumination intensity. This physics-based model can be integrated into a large-scale simulation framework to optimize the performance of solar modules, as well as predict themore » long-term output yields of photovoltaic farms under different environmental conditions.« less

  3. Application of Copper Indium Gallium Diselenide Photovoltaic Cells to Extend the Endurance and Capabilities of Unmanned Aerial Vehicles

    DTIC Science & Technology

    2009-09-01

    Group V element to make them n or p material. Another common group of semiconductors are called III–V compounds , such as gallium arsenide (GaAs), or...these compounds used for photovoltaics are Cadmium Telluride (CdTe), and Copper Indium Gallium DiSelenide, commonly referred to as CIGS [49]. Figure...INDIUM GALLIUM DISELENIDE PHOTOVOLTAIC CELLS TO EXTEND THE ENDURANCE AND CAPABILITIES OF UNMANNED AERIAL VEHICLES by William R. Hurd

  4. High efficiency copper indium gallium diselenide (CIGS) thin film solar cells

    NASA Astrophysics Data System (ADS)

    Rajanikant, Ray Jayminkumar

    The generation of electrical current from the solar radiation is known as the photovoltaic effect. Solar cell, also known as photovoltaic (PV) cell, is a device that works on the principle of photovoltaic effect, and is widely used for the generation of electricity. Thin film polycrystalline solar cells based on copper indium gallium diselenide (CIGS) are admirable candidates for clean energy production with competitive prices in the near future. CIGS based polycrystalline thin film solar cells with efficiencies of 20.3 % and excellent temperature stability have already been reported at the laboratory level. The present study discusses about the fabrication of CIGS solar cell. Before the fabrication part of CIGS solar cell, a numerical simulation is carried out using One-Dimensional Analysis of Microelectronic and Photonic Structures (AMPS-ID) for understanding the physics of a solar cell device, so that an optimal structure is analyzed. In the fabrication part of CIGS solar cell, Molybdenum (Mo) thin film, which acts as a 'low' resistance metallic back contact, is deposited by RF magnetron sputtering on organically cleaned soda lime glass substrate. The major advantages for using Mo are high temperature, (greater than 600 °C), stability and inertness to CIGS layer (i.e., no diffusion of CIGS into Mo). Mo thin film is deposited at room temperature (RT) by varying the RF power and the working pressure. The Mo thin films deposited with 100 W RF power and 1 mTorr working pressure show a reflectivity of above average 50 % and the low sheet resistance of about 1 O/□. The p-type CIGS layer is deposited on Mo. Before making thin films of CIGS, a powder of CIGS material is synthesized using melt-quenching method. Thin films of CIGS are prepared by a single-stage flash evaporation process on glass substrates, initially, for optimization of deposition parameters and than on Mo coated glass substrates for device fabrication. CIGS thin film is deposited at 250 °C at a

  5. Soft X-ray absorption spectroscopy investigation of the surface chemistry and treatments of copper indium gallium diselenide (CIGS)

    DOE PAGES

    Schwartz, Craig; Nordlund, Dennis; Sokaras, Dimosthenis; ...

    2017-02-01

    The surface and near surface structure of copper-indium-gallium-selenide (CIGS) absorber layers is integral to the producing a high-quality photovoltaic junction. By using X-ray absorption spectroscopy (XAS) and monitoring multiple elemental absorption edges with both theory and experiment, we are able to identify several features of the surface of CIGS as a function of composition and surface treatments. The XAS data shows trends in the near surface region of oxygen, copper, indium and gallium species as the copper content is varied in the films. The oxygen surface species are also monitored through a series of experiments that systematically investigates the effectsmore » of water and various solutions of: ammonium hydroxide, cadmium sulfate, and thiourea. These being components of cadmium sulfide chemical bath deposition (CBD). Characteristics of the CBD are correlated with a restorative effect that produces as normalized, uniform surface chemistry as measured by XAS. This surface chemistry is found in CIGS solar cells with excellent power conversion efficiency (<19%). The results provide new insight for CIGS processing strategies that seek to replace CBD and/or cadmium sulfide.« less

  6. Soft X-ray absorption spectroscopy investigation of the surface chemistry and treatments of copper indium gallium diselenide (CIGS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Craig; Nordlund, Dennis; Sokaras, Dimosthenis

    The surface and near surface structure of copper-indium-gallium-selenide (CIGS) absorber layers is integral to the producing a high-quality photovoltaic junction. By using X-ray absorption spectroscopy (XAS) and monitoring multiple elemental absorption edges with both theory and experiment, we are able to identify several features of the surface of CIGS as a function of composition and surface treatments. The XAS data shows trends in the near surface region of oxygen, copper, indium and gallium species as the copper content is varied in the films. The oxygen surface species are also monitored through a series of experiments that systematically investigates the effectsmore » of water and various solutions of: ammonium hydroxide, cadmium sulfate, and thiourea. These being components of cadmium sulfide chemical bath deposition (CBD). Characteristics of the CBD are correlated with a restorative effect that produces as normalized, uniform surface chemistry as measured by XAS. This surface chemistry is found in CIGS solar cells with excellent power conversion efficiency (<19%). The results provide new insight for CIGS processing strategies that seek to replace CBD and/or cadmium sulfide.« less

  7. Improving the efficiency of copper indium gallium (Di-)selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide

    NASA Astrophysics Data System (ADS)

    Burghoorn, M.; Kniknie, B.; van Deelen, J.; Xu, M.; Vroon, Z.; van Ee, R.; van de Belt, R.; Buskens, P.

    2014-12-01

    Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density (Jsc) and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transparent conductor in copper indium gallium (di-)selenide (CIGS) solar cells is also optically advantageous. Here, we experimentally demonstrate that the Jsc and efficiency of CIGS solar cells with an absorber layer thickness (dCIGS) of 0.85 μm, 1.00 μm and 2.00 μm increase through application of a moth-eye textured resist with a refractive index that is sufficiently similar to AZO (nresist = 1.792 vs. nAZO = 1.913 at 633 nm) to avoid large optical losses at the resist-AZO interface. On average, Jsc increases by 7.2%, which matches the average reduction in reflection of 7.0%. The average relative increase in efficiency is slightly lower (6.0%). No trend towards a larger relative increase in Jsc with decreasing dCIGS was observed. Ergo, the increase in Jsc can be fully explained by the reduction in reflection, and we did not observe any increase in Jsc based on an increased photon path length.

  8. Improving the efficiency of copper indium gallium (Di-)selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burghoorn, M.; Kniknie, B.; Deelen, J. van

    2014-12-15

    Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density (J{sub sc}) and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transparent conductor in copper indium gallium (di-)selenide (CIGS) solar cells is also optically advantageous. Here, we experimentally demonstrate that the J{sub sc} and efficiency ofmore » CIGS solar cells with an absorber layer thickness (d{sub CIGS}) of 0.85 μm, 1.00 μm and 2.00 μm increase through application of a moth-eye textured resist with a refractive index that is sufficiently similar to AZO (n{sub resist} = 1.792 vs. n{sub AZO} = 1.913 at 633 nm) to avoid large optical losses at the resist-AZO interface. On average, J{sub sc} increases by 7.2%, which matches the average reduction in reflection of 7.0%. The average relative increase in efficiency is slightly lower (6.0%). No trend towards a larger relative increase in J{sub sc} with decreasing d{sub CIGS} was observed. Ergo, the increase in J{sub sc} can be fully explained by the reduction in reflection, and we did not observe any increase in J{sub sc} based on an increased photon path length.« less

  9. Investigation of an Electrochemical Method for Separation of Copper, Indium, and Gallium from Pretreated CIGS Solar Cell Waste Materials

    PubMed Central

    Gustafsson, Anna M. K.; Björefors, Fredrik; Steenari, Britt-Marie

    2015-01-01

    Recycling of the semiconductor material copper indium gallium diselenide (CIGS) is important to ensure a future supply of indium and gallium, which are relatively rare and therefore expensive elements. As a continuation of our previous work, where we recycled high purity selenium from CIGS waste materials, we now show that copper and indium can be recycled by electrodeposition from hydrochloric acid solutions of dissolved selenium-depleted material. Suitable potentials for the reduction of copper and indium were determined to be −0.5 V and −0.9 V (versus the Ag/AgCl reference electrode), respectively, using cyclic voltammetry. Electrodeposition of first copper and then indium from a solution containing the dissolved residue from the selenium separation and ammonium chloride in 1 M HCl gave a copper yield of 100.1 ± 0.5% and an indium yield of 98.1 ± 2.5%. The separated copper and indium fractions contained no significant contamination of the other elements. Gallium remained in solution together with a small amount of indium after the separation of copper and indium and has to be recovered by an alternative method since electrowinning from the chloride-rich acid solution was not effective. PMID:26347901

  10. Sodium enhances indium-gallium interdiffusion in copper indium gallium diselenide photovoltaic absorbers.

    PubMed

    Colombara, Diego; Werner, Florian; Schwarz, Torsten; Cañero Infante, Ingrid; Fleming, Yves; Valle, Nathalie; Spindler, Conrad; Vacchieri, Erica; Rey, Germain; Guennou, Mael; Bouttemy, Muriel; Manjón, Alba Garzón; Peral Alonso, Inmaculada; Melchiorre, Michele; El Adib, Brahime; Gault, Baptiste; Raabe, Dierk; Dale, Phillip J; Siebentritt, Susanne

    2018-02-26

    Copper indium gallium diselenide-based technology provides the most efficient solar energy conversion among all thin-film photovoltaic devices. This is possible due to engineered gallium depth gradients and alkali extrinsic doping. Sodium is well known to impede interdiffusion of indium and gallium in polycrystalline Cu(In,Ga)Se 2 films, thus influencing the gallium depth distribution. Here, however, sodium is shown to have the opposite effect in monocrystalline gallium-free CuInSe 2 grown on GaAs substrates. Gallium in-diffusion from the substrates is enhanced when sodium is incorporated into the film, leading to Cu(In,Ga)Se 2 and Cu(In,Ga) 3 Se 5 phase formation. These results show that sodium does not decrease per se indium and gallium interdiffusion. Instead, it is suggested that sodium promotes indium and gallium intragrain diffusion, while it hinders intergrain diffusion by segregating at grain boundaries. The deeper understanding of dopant-mediated atomic diffusion mechanisms should lead to more effective chemical and electrical passivation strategies, and more efficient solar cells.

  11. Preparation Of Copper Indium Gallium Diselenide Films For Solar Cells

    DOEpatents

    Bhattacharya, Raghu N.; Contreras, Miguel A.; Keane, James; Tennant, Andrew L. , Tuttle, John R.; Ramanathan, Kannan; Noufi, Rommel

    1998-08-08

    High quality thin films of copper-indium-gallium-diselenide useful in the production of solar cells are prepared by electrodepositing at least one of the constituent metals onto a glass/Mo substrate, followed by physical vapor deposition of copper and selenium or indium and selenium to adjust the final stoichiometry of the thin film to approximately Cu(In,Ga)Se.sub.2. Using an AC voltage of 1-100 KHz in combination with a DC voltage for electrodeposition improves the morphology and growth rate of the deposited thin film. An electrodeposition solution comprising at least in part an organic solvent may be used in conjunction with an increased cathodic potential to increase the gallium content of the electrodeposited thin film.

  12. Improving Efficiency of Multicrystalline Silicon and CIGS Solar Cells by Incorporating Metal Nanoparticles.

    PubMed

    Jeng, Ming-Jer; Chen, Zih-Yang; Xiao, Yu-Ling; Chang, Liann-Be; Ao, Jianping; Sun, Yun; Popko, Ewa; Jacak, Witold; Chow, Lee

    2015-10-08

    This work studies the use of gold (Au) and silver (Ag) nanoparticles in multicrystalline silicon (mc-Si) and copper-indium-gallium-diselenide (CIGS) solar cells. Au and Ag nanoparticles are deposited by spin-coating method, which is a simple and low cost process. The random distribution of nanoparticles by spin coating broadens the resonance wavelength of the transmittance. This broadening favors solar cell applications. Metal shadowing competes with light scattering in a manner that varies with nanoparticle concentration. Experimental results reveal that the mc-Si solar cells that incorporate Au nanoparticles outperform those with Ag nanoparticles. The incorporation of suitable concentration of Au and Ag nanoparticles into mc-Si solar cells increases their efficiency enhancement by 5.6% and 4.8%, respectively. Incorporating Au and Ag nanoparticles into CIGS solar cells improve their efficiency enhancement by 1.2% and 1.4%, respectively. The enhancement of the photocurrent in mc-Si solar cells is lower than that in CIGS solar cells, owing to their different light scattering behaviors and material absorption coefficients.

  13. Improving Efficiency of Multicrystalline Silicon and CIGS Solar Cells by Incorporating Metal Nanoparticles

    PubMed Central

    Jeng, Ming-Jer; Chen, Zih-Yang; Xiao, Yu-Ling; Chang, Liann-Be; Ao, Jianping; Sun, Yun; Popko, Ewa; Jacak, Witold; Chow, Lee

    2015-01-01

    This work studies the use of gold (Au) and silver (Ag) nanoparticles in multicrystalline silicon (mc-Si) and copper-indium-gallium-diselenide (CIGS) solar cells. Au and Ag nanoparticles are deposited by spin-coating method, which is a simple and low cost process. The random distribution of nanoparticles by spin coating broadens the resonance wavelength of the transmittance. This broadening favors solar cell applications. Metal shadowing competes with light scattering in a manner that varies with nanoparticle concentration. Experimental results reveal that the mc-Si solar cells that incorporate Au nanoparticles outperform those with Ag nanoparticles. The incorporation of suitable concentration of Au and Ag nanoparticles into mc-Si solar cells increases their efficiency enhancement by 5.6% and 4.8%, respectively. Incorporating Au and Ag nanoparticles into CIGS solar cells improve their efficiency enhancement by 1.2% and 1.4%, respectively. The enhancement of the photocurrent in mc-Si solar cells is lower than that in CIGS solar cells, owing to their different light scattering behaviors and material absorption coefficients. PMID:28793599

  14. Semi-transparent perovskite solar cells for tandems with silicon and CIGS

    DOE PAGES

    Bailie, Colin D.; Christoforo, M. Greyson; Mailoa, Jonathan P.; ...

    2014-12-23

    A promising approach for upgrading the performance of an established low-bandgap solar technology without adding much cost is to deposit a high bandgap polycrystalline semiconductor on top to make a tandem solar cell. We use a transparent silver nanowire electrode on perovskite solar cells to achieve a semi-transparent device. We place the semi-transparent cell in a mechanically-stacked tandem configuration onto copper indium gallium diselenide (CIGS) and low-quality multicrystalline silicon (Si) to achieve solid-state polycrystalline tandem solar cells with a net improvement in efficiency over the bottom cell alone. Furthermore, this work paves the way for integrating perovskites into a low-costmore » and high-efficiency (>25%) tandem cell.« less

  15. Preparation of copper-indium-gallium-diselenide precursor films by electrodeposition for fabricating high efficiency solar cells

    DOEpatents

    Bhattacharya, Raghu N.; Hasoon, Falah S.; Wiesner, Holm; Keane, James; Noufi, Rommel; Ramanathan, Kannan

    1999-02-16

    A photovoltaic cell exhibiting an overall conversion efficiency of 13.6% is prepared from a copper-indium-gallium-diselenide precursor thin film. The film is fabricated by first simultaneously electrodepositing copper, indium, gallium, and selenium onto a glass/molybdenum substrate (12/14). The electrodeposition voltage is a high frequency AC voltage superimposed upon a DC voltage to improve the morphology and growth rate of the film. The electrodeposition is followed by physical vapor deposition to adjust the final stoichiometry of the thin film to approximately Cu(In.sub.1-n Ga.sub.x)Se.sub.2, with the ratio of Ga/(In+Ga) being approximately 0.39.

  16. Recycling of high purity selenium from CIGS solar cell waste materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafsson, Anna M.K., E-mail: anna.gustafsson@chalmers.se; Foreman, Mark R.StJ.; Ekberg, Christian

    Highlights: • A new method for recycling of selenium from CIGS solar cell materials is presented. • Separation of selenium as selenium dioxide after heating in oxygen atmosphere. • Complete selenium separation after oxidation of <63 μm particles at 800 °C for 1 h. • After reduction of selenium dioxide the selenium purity was higher than 99.999 wt%. - Abstract: Copper indium gallium diselenide (CIGS) is a promising material in thin film solar cell production. To make CIGS solar cells more competitive, both economically and environmentally, in comparison to other energy sources, methods for recycling are needed. In addition tomore » the generally high price of the material, significant amounts of the metals are lost in the manufacturing process. The feasibility of recycling selenium from CIGS through oxidation at elevated temperatures was therefore examined. During oxidation gaseous selenium dioxide was formed and could be separated from the other elements, which remained in solid state. Upon cooling, the selenium dioxide sublimes and can be collected as crystals. After oxidation for 1 h at 800 °C all of the selenium was separated from the CIGS material. Two different reduction methods for reduction of the selenium dioxide to selenium were tested. In the first reduction method an organic molecule was used as the reducing agent in a Riley reaction. In the second reduction method sulphur dioxide gas was used. Both methods resulted in high purity selenium. This proves that the studied selenium separation method could be the first step in a recycling process aimed at the complete separation and recovery of high purity elements from CIGS.« less

  17. Experimental studies of thin films deposition by magnetron sputtering method for CIGS solar cell fabrication

    NASA Astrophysics Data System (ADS)

    Gułkowski, Sławomir; Krawczak, Ewelina

    2017-10-01

    Among a variety of the thin film solar cell technologies of second generation, copper-indium-gallium-diselenide device (CIGS) with the latest highest lab cell efficiency record of 22.4 % seems to be the most promising for the power generation. This is partly due to the advantages of using low cost films of few microns thick not only as a metallic contacts but also as a main structure of the solar cell consisted of high quality semiconductor layers. This paper reports the experimental studies of the CIGS absorber formation on Soda Lime Glass substrate covered by thin molybdenum film as a back contact layer. All structures were deposited with the use of magnetron sputtering method only. Technological parameters of the deposition process such as deposition power, pressure and deposition time were optimized for each layer of the structure. Mo back contact was examined in terms of resistivity. EDS measurements were carried out to verify stoichiometric composition of CIGS absorber. Thin film of Al was used as a top contact in order to examine the quality of p-n junction. The I-V electrical characteristic of the p-n junction was analysed in terms of solar cell application.

  18. Modeling and Simulation of a Dual-Junction CIGS Solar Cell Using Silvaco ATLAS

    DTIC Science & Technology

    2012-12-01

    junction Copper Indium Gallium Selenide (CIGS) photovoltaic cell is investigated in this thesis. Research into implementing a dual-junction solar cell...Silvaco ATLASTM model of a single CIGS cell was created by utilizing actual solar cell parameters (such as layer thicknesses, gallium ratio, doping...THIS PAGE INTENTIONALLY LEFT BLANK v ABSTRACT The potential of designing a dual-junction Copper Indium Gallium Selenide (CIGS) photovoltaic

  19. Physics-Based Compact Model for CIGS and CdTe Solar Cells: From Voltage-Dependent Carrier Collection to Light-Enhanced Reverse Breakdown: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xingshu; Alam, Muhammad Ashraful; Raguse, John

    2015-10-15

    In this paper, we develop a physics-based compact model for copper indium gallium diselenide (CIGS) and cadmium telluride (CdTe) heterojunction solar cells that attributes the failure of superposition to voltage-dependent carrier collection in the absorber layer, and interprets light-enhanced reverse breakdown as a consequence of tunneling-assisted Poole-Frenkel conduction. The temperature dependence of the model is validated against both simulation and experimental data for the entire range of bias conditions. The model can be used to characterize device parameters, optimize new designs, and most importantly, predict performance and reliability of solar panels including the effects of self-heating and reverse breakdown duemore » to partial-shading degradation.« less

  20. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    DOEpatents

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  1. Ecotoxicological assessment of solar cell leachates: Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells.

    PubMed

    Brun, Nadja Rebecca; Wehrli, Bernhard; Fent, Karl

    2016-02-01

    Despite the increasing use of photovoltaics their potential environmental risks are poorly understood. Here, we compared ecotoxicological effects of two thin-film photovoltaics: established copper indium gallium selenide (CIGS) and organic photovoltaic (OPV) cells. Leachates were produced by exposing photovoltaics to UV light, physical damage, and exposure to environmentally relevant model waters, representing mesotrophic lake water, acidic rain, and seawater. CIGS cell leachates contained 583 μg L(-1) molybdenum at lake water, whereas at acidic rain and seawater conditions, iron, copper, zinc, molybdenum, cadmium, silver, and tin were present up to 7219 μg L(-1). From OPV, copper (14 μg L(-1)), zinc (87 μg L(-1)) and silver (78 μg L(-1)) leached. Zebrafish embryos were exposed until 120 h post-fertilization to these extracts. CIGS leachates produced under acidic rain, as well as CIGS and OPV leachates produced under seawater conditions resulted in a marked hatching delay and increase in heart edema. Depending on model water and solar cell, transcriptional alterations occurred in genes involved in oxidative stress (cat), hormonal activity (vtg1, ar), metallothionein (mt2), ER stress (bip, chop), and apoptosis (casp9). The effects were dependent on the concentrations of cationic metals in leachates. Addition of ethylenediaminetetraacetic acid protected zebrafish embryos from morphological and molecular effects. Our study suggests that metals leaching from damaged CIGS cells, may pose a potential environmental risk. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Preparation of CIGS-based solar cells using a buffered electrodeposition bath

    DOEpatents

    Bhattacharya, Raghu Nath

    2007-11-20

    A photovoltaic cell exhibiting an overall conversion efficiency of at least 9.0% is prepared from a copper-indium-gallium-diselenide thin film. The thin film is prepared by simultaneously electroplating copper, indium, gallium, and selenium onto a substrate using a buffered electro-deposition bath. The electrodeposition is followed by adding indium to adjust the final stoichiometry of the thin film.

  3. Copper Indium Gallium Diselenide Cluster Tool | Photovoltaic Research |

    Science.gov Websites

    -mobile unit The figure shows where chambers-numbered in the list above-are physically located on the laboratory space. Samples from the CIGS cluster tool can be transported to these other tools using a mobile

  4. Leading Solar Expertise-A Launch Pad to the Future - Continuum Magazine

    Science.gov Websites

    &D Magazine and identify each technology as one of the top 100 technological innovations of the 1996 for copper indium gallium diselenide (CIGS). One of the more popular thin-film solar cells to be of the world's first solar power towers-Solar One and Solar Two, shown here. CSP systems produce

  5. Materials and Devices | Photovoltaic Research | NREL

    Science.gov Websites

    Polycrystalline Thin-Film PV Cadmium telluride (CdTe) solar cells Copper indium gallium diselenide (CIGS) solar cells Perovskite and Organic PV Perovskite solar cells Perovskite Patent Portfolio Organic PV (OPV ) solar cells Advanced Materials, Devices, and Concepts We explore new PV materials using high-throughput

  6. Development and manufacture of reactive-transfer-printed CIGS photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Eldada, Louay; Sang, Baosheng; Lu, Dingyuan; Stanbery, Billy J.

    2010-09-01

    In recent years, thin-film photovoltaic (PV) companies started realizing their low manufacturing cost potential, and grabbing an increasingly larger market share from multicrystalline silicon companies. Copper Indium Gallium Selenide (CIGS) is the most promising thin-film PV material, having demonstrated the highest energy conversion efficiency in both cells and modules. However, most CIGS manufacturers still face the challenge of delivering a reliable and rapid manufacturing process that can scale effectively and deliver on the promise of this material system. HelioVolt has developed a reactive transfer process for CIGS absorber formation that has the benefits of good compositional control, high-quality CIGS grains, and a fast reaction. The reactive transfer process is a two stage CIGS fabrication method. Precursor films are deposited onto substrates and reusable print plates in the first stage, while in the second stage, the CIGS layer is formed by rapid heating with Se confinement. High quality CIGS films with large grains were produced on a full-scale manufacturing line, and resulted in high-efficiency large-form-factor modules. With 14% cell efficiency and 12% module efficiency, HelioVolt started to commercialize the process on its first production line with 20 MW nameplate capacity.

  7. Characterization of Cu(In,Ga)Se 2 (CIGS) films with varying gallium ratios

    DOE PAGES

    Claypoole, Jesse; Peace, Bernadette; Sun, Neville; ...

    2015-09-05

    Cu(In 1–x,Ga x)Se 2 (CIGS) absorber layers were deposited on molybdenum (Mo) coated soda-lime glass substrates with varying Ga content (described as Ga/(In + Ga) ratios) with respect to depth. As the responsible mechanisms for the limitation of the performance of the CIGS solar cells with high Ga contents are not well understood, the goal of this work was to investigate different properties of CIGS absorber films with Ga/(In + Ga) ratios varied between 0.29 and 0.41 (as determined by X-ray florescence spectroscopy (XRF)) in order to better understand the role that the Ga content has on film quality. Themore » Ga grading in the CIGS layer has the effect causing a higher band gap toward the surface and Mo contact while the band gap in the middle of the CIGS layer is lower. Also, a wider and larger Ga/(In + Ga) grading dip located deeper in the CIGS absorber layers tend to produce larger grains in the regions of the films that have lower Ga/(In + Ga) ratios. Moreover, it was found that surface roughness decreases from 51.2 nm to 41.0 nm with increasing Ga/(In + Ga) ratios. Furthermore, the surface roughness generally decreases if the Ga grading occurs deeper in the absorber layer.« less

  8. Real Time Spectroscopic Ellipsometry Analysis of First Stage CuIn1-xGaxSe₂ Growth: Indium-Gallium Selenide Co-Evaporation.

    PubMed

    Pradhan, Puja; Aryal, Puruswottam; Attygalle, Dinesh; Ibdah, Abdel-Rahman; Koirala, Prakash; Li, Jian; Bhandari, Khagendra P; Liyanage, Geethika K; Ellingson, Randy J; Heben, Michael J; Marsillac, Sylvain; Collins, Robert W; Podraza, Nikolas J

    2018-01-16

    Real time spectroscopic ellipsometry (RTSE) has been applied for in-situ monitoring of the first stage of copper indium-gallium diselenide (CIGS) thin film deposition by the three-stage co-evaporation process used for fabrication of high efficiency thin film photovoltaic (PV) devices. The first stage entails the growth of indium-gallium selenide (In 1- x Ga x )₂Se₃ (IGS) on a substrate of Mo-coated soda lime glass maintained at a temperature of 400 °C. This is a critical stage of CIGS deposition because a large fraction of the final film thickness is deposited, and as a result precise compositional control is desired in order to achieve the optimum performance of the resulting CIGS solar cell. RTSE is sensitive to monolayer level film growth processes and can provide accurate measurements of bulk and surface roughness layer thicknesses. These in turn enable accurate measurements of the bulk layer optical response in the form of the complex dielectric function ε = ε₁ - iε₂, spectra. Here, RTSE has been used to obtain the (ε₁, ε₂) spectra at the measurement temperature of 400 °C for IGS thin films of different Ga contents ( x ) deduced from different ranges of accumulated bulk layer thickness during the deposition process. Applying an analytical expression in common for each of the (ε₁, ε₂) spectra of these IGS films, oscillator parameters have been obtained in the best fits and these parameters in turn have been fitted with polynomials in x . From the resulting database of polynomial coefficients, the (ε₁, ε₂) spectra can be generated for any composition of IGS from the single parameter, x . The results have served as an RTSE fingerprint for IGS composition and have provided further structural information beyond simply thicknesses, for example information related to film density and grain size. The deduced IGS structural evolution and the (ε₁, ε₂) spectra have been interpreted as well in relation to observations from scanning

  9. Formation of selenide, sulfide or mixed selenide-sulfide films on metal or metal coated substrates

    DOEpatents

    Eser, Erten; Fields, Shannon

    2012-05-01

    A process and composition for preventing cracking in composite structures comprising a metal coated substrate and a selenide, sulfide or mixed selenide sulfide film. Specifically, cracking is prevented in the coating of molybdenum coated substrates upon which a copper, indium-gallium diselenide (CIGS) film is deposited. Cracking is inhibited by adding a Se passivating amount of oxygen to the Mo and limiting the amount of Se deposited on the Mo coating.

  10. Selenization of CIS and CIGS layers deposited by chemical spray pyrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babu, B. J.; Egaas, B.; Velumani, S.

    Cu(In1-xGax)Se2 (CIGS) thin films with x=0 (CIS) and x=0.3 (CIGS) were prepared on Mo-coated glass substrate by using chemical spray pyrolysis at a substrate temperature of 350 degrees C, followed by selenization treatment at 550 degrees C in selenium environment under N2 gas flow. X-ray diffraction patterns of as-deposited CIGS layers on Mo showed polycrystalline chalcopyrite phase with an intense (112) plane. Splitting of (204)/(220) and (116)/(312) planes for the film with x=0.3 reveals deviation of tetragonal nature. Field emission scanning electron microscopy cross-sectional images of selenized films showed clear re-crystallization of grains. During the selenization process of the CIGSmore » absorber, a thin interface layer of MoSe2 is formed. Line mapping of Mo/CIGS layer showed more gallium segregation at the interface of back contact resulting in band gap grading. Chemical composition and mapping of the as-deposited and selenized samples were determined by energy dispersive analysis of X-rays. This work leads to fabrication of low cost and large scale Mo/CIGS/CdS/ZnO/ZnO:Al device structure.« less

  11. Real Time Spectroscopic Ellipsometry Analysis of First Stage CuIn1−xGaxSe2 Growth: Indium-Gallium Selenide Co-Evaporation

    PubMed Central

    Pradhan, Puja; Aryal, Puruswottam; Attygalle, Dinesh; Ibdah, Abdel-Rahman; Koirala, Prakash; Li, Jian; Bhandari, Khagendra P.; Liyanage, Geethika K.; Ellingson, Randy J.; Heben, Michael J.; Marsillac, Sylvain; Collins, Robert W.; Podraza, Nikolas J.

    2018-01-01

    Real time spectroscopic ellipsometry (RTSE) has been applied for in-situ monitoring of the first stage of copper indium-gallium diselenide (CIGS) thin film deposition by the three-stage co-evaporation process used for fabrication of high efficiency thin film photovoltaic (PV) devices. The first stage entails the growth of indium-gallium selenide (In1−xGax)2Se3 (IGS) on a substrate of Mo-coated soda lime glass maintained at a temperature of 400 °C. This is a critical stage of CIGS deposition because a large fraction of the final film thickness is deposited, and as a result precise compositional control is desired in order to achieve the optimum performance of the resulting CIGS solar cell. RTSE is sensitive to monolayer level film growth processes and can provide accurate measurements of bulk and surface roughness layer thicknesses. These in turn enable accurate measurements of the bulk layer optical response in the form of the complex dielectric function ε = ε1 − iε2, spectra. Here, RTSE has been used to obtain the (ε1, ε2) spectra at the measurement temperature of 400 °C for IGS thin films of different Ga contents (x) deduced from different ranges of accumulated bulk layer thickness during the deposition process. Applying an analytical expression in common for each of the (ε1, ε2) spectra of these IGS films, oscillator parameters have been obtained in the best fits and these parameters in turn have been fitted with polynomials in x. From the resulting database of polynomial coefficients, the (ε1, ε2) spectra can be generated for any composition of IGS from the single parameter, x. The results have served as an RTSE fingerprint for IGS composition and have provided further structural information beyond simply thicknesses, for example information related to film density and grain size. The deduced IGS structural evolution and the (ε1, ε2) spectra have been interpreted as well in relation to observations from scanning electron microscopy, X

  12. The Theory of Planned Behavior and E-cig Use: Impulsive Personality, E-cig Attitudes, and E-cig Use.

    PubMed

    Hershberger, Alexandra; Connors, Miranda; Um, Miji; Cyders, Melissa A

    2018-04-01

    The current paper applied the Theory of Planned Behavior (TPB; Ajzen & Fishbein, 1988) to understand how impulsive personality traits and attitudes concerning e-cig use relate to the likelihood of electronic cigarette (e-cig) use. Seven hundred and fourteen participants (Mean age = 34.04, SD = 10.89, 48.6% female) completed cross-sectional measures of e-cig use attitudes (CEAC) and the Short UPPS-P Impulsive Behavior Scale. A structural path analysis suggested that urgency and deficits in conscientiousness were significantly related to e-cig attitudes (CFI = 0.99, TLI = 0.99, RMSEA = 0.02; urgency: β = 0.32, p = .001; deficits in conscientiousness: β = -0.48, p < .001). E-cig attitude scores were significantly higher for e-cig users than non-users, β = 0.85, p < .001. There was no significant direct path from impulsive personality traits to e-cig use. Findings provide initial support for a model in which impulsive traits are related to e-cig use through positive e-cig attitudes.

  13. Solution-deposited CIGS thin films for ultra-low-cost photovoltaics

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.; Hersh, Peter; Stanbery, Billy J.

    2010-09-01

    We describe the production of photovoltaic modules with high-quality large-grain copper indium gallium selenide (CIGS) thin films obtained with the unique combination of low-cost ink-based precursors and a reactive transfer printing method. The proprietary metal-organic inks contain a variety of soluble Cu-, In- and Ga- multinary selenide materials; they are called metal-organic decomposition (MOD) precursors, as they are designed to decompose into the desired precursors. Reactive transfer is a two-stage process that produces CIGS through the chemical reaction between two separate precursor films, one deposited on the substrate and the other on a printing plate in the first stage. In the second stage, these precursors are rapidly reacted together under pressure in the presence of heat. The use of two independent thin films provides the benefits of independent composition and flexible deposition technique optimization, and eliminates pre-reaction prior to the synthesis of CIGS. In a few minutes, the process produces high quality CIGS films, with large grains on the order of several microns, and preferred crystallographic orientation, as confirmed by compositional and structural analysis by XRF, SIMS, SEM and XRD. Cell efficiencies of 14% and module efficiencies of 12% were achieved using this method. The atmospheric deposition processes include slot die extrusion coating, ultrasonic atomization spraying, pneumatic atomization spraying, inkjet printing, direct writing, and screen printing, and provide low capital equipment cost, low thermal budget, and high throughput.

  14. Comparative alternative materials assessment to screen toxicity hazards in the life cycle of CIGS thin film photovoltaics.

    PubMed

    Eisenberg, Daniel A; Yu, Mengjing; Lam, Carl W; Ogunseitan, Oladele A; Schoenung, Julie M

    2013-09-15

    Copper-indium-gallium-selenium-sulfide (CIGS) thin film photovoltaics are increasingly penetrating the market supply for consumer solar panels. Although CIGS is attractive for producing less greenhouse gas emissions than fossil-fuel based energy sources, CIGS manufacturing processes and solar cell devices use hazardous materials that should be carefully considered in evaluating and comparing net environmental benefits of energy products. Through this research, we present a case study on the toxicity hazards associated with alternative materials selection for CIGS manufacturing. We applied two numeric models, The Green Screen for Safer Chemicals and the Toxic Potential Indicator. To improve the sensitivity of the model outputs, we developed a novel, life cycle thinking based hazard assessment method that facilitates the projection of hazards throughout material life cycles. Our results show that the least hazardous CIGS solar cell device and manufacturing protocol consist of a titanium substrate, molybdenum metal back electrode, CuInS₂ p-type absorber deposited by spray pyrolysis, ZnS buffer deposited by spray ion layer gas reduction, ZnO:Ga transparent conducting oxide (TCO) deposited by sputtering, and the encapsulant polydimethylsiloxane. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Effects of intrinsic and extrinsic point defects on epitaxial single crystal copper-indium(1-x)-gallium(x)-diselenide

    NASA Astrophysics Data System (ADS)

    Schroeder, David James

    From the results presented here a number of conclusions regarding the effects of point defects on the properties of epitaxial single crystal CuInsb{1-x}Gasb{x}Sesb2 (CIGS) may be drawn. These conclusions may be divided into three categories: the effects of point defects on Ga diffusion and diffusivity, the influence of impurities and alloying elements on doping and mobility, and the effects of impurities on minority carrier recombination kinetics. The diffusivity of Ga into CIGS during growth was found to be strongly dependent of the Cu/In ratio of the growing layer. Diffusivity ranged from a minimum of 2.7×10sp{-13}\\ cmsp2/s at Cu/In = 0.94 to 5 × 10sp{-11} cmsp2/s at Cu/In = 1.41 and 7×10sp{-12} cmsp2/s at Cu/In = 0.43. The diffusion occurred by a vacancy mechanism with Ga, apparently, diffusing through either Cu or In vacancies. The sharp change in diffusivity with changing Cu/In ratio helps to explain the difficulty in maintaining a desired Ga profile in polycrystalline CIGS device absorber layers. Increasing Ga content was found to increase both acceptor and donor density. The decrease in Jsbsc found in Ga-containing polycrystalline devices, is likely caused by a large increase in acceptor density, which may cause less inversion of the surface of the p-type CIGS making the junction more sensitive to surface states. The effect of adding Na by diffusion from either NaOH or Nasp2Se was to reduce the donor density. These results help to explain results in polycrystalline CIGS devices where Na increased hole concentrations, Vsboc, and device efficiency. Unlike Ga and Na, Cr and Se were not found to have any strong effect when added in concentrations ≤10sp{19} cmsp{-3} using ion implantation. The lack of an effect of Se on doping conclusively determines that Na has an effect beyond simply introducing either O or Se into the bulk of the CIGS. While both implanted Se and Cr created large numbers of donors and acceptors before being annealed, both caused a

  16. The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system

    NASA Astrophysics Data System (ADS)

    Bjørk, R.; Nielsen, K. K.

    2015-10-01

    The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system is examined using an analytical model for four different types of commercial PVs and a commercial bismuth telluride TEG. The TEG is applied directly on the back of the PV, so that the two devices have the same temperature. The PVs considered are crystalline Si (c-Si), amorphous Si (a-Si), copper indium gallium (di)selenide (CIGS) and cadmium telluride (CdTe) cells. The degradation of PV performance with temperature is shown to dominate the increase in power produced by the TEG, due to the low efficiency of the TEG. For c-Si, CIGS and CdTe PV cells the combined system produces a lower power and has a lower efficiency than the PV alone, whereas for an a-Si cell the total system performance may be slightly increased by the TEG.

  17. Copper indium gallium selenide (CIGS) photovoltaic devices made using multistep selenization of nanocrystal films.

    PubMed

    Harvey, Taylor B; Mori, Isao; Stolle, C Jackson; Bogart, Timothy D; Ostrowski, David P; Glaz, Micah S; Du, Jiang; Pernik, Douglas R; Akhavan, Vahid A; Kesrouani, Hady; Vanden Bout, David A; Korgel, Brian A

    2013-09-25

    The power conversion efficiency of photovoltaic devices made with ink-deposited Cu(InxGa1-x)Se2 (CIGS) nanocrystal layers can be enhanced by sintering the nanocrystals with a high temperature selenization process. This process, however, can be challenging to control. Here, we report that ink deposition followed by annealing under inert gas and then selenization can provide better control over CIGS nanocrystal sintering and yield generally improved device efficiency. Annealing under argon at 525 °C removes organic ligands and diffuses sodium from the underlying soda lime glass into the Mo back contact to improve the rate and quality of nanocrystal sintering during selenization at 500 °C. Shorter selenization time alleviates excessive MoSe2 formation at the Mo back contact that leads to film delamination, which in turn enables multiple cycles of nanocrystal deposition and selenization to create thicker, more uniform absorber films. Devices with power conversion efficiency greater than 7% are fabricated using the multiple step nanocrystal deposition and sintering process.

  18. Thin-film copper indium gallium selenide solar cell based on low-temperature all-printing process.

    PubMed

    Singh, Manjeet; Jiu, Jinting; Sugahara, Tohru; Suganuma, Katsuaki

    2014-09-24

    In the solar cell field, development of simple, low-cost, and low-temperature fabrication processes has become an important trend for energy-saving and environmental issues. Copper indium gallium selenide (CIGS) solar cells have attracted much attention due to the high absorption coefficient, tunable band gap energy, and high efficiency. However, vacuum and high-temperature processing in fabrication of solar cells have limited the applications. There is a strong need to develop simple and scalable methods. In this work, a CIGS solar cell based on all printing steps and low-temperature annealing is developed. CIGS absorber thin film is deposited by using dodecylamine-stabilized CIGS nanoparticle ink followed by printing buffer layer. Silver nanowire (AgNW) ink and sol-gel-derived ZnO precursor solution are used to prepare a highly conductive window layer ZnO/[AgNW/ZnO] electrode with a printing method that achieves 16 Ω/sq sheet resistance and 94% transparency. A CIGS solar cell based on all printing processes exhibits efficiency of 1.6% with open circuit voltage of 0.48 V, short circuit current density of 9.7 mA/cm(2), and fill factor of 0.34 for 200 nm thick CIGS film, fabricated under ambient conditions and annealed at 250 °C.

  19. The Effect of Interface Cracks on the Electrical Performance of Solar Cells

    NASA Astrophysics Data System (ADS)

    Kim, Hansung; Tofail, Md. Towfiq; John, Ciby

    2018-04-01

    Among a variety of solar cell types, thin-film solar cells have been rigorously investigated as cost-effective and efficient solar cells. In many cases, flexible solar cells are also fabricated as thin films and undergo frequent stress due to the rolling and bending modes of applications. These frequent motions result in crack initiation and propagation (including delamination) in the thin-film solar cells, which cause degradation in efficiency. Reliability evaluation of solar cells is essential for developing a new type of solar cell. In this paper, we investigated the effect of layer delamination and grain boundary crack on 3D thin-film solar cells. We used finite element method simulation for modeling of both electrical performance and cracked structure of 3D solar cells. Through simulations, we quantitatively calculated the effect of delamination length on 3D copper indium gallium diselenide (CIGS) solar cell performance. Moreover, it was confirmed that the grain boundary of CIGS could improve the solar cell performance and that grain boundary cracks could decrease cell performance by altering the open circuit voltage. In this paper, the investigated material is a CIGS solar cell, but our method can be applied to general polycrystalline solar cells.

  20. Influence of Post-Heat Treatment of ZnO:Al Transparent Electrode for Copper Indium Gallium Selenide Thin Film Solar Cell.

    PubMed

    Eom, Taewoo; Park, Jeong Eun; Park, Sang Yong; Park, Jeong Hoon; Bweupe, Jackson; Lim, Donggun

    2018-09-01

    Copper indium gallium selenide (CIGS) thin film solar cells have been regarded as a candidate for energy conversion devices owing to their high absorption coefficient, high temperature stability, and low cost. ZnO:Al thin film is commonly used in CIGS solar cells as a window layer. In this study, ZnO:Al films were deposited on glass under various post-heat temperature using RF sputtering to observe the characteristics of ZnO:Al films such as Hall mobility, carrier concentration, and resistivity; subsequently, the ZnO:Al films were applied to a CIGS solar cell as a window. CIGS solar cells fabricated with various ZnO:Al films were analyzed in order to investigate their influence. The test results showed that the improvement of ZnO:Al characteristics affects Jsc and Voc in the solar cell through reduced recombination and increase of optical property.

  1. CIGS2 Thin-Film Solar Cells on Flexible Foils for Space Power

    NASA Technical Reports Server (NTRS)

    Dhere, Neelkanth G.; Ghongadi, Shantinath R.; Pandit, Mandar B.; Jahagirdar, Anant H.; Scheiman, David

    2002-01-01

    CuIn(1-x)Ga(x)S2 (CIGS2) thin-film solar cells are of interest for space power applications because of the near optimum bandgap for AM0 solar radiation in space. CIGS2 thin film solar cells on flexible stainless steel (SS) may be able to increase the specific power by an order of magnitude from the current level of 65 Wkg(sup -1). CIGS solar cells are superior to the conventional silicon and gallium arsenide solar cells in the space radiation environment. This paper presents research efforts for the development of CIGS2 thin-film solar cells on 127 micrometers and 20 micrometers thick, bright-annealed flexible SS foil for space power. A large-area, dual-chamber, inline thin film deposition system has been fabricated. The system is expected to provide thickness uniformity of plus or minus 2% over the central 5" width and plus or minus 3% over the central 6" width. During the next phase, facilities for processing larger cells will be acquired for selenization and sulfurization of metallic precursors and for heterojunction CdS layer deposition both on large area. Small area CIGS2 thin film solar cells are being prepared routinely. Cu-rich Cu-Ga/In layers were sputter-deposited on unheated Mo-coated SS foils from CuGa (22%) and In targets. Well-adherent, large-grain Cu-rich CIGS2 films were obtained by sulfurization in a Ar: H2S 1:0.04 mixture and argon flow rate of 650 sccm, at the maximum temperature of 475 C for 60 minutes with intermediate 30 minutes annealing step at 120 C. Samples were annealed at 500 C for 10 minutes without H2S gas flow. The intermediate 30 minutes annealing step at 120 C was changed to 135 C. p-type CIGS2 thin films were obtained by etching the Cu-rich layer segregated at the surface using dilute KCN solution. Solar cells were completed by deposition of CdS heterojunction partner layer by chemical bath deposition, transparent-conducting ZnO/ZnO: Al window bilayer by RF sputtering, and vacuum deposition of Ni/Al contact fingers through metal

  2. Point contacts at the copper-indium-gallium-selenide interface—A theoretical outlook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bercegol, Adrien, E-mail: adrien.bercegol@polytechnique.edu; Chacko, Binoy; Klenk, Reiner

    For a long time, it has been assumed that recombination in the space-charge region of copper-indium-gallium-selenide (CIGS) is dominant, at least in high efficiency solar cells with low band gap. The recent developments like potassium fluoride post deposition treatment and point-contact junction may call this into question. In this work, a theoretical outlook is made using three-dimensional simulations to investigate the effect of point-contact openings through a passivation layer on CIGS solar cell performance. A large set of solar cells is modeled under different scenarios for the charged defect levels and density, radius of the openings, interface quality, and conductionmore » band offset. The positive surface charge created by the passivation layer induces band bending and this influences the contact (CdS) properties, making it beneficial for the open circuit voltage and efficiency, and the effect is even more pronounced when coverage area is more than 95%, and also makes a positive impact on the device performance, even in the presence of a spike at CIGS/CdS heterojunction.« less

  3. E-Cigs, Menthol & Dip

    MedlinePlus

    ... are different. Find out why any product with nicotine can be addictive and bad for your health. What We Know About Electronic Cigarettes (E-cigarettes) Some people use e-cigs to quit smoking. But there is still much about e-cigs that's unknown. Read ...

  4. META-GLARE: a shell for CIG systems.

    PubMed

    Bottrighi, Alessio; Rubrichi, Stefania; Terenziani, Paolo

    2015-01-01

    In the last twenty years, many different approaches to deal with Computer-Interpretable clinical Guidelines (CIGs) have been developed, each one proposing its own representation formalism (mostly based on the Task-Network Model) execution engine. We propose META-GLARE a shell for easily defining new CIG systems. Using META-GLARE, CIG system designers can easily define their own systems (basically by defining their representation language), with a minimal programming effort. META-GLARE is thus a flexible and powerful vehicle for research about CIGs, since it supports easy and fast prototyping of new CIG systems.

  5. Implications for current regulatory waste toxicity characterisation methods from analysing metal and metalloid leaching from photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Collins, Mary Kayla; Anctil, Annick

    2017-07-01

    The appropriateness of regulatory methods to characterise the toxicity of photovoltaic (PV) modules was investigated to quantify potential environmental impacts for modules disposed of in landfills. Because solar energy is perceived as a green technology, it is important to ensure that end-of-life issues will not be detrimental to solar energy's success. United States Environmental Protection Agency Method 1311, California waste extraction test, and modified versions of both were performed on a multi-crystalline silicon module and cells and a copper indium gallium diselenide (CIGS) module. Variations in metal leachate concentrations were found with changes in testing parameters. Lead concentrations from the multi-crystalline module ranged from 16.2 to 50.2 mg/L. Cadmium concentrations from the CIGS module ranged from 0.1 to 3.52 mg/L. This raises doubt that regulatory methods can adequately characterise PV modules. The results are useful for developing end-of-life procedures, which is a positive step towards avoiding an e-waste problem and continuing trends of increasing installation and cost reduction in the PV market.

  6. Numerical modelling of CIGS/CdS solar cell

    NASA Astrophysics Data System (ADS)

    Devi, Nisha; Aziz, Anver; Datta, Shouvik

    2018-05-01

    In this work, we design and analyze the Cu(In,Ga)Se2 (CIGS) solar cell using simulation software "Solar Cell Capacitance Simulator in One Dimension (SCAPS-1D)". The conventional CIGS solar cell uses various layers, like intrinsic ZnO/Aluminium doped ZnO as transparent oxide, antireflection layer MgF2, and electron back reflection (EBR) layer at CIGS/Mo interface for good power conversion efficiency. We replace this conventional model by a simple model which is easy to fabricate and also reduces the cost of this cell because of use of lesser materials. The new designed model of CIGS solar cell is ITO/CIGS/OVC/CdS/Metal contact, where OVC is ordered vacancy compound. From this simple structure, even at very low illumination we are getting good results. We simulate this CIGS solar cell model by varying various physical parameters of CIGS like thickness, carrier density, band gap and temperature.

  7. Diphenyl diselenide decreases serum levels of total cholesterol and tissue oxidative stress in cholesterol-fed rabbits.

    PubMed

    de Bem, Andreza Fabro; Portella, Rafael de Lima; Colpo, Elisângela; Duarte, Marta Maria Medeiros Frescura; Frediane, Andressa; Taube, Paulo Sergio; Nogueira, Cristina Wayne; Farina, Marcelo; da Silva, Edson Luiz; Teixeira Rocha, João Batista

    2009-07-01

    Hypercholesterolaemia and oxidative stress are well-known risk factors in coronary artery diseases. Diphenyl diselenide is a synthetic organoselenium compound that has been shown to have in vitro and in vivo antioxidant properties. In this study, we investigated whether diphenyl diselenide could reduce the hypercholesterolaemia and diminish the tissue oxidative stress in cholesterol-fed rabbits. Twenty-four New Zealand white male rabbits were randomly divided into four groups. Each group was fed a different diet as follows: Control group--regular chow; Cholesterol group--1% cholesterol-enriched diet; diphenyl diselenide group--regular diet supplemented with 10 ppm diphenyl diselenide; and Chol/diphenyl diselenide group--the same cholesterol-rich supplemented with 10 ppm diphenyl diselenide. After 45 days of treatment, the rabbits were killed and the blood, liver, and brain were used for laboratory analysis. The results showed that the serum levels of total cholesterol were markedly increased in cholesterol-fed rabbits and the consumption of diphenyl diselenide decreased these levels approximately twofold in Chol/diphenyl diselenide rabbits (P < 0.05). The intake of diphenyl diselenide by hypercholesterolaemic rabbits diminished the serum and hepatic thiobarbituric acid reactive substances levels as well as the production of reactive oxygen species in the blood and brain (P < 0.05) when compared to the cholesterol group. In addition, diphenyl diselenide supplementation increased hepatic and cerebral delta-aminolevulinic dehydratase activity and hepatic non-protein thiol groups levels despite hypercholesterolaemia (P < 0.05). In summary, the results showed that diphenyl diselenide reduced the hypercholesterolaemia and the oxidative stress in cholesterol-fed rabbits.

  8. Effect of Selenization Processes on CIGS Solar Cell Performance.

    PubMed

    Wu, C H; Wu, P W; Chen, J H; Kao, J Y; Hsu, C Y

    2018-07-01

    Cu(In, Ga)Se2 (CIGS) films were fabricated by a two-step process method using sputtering from Cu0.7Ga0.3 and In targets. The metallic precursor structures of In/CuGa/In were prepared, and CuGa film was adjusted to the thicknesses of 150, 200, 250 and 300 nm, in order to optimize the CIGS film. After selenization, three independent CIGS (112), CIGS (220/204) and CIGS (312/116) began to crystallize at ~280 °C and phase peaks continued growing until 560 °C. Experimental results showed that with a single stage selenization method, the excessive stoichiometry of the CIGS films was obtained. Using three sequential stages for the selenization process, with a annealing time of 20 min, the stoichiometry of the CIGS absorbers with the Cu/(In + Ga) and Ga/(In + Ga) showed atomic ratios of 0.94 and 0.34, respectively. The intensity of the (112) XRD diffraction peak became stronger, indicating an improvement in the crystallinity. Raman spectra of CIGS absorbers showed a main peak (174 cm-1) and two weak signals (212 and 231 cm-1). TEM image for electron diffraction pattern showed that the grains were randomly oriented. CIGS solar cell device prepared with a proper selenization, a maximum efficiency of 12.45% was obtained.

  9. Methods of forming CIGS films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mansfield, Lorelle; Ramanathan, Kannan

    2017-09-19

    Methods for forming CIGS films are provided. According to an aspect of the invention, a method of forming a CIGS film includes a precursor step, which includes simultaneously evaporating Cu, In, Ga, Se, and Sb onto a substrate. The Se is incident on the substrate at a rate of at least 20 .ANG./s. The method also includes a selenization step, which includes evaporating Se over the substrate after the precursor step.

  10. Flexible copper-indium-diselenide films and devices for space applications

    NASA Technical Reports Server (NTRS)

    Armstrong, J. H.; Pistole, C. O.; Misra, M. S.; Kapur, V. K.; Basol, B. M.

    1991-01-01

    With the ever increasing demands on space power systems, it is imperative that low cost, lightweight, reliable photovoltaics be developed. One avenue of pursuit for future space power applications is the use of low cost, lightweight flexible PV cells and arrays. Most work in this area assumes the use of flexible amorphous silicon (a-Si), despite its inherent instability and low efficiencies. However, polycrystalline thin film PV such as copper-indium-diselenide (CIS) are inherently more stable and exhibit better performance than a-Si. Furthermore, preliminary data indicate that CIS also offers exciting properties with respect to space applications. However, CIS has only heretofore only produced on rigid substrates. The implications of flexible CIS upon present and future space power platforms was explored. Results indicate that space qualified CIS can dramatically reduce the cost of PV, and in most cases, can be substituted for silicon (Si) based on end-of-life (EOL) estimations. Furthermore, where cost is a prime consideration, CIS can become cost effective than gallium arsenide (GaAs) in some applications. Second, investigations into thin film deposition on flexible substrates were made, and data from these tests indicate that fabrication of flexible CIS devices is feasible. Finally, data is also presented on preliminary TCO/CdS/CuInSe2/Mo devices.

  11. CIG-P: Circular Interaction Graph for Proteomics.

    PubMed

    Hobbs, Christopher K; Leung, Michelle; Tsang, Herbert H; Ebhardt, H Alexander

    2014-10-31

    A typical affinity purification coupled to mass spectrometry (AP-MS) experiment includes the purification of a target protein (bait) using an antibody and subsequent mass spectrometry analysis of all proteins co-purifying with the bait (aka prey proteins). Like any other systems biology approach, AP-MS experiments generate a lot of data and visualization has been challenging, especially when integrating AP-MS experiments with orthogonal datasets. We present Circular Interaction Graph for Proteomics (CIG-P), which generates circular diagrams for visually appealing final representation of AP-MS data. Through a Java based GUI, the user inputs experimental and reference data as file in csv format. The resulting circular representation can be manipulated live within the GUI before exporting the diagram as vector graphic in pdf format. The strength of CIG-P is the ability to integrate orthogonal datasets with each other, e.g. affinity purification data of kinase PRPF4B in relation to the functional components of the spliceosome. Further, various AP-MS experiments can be compared to each other. CIG-P aids to present AP-MS data to a wider audience and we envision that the tool finds other applications too, e.g. kinase - substrate relationships as a function of perturbation. CIG-P is available under: http://sourceforge.net/projects/cig-p/

  12. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation

    PubMed Central

    Gao, Min-Rui; Liang, Jin-Xia; Zheng, Ya-Rong; Xu, Yun-Fei; Jiang, Jun; Gao, Qiang; Li, Jun; Yu, Shu-Hong

    2015-01-01

    The electroreduction of water for sustainable hydrogen production is a critical component of several developing clean-energy technologies, such as water splitting and fuel cells. However, finding a cheap and efficient alternative catalyst to replace currently used platinum-based catalysts is still a prerequisite for the commercialization of these technologies. Here we report a robust and highly active catalyst for hydrogen evolution reaction that is constructed by in situ growth of molybdenum disulfide on the surface of cobalt diselenide. In acidic media, the molybdenum disulfide/cobalt diselenide catalyst exhibits fast hydrogen evolution kinetics with onset potential of −11 mV and Tafel slope of 36 mV per decade, which is the best among the non-noble metal hydrogen evolution catalysts and even approaches to the commercial platinum/carbon catalyst. The high hydrogen evolution activity of molybdenum disulfide/cobalt diselenide hybrid is likely due to the electrocatalytic synergistic effects between hydrogen evolution-active molybdenum disulfide and cobalt diselenide materials and the much increased catalytic sites. PMID:25585911

  13. Diphenyl diselenide diet intake improves spatial learning and memory deficits in hypothyroid female rats.

    PubMed

    Dias, Glaecir Roseni Mundstock; Vieira, Francielli Araújo; Dobrachinski, Fernando; Bridi, Jéssika Cristina; Balk, Rodrigo de Souza; Soares, Félix Antunes; Nogueira, Cristina Wayne; Barbosa, Nilda Berenice de Vargas

    2012-04-01

    Cognitive deficits have been observed in different animal models of adult-onset hypothyroidism. Thus, this study was delineated to evaluate whether diphenyl diselenide, an organoselenium compound with neuroprotective and antioxidant properties, could afford protection against the detrimental effects of hypothyroidism on behavioral parameters. Hypothyroidism condition was induced in female rats by continuous exposure to methimazole (MTZ) at 20 mg/100 ml in the drinking water, during 3 months. MTZ-induced hypothyroid rats were fed with either standard or a diet containing 5 ppm of diphenyl diselenide for 3 months. Behavioral assessments were performed monthly, in the following order: elevated plus maze, open field and Morris water maze. The levels of thyroid hormones in the animals exposed to MTZ were lower than control until the end of experimental period. The rats exposed to MTZ had a significant weight loss from the first month, which was not modified by diphenyl diselenide supplementation. In elevated plus maze test, MTZ exposure caused a reduction on the number of entries of animals in closed arms, which was avoided by diphenyl diselenide supplementation. In Morris water maze, the parameters latency to reach the platform and distance performed to find the escape platform in the test session were significantly greater in MTZ group when compared to control. These cognitive deficits observed in MTZ-induced hypothyroid rats were restored by dietary diphenyl diselenide. The group fed with diphenyl diselenide alone exhibited a better spatial learning and memory capability in some parameters of Morris water maze when compared to the control group. In summary, our data provide evidence of the effectiveness of dietary diphenyl diselenide in improving the performance of control and hypothyroid rats in the water maze test. Copyright © 2012 ISDN. Published by Elsevier Ltd. All rights reserved.

  14. Controlling the physical parameters of crystalline CIGS nanowires for use in superstrate configuration using vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Lee, Dongjin; Jeon, H. C.; Kang, T. W.; Kumar, Sunil

    2018-03-01

    Indium tin oxide (ITO) is a suitable candidate for smart windows and bifacial semi-transparent solar cell applications. In this study, highly crystalline CuInGaSe2 (CIGS) nanowires were successfully grown by horizontal-type vapor phase epitaxy on an ITO substrate. Length, diameter, and density of the nanowires were studied by varying the growth temperature (500, 520, and 560 °C), time (3.5, 6.5, and 9.5 h), and type of catalyst (In, Au, and Ga). Length, diameter, and density of the nanowires were found to be highly dependent on the growth conditions. At an optimized growth period and temperature of 3.5 h and 520 °C, respectively, the length and diameter of the nanowires were found to increase when grown in a catalyst-free environment. However, the density of the nanowires was found to be higher while using a catalyst during growth. Even in a catalyst-free environment, an Indium cluster formed at the bottom of the nanowires. The source of these nanowires is believed to be Indium from the ITO substrate which was observed in the EDS measurement. TEM-based EDS and line EDS indicated that the nanowires are made up of CIGS material with a very low Gallium content. XRD measurements also show the appearance of wurtzite CIS nanowires grown on ITO in addition to the chalcopyrite phase. PL spectroscopy was done to see the near-band-edge emission for finding band-to-band optical transition in this material. Optical response of the CIGS nanowire network was also studied to see the photovoltaic effect. This work creates opportunities for making real solar cell devices in superstrate configuration.

  15. CIGS thin film solar cell prepared by reactive co-sputtering

    NASA Astrophysics Data System (ADS)

    Kim, Jeha; Lee, Ho-Sub; Park, Nae-Man

    2013-09-01

    The reactive co-sputtering was developed as a new way of preparing high quality CuInGaSe2(CIGS) films from two sets of targets; Cu0.6Ga 0.4 and Cu0.4In0.6 alloy and Cu and (In0.7Ga0.3)2Se3 compound targets. During sputtering, Cu, In, Ga metallic elements as well as the compound materials were reacted to form CIGS simultaneously in highly reactive elemental Se atmosphere generated by a thermal cracker. CIGS layer had been grown on Mo/soda-lime glass(SLG) at 500°C. For both sets of targets, we controlled the composition of CIGS thin film by changing the RF power for target components. All the films showed a preferential (112) orientation as observed from X-ray diffraction analysis. The composition ratios of CIGS were easily set to 0.71-0.95, 0.10-0.30 for [Cu]/[III] and [Ga]/[III], respectively. The grain size and the surface roughness of a CIGS film increased as the [Cu]/[III] ratios increased. The solar cells were fabricated using a standard base line process in the device structure of grid/ITO/i-ZnO/CdS/CIGS/Mo/ SLG. The best performance was obtained the performance of Voc = 0.45 V, Jsc =35.6, FF = 0.535, η = 8.6% with a 0.9 μm-CIGS solar cell from alloy targets while Voc = 0.54 V, Jsc =30.8, FF = 0.509, η = 8.5% with a 0.8 μm-CIGS solar cell from Cu and (In0.7Ga0.3)2Se3.

  16. Fabrication of CIGS Films by Electrodeposition Method for Photovoltaic Cells

    NASA Astrophysics Data System (ADS)

    Lee, Hyunju; Yoon, Hyukjoo; Ji, Changwook; Lee, Dongyun; Lee, Jae-Ho; Yun, Jae-Ho; Kim, Yangdo

    2012-12-01

    Cu(InGa)Se2 (CIGS) thin films were fabricated by electrochemical deposition in a single bath containing Cu, In, Ga, and Se ions. The electrolyte was prepared by dissolving CuCl2, InCl3, GaCl3, H2SeO3, and LiCl in deionized water. The potentiostatic deposition process was achieved by applying a voltage ranging from -0.5 V to -0.8 V versus Ag/AgCl. The effects of different chemical bath concentrations on the film composition and morphology were investigated. Stoichiometric CIGS film composition could be achieved by controlling the chemical compositions of the bath and the voltage. Gelatin was added to the solution to improve the surface and microstructures of the CIGS film. The as-deposited films were annealed at 500°C in Ar atmosphere for crystallization. The structural, morphological, and compositional properties of the CIGS thin films before and after annealing were examined by x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. This study showed that the composition of the CIGS films is dependent on the bath concentration, whereas the applied potential had relatively less effect on the CIGS film composition. In addition, the use of gelatin helped in the fabrication of crack-free CIGS thin films with greatly improved surface morphology.

  17. E-Cigs, Menthol & Dip

    MedlinePlus

    ... Close Search × MENU BACK CLOSE SMOKEFREE.GOV HOME E-Cigs, Menthol & Dip There are many types of tobacco products. Learn how e-cigarettes, menthol cigarettes, smokeless tobacco, and other products ...

  18. 7 CFR 1466.27 - Conservation Innovation Grants (CIG).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Conservation Innovation Grants (CIG). 1466.27 Section... PROGRAM Contracts and Payments § 1466.27 Conservation Innovation Grants (CIG). (a) Definitions. In.... (6) Project Director means the individual responsible for the technical direction and management of...

  19. Design and long-term monitoring of DSC/CIGS tandem solar module

    NASA Astrophysics Data System (ADS)

    Vildanova, M. F.; Nikolskaia, A. B.; Kozlov, S. S.; Shevaleevskiy, O. I.

    2015-11-01

    This paper describes the design and development of tandem dye-sensitized/Cu(In, Ga)Se (DSC/CIGS) PV modules. The tandem PV module comprised of the top DSC module and a bottom commercial 0,8 m2 CIGS module. The top DSC module was made of 10 DSC mini-modules with the field size of 20 × 20 cm2 each. Tandem DSC/CIGS PV modules were used for providing the long-term monitoring of energy yield and electrical parameters in comparison with standalone CIGS modules under outdoor conditions. The outdoor test facility, containing solar modules of both types and a measurement unit, was located on the roof of the Institute of Biochemical Physics in Moscow. The data obtained during monitoring within the 2014 year period has shown the advantages of the designed tandem DSC/CIGS PV-modules over the conventional CIGS modules, especially for cloudy weather and low-intensity irradiation conditions.

  20. Device Modeling and Characterization for CIGS Solar Cells

    NASA Astrophysics Data System (ADS)

    Song, Sang Ho

    We studied the way to achieve high efficiency and low cost of CuIn1-xGaxSe2 (CIGS) solar cells. The Fowler-Nordheim (F-N) tunneling currents at low bias decreased the shunt resistances and degraded the fill factor and efficiency. The activation energies of majority traps were directly related with F-N tunneling currents by the energy barriers. Air anneals decreased the efficiency from 7.74% to 5.18% after a 150 °C, 1000 hour anneal. The decrease of shunt resistance due to F-N tunneling and the increase of series resistance degrade the efficiencies of solar cells. Air anneal reduces the free carrier densities by the newly generated Cu interstitial defects (Cui). Mobile Cui defects induce the metastability in CIGS solar cell. Since oxygen atoms are preferred to passivate the Se vacancies thus Cu interstitial defects explains well metastability of CIGS solar cells. Lattice mismatch and misfit stress between layers in CIGS solar cells can explain the particular effects of CIGS solar cells. The misfits of 35.08° rotated (220/204) CIGS to r-plane (102) MoSe2 layers are 1% ˜ -4% lower than other orientation and the lattice constants of two layers in short direction are matched at Ga composition x=0.35. This explains well the preferred orientation and the maximum efficiency of Ga composition effects. Misfit between CIGS and CdS generated the dislocations in CdS layer as the interface traps. Thermionic emission currents due to interface traps limit the open circuit voltage at high Ga composition. The trap densities were calculated by critical thickness and dislocation spacing and the numerical device simulation results were well matched with the experimental results. A metal oxide broken-gap p-n heterojunction is suggested for tunnel junction for multi-junction polycrystalline solar cells and we examined the characteristics of broken-gap tunnel junction by numerical simulation. Ballistic transport mechanism explains well I-V characteristics of broken-gap junction. P

  1. Antifungal activities of diphenyl diselenide and ebselen alone and in combination with antifungal agents against Fusarium spp.

    PubMed

    Venturini, Tarcieli Pozzebon; Chassot, Francieli; Loreto, Érico Silva; Keller, Jéssica Tairine; Azevedo, Maria Izabel; Zeni, Gilson; Santurio, Janio Morais; Alves, Sydney Hartz

    2016-07-01

    Herein, we describe the in vitro activity of a combination of the organoselenium compounds diphenyl diselenide and ebselen alone and in combination with amphotericin B, caspofungin, itraconazole, and voriconazole against 25 clinical isolates of Fusarium spp. For this analysis, we used the broth microdilution method based on the M38-A2 technique and checkerboard microdilution method. Diphenyl diselenide (MIC range = 4-32 μg/ml) and ebselen (MIC range = 2-8 μg/ml) showed in vitro activity against the isolates tested. The most effective combinations were (synergism rates): ebselen + amphotericin B (88%), ebselen + voriconazole (80%), diphenyl diselenide + amphotericin B (72%), and diphenyl diselenide + voriconazole (64%). Combination with caspofungin resulted in low rates of synergism: ebselen + caspofungin, 36%, and diphenyl diselenide + caspofungin, 28%; combination with itraconazole demonstrated indifferent interactions. Antagonistic effects were not observed for any of the combinations tested. Our findings suggest that the antifungal potential of diphenyl diselenide and ebselen deserves further investigation in in vivo experimental models, especially in combination with amphotericin B and voriconazole. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. 7 CFR 1466.27 - Conservation Innovation Grants (CIG).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Conservation Innovation Grants (CIG). 1466.27 Section... PROGRAM Contracts and Payments § 1466.27 Conservation Innovation Grants (CIG). (a) Definitions. In... relationship is the transfer of a thing of value to a recipient in order to accomplish a public purpose of...

  3. 7 CFR 1466.27 - Conservation Innovation Grants (CIG).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Conservation Innovation Grants (CIG). 1466.27 Section... PROGRAM Contracts and Payments § 1466.27 Conservation Innovation Grants (CIG). (a) Definitions. In... relationship is the transfer of a thing of value to a recipient in order to accomplish a public purpose of...

  4. 7 CFR 1466.27 - Conservation Innovation Grants (CIG).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Conservation Innovation Grants (CIG). 1466.27 Section... PROGRAM Contracts and Payments § 1466.27 Conservation Innovation Grants (CIG). (a) Definitions. In... relationship is the transfer of a thing of value to a recipient in order to accomplish a public purpose of...

  5. Injectable dual redox responsive diselenide-containing poly(ethylene glycol) hydrogel.

    PubMed

    Gong, Chu; Shan, Meng; Li, Bingqiang; Wu, Guolin

    2017-09-01

    An injectable dual redox responsive diselenide-containing poly(ethylene glycol) (PEG) hydrogel was successfully developed by combining the conceptions of injectable hydrogels and dual redox responsive diselenides. In the first step, four-armed PEG was modified with N-hydroxysuccinimide (NHS)-activated esters and thereafter, crosslinked by selenocystamine crosslinkers to form injectable hydrogels via the rapid reaction between NHS-activated esters and amino groups. The cross-sectional morphology, mechanical properties, and crosslinking modes of hydrogels were well characterized via scanning electron microscope (SEM), rheological measurements, and Fourier transform infrared spectra, respectively. In addition, the oxidation- and reduction-responsive degradation behaviors of hydrogels were observed and analyzed. The model drug, rhodamine B, was encapsulated in the hydrogel. The drug-loaded hydrogel exhibited a dual redox responsive release profile, which was consistent with the degradation experiments. The results of all experiments indicated that the formulated injectable dual redox responsive diselenide-containing PEG hydrogel can have potential applications in various biomedical fields such as drug delivery and stimuli-responsive drug release. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2451-2460, 2017. © 2017 Wiley Periodicals, Inc.

  6. Antifungal activities of diphenyl diselenide and ebselen against echinocandin-susceptible and -resistant strains of Candida parapsilosis.

    PubMed

    Chassot, Francieli; Pozzebon Venturini, Tarcieli; Baldissera Piasentin, Fernanda; Morais Santurio, Janio; Estivalet Svidzinski, Terezinha Inez; Hartz Alves, Sydney

    2016-10-01

    We evaluated the in vitro antifungal activity of diphenyl diselenide and ebselen against echinocandin-susceptible and -resistant strains of Candida parapsilosis using the broth microdilution method. Diphenyl diselenide (MIC range =1-8 µg/mL) and ebselen (MIC range =0.25-4 µg/mL) showed in vitro activity against echinocandin-susceptible isolates. However, ebselen also showed the highest antifungal activity against echinocandin-resistant strains (MIC range =0.06-4 µg/mL). This study demonstrated that the antifungal potential of diphenyl diselenide and ebselen deserves further investigation using in vivo experimental protocols.

  7. Diglycosyl diselenides alter redox homeostasis and glucose consumption of infective African trypanosomes.

    PubMed

    Franco, Jaime; Sardi, Florencia; Szilágyi, László; Kövér, Katalin E; Fehér, Krisztina; Comini, Marcelo A

    2017-12-01

    With the aim to develop compounds able to target multiple metabolic pathways and, thus, to lower the chances of drug resistance, we investigated the anti-trypanosomal activity and selectivity of a series of symmetric diglycosyl diselenides and disulfides. Of 18 compounds tested the fully acetylated forms of di-β-D-glucopyranosyl and di-β-D-galactopyranosyl diselenides (13 and 15, respectively) displayed strong growth inhibition against the bloodstream stage of African trypanosomes (EC 50 0.54 μM for 13 and 1.49 μM for 15) although with rather low selectivity (SI < 10 assayed with murine macrophages). Nonacetylated versions of the same sugar diselenides proved to be, however, much less efficient or completely inactive to suppress trypanosome growth. Significantly, the galactosyl (15), and to a minor extent the glucosyl (13), derivative inhibited glucose catabolism but not its uptake. Both compounds induced redox unbalance in the pathogen. In vitro NMR analysis indicated that diglycosyl diselenides react with glutathione, under physiological conditions, via formation of selenenylsulfide bonds. Our results suggest that non-specific cellular targets as well as actors of the glucose and the redox metabolism of the parasite may be affected. These molecules are therefore promising leads for the development of novel multitarget antitrypanosomal agents. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. High Performance Tandem Perovskite/Polymer Solar Cells

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Bag, Monojit; Page, Zachariah; Renna, Lawrence; Kim, Paul; Choi, Jaewon; Emrick, Todd; Venkataraman, D.; Russell, Thomas

    Combining perovskites with other inorganic materials, such as copper indium gallium diselenide (CIGS) or silicon, is enabling significant improvement in solar cell device performance. Here, we demonstrate a highly efficient hybrid tandem solar cell fabricated through a facile solution deposition approach to give a perovskite front sub-cell and a polymer:fullerene blend back sub-cell. This methodology eliminates the adverse effects of thermal annealing during perovskite fabrication on polymer solar cells. The record tandem solar cell efficiency of 15.96% is 40% greater than the corresponding perovskite-based single junction device and 65% greater than the polymer-based single junction device, while mitigating deleterious hysteresis effects often associated with perovskite solar cells. The hybrid tandem devices demonstrate the synergistic effects arising from the combination of perovskite and polymer-based materials for solar cells. This work was supported by the Department of Energy-supported Energy Frontier Research Center at the University of Massachusetts (DE-SC0001087). The authors acknowledge the W.M. Keck Electron Microscopy.

  9. Printable CIGS thin film solar cells

    NASA Astrophysics Data System (ADS)

    Fan, Xiaojuan

    2014-03-01

    Among the various thin film solar cells in the market, CuInGaSe thin film cells have been considered as the most promising alternatives to silicon solar cells because of their high photo-electricity efficiency, reliability, and stability. However, many fabrication of CIGS thin film are based on vacuum processes such as evaporation sputtering techniques which are not cost efficient. This work develops a method using paste or ink liquid spin-coated on glass that would be to conventional ways in terms of cost effective, non-vacuum needed, quick processing. A mixture precursor was prepared by dissolving appropriate amounts of chemicals. After the mixture solution was cooled, a viscous paste prepared and ready for spin-coating process. A slight bluish CIG thin film substrate was then put in a tube furnace with evaporation of metal Se by depositing CdS layer and ZnO nanoparticle thin film coating to a solar cell fabrication. Structure, absorption spectrum, and photo-conversion efficiency for the as-grown CIGS thin film solar cell under study.

  10. Glutathione S-transferase pi expression regulates the Nrf2-dependent response to hormetic diselenides.

    PubMed

    Bartolini, D; Commodi, J; Piroddi, M; Incipini, L; Sancineto, L; Santi, C; Galli, F

    2015-11-01

    Glutathione S-transferase pi (GSTP), a phase II gene downstream of the nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant-responsive element (ARE)/electrophile response element (EpRE) transcription pathway, plays a key role in both the signaling and detoxification response to Se-organic compounds with thiol peroxidase activity. We here investigated the role of GSTP on the Nrf2 activation response of cells challenged with a new class of diselenides derived from the basic structure of diphenyl diselenide [(PhSe)2]. These diselenides, and particularly 2,2'-diselenyl dibenzoic acid (DSBA), behave as mild thiol peroxidases leading to a moderate generation of H2O2 and NOx, and signaling of stress-activated and survival-promoting MAPKs, which ultimately control the mitochondrial pathway of apoptosis. Used in murine embryonic fibroblasts (MEFs) and HepG2 human hepatocarcinoma cells to produce submaximal conditions of stress, the diselenide compounds stimulated Nrf2 nuclear translocation and then the transcription of the same Nrf2 gene as well as of GSTP and other phase II genes. This resulted in a higher degree of protection against H2O2 cytotoxicity (hormetic effect). Diselenide toxicity increased in GSTP knockout MEFs by a higher generation of NOx and stress activated protein kinase (SAPK)/JNK activation. A lowered hormetic potential of these cells was observed in association with an abnormal expression and nuclear translocation of Nrf2 protein. Immunoprecipitation and affinity purification experiments revealed the existence of an Nrf2/GSTP complex in MEFs and HepG2 cells. Covalent oligomers of GSTP subunits were observed in DSBA-treated HepG2 cells. In conclusion, GSTP gene expression influences the Nrf2-dependent response to hormetic diselenides. Mechanistic interpretation for this GSTP-dependent effect may include a direct and redox-sensitive interaction of GSTP with Nrf2 protein. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Gallium

    USGS Publications Warehouse

    Foley, Nora K.; Jaskula, Brian W.; Kimball, Bryn E.; Schulte, Ruth F.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Gallium is a soft, silvery metallic element with an atomic number of 31 and the chemical symbol Ga. Gallium is used in a wide variety of products that have microelectronic components containing either gallium arsenide (GaAs) or gallium nitride (GaN). GaAs is able to change electricity directly into laser light and is used in the manufacture of optoelectronic devices (laser diodes, light-emitting diodes [LEDs], photo detectors, and solar cells), which are important for aerospace and telecommunications applications and industrial and medical equipment. GaAs is also used in the production of highly specialized integrated circuits, semiconductors, and transistors; these are necessary for defense applications and high-performance computers. For example, cell phones with advanced personal computer-like functionality (smartphones) use GaAs-rich semiconductor components. GaN is used principally in the manufacture of LEDs and laser diodes, power electronics, and radio-frequency electronics. Because GaN power transistors operate at higher voltages and with a higher power density than GaAs devices, the uses for advanced GaN-based products are expected to increase in the future. Gallium technologies also have large power-handling capabilities and are used for cable television transmission, commercial wireless infrastructure, power electronics, and satellites. Gallium is also used for such familiar applications as screen backlighting for computer notebooks, flat-screen televisions, and desktop computer monitors.Gallium is dispersed in small amounts in many minerals and rocks where it substitutes for elements of similar size and charge, such as aluminum and zinc. For example, gallium is found in small amounts (about 50 parts per million) in such aluminum-bearing minerals as diaspore-boehmite and gibbsite, which form bauxite deposits, and in the zinc-sulfide mineral sphalerite, which is found in many mineral deposits. At the present time, gallium metal is derived mainly as a

  12. Synthesis, structure, and glutathione peroxidase-like activity of amino acid containing ebselen analogues and diaryl diselenides.

    PubMed

    Selvakumar, Karuthapandi; Shah, Poonam; Singh, Harkesh B; Butcher, Ray J

    2011-11-04

    The synthesis of some ebselen analogues and diaryl diselenides, which have amino acid functions as an intramolecularly coordinating group (Se···O) has been achieved by the DCC coupling procedure. The reaction of 2,2'-diselanediylbis(5-tert-butylisophthalic acid) or the activated ester tetrakis(2,5-dioxopyrrolidin-1-yl) 2,2'-diselanediylbis(5-tert-butylisophthalate) with different C-protected amino acids (Gly, L-Phe, L-Ala, and L-Trp) afforded the corresponding ebselen analogues. The used precursor diselenides have been found to undergo facile intramolecular cyclization during the amide bond formation reaction. In contrast, the DCC coupling of 2,2'-diselanediyldibenzoic acid with C-protected amino acids (Gly, L/D-Ala and L-Phe) affords the corresponding amide derivatives and not the ebselen analogues. Some of the representative compounds have been structurally characterized by single-crystal X-ray crystallography. The glutathione peroxidase (GPx)-like activities of the ebselen analogues and the diaryl diselenides have been evaluated by using the coupled reductase assay method. Intramolecularly stabilized ebselen analogues show slightly higher maximal velocity (V(max)) than ebselen. However, they do not show any GPx-like activity at low GSH concentrations at which ebselen and related diselenides are active. This could be attributed to the peroxide-mediated intramolecular cyclization of the corresponding selenenyl sulfide and diaryl diselenide intermediates generated during the catalytic cycle. Interestingly, the diaryl diselenides with alanine (L,L or D,D) amide moieties showed excellent catalytic efficiency (k(cat)/K(M)) with low K(M) values in comparison to the other compounds. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Nanoengineered CIGS thin films for low cost photovoltaics

    NASA Astrophysics Data System (ADS)

    Eldada, Louay; Taylor, Matthew; Sang, Baosheng; McWilliams, Scott; Oswald, Robert; Stanbery, Billy J.

    2008-08-01

    Low cost manufacturing of Cu(In,Ga)Se2 (CIGS) films for high efficiency photovoltaic devices by the innovative Field-Assisted Simultaneous Synthesis and Transfer (FASST®) process is reported. The FASST® process is a two-stage reactive transfer printing method relying on chemical reaction between two separate precursor films to form CIGS, one deposited on the substrate and the other on a printing plate in the first stage. In the second stage these precursors are brought into intimate contact and rapidly reacted under pressure in the presence of an applied electrostatic field. The method utilizes physical mechanisms characteristic of anodic wafer bonding and rapid thermal annealing, effectively creating a sealed micro-reactor that ensures high material utilization efficiency, direct control of reaction pressure, and low thermal budget. The use of two independent ink-based or PVD-based nanoengineered precursor thin films provides the benefits of independent composition and flexible deposition technique optimization, and eliminates pre-reaction prior to the second stage FASST® synthesis of CIGS. High quality CIGS with large grains on the order of several microns are formed in just several minutes based on compositional and structural analysis by XRF, SIMS, SEM and XRD. Cell efficiencies of 12.2% have been achieved using this method.

  14. Spontaneous and strong multi-layer graphene n-doping on soda-lime glass and its application in graphene-semiconductor junctions

    DOE PAGES

    Dissanayake, D. M. N. M.; Ashraf, A.; Dwyer, D.; ...

    2016-02-12

    Scalable and low-cost doping of graphene could improve technologies in a wide range of fields such as microelectronics, optoelectronics, and energy storage. While achieving strong p-doping is relatively straightforward, non-electrostatic approaches to n-dope graphene, such as chemical doping, have yielded electron densities of 9.5 × 10 12 e/cm 2 or below. Furthermore, chemical doping is susceptible to degradation and can adversely affect intrinsic graphene’s properties. Here we demonstrate strong (1.33 × 10 13 e/cm 2), robust, and spontaneous graphene n-doping on a soda-lime-glass substrate via surface-transfer doping from Na without any external chemical, high-temperature, or vacuum processes. Remarkably, the n-dopingmore » reaches 2.11 × 10 13 e/cm 2 when graphene is transferred onto a p-type copper indium gallium diselenide (CIGS) semiconductor that itself has been deposited onto soda-lime-glass, via surface-transfer doping from Na atoms that diffuse to the CIGS surface. Using this effect, we demonstrate an n-graphene/p-semiconductor Schottky junction with ideality factor of 1.21 and strong photo-response. As a result, the ability to achieve strong and persistent graphene n-doping on low-cost, industry-standard materials paves the way toward an entirely new class of graphene-based devices such as photodetectors, photovoltaics, sensors, batteries, and supercapacitors.« less

  15. Electrical properties of aluminum contacts deposited by DC sputtering method for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Krawczak, Ewelina; Gułkowski, Sławomir

    2017-10-01

    The use of aluminum contacts is common in the process of silicon solar cells production because of low contact resistivity. It has also a great importance in thin film technology for photovoltaics, especially in copper-indium-gallium-diselenide (CIGS) devices. The final stage of CIGS cell production is the top contact deposition of high conductivity layer for lateral current collection. Such material has to be highly optically transparent as well. In order to make a contact, metal is deposited onto TCO layer with minimum shadowing to allow as much light as possible into device. The metal grid contact is being made by deposition of few microns of aluminum. The resistivity of the deposited material as well as resistance between the metal grid and TCO layer plays a great role in high quality solar cell production. This paper presents the results of four point probe conductivity analysis of Al thin films deposited by direct current (DC) magnetron sputtering method. Influence of technological parameters of the Al deposition process on sheet resistance of deposited layers has been showed. In order to obtain the lowest resistivity of the thin contact layer, optimal set of sputtering parameters, i.e. power applied, deposition time and deposition pressure was found. The resistivity of the contact between two adjacent Al metal fingers deposited onto transparent conductive Al-doped zinc oxide film has been also examined.

  16. Method of junction formation for CIGS photovoltaic devices

    DOEpatents

    Delahoy, Alan E.

    2006-03-28

    Sulfur is used to improve the performance of CIGS devices prepared by the evaporation of a single source ZIS type compound to form a buffer layer on the CIGS. The sulfur may be evaporated, or contained in the ZIS type material, or both. Vacuum evaporation apparatus of many types useful in the practice of the invention are known in the art. Other methods of delivery, such as sputtering, or application of a thiourea solution, may be substituted for evaporation.

  17. Method of junction formation for CIGS photovoltaic devices

    DOEpatents

    Delahoy, Alan E.

    2010-01-26

    Sulfur is used to improve the performance of CIGS devices prepared by the evaporation of a single source ZIS type compound to form a buffer layer on the CIGS. The sulfur may be evaporated, or contained in the ZIS type material, or both. Vacuum evaporation apparatus of many types useful in the practice of the invention are known in the art. Other methods of delivery, such as sputtering, or application of a thiourea solution, may be substituted for evaporation.

  18. Effect of yoghurt or yoghurt serum on microbial quality of cig kofte.

    PubMed

    Dogan, Mahmut; Cankurt, Hasan; Toker, Omer Said; Yetim, Hasan; Sagdic, Osman

    2014-07-01

    Cig kofte, raw meatball is a traditionally produced meat product in Turkey and some other Middle East countries. It is prepared from mixtures of finely minced raw beef, bulgur, onions, various spices and tap water. Cig kofte is an uncooked product and popularly consumed with lettuce and lemon juice. In this study, yoghurt or yoghurt serum (YS) were added to the mixtures of cig kofte instead of tap water to reduce microbial risks of the raw meatball. Additionally, the effects of yoghurt and YS on some physicochemical characteristics of cig kofte were investigated. Cig kofte is generally consumed within a few hours after the preparation because of its raw nature. Also, it is generally sold under unhygienic conditions in restaurants and restaurant-like places. For this purpose, reducing of the microbial load of cig kofte is important. In the results, Escherichia coli and Listeria monocytogenes were not detected in any samples. While lactic acid bacteria count increased by addition of yoghurt and YS, the number of other microorganisms except for total aerobic mesophilic bacteria (TAMB) were decreased. The aw values and% moisture contents of the samples were varied between 0.88-0.94 and 46.25-49.72, respectively. The pH values of the samples were slightly changed during the storage of 24 h while no changes detected in the control samples during the storage. In conclusion, it can be suggested that using the yoghurt or YS instead of tap water in the preparation of cig kofte might ensure the microbial safety, increase the nutritional value and its flavour or aroma.

  19. Fabrication of nanostructured CIGS solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Hongwang; Wang, Fang; Parry, James; Perera, Samanthe; Zeng, Hao

    2012-02-01

    We present the work on Cu(In,Ga)(Se,S)2 based nanostructured solar cells based on nanowire arrays. CIGS as the light absorber for thin-film solar cells has been widely studied recently, due to its high absorption coefficient, long-term stability, and low-cost of fabrication. Recently, solution phase processed CIGS thin film solar cells attracted great attention due to their extremely low fabrication cost. However, the performance is lower than vacuum based thin films possibly due to higher density of defects and lower carrier mobility. On the other hand, one dimensional ordered nanostructures such as nanowires and nanorods can be used to make redial junction solar cells, where the orthogonality between light absorption and charge carrier separation can lead to enhanced PV performance. Since the charge carriers only need to traverse a short distance in the radial direction before they are separated at the heterojunction interface, the radial junction scheme can be more defect tolerant than their planar junction scheme. In this work, a wide band gap nanowire or nanotube array such as TiO2 is used as a scaffold where CIGS is conformally coated using solution phase to obtain a radial heterojunction solar cell. Their performance is compared that of the planar thin film solar cells fabricated with the same materials.

  20. Optical Metrology for CIGS Solar Cell Manufacturing and its Cost Implications

    NASA Astrophysics Data System (ADS)

    Sunkoju, Sravan Kumar

    Solar energy is a promising source of renewable energy which can meet the demand for clean energy in near future with advances in research in the field of photovoltaics and cost reduction by commercialization. Availability of a non-contact, in-line, real time robust process control strategies can greatly aid in reducing the gap between cell and module efficiencies, thereby leading to cost-effective large-scale manufacturing of high efficiency CIGS solar cells. In order to achieve proper process monitoring and control for the deposition of the functional layers of CuIn1-xGaxSe 2 (CIGS) based thin film solar cell, optical techniques such as spectroscopic reflectometry and polarimetry are advantageous because they can be set up in an unobtrusive manner in the manufacturing line, and collect data in-line and in-situ. The use of these techniques requires accurate optical models that correctly represent the properties of the layers being deposited. In this study, Spectroscopic ellipsometry (SE) has been applied for the characterization of each individual stage of CIGS layers deposited using the 3-stage co-evaporation process along with the other functional layers. Dielectric functions have been determined for the energy range from 0.7 eV to 5.1 eV. Critical-point line-shape analysis was used in this study to determine the critical point energies of the CIGS based layers. To control the compositional and thickness uniformity of all the functional layers during the fabrication of CIGS solar cells over large areas, multilayer photovoltaics (PV) stack optical models were developed with the help of extracted dielectric functions. In this study, mapping capability of RC2 spectroscopic ellipsometer was used to map all the functional layer thicknesses of a CIGS solar cell in order to probe the spatial non-uniformities that can affect the performance of a cell. The optical functions for each of the stages of CIGS 3-stage deposition process along with buffer layer and transparent

  1. In situ diselenide-crosslinked polymeric micelles for ROS-mediated anticancer drug delivery.

    PubMed

    Deepagan, V G; Kwon, Seunglee; You, Dong Gil; Nguyen, Van Quy; Um, Wooram; Ko, Hyewon; Lee, Hansang; Jo, Dong-Gyu; Kang, Young Mo; Park, Jae Hyung

    2016-10-01

    Stimuli-responsive micelles have emerged as the drug carrier for cancer therapy since they can exclusively release the drug via their structural changes in response to the specific stimuli of the target site. Herein, we developed the in situ diselenide-crosslinked micelles (DCMs), which are responsive to the abnormal ROS levels of tumoral region, as anticancer drug carriers. The DCMs were spontaneously derived from selenol-bearing triblock copolymers consisting of polyethylene glycol (PEG) and polypeptide derivatives. During micelle formation, doxorubicine (DOX) was effectively encapsulated in the hydrophobic core, and diselenide crosslinks were formed in the shell. The DCMs maintained their structural integrity, at least for 6 days in physiological conditions, even in the presence of destabilizing agents. However, ROS-rich conditions triggered rapid release of DOX from the DOX-encapsulating DCMs (DOX-DCMs) because the hydrophobic diselenide bond was cleaved into hydrophilic selenic acid derivatives. Interestingly, after their systemic administration into the tumor-bearing mice, DOX-DCMs delivered significantly more drug to tumors (1.69-fold and 3.73-fold higher amount compared with their non-crosslinked counterparts and free drug, respectively) and effectively suppressed tumor growth. Overall, our data indicate that DCMs have great potential as drug carriers for anticancer therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Gallium scan

    MedlinePlus

    ... material called gallium and is a type of nuclear medicine exam. A related test is gallium scan ... Brown ML, Forstrom LA, et al. Society of nuclear medicine procedure guideline for gallium scintigraphy in inflammation. ...

  3. Vaping cannabis (marijuana): parallel concerns to e-cigs?

    PubMed Central

    Budney, Alan J.; Sargent, James D.; Lee, Dustin C.

    2016-01-01

    The proliferation of vaporization (‘vaping’) as a method for administering cannabis raises many of the same public health issues being debated and investigated in relation to e-cigarettes (e-cigs). Good epidemiological data on the prevalence of vaping cannabis are not yet available, but with current trends towards societal approval of medicinal and recreational use of cannabis, the pros and cons of vaping cannabis warrant study. As with e-cigs, vaping cannabis portends putative health benefits by reducing harm from ingesting toxic smoke. Indeed, vaping is perceived and being sold as a safer way to use cannabis, despite the lack of data on the health effects of chronic vaping. Other perceived benefits include better taste, more efficient and intense effects and greater discretion which allows for use in more places. Unfortunately, these aspects of vaping could prompt an increased likelihood of trying cannabis, earlier age of onset, more positive initial experiences, and more frequent use, thereby increasing the probability of problematic use or addiction. Sales and marketing of vaping devices with no regulatory guidelines, especially related to advertising or product development targeting youth, parallels concerns under debate related to e-cigs and youth. Thus, the quandary of whether or not to promote vaping as a safer method of cannabis administration for those wishing to use cannabis, and how to regulate vaping and vaping devices, necessitates substantial investigation and discussion. Addressing these issues in concert with efforts directed towards e-cigs may save time and energy and result in a more comprehensive and effective public health policy on vaping. PMID:26264448

  4. Space Plasma Testing of High-Voltage Thin-Film Solar Arrays with Protective Coatings

    NASA Technical Reports Server (NTRS)

    Tlomak, Pawel; Hausgen, Paul E.; Merrill, John; Senft, Donna; Piszczor, Michael F., Jr.

    2007-01-01

    This paper gives an overview of the space plasma test program for thin-film photovoltaics (TFPV) technologies developed at the Air Force Research Laboratory (AFRL). The main objective of this program is to simulate the effects of space plasma characteristic of LEO and MEO environments on TFPV. Two types of TFPV, amorphous silicon (a-Si) and copper-indium-gallium-diselenide (CIGS), coated with two types of thin-film, multifunctional coatings were used for these studies. This paper reports the results of the first phase of this program, namely the results of preliminary electrostatic charging, arcing, dielectric breakdown, and collection current measurements carried out with a series of TFPV exposed to simulated space plasma at the NASA Glenn Plasma Interaction Facility. The experimental data demonstrate that multifunctional coatings developed for this program provide effective protection against the plasma environment while minimizing impact on power generation performance. This effort is part of an ongoing program led by the Space Vehicles Directorate at the AFRL devoted to the development and space qualification of TFPV and their protective coatings.

  5. Development of Enhanced Window layers for CIGS Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Alexander, J. Nicholas

    One of the most promising thin film devices right now is the Copper Indium Gallium Selenide (CIGS) solar cell with maximum reported power conversion efficiency of 22.3%. The Transparent Conducting Oxide (TCO) which is the top layer of the CIGS device also known as the window layer, is responsible for collecting the electrons generated in the CIGS device and conducting them to the circuit. Development of a very low resistivity film with a high optical transmission is crucial for optimal performance of devices as well as the ability to be deployed without changes to their properties for several decades. Current TCOs such as indium tin oxide (ITO) and aluminum doped zinc oxide (AZO) are met with limitations with either using large amounts of expensive materials such as indium, often requiring and anneal step to obtain good conductivity, or have shown poor long term reliability. This thesis is focused on development of InZnO and zirconium doped InZnO as a potential replacement TCO to obtain high conductivity and high transmission like the leading TCOs without needing heated depositions, post deposition annealing, and maintain a good film reliability. Zirconium doping was employed to farther enhance both the optical and electrical properties through enhancement of the films high frequency permittivity of InZnO while providing improved reliability to the film. The films were grown through a mix of DC and RF co-sputtering. InZnO films were deposited at varying indium concentration ( 10-30%) and samples were able to achieve low resistivity ( 7x10-4 O-cm), high mobility (>30 cm2/v.s), high carrier concentration (>10 20 cm-3), while maintaining high transmission (> 80%) in the visible and near-infrared region. After zirconium was incorporated into the InZnO films by replacement of the ZnO target with a ZrO2/ZnO (5:95) target, films of Zr:InZnO were deposit through the same method to achieve films that maintained very similar electrical and optical properties. The little

  6. Influence of temperature on the CuIn1-xGaxSe2films deposited by picosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Sima, Cornelia; Toma, Ovidiu

    2017-12-01

    The goal of this study is to investigate the influence of the deposition temperature on the CuIn1-xGaxSe2 (CIGS-copper indium gallium diselenide) film characteristics deposited by picosecond laser ablation method using a Nd:YVO4 laser (8 ps, 0.2 W, 50 kHz, 532 nm; 5.7 mJ/cm2; 36 × 107 pulses). The films were deposited starting from a CuIn0.7Ga0.3Se2 target, in vacuum at 3 × 10-5 Torr for 2 h, at room temperature (RT) and 100/200/300/400 °C substrate temperature; as substrate, optical glass was used. Structure, film morphology, composition and optical properties were investigated by X ray diffraction, scanning electron microscopy (energy dispersive X ray spectroscopy), spectroscopic ellipsometry and optical spectrophotometry. CIGS crystalline films have the dominant peak corresponding to (112) direction more pronounced starting with 200 °C deposition temperature. The thickness gradually decreased with temperature increasing, being 1.44 μm at RT and 0.72 μm at 400 °C; atomic composition in the case of In, Ga, Se increased after annealing, while in the case of Cu it decreased comparing with RT; refractive indices exhibited a short decreasing tendency by increasing the deposition temperature, while the optical band gap values for CuIn0.7Ga0.3Se2 laser ablated thin films increased.

  7. Vaping cannabis (marijuana): parallel concerns to e-cigs?

    PubMed

    Budney, Alan J; Sargent, James D; Lee, Dustin C

    2015-11-01

    The proliferation of vaporization ('vaping') as a method for administering cannabis raises many of the same public health issues being debated and investigated in relation to e-cigarettes (e-cigs). Good epidemiological data on the prevalence of vaping cannabis are not yet available, but with current trends towards societal approval of medicinal and recreational use of cannabis, the pros and cons of vaping cannabis warrant study. As with e-cigs, vaping cannabis portends putative health benefits by reducing harm from ingesting toxic smoke. Indeed, vaping is perceived and being sold as a safer way to use cannabis, despite the lack of data on the health effects of chronic vaping. Other perceived benefits include better taste, more efficient and intense effects and greater discretion which allows for use in more places. Unfortunately, these aspects of vaping could prompt an increased likelihood of trying cannabis, earlier age of onset, more positive initial experiences, and more frequent use, thereby increasing the probability of problematic use or addiction. Sales and marketing of vaping devices with no regulatory guidelines, especially related to advertising or product development targeting youth, parallels concerns under debate related to e-cigs and youth. Thus, the quandary of whether or not to promote vaping as a safer method of cannabis administration for those wishing to use cannabis, and how to regulate vaping and vaping devices, necessitates substantial investigation and discussion. Addressing these issues in concert with efforts directed towards e-cigs may save time and energy and result in a more comprehensive and effective public health policy on vaping. © 2015 Society for the Study of Addiction.

  8. All-Nonvacuum-Processed CIGS Solar Cells Using Scalable Ag NWs/AZO-Based Transparent Electrodes.

    PubMed

    Wang, Mingqing; Choy, Kwang-Leong

    2016-07-06

    With record cell efficiency of 21.7%, CIGS solar cells have demonstrated to be a very promising photovoltaic (PV) technology. However, their market penetration has been limited due to the inherent high cost of the cells. In this work, to lower the cost of CIGS solar cells, all nonvacuum-processed CIGS solar cells were designed and developed. CIGS absorber was prepared by the annealing of electrodeposited metallic layers in a chalcogen atmosphere. Nonvacuum-deposited Ag nanowires (NWs)/AZO transparent electrodes (TEs) with good transmittance (92.0% at 550 nm) and high conductivity (sheet resistance of 20 Ω/□) were used to replace the vacuum-sputtered window layer. Additional thermal treatment after device preparation was conducted at 220 °C for a few of minutes to improve both the value and the uniformity of the efficiency of CIGS pixel cell on 5 × 5 cm substrate. The best performance of the all-nonvacuum-fabricated CIGS solar cells showed an efficiency of 14.05% with Jsc of 34.82 mA/cm(2), Voc of 0.58 V, and FF of 69.60%, respectively, which is comparable with the efficiency of 14.45% of a reference cell using a sputtered window layer.

  9. Growth and characterization of epitaxial silver indium diselenide

    NASA Astrophysics Data System (ADS)

    Pena Martin, Pamela

    Photovoltaics (solar cells) are a key player in the renewable energy frontier, and will become increasingly important as their cost per watt continues to drop, especially if fossil fuel costs increase. One particularly promising photovoltaic technology is based on chalcopyrite-structure semiconductors. Within the chalcopyrite compounds the highest efficiency thin film solar cell absorber material to date is Cu(In,Ga)Se2 (CIGS). While current efficiency records are over 21% for single-junction cells, there is still room for improvement. Replacing some of the Cu with Ag has been shown to be beneficial in CIGS devices. However, the Ag- containing chalcopyrites are still relatively unknown in terms of their growth mechanism, energetics, and surface atomic and electronic properties. These are best inferred through study of epitaxial films, yet they have little mention in literature and have not been the subject of a detailed study. This work describes the growth of epitaxial AgInSe2 (AIS) on GaAs substrates, studying the morphology, structure, and surface properties to understand how growth takes place. It also seeks to experimentally determine the surface electronic and atomic structure at the atomic scale to gain insight into the part of the material that forms the heterojunction that collects photon energy in the device. Finally, this work seeks to compare and contrast these findings with what is known about CIGS to determine where similarities and, more importantly, the differences may lie. This study has found that single phase tetragonal AIS can be epitaxially grown on GaAs, as illustrated by x-ray diffraction (XRD), transmission electron microscope (TEM), and surface morphology data. Like CIGS, the close packed polar (112) planes have the lowest energy. The morphology points to a difference in step dynamics, leading to less faceted, straight edged island shapes compared to CIGS. Epitaxial temperature as a function of growth direction shows a different trend in

  10. Selenoprotein K form an intermolecular diselenide bond with unusually high redox potential

    PubMed Central

    Liu, Jun; Zhang, Zhengqi; Rozovsky, Sharon

    2014-01-01

    Selenoprotein K (SelK) is a membrane protein involved in antioxidant defense, calcium regulation and the ER-associated protein degradation pathway. We found that SelK exhibits a peroxidase activity with a rate that is low but within the range of other peroxidases. Notably, SelK reduced hydrophobic substrates, such as phospholipid hydroperoxides, which damage membranes. Thus, SelK might be involved in membrane repair or related pathways. SelK was also found to contain a diselenide bond — the first intramolecular bond of that kind reported for a selenoprotein. The redox potential of SelK was −257 mV, significantly higher than that of diselenide bonds in small molecules or proteins. Consequently, SelK can be reduced by thioredoxin reductase. These finding are essential for understanding SelK activity and function. PMID:25117454

  11. Indium Gallium Nitride/Gallium Nitride (InGaN/GaN) Nanorods Superlattice (SL)

    DTIC Science & Technology

    2006-03-29

    Final Report (Technical) 3. DATES COVERED 29-03-2005 to 29-05-2006 4. TITLE AND SUBTITLE Indium Gallium Nitride/ Gallium Nitride (InGaN/GaN...Institution: Quantum functional Semiconductor Research Center (QSRC), Dongguk University - Title of project: Indium Gallium Nitride/ Gallium Nitride...Accepted with minor revision Indium Gallium Nitride / Gallium Nitride (InGaN/ GaN) Nanorods Superlattice (SL) Abstract The growth condition, electrical

  12. Flexible Ultra Moisture Barrier Film for Thin-Film Photovoltaic Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David M. Dean

    2012-10-30

    Flexible Thin-film photovoltaic (TFPV) is a low cost alternative to incumbent c-Si PV products as it requires less volume of costly semiconductor materials and it can potentially reduce installation cost. Among the TFPV options, copper indium gallium diselenide (CIGS) has the highest efficiency and is believed to be one of the most attractive candidates to achieve PV cost reduction. However, CIGS cells are very moisture sensitive and require module water vapor transmission rate (WVTR) of less than 1x10-4 gram of water per square meter per day (g-H2O/m2/day). Successful development and commercialization of flexible transparent ultra moisture barrier film is themore » key to enable flexible CIGS TFPV products, and thus enable ultimate PV cost reduction. At DuPont, we have demonstrated at lab scale that we can successfully make polymer-based flexible transparent ultra moisture barrier film by depositing alumina on polymer films using atomic layer deposition (ALD) technology. The layer by layer ALD approach results in uniform and amorphous structure which effectively reduces pinhole density of the inorganic coating on the polymer, and thus allow the fabrication of flexible barrier film with WVTR of 10-5 g-H2O/m2/day. Currently ALD is a time-consuming process suitable only for high-value, relatively small substrates. To successfully commercialize the ALD-on-plastic technology for the PV industry, there is the need to scale up this technology and improve throughput. The goal of this contract work was to build a prototype demonstrating that the ALD technology could be scaled-up for commercial use. Unfortunately, the prototype failed to produce an ultra-barrier film by the close of the project.« less

  13. Advanced CIGS Photovoltaic Technology: Annual Technical Report--Phase II, 15 November 2002--14 November 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delahoy, A. E.; Chen, L.

    2004-05-01

    The objective of this subcontract is to develop and integrate the various pieces of new technology that EPV considers enabling for cost-effective production of CIGS modules. EPV has conducted research to help generate a technology base for production of CIGS PV modules using vacuum deposition of CIGS onto glass. This strategy is consistent with the observation that, despite there being several approaches to forming device-quality CIGS, vacuum deposition has maintained the world record for the highest-efficiency CIGS device. A record thin-film solar cell efficiency of 19.2% (with Ni-Al grid and MgF2 ARC) for a 0.41-cm2 device was achieved by NRELmore » in 2003 using vacuum-deposited CIGS. The deposition employed four point sources and detection of the Cu-poor to Cu-rich transition for process control. To extend this type of processing to the realm of large-area substrates, EPV developed vacuum equipment designed for heating and coating 0.43-m2 moving substrates, with a projected further scale up to 0.79 m2. The substrates are typically low-cost, soda-lime glass, and the materials are supplied to the moving substrates using novel linear-source technology developed by EPV. The use of elemental selenium rather than toxic H2Se gas helps make for a safe manufacturing environment. These choices concerning film deposition, substrates, and source materials help to minimize the processing costs of CIGS.« less

  14. Challenges to Scaling CIGS Photovoltaics

    NASA Astrophysics Data System (ADS)

    Stanbery, B. J.

    2011-03-01

    The challenges of scaling any photovoltaic technology to terawatts of global capacity are arguably more economic than technological or resource constraints. All commercial thin-film PV technologies are based on direct bandgap semiconductors whose absorption coefficient and bandgap alignment with the solar spectrum enable micron-thick coatings in lieu to hundreds of microns required using indirect-bandgap c-Si. Although thin-film PV reduces semiconductor materials cost, its manufacture is more capital intensive than c-Si production, and proportional to deposition rate. Only when combined with sufficient efficiency and cost of capital does this tradeoff yield lower manufacturing cost. CIGS has the potential to become the first thin film technology to achieve the terawatt benchmark because of its superior conversion efficiency, making it the only commercial thin film technology which demonstrably delivers performance comparable to the dominant incumbent, c-Si. Since module performance leverages total systems cost, this competitive advantage bears directly on CIGS' potential to displace c-Si and attract the requisite capital to finance the tens of gigawatts of annual production capacity needed to manufacture terawatts of PV modules apace with global demand growth.

  15. Synthesis of disulfides and diselenides by copper-catalyzed coupling reactions in water.

    PubMed

    Li, Zhengkai; Ke, Fang; Deng, Hang; Xu, Hualong; Xiang, Haifeng; Zhou, Xiangge

    2013-05-14

    A simple and efficient protocol for copper-catalyzed coupling reactions between aryl halides and elemental sulfur or selenium has been developed. A variety of disulfides and diselenides can be obtained in moderate to excellent yields up to 96%.

  16. Bioinspired Diselenide-Bridged Mesoporous Silica Nanoparticles for Dual-Responsive Protein Delivery.

    PubMed

    Shao, Dan; Li, Mingqiang; Wang, Zheng; Zheng, Xiao; Lao, Yeh-Hsing; Chang, Zhimin; Zhang, Fan; Lu, Mengmeng; Yue, Juan; Hu, Hanze; Yan, Huize; Chen, Li; Dong, Wen-Fei; Leong, Kam W

    2018-05-28

    Controlled delivery of protein therapeutics remains a challenge. Here, the inclusion of diselenide-bond-containing organosilica moieties into the framework of silica to fabricate biodegradable mesoporous silica nanoparticles (MSNs) with oxidative and redox dual-responsiveness is reported. These diselenide-bridged MSNs can encapsulate cytotoxic RNase A into the 8-10 nm internal pores via electrostatic interaction and release the payload via a matrix-degradation controlled mechanism upon exposure to oxidative or redox conditions. After surface cloaking with cancer-cell-derived membrane fragments, these bioinspired RNase A-loaded MSNs exhibit homologous targeting and immune-invasion characteristics inherited from the source cancer cells. The efficient in vitro and in vivo anti-cancer performance, which includes increased blood circulation time and enhanced tumor accumulation along with low toxicity, suggests that these cell-membrane-coated, dual-responsive degradable MSNs represent a promising platform for the delivery of bio-macromolecules such as protein and nucleic acid therapeutics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Experimental Studies of Lateral Electron Transport in Gallium Arsenide-Aluminum Gallium Arsenide Heterostructures.

    DTIC Science & Technology

    1982-12-01

    AD-A125 858 EXPERIMENTAL STUDIES OF LATERAL ELECTRON TRANSPORT IN 1/3 GALLIUM ARSENIDE-RL..(U) ILLINOIS UNIV AT URBANA COORDINATED SCIENCE LAB N R...EXPERIMENTAL STUDIES OF LATERALXILECTRON TRANSPORT ,:g IN GALLIUM ARSENIDE -ALUMINUM GALLIUM ARSENIDE- -HETEROSTRUCTURES APRVE O PUBLICRLEAS.DSRBUINULMTE. 2...EXPERIMENTAL STUDIES OF LATERAL ELECTRON TRANSPORT IN GALLIUM ARSENIDE-ALUMINUM GALLIUM ARSENIDE Technical Report R-975 HETEROSTRUCTURES 6. PERFORMING ONG

  18. The Status and Outlook for the Photovoltaics Industry

    NASA Astrophysics Data System (ADS)

    Carlson, David

    2006-03-01

    The first silicon solar cell was made at Bell Labs in 1954, and over the following decades, shipments of photovoltaic (PV) modules increased at a rate of about 18% annually. In the last several years, the annual growth rate has increased to ˜ 35% due largely to government-supported programs in Japan and Germany. Silicon technology has dominated the PV industry since its inception, and in 2005 about 65% of all solar cells were made from polycrystalline (or multicrystalline) silicon, 24% from monocrystalline silicon and ˜ 4% from ribbon silicon. While conversion efficiencies as high as 24.7% have been obtained in the laboratory for silicon solar cells, the best efficiencies for commercial PV modules are in the range of 17 18% (the efficiency limit for a silicon solar cell is ˜ 29%). A number of companies are commercializing solar cells based on other materials such as amorphous silicon, microcrystalline silicon, cadmium telluride, copper-indium-gallium-diselenide (CIGS), gallium arsenide (and related compounds) and dye- sensitized titanium oxide. Thin film CIGS solar cells have been fabricated with conversion efficiencies as high as 19.5% while efficiencies as high as 39% have been demonstrated for a GaInP/Ga(In)As/Ge triple-junction cell operating at a concentration of 236 suns. Thin film solar cells are being used in consumer products and in some building-integrated applications, while PV concentrator systems are being tested in grid-connected arrays located in high solar insolation areas. Nonetheless, crystalline silicon PV technology is likely to dominate the terrestrial market for at least the next decade with module efficiencies > 20% and module prices of < 1/Wp expected by 2020, which in turn should allow significant penetration of the utility grid market. However, crystalline silicon solar cells may be challenged in the next decade or two by new low-cost, high performance devices based on organic materials and nanotechnology.

  19. Gallium nitride optoelectronic devices

    NASA Technical Reports Server (NTRS)

    Chu, T. L.; Chu, S. S.

    1972-01-01

    The growth of bulk gallium nitride crystals was achieved by the ammonolysis of gallium monochloride. Gallium nitride single crystals up to 2.5 x 0.5 cm in size were produced. The crystals are suitable as substrates for the epitaxial growth of gallium nitride. The epitaxial growth of gallium nitride on sapphire substrates with main faces of (0001) and (1T02) orientations was achieved by the ammonolysis of gallium monochloride in a gas flow system. The grown layers had electron concentrations in the range of 1 to 3 x 10 to the 19th power/cu cm and Hall mobilities in the range of 50 to 100 sq cm/v/sec at room temperature.

  20. Air-annealing of Cu(In, Ga)Se2/CdS and performances of CIGS solar cells

    NASA Astrophysics Data System (ADS)

    Niu, X.; Zhu, H.; Liang, X.; Guo, Y.; Li, Z.; Mai, Y.

    2017-12-01

    In this study, the annealing treatment on Cu(In, Ga)Se2 (CIGS)/CdS interface in air is systematically investigated under different annealing temperatures from room temperature to 150 °C and different durations. It is found that when CIGS/CdS interface is annealed for a proper duration the corresponding CIGS thin film solar cells show enhanced open circuit voltage (Voc) and fill factor (FF) as well as corresponding conversion efficiency. The capacitance-voltage (C-V) and time-resolved photoluminescence (TR-PL) measurement results indicate that the CIGS thin film solar cells exhibit an increase in net defect density (NCV) and long lifetime for the carriers, respectively, after the annealing treatment of CIGS/CdS at a mediate annealing temperature here. Moreover, the net defect density of annealed solar cells at higher annealing temperatures for a long duration is reduced. All the variations in the solar cell performances, NCV and carrier lifetime would be related to the passivation of Se vacancies and InCu defects, surface (interface) states as well as positive interface discharges and Cu migration etc. A high efficiency CIGS solar cell of 14.4% is achieved. The optimized solar cell of 17.2% with a MgF2 anti-reflective layer has been obtained.

  1. Computational Infrastructure for Geodynamics (CIG)

    NASA Astrophysics Data System (ADS)

    Gurnis, M.; Kellogg, L. H.; Bloxham, J.; Hager, B. H.; Spiegelman, M.; Willett, S.; Wysession, M. E.; Aivazis, M.

    2004-12-01

    Solid earth geophysicists have a long tradition of writing scientific software to address a wide range of problems. In particular, computer simulations came into wide use in geophysics during the decade after the plate tectonic revolution. Solution schemes and numerical algorithms that developed in other areas of science, most notably engineering, fluid mechanics, and physics, were adapted with considerable success to geophysics. This software has largely been the product of individual efforts and although this approach has proven successful, its strength for solving problems of interest is now starting to show its limitations as we try to share codes and algorithms or when we want to recombine codes in novel ways to produce new science. With funding from the NSF, the US community has embarked on a Computational Infrastructure for Geodynamics (CIG) that will develop, support, and disseminate community-accessible software for the greater geodynamics community from model developers to end-users. The software is being developed for problems involving mantle and core dynamics, crustal and earthquake dynamics, magma migration, seismology, and other related topics. With a high level of community participation, CIG is leveraging state-of-the-art scientific computing into a suite of open-source tools and codes. The infrastructure that we are now starting to develop will consist of: (a) a coordinated effort to develop reusable, well-documented and open-source geodynamics software; (b) the basic building blocks - an infrastructure layer - of software by which state-of-the-art modeling codes can be quickly assembled; (c) extension of existing software frameworks to interlink multiple codes and data through a superstructure layer; (d) strategic partnerships with the larger world of computational science and geoinformatics; and (e) specialized training and workshops for both the geodynamics and broader Earth science communities. The CIG initiative has already started to

  2. Insights into cadmium diffusion mechanisms in two-stage diffusion profiles in solar-grade Cu(In,Ga)Se{sub 2} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biderman, N. J.; Sundaramoorthy, R.; Haldar, Pradeep

    Cadmium diffusion experiments were performed on polished copper indium gallium diselenide (Cu(In,Ga)Se{sub 2} or CIGS) samples with resulting cadmium diffusion profiles measured by time-of-flight secondary ion mass spectroscopy. Experiments done in the annealing temperature range between 275 °C and 425 °C reveal two-stage cadmium diffusion profiles which may be indicative of multiple diffusion mechanisms. Each stage can be described by the standard solutions of Fick's second law. The slower cadmium diffusion in the first stage can be described by the Arrhenius equation D{sub 1} = 3 × 10{sup −4} exp (− 1.53 eV/k{sub B}T) cm{sup 2} s{sup −1}, possibly representing vacancy-meditated diffusion. The faster second-stage diffusion coefficients determined in these experiments matchmore » the previously reported cadmium diffusion Arrhenius equation of D{sub 2} = 4.8 × 10{sup −4} exp (−1.04 eV/k{sub B}T) cm{sup 2} s{sup −1}, suggesting an interstitial-based mechanism.« less

  3. 7 CFR 1466.27 - Conservation Innovation Grants (CIG).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... lead to the transfer of conservation technologies, management systems, and innovative approaches (such... to stimulate the development and adoption of innovative conservation approaches and technologies... focus. Applications for CIG should demonstrate the use of innovative approaches and technologies to...

  4. Identification and Validation of Novel Hedgehog-Responsive Enhancers Predicted by Computational Analysis of Ci/Gli Binding Site Density

    PubMed Central

    Richards, Neil; Parker, David S.; Johnson, Lisa A.; Allen, Benjamin L.; Barolo, Scott; Gumucio, Deborah L.

    2015-01-01

    The Hedgehog (Hh) signaling pathway directs a multitude of cellular responses during embryogenesis and adult tissue homeostasis. Stimulation of the pathway results in activation of Hh target genes by the transcription factor Ci/Gli, which binds to specific motifs in genomic enhancers. In Drosophila, only a few enhancers (patched, decapentaplegic, wingless, stripe, knot, hairy, orthodenticle) have been shown by in vivo functional assays to depend on direct Ci/Gli regulation. All but one (orthodenticle) contain more than one Ci/Gli site, prompting us to directly test whether homotypic clustering of Ci/Gli binding sites is sufficient to define a Hh-regulated enhancer. We therefore developed a computational algorithm to identify Ci/Gli clusters that are enriched over random expectation, within a given region of the genome. Candidate genomic regions containing Ci/Gli clusters were functionally tested in chicken neural tube electroporation assays and in transgenic flies. Of the 22 Ci/Gli clusters tested, seven novel enhancers (and the previously known patched enhancer) were identified as Hh-responsive and Ci/Gli-dependent in one or both of these assays, including: Cuticular protein 100A (Cpr100A); invected (inv), which encodes an engrailed-related transcription factor expressed at the anterior/posterior wing disc boundary; roadkill (rdx), the fly homolog of vertebrate Spop; the segment polarity gene gooseberry (gsb); and two previously untested regions of the Hh receptor-encoding patched (ptc) gene. We conclude that homotypic Ci/Gli clustering is not sufficient information to ensure Hh-responsiveness; however, it can provide a clue for enhancer recognition within putative Hedgehog target gene loci. PMID:26710299

  5. How Does CIGS Performance Depend on Temperature at the Microscale?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuckelberger, Michael E.; Nietzold, Tara; West, Bradley M.

    Unveiling the correlation among electrical performance, elemental distribution, and defects at the microscale is crucial for the understanding and improvement of the overall solar cell performance. While this is true in general for solar cells with polycrystalline absorber layers, it is particularly critical for defect engineering of the complex quaternary CuIn xGa 1-xSe 2 (CIGS) material system. Studying these relationships under standard ambient conditions can provide important insights but does not provide input on the behavior of the cell under real operating conditions. In this contribution, we take a close look at the complex temperature dependence of defects and voltagemore » in CIGS at the microscale. We have developed correlative X-raymicroscopymethods and adapted them for temperature-dependent measurements of the locally generated voltage and elemental compositions at the microscale. We have applied these techniques to industrial CIGS solar cells covering temperatures from room temperature up to 100 degrees C. Finally, we find underperforming areas spanning multiple grains that do not correlate with the elemental distribution of major absorber constituents. However, we demonstrate that low-performing areas perform better at higher temperatures relative to the high-performing areas.« less

  6. How Does CIGS Performance Depend on Temperature at the Microscale?

    DOE PAGES

    Stuckelberger, Michael E.; Nietzold, Tara; West, Bradley M.; ...

    2017-11-03

    Unveiling the correlation among electrical performance, elemental distribution, and defects at the microscale is crucial for the understanding and improvement of the overall solar cell performance. While this is true in general for solar cells with polycrystalline absorber layers, it is particularly critical for defect engineering of the complex quaternary CuIn xGa 1-xSe 2 (CIGS) material system. Studying these relationships under standard ambient conditions can provide important insights but does not provide input on the behavior of the cell under real operating conditions. In this contribution, we take a close look at the complex temperature dependence of defects and voltagemore » in CIGS at the microscale. We have developed correlative X-raymicroscopymethods and adapted them for temperature-dependent measurements of the locally generated voltage and elemental compositions at the microscale. We have applied these techniques to industrial CIGS solar cells covering temperatures from room temperature up to 100 degrees C. Finally, we find underperforming areas spanning multiple grains that do not correlate with the elemental distribution of major absorber constituents. However, we demonstrate that low-performing areas perform better at higher temperatures relative to the high-performing areas.« less

  7. Gallium--A smart metal

    USGS Publications Warehouse

    Foley, Nora; Jaskula, Brian W.

    2013-01-01

    Gallium is a soft, silvery metallic element with an atomic number of 31 and the chemical symbol Ga. The French chemist Paul-Emile Lecoq de Boisbaudran discovered gallium in sphalerite (a zinc-sulfide mineral) in 1875 using spectroscopy. He named the element "gallia" after his native land of France (formerly Gaul; in Latin, Gallia). The existence of gallium had been predicted in 1871 by Dmitri Mendeleev, the Russian chemist who published the first periodic table of the elements. Mendeleev noted a gap in his table and named the missing element "eka-aluminum" because he determined that its location was one place away from aluminum in the table. Mendeleev thought that the missing element (gallium) would be very much like aluminum in its chemical properties, and he was right. Solid gallium has a low melting temperature (~29 degrees Celsius, or °C) and an unusually high boiling point (~2,204 °C). Because of these properties, the earliest uses of gallium were in high-temperature thermometers and in designing metal alloys that melt easily. The development of a gallium-based direct band-gap semiconductor in the 1960s led to what is now one of the most well-known applications for gallium-based products--the manufacture of smartphones and data-centric networks.

  8. Gallium-containing anticancer compounds.

    PubMed

    Chitambar, Christopher R

    2012-06-01

    There is an ever pressing need to develop new drugs for the treatment of cancer. Gallium nitrate, a group IIIa metal salt, inhibits the proliferation of tumor cells in vitro and in vivo and has shown activity against non-Hodgkin's lymphoma and bladder cancer in clinical trials. Gallium can function as an iron mimetic and perturb iron-dependent proliferation and other iron-related processes in tumor cells. Gallium nitrate lacks crossresistance with conventional chemotherapeutic drugs and is not myelosuppressive; it can be used when other drugs have failed or when the blood count is low. Given the therapeutic potential of gallium, newer generations of gallium compounds are now in various phases of preclinical and clinical development. These compounds hold the promise of greater anti-tumor activity against a broader spectrum of cancers. The development of gallium compounds for cancer treatment and their mechanisms of action will be discussed.

  9. Straightforward synthesis of non-natural L-chalcogen and L-diselenide N-Boc-protected-γ-amino acid derivatives.

    PubMed

    Kawasoko, Cristiane Y; Foletto, Patricia; Rodrigues, Oscar E D; Dornelles, Luciano; Schwab, Ricardo S; Braga, Antonio L

    2013-08-21

    The synthesis of new chiral seleno-, telluro-, and thio-N-Boc-γ-amino acids is described herein. These new compounds were prepared through a simple and short synthetic route, from the inexpensive and commercially-available amino acid L-glutamic acid. The products, with a highly modular character, were obtained in good to excellent yields, via hydrolysis of chalcogen pyroglutamic derivatives with overall retention of the L-glutamic acid stereochemistry. Also, an L-diselenide-N-Boc-γ-amino acid was prepared in good yield. This new synthetic route represents an efficient method for preparing new L-chalcogen- and L-diselenide-γ-amino acids with biological potential.

  10. Gallium-containing anticancer compounds

    PubMed Central

    Chitambar, Christopher R

    2013-01-01

    There is an ever pressing need to develop new drugs for the treatment of cancer. Gallium nitrate, a group IIIa metal salt, inhibits the proliferation of tumor cells in vitro and in vivo and has shown activity against non-Hodgkin’s lymphoma and bladder cancer in clinical trials. Gallium can function as an iron mimetic and perturb iron-dependent proliferation and other iron-related processes in tumor cells. Gallium nitrate lacks cross resistance with conventional chemotherapeutic drugs and is not myelosuppressive; it can be used when other drugs have failed or when the blood count is low. Given the therapeutic potential of gallium, newer generations of gallium compounds are now in various phases of preclinical and clinical development. These compounds hold the promise of greater anti-tumor activity against a broader spectrum of cancers. The development of gallium compounds for cancer treatment and their mechanisms of action will be discussed. PMID:22800370

  11. 10.3%-efficient submicron-thick Cu(In,Ga)Se2 solar cells with absorber fabricated by sputtering In2Se3, CuGaSe2 and Cu2Se targets

    NASA Astrophysics Data System (ADS)

    Peng, Xiao; Zhao, Ming; Zhuang, Daming; Sun, Rujun; Zhang, Leng; Wei, Yaowei; Lv, Xunyan; Wu, Yixuan; Ren, Guoan

    2018-06-01

    We reported a new method to fabricate submicron-thick CIGS with smooth surface by sputtering In2Se3, CuGaSe2 and Cu2Se targets with post-selenization. The influence of gallium content on the properties of CIGS thin film was evaluated by the crystallinity and the cells performance. The most suitable value of Ga content in our submicron-thick CIGS is 0.32 and cells based on it demonstrated the highest efficiency of 10.3%.

  12. Ultrawide Spectral Response of CIGS Solar Cells Integrated with Luminescent Down-Shifting Quantum Dots.

    PubMed

    Jeong, Ho-Jung; Kim, Ye-Chan; Lee, Soo Kyung; Jeong, Yonkil; Song, Jin-Won; Yun, Ju-Hyung; Jang, Jae-Hyung

    2017-08-02

    Conventional Cu(In 1-x ,Ga x )Se 2 (CIGS) solar cells exhibit poor spectral response due to parasitic light absorption in the window and buffer layers at the short wavelength range between 300 and 520 nm. In this study, the CdSe/CdZnS core/shell quantum dots (QDs) acting as a luminescent down-shifting (LDS) layer were inserted between the MgF 2 antireflection coating and the window layer of the CIGS solar cell to improve light harvesting in the short wavelength range. The LDS layer absorbs photons in the short wavelength range and re-emits photons in the 609 nm range, which are transmitted through the window and buffer layer and absorbed in the CIGS layer. The average external quantum efficiency in the parasitic light absorption region (300-520 nm) was enhanced by 51%. The resulting short circuit current density of 34.04 mA/cm 2 and power conversion efficiency of 14.29% of the CIGS solar cell with the CdSe/CdZnS QDs were improved by 4.35 and 3.85%, respectively, compared with those of the conventional solar cells without QDs.

  13. Optical properties of ultrathin CIGS films studied by spectroscopic ellipsometry assisted by chemical engineering

    NASA Astrophysics Data System (ADS)

    Loubat, Anaïs; Eypert, Céline; Mollica, Fabien; Bouttemy, Muriel; Naghavi, Negar; Lincot, Daniel; Etcheberry, Arnaud

    2017-11-01

    CIGS (Cu(In1-x,Gax)Se2) based devices are very efficient for photovoltaic conversion. A non-destructive optical study of CIGS is an important challenge as for evaluation of the material quality, and for device modeling. Spectroscopic Ellipsometry (SE) is well adapted for a quantitative characterization only if the handicaps of the roughness limitation, the oxidized surface, or the compositional gradient are minimized. For this SE study, ungraded and thin CIGS samples are prepared with GGI (x) ratio (=[Ga]/([Ga] + [In])) ranging from 0.15 to 0.60. Thanks to chemical engineering based on acidic bromine solution etching and/or HCl de-oxidation, the SE experiments are performed on flattened surfaces, and also, on as grown de-oxidized samples. Using assumptions based on XPS, AFM and SEM complementary characterizations, we give proof of oxide free flattening surfaces and chemical homogeneity in depth. Using these observations, the SE data are modeled on the basis of a three layer model using an Adachi/Tauc-Lorentz formula for the CIGS dispersion. The optical gap values are determined in good agreement with the x ratio measured by the other characterization techniques. SE is able to well estimate the thickness and roughness variations on each sample. Furthermore, the CIGS optical constant extracted on such reference flat surfaces are then applied to the as grown-de-oxidized surfaces, enabling to describe the SE data obtained on rougher surfaces. A complete consistency of the proposed model is shown as well as the capability of SE to be sensitive to the chemistry of the surface.

  14. Novel in situ resistance measurement for the investigation of CIGS growth in a selenization process

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Tian, Jian-Guo; Li, Zu-Bin; He, Qing; Li, Feng-Yan; Li, Chang-Jian; Sun, Yun

    2009-03-01

    During the selenization process of CIGS thin films, the relation between the element loss rate and the precursor depositions are analyzed. The growth of the CIGS thin films during the selenization process is investigated by the novel in situ resistance measurement, by which the formation of compound semiconductors can be observed directly and simultaneously. Their structures, phase evolutions and element losses are analyzed by XRD and XRF. Based on the experimental results, it can be concluded that the phase transforms have nothing to do with the deposition sequences of precursors, while the element loss rates are related to the deposition sequences in this process. In addition, element loss mechanisms of CIGS thin films prepared by the selenization process are analyzed by the phase evolutions and chemical combined path in the In, Ga-Se reaction processes. Moreover it is verified that the element losses are depressed by increasing the ramping-up rate finally. The results provide effective methods to fabricate high-quality CIGS thin films with low element losses.

  15. Electrodeposition of ZnO-doped films as window layer for Cd-free CIGS-based solar cells

    NASA Astrophysics Data System (ADS)

    Tsin, Fabien; Vénérosy, Amélie; Hildebrandt, Thibaud; Hariskos, Dimitrios; Naghavi, Negar; Lincot, Daniel; Rousset, Jean

    2016-02-01

    The Cu(In,Ga)Se2 (CIGS) thin film solar cell technology has made a steady progress within the last decade reaching efficiency up to 22.3% on laboratory scale, thus overpassing the highest efficiency for polycrystalline silicon solar cells. High efficiency CIGS modules employ a so-called buffer layer of cadmium sulfide CdS deposited by Chemical Bath Deposition (CBD), which presence and Cd-containing waste present some environmental concerns. A second potential bottleneck for CIGS technology is its window layer made of i-ZnO/ZnO:Al, which is deposited by sputtering requiring expensive vacuum equipment. A non-vacuum deposition of transparent conductive oxide (TCO) relying on simpler equipment with lower investment costs will be more economically attractive, and could increase competitiveness of CIGS-based modules with the mainstream silicon-based technologies. In the frame of Novazolar project, we have developed a low-cost aqueous solution photo assisted electrodeposition process of the ZnO-based window layer for high efficiency CIGS-based solar cells. The window layer deposition have been first optimized on classical CdS buffer layer leading to cells with efficiencies similar to those measured with the sputtered references on the same absorber (15%). The the optimized ZnO doped layer has been adapted to cadmium free devices where the CdS is replaced by chemical bath deposited zinc oxysulfide Zn(S,O) buffer layer. The effect of different growth parameters has been studied on CBD-Zn(S,O)-plated co-evaporated Cu(In,Ga)Se2 substrates provided by the Zentrum für Sonnenenergie-und Wasserstoff-Forschung (ZSW). This optimization of the electrodeposition of ZnO:Cl on CIGS/Zn(S,O) stacks led to record efficiency of 14%, while the reference cell with a sputtered (Zn,Mg)O/ZnO:Al window layer has an efficiency of 15.2%.

  16. Fundamental studies of the metallurgical, electrical, and optical properties of gallium phosphide and gallium phosphide alloys

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Abstracts, bibliographic data, oral presentations, and published papers on (1) Diffusion of Sulfur in Gallium Phosphide and Gallium Arsenide, and (2) Properties of Gallium Phosphide Schottky Barrier Rectifiers for Use at High Temperature are presented.

  17. Renal amyloidosis. Evaluation by gallium imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, V.W.; Skinner, M.; Cohen, A.S.

    1986-09-01

    A study has been performed to evaluate the efficacy of gallium imaging in the detection of renal amyloidosis. Ten of the 11 patients who had biopsy-proven renal amyloidosis demonstrated marked uptake in both kidneys. One patient revealed moderate gallium uptake in his kidneys. None of the patients had underlying renal or extrarenal pathology other than amyloidosis, which could account for renal gallium uptake (renal infection, neoplasm, hepatic failure or frequent blood transfusions). Four patients also had extrarenal foci of abnormal gallium uptake, suggesting other sites of amyloid deposits. Our data strongly suggest that gallium imaging has a high sensitivity formore » detection of renal amyloidosis. Its specificity is enhanced significantly by careful review of the clinical history to exclude other known causes of renal gallium uptake. Potentially, gallium imaging may be used to monitor the progress of patients under experimental therapy.« less

  18. Quenching Mo optical losses in CIGS solar cells by a point contacted dual-layer dielectric spacer: a 3-D optical study.

    PubMed

    Rezaei, Nasim; Isabella, Olindo; Vroon, Zeger; Zeman, Miro

    2018-01-22

    A 3-D optical modelling was calibrated to calculate the light absorption and the total reflection of fabricated CIGS solar cells. Absorption losses at molybdenum (Mo) / CIGS interface were explained in terms of plasmonic waves. To quench these losses, we assumed the insertion of a lossless dielectric spacer between Mo and CIGS, whose optical properties were varied. We show that such a spacer with low refractive index and proper thickness can significantly reduce absorption in Mo in the long wavelength regime and improve the device's rear reflectance, thus leading to enhanced light absorption in the CIGS layer. Therefore, we optimized a realistic two-layer MgF 2 / Al 2 O 3 dielectric spacer to exploit (i) the passivation properties of ultra-thin Al 2 O 3 on the CIGS side for potential high open-circuit voltage and (ii) the low refractive index of MgF 2 on the Mo side to reduce its optical losses. Combining our realistic spacer with optically-optimized point contacts increases the implied photocurrent density of a 750 nm-thick CIGS layer by 10% for the wavelengths between 700 and 1150 nm with respect to the reference cell. The elimination of plasmonic resonances in the new structure leads to a higher electric field magnitude at the bottom of CIGS layer and justifies the improved optical performance.

  19. Long-chain amine-templated synthesis of gallium sulfide and gallium selenide nanotubes

    NASA Astrophysics Data System (ADS)

    Seral-Ascaso, A.; Metel, S.; Pokle, A.; Backes, C.; Zhang, C. J.; Nerl, H. C.; Rode, K.; Berner, N. C.; Downing, C.; McEvoy, N.; Muñoz, E.; Harvey, A.; Gholamvand, Z.; Duesberg, G. S.; Coleman, J. N.; Nicolosi, V.

    2016-06-01

    We describe the soft chemistry synthesis of amine-templated gallium chalcogenide nanotubes through the reaction of gallium(iii) acetylacetonate and the chalcogen (sulfur, selenium) using a mixture of long-chain amines (hexadecylamine and dodecylamine) as a solvent. Beyond their role as solvent, the amines also act as a template, directing the growth of discrete units with a one-dimensional multilayer tubular nanostructure. These new materials, which broaden the family of amine-stabilized gallium chalcogenides, can be tentatively classified as direct large band gap semiconductors. Their preliminary performance as active material for electrodes in lithium ion batteries has also been tested, demonstrating great potential in energy storage field even without optimization.We describe the soft chemistry synthesis of amine-templated gallium chalcogenide nanotubes through the reaction of gallium(iii) acetylacetonate and the chalcogen (sulfur, selenium) using a mixture of long-chain amines (hexadecylamine and dodecylamine) as a solvent. Beyond their role as solvent, the amines also act as a template, directing the growth of discrete units with a one-dimensional multilayer tubular nanostructure. These new materials, which broaden the family of amine-stabilized gallium chalcogenides, can be tentatively classified as direct large band gap semiconductors. Their preliminary performance as active material for electrodes in lithium ion batteries has also been tested, demonstrating great potential in energy storage field even without optimization. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01663d

  20. 49 CFR 173.162 - Gallium.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Gallium. 173.162 Section 173.162 Transportation... PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.162 Gallium. (a) Except when packaged in cylinders or steel flasks, gallium must be packaged in packagings which meet the...

  1. 49 CFR 173.162 - Gallium.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Gallium. 173.162 Section 173.162 Transportation... PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.162 Gallium. (a) Except when packaged in cylinders or steel flasks, gallium must be packaged in packagings which meet the...

  2. 49 CFR 173.162 - Gallium.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Gallium. 173.162 Section 173.162 Transportation... PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.162 Gallium. (a) Except when packaged in cylinders or steel flasks, gallium must be packaged in packagings which meet the...

  3. Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control.

    PubMed

    Sarkar, Sujoy; Sampath, S

    2016-05-11

    A ternary, ionically conducting, deep eutectic solvent based on acetamide, urea and gallium nitrate is reported for the electrodeposition of gallium nitride/gallium indium nitride under ambient conditions; blue and white light emitting photoluminescent deposits are obtained under potential control.

  4. Electrical characterization and comparison of CIGS solar cells made with different structures and fabrication techniques

    DOE PAGES

    Garris, Rebekah L.; Johnston, Steven; Li, Jian V.; ...

    2017-08-31

    In a previous study, we reported on Cu(In,Ga)Se2-based (CIGS) solar cell samples collected from different research laboratories and industrial companies with the purpose of understanding the range of CIGS materials that can lead to high-quality and high-efficiency solar panels. Here, we report on electrical measurements of those same samples. Electron-beam induced current and time-resolved photoluminescence (TRPL) gave insights about the collection probability and the lifetime of carriers generated in each absorber. Capacitance and drive-level capacitance profiling revealed nonuniformity in carrier-density profiles. Admittance spectroscopy revealed small activation energies (= 0.03 eV) indicative of the inversion strength, larger activation energies (> 0.1more » eV) reflective of thermal activation of absorber conductivity and a deeper defect level. Deep-level transient spectroscopy (DLTS) probed deep hole-trapping defects and showed that all samples in this study had a majority-carrier defect with activation energy between 0.3 eV and 0.9 eV. Optical-DLTS revealed deep electron-trapping defects in several of the CIGS samples. This work focused on revealing similarities and differences between high-quality CIGS solar cells made with various structures and fabrication techniques.« less

  5. Electrical characterization and comparison of CIGS solar cells made with different structures and fabrication techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garris, Rebekah L.; Johnston, Steven; Li, Jian V.

    In a previous study, we reported on Cu(In,Ga)Se2-based (CIGS) solar cell samples collected from different research laboratories and industrial companies with the purpose of understanding the range of CIGS materials that can lead to high-quality and high-efficiency solar panels. Here, we report on electrical measurements of those same samples. Electron-beam induced current and time-resolved photoluminescence (TRPL) gave insights about the collection probability and the lifetime of carriers generated in each absorber. Capacitance and drive-level capacitance profiling revealed nonuniformity in carrier-density profiles. Admittance spectroscopy revealed small activation energies (= 0.03 eV) indicative of the inversion strength, larger activation energies (> 0.1more » eV) reflective of thermal activation of absorber conductivity and a deeper defect level. Deep-level transient spectroscopy (DLTS) probed deep hole-trapping defects and showed that all samples in this study had a majority-carrier defect with activation energy between 0.3 eV and 0.9 eV. Optical-DLTS revealed deep electron-trapping defects in several of the CIGS samples. This work focused on revealing similarities and differences between high-quality CIGS solar cells made with various structures and fabrication techniques.« less

  6. Mineral resource of the month: gallium

    USGS Publications Warehouse

    Jaskula, Brian W.

    2009-01-01

    The metal element gallium occurs in very small concentrations in rocks and ores of other metals — native gallium is not known. As society gets more and more high-tech, gallium becomes more useful. Gallium is one of only five metals that are liquid at or close to room temperature. It has one of the longest liquid ranges of any metal (29.8 degrees Celsius to 2204 degrees Celsius) and has a low vapor pressure even at high temperatures. Ultra-pure gallium has a brilliant silvery appearance, and the solid metal exhibits conchoidal fracture similar to glass.

  7. Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam

    NASA Astrophysics Data System (ADS)

    Zhou, Haiqing; Yu, Fang; Huang, Yufeng; Sun, Jingying; Zhu, Zhuan; Nielsen, Robert J.; He, Ran; Bao, Jiming; Goddard, William A., III; Chen, Shuo; Ren, Zhifeng

    2016-09-01

    With the massive consumption of fossil fuels and its detrimental impact on the environment, methods of generating clean power are urgent. Hydrogen is an ideal carrier for renewable energy; however, hydrogen generation is inefficient because of the lack of robust catalysts that are substantially cheaper than platinum. Therefore, robust and durable earth-abundant and cost-effective catalysts are desirable for hydrogen generation from water splitting via hydrogen evolution reaction. Here we report an active and durable earth-abundant transition metal dichalcogenide-based hybrid catalyst that exhibits high hydrogen evolution activity approaching the state-of-the-art platinum catalysts, and superior to those of most transition metal dichalcogenides (molybdenum sulfide, cobalt diselenide and so on). Our material is fabricated by growing ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam. This advance provides a different pathway to design cheap, efficient and sizable hydrogen-evolving electrode by simultaneously tuning the number of catalytic edge sites, porosity, heteroatom doping and electrical conductivity.

  8. Controlled Electrochemical Deformation of Liquid-Phase Gallium.

    PubMed

    Chrimes, Adam F; Berean, Kyle J; Mitchell, Arnan; Rosengarten, Gary; Kalantar-zadeh, Kourosh

    2016-02-17

    Pure gallium is a soft metal with a low temperature melting point of 29.8 °C. This low melting temperature can potentially be employed for creating optical components with changeable configurations on demand by manipulating gallium in its liquid state. Gallium is a smooth and highly reflective metal that can be readily maneuvered using electric fields. These features allow gallium to be used as a reconfigurable optical reflector. This work demonstrates the use of gallium for creating reconfigurable optical reflectors manipulated through the use of electric fields when gallium is in a liquid state. The use of gallium allows the formed structures to be frozen and preserved as long as the temperature of the metal remains below its melting temperature. The lens can be readily reshaped by raising the temperature above the melting point and reapplying an electric field to produce a different curvature of the gallium reflector.

  9. Q-switched all-fiber laser with short pulse duration based on tungsten diselenide

    NASA Astrophysics Data System (ADS)

    Li, Wenyi; OuYang, Yuyi; Ma, Guoli; Liu, Mengli; Liu, Wenjun

    2018-05-01

    Fiber lasers are widely used in industrial processing, sensing, medical and communications applications due to their simple structure, good stability and low cost. With the rapid development of fiber lasers and the sustained improvement of industrial laser quality requirements, researchers in ultrafast optics focus on how to get laser pulses with high output power and narrow pulse duration. Q-switched technology is one of the most effective techniques to generate ultrashort pulses. In this paper, a tungsten diselenide saturable absorber with 16.82% modulation depth is prepared by chemical vapor deposition. Experimental results show that when the pump power changes from 115.7 mW to 630 mW, the all-fiber laser can achieve a stable Q-switched pulse output. The repetition rate of the output pulse varies from 80.32 kHz to 204.2 kHz, the pulse duration is 581 ns, the maximum output power is 17.1 mW and the maximum pulse energy is 83.7 nJ. Results in this paper show that tungsten diselenide can be applied to ultrafast optics, which is a kind of saturable absorption material with excellent properties.

  10. Synchrotron X-Ray Fluorescence Microscopy of Gallium in Bladder Tissue following Gallium Maltolate Administration during Urinary Tract Infection

    PubMed Central

    Sampieri, Francesca; Chirino, Manuel; Hamilton, Don L.; Blyth, Robert I. R.; Sham, Tsun-Kong; Dowling, Patricia M.; Thompson, Julie

    2013-01-01

    A mouse model of cystitis caused by uropathogenic Escherichia coli was used to study the distribution of gallium in bladder tissue following oral administration of gallium maltolate during urinary tract infection. The median concentration of gallium in homogenized bladder tissue from infected mice was 1.93 μg/g after daily administration of gallium maltolate for 5 days. Synchrotron X-ray fluorescence imaging and X-ray absorption spectroscopy of bladder sections confirmed that gallium arrived at the transitional epithelium, a potential site of uropathogenic E. coli infection. Gallium and iron were similarly but not identically distributed in the tissues, suggesting that at least some distribution mechanisms are not common between the two elements. The results of this study indicate that gallium maltolate may be a suitable candidate for further development as a novel antimicrobial therapy for urinary tract infections caused by uropathogenic E. coli. PMID:23877680

  11. Effects of Voltage-Bias Annealing on Metastable Defect Populations in CIGS and CZTSe Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Steven P.; Johnston, Steve; Teeter, Glenn

    2016-11-21

    We report on voltage-bias annealing (VBA) experiments performed on CIGS and CZTSe solar cells. In these experiments, completed devices were annealed at moderate temperatures and subsequently quenched with continuously applied voltage bias. These treatments resulted in substantial reversible changes in device characteristics. Photovoltaic (PV) conversion efficiency of the CIGS device varied from below 3% to above 15%, with corresponding changes in CIGS hole density from ~1014 cm-3 to ~1017 cm-3. In the CZTSe device, open-circuit voltage varied from 289 meV to 446 meV, caused by an approximately factor of fifty change in the CZTSe hole density. We interpret these findingsmore » in terms of reversible changes to the metastable point-defect populations that control key properties in these materials. Implications for optimization of PV materials and connections to long-term stability of PV devices are discussed.« less

  12. Integrated Measurements and Characterization | Photovoltaic Research | NREL

    Science.gov Websites

    Integrated Measurements and Characterization cluster tool offers powerful capabilities with integrated tools more details on these capabilities. Basic Cluster Tool Capabilities Sample Handling Ultra-high-vacuum connections, it can be interchanged between tools, such as the Copper Indium Gallium Diselenide cluster tool

  13. The Preparation and Structural Characterization of Three Structural Types of Gallium Compounds Derived from Gallium (II) Chloride

    NASA Technical Reports Server (NTRS)

    Gordon, Edward M.; Hepp, Aloysius F.; Duraj. Stan A.; Habash, Tuhfeh S.; Fanwick, Phillip E.; Schupp, John D.; Eckles, William E.; Long, Shawn

    1997-01-01

    The three compounds Ga2Cl4(4-mepy)2 (1),[GaCl2(4-mepy)4]GaCl4x1/2(4-mepy); (2) and GaCl2(4-mepy)2(S2CNEt2); (3) (4-mepy= 4-methylpyridine) have been prepared from reactions of gallium (II) chloride in 4-methylpyridine and characterized by single-crystal X-ray analysis. Small variations in the reaction conditions for gallium(II) chloride can produce crystals with substantially different structural properties. The three compounds described here encompass a neutral gallium(II) dimer in which each gallium is four-coordinate, an ionic compound containing both anionic and cationic gallium complex ions with different coordination numbers and a neutral six-coordinate heteroleptic

  14. Construction of Gallium Point at NMIJ

    NASA Astrophysics Data System (ADS)

    Widiatmo, J. V.; Saito, I.; Yamazawa, K.

    2017-03-01

    Two open-type gallium point cells were fabricated using ingots whose nominal purities are 7N. Measurement systems for the realization of the melting point of gallium using these cells were built. The melting point of gallium is repeatedly realized by means of the measurement systems for evaluating the repeatability. Measurements for evaluating the effect of hydrostatic pressure coming from the molten gallium existing during the melting process and the effect of gas pressure that fills the cell were also performed. Direct cell comparisons between those cells were conducted. This comparison was aimed to evaluate the consistency of each cell, especially related to the nominal purity. Direct cell comparison between the open-type and the sealed-type gallium point cell was also conducted. Chemical analysis was conducted using samples extracted from ingots used in both the newly built open-type gallium point cells, from which the effect of impurities in the ingot was evaluated.

  15. Studies on transport properties of copper doped tungsten diselenide single crystals

    NASA Astrophysics Data System (ADS)

    Deshpande, M. P.; Parmar, M. N.; Pandya, Nilesh N.; Chaki, Sunil; Bhatt, Sandip V.

    2012-02-01

    During recent years, transition metal dichalcogenides of groups IVB, VB and VIB have received considerable attention because of the great diversity in their transport properties. 2H-WSe 2 (Tungsten diselenide) is an interesting member of the transition metal dichalcogenide (TMDC's) family and known to be a semiconductor useful for photovoltaic and optoelectronic applications. The anisotropy usually observed in this diamagnetic semiconductor material is a result of the sandwich structure of Se-W-Se layers interacting with each other, loosely bonded by the weak Van der Waals forces. Recent efforts in studying the influence of the anisotropic electrical and optical properties of this layered-type transition metal dichalcogenides have been implemented by doping the samples with different alkali group elements. Unfortunately, little work is reported on doping of metals in WSe 2. Therefore, it is proposed in this work to carry out a systematic growth of single crystals of WSe 2 by doping it with copper in different proportions i.e. Cu xWSe 2 ( x=0, 0.5, 1.0) by direct vapour transport technique. Transport properties like low and high temperature resistivity measurements, high pressure resistivity, Seebeck coefficient measurements at low temperature and Hall Effect at room temperature were studied in detail on all these samples. These measurements show that tungsten diselenide single crystals are p-type whereas doped with copper makes it n-type in nature. The results obtained and their implications are discussed in this paper.

  16. P-type gallium nitride

    DOEpatents

    Rubin, M.; Newman, N.; Fu, T.; Ross, J.; Chan, J.

    1997-08-12

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5{times}10{sup 11} /cm{sup 3} and hole mobilities of about 500 cm{sup 2} /V-sec, measured at 250 K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al. 9 figs.

  17. P-type gallium nitride

    DOEpatents

    Rubin, Michael; Newman, Nathan; Fu, Tracy; Ross, Jennifer; Chan, James

    1997-01-01

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5.times.10.sup.11 /cm.sup.3 and hole mobilities of about 500 cm.sup.2 /V-sec, measured at 250.degree. K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al.

  18. Molecular beam epitaxially grown copper indium diselenide and copper gallium diselenide films

    NASA Astrophysics Data System (ADS)

    Yoon, Seokhyun

    2005-12-01

    To eliminate the influence of grain boundaries, CuInSe2 (CIS) and CuGaSe2 (CGS) films were grown on (100) GaAs wafers. The effects of Cu to III metal ratio and dosing with Na on the growth mode and defect properties were studied at two growth temperatures. The impact of post-annealing in Se on the defect structure of CGS film was also studied. Two-dimensional simulations were used to better understand the role of grain boundary on cell performance. For growth at 360°C, the In-rich CIS films were polycrystalline, whereas the Cu-rich CIS films were epitaxial exhibiting a Stranski-Krastanov (S-K) growth mode. It is proposed that a Cu-Se secondary phase enhances the mobility of adatoms, allowing epitaxial growth to a critical thickness, at which point segregation at the nucleation sites became faster the rate of growth. Island structures, embedded in a matrix region, were oriented along the [01-1] directed edges with surface undulations apparent on the matrix surface with dominant {112} crystal planes. At the higher growth temperature of 464°C, the CIS films grew epitaxially without the need of a Cu-Se phase. Both CIS films grown at low and high temperatures were nearly relaxed. The segregation of epitaxial Cu1.5Se was also observed in the Cu-rich, Na-dosed CIS film, which is attributed to a surfactant effect of Na. At a growth temperature of 438°C, CGS films showed a S-K growth mode and nearly pseudomorphic growth. Hemispherical islands with twins were observed in the Ga-rich CGS films and epitaxial Cu1.5Se phase were identified in the top region of the island structure. From the PL analysis of Cu-rich, Na-dosed CGS film after Se-annealing, a new defect level located 20 meV above the valence band edge was identified as NaGa acceptor state. Two-dimensional simulation of the impact of grain boundaries on device performance showed that the short circuit current decreases sharply along with the other device parameters below a critical grain size due to the complete depletion. The increase of dark saturation current with decreasing grain size was predicted due to an increase in the recombination current.

  19. Development of a Multi-layer Anti-reflective Coating for Gallium Arsenide/Aluminum Gallium Arsenide Solar Cells

    DTIC Science & Technology

    2015-07-01

    optical loss mechanism, which limits the efficiency of the PV device.1 Photon absorption needs to occur inside the solar cell active region (near the...Aluminum Gallium Arsenide Solar Cells by Kimberley A Olver Approved for public release; distribution unlimited...Development of a Multi-layer Anti-reflective Coating for Gallium Arsenide/Aluminum Gallium Arsenide Solar Cells by Kimberley A Olver

  20. Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam

    DOE PAGES

    Zhou, Haiqing; Yu, Fang; Huang, Yufeng; ...

    2016-09-16

    With the massive consumption of fossil fuels and its detrimental impact on the environment, methods of generating clean power are urgent. Hydrogen is an ideal carrier for renewable energy; however, hydrogen generation is inefficient because of the lack of robust catalysts that are substantially cheaper than platinum. Therefore, robust and durable earth-abundant and cost-effective catalysts are desirable for hydrogen generation from water splitting via hydrogen evolution reaction. In this paper, we report an active and durable earth-abundant transition metal dichalcogenide-based hybrid catalyst that exhibits high hydrogen evolution activity approaching the state-of-the-art platinum catalysts, and superior to those of most transitionmore » metal dichalcogenides (molybdenum sulfide, cobalt diselenide and so on). Our material is fabricated by growing ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam. This advance provides a different pathway to design cheap, efficient and sizable hydrogen-evolving electrode by simultaneously tuning the number of catalytic edge sites, porosity, heteroatom doping and electrical conductivity.« less

  1. Designing novel thin film polycrystalline solar cells for high efficiency: sandwich CIGS and heterojunction perovskite

    NASA Astrophysics Data System (ADS)

    Wang, Tianyue; Chen, Jiewei; Wu, Gaoxiang; Song, Dandan; Li, Meicheng

    2017-01-01

    Heterojunction and sandwich architectures are two new-type structures with great potential for solar cells. Specifically, the heterojunction structure possesses the advantages of efficient charge separation but suffers from band offset and large interface recombination; the sandwich configuration is favorable for transferring carriers but requires complex fabrication process. Here, we have designed two thin-film polycrystalline solar cells with novel structures: sandwich CIGS and heterojunction perovskite, referring to the advantages of the architectures of sandwich perovskite (standard) and heterojunction CIGS (standard) solar cells, respectively. A reliable simulation software wxAMPS is used to investigate their inherent characteristics with variation of the thickness and doping density of absorber layer. The results reveal that sandwich CIGS solar cell is able to exhibit an optimized efficiency of 20.7%, which is much higher than the standard heterojunction CIGS structure (18.48%). The heterojunction perovskite solar cell can be more efficient employing thick and doped perovskite films (16.9%) than these typically utilizing thin and weak-doping/intrinsic perovskite films (9.6%). This concept of structure modulation proves to be useful and can be applicable for other solar cells. Project supported by the National High-Tech R&D Program of China (No. 2015AA034601), the National Natural Science Foundation of China (Nos. 91333122, 61204064, 51202067, 51372082, 51402106, 11504107), the Ph.D. Programs Foundation of Ministry of Education of China (Nos. 20120036120006, 20130036110012), the Par-Eu Scholars Program, and the Fundamental Research Funds for the Central Universities.

  2. Generator for gallium-68 and compositions obtained therefrom

    DOEpatents

    Neirinckx, Rudi D.; Davis, Michael A.

    1981-01-01

    A generator for obtaining radioactive gallium-68 from germanium-68 bound in a resin containing unsubstituted phenolic hydroxyl groups. The germanium-68 is loaded into the resin from an aqueous solution of the germanium-68. A physiologically acceptable solution of gallium-68 having an activity of 0.1 to 50 millicuries per milliliter of gallium-68 solution is obtained. The solution is obtained from the bound germanium-68 which forms gallium-68 in situ by eluting the column with a hydrochloric acid solution to form an acidic solution of gallium-68. The acidic solution of gallium-68 can be neutralized.

  3. New Materials for Chalcogenide Based Solar Cells

    NASA Astrophysics Data System (ADS)

    Tosun, Banu Selin

    Thin film solar cells based on copper indium gallium diselenide (CIGS) have achieved efficiencies exceeding 20 %. The p-n junction in these solar cells is formed between a p-type CIGS absorber layer and a composite n-type film that consists of a 50-100 nm thin n-type CdS followed by a 50-200 nm thin n-type ZnO. This dissertation focuses on developing materials for replacing CdS and ZnO films to improve the damp-heat stability of the solar cells and for minimizing the use of Cd. Specifically, I demonstrate a new CIGS solar cell with better damp heat stability wherein the ZnO layer is replaced with SnO2. The efficiency of solar cells made with SnO2 decreased less than 5 % after 120 hours at 85 °C and 85 % relative humidity while the efficiency of solar cells made with ZnO declined by more than 70 %. Moreover, I showed that a SnO2 film deposited on top of completed CIGS solar cells significantly increased the device lifetime by forming a barrier against water diffusion. Semicrystalline SnO2 films deposited at room temperature had nanocrystals embedded in an amorphous matrix, which resulted in films without grain boundaries. These films exhibited better damp-heat stability than ZnO and crystalline SnO2 films deposited at higher temperature and this difference is attributed to the lack of grain boundary water diffusion. In addition, I studied CBD of Zn1-xCdxS from aqueous solutions of thiourea, ethylenediaminetetraacetic acid and zinc and cadmium sulfate. I demonstrated that films with varying composition (x) can be deposited through CBD and studied the structure and composition variation along the films' thickness. However, this traditional chemical bath deposition (CBD) approach heats the entire solution and wastes most of the chemicals by homogenous particle formation. To overcome this problem, I designed and developed a continuous-flow CBD approach to utilize the chemicals efficiently and to eliminate homogenous particle formation. Only the substrate is heated to

  4. Antitumor effect of novel gallium compounds and efficacy of nanoparticle-mediated gallium delivery in lung cancer.

    PubMed

    Wehrung, Daniel; Oyewumi, Moses O

    2012-02-01

    The widespread application of gallium (Ga) in cancer therapy has been greatly hampered by lack of specificity resulting in poor tumor accumulation and retention. To address the challenge, two lipophilic gallium (III) compounds (gallium hexanedione; GaH and gallium acetylacetonate; GaAcAc) were synthesized and antitumor studies were conducted in human lung adenocarcinoma (A549) cells. Nanoparticles (NPs) containing various concentrations of the Ga compounds were prepared using a binary mixture of Gelucire 44/14 and cetyl alcohol as matrix materials. NPs were characterized based on size, morphology, stability and biocompatibility. Antitumor effects of free or NP-loaded Ga compounds were investigated based on cell viability, production of reactive oxygen species and reduction of mitochondrial potential. Compared to free Ga compounds, cytotoxicity of NP-loaded Ga (5-150 microg/ml) was less dependent on concentration and incubation time (exposure) with A549 cells. NP-mediated delivery (5-150 microg Ga/ml) enhanced antitumor effects of Ga compounds and the effect was pronounced at: (i) shorter incubation times; and (ii) at low concentrations of gallium (approximately 50 microg/ml) (p < 0.0006). Additional studies showed that NP-mediated Ga delivery was not dependent on transferrin receptor uptake mechanism (p > 0.13) suggesting the potential in overcoming gallium resistance in some tumors. In general, preparation of stable and biocompatible NPs that facilitated Ga tumor uptake and antitumor effects could be effective in gallium-based cancer therapy.

  5. Molecular descriptors calculation as a tool in the analysis of the antileishmanial activity achieved by two series of diselenide derivatives. An insight into its potential action mechanism.

    PubMed

    Font, María; Baquedano, Ylenia; Plano, Daniel; Moreno, Esther; Espuelas, Socorro; Sanmartín, Carmen; Palop, Juan Antonio

    2015-07-01

    A molecular modeling study has been carried out on two previously reported series of symmetric diselenide derivatives that show remarkable antileishmanial in vitro activity against Leishmania infantum intracellular amastigotes and in infected macrophages (THP-1 cells), in addition to showing favorable selectivity indices. Series 1 consists of compounds that can be considered as central scaffold constructed with a diaryl/dialkylaryl diselenide central nucleus, decorated with different substituents located on the aryl rings. Series 2 consists of compounds constructed over a diaryl diselenide central nucleus, decorated in 4 and 4' positions with an aryl or heteroaryl sulfonamide fragment, thus forming the diselenosulfonamide derivatives. With regard to the diselenosulfonamide derivatives (2 series), the activity can be related, as a first approximation, with (a) the ability to release bis(4-aminophenyl) diselenide, the common fragment which can be ultimately responsible for the activity of the compounds. (b) the anti-parasitic activity achieved by the sulfonamide pharmacophore present in the analyzed derivatives. The data that support this connection include the topography of the molecules, the conformational behavior of the compounds, which influences the bond order, as well as the accessibility of the hydrolysis point, and possibly the hydrophobicity and polarizability of the compounds. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Gallium-67 activity in bronchoalveolar lavage fluid in sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trauth, H.A.; Heimes, K.; Schubotz, R.

    1986-01-01

    Roentgenograms and gallium-67 scans and gallium-67 counts of BAL fluid samples, together with differential cell counts, have proved to be useful in assessing activity and lung involvement in sarcoidosis. In active pulmonary sarcoidosis gallium-67 scans are usually positive. Quantitation of gallium-67 uptake in lung scans, however, may be difficult. Because gallium-67 uptake and cell counts in BAL fluid may be correlated, we set out to investigate gallium-67 activity in BAL fluid recovered from patient of different groups. Sixteen patients with recently diagnosed and untreated sarcoidosis, nine patients with healthy lungs, and five patients with CFA were studied. Gallium-67 uptake ofmore » the lung, gallium-67 activity in the lavage fluid, SACE and LACE levels, and alpha 1-AT activity were measured. Significantly more gallium-67 activity was found in BAL fluid from sarcoidosis patients than in that from CFA patients (alpha = .001) or patients with healthy lungs (alpha = .001). Gallium-67 activity in BAL fluid could be well correlated with the number of lymphocytes in BAL fluid, but poorly with the number of macrophages. Subjects with increased levels of SACE or serum alpha 1-AT showed higher lavage gallium-67 activity than did normals, but no correlation could be established. High gallium-67 activity in lavage fluid may be correlated with acute sarcoidosis or physiological deterioration; low activity denotes change for the better. The results show that gallium-67 counts in BAL fluid reflects the intensity of gallium-67 uptake and thus of activity of pulmonary sarcoidosis.« less

  7. Stability of CIGS Solar Cells and Component Materials Evaluated by a Step-Stress Accelerated Degradation Test Method: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pern, F. J.; Noufi, R.

    A step-stress accelerated degradation testing (SSADT) method was employed for the first time to evaluate the stability of CuInGaSe2 (CIGS) solar cells and device component materials in four Al-framed test structures encapsulated with an edge sealant and three kinds of backsheet or moisture barrier film for moisture ingress control. The SSADT exposure used a 15oC and then a 15% relative humidity (RH) increment step, beginning from 40oC/40%RH (T/RH = 40/40) to 85oC/70%RH (85/70) as of the moment. The voluminous data acquired and processed as of total DH = 3956 h with 85/70 = 704 h produced the following results. Themore » best CIGS solar cells in sample Set-1 with a moisture-permeable TPT backsheet showed essentially identical I-V degradation trend regardless of the Al-doped ZnO (AZO) layer thickness ranging from standard 0.12 μm to 0.50 μm on the cells. No clear 'stepwise' feature in the I-V parameter degradation curves corresponding to the SSADT T/RH/time profile was observed. Irregularity in I-V performance degradation pattern was observed with some cells showing early degradation at low T/RH < 55/55 and some showing large Voc, FF, and efficiency degradation due to increased series Rs (ohm-cm2) at T/RH ≥ 70/70. Results of (electrochemical) impedance spectroscopy (ECIS) analysis indicate degradation of the CIGS solar cells corresponded to increased series resistance Rs (ohm) and degraded parallel (minority carrier diffusion/recombination) resistance Rp, capacitance C, overall time constant Rp*C, and 'capacitor quality' factor (CPE-P), which were related to the cells? p-n junction properties. Heating at 85/70 appeared to benefit the CIGS solar cells as indicated by the largely recovered CPE-P factor. Device component materials, Mo on soda lime glass (Mo/SLG), bilayer ZnO (BZO), AlNi grid contact, and CdS/CIGS/Mo/SLG in test structures with TPT showed notable to significant degradation at T/RH ≥ 70/70. At T/RH = 85/70, substantial blistering of BZO layers on

  8. Carbon nanothermometer containing gallium.

    PubMed

    Gao, Yihua; Bando, Yoshio

    2002-02-07

    Many applications have been found for carbon nanotubes, and we can now add a role as a 'nanothermometer' to this list. We describe how the height of a continuous, unidimensional column of liquid gallium inside a carbon nanotube (up to about 10 micrometres long and about 75 nanometres in diameter) varies linearly and reproducibly in the temperature range 50-500 degrees C, with an expansion coefficient that is the same as for gallium in the macroscopic state. We chose gallium as our thermal indicator because it has one of the greatest liquid ranges of any metal (29.78-2,403 degrees C) and a low vapour pressure even at high temperatures. This nanothermometer should be suitable for use in a wide variety of microenvironments.

  9. Gallium Electromagnetic (GEM) Thrustor Concept and Design

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Markusic, Thomas E.

    2006-01-01

    We describe the design of a new type of two-stage pulsed electromagnetic accelerator, the gallium electromagnetic (GEM) thruster. A schematic illustration of the GEM thruster concept is given in Fig. 1. In this concept, liquid gallium propellant is pumped into the first stage through a porous metal electrode using an electromagneticpump[l]. At a designated time, a pulsed discharge (approx.10-50 J) is initiated in the first stage, ablating the liquid gallium from the porous electrode surface and ejecting a dense thermal gallium plasma into the second state. The presence of the gallium plasma in the second stage serves to trigger the high-energy (approx.500 I), send-stage puke which provides the primary electromagnetic (j x B) acceleration.

  10. Gallium poisoning: a rare case report.

    PubMed

    Ivanoff, Chris S; Ivanoff, Athena E; Hottel, Timothy L

    2012-02-01

    The authors present a case of a college student who suffered acute gallium poisoning as a result of accidental exposure to gallium halide complexes. This is extremely rare and has never been reported in the literature. Acute symptoms after the incident, which initially presented as dermatitis and appeared relatively not life-threatening, rapidly progressed to dangerous episodes of tachycardia, tremors, dyspnea, vertigo, and unexpected black-outs. Had there been effective emergency medical care protocols, diagnostic testing, treatment and antidotes, the latent manifestations of irreversible cardiomyopathy may have been prevented. Given how quickly exposure led to morbidity, this article aims to raise an awareness of the toxic potential of gallium. This has particular relevance for workers involved in the production of semiconductors where there is a potential for accidental exposure to gallium by-products during device processing. It may also have implications for dentists who use gallium alloys to replace mercury containing amalgam. In the absence of threshold limit values and exposure limits for humans, as well as emergency medical guidelines for treatment of poisoning, the case calls on the National Institute for Occupational Safety and Health and the Occupational Safety and Health Administration to establish guidelines and medical management protocols specific for gallium. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Gallium-based anti-infectives: targeting microbial iron-uptake mechanisms.

    PubMed

    Kelson, Andrew B; Carnevali, Maia; Truong-Le, Vu

    2013-10-01

    Microbes have evolved elaborate iron-acquisition systems to sequester iron from the host environment using siderophores and heme uptake systems. Gallium(III) is structurally similar to iron(III), except that it cannot be reduced under physiological conditions, therefore gallium has the potential to serve as an iron analog, and thus an anti-microbial. Because Ga(III) can bind to virtually any complex that binds Fe(III), simple gallium salts as well as more complex siderophores and hemes are potential carriers to deliver Ga(III) to the microbes. These gallium complexes represent a new class of anti-infectives that is different in mechanism of action from conventional antibiotics. Simple gallium salts such as gallium nitrate, maltolate, and simple gallium siderophore complexes such as gallium citrate have shown good antibacterial activities. The most studied complex has been gallium citrate, which exhibits broad activity against many Gram negative bacteria at ∼1-5μg/ml MICs, strong biofilm activity, low drug resistance, and efficacy in vivo. Using the structural features of specific siderophore and heme made by pathogenic bacteria and fungi, researchers have begun to evaluate new gallium complexes to target key pathogens. This review will summarize potential iron-acquisition system targets and recent research on gallium-based anti-infectives. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Correction: Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control.

    PubMed

    Sarkar, Sujoy; Sampath, S

    2016-05-28

    Correction for 'Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control' by Sujoy Sarkar et al., Chem. Commun., 2016, 52, 6407-6410.

  13. Revised neutrino-gallium cross section and prospects of BEST in resolving the gallium anomaly

    NASA Astrophysics Data System (ADS)

    Barinov, Vladislav; Cleveland, Bruce; Gavrin, Vladimir; Gorbunov, Dmitry; Ibragimova, Tatiana

    2018-04-01

    O (1 )eV sterile neutrino can be responsible for a number of anomalous results of neutrino oscillation experiments. This hypothesis may be tested at short base line neutrino oscillation experiments, several of which are either ongoing or under construction. Here, we concentrate on the so-called gallium anomaly, found by SAGE and GALLEX experiments, and its foreseeable future tests with BEST experiment at Baksan Neutrino Observatory. We start with a revision of the neutrino-gallium cross section that is performed by utilizing the recent measurements of the nuclear final state spectra. We accordingly correct the parameters of gallium anomaly and refine the BEST prospects in testing it and searching for sterile neutrinos. We further evolve the previously proposed idea to investigate the anomaly with 65Zn artificial neutrino source as a next option available at BEST and estimate its sensitivity to the sterile neutrino model parameters following the Bayesian approach. We show that after the two stages of operation BEST will make 5 σ discovery of the sterile neutrinos, if they are behind the gallium anomaly.

  14. Engineering Folate-Targeting Diselenide-containing Triblock Copolymer as a Redox-Responsive Shell-sheddable Micelle for Antitumor Therapy In Vivo.

    PubMed

    Behroozi, Farnaz; Abdkhodaie, Mohammad-Jafar; Sadeghi Abandansari, Hamid; Satarian, Leila; Molazem, Mohammad; Al-Jamal, Khuloud T; Baharvand, Hossein

    2018-06-18

    The oxidation-reduction (redox)-responsive micelle system is based on a diselenide-containing triblock copolymer, poly(ε-caprolactone)-bis(diselenide-methoxy poly(ethylene glycol)/poly(ethylene glycol)-folate) [PCL-(SeSe-mPEG/PEG-FA) 2 ]. This has helped in the development of tumor-targeted delivery for hydrophobic anticancer drugs. The diselenide bond, as a redox-sensitive linkage, was designed in such a manner that it is located at the hydrophilic-hydrophobic hinge to allow complete collapse of the micelle and thus efficient drug release in redox environments. The amphiphilic block copolymers self-assembled into micelles at concentrations higher than the critical micelle concentration (CMC) in an aqueous environment. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) analyses showed that the micelles were spherical with an average diameter of 120 nm. The insoluble anticancer drug paclitaxel (PTX) was loaded into micelles, and its triggered release behavior under different redox conditions was verified. Folate-targeting micelles showed an enhanced uptake in 4T1 breast cancer cells and in vitro cytotoxicity by flow cytometry and (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) assay, respectively. Delayed tumor growth was confirmed in the subcutaneously implanted 4T1 breast cancer in mice after intraperitoneal injection. The proposed redox-responsive copolymer offers a new type of biomaterial for drug delivery into cancer cells in vivo. On-demand drug actuation is highly desired. Redox-responsive polymeric DDSs have been shown to be able to respond and release their cargo in a selective manner when encountering a significant change in the potential difference, such as that present between cancerous and healthy tissues. This study offers an added advantage to the field of redox-responsive polymers by reporting a new type of shell-sheddable micelle based on an amphiphilic triblock co

  15. Serum and tissue concentrations of gallium after oral administration of gallium nitrate and gallium maltolate to neonatal calves.

    PubMed

    Monk, Caroline S; Sweeney, Raymond W; Bernstein, Lawrence R; Fecteau, Marie-Eve

    2016-02-01

    To determine serum and tissue concentrations of gallium (Ga) after oral administration of gallium nitrate (GaN) and gallium maltolate (GaM) to neonatal calves. 8 healthy neonatal calves. Calves were assigned to 1 of 2 groups (4 calves/group). Gallium (50 mg/kg) was administered as GaN or GaM (equivalent to 13.15 mg of Ga/kg for GaN and 7.85 mg of Ga/kg for GaM) by oral gavage once daily for 5 days. Blood samples were collected 0, 0.25, 0.5, 1, 2, 4, 8, 12, and 24 hours after Ga administration on day 1; 4 and 24 hours after Ga administration on days 2, 3, and 4; and 4, 12, and 24 hours after Ga administration on day 5. On day 6, calves were euthanized and tissue samples were obtained. Serum and tissue Ga concentrations were measured by use of mass spectrometry. Data were adjusted for total Ga dose, and comparisons were made between the 2 groups. Calves receiving GaM had a significantly higher dose-adjusted area under the curve and dose-adjusted maximum serum Ga concentration than did calves receiving GaN. Despite receiving less Ga per dose, calves receiving GaM had tissue Ga concentrations similar to those for calves receiving GaN. In this study, calves receiving GaM had significantly higher Ga absorption than did calves receiving GaN. These findings suggested that GaM might be useful as a prophylactic agent against Mycobacterium avium subsp paratuberculosis infection in neonatal calves.

  16. Structure of dental gallium alloys.

    PubMed

    Herø, H; Simensen, C J; Jørgensen, R B

    1996-07-01

    The interest in gallium alloys as a replacement for amalgam has increased in recent years due to the risk of environmental pollution from amalgam. Alloy powders with compositions close to those for alloys of amalgam are mixed with a liquid gallium alloy. The mix is condensed into a prepared cavity in much the same way as for amalgam. The aim of the present work was to study the structure of: (1) two commercial alloy powders containing mainly silver, tin and copper, and (2) the phases formed by mixing these powders with a liquid alloy of gallium, indium and tin. One of the alloy powders contained 9 wt% palladium. Cross-sections of cylindrical specimens made by these gallium mixes were investigated by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Discrete grains of the following phases were found to be present in both gallium alloys: hexagonal Ag2Ga, tetragonal Cu(Pd)Ga2, cubic Ag9In4 and tetragonal beta-Sn. Indications of hexagonal or orthorhombic Ag2Sn were found in the remaining, unreacted alloy particles. In the palladium-containing alloy the X-ray reflections indicate a minor fraction of cubic Cu9Ga4 in addition to the Cu(Pd)Ga2 phase. Particles of beta-Sn are probably precipitated because Sn-Ga phases cannot be formed according to the binary phase diagram.

  17. Gallium and its competing roles with iron in biological systems.

    PubMed

    Chitambar, Christopher R

    2016-08-01

    Gallium, a group IIIa metal, shares chemical properties with iron. Studies have shown that gallium-based compounds have potential therapeutic activity against certain cancers and infectious microorganisms. By functioning as an iron mimetic, gallium perturbs iron-dependent proliferation processes in tumor cells. Gallium's action on iron homeostasis leads to disruption of ribonucleotide reductase, mitochondrial function, and the regulation of transferrin receptor and ferritin. In addition, gallium nitrate stimulates an increase in mitochondrial reactive oxygen species in cells which triggers downstream upregulation of metallothionein and hemoxygenase-1. Gallium's anti-infective activity against bacteria and fungi results from disruption of microbial iron utilization through mechanisms which include gallium binding to siderophores and downregulation of bacterial iron uptake. Gallium compounds lack cross-resistance to conventional chemotherapeutic drugs and antibiotics thus making them attractive agents for drug development. This review will focus on the mechanisms of action of gallium with emphasis on its interaction with iron and iron proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Preventing Supercooling Of Gallium

    NASA Technical Reports Server (NTRS)

    Massucco, Arthur A.; Wenghoefer, Hans M.; Wilkins, Ronnie

    1994-01-01

    Principle of heterogeneous nucleation exploited to prevent gallium from supercooling, enabling its use as heat-storage material that crystallizes reproducibly at its freezing or melting temperature of 29 to 30 degrees C. In original intended application, gallium used as heat-storage material in gloves of space suits. Terrestrial application lies in preparation of freezing-temperature reference samples for laboratories. Principle of heterogeneous nucleation also exploited similarly in heat pipes filled with sodium.

  19. Repurposing of gallium-based drugs for antibacterial therapy.

    PubMed

    Bonchi, Carlo; Imperi, Francesco; Minandri, Fabrizia; Visca, Paolo; Frangipani, Emanuela

    2014-01-01

    While the occurrence and spread of antibiotic resistance in bacterial pathogens is vanishing current anti-infective therapies, the antibiotic discovery pipeline is drying up. In the last years, the repurposing of existing drugs for new clinical applications has become a major research area in drug discovery, also in the field of anti-infectives. This review discusses the potential of repurposing previously approved gallium formulations in antibacterial chemotherapy. Gallium has no proven function in biological systems, but it can act as an iron-mimetic in both prokaryotic and eukaryotic cells. The activity of gallium mostly relies on its ability to replace iron in redox enzymes, thus impairing their function and ultimately hampering cell growth. Cancer cells and bacteria are preferential gallium targets due to their active metabolism and fast growth. The wealth of knowledge on the pharmacological properties of gallium has opened the door to the repurposing of gallium-based drugs for the treatment of infections sustained by antibiotic-resistant bacterial pathogens, such as Acinetobacter baumannii or Pseudomonas aeruginosa, and for suppression of Mycobacterium tuberculosis growth. The promising antibacterial activity of gallium both in vitro and in different animal models of infection raises the hope that gallium will confirm its efficacy in clinical trials, and will become a valuable therapeutic option to cure otherwise untreatable bacterial infections. © 2014 International Union of Biochemistry and Molecular Biology.

  20. NIM Realization of the Gallium Triple Point

    NASA Astrophysics Data System (ADS)

    Xiaoke, Yan; Ping, Qiu; Yuning, Duan; Yongmei, Qu

    2003-09-01

    In the last three years (1999 to 2001), the gallium triple-point cell has been successfully developed, and much corresponding research has been carried out at the National Institute of Metrology (NIM), Beijing, China. This paper presents the cell design, apparatus and procedure for realizing the gallium triple point, and presents studies on the different freezing methods. The reproducibility is 0.03 mK, and the expanded uncertainty of realization of the gallium triple point is evaluated to be 0.17 mK (p=0.99, k=2.9). Also, the reproducibility of the gallium triple point was compared with that of the triple point of water.

  1. Nanosecond laser scribing of CIGS thin film solar cell based on ITO bottom contact

    NASA Astrophysics Data System (ADS)

    Kuk, Seungkuk; Wang, Zhen; Fu, Shi; Zhang, Tao; Yu, Yi Yin; Choi, JaeMyung; Jeong, Jeung-hyun; Hwang, David J.

    2018-03-01

    Cu(In,Ga)Se2 (CIGS) thin films, a promising photovoltaic architecture, have mainly relied on Molybdenum for the bottom contact. However, the opaque nature of Molybdenum (Mo) poses limitations in module level fabrication by laser scribing as a preferred method for interconnect. We examined the P1, P2, and P3 laser scribing processes on CIGS photovoltaic architecture on the indium tin oxide (ITO) bottom contact with a cost-effective nanosecond pulsed laser of 532 nm wavelength. Laser illuminated from the substrate side, enabled by the transparent bottom contact, facilitated selective laser energy deposition onto relevant interfaces towards high-quality scribing. Parametric tuning procedures are described in conjunction with experimental and numerical investigation of relevant mechanisms, and preliminary mini-module fabrication results are also presented.

  2. Broad Detection Range Rhenium Diselenide Photodetector Enhanced by (3-Aminopropyl)Triethoxysilane and Triphenylphosphine Treatment.

    PubMed

    Jo, Seo-Hyeon; Park, Hyung-Youl; Kang, Dong-Ho; Shim, Jaewoo; Jeon, Jaeho; Choi, Seunghyuk; Kim, Minwoo; Park, Yongkook; Lee, Jaehyeong; Song, Young Jae; Lee, Sungjoo; Park, Jin-Hong

    2016-08-01

    The effects of triphenylphosphine and (3-aminopropyl)triethoxysilane on a rhenium diselenide (ReSe2 ) photodetector are systematically studied by comparing with conventional MoS2 devices. This study demonstrates a very high performance ReSe2 photodetector with high photoresponsivity (1.18 × 10(6) A W(-1) ), fast photoswitching speed (rising/decaying time: 58/263 ms), and broad photodetection range (possible above 1064 nm). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The surface tension of liquid gallium

    NASA Technical Reports Server (NTRS)

    Hardy, S. C.

    1985-01-01

    The surface tension of liquid gallium has been measured using the sessile drop technique in an Auger spectrometer. The experimental method is described. The surface tension in mJ/sq m is found to decrease linearly with increasing temperature and may be represented as 708-0.66(T-29.8), where T is the temperature in centigrade. This result is of interest because gallium has been suggested as a model fluid for Marangoni flow experiments. In addition, the surface tension is of technological significance in the processing of compound semiconductors involving gallium.

  4. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN P-10...

  5. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN P-10...

  6. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN P-10...

  7. Epitaxial Deposition Of Germanium Doped With Gallium

    NASA Technical Reports Server (NTRS)

    Huffman, James E.

    1994-01-01

    Epitaxial layers of germanium doped with gallium made by chemical vapor deposition. Method involves combination of techniques and materials used in chemical vapor deposition with GeH4 or GeCl4 as source of germanium and GaCl3 as source of gallium. Resulting epitaxial layers of germanium doped with gallium expected to be highly pure, with high crystalline quality. High-quality material useful in infrared sensors.

  8. Automated realization of the gallium melting and triple points

    NASA Astrophysics Data System (ADS)

    Yan, X.; Duan, Y.; Zhang, J. T.; Wang, W.

    2013-09-01

    In order to improve the automation and convenience of the process involved in realizing the gallium fixed points, an automated apparatus, based on thermoelectric and heat pipe technologies, was designed and developed. This paper describes the apparatus design and procedures for freezing gallium mantles and realizing gallium melting and triple points. Also, investigations on the melting behavior of a gallium melting point cell and of gallium triple point cells were carried out while controlling the temperature outside the gallium point cells at 30 °C, 30.5 °C, 31 °C, and 31.5 °C. The obtained melting plateau curves show dentate temperature oscillations on the melting plateaus for the gallium point cells when thermal couplings occurred between the outer and inner liquid-solid interfaces. The maximum amplitude of the temperature fluctuations was about 1.5 mK. Therefore, the temperature oscillations can be used to indicate the ending of the equilibrium phase transitions. The duration and amplitude of such temperature oscillations depend on the temperature difference between the setting temperature and the gallium point temperature; the smaller the temperature difference, the longer the duration of both the melting plateaus and the temperature fluctuations.

  9. Gallium-mediated growth of multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Pan, Zheng Wei; Dai, Sheng; Beach, David B.; Evans, Neal D.; Lowndes, Douglas H.

    2003-03-01

    Liquid gallium was used as a viable and effective solvent and template for high-yield growth of multiwall carbon nanotubes. The gallium-mediated nanotubes thus obtained differ morphologically from nanotubes obtained by using transition metals as catalysts. The nanotubes have a pin-like morphology, generally composed of an oval-shaped tip filled with liquid gallium and a tapered hollow body. The inner diameter of the tube is so large that the inner/outer diameter ratio is usually larger than 0.9. The tubes are naturally opened at both ends. These gallium-filled nanotubes may be used as a nanothermometer in the temperature range of 30 to 550 °C. This study opens an interesting route for carbon nanotube synthesis.

  10. Radiochemical separation of gallium by amalgam exchange

    USGS Publications Warehouse

    Ruch, R.R.

    1969-01-01

    An amalgam-exchange separation of radioactive gallium from a number of interfering radioisotopes has been developed. A dilute (ca. 0.3%) gallium amalgam is agitated with a slightly acidic solution of 72Ga3+ containing concentrations of sodium thiocyanate and either perchlorate or chloride. The amalgam is then removed and the radioactive gallium stripped by agitation with dilute nitric acid. The combined exchange yield of the perchlorate-thiocyanate system is 90??4% and that of the chloride-thiocyanate system is 75??4%. Decontamination yields of most of the 11 interfering isotopes studied were less than 0.02%. The technique is applicable for use with activation analysis for the determination of trace amounts of gallium. ?? 1969.

  11. Shock wave experiments on gallium

    NASA Astrophysics Data System (ADS)

    Jensen, Brian; Branch, Brittany; Cherne, Frank

    2017-06-01

    Gallium exhibits a complex phase diagram with multiple solid phases, an anomalous melt boundary, and a low-temperature melt transition making it a suitable material for shock wave studies focused on multiphase properties including kinetics and strength. Apart from high-pressure shock wave data that exists for the liquid phase, there is a clear lack of data in the low-pressure regime where much of the complexity in the phase diagram exists. In this work, a series of shock wave experiments were performed to begin examining the low-pressure region of the phase diagram. Additional data on a gallium alloy, which remains liquid at room temperature, will be presented and compared to data available for pure gallium (LA-UR-17-21449).

  12. Method of fabricating germanium and gallium arsenide devices

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzban (Inventor)

    1990-01-01

    A method of semiconductor diode fabrication is disclosed which relies on the epitaxial growth of a precisely doped thickness layer of gallium arsenide or germanium on a semi-insulating or intrinsic substrate, respectively, of gallium arsenide or germanium by either molecular beam epitaxy (MBE) or by metal-organic chemical vapor deposition (MOCVD). The method involves: depositing a layer of doped or undoped silicon dioxide on a germanium or gallium arsenide wafer or substrate, selectively removing the silicon dioxide layer to define one or more surface regions for a device to be fabricated thereon, growing a matched epitaxial layer of doped germanium or gallium arsenide of an appropriate thickness using MBE or MOCVD techniques on both the silicon dioxide layer and the defined one or more regions; and etching the silicon dioxide and the epitaxial material on top of the silicon dioxide to leave a matched epitaxial layer of germanium or gallium arsenide on the germanium or gallium arsenide substrate, respectively, and upon which a field effect device can thereafter be formed.

  13. Antibacterial effect of gallium and silver on Pseudomonas aeruginosa treated with gallium-silver-phosphate-based glasses.

    PubMed

    Valappil, Sabeel P; Higham, Susan M

    2014-01-01

    Gallium and silver incorporated phosphate-based glasses were evaluated for antibacterial effect on the growth of Pseudomonas aeruginosa, which is a leading cause of opportunistic infections. The glasses were produced by conventional melt quenching methods at 1100°C for 1 h. Glass degradation studies were conducted by weight loss method. Disc diffusion assay and cell viability assay displayed statistically significant (p ≤ 0.0005) effect on P. aeruginosa growth which increased with decreasing calcium content in the glasses. The gallium ion release rates (1.83, 0.69 and 0.48 ppm·h(-1)) and silver ion release rates (2.97, 2.84 and 2.47 ppm·h(-1)) were found to account for this variation. Constant depth film fermentor was used to evaluate the anti-biofilm properties of the glasses. Both gallium and silver in the glass contributed to biofilm growth inhibitory effect on P. aeruginosa (up to 2.68 reduction in log 10 values of the viable counts compared with controls). The glasses were found to deliver gallium and silver in a controlled way and exerted cumulative antibacterial action on planktonic and biofilm growth of P. aeruginosa. The antibacterial, especially anti-biofilm, properties of the gallium and silver incorporated phosphate-based glasses make them a potential candidate to combat infections caused by P. aeruginosa.

  14. Thermal Plasma Synthesis of Crystalline Gallium Nitride Nanopowder from Gallium Nitrate Hydrate and Melamine

    PubMed Central

    Kim, Tae-Hee; Choi, Sooseok; Park, Dong-Wha

    2016-01-01

    Gallium nitride (GaN) nanopowder used as a blue fluorescent material was synthesized by using a direct current (DC) non-transferred arc plasma. Gallium nitrate hydrate (Ga(NO3)3∙xH2O) was used as a raw material and NH3 gas was used as a nitridation source. Additionally, melamine (C3H6N6) powder was injected into the plasma flame to prevent the oxidation of gallium to gallium oxide (Ga2O3). Argon thermal plasma was applied to synthesize GaN nanopowder. The synthesized GaN nanopowder by thermal plasma has low crystallinity and purity. It was improved to relatively high crystallinity and purity by annealing. The crystallinity is enhanced by the thermal treatment and the purity was increased by the elimination of residual C3H6N6. The combined process of thermal plasma and annealing was appropriate for synthesizing crystalline GaN nanopowder. The annealing process after the plasma synthesis of GaN nanopowder eliminated residual contamination and enhanced the crystallinity of GaN nanopowder. As a result, crystalline GaN nanopowder which has an average particle size of 30 nm was synthesized by the combination of thermal plasma treatment and annealing. PMID:28344295

  15. Nonlinear behaviour of reflectivity of gallium - Silica interface & its applications

    NASA Astrophysics Data System (ADS)

    Naruka, Preeti; Bissa, Shivangi

    2018-05-01

    In this paper Optical properties and nonlinear behaviour of Gallium-Silica Interface is studied. Change in reflectivity of gallium film is explained as a function of thickness of metallic layer and intensity of incident light by using non-thermal mechanism. Here variation of dielectric constant of gallium with temperature is also explained on considering Binary nanoshell model of gallium nanoparticles of spherical shape. In the present paper application of structural phase transformation of gallium is explained as a Grating assisted coupler.

  16. Gallium nitrate ameliorates type II collagen-induced arthritis in mice.

    PubMed

    Choi, Jae-Hyeog; Lee, Jong-Hwan; Roh, Kug-Hwan; Seo, Su-Kil; Choi, Il-Whan; Park, Sae-Gwang; Lim, Jun-Goo; Lee, Won-Jin; Kim, Myoung-Hun; Cho, Kwang-rae; Kim, Young-Jae

    2014-05-01

    Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease. Gallium nitrate has been reported to reserve immunosuppressive activities. Therefore, we assessed the therapeutic effects of gallium nitrate in the mouse model of developed type II collagen-induced arthritis (CIA). CIA was induced by bovine type II collagen with Complete Freund's adjuvant. CIA mice were intraperitoneally treated from day 36 to day 49 after immunization with 3.5mg/kg/day, 7mg/kg/day gallium nitrate or vehicle. Gallium nitrate ameliorated the progression of mice with CIA. The clinical symptoms of collagen-induced arthritis did not progress after treatment with gallium nitrate. Gallium nitrate inhibited the increase of CD4(+) T cell populations (p<0.05) and also inhibited the type II collagen-specific IgG2a-isotype autoantibodies (p<0.05). Gallium nitrate reduced the serum levels of TNF-α, IL-6 and IFN-γ (p<0.05) and the mRNA expression levels of these cytokine and MMPs (MMP2 and MMP9) in joint tissues. Western blotting of members of the NF-κB signaling pathway revealed that gallium nitrate inhibits the activation of NF-κB by blocking IκB degradation. These data suggest that gallium nitrate is a potential therapeutic agent for autoimmune inflammatory arthritis through its inhibition of the NF-κB pathway, and these results may help to elucidate gallium nitrate-mediated mechanisms of immunosuppression in patients with RA. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Review of grain interior, grain boundary, and interface effects of K in CIGS solar cells: Mechanisms for performance enhancement

    DOE PAGES

    Muzzillo, Christopher P.

    2017-07-16

    Introducing K into Cu(In,Ga)(Se,S) 2 (CIGS) absorbers has led to recent world record power conversion efficiencies for thin film polycrystalline solar cells. In this work, the diverse phenomena associated with K in CIGS were reviewed, and overarching mechanisms were identified. The effects of K depend on its distribution among grain interiors (GIs), grain boundaries (GBs), and interfaces. High substrate Na and low temperature favor GI K incorporation, while low Na and high temperature favor segregation of K at GBs. Depositing KInSe 2 (or KIn 1-yGaySe 2) by co-evaporation or KF post-deposition treatment onto CIGS reduces buffer interface recombination in themore » final solar cells. KInSe 2 decomposes in air, which makes characterization difficult and may affect performance. In conclusion, the mechanism for reduced interface recombination could be direct passivation, beneficial compound precursor, oxidation barrier, or favorable diffusion alteration.« less

  18. Review of grain interior, grain boundary, and interface effects of K in CIGS solar cells: Mechanisms for performance enhancement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzzillo, Christopher P.

    Introducing K into Cu(In,Ga)(Se,S) 2 (CIGS) absorbers has led to recent world record power conversion efficiencies for thin film polycrystalline solar cells. In this work, the diverse phenomena associated with K in CIGS were reviewed, and overarching mechanisms were identified. The effects of K depend on its distribution among grain interiors (GIs), grain boundaries (GBs), and interfaces. High substrate Na and low temperature favor GI K incorporation, while low Na and high temperature favor segregation of K at GBs. Depositing KInSe 2 (or KIn 1-yGaySe 2) by co-evaporation or KF post-deposition treatment onto CIGS reduces buffer interface recombination in themore » final solar cells. KInSe 2 decomposes in air, which makes characterization difficult and may affect performance. In conclusion, the mechanism for reduced interface recombination could be direct passivation, beneficial compound precursor, oxidation barrier, or favorable diffusion alteration.« less

  19. Rapid and Nondestructive Identification of Polytypism and Stacking Sequences in Few-Layer Molybdenum Diselenide by Raman Spectroscopy

    DOE PAGES

    Lu, Xin; Utama, M. Iqbal Bakti; Lin, Junhao; ...

    2015-07-02

    Various combinations of interlayer shear modes emerge in few-layer molybdenum diselenide grown by chemical vapor deposition depending on the stacking configuration of the sample. Raman measurements may also reveal polytypism and stacking faults, as supported by first principles calculations and high-resolution transmission electron microscopy. Thus, Raman spectroscopy is an important tool in probing stacking-dependent properties in few-layer 2D materials.

  20. Behavior of pure gallium in water and various saline solutions.

    PubMed

    Horasawa, N; Nakajima, H; Takahashi, S; Okabe, T

    1997-12-01

    This study investigated the chemical stability of pure gallium in water and saline solutions in order to obtain fundamental knowledge about the corrosion mechanism of gallium-based alloys. A pure gallium plate (99.999%) was suspended in 50 mL of deionized water, 0.01%, 0.1% or 1% NaCl solution at 24 +/- 2 degrees C for 1, 7, or 28 days. The amounts of gallium released into the solutions were determined by atomic absorption spectrophotometry. The surfaces of the specimens were examined after immersion by x-ray diffractometry (XRD) and x-ray photoelectron spectroscopy (XPS). In the solutions containing 0.1% or more NaCl, the release of gallium ions into the solution was lowered when compared to deionized water after 28-day immersion. Gallium oxide monohydroxide was found by XRD on the specimens immersed in deionized water after 28-day immersion. XPS indicated the formation of gallium oxide/hydroxide on the specimens immersed in water or 0.01% NaCl solution. The chemical stability of pure solid gallium was strongly affected by the presence of Cl- ions in the aqueous solution.

  1. Low-Cd CIGS solar cells made with a hybrid CdS/Zn(O,S) buffer layer

    DOE PAGES

    Garris, Rebekah L.; Mansfield, Lorelle M.; Egaas, Brian; ...

    2016-10-27

    In Cu(In,Ga)Se2 (CIGS) solar cells, CdS and Zn(O,S) buffer layers were compared with a hybrid buffer layer consisting of thin CdS followed Zn(O,S). We explore the physics of this hybrid layer that combines the standard (Cd) approach with the alternative (Zn) approach in the pursuit to unlock further potential for CIGS technology. CdS buffer development has shown optimal interface properties, whereas Zn(O,S) buffer development has shown increased photocurrent. Although a totally Cd-free solar module is more marketable, the retention of a small amount of Cd can be beneficial to achieve optimum junction properties. As long as the amount of Cdmore » is reduced to less than 0.01% by weight, the presence of Cd does not violate the hazardous substance restrictions of the European Union (EU). We estimate the amount of Cd allowed in the EU for CIGS on both glass and stainless steel substrates, and we show that reducing Cd becomes increasingly important as substrate weights decrease. As a result, this hybrid buffer layer had reduced Cd content and a wider space charge region, while achieving equal or better solar cell performance than buffer layers of either CdS or Zn(O,S) alone.« less

  2. Quantum and conversion efficiencies optimization of superstrate CIGS thin-films solar cells using In2Se3 buffer layer

    NASA Astrophysics Data System (ADS)

    Bouchama, Idris; Boudour, Samah; Bouarissa, Nadir; Rouabah, Zahir

    2017-10-01

    In this present contribution, AMPS-1D device simulator is employed to study the performances of superstrate SLG/TCO/p-Cu(In,Ga)Se2(CIGS)/n-ODC/n-In2Se3/Metal thin film solar cells. The impact of the TCO and Metal work functions on the cell performance has been investigated. The combination of optical transparency and electrical property for TCO front contact layer is found to yield high efficiency. The obtained results show that the TCO work function should be large enough to achieve high conversion efficiency for superstrate CIGS solar cell. Nevertheless, it is desirable for Metal back contact layer to have low work function to prevent the effect of band bending in the n-In2Se3/Metal interface. Several TCOs materials and metals have been tested respectively as a front and back contact layers for superstrate CIGS solar cells. An efficiency of 20.18%, with Voc ≈ 0.71 V, Jsc ≈ 35.36 mA/cm2 and FF ≈ 80.42%, has been achieved with ZnSn2O3-based as TCO front contact layer. In the case of SnO2:F front contact and indium back contact layers, an efficiency of 16.31%, with Voc ≈ 0.64 V, Jsc ≈ 31.4 mA/cm2 and FF ≈ 79.4%, has been obtained. The present results of simulation suggest an improvement of superstrate CIGS solar cells efficiency for feasible fabrication.

  3. {112} Polar surfaces of copper(indium,gallium)selenide: Properties and effects on crystal growth

    NASA Astrophysics Data System (ADS)

    Liao, Dongxiang

    Cu(In,Ga)Se2 (GIGS) are promising materials for thin film photovoltaic applications. This work studies the epitaxial growth of CIGS single crystal films on GaAs substrates of various orientations and characterizes the properties of the thin films. A surprising finding is the strong tendency of film surfaces to facet to {112} planes. The work attempted to establish the connections between the film morphology, the surface energies, the surface chemical compositions, and the reconstruction of polar surfaces. Using angle-resolved photoelectron emission spectroscopy, I found that there is a severe Cu depletion at the first 1-2 layer of the free surface of CuInSe2 and the surface is semiconducting. The results strongly support the model of a reconstructed non-stoichiometric polar surface and exclude the previously believed existence of a bulk second phase on the CIS surface. Unique features of the film morphology suggest that the properties and structure of the polar surfaces have great effects on the growth of the crystals, and probably on the incorporation of the large amount of point defects. Measured chemical composition profiles indicate that the Cu depletion observed on free CIGS surface remains at the CIGS/CdS heterojunction interface and Cd is incorporated into the surface of CIGS. It is proposed that this non-stoichiometric composition leads to charge imbalance at the interface and causes the type-inversion of the CIGS surface, which are favorable for the device performance.

  4. Inverse-Micelle-Encapsulated Water-Enabled Bond Breaking of Dialkyl Diselenide/Disulfide: A Critical Step for Synthesizing High- Quality Gold Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaluzhna, Oksana; Li, Ying; Allison, Thomas C.

    2012-10-09

    Inverse-micelle-encapsulated water formed in the two-phase Brust-Schiffrin method (BSM) synthesis of Au nanoparticles (NPs) is identified as essential for dialkyl diselenide/disulfide to react with the Au(III) complex in which the Se-Se/S-S bond is broken, leading to formation of higher-quality Au NPs.

  5. Surface photovoltage spectroscopy applied to gallium arsenide surfaces

    NASA Technical Reports Server (NTRS)

    Bynik, C. E.

    1975-01-01

    The experimental and theoretical basis for surface photovoltage spectroscopy is outlined. Results of this technique applied to gallium arsenide surfaces, are reviewed and discussed. The results suggest that in gallium arsenide the surface voltage may be due to deep bulk impurity acceptor states that are pinned at the Fermi level at the surface. Establishment of the validity of this model will indicate the direction to proceed to increase the efficiency of gallium arsenide solar cells.

  6. A FETISH for gallium arsenide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barron, A.R.

    1996-12-31

    An overview of the development of a new dielectric material, cubic-GaS, from the synthesis of new organometallic compounds to the fabrication of a new class of gallium arsenide based transistor is presented as a representative example of the possibility that inorganic chemistry can directly effect the development of new semiconductor devices. The gallium sulfido compound [({sup t}Bu)GaS]{sub 4}, readily prepared from tri-tert-butyl gallium, may be used as a precursor for the growth of GaS thin films by metal organic chemical vapor deposition (MOCVD). Photoluminescence and electronic measurements indicate that this material provides a passivation coating for GaAs. Furthermore, the insulatingmore » properties of cubic-GaS make it suitable as the insulating gate layer in a new class of GaAs transistor: a field effect transistor with a sulfide heterojunction (FETISH).« less

  7. Charge density wave transition in single-layer titanium diselenide

    DOE PAGES

    Chen, P.; Chan, Y. -H.; Fang, X. -Y.; ...

    2015-11-16

    A single molecular layer of titanium diselenide (TiSe 2) is a promising material for advanced electronics beyond graphene--a strong focus of current research. Such molecular layers are at the quantum limit of device miniaturization and can show enhanced electronic effects not realizable in thick films. We show that single-layer TiSe 2 exhibits a charge density wave (CDW) transition at critical temperature T C=232±5 K, which is higher than the bulk T C=200±5 K. Angle-resolved photoemission spectroscopy measurements reveal a small absolute bandgap at room temperature, which grows wider with decreasing temperature T below T C in conjunction with the emergencemore » of (2 × 2) ordering. The results are rationalized in terms of first-principles calculations, symmetry breaking and phonon entropy effects. The behavior of the Bardeen-Cooper-Schrieffer (BCS) gap implies a mean-field CDW order in the single layer and an anisotropic CDW order in the bulk.« less

  8. P-n junctions formed in gallium antimonide

    NASA Technical Reports Server (NTRS)

    Clough, R.; Richman, D.; Tietjen, J.

    1970-01-01

    Vapor phase deposition process forms a heavily doped n-region on a melt-grown p-type gallium antimonide substrate. HCl transports gallium to the reaction zone, where it combines with antimony hydride and the dopant carrier, hydrogen telluride. Temperatures as low as 400 degrees C are required.

  9. Gallium 67 scintigraphy in glomerular disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakir, A.A.; Lopez-Majano, V.; Levy, P.S.

    1988-12-01

    To evaluate the diagnostic usefulness of gallium 67 scintigraphy in glomerular disease, 45 patients with various glomerulopathies, excluding lupus nephritis and renal vasculitis, were studied. Persistent renal visualization 48 hours after the gallium injection, a positive scintigram, was graded as + (less than), ++ (equal to), and +++ (greater than) the hepatic uptake. Positive scintigrams were seen in ten of 16 cases of focal segmental glomerulosclerosis, six of 11 cases of proliferative glomerulonephritis, and one case of minimal change, and one of two cases of membranous nephropathy; also in three of six cases of sickle glomerulopathy, two cases of diabeticmore » neuropathy, one of two cases of amyloidosis, and one case of mild chronic allograft rejection. The 25 patients with positive scans were younger than the 20 with negative scans (31 +/- 12 v 42 +/- 17 years; P less than 0.01), and exhibited greater proteinuria (8.19 +/- 7.96 v 2.9 +/- 2.3 S/d; P less than 0.01) and lower serum creatinine values (2 +/- 2 v 4.1 +/- 2.8 mg/dL; P less than 0.01). The amount of proteinuria correlated directly with the intensity grade of the gallium image (P less than 0.02), but there was no correlation between the biopsy diagnosis and the outcome of the gallium scan. It was concluded that gallium scintigraphy is not useful in the differential diagnosis of the glomerular diseases under discussion. Younger patients with good renal function and heavy proteinuria are likely to have a positive renal scintigram regardless of the underlying glomerulopathy.« less

  10. Assessment of gallium-67 scanning in pulmonary and extrapulmonary sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Israel, H.L.; Gushue, G.F.; Park, C.H.

    1986-01-01

    Gallium-67 scans have been widely employed in patients with sarcoidosis as a means of indicating alveolitis and the need for corticosteroid therapy. Observation of 32 patients followed 3 or more years after gallium scans showed no correlation between findings and later course: of 10 patients with pulmonary uptake, 7 recovered with minor residuals; of 18 patients with mediastinal of extrathoracic uptake, 10 had persistent or progressive disease; of 4 patients with negative initial scans, 2 had later progression. The value of gallium-67 scans as an aid to diagnosis was studied in 40 patients with extrapulmonary sarcoidosis. In 12 patients, abnormalmore » lacrimal, nodal, or pulmonary uptake aided in selection of biopsy sites. Gallium-67 scans and serum ACE levels were compared in 97 patients as indices of clinical activity. Abnormal gallium-67 uptake was observed in 96.3% of the tests in active disease, and ACE level elevation occurred in 56.3%. In 24 patients with inactive or recovered disease, abnormal gallium-67 uptake occurred in 62.5% and ACE level elevation in 37.5%. Gallium-67 scans have a limited but valuable role in the diagnosis and management of sarcoidosis.« less

  11. Gallium-67 uptake by the thyroid associated with progressive systemic sclerosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjoberg, R.J.; Blue, P.W.; Kidd, G.S.

    1989-01-01

    Although thyroidal uptake of gallium-67 has been described in several thyroid disorders, gallium-67 scanning is not commonly used in the evaluation of thyroid disease. Thyroidal gallium-67 uptake has been reported to occur frequently with subacute thyroiditis, anaplastic thyroid carcinoma, and thyroid lymphoma, and occasionally with Hashimoto's thyroiditis and follicular thyroid carcinoma. A patient is described with progressive systemic sclerosis who, while being scanned for possible active pulmonary involvement, was found incidentally to have abnormal gallium-67 uptake only in the thyroid gland. Fine needle aspiration cytology of the thyroid revealed Hashimoto's thyroiditis. Although Hashimoto's thyroiditis occurs with increased frequency in patientsmore » with progressive systemic sclerosis, thyroidal uptake of gallium-67 associated with progressive systemic sclerosis has not, to our knowledge, been previously described. Since aggressive thyroid malignancies frequently are imaged by gallium-67 scintigraphy, fine needle aspiration cytology of the thyroid often is essential in the evaluation of thyroidal gallium-67 uptake.« less

  12. Effects of sodium and potassium on the photovoltaic performance of CIGS solar cells

    DOE PAGES

    Raguse, John M.; Muzzillo, Christopher P.; Sites, James R.; ...

    2016-11-17

    Here, the deliberate introduction of K and Na into Cu(In, Ga)Se 2 (CIGS) absorbers was investigated by varying a combination of an SiO 2 diffusion barrier, coevaporation of KF with the CIGS absorber, and a KF postdeposition treatment (PDT). Devices made with no diffusion barrier and KF coevaporation treatment exhibited the highest photovoltaic conversion efficiency with the smallest overall distribution in key current density-voltage (J-V) performance metrics. Out-diffusion of Na and K from the substrate, KF coevaporation, and KF PDT all increased carrier concentration, open-circuit voltage, fill factor, and power conversion efficiency. Quantum-efficiency analysis of devices highlighted the greatest lossmore » in the short-circuit current density due to incomplete absorption and collection. Secondary ion mass spectrometry illustrated the efficacy of the SiO 2 film as a sodium and potassium diffusion barrier, as well as their relative concentration in the absorber. Introduction of KF appeared to enhance diffusion of Na from the substrate, in agreement with previous studies.« less

  13. Construction of an electrode modified with gallium(III) for voltammetric detection of ovalbumin.

    PubMed

    Sugawara, Kazuharu; Okusawa, Makoto; Takano, Yusaku; Kadoya, Toshihiko

    2014-01-01

    Electrodes modified with gallium(III) complexes were constructed to detect ovalbumin (OVA). For immobilization of a gallium(III)-nitrilotriacetate (NTA) complex, the electrode was first covered with collagen film. After the amino groups of the film had reacted with isothiocyanobenzyl-NTA, the gallium(III) was then able to combine with the NTA moieties. Another design featured an electrode cast with a gallium(III)-acetylacetonate (AA) complex. The amount of gallium(III) in the NTA complex was equivalent to one-quarter of the gallium(III) that could be utilized from an AA complex. However, the calibration curves of OVA using gallium(III)-NTA and gallium(III)-AA complexes were linear in the ranges of 7.0 × 10(-11) - 3.0 × 10(-9) M and 5.0 × 10(-10) - 8.0 × 10(-9) M, respectively. The gallium(III) on the electrode with NTA complex had high flexibility due to the existence of a spacer between the NTA and the collagen film, and, therefore, the reactivity of the gallium(III) to OVA was superior to that of the gallium(III)-AA complex with no spacer.

  14. Sensitizing effects of gallium citrate on hyperthermic cell killing in vitro.

    PubMed

    Miyazaki, N; Nakano, H; Kawakami, N; Kugotani, M; Nishihara, K; Aoki, Y; Shinohara, K

    2000-01-01

    The lethal effects of gallium citrate in combination with heat were studied using four cell lines, L5178Y, FM3A, P388 and HeLa. Cells were incubated with different concentrations (0.2 2 mM) of gallium citrate at 37 degrees C for 24 h and heated at a range of temperatures from 40-44 degrees C for various time periods up to 6 h in the absence of gallium citrate. Survival and cell viability were determined by clonogenic assay and the dye-exclusion test, respectively. All of the cell lines tested were insensitive to heat below 41 degrees C, but were very sensitive to heat above 43 degrees C. Gallium citrate was cytotoxic to these cell lines at different levels: P388 and HeLa were far more sensitive than L5178Y and FM3A. The killing effects of heat at 41 degrees C were greatly enhanced by gallium citrate in L5178Y and P388 cells. The Arrhenius analysis for the lethal effect of heat, determined by clonogenic assay, in L5178Y cells showed that the transition temperature was remarkably decreased for the gallium-treated cells from approximately 43 degrees C to 41 degrees C. The mechanism for this decrease in the transition temperature may be attributable to the additional effects of gallium citrate on energy metabolism. Preincubation with 0.05 mM gallium citrate at 37 degrees C for 7 days also enhanced heat sensitization at 41 degrees C in L5178Y. This preincubation condition may correspond to the condition for the continuous infusion of gallium that is clinically used for cancer treatment. In contrast, treatment with gallium did not greatly enhance the sensitivity of FM3A or HeLa cells to heat at 41 degrees C, but the effects of gallium were significant.

  15. Direct determination of gallium on polyurethane foam by X-ray fluorescence.

    PubMed

    Carvalho, M S; Medeiros, J A; Nóbrega, A W; Mantovano, J L; Rocha, V P

    1995-01-01

    Gallium chloride is easily extracted from 6M HCl by comminuted polyether-type polyurethane foam. After the extraction step, the gallium absorbed by the PU foam can be quantitatively determined by X-ray fluorescence. A procedure for the direct determination of gallium absorbed by PU foam by XRFS is thus described. Gallium is determined at levels as low as 60 ng/ml (C(L)), with a calibration sensitivity of 424 cps ml/mug, within a linear range 0.1-2.30 mug/ml. The procedure investigated was successfully applied to determination of gallium in aluminum alloys, bauxite and industrial residue samples.

  16. Challenges for critical raw material recovery from WEEE - The case study of gallium.

    PubMed

    Ueberschaar, Maximilian; Otto, Sarah Julie; Rotter, Vera Susanne

    2017-02-01

    Gallium and gallium compounds are more frequently used in future oriented technologies such as photovoltaics, light diodes and semiconductor technology. In the long term the supply risk is estimated to be critical. Germany is one of the major primary gallium producer, recycler of gallium from new scrap and GaAs wafer producer. Therefore, new concepts for a resource saving handling of gallium and appropriate recycling strategies have to be designed. This study focus on options for a possible recycling of gallium from waste electric and electronic equipment. To identify first starting points, a substance flow analysis was carried out for gallium applied in integrated circuits applied on printed circuit boards and for LEDs used for background lighting in Germany in 2012. Moreover, integrated circuits (radio amplifier chips) were investigated in detail to deduce first approaches for a recycling of such components. An analysis of recycling barriers was carried out in order to investigate general opportunities and risks for the recycling of gallium from chips and LEDs. Results show, that significant gallium losses arose in primary production and in waste management. 93±11%, equivalent to 43,000±4700kg of the total gallium potential was lost over the whole primary production process until applied in electronic goods. The largest share of 14,000±2300kggallium was lost in the production process of primary raw materials. The subsequent refining process was related to additional 6900±3700kg and the chip and wafer production to 21,700±3200kg lost gallium. Results for the waste management revealed only low collection rates for related end-of-life devices. Not collected devices held 300 ± 200 kg gallium. Due to the fact, that current waste management processes do not recover gallium, further 80 ± 10 kg gallium were lost. A thermal pre-treatment of the chips, followed by a manual separation allowed an isolation of gallium rich fractions, with gallium mass fractions up to

  17. Nuclear microprobe imaging of gallium nitrate in cancer cells

    NASA Astrophysics Data System (ADS)

    Ortega, Richard; Suda, Asami; Devès, Guillaume

    2003-09-01

    Gallium nitrate is used in clinical oncology as treatment for hypercalcemia and for cancer that has spread to the bone. Its mechanism of antitumor action has not been fully elucidated yet. The knowledge of the intracellular distribution of anticancer drugs is of particular interest in oncology to better understand their cellular pharmacology. In addition, most metal-based anticancer compounds interact with endogenous trace elements in cells, altering their metabolism. The purpose of this experiment was to examine, by use of nuclear microprobe analysis, the cellular distribution of gallium and endogenous trace elements within cancer cells exposed to gallium nitrate. In a majority of cellular analyses, gallium was found homogeneously distributed in cells following the distribution of carbon. In a smaller number of cells, however, gallium appeared concentrated together with P, Ca and Fe within round structures of about 2-5 μm diameter located in the perinuclear region. These intracellular structures are typical of lysosomial material.

  18. Evaluating the economic viability of CdTe/CIS and CIGS/CIS tandem photovoltaic modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanayakkara, Sanjini U.; Horowitz, Kelsey; Kanevce, Ana

    In this paper, we analyze the potential cost competitiveness of two frameless, glass–glass thin-film tandem photovoltaic module structures, cadmium telluride (CdTe)/CuInSe 2 (CIS) and CuIn 0.3Ga 0.7Se 2 (CIGS)/CIS, based on the demonstrated cost of manufacturing the respective component cell technologies in high volume. To consider multiple economic scenarios, we base the CdTe/CIS module efficiency on the current industrial production of CdTe modules, while for CIGS/CIS, we use an aspirational estimate for CIGS efficiency. We focus on four-terminal mechanically stacked structures, thus avoiding the need to achieve current matching between the two cells. The top cell in such a tandemmore » must have a transparent back contact, which has not been successfully implemented to date. However, for the purpose of understanding the economic viability of both tandems, we assume that this can be implemented at a cost similar to that of sputtered indium tin oxide. The cost of both tandem module structures was found to be nearly identical on an equal-area basis and approximately $30/m 2 higher than the single-junction alternatives. Both tandem modules are about 4% (absolute) more efficient than a module by using the top-cell material alone. We find that these tandem modules might reduce total system cost by as much as 11% in applications having a high area-related balance-of-system cost, such as area-constrained residential systems; however, the relative advantage of tandems decreases in the cases where balance-of-system costs are lower, such as in commercial and utility scale systems.« less

  19. Evaluating the economic viability of CdTe/CIS and CIGS/CIS tandem photovoltaic modules

    DOE PAGES

    Nanayakkara, Sanjini U.; Horowitz, Kelsey; Kanevce, Ana; ...

    2017-01-20

    In this paper, we analyze the potential cost competitiveness of two frameless, glass–glass thin-film tandem photovoltaic module structures, cadmium telluride (CdTe)/CuInSe 2 (CIS) and CuIn 0.3Ga 0.7Se 2 (CIGS)/CIS, based on the demonstrated cost of manufacturing the respective component cell technologies in high volume. To consider multiple economic scenarios, we base the CdTe/CIS module efficiency on the current industrial production of CdTe modules, while for CIGS/CIS, we use an aspirational estimate for CIGS efficiency. We focus on four-terminal mechanically stacked structures, thus avoiding the need to achieve current matching between the two cells. The top cell in such a tandemmore » must have a transparent back contact, which has not been successfully implemented to date. However, for the purpose of understanding the economic viability of both tandems, we assume that this can be implemented at a cost similar to that of sputtered indium tin oxide. The cost of both tandem module structures was found to be nearly identical on an equal-area basis and approximately $30/m 2 higher than the single-junction alternatives. Both tandem modules are about 4% (absolute) more efficient than a module by using the top-cell material alone. We find that these tandem modules might reduce total system cost by as much as 11% in applications having a high area-related balance-of-system cost, such as area-constrained residential systems; however, the relative advantage of tandems decreases in the cases where balance-of-system costs are lower, such as in commercial and utility scale systems.« less

  20. Gallium uptake by transferrin and interaction with receptor 1.

    PubMed

    Chikh, Zohra; Ha-Duong, Nguyêt-Thanh; Miquel, Geneviève; El Hage Chahine, Jean-Michel

    2007-01-01

    The kinetics and thermodynamics of Ga(III) exchange between gallium mononitrilotriacetate and human serum transferrin as well as those of the interaction between gallium-loaded transferrin and the transferrin receptor 1 were investigated in neutral media. Gallium is exchanged between the chelate and the C-site of human serum apotransferrin in interaction with bicarbonate in about 50 s to yield an intermediate complex with an equilibrium constant K (1) = (3.9 +/- 1.2) x 10(-2), a direct second-order rate constant k (1) = 425 +/- 50 M(-1) s(-1) and a reverse second-order rate constant k (-1) = (1.1 +/- 3) x 10(4) M(-1) s(-1). The intermediate complex loses a single proton with proton dissociation constant K (1a) = 80 +/- 40 nM to yield a first kinetic product. This product then undergoes a modification in its conformation which lasts about 500 s to produce a second kinetic intermediate, which in turn undergoes a final extremely slow (several hours) modification in its conformation to yield the gallium-saturated transferrin in its final state. The mechanism of gallium uptake differs from that of iron and does not involve the same transitions in conformation reported during iron uptake. The interaction of gallium-loaded transferrin with the transferrin receptor occurs in a single very fast kinetic step with a dissociation constant K (d) = 1.10 +/- 0.12 microM and a second-order rate constant k (d) = (1.15 +/- 0.3) x 10(10) M(-1) s(-1). This mechanism is different from that observed with the ferric holotransferrin and suggests that the interaction between the receptor and gallium-loaded transferrin probably takes place on the helical domain of the receptor which is specific for the C-site of transferrin and HFE. The relevance of gallium incorporation by the transferrin receptor-mediated iron-acquisition pathway is discussed.

  1. The gallium melting-point standard: a determination of the liquid-solid equilibrium temperature of pure gallium on the International Practical Temperature Scale of 1968.

    PubMed

    Thornton, D D

    1977-01-01

    The sharpness and reproducibility of the gallium melting point were studied and the melting temperature of gallium in terms of IPTS-68 was determined. Small melting-point cells designed for use with thermistors are described. Nine gallium cells including three levels of purity were used in 68 separate determinations fo the melting point. The melting point of 99.99999% pure gallium in terms of IPTS-68 is found to be 29.771(4) +/- 0.001(4) degree C; the melting range is less than 0.0005 degree C and is reproducible to +/- 0.0004 degree C.

  2. Composition of the core from gallium metal–silicate partitioning experiments

    DOE PAGES

    Blanchard, I.; Badro, J.; Siebert, J.; ...

    2015-07-24

    We present gallium concentration (normalized to CI chondrites) in the mantle is at the same level as that of lithophile elements with similar volatility, implying that there must be little to no gallium in Earth's core. Metal-silicate partitioning experiments, however, have shown that gallium is a moderately siderophile element and should be therefore depleted in the mantle by core formation. Moreover, gallium concentrations in the mantle (4 ppm) are too high to be only brought by the late veneer; and neither pressure, nor temperature, nor silicate composition has a large enough effect on gallium partitioning to make it lithophile. Wemore » therefore systematically investigated the effect of core composition (light element content) on the partitioning of gallium by carrying out metal–silicate partitioning experiments in a piston–cylinder press at 2 GPa between 1673 K and 2073 K. Four light elements (Si, O, S, C) were considered, and their effect was found to be sufficiently strong to make gallium lithophile. The partitioning of gallium was then modeled and parameterized as a function of pressure, temperature, redox and core composition. A continuous core formation model was used to track the evolution of gallium partitioning during core formation, for various magma ocean depths, geotherms, core light element contents, and magma ocean composition (redox) during accretion. The only model for which the final gallium concentration in the silicate Earth matched the observed value is the one involving a light-element rich core equilibrating in a FeO-rich deep magma ocean (>1300 km) with a final pressure of at least 50 GPa. More specifically, the incorporation of S and C in the core provided successful models only for concentrations that lie far beyond their allowable cosmochemical or geophysical limits, whereas realistic O and Si amounts (less than 5 wt.%) in the core provided successful models for magma oceans deeper that 1300 km. In conclusion, these results

  3. Two chain gallium fluorodiphosphates: synthesis, structure solution, and their transient presence during the hydrothermal crystallisation of a microporous gallium fluorophosphate.

    PubMed

    Millange, Franck; Walton, Richard I; Guillou, Nathalie; Loiseau, Thierry; O'Hare, Dermot; Férey, Gérard

    2002-04-21

    Two novel gallium fluorodiphosphates have been isolated and their structures solved ab initio from powder X-ray diffraction data; the materials readily interconvert under hydrothermal conditions, and are metastable with respect to an open-framework zeolitic gallium fluorophosphate, during the synthesis of which they are present as transient intermediates.

  4. Gallium induces the production of virulence factors in Pseudomonas aeruginosa.

    PubMed

    García-Contreras, Rodolfo; Pérez-Eretza, Berenice; Lira-Silva, Elizabeth; Jasso-Chávez, Ricardo; Coria-Jiménez, Rafael; Rangel-Vega, Adrián; Maeda, Toshinari; Wood, Thomas K

    2014-02-01

    The novel antimicrobial gallium is a nonredox iron III analogue with bacteriostatic and bactericidal properties, effective for the treatment of Pseudomonas aeruginosa in vitro and in vivo in mouse and rabbit infection models. It interferes with iron metabolism, transport, and presumably its homeostasis. As gallium exerts its antimicrobial effects by competing with iron, we hypothesized that it ultimately will lead cells to an iron deficiency status. As iron deficiency promotes the expression of virulence factors in vitro and promotes the pathogenicity of P. aeruginosa in animal models, it is anticipated that treatment with gallium will also promote the production of virulence factors. To test this hypothesis, the reference strain PA14 and two clinical isolates from patients with cystic fibrosis were exposed to gallium, and their production of pyocyanin, rhamnolipids, elastase, alkaline protease, alginate, pyoverdine, and biofilm was determined. Gallium treatment induced the production of all the virulence factors tested in the three strains except for pyoverdine. In addition, as the Ga-induced virulence factors are quorum sensing controlled, co-administration of Ga and the quorum quencher brominated furanone C-30 was assayed, and it was found that C-30 alleviated growth inhibition from gallium. Hence, adding both C-30 and gallium may be more effective in the treatment of P. aeruginosa infections. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  5. Control of Gallium Oxide Growth on Liquid Metal Eutectic Gallium/Indium Nanoparticles via Thiolation.

    PubMed

    Farrell, Zachary J; Tabor, Christopher

    2018-01-09

    Eutectic gallium-indium alloy (EGaIn, a room-temperature liquid metal) nanoparticles are of interest for their unique potential uses in self-healing and flexible electronic devices. One reason for their interest is due to a passivating oxide skin that develops spontaneously on exposure to ambient atmosphere which resists deformation and rupture of the resultant liquid particles. It is then of interest to develop methods for control of this oxide growth process. It is hypothesized here that functionalization of EGaIn nanoparticles with thiolated molecules could moderate oxide growth based on insights from the Cabrera-Mott oxidation model. To test this, the oxidation dynamics of several thiolated nanoparticle systems were tracked over time with X-ray photoelectron spectroscopy. These results demonstrate the ability to suppress gallium oxide growth by up to 30%. The oxide progressively matures over a 28 day period, terminating in different final thicknesses as a function of thiol selection. These results indicate not only that thiols moderate gallium oxide growth via competition with oxygen for surface sites but also that different thiols alter the thermodynamics of oxide growth through modification of the EGaIn work function.

  6. Developing Market Opportunities for Flexible Rooftop Applications of PV Using Flexible CIGS Technology: Market Considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabnani, L.; Skumanich, A.; Ryabova, E.

    There has been a recent upsurge in developments for building-integrated phototovoltaics (BiPV) roof top materials based on CIGS. Several new companies have increased their presence and are looking to bring products to market for this application in 2011. For roof-top application, there are significant key requirements beyond just having good conversion efficiency. Other attributes include lightweight, as well as moisture-proof, and fully functionally reliable. The companies bringing these new BIPV/BAPV products need to ensure functionality with a rigorous series of tests, and have an extensive set of 'torture' tests to validate the capability. There is a convergence of form, aesthetics,more » and physics to ensure that the CIGS BiPV deliver on their promises. This article will cover the developments in this segment of the BiPV market and delve into the specific tests and measurements needed to characterize the products. The potential market sizes are evaluated and the technical considerations developed.« less

  7. Daily users compared to less frequent users find vape as or more satisfying and less dangerous than cigarettes, and are likelier to use non-cig-alike vaping products.

    PubMed

    Kozlowski, Lynn T; Homish, D Lynn; Homish, Gregory G

    2017-06-01

    We assessed the roles of perceived satisfaction and perceived danger and vaping-product-type as correlates of more frequent use of vaping products. In a baseline assessment of a longitudinal study of US Army Reserve/National Guard Soldiers and their partners (New York State, USA, 2014-2016), participants were asked about current use of vaping products (e-cigarettes) and perceived satisfaction and danger in comparison to cigarettes as well as type of product used. Fisher-exact tests and multiple ordinal logistic regressions were used. In multivariable and univariate models, more perceived satisfaction, less perceived danger, and use of non-cig-alike products were associated with more frequent use of vaping products ( p s < 0.05, two-tailed). For self-selected, more frequent adult users, e-cigs can be at least as satisfying as cigarettes and often more satisfying and are perceived as less dangerous than cigarettes. Non-cig-alike products were more likely in daily users. Some concern that e-cigs are a gateway to cigarettes arises from assuming that e-cigs may not be as reinforcing and pleasurable as cigarettes. These results indicate that accurate perception of comparative risk and use of more effective-nicotine delivery product can produce for some users a highly-satisfying alternative to cigarettes.

  8. Gallium Electromagnetic (GEM) Thruster Performance Measurements

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Burton, Rodney L.; Polzin, K. A.

    2009-01-01

    Discharge current, terminal voltage, and mass bit measurements are performed on a coaxial gallium electromagnetic thruster at discharge currents in the range of 7-23 kA. It is found that the mass bit varies quadratically with the discharge current which yields a constant exhaust velocity of 20 km/s. Increasing the electrode radius ratio of the thruster from to 2.6 to 3.4 increases the thruster efficiency from 21% to 30%. When operating with a central gallium anode, macroparticles are ejected at all energy levels tested. A central gallium cathode ejects macroparticles when the current density exceeds 3.7 10(exp 8) A/square m . A spatially and temporally broad spectroscopic survey in the 220-520 nm range is used to determine which species are present in the plasma. The spectra show that neutral, singly, and doubly ionized gallium species are present in the discharge, as well as annular electrode species at higher energy levels. Axial Langmuir triple probe measurements yield electron temperatures in the range of 0.8-3.8 eV and electron densities in the range of 8 x 10(exp )20 to 1.6 x 10(exp 21) m(exp -3) . Triple probe measurements suggest an exhaust plume with a divergence angle of 9 , and a completely doubly ionized plasma at the ablating thruster cathode.

  9. Bragg Reflector-Induced Increased Nonradiative Lifetime in Gallium Arsenide (GaAs)/Aluminum Gallium Arsenide (AlGaAs) Double Heterostructures

    DTIC Science & Technology

    2015-09-01

    ARL-TR-7473 ● SEP 2015 US Army Research Laboratory Bragg Reflector-Induced Increased Nonradiative Lifetime in Gallium Arsenide...return it to the originator. ARL-TR-7473 ● SEP 2015 US Army Research Laboratory Bragg Reflector-Induced Increased Nonradiative ...3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Bragg Reflector-Induced Increased Nonradiative Lifetime in Gallium Arsenide (GaAs)/Aluminum

  10. Extremely-efficient, miniaturized, long-lived alpha-voltaic power source using liquid gallium

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey (Inventor); Patel, Jagdishbhai (Inventor); Fleurial, Jean-Pierre (Inventor)

    2004-01-01

    A power source converts .alpha.-particle energy to electricity for use in electrical systems. Liquid gallium or other liquid medium is subjected to .alpha.-particle emissions. Electrons are freed by collision from neutral gallium atoms to provide gallium ions. The electrons migrate to a cathode while the gallium ions migrate to an anode. A current and/or voltage difference then arises between the cathode and anode because of the work function difference of the cathode and anode. Gallium atoms are regenerated by the receiving of electrons from the anode enabling the generation of additional electrons from additional .alpha.-particle collisions.

  11. Anisotropy of the magnetic susceptibility of gallium

    USGS Publications Warehouse

    Pankey, T.

    1960-01-01

    The bulk magnetic susceptibilities of single gallium crystals and polycrystalline gallium spheres were measured at 25??C. The following anisotropic diamagnetic susceptibilities were found: a axis (-0.119??0. 001)??10-6 emu/g, b axis (-0.416??0.002)??10 -6 emu/g, and c axis (-0.229??0.001) emu/g. The susceptibility of the polycrystalline spheres, assumed to be the average value for the bulk susceptibility of gallium, was (-0.257??0.003)??10-6 emu/g at 25??C, and (-0.299??0.003)??10-6 emu/g at -196??C. The susceptibility of liquid gallium was (0.0031??0.001) ??10-6 emu/g at 30??C and 100??C. Rotational diagrams of the susceptibilities in the three orthogonal planes of the unit cell were not sinusoidal. The anisotropy in the single crystals was presumably caused by the partial overlap of Brillouin zone boundaries by the Fermi-energy surface. The large change in susceptibility associated with the change in state was attributed to the absence of effective mass influence in the liquid state. ?? 1960 The American Institute of Physics.

  12. Gallium-containing phospho-silicate glasses: synthesis and in vitro bioactivity.

    PubMed

    Franchini, Mirco; Lusvardi, Gigliola; Malavasi, Gianluca; Menabue, Ledi

    2012-08-01

    A series of Ga-containing phospho-silicate glasses based on Bioglass 45S5, having molar formula 46.2SiO2·24.3Na2O·26.9CaO·2.6P2O5·xGa2O3 (x=1.0, 1.6, 3.5), were prepared by fusion method. The reference Bioglass 45S5 without gallium was also prepared. The synthesized glasses were immersed in simulated body fluid (SBF) for 30 days in order to observe ion release and hydroxyapatite (HA) formation. All Ga-containing glasses maintain the ability of HA formation as indicated by main X-ray diffractometric peaks and/or electronic scanning microscopy results. HA layer was formed after 1 day of SBF soaking in 45S5 glass containing up to 1.6% Ga2O3 content. Moreover, gallium released by the glasses was found to be partially precipitated on the glass surface as gallium phosphate. Further increase in gallium content reduced the ion release in SBF. The maximum of Ga(3+) concentration measured in solution is ~6 ppm determined for 3.5% Ga2O3 content. This amount is about half of the toxic level (14 ppm) of gallium and the glasses release gallium till 30 days of immersion in SBF. Considering the above results, the studied materials can be proposed as bioactive glasses with additional antimicrobial effect of gallium having no toxic outcome. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Optical and Electrical Characterization of Bulk Grown Indium-Gallium-Arsenide Alloys

    DTIC Science & Technology

    2010-03-01

    OPTICAL AND ELECTRICAL CHARACTERIZATION OF BULK GROWN INDIUM- GALLIUM -ARSENIDE ALLOYS THESIS...Government. AFIT/GAP/ENP/10-M02 OPTICAL AND ELECTRICAL CHARACTERIZATION OF BULK GROWN INDIUM- GALLIUM -ARSENIDE ALLOYS THESIS Presented to...ELECTRICAL CHARACTERIZATION OF BULK GROWN INDIUM- GALLIUM -ARSENIDE ALLOYS Austin C Bergstrom, BS 2 nd Lieutenant, USAF

  14. The Availability of Indium: The Present, Medium Term, and Long Term

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lokanc, Martin; Eggert, Roderick; Redlinger, Michael

    2015-10-01

    Demand for indium is likely to increase if the growth in deployment of the copper-indium-gallium-selenide (CIGS) and III-V thin-film photovoltaic technologies accelerates. There are concerns about indium supply constraints since it is relatively rare element in the earth's crust and because it is produced exclusively as a byproduct.

  15. Controlled delivery of antimicrobial gallium ions from phosphate-based glasses.

    PubMed

    Valappil, S P; Ready, D; Abou Neel, E A; Pickup, D M; O'Dell, L A; Chrzanowski, W; Pratten, J; Newport, R J; Smith, M E; Wilson, M; Knowles, J C

    2009-05-01

    Gallium-doped phosphate-based glasses (PBGs) have been recently shown to have antibacterial activity. However, the delivery of gallium ions from these glasses can be improved by altering the calcium ion concentration to control the degradation rate of the glasses. In the present study, the effect of increasing calcium content in novel gallium (Ga2O3)-doped PBGs on the susceptibility of Pseudomonas aeruginosa is examined. The lack of new antibiotics in development makes gallium-doped PBG potentially a highly promising new therapeutic agent. The results show that an increase in calcium content (14, 15 and 16 mol.% CaO) cause a decrease in degradation rate (17.6, 13.5 and 7.3 microg mm(-2) h(-1)), gallium ion release and antimicrobial activity against planktonic P. aeruginosa. The most potent glass composition (containing 14 mol.% CaO) was then evaluated for its ability to prevent the growth of biofilms of P. aeruginosa. Gallium release was found to reduce biofilm growth of P. aeruginosa with a maximum effect (0.86 log(10) CFU reduction compared to Ga2O3-free glasses) after 48 h. Analysis of the biofilms by confocal microscopy confirmed the anti-biofilm effect of these glasses as it showed both viable and non-viable bacteria on the glass surface. Results of the solubility and ion release studies show that this glass system is suitable for controlled delivery of Ga3+. 71Ga NMR and Ga K-edge XANES measurements indicate that the gallium is octahedrally coordinated by oxygen atoms in all samples. The results presented here suggest that PBGs may be useful in controlled drug delivery applications, to deliver gallium ions in order to prevent infections due to P. aeruginosa biofilms.

  16. Angiotensin-I-converting enzyme and gallium scan in noninvasive evaluation of sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nosal, A.; Schleissner, L.A.; Mishkin, F.S.

    1979-03-01

    Angiotensin-converting enzyme assays and gallium-scan results were obtained from 27 patients with biopsy-proven, clinically active sarcoidosis. Twenty-three of these patients had elevated converting enzyme levels, and 22 had positive gallium-scan results. Three of four patients with normal or borderline-elevated levels of angiotensin-converting enzyme also had positive gallium-scan results. Of 156 nonsarcoid patients (pulmonary and other diseases), 27 were found to have elevated serum converting enzyme levels, and 25 of these had negative gallium-scan results. These results indicate that the combination of an assay of angiotensin-converting enzyme and gallium scan increases diagnostic specificity from 83% to 99% without sacrificing sensitivity. Itmore » was concluded that the concurrent use of angiotensin-converting enzyme assay and gallium scan is of value in the diagnosis of sarcoidosis.« less

  17. Preliminary Spectroscopic Measurements for a Gallium Electromagnetic (GEM) Thruster

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Burton, Rodney L.; Glumac, Nick G.; Polzin, Kurt A.

    2007-01-01

    As a propellant option for electromagnetic thrusters, liquid ,gallium appears to have several advantages relative to other propellants. The merits of using gallium in an electromagnetic thruster (EMT) are discussed and estimates of discharge current levels and mass flow rates yielding efficient operation are given. The gallium atomic weight of 70 predicts high efficiency in the 1500-2000 s specific impulse range, making it ideal for higher-thrust, near-Earth missions. A spatially and temporally broad spectroscopic survey in the 220-520 nm range is used to determine which species are present in the plasma and estimate electron temperature. The spectra show that neutral, singly, and doubly ionized gallium species are present in a 20 J, 1.8 kA (peak) are discharge. With graphite present on the insulator to facilitate breakdown, singly and doubly ionized carbon atoms are also present, and emission is observed from molecular carbon (CZ) radicals. A determination of the electron temperature was attempted using relative emission line data, and while the spatially and temporally averaged, spectra don't fit well to single temperatures, the data and presence of doubly ionized gallium are consistent with distributions in the 1-3 eV range.

  18. Recovery of Gallium from Secondary V-Recycling Slag by Alkali Fusion

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Shi, Zhe; Zhang, Gui-fang

    Secondary V-recycling slag, an industrial waste containing high gallium is being dumped continuously, which causes the loss of gallium. Thus, the alkali fusion process was employed to recover gallium from this slag. The effects factors on extraction of gallium such as roasting temperature, roasting time, alkali fusion agent concentration and CaO concentration were investigated in the paper. The experimental results indicated that excessive roasting temperature and roasting time is unfavorable to the recovery rate of gallium. The appropriate roasting temperature and duration are 1000°C and 2 hours, respectively; The appropriate proportioning of Na2CO3: NaOH is 2:1 when the concentration of alkali fusion agent weighs 0.4 times the mass of the slag; In order to remove SiO2 from the leaching liquor, CaO should be used as an additive in the roasting process. The appropriate concentration of CaO should weigh 0.2 times the mass of the slag. Employing these optimal alkali fusion conditions in the roasting process, gallium recovery is above 90%.

  19. Visible light-induced crosslinking and physiological stabilization of diselenide-rich nanoparticles for redox-responsive drug release and combination chemotherapy.

    PubMed

    Zhai, Shaodong; Hu, Xianglong; Hu, Yongjun; Wu, Baoyan; Xing, Da

    2017-03-01

    Undesired physiological instability of nanocarriers and premature drug leakage during blood circulation result in compromised therapeutic efficacy and severe side effects, which have significantly impeded the development of nanomedicine. Facile crosslinking of drug-loaded nanocarriers while keeping the potency of site-specific degradation and drug release has emerged as a viable strategy to overcome these drawbacks. Additionally, combination therapy has already shown advantages in inhibiting advanced tumors and life extension than single drug therapy. Herein, three kinds of diselenide-rich polymers were fabricated with distinct hydrophobic side chains. The component effect was interrogated to screen out PEG-b-PBSe diblock copolymer due to its favorable self-assembly controllability and high drug loading of camptothecin (CPT) and doxorubicin (DOX) that had synergistic antitumor property. Facile visible light-induced diselenide metathesis and regeneration was employed to crosslink nanocarriers for the first time. The dual drug-loaded crosslinked micelles (CPT/DOX-CCM) were stable in physiological conditions with minimal drug leakage, possessing extended blood circulation, whereas hand-in-hand dual drug release was significantly accelerated in tumor's redox microenvironments. In vitro cytotoxicity evaluation and in vivo tumor suppression with low dosage drugs further demonstrated the favorable potency of the redox-responsive nanoplatform in tumor combination chemotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Gallium alloy films investigated for use as boundary lubricants

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Gallium alloyed with other low melting point metals has excellent lubricant properties of fluidity and low vapor pressure for high temperature or vacuum environments. The addition of other soft metals reduces the corrosivity and formation of undesirable alloys normally found with gallium.

  1. Identification and characterization of a selenoprotein family containing a diselenide bond in a redox motif

    PubMed Central

    Shchedrina, Valentina A.; Novoselov, Sergey V.; Malinouski, Mikalai Yu.; Gladyshev, Vadim N.

    2007-01-01

    Selenocysteine (Sec, U) insertion into proteins is directed by translational recoding of specific UGA codons located upstream of a stem-loop structure known as Sec insertion sequence (SECIS) element. Selenoproteins with known functions are oxidoreductases containing a single redox-active Sec in their active sites. In this work, we identified a family of selenoproteins, designated SelL, containing two Sec separated by two other residues to form a UxxU motif. SelL proteins show an unusual occurrence, being present in diverse aquatic organisms, including fish, invertebrates, and marine bacteria. Both eukaryotic and bacterial SelL genes use single SECIS elements for insertion of two Sec. In eukaryotes, the SECIS is located in the 3′ UTR, whereas the bacterial SelL SECIS is within a coding region and positioned at a distance that supports the insertion of either of the two Sec or both of these residues. SelL proteins possess a thioredoxin-like fold wherein the UxxU motif corresponds to the catalytic CxxC motif in thioredoxins, suggesting a redox function of SelL proteins. Distantly related SelL-like proteins were also identified in a variety of organisms that had either one or both Sec replaced with Cys. Danio rerio SelL, transiently expressed in mammalian cells, incorporated two Sec and localized to the cytosol. In these cells, it occurred in an oxidized form and was not reducible by DTT. In a bacterial expression system, we directly demonstrated the formation of a diselenide bond between the two Sec, establishing it as the first diselenide bond found in a natural protein. PMID:17715293

  2. Microfluidic platforms for gallium-based liquid metal alloy

    NASA Astrophysics Data System (ADS)

    Kim, Daeyoung

    As an alternative to toxic mercury, non-toxic gallium-based liquid metal alloy has been gaining popularity due to its higher thermal and electrical conductivities, and low toxicity along with liquid property. However, it is difficult to handle as the alloy becomes readily oxidized in atmospheric air environment. This instant oxidation causes the gallium-based liquid metal alloy to wet almost any solid surface. Therefore, it has been primarily limited to applications which rely only on its deformability, not on its mobility. In this research, various approaches to mobilize gallium-based liquid metal alloy were investigated. Multi-scale surface patterned with polydimethylsiloxane (PDMS) micro pillar array showed super-lyophobic property against gallium-based liquid metal alloy by minimizing the contact area between the solid surface and the liquid metal, and it was expanded to a three-dimensional tunnel shaped microfluidic channel. Vertically-aligned carbon nanotube forest leads to another promising super-lyophobic surface due to its hierarchical micro/nano scale combined structures and chemical inertness. When the carbon nanotubes were transferred onto flexible PDMS by imprinting, the super-lyophobic property was still maintained even under the mechanical deformation such as stretching and bending. Alternatively, the gallium-based liquid metal can be manipulated by modifying the surface of liquid metal itself. With chemical reaction with HCl 'vapor', the oxidized surface (mainly Ga2O3/Ga2O) of gallium-based liquid metal was converted to GaCl3/InCl 3 resulting in the recovery of non-wetting characteristics. Paper which is intrinsically porous is attractive as a super-lyophobic surface and it was found that hydrochloric acid (HCl) impregnation enhanced the anti-wetting property by the chemical reaction. As another alternative method, by coating the viscoelastic oxidized surface of liquid metal with ferromagnetic materials (CoNiMnP or Fe), it showed non

  3. Novel solution-phase structures of gallium-containing pyrogallol[4]arene scaffolds**

    PubMed Central

    Kumari, Harshita; Kline, Steven R.; Wycoff, Wei G.; Paul, Rick L.; Mossine, Andrew V.; Deakyne, Carol A.; Atwood, Jerry L.

    2012-01-01

    The variations in architecture of gallium-seamed (PgC4Ga) and gallium-zinc-seamed (PgC4GaZn) C-butylpyrogallol[4]arene nanoassemblies in solution (SANS/NMR) versus the solid state (XRD) have been investigated. Rearrangement from the solid-state spheroidal to the solution-phase toroidal shape differentiates the gallium-containing pyrogallol[4]arene nanoassemblies from all other PgCnM nanocapsules studied thus far. Different structural arrangements of the metals and arenes of PgC4Ga versus PgC4GaZn have been deduced from the different toroidal dimensions, C–H proton environments and guest encapsulation of the two toroids. PGAA of mixed-metal hexamers reveals a decrease in gallium-to-metal ratio as the second metal varies from cobalt to zinc. Overall, the combined study demonstrates the versatility of gallium in directing the self-assembly of pyrogallol[4]arenes into novel nanoarchitectures. PMID:22511521

  4. Window structure for passivating solar cells based on gallium arsenide

    NASA Technical Reports Server (NTRS)

    Barnett, Allen M. (Inventor)

    1985-01-01

    Passivated gallium arsenide solar photovoltaic cells with high resistance to moisture and oxygen are provided by means of a gallium arsenide phosphide window graded through its thickness from arsenic rich to phosphorus rich.

  5. Preparation of cuxinygazsen (X=0-2, Y=0-2, Z=0-2, N=0-3) precursor films by electrodeposition for fabricating high efficiency solar cells

    DOEpatents

    Bhattacharya, Raghu N.; Contreras, Miguel A.; Keane, James; Tennant, Andrew L.; Tuttle, John R.; Ramanathan, Kannan; Noufi, Rommel

    1998-03-24

    High quality thin films of copper-indium-gallium-diselenide useful in the production of solar cells are prepared by electrodepositing at least one of the constituent metals onto a glass/Mo substrate, followed by physical vapor deposition of copper and selenium or indium and selenium to adjust the final stoichiometry of the thin film to approximately Cu(In,Ga)Se.sub.2. Using an AC voltage of 1-100 KHz in combination with a DC voltage for electrodeposition improves the morphology and growth rate of the deposited thin film. An electrodeposition solution comprising at least in part an organic solvent may be used in conjunction with an increased cathodic potential to increase the gallium content of the electrodeposited thin film.

  6. Novel Heteroaryl Selenocyanates and Diselenides as Potent Antileishmanial Agents

    PubMed Central

    Baquedano, Ylenia; Alcolea, Verónica; Toro, Miguel Ángel; Gutiérrez, Killian Jesús; Nguewa, Paul; Font, María; Moreno, Esther; Espuelas, Socorro; Jiménez-Ruiz, Antonio; Palop, Juan Antonio; Plano, Daniel

    2016-01-01

    A series of new selenocyanates and diselenides bearing interesting bioactive scaffolds (quinoline, quinoxaline, acridine, chromene, furane, isosazole, etc.) was synthesized, and their in vitro leishmanicidal activities against Leishmania infantum amastigotes along with their cytotoxicities in human THP-1 cells were determined. Interestingly, most tested compounds were active in the low micromolar range and led us to identify four lead compounds (1h, 2d, 2e, and 2f) with 50% effective dose (ED50) values ranging from 0.45 to 1.27 μM and selectivity indexes of >25 for all of them, much higher than those observed for the reference drugs. These active derivatives were evaluated against infected macrophages, and in order to gain preliminary knowledge about their possible mechanism of action, the inhibition of trypanothione reductase (TryR) was measured. Among these novel structures, compounds 1h (3,5-dimethyl-4-isoxazolyl selenocyanate) and 2d [3,3′-(diselenodiyldimethanediyl)bis(2-bromothiophene)] exhibited good association between TryR inhibitory activity and antileishmanial potency, pointing to 1h, for its excellent theoretical ADME (absorption, distribution, metabolism, and excretion) properties, as the most promising lead molecule for leishmancidal drug design. PMID:27067328

  7. Gallium Potentiates the Antibacterial Effect of Gentamicin against Francisella tularensis

    PubMed Central

    Lindgren, Helena

    2015-01-01

    The reasons why aminoglycosides are bactericidal have not been not fully elucidated, and evidence indicates that the cidal effects are at least partly dependent on iron. We demonstrate that availability of iron markedly affects the susceptibility of the facultative intracellular bacterium Francisella tularensis strain SCHU S4 to the aminoglycoside gentamicin. Specifically, the intracellular depots of iron were inversely correlated to gentamicin susceptibility, whereas the extracellular iron concentrations were directly correlated to the susceptibility. Further proof of the intimate link between iron availability and antibiotic susceptibility were the findings that a ΔfslA mutant, which is defective for siderophore-dependent uptake of ferric iron, showed enhanced gentamicin susceptibility and that a ΔfeoB mutant, which is defective for uptake of ferrous iron, displayed complete growth arrest in the presence of gentamicin. Based on the aforementioned findings, it was hypothesized that gallium could potentiate the effect of gentamicin, since gallium is sequestered by iron uptake systems. The ferrozine assay demonstrated that the presence of gallium inhibited >70% of the iron uptake. Addition of gentamicin and/or gallium to infected bone marrow-derived macrophages showed that both 100 μM gallium and 10 μg/ml of gentamicin inhibited intracellular growth of SCHU S4 and that the combined treatment acted synergistically. Moreover, treatment of F. tularensis-infected mice with gentamicin and gallium showed an additive effect. Collectively, the data demonstrate that SCHU S4 is dependent on iron to minimize the effects of gentamicin and that gallium, by inhibiting the iron uptake, potentiates the bactericidal effect of gentamicin in vitro and in vivo. PMID:26503658

  8. Gallium Potentiates the Antibacterial Effect of Gentamicin against Francisella tularensis.

    PubMed

    Lindgren, Helena; Sjöstedt, Anders

    2016-01-01

    The reasons why aminoglycosides are bactericidal have not been not fully elucidated, and evidence indicates that the cidal effects are at least partly dependent on iron. We demonstrate that availability of iron markedly affects the susceptibility of the facultative intracellular bacterium Francisella tularensis strain SCHU S4 to the aminoglycoside gentamicin. Specifically, the intracellular depots of iron were inversely correlated to gentamicin susceptibility, whereas the extracellular iron concentrations were directly correlated to the susceptibility. Further proof of the intimate link between iron availability and antibiotic susceptibility were the findings that a ΔfslA mutant, which is defective for siderophore-dependent uptake of ferric iron, showed enhanced gentamicin susceptibility and that a ΔfeoB mutant, which is defective for uptake of ferrous iron, displayed complete growth arrest in the presence of gentamicin. Based on the aforementioned findings, it was hypothesized that gallium could potentiate the effect of gentamicin, since gallium is sequestered by iron uptake systems. The ferrozine assay demonstrated that the presence of gallium inhibited >70% of the iron uptake. Addition of gentamicin and/or gallium to infected bone marrow-derived macrophages showed that both 100 μM gallium and 10 μg/ml of gentamicin inhibited intracellular growth of SCHU S4 and that the combined treatment acted synergistically. Moreover, treatment of F. tularensis-infected mice with gentamicin and gallium showed an additive effect. Collectively, the data demonstrate that SCHU S4 is dependent on iron to minimize the effects of gentamicin and that gallium, by inhibiting the iron uptake, potentiates the bactericidal effect of gentamicin in vitro and in vivo. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. The therapeutic potential of iron-targeting gallium compounds in human disease: From basic research to clinical application.

    PubMed

    Chitambar, Christopher R

    2017-01-01

    Gallium, group IIIa metal, shares certain chemical characteristics with iron which enable it to function as an iron mimetic that can disrupt iron-dependent tumor cell growth. Gallium may also display antimicrobial activity by disrupting iron homeostasis in certain bacteria and fungi. Gallium's action on iron homeostasis leads to inhibition of ribonucleotide reductase, mitochondrial function, and changes in proteins of iron transport and storage. In addition, gallium induces an increase in mitochondrial reactive oxygen species in cells which triggers downstream upregulation of metallothionein and hemoxygenase-1. Early clinical trials evaluated the efficacy of the simple gallium salts, gallium nitrate and gallium chloride. However, newer gallium-ligands such as Tris(8-quinolinolato)gallium(III) (KP46) and gallium maltolate have been developed and are undergoing clinical evaluation. Additional gallium-ligands that demonstrate antitumor activity in preclinical studies have emerged. Their mechanisms of action and their spectrum of antitumor activity may extend beyond the earlier generations of gallium compounds and warrant further investigation. This review will focus on the evolution and potential of gallium-based therapeutics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Copper Indium Gallium Diselenide Solar Cells | Photovoltaic Research | NREL

    Science.gov Websites

    primary research areas that are currently our focus are the following: Understanding effects of material . Such metastable effects frustrate the repeatable and accurate measurement of a module's performance in by perturbing the voltage bias or temperature. Another associated challenge is that elevated

  11. Multiple scaling power in liquid gallium under pressure conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Renfeng; Wang, Luhong; Li, Liangliang

    Generally, a single scaling exponent, Df, can characterize the fractal structures of metallic glasses according to the scaling power law. However, when the scaling power law is applied to liquid gallium upon compression, the results show multiple scaling exponents and the values are beyond 3 within the first four coordination spheres in real space, indicating that the power law fails to describe the fractal feature in liquid gallium. The increase in the first coordination number with pressure leads to the fact that first coordination spheres at different pressures are not similar to each other in a geometrical sense. This multiplemore » scaling power behavior is confined within a correlation length of ξ ≈ 14–15 Å at applied pressure according to decay of G(r) in liquid gallium. Beyond this length the liquid gallium system could roughly be viewed as homogeneous, as indicated by the scaling exponent, Ds, which is close to 3 beyond the first four coordination spheres.« less

  12. Gallium(iii) and iron(iii) complexes of quinolone antimicrobials.

    PubMed

    Mjos, Katja Dralle; Cawthray, Jacqueline F; Polishchuk, Elena; Abrams, Michael J; Orvig, Chris

    2016-08-16

    Iron is an essential nutrient for many microbes. According to the "Trojan Horse Hypothesis", biological systems have difficulties distinguishing between Fe(3+) and Ga(3+), which constitutes the antimicrobial efficacy of the gallium(iii) ion. Nine novel tris(quinolono)gallium(iii) complexes and their corresponding iron(iii) analogs have been synthesized and fully characterized. Quinolone antimicrobial agents from three drug generations were used in this study: ciprofloxacin, enoxacin, fleroxacin, levofloxacin, lomefloxacin, nalidixic acid, norfloxacin, oxolinic acid, and pipemidic acid. The antimicrobial efficacy of the tris(quinolono)gallium(iii) complexes was studied against E. faecalis and S. aureus (both Gram-positive), as well as E. coli, K. pneumonia, and P. aeruginosa (all Gram-negative) in direct comparison to the tris(quinolono)iron(iii) complexes and the corresponding free quinolone ligands at various concentrations. For the tris(quinolono)gallium(iii) complexes, no combinational antimicrobial effects between Ga(3+) and the quinolone antimicrobial agents were observed.

  13. Preliminary Experimental Measurements for a Gallium Electromagnetic (GEM) Thruster

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Burton, Rodney L.; Glumac, Nick G.; Polzin, Kurt A.

    2007-01-01

    A low-energy gallium plasma source is used to perform a spatially and temporally broad spectroscopic survey in the 220-520 nm range. Neutral, singly, and doubly ionized gallium are present in a 20 J, 1.8 kA (peak) arc discharge operating with a central cathode. When the polarity of the inner electrode is reversed the discharge current and arc voltage waveforms remain similar. Utilizing a central anode configuration, multiple Ga lines are absent in the 270-340 nm range. In addition, neutral and singly ionized Fe spectral lines are present, indicating erosion of the outer electrode. With graphite present on the insulator to facilitate breakdown, line emission from the gallium species is further reduced and while emissions from singly and doubly ionized carbon atoms and molecular carbon (C2) radicals are observed. These data indicate that a significant fraction of energy is shifted from the gallium and deposited into the various carbon species.

  14. Non-LTE gallium abundance in HgMn stars

    NASA Astrophysics Data System (ADS)

    Zboril, M.; Berrington, K. A.

    2001-07-01

    We present, for the first time, the Non-LTE gallium equivalent widths for the most prominent gallium transitions as identified in real spectra and in (hot) mercury-manganese star. The common feature of the departure coefficients is to decrease near the stellar surface, the collision rates are dominant in many cases and the Non-LTE equivalent widths are generally smaller. In particular, the abundance difference as derived from UV and visual lines is reduced. The photoionization cross sections were computed by means of standard R-matrix formalism. The gallium cross-sections are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/373/987

  15. Atomically thin heterostructures based on single-layer tungsten diselenide and graphene.

    PubMed

    Lin, Yu-Chuan; Chang, Chih-Yuan S; Ghosh, Ram Krishna; Li, Jie; Zhu, Hui; Addou, Rafik; Diaconescu, Bogdan; Ohta, Taisuke; Peng, Xin; Lu, Ning; Kim, Moon J; Robinson, Jeremy T; Wallace, Robert M; Mayer, Theresa S; Datta, Suman; Li, Lain-Jong; Robinson, Joshua A

    2014-12-10

    Heterogeneous engineering of two-dimensional layered materials, including metallic graphene and semiconducting transition metal dichalcogenides, presents an exciting opportunity to produce highly tunable electronic and optoelectronic systems. In order to engineer pristine layers and their interfaces, epitaxial growth of such heterostructures is required. We report the direct growth of crystalline, monolayer tungsten diselenide (WSe2) on epitaxial graphene (EG) grown from silicon carbide. Raman spectroscopy, photoluminescence, and scanning tunneling microscopy confirm high-quality WSe2 monolayers, whereas transmission electron microscopy shows an atomically sharp interface, and low energy electron diffraction confirms near perfect orientation between WSe2 and EG. Vertical transport measurements across the WSe2/EG heterostructure provides evidence that an additional barrier to carrier transport beyond the expected WSe2/EG band offset exists due to the interlayer gap, which is supported by theoretical local density of states (LDOS) calculations using self-consistent density functional theory (DFT) and nonequilibrium Green's function (NEGF).

  16. Ferromagnetism in CVT grown tungsten diselenide single crystals with nickel doping

    NASA Astrophysics Data System (ADS)

    Habib, Muhammad; Muhammad, Zahir; Khan, Rashid; Wu, Chuanqiang; Rehman, Zia ur; Zhou, Yu; Liu, Hengjie; Song, Li

    2018-03-01

    Two dimensional (2D) single crystal layered transition materials have had extensive consideration owing to their interesting magnetic properties, originating from their lattices and strong spin-orbit coupling, which make them of vital importance for spintronic applications. Herein, we present synthesis of a highly crystalline tungsten diselenide layered single crystal grown by chemical vapor transport technique and doped with nickel (Ni) to tailor its magnetic properties. The pristine WSe2 single crystal and Ni-doped crystal were characterized and analyzed for magnetic properties using both experimental and computational aspects. It was found that the magnetic behavior of the 2D layered WSe2 crystal changed from diamagnetic to ferromagnetic after Ni-doping at all tested temperatures. Moreover, first principle density functional theory (DFT) calculations further confirmed the origin of room temperature ferromagnetism of Ni-doped WSe2, where the d-orbitals of the doped Ni atom promoted the spin moment and thus largely contributed to the magnetism change in the 2D layered material.

  17. Large scale 2D/3D hybrids based on gallium nitride and transition metal dichalcogenides.

    PubMed

    Zhang, Kehao; Jariwala, Bhakti; Li, Jun; Briggs, Natalie C; Wang, Baoming; Ruzmetov, Dmitry; Burke, Robert A; Lerach, Jordan O; Ivanov, Tony G; Haque, Md; Feenstra, Randall M; Robinson, Joshua A

    2017-12-21

    Two and three-dimensional (2D/3D) hybrid materials have the potential to advance communication and sensing technologies by enabling new or improved device functionality. To date, most 2D/3D hybrid devices utilize mechanical exfoliation or post-synthesis transfer, which can be fundamentally different from directly synthesized layers that are compatible with large scale industrial needs. Therefore, understanding the process/property relationship of synthetic heterostructures is priority for industrially relevant material architectures. Here we demonstrate the scalable synthesis of molybdenum disulfide (MoS 2 ) and tungsten diselenide (WSe 2 ) via metal organic chemical vapor deposition (MOCVD) on gallium nitride (GaN), and elucidate the structure, chemistry, and vertical transport properties of the 2D/3D hybrid. We find that the 2D layer thickness and transition metal dichalcogenide (TMD) choice plays an important role in the transport properties of the hybrid structure, where monolayer TMDs exhibit direct tunneling through the layer, while transport in few layer TMDs on GaN is dominated by p-n diode behavior and varies with the 2D/3D hybrid structure. Kelvin probe force microscopy (KPFM), low energy electron microscopy (LEEM) and X-ray photoelectron spectroscopy (XPS) reveal a strong intrinsic dipole and charge transfer between n-MoS 2 and p-GaN, leading to a degraded interface and high p-type leakage current. Finally, we demonstrate integration of heterogeneous 2D layer stacks of MoS 2 /WSe 2 on GaN with atomically sharp interface. Monolayer MoS 2 /WSe 2 /n-GaN stacks lead to near Ohmic transport due to the tunneling and non-degenerated doping, while few layer stacking is Schottky barrier dominated.

  18. Design and Optimization of Copper Indium Gallium Selenide Solar Cells for Lightweight Battlefield Application

    DTIC Science & Technology

    2014-06-01

    spectrum. This results in most of the incident sunlight being absorbed close to the p-n hetero - junction formed with the CdS layer. This property is what... junction layer in the solar cell hetero - junction . A thin layer of CdS is used in CIGS cells to accomplish this. CdS has a band gap of 2.4 eV, which...field between the p-n hetero - junction at the cost of absorbing more of the usable photons from reaching the CIGS layer. From Figure 28, CdS reached peak

  19. Gallium nitrate: effects on cartilage during limb regeneration in the axolotl, Ambystoma mexicanum.

    PubMed

    Tassava, Roy A; Mendenhall, Luciara; Apseloff, Glen; Gerber, Nicholas

    2002-09-01

    Gallium nitrate, a drug shown to have efficacy in Paget's disease of bone, hypercalcemia of malignancy, and a variety of experimental autoimmune diseases, also inhibits the growth of some types of cancer. We examined dose and timing of administration of gallium nitrate on limb regeneration in the Mexican axolotl, Ambystoma mexicanum. Administered by intraperitoneal injection, gallium nitrate inhibited limb regeneration in a dose-dependent manner. Gallium nitrate initially suppressed epithelial wound healing and subsequently distorted both anterior-posterior and proximo-distal chondrogenic patterns. Gallium nitrate given at three days after amputation severely inhibited regeneration at high doses (6.25 mg/axolotl) and altered the normal patterning of the regenerates at low doses (3.75 mg/axolotl). Administration of 6.25 mg of gallium nitrate at four or 14 days prior to amputation also inhibited regeneration. In amputated limbs of gallium-treated axolotls, the chondrocytes were lost from inside the radius/ulna. Limbs that regenerated after gallium treatment was terminated showed blastema formation preferentially over the ulna. New cartilage of the regenerate often attached to the sides of the existing radius/ulna proximally into the stump and less so to the distal cut ends. J. Exp. Zool. 293:384-394, 2002. Copyright 2002 Wiley-Liss, Inc.

  20. Potential use of gallium-doped phosphate-based glass material for periodontitis treatment.

    PubMed

    Sahdev, Rohan; Ansari, Tahera I; Higham, Susan M; Valappil, Sabeel P

    2015-07-01

    This study aimed at evaluating the potential effect of gallium-incorporated phosphate-based glasses towards periodontitis-associated bacteria, Porphyromonas gingivalis, and matrix metalloproteinase-13. Periodontitis describes a group of inflammatory diseases of the gingiva and supporting structures of the periodontium. They are initiated by the accumulation of plaque bacteria, such as the putative periodontal pathogen Porphyromonas gingivalis, but the host immune response such as elevated matrix metalloproteinases are the major contributing factor for destruction of periodontal tissues. Antibacterial assays of gallium-incorporated phosphate-based glasses were conducted on Porphyromonas gingivalis ATCC 33277 using disc diffusion assay on fastidious anaerobe agar and liquid broth assay in a modified tryptic soy broth. In vitro study investigated the effect of gallium on purified recombinant human matrix metalloproteinase-13 activity using matrix metalloproteinase assay kit. In vivo biocompatibility of gallium-incorporated phosphate-based glass was evaluated in rats as subcutaneous implants. Antibacterial assay of gallium displayed activity against Porphyromonas gingivalis (inhibition zone of 22 ± 0.5 mm compared with 0 mm for control glass, c-PBG). Gallium in the glass contributed to growth inhibitory effect on Porphyromonas gingivalis (up to 1.30 reductions in log 10 values of the viable counts compared with control) in a modified tryptic soy broth. In vitro study showed gallium-incorporated phosphate-based glasses inhibited matrix metalloproteinase activity significantly (p ≤ 0.01) compared with c-PBG. Evaluation of in vivo biocompatibility of gallium-incorporated phosphate-based glasses in rats showed a non-toxic and foreign body response after 2 weeks of implantation. The results indicate that gallium ions might act on multiple targets of biological mechanisms underlying periodontal disease. Moreover, gallium-incorporated phosphate-based glasses

  1. The Inhibition of Escherichia coli Biofilm Formation by Gallium Nitrate-Modified Titanium.

    PubMed

    Zhu, Yuanyuan; Qiu, Yan; Chen, Ruiqi; Liao, Lianming

    2015-08-01

    Periprosthetic infections are notoriously difficult to treat due to biofilm formation. Previously, we reported that gallium-EDTA attached to PVC (polyvinyl chloride) surface could prevent bacterial colonization. Herein we examined the effect of this gallium-EDTA complex on Escherichia coli biofilm formation on titanium. It was clearly demonstrated that gallium nitrate significantly inhibited the growth and auto-aggregation of Escherichia coli. Furthermore, titanium with gallium-EDTA coating resisted bacterial colonization as indicated by crystal violet staining. When the chips were immersed in human serum and incubated at 37 °C, they demonstrated significant antimicrobial activity after more than 28 days of incubation. These findings indicate that gallium-EDTA coating of implants can result in a surface that can resist bacterial colonization. This technology holds great promise for the prevention and treatment of periprosthetic infections.

  2. Hot and solid gallium clusters: too small to melt.

    PubMed

    Breaux, Gary A; Benirschke, Robert C; Sugai, Toshiki; Kinnear, Brian S; Jarrold, Martin F

    2003-11-21

    A novel multicollision induced dissociation scheme is employed to determine the energy content for mass-selected gallium cluster ions as a function of their temperature. Measurements were performed for Ga(+)(n) (n=17 39, and 40) over a 90-720 K temperature range. For Ga+39 and Ga+40 a broad maximum in the heat capacity-a signature of a melting transition for a small cluster-occurs at around 550 K. Thus small gallium clusters melt at substantially above the 302.9 K melting point of bulk gallium, in conflict with expectations that they will remain liquid to below 150 K. No melting transition is observed for Ga+17.

  3. Long term endurance test and contact degradation of CIGS solar cells

    NASA Astrophysics Data System (ADS)

    Ott, Thomas; Schönberger, Francillina; Walter, Thomas; Hariskos, Dimitrios; Kiowski, Oliver; Schäffler, Raymund

    2013-09-01

    CIGS is the most promising technology for thin-film solar cells with record efficiencies of 20.4 % on laboratory scale and 17.8 % aperture area efficiency on a 900 cm² module. Another important factor besides the cell efficiency is the reliability and long term stability of the manufactured modules, which can be assessed by accelerated ageing. In this contribution the accelerated ageing of CIGS mini modules has been investigated. Therefore, modules were dark annealed under dry heat conditions at different temperatures. During the endurance test a positive or negative bias was applied to the cells. In regular intervals the IV- and CV-characteristics were measured at room temperature. After an overall stress time of 3500 h the IV-characteristics were determined under different illumination conditions (intensity, spectral illumination). Our previous publications suggest a barrier at the back contact to explain the observed parameter drifts. This contribution is focused on the influence of different bias conditions during the endurance test on the generation of a back diode and on the change of the acceptor concentration. These parameter drifts have an impact on the open circuit voltage, fill factor and on the appearance of a cross over between dark and illuminated IV-characteristics. The interpretation of the observed parameter drifts was supported by SCAPS simulations based on the above mentioned back barrier model. As an outcome of the simulations signatures for the existence of a back barrier diode were established. IVmeasurements, temperature dependent Voc measurements and SunsVoc measurements are helpful means to detect such back diodes.

  4. Design and properties of novel gallium-doped injectable apatitic cements.

    PubMed

    Mellier, Charlotte; Fayon, Franck; Boukhechba, Florian; Verron, Elise; LeFerrec, Myriam; Montavon, Gilles; Lesoeur, Julie; Schnitzler, Verena; Massiot, Dominique; Janvier, Pascal; Gauthier, Olivier; Bouler, Jean-Michel; Bujoli, Bruno

    2015-09-01

    Different possible options were investigated to combine an apatitic calcium phosphate cement with gallium ions, known as bone resorption inhibitors. Gallium can be either chemisorbed onto calcium-deficient apatite or inserted in the structure of β-tricalcium phosphate, and addition of these gallium-doped components into the cement formulation did not significantly affect the main properties of the biomaterial, in terms of injectability and setting time. Under in vitro conditions, the amount of gallium released from the resulting cement pellets was found to be low, but increased in the presence of osteoclastic cells. When implanted in rabbit bone critical defects, a remodeling process of the gallium-doped implant started and an excellent bone interface was observed. The integration of drugs and materials is a growing force in the medical industry. The incorporation of pharmaceutical products not only promises to expand the therapeutic scope of biomaterials technology but to design a new generation of true combination products whose therapeutic value stem equally from both the structural attributes of the material and the intrinsic therapy of the drug. In this context, for the first time an injectable calcium phosphate cement containing gallium was designed with properties suitable for practical application as a local delivery system, implantable by minimally invasive surgery. This important and original paper reports the design and in-depth chemical and physical characterization of this groundbreaking technology. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Formation of self-organized nanoporous anodic oxide from metallic gallium.

    PubMed

    Pandey, Bipin; Thapa, Prem S; Higgins, Daniel A; Ito, Takashi

    2012-09-25

    This paper reports the formation of self-organized nanoporous gallium oxide by anodization of solid gallium metal. Because of its low melting point (ca. 30 °C), metallic gallium can be shaped into flexible structures, permitting the fabrication of nanoporous anodic oxide monoliths within confined spaces like the inside of a microchannel. Here, solid gallium films prepared on planar substrates were employed to investigate the effects of anodization voltage (1, 5, 10, 15 V) and H(2)SO(4) concentration (1, 2, 4, 6 M) on anodic oxide morphology. Self-organized nanopores aligned perpendicular to the film surface were obtained upon anodization of gallium films in ice-cooled 4 and 6 M aqueous H(2)SO(4) at 10 and 15 V. Nanopore formation could be recognized by an increase in anodic current after a current decrease reflecting barrier oxide formation. The average pore diameter was in the range of 18-40 nm with a narrow diameter distribution (relative standard deviation ca. 10-20%), and was larger at lower H(2)SO(4) concentration and higher applied voltage. The maximum thickness of nanoporous anodic oxide was ca. 2 μm. In addition, anodic formation of self-organized nanopores was demonstrated for a solid gallium monolith incorporated at the end of a glass capillary. Nanoporous anodic oxide monoliths formed from a fusible metal will lead to future development of unique devices for chemical sensing and catalysis.

  6. Realization of the Gallium Triple Point at NMIJ/AIST

    NASA Astrophysics Data System (ADS)

    Nakano, T.; Tamura, O.; Sakurai, H.

    2008-02-01

    The triple point of gallium has been realized by a calorimetric method using capsule-type standard platinum resistance thermometers (CSPRTs) and a small glass cell containing about 97 mmol (6.8 g) of gallium with a nominal purity of 99.99999%. The melting curve shows a very flat and relatively linear dependence on 1/ F in the region from 1/ F = 1 to 1/ F = 20 with a narrow width of the melting curve within 0.1 mK. Also, a large gallium triple-point cell was fabricated for the calibration of client-owned CSPRTs. The gallium triple-point cell consists of a PTFE crucible and a PTFE cap with a re-entrant well and a small vent. The PTFE cell contains 780 g of gallium from the same source as used for the small glass cell. The PTFE cell is completely covered by a stainless-steel jacket with a valve to enable evacuation of the cell. The melting curve of the large cell shows a flat plateau that remains within 0.03 mK over 10 days and that is reproducible within 0.05 mK over 8 months. The calibrated value of a CSPRT obtained using the large cell agrees with that obtained using the small glass cell within the uncertainties of the calibrations.

  7. Amorphous oxides as electron transport layers in Cu(In,Ga)Se 2 superstrate devices: Amorphous oxides in Cu(In,Ga)Se 2 superstrate devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinemann, M. D.; van Hest, M. F. A. M.; Contreras, M.

    Cu(In,Ga)Se2 (CIGS) solar cells in superstrate configuration promise improved light management and higher stability compared to substrate devices, but they have yet to deliver comparable power conversion efficiencies (PCEs). Chemical reactions between the CIGS layer and the front contact were shown in the past to deteriorate the p-n junction in superstrate devices, which led to lower efficiencies compared to the substrate-type devices. This work aims to solve this problem by identifying a buffer layer between the CIGS layer and the front contact, acting as the electron transport layer, with an optimized electron affinity, doping density and chemical stability. Using combinatorialmore » material exploration we identified amorphous gallium oxide (a-GaOx) as a potentially suitable buffer layer material. The best results were obtained for a-GaOx with an electron affinity that was found to be comparable to that of CIGS. Based on the results of device simulations, it is assumed that detrimental interfacial acceptor states are present at the interface between CIGS and a-GaOx. However, these initial experiments indicate the potential of a-GaOx in this application, and how to reach performance parity with substrate devices, by further increase of its n-type doping density.« less

  8. Tin-gallium-oxide-based UV-C detectors

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Partha; Toporkov, Mykyta; Schoenfeld, Winston V.

    2018-02-01

    The emergence of conductive gallium oxide single crystal substrates offers the potential for vertical Schottky detectors operating in the UV-C spectral region. We report here on our recent work in the development of Tin Gallium oxide (TGO) thin film metal-semiconductor-metal (MSM) and Schottky detectors using plasma-assisted molecular beam epitaxy on c plane sapphire and bulk Ga2O3 substrates. Tin alloying of gallium oxide thin films was found to systematically reduce the optical band gap of the compound, providing tunability in the UV-C spectral region. Tin concentration in the TGO epilayers was found to be highly dependent on growth conditions, and Ga flux in particular. First attempts to demonstrate vertical Schottky photodetectors using TGO epilayers on bulk n-type Ga2O3 substrates were successful. Resultant devices showed strong photoresponse to UV-C light with peak responsivities clearly red shifted in comparison to Ga2O3 homoepitaxial Schottky detectors due to TGO alloying.

  9. Cutaneous gallium uptake in patients with AIDS with mycobacterium avium-intracellulare septicemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allwright, S.J.; Chapman, P.R.; Antico, V.F.

    1988-07-01

    Gallium imaging is increasingly being used for the early detection of complications in patients with AIDS. A 26-year-old homosexual man who was HIV antibody positive underwent gallium imaging for investigation of possible Pneumocystis carinii pneumonia. Widespread cutaneous focal uptake was seen, which was subsequently shown to be due to mycobacterium avium-intracellulare (MAI) septicemia. This case demonstrates the importance of whole body imaging rather than imaging target areas only, the utility of gallium imaging in aiding the early detection of clinically unsuspected disease, and shows a new pattern of gallium uptake in disseminated MAI infection.

  10. Atomically Thin Heterostructures Based on Single-Layer Tungsten Diselenide and Graphene [Plus Supplemental Information

    DOE PAGES

    Lin, Yu-Chuan; Chang, Chih-Yuan S.; Ghosh, Ram Krishna; ...

    2014-11-10

    Heterogeneous engineering of two-dimensional layered materials, including metallic graphene and semiconducting transition metal dichalcogenides, presents an exciting opportunity to produce highly tunable electronic and optoelectronic systems. We report the direct growth of highly crystalline, monolayer tungsten diselenide (WSe 2) on epitaxial graphene (EG). Raman spectroscopy and photoluminescence confirms high-quality WSe 2 monolayers; while transmission electron microscopy shows an atomically sharp interface and low energy electron diffraction confirms near perfect orientation between WSe 2 and EG. Vertical transport measurements across the WSe 2/EG heterostructure provides evidence that a tunnel barrier exists due to the van der Waals gap, and is supportedmore » by density functional theory that predicts a 1.6 eV barrier for transport from WSe 2 to graphene.« less

  11. Radiation damage of gallium arsenide production cells

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Joslin, D.; Garlick, J.; Lillington, D.; Gillanders, M.; Cavicchi, B.; Scott-Monck, J.; Kachare, R.; Anspaugh, B.

    1987-01-01

    High efficiency liquid phase epitaxy (LPE) gallium arsenide cells were irradiated with 1 Mev electrons up to fluences of 1 times 10 to the 16th power cm-2. Measurements of spectral response and dark and illuminated I-V data were made at each fluence and then, using computer codes, the experimental data was fitted to gallium arsenide cell models. In this way it was possible to determine the extent of the damage, and hence damage coefficients in both the emitter and base of the cell.

  12. Pure silver ohmic contacts to N- and P- type gallium arsenide materials

    DOEpatents

    Hogan, Stephen J.

    1986-01-01

    Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components an n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffused layer and the substrate layer, wherein the n-type layer comprises a substantially low doping carrier concentration.

  13. A melting-point-of gallium apparatus for thermometer calibration.

    PubMed

    Sostman, H E; Manley, K A

    1978-08-01

    We have investigated the equilibrium melting point of gallium as a temperature fixed-point at which to calibrate small thermistor thermometers, such as those used to measure temperature in enzyme reaction analysis and other temperature-dependent biological assays. We have determined that the melting temperature of "6N" (99.999% pure) gallium is 29.770 +/- 0.002 degrees C, and that the constant-temperature plateau can be prolonged for several hours. We have designed a simple automated apparatus that exploits this phenomenon and that permits routine calibration verification of thermistor temperature probes throughout the laboratory day. We describe the physics of the gallium melt, and the design and use of the apparatus.

  14. Myopericarditis in acquired immunodeficiency syndrome diagnosed by gallium scintigraphy.

    PubMed Central

    Cregler, L. L.; Sosa, I.; Ducey, S.; Abbey, L.

    1990-01-01

    Myocarditis is among the cardiac complications of acquired immunodeficiency syndrome and, yet, is often not discovered until autopsy. Gallium scintigraphy has been employed in diagnosing this entity, but few data are available about its diagnostic accuracy and value. Here, the authors report two cases of myopericarditis as diagnosed by gallium scan. Images Figure 1 Figure 2 PMID:2398508

  15. Biocompatible nano-gallium/hydroxyapatite nanocomposite with antimicrobial activity.

    PubMed

    Kurtjak, Mario; Vukomanović, Marija; Kramer, Lovro; Suvorov, Danilo

    2016-11-01

    Intensive research in the area of medical nanotechnology, especially to cope with the bacterial resistance against conventional antibiotics, has shown strong antimicrobial action of metallic and metal-oxide nanomaterials towards a wide variety of bacteria. However, the important remaining problem is that nanomaterials with highest antibacterial activity generally express also a high level of cytotoxicity for mammalian cells. Here we present gallium nanoparticles as a new solution to this problem. We developed a nanocomposite from bioactive hydroxyapatite nanorods (84 wt %) and antibacterial nanospheres of elemental gallium (16 wt %) with mode diameter of 22 ± 11 nm. In direct comparison, such nanocomposite with gallium nanoparticles exhibited better antibacterial properties against Pseudomonas aeruginosa and lower in-vitro cytotoxicity for human lung fibroblasts IMR-90 and mouse fibroblasts L929 (efficient antibacterial action and low toxicity from 0.1 to 1 g/L) than the nanocomposite of hydroxyapatite and silver nanoparticles (efficient antibacterial action and low toxicity from 0.2 to 0.25 g/L). This is the first report of a biomaterial composite with gallium nanoparticles. The observed strong antibacterial properties and low cytotoxicity make the investigated material promising for the prevention of implantation-induced infections that are frequently caused by P. aeruginosa.

  16. Indium Gallium Nitride Multijunction Solar Cell Simulation Using Silvaco Atlas

    DTIC Science & Technology

    2007-06-01

    models is of great interest in space applications. By increasing the efficiency of photovoltaics, the number of solar panels is decreased. Therefore...obtained in single-junction solar cells by using Gallium Arsenide. Monocrystalline Gallium Arsenide has a maximum efficiency of approximately 25.1% [10

  17. Byproduct Metal Availability Constrained by Dynamics of Carrier Metal Cycle: The Gallium-Aluminum Example.

    PubMed

    Løvik, Amund N; Restrepo, Eliette; Müller, Daniel B

    2016-08-16

    Future availability of byproduct metals is not limited by geological stocks, but by the rate of primary production of their carrier metals, which in turn depends on the development of their in-use stocks, the product lifetimes, and the recycling rates. This linkage, while recognized conceptually in past studies, has not been adequately taken into account in resource availability estimates. Here, we determine the global supply potential for gallium up to 2050 based on scenarios for the global aluminum cycle, and compare it with scenarios for gallium demand derived from a dynamic model of the gallium cycle. We found that the gallium supply potential is heavily influenced by the development of the in-use stocks and recycling rates of aluminum. With current applications, a shortage of gallium is unlikely by 2050. However, the gallium industry may need to introduce ambitious recycling- and material efficiency strategies to meet its demand. If in-use stocks of aluminum saturate or decline, a shift to other gallium sources such as zinc or coal fly ash may be required.

  18. Distribution of trace levels of therapeutic gallium in bone as mapped by synchrotron x-ray microscopy.

    PubMed Central

    Bockman, R S; Repo, M A; Warrell, R P; Pounds, J G; Schidlovsky, G; Gordon, B M; Jones, K W

    1990-01-01

    Gallium nitrate, a drug that inhibits calcium release from bone, has been proven a safe and effective treatment for the accelerated bone resorption associated with cancer. Though bone is a target organ for gallium, the kinetics, sites, and effects of gallium accumulation in bone are not known. We have used synchrotron x-ray microscopy to map the distribution of trace levels of gallium in bone. After short-term in vivo administration of gallium nitrate to rats, trace (nanogram) amounts of gallium preferentially localized to the metabolically active regions in the metaphysis as well as the endosteal and periosteal surfaces of diaphyseal bone, regions where new bone formation and modeling were occurring. The amounts measured were well below the levels known to be cytotoxic. Iron and zinc, trace elements normally found in bone, were decreased in amount after in vivo administration of gallium. These studies represent a first step toward understanding the mechanism(s) of action of gallium in bone by suggesting the possible cellular, structural, and elemental "targets" of gallium. Images PMID:2349224

  19. Novel Heteroaryl Selenocyanates and Diselenides as Potent Antileishmanial Agents.

    PubMed

    Baquedano, Ylenia; Alcolea, Verónica; Toro, Miguel Ángel; Gutiérrez, Killian Jesús; Nguewa, Paul; Font, María; Moreno, Esther; Espuelas, Socorro; Jiménez-Ruiz, Antonio; Palop, Juan Antonio; Plano, Daniel; Sanmartín, Carmen

    2016-06-01

    A series of new selenocyanates and diselenides bearing interesting bioactive scaffolds (quinoline, quinoxaline, acridine, chromene, furane, isosazole, etc.) was synthesized, and their in vitro leishmanicidal activities against Leishmania infantum amastigotes along with their cytotoxicities in human THP-1 cells were determined. Interestingly, most tested compounds were active in the low micromolar range and led us to identify four lead compounds (1h, 2d, 2e, and 2f) with 50% effective dose (ED50) values ranging from 0.45 to 1.27 μM and selectivity indexes of >25 for all of them, much higher than those observed for the reference drugs. These active derivatives were evaluated against infected macrophages, and in order to gain preliminary knowledge about their possible mechanism of action, the inhibition of trypanothione reductase (TryR) was measured. Among these novel structures, compounds 1h (3,5-dimethyl-4-isoxazolyl selenocyanate) and 2d [3,3'-(diselenodiyldimethanediyl)bis(2-bromothiophene)] exhibited good association between TryR inhibitory activity and antileishmanial potency, pointing to 1h, for its excellent theoretical ADME (absorption, distribution, metabolism, and excretion) properties, as the most promising lead molecule for leishmancidal drug design. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. What should be impossible: resolution of the mononuclear gallium coordination complex, Tris(benzohydroxamato)gallium(III).

    PubMed

    Brumaghim, Julia L; Raymond, Kenneth N

    2003-10-08

    Complexes of Ga3+, a d10 metal ion which lacks ligand-field-stabilization energy, are considered labile. In fact, hexaaquagallium(III) has a ligand exchange rate of 403 s-1, 2.5 times that of the analagous Fe3+ complex (Hugi-Cleary, D.; Helm, L.; Merbach, A. E. J. Am. Chem. Soc. 1987, 109, 4444-4450). Given this lability, resolution of Ga3+ complexes should be impossible. Despite this, we report the resolution of the Lambda and Delta isomers of tris(benzohydroxamate)gallium (III) (1), the first resolution of a mononuclear gallium complex. Not only is resolution possible, but these resolved complexes show remarkable resistance to racemization in aprotic solvents. The unprecedented stability of Lambda- and Delta-1 is a surprise, and as such, alters our understanding of classical coordination chemistry.

  1. Depth Profile of Impurity Phase in Wide-Bandgap Cu(In1-x ,Ga x )Se2 Film Fabricated by Three-Stage Process

    NASA Astrophysics Data System (ADS)

    Wang, Shenghao; Nazuka, Takehiro; Hagiya, Hideki; Takabayashi, Yutaro; Ishizuka, Shogo; Shibata, Hajime; Niki, Shigeru; Islam, Muhammad M.; Akimoto, Katsuhiro; Sakurai, Takeaki

    2018-02-01

    For copper indium gallium selenide [Cu(In1-x ,Ga x )Se2, CIGS]-based solar cells, defect states or impurity phase always form due to both the multinary compositions of CIGS film and the difficulty of controlling the growth process, especially for high Ga concentration. To further improve device performance, it is important to understand such formation of impurity phase or defect states during fabrication. In the work presented herein, the formation mechanism of impurity phase Cu2-δ Se and its depth profile in CIGS film with high Ga content, in particular CuGaSe2 (i.e., CGS), were investigated by applying different growth conditions (i.e., normal three-stage process and two-cycle three-stage process). The results suggest that impurity phase Cu2-δ Se is distributed nonuniformly in the film because of lack of Ga diffusion. The formed Cu2-δ Se can be removed by etching the as-deposited CGS film with bromine-methanol solution, resulting in improved device performance.

  2. Abnormal gallium scan patterns of the salivary gland in pulmonary sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishkin, F.S.; Tanaka, T.T.; Niden, A.H.

    1978-12-01

    The findings of gallium imaging suggest that parotid abnormalities in sarcoidosis are common. Correlation with lung and mediastinal uptake suggests that this represents an early disease state and that it responds to steroid administration. That the findings after therapy do not simply represent suppression of the uptake mechanism for gallium is supported by objective improvement in pulmonary function as well as symptomatic relief. Salivary gland accumulation of gallium citrate occurred in one third of our control group patients--in those who had collagen disease and presumably either were alcoholic or had infectious parotitis. This may also be seen in lymphoma andmore » after radiation therapy. Although the combination of salivary gland, pulmonary, and hilar concentration of gallium is not specific, in the appropriate clinical setting the pattern may be helpful in suggesting the correct diagnosis.« less

  3. Capacitive Behavior of Single Gallium Oxide Nanobelt

    PubMed Central

    Cai, Haitao; Liu, Hang; Zhu, Huichao; Shao, Pai; Hou, Changmin

    2015-01-01

    In this research, monocrystalline gallium oxide (Ga2O3) nanobelts were synthesized through oxidation of metal gallium at high temperature. An electronic device, based on an individual Ga2O3 nanobelt on Pt interdigital electrodes (IDEs), was fabricated to investigate the electrical characteristics of the Ga2O3 nanobelt in a dry atmosphere at room temperature. The current-voltage (I-V) and I/V-t characteristics show the capacitive behavior of the Ga2O3 nanobelt, indicating the existence of capacitive elements in the Pt/Ga2O3/Pt structure. PMID:28793506

  4. Genotoxicity of diphenyl diselenide in bacteria and yeast.

    PubMed

    Rosa, Renato Moreira; Sulzbacher, Krisley; Picada, Jaqueline Nascimento; Roesler, Rafael; Saffi, Jenifer; Brendel, Martin; Henriques, João Antonio Pêgas

    2004-10-10

    Diphenyl diselenide (DPDS) is an electrophilic reagent used in the synthesis of a variety of pharmacologically active organic selenium compounds. This may increase the risk of human exposure to the chemical at the workplace. We have determined its mutagenic potential in the Salmonella/microsome assay and used the yeast Saccharomyces cerevisiae to assay for putative genotoxicity, recombinogenicity and to determine whether DNA damage produced by DPDS is repairable. Only in exponentially growing cultures was DPDS able to induce frameshift mutations in S. typhimurium and haploid yeast and to increase crossing over and gene conversion frequencies in diploid strains of S. cerevisiae. Thus, DPDS presents a behavior similar to that of an intercalating agent. Mutants defective in excision-resynthesis repair (rad3, rad1), in error-prone repair (rad6) and in recombinational repair (rad52) showed higher than WT-sensitivity to DPDS. It appears that this compound is capable of inducing single and/or double strand breaks in DNA. An epistatic interaction was shown between rad3-e5 and rad52-1 mutant alleles, indicating that excision-resynthesis and strand-break repair may possess common steps in the repair of DNA damage induced by DPDS. DPDS was able to enhance the mutagenesis induced by oxidative mutagens in bacteria. N-acetylcysteine, a glutathione biosynthesis precursor, prevented mutagenesis induced by DPDS in yeast. We have shown that DPDS is a weak mutagen which probably generates DNA strand breaks through both its intercalating action and pro-oxidant effect.

  5. Photodetectors: Broad Detection Range Rhenium Diselenide Photodetector Enhanced by (3-Aminopropyl)Triethoxysilane and Triphenylphosphine Treatment (Adv. Mater. 31/2016).

    PubMed

    Jo, Seo-Hyeon; Park, Hyung-Youl; Kang, Dong-Ho; Shim, Jaewoo; Jeon, Jaeho; Choi, Seunghyuk; Kim, Minwoo; Park, Yongkook; Lee, Jaehyeong; Song, Young Jae; Lee, Sungjoo; Park, Jin-Hong

    2016-08-01

    The effects of triphenylphosphine (PPh3 ) and (3-amino-propyl)triethoxysilane (APTES) on a rhenium diselenide (ReSe2 ) photodetector are systematically studied by J.-H. Park and co-workers on page 6711 in comparison with a conventional MoS2 device. A very high performance ReSe2 photodetector is demonstrated, which has a broad photodetection range, high photoresponsivity (1.18 × 10(6) A W(-1) ), and fast photoswitching speed (rising/decaying time: 58/263 ms). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A hypothesis for anti-nanobacteria effects of gallium with observations from treating kidney disease.

    PubMed

    Eby, George A

    2008-10-01

    Nanobacteria, 100-fold smaller than common bacteria, have been purported to exist in urine, and by precipitating calcium and other minerals into carbonate apatite around themselves, induce the formation of surrounding kidney stones. Nanobacteria-like structures have also been shown in blood, within arteries, aortic aneurysms, and cardiac valves. Gallium has antibiotic properties to iron-dependent bacteria and has potent anti-inflammatory, anticancer and anti-hypercalcemic properties, and it readily reverses osteoporosis. It was hypothesized that gallium nitrate might have benefit in treating kidney stones. Gallium nitrate (120mg gallium) was mixed with water making two liters of a gallium mineral water drink to treat chronic, treatment-resistant kidney stone pain and urinary tract bleeding in a 110 pound woman. On the third day of gallium mineral water treatment, the urine appeared snow white, thick (rope-like) and suggestive of a calcific crystalline nature. After release of the white urine, the urine returned to normal in color, viscosity and pH, kidney pain was no longer present, and there was no further evidence of blood in the urine. There were no treatment side effects or sequela. For a one year observation period thereafter, no kidney stones, white urine, kidney or urinary tract pain or blood in the urine was noted. The hypothetical susceptibility of nanobacteria to gallium treatment also suggests application to atherosclerosis and other diseases. Although some support for gallium in treating kidney stones is presented, this hypothesis is built upon another hypothesis, is extremely speculative, and alternative explanations for the white urine exist. Further research into gallium's effects on kidney disease and other nanobacteria-induced diseases such as cardiovascular diseases is suggested.

  7. Atomically thin gallium layers from solid-melt exfoliation

    PubMed Central

    Kochat, Vidya; Samanta, Atanu; Zhang, Yuan; Bhowmick, Sanjit; Manimunda, Praveena; Asif, Syed Asif S.; Stender, Anthony S.; Vajtai, Robert; Singh, Abhishek K.; Tiwary, Chandra S.; Ajayan, Pulickel M.

    2018-01-01

    Among the large number of promising two-dimensional (2D) atomic layer crystals, true metallic layers are rare. Using combined theoretical and experimental approaches, we report on the stability and successful exfoliation of atomically thin “gallenene” sheets on a silicon substrate, which has two distinct atomic arrangements along crystallographic twin directions of the parent α-gallium. With a weak interface between solid and molten phases of gallium, a solid-melt interface exfoliation technique is developed to extract these layers. Phonon dispersion calculations show that gallenene can be stabilized with bulk gallium lattice parameters. The electronic band structure of gallenene shows a combination of partially filled Dirac cone and the nonlinear dispersive band near the Fermi level, suggesting that gallenene should behave as a metallic layer. Furthermore, it is observed that the strong interaction of gallenene with other 2D semiconductors induces semiconducting to metallic phase transitions in the latter, paving the way for using gallenene as promising metallic contacts in 2D devices. PMID:29536039

  8. Effect of novel antibacterial gallium-carboxymethyl cellulose on Pseudomonas aeruginosa.

    PubMed

    Valappil, Sabeel P; Yiu, Humphrey H P; Bouffier, Laurent; Hope, Christopher K; Evans, Gary; Claridge, John B; Higham, Susan M; Rosseinsky, Matthew J

    2013-02-07

    Gallium has emerged as a new therapeutic agent due partly to the scarcity in development of new antibiotics. In this study, a novel antibacterial gallium exchanged carboxymethyl cellulose (Ga-CMC) has been developed and tested for the susceptibility on a common bacteria, Pseudomonas aeruginosa. The results show that an increase in average molecular weight (MW) from 90 k, 250 k to 700 k of Ga-CMC caused a decrease in antimicrobial activity against planktonic P. aeruginosa. Gallium loading of the Ga-CMC (250 k) samples was altered by varying the amount of functionality (0.7, 0.9 and 1.2 acid groups per mole of carbohydrate) which affected also its antimicrobial activity against planktonic P. aeruginosa. Further, the ability to prevent the growth of biofilms of P. aeruginosa was tested on MW = 250 k samples with 0.9 acid groups per mole of carbohydrate as this sample showed the most promising activity against planktonic P. aeruginosa. Gallium was found to reduce biofilm growth of P. aeruginosa with a maximum effect (0.85 log(10) CFU reduction compared to sodium-carboxymethyl cellulose, Na-CMC) after 24 h. Results of the solubility and ion exchange studies show that this compound is suitable for the controlled release of Ga(3+) upon their breakdown in the presence of bacteria. SEM EDX analysis confirmed that Ga(3+) ions are evenly exchanged on the cellulose surface and systematic controls were carried out to ensure that antibacterial activity is solely due to the presence of gallium as samples intrinsic acidity or nature of counterion did not affect the activity. The results presented here highlight that Ga-CMC may be useful in controlled drug delivery applications, to deliver gallium ions in order to prevent infections due to P. aeruginosa biofilms.

  9. Detection of deep venous thrombophlebitis by gallium 67 scintigraphy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J.H.

    1981-07-01

    Deep venous thrombophlebitis may escape clinical detection. Three cases are reported in which whole-body gallium 67 scintigraphy was used to detect unsuspected deep venous thrombophlebitis related to indwelling catheters in three children who were being evaluated for fevers of unknown origin. Two of these children had septicemia from Candida organisms secondary to these venous lines. Gallium 67 scintigraphy may be useful in the detection of complications of indwelling venous catheters.

  10. Detection of deep venous thrombophlebitis by Gallium 67 scintigraphy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J.H.

    1981-07-01

    Deep venous thrombophlebitis may escape clinical detection. Three cases are reported in which whole-body gallium 67 scintigraphy was used to detect unsuspected deep venous thrombophlebitis related to indwelling catheters in three children who were being evaluated for fevers of unknown origin. Two of these children had septicemia from Candida organisms secondary to these venous lines. Gallium 67 scintigraphy may be useful in the detection of complications of indwelling venous catheters.

  11. Suppressing lossy-film-induced angular mismatches between reflectance and transmittance extrema: optimum optical designs of interlayers and AR coating for maximum transmittance into active layers of CIGS solar cells.

    PubMed

    Chang, Yin-Jung

    2014-01-13

    The investigation of optimum optical designs of interlayers and antireflection (AR) coating for achieving maximum average transmittance (T(ave)) into the CuIn(1-x)Ga(x)Se2 (CIGS) absorber of a typical CIGS solar cell through the suppression of lossy-film-induced angular mismatches is described. Simulated-annealing algorithm incorporated with rigorous electromagnetic transmission-line network approach is applied with criteria of minimum average reflectance (R(ave)) from the cell surface or maximum T(ave) into the CIGS absorber. In the presence of one MgF2 coating, difference in R(ave) associated with optimum designs based upon the two distinct criteria is only 0.3% under broadband and nearly omnidirectional incidence; however, their corresponding T(ave) values could be up to 14.34% apart. Significant T(ave) improvements associated with the maximum-T(ave)-based design are found mainly in the mid to longer wavelengths and are attributed to the largest suppression of lossy-film-induced angular mismatches over the entire CIGS absorption spectrum. Maximum-T(ave)-based designs with a MgF2 coating optimized under extreme deficiency of angular information is shown, as opposed to their minimum-R(ave)-based counterparts, to be highly robust to omnidirectional incidence.

  12. Antitumor efficacy and tolerability of systemically administered gallium acetylacetonate-loaded gelucire-stabilized nanoparticles.

    PubMed

    Wehrung, Daniel; Bi, Lipeng; Geldenhuys, Werner J; Oyewumi, Moses O

    2013-06-01

    The widespread clinical success with most gallium compounds in cancer therapy is markedly hampered by lack of tumor specific accumulation, poor tumor permeability and undesirable toxicity to healthy tissues. The aim of this work was to investigate for the first time antitumor mechanism of a new gallium compound (gallium acetylacetonate; GaAcAc) while assessing effectiveness of gelucire-stabilized nanoparticles (NPs) for potential application in gallium-based lung cancer therapy. NPs loaded with GaAcAc (Ga-NPs) were prepared using mixtures of cetyl alcohol with Gelucire 44/14 (Ga-NP-1) or Gelucire 53/13 (Ga-NP-2) as matrix materials. Of special note from this work is the direct evidence of involvement of microtubule disruption in antitumor effects of GaAcAc on human lung adenocarcinoma (A549). In-vivo tolerability studies were based on plasma ALT, creatinine levels and histopathological examination of tissues. The superior in-vivo antitumor efficacy of Ga-NPs over GaAcAc was depicted in marked reduction of tumor weight and tumor volume as well as histological assessment of excised tumors. Compared to free GaAcAc, Ga-NPs showed a 3-fold increase in tumor-to-blood gallium concentrations with minimized overall exposure to healthy tissues. Overall, enhancement of antitumor effects of GaAcAc by gelucire-stabilized NPs coupled with reduced exposure of healthy tissues to gallium would likely ensure desired therapeutic outcomes and safety of gallium-based cancer treatment.

  13. Cellular uptake and anticancer activity of carboxylated gallium corroles.

    PubMed

    Pribisko, Melanie; Palmer, Joshua; Grubbs, Robert H; Gray, Harry B; Termini, John; Lim, Punnajit

    2016-04-19

    We report derivatives of gallium(III) tris(pentafluorophenyl)corrole, 1 [Ga(tpfc)], with either sulfonic (2) or carboxylic acids (3, 4) as macrocyclic ring substituents: the aminocaproate derivative, 3 [Ga(ACtpfc)], demonstrated high cytotoxic activity against all NCI60 cell lines derived from nine tumor types and confirmed very high toxicity against melanoma cells, specifically the LOX IMVI and SK-MEL-28 cell lines. The toxicities of 1, 2, 3, and 4 [Ga(3-ctpfc)] toward prostate (DU-145), melanoma (SK-MEL-28), breast (MDA-MB-231), and ovarian (OVCAR-3) cancer cells revealed a dependence on the ring substituent: IC50values ranged from 4.8 to >200 µM; and they correlated with the rates of uptake, extent of intracellular accumulation, and lipophilicity. Carboxylated corroles 3 and 4, which exhibited about 10-fold lower IC50values (<20 µM) relative to previous analogs against all four cancer cell lines, displayed high efficacy (Emax= 0). Confocal fluorescence imaging revealed facile uptake of functionalized gallium corroles by all human cancer cells that followed the order: 4 > 3 > 2 > 1 (intracellular accumulation of gallium corroles was fastest in melanoma cells). We conclude that carboxylated gallium corroles are promising chemotherapeutics with the advantage that they also can be used for tumor imaging.

  14. Cellular uptake and anticancer activity of carboxylated gallium corroles

    PubMed Central

    Pribisko, Melanie; Palmer, Joshua; Grubbs, Robert H.; Gray, Harry B.; Termini, John; Lim, Punnajit

    2016-01-01

    We report derivatives of gallium(III) tris(pentafluorophenyl)corrole, 1 [Ga(tpfc)], with either sulfonic (2) or carboxylic acids (3, 4) as macrocyclic ring substituents: the aminocaproate derivative, 3 [Ga(ACtpfc)], demonstrated high cytotoxic activity against all NCI60 cell lines derived from nine tumor types and confirmed very high toxicity against melanoma cells, specifically the LOX IMVI and SK-MEL-28 cell lines. The toxicities of 1, 2, 3, and 4 [Ga(3-ctpfc)] toward prostate (DU-145), melanoma (SK-MEL-28), breast (MDA-MB-231), and ovarian (OVCAR-3) cancer cells revealed a dependence on the ring substituent: IC50 values ranged from 4.8 to >200 µM; and they correlated with the rates of uptake, extent of intracellular accumulation, and lipophilicity. Carboxylated corroles 3 and 4, which exhibited about 10-fold lower IC50 values (<20 µM) relative to previous analogs against all four cancer cell lines, displayed high efficacy (Emax = 0). Confocal fluorescence imaging revealed facile uptake of functionalized gallium corroles by all human cancer cells that followed the order: 4 >> 3 > 2 >> 1 (intracellular accumulation of gallium corroles was fastest in melanoma cells). We conclude that carboxylated gallium corroles are promising chemotherapeutics with the advantage that they also can be used for tumor imaging. PMID:27044076

  15. High-surface Thermally Stable Mesoporous Gallium Phosphates Constituted by Nanoparticles as Primary Building Blocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    V Parvulescu; V Parvulescu; D Ciuparu

    In constant, search for micro/mesoporous materials, gallium phosphates, have attracted continued interest due to the large pore size reported for some of these solids in comparison with analogous aluminum phosphates. However up to now, the porosity of gallium phosphates collapsed upon template removal or exposure to the ambient moisture. In the present work, we describe high-surface thermally stable mesoporous gallium phosphates synthesized from gallium propoxide and PCl{sub 3} and different templating agents such as amines (dipropylamine, piperidine and aminopiperidine) and quaternary ammonium salts (C{sub 16}H{sub 33}(CH{sub 3})3NBr and C{sub 16}PyCl). These highly reactive precursors have so far not been usedmore » as gallium and phosphate sources for the synthesis of gallophosphates. Conceptually, our present synthetic procedure is based on the fast formation of gallium phosphate nanoparticles via the reaction of gallium propoxide with PCl{sub 3} and subsequent construction of the porous material with nanoparticles as building blocks. The organization of the gallophosphate nanoparticles in stable porous structures is effected by the templates. Different experimental procedures varying the molar composition of the sol-gel, pH and the pretreatment of gallium precursor were assayed, most of them leading to satisfactory materials in terms of thermal stability and porosity. In this way, a series of gallium phosphates with surface are above 200 m{sup 2} g{sup -1}, and narrow pore size from 3 to 6 nm and remarkable thermal stability (up to 550 C) have been prepared. In some cases, the structure tends to show some periodicity and regularity as determined by XRD. The remarkable stability has allowed us to test the catalytic activity of gallophosphates for the aerobic oxidation of alkylaromatics with notable good results. Our report reopens the interest for gallophosphates in heterogeneous catalysis.« less

  16. Liquid gallium rotary electric contract

    NASA Technical Reports Server (NTRS)

    Przybyszewski, J. S.

    1969-01-01

    Due to its low vapor pressure, gallium, when substituted for mercury in a liquid slip ring system, transmits substantial amounts of electrical current to rotating components in an ultrahigh vacuum. It features low electrical loss, little or no wear, and long maintenance-free life.

  17. Iron-targeting antitumor activity of gallium compounds and novel insights into triapine(®)-metal complexes.

    PubMed

    Chitambar, Christopher R; Antholine, William E

    2013-03-10

    Despite advances made in the treatment of cancer, a significant number of patients succumb to this disease every year. Hence, there is a great need to develop new anticancer agents. Emerging data show that malignant cells have a greater requirement for iron than normal cells do and that proteins involved in iron import, export, and storage may be altered in cancer cells. Therefore, strategies to perturb these iron-dependent steps in malignant cells hold promise for the treatment of cancer. Recent studies show that gallium compounds and metal-thiosemicarbazone complexes inhibit tumor cell growth by targeting iron homeostasis, including iron-dependent ribonucleotide reductase. Chemical similarities of gallium(III) with iron(III) enable the former to mimic the latter and interpose itself in critical iron-dependent steps in cellular proliferation. Newer gallium compounds have emerged with additional mechanisms of action. In clinical trials, the first-generation-compound gallium nitrate has exhibited activity against bladder cancer and non-Hodgkin's lymphoma, while the thiosemicarbazone Triapine(®) has demonstrated activity against other tumors. Novel gallium compounds with greater cytotoxicity and a broader spectrum of antineoplastic activity than gallium nitrate should continue to be developed. The antineoplastic activity and toxicity of the existing novel gallium compounds and thiosemicarbazone-metal complexes should be tested in animal tumor models and advanced to Phase I and II clinical trials. Future research should identify biologic markers that predict tumor sensitivity to gallium compounds. This will help direct gallium-based therapy to cancer patients who are most likely to benefit from it.

  18. Morphology, mechanical stability, and protective properties of ultrathin gallium oxide coatings.

    PubMed

    Lawrenz, Frank; Lange, Philipp; Severin, Nikolai; Rabe, Jürgen P; Helm, Christiane A; Block, Stephan

    2015-06-02

    Ultrathin gallium oxide layers with a thickness of 2.8 ± 0.2 nm were transferred from the surface of liquid gallium onto solid substrates, including conjugated polymer poly(3-hexylthiophene) (P3HT). The gallium oxide exhibits high mechanical stability, withstanding normal pressures of up to 1 GPa in contact mode scanning force microscopy imaging. Moreover, it lowers the rate of photodegradation of P3HT by 4 orders of magnitude, as compared to uncovered P3HT. This allows us to estimate the upper limits for oxygen and water vapor transmission rates of 0.08 cm(3) m(-2) day(-1) and 0.06 mg m(-2) day(-1), respectively. Hence, similar to other highly functional coatings such as graphene, ultrathin gallium oxide layers can be regarded as promising candidates for protective layers in flexible organic (opto-)electronics and photovoltaics because they offer permeation barrier functionalities in conjunction with high optical transparency.

  19. Ultrasonic cavitation of molten gallium: formation of micro- and nano-spheres.

    PubMed

    Kumar, Vijay Bhooshan; Gedanken, Aharon; Kimmel, Giora; Porat, Ze'ev

    2014-05-01

    Pure gallium has a low melting point (29.8°C) and can be melted in warm water or organic liquids, thus forming two immiscible liquid phases. Irradiation of this system with ultrasonic energy causes cavitation and dispersion of the molten gallium as microscopic spheres. The resultant spheres were found to have radii range of 0.2-5 μm and they do not coalesce upon cessation of irradiation, although the ambient temperature is well above the m.p. of gallium. It was found that the spheres formed in water are covered with crystallites of GaO(OH), whereas those formed in organic liquids (hexane and n-dodecane) are smooth, lacking such crystallites. However, Raman spectroscopy revealed that the spheres formed in organic liquids are coated with a carbon film. The latter may be the factor preventing their coalescence at temperatures above the m.p. of gallium. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Generator for ionic gallium-68 based on column chromatography

    DOEpatents

    Neirinckx, Rudi D.; Davis, Michael A.

    1981-01-01

    A physiologically acceptable solution of gallium-68 fluorides, having an activity of 0.1 to 50 millicuries per milliliter of solution is provided. The solution is obtained from a generator comprising germanium-68 hexafluoride bound to a column of an anion exchange resin which forms gallium-68 in situ by eluting the column with an acid solution to form a solution containing .sup.68 Ga-fluorides. The solution then is neutralized prior to administration.

  1. In vitro bio-functionality of gallium nitride sensors for radiation biophysics.

    PubMed

    Hofstetter, Markus; Howgate, John; Schmid, Martin; Schoell, Sebastian; Sachsenhauser, Matthias; Adigüzel, Denis; Stutzmann, Martin; Sharp, Ian D; Thalhammer, Stefan

    2012-07-27

    There is an increasing interest in the integration of hybrid bio-semiconductor systems for the non-invasive evaluation of physiological parameters. High quality gallium nitride and its alloys show promising characteristics to monitor cellular parameters. Nevertheless, such applications not only request appropriate sensing capabilities but also the biocompatibility and especially the biofunctionality of materials. Here we show extensive biocompatibility studies of gallium nitride and, for the first time, a biofunctionality assay using ionizing radiation. Analytical sensor devices are used in medical settings, as well as for cell- and tissue engineering. Within these fields, semiconductor devices have increasingly been applied for online biosensing on a cellular and tissue level. Integration of advanced materials such as gallium nitride into these systems has the potential to increase the range of applicability for a multitude of test devices and greatly enhance sensitivity and functionality. However, for such applications it is necessary to optimize cell-surface interactions and to verify the biocompatibility of the semiconductor. In this work, we present studies of mouse fibroblast cell activity grown on gallium nitride surfaces after applying external noxa. Cell-semiconductor hybrids were irradiated with X-rays at air kerma doses up to 250 mGy and the DNA repair dynamics, cell proliferation, and cell growth dynamics of adherent cells were compared to control samples. The impact of ionizing radiation on DNA, along with the associated cellular repair mechanisms, is well characterized and serves as a reference tool for evaluation of substrate effects. The results indicate that gallium nitride does not require specific surface treatments to ensure biocompatibility and suggest that cell signaling is not affected by micro-environmental alterations arising from gallium nitride-cell interactions. The observation that gallium nitride provides no bio-functional influence on

  2. Clinical value of gallium-67 scintigraphy in assessment of disease activity in Wegener's granulomatosis

    PubMed Central

    Slart, R; Jager, P; Poot, L; Piers, D; Cohen, T; Stegeman, C

    2003-01-01

    Background: Diagnosis of active pulmonary and paranasal involvement in patients with Wegener's granulomatosis (WG) can be difficult. The diagnostic value of gallium-67 scintigraphy in WG is unclear. Objective: To evaluate the added diagnostic value of gallium-67 scintigraphy in patients with WG with suspected granulomatous inflammation in the paranasal and chest regions. Methods: Retrospectively, the diagnostic contribution of chest and head planar gallium scans in 40 episodes of suspected vasculitis disease activity in 28 patients with WG was evaluated. Scans were grouped into normal or increased uptake for each region. Histological proof or response to treatment was the "gold standard" for the presence of WG activity. Results: WG activity was confirmed in 8 (20%) episodes, with pulmonary locations in three, paranasal in four, and both in one (n=7 patients); all these gallium scans showed increased gallium uptake (sensitivity 100%). Gallium scans were negative for the pulmonary area in 23/36 scans (specificity 64%), and negative for paranasal activity in 13/16 scans (specificity 81%) in episodes without WG activity. Positive predictive value of WG activity for lungs and paranasal region was 24% and 63%, respectively, negative predictive value was 100% for both regions. False positive findings were caused by bacterial or viral infections. Conclusion: Gallium scans are clinically helpful as a negative scan virtually excludes active WG. Gallium scintigraphy of chest and nasal region has a high sensitivity for the detection of disease activity in WG. However, because of positive scans in cases of bacterial or viral infections, specificity was lower. PMID:12810430

  3. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart are...

  4. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart are...

  5. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart are...

  6. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart are...

  7. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart are...

  8. Cell behavior on gallium nitride surfaces: peptide affinity attachment versus covalent functionalization.

    PubMed

    Foster, Corey M; Collazo, Ramon; Sitar, Zlatko; Ivanisevic, Albena

    2013-07-02

    Gallium nitride is a wide band gap semiconductor that demonstrates a unique set of optical and electrical properties as well as aqueous stability and biocompatibility. This combination of properties makes gallium nitride a strong candidate for use in chemical and biological applications such as sensors and neural interfaces. Molecular modification can be used to enhance the functionality and properties of the gallium nitride surface. Here, gallium nitride surfaces were functionalized with a PC12 cell adhesion promoting peptide using covalent and affinity driven attachment methods. The covalent scheme proceeded by Grignard reaction and olefin metathesis while the affinity driven scheme utilized the recognition peptide isolated through phage display. This study shows that the method of attaching the adhesion peptide influences PC12 cell adhesion and differentiation as measured by cell density and morphological analysis. Covalent attachment promoted monolayer and dispersed cell adhesion while affinity driven attachment promoted multilayer cell agglomeration. Higher cell density was observed on surfaces modified using the recognition peptide. The results suggest that the covalent and affinity driven attachment methods are both suitable for promoting PC12 cell adhesion to the gallium nitride surface, though each method may be preferentially suited for distinct applications.

  9. Gallium scanning in cerebral and cranial infections. [/sup 67/Ga, /sup 99m/Tc tracer techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waxman, A.D.; Siemsen, J.K.

    1976-08-01

    Eighteen patients with cranial or intracranial infections were studied with technetium and gallium brain scans. Seven of 18 lesions were noted with gallium and not with pertechnetate, while the reverse pattern was not seen. Brain abscesses were visualized with gallium but not with pertechnetate in two of five cases. Osteomyelitis of the skull and mastoiditis showed intense gallium uptake in all cases, while meningitis or cerebritis gave inconsistent results.

  10. Synthesis and use of (polyfluoroaryl)fluoroanions of aluminum, gallium and indium

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2000-01-01

    Salts of (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are described. The (polyfluoroaryl)fluoroanions have the formula [ER'R"R'"F].sup..crclbar. wherein E is aluminum, gallium, or indium, wherein F is fluorine, and wherein R', R", and R'" is each a fluorinated phenyl, fluorinated biphenyl, or fluorinated polycyclic group.

  11. Gallium phosphide nanowires as a substrate for cultured neurons.

    PubMed

    Hällström, Waldemar; Mårtensson, Thomas; Prinz, Christelle; Gustavsson, Per; Montelius, Lars; Samuelson, Lars; Kanje, Martin

    2007-10-01

    Dissociated sensory neurons were cultured on epitaxial gallium phosphide (GaP) nanowires grown vertically from a gallium phosphide surface. Substrates covered by 2.5 microm long, 50 nm wide nanowires supported cell adhesion and axonal outgrowth. Cell survival was better on nanowire substrates than on planar control substrates. The cells interacted closely with the nanostructures, and cells penetrated by hundreds of wires were observed as well as wire bending due to forces exerted by the cells.

  12. Complexometric determination of gallium with calcein blue as indicator

    USGS Publications Warehouse

    Elsheimer, H.N.

    1967-01-01

    A metalfluorechromic indicator, Calcein Blue, has been used for the back-titration of milligram amounts of EDTA in presence of gallium complexes. The indicator was used in conjunction with an ultraviolet titration assembly equipped with a cadmium sulphide detector cell and a microammeter for enhanced end-point detection. The result is a convenient and rapid method with an accuracy approaching 0.1 % and a relative standard deviation of about 0.4% for 10 mg of gallium. ?? 1967.

  13. Iron-Targeting Antitumor Activity of Gallium Compounds and Novel Insights Into Triapine®-Metal Complexes

    PubMed Central

    Antholine, William E.

    2013-01-01

    Abstract Significance: Despite advances made in the treatment of cancer, a significant number of patients succumb to this disease every year. Hence, there is a great need to develop new anticancer agents. Recent Advances: Emerging data show that malignant cells have a greater requirement for iron than normal cells do and that proteins involved in iron import, export, and storage may be altered in cancer cells. Therefore, strategies to perturb these iron-dependent steps in malignant cells hold promise for the treatment of cancer. Recent studies show that gallium compounds and metal-thiosemicarbazone complexes inhibit tumor cell growth by targeting iron homeostasis, including iron-dependent ribonucleotide reductase. Chemical similarities of gallium(III) with iron(III) enable the former to mimic the latter and interpose itself in critical iron-dependent steps in cellular proliferation. Newer gallium compounds have emerged with additional mechanisms of action. In clinical trials, the first-generation-compound gallium nitrate has exhibited activity against bladder cancer and non-Hodgkin's lymphoma, while the thiosemicarbazone Triapine® has demonstrated activity against other tumors. Critical Issues: Novel gallium compounds with greater cytotoxicity and a broader spectrum of antineoplastic activity than gallium nitrate should continue to be developed. Future Directions: The antineoplastic activity and toxicity of the existing novel gallium compounds and thiosemicarbazone-metal complexes should be tested in animal tumor models and advanced to Phase I and II clinical trials. Future research should identify biologic markers that predict tumor sensitivity to gallium compounds. This will help direct gallium-based therapy to cancer patients who are most likely to benefit from it. Antioxid. Redox Signal. 00, 000–000. PMID:22900955

  14. Dicholesteroyl diselenide: cytotoxicity, genotoxicity and mutagenicity in the yeast Saccharomyces cerevisiae and in Chinese hamster lung fibroblasts.

    PubMed

    de Oliveira, Iuri Marques; Degrandi, Tiago Hoerbe; Jorge, Patrícia Mendes; Saffi, Jenifer; Rosa, Renato Moreira; Guecheva, Temenouga Nikolova; Henriques, João Antonio Pêgas

    2014-03-15

    The organoselenium compound, dicholesteroyl diselenide (DCDS) is a structural analogue of diphenyl diselenide (DPDS) and may be considered as a promising antioxidant drug in vivo. Nevertheless, little is known about the toxicological properties of DCDS. In the present study we evaluated the cytotoxic, genotoxic and mutagenic properties of DCDS in Chinese hamster lung fibroblasts (V79) and in strains of the yeast Saccharomyces cerevisiae, proficient and deficient in several DNA-repair pathways. The results with V79 cells show that DCDS induced cytotoxicity, GSH depletion and elevation of lipid peroxidation at lower concentrations than did DPDS. DCDS also generated single- and double-strand DNA breaks in V79 cells, both in the presence and in the absence of metabolic activation, as revealed by alkaline and neutral comet assays. Moreover, the induction of oxidative DNA base-damage was demonstrated by means of a modified comet assay with formamidopyrimidine-DNA glycosylase and endonuclease III. Treatment with DCDS also induced micronucleus formation in V79 cells as well as point and frame-shift mutations in a haploid wild-type strain of S. cerevisiae. Yeast mutants defective in base excision-repair proteins were the most sensitive to DCDS. Pre-incubation with N-acetylcysteine reduced DCDS's oxidative, genotoxic and mutagenic effects in yeast and in V79 cells. Our findings indicate that the presence of cholesteroyl substituents in DCDS results in elevation of its cytotoxic and genotoxic potential compared with that of DPDS in yeast and in V79 cells. However, due to dose-dependent contrasting behaviour of organoselenium compounds and differences in their toxicity in in vitro and in vivo systems, further studies are needed in order to establish the non-toxic concentration range for treatment in mammals. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. High throughput CIGS solar cell fabrication via ultra-thin absorber layer with optical confinement and (Cd, CBD)-free heterojunction partner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsillac, Sylvain

    2015-11-30

    The main objective of this proposal was to use several pathways to reduce the production cost of Cu(In,Ga)Se 2 (CIGS) PV modules and therefore the levelized cost of energy (LCOE) associated with this technology. Three high cost drivers were identified, nominally: 1) Materials cost and availability; 2) Large scale uniformity; 3) Improved throughput These three cost drivers were targeted using the following pathways: 1) Reducing the thickness of the CIGS layer while enhancing materials quality; 2) Developing and applying enhanced in-situ metrology via real time spectroscopic ellipsometry; 3) Looking into alternative heterojunction partner, back contact and anti-reflection (AR) coating Elevenmore » main Tasks were then defined to achieve these goals (5 in Phase 1 and 6 in Phase 2), with 11 Milestones and 2 Go/No-go decision points at the end of Phase 1. The key results are summarized below« less

  16. Bit-systolic arithmetic arrays using dynamic differential gallium arsenide circuits

    NASA Technical Reports Server (NTRS)

    Beagles, Grant; Winters, Kel; Eldin, A. G.

    1992-01-01

    A new family of gallium arsenide circuits for fine grained bit-systolic arithmetic arrays is introduced. This scheme combines features of two recent techniques of dynamic gallium arsenide FET logic and differential dynamic single-clock CMOS logic. The resulting circuits are fast and compact, with tightly constrained series FET propagation paths, low fanout, no dc power dissipation, and depletion FET implementation without level shifting diodes.

  17. Theoretical exploration of structural, electro-optical and magnetic properties of gallium-doped silicon carbide nanotubes

    NASA Astrophysics Data System (ADS)

    Behzad, Somayeh; Chegel, Raad; Moradian, Rostam; Shahrokhi, Masoud

    2014-09-01

    The effects of gallium doping on the structural, electro-optical and magnetic properties of (8,0) silicon carbide nanotube (SiCNT) are investigated by using spin-polarized density functional theory. It is found from the calculation of the formation energies that gallium substitution for silicon atom is preferred. Our results show that gallium substitution at either single carbon or silicon atom site in SiCNT could induce spontaneous magnetization. The optical studies based on dielectric function indicate that new transition peaks and a blue shift are observed after gallium doping.

  18. Comparison of the antimicrobial activities of gallium nitrate and gallium maltolate against Mycobacterium avium subsp. paratuberculosis in vitro.

    PubMed

    Fecteau, Marie-Eve; Aceto, Helen W; Bernstein, Lawrence R; Sweeney, Raymond W

    2014-10-01

    Johne's disease (JD) is an enteric infection of cattle and other ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). This study compared the antimicrobial activities of gallium nitrate (GaN) and gallium maltolate (GaM) against two field MAP isolates by use of broth culture. The concentrations that resulted in 99% growth inhibition of isolates 1 and 2 were, respectively, 636 µM and 183 µM for GaN, and 251 µM and 142 µM for GaM. For both isolates, time to detection was significantly higher for GaM than GaN. These results suggest that GaM is more efficient than GaN in inhibiting MAP growth in vitro. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Strategies for gallium removal after focused ion beam patterning of ferroelectric oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Schilling, A.; Adams, T.; Bowman, R. M.; Gregg, J. M.

    2007-01-01

    As part of a study into the properties of ferroelectric single crystals at nanoscale dimensions, the effects that focused ion beam (FIB) processing can have, in terms of structural damage and ion implantation, on perovskite oxide materials has been examined, and a post-processing procedure developed to remove such effects. Single crystal material of the perovskite ferroelectric barium titanate (BaTiO3) has been patterned into thin film lamellae structures using a FIB microscope. Previous work had shown that FIB patterning induced gallium impregnation and associated creation of amorphous layers in a surface region of the single crystal material some 20 nm thick, but that both recrystallization and expulsion of gallium could be achieved through thermal annealing in air. Here we confirm this observation, but find that thermally induced gallium expulsion is associated with the formation of gallium-rich platelets on the surface of the annealed material. These platelets are thought to be gallium oxide. Etching using nitric and hydrochloric acids had no effect on the gallium-rich platelets. Effective platelet removal involved thermal annealing at 700 °C for 1 h in a vacuum followed by 1 h in oxygen, and then a post-annealing low-power plasma clean in an Ar/O atmosphere. Similar processing is likely to be necessary for the full recovery of post FIB-milled nanostructures in oxide ceramic systems in general.

  20. Thin Film CIGS and CdTe Photovoltaic Technologies: Commercialization, Critical Issues, and Applications; Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullal, H. S.; von Roedern, B.

    2007-09-01

    We report here on the major commercialization aspects of thin-film photovoltaic (PV) technologies based on CIGS and CdTe (a-Si and thin-Si are also reported for completeness on the status of thin-film PV). Worldwide silicon (Si) based PV technologies continues to dominate at more than 94% of the market share, with the share of thin-film PV at less than 6%. However, the market share for thin-film PV in the United States continues to grow rapidly over the past several years and in CY 2006, they had a substantial contribution of about 44%, compared to less than 10% in CY 2003. Inmore » CY 2007, thin-film PV market share is expected to surpass that of Si technology in the United States. Worldwide estimated projections for CY 2010 are that thin-film PV production capacity will be more than 3700 MW. A 40-MW thin-film CdTe solar field is currently being installed in Saxony, Germany, and will be completed in early CY 2009. The total project cost is Euro 130 million, which equates to an installed PV system price of Euro 3.25/-watt averaged over the entire solar project. This is the lowest price for any installed PV system in the world today. Critical research, development, and technology issues for thin-film CIGS and CdTe are also elucidated in this paper.« less

  1. Gallium nitrate induces fibrinogen flocculation: an explanation for its hemostatic effect?

    PubMed

    Bauters, A; Holt, D J; Zerbib, P; Rogosnitzky, M

    2013-12-01

    A novel hemostatic effect of gallium nitrate has recently been discovered. Our aim was to perform a preliminary investigation into its mode of action. Thromboelastography® showed no effect on coagulation but pointed instead to changes in fibrinogen concentration. We measured functional fibrinogen in whole blood after addition of gallium nitrate and nitric acid. We found that gallium nitrate induces fibrinogen precipitation in whole blood to a significantly higher degree than solutions of nitric acid alone. This precipitate is not primarily pH driven, and appears to occur via flocculation. This behavior is in line with the generally observed ability of metals to induce fibrinogen precipitation. Further investigation is required into this novel phenomenon.

  2. Thermodynamic properties of uranium in liquid gallium, indium and their alloys

    NASA Astrophysics Data System (ADS)

    Volkovich, V. A.; Maltsev, D. S.; Yamshchikov, L. F.; Osipenko, A. G.

    2015-09-01

    Activity, activity coefficients and solubility of uranium was determined in gallium, indium and gallium-indium alloys containing 21.8 (eutectic), 40 and 70 wt.% In. Activity was measured at 573-1073 K employing the electromotive force method, and solubility between room temperature (or the alloy melting point) and 1073 K employing direct physical measurements. Activity coefficients were obtained from the difference of experimentally determined temperature dependencies of uranium activity and solubility. Intermetallic compounds formed in the respective alloys were characterized using X-ray diffraction. Partial and excess thermodynamic functions of uranium in the studied alloys were calculated. Liquidus lines in U-Ga and U-In phase diagrams from the side rich in gallium or indium are proposed.

  3. Biofilm formation on titanium implants counteracted by grafting gallium and silver ions.

    PubMed

    Cochis, Andrea; Azzimonti, Barbara; Della Valle, Cinzia; Chiesa, Roberto; Arciola, Carla Renata; Rimondini, Lia

    2015-03-01

    Biofilm-associated infections remain the leading cause of implant failure. Thanks to its established biocompatibility and biomechanical properties, titanium has become one of the most widely used materials for bone implants. Engineered surface modifications of titanium able to thwart biofilm formation while endowing a safe anchorage to eukaryotic cells are being progressively developed. Here surfaces of disks of commercial grade 2 titanium for bone implant were grafted with gallium and silver ions by anodic spark deposition. Scanning electron microscopy of the surface morphology and energy dispersive X-ray spectroscopy were used for characterization. Gallium-grafted titanium was evaluated in comparison with silver-grafted titanium for both in vivo and in vitro antibiofilm properties and for in vitro compatibility with human primary gingival fibroblasts. Surface-modified materials showed: (i) homogeneous porous morphology, with pores of micrometric size; (ii) absence of cytotoxic effects; (iii) ability to support in vitro the adhesion and spreading of gingival fibroblasts; and (iv) antibiofilm properties. Although both silver and gallium exhibited in vitro strong antibacterial properties, in vivo gallium was significantly more effective than silver in reducing number and viability of biofilm bacteria colonies. Gallium-based treatments represent promising titanium antibiofilm coatings to develop new bone implantable devices for oral, maxillofacial, and orthopedic applications. © 2014 Wiley Periodicals, Inc.

  4. First Results of the Testing of the Liquid Gallium Jet Limiter Concept for ISTTOK

    NASA Astrophysics Data System (ADS)

    Gomes, R. B.; Fernandes, H.; Silva, C.; Borba, D.; Carvalho, B.; Varandas, C.; Lielausis, O.; Klyukin, A.; Platacis, E.; Mikelsons, A.; Platnieks, I.

    2006-12-01

    The use of liquid metals as plasma facing components in tokamaks has recently experienced a renewed interest stimulated by their advantages to the development of a fusion reactor. Liquid metals have been proposed to solve problems related to the erosion and neutronic activation of solid walls submitted to high power loads allowing an efficient heat exhaustion from fusion devices. Presently the most promising materials are Lithium and Gallium. ISTTOK, a small size tokamak, will be used to test the behavior of a liquid Gallium jet in the vacuum chamber and its influence on the plasma. This paper presents a description of the conceived setup as well as experimental results. The liquid Gallium jet is generated by hydrostatic pressure and injected in a radial position close to a moveable stainless steel limiter. Both the jet and the limiter positions are variable allowing for a controlled exposure of the liquid Gallium to the edge plasma. The main components of the Gallium loop are a MHD pump, the liquid metal injector and a filtering system. The MHD pump is of the induction type, based on rotating permanent magnets. The injector is build from a ¼″ stainless steel pipe ended by a shaping nozzle. A setup has been developed to introduce oxide-free Gallium inside the loop's main supply tank. Raw liquid metal is placed inside a chamber heated and degassed under high vacuum while clean Gallium is extracted from the main body of the liquefied metal. Prior to installation on the tokamak, the experimental rig has been implemented using a Pyrex tube as test chamber to investigate the stability of the Gallium jet and its break-up length for several nozzle sizes. Results are presented in this paper. This rig was also useful to assess the behavior of the overall implemented apparatus.

  5. Cost Benefit Analysis of Integrated COTS Energy- Related Technologies for Army’s Force Provider Module

    DTIC Science & Technology

    2009-09-01

    Year Defense Plan (FYDP), on which the Department of Defense operates, subsequently needs 26 Richard G. Lugar, U.S. Senator for Indiana , “U.S...mature thin-film technologies exist such as Amorphous Silicon (a-Si), Cadmium Telluride (CdTe), and Copper Indium Gallium (di) Selenide (CIGS), all...cheaper processing, lower material costs, and is free of the environmental and health hazard issues of cadmium . Amorphous silicon coupled with

  6. Targeted Delivery of Glucan Particle Encapsulated Gallium Nanoparticles Inhibits HIV Growth in Human Macrophages

    PubMed Central

    Soto, Ernesto R.; O'Connell, Olivia; Dikengil, Fusun; Peters, Paul J.; Clapham, Paul R.

    2016-01-01

    Glucan particles (GPs) are hollow, porous 3–5 μm microspheres derived from the cell walls of Baker's yeast (Saccharomyces cerevisiae). The 1,3-β-glucan outer shell provides for receptor-mediated uptake by phagocytic cells expressing β-glucan receptors. GPs have been used for macrophage-targeted delivery of a wide range of payloads (DNA, siRNA, protein, small molecules, and nanoparticles) encapsulated inside the hollow GPs or bound to the surface of chemically derivatized GPs. Gallium nanoparticles have been proposed as an inhibitory agent against HIV infection. Here, macrophage targeting of gallium using GPs provides for more efficient delivery of gallium and inhibition of HIV infection in macrophages compared to free gallium nanoparticles. PMID:27965897

  7. Gallium scan in intracerebral sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makhija, M.C.; Anayiotos, C.P.

    1981-07-01

    Sarcoidosis involving the nervous system probably occurs in about 4% of patients. The usefulness of brain scintigraphy in these cases has been suggested. In this case of cerebral sarcoid granuloma, gallium imaging demonstrated the lesion before treatment and showed disappearance of the lesion after corticosteroid treatment, which correlated with the patient's clinical improvement.

  8. Gallium-positive Lyme disease myocarditis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alpert, L.I.; Welch, P.; Fisher, N.

    1985-09-01

    In the course of a work-up for fever of unknown origin associated with intermittent arrhythmias, a gallium scan was performed which revealed diffuse myocardial uptake. The diagnosis of Lyme disease myocarditis subsequently was confirmed by serologic titers. One month following recovery from the acute illness, the abnormal myocardial uptake completely resolved.

  9. Electron transport in zinc-blende wurtzite biphasic gallium nitride nanowires and GaNFETs

    DOE PAGES

    Jacobs, Benjamin W.; Ayres, Virginia M.; Stallcup, Richard E.; ...

    2007-10-19

    Two-point and four-point probe electrical measurements of a biphasic gallium nitride nanowire and current–voltage characteristics of a gallium nitride nanowire based field effect transistor are reported. The biphasic gallium nitride nanowires have a crystalline homostructure consisting of wurtzite and zinc-blende phases that grow simultaneously in the longitudinal direction. There is a sharp transition of one to a few atomic layers between each phase. Here, all measurements showed high current densities. Evidence of single-phase current transport in the biphasic nanowire structure is discussed.

  10. [Determination of trace gallium by graphite furnace atomic absorption spectrometry in urine].

    PubMed

    Zhou, L Z; Fu, S; Gao, S Q; He, G W

    2016-06-20

    To establish a method for determination trace gallium in urine by graphite furnace atomic absorption spectrometry (GFAAS). The ammonium dihydrogen phosphate was matrix modifier. The temperature effect about pyrolysis (Tpyr) and atomization temperature were optimized for determination of trace gallium. The method of technical standard about within-run, between-run and recoveries of standard were optimized. The method showed a linear relationship within the range of 0.20~80.00 μg/L (r=0.998). The within-run and between-run relative standard deviations (RSD) of repetitive measurement at 5.0, 10.0, 20.0 μg/L concentration levels were 2.1%~5.5% and 2.3%~3.0%. The detection limit was 0.06 μg/L. The recoveries of gallium were 98.2%~101.1%. This method is simple, low detection limit, accurate, reliable and reproducible. It has been applied for determination of trace gallium in urine samples those who need occupation health examination or poisoning diagnosis.

  11. Microscopic Nanomechanical Dissipation in Gallium Arsenide Resonators.

    PubMed

    Hamoumi, M; Allain, P E; Hease, W; Gil-Santos, E; Morgenroth, L; Gérard, B; Lemaître, A; Leo, G; Favero, I

    2018-06-01

    We report on a systematic study of nanomechanical dissipation in high-frequency (≈300  MHz) gallium arsenide optomechanical disk resonators, in conditions where clamping and fluidic losses are negligible. Phonon-phonon interactions are shown to contribute with a loss background fading away at cryogenic temperatures (3 K). Atomic layer deposition of alumina at the surface modifies the quality factor of resonators, pointing towards the importance of surface dissipation. The temperature evolution is accurately fitted by two-level systems models, showing that nanomechanical dissipation in gallium arsenide resonators directly connects to their microscopic properties. Two-level systems, notably at surfaces, appear to rule the damping and fluctuations of such high-quality crystalline nanomechanical devices, at all temperatures from 3 to 300 K.

  12. Microscopic Nanomechanical Dissipation in Gallium Arsenide Resonators

    NASA Astrophysics Data System (ADS)

    Hamoumi, M.; Allain, P. E.; Hease, W.; Gil-Santos, E.; Morgenroth, L.; Gérard, B.; Lemaître, A.; Leo, G.; Favero, I.

    2018-06-01

    We report on a systematic study of nanomechanical dissipation in high-frequency (≈300 MHz ) gallium arsenide optomechanical disk resonators, in conditions where clamping and fluidic losses are negligible. Phonon-phonon interactions are shown to contribute with a loss background fading away at cryogenic temperatures (3 K). Atomic layer deposition of alumina at the surface modifies the quality factor of resonators, pointing towards the importance of surface dissipation. The temperature evolution is accurately fitted by two-level systems models, showing that nanomechanical dissipation in gallium arsenide resonators directly connects to their microscopic properties. Two-level systems, notably at surfaces, appear to rule the damping and fluctuations of such high-quality crystalline nanomechanical devices, at all temperatures from 3 to 300 K.

  13. Process for forming pure silver ohmic contacts to N- and P-type gallium arsenide materials

    DOEpatents

    Hogan, S.J.

    1983-03-13

    Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components a n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffuse layer and the substrate layer wherein the n-type layer comprises a substantially low doping carrier concentration.

  14. Gallium nitride junction field-effect transistor

    DOEpatents

    Zolper, John C.; Shul, Randy J.

    1999-01-01

    An all-ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorous co-implantation, in selected III-V semiconductor materials.

  15. Isoelectronic Traps in Gallium Phosphide

    NASA Astrophysics Data System (ADS)

    Christian, Theresa; Alberi, Kirstin; Beaton, Daniel; Fluegel, Brian; Mascarenhas, Angelo

    2015-03-01

    Isoelectronic substitutional dopants can result in strongly localized exciton traps within a host bandstructure such as gallium arsenide (GaAs) or gallium phosphide (GaP). These traps have received great attention for their role in the anomalous bandgap bowing of nitrogen or bismuth-doped GaAs, creating the dramatic bandgap tunability of these unusual dilute alloys. In the wider, indirect-bandgap host material GaP, these same isoelectronic dopants create bound states within the gap that can have very high radiative efficiency and a wealth of discrete spectral transitions illuminating the symmetry of the localized excitonic trap state. We will present a comparative study of nitrogen and bismuth isoelectronic traps in GaP. Research was supported by the U. S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division under contract DE-AC36-08GO28308 and by the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under contract no. DE-AC05-06OR23100.

  16. Clinical Applications of Gallium-68

    PubMed Central

    Banerjee, Sangeeta Ray; Pomper, Martin G.

    2013-01-01

    Gallium-68 is a positron-emitting radioisotope that is produced from a 68Ge/68Ga generator. As such it is conveniently used, decoupling radiopharmacies from the need for a cyclotron on site. Gallium-68-labeled peptides have been recognized as a new class of radiopharmaceuticals showing fast target localization and blood clearance. 68Ga-DOTATOC, 8Ga-DOTATATE, 68Ga-DOTANOC, are the most prominent radiopharmaceuticals currently in use for imaging and differentiating lesions of various somatostatin receptor subtypes, overexpressed in many neuroendocrine tumors. There has been a tremendous increase in the number of clinical studies with 68Ga over the past few years around the world, including within the United States. An estimated ~10,000 scans are being performed yearly in Europe at about 100 centers utilizing 68Ga-labeled somatostatin analogs within clinical trials. Two academic sites within the US have also begun to undertake human studies. This review will focus on the clinical experience of selected, well-established and recently applied 68Ga-labeled imaging agents used in nuclear medicine. PMID:23522791

  17. The gallium melting-point standard: its role in our temperature measurement system.

    PubMed

    Mangum, B W

    1977-01-01

    The latest internationally-adopted temperature scale, the International Practical Temperature Scale of 1968 (amended edition of 1975), is discussed in some detail and a brief description is given of its evolution. The melting point of high-purity gallium (stated to be at least 99.99999% pure) as a secondary temperature reference point is evaluated. I believe that this melting-point temperature of gallium should be adopted by the various medical professional societies and voluntary standards groups as the reaction temperature for enzyme reference methods in clinical enzymology. Gallium melting-point cells are available at the National Bureau of Standards as Standard Reference Material No. 1968.

  18. The global anthropogenic gallium system: determinants of demand, supply and efficiency improvements.

    PubMed

    Løvik, Amund N; Restrepo, Eliette; Müller, Daniel B

    2015-05-05

    Gallium has been labeled as a critical metal due to rapidly growing consumption, importance for low-carbon technologies such as solid state lighting and photovoltaics, and being produced only as a byproduct of other metals (mainly aluminum). The global system of primary production, manufacturing, use and recycling has not yet been described or quantified in the literature. This prevents predictions of future demand, supply and possibilities for efficiency improvements on a system level. We present a description of the global anthropogenic gallium system and quantify the system using a combination of statistical data and technical parameters. We estimated that gallium was produced from 8 to 21% of alumina plants in 2011. The most important applications of gallium are NdFeB permanent magnets, integrated circuits and GaAs/GaP-based light-emitting diodes, demanding 22-37%, 16-27%, and 11-21% of primary metal production, respectively. GaN-based light-emitting diodes and photovoltaics are less important, both with 2-6%. We estimated that 120-170 tons, corresponding to 40-60% of primary production, ended up in production wastes that were either disposed of or stored. While demand for gallium is expected to rise in the future, our results indicated that it is possible to increase primary production substantially with conventional technology, as well as improve the system-wide material efficiency.

  19. Gallium-67 scintigraphy, bronchoalveolar lavage, and pathologic changes in patients with pulmonary sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, S.; Munakata, M.; Nishimura, M.

    1984-05-01

    The intensity of gallium-67 scintiscans, lymphocyte counts in bronchoalveolar lavage fluid, and pathologic changes were studied in 26 patients with untreated pulmonary sarcoidosis. Noncaseating granulomas were recognized with significantly greater frequency in stage 2 (80 percent; 8/10 cases) than in stage 1 (43 percent; 6/14 cases). Alveolitis showed little relation to the roentgenographic stage. There was a strong correlation between the intensity of gallium uptake in pulmonary parenchyma and the detection rate of granuloma; however, the detection rate of alveolitis was not statistically different from the intensity of gallium uptake. A highly significant correlation was revealed between the lymphocyte countsmore » in bronchoalveolar lavage fluid and the intensity of alveolitis. These observations suggest that the gallium uptake reflects mainly the presence of granuloma, and the lymphocyte count in bronchoalveolar lavage fluid reflects the intensity of alveolitis in patients with pulmonary sarcoidosis.« less

  20. Measuring Nanoscale Heat Transfer for Gold-(Gallium Oxide)-Gallium Nitride Interfaces as a Function

    NASA Astrophysics Data System (ADS)

    Szwejkowski, Chester; Sun, Kai; Constantin, Costel; Giri, Ashutosh; Saltonstall, Christopher; Hopkins, Patrick; NanoSynCh Team; Exsite Team

    2014-03-01

    Gallium nitride (GaN) is considered the most important semiconductor after the discovery of Silicon. Understanding the properties of GaN is imperative in determining the utility and applicability of this class of materials to devices. We present results of time domain thermoreflectance (TDTR) measurements as a function of surface root mean square (RMS) roughness. We used commercially available 5mm x 5mm, single-side polished GaN (3-7 μm)/Sapphire (430 μm) substrates that have a Wurtzite crystal structure and are slightly n-type doped. The GaN substrates were annealed in the open atmosphere for 10 minutes (900-1000 °C). This high-temperature treatment produced RMS values from 1-60 nm and growth of gallium oxide (GaO) as measured with an atomic force microscopy and transmission electron microscopy respectively. A gold film (80nm) was deposited on the GaN surface using electron beam physical vapor deposition which was verified using ellipsometry and profilometry. The TDTR measurements suggest that the thermal conductivity decays exponentially with RMS roughness and that there is a minimum value for thermal boundary conductance at a roughness of 15nm.

  1. Evaluation of the male reproductive toxicity of gallium arsenide.

    PubMed

    Bomhard, Ernst M; Cohen, Samuel M; Gelbke, Heinz-Peter; Williams, Gary M

    2012-10-01

    Gallium arsenide is an important semiconductor material marketed in the shape of wafers and thus is not hazardous to the end user. Exposure to GaAs particles may, however, occur during manufacture and processing. Potential hazards require evaluation. In 14-week inhalation studies with small GaAs particles, testicular effects have been reported in rats and mice. These effects occurred only in animals whose lungs showed marked inflammation and also had hematologic changes indicating anemia and hemolysis. The time- and concentration-dependent progressive nature of the lung and blood effects together with bioavailability data on gallium and arsenic lead us to conclude that the testicular/sperm effects are secondary to hypoxemia resulting from lung damage rather than due to a direct chemical effect of gallium or arsenide. Conditions leading to such primary effects are not expected to occur in humans at production and processing sites. This has to be taken into consideration for any classification decision for reproductive toxicity; especially a category 1 according to the EU CLP system is not warranted. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Native gallium adatoms discovered on atomically-smooth gallium nitride surfaces at low temperature.

    PubMed

    Alam, Khan; Foley, Andrew; Smith, Arthur R

    2015-03-11

    In advanced compound semiconductor devices, such as in quantum dot and quantum well systems, detailed atomic configurations at the growth surfaces are vital in determining the structural and electronic properties. Therefore, it is important to investigate the surface reconstructions in order to make further technological advancements. Usually, conventional semiconductor surfaces (e.g., arsenides, phosphides, and antimonides) are highly reactive due to the existence of a high density of group V (anion) surface dangling bonds. However, in the case of nitrides, group III rich growth conditions in molecular beam epitaxy are usually preferred leading to group III (Ga)-rich surfaces. Here, we use low-temperature scanning tunneling microscopy to reveal a uniform distribution of native gallium adatoms with a density of 0.3%-0.5% of a monolayer on the clean, as-grown surface of nitrogen polar GaN(0001̅) having the centered 6 × 12 reconstruction. Unseen at room temperature, these Ga adatoms are strongly bound to the surface but move with an extremely low surface diffusion barrier and a high density saturation coverage in thermodynamic equilibrium with Ga droplets. Furthermore, the Ga adatoms reveal an intrinsic surface chirality and an asymmetric site occupation. These observations can have important impacts in the understanding of gallium nitride surfaces.

  3. Control of Defects in Aluminum Gallium Nitride ((Al)GaN) Films on Grown Aluminum Nitride (AlN) Substrates

    DTIC Science & Technology

    2013-02-01

    Nord, J.; Albe, K.; Erhart, P.; Nordlund, K. Modelling of Compound Semiconductors: Analytical Bond-order Potential for Gallium , Nitrogen and Gallium ...Control of Defects in Aluminum Gallium Nitride ((Al)GaN) Films on Grown Aluminum Nitride (AlN) Substrates by Iskander G. Batyrev, Chi-Chin Wu...Aluminum Gallium Nitride ((Al)GaN) Films on Grown Aluminum Nitride (AlN) Substrates Iskander G. Batyrev and N. Scott Weingarten Weapons and

  4. Extrapulmonary localization of gallium in sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohatgi, P.K.; Singh, R.; Vieras, F.

    1987-01-01

    This paper describes the spectrum of extrapulmonary localization of gallium in patients with sarcoidosis. The usefulness of Ga-67 scintiscans in detecting clinically occult lesions, in directing clinicians to accessible sites for biopsy, and in following the course of extrapulmonary sites of involvement with therapy is emphasized.

  5. Gallium nitride junction field-effect transistor

    DOEpatents

    Zolper, J.C.; Shul, R.J.

    1999-02-02

    An ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same are disclosed. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorus co-implantation, in selected III-V semiconductor materials. 19 figs.

  6. Circular Dichroism Control of Tungsten Diselenide (WSe2) Atomic Layers with Plasmonic Metamolecules.

    PubMed

    Lin, Hsiang-Ting; Chang, Chiao-Yun; Cheng, Pi-Ju; Li, Ming-Yang; Cheng, Chia-Chin; Chang, Shu-Wei; Li, Lance L J; Chu, Chih-Wei; Wei, Pei-Kuen; Shih, Min-Hsiung

    2018-05-09

    Controlling circularly polarized (CP) states of light is critical to the development of functional devices for key and emerging applications such as display technology and quantum communication, and the compact circular polarization-tunable photon source is one critical element to realize the applications in the chip-scale integrated system. The atomic layers of transition metal dichalcogenides (TMDCs) exhibit intrinsic CP emissions and are potential chiroptical materials for ultrathin CP photon sources. In this work, we demonstrated CP photon sources of TMDCs with device thicknesses approximately 50 nm. CP photoluminescence from the atomic layers of tungsten diselenide (WSe 2 ) was precisely controlled with chiral metamolecules (MMs), and the optical chirality of WSe 2 was enhanced more than 4 times by integrating with the MMs. Both the enhanced and reversed circular dichroisms had been achieved. Through integrations of the novel gain material and plasmonic structure which are both low-dimensional, a compact device capable of efficiently manipulating emissions of CP photon was realized. These ultrathin devices are suitable for important applications such as the optical information technology and chip-scale biosensing.

  7. Liquid-solid surface phase transformation of fluorinated fullerene on monolayer tungsten diselenide

    NASA Astrophysics Data System (ADS)

    Song, Zhibo; Wang, Qixing; Li, Ming-Yang; Li, Lain-Jong; Zheng, Yu Jie; Wang, Zhuo; Lin, Tingting; Chi, Dongzhi; Ding, Zijing; Huang, Yu Li; Thye Shen Wee, Andrew

    2018-04-01

    Hybrid van der Waals heterostructures constructed by the integration of organic molecules and two-dimensional (2D) transition metal dichalcogenide (TMD) materials have useful tunable properties for flexible electronic devices. Due to the chemically inert and atomically smooth nature of the TMD surface, well-defined crystalline organic films form atomically sharp interfaces facilitating optimal device performance. Here, the surface phase transformation of the supramolecular packing structure of fluorinated fullerene (C60F48 ) on single-layer tungsten diselenide (WSe2) is revealed by low-temperature scanning tunneling microscopy, from thermally stable liquid to solid phases as the coverage increases. Statistical analysis of the intermolecular interaction potential reveals that the repulsive dipole-dipole interaction induced by interfacial charge transfer and substrate-mediated interactions play important roles in stabilizing the liquid C60F48 phases. Theoretical calculations further suggest that the dipole moment per C60F48 molecule varies with the surface molecule density, and the liquid-solid transformation could be understood from the perspective of the thermodynamic free energy for open systems. This study offers insights into the growth behavior at 2D organic/TMD hybrid heterointerfaces.

  8. Characterization of Gallium Indium Phosphide and Progress of Aluminum Gallium Indium Phosphide System Quantum-Well Laser Diode.

    PubMed

    Hamada, Hiroki

    2017-07-28

    Highly ordered gallium indium phosphide layers with the low bandgap have been successfully grown on the (100) GaAs substrates, the misorientation toward [01-1] direction, using the low-pressure metal organic chemical vapor deposition method. It is found that the optical properties of the layers are same as those of the disordered ones, essentially different from the ordered ones having two orientations towards [1-11] and [11-1] directions grown on (100) gallium arsenide substrates, which were previously reported. The bandgap at 300 K is 1.791 eV. The value is the smallest ever reported, to our knowledge. The high performance transverse stabilized AlGaInP laser diodes with strain compensated quantum well structure, which is developed in 1992, have been successfully obtained by controlling the misorientation angle and directions of GaAs substrates. The structure is applied to quantum dots laser diodes. This paper also describes the development history of the quantum well and the quantum dots laser diodes, and their future prospects.

  9. Influence of novel gallium complexes on the homeostasis of some biochemical and hematological parameters in rats.

    PubMed

    Gârban, Gabriela; Silaghi-Dumitrescu, Radu; Ioniţă, Hortensia; Gârban, Zeno; Hădărugă, Nicoleta-Gabriela; Ghibu, George-Daniel; Baltă, Cornel; Simiz, Florin-Dan; Mitar, Carmen

    2013-12-01

    The aim of this study was to detect possible homeostasis changes in some biochemical and hematological parameters after the administration of gallium (Ga) complexes C (24) and C (85) on an experimental animal model (Wistar strain rats). In order to observe chronobiological aspects, a morning (m) and an evening (e) animal series were constituted. Further on, each series were divided into three groups: control (C), experimental I (EI), and experimental II (EII). Both Ga complexes were solubilized in a carrier solution containing polyethylene glycol (PEG) 400, water, and ethanol. Animals of the C groups received the carrier solution by intraperitoneal injection, those from the EI groups received the solubilized C(24) gallium complex, and those of the EII groups received the solubilized C(85) gallium complex. At the end of the experiment, blood and tissue samples were taken and the following parameters were determined: serum concentration of the nonprotein nitrogenous compounds (uric acid, creatinine, and blood urea nitrogen), hematological parameters (erythrocytes, hemoglobin, leukocytes, and platelets), and the kidney tissue concentration of three essential trace elements (Fe, Cu, and Zn). With the exception of uric acid, the results revealed increased concentrations of the nonprotein nitrogenous compounds both in the morning and in the evening experimental groups. Hematological data showed increased levels of erythrocytes, hemoglobin, and leukocytes and decreased platelet levels in the experimental group given the C(24) gallium complex in the morning (EI-m) group; increased levels of leukocytes and decreased levels of the other parameters in the experimental group given the C(24) gallium complex in the evening (EI-e) group; and increased levels of all hematological parameters in the experimental groups receiving the C(85) gallium complex in the morning (EII-m) group and in the evening (EII-e) group. Decreased kidney tissue concentrations of metals were found in all

  10. Fabrication methods and applications of microstructured gallium based liquid metal alloys

    NASA Astrophysics Data System (ADS)

    Khondoker, M. A. H.; Sameoto, D.

    2016-09-01

    This review contains a comparative study of reported fabrication techniques of gallium based liquid metal alloys embedded in elastomers such as polydimethylsiloxane or other rubbers as well as the primary challenges associated with their use. The eutectic gallium-indium binary alloy (EGaIn) and gallium-indium-tin ternary alloy (galinstan) are the most common non-toxic liquid metals in use today. Due to their deformability, non-toxicity and superior electrical conductivity, these alloys have become very popular among researchers for flexible and reconfigurable electronics applications. All the available manufacturing techniques have been grouped into four major classes. Among them, casting by needle injection is the most widely used technique as it is capable of producing features as small as 150 nm width by high-pressure infiltration. One particular fabrication challenge with gallium based liquid metals is that an oxide skin is rapidly formed on the entire exposed surface. This oxide skin increases wettability on many surfaces, which is excellent for keeping patterned metal in position, but is a drawback in applications like reconfigurable circuits, where the position of liquid metal needs to be altered and controlled accurately. The major challenges involved in many applications of liquid metal alloys have also been discussed thoroughly in this article.

  11. The mobility of indium and gallium in groundwater systems: constraining the role of sorption in sand column experiments

    NASA Astrophysics Data System (ADS)

    Dror, I.; Ringering, K.; Yecheskel, Y.; Berkowitz, B.

    2017-12-01

    The mobility of indium and gallium in groundwater environments was studied via laboratory experiments using quartz sand as a porous medium. Indium and gallium are metals of very low abundance in the Earth's crust and, correspondingly, the biosphere is only adapted to very small concentrations of these elements. However, in modern semiconductor industries, both elements play a central role and are incorporated in devices of mass production such as smartphones and digital cameras. The resulting considerable increase in production, use and discharge of indium and gallium throughout the last two decades, with a continuous and fast increase in the near future, raises questions regarding the fate of both elements in the environment. However, the transport behavior of these two metals in soils and groundwater systems remains poorly understood to date. Because of the low solubility of both elements in aqueous solutions, trisodium citrate was used as a complexation agent to stabilize the solutions, enabling investigation of the transport of these metals at neutral pH. Column experiments showed different binding capacities for indium and gallium, where gallium is much more mobile compared to indium and both metals are substantially retarded in the column. Different affinities were also confirmed by examining sorption isotherms of indium and gallium in equilibrium batch systems. The effect of natural organic matter on the mobility of indium and gallium was also studied, by addition of humic acid. For both metals, the presence of humic acid affects the sorption dynamics: for indium, sorption is strongly inhibited leading to much higher mobility, whereas gallium showed a slightly higher sorption affinity and very similar mobility compared to the same setup without humic acid addition. However, in all cases, the binding capacity of gallium to quartz is much weaker than that of indium. These results are consistent with the assumption that indium and gallium form different types

  12. Phenolic aminocarboxylic acids as gallium-binding radiopharmaceuticals.

    PubMed

    Hunt, F C

    1984-06-01

    The phenolic aminocarboxylic acids ethylenediamine di [o-hydroxyphenylacetic acid] (EDDHA) and N,N'-bis [2-hydroxybenzyl] ethylenediamine N,N'-diacetic acid (HBED) form gallium complexes having high stability constants which enable them to resist exchange of gallium with plasma transferrin. 67Ga complexes were synthesized with these ligands, placing substituent groups in the phenolic ring to direct excretion via the renal or hepatobiliary route. The amount of 67Ga-Br-EDDHA excreted via the hepatobiliary route was comparable with that of some of the 99mTc agents. Excretion of 67Ga-Br-HBED was similar but with delayed transit from the liver. 67Ga COOH-EDDHA was excreted exclusively via the renal route. These findings provide a basis for developing new 67Ga or 68Ga radiopharmaceuticals, the latter for use in positron emission tomography, using these phenolic aminocarboxylates.

  13. Annotating MYC Status in Treatment-Resistant Metastatic Castration-Resistant Prostate Cancer With Gallium-68 Citrate PET

    DTIC Science & Technology

    2017-09-01

    ongoing and interim analysis is planned within the next 6 months. Planned analyses include: 1) correlation of gallium citrate uptake on PET with MYC...utility of Gallium citrate PET as a pharmacodynamic and predictive biomarker of MYC pathway inhibition in mCRPC. Correlative pre- and post-treatment...completed Milestone Achieved: Last patient completes study follow up scan 36 Not yet completed Assess correlation between SUVmax on gallium

  14. Tumoral calcinosis associated with sarcoidosis and positive bone and gallium imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolpe, F.M.; Khedkar, N.Y.; Gordon, D.

    1987-07-01

    A 63-year-old female with biopsy proven tumoral calcinosis presented with progressive and recurrent swelling and tenderness of the right hip, thigh, elbow, and wrist. Both gallium and bone imaging demonstrated intense, congruent uptake in these areas. This is the third case of tumoral calcinosis with sarcoidosis documented in the literature. However, these are the first published bone and gallium scans in a patient with a history of sarcoidosis and tumoral calcinosis.

  15. Large disparity between gallium and antimony self-diffusion in gallium antimonide.

    PubMed

    Bracht, H; Nicols, S P; Walukiewicz, W; Silveira, J P; Briones, F; Haller, E E

    2000-11-02

    The most fundamental mass transport process in solids is self-diffusion. The motion of host-lattice ('self-') atoms in solids is mediated by point defects such as vacancies or interstitial atoms, whose formation and migration enthalpies determine the kinetics of this thermally activated process. Self-diffusion studies also contribute to the understanding of the diffusion of impurities, and a quantitative understanding of self- and foreign-atom diffusion in semiconductors is central to the development of advanced electronic devices. In the past few years, self-diffusion studies have been performed successfully with isotopically controlled semiconductor heterostructures of germanium, silicon, gallium arsenide and gallium phosphide. Self-diffusion studies with isotopically controlled GaAs and GaP have been restricted to Ga self-diffusion, as only Ga has two stable isotopes, 69Ga and 71Ga. Here we report self-diffusion studies with an isotopically controlled multilayer structure of crystalline GaSb. Two stable isotopes exist for both Ga and Sb, allowing the simultaneous study of diffusion on both sublattices. Our experiments show that near the melting temperature, Ga diffuses more rapidly than Sb by over three orders of magnitude. This surprisingly large difference in atomic mobility requires a physical explanation going beyond standard diffusion models. Combining our data for Ga and Sb diffusion with related results for foreign-atom diffusion in GaSb (refs 8, 9), we conclude that the unusually slow Sb diffusion in GaSb is a consequence of reactions between defects on the Ga and Sb sublattices, which suppress the defects that are required for Sb diffusion.

  16. Long-term performance analysis of CIGS thin-film PV modules

    NASA Astrophysics Data System (ADS)

    Dhere, Neelkanth G.; Kaul, Ashwani; Pethe, Shirish A.

    2011-09-01

    Current accelerated qualification tests of photovoltaic (PV) modules mostly assist in avoiding infant mortality but can neither duplicate changes occurring in the field nor can predict useful lifetime. Therefore, outdoor monitoring of fielddeployed thin-film PV modules was undertaken at FSEC with goals of assessing their performance in hot and humid climate under high system voltage operation and to correlate the PV performance with the meteorological parameters. Significant and comparable degradation rate of -5.13% and -4.5% per year was found by PV USA type regression analysis for the positive and negative strings respectively of 40W glass-to-glass CIGS thin-film PV modules in the hot and humid climate of Florida. With the current-voltage measurements it was found that the performance degradation within the PV array was mainly due to a few (8-12%) modules having a substantially high degradation. The remaining modules within the array continued to show reasonable performance (>96% of the rated power after ~ 4years).

  17. The state of the art of thin-film photovoltaics

    NASA Astrophysics Data System (ADS)

    Surek, T.

    1993-10-01

    Thin-film photovoltaic technologies, based on materials such as amorphous or polycrystalline silicon, copper indium diselenide, cadmium telluride, and gallium arsenide, offer the potential for significantly reducing the cost of electricity generated by photovoltaics. The significant progress in the technologies, from the laboratory to the marketplace, is reviewed. The common concerns and questions raised about thin films are addressed. Based on the progress to date and the potential of these technologies, along with continuing investments by the private sector to commercialize the technologies, one can conclude that thin-film PV will provide a competitive alternative for large-scale power generation in the future.

  18. The impact of gallium content on degradation, bioactivity, and antibacterial potency of zinc borate bioactive glass.

    PubMed

    Rahimnejad Yazdi, Alireza; Torkan, Lawrence; Stone, Wendy; Towler, Mark R

    2018-01-01

    Zinc borate glasses with increasing gallium content (0, 2.5, 5, 10, and 15 Wt % Ga) were synthesized and their degradation, bioactivity in simulated body fluid (SBF), and antibacterial properties were investigated. ICP measurements showed that increased gallium content in the glass resulted in increased gallium ion release and decreased release of other ions. Degradability declined with the addition of gallium, indicating the formation of more symmetric BO 3 units with three bridging oxygens and asymmetric BO 3 units with two bridging oxygens in the glass network as the gallium content in the series increased. The formation of amorphous CaP on the glass surface after 24 h of incubation in SBF was confirmed by SEM, XRD, and FTIR analyses. Finally, antibacterial evaluation of the glasses using the agar disc-diffusion method demonstrated that the addition of gallium increased the antibacterial potency of the glasses against P. aeruginosa (Gram-negative) while decreasing it against S. epidermidis (Gram-positive); considering the ion release trends, this indicates that the gallium ion is responsible for the glasses' antibacterial behavior against P. aeruginosa while the zinc ion controls the antibacterial activity against S. epidermidis. The statistical significance of the observed trends in the measurements were confirmed by applying the Kruskal-Wallis H Test. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 367-376, 2018. © 2017 Wiley Periodicals, Inc.

  19. Solar cell with a gallium nitride electrode

    DOEpatents

    Pankove, Jacques I.

    1979-01-01

    A solar cell which comprises a body of silicon having a P-N junction therein with a transparent conducting N-type gallium nitride layer as an ohmic contact on the N-type side of the semiconductor exposed to solar radiation.

  20. Gallium phosphide energy converters

    NASA Technical Reports Server (NTRS)

    Sims, P. E.; DiNetta, Louis C.; DuganCavanagh, K.; Goetz, M. A.

    1996-01-01

    Betavoltaic power supplies based on gallium phosphide can supply long term low-level power with high reliability. Results are presented for GaP devices powered by Ni-63 and tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/cm(exp 2) have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. A small demonstration system has been assembled that generates and stores enough electricity to light up an LED.

  1. Gallium nitride nanotube lasers

    DOE PAGES

    Li, Changyi; Liu, Sheng; Hurtado, Antonio; ...

    2015-01-01

    Lasing is demonstrated from gallium nitride nanotubes fabricated using a two-step top-down technique. By optically pumping, we observed characteristics of lasing: a clear threshold, a narrow spectral, and guided emission from the nanotubes. In addition, annular lasing emission from the GaN nanotube is also observed, indicating that cross-sectional shape control can be employed to manipulate the properties of nanolasers. The nanotube lasers could be of interest for optical nanofluidic applications or application benefitting from a hollow beam shape.

  2. Anticancer redox activity of gallium nanoparticles accompanied with low dose of gamma radiation in female mice.

    PubMed

    Kandil, Eman I; El-Sonbaty, Sawsan M; Moawed, Fatma Sm; Khedr, Ola Ms

    2018-03-01

    Guided treatments with nanoparticles and radiotherapy are a new approach in cancer therapy. This study evaluated the beneficial antitumor effects of γ-radiation together with gallium nanoparticles against solid Ehrlich carcinoma in female mice. Gallium nanoparticles were biologically synthesized using Lactobacillus helveticus cells. Transmission electron microscopy showed gallium nanoparticles with size range of 8-20 nm. In vitro study of gallium nanoparticles on MCF-7 revealed IC 50 of 8.0 μg. Gallium nanoparticles (0.1 mg/kg body weight) were injected intraperitoneally daily on the seventh day of Ehrlich carcinoma cells inoculation. Whole-body γ-radiation was carried out at a single dose of 0.25 Gy on eighth day after tumor inoculation. Biochemical analysis showed that solid Ehrlich carcinoma induced a significant increase in alanine aminotransferase activity and creatinine level in serum, calcium, and iron concentrations in liver tissue compared to normal control. Treatment of Ehrlich carcinoma-bearing mice with gallium nanoparticles and/or low dose of γ-radiation exposure significantly reduced tumor volume, decreased alanine aminotransferase and creatinine levels in serum, increased lipid peroxidation, and decreased glutathione content as well as calcium and iron concentrations in liver and tumor tissues with intense DNA fragmentation accompanied compared to untreated tumor cells. Moreover, mitochondria in the treated groups displayed a significant increase in Na+/K+-ATPase, complexes II and III with significant reduction in CYP450 gene expression, which may indicate a synergistic effect of gallium nanoparticles and/or low dose of γ-radiation combination against Ehrlich carcinoma injury, and this results were well appreciated with the histopathological findings in the tumor tissue. We conclude that combined treatment of gallium nanoparticles and low dose of gamma-radiation resulted in suppressive induction of cytotoxic effects on cancer cells.

  3. Highly Sensitive and Reusable Membraneless Field-Effect Transistor (FET)-Type Tungsten Diselenide (WSe2) Biosensors.

    PubMed

    Lee, Hae Won; Kang, Dong-Ho; Cho, Jeong Ho; Lee, Sungjoo; Jun, Dong-Hwan; Park, Jin-Hong

    2018-05-30

    In recent years when the demand for high-performance biosensors has been aroused, a field-effect transistor (FET)-type biosensor (BioFET) has attracted great interest because of its high sensitivity, label-free detection, fast detection speed, and miniaturization. However, the insulating membrane in the conventional BioFET, which is essential in preventing the surface dangling bonds of typical semiconductors from nonspecific bindings, has limited the sensitivity of biosensors. Here, we present a highly sensitive and reusable membraneless BioFET based on a defect-free van der Waals material, tungsten diselenide (WSe 2 ). We intentionally generated a few surface defects that serve as extra binding sites for the bioreceptor immobilization through weak oxygen plasma treatment, consequently magnifying the sensitivity values to 2.87 × 10 5 A/A for 10 mM glucose. The WSe 2 BioFET also maintained its high sensitivity even after several cycles of rinsing and glucose application were repeated.

  4. Diphenyl diselenide attenuates oxidative stress and inflammatory parameters in ulcerative colitis: A comparison with ebselen.

    PubMed

    Petronilho, Fabricia; Michels, Monique; Danielski, Lucinéia G; Goldim, Mariana Pereira; Florentino, Drielly; Vieira, Andriele; Mendonça, Mariana G; Tournier, Moema; Piacentini, Bárbara; Giustina, Amanda Della; Leffa, Daniela D; Pereira, Gregório W; Pereira, Volnei D; Rocha, João Batista Teixeira Da

    2016-09-01

    The aim of this study was to evaluate the effects of diphenyl diselenide (PhSe)2 and ebselen (EB) in ulcerative colitis (UC) induced by dextran sulfate sodium (DSS) in rats. The effects of (PhSe)2 and EB in rats submitted to DSS-induced colitis were determined by measurement of oxidative stress parameters, inflammatory response and bowel histopathological alterations. Animals developed moderate to severe neutrophil infiltration in histopathology assay in DSS rats and (PhSe)2 improved this response. Moreover, the treatment with (PhSe)2 decreased the oxidative damage in lipids and proteins, as well as reversed the superoxide dismutase (SOD) and catalase (CAT) levels in rats treated with DSS. EB was able only to reverse damage in lipids and the low levels of SOD in this animal model. The organoselenium compounds tested demonstrated an anti-inflammatory and antioxidant activity reducing the colon damage, being (PhSe)2 more effective than EB. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Measurement of Minority Charge Carrier Diffusion Length in Gallium Nitride Nanowires Using Electron Beam Induced Current (EBIC)

    DTIC Science & Technology

    2009-12-01

    MINORITY CHARGE CARRIER DIFFUSION LENGTH IN GALLIUM NITRIDE NANOWIRES USING ELECTRON BEAM INDUCED CURRENT (EBIC) by Chiou Perng Ong December... Gallium Nitride Nanowires Using Electron Beam Induced Current (EBIC) 6. AUTHOR(S) Ong, Chiou Perng 5. FUNDING NUMBERS DMR 0804527 7. PERFORMING...CARRIER DIFFUSION LENGTH IN GALLIUM NITRIDE NANOWIRES USING ELECTRON BEAM INDUCED CURRENT (EBIC) Chiou Perng Ong Major, Singapore Armed Forces B

  6. Efficient water reduction with gallium phosphide nanowires

    PubMed Central

    Standing, Anthony; Assali, Simone; Gao, Lu; Verheijen, Marcel A.; van Dam, Dick; Cui, Yingchao; Notten, Peter H. L.; Haverkort, Jos E. M.; Bakkers, Erik P. A. M.

    2015-01-01

    Photoelectrochemical hydrogen production from solar energy and water offers a clean and sustainable fuel option for the future. Planar III/V material systems have shown the highest efficiencies, but are expensive. By moving to the nanowire regime the demand on material quantity is reduced, and new materials can be uncovered, such as wurtzite gallium phosphide, featuring a direct bandgap. This is one of the few materials combining large solar light absorption and (close to) ideal band-edge positions for full water splitting. Here we report the photoelectrochemical reduction of water, on a p-type wurtzite gallium phosphide nanowire photocathode. By modifying geometry to reduce electrical resistance and enhance optical absorption, and modifying the surface with a multistep platinum deposition, high current densities and open circuit potentials were achieved. Our results demonstrate the capabilities of this material, even when used in such low quantities, as in nanowires. PMID:26183949

  7. Greater-than-bulk melting temperatures explained: Gallium melts Gangnam style

    NASA Astrophysics Data System (ADS)

    Gaston, Nicola; Steenbergen, Krista

    2014-03-01

    The experimental discovery of superheating in gallium clusters contradicted the clear and well-demonstrated paradigm that the melting temperature of a particle should decrease with its size. However the extremely sensitive dependence of melting temperature on size also goes to the heart of cluster science, and the interplay between the effects of electronic and geometric structure. We have performed extensive first-principles molecular dynamics calculations, incorporating parallel tempering for an efficient exploration of configurational phase space. This is necessary, due to the complicated energy landscape of gallium. In the nanoparticles, melting is preceded by a transitions between phases. A structural feature, referred to here as the Gangnam motif, is found to increase with the latent heat and appears throughout the observed phase changes of this curious metal. We will present our detailed analysis of the solid-state isomers, performed using extensive statistical sampling of the trajectory data for the assignment of cluster structures to known phases of gallium. Finally, we explain the greater-than-bulk melting through analysis of the factors that stabilise the liquid structures.

  8. Epitaxial gallium arsenide wafers

    NASA Technical Reports Server (NTRS)

    Black, J. F.; Robinson, L. B.

    1971-01-01

    The preparation of GaAs epitaxial layers by a vapor transport process using AsCl3, Ga and H2 was pursued to provide epitaxial wafers suitable for the fabrication of transferred electron oscillators and amplifiers operating in the subcritical region. Both n-n(+) structures, and n(++)-n-n(+) sandwich structures were grown using n(+) (Si-doped) GaAs substrates. Process variables such as the input AsCl3 concentration, gallium temperature, and substrate temperature and temperature gradient and their effects on properties are presented and discussed.

  9. Proton Irradiation-Induced Metal Voids in Gallium Nitride High Electron Mobility Transistors

    DTIC Science & Technology

    2015-09-01

    13. ABSTRACT (maximum 200 words) Gallium nitride/aluminum gallium nitride high electron mobility transistors with nickel/ gold (Ni/Au) and...platinum/ gold (Pt/Au) gating are irradiated with 2 MeV protons. Destructive physical analysis revealed material voids underneath the gate finger of the...nickel/ gold (Ni/Au) and platinum/ gold (Pt/Au) gating are irradiated with 2 MeV protons. Destructive physical analysis revealed material voids underneath

  10. Thin-Film Solar Cells on Metal Foil Substrates for Space Power

    NASA Technical Reports Server (NTRS)

    Raffaelle, Ryne P.; Hepp, Aloysius F.; Hoffman, David J.; Dhere, N.; Tuttle, J. R.; Jin, Michael H.

    2004-01-01

    Photovoltaic arrays have played a key role in power generation in space. The current technology will continue to evolve but is limited in the important mass specific power metric (MSP or power/weight ratio) because it is based on bulk crystal technology. The objective of this research is to continue development of an innovative photovoltaic technology for satellite power sources that could provide up to an order of magnitude saving in both weight and cost, and is inherently radiation-tolerant through use of thin film technology and thin foil substrates such as 5-mil thick stainless steel foil or 1-mil thick Ti. Current single crystal technology for space power can cost more than $300 per watt at the array level and weigh more than 1 kg/sq m equivalent to specific power of approx. 65 W/kg. Thin film material such as CuIn(1-x),Ga(x)S2, (CIGS2), CuIn(1-x), G(x)Se(2-y),S(y), (CIGSS) or amorphous hydrogenated silicon (a-Si:H) may be able to reduce both the cost and mass per unit area by an order of magnitude. Manufacturing costs for solar arrays are an important consideration for total spacecraft budget. For a medium sized 5kW satellite, for example, the array manufacturing cost alone may exceed $2 million. Moving to thin film technology could reduce this expense to less than $500 K. Previous work at FSEC demonstrated the potential of achieving higher efficiencies from CIGSS thin film solar cells on 5-mil thick stainless steel foil as well as initial stages of facility augmentation for depositing thin film solar cells on larger (6"x 4") substrates. This paper presents further progress in processing on metal foil substrates. Also, previous work at DayStar demonstrated the feasibility of flexible-thin-film copper-indium-gallium-diselenide (CIGS) solar cells with a power-to-weight ratio in excess of 1000 W/kg. We will comment on progress on the critical issue of scale-up of the solar cell absorber deposition process. Several important technical issues need to be resolved

  11. Novel ethylenediamine-gallium phosphate containing 6-fold coordinated gallium atoms with unusual four equatorial Ga–N bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torre-Fernández, Laura; Espina, Aránzazu; Khainakov, Sergei A.

    2014-07-01

    A novel ethylenediamine-gallium phosphate, formulated as Ga(H{sub 2}NCH{sub 2}CH{sub 2}NH{sub 2}){sub 2}PO{sub 4}·2H{sub 2}O, was synthesized under hydrothermal conditions. The crystal structure, including hydrogen positions, was determined using single-crystal X-ray diffraction data (monoclinic, a=9.4886(3) Å, b=6.0374(2) Å, c=10.2874(3) Å, and β=104.226(3)°, space group Pc) and the bulk was characterized by chemical (Ga–P–C–H–N) and thermal analysis (TG–MS and DSC), including activation energy data of its thermo-oxidative degradation, powder X-ray diffraction (PXRD), solid-state nuclear magnetic resonance (SS-NMR) measurements, and transmission electron microscopy (TEM, SAED/NBD, and STEM BF-EDX). The crystal structure is built up of infinite zig-zag chains running along the c-axis, formedmore » by vertex-shared (PO{sub 4}) and (GaO{sub 2}N{sub 4}) polyhedra. The new compound is characterized by unusual four equatorial Ga–N bonds coming from two nonequivalent ethylenediamine molecules and exhibits strong blue emission at 430 nm (λ{sub ex}=350 nm) in the solid state at room temperature. - Graphical abstract: Single crystals of a new ethylenediamine-gallium phosphate, Ga(H{sub 2}NCH{sub 2}CH{sub 2}NH{sub 2}){sub 2}PO{sub 4}·2H{sub 2}O, were obtained and the structural features presented. This structure is one of the scarce examples of GaPO with Ga–N bonds reported. - Highlights: • A novel ethylenediamine-gallium phosphate was hydrothermally synthesized. • The new compound is characterized by unusual four equatorial Ga–N bonds. • Void-volume analysis shows cages and channels with sizes ideally suited to accommodate small molecules. • The new compound exhibits strong blue emission.« less

  12. Raster Scan Computer Image Generation (CIG) System Based On Refresh Memory

    NASA Astrophysics Data System (ADS)

    Dichter, W.; Doris, K.; Conkling, C.

    1982-06-01

    A full color, Computer Image Generation (CIG) raster visual system has been developed which provides a high level of training sophistication by utilizing advanced semiconductor technology and innovative hardware and firmware techniques. Double buffered refresh memory and efficient algorithms eliminate the problem of conventional raster line ordering by allowing the generated image to be stored in a random fashion. Modular design techniques and simplified architecture provide significant advantages in reduced system cost, standardization of parts, and high reliability. The major system components are a general purpose computer to perform interfacing and data base functions; a geometric processor to define the instantaneous scene image; a display generator to convert the image to a video signal; an illumination control unit which provides final image processing; and a CRT monitor for display of the completed image. Additional optional enhancements include texture generators, increased edge and occultation capability, curved surface shading, and data base extensions.

  13. Characterization of Gallium Indium Phosphide and Progress of Aluminum Gallium Indium Phosphide System Quantum-Well Laser Diode

    PubMed Central

    Hamada, Hiroki

    2017-01-01

    Highly ordered gallium indium phosphide layers with the low bandgap have been successfully grown on the (100) GaAs substrates, the misorientation toward [01−1] direction, using the low-pressure metal organic chemical vapor deposition method. It is found that the optical properties of the layers are same as those of the disordered ones, essentially different from the ordered ones having two orientations towards [1−11] and [11−1] directions grown on (100) gallium arsenide substrates, which were previously reported. The bandgap at 300 K is 1.791 eV. The value is the smallest ever reported, to our knowledge. The high performance transverse stabilized AlGaInP laser diodes with strain compensated quantum well structure, which is developed in 1992, have been successfully obtained by controlling the misorientation angle and directions of GaAs substrates. The structure is applied to quantum dots laser diodes. This paper also describes the development history of the quantum well and the quantum dots laser diodes, and their future prospects. PMID:28773227

  14. Ultra-low threshold gallium nitride photonic crystal nanobeam laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Nan, E-mail: nanniu@fas.harvard.edu; Woolf, Alexander; Wang, Danqing

    2015-06-08

    We report exceptionally low thresholds (9.1 μJ/cm{sup 2}) for room temperature lasing at ∼450 nm in optically pumped Gallium Nitride (GaN) nanobeam cavity structures. The nanobeam cavity geometry provides high theoretical Q (>100 000) with small modal volume, leading to a high spontaneous emission factor, β = 0.94. The active layer materials are Indium Gallium Nitride (InGaN) fragmented quantum wells (fQWs), a critical factor in achieving the low thresholds, which are an order-of-magnitude lower than obtainable with continuous QW active layers. We suggest that the extra confinement of photo-generated carriers for fQWs (compared to QWs) is responsible for the excellent performance.

  15. (Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2001-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  16. (Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2002-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  17. Core Levels, Band Alignments, and Valence-Band States in CuSbS 2 for Solar Cell Applications

    DOE PAGES

    Whittles, Thomas J.; Veal, Tim D.; Savory, Christopher N.; ...

    2017-11-10

    The earth-abundant material CuSbS 2 (CAS) has shown good optical properties as a photovoltaic solar absorber material, but has seen relatively poor solar cell performance. To investigate the reason for this anomaly, the core levels of the constituent elements, surface contaminants, ionization potential, and valence-band spectra are studied by X-ray photoemission spectroscopy. The ionization potential and electron affinity for this material (4.98 and 3.43 eV) are lower than those for other common absorbers, including CuInxGa (1-x)Se 2 (CIGS). Experimentally corroborated density functional theory (DFT) calculations show that the valence band maximum is raised by the lone pair electrons from themore » antimony cations contributing additional states when compared with indium or gallium cations in CIGS. The resulting conduction band misalignment with CdS is a reason for the poor performance of cells incorporating a CAS/CdS heterojunction, supporting the idea that using a cell design analogous to CIGS is unhelpful. These findings underline the critical importance of considering the electronic structure when selecting cell architectures that optimize open-circuit voltages and cell efficiencies.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whittles, Thomas J.; Veal, Tim D.; Savory, Christopher N.

    The earth-abundant material CuSbS 2 (CAS) has shown good optical properties as a photovoltaic solar absorber material, but has seen relatively poor solar cell performance. To investigate the reason for this anomaly, the core levels of the constituent elements, surface contaminants, ionization potential, and valence-band spectra are studied by X-ray photoemission spectroscopy. The ionization potential and electron affinity for this material (4.98 and 3.43 eV) are lower than those for other common absorbers, including CuInxGa (1-x)Se 2 (CIGS). Experimentally corroborated density functional theory (DFT) calculations show that the valence band maximum is raised by the lone pair electrons from themore » antimony cations contributing additional states when compared with indium or gallium cations in CIGS. The resulting conduction band misalignment with CdS is a reason for the poor performance of cells incorporating a CAS/CdS heterojunction, supporting the idea that using a cell design analogous to CIGS is unhelpful. These findings underline the critical importance of considering the electronic structure when selecting cell architectures that optimize open-circuit voltages and cell efficiencies.« less

  19. Core Levels, Band Alignments, and Valence-Band States in CuSbS2 for Solar Cell Applications.

    PubMed

    Whittles, Thomas J; Veal, Tim D; Savory, Christopher N; Welch, Adam W; de Souza Lucas, Francisco Willian; Gibbon, James T; Birkett, Max; Potter, Richard J; Scanlon, David O; Zakutayev, Andriy; Dhanak, Vinod R

    2017-12-06

    The earth-abundant material CuSbS 2 (CAS) has shown good optical properties as a photovoltaic solar absorber material, but has seen relatively poor solar cell performance. To investigate the reason for this anomaly, the core levels of the constituent elements, surface contaminants, ionization potential, and valence-band spectra are studied by X-ray photoemission spectroscopy. The ionization potential and electron affinity for this material (4.98 and 3.43 eV) are lower than those for other common absorbers, including CuIn x Ga (1-x) Se 2 (CIGS). Experimentally corroborated density functional theory (DFT) calculations show that the valence band maximum is raised by the lone pair electrons from the antimony cations contributing additional states when compared with indium or gallium cations in CIGS. The resulting conduction band misalignment with CdS is a reason for the poor performance of cells incorporating a CAS/CdS heterojunction, supporting the idea that using a cell design analogous to CIGS is unhelpful. These findings underline the critical importance of considering the electronic structure when selecting cell architectures that optimize open-circuit voltages and cell efficiencies.

  20. Neutron imaging with lithium indium diselenide: Surface properties, spatial resolution, and computed tomography

    NASA Astrophysics Data System (ADS)

    Lukosi, Eric D.; Herrera, Elan H.; Hamm, Daniel S.; Burger, Arnold; Stowe, Ashley C.

    2017-11-01

    An array of lithium indium diselenide (LISe) scintillators were investigated for application in neutron imaging. The sensors, varying in thickness and surface roughness, were tested using both reflective and anti-reflective mounting to an aluminum window. The spatial resolution of each LISe scintillator was calculated using the knife-edge test and a modulation transfer function analysis. It was found that the anti-reflective backing case yielded higher spatial resolutions by up to a factor of two over the reflective backing case despite a reduction in measured light yield by an average of 1.97. In most cases, the use of an anti-reflective backing resulted in a higher spatial resolution than the 50 μm-thick ZnS(Cu):6 LiF comparison scintillation screen. The effect of surface roughness was not directly correlated to measured light yield or observed spatial resolution, but weighting the reflective backing case by the random surface roughness revealed that a linear relationship exists between the fractional change (RB/ARB) of the two. Finally, the LISe scintillator array was used in neutron computed tomography to investigate the features of halyomorpha halys with the reflective and anti-reflective backing.

  1. Computer simulation of radiation damage in gallium arsenide

    NASA Technical Reports Server (NTRS)

    Stith, John J.; Davenport, James C.; Copeland, Randolph L.

    1989-01-01

    A version of the binary-collision simulation code MARLOWE was used to study the spatial characteristics of radiation damage in proton and electron irradiated gallium arsenide. Comparisons made with the experimental results proved to be encouraging.

  2. Gallium Arsenide Domino Circuit

    NASA Technical Reports Server (NTRS)

    Yang, Long; Long, Stephen I.

    1990-01-01

    Advantages include reduced power and high speed. Experimental gallium arsenide field-effect-transistor (FET) domino circuit replicated in large numbers for use in dynamic-logic systems. Name of circuit denotes mode of operation, which logic signals propagate from each stage to next when successive stages operated at slightly staggered clock cycles, in manner reminiscent of dominoes falling in a row. Building block of domino circuit includes input, inverter, and level-shifting substages. Combinational logic executed in input substage. During low half of clock cycle, result of logic operation transmitted to following stage.

  3. Lacrimal gland uptake of (67)Ga-gallium citrate correlates with biopsy results in patients with suspected sarcoidosis.

    PubMed

    Tannen, Bradford L; Kolomeyer, Anton M; Turbin, Roger E; Frohman, Larry; Langer, Paul D; Oh, Cheongeun; Ghesani, Nasrin V; Zuckier, Lionel S; Chu, David S

    2014-02-01

    To investigate whether lacrimal gland uptake on (67)Ga-gallium citrate scintigraphy correlates with histopathologic evidence of sarcoidosis. A retrospective, pilot study of 31 patients with suspected sarcoidosis who underwent gallium scintigraphy and lacrimal gland biopsy. Lacrimal gland gallium uptake was assessed by subjective visual scoring (SVS) and lacrimal uptake ratio (LUR). Eleven (36%) patients had lacrimal gland biopsies containing noncaseating granulomas. A statistically significant correlation was found between lacrimal gland gallium uptake and biopsy positivity using SVS (p = 0.03) or LUR (p = 0.01). Using SVS, biopsy positivity rate increased from 0 to 50% in patients with mild to intense uptake. Using LUR, biopsy positivity rate increased linearly as the ratio increased from 13% (LUR < 4) to 100% (LUR > 8). Lacrimal biopsy positivity rate significantly correlated with gallium uptake on scintigraphy. Both SVS and LUR methods appear to correlate with histologic results and may potentially aid in patient selection for biopsy.

  4. In Vitro and In Vivo Biological Activities of Iron Chelators and Gallium Nitrate against Acinetobacter baumannii

    PubMed Central

    Harris, Greg; KuoLee, Rhonda; Chen, Wangxue

    2012-01-01

    We investigated the ability of compounds interfering with iron metabolism to inhibit the growth of Acinetobacter baumannii. Iron restriction with transferrin or 2,2-bipyridyl significantly inhibited A. baumannii growth in vitro. Gallium nitrate alone was moderately effective at reducing A. baumannii growth but became bacteriostatic in the presence of serum or transferrin. More importantly, gallium nitrate treatment reduced lung bacterial burdens in mice. The use of gallium-based therapies shows promise for the control of multidrug-resistant A. baumannii. PMID:22825117

  5. In vitro and in vivo biological activities of iron chelators and gallium nitrate against Acinetobacter baumannii.

    PubMed

    de Léséleuc, Louis; Harris, Greg; KuoLee, Rhonda; Chen, Wangxue

    2012-10-01

    We investigated the ability of compounds interfering with iron metabolism to inhibit the growth of Acinetobacter baumannii. Iron restriction with transferrin or 2,2-bipyridyl significantly inhibited A. baumannii growth in vitro. Gallium nitrate alone was moderately effective at reducing A. baumannii growth but became bacteriostatic in the presence of serum or transferrin. More importantly, gallium nitrate treatment reduced lung bacterial burdens in mice. The use of gallium-based therapies shows promise for the control of multidrug-resistant A. baumannii.

  6. Combination of Aryl Diselenides/Hydrogen Peroxide and Carbon Nanotube-Rhodium Nanohybrid for Naphthols Oxidation: An Efficient Route towards Trypanocidal Quinones.

    PubMed

    de Carvalho, Renato L; Jardim, Guilherme A M; Santos, Augusto; Araujo, Maria H; Oliveira, Willian X C; Bombaça, Ana Cristina; Menna-Barreto, Rubem F S; Gopi, Elumalai; Gravel, Edmond; Doris, Eric; da Silva Júnior, Eufrânio Nunes

    2018-06-14

    We report a combination of aryl diselenides/hydrogen peroxide and carbon nanotube-rhodium nanohybrid for naphthols oxidation towards synthesis of 1,4-naphthoquinones and evaluation of their relevant trypanocidal activity. Under a combination of (PhSe)2/H2O2 in the presence of O2 in i-PrOH/Hexane, several benzenoid (A-ring) substituted quinones were prepared in moderate to high yields. We also studied the contribution of RhCNT as co-catalyst in this process and, in some cases, yields were improved. This method provides an efficient and versatile alternative for preparing A-ring modified naphthoquinonoid compounds with relevant biological profile. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Liquid gallium and the eutectic gallium indium (EGaIn) alloy: Dielectric functions from 1.24 to 3.1 eV by electrochemical reduction of surface oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales, Daniel; Yu, Zhiyuan; Dickey, Michael D., E-mail: mddickey@ncsu.edu, E-mail: aspnes@ncsu.edu

    Liquid metals based on gallium are promising materials for soft, stretchable, and shape reconfigurable electromagnetic devices. The behavior of these metals relates directly to the thicknesses of their surface oxide layers, which can be determined nondestructively by ellipsometry if their dielectric functions ε are known. This paper reports on the dielectric functions of liquid gallium and the eutectic gallium indium (EGaIn) alloy from 1.24 to 3.1 eV at room temperature, measured by spectroscopic ellipsometry. Overlayer-induced artifacts, a continuing problem in optical measurements of these highly reactive metals, are eliminated by applying an electrochemically reductive potential to the surface of the metalmore » immersed in an electrolyte. This technique enables measurements at ambient conditions while avoiding the complications associated with removing overlayers in a vacuum environment. The dielectric responses of both metals are closely represented by the Drude model. The EGaIn data suggest that in the absence of an oxide the surface is In-enriched, consistent with the previous vacuum-based studies. Possible reasons for discrepancies with previous measurements are discussed.« less

  8. Gallium scintigraphic pattern in lung CMV infections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganz, W.I.; Cohen, D.; Mallin, W.

    1994-05-01

    Due to extensive use of prophylactic therapy for Pneumonitis Carinii Pneumonia (PCP), Cytomegalic Viral (CMV) infection may now be the most common lung infection in AIDS patients. This study was performed to determine Gallium-67 patterns in AIDS patients with CMV. Pathology reports were reviewed in AIDS patients who had a dose of 5 to 10 mCi of Gallium-67 citrate. Analysis of images were obtained 48-72 hours later of the entire body was performed. Gallium-67 scans in 14 AIDS patients with biopsy proven CMV, were evaluated for eye, colon, adrenal, lung and renal uptake. These were compared to 40 AIDS patientsmore » without CMV. These controls had infections including PCP, Mycobacterial infections, and lymphocytic interstitial pneumonitis. 100% of CMV patients had bowel uptake greater than or equal to liver. Similar bowel activity was seen in 50% of AIDS patients without CMV. 71% had intense eye uptake which was seen in only 10% of patients without CMV. 50% of CMV patients had renal uptake compared to 5% of non-CMV cases. Adrenal uptake was suggested in 50%, however, SPECT imaging is needed for confirmation. 85% had low grade lung uptake. The low grade lung had perihilar prominence. The remaining 15% had high grade lung uptake (greater than sternum) due to superimposed PCP infection. Colon uptake is very sensitive indicator for CMV infection. However, observing eye, renal, and or adrenal uptake improved the diagnostic specificity. SPECT imaging is needed to confirm renal or adrenal abnormalities due to intense bowel activity present in 100% of cases. When high grade lung uptake is seen superimposed PCP is suggested.« less

  9. Optical properties of bismuth and gallium substituted thulium iron garnet films

    NASA Astrophysics Data System (ADS)

    Gerhardt, R.; Sure, S.; Dötsch, H.; Linkewitz, T.; Tolksdorf, W.

    1993-09-01

    Bismuth and gallium substituted films of thulium iron garnet, grown by liquid phase epitaxy on [111] oriented substrates of gadolinium gallium garnet, are investigated for optical isolator applications. At a wavelength of λ = 1.3 μm the optical damping, the refractive index, the optical anisotropy, and the Faraday rotation are measured as function of the substitution level. It turns out that the growth induced optical anisotropy is very small, similar to the magnetic anisotropy. The observed difference between forward and backward propagation constants of TM modes is in excellent agreement with calculations.

  10. Assessment of arsenic exposures and controls in gallium arsenide production.

    PubMed

    Sheehy, J W; Jones, J H

    1993-02-01

    The electronics industry is expanding the use of gallium arsenide in the production of optoelectronic devices and integrated circuits. Workers in the electronics industry using gallium arsenide are exposed to hazardous substances such as arsenic, arsine, and various acids. Arsenic requires stringent controls to minimize exposures (the current OSHA PEL for arsenic is 10 micrograms/m3 and the NIOSH REL is 2 micrograms/m3 ceiling). Inorganic arsenic is strongly implicated in respiratory tract and skin cancer. For these reasons, NIOSH researchers conducted a study of control systems for facilities using gallium arsenide. Seven walk-through surveys were performed to identify locations for detailed study which appeared to have effective controls; three facilities were chosen for in-depth evaluation. The controls were evaluated by industrial hygiene sampling. Including personal breathing zone and area air sampling for arsenic and arsine; wipe samples for arsenic also were collected. Work practices and the use of personal protective equipment were documented. This paper reports on the controls and the arsenic exposure results from the evaluation of the following gallium arsenide processes: Liquid Encapsulated Czochralski (LEC) and Horizontal Bridgeman (HB) crystal growing, LEC cleaning operations, ingot grinding/wafer sawing, and epitaxy. Results at one plant showed that in all processes except epitaxy, average arsenic exposures were at or above the OSHA action level of 5 micrograms/m3. While cleaning the LEC crystal pullers, the average potential arsenic exposure of the cleaning operators was 100 times the OSHA PEL. At the other two plants, personal exposures for arsenic were well controlled in LEC, LEC cleaning, grinding/sawing, and epitaxy operations.

  11. Haemophilus parainfluenzae bacteremia associated with a pacemaker wire localized by gallium scan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenbaum, G.S.; Calubiran, O.; Cunha, B.A.

    1990-05-01

    A young woman with a history of sick sinus syndrome and placement of a permanent pacemaker 6 months before admission had fever and Haemophilus parainfluenzae bacteremia. A gallium scan localized the infection to the site of the pacemaker wire. Echocardiograms were negative for any vegetations. The patient responded to cefotaxime and trimethoprim-sulfamethoxazole therapy. We believe that this is the first case of H. parainfluenzae bacteremia associated with a pacemaker wire and localized by gallium scan.

  12. Influence of various factors on the accuracy of gallium-67 imaging for occult infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maderazo, E.G.; Hickingbotham, N.B.; Woronick, C.L.

    1988-05-01

    To examine whether the results and interpretation of gallium-67 citrate imaging may be adversely influenced by factors present in compromised patients, we reviewed our 1-year experience in 69 patients in intensive care units, renal transplants, and those on hemodialysis. Our results indicate that it is an inappropriate diagnostic procedure for acute pancreatitis since seven of nine had false-negative results. Using loglinear modeling and chi-square analysis we found that treatment with antiinflammatory steroids, severe liver disease, end-stage renal disease, and renal transplantation with immunosuppressive therapy did not interfere with gallium-67 uptake. Increased rate of true-negative results in patients with end-stage renalmore » disease was due to a greater and earlier use of the test in the febrile transplant patient and in hemodialysis patients with infections not amenable to diagnosis with gallium-67 scan (transient bacteremia and bacteriuria). We conclude that gallium-67 imaging is a useful diagnostic tool that, with the exception of acute pancreatitis, has very few false-negative results.« less

  13. Sodium Flux Growth of Bulk Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Von Dollen, Paul Martin

    This dissertation focused on development of a novel apparatus and techniques for crystal growth of bulk gallium nitride (GaN) using the sodium flux method. Though several methods exist to produce bulk GaN, none have been commercialized on an industrial scale. The sodium flux method offers potentially lower cost production due to relatively mild process conditions while maintaining high crystal quality. But the current equipment and methods for sodium flux growth of bulk GaN are generally not amenable to large-scale crystal growth or in situ investigation of growth processes, which has hampered progress. A key task was to prevent sodium loss or migration from the sodium-gallium growth melt while permitting N2 gas to access the growing crystal, which was accomplished by implementing a reflux condensing stem along with a reusable sealed capsule. The reflux condensing stem also enabled direct monitoring and control of the melt temperature, which has not been previously reported for the sodium flux method. Molybdenum-based materials were identified from a corrosion study as candidates for direct containment of the corrosive sodium-gallium melt. Successful introduction of these materials allowed implementation of a crucible-free containment system, which improved process control and can potentially reduce crystal impurity levels. Using the new growth system, the (0001) Ga face (+c plane) growth rate was >50 mum/hr, which is the highest bulk GaN growth rate reported for the sodium flux method. Omega X-ray rocking curve (?-XRC) measurements indicated the presence of multiple grains, though full width at half maximum (FWHM) values for individual peaks were <100 arcseconds. Oxygen impurity concentrations as measured by secondary ion mass spectroscopy (SIMS) were >1020 atoms/cm3, possibly due to reactor cleaning and handling procedures. This dissertation also introduced an in situ technique to correlate changes in N2 pressure with dissolution of nitrogen and precipitation of

  14. A Comparison of Gallium and Indium Alkoxide Complexes as Catalysts for Ring-Opening Polymerization of Lactide.

    PubMed

    Kremer, Alexandre B; Andrews, Ryan J; Milner, Matthew J; Zhang, Xu R; Ebrahimi, Tannaz; Patrick, Brian O; Diaconescu, Paula L; Mehrkhodavandi, Parisa

    2017-02-06

    The impact of the metal size and Lewis acidity on the polymerization activity of group 13 metal complexes was studied, and it was shown that, within the same ligand family, indium complexes are far more reactive and selective than their gallium analogues. To this end, gallium and aluminum complexes supported by a tridentate diaminophenolate ligand, as well as gallium complexes supported by N,N'-ethylenebis(salicylimine)(salen) ligands, were synthesized and compared to their indium analogues. Using the tridentate ligand set, it was possible to isolate the gallium chloride complexes 3 and (±)-4 and the aluminum analogues 5 and (±)-6. The alkoxygallium complex (±)-2, supported by a salen ligand, was also prepared and characterized and, along with the three-component system GaCl 3 /BnOH/NEt 3 , was tested for the ring-opening polymerization of lactide and ε-caprolactone. The polymerization rates and selectivities of both systems were significantly lower than those for the indium analogues. The reaction of (±)-2 with 1 equiv of lactide forms the first insertion product, which is stable in solution and can be characterized at room temperature. In order to understand the differences of the reactivity within the group 13 metal complexes, a Lewis acidity study using triethylphosphine oxide (the Gutmann-Beckett method) was undertaken for a series of aluminum, gallium, and indium halide complexes; this study shows that indium halide complexes are less Lewis acidic than their aluminum and gallium analogues. Density functional theory calculations show that the Mulliken charges for the indium complexes are higher than those for the gallium analogues. These data suggest that the impact of ligands on the reactivity is more significant than that of the metal Lewis acidity.

  15. First-principles melting of gallium clusters down to nine atoms: structural and electronic contributions to melting.

    PubMed

    Steenbergen, Krista G; Gaston, Nicola

    2013-10-07

    First-principles Born-Oppenheimer molecular dynamics simulations of small gallium clusters, including parallel tempering, probe the distinction between cluster and molecule in the size range of 7-12 atoms. In contrast to the larger sizes, dynamic measures of structural change at finite temperature demonstrate that Ga7 and Ga8 do not melt, suggesting a size limit to melting in gallium exists at 9 atoms. Analysis of electronic structure further supports this size limit, additionally demonstrating that a covalent nature cannot be identified for clusters larger than the gallium dimer. Ga9, Ga10 and Ga11 melt at greater-than-bulk temperatures, with no evident covalent character. As Ga12 represents the first small gallium cluster to melt at a lower-than-bulk temperature, we examine the structural properties of each cluster at finite temperature in order to probe both the origins of greater-than-bulk melting, as well as the significant differences in melting temperatures induced by a single atom addition. Size-sensitive melting temperatures can be explained by both energetic and entropic differences between the solid and liquid phases for each cluster. We show that the lower-than-bulk melting temperature of the 12-atom cluster can be attributed to persistent pair bonding, reminiscent of the pairing observed in α-gallium. This result supports the attribution of greater-than-bulk melting in gallium clusters to the anomalously low melting temperature of the bulk, due to its dimeric structure.

  16. (Polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2001-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interefere in the ethylene polymerization process, while affecting the the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  17. First principles study of gallium cleaning for hydrogen-contaminated α-Al2O3(0001) surfaces.

    PubMed

    Yang, Rui; Rendell, Alistair P

    2013-05-15

    The use of gallium for cleaning hydrogen-contaminated Al2O3 surfaces is explored by performing first principles density functional calculations of gallium adsorption on a hydrogen-contaminated Al-terminated α-Al2O3(0001) surface. Both physisorbed and chemisorbed H-contaminated α-Al2O3(0001) surfaces with one monolayer (ML) gallium coverage are investigated. The thermodynamics of gallium cleaning are considered for a variety of different asymptotic products, and are found to be favorable in all cases. Physisorbed H atoms have very weak interactions with the Al2O3 surface and can be removed easily by the Ga ML. Chemisorbed H atoms form stronger interactions with the surface Al atoms. Bonding energy analysis and departure simulations indicate, however, that chemisorbed H atoms can be effectively removed by the Ga ML. Copyright © 2013 Wiley Periodicals, Inc.

  18. Preclinical characterization of anticancer gallium(III) complexes: solubility, stability, lipophilicity and binding to serum proteins.

    PubMed

    Rudnev, Alexander V; Foteeva, Lidia S; Kowol, Christian; Berger, Roland; Jakupec, Michael A; Arion, Vladimir B; Timerbaev, Andrei R; Keppler, Bernhard K

    2006-11-01

    The discovery and development of gallium(III) complexes capable of inhibiting tumor growth is an emerging area of anticancer drug research. A range of novel gallium coordination compounds with established cytotoxic efficacy have been characterized in terms of desirable chemical and biochemical properties and compared with tris(8-quinolinolato)gallium(III) (KP46), a lead anticancer gallium-based candidate that successfully finished phase I clinical trials (under the name FFC11), showing activity against renal cell cancer. In view of probable oral administration, drug-like parameters, such as solubility in water, saline and 0.5% dimethyl sulfoxide, stability against hydrolysis, measured as the rate constant of hydrolytic degradation in water or physiological buffer using a capillary zone electrophoresis (CZE) assay, and the octanol-water partition coefficient (logP) providing a rational estimate of a drug's lipophilicity, have been evaluated and compared. The differences in bioavailability characteristics between different complexes were discussed within the formalism of structure-activity relationships. The reactivity toward major serum transport proteins, albumin and transferrin, was also assayed in order to elucidate the drug's distribution pathway after intestinal absorption. According to the values of apparent binding rate constants determined by CZE, both KP46 and bis(2-acetylpyridine-4,4-dimethyl-3-thiosemicarbazonato-N,N,S)gallium(III) tetrachlorogallate(III) (KP1089) bind to transferrin faster than to albumin. This implies that transferrin would rather mediate the accumulation of gallium antineoplastic agents in solid tumors. A tendency of being faster converted into the protein-bound form found for KP1089 (due possibly to non-covalent binding) seems complementary to its greater in vitro antiproliferative activity.

  19. Mathematical Description Development of Reactions of Metallic Gallium Using Kinetic Block Diagram

    NASA Astrophysics Data System (ADS)

    Yakovleva, A. A.; Soboleva, V. G.; Filatova, E. G.

    2018-05-01

    A kinetic block diagram based on a logical sequence of actions in the mathematical processing of a kinetic data is used. A type of reactions of metallic gallium in hydrochloric acid solutions is determined. It has been established that the reactions of the formation of gallium oxide and its salts proceed independently and in the absence of the diffusion resistance. Kinetic models connecting the constants of the reaction rate with the activation energy and describing the evolution of the process are obtained.

  20. Lithium indium diselenide: A new scintillator for neutron imaging

    DOE PAGES

    Lukosi, Eric; Herrera, Elan; Hamm, Daniel; ...

    2016-05-20

    Lithium indium diselenide, 6LiInSe 2 or LISe, is a newly developed neutron detection material that shows both semiconducting and scintillating properties. The 24% atomic density of 6Li yields a thermal neutron mean free path of only 920 μm. This paper reports on the performance of LISe crystals in scintillation mode for its potential use as a converter screen for thermal/cold neutron imaging. The spatial resolution of LISe, determined using a 10% value of the Modulation Transfer Function (MTF), was found to not scale linearly with thickness. Crystals having a thickness of 450 μm or larger resulted in an average spatialmore » resolution of 67 μm, and the thinner crystals exhibited an increase in spatial resolution down to the Nyquist frequency of the CCD. The highest measured spatial resolution of 198 μm thick LISe (27 μm) outperforms a commercial 50 μm thick ZnS(Cu): 6LiF scintillation screen (100 μm) by more than a factor of three. For the thicknesses considered in this study, it has been found that the light yield of LISe did not scale with its thickness, suggesting the need for optimizing the synthesis to enhance the scintillation mechanism. Absorption measurements indicate that the 6Li concentration is uniform throughout the samples and its absorption efficiency as a function of thickness follows general nuclear theory, indicating that the variation in apparent brightness is likely due to a combination of particle escape, light transport, and activation of the scintillation mechanisms. As a result, the presence of 115In and its long-lived 116In activation product did not result in ghosting (memory of past neutron exposure), demonstrating potential for using LISe for imaging transient systems.« less

  1. Evidence for the bias-driven migration of oxygen vacancies in amorphous non-stoichiometric gallium oxide

    NASA Astrophysics Data System (ADS)

    Guo, D. Y.; Qian, Y. P.; Su, Y. L.; Shi, H. Z.; Li, P. G.; Wu, J. T.; Wang, S. L.; Cui, C.; Tang, W. H.

    2017-06-01

    The conductivity of gallium oxide thin films is strongly dependent on the growth temperature when they deposited by pulsed laser deposition under vacuum environment, exhibiting an insulative-to-metallic transition with the decrease of the temperature. The high conductive gallium oxide films deposited at low temperature are amorphous, non-stoichiometric, and rich in oxygen vacancy. Large changes in electrical resistance are observed in these non-stoichiometric thin films. The wide variety of hysteretic shapes in the I-V curves depend on the voltage-sweep rate, evidencing that the time-dependent redistribution of oxygen vacancy driven by bias is the controlling parameter for the resistance of gallium oxide.

  2. Exposure Potential and Health Impacts of Indium and Gallium, Metals Critical to Emerging Electronics and Energy Technologies.

    PubMed

    White, Sarah Jane O; Shine, James P

    2016-12-01

    The rapid growth of new electronics and energy technologies requires the use of rare elements of the periodic table. For many of these elements, little is known about their environmental behavior or human health impacts. This is true for indium and gallium, two technology critical elements. Increased environmental concentrations of both indium and gallium create the potential for increased environmental exposure, though little is known about the extent of this exposure. Evidence is mounting that indium and gallium can have substantial toxicity, including in occupational settings where indium lung disease has been recognized as a potentially fatal disease caused by the inhalation of indium particles. This paper aims to review the basic chemistry, changing environmental concentrations, potential for human exposure, and known health effects of indium and gallium.

  3. Investigating the effect of gallium curcumin and gallium diacetylcurcumin complexes on the structure, function and oxidative stability of the peroxidase enzyme and their anticancer and antibacterial activities.

    PubMed

    Jahangoshaei, Parisa; Hassani, Leila; Mohammadi, Fakhrossadat; Hamidi, Akram; Mohammadi, Khosro

    2015-10-01

    Curcumin has a wide spectrum of biological and pharmacological activities including anti-inflammatory, antioxidant, antiproliferative, antimicrobial and anticancer activities. Complexation of curcumin with metals has gained attention in recent years for improvement of its stability. In this study, the effect of gallium curcumin and gallium diacetylcurcumin on the structure, function and oxidative stability of horseradish peroxidase (HRP) enzyme were evaluated by spectroscopic techniques. In addition to the enzymatic investigation, the cytotoxic effect of the complexes was assessed on bladder, MCF-7 breast cancer and LNCaP prostate carcinoma cell lines by MTT assay. Furthermore, antibacterial activity of the complexes against S. aureus and E. coli was explored by dilution test method. The results showed that the complexes improve activity of HRP and also increase its tolerance against the oxidative condition. After addition of the complexes, affinity of HRP for hydrogen peroxide substrate decreases, while the affinity increases for phenol substrate. Circular dichroism, intrinsic and synchronous fluorescence spectra showed that the enzyme structure around the catalytic heme group becomes less compact and also the distance between the heme group and tryptophan residues increases due to binding of the complexes to HRP. On the whole, it can be concluded that the change in the enzyme structure upon binding to the gallium curcumin and gallium diacetylcurcumin complexes results in an increase in the antioxidant efficiency and activity of the peroxidise enzyme. The result of anticancer and antibacterial activities suggested that the complexes exhibit the potential for cancer treatment, but they have no significant antibacterial activity.

  4. Development of gallium aluminum phosphide electroluminescent diodes

    NASA Technical Reports Server (NTRS)

    Chicotka, R. J.; Lorenz, M. R.; Nethercot, A. H.; Pettit, G. D.

    1972-01-01

    Work done on the development of gallium aluminum phosphide alloys for electroluminescent light sources is described. The preparation of this wide band gap semiconductor alloy, its physical properties (particularly the band structure, the electrical characteristics, and the light emitting properties) and work done on the fabrication of diode structures from these alloys are broadly covered.

  5. Low temperature recombination and trapping analysis in high purity gallium arsenide by microwave photodielectric techniques

    NASA Technical Reports Server (NTRS)

    Khambaty, M. B.; Hartwig, W. H.

    1972-01-01

    Some physical theories pertinent to the measurement properties of gallium arsenide are presented and experimental data are analyzed. A model for explaining recombination and trapping high purity gallium arsenide, valid below 77 K is assembled from points made at various places and an appraisal is given of photodielectric techniques for material property studies.

  6. Absorptivity of semiconductors used in the production of solar cell panels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosyachenko, L. A., E-mail: lakos@chv.ukrpack.net; Grushko, E. V.; Mikityuk, T. I.

    The dependence of the absorptivity of semiconductors on the thickness of the absorbing layer is studied for crystalline silicon (c-Si), amorphous silicon (a-Si), cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS), and copper gallium diselenide (CuGaSe{sub 2}, CGS). The calculations are performed with consideration for the spectral distribution of AM1.5 standard solar radiation and the absorption coefficients of the materials. It is shown that, in the region of wavelengths {lambda} = {lambda}{sub g} = hc/E{sub g}, almost total absorption of the photons in AM1.5 solar radiation is attained in c-Si at the thickness d = 7-8 mm, in a-Simore » at d = 30-60 {mu}m, in CdTe at d = 20-30 {mu}m, and in CIS and CGS at d = 3-4 {mu}m. The results differ from previously reported data for these materials (especially for c-Si). In previous publications, the thickness needed for the semiconductor to absorb solar radiation completely was identified with the effective light penetration depth at a certain wavelength in the region of fundamental absorption for the semiconductor.« less

  7. Gallium assisted plasma enhanced chemical vapor deposition of silicon nanowires.

    PubMed

    Zardo, I; Yu, L; Conesa-Boj, S; Estradé, S; Alet, Pierre Jean; Rössler, J; Frimmer, M; Roca I Cabarrocas, P; Peiró, F; Arbiol, J; Morante, J R; Fontcuberta I Morral, A

    2009-04-15

    Silicon nanowires have been grown with gallium as catalyst by plasma enhanced chemical vapor deposition. The morphology and crystalline structure has been studied by electron microscopy and Raman spectroscopy as a function of growth temperature and catalyst thickness. We observe that the crystalline quality of the wires increases with the temperature at which they have been synthesized. The crystalline growth direction has been found to vary between <111> and <112>, depending on both the growth temperature and catalyst thickness. Gallium has been found at the end of the nanowires, as expected from the vapor-liquid-solid growth mechanism. These results represent good progress towards finding alternative catalysts to gold for the synthesis of nanowires.

  8. Visible light electroluminescent diodes of indium-gallium phosphide

    NASA Technical Reports Server (NTRS)

    Clough, R.; Richman, D.; Tietjen, J.

    1970-01-01

    Vapor deposition and acceptor impurity diffusion techniques are used to prepare indium-gallium phosphide junctions. Certain problems in preparation are overcome by altering gas flow conditions and by increasing the concentration of phosphine in the gas. A general formula is given for the alloy's composition.

  9. Differential genotoxicity of diphenyl diselenide (PhSe)2 and diphenyl ditelluride (PhTe)2

    PubMed Central

    Meinerz, Daiane Francine; Allebrandt, Josiane; Mariano, Douglas O.C.; Waczuk, Emily P.; Soares, Felix Antunes

    2014-01-01

    Organoselenium compounds have been pointed out as therapeutic agents. In contrast, the potential therapeutic aspects of tellurides have not yet been demonstrated. The present study evaluated the comparative toxicological effects of diphenyl diselenide (PhSe)2 and diphenyl ditelluride (PhTe)2 in mice after in vivo administration. Genotoxicity (as determined by comet assay) and mutagenicicity were used as end-points of toxicity. Subcutaneous administration of high doses of (PhSe)2 or (PhTe)2 (500 µmol/kg) caused distinct genotoxicity in mice. (PhSe)2 significantly decreased the DNA damage index after 48 and 96 h of its injection (p < 0.05). In contrast, (PhTe) caused a significant increase in DNA damage (p < 0.05) after 48 and 96 h of intoxication. (PhSe)2 did not cause mutagenicity but (PhTe)2 increased the micronuclei frequency, indicating its mutagenic potential. The present study demonstrated that acute in vivo exposure to ditelluride caused genotoxicity in mice, which may be associated with pro-oxidant effects of diphenyl ditelluride. In addition, the use of this compound and possibly other related tellurides must be carefully controlled. PMID:24711962

  10. Gallium-67 scintigraphy and intraabdominal sepsis. Clinical experience in 140 patients with suspected intraabdominal abscess

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, G.B.; Kan, M.; Mende, C.W.

    In 140 patients with suspected intraabdominal abscess, studies were made using gallium-67 citrate and technetium-99m labeled radiopharmaceuticals. Gallium-67 scintigrams correctly localized 52 of 56 intraabdominal abscesses confirmed at surgical operation or necropsy. In an additional 20 patients in whom findings on scintigrams were abnormal, there were clinically established infections. Sixty-one patients in whom findings on scintigrams were normal were conservatively managed and discharged from the hospital; none proved to have an abscess. Four false-negative and three false-positive studies were recorded. Gallium-67 scintigraphy is a useful noninvasive diagnostic adjunct that should be employed early in the evaluation of patients with suspectedmore » intraabdominal sepsis.« less

  11. Influence of neodymium concentration on excitation and emission properties of Nd doped gallium oxide nanocrystalline films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podhorodecki, A.; Banski, M.; Misiewicz, J.

    Gallium oxide and more particularly {beta}-Ga{sub 2}O{sub 3} matrix is an excellent material for new generation of devices electrically or optically driven as it is known as the widest band gap transparent conductive oxide. In this paper, the optical properties of neodymium doped gallium oxide films grown by magnetron sputtering have been analyzed. The influence of the Nd ions concentration on the excitation/emission mechanisms of Nd ions and the role of gallium oxide matrix have been investigated. The grain size reduction into gallium oxide films have been observed when concentration of Nd increases. It has been found for all samplesmore » that the charge transfer is the main excitation mechanism for Nd ions where defect states play an important role as intermediate states. As a consequence Nd emission efficiency increases with temperature giving rise to most intensive emission at 1087 nm at room temperature.« less

  12. Gallium-67 complexes as radioactive markers to assess gastric and colonic transit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellen, J.C.; Chatterton, B.E.; Penglis, S.

    1995-03-01

    Constipation and gastroparesis are gastrointestinal tract disorders that can be assessed by using radioactive markers in conjunction with scintigraphic techniques. Indium-111-DTPA is the radiopharmaceutical of choice for treating colonic transit in constipated patients, but it is an expensive product and its availability has been unreliable. Indium-113m-DTPA was the tracer used in our study to determine the liquid gastric emptying rate in dual-isotope solid-liquid emptying studies, however, cessation of the {sup 113}Sn/{sup 113m}In generator production makes it unavailable. Thus, development of alternative tracers to {sup 111}In-DTPA and {sup 113m}In-DTPA was essential. Gallium-67-citrate and {sup 67}Ga-EDTA were compared to {sup 111}In-DTPA tomore » assess their efficacy for exclusive retention in the GI tract. These markers were orally administered into rats and their three-day cumulative fecal excretion, urine excretion and carcass retention were measured. An in vitro gastric emptying model was used to determine liquid phase partitioning of {sup 113m}In-DTPA, {sup 67}Ga-citrate and {sup 67}Ga-EDTA at 37{degrees}. Gallium-67-citrate was predominantly excreted in the feces (97.2% {+-} 0.2%) after three days, with negligible urine excretion (0.1% {+-} 0.0%) and carcass retention (0.6% {+-} 0.2%). These results are analogous to those obtained for {sup 111}In-DTPA for fecal excretion (96.7% {+-} 2.6%), urine excretion (0.6% {+-} 0.0%) and retention in the carcass (0.2% {+-} 0.0%). Gallium-67-EDTA showed similar partitioning in the liquid phase of the gastric emptying model compared with {sup 113m}In-DTPA. Gallium-67-citrate is an economical and readily available alternative to {sup 111}In-DTPA as a colonic transit radiopharmaceutical. Gallium-67-EDTA is also an alternative to {sup 113m}In-DTPA for assessing liquid-phase emptying in a dual-isotope solid/liquid gastric emptying study. 17 refs., 3 figs., 2 tabs.« less

  13. System OptimizatIon of the Glow Discharge Optical Spectroscopy Technique Used for Impurity Profiling of ION Implanted Gallium Arsenide.

    DTIC Science & Technology

    1980-12-01

    AFIT/GEO/EE/80D-1 I -’ SYSTEM OPTIMIZATION OF THE GLOW DISCHARGE OPTICAL SPECTROSCOPY TECHNIQUE USED FOR IMPURITY PROFILING OF ION IMPLANTED GALLIUM ...EE/80D-1 (\\) SYSTEM OPTIMIZATION OF THE GLOW DISCHARGE OPTICAL SPECTROSCOPY TECHNIQUE USED FOR IMPURITY PROFILING OF ION IMPLANTED GALLIUM ARSENIDE...semiconductors, specifically annealed and unan- nealed ion implanted gallium arsenide (GaAs). Methods to improve the sensitivity of the GDOS system have

  14. Synthesis and Structural characterization of β-ketoiminate-stabilized gallium hydrides for chemical vapor deposition applications.

    PubMed

    Marchand, Peter; Pugh, David; Parkin, Ivan P; Carmalt, Claire J

    2014-08-11

    Bis-β-ketoimine ligands of the form [(CH2 )n {N(H)C(Me)CHC(Me)O}2 ] (L(n) H2 , n=2, 3 and 4) were employed in the formation of a range of gallium complexes [Ga(L(n) )X] (X=Cl, Me, H), which were characterised by NMR spectroscopy, mass spectrometry and single-crystal X-ray diffraction analysis. The β-ketoimine ligands have also been used for the stabilisation of rare gallium hydride species [Ga(L(n) )H] (n=2 (7); n=3 (8)), which have been structurally characterised for the first time, confirming the formation of five-coordinate, monomeric species. The stability of these hydrides has been probed through thermal analysis, revealing stability at temperatures in excess of 200 °C. The efficacy of all the gallium β-ketoiminate complexes as molecular precursors for the deposition of gallium oxide thin films by chemical vapour deposition (CVD) has been investigated through thermogravimetric analysis and deposition studies, with the best results being found for a bimetallic gallium methyl complex [L(3) {GaMe2 }2 ] (5) and the hydride [Ga(L(3) )H] (8). The resulting films (F5 and F8, respectively) were amorphous as-deposited and thus were characterised primarily by XPS, EDXA and SEM techniques, which showed the formation of stoichiometric (F5) and oxygen-deficient (F8) Ga2 O3 thin films. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Low Temperature Flux Growth of 2H-SiC and Beta-Gallium Oxide

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Choa, Fow-Sen; Su, Ching-Hua; Arnold, Bradley; Kelly, Lisa

    2016-01-01

    We present brief overview of our study on the low temperature flux growth of two very important novel wide bandgap materials 2H-SiC and Beta-gallium oxide (Beta-Ga2O3). We have synthesized and grown 5 millimeter to 1 centimeter size single crystals of Beta-gallium oxide (Beta-Ga2O3). We used a flux and semi wet method to grow transparent good quality crystals. In the semi-wet method Ga2O3 was synthesized with starting gallium nitrate solution and urea as a nucleation agent. In the flux method we used tin and other metallic flux. This crystal was placed in an alumina crucible and temperature was raised above 1050 degrees Centigrade. After a time period of thirty hours, we observed prismatic and needle shaped crystals of gallium oxide. Scanning electron microscopic studies showed step growth morphology. Crystal was polished to measure the properties. Bandgap was measured 4.7electronvolts using the optical absorption curve. Another wide bandgap hexagonal 2H-SiC was grown by using Si-Al eutectic flux in the graphite crucible. We used slight AlN also as the impurity in the flux. The temperature was raised up to 1050 degrees Centigrade and slowly cooled to 850 degrees Centigrade. Preliminary characterization results of this material are also reported.

  16. Systems and methods for solar cells with CIS and CIGS films made by reacting evaporated copper chlorides with selenium

    DOEpatents

    Albin, David S.; Noufi, Rommel

    2015-06-09

    Systems and methods for solar cells with CIS and CIGS films made by reacting evaporated copper chlorides with selenium are provided. In one embodiment, a method for fabricating a thin film device comprises: providing a semiconductor film comprising indium (In) and selenium (Se) upon a substrate; heating the substrate and the semiconductor film to a desired temperature; and performing a mass transport through vapor transport of a copper chloride vapor and se vapor to the semiconductor film within a reaction chamber.

  17. Preparation of gallium nitride surfaces for atomic layer deposition of aluminum oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, A. J.; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093; Chagarov, E.

    2014-09-14

    A combined wet and dry cleaning process for GaN(0001) has been investigated with XPS and DFT-MD modeling to determine the molecular-level mechanisms for cleaning and the subsequent nucleation of gate oxide atomic layer deposition (ALD). In situ XPS studies show that for the wet sulfur treatment on GaN(0001), sulfur desorbs at room temperature in vacuum prior to gate oxide deposition. Angle resolved depth profiling XPS post-ALD deposition shows that the a-Al{sub 2}O{sub 3} gate oxide bonds directly to the GaN substrate leaving both the gallium surface atoms and the oxide interfacial atoms with XPS chemical shifts consistent with bulk-like charge.more » These results are in agreement with DFT calculations that predict the oxide/GaN(0001) interface will have bulk-like charges and a low density of band gap states. This passivation is consistent with the oxide restoring the surface gallium atoms to tetrahedral bonding by eliminating the gallium empty dangling bonds on bulk terminated GaN(0001)« less

  18. Gallium-containing polymer brush film as efficient supported Lewis acid catalyst in a glass microreactor.

    PubMed

    Munirathinam, Rajesh; Ricciardi, Roberto; Egberink, Richard J M; Huskens, Jurriaan; Holtkamp, Michael; Wormeester, Herbert; Karst, Uwe; Verboom, Willem

    2013-01-01

    Polystyrene sulfonate polymer brushes, grown on the interior of the microchannels in a microreactor, have been used for the anchoring of gallium as a Lewis acid catalyst. Initially, gallium-containing polymer brushes were grown on a flat silicon oxide surface and were characterized by FTIR, ellipsometry, and X-ray photoelectron spectroscopy (XPS). XPS revealed the presence of one gallium per 2-3 styrene sulfonate groups of the polymer brushes. The catalytic activity of the Lewis acid-functionalized brushes in a microreactor was demonstrated for the dehydration of oximes, using cinnamaldehyde oxime as a model substrate, and for the formation of oxazoles by ring closure of ortho-hydroxy oximes. The catalytic activity of the microreactor could be maintained by periodic reactivation by treatment with GaCl3.

  19. A gallium(III) Schiff base-curcumin complex that binds to amyloid-β plaques.

    PubMed

    Lange, Jaclyn L; Hayne, David J; Roselt, Peter; McLean, Catriona A; White, Jonathan M; Donnelly, Paul S

    2016-09-01

    Gallium-68 is a positron-emitting isotope that can be used in positron-emission tomography imaging agents. Alzheimer's disease is associated with the formation of plaques in the brain primarily comprised of aggregates of a 42 amino acid protein called amyloid-β. With the goal of synthesising charge neutral, low molecular weight, lipophilic gallium complexes with the potential to cross the blood-brain barrier and bind to Aβ plaques we have used an ancillary tetradentate N 2 O 2 Schiff base ligand and the β-diketone curcumin as a bidentate ligand to give a six-coordinate Ga 3+ complex. The tetradentate Schiff base ligand adopts the cis-β configuration with deprotonated curcumin acting as a bidentate ligand. The complex binds to amyloid-β plaques in human brain tissue and it is possible that extension of this chemistry to positron-emitting gallium-68 could provide useful imaging agents for Alzheimer's disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Lack of gallium uptake in primary hepatic amyloidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Georgen, T.G.; Taylor, A.; Alazraki, N.

    1976-06-01

    Technetium-99m-sulfur colloid and /sup 67/Ga citrate hepatic scintigrams showed matching defects in a patient with diffuse primary amyloidosis. Amyloidosis should be added to the usual differential diagnosis of such matching lesions which includes cysts, fibrosis, most benign tumors, and occasional metastatic lesions which do not concentrate gallium.

  1. Semiconducting lithium indium diselenide: Charge-carrier properties and the impacts of high flux thermal neutron irradiation

    NASA Astrophysics Data System (ADS)

    Hamm, Daniel S.; Rust, Mikah; Herrera, Elan H.; Matei, Liviu; Buliga, Vladimir; Groza, Michael; Burger, Arnold; Stowe, Ashley; Preston, Jeff; Lukosi, Eric D.

    2018-06-01

    This paper reports on the charge carrier properties of several lithium indium diselenide (LISe) semiconductors. It was found that the charge collection efficiency of LISe was improved after high flux thermal neutron irradiation including the presence of a typically unobservable alpha peak from hole-only collection. Charge carrier trap energies of the irradiated sample were measured using photo-induced current transient spectroscopy. Compared to previous studies of this material, no significant differences in trap energies were observed. Through trap-filled limited voltage measurements, neutron irradiation was found to increase the density of trap states within the bulk of the semiconductor, which created a polarization effect under alpha exposure but not neutron exposure. Further, the charge collection efficiency of the irradiated sample was higher (14-15 fC) than that of alpha particles (3-5 fC), indicating that an increase in hole signal contribution resulted from the neutron irradiation. Finally, it was observed that significant charge loss takes place near the point of generation, producing a significant scintillation response and artificially inflating the W-value of all semiconducting LISe crystals.

  2. Gallium-67 imaging in muscular sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edan, G.; Bourguet, P.; Delaval, P.

    1984-07-01

    A case is presented of sarcoid myopathy in which radiogallium was seen to accumulate in the sites of muscle involvement. Uptake of the radiotracer disappeared following institution of corticosteroid therapy. The exceptional nature of this case contrasts with the high frequency of biopsy evidence of sarcoid granulomas in muscle. Gallium-67 imaging can be used to determine the extent of muscle involvement and, through evaluation of uptake intensity, the degree of disease activity before and after treatment.

  3. Gallium scanning in sarcoidosis. [/sup 67/Ga tracer technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Israel, H.L.; Park, C.H.; Mansfield, C.M.

    1976-01-01

    The uptake of gallium-67 by pulmonary sarcoidosis was noted by Langhammer et al. in 1972 and by McKusick et al. in 1973. Heshiki et al. studied the application of this procedure in the diagnosis of sarcoidosis and concluded that although gallium-67 uptake in lungs and hilar regions correlated poorly with clinical activity, its measurement might prove useful in the diagnosis of sarcoidosis and in the measurement of response to therapy. We have undertaken to evaluate further the clinical usefulness of this technique. Thirty-six patients, 27 of whom had sarcoidosis, were given intravenous injections of 3 ml of commercially obtained (/supmore » 67/Ga) citrate. None were receiving corticosteroid therapy at the time of the initial study. Three days later simultaneous anterior and posterior scans of the thorax and the upper abdomen were performed in the supine position. 1 table.« less

  4. POLLUTION PREVENTION IN THE SEMICONDUCTOR INDUSTRY THROUGH RECOVERY AND RECYCLING OF GALLIUM AND ARSENIC FROM GAAS POLISHING WASTES

    EPA Science Inventory

    A process was developed for the recovery of both arsenic and gallium from gallium arsenide polishing wastes. The economics associated with the current disposal techniques utilizing ferric hydroxide precipitation dictate that sequential recovery of toxic arsenic and valuble galliu...

  5. Gallium Nitride Crystals: Novel Supercapacitor Electrode Materials.

    PubMed

    Wang, Shouzhi; Zhang, Lei; Sun, Changlong; Shao, Yongliang; Wu, Yongzhong; Lv, Jiaxin; Hao, Xiaopeng

    2016-05-01

    A type of single-crystal gallium nitride mesoporous membrane is fabricated and its supercapacitor properties are demonstrated for the first time. The supercapacitors exhibit high-rate capability, stable cycling life at high rates, and ultrahigh power density. This study may expand the range of crystals as high-performance electrode materials in the field of energy storage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Elastic properties of crystalline and liquid gallium at high pressures

    NASA Astrophysics Data System (ADS)

    Lyapin, A. G.; Gromnitskaya, E. L.; Yagafarov, O. F.; Stal'Gorova, O. V.; Brazhkin, V. V.

    2008-11-01

    The elastic properties of gallium, such as the bulk modulus B, the shear modulus G, and the Poisson’s ratio σ, are investigated and the relative change in the volume is determined in the stability regions of the Ga I, Ga II, and liquid phases at pressures of up to 1.7 GPa. The observed lines of the Ga I-Ga II phase transition and the melting curves of the Ga I and Ga II phases are in good agreement with the known phase diagram of gallium; in this case, the coordinates of the Ga I-Ga II-melt triple point are determined to be 1.24 ± 0.40 GPa and 277 ± 2 K. It is shown that the Ga I-Ga II phase transition is accompanied by a considerable decrease in the moduli B (by 30%) and G (by 55%) and an increase in the density by 5.7%. The Poisson’s ratio exhibits a jump from typically covalent values of approximately 0.22-0.25 to values of approximately 0.32-0.33, which are characteristic of metals. The observed behavior of the elastic characteristics is described in the framework of the model of the phase transition from a “quasi-molecular” (partially covalent) metal state to a “normal” metal state. An increase in the Poisson’s ratio in the Ga I phase from 0.22 to 0.25 with an increase in the pressure can be interpreted as a decrease in the degree of covalence, i.e., the degree of spatial anisotropy of the electron density along the bonds, whereas the large value of the pressure derivative of the bulk modulus (equal to approximately 8) observed up to the transition to the Ga II phase or the melt is associated not only with the quasicovalent nature of the Ga I phase but also with the structural features. In view of the presence of seven neighbors for each gallium atom in the Ga I phase, the gallium lattice can be treated as a structure intermediate between typical open-packed and close-packed structures. Premelting effects, such as a flattening of the isothermal dependence of the shear modulus G( p) with increasing pressure and an increase in the slope of the

  7. Chelator free gallium-68 radiolabelling of silica coated iron oxide nanorods via surface interactions

    NASA Astrophysics Data System (ADS)

    Burke, Benjamin P.; Baghdadi, Neazar; Kownacka, Alicja E.; Nigam, Shubhanchi; Clemente, Gonçalo S.; Al-Yassiry, Mustafa M.; Domarkas, Juozas; Lorch, Mark; Pickles, Martin; Gibbs, Peter; Tripier, Raphaël; Cawthorne, Christopher; Archibald, Stephen J.

    2015-09-01

    The commercial availability of combined magnetic resonance imaging (MRI)/positron emission tomography (PET) scanners for clinical use has increased demand for easily prepared agents which offer signal or contrast in both modalities. Herein we describe a new class of silica coated iron-oxide nanorods (NRs) coated with polyethylene glycol (PEG) and/or a tetraazamacrocyclic chelator (DO3A). Studies of the coated NRs validate their composition and confirm their properties as in vivo T2 MRI contrast agents. Radiolabelling studies with the positron emitting radioisotope gallium-68 (t1/2 = 68 min) demonstrate that, in the presence of the silica coating, the macrocyclic chelator was not required for preparation of highly stable radiometal-NR constructs. In vivo PET-CT and MR imaging studies show the expected high liver uptake of gallium-68 radiolabelled nanorods with no significant release of gallium-68 metal ions, validating our innovation to provide a novel simple method for labelling of iron oxide NRs with a radiometal in the absence of a chelating unit that can be used for high sensitivity liver imaging.The commercial availability of combined magnetic resonance imaging (MRI)/positron emission tomography (PET) scanners for clinical use has increased demand for easily prepared agents which offer signal or contrast in both modalities. Herein we describe a new class of silica coated iron-oxide nanorods (NRs) coated with polyethylene glycol (PEG) and/or a tetraazamacrocyclic chelator (DO3A). Studies of the coated NRs validate their composition and confirm their properties as in vivo T2 MRI contrast agents. Radiolabelling studies with the positron emitting radioisotope gallium-68 (t1/2 = 68 min) demonstrate that, in the presence of the silica coating, the macrocyclic chelator was not required for preparation of highly stable radiometal-NR constructs. In vivo PET-CT and MR imaging studies show the expected high liver uptake of gallium-68 radiolabelled nanorods with no

  8. Gallium-containing polymer brush film as efficient supported Lewis acid catalyst in a glass microreactor

    PubMed Central

    Munirathinam, Rajesh; Ricciardi, Roberto; Egberink, Richard J M; Huskens, Jurriaan; Holtkamp, Michael; Wormeester, Herbert; Karst, Uwe

    2013-01-01

    Summary Polystyrene sulfonate polymer brushes, grown on the interior of the microchannels in a microreactor, have been used for the anchoring of gallium as a Lewis acid catalyst. Initially, gallium-containing polymer brushes were grown on a flat silicon oxide surface and were characterized by FTIR, ellipsometry, and X-ray photoelectron spectroscopy (XPS). XPS revealed the presence of one gallium per 2–3 styrene sulfonate groups of the polymer brushes. The catalytic activity of the Lewis acid-functionalized brushes in a microreactor was demonstrated for the dehydration of oximes, using cinnamaldehyde oxime as a model substrate, and for the formation of oxazoles by ring closure of ortho-hydroxy oximes. The catalytic activity of the microreactor could be maintained by periodic reactivation by treatment with GaCl3. PMID:24062830

  9. A study of the applicability of gallium arsenide and silicon carbide as aerospace sensor materials

    NASA Technical Reports Server (NTRS)

    Hurley, John S.

    1990-01-01

    Most of the piezoresistive sensors, to date, are made of silicon and germanium. Unfortunately, such materials are severly restricted in high temperature environments. By comparing the effects of temperature on the impurity concentrations and piezoresistive coefficients of silicon, gallium arsenide, and silicon carbide, it is being determined if gallium arsenide and silicon carbide are better suited materials for piezoresistive sensors in high temperature environments. The results show that the melting point for gallium arsenide prevents it from solely being used in high temperature situations, however, when used in the alloy Al(x)Ga(1-x)As, not only the advantage of the wider energy band gas is obtained, but also the higher desire melting temperature. Silicon carbide, with its wide energy band gap and higher melting temperature suggests promise as a high temperature piezoresistive sensor.

  10. Selectively Plasmon-Enhanced Second-Harmonic Generation from Monolayer Tungsten Diselenide on Flexible Substrates.

    PubMed

    Wang, Zhuo; Dong, Zhaogang; Zhu, Hai; Jin, Lei; Chiu, Ming-Hui; Li, Lain-Jong; Xu, Qing-Hua; Eda, Goki; Maier, Stefan A; Wee, Andrew T S; Qiu, Cheng-Wei; Yang, Joel K W

    2018-02-27

    Monolayer two-dimensional transition-metal dichalcogenides (2D TMDCs) exhibit promising characteristics in miniaturized nonlinear optical frequency converters, due to their inversion asymmetry and large second-order nonlinear susceptibility. However, these materials usually have very short light interaction lengths with the pump laser because they are atomically thin, such that second-harmonic generation (SHG) is generally inefficient. In this paper, we fabricate a judiciously structured 150 nm-thick planar surface consisting of monolayer tungsten diselenide and sub-20 nm-wide gold trenches on flexible substrates, reporting ∼7000-fold SHG enhancement without peak broadening or background in the spectra as compared to WSe 2 on as-grown sapphire substrates. Our proof-of-concept experiment yields effective second-order nonlinear susceptibility of 2.1 × 10 4 pm/V. Three orders of magnitude enhancement is maintained with pump wavelength ranging from 800 to 900 nm, breaking the limitation of narrow pump wavelength range for cavity-enhanced SHG. In addition, SHG amplitude can be dynamically controlled via selective excitation of the lateral gap plasmon by rotating the laser polarization. Such a fully open, flat, and ultrathin profile enables a great variety of functional samples with high SHG from one patterned silicon substrate, favoring scalable production of nonlinear converters. The surface accessibility also enables integration with other optical components for information processing in an ultrathin and flexible form.

  11. Role of Oxidative Stress in the Induction of Metallothionein-2A and Heme Oxygenase-1 Gene Expression by the Antineoplastic Agent Gallium Nitrate in Human Lymphoma Cells

    PubMed Central

    Yang, Meiying; Chitambar, Christopher R.

    2008-01-01

    The mechanisms of action of gallium nitrate, an antineoplastic drug, are only partly understood. Using a DNA microarray to examine genes induced by gallium nitrate in CCRF-CEM cells, we found that gallium increased metallothionein-2A (MT2A) and heme oxygenase-1 (HO-1) gene expression and altered the levels of other stress-related genes. MT2A and HO-1 were increased after 6 and 16 h of incubation with gallium nitrate. An increase in oxidative stress, evidenced by a decrease in cellular GSH and GSH/GSSG ratio, and an increase in dichlorodihydrofluoroscein (DCF) fluorescence, was seen after 1 – 4 h incubation of cells with gallium nitrate. DCF fluorescence was blocked by the mitochondria-targeted antioxidant mitoquinone. N-acetyl-L-cysteine blocked gallium-induced MT2A and HO-1 expression and increased gallium’s cytotoxicity. Studies with a zinc-specific fluoroprobe suggested that gallium produced an expansion of an intracellular labile zinc pool, suggesting an action of gallium on zinc homeostasis. Gallium nitrate increased the phosphorylation of p38 mitogen-activated protein kinase and activated Nrf-2, a regulator of HO-1 gene transcription. Gallium-induced Nrf-2 activation and HO-1 expression were diminished by a p38 MAP kinase inhibitor. We conclude that gallium nitrate induces cellular oxidative stress as an early event which then triggers the expression of HO-1 and MT2A through different pathways. PMID:18586083

  12. Gallium ion-assisted room temperature synthesis of small-diameter ZnO nanorods.

    PubMed

    Cho, Seungho; Kim, Semi; Lee, Kun-Hong

    2011-09-15

    We report a method for synthesizing small-diameter ZnO nanorods at room temperature (20 °C), under normal atmospheric pressure (1 atm), and using a relatively short reaction time (1 h) by adding gallium salts to the reaction solution. The ZnO nanorods were, on average, 92 nm in length and 9 nm in diameter and were single crystalline in nature. Quantitative analyses revealed that gallium atoms were not incorporated into the synthesized nanocrystals. On the basis of the experimental results, we propose a mechanism for the formation of small-diameter ZnO nanorods in the presence of gallium ions. The optical properties were probed by UV-Vis diffuse reflectance spectroscopy. The absorption band of the small-diameter ZnO nanorods was blue-shifted relative to the absorption band of the ~230 nm diameter ZnO nanorods (control samples). Control experiments demonstrated that the absence of metal ion-containing precipitants (except ZnO) at room temperature is essential, and that the ZnO nanorod diameter distributions were narrow for the stirred reaction solution and broad when prepared without stirring. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Organometallic model complexes elucidate the active gallium species in alkane dehydrogenation catalysts based on ligand effects in Ga K-edge XANES

    DOE PAGES

    Getsoian, Andrew "Bean"; Das, Ujjal; Camacho-Bunquin, Jeffrey; ...

    2016-06-13

    Gallium-modified zeolites are known catalysts for the dehydrogenation of alkanes, reactivity that finds industrial application in the aromatization of light alkanes by Ga-ZSM5. While the role of gallium cations in alkane activation is well known, the oxidation state and coordination environment of gallium under reaction conditions has been the subject of debate. Edge shifts in Ga K-edge XANES spectra acquired under reaction conditions have long been interpreted as evidence for reduction of Ga(III) to Ga(I). However, a change in oxidation state is not the only factor that can give rise to a change in the XANES spectrum. In order tomore » better understand the XANES spectra of working catalysts, we have synthesized a series of molecular model compounds and grafted surface organometallic Ga species and compared their XANES spectra to those of gallium-based catalysts acquired under reducing conditions. We demonstrate that changes in the identity and number of gallium nearest neighbors can give rise to changes in XANES spectra similar to those attributed in literature to changes in oxidation state. Specifically, spectral features previously attributed to Ga(I) may be equally well interpreted as evidence for low-coordinate Ga(III) alkyl or hydride species. Furthermore, these findings apply both to gallium-impregnated zeolite catalysts and to silica-supported single site gallium catalysts, the latter of which is found to be active and selective for dehydrogenation of propane and hydrogenation of propylene.« less

  14. Shear strengths of a gallium alloy bonded to human enamel following nine different surface treatments.

    PubMed

    Claire, J; Williams, P T

    2001-03-01

    Gallium and indium-containing alloys have demonstrated an ability to wet and bond to many types of materials including enamel. The purpose of this study was to evaluate and compare the bond strengths of a gallium-and-indium-containing alloy and a dental amalgam to human enamel surfaces. A flat enamel bonding surface was created by slicing recently extracted human molars with a 180-grit diamond wheel. Cylinders of amalgam or a gallium-indium alloy were bonded to the as-cut surfaces or to as-cut surfaces that had been pumiced, air-abraded or acid-etched for various times. Before testing, samples were stored under different conditions (100% humidity, immersed in water, thermocycled). The shear-bond strength was determined using a crosshead speed of 0.1 mm x min(-1). Sample size was 10. Data was subjected to ANOVA and a post-hoc Tukey's test. The bond strength of amalgam to enamel was zero. The bond strength of the gallium-indium alloy ranged between 6.5 MPa (10s etch with 10% phosphoric acid) and 4.2 MPa (pumiced enamel). Acid-etching significantly increased the bond strength (P>0.0001) The bond strength was not significantly affected by the type of mechanical surface preparation, storage conditions, thermocycling, etching times or acid concentrations. Bonding, particularly chemical bonding, suggests a greater potential for better wetting and therefore better sealing of a cavity. Since microleakage of restorations is one of the principal causes of restoration failure, materials that can bond may in turn posses enhanced resistance to microleakage and ultimately, resistance to restoration failure. The gallium-indium alloy evaluated in this study may be such an alloy.

  15. Ingestion of gallium phosphide nanowires has no adverse effect on Drosophila tissue function.

    PubMed

    Adolfsson, Karl; Schneider, Martina; Hammarin, Greger; Häcker, Udo; Prinz, Christelle N

    2013-07-19

    Engineered nanoparticles have been under increasing scrutiny in recent years. High aspect ratio nanoparticles such as carbon nanotubes and nanowires have raised safety concerns due to their geometrical similarity to asbestos fibers. III-V epitaxial semiconductor nanowires are expected to be utilized in devices such as LEDs and solar cells and will thus be available to the public. In addition, clean-room staff fabricating and characterizing the nanowires are at risk of exposure, emphasizing the importance of investigating their possible toxicity. Here we investigated the effects of gallium phosphide nanowires on the fruit fly Drosophila melanogaster. Drosophila larvae and/or adults were exposed to gallium phosphide nanowires by ingestion with food. The toxicity and tissue interaction of the nanowires was evaluated by investigating tissue distribution, activation of immune response, genome-wide gene expression, life span, fecundity and somatic mutation rates. Our results show that gallium phosphide nanowires applied through the diet are not taken up into Drosophila tissues, do not elicit a measurable immune response or changes in genome-wide gene expression and do not significantly affect life span or somatic mutation rate.

  16. Ingestion of gallium phosphide nanowires has no adverse effect on Drosophila tissue function

    NASA Astrophysics Data System (ADS)

    Adolfsson, Karl; Schneider, Martina; Hammarin, Greger; Häcker, Udo; Prinz, Christelle N.

    2013-07-01

    Engineered nanoparticles have been under increasing scrutiny in recent years. High aspect ratio nanoparticles such as carbon nanotubes and nanowires have raised safety concerns due to their geometrical similarity to asbestos fibers. III-V epitaxial semiconductor nanowires are expected to be utilized in devices such as LEDs and solar cells and will thus be available to the public. In addition, clean-room staff fabricating and characterizing the nanowires are at risk of exposure, emphasizing the importance of investigating their possible toxicity. Here we investigated the effects of gallium phosphide nanowires on the fruit fly Drosophila melanogaster. Drosophila larvae and/or adults were exposed to gallium phosphide nanowires by ingestion with food. The toxicity and tissue interaction of the nanowires was evaluated by investigating tissue distribution, activation of immune response, genome-wide gene expression, life span, fecundity and somatic mutation rates. Our results show that gallium phosphide nanowires applied through the diet are not taken up into Drosophila tissues, do not elicit a measurable immune response or changes in genome-wide gene expression and do not significantly affect life span or somatic mutation rate.

  17. Appraisal of lupus nephritis by renal imaging with gallium-67

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakir, A.A.; Lopez-Majano, V.; Hryhorczuk, D.O.

    1985-08-01

    To assess the activity of lupus nephritis, 43 patients with systemic lupus erythematosus (SLE) were studied by gallium imaging. Delayed renal visualization 48 hours after the gallium injection, a positive result, was noted in 25 of 48 scans. Active renal disease was defined by the presence of hematuria, pyuria (10 or more red blood cells or white blood cells per high-power field), proteinuria (1 g or more per 24 hours), a rising serum creatinine level, or a recent biopsy specimen showing proliferative and/or necrotizing lesions involving more than 20 percent of glomeruli. Renal disease was active in 18 instances, inactivemore » in 23, and undetermined in seven (a total of 48 scans). Sixteen of the 18 scans (89 percent) in patients with active renal disease showed positive findings, as compared with only four of 23 scans (17 percent) in patients with inactive renal disease (p less than 0.001). Patients with positive scanning results had a higher rate of hypertension (p = 0.02), nephrotic proteinuria (p = 0.01), and progressive renal failure (p = 0.02). Mild mesangial nephritis (World Health Organization classes I and II) was noted only in the patients with negative scanning results (p = 0.02) who, however, showed a higher incidence of severe extrarenal SLE (p = 0.04). It is concluded that gallium imaging is a useful tool in evaluating the activity of lupus nephritis.« less

  18. Synthesis, Structure, and Antiproliferative Activity of Three Gallium(III) Azole Complexes

    PubMed Central

    Zanias, Stergios; Papaefstathiou, Giannis S.; Raptopoulou, Catherine P.; Papazisis, Konstantinos T.; Vala, Vasiliki; Zambouli, Dimitra; Kortsaris, Alexandros H.; Kyriakidis, Dimitrios A.; Zafiropoulos, Theodoros F.

    2010-01-01

    As part of our interest into the bioinorganic chemistry of gallium, gallium(III) complexes of the azole ligands 2,1,3-benzothiadiazole (btd), 1,2,3-benzotriazole (btaH), and 1-methyl-4,5-diphenylimidazole (L) have been isolated. Reaction of btaH or btd with GaBr3 or GaCl3 resulted in the mononuclear complexes [GaBr3(btaH)2] (1) and [GaCl3(btd)2] (2), respectively, while treatment of GaCl3 with L resulted in the anionic complex (LH)2[GaCl4] (3). All three complexes were characterized by single-crystal X-ray crystallography and IR spectroscopy, while their antiproliferative activities were investigated against a series of human and mouse cancer cell lines. PMID:20721278

  19. Development of coring procedures applied to Si, CdTe, and CIGS solar panels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moutinho, H. R.; Johnston, S.; To, B.

    Most of the research on the performance and degradation of photovoltaic modules is based on macroscale measurements of device parameters such as efficiency, fill factor, open-circuit voltage, and short-circuit current. Our goal is to develop the capabilities to allow us to study the degradation of these parameters in the micro- and nanometer scale and to relate our results to performance parameters. To achieve this objective, the first step is to be able to access small samples from specific areas of the solar panels without changing the properties of the material. In this paper, we describe two coring procedures that wemore » developed and applied to Si, CIGS, and CdTe solar panels. In the first procedure, we cored full samples, whereas in the second we performed a partial coring that keeps the tempered glass intact. The cored samples were analyzed by different analytical techniques before and after coring, at the same locations, and no damage during the coring procedure was observed.« less

  20. Development of coring procedures applied to Si, CdTe, and CIGS solar panels

    DOE PAGES

    Moutinho, H. R.; Johnston, S.; To, B.; ...

    2018-01-04

    Most of the research on the performance and degradation of photovoltaic modules is based on macroscale measurements of device parameters such as efficiency, fill factor, open-circuit voltage, and short-circuit current. Our goal is to develop the capabilities to allow us to study the degradation of these parameters in the micro- and nanometer scale and to relate our results to performance parameters. To achieve this objective, the first step is to be able to access small samples from specific areas of the solar panels without changing the properties of the material. In this paper, we describe two coring procedures that wemore » developed and applied to Si, CIGS, and CdTe solar panels. In the first procedure, we cored full samples, whereas in the second we performed a partial coring that keeps the tempered glass intact. The cored samples were analyzed by different analytical techniques before and after coring, at the same locations, and no damage during the coring procedure was observed.« less

  1. Latest progress in gallium-oxide electronic devices

    NASA Astrophysics Data System (ADS)

    Higashiwaki, Masataka; Wong, Man Hoi; Konishi, Keita; Nakata, Yoshiaki; Lin, Chia-Hung; Kamimura, Takafumi; Ravikiran, Lingaparthi; Sasaki, Kohei; Goto, Ken; Takeyama, Akinori; Makino, Takahiro; Ohshima, Takeshi; Kuramata, Akito; Yamakoshi, Shigenobu; Murakami, Hisashi; Kumagai, Yoshinao

    2018-02-01

    Gallium oxide (Ga2O3) has emerged as a new competitor to SiC and GaN in the race toward next-generation power switching and harsh environment electronics by virtue of the excellent material properties and the relative ease of mass wafer production. In this proceedings paper, an overview of our recent development progress of Ga2O3 metal-oxide-semiconductor field-effect transistors and Schottky barrier diodes will be reported.

  2. Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching.

    PubMed

    Swain, Basudev; Mishra, Chinmayee; Kang, Leeseung; Park, Kyung-Soo; Lee, Chan Gi; Hong, Hyun Seon

    2015-04-01

    Waste dust generated during manufacturing of LED contains significant amounts of gallium and indium, needs suitable treatment and can be an important resource for recovery. The LED industry waste dust contains primarily gallium as GaN. Leaching followed by purification technology is the green and clean technology. To develop treatment and recycling technology of these GaN bearing e-waste, leaching is the primary stage. In our current investigation possible process for treatment and quantitative leaching of gallium and indium from the GaN bearing e-waste or waste of LED industry dust has been developed. To recycle the waste and quantitative leaching of gallium, two different process flow sheets have been proposed. In one, process first the GaN of the waste the LED industry dust was leached at the optimum condition. Subsequently, the leach residue was mixed with Na2CO3, ball milled followed by annealing, again leached to recover gallium. In the second process, the waste LED industry dust was mixed with Na2CO3, after ball milling and annealing, followed acidic leaching. Without pretreatment, the gallium leaching was only 4.91 w/w % using 4M HCl, 100°C and pulp density of 20g/L. After mechano-chemical processing, both these processes achieved 73.68 w/w % of gallium leaching at their optimum condition. The developed process can treat and recycle any e-waste containing GaN through ball milling, annealing and leaching. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Bilateral Comparison of Mercury and Gallium Fixed-Point Cells Using Standard Platinum Resistance Thermometer

    NASA Astrophysics Data System (ADS)

    Bojkovski, J.; Veliki, T.; Zvizdić, D.; Drnovšek, J.

    2011-08-01

    The objective of project EURAMET 1127 (Bilateral comparison of triple point of mercury and melting point of gallium) in the field of thermometry is to compare realization of a triple point of mercury (-38.8344 °C) and melting point of gallium (29.7646 °C) between the Slovenian national laboratory MIRS/UL-FE/LMK and the Croatian national laboratory HMI/FSB-LPM using a long-stem 25 Ω standard platinum resistance thermometer (SPRT). MIRS/UL/FE-LMK participated in a number of intercomparisons on the level of EURAMET. On the other hand, the HMI/LPM-FSB laboratory recently acquired new fixed-point cells which had to be evaluated in the process of intercomparisons. A quartz-sheathed SPRT has been selected and calibrated at HMI/LPM-FSB at the triple point of mercury, the melting point of gallium, and the water triple point. A second set of measurements was made at MIRS/UL/FE-LMK. After its return, the SPRT was again recalibrated at HMI/LPM-FSB. In the comparison, the W value of the SPRT has been used. Results of the bilateral intercomparison confirmed that the new gallium cell of the HMI/LPM-FSB has a value that is within uncertainty limits of both laboratories that participated in the exercise, while the mercury cell experienced problems. After further research, a small leakage in the mercury fixed-point cell has been found.

  4. Gallium-67 imaging in muscular sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edan, G.; Bourguet, P.; Delaval, P.

    1984-07-01

    A case is presented of sarcoid myopathy in which radiogallium was seen to accumulate in the sites of muscle involvement. Uptake of the radiotracer disappeared following institution of corticosteroid therapy. The exceptional nature of this case contrasts with the high frequency of biopsy evidence of sarcoid muscle disease but is consistent with the rarity of clinical evidence of sarcoid granulomas in muscle. Gallium-67 imaging can be used to determine the extent of muscle involvement and, through evaluation of uptake intensity, the degree of disease activity before and after treatment.

  5. Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles.

    PubMed

    Wu, Pae C; Khoury, Christopher G; Kim, Tong-Ho; Yang, Yang; Losurdo, Maria; Bianco, Giuseppe V; Vo-Dinh, Tuan; Brown, April S; Everitt, Henry O

    2009-09-02

    Size-controlled gallium nanoparticles deposited on sapphire were explored as alternative substrates to enhance Raman spectral signatures. Gallium's resilience following oxidation is inherently advantageous in comparison with silver for practical ex vacuo nonsolution applications. Ga nanoparticles were grown using a simple molecular beam epitaxy-based fabrication protocol, and monitoring their corresponding surface plasmon resonance energy through in situ spectroscopic ellipsometry allowed the nanoparticles to be easily controlled for size. The Raman spectra obtained from cresyl fast violet (CFV) deposited on substrates with differing mean nanoparticle sizes represent the first demonstration of enhanced Raman signals from reproducibly tunable self-assembled Ga nanoparticles. Nonoptimized aggregate enhancement factors of approximately 80 were observed from the substrate with the smallest Ga nanoparticles for CFV dye solutions down to a dilution of 10 ppm.

  6. Gallium nitride microcavities formed by photoenhanced wet oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, L.-H.; Lu, C.-Y.; Wu, W.-H.

    We report the formation of gallium nitride (GaN) microcavities by manipulating a photoenhanced oxidation rate difference between the polar and nonpolar crystallographic planes of GaN. When immersed in a buffered acetic (CH{sub 3}COOH) electrolyte of pH{approx}6.2 at room temperature, it is shown that the photo-oxidation can proceed at a rate that is one order of magnitude slower on the nonpolar plane of {l_brace}1100{r_brace}{sub GaN} than on the polar plane of {l_brace}0001{r_brace}{sub GaN} due to the reduced surface field action. Gallium nitride microcavities bounded by optically smooth {l_brace}1100{r_brace} and {l_brace}1103{r_brace} facets can thus be preferentially formed on the c-plane sapphire substratemore » after dissolving the oxide layer. The optical properties of these GaN hexagonal cavities reveal characteristic peaks of whispering gallery modes in resonance with the GaN band edge emission spectrum. A typical cavity Q factor of 10{sup 3} is observed in these GaN microcavities due to a reduced optical scattering loss in the wet chemical reaction process.« less

  7. Screening and identification of novel compounds with potential anti-proliferative effects on gallium-resistant lung cancer through an AXL kinase pathway.

    PubMed

    Oyewumi, Moses O; Alazizi, Adnan; Liva, Sophia; Lin, Li; Geldenhuys, Werner J

    2014-09-15

    The clinical application of gallium compounds as anticancer agents is hampered by development of resistance. As a potential strategy to overcome the limitation, eight series of compounds were identified through virtual screening of AXL kinase homology model. Anti-proliferative studies were carried using gallium-sensitive (S) and gallium-resistant (R) human lung adenocarcinoma (A549) cells. Compounds 5476423 and 7919469 were identified as leads. The IC50 values from treating R-cells showed compounds 5476423 and 7919469 had 80 fold and 13 fold increased potency, respectively, compared to gallium acetylacetonate (GaAcAc). The efficacy of GaAcAc against R-cells was increased 2 fold and 1.2 fold when combined with compounds 5476423 and 7919469, respectively. Compared with S-cells, R-cells showed elevated expression of AXL protein, which was significantly suppressed through treatments with the lead compounds. It is anticipated that the lead compounds could be applied in virtual screening programs to identify novel scaffolds for new therapeutic agents as well as combinatorial therapy agents in gallium resistant lung cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Effects of different transferrin forms on transferrin receptor expression, iron uptake, and cellular proliferation of human leukemic HL60 cells. Mechanisms responsible for the specific cytotoxicity of transferrin-gallium.

    PubMed Central

    Chitambar, C R; Seligman, P A

    1986-01-01

    We have previously shown that human leukemic cells proliferate normally in serum-free media containing various transferrin forms, but the addition of transferrin-gallium leads to inhibition of cellular proliferation. Because gallium has therapeutic potential, the effects of transferrin-gallium on leukemic cell proliferation, transferrin receptor expression, and cellular iron utilization were studied. The cytotoxicity of gallium is considerably enhanced by its binding to transferrin and cytotoxicity can be reversed by transferrin-iron but not by other transferrin forms. Exposure to transferrin-gallium leads to a marked increase in cell surface transferrin binding sites, but despite this, cellular 59Fe incorporation is inappropriately low. Although shunting of transferrin-gallium to another cellular compartment has not been ruled out, other studies suggest that transferrin-gallium impairs intracellular release of 59Fe from transferrin by interfering with processes responsible for intracellular acidification. These studies, taken together, demonstrate that inhibition of cellular iron incorporation by transferrin-gallium is a prerequisite for inhibition of cellular proliferation. PMID:3465751

  9. Structural and electrical characteristics of gallium tin oxide thin films prepared by electron cyclotron resonance-metal organic chemical vapor deposition.

    PubMed

    Park, Ji Hun; Byun, Dongjin; Lee, Joong Kee

    2011-08-01

    Gallium tin oxide composite (GTO) thin films were prepared by electron cyclotron resonance-metal organic chemical vapor deposition (ECR-MOCVD). The organometallics of tetramethlytin and trimethylgallium were used for precursors of gallium and tin, respectively. X-ray diffraction (XRD) characterization indicated that the gallium tin oxide composite thin films show the nanopolycrystalline of tetragonal rutile structure. Hall measurement indicated that the Ga/[O+Sn] mole ratio play an important role to determine the electrical properties of gallium tin composite oxide thin films. n-type conducting film obtained Ga/[O+Sn] mole ratio of 0.05 exhibited the lowest electrical resistivity of 1.21 x 10(-3) ohms cm. In our experimental range, the optimized carrier concentration of 3.71 x 10(18) cm(-3) was prepared at the Ga/[O+Sn] mole ratio of 0.35.

  10. Ultrathin molybdenum diselenide nanosheets anchored on multi-walled carbon nanotubes as anode composites for high performance sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Zhian; Yang, Xing; Fu, Yun; Du, Ke

    2015-11-01

    Ultrathin molybdenum diselenide nanosheets are decorated on the surface of multi-walled carbon nanotubes (MWCNT) via a one-step hydrothermal method. Uniform MoSe2 nanosheets are firmly anchored on MWCNT according to the characterizations of scanning electron microscope (SEM), transmission electron microscope (TEM). When evaluated as anodes for sodium storage, the MoSe2@MWCNT composites deliver a reversible specific capacity of 459 mAh g-1 at a current of 200 mA g-1 over 90 cycles, and a specific capacity of 385 mAh g-1 even at a current rate of 2000 mAh g-1, which is better than the MoSe2 nanosheets. The enhanced electrochemical performance of the MoSe2@MWCNT composites can be ascribed to the synergic effects of MoSe2 nanosheets and MWCNT. The high capacity and good rate performance reveal that the MoSe2@MWCNT composites are very promising for applications in sodium-ion batteries.

  11. Controlling Surface Chemistry of Gallium Liquid Metal Alloys to Enhance their Fluidic Properties

    NASA Astrophysics Data System (ADS)

    Ilyas, Nahid; Cumby, Brad; Cook, Alexander; Durstock, Michael; Tabor, Christopher; Materials; Manufacturing Directorate Team

    Gallium liquid metal alloys (GaLMAs) are one of the key components of emerging technologies in reconfigurable electronics, such as tunable radio frequency antennas and electronic switches. Reversible flow of GaLMA in microchannels of these types of devices is hindered by the instantaneous formation of its oxide skin in ambient environment. The oxide film sticks to most surfaces leaving unwanted metallic residues that can cause undesired electronic properties. In this report, residue-free reversible flow of a binary alloy of gallium (eutectic gallium indium) is demonstrated via two types of surface modifications where the oxide film is either protected by an organic thin film or chemically removed. An interface modification layer (alkyl phosphonic acids) was introduced into the microfluidic system to modify the liquid metal surface and protect its oxide layer. Alternatively, an ion exchange membrane was utilized as a 'sponge-like' channel material to store and slowly release small amounts of HCl to react with the surface oxide of the liquid metal. Characterization of these interfaces at molecular level by surface spectroscopy and microscopy provided with mechanistic details for the interfacial interactions between the liquid metal surface and the channel materials.

  12. Thermodynamic properties of lanthanum in gallium-zinc alloys

    NASA Astrophysics Data System (ADS)

    Dedyukhin, A. S.; Shepin, I. E.; Kharina, E. A.; Shchetinskiy, A. V.; Volkovich, V. A.; Yamshchikov, L. F.

    2016-09-01

    Thermodynamic properties of lanthanum were determined in gallium-zinc alloys of the eutectic and over-eutectic compositions. The electromotive force measurements were used to determine thermodynamic activity and sedimentation technique to measure solubility of lanthanum in liquid metal alloys. Temperature dependencies of lanthanum activity, solubility and activity coefficients in alloys with Ga-Zn mixtures containing 3.64, 15 and 50 wt. % zinc were obtained.

  13. Synthesis, antiproliferative activity and mechanism of gallium(III)-thiosemicarbazone complexes as potential anti-breast cancer agents.

    PubMed

    Qi, Jinxu; Yao, Qian; Qian, Kun; Tian, Liang; Cheng, Zhen; Yang, Dongmei; Wang, Yihong

    2018-05-14

    Five thiosemicarbazone ligands were synthesized and characterized by condensation with different aldehydes or ketones by 4-phenylthiosemicarbazone. The representative dichlorido[2-(Di-2-pyridinylmethylene)-Nphenylhydrazinecarbothioamide-N,N,S]-gallium(III) (Ga4) was characterized by X-ray single crystal diffraction, which was 1:1 ligand/Ga(III) complexes. The structure-activity relationship of these ligands and Ga (III) complexes have been investigated, and the results demonstrate that the formation of Ga (III) complexes have significant antiproliferative activity over the corresponding ligands. The anticancer mechanism of gallium (III) complexes has been studied in detail, which is typical agents that effect on the mitochondrial apoptotic pathway. The ability of gallium (III) complexes to inhibit the cell cycle does not enhanced with the increasing concentrations, whereas the ability to promote apoptosis is concentration-dependent. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. [Study on the determination of trace gallium in molybdenum-coated pyrolytic graphite tube by electrothermal absorption spectrometry].

    PubMed

    Huang, Yu-an; Zhou, Fang-qin; Long, Si-hua; Yang, Liu

    2004-02-01

    The effects on gallium atomization in the pyrolytic graphite tube imposed by different matrix modifiers and different coatings were discussed detailedly in this paper. In the presence of matrix modifier of Ni(NO3)2 the matrix interference was eliminated efficiently. The pyrolytic graphite tubes were coated differently with lanthanum, zirconium, and molybdenum to avoid producing gallium carbide. Results showed that the tube with molybdenum coating was the best. On this basis, the mechanism of gallium atomization in the molybdenum-coated pyrolytic graphite tube using Ni(NO3)2 as a matrix modifier was studied furthermore; in addition, the parameters of the operation were optimized. As a result, a new method improved in many aspects was developed to detect trace gallium in complicated sample of gangue. The outcomes of practical applications indicated that the method could satisfy the requests of analysis and that the manipulations were simple to achieve. The characteristic content, the detection limit, and the adding recoveries were 2.12 x 10(-11) g, 1.4 x 10(-10) g and 97.4%-102.7% respectively, and the relative standard deviation was less than or equal to 3.6% (n = 11).

  15. Diode laser-based thermometry using two-line atomic fluorescence of indium and gallium

    NASA Astrophysics Data System (ADS)

    Borggren, Jesper; Weng, Wubin; Hosseinnia, Ali; Bengtsson, Per-Erik; Aldén, Marcus; Li, Zhongshan

    2017-12-01

    A robust and relatively compact calibration-free thermometric technique using diode lasers two-line atomic fluorescence (TLAF) for reactive flows at atmospheric pressures is investigated. TLAF temperature measurements were conducted using indium and, for the first time, gallium atoms as temperature markers. The temperature was measured in a multi-jet burner running methane/air flames providing variable temperatures ranging from 1600 to 2000 K. Indium and gallium were found to provide a similar accuracy of 2.7% and precision of 1% over the measured temperature range. The reliability of the TLAF thermometry was further tested by performing simultaneous rotational CARS measurements in the same experiments.

  16. Compositional Control of the Mixed Anion Alloys in Gallium-Free InAs/InAsSb Superlattice Materials for Infrared Sensing (Postprint)

    DTIC Science & Technology

    2015-08-28

    AFRL-RX-WP-JA-2016-0251 COMPOSITIONAL CONTROL OF THE MIXED ANION ALLOYS IN GALLIUM -FREE InAs/InAsSb SUPERLATTICE MATERIALS FOR...ANION ALLOYS IN GALLIUM -FREE InAs/InAsSb SUPERLATTICE MATERIALS FOR INFRARED SENSING (POSTPRINT) 5a. CONTRACT NUMBER FA8650-07-D-5800-0006 5b...proceedings.spiedigitallibrary.org doi: 10.1117/12.2186188 14. ABSTRACT (Maximum 200 words) Gallium (Ga)-free InAs/InAsSb superlattices (SLs) are being actively explored for

  17. Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swain, Basudev, E-mail: swain@iae.re.kr; Mishra, Chinmayee; Kang, Leeseung

    Waste dust generated during manufacturing of LED contains significant amounts of gallium and indium, needs suitable treatment and can be an important resource for recovery. The LED industry waste dust contains primarily gallium as GaN. Leaching followed by purification technology is the green and clean technology. To develop treatment and recycling technology of these GaN bearing e-waste, leaching is the primary stage. In our current investigation possible process for treatment and quantitative leaching of gallium and indium from the GaN bearing e-waste or waste of LED industry dust has been developed. To recycle the waste and quantitative leaching of gallium,more » two different process flow sheets have been proposed. In one, process first the GaN of the waste the LED industry dust was leached at the optimum condition. Subsequently, the leach residue was mixed with Na{sub 2}CO{sub 3}, ball milled followed by annealing, again leached to recover gallium. In the second process, the waste LED industry dust was mixed with Na{sub 2}CO{sub 3}, after ball milling and annealing, followed acidic leaching. Without pretreatment, the gallium leaching was only 4.91 w/w % using 4 M HCl, 100 °C and pulp density of 20 g/L. After mechano-chemical processing, both these processes achieved 73.68 w/w % of gallium leaching at their optimum condition. The developed process can treat and recycle any e-waste containing GaN through ball milling, annealing and leaching. - Highlights: • Simplest process for treatment of GaN an LED industry waste developed. • The process developed recovers gallium from waste LED waste dust. • Thermal analysis and phase properties of GaN to Ga{sub 2}O{sub 3} and GaN to NaGaO{sub 2} revealed. • Solid-state chemistry involved in this process reported. • Quantitative leaching of the GaN was achieved.« less

  18. Tumor detection and elimination by a targeted gallium corrole

    PubMed Central

    Agadjanian, Hasmik; Ma, Jun; Rentsendorj, Altan; Valluripalli, Vinod; Hwang, Jae Youn; Mahammed, Atif; Farkas, Daniel L.; Gray, Harry B.; Gross, Zeev; Medina-Kauwe, Lali K.

    2009-01-01

    Sulfonated gallium(III) corroles are intensely fluorescent macrocyclic compounds that spontaneously assemble with carrier proteins to undergo cell entry. We report in vivo imaging and therapeutic efficacy of a tumor-targeted corrole noncovalently assembled with a heregulin-modified protein directed at the human epidermal growth factor receptor (HER). Systemic delivery of this protein-corrole complex results in tumor accumulation, which can be visualized in vivo owing to intensely red corrole fluorescence. Targeted delivery in vivo leads to tumor cell death while normal tissue is spared. These findings contrast with the effects of doxorubicin, which can elicit cardiac damage during therapy and required direct intratumoral injection to yield similar levels of tumor shrinkage compared with the systemically delivered corrole. The targeted complex ablated tumors at >5 times a lower dose than untargeted systemic doxorubicin, and the corrole did not damage heart tissue. Complexes remained intact in serum and the carrier protein elicited no detectable immunogenicity. The sulfonated gallium(III) corrole functions both for tumor detection and intervention with safety and targeting advantages over standard chemotherapeutic agents. PMID:19342490

  19. Thermodynamics of Alloys: Studies of Nickel-Gallium, Nickel-Germanium and Nickel-Rhodium Alloys.

    DTIC Science & Technology

    NICKEL ALLOYS, *GALLIUM ALLOYS, *GERMANIUM ALLOYS, * RHODIUM ALLOYS, *PHASE STUDIES, THERMODYNAMICS, INTERMETALLIC COMPOUNDS, FREE ENERGY, ENTROPY, HEAT OF FORMATION, CRYSTAL STRUCTURE, UNITED KINGDOM.

  20. The 13.9 GHz short pulse radar noise figure measurements utilizing silicon and gallium-arsenide mixer diodes

    NASA Technical Reports Server (NTRS)

    Dombrowski, M.

    1977-01-01

    An analysis was made on two commercially available silicon and gallium arsenide Schottky barrier diodes. These diodes were selected because of their particularly low noise figure in the frequency range of interest. The specified noise figure for the silicon and gallium arsenide diodes were 6.3 db and 5.3 db respectively when functioning as mixers in the 13.6 GHz region with optimum local oscillator drive.

  1. Proof-of-Concept Experiments on a Gallium-Based Ignitron for Pulsed Power Applications

    NASA Technical Reports Server (NTRS)

    Ali, H. K.; Hanson, V. S.; Polzin, K. A.; Pearson, J. B.

    2015-01-01

    ignitron designs have used mercury as the liquid metal cathode, owing to its presence as a liquid at room temperatures and a vapor pressure of 10 Pa (75 mtorr) at room temperature. While these are favorable properties, there are obvious environmental and personal safety concerns with the storage, handling, and use of mercury and its compounds. The purpose of the present work was to fabricate and test an ignitron that used as its cathode an alternate liquid metal that was safe to handle and store. To that end, an ignitron test article that used liquid gallium as the cathode material was developed and tested. Gallium is a metal that has a melting temperature of 29.76 C, which is slightly above room temperature, and a boiling point of over 2,300 C at atmospheric pressure. This property makes gallium the element with the largest relative difference between melting and boiling points. Gallium has a limited role in biology, and when ingested, it will be subsequently processed by the body and expelled rather than accumulating to toxic levels. The next section of this Technical Memorandum (TM) provides background information on the development of mercury-based ignitrons, which serves as the starting point for the development of the gallium-based variant. Afterwards, the experimental hardware and setup used in proof-of-concept testing of a basic gallium ignitron are presented. Experimental data, consisting of discharge voltage and current waveforms as well as high-speed imaging of the gallium arc discharge in the gallium ignitron test article, are presented to demonstrate the efficacy of the concept. Discussion of the data and suggestions on improvements for future iterations of the design are presented in the final two sections of this TM.

  2. Pulmonary cytomegalovirus infection: detection by Gallium-67 imaging in the transplant patient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamed, I.A.; Wenzl, J.E.; Leonard, J.C.

    1979-03-01

    Cytomegalovirus (CMV) infection is a frequent complication during the first few months following renal transplantation. The diagnosis is sometimes difficult but may be made by viral culture, a fourfold rise in the CMV antibody titer, or by demonstration of the CMV inclusions in the affected tissue. An increased pulmonary uptake of gallium citrate Ga 67 has been demonstrated following renal transplantation in two patients, each of whom had a fourfold rise in CMV complement fixing antibody titer, one of whom additionally had CMV inclusion bodies in a lung biopsy specimen prior to clinical or radiological demonstration of the pulmonary involvement.more » Gallium imaging, therefore, appears to be a valuable noninvasive test for early diagnosis of CMV pulmonary infections.« less

  3. Highly-Bioreactive Silica-Based Mesoporous Bioactive Glasses Enriched with Gallium(III).

    PubMed

    Sanchez-Salcedo, Sandra; Malavasi, Gianluca; Salinas, Antonio J; Lusvardi, Gigliola; Rigamonti, Luca; Menabue, Ledi; Vallet-Regi, Maria

    2018-03-02

    Beneficial effects in bone cell growth and antibacterial action are currently attributed to Ga 3+ ions. Thus, they can be used to upgrade mesoporous bioactive glasses (MBGs), investigated for tissue engineering, whenever they released therapeutic amounts of gallium ions to the surrounding medium. Three gallium-enriched MBGs with composition (in mol %) x SiO₂- y CaO- z P₂O₅-5Ga₂O₃, being x = 70, y = 15, z = 10 for Ga_1 ; x = 80, y = 12, z = 3 for Ga_2 ; and x = 80, y = 15, z = 0 for Ga_3 , were investigated and compared with the gallium-free 80SiO₂-15CaO-5P₂O₅ MBG ( B ). 29 Si and 31 P MAS NMR analyses indicated that Ga 3+ acts as network modifier in the glass regions with higher polymerization degree and as network former in the zones with high concentration of classical modifiers (Ca 2+ ions). Ga_1 and Ga_2 exhibited a quick in vitro bioactive response because they were coated by an apatite-like layer after 1 and 3 days in simulated body fluid. Although we have not conducted biological tests in this paper (cells or bacteria), Ga_1 released high but non-cytotoxic amounts of Ga 3+ ions in Todd Hewitt Broth culture medium that were 140 times higher than the IC90 of Pseudomonas aeruginosa bacteria, demonstrating its potential for tissue engineering applications.

  4. Highly-Bioreactive Silica-Based Mesoporous Bioactive Glasses Enriched with Gallium(III)

    PubMed Central

    Malavasi, Gianluca; Lusvardi, Gigliola; Menabue, Ledi

    2018-01-01

    Beneficial effects in bone cell growth and antibacterial action are currently attributed to Ga3+ ions. Thus, they can be used to upgrade mesoporous bioactive glasses (MBGs), investigated for tissue engineering, whenever they released therapeutic amounts of gallium ions to the surrounding medium. Three gallium-enriched MBGs with composition (in mol %) xSiO2–yCaO–zP2O5–5Ga2O3, being x = 70, y = 15, z = 10 for Ga_1; x = 80, y = 12, z = 3 for Ga_2; and x = 80, y = 15, z = 0 for Ga_3, were investigated and compared with the gallium-free 80SiO2–15CaO–5P2O5 MBG (B). 29Si and 31P MAS NMR analyses indicated that Ga3+ acts as network modifier in the glass regions with higher polymerization degree and as network former in the zones with high concentration of classical modifiers (Ca2+ ions). Ga_1 and Ga_2 exhibited a quick in vitro bioactive response because they were coated by an apatite-like layer after 1 and 3 days in simulated body fluid. Although we have not conducted biological tests in this paper (cells or bacteria), Ga_1 released high but non-cytotoxic amounts of Ga3+ ions in Todd Hewitt Broth culture medium that were 140 times higher than the IC90 of Pseudomonas aeruginosa bacteria, demonstrating its potential for tissue engineering applications. PMID:29498654

  5. Fabrication of Single Crystal Gallium Phosphide Thin Films on Glass.

    PubMed

    Emmer, Hal; Chen, Christopher T; Saive, Rebecca; Friedrich, Dennis; Horie, Yu; Arbabi, Amir; Faraon, Andrei; Atwater, Harry A

    2017-07-05

    Due to its high refractive index and low absorption coefficient, gallium phosphide is an ideal material for photonic structures targeted at the visible wavelengths. However, these properties are only realized with high quality epitaxial growth, which limits substrate choice and thus possible photonic applications. In this work, we report the fabrication of single crystal gallium phosphide thin films on transparent glass substrates via transfer bonding. GaP thin films on Si (001) and (112) grown by MOCVD are bonded to glass, and then the growth substrate is removed with a XeF 2 vapor etch. The resulting GaP films have surface roughnesses below 1 nm RMS and exhibit room temperature band edge photoluminescence. Magnesium doping yielded p-type films with a carrier density of 1.6 × 10 17  cm -3 that exhibited mobilities as high as 16 cm 2 V -1 s -1 . Due to their unique optical properties, these films hold much promise for use in advanced optical devices.

  6. Nanopipes in gallium nitride nanowires and rods.

    PubMed

    Jacobs, Benjamin W; Crimp, Martin A; McElroy, Kaylee; Ayres, Virginia M

    2008-12-01

    Gallium nitride nanowires and rods synthesized by a catalyst-free vapor-solid growth method were analyzed with cross section high-resolution transmission electron microscopy. The cross section studies revealed hollow core screw dislocations, or nanopipes, in the nanowires and rods. The hollow cores were located at or near the center of the nanowires and rods, along the axis of a screw dislocation. The formation of the hollow cores is consistent with effect of screw dislocations with giant Burgers vector predicted by Frank.

  7. Patterned gallium surfaces as molecular mirrors.

    PubMed

    Bossi, Alessandra; Rivetti, Claudio; Mangiarotti, Laura; Whitcombe, Michael J; Turner, Anthony P F; Piletsky, Sergey A

    2007-09-30

    An entirely new means of printing molecular information on a planar film, involving casting nanoscale impressions of the template protein molecules in molten gallium, is presented here for the first time. The metallic imprints not only replicate the shape and size of the proteins used as template. They also show specific binding for the template species. Such a simple approach to the creation of antibody-like properties in metallic mirrors can lead to applications in separations, microfluidic devices, and the development of new optical and electronic sensors, and will be of interest to chemists, materials scientists, analytical specialists, and electronic engineers.

  8. Gallium modulates osteoclastic bone resorption in vitro without affecting osteoblasts

    PubMed Central

    Verron, Elise; Masson, Martial; Khoshniat, Solmaz; Duplomb, Laurence; Wittrant, Yohann; Baud'huin, Marc; Badran, Zahi; Bujoli, Bruno; Janvier, Pascal; Scimeca, Jean-Claude; Bouler, Jean-Michel; Guicheux, Jérôme

    2010-01-01

    Background and purpose: Gallium (Ga) has been shown to be effective in the treatment of disorders associated with accelerated bone loss, including cancer-related hypercalcemia and Paget's disease. These clinical applications suggest that Ga could reduce bone resorption. However, few studies have studied the effects of Ga on osteoclastic resorption. Here, we have explored the effects of Ga on bone cells in vitro. Experimental approach: In different osteoclastic models [osteoclasts isolated from long bones of neonatal rabbits (RBC), murine RAW 264.7 cells and human CD14-positive cells], we have performed resorption activity tests, staining for tartrate resistant acid phosphatase (TRAP), real-time polymerase chain reaction analysis, viability and apoptotic assays. We also evaluated the effect of Ga on osteoblasts in terms of proliferation, viability and activity by using an osteoblastic cell line (MC3T3-E1) and primary mouse osteoblasts. Key results: Gallium dose-dependently (0–100 µM) inhibited the in vitro resorption activity of RBC and induced a significant decrease in the expression level of transcripts coding for osteoclastic markers in RAW 264.7 cells. Ga also dramatically reduced the formation of TRAP-positive multinucleated cells. Ga down-regulated in a dose-dependant manner the expression of the transcription factor NFATc1. However, Ga did not affect the viability or activity of primary and MC3T3-E1 osteoblasts. Conclusions and implications: Gallium exhibits a dose-dependent anti-osteoclastic effect by reducing in vitro osteoclastic resorption, differentiation and formation without negatively affecting osteoblasts. We provide evidence that this inhibitory mechanism involves down-regulation of NFATc1 expression, a master regulator of RANK-induced osteoclastic differentiation. PMID:20397300

  9. Proton and gallium(III) binding properties of a biologically active salicylidene acylhydrazide.

    PubMed

    Hakobyan, Shoghik; Boily, Jean-François; Ramstedt, Madeleine

    2014-09-01

    Bacterial biofilm formation causes a range of problems in our society, especially in health care. Salicylidene acylhydrazides (hydrazones) are promising antivirulence drugs targeting secretion systems used during bacterial infection of host cells. When mixed with the gallium ion they become especially potent as bacterial and biofilm growth-suppressing agents, although the mechanisms through which this occurs are not fully understood. At the base of this uncertainty lies the nature of hydrazone-metal interactions. This study addresses this issue by resolving the equilibrium speciation of hydrazone-gallium aqueous solutions. The protonation constants of the target 2-oxo-2-[N-(2,4,6-trihydroxy-benzylidene)-hydrazino]-acetamide (ME0163) hydrazone species and of its 2,4,6-trihydroxybenzaldehyde and oxamic acid hydrazide building blocks were determined by UV-visible spectrophotometry to achieve this goal. These studies show that the hydrazone is an excessively strong complexing agent for gallium and that its antivirulence properties are predominantly ascribed to monomeric 1:1Ga-ME0163 complexes of various Ga hydrolysis and ME0163 protonation states. The chelation of Ga(III) to the hydrazone also increased the stability of the compounds against acid-induced hydrolysis, making this group of compounds very interesting for biological applications where the Fe-antagonist action of both Ga(III) and the hydrazone can be combined for enhanced biological effect. Copyright © 2014. Published by Elsevier Inc.

  10. Electronic shell structure in Ga12 icosahedra and the relation to the bulk forms of gallium.

    PubMed

    Schebarchov, D; Gaston, N

    2012-07-28

    The electronic structure of known cluster compounds with a cage-like icosahedral Ga(12) centre is studied by first-principles theoretical methods, based on density functional theory. We consider these hollow metalloid nanostructures in the context of the polymorphism of the bulk, and identify a close relation to the α phase of gallium. This previously unrecognised connection is established using the electron localisation function, which reveals the ubiquitous presence of radially-pointing covalent bonds around the Ga(12) centre--analogous to the covalent bonds between buckled deltahedral planes in α-Ga. Furthermore, we find prominent superatom shell structure in these clusters, despite their hollow icosahedral motif and the presence of covalent bonds. The exact nature of the electronic shell structure is contrasted with simple electron shell models based on jellium, and we demonstrate how the interplay between gallium dimerisation, ligand- and crystal-field effects can alter the splitting of the partially filled 1F shell. Finally, in the unique compound where the Ga(12) centre is bridged by six phosphorus ligands, the electronic structure most closely resembles that of δ-Ga and there are no well-defined superatom orbitals. The results of this comprehensive study bring new insights into the nature of chemical bonding in metalloid gallium compounds and the relation to bulk gallium metal, and they may also guide the development of more general models for ligand-protected clusters.

  11. Homoepitaxial n-core: p-shell gallium nitride nanowires: HVPE overgrowth on MBE nanowires.

    PubMed

    Sanders, Aric; Blanchard, Paul; Bertness, Kris; Brubaker, Matthew; Dodson, Christopher; Harvey, Todd; Herrero, Andrew; Rourke, Devin; Schlager, John; Sanford, Norman; Chiaramonti, Ann N; Davydov, Albert; Motayed, Abhishek; Tsvetkov, Denis

    2011-11-18

    We present the homoepitaxial growth of p-type, magnesium doped gallium nitride shells by use of halide vapor phase epitaxy (HVPE) on n-type gallium nitride nanowires grown by plasma-assisted molecular beam epitaxy (MBE). Scanning electron microscopy shows clear dopant contrast between the core and shell of the nanowire. The growth of magnesium doped nanowire shells shows little or no effect on the lattice parameters of the underlying nanowires, as measured by x-ray diffraction (XRD). Photoluminescence measurements of the nanowires show the appearance of sub-bandgap features in the blue and the ultraviolet, indicating the presence of acceptors. Finally, electrical measurements confirm the presence of electrically active holes in the nanowires.

  12. Ga[OSi(O(t)Bu)3]3·THF, a thermolytic molecular precursor for high surface area gallium-containing silica materials of controlled dispersion and stoichiometry.

    PubMed

    Dombrowski, James P; Johnson, Gregory R; Bell, Alexis T; Tilley, T Don

    2016-07-05

    The molecular precursor tris[(tri-tert-butoxy)siloxy]gallium, as the tetrahydrofuran adduct Ga[OSi(O(t)Bu)3]3·THF (), was synthesized via the salt metathesis reaction of gallium trichloride with NaOSi(O(t)Bu)3. This complex serves as a model for isolated gallium in a silica framework. Complex decomposes thermally in hydrocarbon solvent, eliminating isobutylene, water, and tert-butanol to generate high surface area gallium-containing silica at low temperatures. When thermal decomposition was performed in the presence of P-123 Pluronic as a templating agent the generated material displayed uniform vermicular pores. Textural mesoporosity was evident in untemplated material. Co-thermolysis of with HOSi(O(t)Bu)3 in the presence of P-123 Pluronic led to materials with Ga : Si ratios ranging from 1 : 3 to 1 : 50, denoted UCB1-GaSi3, UCB1-GaSi10, UCB1-GaSi20 and UCB1-GaSi50. After calcination at 500 °C these materials exhibited decreasing surface areas and broadening pore distributions with increasing silicon content, indicating a loss of template effects. The position and dispersion of the gallium in UCB1-GaSi materials was investigated using (71)Ga MAS-NMR, powder XRD, and STEM/EDS elemental mapping. The results indicate a high degree of gallium dispersion in all samples, with gallium oxide clusters or oligomers present at higher gallium content.

  13. GALLIUM CITRATE, A NEW SENSITIZER OF CELLS TO HYPERTHERMIA

    PubMed Central

    Shinohara, Kunio; Kawakami, Noriko; Kugotani, Maho; Nakano, Hisako

    1988-01-01

    The killing effects of heat were studied on cultured mammalian cells (L5178Y) pre‐incubated with gallium (Ga) citrate, which is a popular tumor‐imaging diagnostic agent. The cells showed higher sensitivity to heat when they were pre‐incubated with Ga‐citrate. The pre‐incubated cells showed decreased ATP levels, and this may be responsible for the heat‐sensitizing effect. PMID:3128502

  14. Gallium uptake in tryptophan-related pulmonary disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S.M.; Park, C.H.; Intenzo, C.M.

    1991-02-01

    We describe a patient who developed fever, fatigue, muscle weakness, dyspnea, skin rash, and eosinophilia after taking high doses of tryptophan for insomnia for two years. A gallium-67 scan revealed diffuse increased uptake in the lung and no abnormal uptake in the muscular distribution. Bronchoscopy and biopsy confirmed inflammatory reactions with infiltration by eosinophils, mast cells, and lymphocytes. CT scan showed an interstitial alveolar pattern without fibrosis. EMG demonstrated diffuse myopathy. Muscle biopsy from the right thigh showed an inflammatory myositis with eosinophilic and lymphocytic infiltrations.

  15. Why do gallium clusters have a higher melting point than the bulk?

    PubMed

    Chacko, S; Joshi, Kavita; Kanhere, D G; Blundell, S A

    2004-04-02

    Density functional molecular dynamical simulations have been performed on Ga17 and Ga13 clusters to understand the recently observed higher-than-bulk melting temperatures in small gallium clusters [Phys. Rev. Lett. 91, 215508 (2003)

  16. Two years of on-orbit gallium arsenide performance from the LIPS solar cell panel experiment

    NASA Technical Reports Server (NTRS)

    Francis, R. W.; Betz, F. E.

    1985-01-01

    The LIPS on-orbit performance of the gallium arsenide panel experiment was analyzed from flight operation telemetry data. Algorithms were developed to calculate the daily maximum power and associated solar array parameters by two independent methods. The first technique utilizes a least mean square polynomial fit to the power curve obtained with intensity and temperature corrected currents and voltages; whereas, the second incorporates an empirical expression for fill factor based on an open circuit voltage and the calculated series resistance. Maximum power, fill factor, open circuit voltage, short circuit current and series resistance of the solar cell array are examined as a function of flight time. Trends are analyzed with respect to possible mechanisms which may affect successive periods of output power during 2 years of flight operation. Degradation factors responsible for the on-orbit performance characteristics of gallium arsenide are discussed in relation to the calculated solar cell parameters. Performance trends and the potential degradation mechanisms are correlated with existing laboratory and flight data on both gallium arsenide and silicon solar cells for similar environments.

  17. Discriminating a deep gallium antisite defect from shallow acceptors in GaAs using supercell calculations

    DOE PAGES

    Schultz, Peter A.

    2016-03-01

    For the purposes of making reliable first-principles predictions of defect energies in semiconductors, it is crucial to distinguish between effective-mass-like defects, which cannot be treated accurately with existing supercell methods, and deep defects, for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite defect GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a conceptual framework of level patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as B As. Thismore » systematic approach determines that the gallium antisite supercell results has signatures inconsistent with an effective mass state and cannot be the 78/203 shallow double acceptor. Lastly, the properties of the Ga antisite in GaAs are described, total energy calculations that explicitly map onto asymptotic discrete localized bulk states predict that the Ga antisite is a deep double acceptor and has at least one deep donor state.« less

  18. Contributions from gallium vacancies and carbon-related defects to the ``yellow luminescence'' in GaN

    NASA Astrophysics Data System (ADS)

    Armitage, R.; Hong, William; Yang, Qing; Feick, H.; Gebauer, J.; Weber, E. R.; Hautakangas, S.; Saarinen, K.

    2003-05-01

    Carbon-doped GaN layers grown by molecular-beam epitaxy are studied with photoluminescence and positron annihilation spectroscopy. Semi-insulating layers doped with >1018 cm-3 carbon show a strong luminescence band centered at ˜2.2 eV (yellow luminescence). The absolute intensity of the 2.2 eV band is compared with the gallium vacancy concentration determined by positron annihilation spectroscopy. The results indicate that a high concentration of gallium vacancies is not necessary for yellow luminescence and that there is in fact a causal relationship between carbon and the 2.2 eV band. Markedly different deep-level ionization energies are found for the high-temperature quenching of the 2.2 eV photoluminescence in carbon-doped and reference samples. We propose that while the model of Neugebauer and Van de Walle [Appl. Phys. Lett. 69, 503 (1996)] applies for GaN of low carbon concentration, a different yellow luminescence mechanism is involved when the interstitial carbon concentration is comparable to or exceeds the gallium vacancy concentration.

  19. Growth of AlGaN under the conditions of significant gallium evaporation: Phase separation and enhanced lateral growth

    NASA Astrophysics Data System (ADS)

    Mayboroda, I. O.; Knizhnik, A. A.; Grishchenko, Yu. V.; Ezubchenko, I. S.; Zanaveskin, Maxim L.; Kondratev, O. A.; Presniakov, M. Yu.; Potapkin, B. V.; Ilyin, V. A.

    2017-09-01

    The growth kinetics of AlGaN in NH3 MBE under significant Ga desorption was studied. It was found that the addition of gallium stimulates 2D growth and provides better morphology of films compared to pure AlN. The effect was experimentally observed at up to 98% desorption of the impinging gallium. We found that under the conditions of significant thermal desorption, larger amounts of gallium were retained at lateral boundaries of 3D surface features than at flat terraces because of the higher binding energy of Ga atoms at specific surface defects. The selective accumulation of gallium resulted in an increase in the lateral growth component through the formation of the Ga-enriched AlGaN phase at boundaries of 3D surface features. We studied the temperature dependence of AlGaN growth rate and developed a kinetic model analytically describing this dependence. As the model was in good agreement with the experimental data, we used it to estimate the increase in the binding energy of Ga atoms at surface defects compared to terrace surface sites using data on the Ga content in different AlGaN phases. We also applied first-principles calculations to the thermodynamic analysis of stable configurations on the AlN surface and then used these surface configurations to compare the binding energy of Ga atoms at terraces and steps. Both first-principles calculations and analytical estimations of the experimental results gave similar values of difference in binding energies; this value is 0.3 eV. Finally, it was studied experimentally whether gallium can act as a surfactant in AlN growth by NH3 MBE at elevated temperatures. Gallium application has allowed us to grow a 300 nm thick AlN film with a RMS surface roughness of 2.2 Å over an area of 10 × 10 μm and a reduced density of screw dislocations.

  20. Measuring systolic ankle and toe pressure using the strain gauge technique--a comparison study between mercury and indium-gallium strain gauges.

    PubMed

    Broholm, Rikke; Wiinberg, Niels; Simonsen, Lene

    2014-09-01

    Measurement of the ankle and toe pressures are often performed using a plethysmograph, compression cuffs and a strain gauge. Usually, the strain gauge contains mercury but other alternatives exist. From 2014, the mercury-containing strain gauge will no longer be available in the European Union. The aim of this study was to compare an indium-gallium strain gauge to the established mercury-containing strain gauge. Consecutive patients referred to the Department of Clinical Physiology and Nuclear Medicine at Bispebjerg and Frederiksberg Hospitals for measurements of systolic ankle and toe pressures volunteered for the study. Ankle and toe pressures were measured twice with the mercury and the indium-gallium strain gauge in random order. Comparison of the correlation between the mean pressure using the mercury and the indium-gallium device and the difference between the two devices was performed for both toe and ankle level. A total of 53 patients were included (36 male). Mean age was 69 (range, 45-92 years). Mean pressures at toe and ankle level with the mercury and the indium-gallium strain gauges were 77 (range, 0-180) mm Hg and 113 (range, 15-190) mm Hg, respectively. Comparison between the mercury and the indium-gallium strain gauge showed a difference in toe blood pressure values of - 0.7 mm Hg (SD: 7.0). At the ankle level, a difference of 2.0 mm Hg (SD: 8.6) was found. The two different devices agree sufficiently in the measurements of systolic ankle and toe pressure for the indium-gallium strain gauge to replace the mercury strain gauge.

  1. Focused-ion-beam-inflicted surface amorphization and gallium implantation--new insights and removal by focused-electron-beam-induced etching.

    PubMed

    Roediger, P; Wanzenboeck, H D; Waid, S; Hochleitner, G; Bertagnolli, E

    2011-06-10

    Recently focused-electron-beam-induced etching of silicon using molecular chlorine (Cl(2)-FEBIE) has been developed as a reliable and reproducible process capable of damage-free, maskless and resistless removal of silicon. As any electron-beam-induced processing is considered non-destructive and implantation-free due to the absence of ion bombardment this approach is also a potential method for removing focused-ion-beam (FIB)-inflicted crystal damage and ion implantation. We show that Cl(2)-FEBIE is capable of removing FIB-induced amorphization and gallium ion implantation after processing of surfaces with a focused ion beam. TEM analysis proves that the method Cl(2)-FEBIE is non-destructive and therefore retains crystallinity. It is shown that Cl(2)-FEBIE of amorphous silicon when compared to crystalline silicon can be up to 25 times faster, depending on the degree of amorphization. Also, using this method it has become possible for the first time to directly investigate damage caused by FIB exposure in a top-down view utilizing a localized chemical reaction, i.e. without the need for TEM sample preparation. We show that gallium fluences above 4 × 10(15) cm(-2) result in altered material resulting from FIB-induced processes down to a depth of ∼ 250 nm. With increasing gallium fluences, due to a significant gallium concentration close beneath the surface, removal of the topmost layer by Cl(2)-FEBIE becomes difficult, indicating that gallium serves as an etch stop for Cl(2)-FEBIE.

  2. Outer-sphere interaction of aluminum and gallium solvates with competitive anions in 1,2-propanediol solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrosyants, S.P.; Buslaeva, E.R.

    1986-04-01

    The interaction of aluminum and gallium solvates with ..pi..-acid ligand in 1,2-propanediol solutions has been investigated. The formation of associates of hexacoordinate aluminum solvates depends on the solvation of the anions in the bulk of the solution or on the faces of the solvento complexes. In the case of gallium the association of the solvates with the anions is determined by two factors: the existence of a configurational equilibrium for the solvento complexes and the preferential solvation of the competitive ..pi..-acid ligands.

  3. Dipicolinate Complexes of Gallium(III) and Lanthanum(III).

    PubMed

    Weekes, David M; Ramogida, Caterina F; Jaraquemada-Peláez, Maria de Guadalupe; Patrick, Brian O; Apte, Chirag; Kostelnik, Thomas I; Cawthray, Jacqueline F; Murphy, Lisa; Orvig, Chris

    2016-12-19

    Three dipicolinic acid amine-derived compounds functionalized with a carboxylate (H 3 dpaa), phosphonate (H 4 dppa), and bisphosphonate (H 7 dpbpa), as well as their nonfunctionalized analogue (H 2 dpa), were successfully synthesized and characterized. The 1:1 lanthanum(III) complexes of H 2 dpa, H 3 dpaa, and H 4 dppa, the 1:2 lanthanum(III) complex of H 2 dpa, and the 1:1 gallium(III) complex of H 3 dpaa were characterized, including via X-ray crystallography for [La 4 (dppa) 4 (H 2 O) 2 ] and [Ga(dpaa)(H 2 O)]. H 2 dpa, H 3 dpaa, and H 4 dppa were evaluated for their thermodynamic stability with lanthanum(III) via potentiometric and either UV-vis spectrophotometric (H 3 dpaa) or NMR spectrometric (H 2 dpa and H 4 dppa) titrations, which showed that the carboxylate (H 3 dpaa) and phosphonate (H 4 dppa) containing ligands enhanced the lanthanum(III) complex stability by 3-4 orders of magnitude relative to the unfunctionalized ligand (comparing log β ML and pM values) at physiological pH. In addition, potentiometric titrations with H 3 dpaa and gallium(III) were performed, which gave significantly (8 orders of magnitude) higher thermodynamic stability constants than with lanthanum(III). This was predicted to be a consequence of better size matching between the dipicolinate cavity and gallium(III), which was also evident in the aforementioned crystal structures. Because of a potential link between lanthanum(III) and osteoporosis, the ligands were tested for their bone-directing properties via a hydroxyapatite (HAP) binding assay, which showed that either a phosphonate or bisphosphonate moiety was necessary in order to elicit a chemical binding interaction with HAP. The oral activity of the ligands and their metal complexes was also assessed by experimentally measuring log P o/w values using the shake-flask method, and these were compared to a currently prescribed osteoporosis drug (alendronate). Because of the potential therapeutic applications of the radionuclides

  4. Synchrotron x-ray high energy PDF and tomography studies for gallium melts under high-pressure conditions

    NASA Astrophysics Data System (ADS)

    Liu, H.; Liu, L. L.; Li, R.; Li, L.

    2015-12-01

    Liquid gallium exhibits unusual and unique physical properties. A rich polymorphism and metastable modifications of solid Ga have been discovered and a number of studies of liquid gallium under high pressure conditions were reported. However, some fundamental properties, such as the equation of state (EoS) of Ga melt under extreme conditions remain unclear. To compare to the previous reports, we performed the pair distribution function (PDF) study using diamond anvil cell, in which synchrotron high-energy x-ray total scattering data, combined with reverse Monte Carlo simulation, was used to study the microstructure and EoS of liquid gallium under high pressure at room temperature conditions. The EoS of Ga melt, which was measured from synchrotron x-ray tomography method at room temperature, was used to avoid the potential relatively big errors for the density estimation from the reverse Monte Carlo simulation with the mathematical fit to the measured structure factor data. The volume change of liquid gallium have been studied as a function of pressure and temperature up to 5 GPa at 370 K using synchrotron x-ray microtomography combined with energy dispersive x-ray diffraction (EDXRD) techniques using Drickamer press. The directly measured P-V-T curves were obtained from 3D tomography reconstruction data. The existence of possible liquid-liquid phase transition regions is proposed based on the abnormal compressibility and local structure change in Ga melts.

  5. Fabrication of Single Crystal Gallium Phosphide Thin Films on Glass

    DOE PAGES

    Emmer, Hal; Chen, Christopher T.; Saive, Rebecca; ...

    2017-07-05

    Due to its high refractive index and low absorption coefficient, gallium phosphide is an ideal material for photonic structures targeted at the visible wavelengths. However, these properties are only realized with high quality epitaxial growth, which limits substrate choice and thus possible photonic applications. In this work, we report the fabrication of single crystal gallium phosphide thin films on transparent glass substrates via transfer bonding. GaP thin films on Si (001) and (112) grown by MOCVD are bonded to glass, and then the growth substrate is removed with a XeF 2 vapor etch. The resulting GaP films have surface roughnessesmore » below 1 nm RMS and exhibit room temperature band edge photoluminescence. Magnesium doping yielded p-type films with a carrier density of 1.6 × 10 17 cm -3 that exhibited mobilities as high as 16 cm 2V -1s -1. Therefore, due to their unique optical properties, these films hold much promise for use in advanced optical devices.« less

  6. Fabrication of Single Crystal Gallium Phosphide Thin Films on Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emmer, Hal; Chen, Christopher T.; Saive, Rebecca

    Due to its high refractive index and low absorption coefficient, gallium phosphide is an ideal material for photonic structures targeted at the visible wavelengths. However, these properties are only realized with high quality epitaxial growth, which limits substrate choice and thus possible photonic applications. In this work, we report the fabrication of single crystal gallium phosphide thin films on transparent glass substrates via transfer bonding. GaP thin films on Si (001) and (112) grown by MOCVD are bonded to glass, and then the growth substrate is removed with a XeF 2 vapor etch. The resulting GaP films have surface roughnessesmore » below 1 nm RMS and exhibit room temperature band edge photoluminescence. Magnesium doping yielded p-type films with a carrier density of 1.6 × 10 17 cm -3 that exhibited mobilities as high as 16 cm 2V -1s -1. Therefore, due to their unique optical properties, these films hold much promise for use in advanced optical devices.« less

  7. The gallium complex KP46 exerts strong activity against primary explanted melanoma cells and induces apoptosis in melanoma cell lines

    PubMed Central

    Valiahdi, Seied Mojtaba; Heffeter, Petra; Jakupec, Michael A.; Marculescu, Rodrig; Berger, Walter; Rappersberger, Klemens; Keppler, Bernhard K.

    2012-01-01

    The antineoplastic properties of gallium are well documented. Owing to their robust accumulation of gallium, melanoma cells should be amenable to gallium-based anticancer drugs. With the aim of improving the disappointingly low activity of inorganic gallium salts, we have developed the orally bioavailable gallium complex KP46 [tris(8-quinolinolato)gallium(III)] that was already successfully studied in a phase I clinical trial. To assess its therapeutic potential in malignant melanoma, its antiproliferative effects were investigated in series of human cell lines and primary explanted melanoma samples by means of the MTT [3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] assay and the Human Tumor Cloning Assay, respectively. When compared with other cell lines, the majority of melanoma cells rank among the KP46-sensitive cell lines (50% inhibitory concentration values: 0.8–3.7 μmol/l). Clinically achievable concentrations of KP46 proved to be highly effective in melanoma cells from primary explants of cutaneous and lymph node metastases. Colony growth was inhibited in 10 of 10 specimens by 5 lmol/l KP46 (corresponding to the steady-state plasma concentration measured earlier in a study patient) and in four of 10 specimens by 0.5 μmol/l KP46. In-vitro potency of KP46 is higher than that of dacarbazine or fotemustine and comparable with that of cisplatin. The effects induced by KP46 in melanoma cell lines involve cell cycle perturbations (S-phase arrest) and apoptosis (activation of caspase-9, PARP [poly(ADP-ribose) polymerase] cleavage, formation of apoptotic bodies). No effects on DNA secondary structure could be observed in an electrophoretic mobility shift assay using double-stranded plasmid DNA. Thus, further studies on the therapeutic applicability of KP46 in malignant melanoma are warranted. PMID:19584767

  8. Size-selective breaking of the core-shell structure of gallium nanoparticles.

    PubMed

    Catalán Gómez, Sergio; Redondo-Cubero, Andres; Palomares Simon, Francisco Javier; Vazquez Burgos, Luis; Nogales, Emilio; Nucciarelli, Flavio; Mendez, Bianchi; Gordillo, Nuria; Pau, Jose Luis

    2018-06-11

    Core-shell gallium nanoparticles (Ga NPs) have recently been proposed as an ultraviolet plasmonic material for different applications but only at room temperature. Here, the thermal stability as a function of the size of the NPs is reported over a wide range of temperatures. We analyse the chemical and structural properties of the oxide shell by x-ray photoelectron spectroscopy and atomic force microscopy. We demonstrate the inverse dependence of the shell breaking temperature with the size of the NPs. Spectroscopic ellipsometry is used for tracking the rupture and its mechanism is systematically investigated by scanning electron microscopy, grazing incidence x-ray diffraction and cathodoluminescence. Taking advantage of the thermal stability of the NPs, we perform complete oxidations that lead to homogenous gallium oxide NPs. Thus, this study set the physical limits of Ga NPs to last at high temperatures, and opens up the possibility to achieve totally oxidized NPs while keeping their sphericity. © 2018 IOP Publishing Ltd.

  9. A new automated NaCl based robust method for routine production of gallium-68 labeled peptides

    PubMed Central

    Schultz, Michael K.; Mueller, Dirk; Baum, Richard P.; Watkins, G. Leonard; Breeman, Wouter A. P.

    2017-01-01

    A new NaCl based method for preparation of gallium-68 labeled radiopharmaceuticals has been adapted for use with an automated gallium-68 generator system. The method was evaluated based on 56 preparations of [68Ga]DOTATOC and compared to a similar acetone-based approach. Advantages of the new NaCl approach include reduced preparation time (< 15 min) and removal of organic solvents. The method produces high peptide-bound % (> 97%), and specific activity (> 40 MBq nmole−1 [68Ga]DOTATOC) and is well-suited for clinical production of radiopharmaceuticals. PMID:23026223

  10. Combination of three metals for the treatment of cancer: gallium, rhenium and platinum. 1. Determination of the optimal schedule of treatment.

    PubMed

    Collery, Philippe; Mohsen, Ahmed; Kermagoret, Anthony; D'Angelo, Jean; Morgant, Georges; Desmaele, Didier; Tomas, Alain; Collery, Thomas; Wei, Ming; Badawi, Abdelfattah

    2012-07-01

    Platinum is well known for its anticancer activity, firstly used as cis-diaminedichloroplatinum (II) (CDDP), with a wide range of activity. Its main mechanism of action involves its binding to DNA. Gallium, another metal, has also demonstrated apoptotic effects on malignant cells, but through interaction with targets other than DNA, such as the membrane, cytoskeleton and proteasome, and on enzyme activities. An antitumor synergism between CDDP and both gallium and rhenium compounds has been demonstrated. For these reasons, we proposed to combine these three metals and to determine at which doses each compound could be administered without major toxicity. CDDP, tetrakis(1-octanol) tris(5-aminosalicylate)gallium(III), and a diseleno-ether rhenium(I) complex were used in this experimental study in breast cancer MCF-7 tumor-bearing mice. CDDP was administered intraperitoneally (i.p.) twice a week at the dose of 3 mg/kg. Tetrakis(1-octanol) tris(5-aminosalicylate) gallium (III) and rhenium(I) diseleno-ether complexes were administered orally, daily, five days a week for three weeks, at doses ranging from 20 to 100 mg/kg for the gallium compound and from 10 to 50 mg/kg for the rhenium compound. Doses of 10 mg/kg of rhenium(I) diseleno-ether, and 100 mg/kg of the salicylate gallium compound, in combination with CDDP induced a significant decrease of 50% of the tumor volume, by comparison with the control group. In contrast, the decrease of the tumor volume in mice treated by CDDP alone was less than 25%. Changes in the sequence of administration of the three metals will be discussed to improve the therapeutic index.

  11. Ionothermal synthesis, characterization of a new layered gallium phosphate with an unusual heptamer SBU

    NASA Astrophysics Data System (ADS)

    Gao, Fan; Huang, Liangliang; Ma, Yike; Jiao, Shufei; Jiang, Yansong; Bi, Yanfeng

    2017-10-01

    A new layered gallium phosphate Ga3(PO4)4(C2N2H8)·(H2C2N2H8)2·Cl (compound 1), has been ionothermally synthesized in the presence of deep eutectic solvent (DES) comprising mixtures of choline chloride and 2-imidazolidone (IMI). Single-crystal X-ray diffraction analysis reveals that compound 1 shows 2D layered framework with 10-ring windows, which is constructed from unusual heptamer second building units (SBUs). The ethylenediamine (en) units deriving from the decomposition of IMI, play a dual role as bidentate ligands coordinated with 6-fold coordinate gallium atoms and the templates. Additionally, compound 1 shows photoluminescence property in solid state at room temperature.

  12. LETTER TO THE EDITOR: Fabrication and structure of an opal-gallium nitride nanocomposite

    NASA Astrophysics Data System (ADS)

    Davydov, V. Yu; Dunin-Borkovski, R. E.; Golubev, V. G.; Hutchison, J. L.; Kartenko, N. F.; Kurdyukov, D. A.; Pevtsov, A. B.; Sharenkova, N. V.; Sloan, J.; Sorokin, L. M.

    2001-02-01

    A three-dimensional gallium nitride lattice has been synthesized within the void sublattice of an artificial opal. The composite structure has been characterized using X-ray diffraction, Raman spectroscopy and transmission electron microscopy.

  13. Gallium based low-interaction anions

    DOEpatents

    King, Wayne A.; Kubas, Gregory J.

    2000-01-01

    The present invention provides: a composition of the formula M.sup.+x (Ga(Y).sub.4.sup.-).sub.x where M is a metal selected from the group consisting of lithium, sodium, potassium, cesium, calcium, strontium, thallium, and silver, x is an integer selected from the group consisting of 1 or 2, each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide; a composition of the formula (R).sub.x Q.sup.+ Ga(Y).sub.4.sup.- where Q is selected from the group consisting of carbon, nitrogen, sulfur, phosphorus and oxygen, each R is a ligand selected from the group consisting of alkyl, aryl, and hydrogen, x is an integer selected from the group consisting of 3 and 4 depending upon Q, and each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide; an ionic polymerization catalyst composition including an active cationic portion and a gallium based weakly coordinating anion; and bridged anion species of the formula M.sup.+x.sub.y [X(Ga(Y.sub.3).sub.z ].sup.-y.sub.x where M is a metal selected from the group consisting of lithium, sodium, potassium, magnesium, cesium, calcium, strontium, thallium, and silver, x is an integer selected from the group consisting of 1 or 2, X is a bridging group between two gallium atoms, y is an integer selected from the group consisting 1 and 2, z is an integer of at least 2, each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide.

  14. Fabrication of magnetic nano liquid metal fluid through loading of Ni nanoparticles into gallium or its alloy

    NASA Astrophysics Data System (ADS)

    Xiong, Mingfeng; Gao, Yunxia; Liu, Jing

    2014-03-01

    In this study, Ni nanoparticles were loaded into the partially oxidized gallium and its alloys to fabricate desired magnetic nanofluid. It was disclosed that the Ni nanoparticles sharply increased the freezing temperature and latent heat of the obtained magnetic nano liquid metal fluid, while the melting process was less affected. For the gallium sample added with 10 vol% coated Ni particles, a hysteresis loop was observed and the magnetization intensity decreased with the increase of the temperature. The slope for the magnetization-temperature curve within 10-30 K was about 20 times of that from 40 K to 400 K. Further, the dynamic impact experiments of striking magnetic liquid metal droplets on the magnet revealed that the regurgitating of the leading edge of the liquid disk and the subsequent wave that often occurred in the gallium-indium droplets would disappear for the magnetic fluids case due to attraction force of the magnet.

  15. The effect of silver or gallium doped titanium against the multidrug resistant Acinetobacter baumannii.

    PubMed

    Cochis, A; Azzimonti, B; Della Valle, C; De Giglio, E; Bloise, N; Visai, L; Cometa, S; Rimondini, L; Chiesa, R

    2016-02-01

    Implant-related infection of biomaterials is one of the main causes of arthroplasty and osteosynthesis failure. Bacteria, such as the rapidly-emerging Multi Drug Resistant (MDR) pathogen Acinetobacter Baumannii, initiate the infection by adhering to biomaterials and forming a biofilm. Since the implant surface plays a crucial role in early bacterial adhesion phases, titanium was electrochemically modified by an Anodic Spark Deposition (ASD) treatment, developed previously and thought to provide osseo-integrative properties. In this study, the treatment was modified to insert gallium or silver onto the titanium surface, to provide antibacterial properties. The material was characterized morphologically, chemically, and mechanically; biological properties were investigated by direct cytocompatibility assay, Alkaline Phosphatase (ALP) activity, Scanning Electron Microscopy (SEM), and Immunofluorescent (IF) analysis; antibacterial activity was determined by counting Colony Forming Units, and viability assay. The various ASD-treated surfaces showed similar morphology, micrometric pore size, and uniform pore distribution. Of the treatments studied, gallium-doped specimens showed the best ALP synthesis and antibacterial properties. This study demonstrates the possibility of successfully doping the surface of titanium with gallium or silver, using the ASD technique; this approach can provide antibacterial properties and maintain high osseo-integrative potential. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. In vitro and in vivo antimicrobial activities of gallium nitrate against multidrug-resistant Acinetobacter baumannii.

    PubMed

    Antunes, Luísa C S; Imperi, Francesco; Minandri, Fabrizia; Visca, Paolo

    2012-11-01

    Multidrug-resistant Acinetobacter baumannii poses a tremendous challenge to traditional antibiotic therapy. Due to the crucial role of iron in bacterial physiology and pathogenicity, we investigated iron metabolism as a possible target for anti-A. baumannii chemotherapy using gallium as an iron mimetic. Due to chemical similarity, gallium competes with iron for binding to several redox enzymes, thereby interfering with a number of essential biological reactions. We found that Ga(NO(3))(3), the active component of an FDA-approved drug (Ganite), inhibits the growth of a collection of 58 A. baumannii strains in both chemically defined medium and human serum, at concentrations ranging from 2 to 80 μM and from 4 to 64 μM, respectively. Ga(NO(3))(3) delayed the entry of A. baumannii into the exponential phase and drastically reduced bacterial growth rates. Ga(NO(3))(3) activity was strongly dependent on iron availability in the culture medium, though the mechanism of growth inhibition was independent of dysregulation of gene expression controlled by the ferric uptake regulator Fur. Ga(NO(3))(3) also protected Galleria mellonella larvae from lethal A. baumannii infection, with survival rates of ≥75%. At therapeutic concentrations for humans (28 μM plasma levels), Ga(NO(3))(3) inhibited the growth in human serum of 76% of the multidrug-resistant A. baumannii isolates tested by ≥90%, raising expectations on the therapeutic potential of gallium for the treatment of A. baumannii bloodstream infections. Ga(NO(3))(3) also showed strong synergism with colistin, suggesting that a colistin-gallium combination holds promise as a last-resort therapy for infections caused by pan-resistant A. baumannii.

  17. In Vitro and In Vivo Antimicrobial Activities of Gallium Nitrate against Multidrug-Resistant Acinetobacter baumannii

    PubMed Central

    Antunes, Luísa C. S.; Imperi, Francesco; Minandri, Fabrizia

    2012-01-01

    Multidrug-resistant Acinetobacter baumannii poses a tremendous challenge to traditional antibiotic therapy. Due to the crucial role of iron in bacterial physiology and pathogenicity, we investigated iron metabolism as a possible target for anti-A. baumannii chemotherapy using gallium as an iron mimetic. Due to chemical similarity, gallium competes with iron for binding to several redox enzymes, thereby interfering with a number of essential biological reactions. We found that Ga(NO3)3, the active component of an FDA-approved drug (Ganite), inhibits the growth of a collection of 58 A. baumannii strains in both chemically defined medium and human serum, at concentrations ranging from 2 to 80 μM and from 4 to 64 μM, respectively. Ga(NO3)3 delayed the entry of A. baumannii into the exponential phase and drastically reduced bacterial growth rates. Ga(NO3)3 activity was strongly dependent on iron availability in the culture medium, though the mechanism of growth inhibition was independent of dysregulation of gene expression controlled by the ferric uptake regulator Fur. Ga(NO3)3 also protected Galleria mellonella larvae from lethal A. baumannii infection, with survival rates of ≥75%. At therapeutic concentrations for humans (28 μM plasma levels), Ga(NO3)3 inhibited the growth in human serum of 76% of the multidrug-resistant A. baumannii isolates tested by ≥90%, raising expectations on the therapeutic potential of gallium for the treatment of A. baumannii bloodstream infections. Ga(NO3)3 also showed strong synergism with colistin, suggesting that a colistin-gallium combination holds promise as a last-resort therapy for infections caused by pan-resistant A. baumannii. PMID:22964249

  18. Gallium-doped germanium, evaluation of photoconductors, part 1

    NASA Technical Reports Server (NTRS)

    Moore, W. J.

    1979-01-01

    Gallium-doped germanium far infrared detectors were evaluated at low temperatures and low background simulating the space environment. Signal and noise characteristics were determined for detector temperatures in the 2K to 4K range. Optimum performance occurs at about 2.5K for all devices tested. The minimum average NEP in the 40-130 micron region was found to be approximately 4 x 10 to the minus 17th power watt Hz(-1/2) at a frequency of 1 Hz.

  19. Discriminating a deep defect from shallow acceptors in supercell calculations: gallium antisite in GaAs

    NASA Astrophysics Data System (ADS)

    Schultz, Peter

    To make reliable first principles predictions of defect energies in semiconductors, it is crucial to discriminate between effective-mass-like defects--for which existing supercell methods fail--and deep defects--for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a framework of level occupation patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as BAs. This systematic analysis determines that the gallium antisite is inconsistent with a shallow state, and cannot be the 78/203 shallow double acceptor. The properties of the Ga antisite in GaAs are described, predicting that the Ga antisite is a deep double acceptor and has two donor states, one of which might be accidentally shallow. -- Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  20. Synthesis of gallium nitride nanostructures by nitridation of electrochemically deposited gallium oxide on silicon substrate.

    PubMed

    Ghazali, Norizzawati Mohd; Yasui, Kanji; Hashim, Abdul Manaf

    2014-01-01

    Gallium nitride (GaN) nanostructures were successfully synthesized by the nitridation of the electrochemically deposited gallium oxide (Ga2O3) through the utilization of a so-called ammoniating process. Ga2O3 nanostructures were firstly deposited on Si substrate by a simple two-terminal electrochemical technique at a constant current density of 0.15 A/cm(2) using a mixture of Ga2O3, HCl, NH4OH and H2O for 2 h. Then, the deposited Ga2O3 sample was ammoniated in a horizontal quartz tube single zone furnace at various ammoniating times and temperatures. The complete nitridation of Ga2O3 nanostructures at temperatures of 850°C and below was not observed even the ammoniating time was kept up to 45 min. After the ammoniating process at temperature of 900°C for 15 min, several prominent diffraction peaks correspond to hexagonal GaN (h-GaN) planes were detected, while no diffraction peak of Ga2O3 structure was detected, suggesting a complete transformation of Ga2O3 to GaN. Thus, temperature seems to be a key parameter in a nitridation process where the deoxidization rate of Ga2O3 to generate gaseous Ga2O increase with temperature. The growth mechanism for the transformation of Ga2O3 to GaN was proposed and discussed. It was found that a complete transformation can not be realized without a complete deoxidization of Ga2O3. A significant change of morphological structures takes place after a complete transformation of Ga2O3 to GaN where the original nanorod structures of Ga2O3 diminish, and a new nanowire-like GaN structures appear. These results show that the presented method seems to be promising in producing high-quality h-GaN nanostructures on Si.

  1. Synthesis of gallium nitride nanostructures by nitridation of electrochemically deposited gallium oxide on silicon substrate

    PubMed Central

    2014-01-01

    Gallium nitride (GaN) nanostructures were successfully synthesized by the nitridation of the electrochemically deposited gallium oxide (Ga2O3) through the utilization of a so-called ammoniating process. Ga2O3 nanostructures were firstly deposited on Si substrate by a simple two-terminal electrochemical technique at a constant current density of 0.15 A/cm2 using a mixture of Ga2O3, HCl, NH4OH and H2O for 2 h. Then, the deposited Ga2O3 sample was ammoniated in a horizontal quartz tube single zone furnace at various ammoniating times and temperatures. The complete nitridation of Ga2O3 nanostructures at temperatures of 850°C and below was not observed even the ammoniating time was kept up to 45 min. After the ammoniating process at temperature of 900°C for 15 min, several prominent diffraction peaks correspond to hexagonal GaN (h-GaN) planes were detected, while no diffraction peak of Ga2O3 structure was detected, suggesting a complete transformation of Ga2O3 to GaN. Thus, temperature seems to be a key parameter in a nitridation process where the deoxidization rate of Ga2O3 to generate gaseous Ga2O increase with temperature. The growth mechanism for the transformation of Ga2O3 to GaN was proposed and discussed. It was found that a complete transformation can not be realized without a complete deoxidization of Ga2O3. A significant change of morphological structures takes place after a complete transformation of Ga2O3 to GaN where the original nanorod structures of Ga2O3 diminish, and a new nanowire-like GaN structures appear. These results show that the presented method seems to be promising in producing high-quality h-GaN nanostructures on Si. PMID:25593562

  2. Gallium phosphide energy converters

    NASA Astrophysics Data System (ADS)

    Sims, P. E.; Dinetta, L. C.; Goetz, M. A.

    1995-10-01

    Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/sq cm have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.

  3. Gallium phosphide energy converters

    NASA Technical Reports Server (NTRS)

    Sims, P. E.; Dinetta, L. C.; Goetz, M. A.

    1995-01-01

    Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/sq cm have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.

  4. Comparison of CIGS solar cells made with different structures and fabrication techniques

    DOE PAGES

    Mansfield, Lorelle M.; Garris, Rebekah L.; Counts, Kahl D.; ...

    2016-11-03

    Cu(In, Ga)Se2 (CIGS)-based solar cells from six fabricators were characterized and compared. The devices had differing substrates, absorber deposition processes, buffer materials, and contact materials. The effective bandgaps of devices varied from 1.05 to 1.22 eV, with the lowest optical bandgaps occurring in those with metal-precursor absorber processes. Devices with Zn(O, S) or thin CdS buffers had quantum efficiencies above 90% down to 400 nm. Most voltages were 250-300 mV below the Shockley-Queisser limit for their bandgap. Electroluminescence intensity tracked well with the respective voltage deficits. Fill factor (FF) was as high as 95% of the maximum for each device'smore » respective current and voltage, with higher FF corresponding to lower diode quality factors (~1.3). An in-depth analysis of FF losses determined that diode quality reflected in the quality factor, voltage-dependent photocurrent, and, to a lesser extent, the parasitic resistances are the limiting factors. As a result, different absorber processes and device structures led to a range of electrical and physical characteristics, yet this investigation showed that multiple fabrication pathways could lead to high-quality and high-efficiency solar cells.« less

  5. Comparison of CIGS solar cells made with different structures and fabrication techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mansfield, Lorelle M.; Garris, Rebekah L.; Counts, Kahl D.

    Cu(In, Ga)Se2 (CIGS)-based solar cells from six fabricators were characterized and compared. The devices had differing substrates, absorber deposition processes, buffer materials, and contact materials. The effective bandgaps of devices varied from 1.05 to 1.22 eV, with the lowest optical bandgaps occurring in those with metal-precursor absorber processes. Devices with Zn(O, S) or thin CdS buffers had quantum efficiencies above 90% down to 400 nm. Most voltages were 250-300 mV below the Shockley-Queisser limit for their bandgap. Electroluminescence intensity tracked well with the respective voltage deficits. Fill factor (FF) was as high as 95% of the maximum for each device'smore » respective current and voltage, with higher FF corresponding to lower diode quality factors (~1.3). An in-depth analysis of FF losses determined that diode quality reflected in the quality factor, voltage-dependent photocurrent, and, to a lesser extent, the parasitic resistances are the limiting factors. As a result, different absorber processes and device structures led to a range of electrical and physical characteristics, yet this investigation showed that multiple fabrication pathways could lead to high-quality and high-efficiency solar cells.« less

  6. Determination of gallium at trace levels using a spectrofluorimetric method in synthetic U-Ga and Ga-As solutions.

    PubMed

    Kara, Derya; Fisher, Andrew; Foulkes, Mike; Hill, Steve J

    2010-01-01

    A simple, easy to use and selective spectrofluorimetric method for the determination of trace levels of gallium has been developed. A new Schiff base, N-o-vanillidine-2-amino-p-cresol (OVAC) was synthesized and its fluorescence activity with gallium investigated. Based on this chelation reaction, a spectrofluorimetric method has been developed for the determination of gallium in synthetically prepared Ga-U and Ga-As samples buffered at pH 4.0 using acetic acid-sodium acetate. The chelation reaction between Ga(III) and N-o-vanillidine-2-amino-p-cresol was very fast, requiring only 30min at room temperature to complex completely. The limit of detection (LOD) (3sigma) for Ga(III) was 7.17 nM (0.50 microgL(-1)), determined from the analysis of 11 different solutions of 20 microg L(-1) Ga(III). Copyright 2009 Elsevier B.V. All rights reserved.

  7. Caffeine and diphenyl diselenide improve long-term memory impaired in middle-aged rats.

    PubMed

    Leite, Marlon R; Marcondes Sari, Marcel Henrique; de Freitas, Mayara L; Oliveira, Lia P; Dalmolin, Laíza; Brandão, Ricardo; Zeni, Gilson

    2014-05-01

    The aim of the present study was to evaluate the effects of diphenyl diselenide (PhSe)2 supplemented diet (10ppm) associated to the administration of caffeine (15mg/kg; i.g.) for 30days on the novel object recognition memory in middle-aged rats. The present findings showed that (PhSe)2-supplemented diet enhanced short-term memory, but not long-term memory, of middle-aged rats in the novel object recognition task. The (PhSe)2 supplemented diet associated with caffeine administration improved long-term memory, but did not alter short-term memory, impaired in middle-aged rats. Daily caffeine administration to middle-aged rats had no effect on the memory tasks. Diet supplemented with (PhSe)2 plus caffeine administration increased the number of crossings and rearings reduced in middle-aged rats. Caffeine administration plus (PhSe)2 diets were effective in increasing the number of rearings and crossings, respectively, in middle-aged rats, [(3)H] glutamate uptake was reduced in hippocampal slices of rats from (PhSe)2 and caffeine plus (PhSe)2 groups. In addition, animals supplemented with (PhSe)2 showed an increase in the pCREB/CREB ratio whereas pAkt/Akt ratio was not modified. These results suggest that the effects of (PhSe)2 on the short-term memory may be related to its ability to decrease the uptake of glutamate, influencing the increase of CREB phosphorylation. (PhSe)2-supplemented diet associated to the administration of caffeine improved long-term memory impaired in middle-aged rats, an effect independent of CREB and Akt phosphorylation. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Crystallographic alignment of high-density gallium nitride nanowire arrays.

    PubMed

    Kuykendall, Tevye; Pauzauskie, Peter J; Zhang, Yanfeng; Goldberger, Joshua; Sirbuly, Donald; Denlinger, Jonathan; Yang, Peidong

    2004-08-01

    Single-crystalline, one-dimensional semiconductor nanostructures are considered to be one of the critical building blocks for nanoscale optoelectronics. Elucidation of the vapour-liquid-solid growth mechanism has already enabled precise control over nanowire position and size, yet to date, no reports have demonstrated the ability to choose from different crystallographic growth directions of a nanowire array. Control over the nanowire growth direction is extremely desirable, in that anisotropic parameters such as thermal and electrical conductivity, index of refraction, piezoelectric polarization, and bandgap may be used to tune the physical properties of nanowires made from a given material. Here we demonstrate the use of metal-organic chemical vapour deposition (MOCVD) and appropriate substrate selection to control the crystallographic growth directions of high-density arrays of gallium nitride nanowires with distinct geometric and physical properties. Epitaxial growth of wurtzite gallium nitride on (100) gamma-LiAlO(2) and (111) MgO single-crystal substrates resulted in the selective growth of nanowires in the orthogonal [1\\[Evec]0] and [001] directions, exhibiting triangular and hexagonal cross-sections and drastically different optical emission. The MOCVD process is entirely compatible with the current GaN thin-film technology, which would lead to easy scale-up and device integration.

  9. Accurate Acoustic Thermometry I: The Triple Point of Gallium

    NASA Astrophysics Data System (ADS)

    Moldover, M. R.; Trusler, J. P. M.

    1988-01-01

    The speed of sound in argon has been accurately measured in the pressure range 25-380 kPa at the temperature of the triple point of gallium (Tg) and at 340 kPa at the temperature of the triple point of water (Tt). The results are combined with previously published thermodynamic and transport property data to obtain Tg = (302.9169 +/- 0.0005) K on the thermodynamic scale. Among recent determinations of T68 (the temperature on IPTS-68) at the gallium triple point, those with the smallest measurement uncertainty fall in the range 302.923 71 to 302.923 98 K. We conclude that T-T68 = (-6.9 +/- 0.5) mK near 303 K, in agreement with results obtained from other primary thermometers. The speed of sound was measured with a spherical resonator. The volume and thermal expansion of the resonator were determined by weighing the mercury required to fill it at Tt and Tg. The largest part of the standard error in the present determination of Tg is systematic. It results from imperfect knowledge of the thermal expansion of mercury between Tt and Tg. Smaller parts of the error result from imperfections in the measurement of the temperature of the resonator and of the resonance frequencies.

  10. Reference correlations for the thermal conductivity of liquid copper, gallium, indium, iron, lead, nickel and tin**

    PubMed Central

    Assael, Marc J.; Chatzimichailidis, Arsenios; Antoniadis, Konstantinos D.; Wakeham, William A.; Huber, Marcia L.; Fukuyama, Hiroyuki

    2017-01-01

    The available experimental data for the thermal conductivity of liquid copper, gallium, indium, iron, lead, nickel, and tin has been critically examined with the intention of establishing thermal conductivity reference correlations. All experimental data have been categorized into primary and secondary data according to the quality of measurement specified by a series of criteria. The proposed standard reference correlations for the thermal conductivity of liquid copper, gallium, indium, iron, lead, nickel, and tin are respectively characterized by uncertainties of 9.8, 15.9, 9.7, 13.7, 16.9, 7.7, and 12.6% at the 95% confidence level. PMID:29353915

  11. Thermal Cycling and High Temperature Reverse Bias Testing of Control and Irradiated Gallium Nitride Power Transistors

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Boomer, Kristen T.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad

    2014-01-01

    The power systems for use in NASA space missions must work reliably under harsh conditions including radiation, thermal cycling, and exposure to extreme temperatures. Gallium nitride semiconductors show great promise, but information pertaining to their performance is scarce. Gallium nitride N-channel enhancement-mode field effect transistors made by EPC Corporation in a 2nd generation of manufacturing were exposed to radiation followed by long-term thermal cycling and testing under high temperature reverse bias conditions in order to address their reliability for use in space missions. Result of the experimental work are presented and discussed.

  12. Regularly arranged indium islands on glass/molybdenum substrates upon femtosecond laser and physical vapor deposition processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ringleb, F.; Eylers, K.; Teubner, Th.

    2016-03-14

    A bottom-up approach is presented for the production of arrays of indium islands on a molybdenum layer on glass, which can serve as micro-sized precursors for indium compounds such as copper-indium-gallium-diselenide used in photovoltaics. Femtosecond laser ablation of glass and a subsequent deposition of a molybdenum film or direct laser processing of the molybdenum film both allow the preferential nucleation and growth of indium islands at the predefined locations in a following indium-based physical vapor deposition (PVD) process. A proper choice of laser and deposition parameters ensures the controlled growth of indium islands exclusively at the laser ablated spots. Basedmore » on a statistical analysis, these results are compared to the non-structured molybdenum surface, leading to randomly grown indium islands after PVD.« less

  13. Second-hand smoke exposure generated by new electronic devices (IQOS® and e-cigs) and traditional cigarettes: submicron particle behaviour in human respiratory system.

    PubMed

    Protano, C; Manigrasso, M; Avino, P; Sernia, S; Vitali, M

    2016-01-01

    Passive exposure profiles to submicronic particles (SMPs, 5.6-560 nm) of traditional cigarettes and new electronic commercial devices (e-cig and IQOS®, a new heat-not-burn smoking device) were compared. During smoking, SMPs released by traditional cigarettes resulted four-times higher than those released by electronic and heat-not-burn devices and remained high for at least one hour, while SMPs values returned immediately similar to background for electronic and heat-not-burn devices. In all experiments, approximately half of SMPs resulted so small to reach the alveolar region.

  14. Effect of Metal Doping and Vacancies on the Thermal Conductivity of Monolayer Molybdenum Diselenide.

    PubMed

    Yarali, Milad; Brahmi, Hatem; Yan, Zhequan; Li, Xufan; Xie, Lixin; Chen, Shuo; Kumar, Satish; Yoon, Mina; Xiao, Kai; Mavrokefalos, Anastassios

    2018-02-07

    It is well understood that defect engineering can give rise to exotic electronic properties in transition-metal dichalcogenides, but to this date, there is no detailed study to illustrate how defects can be engineered to tailor their thermal properties. Here, through combined experimental and theoretical approaches based on the first-principles density functional theory and Boltzmann transport equations, we have explored the effect of lattice vacancies and substitutional tungsten (W) doping on the thermal transport of the suspended molybdenum diselenide (MoSe 2 ) monolayers grown by chemical vapor deposition (CVD). The results show that even though the isoelectronic substitution of the W atoms for Mo atoms in CVD-grown Mo 0.82 W 018 Se 2 monolayers reduces the Se vacancy concentration by 50% compared to that found in the MoSe 2 monolayers, the thermal conductivity remains intact in a wide temperature range. On the other hand, Se vacancies have a detrimental effect for both samples and more so in the Mo 0.82 W 018 Se 2 monolayers, which results in thermal conductivity reduction up to 72% for a vacancy concentration of 4%. This is because the mass of the W atom is larger than that of the Mo atom, and missing a Se atom at a vacancy site results in a larger mass difference and therefore kinetic energy and potential energy difference. Furthermore, the monotonically increasing thermal conductivity with temperature for both systems at low temperatures indicates the importance of boundary scattering over defects and phonon-phonon scattering at these temperatures.

  15. Stability of the tungsten diselenide and silicon carbide heterostructure against high energy proton exposure

    NASA Astrophysics Data System (ADS)

    Walker, Roger C.; Shi, Tan; Jariwala, Bhakti; Jovanovic, Igor; Robinson, Joshua A.

    2017-10-01

    Single layers of tungsten diselenide (WSe2) can be used to construct ultra-thin, high-performance electronics. Additionally, there has been considerable progress in controlled and direct growth of single layers on various substrates. Based on these results, high-quality WSe2-based devices that approach the limit of physical thickness are now possible. Such devices could be useful for space applications, but understanding how high-energy radiation impacts the properties of WSe2 and the WSe2/substrate interface has been lacking. In this work, we compare the stability against high energy proton radiation of WSe2 and silicon carbide (SiC) heterostructures generated by mechanical exfoliation of WSe2 flakes and by direct growth of WSe2 via metal-organic chemical vapor deposition (MOCVD). These two techniques produce WSe2/SiC heterostructures with distinct differences due to interface states generated during the MOCVD growth process. This difference carries over to differences in band alignment from interface states and the ultra-thin nature of the MOCVD-grown material. Both heterostructures are not susceptible to proton-induced charging up to a dose of 1016 protons/cm2, as measured via shifts in the binding energy of core shell electrons and a decrease in the valence band offset. Furthermore, the MOCVD-grown material is less affected by the proton exposure due to its ultra-thin nature and a greater interaction with the substrate. These combined effects show that the directly grown material is suitable for multi-year use in space, provided that high quality devices can be fabricated from it.

  16. 2-Seleno-1-alkylbenzimidazoles and their Diselenides: Synthesis and Structural Characterization of a 2-Seleno-1-methylbenzimidazole Complex of Mercury‡

    PubMed Central

    Palmer, Joshua H.; Parkin, Gerard

    2012-01-01

    2-Seleno-1-methylbenzimidazole, H(sebenzimMe), can be synthesized from 1-methylbenzimidazole by sequential treatment with (i) BunLi, (ii) elemental selenium and (iii) HCl(aq). This method is also applicable to the synthesis of 2-seleno-1-t-butylbenzimidazole, H(sebenzimBut). Single crystal X–ray diffraction and NMR spectroscopic data demonstrate that H(sebenzimMe) and H(sebenzimBut) exist as the selone rather than the selenol tautomers, which is in accord with the results of density functional theory (B3LYP) calculations. The data also indicate that the selone is best represented as a C+–Se− zwitterion rather than as a C=Se doubly bonded species. Aerobic oxidation of H(sebenzimMe) and H(sebenzimBut) in the presence of Et3N yields the diselenides, (sebenzimMe)2 and (sebenzimBut)2. In addition, H(sebenzimMe) reacts with HgCl2 to give [H(sebenzimMe)]2HgCl2, the first structurally characterized example of a 2-seleno-1-alkylimidazole mercury complex. PMID:23543946

  17. Zinc diffusion in gallium arsenide and the properties of gallium interstitials

    NASA Astrophysics Data System (ADS)

    Bracht, H.; Brotzmann, S.

    2005-03-01

    We have performed zinc diffusion experiments in gallium arsenide at temperatures between 620°C and 870°C with a dilute Ga-Zn source. The low Zn partial pressure established during annealing realizes Zn surface concentrations of ⩽2×1019cm-3 , which lead to the formation of characteristic S-shaped diffusion profiles. Accurate modeling of the Zn profiles, which were measured by means of secondary ion mass spectroscopy, shows that Zn diffusion under the particular doping conditions is mainly mediated by neutral and singly positively charged Ga interstitials via the kick-out mechanism. We determined the temperature dependence of the individual contributions of neutral and positively charged Ga interstitials to Ga diffusion for electronically intrinsic conditions. The data are lower than the total Ga self-diffusion coefficient and hence consistent with the general interpretation that Ga diffusion under intrinsic conditions is mainly mediated by Ga vacancies. Our results disprove the general accepted interpretation of Zn diffusion in GaAs via doubly and triply positively charged Ga interstitials and solves the inconsistency related to the electrical compensation of the acceptor dopant Zn by the multiply charged Ga interstitials.

  18. Bright Room-Temperature Single-Photon Emission from Defects in Gallium Nitride.

    PubMed

    Berhane, Amanuel M; Jeong, Kwang-Yong; Bodrog, Zoltán; Fiedler, Saskia; Schröder, Tim; Triviño, Noelia Vico; Palacios, Tomás; Gali, Adam; Toth, Milos; Englund, Dirk; Aharonovich, Igor

    2017-03-01

    Room-temperature quantum emitters in gallium nitride (GaN) are reported. The emitters originate from cubic inclusions in hexagonal lattice and exhibit narrowband luminescence in the red spectral range. The sources are found in different GaN substrates, and therefore are promising for scalable quantum technologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Gallium arsenide solar array subsystem study

    NASA Technical Reports Server (NTRS)

    Miller, F. Q.

    1982-01-01

    The effects on life cycle costs of a number of technology areas are examined for a gallium arsenide space solar array. Four specific configurations were addressed: (1) a 250 KWe LEO mission - planer array; (2) a 250 KWe LEO mission - with concentration; (3) a 50 KWe GEO mission planer array; (4) a 50 KWe GEO mission - with concentration. For each configuration, a baseline system conceptual design was developed and the life cycle costs estimated in detail. The baseline system requirements and design technologies were then varied and their relationships to life cycle costs quantified. For example, the thermal characteristics of the baseline design are determined by the array materials and masses. The thermal characteristics in turn determine configuration, performance, and hence life cycle costs.

  20. Dual operation characteristics of resistance random access memory in indium-gallium-zinc-oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Yang, Jyun-Bao; Chang, Ting-Chang; Huang, Jheng-Jie; Chen, Yu-Chun; Chen, Yu-Ting; Tseng, Hsueh-Chih; Chu, Ann-Kuo; Sze, Simon M.

    2014-04-01

    In this study, indium-gallium-zinc-oxide thin film transistors can be operated either as transistors or resistance random access memory devices. Before the forming process, current-voltage curve transfer characteristics are observed, and resistance switching characteristics are measured after a forming process. These resistance switching characteristics exhibit two behaviors, and are dominated by different mechanisms. The mode 1 resistance switching behavior is due to oxygen vacancies, while mode 2 is dominated by the formation of an oxygen-rich layer. Furthermore, an easy approach is proposed to reduce power consumption when using these resistance random access memory devices with the amorphous indium-gallium-zinc-oxide thin film transistor.