Sample records for gallium nitride light-emitting

  1. Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern.

    PubMed

    Han, Nam; Cuong, Tran Viet; Han, Min; Ryu, Beo Deul; Chandramohan, S; Park, Jong Bae; Kang, Ji Hye; Park, Young-Jae; Ko, Kang Bok; Kim, Hee Yun; Kim, Hyun Kyu; Ryu, Jae Hyoung; Katharria, Y S; Choi, Chel-Jong; Hong, Chang-Hee

    2013-01-01

    The future of solid-state lighting relies on how the performance parameters will be improved further for developing high-brightness light-emitting diodes. Eventually, heat removal is becoming a crucial issue because the requirement of high brightness necessitates high-operating current densities that would trigger more joule heating. Here we demonstrate that the embedded graphene oxide in a gallium nitride light-emitting diode alleviates the self-heating issues by virtue of its heat-spreading ability and reducing the thermal boundary resistance. The fabrication process involves the generation of scalable graphene oxide microscale patterns on a sapphire substrate, followed by its thermal reduction and epitaxial lateral overgrowth of gallium nitride in a metal-organic chemical vapour deposition system under one-step process. The device with embedded graphene oxide outperforms its conventional counterpart by emitting bright light with relatively low-junction temperature and thermal resistance. This facile strategy may enable integration of large-scale graphene into practical devices for effective heat removal.

  2. Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control.

    PubMed

    Sarkar, Sujoy; Sampath, S

    2016-05-11

    A ternary, ionically conducting, deep eutectic solvent based on acetamide, urea and gallium nitrate is reported for the electrodeposition of gallium nitride/gallium indium nitride under ambient conditions; blue and white light emitting photoluminescent deposits are obtained under potential control.

  3. P-type gallium nitride

    DOEpatents

    Rubin, M.; Newman, N.; Fu, T.; Ross, J.; Chan, J.

    1997-08-12

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5{times}10{sup 11} /cm{sup 3} and hole mobilities of about 500 cm{sup 2} /V-sec, measured at 250 K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al. 9 figs.

  4. P-type gallium nitride

    DOEpatents

    Rubin, Michael; Newman, Nathan; Fu, Tracy; Ross, Jennifer; Chan, James

    1997-01-01

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5.times.10.sup.11 /cm.sup.3 and hole mobilities of about 500 cm.sup.2 /V-sec, measured at 250.degree. K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al.

  5. Visible light metasurfaces based on gallium nitride high contrast gratings

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhai; He, Shumin; Liu, Qifa; Wang, Wei

    2016-05-01

    We propose visible-light metasurfaces (VLMs) capable of serving as lens and beam deflecting element based on gallium nitride (GaN) high contrast gratings (HCGs). By precisely manipulating the wavefront of the transmitted light, we theoretically demonstrate an HCG focusing lens with transmissivity of 86.3%, and a VLM with beam deflection angle of 6.09° and transmissivity as high as 91.4%. The proposed all-dielectric metasurfaces are promising for GaN-based visible light-emitting diodes (LEDs), which would be robust and versatile for controlling the output light propagation and polarization, as well as enhancing the extraction efficiency of the LEDs.

  6. Indium gallium nitride-based ultraviolet, blue, and green light-emitting diodes functionalized with shallow periodic hole patterns

    PubMed Central

    Jeong, Hyun; Salas-Montiel, Rafael; Lerondel, Gilles; Jeong, Mun Seok

    2017-01-01

    In this study, we investigated the improvement in the light output power of indium gallium nitride (InGaN)-based ultraviolet (UV), blue, and green light-emitting diodes (LEDs) by fabricating shallow periodic hole patterns (PHPs) on the LED surface through laser interference lithography and inductively coupled plasma etching. Noticeably, different enhancements were observed in the light output powers of the UV, blue, and green LEDs with negligible changes in the electrical properties in the light output power versus current and current versus voltage curves. In addition, confocal scanning electroluminescence microscopy is employed to verify the correlation between the enhancement in the light output power of the LEDs with PHPs and carrier localization of InGaN/GaN multiple quantum wells. Light propagation through the PHPs on the UV, blue, and green LEDs is simulated using a three-dimensional finite-difference time-domain method to confirm the experimental results. Finally, we suggest optimal conditions of PHPs for improving the light output power of InGaN LEDs based on the experimental and theoretical results. PMID:28374856

  7. Indium gallium nitride-based ultraviolet, blue, and green light-emitting diodes functionalized with shallow periodic hole patterns.

    PubMed

    Jeong, Hyun; Salas-Montiel, Rafael; Lerondel, Gilles; Jeong, Mun Seok

    2017-04-04

    In this study, we investigated the improvement in the light output power of indium gallium nitride (InGaN)-based ultraviolet (UV), blue, and green light-emitting diodes (LEDs) by fabricating shallow periodic hole patterns (PHPs) on the LED surface through laser interference lithography and inductively coupled plasma etching. Noticeably, different enhancements were observed in the light output powers of the UV, blue, and green LEDs with negligible changes in the electrical properties in the light output power versus current and current versus voltage curves. In addition, confocal scanning electroluminescence microscopy is employed to verify the correlation between the enhancement in the light output power of the LEDs with PHPs and carrier localization of InGaN/GaN multiple quantum wells. Light propagation through the PHPs on the UV, blue, and green LEDs is simulated using a three-dimensional finite-difference time-domain method to confirm the experimental results. Finally, we suggest optimal conditions of PHPs for improving the light output power of InGaN LEDs based on the experimental and theoretical results.

  8. Strong light extraction enhancement using TiO2 nanoparticles-based microcone arrays embossed on III-Nitride light emitting diodes

    NASA Astrophysics Data System (ADS)

    Désières, Yohan; Chen, Ding Yuan; Visser, Dennis; Schippers, Casper; Anand, Srinivasan

    2018-06-01

    Colloidal TiO2 nanoparticles were used for embossing of composite microcone arrays on III-Nitride vertical-thin-film blue light emitting diodes (LEDs) as well as on silicon, glass, gallium arsenide, and gallium nitride surfaces. Ray tracing simulations were performed to optimize the design of microcones for light extraction and to explain the experimental results. An optical power enhancement of ˜2.08 was measured on III-Nitride blue LEDs embossed with a hexagonal array of TiO2 microcones of ˜1.35 μm in height and ˜2.6 μm in base width, without epoxy encapsulation. A voltage increase in ˜70 mV at an operating current density of ˜35 A/cm2 was measured for the embossed LEDs. The TiO2 microcone arrays were embossed on functioning LEDs, using low pressures (˜100 g/cm2) and temperatures ≤100 °C.

  9. Gallium Nitride Nanowires and Heterostructures: Toward Color-Tunable and White-Light Sources.

    PubMed

    Kuykendall, Tevye R; Schwartzberg, Adam M; Aloni, Shaul

    2015-10-14

    Gallium-nitride-based light-emitting diodes have enabled the commercialization of efficient solid-state lighting devices. Nonplanar nanomaterial architectures, such as nanowires and nanowire-based heterostructures, have the potential to significantly improve the performance of light-emitting devices through defect reduction, strain relaxation, and increased junction area. In addition, relaxation of internal strain caused by indium incorporation will facilitate pushing the emission wavelength into the red. This could eliminate inefficient phosphor conversion and enable color-tunable emission or white-light emission by combining blue, green, and red sources. Utilizing the waveguiding modes of the individual nanowires will further enhance light emission, and the properties of photonic structures formed by nanowire arrays can be implemented to improve light extraction. Recent advances in synthetic methods leading to better control over GaN and InGaN nanowire synthesis are described along with new concept devices leading to efficient white-light emission. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. High-luminosity blue and blue-green gallium nitride light-emitting diodes.

    PubMed

    Morkoç, H; Mohammad, S N

    1995-01-06

    Compact and efficient sources of blue light for full color display applications and lighting eluded and tantalized researchers for many years. Semiconductor light sources are attractive owing to their reliability and amenability to mass manufacture. However, large band gaps are required to achieve blue color. A class of compound semiconductors formed by metal nitrides, GaN and its allied compounds AIGaN and InGaN, exhibits properties well suited for not only blue and blue-green emitters, but also for ultraviolet emitters and detectors. What thwarted engineers and scientists from fabricating useful devices from these materials in the past was the poor quality of material and lack of p-type doping. Both of these obstacles have recently been overcome to the point where highluminosity blue and blue-green light-emitting diodes are now available in the marketplace.

  11. Indium Gallium Nitride/Gallium Nitride (InGaN/GaN) Nanorods Superlattice (SL)

    DTIC Science & Technology

    2006-03-29

    Final Report (Technical) 3. DATES COVERED 29-03-2005 to 29-05-2006 4. TITLE AND SUBTITLE Indium Gallium Nitride/ Gallium Nitride (InGaN/GaN...Institution: Quantum functional Semiconductor Research Center (QSRC), Dongguk University - Title of project: Indium Gallium Nitride/ Gallium Nitride...Accepted with minor revision Indium Gallium Nitride / Gallium Nitride (InGaN/ GaN) Nanorods Superlattice (SL) Abstract The growth condition, electrical

  12. High efficiency III-nitride light-emitting diodes

    DOEpatents

    Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

    2013-05-28

    Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

  13. Gallium nitride optoelectronic devices

    NASA Technical Reports Server (NTRS)

    Chu, T. L.; Chu, S. S.

    1972-01-01

    The growth of bulk gallium nitride crystals was achieved by the ammonolysis of gallium monochloride. Gallium nitride single crystals up to 2.5 x 0.5 cm in size were produced. The crystals are suitable as substrates for the epitaxial growth of gallium nitride. The epitaxial growth of gallium nitride on sapphire substrates with main faces of (0001) and (1T02) orientations was achieved by the ammonolysis of gallium monochloride in a gas flow system. The grown layers had electron concentrations in the range of 1 to 3 x 10 to the 19th power/cu cm and Hall mobilities in the range of 50 to 100 sq cm/v/sec at room temperature.

  14. Gallium nitride light sources for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Goldberg, Graham R.; Ivanov, Pavlo; Ozaki, Nobuhiko; Childs, David T. D.; Groom, Kristian M.; Kennedy, Kenneth L.; Hogg, Richard A.

    2017-02-01

    The advent of optical coherence tomography (OCT) has permitted high-resolution, non-invasive, in vivo imaging of the eye, skin and other biological tissue. The axial resolution is limited by source bandwidth and central wavelength. With the growing demand for short wavelength imaging, super-continuum sources and non-linear fibre-based light sources have been demonstrated in tissue imaging applications exploiting the near-UV and visible spectrum. Whilst the potential has been identified of using gallium nitride devices due to relative maturity of laser technology, there have been limited reports on using such low cost, robust devices in imaging systems. A GaN super-luminescent light emitting diode (SLED) was first reported in 2009, using tilted facets to suppress lasing, with the focus since on high power, low speckle and relatively low bandwidth applications. In this paper we discuss a method of producing a GaN based broadband source, including a passive absorber to suppress lasing. The merits of this passive absorber are then discussed with regards to broad-bandwidth applications, rather than power applications. For the first time in GaN devices, the performance of the light sources developed are assessed though the point spread function (PSF) (which describes an imaging systems response to a point source), calculated from the emission spectra. We show a sub-7μm resolution is possible without the use of special epitaxial techniques, ultimately outlining the suitability of these short wavelength, broadband, GaN devices for use in OCT applications.

  15. Low-threshold indium gallium nitride quantum dot microcavity lasers

    NASA Astrophysics Data System (ADS)

    Woolf, Alexander J.

    Gallium nitride (GaN) microcavities with embedded optical emitters have long been sought after as visible light sources as well as platforms for cavity quantum electrodynamics (cavity QED) experiments. Specifically, materials containing indium gallium nitride (InGaN) quantum dots (QDs) offer an outstanding platform to study light matter interactions and realize practical devices, such as on-chip light emitting diodes and nanolasers. Inherent advantages of nitride-based microcavities include low surface recombination velocities, enhanced room-temperature performance (due to their high exciton binding energy, as high as 67 meV for InGaN QDs), and emission wavelengths in the blue region of the visible spectrum. In spite of these advantages, several challenges must be overcome in order to capitalize on the potential of this material system. Such diffculties include the processing of GaN into high-quality devices due to the chemical inertness of the material, low material quality as a result of strain-induced defects, reduced carrier recombination effciencies due to internal fields, and a lack of characterization of the InGaN QDs themselves due to the diffculty of their growth and therefore lack of development relative to other semiconductor QDs. In this thesis we seek to understand and address such issues by investigating the interaction of light coupled to InGaN QDs via a GaN microcavity resonator. Such coupling led us to the demonstration of the first InGaN QD microcavity laser, whose performance offers insights into the properties and current limitations of the nitride materials and their emitters. This work is organized into three main sections. Part I outlines the key advantages and challenges regarding indium gallium nitride (InGaN) emitters embedded within gallium nitride (GaN) optical microcavities. Previous work is also discussed which establishes context for the work presented here. Part II includes the fundamentals related to laser operation, including the

  16. Free-Standing Self-Assemblies of Gallium Nitride Nanoparticles: A Review

    DOE PAGES

    Lan, Yucheng; Li, Jianye; Wong-Ng, Winnie; ...

    2016-08-23

    Gallium nitride (GaN) is an III-V semiconductor with a direct band-gap of 3.4eV . GaN has important potentials in white light-emitting diodes, blue lasers, and field effect transistors because of its super thermal stability and excellent optical properties, playing main roles in future lighting to reduce energy cost and sensors to resist radiations. GaN nanomaterials inherit bulk properties of the compound while possess novel photoelectric properties of nanomaterials. The review focuses on self-assemblies of GaN nanoparticles without templates, growth mechanisms of self-assemblies, and potential applications of the assembled nanostructures on renewable energy.

  17. A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications

    NASA Astrophysics Data System (ADS)

    Rajbhandari, Sujan; McKendry, Jonathan J. D.; Herrnsdorf, Johannes; Chun, Hyunchae; Faulkner, Grahame; Haas, Harald; Watson, Ian M.; O'Brien, Dominic; Dawson, Martin D.

    2017-02-01

    The field of visible light communications (VLC) has gained significant interest over the last decade, in both fibre and free-space embodiments. In fibre systems, the availability of low cost polymer optical fibre (POF) that is compatible with visible data communications has been a key enabler. In free-space applications, the availability of hundreds of THz of the unregulated spectrum makes VLC attractive for wireless communications. This paper provides an overview of the recent developments in VLC systems based on gallium nitride (GaN) light-emitting diodes (LEDs), covering aspects from sources to systems. The state-of-the-art technology enabling bandwidth of GaN LEDs in the range of >400 MHz is explored. Furthermore, advances in key technologies, including advanced modulation, equalisation, and multiplexing that have enabled free-space VLC data rates beyond 10 Gb s-1 are also outlined.

  18. Micro and nano-structured green gallium indium nitride/gallium nitride light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Stark, Christoph J. M.

    Light-emitting diodes (LEDs) are commonly designed and studied based on bulk material properties. In this thesis different approaches based on patterns in the nano and micrometer length scale range are used to tackle low efficiency in the green spectral region, which is known as “green gap”. Since light generation and extraction are governed by microscopic processes, it is instructive to study LEDs with lateral mesa sizes scaled to the nanometer range. Besides the well-known case of the quantum size effect along the growth direction, a continuous lateral scaling could reveal the mechanisms behind the purported absence of a green gap in nanowire LEDs and the role of their extraction enhancement. Furthermore the possibility to modulate strain and piezoelectric polarization by post growth patterning is of practical interest, because the internal electric fields in conventional wurtzite GaN LEDs cause performance problems. A possible alternative is cubic phase GaN, which is free of built-in polarization fields. LEDs on cubic GaN could show the link between strong polarization fields and efficiency roll-off at high current densities, also known as droop. An additional problem for all nitride-based LEDs is efficient light extraction. For a planar GaN LED only roughly 8% of the generated light can be extracted. Novel lightextraction structures with extraction-favoring geometry can yield significant increase in light output power. To investigate the effect of scaling the mesa dimension, micro and nano-sized LED arrays of variable structure size were fabricated. The nano-LEDs were patterned by electron beam lithography and dry etching. They contained up to 100 parallel nano-stripe LEDs connected to one common contact area. The mesa width was varied over 1 μm, 200 nm, and 50 nm. These LEDs were characterized electrically and optically, and the peak emission wavelength was found to depend on the lateral structure size. An electroluminescence (EL) wavelength shift of 3 nm

  19. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting

    PubMed Central

    Kim, Hoon-sik; Brueckner, Eric; Song, Jizhou; Li, Yuhang; Kim, Seok; Lu, Chaofeng; Sulkin, Joshua; Choquette, Kent; Huang, Yonggang; Nuzzo, Ralph G.; Rogers, John A.

    2011-01-01

    Properties that can now be achieved with advanced, blue indium gallium nitride light emitting diodes (LEDs) lead to their potential as replacements for existing infrastructure in general illumination, with important implications for efficient use of energy. Further advances in this technology will benefit from reexamination of the modes for incorporating this materials technology into lighting modules that manage light conversion, extraction, and distribution, in ways that minimize adverse thermal effects associated with operation, with packages that exploit the unique aspects of these light sources. We present here ideas in anisotropic etching, microscale device assembly/integration, and module configuration that address these challenges in unconventional ways. Various device demonstrations provide examples of the capabilities, including thin, flexible lighting “tapes” based on patterned phosphors and large collections of small light emitters on plastic substrates. Quantitative modeling and experimental evaluation of heat flow in such structures illustrates one particular, important aspect of their operation: small, distributed LEDs can be passively cooled simply by direct thermal transport through thin-film metallization used for electrical interconnect, providing an enhanced and scalable means to integrate these devices in modules for white light generation. PMID:21666096

  20. Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources

    PubMed Central

    Zhao, S.; Connie, A. T.; Dastjerdi, M. H. T.; Kong, X. H.; Wang, Q.; Djavid, M.; Sadaf, S.; Liu, X. D.; Shih, I.; Guo, H.; Mi, Z.

    2015-01-01

    Despite broad interest in aluminum gallium nitride (AlGaN) optoelectronic devices for deep ultraviolet (DUV) applications, the performance of conventional Al(Ga)N planar devices drastically decays when approaching the AlN end, including low internal quantum efficiencies (IQEs) and high device operation voltages. Here we show that these challenges can be addressed by utilizing nitrogen (N) polar Al(Ga)N nanowires grown directly on Si substrate. By carefully tuning the synthesis conditions, a record IQE of 80% can be realized with N-polar AlN nanowires, which is nearly ten times higher compared to high quality planar AlN. The first 210 nm emitting AlN nanowire light emitting diodes (LEDs) were achieved, with a turn on voltage of about 6 V, which is significantly lower than the commonly observed 20 – 40 V. This can be ascribed to both efficient Mg doping by controlling the nanowire growth rate and N-polarity induced internal electrical field that favors hole injection. In the end, high performance N-polar AlGaN nanowire LEDs with emission wavelengths covering the UV-B/C bands were also demonstrated. PMID:25684335

  1. Ultra-thin ohmic contacts for p-type nitride light emitting devices

    DOEpatents

    Raffetto, Mark [Raleigh, NC; Bharathan, Jayesh [Cary, NC; Haberern, Kevin [Cary, NC; Bergmann, Michael [Chapel Hill, NC; Emerson, David [Chapel Hill, NC; Ibbetson, James [Santa Barbara, CA; Li, Ting [Ventura, CA

    2012-01-03

    A semiconductor based Light Emitting Device (LED) can include a p-type nitride layer and a metal ohmic contact, on the p-type nitride layer. The metal ohmic contact can have an average thickness of less than about 25 .ANG. and a specific contact resistivity less than about 10.sup.-3 ohm-cm.sup.2.

  2. Effect of nitrogen doping on the structural, optical and electrical properties of indium tin oxide films prepared by magnetron sputtering for gallium nitride light emitting diodes

    NASA Astrophysics Data System (ADS)

    Tian, Lifei; Cheng, Guoan; Wang, Hougong; Wu, Yulong; Zheng, Ruiting; Ding, Peijun

    2017-01-01

    The indium tin oxide (ITO) films are prepared by the direct current magnetron sputtering technology with an ITO target in a mixture of argon and nitrogen gas at room temperature. The blue transmittance at 455 nm rises from 63% to 83% after nitrogen doping. The resistivity of the ITO film reduces from 4.6 × 10-3 (undoped film) to 5.7 × 10-4 Ω cm (N-doped film). The X-ray photoelectron spectroscopy data imply that the binding energy of the In3d5/2 peak is declined 0.05 eV after nitrogen doping. The high resolution transmission electron microscope images show that the nitrogen loss density of the GaN/ITO interface with N-doped ITO film is smaller than that of the GaN/ITO interface with undoped ITO film. The forward turn-on voltage of gallium nitride light emitting diode reduces by 0.5 V after nitrogen doping. The fabrication of the N-doped ITO film is conducive to modify the N component of the interface between GaN and ITO layer.

  3. Non-Ideal Properties of Gallium Nitride Based Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Shan, Qifeng

    The spectacular development of gallium nitride (GaN) based light-emitting diodes (LEDs) in recent years foreshadows a new era for lighting. There are still several non-ideal properties of GaN based LEDs that hinder their widespread applications. This dissertation studies these non-ideal properties including the large reverse leakage current, large subthreshold forward leakage current, an undesired parasitic cyan luminescence and high-concentration deep levels in GaInN blue LEDs. This dissertation also studies the thermal properties of GaInN LEDs. Chapter 1 gives a brief introduction of non-ideal properties of GaN based LEDs. The leakage current of GaN based LEDs, defects in epitaxially grown GaN devices, and doping problems of p-type GaN materials are discussed. The transient junction temperature measurement technique for GaN based LEDs is introduced. The leakage current of an LED includes the subthreshold forward leakage current and the reverse leakage current. The leakage current of GaN based LEDs affects the reliability, electrostatic discharge resilience, and sub-threshold power consumption. In Chapter 2, the reverse leakage current of a GaInN LED is analyzed by temperaturedependent current-voltage measurements. At low temperature, the reverse leakage current is attributed to the variable-range-hopping conduction. At high temperature, the reverse leakage current is attributed to a thermally-assisted multi-step tunneling. The thermal activation energies (95 meV ~ 162 meV), extracted from the Arrhenius plot for the reverse current in the high-temperature range, indicate a thermally activated tunneling process. Additional room-temperature capacitance-voltage (C-V) measurements are performed to obtain information on the depletion width and doping concentration of the LED. The average internal electric field is estimated by the C-V measurements. The strong internal electric field enhances the thermal emission of electrons in the

  4. Flip-chip light emitting diode with resonant optical microcavity

    DOEpatents

    Gee, James M.; Bogart, Katherine H.A.; Fischer, Arthur J.

    2005-11-29

    A flip-chip light emitting diode with enhanced efficiency. The device structure employs a microcavity structure in a flip-chip configuration. The microcavity enhances the light emission in vertical modes, which are readily extracted from the device. Most of the rest of the light is emitted into waveguided lateral modes. Flip-chip configuration is advantageous for light emitting diodes (LEDs) grown on dielectric substrates (e.g., gallium nitride LEDs grown on sapphire substrates) in general due to better thermal dissipation and lower series resistance. Flip-chip configuration is advantageous for microcavity LEDs in particular because (a) one of the reflectors is a high-reflectivity metal ohmic contact that is already part of the flip-chip configuration, and (b) current conduction is only required through a single distributed Bragg reflector. Some of the waveguided lateral modes can also be extracted with angled sidewalls used for the interdigitated contacts in the flip-chip configuration.

  5. Control of Defects in Aluminum Gallium Nitride ((Al)GaN) Films on Grown Aluminum Nitride (AlN) Substrates

    DTIC Science & Technology

    2013-02-01

    Nord, J.; Albe, K.; Erhart, P.; Nordlund, K. Modelling of Compound Semiconductors: Analytical Bond-order Potential for Gallium , Nitrogen and Gallium ...Control of Defects in Aluminum Gallium Nitride ((Al)GaN) Films on Grown Aluminum Nitride (AlN) Substrates by Iskander G. Batyrev, Chi-Chin Wu...Aluminum Gallium Nitride ((Al)GaN) Films on Grown Aluminum Nitride (AlN) Substrates Iskander G. Batyrev and N. Scott Weingarten Weapons and

  6. Highly efficient all-nitride phosphor-converted white light emitting diode

    NASA Astrophysics Data System (ADS)

    Mueller-Mach, Regina; Mueller, Gerd; Krames, Michael R.; Höppe, Henning A.; Stadler, Florian; Schnick, Wolfgang; Juestel, Thomas; Schmidt, Peter

    2005-07-01

    The development and demonstration of a highly efficient warm-white all-nitride phosphor-converted light emitting diode (pc-LED) is presented utilizing a GaN based quantum well blue LED and two novel nitrogen containing luminescent materials, both of which are doped with Eu2+. For color conversion of the primary blue the nitridosilicates M2Si5N8 (orange-red) and MSi2O2N2 (yellow-green), with M = alkaline earth, were employed, thus achieving a high luminous efficiency (25 lumen/W at 1 W input), excellent color quality (correlated color temperature CCT = 3200 K, general color rendering index Ra > 90) and the highest proven color stability of any pc-LED obtained so far. Thus, these novel all-nitride LEDs are superior to both incandescent and fluorescent lamps and may therefore become the next generation of general lighting sources.

  7. Electroformed silicon nitride based light emitting memory device

    NASA Astrophysics Data System (ADS)

    Anutgan, Tamila; Anutgan, Mustafa; Atilgan, Ismail; Katircioglu, Bayram

    2017-07-01

    The resistive memory switching effect of an electroformed nanocrystal silicon nitride thin film light emitting diode (LED) is demonstrated. For this purpose, current-voltage (I-V) characteristics of the diode were systematically scanned, paying particular attention to the sequence of the measurements. It was found that when the voltage polarity was changed from reverse to forward, the previously measured reverse I-V behavior was remembered until some critical forward bias voltage. Beyond this critical voltage, the I-V curve returns to its original state instantaneously, and light emission switches from the OFF state to the ON state. The kinetics of this switching mechanism was studied for different forward bias stresses by measuring the corresponding time at which the switching occurs. Finally, the switching of resistance and light emission states was discussed via energy band structure of the electroformed LED.

  8. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres.

    PubMed

    Taniyasu, Yoshitaka; Kasu, Makoto; Makimoto, Toshiki

    2006-05-18

    Compact high-efficiency ultraviolet solid-state light sources--such as light-emitting diodes (LEDs) and laser diodes--are of considerable technological interest as alternatives to large, toxic, low-efficiency gas lasers and mercury lamps. Microelectronic fabrication technologies and the environmental sciences both require light sources with shorter emission wavelengths: the former for improved resolution in photolithography and the latter for sensors that can detect minute hazardous particles. In addition, ultraviolet solid-state light sources are also attracting attention for potential applications in high-density optical data storage, biomedical research, water and air purification, and sterilization. Wide-bandgap materials, such as diamond and III-V nitride semiconductors (GaN, AlGaN and AlN; refs 3-10), are potential materials for ultraviolet LEDs and laser diodes, but suffer from difficulties in controlling electrical conduction. Here we report the successful control of both n-type and p-type doping in aluminium nitride (AlN), which has a very wide direct bandgap of 6 eV. This doping strategy allows us to develop an AlN PIN (p-type/intrinsic/n-type) homojunction LED with an emission wavelength of 210 nm, which is the shortest reported to date for any kind of LED. The emission is attributed to an exciton transition, and represents an important step towards achieving exciton-related light-emitting devices as well as replacing gas light sources with solid-state light sources.

  9. Metasurfaces based on Gallium Nitride High Contrast Gratings at Visible Range

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhai; He, Shumin; Liu, Qifa; Wang, Wei; Wang, Yongjin; Zhu, Hongbo; Grünberg Research Centre Team

    2015-03-01

    Metasurfaces are currently attracting global attention due to their ability to achieve full control of light propagation. However, these metasurfaces have thus far been constructed mostly from metallic materials, which greatly limit the diffraction efficiencies because of the ohmic losses. Semiconducting metasurfaces offer one potential solution to the issue of losses. Besides, the use of semiconducting materials can broaden the applicability of metasurfaces, as they enable facile integration with electronics and mechanical systems and can benefit from mature semiconductor fabrication technologies. We have proposed visible-light metasurfaces (VLMs) capable of serving as lenses and beam deflecting elements based on gallium nitride (GaN) high contrast gratings (HCGs). By precisely manipulating the wave-fronts of the transmitted light, we theoretically demonstrate an HCG focusing lens with transmissivity of 83.0% and numerical aperture of 0.77, and a VLM with beam deflection angle of 6.03° and transmissivity as high as 93.3%. The proposed metasurfaces are promising for GaN-based visible light-emitting diodes (LEDs), which would be robust and versatile for controlling the output light propagation and polarization, as well as enhancing the extraction efficiency of the LEDs.

  10. Direct Growth of III-Nitride Nanowire-Based Yellow Light-Emitting Diode on Amorphous Quartz Using Thin Ti Interlayer

    NASA Astrophysics Data System (ADS)

    Prabaswara, Aditya; Min, Jung-Wook; Zhao, Chao; Janjua, Bilal; Zhang, Daliang; Albadri, Abdulrahman M.; Alyamani, Ahmed Y.; Ng, Tien Khee; Ooi, Boon S.

    2018-02-01

    Consumer electronics have increasingly relied on ultra-thin glass screen due to its transparency, scalability, and cost. In particular, display technology relies on integrating light-emitting diodes with display panel as a source for backlighting. In this study, we undertook the challenge of integrating light emitters onto amorphous quartz by demonstrating the direct growth and fabrication of a III-nitride nanowire-based light-emitting diode. The proof-of-concept device exhibits a low turn-on voltage of 2.6 V, on an amorphous quartz substrate. We achieved 40% transparency across the visible wavelength while maintaining electrical conductivity by employing a TiN/Ti interlayer on quartz as a translucent conducting layer. The nanowire-on-quartz LED emits a broad linewidth spectrum of light centered at true yellow color ( 590 nm), an important wavelength bridging the green-gap in solid-state lighting technology, with significantly less strain and dislocations compared to conventional planar quantum well nitride structures. Our endeavor highlighted the feasibility of fabricating III-nitride optoelectronic device on a scalable amorphous substrate through facile growth and fabrication steps. For practical demonstration, we demonstrated tunable correlated color temperature white light, leveraging on the broadly tunable nanowire spectral characteristics across red-amber-yellow color regime.

  11. Direct Growth of III-Nitride Nanowire-Based Yellow Light-Emitting Diode on Amorphous Quartz Using Thin Ti Interlayer.

    PubMed

    Prabaswara, Aditya; Min, Jung-Wook; Zhao, Chao; Janjua, Bilal; Zhang, Daliang; Albadri, Abdulrahman M; Alyamani, Ahmed Y; Ng, Tien Khee; Ooi, Boon S

    2018-02-06

    Consumer electronics have increasingly relied on ultra-thin glass screen due to its transparency, scalability, and cost. In particular, display technology relies on integrating light-emitting diodes with display panel as a source for backlighting. In this study, we undertook the challenge of integrating light emitters onto amorphous quartz by demonstrating the direct growth and fabrication of a III-nitride nanowire-based light-emitting diode. The proof-of-concept device exhibits a low turn-on voltage of 2.6 V, on an amorphous quartz substrate. We achieved ~ 40% transparency across the visible wavelength while maintaining electrical conductivity by employing a TiN/Ti interlayer on quartz as a translucent conducting layer. The nanowire-on-quartz LED emits a broad linewidth spectrum of light centered at true yellow color (~ 590 nm), an important wavelength bridging the green-gap in solid-state lighting technology, with significantly less strain and dislocations compared to conventional planar quantum well nitride structures. Our endeavor highlighted the feasibility of fabricating III-nitride optoelectronic device on a scalable amorphous substrate through facile growth and fabrication steps. For practical demonstration, we demonstrated tunable correlated color temperature white light, leveraging on the broadly tunable nanowire spectral characteristics across red-amber-yellow color regime.

  12. Dual-Color Emission in Hybrid III-Nitride/ZnO Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Namkoong, Gon; Trybus, Elaissa; Cheung, Maurice C.; Doolittle, W. Alan; Cartwright, Alexander N.; Ferguson, Ian; Seong, Tae-Yeon; Nause, Jeff

    2010-02-01

    We report dual-color production of the blue and green regions using hybrid nitride/ZnO light emitting diode (LED) structures grown on ZnO substrates. The blue emission is ascribed to the near-band edge transition in InGaN while green emission is related to Zn-related defect levels formed by the unintentional interdiffusion of Zn into the InGaN active layer from the ZnO substrates.

  13. In vitro bio-functionality of gallium nitride sensors for radiation biophysics.

    PubMed

    Hofstetter, Markus; Howgate, John; Schmid, Martin; Schoell, Sebastian; Sachsenhauser, Matthias; Adigüzel, Denis; Stutzmann, Martin; Sharp, Ian D; Thalhammer, Stefan

    2012-07-27

    There is an increasing interest in the integration of hybrid bio-semiconductor systems for the non-invasive evaluation of physiological parameters. High quality gallium nitride and its alloys show promising characteristics to monitor cellular parameters. Nevertheless, such applications not only request appropriate sensing capabilities but also the biocompatibility and especially the biofunctionality of materials. Here we show extensive biocompatibility studies of gallium nitride and, for the first time, a biofunctionality assay using ionizing radiation. Analytical sensor devices are used in medical settings, as well as for cell- and tissue engineering. Within these fields, semiconductor devices have increasingly been applied for online biosensing on a cellular and tissue level. Integration of advanced materials such as gallium nitride into these systems has the potential to increase the range of applicability for a multitude of test devices and greatly enhance sensitivity and functionality. However, for such applications it is necessary to optimize cell-surface interactions and to verify the biocompatibility of the semiconductor. In this work, we present studies of mouse fibroblast cell activity grown on gallium nitride surfaces after applying external noxa. Cell-semiconductor hybrids were irradiated with X-rays at air kerma doses up to 250 mGy and the DNA repair dynamics, cell proliferation, and cell growth dynamics of adherent cells were compared to control samples. The impact of ionizing radiation on DNA, along with the associated cellular repair mechanisms, is well characterized and serves as a reference tool for evaluation of substrate effects. The results indicate that gallium nitride does not require specific surface treatments to ensure biocompatibility and suggest that cell signaling is not affected by micro-environmental alterations arising from gallium nitride-cell interactions. The observation that gallium nitride provides no bio-functional influence on

  14. High-efficiency Light-emitting Devices based on Semipolar III-Nitrides

    NASA Astrophysics Data System (ADS)

    Oh, Sang Ho

    In the future, the light-emitting diodes (LEDs) are expected to fully penetrate into the lighting market. A tremendous amount of energy will be saved through the LED-based lighting. Apparently, the amount of the energy saving strongly depends on the efficiency of the LEDs: this dissertation is all about the efficiency. First, the III-nitride LEDs grown on free-standing semipolar (202¯1¯) GaN substrates will be discussed. In many studies, LEDs grown on semipolar III-nitride substrates exhibited high efficiency at high current density. In this dissertation, "droop-free" (202¯1¯) blue LEDs will be demonstrated, especially for the standard industrial chip size. In addition, contact optimization process for (202¯1¯) LEDs will be discussed. Series resistance of the (202¯1¯) LED devices has been improved through the contact optimization. As a result, the wall-plug efficiency (WPE) of the device was boosted by ˜50%, compared to that of the previously reported (202¯1¯) LEDs. Also, chip shaping for the semipolar LEDs to enhance the extraction efficiency will be covered as well. A new mesa design will be introduced, and the cleaving scheme for semipolar LED wafers will be thoroughly discussed. Lastly, as a future work, selective area growth of ZnO light extraction features will be introduced and its preliminary result will be demonstrated.

  15. Improvements to III-nitride light-emitting diodes through characterization and material growth

    NASA Astrophysics Data System (ADS)

    Getty, Amorette Rose Klug

    A variety of experiments were conducted to improve or aid the improvement of the efficiency of III-nitride light-emitting diodes (LEDs), which are a critical area of research for multiple applications, including high-efficiency solid state lighting. To enhance the light extraction in ultraviolet LEDs grown on SiC substrates, a distributed Bragg reflector (DBR) optimized for operation in the range from 250 to 280 nm has been developed using MBE growth techniques. The best devices had a peak reflectivity of 80% with 19.5 periods, which is acceptable for the intended application. DBR surfaces were sufficiently smooth for subsequent epitaxy of the LED device. During the course of this work, pros and cons of AlGaN growth techniques, including analog versus digital alloying, were examined. This work highlighted a need for more accurate values of the refractive index of high-Al-content AlxGa1-xNin the UV wavelength range. We present refractive index results for a wide variety of materials pertinent to the fabrication of optical III-nitride devices. Characterization was done using Variable-Angle Spectroscopic Ellipsometry. The three binary nitrides, and all three ternaries, have been characterized to a greater or lesser extent depending on material compositions available. Semi-transparent p-contact materials and other thin metals for reflecting contacts have been examined to allow optimization of deposition conditions and to allow highly accurate modeling of the behavior of light within these devices. Standard substrate materials have also been characterized for completeness and as an indicator of the accuracy of our modeling technique. We have demonstrated a new technique for estimating the internal quantum efficiency (IQE) of nitride light-emitting diodes. This method is advantageous over the standard low-temperature photoluminescence-based method of estimating IQE, as the new method is conducted under the same conditions as normal device operation. We have developed

  16. Phosphor-Free InGaN White Light Emitting Diodes Using Flip-Chip Technology

    PubMed Central

    Li, Ying-Chang; Chang, Liann-Be; Chen, Hou-Jen; Yen, Chia-Yi; Pan, Ke-Wei; Huang, Bohr-Ran; Kuo, Wen-Yu; Chow, Lee; Zhou, Dan; Popko, Ewa

    2017-01-01

    Monolithic phosphor-free two-color gallium nitride (GaN)-based white light emitting diodes (LED) have the potential to replace current phosphor-based GaN white LEDs due to their low cost and long life cycle. Unfortunately, the growth of high indium content indium gallium nitride (InGaN)/GaN quantum dot and reported LED’s color rendering index (CRI) are still problematic. Here, we use flip-chip technology to fabricate an upside down monolithic two-color phosphor-free LED with four grown layers of high indium quantum dots on top of the three grown layers of lower indium quantum wells separated by a GaN tunneling barrier layer. The photoluminescence (PL) and electroluminescence (EL) spectra of this white LED reveal a broad spectrum ranging from 475 to 675 nm which is close to an ideal white-light source. The corresponding color temperature and color rendering index (CRI) of the fabricated white LED, operated at 350, 500, and 750 mA, are comparable to that of the conventional phosphor-based LEDs. Insights of the epitaxial structure and the transport mechanism were revealed through the TEM and temperature dependent PL and EL measurements. Our results show true potential in the Epi-ready GaN white LEDs for future solid state lighting applications. PMID:28772792

  17. Cell behavior on gallium nitride surfaces: peptide affinity attachment versus covalent functionalization.

    PubMed

    Foster, Corey M; Collazo, Ramon; Sitar, Zlatko; Ivanisevic, Albena

    2013-07-02

    Gallium nitride is a wide band gap semiconductor that demonstrates a unique set of optical and electrical properties as well as aqueous stability and biocompatibility. This combination of properties makes gallium nitride a strong candidate for use in chemical and biological applications such as sensors and neural interfaces. Molecular modification can be used to enhance the functionality and properties of the gallium nitride surface. Here, gallium nitride surfaces were functionalized with a PC12 cell adhesion promoting peptide using covalent and affinity driven attachment methods. The covalent scheme proceeded by Grignard reaction and olefin metathesis while the affinity driven scheme utilized the recognition peptide isolated through phage display. This study shows that the method of attaching the adhesion peptide influences PC12 cell adhesion and differentiation as measured by cell density and morphological analysis. Covalent attachment promoted monolayer and dispersed cell adhesion while affinity driven attachment promoted multilayer cell agglomeration. Higher cell density was observed on surfaces modified using the recognition peptide. The results suggest that the covalent and affinity driven attachment methods are both suitable for promoting PC12 cell adhesion to the gallium nitride surface, though each method may be preferentially suited for distinct applications.

  18. Amber light-emitting diode comprising a group III-nitride nanowire active region

    DOEpatents

    Wang, George T.; Li, Qiming; Wierer, Jr., Jonathan J.; Koleske, Daniel

    2014-07-22

    A temperature stable (color and efficiency) III-nitride based amber (585 nm) light-emitting diode is based on a novel hybrid nanowire-planar structure. The arrays of GaN nanowires enable radial InGaN/GaN quantum well LED structures with high indium content and high material quality. The high efficiency and temperature stable direct yellow and red phosphor-free emitters enable high efficiency white LEDs based on the RGYB color-mixing approach.

  19. Electron transport in zinc-blende wurtzite biphasic gallium nitride nanowires and GaNFETs

    DOE PAGES

    Jacobs, Benjamin W.; Ayres, Virginia M.; Stallcup, Richard E.; ...

    2007-10-19

    Two-point and four-point probe electrical measurements of a biphasic gallium nitride nanowire and current–voltage characteristics of a gallium nitride nanowire based field effect transistor are reported. The biphasic gallium nitride nanowires have a crystalline homostructure consisting of wurtzite and zinc-blende phases that grow simultaneously in the longitudinal direction. There is a sharp transition of one to a few atomic layers between each phase. Here, all measurements showed high current densities. Evidence of single-phase current transport in the biphasic nanowire structure is discussed.

  20. Polarization of III-nitride blue and ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Shakya, J.; Knabe, K.; Kim, K. H.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2005-02-01

    Polarization-resolved electroluminescence studies of III-nitride blue and ultraviolet (UV) light-emitting diodes (LEDs) were performed. The LEDs were fabricated on nitride materials grown by metalorganic chemical vapor deposition on sapphire substrates (0001). Transverse electric (TE) polarization dominates in the InGaN/GaN quantum-well (QW) blue LEDs (λ'=458nm), whereas transverse magnetic (TM) polarization is dominant in the AlInGaN QW UV LEDs (λ=333nm). For the case of edge emission in blue LEDs, a ratio (r=I⊥/I ‖) of about 1.8:1 was observed between the EL intensities with polarization E ⊥c (TE mode) and E ‖c (TM mode), which corresponds to a degree of polarization ˜0.29. The UV LEDs exhibit a ratio r of about 1:2.3, corresponding to a degree of polarization ˜0.4. This is due to the fact that the degree of polarization of the bandedge emission of the AlxInyGa1-x -yN active layer changes with Al concentration. The low emission efficiency of nitride UV LEDs is partly related to this polarization property. Possible consequences and ways to enhance UV emitter performances related to this unique polarization property are discussed.

  1. Correction: Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control.

    PubMed

    Sarkar, Sujoy; Sampath, S

    2016-05-28

    Correction for 'Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control' by Sujoy Sarkar et al., Chem. Commun., 2016, 52, 6407-6410.

  2. Gallium nitride junction field-effect transistor

    DOEpatents

    Zolper, John C.; Shul, Randy J.

    1999-01-01

    An all-ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorous co-implantation, in selected III-V semiconductor materials.

  3. Growth of 1.5 micron gallium indium nitrogen arsenic antimonide vertical cavity surface emitting lasers by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wistey, Mark Allan

    Fiber optics has revolutionized long distance communication and long haul networks, allowing unimaginable data speeds and noise-free telephone calls around the world for mere pennies per hour at the trunk level. But the high speeds of optical fiber generally do not extend to individual workstations or to the home, in large part because it has been difficult and expensive to produce lasers which emitted light at wavelengths which could take advantage of optical fiber. One of the most promising solutions to this problem is the development of a new class of semiconductors known as dilute nitrides. Dilute nitrides such as GaInNAs can be grown directly on gallium arsenide, which allows well-established processing techniques. More important, gallium arsenide allows the growth of vertical-cavity surface-emitting lasers (VCSELs), which can be grown in dense, 2D arrays on each wafer, providing tremendous economies of scale for manufacturing, testing, and packaging. Unfortunately, GaInNAs lasers have suffered from what has been dubbed the "nitrogen penalty," with high thresholds and low efficiency as the fraction of nitrogen in the semiconductor was increased. This thesis describes the steps taken to identify and essentially eliminate the nitrogen penalty. Protecting the wafer surface from plasma ignition, using an arsenic cap, greatly improved material quality. Using a Langmuir probe, we further found that the nitrogen plasma source produced a large number of ions which damaged the wafer during growth. The ions were dramatically reduced using deflection plates. Low voltage deflection plates were found to be preferable to high voltages, and simulations showed low voltages to be adequate for ion removal. The long wavelengths from dilute nitrides can be partly explained by wafer damage during growth. As a result of these studies, we demonstrated the first CW, room temperature lasers at wavelengths beyond 1.5mum on gallium arsenide, and the first GaInNAs(Sb) VCSELs beyond 1

  4. Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Y.; Roland, I.; Checoury, X.

    We demonstrate second harmonic generation in a gallium nitride photonic crystal cavity embedded in a two-dimensional free-standing photonic crystal platform on silicon. The photonic crystal nanocavity is optically pumped with a continuous-wave laser at telecom wavelengths in the transparency window of the nitride material. The harmonic generation is evidenced by the spectral range of the emitted signal, the quadratic power dependence vs. input power, and the spectral dependence of second harmonic signal. The harmonic emission pattern is correlated to the harmonic polarization generated by the second-order nonlinear susceptibilities χ{sub zxx}{sup (2)}, χ{sub zyy}{sup (2)} and the electric fields of the fundamentalmore » cavity mode.« less

  5. Gallium nitride junction field-effect transistor

    DOEpatents

    Zolper, J.C.; Shul, R.J.

    1999-02-02

    An ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same are disclosed. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorus co-implantation, in selected III-V semiconductor materials. 19 figs.

  6. Solution epitaxy of gallium-doped ZnO on p-GaN for heterojunction light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Le, H. Q.; Lim, S. K.; Goh, G. K. L.; Chua, S. J.; Ang, N. S. S.; Liu, W.

    2010-09-01

    We report white light emission from a Ga-doped ZnO/p-GaN heterojunction light-emitting diode which was fabricated by growing gallium-doped ZnO film on the p-GaN in water at 90°C. As determined from Ga-doped ZnO films grown on (111) oriented MgAl2O4 spinel single crystal substrates, thermal treatment at 600°C in nitrogen ambient leads to a carrier concentration of 3.1×1020 cm-3 (and carrier mobility of 28 cm2/Vs) which is two orders of magnitude higher than that of the undoped films. Electroluminescence emissions at wavelengths of 393 nm (3.155 eV) and 529.5 nm (2.4 eV) were observed under forward bias in the heterojunction diode and white light could be visibly observed. The high concentration of electrons supplied from the Ga-doped ZnO films helped to enhance the carrier recombination and increase the light-emitting efficiency of the heterojunction diode.

  7. Solar cell with a gallium nitride electrode

    DOEpatents

    Pankove, Jacques I.

    1979-01-01

    A solar cell which comprises a body of silicon having a P-N junction therein with a transparent conducting N-type gallium nitride layer as an ohmic contact on the N-type side of the semiconductor exposed to solar radiation.

  8. Gallium nitride nanotube lasers

    DOE PAGES

    Li, Changyi; Liu, Sheng; Hurtado, Antonio; ...

    2015-01-01

    Lasing is demonstrated from gallium nitride nanotubes fabricated using a two-step top-down technique. By optically pumping, we observed characteristics of lasing: a clear threshold, a narrow spectral, and guided emission from the nanotubes. In addition, annular lasing emission from the GaN nanotube is also observed, indicating that cross-sectional shape control can be employed to manipulate the properties of nanolasers. The nanotube lasers could be of interest for optical nanofluidic applications or application benefitting from a hollow beam shape.

  9. Measurement of Minority Charge Carrier Diffusion Length in Gallium Nitride Nanowires Using Electron Beam Induced Current (EBIC)

    DTIC Science & Technology

    2009-12-01

    MINORITY CHARGE CARRIER DIFFUSION LENGTH IN GALLIUM NITRIDE NANOWIRES USING ELECTRON BEAM INDUCED CURRENT (EBIC) by Chiou Perng Ong December... Gallium Nitride Nanowires Using Electron Beam Induced Current (EBIC) 6. AUTHOR(S) Ong, Chiou Perng 5. FUNDING NUMBERS DMR 0804527 7. PERFORMING...CARRIER DIFFUSION LENGTH IN GALLIUM NITRIDE NANOWIRES USING ELECTRON BEAM INDUCED CURRENT (EBIC) Chiou Perng Ong Major, Singapore Armed Forces B

  10. Proton Irradiation-Induced Metal Voids in Gallium Nitride High Electron Mobility Transistors

    DTIC Science & Technology

    2015-09-01

    13. ABSTRACT (maximum 200 words) Gallium nitride/aluminum gallium nitride high electron mobility transistors with nickel/ gold (Ni/Au) and...platinum/ gold (Pt/Au) gating are irradiated with 2 MeV protons. Destructive physical analysis revealed material voids underneath the gate finger of the...nickel/ gold (Ni/Au) and platinum/ gold (Pt/Au) gating are irradiated with 2 MeV protons. Destructive physical analysis revealed material voids underneath

  11. Ultra-low threshold gallium nitride photonic crystal nanobeam laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Nan, E-mail: nanniu@fas.harvard.edu; Woolf, Alexander; Wang, Danqing

    2015-06-08

    We report exceptionally low thresholds (9.1 μJ/cm{sup 2}) for room temperature lasing at ∼450 nm in optically pumped Gallium Nitride (GaN) nanobeam cavity structures. The nanobeam cavity geometry provides high theoretical Q (>100 000) with small modal volume, leading to a high spontaneous emission factor, β = 0.94. The active layer materials are Indium Gallium Nitride (InGaN) fragmented quantum wells (fQWs), a critical factor in achieving the low thresholds, which are an order-of-magnitude lower than obtainable with continuous QW active layers. We suggest that the extra confinement of photo-generated carriers for fQWs (compared to QWs) is responsible for the excellent performance.

  12. Thermal Plasma Synthesis of Crystalline Gallium Nitride Nanopowder from Gallium Nitrate Hydrate and Melamine

    PubMed Central

    Kim, Tae-Hee; Choi, Sooseok; Park, Dong-Wha

    2016-01-01

    Gallium nitride (GaN) nanopowder used as a blue fluorescent material was synthesized by using a direct current (DC) non-transferred arc plasma. Gallium nitrate hydrate (Ga(NO3)3∙xH2O) was used as a raw material and NH3 gas was used as a nitridation source. Additionally, melamine (C3H6N6) powder was injected into the plasma flame to prevent the oxidation of gallium to gallium oxide (Ga2O3). Argon thermal plasma was applied to synthesize GaN nanopowder. The synthesized GaN nanopowder by thermal plasma has low crystallinity and purity. It was improved to relatively high crystallinity and purity by annealing. The crystallinity is enhanced by the thermal treatment and the purity was increased by the elimination of residual C3H6N6. The combined process of thermal plasma and annealing was appropriate for synthesizing crystalline GaN nanopowder. The annealing process after the plasma synthesis of GaN nanopowder eliminated residual contamination and enhanced the crystallinity of GaN nanopowder. As a result, crystalline GaN nanopowder which has an average particle size of 30 nm was synthesized by the combination of thermal plasma treatment and annealing. PMID:28344295

  13. Nanoporous Gallium Nitride Through Anisotropic Metal-Assisted Electroless Photochemical Wet Etching Technique

    NASA Astrophysics Data System (ADS)

    Perumal, R.; Hassan, Z.

    2016-12-01

    Nanoporous gallium nitride (GaN) has many potential applications in light-emitting diodes (LEDs), photovoltaics, templates and chemical sensors. This article reports the porosification of GaN through UV enhanced metal-assisted electroless photochemical wet etching technique using three different acid-based etchants and platinum served as catalyst for porosification. The etching process was conducted at room temperature for a duration of 90min. The morphological, structural, spectral and optical features of the developed porous GaN were studied with appropriate characterization techniques and the obtained results were presented. Field emission scanning electron micrographs exhibited the porosity nature along with excellent porous network of the etched samples. Structural studies confirmed the mono crystalline quality of the porous nanostructures. Raman spectral analyzes inferred the presenting phonon modes such as E2 (TO) and A1 (LO) in fabricated nanoporous structures. The resulted porous nanostructures hold the substantially enhanced photoluminescence intensity compared with the pristine GaN epitaxial film that is interesting and desirable for several advances in the applications of Nano-optoelectronic devices.

  14. Tunable hole injection of solution-processed polymeric carbon nitride towards efficient organic light-emitting diode

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowen; Zheng, Qinghong; Tang, Zhenyu; Li, Wanshu; Zhang, Yan; Xu, Kai; Xue, Xiaogang; Xu, Jiwen; Wang, Hua; Wei, Bin

    2018-02-01

    Polymeric carbon nitride (CNxHy) has been facilely synthesized from dicyandiamide and functions as a solution-processed hole injection layer in organic light-emitting diodes (OLEDs). The measurements using X-ray diffraction, atomic force microscopy, X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and impedance spectroscopy elucidate that CNxHy exhibits superior film morphology and extra electric properties such as tailored work function and tunable hole injection. The luminous efficiency of CNxHy-based OLED is found to improve by 76.6% in comparison to the counterpart using favorite solution-processed poly(ethylene dioxythiophene):poly(styrene sulfonate) as the hole injection layer. Our results also pave a way for broadening carbon nitride applications in organic electronics using the solution process.

  15. Synthesis of gallium nitride nanostructures by nitridation of electrochemically deposited gallium oxide on silicon substrate.

    PubMed

    Ghazali, Norizzawati Mohd; Yasui, Kanji; Hashim, Abdul Manaf

    2014-01-01

    Gallium nitride (GaN) nanostructures were successfully synthesized by the nitridation of the electrochemically deposited gallium oxide (Ga2O3) through the utilization of a so-called ammoniating process. Ga2O3 nanostructures were firstly deposited on Si substrate by a simple two-terminal electrochemical technique at a constant current density of 0.15 A/cm(2) using a mixture of Ga2O3, HCl, NH4OH and H2O for 2 h. Then, the deposited Ga2O3 sample was ammoniated in a horizontal quartz tube single zone furnace at various ammoniating times and temperatures. The complete nitridation of Ga2O3 nanostructures at temperatures of 850°C and below was not observed even the ammoniating time was kept up to 45 min. After the ammoniating process at temperature of 900°C for 15 min, several prominent diffraction peaks correspond to hexagonal GaN (h-GaN) planes were detected, while no diffraction peak of Ga2O3 structure was detected, suggesting a complete transformation of Ga2O3 to GaN. Thus, temperature seems to be a key parameter in a nitridation process where the deoxidization rate of Ga2O3 to generate gaseous Ga2O increase with temperature. The growth mechanism for the transformation of Ga2O3 to GaN was proposed and discussed. It was found that a complete transformation can not be realized without a complete deoxidization of Ga2O3. A significant change of morphological structures takes place after a complete transformation of Ga2O3 to GaN where the original nanorod structures of Ga2O3 diminish, and a new nanowire-like GaN structures appear. These results show that the presented method seems to be promising in producing high-quality h-GaN nanostructures on Si.

  16. Synthesis of gallium nitride nanostructures by nitridation of electrochemically deposited gallium oxide on silicon substrate

    PubMed Central

    2014-01-01

    Gallium nitride (GaN) nanostructures were successfully synthesized by the nitridation of the electrochemically deposited gallium oxide (Ga2O3) through the utilization of a so-called ammoniating process. Ga2O3 nanostructures were firstly deposited on Si substrate by a simple two-terminal electrochemical technique at a constant current density of 0.15 A/cm2 using a mixture of Ga2O3, HCl, NH4OH and H2O for 2 h. Then, the deposited Ga2O3 sample was ammoniated in a horizontal quartz tube single zone furnace at various ammoniating times and temperatures. The complete nitridation of Ga2O3 nanostructures at temperatures of 850°C and below was not observed even the ammoniating time was kept up to 45 min. After the ammoniating process at temperature of 900°C for 15 min, several prominent diffraction peaks correspond to hexagonal GaN (h-GaN) planes were detected, while no diffraction peak of Ga2O3 structure was detected, suggesting a complete transformation of Ga2O3 to GaN. Thus, temperature seems to be a key parameter in a nitridation process where the deoxidization rate of Ga2O3 to generate gaseous Ga2O increase with temperature. The growth mechanism for the transformation of Ga2O3 to GaN was proposed and discussed. It was found that a complete transformation can not be realized without a complete deoxidization of Ga2O3. A significant change of morphological structures takes place after a complete transformation of Ga2O3 to GaN where the original nanorod structures of Ga2O3 diminish, and a new nanowire-like GaN structures appear. These results show that the presented method seems to be promising in producing high-quality h-GaN nanostructures on Si. PMID:25593562

  17. Hybrid Tunnel Junction-Graphene Transparent Conductive Electrodes for Nitride Lateral Light Emitting Diodes.

    PubMed

    Wang, Liancheng; Cheng, Yan; Liu, Zhiqiang; Yi, Xiaoyan; Zhu, Hongwei; Wang, Guohong

    2016-01-20

    Graphene transparent conductive electrode (TCE) applications in nitride light emitting diodes (LEDs) are still limited by the large contact resistance and interface barrier between graphene and p-GaN. We propose a hybrid tunnel junction (TJ)-graphene TCE approach for nitride lateral LEDs theoretically and experimentally. Through simulation using commercial advanced physical models of semiconductor devices (APSYS), we found that low tunnel resistance can be achieved in the n(+)-GaN/u-InGaN/p(+)-GaN TJ, which has a lower tunneling barrier and an enhanced electric field due to the polarization effect. Graphene TCEs and hybrid graphene-TJ TCEs are then modeled. The designed hybrid TJ-graphene TCEs show sufficient current diffusion length (Ls), low introduced series resistance, and high transmittance. The assembled TJ LED with the triple-layer graphene (TLG) TCEs show comparable optoelectrical performance (3.99 V@20 mA, LOP = 10.8 mW) with the reference LED with ITO TCEs (3.36 V@20 mA, LOP = 12.6 mW). The experimental results further prove that the TJ-graphene structure can be successfully incorporated as TCEs for lateral nitride LEDs.

  18. Atom Probe Tomography Analysis of Gallium-Nitride-Based Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Prosa, Ty J.; Olson, David; Giddings, A. Devin; Clifton, Peter H.; Larson, David J.; Lefebvre, Williams

    2014-03-01

    Thin-film light-emitting diodes (LEDs) composed of GaN/InxGa1-xN/GaN quantum well (QW) structures are integrated into modern optoelectronic devices because of the tunable InGaN band-gap enabling emission of the full visible spectrum. Atom probe tomography (APT) offers unique capabilities for 3D device characterization including compositional mapping of nano-volumes (>106 nm3) , high detection efficiency (>50%), and good sensitivity. In this study, APT is used to understand the distribution of dopants as well as Al and In alloying agents in a GaN device. Measurements using transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS) have also been made to improve the accuracy of the APT analysis by correlating the information content of these complimentary techniques. APT analysis reveals various QW and other optoelectronic structures including a Mg p-GaN layer, an Al-rich electron blocking layer, an In-rich multi-QW region, and an In-based super-lattice structure. The multi-QW composition shows good quantitative agreement with layer thickness and spacing extracted from a high resolution TEM image intensity analysis.

  19. P-doping-free III-nitride high electron mobility light-emitting diodes and transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Baikui; Tang, Xi; Chen, Kevin J., E-mail: eekjchen@ust.hk

    2014-07-21

    We report that a simple metal-AlGaN/GaN Schottky diode is capable of producing GaN band-edge ultraviolet emission at 3.4 eV at a small forward bias larger than ∼2 V at room temperature. Based on the surface states distribution of AlGaN, a mature impact-ionization-induced Fermi-level de-pinning model is proposed to explain the underlying mechanism of the electroluminescence (EL) process. By experimenting with different Schottky metals, Ni/Au and Pt/Au, we demonstrated that this EL phenomenon is a “universal” property of metal-AlGaN/GaN Schottky diodes. Since this light-emitting Schottky diode shares the same active structure and fabrication processes as the AlGaN/GaN high electron mobility transistors, straight-forward andmore » seamless integration of photonic and electronic functional devices has been demonstrated on doping-free III-nitride heterostructures. Using a semitransparent Schottky drain electrode, an AlGaN/GaN high electron mobility light-emitting transistor is demonstrated.« less

  20. Congruent melting of gallium nitride at 6 GPa and its application to single-crystal growth.

    PubMed

    Utsumi, Wataru; Saitoh, Hiroyuki; Kaneko, Hiroshi; Watanuki, Tetsu; Aoki, Katsutoshi; Shimomura, Osamu

    2003-11-01

    The synthesis of large single crystals of GaN (gallium nitride) is a matter of great importance in optoelectronic devices for blue-light-emitting diodes and lasers. Although high-quality bulk single crystals of GaN suitable for substrates are desired, the standard method of cooling its stoichiometric melt has been unsuccessful for GaN because it decomposes into Ga and N(2) at high temperatures before its melting point. Here we report that applying high pressure completely prevents the decomposition and allows the stoichiometric melting of GaN. At pressures above 6.0 GPa, congruent melting of GaN occurred at about 2,220 degrees C, and decreasing the temperature allowed the GaN melt to crystallize to the original structure, which was confirmed by in situ X-ray diffraction. Single crystals of GaN were formed by cooling the melt slowly under high pressures and were recovered at ambient conditions.

  1. Gallium nitride based logpile photonic crystals.

    PubMed

    Subramania, Ganapathi; Li, Qiming; Lee, Yun-Ju; Figiel, Jeffrey J; Wang, George T; Fischer, Arthur J

    2011-11-09

    We demonstrate a nine-layer logpile three-dimensional photonic crystal (3DPC) composed of single crystalline gallium nitride (GaN) nanorods, ∼100 nm in size with lattice constants of 260, 280, and 300 nm with photonic band gap in the visible region. This unique GaN structure is created through a combined approach of a layer-by-layer template fabrication technique and selective metal organic chemical vapor deposition (MOCVD). These GaN 3DPC exhibit a stacking direction band gap characterized by strong optical reflectance between 380 and 500 nm. By introducing a "line-defect" cavity in the fifth (middle) layer of the 3DPC, a localized transmission mode with a quality factor of 25-30 is also observed within the photonic band gap. The realization of a group III nitride 3DPC with uniform features and a band gap at wavelengths in the visible region is an important step toward realizing complete control of the electromagnetic environment for group III nitride based optoelectronic devices.

  2. III-nitride quantum dots for ultra-efficient solid-state lighting

    DOE PAGES

    Wierer, Jr., Jonathan J.; Tansu, Nelson; Fischer, Arthur J.; ...

    2016-05-23

    III-nitride light-emitting diodes (LEDs) and laser diodes (LDs) are ultimately limited in performance due to parasitic Auger recombination. For LEDs, the consequences are poor efficiencies at high current densities; for LDs, the consequences are high thresholds and limited efficiencies. Here, we present arguments for III-nitride quantum dots (QDs) as active regions for both LEDs and LDs, to circumvent Auger recombination and achieve efficiencies at higher current densities that are not possible with quantum wells. QD-based LDs achieve gain and thresholds at lower carrier densities before Auger recombination becomes appreciable. QD-based LEDs achieve higher efficiencies at higher currents because of highermore » spontaneous emission rates and reduced Auger recombination. The technical challenge is to control the size distribution and volume of the QDs to realize these benefits. In conclusion, if constructed properly, III-nitride light-emitting devices with QD active regions have the potential to outperform quantum well light-emitting devices, and enable an era of ultra-efficient solidstate lighting.« less

  3. Gallium

    USGS Publications Warehouse

    Foley, Nora K.; Jaskula, Brian W.; Kimball, Bryn E.; Schulte, Ruth F.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Gallium is a soft, silvery metallic element with an atomic number of 31 and the chemical symbol Ga. Gallium is used in a wide variety of products that have microelectronic components containing either gallium arsenide (GaAs) or gallium nitride (GaN). GaAs is able to change electricity directly into laser light and is used in the manufacture of optoelectronic devices (laser diodes, light-emitting diodes [LEDs], photo detectors, and solar cells), which are important for aerospace and telecommunications applications and industrial and medical equipment. GaAs is also used in the production of highly specialized integrated circuits, semiconductors, and transistors; these are necessary for defense applications and high-performance computers. For example, cell phones with advanced personal computer-like functionality (smartphones) use GaAs-rich semiconductor components. GaN is used principally in the manufacture of LEDs and laser diodes, power electronics, and radio-frequency electronics. Because GaN power transistors operate at higher voltages and with a higher power density than GaAs devices, the uses for advanced GaN-based products are expected to increase in the future. Gallium technologies also have large power-handling capabilities and are used for cable television transmission, commercial wireless infrastructure, power electronics, and satellites. Gallium is also used for such familiar applications as screen backlighting for computer notebooks, flat-screen televisions, and desktop computer monitors.Gallium is dispersed in small amounts in many minerals and rocks where it substitutes for elements of similar size and charge, such as aluminum and zinc. For example, gallium is found in small amounts (about 50 parts per million) in such aluminum-bearing minerals as diaspore-boehmite and gibbsite, which form bauxite deposits, and in the zinc-sulfide mineral sphalerite, which is found in many mineral deposits. At the present time, gallium metal is derived mainly as a

  4. Gallium Nitride Crystals: Novel Supercapacitor Electrode Materials.

    PubMed

    Wang, Shouzhi; Zhang, Lei; Sun, Changlong; Shao, Yongliang; Wu, Yongzhong; Lv, Jiaxin; Hao, Xiaopeng

    2016-05-01

    A type of single-crystal gallium nitride mesoporous membrane is fabricated and its supercapacitor properties are demonstrated for the first time. The supercapacitors exhibit high-rate capability, stable cycling life at high rates, and ultrahigh power density. This study may expand the range of crystals as high-performance electrode materials in the field of energy storage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. GaN-based light-emitting diodes with graphene/indium tin oxide transparent layer.

    PubMed

    Lai, Wei-Chih; Lin, Chih-Nan; Lai, Yi-Chun; Yu, Peichen; Chi, Gou Chung; Chang, Shoou-Jinn

    2014-03-10

    We have demonstrated a gallium nitride (GaN)-based green light-emitting diode (LED) with graphene/indium tin oxide (ITO) transparent contact. The ohmic characteristic of the p-GaN and graphene/ITO contact could be preformed by annealing at 500 °C for 5 min. The specific contact resistance of p-GaN/graphene/ITO (3.72E-3 Ω·cm²) is one order less than that of p-GaN/ITO. In addition, the 20-mA forward voltage of LEDs with graphene/ITO transparent (3.05 V) is 0.09 V lower than that of ITO LEDs (3.14 V). Besides, We have got an output power enhancement of 11% on LEDs with graphene/ITO transparent contact.

  6. On the photon annealing of silicon-implanted gallium-nitride layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seleznev, B. I., E-mail: Boris.Seleznev@novsu.ru; Moskalev, G. Ya.; Fedorov, D. G.

    2016-06-15

    The conditions for the formation of ion-doped layers in gallium nitride upon the incorporation of silicon ions followed by photon annealing in the presence of silicon dioxide and nitride coatings are analyzed. The conditions of the formation of ion-doped layers with a high degree of impurity activation are established. The temperature dependences of the surface concentration and mobility of charge carriers in ion-doped GaN layers annealed at different temperatures are studied.

  7. Molecular Beam Epitaxial Growth of Iron Nitrides on Zinc-Blende Gallium Nitride(001)

    NASA Astrophysics Data System (ADS)

    Pak, Jeongihm; Lin, Wenzhi; Chinchore, Abhijit; Wang, Kangkang; Smith, Arthur R.

    2008-03-01

    Iron nitrides are attractive materials for their high magnetic moments, corrosion, and oxidation resistance. We present the successful epitaxial growth of iron nitride on zinc-blende gallium nitride (c-GaN) in order to develop a novel magnetic transition metal nitride/semiconductor system. First, GaN is grown on magnesium oxide (MgO) substrates having (001) orientation using rf N2-plasma molecular beam epitaxy. Then we grow FeN at substrate temperature of ˜ 210 ^oC up to a thickness of ˜ 10.5 nm. In-situ reflection high-energy electron diffraction (RHEED) is used to monitor the surface during growth. Initial results suggest that the epitaxial relationship is FeN[001] || GaN[001] and FeN[100] || GaN[100]. Work in progress is to investigate the surface using in-situ scanning tunneling microscopy (STM) to reveal the surface structure at atomic scale, as well as to explore more Fe-rich magnetic phases.

  8. Polarization-free integrated gallium-nitride photonics

    PubMed Central

    Bayram, C.; Liu, R.

    2017-01-01

    Gallium Nitride (GaN) materials are the backbone of emerging solid state lighting. To date, GaN research has been primarily focused on hexagonal phase devices due to the natural crystallization. This approach limits the output power and efficiency of LEDs, particularly in the green spectrum. However, GaN can also be engineered to be in cubic phase. Cubic GaN has a lower bandgap (~200 meV) than hexagonal GaN that enables green LEDs much easily. Besides, cubic GaN has more isotropic properties (smaller effective masses, higher carrier mobility, higher doping efficiency, and higher optical gain than hexagonal GaN), and cleavage planes. Due to phase instability, however, cubic phase materials and devices have remained mostly unexplored. Here we review a new method of cubic phase GaN generation: Hexagonal-to-cubic phase transition, based on novel nano-patterning. We report a new crystallographic modelling of this hexagonal-to-cubic phase transition and systematically study the effects of nano-patterning on the GaN phase transition via transmission electron microscopy and electron backscatter diffraction experiments. In summary, silicon-integrated cubic phase GaN light emitters offer a unique opportunity for exploration in next generation photonics. PMID:29307953

  9. Hybrid tunnel junction contacts to III-nitride light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Young, Erin C.; Yonkee, Benjamin P.; Wu, Feng; Oh, Sang Ho; DenBaars, Steven P.; Nakamura, Shuji; Speck, James S.

    2016-02-01

    In this work, we demonstrate highly doped GaN p-n tunnel junction (TJ) contacts on III-nitride heterostructures where the active region of the device and the top p-GaN layers were grown by metal organic chemical vapor deposition and highly doped n-GaN was grown by NH3 molecular beam epitaxy to form the TJ. The regrowth interface in these hybrid devices was found to have a high concentration of oxygen, which likely enhanced tunneling through the diode. For optimized regrowth, the best tunnel junction device had a total differential resistivity of 1.5 × 10-4 Ω cm2, including contact resistance. As a demonstration, a blue-light-emitting diode on a (20\\bar{2}\\bar{1}) GaN substrate with a hybrid tunnel junction and an n-GaN current spreading layer was fabricated and compared with a reference sample with a transparent conducting oxide (TCO) layer. The tunnel junction LED showed a lower forward operating voltage and a higher efficiency at a low current density than the TCO LED.

  10. Gallium nitride microcavities formed by photoenhanced wet oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, L.-H.; Lu, C.-Y.; Wu, W.-H.

    We report the formation of gallium nitride (GaN) microcavities by manipulating a photoenhanced oxidation rate difference between the polar and nonpolar crystallographic planes of GaN. When immersed in a buffered acetic (CH{sub 3}COOH) electrolyte of pH{approx}6.2 at room temperature, it is shown that the photo-oxidation can proceed at a rate that is one order of magnitude slower on the nonpolar plane of {l_brace}1100{r_brace}{sub GaN} than on the polar plane of {l_brace}0001{r_brace}{sub GaN} due to the reduced surface field action. Gallium nitride microcavities bounded by optically smooth {l_brace}1100{r_brace} and {l_brace}1103{r_brace} facets can thus be preferentially formed on the c-plane sapphire substratemore » after dissolving the oxide layer. The optical properties of these GaN hexagonal cavities reveal characteristic peaks of whispering gallery modes in resonance with the GaN band edge emission spectrum. A typical cavity Q factor of 10{sup 3} is observed in these GaN microcavities due to a reduced optical scattering loss in the wet chemical reaction process.« less

  11. Positive focal shift of gallium nitride high contrast grating focusing reflectors

    NASA Astrophysics Data System (ADS)

    He, Shumin; Wang, Zhenhai; Liu, Qifa

    2016-09-01

    We design a type of metasurfaces capable of serving as a visible-light focusing reflector based on gallium nitride (GaN) high contrast gratings (HCGs). The wavefront of the reflected light is precisely manipulated by spatial variation of the grating periods along the subwavelength ridge array to achieve light focusing. Different from conventional negative focal shift effect, a positive focal shift is observed in such focusing reflectors. Detailed investigations of the influence of device size on the focusing performance, especially the focal length, are preformed via a finite element method . The results show that all performance parameters are greatly affected by the reflector size. A more concentrated focal point, or a better focusing capability, can be achieved by larger size. With increasing reflector size, the achieved focal length decreases and gradually approaches to the design, thus the corresponding positive focal shift decreases. Our results are helpful for understanding the visible-light control of the planar HCG-based focusing reflectors.

  12. Gallium nitride-based micro-opto-electro-mechanical systems

    NASA Astrophysics Data System (ADS)

    Stonas, Andreas Robert

    Gallium Nitride and its associated alloys InGaN and AlGaN have many material properties that are highly desirable for micro-electro-mechanical systems (MEMS), and more specifically micro-opto-electro-mechanical systems (MOEMS). The group III-nitrides are tough, stiff, optically transparent, direct bandgap, chemically inert, highly piezoelectric, and capable of functioning at high temperatures. There is currently no other semiconductor system that possesses all of these properties. Taken together, these attributes make the nitrides prime candidates not only for creating new versions of existing device structures, but also for creating entirely unique devices which combine these properties in novel ways. Unfortunately, their chemical resiliency also makes the group III-nitrides extraordinarily difficult to shape into devices. In particular, until this research, no undercut etch technology existed that could controllably separate a selected part of a MEMS device from its sapphire or silicon carbide substrate. This has effectively prevented GaN-based MEMS from being developed. This dissertation describes how this fabrication obstacle was overcome by a novel etching geometry (bandgap-selective backside-illuminated photoelectochemical (BS-BIPEC) etching) and its resulting morphologies. Several gallium-nitride based MEMS devices were created, actuated, and modelled, including cantilevers and membranes. We describe in particular our pursuit of one of the many novel device elements that is possible only in this material system: a transducer that uses an externally applied strain to dynamically change the optical transition energy of a quantum well. While the device objective of a dynamically tunable quantum well was not achieved, we have demonstrated sufficient progress to believe that such a device will be possible soon. We have observed a shift (5.5meV) of quantum well transition energies in released structures, and we have created structures that can apply large biaxial

  13. Development of III-nitride semiconductors by molecular beam epitaxy and cluster beam epitaxy and fabrication of LEDs based on indium gallium nitride MQWs

    NASA Astrophysics Data System (ADS)

    Chen, Tai-Chou Papo

    The family of III-Nitrides (the binaries InN, GaN, AIN, and their alloys) is one of the most important classes of semiconductor materials. Of the three, Indium Nitride (InN) and Aluminum Nitride (AIN) have been investigated much less than Gallium Nitride (GaN). However, both of these materials are important for optoelectronic infrared and ultraviolet devices. In particular, since InN was found recently to be a narrow gap semiconductor (Eg=0.7eV), its development should extend the applications of nitride semiconductors to the spectral region appropriate to fiber optics communication and photovoltaic applications. Similarly, the development of AIN should lead to deep UV light emitting diodes (LEDs). The first part of this work addresses the evaluation of structural, optical and transport properties of InN films grown by two different deposition methods. In one method, active nitrogen was produced in the form of nitrogen radicals by a radio frequency (RF) plasma-assisted source. In an alternative method, active nitrogen was produced in the form of clusters containing approximately 2000 nitrogen molecules. These clusters were produced by adiabatic expansion from high stagnation pressure through a narrow nozzle into vacuum. The clusters were singly or doubly ionized with positive charge by electron impact and accelerated up to approximately 20 to 25 KV prior to their disintegration on the substrate. Due to the high local temperature produced during the impact of clusters with the substrate, this method is suitable for the deposition of InN at very low temperatures. The films are auto-doped n-type with carrier concentrations varying from 3 x 1018 to 1020 cm-3 and the electron effective mass of these films was determined to be 0.09m0. The majority of the AIN films was grown by the cluster beam epitaxy method and was doped n- and p- type by incorporating silicon (Si) and magnesium (Mg) during the film deposition. All films were grown under Al-rich conditions at relatively

  14. A method used to overcome polarization effects in semi-polar structures of nitride light-emitting diodes emitting green radiation

    NASA Astrophysics Data System (ADS)

    Morawiec, Seweryn; Sarzała, Robert P.; Nakwaski, Włodzimierz

    2013-11-01

    Polarization effects are studied within nitride light-emitting diodes (LEDs) manufactured on standard polar and semipolar substrates. A new theoretical approach, somewhat different than standard ones, is proposed to this end. It is well known that when regular polar GaN substrates are used, strong piezoelectric and spontaneous polarizations create built-in electric fields leading to the quantum-confined Stark effects (QCSEs). These effects may be completely avoided in nonpolar crystallographic orientations, but then there are problems with manufacturing InGaN layers of relatively high Indium contents necessary for the green emission. Hence, a procedure leading to partly overcoming these polarization problems in semi-polar LEDs emitting green radiation is proposed. The (11 22) crystallographic substrate orientation (inclination angle of 58∘ to c plane) seems to be the most promising because it is characterized by low Miller-Bravais indices leading to high-quality and high Indium content smooth growth planes. Besides, it makes possible an increased Indium incorporation efficiency and it is efficient in suppressing QCSE. The In0.3Ga0.7N/GaN QW LED grown on the semipolar (11 22) substrate has been found as currently the optimal LED structure emitting green radiation.

  15. Flexible White Light Emitting Diodes Based on Nitride Nanowires and Nanophosphors

    PubMed Central

    2016-01-01

    We report the first demonstration of flexible white phosphor-converted light emitting diodes (LEDs) based on p–n junction core/shell nitride nanowires. GaN nanowires containing seven radial In0.2Ga0.8N/GaN quantum wells were grown by metal–organic chemical vapor deposition on a sapphire substrate by a catalyst-free approach. To fabricate the flexible LED, the nanowires are embedded into a phosphor-doped polymer matrix, peeled off from the growth substrate, and contacted using a flexible and transparent silver nanowire mesh. The electroluminescence of a flexible device presents a cool-white color with a spectral distribution covering a broad spectral range from 400 to 700 nm. Mechanical bending stress down to a curvature radius of 5 mm does not yield any degradation of the LED performance. The maximal measured external quantum efficiency of the white LED is 9.3%, and the wall plug efficiency is 2.4%. PMID:27331079

  16. Growth of gallium nitride and indium nitride nanowires on conductive and flexible carbon cloth substrates.

    PubMed

    Yang, Yi; Ling, Yichuan; Wang, Gongming; Lu, Xihong; Tong, Yexiang; Li, Yat

    2013-03-07

    We report a general strategy for synthesis of gallium nitride (GaN) and indium nitride (InN) nanowires on conductive and flexible carbon cloth substrates. GaN and InN nanowires were prepared via a nanocluster-mediated growth method using a home built chemical vapor deposition (CVD) system with Ga and In metals as group III precursors and ammonia as a group V precursor. Electron microscopy studies reveal that the group III-nitride nanowires are single crystalline wurtzite structures. The morphology, density and growth mechanism of these nanowires are determined by the growth temperature. Importantly, a photoelectrode fabricated by contacting the GaN nanowires through a carbon cloth substrate shows pronounced photoactivity for photoelectrochemical water oxidation. The ability to synthesize group III-nitride nanowires on conductive and flexible substrates should open up new opportunities for nanoscale photonic, electronic and electrochemical devices.

  17. Organic Fluorescent Dyes Supported on Activated Boron Nitride: A Promising Blue Light Excited Phosphors for High-Performance White Light-Emitting Diodes

    PubMed Central

    Li, Jie; Lin, Jing; Huang, Yang; Xu, Xuewen; Liu, Zhenya; Xue, Yanming; Ding, Xiaoxia; Luo, Han; Jin, Peng; Zhang, Jun; Zou, Jin; Tang, Chengchun

    2015-01-01

    We report an effective and rare-earth free light conversion material synthesized via a facile fabrication route, in which organic fluorescent dyes, i.e. Rhodamine B (RhB) and fluorescein isothiocyanate (FITC) are embedded into activated boron nitride (αBN) to form a composite phosphor. The composite phosphor shows highly efficient Förster resonance energy transfer and greatly improved thermal stability, and can emit at broad visible wavelengths of 500–650 nm under the 466 nm blue-light excitation. By packaging of the composite phosphors and a blue light-emitting diode (LED) chip with transparent epoxy resin, white LED with excellent thermal conductivity, current stability and optical performance can be realized, i.e. a thermal conductivity of 0.36 W/mk, a Commission Internationale de 1'Eclairage color coordinates of (0.32, 0.34), and a luminous efficiency of 21.6 lm·W−1. Our research opens the door toward to the practical long-life organic fluorescent dyes-based white LEDs. PMID:25682730

  18. Native gallium adatoms discovered on atomically-smooth gallium nitride surfaces at low temperature.

    PubMed

    Alam, Khan; Foley, Andrew; Smith, Arthur R

    2015-03-11

    In advanced compound semiconductor devices, such as in quantum dot and quantum well systems, detailed atomic configurations at the growth surfaces are vital in determining the structural and electronic properties. Therefore, it is important to investigate the surface reconstructions in order to make further technological advancements. Usually, conventional semiconductor surfaces (e.g., arsenides, phosphides, and antimonides) are highly reactive due to the existence of a high density of group V (anion) surface dangling bonds. However, in the case of nitrides, group III rich growth conditions in molecular beam epitaxy are usually preferred leading to group III (Ga)-rich surfaces. Here, we use low-temperature scanning tunneling microscopy to reveal a uniform distribution of native gallium adatoms with a density of 0.3%-0.5% of a monolayer on the clean, as-grown surface of nitrogen polar GaN(0001̅) having the centered 6 × 12 reconstruction. Unseen at room temperature, these Ga adatoms are strongly bound to the surface but move with an extremely low surface diffusion barrier and a high density saturation coverage in thermodynamic equilibrium with Ga droplets. Furthermore, the Ga adatoms reveal an intrinsic surface chirality and an asymmetric site occupation. These observations can have important impacts in the understanding of gallium nitride surfaces.

  19. Nanopipes in gallium nitride nanowires and rods.

    PubMed

    Jacobs, Benjamin W; Crimp, Martin A; McElroy, Kaylee; Ayres, Virginia M

    2008-12-01

    Gallium nitride nanowires and rods synthesized by a catalyst-free vapor-solid growth method were analyzed with cross section high-resolution transmission electron microscopy. The cross section studies revealed hollow core screw dislocations, or nanopipes, in the nanowires and rods. The hollow cores were located at or near the center of the nanowires and rods, along the axis of a screw dislocation. The formation of the hollow cores is consistent with effect of screw dislocations with giant Burgers vector predicted by Frank.

  20. Diffusion-Driven Charge Transport in Light Emitting Devices

    PubMed Central

    Oksanen, Jani; Suihkonen, Sami

    2017-01-01

    Almost all modern inorganic light-emitting diode (LED) designs are based on double heterojunctions (DHJs) whose structure and current injection principle have remained essentially unchanged for decades. Although highly efficient devices based on the DHJ design have been developed and commercialized for energy-efficient general lighting, the conventional DHJ design requires burying the active region (AR) inside a pn-junction. This has hindered the development of emitters utilizing nanostructured ARs located close to device surfaces such as nanowires or surface quantum wells. Modern DHJ III-N LEDs also exhibit resistive losses that arise from the DHJ device geometry. The recently introduced diffusion-driven charge transport (DDCT) emitter design offers a novel way to transport charge carriers to unconventionally placed ARs. In a DDCT device, the AR is located apart from the pn-junction and the charge carriers are injected into the AR by bipolar diffusion. This device design allows the integration of surface ARs to semiconductor LEDs and offers a promising method to reduce resistive losses in high power devices. In this work, we present a review of the recent progress in gallium nitride (GaN) based DDCT devices, and an outlook of potential DDCT has for opto- and microelectronics. PMID:29231900

  1. Homoepitaxial n-core: p-shell gallium nitride nanowires: HVPE overgrowth on MBE nanowires.

    PubMed

    Sanders, Aric; Blanchard, Paul; Bertness, Kris; Brubaker, Matthew; Dodson, Christopher; Harvey, Todd; Herrero, Andrew; Rourke, Devin; Schlager, John; Sanford, Norman; Chiaramonti, Ann N; Davydov, Albert; Motayed, Abhishek; Tsvetkov, Denis

    2011-11-18

    We present the homoepitaxial growth of p-type, magnesium doped gallium nitride shells by use of halide vapor phase epitaxy (HVPE) on n-type gallium nitride nanowires grown by plasma-assisted molecular beam epitaxy (MBE). Scanning electron microscopy shows clear dopant contrast between the core and shell of the nanowire. The growth of magnesium doped nanowire shells shows little or no effect on the lattice parameters of the underlying nanowires, as measured by x-ray diffraction (XRD). Photoluminescence measurements of the nanowires show the appearance of sub-bandgap features in the blue and the ultraviolet, indicating the presence of acceptors. Finally, electrical measurements confirm the presence of electrically active holes in the nanowires.

  2. Indium gallium nitride/gallium nitride quantum wells grown on polar and nonpolar gallium nitride substrates

    NASA Astrophysics Data System (ADS)

    Lai, Kun-Yu

    Nonpolar (m-plane or a-plane) gallium nitride (GaN) is predicted to be a potential substrate material to improve luminous efficiencies of nitride-based quantum wells (QWs). Numerical calculations indicated that the spontaneous emission rate in a single In0.15Ga0.85N/GaN QW could be improved by ˜2.2 times if the polarization-induced internal field was avoided by epitaxial deposition on nonpolar substrates. A challenge for nonpolar GaN is the limited size (less than 10x10 mm2) of substrates, which was addressed by expansion during the regrowth by Hydride Vapor Phase Epitaxy (HVPE). Subsurface damage in GaN substrates were reduced by annealing with NH3 and N2 at 950°C for 60 minutes. It was additionally found that the variation of m-plane QWs' emission properties was significantly increased when the substrate miscut toward a-axis was increased from 0° to 0.1°. InGaN/GaN QWs were grown by Metalorganic Chemical Vapor Deposition (MOCVD) on c-plane and m-plane GaN substrates. The QWs were studied by cathodoluminescence spectroscopy with different incident electron beam probe currents (0.1 nA ˜ 1000 nA). Lower emission intensities and longer peak wavelengths from c-plane QWs were attributed to the Quantum-confined Stark Effect (QCSE). The emission intensity ratios of m-plane QWs to c-plane QWs decreased from 3.04 at 1 nA to 1.53 at 1000 nA. This was identified as the stronger screening effects of QCSE at higher current densities in c-plane QWs. To further investigate these effects in a fabricated structure, biased photoluminescence measurements were performed on m-plane InGaN/GaN QWs. The purpose was to detect the possible internal fields induced by the dot-like structure in the InGaN layer through the response of these internal fields under externally applied fields. No energy shifts of the QWs were observed, which was attributed to strong surface leakage currents.

  3. Near-infrared gallium nitride two-dimensional photonic crystal platform on silicon

    NASA Astrophysics Data System (ADS)

    Roland, I.; Zeng, Y.; Han, Z.; Checoury, X.; Blin, C.; El Kurdi, M.; Ghrib, A.; Sauvage, S.; Gayral, B.; Brimont, C.; Guillet, T.; Semond, F.; Boucaud, P.

    2014-07-01

    We demonstrate a two-dimensional free-standing gallium nitride photonic crystal platform operating around 1550 nm and fabricated on a silicon substrate. Width-modulated waveguide cavities are integrated and exhibit loaded quality factors up to 34 000 at 1575 nm. We show the resonance tunability by varying the ratio of air hole radius to periodicity, and cavity hole displacement. We deduce a ˜7.9 dB/cm linear absorption loss for the suspended nitride structure from the power dependence of the cavity in-plane transmission.

  4. In vitro and in vivo Efficacy of New Blue Light Emitting Diode Phototherapy Compared to Conventional Halogen Quartz Phototherapy for Neonatal Jaundice

    PubMed Central

    Chang, Yun Sil; Hwang, Jong Hee; Kwon, Hyuk Nam; Choi, Chang Won; Ko, Sun Young; Park, Won Soon; Shin, Son Moon

    2005-01-01

    High intensity light emitting diodes (LEDs) are being studied as possible light sources for the phototherapy of neonatal jaundice, as they can emit high intensity light of narrow wavelength band in the blue region of the visible light spectrum corresponding to the spectrum of maximal bilirubin absorption. We developed a prototype blue gallium nitride LED phototherapy unit with high intensity, and compared its efficacy to commercially used halogen quartz phototherapy device by measuring both in vitro and in vivo bilirubin photodegradation. The prototype device with two focused arrays, each with 500 blue LEDs, generated greater irradiance than the conventional device tested. The LED device showed a significantly higher efficacy of bilirubin photodegradation than the conventional phototherapy in both in vitro experiment using microhematocrit tubes (44±7% vs. 35±2%) and in vivo experiment using Gunn rats (30±9% vs. 16±8%). We conclude that high intensity blue LED device was much more effective than conventional phototherapy of both in vitro and in vivo bilirubin photodegradation. Further studies will be necessary to prove its clinical efficacy. PMID:15716604

  5. LETTER TO THE EDITOR: Fabrication and structure of an opal-gallium nitride nanocomposite

    NASA Astrophysics Data System (ADS)

    Davydov, V. Yu; Dunin-Borkovski, R. E.; Golubev, V. G.; Hutchison, J. L.; Kartenko, N. F.; Kurdyukov, D. A.; Pevtsov, A. B.; Sharenkova, N. V.; Sloan, J.; Sorokin, L. M.

    2001-02-01

    A three-dimensional gallium nitride lattice has been synthesized within the void sublattice of an artificial opal. The composite structure has been characterized using X-ray diffraction, Raman spectroscopy and transmission electron microscopy.

  6. Near-infrared gallium nitride two-dimensional photonic crystal platform on silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roland, I.; Zeng, Y.; Han, Z.

    We demonstrate a two-dimensional free-standing gallium nitride photonic crystal platform operating around 1550 nm and fabricated on a silicon substrate. Width-modulated waveguide cavities are integrated and exhibit loaded quality factors up to 34 000 at 1575 nm. We show the resonance tunability by varying the ratio of air hole radius to periodicity, and cavity hole displacement. We deduce a ∼7.9 dB/cm linear absorption loss for the suspended nitride structure from the power dependence of the cavity in-plane transmission.

  7. Crystallographic alignment of high-density gallium nitride nanowire arrays.

    PubMed

    Kuykendall, Tevye; Pauzauskie, Peter J; Zhang, Yanfeng; Goldberger, Joshua; Sirbuly, Donald; Denlinger, Jonathan; Yang, Peidong

    2004-08-01

    Single-crystalline, one-dimensional semiconductor nanostructures are considered to be one of the critical building blocks for nanoscale optoelectronics. Elucidation of the vapour-liquid-solid growth mechanism has already enabled precise control over nanowire position and size, yet to date, no reports have demonstrated the ability to choose from different crystallographic growth directions of a nanowire array. Control over the nanowire growth direction is extremely desirable, in that anisotropic parameters such as thermal and electrical conductivity, index of refraction, piezoelectric polarization, and bandgap may be used to tune the physical properties of nanowires made from a given material. Here we demonstrate the use of metal-organic chemical vapour deposition (MOCVD) and appropriate substrate selection to control the crystallographic growth directions of high-density arrays of gallium nitride nanowires with distinct geometric and physical properties. Epitaxial growth of wurtzite gallium nitride on (100) gamma-LiAlO(2) and (111) MgO single-crystal substrates resulted in the selective growth of nanowires in the orthogonal [1\\[Evec]0] and [001] directions, exhibiting triangular and hexagonal cross-sections and drastically different optical emission. The MOCVD process is entirely compatible with the current GaN thin-film technology, which would lead to easy scale-up and device integration.

  8. Thermal Cycling and High Temperature Reverse Bias Testing of Control and Irradiated Gallium Nitride Power Transistors

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Boomer, Kristen T.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad

    2014-01-01

    The power systems for use in NASA space missions must work reliably under harsh conditions including radiation, thermal cycling, and exposure to extreme temperatures. Gallium nitride semiconductors show great promise, but information pertaining to their performance is scarce. Gallium nitride N-channel enhancement-mode field effect transistors made by EPC Corporation in a 2nd generation of manufacturing were exposed to radiation followed by long-term thermal cycling and testing under high temperature reverse bias conditions in order to address their reliability for use in space missions. Result of the experimental work are presented and discussed.

  9. Light emitting diodes as a plant lighting source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bula, R.J.; Tennessen, D.J.; Morrow, R.C.

    1994-12-31

    Electroluminescence in solid materials is defined as the generation of light by the passage of an electric current through a body of solid material under an applied electric field. A specific type of electroluminescence, first noted by Lossew in 1923, involves the generation of photons when electrons are passed through a p-n junction of certain solid materials (junction of a n-type semiconductor, an electron donor, and a p-type semiconductor, an electron acceptor). Development efforts to translate these observations into visible light emitting devices, however, was not undertaken until the 1950s. The term, light emitting diode (LEDs), was first used inmore » a report by Wolfe, et al., in 1955. The development of this light emitting semiconductor technology dates back less than 30 years. During this period of time, the LED has evolved from a rare and expensive light generating device to one of the most widely used electronic components. The most popular applications of the LED are as indicators or as optoelectronic switches. However, several recent advances in LED technology have made possible the utilization of LEDs for applications that require a high photon flux, such as for plant lighting in controlled environments. The new generation of LEDs based on a gallium aluminum arsenide (GaAlAS) semiconductor material fabricated as a double heterostructure on a transparent substrate has opened up many new applications for these LEDs.« less

  10. Laterally injected light-emitting diode and laser diode

    DOEpatents

    Miller, Mary A.; Crawford, Mary H.; Allerman, Andrew A.

    2015-06-16

    A p-type superlattice is used to laterally inject holes into an III-nitride multiple quantum well active layer, enabling efficient light extraction from the active area. Laterally-injected light-emitting diodes and laser diodes can enable brighter, more efficient devices that impact a wide range of wavelengths and applications. For UV wavelengths, applications include fluorescence-based biological sensing, epoxy curing, and water purification. For visible devices, applications include solid state lighting and projection systems.

  11. Bright Room-Temperature Single-Photon Emission from Defects in Gallium Nitride.

    PubMed

    Berhane, Amanuel M; Jeong, Kwang-Yong; Bodrog, Zoltán; Fiedler, Saskia; Schröder, Tim; Triviño, Noelia Vico; Palacios, Tomás; Gali, Adam; Toth, Milos; Englund, Dirk; Aharonovich, Igor

    2017-03-01

    Room-temperature quantum emitters in gallium nitride (GaN) are reported. The emitters originate from cubic inclusions in hexagonal lattice and exhibit narrowband luminescence in the red spectral range. The sources are found in different GaN substrates, and therefore are promising for scalable quantum technologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Photon extraction from nitride ultraviolet light-emitting devices

    DOEpatents

    Schowalter, Leo J; Chen, Jianfeng; Grandusky, James R

    2015-02-24

    In various embodiments, a rigid lens is attached to a light-emitting semiconductor die via a layer of encapsulant having a thickness insufficient to prevent propagation of thermal expansion mismatch-induced strain between the rigid lens and the semiconductor die.

  13. Enhanced efficiency of light emitting diodes with a nano-patterned gallium nitride surface realized by soft UV nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Zhou, Weimin; Min, Guoquan; Song, Zhitang; Zhang, Jing; Liu, Yanbo; Zhang, Jianping

    2010-05-01

    This paper reports a significant enhancement in the extraction efficiency of nano-patterned GaN light emitting diodes (LED) realized by soft UV nanoimprint lithography. The 2 inch soft stamp was fabricated using a replication stamp of anodic alumina oxide (AAO) membrane. The light output power was enhanced by 10.9% compared to that of the LED sample without a nano-patterned surface. Up to 41% enhancement in photoluminescence intensity was obtained from the nano-patterned GaN LED sample. The method is simple, cheap and suitable for mass production.

  14. Controlling bottom-up rapid growth of single crystalline gallium nitride nanowires on silicon.

    PubMed

    Wu, Ko-Li; Chou, Yi; Su, Chang-Chou; Yang, Chih-Chaing; Lee, Wei-I; Chou, Yi-Chia

    2017-12-20

    We report single crystalline gallium nitride nanowire growth from Ni and Ni-Au catalysts on silicon using hydride vapor phase epitaxy. The growth takes place rapidly; efficiency in time is higher than the conventional nanowire growth in metal-organic chemical vapor deposition and thin film growth in molecular beam epitaxy. The effects of V/III ratio and carrier gas flow on growth are discussed regarding surface polarity and sticking coefficient of molecules. The nanowires of gallium nitride exhibit excellent crystallinity with smooth and straight morphology and uniform orientation. The growth mechanism follows self-assembly from both catalysts, where Au acts as a protection from etching during growth enabling the growth of ultra-long nanowires. The photoluminescence of such nanowires are adjustable by tuning the growth parameters to achieve blue emission. The practical range of parameters for mass production of such high crystal quality and uniformity of nanowires is suggested.

  15. Thin films of aluminum nitride and aluminum gallium nitride for cold cathode applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowers, A.T.; Christman, J.A.; Bremser, M.D.

    1997-10-01

    Cold cathode structures have been fabricated using AlN and graded AlGaN structures (deposited on n-type 6H-SiC) as the thin film emitting layer. The cathodes consist of an aluminum grid layer separated from the nitride layer by a SiO{sub 2} layer and etched to form arrays of either 1, 3, or 5 {mu}m holes through which the emitting nitride surface is exposed. After fabrication, a hydrogen plasma exposure was employed to activate the cathodes. Cathode devices with 5 {mu}m holes displayed emission for up to 30 min before failing. Maximum emission currents ranged from 10{endash}100 nA and required grid voltages rangingmore » from 20{endash}110 V. The grid currents were typically 1 to 10{sup 4} times the collector currents. {copyright} {ital 1997 American Institute of Physics.}« less

  16. Improved light extraction efficiency in GaN-based light emitting diode by nano-scale roughening of p-GaN surface.

    PubMed

    Park, Sang Jae; Sadasivam, Karthikeyan Giri; Chung, Tae Hoon; Hong, Gi Cheol; Kim, Jin Bong; Kim, Sang Mook; Park, Si-Hyun; Jeon, Seong-Ran; Lee, June Key

    2008-10-01

    Improvement in light extraction efficiency of Ultra Violet-Light Emitting Diode (UV-LED) is achieved by nano-scale roughening of p-type Gallium Nitride (p-GaN) surface. The process of surface roughening is carried out by using self assembled gold (Au) nano-clusters with support of nano-size silicon-oxide (SiO2) pillars on p-GaN surface as a dry etching mask and by p-GaN regrowth in the regions not covered by the mask after dry etching. Au nano-clusters are formed by rapid thermal annealing (RTA) process carried out at 600 degrees C for 1 min using 15 nm thick Au layer on top of SiO2. The p-GaN roughness is controlled by p-GaN regrowth time. Four different time values of 15 sec, 30 sec, 60 sec and 120 sec are considered for p-GaN regrowth. Among the four different p-GaN regrowth time values 30 sec regrown p-GaN sample has the optimum roughness to increase the electroluminescence (EL) intensity to a value approximately 60% higher than the EL intensity of a conventional LED.

  17. Large spin accumulation and crystallographic dependence of spin transport in single crystal gallium nitride nanowires

    PubMed Central

    Park, Tae-Eon; Park, Youn Ho; Lee, Jong-Min; Kim, Sung Wook; Park, Hee Gyum; Min, Byoung-Chul; Kim, Hyung-jun; Koo, Hyun Cheol; Choi, Heon-Jin; Han, Suk Hee; Johnson, Mark; Chang, Joonyeon

    2017-01-01

    Semiconductor spintronics is an alternative to conventional electronics that offers devices with high performance, low power and multiple functionality. Although a large number of devices with mesoscopic dimensions have been successfully demonstrated at low temperatures for decades, room-temperature operation still needs to go further. Here we study spin injection in single-crystal gallium nitride nanowires and report robust spin accumulation at room temperature with enhanced spin injection polarization of 9%. A large Overhauser coupling between the electron spin accumulation and the lattice nuclei is observed. Finally, our single-crystal gallium nitride samples have a trigonal cross-section defined by the (001), () and () planes. Using the Hanle effect, we show that the spin accumulation is significantly different for injection across the (001) and () (or ()) planes. This provides a technique for increasing room temperature spin injection in mesoscopic systems. PMID:28569767

  18. Internal structure of multiphase zinc-blende wurtzite gallium nitride nanowires.

    PubMed

    Jacobs, B W; Ayres, V M; Crimp, M A; McElroy, K

    2008-10-08

    In this paper, the internal structure of novel multiphase gallium nitride nanowires in which multiple zinc-blende and wurtzite crystalline domains grow simultaneously along the entire length of the nanowire is investigated. Orientation relationships within the multiphase nanowires are identified using high-resolution transmission electron microscopy of nanowire cross-sections fabricated with a focused ion beam system. A coherent interface between the zinc-blende and wurtzite phases is identified. A mechanism for catalyst-free vapor-solid multiphase nanowire nucleation and growth is proposed.

  19. Microwave Integrated Circuit Amplifier Designs Submitted to Qorvo for Fabrication with 0.09-micron High Electron Mobility Transistors (HEMTs) using 2-mil Gallium Nitride (GaN) on Silicon Carbide (SiC)

    DTIC Science & Technology

    2016-03-01

    Fabrication with 0.09-µm High-Electron-Mobility Transistors (HEMTs) Using 2-mil Gallium Nitride (GaN) on Silicon Carbide (SiC) by John E Penn...for Fabrication with 0.09-µm High-Electron-Mobility Transistors (HEMTs) using 2-mil Gallium Nitride (GaN) on Silicon Carbide by John E Penn...µm High-Electron-Mobility Transistors (HEMTs) using 2-mil Gallium Nitride (GaN) on Silicon Carbide 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  20. Lateral Hydrogen Diffusion at p-GaN Layers in Nitride-Based Light Emitting Diodes with Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Kuwano, Yuka; Kaga, Mitsuru; Morita, Takatoshi; Yamashita, Kouji; Yagi, Kouta; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu

    2013-08-01

    We demonstrated lateral Mg activation along p-GaN layers underneath n-GaN surface layers in nitride-based light emitting diodes (LEDs) with GaInN tunnel junctions. A high temperature thermal annealing was effective for the lateral Mg activation when the p-GaN layers were partly exposed to an oxygen ambient as etched sidewalls. The activated regions gradually extended from the etched sidewalls to the centers with an increase of annealing time, observed as emission regions with current injection. These results suggest that hydrogen diffuses not vertically thorough the above n-GaN but laterally through the exposed portions of the p-GaN. The lowest voltage drop at the GaInN tunnel junction was estimated to be 0.9 V at 50 mA with the optimized annealing condition.

  1. Group III nitride semiconductors for short wavelength light-emitting devices

    NASA Astrophysics Data System (ADS)

    Orton, J. W.; Foxon, C. T.

    1998-01-01

    The group III nitrides (AlN, GaN and InN) represent an important trio of semiconductors because of their direct band gaps which span the range 1.95-6.2 eV, including the whole of the visible region and extending well out into the ultraviolet (UV) range. They form a complete series of ternary alloys which, in principle, makes available any band gap within this range and the fact that they also generate efficient luminescence has been the main driving force for their recent technological development. High brightness visible light-emitting diodes (LEDs) are now commercially available, a development which has transformed the market for LED-based full colour displays and which has opened the way to many other applications, such as in traffic lights and efficient low voltage, flat panel white light sources. Continuously operating UV laser diodes have also been demonstrated in the laboratory, exciting tremendous interest for high-density optical storage systems, UV lithography and projection displays. In a remarkably short space of time, the nitrides have therefore caught up with and, in some ways, surpassed the wide band gap II-VI compounds (ZnCdSSe) as materials for short wavelength optoelectronic devices. The purpose of this paper is to review these developments and to provide essential background material in the form of the structural, electronic and optical properties of the nitrides, relevant to these applications. We have been guided by the fact that the devices so far available are based on the binary compound GaN (which is relatively well developed at the present time), together with the ternary alloys AlGaN and InGaN, containing modest amounts of Al or In. We therefore concentrate, to a considerable extent, on the properties of GaN, then introduce those of the alloys as appropriate, emphasizing their use in the formation of the heterostructures employed in devices. The nitrides crystallize preferentially in the hexagonal wurtzite structure and devices have so

  2. Measuring Nanoscale Heat Transfer for Gold-(Gallium Oxide)-Gallium Nitride Interfaces as a Function

    NASA Astrophysics Data System (ADS)

    Szwejkowski, Chester; Sun, Kai; Constantin, Costel; Giri, Ashutosh; Saltonstall, Christopher; Hopkins, Patrick; NanoSynCh Team; Exsite Team

    2014-03-01

    Gallium nitride (GaN) is considered the most important semiconductor after the discovery of Silicon. Understanding the properties of GaN is imperative in determining the utility and applicability of this class of materials to devices. We present results of time domain thermoreflectance (TDTR) measurements as a function of surface root mean square (RMS) roughness. We used commercially available 5mm x 5mm, single-side polished GaN (3-7 μm)/Sapphire (430 μm) substrates that have a Wurtzite crystal structure and are slightly n-type doped. The GaN substrates were annealed in the open atmosphere for 10 minutes (900-1000 °C). This high-temperature treatment produced RMS values from 1-60 nm and growth of gallium oxide (GaO) as measured with an atomic force microscopy and transmission electron microscopy respectively. A gold film (80nm) was deposited on the GaN surface using electron beam physical vapor deposition which was verified using ellipsometry and profilometry. The TDTR measurements suggest that the thermal conductivity decays exponentially with RMS roughness and that there is a minimum value for thermal boundary conductance at a roughness of 15nm.

  3. Modeling and Simulation of a Gallium Nitride (GaN) Betavoltaic Energy Converter

    DTIC Science & Technology

    2016-06-01

    information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY...June 2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) 05/2015–08/2015 4. TITLE AND SUBTITLE Modeling and Simulation of a Gallium Nitride...current battery technology has several drawbacks, such as charge leakage, temperature and environment sensitivity, and finite charge cycles. Radioisotope

  4. Blueish green photoluminescence from nitrided GaAs(100) surfaces

    NASA Astrophysics Data System (ADS)

    Shimaoka, Goro; Udagawa, Takashi

    1999-04-01

    Optical and structural studies were made on the Si-doped (100)GaAs surfaces nitrided at a temperature between 650° and 750°C for 15 min in the flowing NH 3 gas. The wavelength of photoluminescence (PL) spectra were observed to be shortened from 820 nm of the GaAs nitrided at 650°C with increasing nitridation temperature. Blueish green PL with wavelengths of approx. 490 nm and 470 nm were emitted from the nitrided surfaces at 700° and 750°C, respectively. Results of AES and SIMS indicated that the surfaces are nitrided as GaAs 1- xN x, (0< x≤1) alloy layer, and the nitrided region also tended to increase as the temperature raised. High-resolution transmission electron microscopic (HRTEM), transmission electron diffraction (TED) and energy dispersive X-ray (EDX) results showed that films peeled off from the nitrided surfaces consisted mainly of hexagonal, wurtzite-type gallium nitride (GaN) with stacking faults and microtwins.

  5. Optimized Spiral Metal-Gallium-Nitride Nanowire Cavity for Ultra-High Circular Dichroism Ultraviolet Lasing at Room Temperature.

    PubMed

    Liao, Wei-Chun; Liao, Shu-Wei; Chen, Kuo-Ju; Hsiao, Yu-Hao; Chang, Shu-Wei; Kuo, Hao-Chung; Shih, Min-Hsiung

    2016-05-25

    Circularly polarized laser sources with small footprints and high efficiencies can possess advanced functionalities in optical communication and biophotonic integrated systems. However, the conventional lasers with additional circular-polarization converters are bulky and hardly compatible with nanophotonic circuits, and most active chiral plasmonic nanostructures nowadays exhibit broadband emission and low circular dichroism. In this work, with spirals of gallium nitride (GaN) nanowires (NWRs) covered by a metal layer, we demonstrated an ultrasmall semiconductor laser capable of emitting circularly-polarized photons. The left- and right-hand spiral metal nanowire cavities with varied periods were designed at ultraviolet wavelengths to achieve the high quality factor circular dichroism metastructures. The dissymmetry factors characterizing the degrees of circular polarizations of the left- and right-hand chiral lasers were 1.4 and -1.6 (±2 if perfectly circular polarized), respectively. The results show that the chiral cavities with only 5 spiral periods can achieve lasing signals with the high degrees of circular polarizations.

  6. Emission Characteristics of InGaN/GaN Core-Shell Nanorods Embedded in a 3D Light-Emitting Diode.

    PubMed

    Jung, Byung Oh; Bae, Si-Young; Lee, Seunga; Kim, Sang Yun; Lee, Jeong Yong; Honda, Yoshio; Amano, Hiroshi

    2016-12-01

    We report the selective-area growth of a gallium nitride (GaN)-nanorod-based InGaN/GaN multiple-quantum-well (MQW) core-shell structure embedded in a three-dimensional (3D) light-emitting diode (LED) grown by metalorganic chemical vapor deposition (MOCVD) and its optical analysis. High-resolution transmission electron microscopy (HR-TEM) observation revealed the high quality of the GaN nanorods and the position dependence of the structural properties of the InGaN/GaN MQWs on multiple facets. The excitation and temperature dependences of photoluminescence (PL) revealed the m-plane emission behaviors of the InGaN/GaN core-shell nanorods. The electroluminescence (EL) of the InGaN/GaN core-shell-nanorod-embedded 3D LED changed color from green to blue with increasing injection current. This phenomenon was mainly due to the energy gradient and deep localization of the indium in the selectively grown InGaN/GaN core-shell MQWs on the 3D architecture.

  7. Sodium Flux Growth of Bulk Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Von Dollen, Paul Martin

    This dissertation focused on development of a novel apparatus and techniques for crystal growth of bulk gallium nitride (GaN) using the sodium flux method. Though several methods exist to produce bulk GaN, none have been commercialized on an industrial scale. The sodium flux method offers potentially lower cost production due to relatively mild process conditions while maintaining high crystal quality. But the current equipment and methods for sodium flux growth of bulk GaN are generally not amenable to large-scale crystal growth or in situ investigation of growth processes, which has hampered progress. A key task was to prevent sodium loss or migration from the sodium-gallium growth melt while permitting N2 gas to access the growing crystal, which was accomplished by implementing a reflux condensing stem along with a reusable sealed capsule. The reflux condensing stem also enabled direct monitoring and control of the melt temperature, which has not been previously reported for the sodium flux method. Molybdenum-based materials were identified from a corrosion study as candidates for direct containment of the corrosive sodium-gallium melt. Successful introduction of these materials allowed implementation of a crucible-free containment system, which improved process control and can potentially reduce crystal impurity levels. Using the new growth system, the (0001) Ga face (+c plane) growth rate was >50 mum/hr, which is the highest bulk GaN growth rate reported for the sodium flux method. Omega X-ray rocking curve (?-XRC) measurements indicated the presence of multiple grains, though full width at half maximum (FWHM) values for individual peaks were <100 arcseconds. Oxygen impurity concentrations as measured by secondary ion mass spectroscopy (SIMS) were >1020 atoms/cm3, possibly due to reactor cleaning and handling procedures. This dissertation also introduced an in situ technique to correlate changes in N2 pressure with dissolution of nitrogen and precipitation of

  8. Defects, optical absorption and electron mobility in indium and gallium nitrides

    NASA Astrophysics Data System (ADS)

    Tansley, T. L.; Egan, R. J.

    1993-04-01

    We review the experimental evidence for the origin and location of the four native point defects in the wide gap semiconducting indium and gallium nitrides and compare then with experimental predictions. The donor triplets associated with nitrogen vacancies and the deep compensating centres ascribed to the antisite substitutional defects appear to have the greatest effect on macroscopic properties, apparently including the four luminescent bands in GaN. Calculated mobilities in InN and GaN depend principally on ionised impurity and polar-mode phonon scattering. We reconcile these results with experimental data and point out the consequences for improvements in material growth.

  9. Clusterization Effects in III-V Nitrides: Nitrogen Vacancies, and Si and Mg Impurities in Aluminum Nitride and Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Gubanov, V. A.; Pentaleri, E. A.; Boekema, C.; Fong, C. Y.; Klein, B. M.

    1997-03-01

    We have investigated clusterization of nitrogen vacancies and Si and Mg doping impurities in zinc-blende aluminum nitride (c-AlN) and gallium nitride (c-GaN) by the tight-binding LMTO technique. The calculations used 128-site supercells. Si and Mg atoms replacing ions in both the cation and anion sublattices of the host lattices of the host crystals have been considered. The Mg impurity at cation sites is found to form partially occupied states at the valence-band edge, and may result in p-type conductivity. When Si substitutes for Ga, the impurity band is formed at the conduction-band edge, resulting in n-type conductivity. Si impurities at cation sites, and Mg impurity at anion sites are able to form resonance states in the gap. The influence of impurity clusterization in the host lattice and interstitial sites on electronic properties of c-AlN and c-GaN crystals are modeled. The changes in vacancy- and impurity-state energies, bonding type, localization, density of states at the Fermi level in different host lattices, their dependence on impurity/vacancy concentration are analyzed and compared with the experimental data.

  10. Enhanced Electroluminescence from Silicon Quantum Dots Embedded in Silicon Nitride Thin Films Coupled with Gold Nanoparticles in Light Emitting Devices

    PubMed Central

    Muñoz-Rosas, Ana Luz; Alonso-Huitrón, Juan Carlos

    2018-01-01

    Nowadays, the use of plasmonic metal layers to improve the photonic emission characteristics of several semiconductor quantum dots is a booming tool. In this work, we report the use of silicon quantum dots (SiQDs) embedded in a silicon nitride thin film coupled with an ultra-thin gold film (AuNPs) to fabricate light emitting devices. We used the remote plasma enhanced chemical vapor deposition technique (RPECVD) in order to grow two types of silicon nitride thin films. One with an almost stoichiometric composition, acting as non-radiative spacer; the other one, with a silicon excess in its chemical composition, which causes the formation of silicon quantum dots imbibed in the silicon nitride thin film. The ultra-thin gold film was deposited by the direct current (DC)-sputtering technique, and an aluminum doped zinc oxide thin film (AZO) which was deposited by means of ultrasonic spray pyrolysis, plays the role of the ohmic metal-like electrode. We found that there is a maximum electroluminescence (EL) enhancement when the appropriate AuNPs-spacer-SiQDs configuration is used. This EL is achieved at a moderate turn-on voltage of 11 V, and the EL enhancement is around four times bigger than the photoluminescence (PL) enhancement of the same AuNPs-spacer-SiQDs configuration. From our experimental results, we surmise that EL enhancement may indeed be due to a plasmonic coupling. This kind of silicon-based LEDs has the potential for technology transfer. PMID:29565267

  11. Transparent conductive oxide films mixed with gallium oxide nanoparticle/single-walled carbon nanotube layer for deep ultraviolet light-emitting diodes

    PubMed Central

    2013-01-01

    We propose a transparent conductive oxide electrode scheme of gallium oxide nanoparticle mixed with a single-walled carbon nanotube (Ga2O3 NP/SWNT) layer for deep ultraviolet light-emitting diodes using spin and dipping methods. We investigated the electrical, optical and morphological properties of the Ga2O3 NP/SWNT layers by increasing the thickness of SWNTs via multiple dipping processes. Compared with the undoped Ga2O3 films (current level 9.9 × 10-9 A @ 1 V, transmittance 68% @ 280 nm), the current level flowing in the Ga2O3 NP/SWNT increased by approximately 4 × 105 times and the transmittance improved by 9% after 15 times dip-coating (current level 4 × 10-4 A at 1 V; transmittance 77.0% at 280 nm). These improvements result from both native high transparency of Ga2O3 NPs and high conductivity and effective current spreading of SWNTs. PMID:24295342

  12. Fluorescent lighting with aluminum nitride phosphors

    DOEpatents

    Cherepy, Nerine J.; Payne, Stephen A.; Seeley, Zachary M.; Srivastava, Alok M.

    2016-05-10

    A fluorescent lamp includes a glass envelope; at least two electrodes connected to the glass envelope; mercury vapor and an inert gas within the glass envelope; and a phosphor within the glass envelope, wherein the phosphor blend includes aluminum nitride. The phosphor may be a wurtzite (hexagonal) crystalline structure Al.sub.(1-x)M.sub.xN phosphor, where M may be drawn from beryllium, magnesium, calcium, strontium, barium, zinc, scandium, yttrium, lanthanum, cerium, praseodymium, europium, gadolinium, terbium, ytterbium, bismuth, manganese, silicon, germanium, tin, boron, or gallium is synthesized to include dopants to control its luminescence under ultraviolet excitation. The disclosed Al.sub.(1-x)M.sub.xN:Mn phosphor provides bright orange-red emission, comparable in efficiency and spectrum to that of the standard orange-red phosphor used in fluorescent lighting, Y.sub.2O.sub.3:Eu. Furthermore, it offers excellent lumen maintenance in a fluorescent lamp, and does not utilize "critical rare earths," minimizing sensitivity to fluctuating market prices for the rare earth elements.

  13. [Evaluation of motor and sensory neuroconduction of the median nerve in patients with carpal tunnel syndrome treated with non-coherent light emitted by gallium arsenic diodes].

    PubMed

    Viera Alemán, C; Purón, E; Hamilton, M L; Santos Anzorandia, C; Navarro, A; Pineda Ortiz, I

    The treatment selection in the carpal tunnel syndrome according to the damage of the median nerve is important and all of these have adverse effects. A good alternative without undesired reactions is irradiation of the carpal tunnel with not coherent light between 920 and 940 nm emitted by gallium arsenide diodes, resembling the physic and therapeutic laser effects. Twenty-six female patients with idiopathic middle carpal tunnel syndrome were irradiated 15 minutes daily during three weeks. The median nerve motor and sensitive neuroconduction was studied before and immediately after the treatment. The abnormal neuroconduction variables (latency, amplitude and velocity conduction) did not modify when treatment concluded, in spite of all the patients reported disappearance of pain and numbness in damaged hands. Not coherent light does not change the fibers functional state explored by conventional neuroconductions techniques. It remains to know if this light produces fine fibers improvement.

  14. Zinc Sulphide Overlayer Two-Dimensional Photonic Crystal for Enhanced Extraction of Light from a Micro Cavity Light-Emitting Diode

    NASA Astrophysics Data System (ADS)

    Mastro, Michael A.; Kim, Chul Soo; Kim, Mijin; Caldwell, Josh; Holm, Ron T.; Vurgaftman, Igor; Kim, Jihyun; Eddy, Charles R., Jr.; Meyer, Jerry R.

    2008-10-01

    A two-dimensional (2D) ZnS photonic crystal was deposited on the surface of a one-dimensional (1D) III-nitride micro cavity light-emitting diode (LED), to intermix the light extraction features of both structures (1D+2D). The deposition of an ideal micro-cavity optical thickness of ≈λ/2 is impractical for III-nitride LEDs, and in realistic multi-mode devices a large fraction of the light is lost to internal refraction as guided light. Therefore, a 2D photonic crystal on the surface of the LED was used to diffract and thus redirect this guided light out of the semiconductor over several hundred microns. Additionally, the employment of a post-epitaxy ZnS 2D photonic crystal avoided the typical etching into the GaN:Mg contact layer, a procedure which can cause damage to the near surface.

  15. Heat resistive dielectric multi-layer micro-mirror array in epitaxial lateral overgrowth gallium nitride.

    PubMed

    Huang, Chen-Yang; Ku, Hao-Min; Liao, Wei-Tsai; Chao, Chu-Li; Tsay, Jenq-Dar; Chao, Shiuh

    2009-03-30

    Ta2O5 / SiO2 dielectric multi-layer micro-mirror array (MMA) with 3mm mirror size and 6mm array period was fabricated on c-plane sapphire substrate. The MMA was subjected to 1200 degrees C high temperature annealing and remained intact with high reflectance in contrast to the continuous multi-layer for which the layers have undergone severe damage by 1200 degrees C annealing. Epitaxial lateral overgrowth (ELO) of gallium nitride (GaN) was applied to the MMA that was deposited on both sapphire and sapphire with 2:56 mm GaN template. The MMA was fully embedded in the ELO GaN and remained intact. The result implies that our MMA is compatible to the high temperature growth environment of GaN and the MMA could be incorporated into the structure of the micro-LED array as a one to one micro backlight reflector, or as the patterned structure on the large area LED for controlling the output light.

  16. Interlayer interaction and mechanical properties in multi-layer graphene, Boron-Nitride, Aluminum-Nitride and Gallium-Nitride graphene-like structure: A quantum-mechanical DFT study

    NASA Astrophysics Data System (ADS)

    Ghorbanzadeh Ahangari, Morteza; Fereidoon, A.; Hamed Mashhadzadeh, Amin

    2017-12-01

    In present study, we investigated mechanical, electronic and interlayer properties of mono, bi and 3layer of Boron-Nitride (B-N), Aluminum-Nitride (Al-N) and Gallium-Nitride (Ga-N) graphene sheets and compared these results with results obtained from carbonic graphenes (C-graphenes). For reaching this purpose, first we optimized the geometrical parameters of these graphenes by using density functional theory (DFT) method. Then we calculated Young's modulus of graphene sheet by compressing and then elongating these sheets in small increment. Our results indicates that Young's modulus of graphenes didn't changed obviously by increasing the number of layer sheet. We also found that carbonic graphene has greatest Young's modulus among another mentioned sheets because of smallest equilibrium distance between its elements. Next we modeled the van der Waals interfacial interaction exist between two sheets with classical spring model by using general form of Lennard-Jones (L-J) potential for all of mentioned graphenes. For calculating L-J parameters (ε and σ), the potential energy between layers of mentioned graphene as a function of the separation distance was plotted. Moreover, the density of states (DOS) are calculated to understand the electronic properties of these systems better.

  17. Broadband 1.2- and 2.4-mm Gallium Nitride (GaN) Power Amplifier Designs

    DTIC Science & Technology

    2017-10-01

    showing double the power of a single 1.2-mm HEMT with 55% PAE at a comparable gain compression level. 3. Summary and Conclusion A preliminary design of...combined, 2.4-mm HEMT power amplifier should achieve comparable performance based on a preliminary design using ideal, lossless matching elements. For...ARL-TR-8180 ● OCT 2017 US Army Research Laboratory Broadband 1.2- and 2.4-mm Gallium Nitride (GaN) Power Amplifier Designs by

  18. A high open-circuit voltage gallium nitride betavoltaic microbattery

    NASA Astrophysics Data System (ADS)

    Cheng, Zaijun; Chen, Xuyuan; San, Haisheng; Feng, Zhihong; Liu, Bo

    2012-07-01

    A high open-circuit voltage betavoltaic microbattery based on a gallium nitride (GaN) p-i-n homojunction is demonstrated. As a beta-absorbing layer, the low electron concentration of the n-type GaN layer is achieved by the process of Fe compensation doping. Under the irradiation of a planar solid 63Ni source with activity of 0.5 mCi, the open-circuit voltage of the fabricated microbattery with 2 × 2 mm2 area reaches as much as 1.64 V, which is the record value reported for betavoltaic batteries with 63Ni source, the short-circuit current was measured as 568 pA and the conversion effective of 0.98% was obtained. The experimental results suggest that GaN is a high-potential candidate for developing the betavoltaic microbattery.

  19. Integrated Multi-Color Light Emitting Device Made with Hybrid Crystal Structure

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor)

    2017-01-01

    An integrated hybrid crystal Light Emitting Diode ("LED") display device that may emit red, green, and blue colors on a single wafer. The various embodiments may provide double-sided hetero crystal growth with hexagonal wurtzite III-Nitride compound semiconductor on one side of (0001) c-plane sapphire media and cubic zinc-blended III-V or II-VI compound semiconductor on the opposite side of c-plane sapphire media. The c-plane sapphire media may be a bulk single crystalline c-plane sapphire wafer, a thin free standing c-plane sapphire layer, or crack-and-bonded c-plane sapphire layer on any substrate. The bandgap energies and lattice constants of the compound semiconductor alloys may be changed by mixing different amounts of ingredients of the same group into the compound semiconductor. The bandgap energy and lattice constant may be engineered by changing the alloy composition within the cubic group IV, group III-V, and group II-VI semiconductors and within the hexagonal III-Nitrides.

  20. Integrated Multi-Color Light Emitting Device Made with Hybrid Crystal Structure

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor)

    2016-01-01

    An integrated hybrid crystal Light Emitting Diode ("LED") display device that may emit red, green, and blue colors on a single wafer. The various embodiments may provide double-sided hetero crystal growth with hexagonal wurtzite III-Nitride compound semiconductor on one side of (0001) c-plane sapphire media and cubic zinc-blended III-V or II-VI compound semiconductor on the opposite side of c-plane sapphire media. The c-plane sapphire media may be a bulk single crystalline c-plane sapphire wafer, a thin free standing c-plane sapphire layer, or crack-and-bonded c-plane sapphire layer on any substrate. The bandgap energies and lattice constants of the compound semiconductor alloys may be changed by mixing different amounts of ingredients of the same group into the compound semiconductor. The bandgap energy and lattice constant may be engineered by changing the alloy composition within the cubic group IV, group III-V, and group II-VI semiconductors and within the hexagonal III-Nitrides.

  1. The potential of ill-nitride laser diodes for solid-state lighting [Advantages of III-Nitride Laser Diodes in Solid-State Lighting

    DOE PAGES

    Wierer, Jonathan; Tsao, Jeffrey Y.

    2014-09-01

    III-nitride laser diodes (LDs) are an interesting light source for solid-state lighting (SSL). Modelling of LDs is performed to reveal the potential advantages over traditionally used light-emitting diodes (LEDs). The first, and most notable, advantage is LDs have higher efficiency at higher currents when compared to LEDs. This is because Auger recombination that causes efficiency droop can no longer grow after laser threshold. Second, the same phosphor-converted methods used with LEDs can also be used with LDs to produce white light with similar color rendering and color temperature. Third, producing white light from direct emitters is equally challenging for bothmore » LEDs and LDs, with neither source having a direct advantage. Lastly, the LD emission is directional and can be more readily captured and focused, leading to the possibility of novel and more compact luminaires. These advantages make LDs a compelling source for future SSL.« less

  2. Plasma treatment of p-GaN/n-ZnO nanorod light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Leung, Yu Hang; Ng, Alan M. C.; Djurišic, Aleksandra B.; Chan, Wai Kin; Fong, Patrick W. K.; Lui, Hsien Fai; Surya, Charles

    2014-03-01

    Zinc oxide (ZnO) is a material of great interest for short-wavelength optoelectronic applications due to its wide band gap (3.37 eV) and high exciton binding energy (60 meV). Due to the difficulty in stable p-type doping of ZnO, other p-type materials such as gallium nitride (GaN) have been used to form heterojunctions with ZnO. p-GaN/n-ZnO heterojunction devices, in particular light-emitting diodes (LED) have been extensively studied. There was a huge variety of electronic properties and emission colors on the reported devices. It is due to the different energy alignment at the interface caused by different properties of the GaN layer and ZnO counterpart in the junction. Attempts have been made on modifying the heterojunction by various methods, such as introducing a dielectric interlayer and post-growth surface treatment, and changing the growth methods of ZnO. In this study, heterojunction LED devices with p-GaN and ZnO nanorods array are demonstrated. The ZnO nanorods were grown by a solution method. The ZnO nanorods were exposed to different kinds of plasma treatments (such as nitrogen and oxygen) after the growth. It was found that the treatment could cause significant change on the optical properties of the ZnO nanorods, as well as the electronic properties and light emissions of the resultant LED devices.

  3. The effect of surfactants on epitaxial growth of gallium nitride from gas phase in the Ga-HCl-NH3-H2-Ar system

    NASA Astrophysics Data System (ADS)

    Zhilyaev, Yu. V.; Zelenin, V. V.; Orlova, T. A.; Panteleev, V. N.; Poletaev, N. K.; Rodin, S. N.; Snytkina, S. A.

    2015-05-01

    We have studied epitaxial layers of gallium nitride (GaN) in a template composition grown by surfactant-mediated hydride-chloride vapor phase epitaxy. The surfactant component was provided by 5 mass % additives of antimony and indium to the source of gallium. Comparative analysis of the obtained results shows evidence of the positive influence of surfactants on the morphology of epitaxial GaN layers.

  4. Top-emitting organic light-emitting diodes.

    PubMed

    Hofmann, Simone; Thomschke, Michael; Lüssem, Björn; Leo, Karl

    2011-11-07

    We review top-emitting organic light-emitting diodes (OLEDs), which are beneficial for lighting and display applications, where non-transparent substrates are used. The optical effects of the microcavity structure as well as the loss mechanisms are discussed. Outcoupling techniques and the work on white top-emitting OLEDs are summarized. We discuss the power dissipation spectra for a monochrome and a white top-emitting OLED and give quantitative reports on the loss channels. Furthermore, the development of inverted top-emitting OLEDs is described.

  5. Advantages of III-nitride laser diodes in solid-state lighting: Advantages of III-nitride laser diodes in solid-state lighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wierer, Jonathan J.; Tsao, Jeffrey Y.

    2015-01-14

    III-nitride laser diodes (LDs) are an interesting light source for solid-state lighting (SSL). Modelling of LDs is performed to reveal the potential advantages over traditionally used light-emitting diodes (LEDs). The first, and most notable, advantage is LDs have higher efficiency at higher currents when compared to LEDs. This is because Auger recombination that causes efficiency droop can no longer grow after laser threshold. Second, the same phosphor-converted methods used with LEDs can also be used with LDs to produce white light with similar color rendering and color temperature. Third, producing white light from color mixed emitters is equally challenging formore » both LEDs and LDs, with neither source having a direct advantage. Fourth, the LD emission is directional and can be more readily captured and focused, leading to the possibility of novel and more compact luminaires. Finally, the smaller area and higher current density operation of LDs provides them with a potential cost advantage over LEDs. These advantages make LDs a compelling source for future SSL.« less

  6. Effects of Radiation and Long-Term Thermal Cycling on EPC 1001 Gallium Nitride Transistors

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad

    2012-01-01

    Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These include radiation, extreme temperatures, and thermal cycling, to name a few. Data obtained on long-term thermal cycling of new un-irradiated and irradiated samples of EPC1001 gallium nitride enhancement-mode transistors are presented. This work was done by a collaborative effort including GRC, GSFC, and support the NASA www.nasa.gov 1 JPL in of Electronic Parts and Packaging (NEPP) Program

  7. Colour-crafted phosphor-free white light emitters via in-situ nanostructure engineering.

    PubMed

    Min, Daehong; Park, Donghwy; Lee, Kyuseung; Nam, Okhyun

    2017-03-08

    Colour-temperature (T c ) is a crucial specification of white light-emitting diodes (WLEDs) used in a variety of smart-lighting applications. Commonly, T c is controlled by distributing various phosphors on top of the blue or ultra violet LED chip in conventional phosphor-conversion WLEDs (PC-WLEDs). Unfortunately, the high cost of phosphors, additional packaging processes required, and phosphor degradation by internal thermal damage must be resolved to obtain higher-quality PC-WLEDs. Here, we suggest a practical in-situ nanostructure engineering strategy for fabricating T c -controlled phosphor-free white light-emitting diodes (PF-WLEDs) using metal-organic chemical vapour deposition. The dimension controls of in-situ nanofacets on gallium nitride nanostructures, and the growth temperature of quantum wells on these materials, were key factors for T c control. Warm, true, and cold white emissions were successfully demonstrated in this study without any external processing.

  8. Colour-crafted phosphor-free white light emitters via in-situ nanostructure engineering

    PubMed Central

    Min, Daehong; Park, Donghwy; Lee, Kyuseung; Nam, Okhyun

    2017-01-01

    Colour-temperature (Tc) is a crucial specification of white light-emitting diodes (WLEDs) used in a variety of smart-lighting applications. Commonly, Tc is controlled by distributing various phosphors on top of the blue or ultra violet LED chip in conventional phosphor-conversion WLEDs (PC-WLEDs). Unfortunately, the high cost of phosphors, additional packaging processes required, and phosphor degradation by internal thermal damage must be resolved to obtain higher-quality PC-WLEDs. Here, we suggest a practical in-situ nanostructure engineering strategy for fabricating Tc-controlled phosphor-free white light-emitting diodes (PF-WLEDs) using metal-organic chemical vapour deposition. The dimension controls of in-situ nanofacets on gallium nitride nanostructures, and the growth temperature of quantum wells on these materials, were key factors for Tc control. Warm, true, and cold white emissions were successfully demonstrated in this study without any external processing. PMID:28272455

  9. Fabrication of gallium nitride nanowires by metal-assisted photochemical etching

    NASA Astrophysics Data System (ADS)

    Zhang, Miao-Rong; Jiang, Qing-Mei; Zhang, Shao-Hui; Wang, Zu-Gang; Hou, Fei; Pan, Ge-Bo

    2017-11-01

    Gallium nitride (GaN) nanowires (NWs) were fabricated by metal-assisted photochemical etching (MaPEtch). Gold nanoparticles (AuNPs) as metal catalyst were electrodeposited on the GaN substrate. SEM and HRTEM images show the surface of GaN NWs is smooth and clean without any impurity. SAED and FFT patterns demonstrate GaN NWs have single crystal structure, and the crystallographic orientation of GaN NWs is (0002) face. On the basis of the assumption of localized galvanic cells, combined with the energy levels and electrochemical potentials of reactants in this etching system, the generation, transfer and consumption of electron-hole pairs reveal the whole MaPEtch reaction process. Such easily fabricated GaN NWs have great potential for the assembly of GaN-based single-nanowire nanodevices.

  10. Gallium nitride nanoneedles grown in extremely non-equilibrium nitrogen plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangla, O., E-mail: onkarmangla@gmail.com; Physics Department, Hindu College, University of Delhi, Delhi, 110007; Roy, S.

    2016-05-23

    In the present work, gallium nitride (GaN) nanoneedles are grown on quartz substrates using the high fluence ions of GaN produced by hot, dense and extremely non-equlibrium nitrogen plasma in a modified dense plasma focus device. The formation of nanoneedles is obtained from the scanning electron microscopy with mean size of the head of nanoneedles ~ 70 nm. The nanoneedles are found to be poly-crystalline when studied structurally through the X-ray diffraction. The optical properties of nanoneedles studied using absorption spectra which show more absorption for nanoneedles depsoited one shot of ions irradiation. In addition, the band gap of nanoneedles ismore » found to be increased as compared to bulk GaN. The obtained nanoneedles with increased band gap have potential applications in detector systems.« less

  11. Computational predictions of the new Gallium nitride nanoporous structures

    NASA Astrophysics Data System (ADS)

    Lien, Le Thi Hong; Tuoc, Vu Ngoc; Duong, Do Thi; Thu Huyen, Nguyen

    2018-05-01

    Nanoporous structural prediction is emerging area of research because of their advantages for a wide range of materials science and technology applications in opto-electronics, environment, sensors, shape-selective and bio-catalysis, to name just a few. We propose a computationally and technically feasible approach for predicting Gallium nitride nanoporous structures with hollows at the nano scale. The designed porous structures are studied with computations using the density functional tight binding (DFTB) and conventional density functional theory methods, revealing a variety of promising mechanical and electronic properties, which can potentially find future realistic applications. Their stability is discussed by means of the free energy computed within the lattice-dynamics approach. Our calculations also indicate that all the reported hollow structures are wide band gap semiconductors in the same fashion with their parent’s bulk stable phase. The electronic band structures of these nanoporous structures are finally examined in detail.

  12. Superluminescent light emitting diodes: the best out of two worlds

    NASA Astrophysics Data System (ADS)

    Rossetti, M.; Napierala, J.; Matuschek, N.; Achatz, U.; Duelk, M.; Vélez, C.; Castiglia, A.; Grandjean, N.; Dorsaz, J.; Feltin, E.

    2012-03-01

    Since pico-projectors were starting to become the next electronic "must-have" gadget, the experts were discussing which light-source technology seems to be the best for the existing three major projection approaches for the optical scanning module such as digital light processing, liquid crystal on silica and laser beam steering. Both so-far used light source technologies have distinct advantages and disadvantages. Though laser-based pico-projectors are focus-free and deliver a wider color gamut, their major disadvantages are speckle noise, cost and safety issues. In contrast, projectors based on cheaper Light Emitting Diodes (LEDs) as light source are criticized for a lack of brightness and for having limited focus. Superluminescent Light Emitting Diodes (SLEDs) are temporally incoherent and spatially coherent light sources merging in one technology the advantages of both Laser Diodes (LDs) and LEDs. With almost no visible speckle noise, focus-free operation and potentially the same color gamut than LDs, SLEDs could potentially answer the question which light source to use in future projector applications. In this quest for the best light source, we realized visible SLEDs emitting both in the red and blue spectral region. While the technology required for the realization of red emitters is already well established, III-nitride compounds required for blue emission have experienced a major development only in relatively recent times and the technology is still under development. The present paper is a review of the status of development reached for the blue superluminescent diodes based on the GaN material system.

  13. Gallium nitride photocathodes for imaging photon counters

    NASA Astrophysics Data System (ADS)

    Siegmund, Oswald H. W.; Hull, Jeffrey S.; Tremsin, Anton S.; McPhate, Jason B.; Dabiran, Amir M.

    2010-07-01

    Gallium nitride opaque and semitransparent photocathodes provide high ultraviolet quantum efficiencies from 100 nm to a long wavelength cutoff at ~380 nm. P (Mg) doped GaN photocathode layers ~100 nm thick with a barrier layer of AlN (22 nm) on sapphire substrates also have low out of band response, and are highly robust. Opaque GaN photocathodes are relatively easy to optimize, and consistently provide high quantum efficiency (70% at 120 nm) provided the surface cleaning and activation (Cs) processes are well established. We have used two dimensional photon counting imaging microchannel plate detectors, with an active area of 25 mm diameter, to investigate the imaging characteristics of semitransparent GaN photocathodes. These can be produced with high (20%) efficiency, but the thickness and conductivity of the GaN must be carefully optimized. High spatial resolution of ~50 μm with low intrinsic background (~7 events sec-1 cm-2) and good image uniformity have been achieved. Selectively patterned deposited GaN photocathodes have also been used to allow quick diagnostics of optimization parameters. GaN photocathodes of both types show great promise for future detector applications in ultraviolet Astrophysical instruments.

  14. Development of gallium aluminum phosphide electroluminescent diodes

    NASA Technical Reports Server (NTRS)

    Chicotka, R. J.; Lorenz, M. R.; Nethercot, A. H.; Pettit, G. D.

    1972-01-01

    Work done on the development of gallium aluminum phosphide alloys for electroluminescent light sources is described. The preparation of this wide band gap semiconductor alloy, its physical properties (particularly the band structure, the electrical characteristics, and the light emitting properties) and work done on the fabrication of diode structures from these alloys are broadly covered.

  15. III-nitride nanopyramid light emitting diodes grown by organometallic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Wildeson, Isaac H.; Colby, Robert; Ewoldt, David A.; Liang, Zhiwen; Zakharov, Dmitri N.; Zaluzec, Nestor J.; García, R. Edwin; Stach, Eric A.; Sands, Timothy D.

    2010-08-01

    Nanopyramid light emitting diodes (LEDs) have been synthesized by selective area organometallic vapor phase epitaxy. Self-organized porous anodic alumina is used to pattern the dielectric growth templates via reactive ion etching, eliminating the need for lithographic processes. (In,Ga)N quantum well growth occurs primarily on the six {11¯01} semipolar facets of each of the nanopyramids, while coherent (In,Ga)N quantum dots with heights of up to ˜20 nm are incorporated at the apex by controlling growth conditions. Transmission electron microscopy (TEM) indicates that the (In,Ga)N active regions of the nanopyramid heterostructures are completely dislocation-free. Temperature-dependent continuous-wave photoluminescence of nanopyramid heterostructures yields a peak emission wavelength of 617 nm and 605 nm at 300 K and 4 K, respectively. The peak emission energy varies with increasing temperature with a double S-shaped profile, which is attributed to either the presence of two types of InN-rich features within the nanopyramids or a contribution from the commonly observed yellow defect luminescence close to 300 K. TEM cross-sections reveal continuous planar defects in the (In,Ga)N quantum wells and GaN cladding layers grown at 650-780 °C, present in 38% of the nanopyramid heterostructures. Plan-view TEM of the planar defects confirms that these defects do not terminate within the nanopyramids. During the growth of p-GaN, the structure of the nanopyramid LEDs changed from pyramidal to a partially coalesced film as the thickness requirements for an undepleted p-GaN layer result in nanopyramid impingement. Continuous-wave electroluminescence of nanopyramid LEDs reveals a 45 nm redshift in comparison to a thin-film LED, suggesting higher InN incorporation in the nanopyramid LEDs. These results strongly encourage future investigations of III-nitride nanoheteroepitaxy as an approach for creating efficient long wavelength LEDs.

  16. The Effects of Thermal Cycling on Gallium Nitride and Silicon Carbide Semiconductor Devices for Aerospace Use

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2012-01-01

    Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These Include radiation, extreme temperatures, thermal cycling, to name a few. Preliminary data obtained on new Gallium Nitride and Silicon Carbide power devices under exposure to radiation followed by long term thermal cycling are presented. This work was done in collaboration with GSFC and JPL in support of the NASA Electronic Parts and Packaging (NEPP) Program

  17. Molecular beam epitaxy growth of indium nitride and indium gallium nitride materials for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Trybus, Elaissa

    The objective of the proposed research is to establish the technology for material growth by molecular beam epitaxy (MBE) and fabrication of indium gallium nitride/gallium nitride (InxGa1-xN/GaN) heterojunction solar cells. InxGa1-xN solar cells have the potential to span 90% of the solar spectrum, however there has been no success with high indium (In) incorporation and only limited success with low In incorporation InxGa1-xN. Therefore, this present work focuses on 15--30% In incorporation leading to a bandgap value of 2.3--2.8 eV. This work will exploit the revision of the indium nitride (InN) bandgap value of 0.68 eV, which expands the range of the optical emission of nitride-based devices from ultraviolet to near infrared regions, by developing transparent In xGa1-xN solar cells outside the visible spectrum. Photovoltaic devices with a bandgap greater than 2.0 eV are attractive because over half the available power in the solar spectrum is above the photon energy of 2.0 eV. The ability of InxGa1-xN materials to optimally span the solar spectrum offers a tantalizing solution for high-efficiency photovoltaics. This work presents results confirming the revised bandgap of InN grown on germanium (Ge) substrates and the effects of oxygen contamination on the bandgap. This research adds to the historical discussion of the bandgap value of InN. Using the metal modulated epitaxy (MME) technique in a new, ultra-clean refurbished MBE system, an innovative growth regime is established where In and Ga phase separation is diminished by increasing the growth rate for In xGa1-xN. The MME technique modulates the metal shutters with a fixed duty cycle while maintaining a constant nitrogen flux and proves effective for improving crystal quality and p-type doping. InxGa 1-xN/GaN heterojunction solar cells require p-type doping to create the p-n subcell collecting junction, which facilitates current collection through the electrostatic field created by spatially separated ionized

  18. Selective-area nanoheteroepitaxy for light emitting diode (LED) applications

    NASA Astrophysics Data System (ADS)

    Wildeson, Isaac H.

    Over 20% of the electricity in the United States is consumed for lighting, and the majority of this energy is wasted as heat during the lighting process. A solid-state (or light emitting diode (LED)-based) light source has the potential of saving the United States billions of dollars in electricity and reducing megatons of global CO2 emissions annually. While white light LEDs are currently on the market with efficiencies that are superior to incandescent and fluorescent light sources, their high up-front cost is inhibiting mass adoption. One reason for the high cost is the inefficiency of green and amber LEDs that can used to make white light. The inefficiency of green and amber LEDs results in more of these chips being required, and thus a higher cost. Improvements in the performance of green and amber LEDs is also required in order to realize the full potential of solid-state lighting. Nanoheteroepitaxy is an interesting route towards achieving efficient green and amber LEDs as it resolves major challenges that are currently plaguing III-nitride LEDs such as high dislocation densities and limited active region critical thicknesses. A method for fabricating III-nitride nanopyramid LEDs is presented that employs conventional processing used in industry. The present document begins with an overview of the current challenges in III-nitride LEDs and the benefits of nanoheteroepitaxy. A process for controlled selective-area growth of nanopyramid LEDs by organometallic vapor phase epitaxy has been developed throughout the course of this work. Dielectric templates used for the selective-area growth are patterned by two methods, namely porous anodic alumina and electron-beam lithography. The dielectric templates serve as efficient dislocation filters; however, planar defects are initiated during lower temperature growth on the nanopyramids. The quantum wells outline six semipolar planes that form each hexagonal pyramid. Quantum wells grown on these semipolar planes

  19. Group III-nitride thin films grown using MBE and bismuth

    DOEpatents

    Kisielowski, Christian K.; Rubin, Michael

    2002-01-01

    The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.

  20. Group III-nitride thin films grown using MBE and bismuth

    DOEpatents

    Kisielowski, Christian K.; Rubin, Michael

    2000-01-01

    The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.

  1. Spin polarized first principles study of Mn doped gallium nitride monolayer nanosheet

    NASA Astrophysics Data System (ADS)

    Sharma, Venus; Kaur, Sumandeep; Srivastava, Sunita; Kumar, Tankeshwar

    2017-05-01

    The structural, electronic and magnetic properties of gallium nitride nanosheet (GaNs) doped with Mn atoms have been studied using spin polarized density functional theory. The binding energy per atom, Energy Band gap, Fermi energy, magnetic moment, electric dipole moment have been found. The doped nanosheet is found to be more stable than pure GaN monolayer nanosheet. Adsorption of Mn atom has been done at four different sites on GaNs which affects the fermi level position. It is found that depending on the doping site, Mn can behave both like p-type semiconductor and also as n-type semiconductor. Also, it is ascertained that Mn doped GaNs (GaNs-Mn) exhibits ferromagnetic behavior.

  2. ZnO PN Junctions for Highly-Efficient, Low-Cost Light Emitting Diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David P. Norton; Stephen Pearton; Fan Ren

    2007-09-30

    By 2015, the US Department of Energy has set as a goal the development of advanced solid state lighting technologies that are more energy efficient, longer lasting, and more cost-effective than current technology. One approach that is most attractive is to utilize light-emitting diode technologies. Although III-V compound semiconductors have been the primary focus in pursuing this objective, ZnO-based materials present some distinct advantages that could yield success in meeting this objective. As with the nitrides, ZnO is a direct bandgap semiconductor whose gap energy (3.2 eV) can be tuned from 3.0 to 4 eV with substitution of Mg formore » higher bandgap, Cd for lower bandgap. ZnO has an exciton binding energy of 60 meV, which is larger than that for the nitrides, indicating that it should be a superior light emitting semiconductor. Furthermore, ZnO thin films can be deposited at temperatures on the order of 400-600 C, which is significantly lower than that for the nitrides and should lead to lower manufacturing costs. It has also been demonstrated that functional ZnO electronic devices can be fabricated on inexpensive substrates, such as glass. Therefore, for the large-area photonic application of solid state lighting, ZnO holds unique potential. A significant impediment to exploiting ZnO in light-emitting applications has been the absence of effective p-type carrier doping. However, the recent realization of acceptor-doped ZnO material overcomes this impediment, opening the door to ZnO light emitting diode development In this project, the synthesis and properties of ZnO-based pn junctions for light emitting diodes was investigated. The focus was on three issues most pertinent to realizing a ZnO-based solid state lighting technology, namely (1) achieving high p-type carrier concentrations in epitaxial and polycrystalline films, (2) realizing band edge emission from pn homojunctions, and (3) investigating pn heterojunction constructs that should yield efficient

  3. Optical polarization based logic functions (XOR or XNOR) with nonlinear Gallium nitride nanoslab.

    PubMed

    Bovino, F A; Larciprete, M C; Giardina, M; Belardini, A; Centini, M; Sibilia, C; Bertolotti, M; Passaseo, A; Tasco, V

    2009-10-26

    We present a scheme of XOR/XNOR logic gate, based on non phase-matched noncollinear second harmonic generation from a medium of suitable crystalline symmetry, Gallium nitride. The polarization of the noncollinear generated beam is a function of the polarization of both pump beams, thus we experimentally investigated all possible polarization combinations, evidencing that only some of them are allowed and that the nonlinear interaction of optical signals behaves as a polarization based XOR. The experimental results show the peculiarity of the nonlinear optical response associated with noncollinear excitation, and are explained using the expression for the effective second order optical nonlinearity in noncollinear scheme.

  4. The global anthropogenic gallium system: determinants of demand, supply and efficiency improvements.

    PubMed

    Løvik, Amund N; Restrepo, Eliette; Müller, Daniel B

    2015-05-05

    Gallium has been labeled as a critical metal due to rapidly growing consumption, importance for low-carbon technologies such as solid state lighting and photovoltaics, and being produced only as a byproduct of other metals (mainly aluminum). The global system of primary production, manufacturing, use and recycling has not yet been described or quantified in the literature. This prevents predictions of future demand, supply and possibilities for efficiency improvements on a system level. We present a description of the global anthropogenic gallium system and quantify the system using a combination of statistical data and technical parameters. We estimated that gallium was produced from 8 to 21% of alumina plants in 2011. The most important applications of gallium are NdFeB permanent magnets, integrated circuits and GaAs/GaP-based light-emitting diodes, demanding 22-37%, 16-27%, and 11-21% of primary metal production, respectively. GaN-based light-emitting diodes and photovoltaics are less important, both with 2-6%. We estimated that 120-170 tons, corresponding to 40-60% of primary production, ended up in production wastes that were either disposed of or stored. While demand for gallium is expected to rise in the future, our results indicated that it is possible to increase primary production substantially with conventional technology, as well as improve the system-wide material efficiency.

  5. Four Terminal Gallium Nitride MOSFETs

    NASA Astrophysics Data System (ADS)

    Veety, Matthew Thomas

    All reported gallium nitride (GaN) transistors to date have been three-terminal devices with source, drain, and gate electrodes. In the case of GaN MOSFETs, this leaves the bulk of the device at a floating potential which can impact device threshold voltage. In more traditional silicon-based MOSFET fabrication a bulk contact can be made on the back side of the silicon wafer. For GaN grown on sapphire substrates, however, this is not possible and an alternate, front-side bulk contact must be investigated. GaN is a III-V, wide band gap semiconductor that as promising material parameters for use in high frequency and high power applications. Possible applications are in the 1 to 10 GHz frequency band and power inverters for next generation grid solid state transformers and inverters. GaN has seen significant academic and commercial research for use in Heterojunction Field Effect Transistors (HFETs). These devices however are depletion-mode, meaning the device is considered "on" at zero gate bias. A MOSFET structure allows for enhancement mode operation, which is normally off. This mode is preferrable in high power applications as the device has lower off-state power consumption and is easier to implement in circuits. Proper surface passivation of seminconductor surface interface states is an important processing step for any device. Preliminary research on surface treatments using GaN wet etches and depletion-mode GaN devices utilizing this process are discussed. Devices pretreated with potassium pursulfate prior to gate dielectric deposition show significant device improvements. This process can be applied to any current GaN FET. Enhancement-mode GaN MOSFETs were fabricated on magnesium doped p-type Wurtzite gallium nitride grown by Metal Organic Chemical Vapor Deposition (MOCVD) on c-plane sapphire substrates. Devices utilized ion implant source and drain which was activated under NH3 overpressure in MOCVD. Also, devices were fabricated with a SiO2 gate dielectric

  6. Warm White Light-Emitting Diodes Based on a Novel Orange Cationic Iridium(III) Complex.

    PubMed

    Tang, Huaijun; Meng, Guoyun; Chen, Zeyu; Wang, Kaimin; Zhou, Qiang; Wang, Zhengliang

    2017-06-16

    A novel orange cationic iridium(III) complex [(TPTA)₂Ir(dPPOA)]PF₆ (TPTA: 3,4,5-triphenyl-4 H -1,2,4-triazole, dPPOA: N,N-diphenyl-4-(5-(pyridin-2-yl)-1,3,4-oxadiazol-2-yl)aniline) was synthesized and used as a phosphor in light-emitting diodes (LEDs). [(TPTA)₂Ir(dPPOA)]PF₆ has high thermal stability with a decomposition temperature ( T d ) of 375 °C, and its relative emission intensity at 100 °C is 88.8% of that at 25°C. When only [(TPTA)₂Ir(dPPOA)]PF₆ was used as a phosphor at 6.0 wt % in silicone and excited by a blue GaN (GaN: gallium nitride) chip (450 nm), an orange LED was obtained. A white LED fabricated by a blue GaN chip (450 nm) and only yellow phosphor Y₃Al₅O 12 :Ce 3+ (YAG:Ce) (1.0 wt % in silicone) emitted cold white light, its CIE (CIE: Commission International de I'Eclairage ) value was (0.32, 0.33), color rendering index (CRI) was 72.2, correlated color temperature (CCT) was 6877 K, and luminous efficiency ( η L ) was 128.5 lm∙W -1 . Such a cold white LED became a neutral white LED when [(TPTA)₂Ir(dPPOA)]PF₆ was added at 0.5 wt %; its corresponding CIE value was (0.35, 0.33), CRI was 78.4, CCT was 4896 K, and η L was 85.2 lm∙W -1 . It further became a warm white LED when [(TPTA)₂Ir(dPPOA)]PF₆ was added at 1.0 wt %; its corresponding CIE value was (0.39, 0.36), CRI was 80.2, CCT was 3473 K, and η L was 46.1 lm∙W -1 . The results show that [(TPTA)₂Ir(dPPOA)]PF₆ is a promising phosphor candidate for fabricating warm white LEDs.

  7. Warm White Light-Emitting Diodes Based on a Novel Orange Cationic Iridium(III) Complex

    PubMed Central

    Tang, Huaijun; Meng, Guoyun; Chen, Zeyu; Wang, Kaimin; Zhou, Qiang; Wang, Zhengliang

    2017-01-01

    A novel orange cationic iridium(III) complex [(TPTA)2Ir(dPPOA)]PF6 (TPTA: 3,4,5-triphenyl-4H-1,2,4-triazole, dPPOA: N,N-diphenyl-4-(5-(pyridin-2-yl)-1,3,4-oxadiazol-2-yl)aniline) was synthesized and used as a phosphor in light-emitting diodes (LEDs). [(TPTA)2Ir(dPPOA)]PF6 has high thermal stability with a decomposition temperature (Td) of 375 °C, and its relative emission intensity at 100 °C is 88.8% of that at 25°C. When only [(TPTA)2Ir(dPPOA)]PF6 was used as a phosphor at 6.0 wt % in silicone and excited by a blue GaN (GaN: gallium nitride) chip (450 nm), an orange LED was obtained. A white LED fabricated by a blue GaN chip (450 nm) and only yellow phosphor Y3Al5O12:Ce3+ (YAG:Ce) (1.0 wt % in silicone) emitted cold white light, its CIE (CIE: Commission International de I’Eclairage) value was (0.32, 0.33), color rendering index (CRI) was 72.2, correlated color temperature (CCT) was 6877 K, and luminous efficiency (ηL) was 128.5 lm∙W−1. Such a cold white LED became a neutral white LED when [(TPTA)2Ir(dPPOA)]PF6 was added at 0.5 wt %; its corresponding CIE value was (0.35, 0.33), CRI was 78.4, CCT was 4896 K, and ηL was 85.2 lm∙W−1. It further became a warm white LED when [(TPTA)2Ir(dPPOA)]PF6 was added at 1.0 wt %; its corresponding CIE value was (0.39, 0.36), CRI was 80.2, CCT was 3473 K, and ηL was 46.1 lm∙W−1. The results show that [(TPTA)2Ir(dPPOA)]PF6 is a promising phosphor candidate for fabricating warm white LEDs. PMID:28773020

  8. Silver Nanowire Transparent Conductive Electrodes for High-Efficiency III-Nitride Light-Emitting Diodes

    PubMed Central

    Oh, Munsik; Jin, Won-Yong; Jun Jeong, Hyeon; Jeong, Mun Seok; Kang, Jae-Wook; Kim, Hyunsoo

    2015-01-01

    Silver nanowires (AgNWs) have been successfully demonstrated to function as next-generation transparent conductive electrodes (TCEs) in organic semiconductor devices owing to their figures of merit, including high optical transmittance, low sheet resistance, flexibility, and low-cost processing. In this article, high-quality, solution-processed AgNWs with an excellent optical transmittance of 96.5% at 450 nm and a low sheet resistance of 11.7 Ω/sq were demonstrated as TCEs in inorganic III-nitride LEDs. The transmission line model applied to the AgNW contact to p-GaN showed that near ohmic contact with a specific contact resistance of ~10−3 Ωcm2 was obtained. The contact resistance had a strong bias-voltage (or current-density) dependence: namely, field-enhanced ohmic contact. LEDs fabricated with AgNW electrodes exhibited a 56% reduction in series resistance, 56.5% brighter output power, a 67.5% reduction in efficiency droop, and a approximately 30% longer current spreading length compared to LEDs fabricated with reference TCEs. In addition to the cost reduction, the observed improvements in device performance suggest that the AgNWs are promising for application as next-generation TCEs, to realise brighter, larger-area, cost-competitive inorganic III-nitride light emitters. PMID:26333768

  9. Optical properties of bulk gallium nitride single crystals grown by chloride-hydride vapor-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Agyekyan, V. F.; Borisov, E. V.; Serov, A. Yu.; Filosofov, N. G.

    2017-12-01

    A gallium nitride crystal 5 mm in thickness was grown by chloride-hydride vapor-phase epitaxy on a sapphire substrate, from which the crystal separated during cooling. At an early stage, a three-dimensional growth mode was implemented, followed by a switch to a two-dimensional mode. Spectra of exciton reflection, exciton luminescence, and Raman scattering are studied in several regions characteristic of the sample. Analysis of these spectra and comparison with previously obtained data for thin epitaxial GaN layers with a wide range of silicon doping enabled conclusions about the quality of the crystal lattice in these characteristic regions.

  10. Red-emitting manganese-doped aluminum nitride phosphor

    NASA Astrophysics Data System (ADS)

    Cherepy, Nerine J.; Payne, Stephen A.; Harvey, Nicholas M.; Åberg, Daniel; Seeley, Zachary M.; Holliday, Kiel S.; Tran, Ich C.; Zhou, Fei; Martinez, H. Paul; Demeyer, Jessica M.; Drobshoff, Alexander D.; Srivastava, Alok M.; Camardello, Samuel J.; Comanzo, Holly A.; Schlagel, Deborah L.; Lograsso, Thomas A.

    2016-04-01

    We report high efficiency luminescence with a manganese-doped aluminum nitride red-emitting phosphor under 254 nm excitation, as well as its excellent lumen maintenance in fluorescent lamp conditions, making it a candidate replacement for the widely deployed europium-doped yttria red phosphor. Solid-state reaction of aluminum nitride powders with manganese metal at 1900 °C, 10 atm N2 in a reducing environment results in nitrogen deficiency, as revealed diffuse reflectance spectra. When these powders are subsequently annealed in flowing nitrogen at 1650 °C, higher nitrogen content is recovered, resulting in white powders. Silicon was added to samples as an oxygen getter to improve emission efficiency. NEXAFS spectra and DFT calculations indicate that the Mn dopant is divalent. From DFT calculations, the UV absorption band is proposed to be due to an aluminum vacancy coupled with oxygen impurity dopants, and Mn2+ is assumed to be closely associated with this site. In contrast with some previous reports, we find that the highest quantum efficiency with 254 nm excitation (Q.E. = 0.86 ± 0.14) is obtained in aluminum nitride with a low manganese doping level of 0.06 mol.%. The principal Mn2+ decay of 1.25 ms is assigned to non-interacting Mn sites, while additional components in the microsecond range appear with higher Mn doping, consistent with Mn clustering and resultant exchange coupling. Slower components are present in samples with low Mn doping, as well as strong afterglow, assigned to trapping on shallow traps followed by detrapping and subsequent trapping on Mn.

  11. White light-emitting organic electroluminescent devices

    DOEpatents

    Shiang, Joseph John; Duggal, Anil Raj; Parthasarathy, Gautam

    2006-06-20

    A light-emitting device comprises a light-emitting member, which comprises two electrodes, at least two organic electroluminescent ("EL") materials disposed between the electrodes, a charge blocking material disposed between the electrodes, and at least one photoluminescent ("PL") material. The light-emitting member emits electromagnetic ("EM") radiation having a first spectrum in response to a voltage applied across the two electrodes. The PL material absorbs a portion of the EM radiation emitted by the light-emitting member and emits EM radiation having second spectrum different than the first spectrum. Each of the organic EL materials emits EM radiation having a wavelength range selected from the group consisting of blue and red wavelength ranges.

  12. Long-lifetime thin-film encapsulated organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Wong, F. L.; Fung, M. K.; Tao, S. L.; Lai, S. L.; Tsang, W. M.; Kong, K. H.; Choy, W. M.; Lee, C. S.; Lee, S. T.

    2008-07-01

    Multiple fluorocarbon (CFx) and silicon nitride (Si3N4) bilayers were applied as encapsulation cap on glass-based organic light-emitting diodes (OLEDs). When CFx/Si3N4 bilayers were deposited onto the OLED structure, the devices showed performance worse than one without any encapsulation. The adverse effects were attributed to the damage caused by reaction species during the thin-film deposition processes. To solve this problem, a CuPc interlayer was found to provide effective protection to the OLED structure. With a structure of CuPc/(CFx/Si3N4)×5, the encapsulated device showed an operation lifetime over 8000 h (higher than 80% of that achieved with a conventional metal encapsulation).

  13. Inversion by metalorganic chemical vapor deposition from N- to Ga-polar gallium nitride and its application to multiple quantum well light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosalli, A. M.; Van Den Broeck, D. M.; Bedair, S. M.

    2013-12-02

    We demonstrate a metalorganic chemical vapor deposition growth approach for inverting N-polar to Ga-polar GaN by using a thin inversion layer grown with high Mg flux. The introduction of this inversion layer allowed us to grow p-GaN films on N-polar GaN thin film. We have studied the dependence of hole concentration, surface morphology, and degree of polarity inversion for the inverted Ga-polar surface on the thickness of the inversion layer. We then use this approach to grow a light emitting diode structure which has the MQW active region grown on the advantageous N-polar surface and the p-layer grown on themore » inverted Ga-polar surface.« less

  14. Simultaneously Enhancing Light Emission and Suppressing Efficiency Droop in GaN Microwire-Based Ultraviolet Light-Emitting Diode by the Piezo-Phototronic Effect.

    PubMed

    Wang, Xingfu; Peng, Wenbo; Yu, Ruomeng; Zou, Haiyang; Dai, Yejing; Zi, Yunlong; Wu, Changsheng; Li, Shuti; Wang, Zhong Lin

    2017-06-14

    Achievement of p-n homojuncted GaN enables the birth of III-nitride light emitters. Owing to the wurtzite-structure of GaN, piezoelectric polarization charges present at the interface can effectively control/tune the optoelectric behaviors of local charge-carriers (i.e., the piezo-phototronic effect). Here, we demonstrate the significantly enhanced light-output efficiency and suppressed efficiency droop in GaN microwire (MW)-based p-n junction ultraviolet light-emitting diode (UV LED) by the piezo-phototronic effect. By applying a -0.12% static compressive strain perpendicular to the p-n junction interface, the relative external quantum efficiency of the LED is enhanced by over 600%. Furthermore, efficiency droop is markedly reduced from 46.6% to 7.5% and corresponding droop onset current density shifts from 10 to 26.7 A cm -2 . Enhanced electrons confinement and improved holes injection efficiency by the piezo-phototronic effect are revealed and theoretically confirmed as the physical mechanisms. This study offers an unconventional path to develop high efficiency, strong brightness and high power III-nitride light sources.

  15. Proton irradiation effects on gallium nitride-based devices

    NASA Astrophysics Data System (ADS)

    Karmarkar, Aditya P.

    Proton radiation effects on state-of-the-art gallium nitride-based devices were studied using Schottky diodes and high electron-mobility transistors. The device degradation was studied over a wide range of proton fluences. This study allowed for a correlation between proton irradiation effects between different types of devices and enhanced the understanding of the mechanisms responsible for radiation damage in GaN-based devices. Proton irradiation causes reduced carrier concentration and increased series resistance and ideality factor in Schottky diodes. 1.0-MeV protons cause greater degradation than 1.8-MeV protons because of their higher non-ionizing energy loss. The displacement damage in Schottky diodes recovers during annealing. High electron-mobility transistors exhibit extremely high radiation tolerance, continuing to perform up to a fluence of ˜1014 cm-2 of 1.8-MeV protons. Proton irradiation creates defect complexes in the thin-film structure. Decreased sheet carrier mobility due to increased carrier scattering and decreased sheet carrier density due to carrier removal by the defect centers are the primary damage mechanisms. Interface disorder at either the Schottky or the Ohmic contact plays a relatively unimportant part in overall device degradation in both Schottky diodes and high electron-mobility transistors.

  16. Enhanced light output from a nitride-based power chip of green light-emitting diodes with nano-rough surface using nanoimprint lithography.

    PubMed

    Huang, H W; Lin, C H; Yu, C C; Lee, B D; Chiu, C H; Lai, C F; Kuo, H C; Leung, K M; Lu, T C; Wang, S C

    2008-05-07

    Enhanced light extraction from a GaN-based power chip (PC) of green light-emitting diodes (LEDs) with a rough p-GaN surface using nanoimprint lithography is presented. At a driving current of 350 mA and with a chip size of 1 mm × 1 mm packaged on transistor outline (TO)-cans, the light output power of the green PC LEDs with nano-rough p-GaN surface is enhanced by 48% when compared with the same device without a rough p-GaN surface. In addition, by examining the radiation patterns, the green PC LED with nano-rough p-GaN surface shows stronger light extraction with a wider view angle. These results offer promising potential to enhance the light output powers of commercial light-emitting devices by using the technique of nanoimprint lithography under suitable nanopattern design.

  17. Surface characterization of gallium nitride modified with peptides before and after exposure to ionizing radiation in solution.

    PubMed

    Berg, Nora G; Nolan, Michael W; Paskova, Tania; Ivanisevic, Albena

    2014-12-30

    An aqueous surface modification of gallium nitride was employed to attach biomolecules to the surface. The modification was a simple two-step process using a single linker molecule and mild temperatures. The presence of the peptide on the surface was confirmed with X-ray photoelectron spectroscopy. Subsequently, the samples were placed in water baths and exposed to ionizing radiation to examine the effects of the radiation on the material in an environment similar to the body. Surface analysis confirmed degradation of the surface of GaN after radiation exposure in water; however, the peptide molecules successfully remained on the surface following exposure to ionizing radiation. We hypothesize that during radiation exposure of the samples, the radiolysis of water produces peroxide and other reactive species on the sample surface. Peroxide exposure promotes the formation of a more stable layer of gallium oxyhydroxide which passivates the surface better than other oxide species.

  18. Mesoscopic Perovskite Light-Emitting Diodes.

    PubMed

    Palma, Alessandro Lorenzo; Cinà, Lucio; Busby, Yan; Marsella, Andrea; Agresti, Antonio; Pescetelli, Sara; Pireaux, Jean-Jacques; Di Carlo, Aldo

    2016-10-03

    Solution-processed hybrid bromide perovskite light-emitting-diodes (PLEDs) represent an attractive alternative technology that would allow overcoming the well-known severe efficiency drop in the green spectrum related to conventional LEDs technologies. In this work, we report on the development and characterization of PLEDs fabricated using, for the first time, a mesostructured layout. Stability of PLEDs is a critical issue; remarkably, mesostructured PLEDs devices tested in ambient conditions and without encapsulation showed a lifetime well-above what previously reported with a planar heterojunction layout. Moreover, mesostructured PLEDs measured under full operative conditions showed a remarkably narrow emission spectrum, even lower than what is typically obtained by nitride- or phosphide-based green LEDs. A dynamic analysis has shown fast rise and fall times, demonstrating the suitability of PLEDs for display applications. Combined electrical and advanced structural analyses (Raman, XPS depth profiling, and ToF-SIMS 3D analysis) have been performed to elucidate the degradation mechanism, the results of which are mainly related to the degradation of the hole-transporting material (HTM) and to the perovskite-HTM interface.

  19. Comparison of nonpolar III-nitride vertical-cavity surface-emitting lasers with tunnel junction and ITO intracavity contacts

    NASA Astrophysics Data System (ADS)

    Leonard, J. T.; Young, E. C.; Yonkee, B. P.; Cohen, D. A.; Shen, C.; Margalith, T.; Ng, T. K.; DenBaars, S. P.; Ooi, B. S.; Speck, J. S.; Nakamura, S.

    2016-02-01

    We report on the lasing of III-nitride nonpolar, violet, vertical-cavity surface-emitting lasers (VCSELs) with IIInitride tunnel-junction (TJ) intracavity contacts and ion implanted apertures (IIAs). The TJ VCSELs are compared to similar VCSELs with tin-doped indium oxide (ITO) intracavity contacts. Prior to analyzing device results, we consider the relative advantages of III-nitride TJs for blue and green emitting VCSELs. The TJs are shown to be most advantageous for violet and UV VCSELs, operating near or above the absorption edge for ITO, as they significantly reduce the total internal loss in the cavity. However, for longer wavelength III-nitride VCSELs, TJs primarily offer the advantage of improved cavity design flexibility, allowing one to make the p-side thicker using a thick n-type III-nitride TJ intracavity contact. This offers improved lateral current spreading and lower loss, compare to using ITO and p-GaN, respectively. These aspects are particularly important for achieving high-power CW VCSELs, making TJs the ideal intracavity contact for any III-nitride VCSEL. A brief overview of III-nitride TJ growth methods is also given, highlighting the molecular-beam epitaxy (MBE) technique used here. Following this overview, we compare 12 μm aperture diameter, violet emitting, TJ and ITO VCSEL experimental results, which demonstrate the significant improvement in differential efficiency and peak power resulting from the reduced loss in the TJ design. Specifically, the TJ VCSEL shows a peak power of ~550 μW with a threshold current density of ~3.5 kA/cm2, while the ITO VCSELs show peak powers of ~80 μW and threshold current densities of ~7 kA/cm2.

  20. Low damage dry etch for III-nitride light emitters

    NASA Astrophysics Data System (ADS)

    Nedy, Joseph G.; Young, Nathan G.; Kelchner, Kathryn M.; Hu, Yanling; Farrell, Robert M.; Nakamura, Shuji; DenBaars, Steven P.; Weisbuch, Claude; Speck, James S.

    2015-08-01

    We have developed a dry etch process for the fabrication of lithographically defined features close to light emitting layers in the III-nitride material system. The dry etch was tested for its effect on the internal quantum efficiency of c-plane InGaN quantum wells using the photoluminescence of a test structure with two active regions. No change was observed in the internal quantum efficiency of the test active region when the etched surface was greater than 71 nm away. To demonstrate the application of the developed dry etch process, surface-etched air gaps were fabricated 275 nm away from the active region of an m-plane InGaN/GaN laser diode and served as the waveguide upper cladding. Electrically injected lasing was observed without the need for regrowth or recovery anneals. This dry etch opens up a new design tool that can be utilized in the next generation of GaN light emitters.

  1. Measuring the Photocatalytic Breakdown of Crystal Violet Dye using a Light Emitting Diode Approach

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Underwood, Lauren W.; O'Neal, Duane; Pagnutti, Mary; Davis, Bruce A.

    2009-01-01

    A simple method to estimate the photocatalytic reactivity performance of spray-on titanium dioxide coatings for transmissive glass surfaces was developed. This novel technique provides a standardized method to evaluate the efficiency of photocatalytic material systems over a variety of illumination levels. To date, photocatalysis assessments have generally been conducted using mercury black light lamps. Illumination levels for these types of lamps are difficult to vary, consequently limiting their use for assessing material performance under a diverse range of simulated environmental conditions. This new technique uses an ultraviolet (UV) gallium nitride (GaN) light emitting diode (LED) array instead of a traditional black light to initiate and sustain photocatalytic breakdown. This method was tested with a UV-resistant dye (crystal violet) applied to a titanium dioxide coated glass slide. Experimental control is accomplished by applying crystal violet to both titanium dioxide coated slides and uncoated control slides. A slide is illuminated by the UV LED array, at various light levels representative of outdoor and indoor conditions, from the dye side of the slide. To monitor degradation of the dye over time, a temperature-stabilized white light LED, whose emission spectrum overlaps with the dye absorption spectrum, is used to illuminate the opposite side of the slide. Using a spectrometer, the amount of light from the white light LED transmitted through the slide as the dye degrades is monitored as a function of wavelength and time and is subsequently analyzed. In this way, the rate of degradation for photocatalytically coated versus uncoated slide surfaces can be compared. Results demonstrate that the dye absorption decreased much more rapidly on the photocatalytically coated slides than on the control uncoated slides, and that dye degradation is dependent on illumination level. For photocatalytic activity assessment purposes, this experimental configuration and

  2. Novel gallium nitride based microwave noise and power heterostructure field effect transistors

    NASA Astrophysics Data System (ADS)

    Chumbes, Eduardo Martin

    With the pioneering efforts of Isamu Akasaki of Meiji University and Shuji Nakamura of Nichia Chemical Industries in the late 1980's and early 1990's, the first long-lived candela-class blue and ultraviolet light emitting devices have finally come to fruition. Their success in conquering this Holy Grail in opto-electronics is due to their development of a new technology based remarkably on a class of semiconductor materials that has been practically ignored and overlooked by almost everyone for the past twenty years---the nitrides of Al, Ga and In and their alloys. The breakthroughs made from this new technology in the last decade of the 20th century has revolutionized and revitalized worldwide research and development efforts to the point where it is feasible for other important technologies such as high-density information storage, high-resolution full-color displays and efficient white light lamps and UV sensors to come much closer to realization. Equally important is the potential that this new technology can bring toward the development of efficient ultra-high power and high-temperature electronics that will revolutionize the aerospace and high-speed communication industries. Specifically, the large bandgap and strong polar properties of the group III-nitrides has at present allowed for the realization of simple doped and remarkably undoped AlGaN/GaN transistor structures on sapphire and SiC substrates with two-dimensional electron gas sheet densities significantly greater than that of conventional transistor structures based on GaAs and InP. This dissertation will look specifically at extending undoped AlGaN/GaN heterostructure field-effect transistors or HFETs towards more advanced system applications involving the integration of these devices onto a more advanced Si technology and looking at the feasibility of this integration. It will also address important issues similar devices on semi-insulating SiC substrates have in robust microwave low noise and

  3. Structure and luminescence of nanocrystalline gallium nitride synthesized by a novel polymer pyrolysis route

    NASA Astrophysics Data System (ADS)

    Garcia, Rafael; Hirata, Gustavo A.; Thomas, Alan C.; Ponce, Fernando A.

    2006-10-01

    Thermal decomposition in a horizontal quartz tube reactor of a polymer [-(CH 6N 4O) 3Ga(NO 3) 3-] in a nitrogen atmosphere, yield directly nano-structured gallium nitride (GaN) powder. The polymer was obtained by the reaction between high purity gallium nitrate (Ga(NO 3) 3) dissolved in toluene and carbohydrazide as an azotic ligand. The powder synthesized by this method showed a yellow color and elemental analysis suggested that the color is due to some carbon and oxygen impurities in the as-synthesized powder. Electron microscopy showed that the as-synthesized powders consist of a mixture of various porous particles containing nanowires and nano-sized platelets. The size of the crystallites can be controlled by annealing processes under ammonia. Photoluminescence analysis at 10 K on as-synthesized powders showed a broad red luminescence around 668 nm under UV laser excitation (He-Cd laser, 325 nm). However after annealing process the red luminescence disappears and the typical band edge emission of GaN around 357 nm (3.47 eV) and the UV band were the dominant emissions in the PL spectra.

  4. Interfacing epitaxial oxides to gallium nitride

    NASA Astrophysics Data System (ADS)

    Losego, Mark Daniel

    Molecular beam epitaxy (MBE) is lauded for its ability to control thin film material structures at the atomic level. This precision of control can improve performance of microelectronic devices and cultivate the development of novel device structures. This thesis explores the utility of MBE for designing interfaces between oxide epilayers and the wide band gap semiconductor gallium nitride (GaN). The allure of wide gap semiconductor microelectronics (like GaN, 3.4 eV) is their ability to operate at higher frequencies, higher powers, and higher temperatures than current semiconductor platforms. Heterostructures between ferroelectric oxides and GaN are also of interest for studying the interaction between GaN's fixed polarization and the ferroelectric's switchable polarization. Two major obstacles to successful integration of oxides with GaN are: (1) interfacial trap states; and (2) small electronic band offsets across the oxide/nitride interface due to the semiconductor's large band gap. For this thesis, epitaxial rocksalt oxide interfacial layers (˜8 eV band gap) are investigated as possible solutions to overcoming the challenges facing oxide integration with GaN. The cubic close-packed structure of rocksalt oxides forms a suitable epitaxial interface with the hexagonal close-packed wurtzite lattice of GaN. Three rocksalt oxide compounds are investigated in this thesis: MgO, CaO, and YbO. All are found to have a (111) MO || (0001) GaN; <1 10> MO || <11 20> GaN epitaxial relationship. Development of the epilayer microstructure is dominated by the high-energy polar growth surface (drives 3D nucleation) and the interfacial symmetry, which permits the formation of twin boundaries. Using STEM, strain relief for these ionicly bonded epilayers is observed to occur through disorder within the initial monolayer of growth. All rocksalt oxides demonstrate chemical stability with GaN to >1000°C. Concurrent MBE deposition of MgO and CaO is known to form complete solid

  5. Strategies to indium nitride and gallium nitride nanoparticles: Low-temperature, solution-phase and precursor routes

    NASA Astrophysics Data System (ADS)

    Dingman, Sean Douglas

    I present new strategies to low-temperature solution-phase synthesis of indium and gallium nitride (InN and GaN) ceramic materials. The strategies include: direct conversion of precursor molecules to InN by pyrolysis, solution-phase synthesis of nanostructured InN fibers via molecular precursors and co-reactants, and synthesis of powders through reactions derived from molten-salt chemistry. Indium nitride powders are prepared by pyrolysis of the precursors R 2InN3 (R = t-Bu (1), i-Amyl(2), Et(3), i-Pr( 4)). The precursors are synthesized via azide-alkoxide exchange of R2InOMe with Me3SiN3. The precursors are coordination polymers containing five-coordinate indium centers. Pyrolysis of 1 and 2 under N2 at 400°C yields powders consisting primarily of InN with average crystal sizes of 15--35 nm. 1 yields nanocrystalline InN with average particle sizes of 7 nm at 250°C. 3 and 4 yield primarily In metal from pyrolysis. Refluxing 1 in diisopropylbenzene (203°C) in the presence of primary amines yields InN nanofibers 10--100 nm in length. InN nanofibers of up to 1 mum can be synthesized by treating 1 with 1,1-dimethylhydrazine (DMHy) The DMHy appears to control the fiber length by acting as a secondary source of active nitrogen in order to sustain fiber growth. The resulting fibers are attached to droplets of indium metal implying a solution-liquid-solid growth mechanism. Precursor 4 yields crystalline InN whiskers when reacted with DMHy. Reactions of 4 with reducing agents such as HSnBu3, yield InN nanoparticles with an average crystallite size of 16 nm. Gallium precursors R2GaN3 (R = t-Bu( 5), Me3SiCH2(6) and i-Pr( 7)), synthesized by azide-alkoxide exchange, are found to be inert toward solution decomposition and do not yield GaN. These compounds are molecular dimers and trimers unlike the indium analogs. Compound 6 displays a monomer-dimer equilibrium in benzene solution, but exists as a solid-state trimer. InN powders are also synthesized by reactions of InCl3 and

  6. Red-emitting manganese-doped aluminum nitride phosphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherepy, Nerine J.; Payne, Stephen A.; Harvey, Nicholas M.

    2016-02-10

    Here, we report high efficiency luminescence with a manganese-doped aluminum nitride red-emitting phosphor under 254 nm excitation, as well as its excellent lumen maintenance in fluorescent lamp conditions, making it a candidate replacement for the widely deployed europium-doped yttria red phosphor. Solid-state reaction of aluminum nitride powders with manganese metal at 1900 °C, 10 atm N2 in a reducing environment results in nitrogen deficiency, as revealed diffuse reflectance spectra. When these powders are subsequently annealed in flowing nitrogen at 1650 °C, higher nitrogen content is recovered, resulting in white powders. Silicon was added to samples as an oxygen getter tomore » improve emission efficiency. NEXAFS spectra and DFT calculations indicate that the Mn dopant is divalent. From DFT calculations, the UV absorption band is proposed to be due to an aluminum vacancy coupled with oxygen impurity dopants, and Mn2+ is assumed to be closely associated with this site. In contrast with some previous reports, we find that the highest quantum efficiency with 254 nm excitation (Q.E. = 0.86 ± 0.14) is obtained in aluminum nitride with a low manganese doping level of 0.06 mol.%. The principal Mn2+ decay of 1.25 ms is assigned to non-interacting Mn sites, while additional components in the microsecond range appear with higher Mn doping, consistent with Mn clustering and resultant exchange coupling. Slower components are present in samples with low Mn doping, as well as strong afterglow, assigned to trapping on shallow traps followed by detrapping and subsequent trapping on Mn.« less

  7. Radiation and Thermal Cycling Effects on EPC1001 Gallium Nitride Power Transistors

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Scheick, Leif Z.; Lauenstein, Jean M.; Casey, Megan C.; Hammoud, Ahmad

    2012-01-01

    Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These include radiation, extreme temperatures, and thermal cycling, to name a few. Information pertaining to performance of electronic parts and systems under hostile environments is very scarce, especially for new devices. Such data is very critical so that proper design is implemented in order to ensure mission success and to mitigate risks associated with exposure of on-board systems to the operational environment. In this work, newly-developed enhancement-mode field effect transistors (FET) based on gallium nitride (GaN) technology were exposed to various particles of ionizing radiation and to long-term thermal cycling over a wide temperature range. Data obtained on control (un-irradiated) and irradiated samples of these power transistors are presented and the results are discussed.

  8. Piezoelectric effect on the thermal conductivity of monolayer gallium nitride

    NASA Astrophysics Data System (ADS)

    Zhang, Jin

    2018-01-01

    Using molecular dynamics and density functional theory simulations, in this work, we find that the heat transport property of the monolayer gallium nitride (GaN) can be efficiently tailored by external electric field due to its unique piezoelectric characteristic. As the monolayer GaN possesses different piezoelectric properties in armchair and zigzag directions, different effects of the external electric field on thermal conductivity are observed when it is applied in the armchair and zigzag directions. Our further study reveals that due to the elastoelectric effect in the monolayer GaN, the external electric field changes the Young's modulus and therefore changes the phonon group velocity. Also, due to the inverse piezoelectric effect, the applied electric field induces in-plane stress in the monolayer GaN subject to a length constraint, which results in the change in the lattice anharmonicity and therefore affects the phonon mean free path. Furthermore, for relatively long GaN monolayers, the in-plane stress may trigger the buckling instability, which can significantly reduce the phonon mean free path.

  9. Mechanism of hole injection enhancement in light-emitting diodes by inserting multiple hole-reservoir layers in electron blocking layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yukun; Wang, Shuai; Feng, Lungang

    In this study, gallium nitride (GaN) based light-emitting diodes (LEDs) with single and multiple hole-reservoir layers (HRLs) inserted in the electron-blocking layer (EBL) have been investigated numerically and experimentally. According to simulation results, a better electron confinement and a higher hole injection level can be achieved by the multiple HRLs inserted in the EBL region. To further reveal the underlying mechanism of hole injection enhancement experimentally, the active regions were intentionally designed to emit photons with three different wavelengths of 440 nm, 460 nm, and 480 nm, respectively. Based on the experimental results of photoluminescence (PL) and time-resolved PL (TRPL) measurements conducted atmore » 298 K, the remarkable enhancement (148%) of PL intensities and significant increase in the decay times of the quantum wells close to p-GaN can be obtained. Therefore, the mechanism is proposed that carriers are able to reserve in the EBL region with multiple HRLs for a much longer time. Meanwhile, carriers could diffuse into the active region by tunnelling and/or thermo-electronic effect and then recombine efficiently, leading to the better carrier reservoir effect and higher hole injection in LEDs. As a result, by inserting multiple HRLs in the EBL region instead of single HRL, the experimental external quantum efficiency is enhanced by 19.8%, while the serious droop ratio is markedly suppressed from 37.0% to 27.6% at the high current injection of 100 A/cm{sup 2}.« less

  10. A Two-Dimensional Manganese Gallium Nitride Surface Structure Showing Ferromagnetism at Room Temperature.

    PubMed

    Ma, Yingqiao; Chinchore, Abhijit V; Smith, Arthur R; Barral, María Andrea; Ferrari, Valeria

    2018-01-10

    Practical applications of semiconductor spintronic devices necessitate ferromagnetic behavior at or above room temperature. In this paper, we demonstrate a two-dimensional manganese gallium nitride surface structure (MnGaN-2D) which is atomically thin and shows ferromagnetic domain structure at room temperature as measured by spin-resolved scanning tunneling microscopy and spectroscopy. Application of small magnetic fields proves that the observed magnetic domains follow a hysteretic behavior. Two initially oppositely oriented MnGaN-2D domains are rotated into alignment with only 120 mT and remain mostly in alignment at remanence. The measurements are further supported by first-principles theoretical calculations which reveal highly spin-polarized and spin-split surface states with spin polarization of up to 95% for manganese local density of states.

  11. Thermo-piezo-electro-mechanical simulation of AlGaN (aluminum gallium nitride) / GaN (gallium nitride) High Electron Mobility Transistors

    NASA Astrophysics Data System (ADS)

    Stevens, Lorin E.

    Due to the current public demand of faster, more powerful, and more reliable electronic devices, research is prolific these days in the area of high electron mobility transistor (HEMT) devices. This is because of their usefulness in RF (radio frequency) and microwave power amplifier applications including microwave vacuum tubes, cellular and personal communications services, and widespread broadband access. Although electrical transistor research has been ongoing since its inception in 1947, the transistor itself continues to evolve and improve much in part because of the many driven researchers and scientists throughout the world who are pushing the limits of what modern electronic devices can do. The purpose of the research outlined in this paper was to better understand the mechanical stresses and strains that are present in a hybrid AlGaN (Aluminum Gallium Nitride) / GaN (Gallium Nitride) HEMT, while under electrically-active conditions. One of the main issues currently being researched in these devices is their reliability, or their consistent ability to function properly, when subjected to high-power conditions. The researchers of this mechanical study have performed a static (i.e. frequency-independent) reliability analysis using powerful multiphysics computer modeling/simulation to get a better idea of what can cause failure in these devices. Because HEMT transistors are so small (micro/nano-sized), obtaining experimental measurements of stresses and strains during the active operation of these devices is extremely challenging. Physical mechanisms that cause stress/strain in these structures include thermo-structural phenomena due to mismatch in both coefficient of thermal expansion (CTE) and mechanical stiffness between different materials, as well as stress/strain caused by "piezoelectric" effects (i.e. mechanical deformation caused by an electric field, and conversely voltage induced by mechanical stress) in the AlGaN and GaN device portions (both

  12. Process Development of Gallium Nitride Phosphide Core-Shell Nanowire Array Solar Cell

    NASA Astrophysics Data System (ADS)

    Chuang, Chen

    Dilute Nitride GaNP is a promising materials for opto-electronic applications due to its band gap tunability. The efficiency of GaNxP1-x /GaNyP1-y core-shell nanowire solar cell (NWSC) is expected to reach as high as 44% by 1% N and 9% N in the core and shell, respectively. By developing such high efficiency NWSCs on silicon substrate, a further reduction of the cost of solar photovoltaic can be further reduced to 61$/MWh, which is competitive to levelized cost of electricity (LCOE) of fossil fuels. Therefore, a suitable NWSC structure and fabrication process need to be developed to achieve this promising NWSC. This thesis is devoted to the study on the development of fabrication process of GaNxP 1-x/GaNyP1-y core-shell Nanowire solar cell. The thesis is divided into two major parts. In the first parts, previously grown GaP/GaNyP1-y core-shell nanowire samples are used to develop the fabrication process of Gallium Nitride Phosphide nanowire solar cell. The design for nanowire arrays, passivation layer, polymeric filler spacer, transparent col- lecting layer and metal contact are discussed and fabricated. The property of these NWSCs are also characterized to point out the future development of Gal- lium Nitride Phosphide NWSC. In the second part, a nano-hole template made by nanosphere lithography is studied for selective area growth of nanowires to improve the structure of core-shell NWSC. The fabrication process of nano-hole templates and the results are presented. To have a consistent features of nano-hole tem- plate, the Taguchi Method is used to optimize the fabrication process of nano-hole templates.

  13. Organic light emitting diode with light extracting electrode

    DOEpatents

    Bhandari, Abhinav; Buhay, Harry

    2017-04-18

    An organic light emitting diode (10) includes a substrate (20), a first electrode (12), an emissive active stack (14), and a second electrode (18). At least one of the first and second electrodes (12, 18) is a light extracting electrode (26) having a metallic layer (28). The metallic layer (28) includes light scattering features (29) on and/or in the metallic layer (28). The light extracting features (29) increase light extraction from the organic light emitting diode (10).

  14. Studies on the effect of ammonia flow rate induced defects in gallium nitride grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Suresh, S.; Lourdudoss, S.; Landgren, G.; Baskar, K.

    2010-10-01

    Gallium nitride (GaN) epitaxial layers were grown with different V/III ratios by varying the ammonia (NH 3) flow rate, keeping the flow rate of the other precursor, trimethylgallium (TMG), constant, in an MOCVD system. X-ray rocking curve widths of a (1 0 2) reflection increase with an increase in V/III ratio while the (0 0 2) rocking curve widths decrease. The dislocation density was found to increase with an increase in ammonia flow rate, as determined by hot-wet chemical etching and atomic force microscopy. 77 K photoluminescence studies show near band emission at 3.49 eV and yellow luminescence peaking at 2.2 eV. The yellow luminescence (YL) intensity decreases with an increase in V/III ratio. Positron annihilation spectroscopy studies show that the concentration of Ga-like vacancies increases with an increase in ammonia flow rate. This study confirms that the yellow luminescence in the GaN arises due to deep levels formed by gallium vacancies decorated with oxygen atoms.

  15. Light emitting ceramic device

    DOEpatents

    Valentine, Paul; Edwards, Doreen D.; Walker, Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard

    2010-05-18

    A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, is herein claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.

  16. Aluminum nitride coatings using response surface methodology to optimize the thermal dissipated performance of light-emitting diode modules

    NASA Astrophysics Data System (ADS)

    Jean, Ming-Der; Lei, Peng-Da; Kong, Ling-Hua; Liu, Cheng-Wu

    2018-05-01

    This study optimizes the thermal dissipation ability of aluminum nitride (AlN) ceramics to increase the thermal performance of light-emitting diode (LED) modulus. AlN powders are deposited on heat sink as a heat interface material, using an electrostatic spraying process. The junction temperature of the heat sink is developed by response surface methodology based on Taguchi methods. In addition, the structure and properties of the AlN coating are examined using X-ray photoelectron spectroscopy (XPS). In the XPS analysis, the AlN sub-peaks are observed at 72.79 eV for Al2p and 398.88 eV for N1s, and an N1s sub-peak is assigned to N-O at 398.60eV and Al-N bonding at 395.95eV, which allows good thermal properties. The results have shown that the use of AlN ceramic material on a heat sink can enhance the thermal performance of LED modules. In addition, the percentage error between the predicted and experimental results compared the quadric model with between the linear and he interaction models was found to be within 7.89%, indicating that it was a good predictor. Accordingly, RSM can effectively enhance the thermal performance of an LED, and the beneficial heat dissipation effects for AlN are improved by electrostatic spraying.

  17. High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths

    NASA Astrophysics Data System (ADS)

    Emani, Naresh Kumar; Khaidarov, Egor; Paniagua-Domínguez, Ramón; Fu, Yuan Hsing; Valuckas, Vytautas; Lu, Shunpeng; Zhang, Xueliang; Tan, Swee Tiam; Demir, Hilmi Volkan; Kuznetsov, Arseniy I.

    2017-11-01

    The dielectric nanophotonics research community is currently exploring transparent material platforms (e.g., TiO2, Si3N4, and GaP) to realize compact high efficiency optical devices at visible wavelengths. Efficient visible-light operation is key to integrating atomic quantum systems for future quantum computing. Gallium nitride (GaN), a III-V semiconductor which is highly transparent at visible wavelengths, is a promising material choice for active, nonlinear, and quantum nanophotonic applications. Here, we present the design and experimental realization of high efficiency beam deflecting and polarization beam splitting metasurfaces consisting of GaN nanostructures etched on the GaN epitaxial substrate itself. We demonstrate a polarization insensitive beam deflecting metasurface with 64% and 90% absolute and relative efficiencies. Further, a polarization beam splitter with an extinction ratio of 8.6/1 (6.2/1) and a transmission of 73% (67%) for p-polarization (s-polarization) is implemented to demonstrate the broad functionality that can be realized on this platform. The metasurfaces in our work exhibit a broadband response in the blue wavelength range of 430-470 nm. This nanophotonic platform of GaN shows the way to off- and on-chip nonlinear and quantum photonic devices working efficiently at blue emission wavelengths common to many atomic quantum emitters such as Ca+ and Sr+ ions.

  18. Multilayer white lighting polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Gong, Xiong; Wang, Shu; Heeger, Alan J.

    2006-08-01

    Organic and polymer light-emitting diodes (OLEDs/PLEDs) that emit white light are of interest and potential importance for use in active matrix displays (with color filters) and because they might eventually be used for solid-state lighting. In such applications, large-area devices and low-cost of manufacturing will be major issues. We demonstrated that high performance multilayer white emitting PLEDs can be fabricated by using a blend of luminescent semiconducting polymers and organometallic complexes as the emission layer, and water-soluble (or ethanol-soluble) polymers/small molecules (for example, PVK-SO 3Li) as the hole injection/transport layer (HIL/HTL) and water-soluble (or ethanol-soluble) polymers/small molecules (for example, t-Bu-PBD-SO 3Na) as the electron injection/transport layer (EIL/HTL). Each layer is spin-cast sequentially from solutions. Illumination quality light is obtained with stable Commission Internationale d'Eclairage coordinates, stable color temperatures, and stable high color rendering indices, all close to those of "pure" white. The multilayer white-emitting PLEDs exhibit luminous efficiency of 21 cd/A, power efficiency of 6 lm/W at a current density of 23 mA/cm2 with luminance of 5.5 x 10 4 cd/m2 at 16 V. By using water-soluble (ethanol-soluble) polymers/small molecules as HIL/HTL and polymers/small molecules as EIL/ETL, the interfacial mixing problem is solved (the emissive polymer layer is soluble in organic solvents, but not in water/ ethanol). As a result, this device architecture and process technology can potentially be used for printing large-area multiplayer light sources and for other applications in "plastic" electronics. More important, the promise of producing large areas of high quality white light with low-cost manufacturing technology makes the white multilayer white-emitting PLEDs attractive for the development of solid state light sources.

  19. Single-Crystalline, Nanoporous Gallium Nitride Films With Fine Tuning of Pore Size for Stem Cell Engineering.

    PubMed

    Han, Lin; Zhou, Jing; Sun, Yubing; Zhang, Yu; Han, Jung; Fu, Jianping; Fan, Rong

    2014-11-01

    Single-crystalline nanoporous gallium nitride (GaN) thin films were fabricated with the pore size readily tunable in 20-100 nm. Uniform adhesion and spreading of human mesenchymal stem cells (hMSCs) seeded on these thin films peak on the surface with pore size of 30 nm. Substantial cell elongation emerges as pore size increases to ∼80 nm. The osteogenic differentiation of hMSCs occurs preferentially on the films with 30 nm sized nanopores, which is correlated with the optimum condition for cell spreading, which suggests that adhesion, spreading, and stem cell differentiation are interlinked and might be coregulated by nanotopography.

  20. Efficient semiconductor light-emitting device and method

    DOEpatents

    Choquette, Kent D.; Lear, Kevin L.; Schneider, Jr., Richard P.

    1996-01-01

    A semiconductor light-emitting device and method. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL).

  1. Efficient semiconductor light-emitting device and method

    DOEpatents

    Choquette, K.D.; Lear, K.L.; Schneider, R.P. Jr.

    1996-02-20

    A semiconductor light-emitting device and method are disclosed. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL). 12 figs.

  2. Ultra-thin ohmic contacts for p-type nitride light emitting devices

    DOEpatents

    Raffetto, Mark; Bharathan, Jayesh; Haberern, Kevin; Bergmann, Michael; Emerson, David; Ibbetson, James; Li, Ting

    2014-06-24

    A flip-chip semiconductor based Light Emitting Device (LED) can include an n-type semiconductor substrate and an n-type GaN epi-layer on the substrate. A p-type GaN epi-layer can be on the n-type GaN epi-layer and a metal ohmic contact p-electrode can be on the p-type GaN epi-layer, where the metal ohmic contact p-electrode can have an average thickness less than about 25 .ANG.. A reflector can be on the metal ohmic contact p-electrode and a metal stack can be on the reflector. An n-electrode can be on the substrate opposite the n-type GaN epi-layer and a bonding pad can be on the n-electrode.

  3. Low-threshold voltage ultraviolet light-emitting diodes based on (Al,Ga)N metal-insulator-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Liang, Yu-Han; Towe, Elias

    2017-12-01

    Al-rich III-nitride-based deep-ultraviolet (UV) (275-320 nm) light-emitting diodes are plagued with a low emission efficiency and high turn-on voltages. We report Al-rich (Al,Ga)N metal-insulator-semiconductor UV light-emitting Schottky diodes with low turn-on voltages of <3 V, which are about half those of typical (Al,Ga)N p-i-n diodes. Our devices use a thin AlN film as the insulator and an n-type Al0.58Ga0.42N film as the semiconductor. To improve the efficiency, we inserted a GaN quantum-well structure between the AlN insulator and the n-type Al x Ga1- x N semiconductor. The benefits of the quantum-well structure include the potential to tune the emission wavelength and the capability to confine carriers for more efficient radiative recombination.

  4. Performance analysis and simulation of vertical gallium nitride nanowire transistors

    NASA Astrophysics Data System (ADS)

    Witzigmann, Bernd; Yu, Feng; Frank, Kristian; Strempel, Klaas; Fatahilah, Muhammad Fahlesa; Schumacher, Hans Werner; Wasisto, Hutomo Suryo; Römer, Friedhard; Waag, Andreas

    2018-06-01

    Gallium nitride (GaN) nanowire transistors are analyzed using hydrodynamic simulation. Both p-body and n-body devices are compared in terms of threshold voltage, saturation behavior and transconductance. The calculations are calibrated using experimental data. The threshold voltage can be tuned from enhancement to depletion mode with wire doping. Surface states cause a shift of threshold voltage and saturation current. The saturation current depends on the gate design, with a composite gate acting as field plate in the p-body device. He joined Bell Laboratories, Murray Hill, NJ, as a Technical Staff Member. In October 2001, he joined the Optical Access and Transport Division, Agere Systems, Alhambra, CA. In 2004, he was appointed an Assistant Professor at ETH Zurich,. Since 2008, at the University of Kassel, Kassel, Germany, and he has been a Professor the Head of the Computational Electronics and Photonics Group, and co-director of CINSaT since 2010. His research interests include computational optoelectronics, process and device design of semiconductor photonic devices, microwave components, and electromagnetics modeling for nanophotonics. Dr. Witzigmann is a senior member of the SPIE and IEEE.

  5. Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors.

    PubMed

    Lee, Changmin; Shen, Chao; Cozzan, Clayton; Farrell, Robert M; Speck, James S; Nakamura, Shuji; Ooi, Boon S; DenBaars, Steven P

    2017-07-24

    Data communication based on white light generated using a near-ultraviolet (NUV) laser diode (LD) pumping red-, green-, and blue-emitting (RGB) phosphors was demonstrated for the first time. A III-nitride laser diode (LD) on a semipolar (2021¯)  substrate emitting at 410 nm was used for the transmitter. The measured modulation bandwidth of the LD was 1 GHz, which was limited by the avalanche photodetector. The emission from the NUV LD and the RGB phosphor combination measured a color rendering index (CRI) of 79 and correlated color temperature (CCT) of 4050 K, indicating promise of this approach for creating high quality white lighting. Using this configuration, data was successfully transmitted at a rate of more than 1 Gbps. This NUV laser-based system is expected to have lower background noise from sunlight at the LD emission wavelength than a system that uses a blue LD due to the rapid fall off in intensity of the solar spectrum in the NUV spectral region.

  6. On the solubility of gallium nitride in supercritical ammonia-sodium solutions

    NASA Astrophysics Data System (ADS)

    Griffiths, Steven; Pimputkar, Siddha; Speck, James S.; Nakamura, Shuji

    2016-12-01

    Due to the disparity between observed gallium nitride (GaN) growth under conditions for which literature reports normal solubility, GaN solubility in supercritical NH3-Na containing solutions was re-evaluated. Isothermal gravimetric experiments on polycrystalline GaN were performed in the temperature range (T =415-650 °C) for which retrograde growth of GaN routinely occurs (P ≈ 200 MPa, molar NH3:Na fill ratio =20:1). Two previously-unreported error contributions to the gravimetric determination of GaN solubility were identified: Ga-alloying of exposed Ni-containing components, and the presence of a dense, Ga-absorbing Na-rich, second phase under these conditions. Due to the inability to measure Ga-alloying of the exposed autoclave wall for each experiment, considerable scatter was introduced in the refined GaN solubility curve. No clear dependence of GaN solubility on temperature was resolvable, while most solubility values were determined to be within a band of 0.03-0.10 mol% GaN, normalized by fill NH3.

  7. Efficient Gate-tunable light-emitting device made of defective boron nitride nanotubes: from ultraviolet to the visible

    PubMed Central

    Attaccalite, Claudio; Wirtz, Ludger; Marini, Andrea; Rubio, Angel

    2013-01-01

    Boron nitride is a promising material for nanotechnology applications due to its two-dimensional graphene-like, insulating, and highly-resistant structure. Recently it has received a lot of attention as a substrate to grow and isolate graphene as well as for its intrinsic UV lasing response. Similar to carbon, one-dimensional boron nitride nanotubes (BNNTs) have been theoretically predicted and later synthesised. Here we use first principles simulations to unambiguously demonstrate that i) BN nanotubes inherit the highly efficient UV luminescence of hexagonal BN; ii) the application of an external perpendicular field closes the electronic gap keeping the UV lasing with lower yield; iii) defects in BNNTS are responsible for tunable light emission from the UV to the visible controlled by a transverse electric field (TEF). Our present findings pave the road towards optoelectronic applications of BN-nanotube-based devices that are simple to implement because they do not require any special doping or complex growth. PMID:24060843

  8. Light-Emitting Pickles

    ERIC Educational Resources Information Center

    Vollmer, M.; Mollmann, K-P.

    2015-01-01

    We present experiments giving new insights into the classical light-emitting pickle experiment. In particular, measurements of the spectra and temperatures, as well as high-speed recordings, reveal that light emission is connected to the polarity of the electrodes and the presence of hydrogen.

  9. Light collection optics for measuring flux and spectrum from light-emitting devices

    DOEpatents

    McCord, Mark A.; DiRegolo, Joseph A.; Gluszczak, Michael R.

    2016-05-24

    Systems and methods for accurately measuring the luminous flux and color (spectra) from light-emitting devices are disclosed. An integrating sphere may be utilized to directly receive a first portion of light emitted by a light-emitting device through an opening defined on the integrating sphere. A light collector may be utilized to collect a second portion of light emitted by the light-emitting device and direct the second portion of light into the integrating sphere through the opening defined on the integrating sphere. A spectrometer may be utilized to measure at least one property of the first portion and the second portion of light received by the integrating sphere.

  10. Light emitting fabric technologies for photodynamic therapy.

    PubMed

    Mordon, Serge; Cochrane, Cédric; Tylcz, Jean Baptiste; Betrouni, Nacim; Mortier, Laurent; Koncar, Vladan

    2015-03-01

    Photodynamic therapy (PDT) is considered to be a promising method for treating various types of cancer. A homogeneous and reproducible illumination during clinical PDT plays a determinant role in preventing under- or over-treatment. The development of flexible light sources would considerably improve the homogeneity of light delivery. The integration of optical fiber into flexible structures could offer an interesting alternative. This paper aims to describe different methods proposed to develop Side Emitting Optical Fibers (SEOF), and how these SEOF can be integrated in a flexible structure to improve light illumination of the skin during PDT. Four main techniques can be described: (i) light blanket integrating side-glowing optical fibers, (ii) light emitting panel composed of SEOF obtained by micro-perforations of the cladding, (iii) embroidery-based light emitting fabric, and (iv) woven-based light emitting fabric. Woven-based light emitting fabrics give the best performances: higher fluence rate, best homogeneity of light delivery, good flexibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Recent developments in white light emitting diodes

    NASA Astrophysics Data System (ADS)

    Lohe, P. P.; Nandanwar, D. V.; Belsare, P. D.; Moharil, S. V.

    2018-05-01

    In the recent years solid state lighting based on LEDs has revolutionized lighting technology. LEDs have many advantages over the conventional lighting based on fluorescent and incandescent lamps such as mercury free, high conversion efficiency of electrical energy into light, long lifetime reliability and ability to use with many types of devices. LEDs have emerged as a new potentially revolutionary technology that could save up to half of energy used for lighting applications. White LEDs would be the most important light source in the future, so much so that this aspect had been highlighted by the Nobel committee during the award of 2014 Nobel Prize for Physics. Recent advancement in the fabrication of GaN chip capable of emitting in blue and near UV region paved way for fabrication of white LED lamps. Mainly there are two approaches used for preparing white emitting solid state lamp. In the first approach blue light (λ=450 nm) emitted from the InGaN LED chip is partially absorbed by the YAG:Ce3+ phosphor coated on it and re-emitted as yellow fluorescence. A white light can be generated by the combination of blue + yellow emission bands. These lamps are already available. But they are suffering from major drawback that their Colour Rendering Index (CRI) is low. In the second approach, white LEDs are made by coating near ultraviolet emitting (360 to 410nm) LED with a mixture of high efficiency red, green and blue emitting phosphors, analogous to the fluorescent lamp. This method yields lamps with better color rendition. Addition of a yellow emitting phosphor improves CRI further. However conversion efficiency is compromised to some extent. Further the cost of near UV emitting chip is very high compared to blue emitting chips. Thus cost and light output wise, near UV chips are much inferior to blue chips. Recently some rare earth activated oxynitrides, silicates, fluorides have emerged as an important family of luminescent materials for white LED application

  12. Studies on gallium nitride doped ferrite-polypyrrole nanocomposites

    NASA Astrophysics Data System (ADS)

    Indrakanti, Rajani; Brahmaji Rao, V.; Udaya Kiran, C.

    2018-06-01

    This communication reports the synthesis and characterisation of two novel Intrinsic conducting polymer nano composites (ICPN s) with the formulae Ga (2x+2) N Fe 2(49-x) O3—PPY synthesized using Impregnation technique. The Gallium nitride ferrite nano particles were synthesized for x = 1 and x = 5 using the above stichiometric equation earlier by Sol—Gel route. The chemical composition in the assembly of the ICPNs were Ga4NFe96O3-3%,10%,30% Polypyrrole, Ga12NFe88O3-3%,10%,30% Polypyrrole by weight. The Sci-Finder software failed to trace any earlier articles or reviews related to these ICNPs synthesised by us in the literature. X-ray Diffractometric (Structural), Morphological, EDAX SAED, IR spectroscopic characterizations were done on the synthesized nanocomposites. Structural studies reveal the semi-crystalline nature of composites. The average crystallite size of nano composites is decreased when compared with nano ferrites. SEM findings reveal that the shape for higher percentage of PPY is nano rods; for lower percentage it is globular. TEM reveals good dispersion and average particle size from histograms are calculated. The FT- IR bands of PPY and GaNFe2O3 are observed which show strong interaction between PPY- GaNFe2O3. Also there is a shift of bands in GaNFe2O3-PPY nano composites when compared to the bands of PPY.

  13. Improving the light-emitting properties of single-layered polyfluorene light-emitting devices by simple ionic liquid blending

    NASA Astrophysics Data System (ADS)

    Horike, Shohei; Nagaki, Hiroto; Misaki, Masahiro; Koshiba, Yasuko; Morimoto, Masahiro; Fukushima, Tatsuya; Ishida, Kenji

    2018-03-01

    This paper describes an evaluation of ionic liquids (ILs) as potential electrolytes for single-layered light-emitting devices with good emission performance. As optoelectronic devices continue to grow in abundance, high-performance light-emitting devices with a single emission layer are becoming increasingly important for low-cost production. We show that a simple technique of osmosing IL into the polymer layer can result in high luminous efficiency and good response times of single-layered light-emitting polymers, even without the additional stacking of charge carrier injection and transport layers. The IL contributions to the light-emission of the polymer are discussed from the perspectives of energy diagrams and of the electric double layers on the electrodes. Our findings enable a faster, cheaper, and lower-in-waste production of light-emitting devices.

  14. Monolithically Integrated Metal/Semiconductor Tunnel Junction Nanowire Light-Emitting Diodes.

    PubMed

    Sadaf, S M; Ra, Y H; Szkopek, T; Mi, Z

    2016-02-10

    We have demonstrated for the first time an n(++)-GaN/Al/p(++)-GaN backward diode, wherein an epitaxial Al layer serves as the tunnel junction. The resulting p-contact free InGaN/GaN nanowire light-emitting diodes (LEDs) exhibited a low turn-on voltage (∼2.9 V), reduced resistance, and enhanced power, compared to nanowire LEDs without the use of Al tunnel junction or with the incorporation of an n(++)-GaN/p(++)-GaN tunnel junction. This unique Al tunnel junction overcomes some of the critical issues related to conventional GaN-based tunnel junction designs, including stress relaxation, wide depletion region, and light absorption, and holds tremendous promise for realizing low-resistivity, high-brightness III-nitride nanowire LEDs in the visible and deep ultraviolet spectral range. Moreover, the demonstration of monolithic integration of metal and semiconductor nanowire heterojunctions provides a seamless platform for realizing a broad range of multifunctional nanoscale electronic and photonic devices.

  15. A charge inverter for III-nitride light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zi-Hui, E-mail: zh.zhang@hebut.edu.cn, E-mail: wbi@hebut.edu.cn, E-mail: volkan@stanfordalumni.org, E-mail: sunxw@sustc.edu.cn; Zhang, Yonghui; Bi, Wengang, E-mail: zh.zhang@hebut.edu.cn, E-mail: wbi@hebut.edu.cn, E-mail: volkan@stanfordalumni.org, E-mail: sunxw@sustc.edu.cn

    In this work, we propose a charge inverter that substantially increases the hole injection efficiency for InGaN/GaN light-emitting diodes (LEDs). The charge inverter consists of a metal/electrode, an insulator, and a semiconductor, making an Electrode-Insulator-Semiconductor (EIS) structure, which is formed by depositing an extremely thin SiO{sub 2} insulator layer on the p{sup +}-GaN surface of a LED structure before growing the p-electrode. When the LED is forward-biased, a weak inversion layer can be obtained at the interface between the p{sup +}-GaN and SiO{sub 2} insulator. The weak inversion region can shorten the carrier tunnel distance. Meanwhile, the smaller dielectric constantmore » of the thin SiO{sub 2} layer increases the local electric field within the tunnel region, and this is effective in promoting the hole transport from the p-electrode into the p{sup +}-GaN layer. Due to the improved hole injection, the external quantum efficiency is increased by 20% at 20 mA for the 350 × 350 μm{sup 2} LED chip. Thus, the proposed EIS holds great promise for high efficiency LEDs.« less

  16. Observation of Threading Dislocations in Ammonothermal Gallium Nitride Single Crystal Using Synchrotron X-ray Topography

    NASA Astrophysics Data System (ADS)

    Yao, Y.; Ishikawa, Y.; Sugawara, Y.; Takahashi, Y.; Hirano, K.

    2018-04-01

    Synchrotron monochromatic-beam x-ray topography observation has been performed on high-quality ammonothermal gallium nitride single crystal to evaluate threading dislocations (TD) in a nondestructive manner. Asymmetric diffractions with six equivalent g-vectors of 11-26, in addition to a symmetric diffraction with g = 0008, were applied to determine the Burgers vectors (b) of dislocations. It was found that pure edge-type TDs with \\varvec b = < {11 - 20} > /3 did not exist in the sample. A dominant proportion of TDs were of mixed type with \\varvec b = < {11 - 20} > /3 + < {0001} > , i.e., so-called c + a dislocations. Pure 1c screw dislocations with \\varvec b = < {0001} > and TDs with c-component larger than 1c were also observed.

  17. In situ chemical functionalization of gallium nitride with phosphonic acid derivatives during etching.

    PubMed

    Wilkins, Stewart J; Greenough, Michelle; Arellano, Consuelo; Paskova, Tania; Ivanisevic, Albena

    2014-03-04

    In situ functionalization of polar (c plane) and nonpolar (a plane) gallium nitride (GaN) was performed by adding (3-bromopropyl) phosphonic acid or propyl phosphonic acid to a phosphoric acid etch. The target was to modulate the emission properties and oxide formation of GaN, which was explored through surface characterization with atomic force microscopy, X-ray photoelectron spectroscopy, photoluminescence (PL), inductively coupled plasma-mass spectrometry, and water contact angle. The use of (3-bromopropyl) phosphonic acid and propyl phosphonic acid in phosphoric acid demonstrated lower amounts of gallium oxide formation and greater hydrophobicity for both sample sets, while also improving PL emission of polar GaN samples. In addition to crystal orientation, growth-related factors such as defect density in bulk GaN versus thin GaN films residing on sapphire substrates were investigated as well as their responses to in situ functionalization. Thin nonpolar GaN layers were the most sensitive to etching treatments due in part to higher defect densities (stacking faults and threading dislocations), which accounts for large surface depressions. High-quality GaN (both free-standing bulk polar and bulk nonpolar) demonstrated increased sensitivity to oxide formation. Room-temperature PL stands out as an excellent technique to identify nonradiative recombination as observed in the spectra of heteroepitaxially grown GaN samples. The chemical methods applied to tune optical and physical properties of GaN provide a quantitative framework for future novel chemical and biochemical sensor development.

  18. Light-emitting device with organic electroluminescent material and photoluminescent materials

    DOEpatents

    McNulty, Thomas Francis; Duggal, Anil Raj; Turner, Larry Gene; Shiang, Joseph John

    2005-06-07

    A light-emitting device comprises a light-emitting member, which comprises two electrodes and an organic electroluminescent material disposed between the electrodes, and at least one organic photoluminescent ("PL") material. The light-emitting member emits light having a first spectrum in response to a voltage applied across the two electrodes. The organic PL material absorbs a portion of the light emitted by the light-emitting member and emits light having second spectrum different than the first spectrum. The light-emitting device can include an inorganic PL material that absorbs another portion of the light emitted from the light-emitting member and emits light having a third spectrum different than both the first and the second spectra.

  19. Spectral response characteristics of the transmission-mode aluminum gallium nitride photocathode with varying aluminum composition.

    PubMed

    Hao, Guanghui; Liu, Junle; Ke, Senlin

    2017-12-10

    In order to research spectral response characteristics of transmission-mode nanostructure aluminum gallium nitride (AlGaN) photocathodes, the AlGaN photocathodes materials with varied aluminum (Al) composition were grown by metalorganic chemical vapor deposition (MOCVD) and its optical properties were measured. The Al compositions of each AlGaN film of the photocathodes were analyzed from their adsorption properties curves; their thickness was also calculated by the matrix formula of thin-film optics. The nanostructure AlGaN photocathodes were activated with the Caesium-Oxygen (Cs-O) alternation, and after the photocathode was packaged in vacuum, their spectrum responses were measured. The experimental results showed that the trend of spectrum response curves first increased and then decreased along with the increasing of the incident light wavelength. The peak spectrum response value was 17.5 mA/W at 255 nm, and its quantum efficiency was 8.5%. The lattice defects near the interface of the AlGaN heterostructure could impede the electron motion crossing this region and moving toward the photocathode surface; this was a factor that reduces the electron emission performance of the photocathodes. Also, the experimental result showed that the thickness of each AlGaN layer affected the electron diffusion characteristics; this was a key factor that influenced the spectrum response performance.

  20. Light emitting device having peripheral emissive region

    DOEpatents

    Forrest, Stephen R

    2013-05-28

    Light emitting devices are provided that include one or more OLEDs disposed only on a peripheral region of the substrate. An OLED may be disposed only on a peripheral region of a substantially transparent substrate and configured to emit light into the substrate. Another surface of the substrate may be roughened or include other features to outcouple light from the substrate. The edges of the substrate may be beveled and/or reflective. The area of the OLED(s) may be relatively small compared to the substrate surface area through which light is emitted from the device. One or more OLEDs also or alternatively may be disposed on an edge of the substrate about perpendicular to the surface of the substrate through which light is emitted, such that they emit light into the substrate. A mode expanding region may be included between each such OLED and the substrate.

  1. III-nitride nanowire LEDs and diode lasers: monolithic light sources on (001) Si emitting in the 600-1300nm range

    NASA Astrophysics Data System (ADS)

    Bhattacharya, P.; Hazari, A.; Jahangir, S.

    2018-02-01

    GaN-based nanowire heterostructure arrays epitaxially grown on (001)Si substrates have unique properties and present the potential to realize useful devices. The active light-emitting region in the nanowire heterostructures are usually InGaN disks, whose composition can be varied to tune the emission wavelength. We have demonstrated light emitting diodes and edgeemitting diode lasers with power outputs 10mW with emission in the 600-1300nm wavelength range. These light sources are therefore useful for a variety of applications, including silicon photonics. Molecular beam epitaxial growth of the nanowire heterostructure arrays on (001)Si substrates and the characteristics of 1.3μm nanowire array edge emitting lasers, guided wave photodiodes and a monolithic photonic integrated circuit designed for 1.3μm operation are described.

  2. Light Converting Inorganic Phosphors for White Light-Emitting Diodes

    PubMed Central

    Chen, Lei; Lin, Chun-Che; Yeh, Chiao-Wen; Liu, Ru-Shi

    2010-01-01

    White light-emitting diodes (WLEDs) have matched the emission efficiency of florescent lights and will rapidly spread as light source for homes and offices in the next 5 to 10 years. WLEDs provide a light element having a semiconductor light emitting layer (blue or near-ultraviolet (nUV) LEDs) and photoluminescence phosphors. These solid-state LED lamps, rather than organic light emitting diode (OLED) or polymer light-emitting diode (PLED), have a number of advantages over conventional incandescent bulbs and halogen lamps, such as high efficiency to convert electrical energy into light, reliability and long operating lifetime. To meet with the further requirement of high color rendering index, warm light with low color temperature, high thermal stability and higher energy efficiency for WLEDs, new phosphors that can absorb excitation energy from blue or nUV LEDs and generate visible emissions efficiently are desired. The criteria of choosing the best phosphors, for blue (450−480 nm) and nUV (380−400 nm) LEDs, strongly depends on the absorption and emission of the phosphors. Moreover, the balance of light between the emission from blue-nUV LEDs and the emissions from phosphors (such as yellow from Y3Al5O12:Ce3+) is important to obtain white light with proper color rendering index and color temperature. Here, we will review the status of phosphors for LEDs and prospect the future development.

  3. Wheat Under LED's (Light Emitting Diodes)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Astroculture is a suite of technologies used to produce and maintain a closed controlled environment for plant growth. The two most recent missions supported growth of potato, dwarf wheat, and mustard plants, and provided scientists with the first opportunity to conduct true plant research in space. Light emitting diodes have particular usefulness for plant growth lighting because they emit a much smaller amount of radiant heat than do conventional lighting sources and because they have potential of directing a higher percentage of the emitted light onto plants surfaces. Furthermore, the high output LED's have emissions in the 600-700 nm waveband, which is of highest efficiency for photosynthesis by plants.

  4. Organic light emitting devices for illumination

    DOEpatents

    Hack, Michael; Lu, Min-Hao Michael; Weaver, Michael S.

    2010-02-16

    An organic light emitting device is provided. The device has a plurality of regions, each region having an organic emissive layer adapted to emit a different spectrum of light. The regions in combination emit light suitable for illumination purposes. The area of each region may be selected such that the device is more efficient that an otherwise equivalent device having regions of equal size. The regions may have an aspect ratio of at least about four. All parts of any given region may be driven at the same current.

  5. High quality lamella preparation of gallium nitride compound semiconductor using Triple Beam™ system

    NASA Astrophysics Data System (ADS)

    Sato, T.; Nakano, K.; Matsumoto, H.; Torikawa, S.; Nakatani, I.; Kiyohara, M.; Isshiki, T.

    2017-09-01

    Gallium nitride (GaN) compound semiconductors have been known to be very sensitive to Ga focused ion beam (FIB) processing. Due to the nature of GaN based materials it is often difficult to produce damage-free lamellae, therefore applying the Triple Beam™ system which incorporates an enhanced method for amorphous removal is presented to make a high quality lamella. The damage or distortion layer thickness of GaN single crystal prepared with 30 kV Ga FIB and 1 kV Ga FIB were about 17 nm and 1.5 nm respectively. The crystallinity at the uppermost surface remained unaffected when the condition of 1 kV Ar ion milling with the Triple Beam™ system was used. The technique of combining traditional Ga FIB processing with an enhanced method for amorphous layer removal by low energy Ar ion milling allows us to analyse the InGaN/GaN interface using aberration corrected scanning transmission electron microscopy at atomic resolution levels.

  6. Stretchable Light-Emitting Diodes with Organometal-Halide-Perovskite-Polymer Composite Emitters.

    PubMed

    Bade, Sri Ganesh R; Shan, Xin; Hoang, Phong Tran; Li, Junqiang; Geske, Thomas; Cai, Le; Pei, Qibing; Wang, Chuan; Yu, Zhibin

    2017-06-01

    Intrinsically stretchable light-emitting diodes (LEDs) are demonstrated using organometal-halide-perovskite/polymer composite emitters. The polymer matrix serves as a microscale elastic connector for the rigid and brittle perovskite and induces stretchability to the composite emissive layers. The stretchable LEDs consist of poly(ethylene oxide)-modified poly(3,4-ethylenedioxythiophene) polystyrene sulfonate as a transparent and stretchable anode, a perovskite/polymer composite emissive layer, and eutectic indium-gallium as the cathode. The devices exhibit a turn-on voltage of 2.4 V, and a maximum luminance intensity of 15 960 cd m -2 at 8.5 V. Such performance far exceeds all reported intrinsically stretchable LEDs based on electroluminescent polymers. The stretchable perovskite LEDs are mechanically robust and can be reversibly stretched up to 40% strain for 100 cycles without failure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Design and Characterization of p-i-n Devices for Betavoltaic Microbatteries on Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Raziuddin A.

    Betavoltaic microbatteries convert nuclear energy released as beta particles directly into electrical energy. These batteries are well suited for electrical applications such as micro-electro-mechanical systems (MEMS), implantable medical devices and sensors. Such devices are often located in hard to access places where long life, micro-size and lightweight are required. The working principle of a betavoltaic device is similar to a photovoltaic device; they differ only in that the electron hole pairs (EHPs) are generated in the device by electrons instead of photons. In this study, the performance of a betavoltaic device fabricated from gallium nitride (GaN) is investigated for beta particle energies equivalent to Tritium (3H) and Nickel-63 (N63) beta sources. GaN is an attractive choice for fabricating betavoltaic devices due to its wide band gap and radiation resistance. Another advantage GaN has is that it can be alloyed with aluminum (Al) to further increase the bandgap, resulting in a higher output power and increased efficiency. Betavoltaic devices were fabricated on p-i-n GaN structures grown by metalorganic chemical vapor deposition (MOCVD). The devices were characterized using current - voltage (IV) measurements without illumination (light or beta), using a laser driven light source, and under an electron beam. Dark IV measurements showed a turn on-voltage of ~ 3.4 V, specific-on-resistance of 15.1 m O-cm2, and a leakage current of 0.5 mA at -- 10 V. A clear photo-response was observed when IV curves were measured for these devices under a light source at a wavelength of 310 nm (4.0 eV). These devices were tested under an electron beam in order to evaluate their behavior as betavoltaic microbatteries without using radioactive materials. Output power of 70 nW and 640 nW with overall efficiencies of 1.2% and 4.0% were determined at the average energy emission of 3H (5.6 keV) and 63N (17 keV) respectively.

  8. Recent advances in conjugated polymers for light emitting devices.

    PubMed

    Alsalhi, Mohamad Saleh; Alam, Javed; Dass, Lawrence Arockiasamy; Raja, Mohan

    2011-01-01

    A recent advance in the field of light emitting polymers has been the discovery of electroluminescent conjugated polymers, that is, kind of fluorescent polymers that emit light when excited by the flow of an electric current. These new generation fluorescent materials may now challenge the domination by inorganic semiconductor materials of the commercial market in light-emitting devices such as light-emitting diodes (LED) and polymer laser devices. This review provides information on unique properties of conjugated polymers and how they have been optimized to generate these properties. The review is organized in three sections focusing on the major advances in light emitting materials, recent literature survey and understanding the desirable properties as well as modern solid state lighting and displays. Recently, developed conjugated polymers are also functioning as roll-up displays for computers and mobile phones, flexible solar panels for power portable equipment as well as organic light emitting diodes in displays, in which television screens, luminous traffic, information signs, and light-emitting wallpaper in homes are also expected to broaden the use of conjugated polymers as light emitting polymers. The purpose of this review paper is to examine conjugated polymers in light emitting diodes (LEDs) in addition to organic solid state laser. Furthermore, since conjugated polymers have been approved as light-emitting organic materials similar to inorganic semiconductors, it is clear to motivate these organic light-emitting devices (OLEDs) and organic lasers for modern lighting in terms of energy saving ability. In addition, future aspects of conjugated polymers in LEDs were also highlighted in this review.

  9. Recent Advances in Conjugated Polymers for Light Emitting Devices

    PubMed Central

    AlSalhi, Mohamad Saleh; Alam, Javed; Dass, Lawrence Arockiasamy; Raja, Mohan

    2011-01-01

    A recent advance in the field of light emitting polymers has been the discovery of electroluminescent conjugated polymers, that is, kind of fluorescent polymers that emit light when excited by the flow of an electric current. These new generation fluorescent materials may now challenge the domination by inorganic semiconductor materials of the commercial market in light-emitting devices such as light-emitting diodes (LED) and polymer laser devices. This review provides information on unique properties of conjugated polymers and how they have been optimized to generate these properties. The review is organized in three sections focusing on the major advances in light emitting materials, recent literature survey and understanding the desirable properties as well as modern solid state lighting and displays. Recently, developed conjugated polymers are also functioning as roll-up displays for computers and mobile phones, flexible solar panels for power portable equipment as well as organic light emitting diodes in displays, in which television screens, luminous traffic, information signs, and light-emitting wallpaper in homes are also expected to broaden the use of conjugated polymers as light emitting polymers. The purpose of this review paper is to examine conjugated polymers in light emitting diodes (LEDs) in addition to organic solid state laser. Furthermore, since conjugated polymers have been approved as light-emitting organic materials similar to inorganic semiconductors, it is clear to motivate these organic light-emitting devices (OLEDs) and organic lasers for modern lighting in terms of energy saving ability. In addition, future aspects of conjugated polymers in LEDs were also highlighted in this review. PMID:21673938

  10. Graphene-enhanced gallium nitride ultraviolet photodetectors under 2 MeV proton irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Ruth A.; So, Hongyun; Chiamori, Heather C.

    The electrical characteristics of gallium nitride (GaN) ultraviolet (UV) photodetectors with graphene and semitransparent Ni/Au electrodes subjected to 2 MeV proton irradiation are reported and compared. Graphene is shown to have a very high transmittance (87%) in the UV regime (365 nm) compared to semitransparent Ni/Au (3 nm / 10 nm) films (32%). Correspondingly, microfabricated graphene/GaN photodetectors showed a much higher pre-irradiation responsivity of 3388 A/W while that of semitransparent Ni/Au/GaN photodetectors was 351 A/W. For both types of electrodes, intermittent current-voltage measurements made during 2 MeV proton irradiation showed minimal variation up to a fluence of approximately 3.8 ×more » 10 13 cm -2. Additionally, Raman spectroscopy of 200 keV proton beam, 3.8 × 10 13 cm -2 irradiated graphene showed minimal disorder with only a 6% increase in ID/IG compared to pre-irradiated graphene. These results support the use of graphene-enhanced GaN UV photodetectors in radiation-rich environments such as deep space.« less

  11. Graphene-enhanced gallium nitride ultraviolet photodetectors under 2 MeV proton irradiation

    NASA Astrophysics Data System (ADS)

    Miller, Ruth A.; So, Hongyun; Chiamori, Heather C.; Dowling, Karen M.; Wang, Yongqiang; Senesky, Debbie G.

    2017-12-01

    The electrical characteristics of gallium nitride (GaN) ultraviolet (UV) photodetectors with graphene and semitransparent Ni/Au electrodes subjected to 2 MeV proton irradiation are reported and compared. Graphene is shown to have a very high transmittance (87%) in the UV regime (365 nm) compared to semitransparent Ni/Au (3 nm/10 nm) films (32%). Correspondingly, microfabricated graphene/GaN photodetectors showed a much higher pre-irradiation responsivity of 3388 A/W, while that of semitransparent Ni/Au/GaN photodetectors was 351 A/W. For both types of electrodes, intermittent current-voltage measurements performed during 2 MeV proton irradiation showed minimal variation up to a fluence of approximately 3.8 × 1013 cm-2. Additionally, Raman spectroscopy of 200 keV proton beam, 3.8 × 1013 cm-2 irradiated graphene showed minimal disorder with only a 6% increase in ID/IG compared to pre-irradiated graphene. These results support the use of graphene-enhanced GaN UV photodetectors in radiation-rich environments such as deep space.

  12. Graphene-enhanced gallium nitride ultraviolet photodetectors under 2 MeV proton irradiation

    DOE PAGES

    Miller, Ruth A.; So, Hongyun; Chiamori, Heather C.; ...

    2017-12-11

    The electrical characteristics of gallium nitride (GaN) ultraviolet (UV) photodetectors with graphene and semitransparent Ni/Au electrodes subjected to 2 MeV proton irradiation are reported and compared. Graphene is shown to have a very high transmittance (87%) in the UV regime (365 nm) compared to semitransparent Ni/Au (3 nm / 10 nm) films (32%). Correspondingly, microfabricated graphene/GaN photodetectors showed a much higher pre-irradiation responsivity of 3388 A/W while that of semitransparent Ni/Au/GaN photodetectors was 351 A/W. For both types of electrodes, intermittent current-voltage measurements made during 2 MeV proton irradiation showed minimal variation up to a fluence of approximately 3.8 ×more » 10 13 cm -2. Additionally, Raman spectroscopy of 200 keV proton beam, 3.8 × 10 13 cm -2 irradiated graphene showed minimal disorder with only a 6% increase in ID/IG compared to pre-irradiated graphene. These results support the use of graphene-enhanced GaN UV photodetectors in radiation-rich environments such as deep space.« less

  13. Multiband Reconfigurable Harmonically Tuned Gallium Nitride (GaN) Solid-State Power Amplifier (SSPA) for Cognitive Radios

    NASA Technical Reports Server (NTRS)

    Waldstein, Seth W.; Kortright, Barbosa Miguel A.; Simons, Rainee N.

    2017-01-01

    The paper presents the architecture of a wideband reconfigurable harmonically-tuned Gallium Nitride (GaN) Solid State Power Amplifier (SSPA) for cognitive radios. When interfaced with the physical layer of a cognitive communication system, this amplifier topology offers broadband high efficiency through the use of multiple tuned input/output matching networks. This feature enables the cognitive radio to reconfigure the operating frequency without sacrificing efficiency. This paper additionally presents as a proof-of-concept the design, fabrication, and test results for a GaN inverse Class-F type amplifier operating at X-band (8.4 GHz) that achieves a maximum output power of 5.14-W, Power Added Efficiency (PAE) of 38.6 percent, and Drain Efficiency (DE) of 48.9 percent under continuous wave (CW) operation.

  14. Organic light emitting devices for illumination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hack, Michael; Lu, Min-Hao Michael; Weaver, Michael S

    An organic light emitting device an a method of obtaining illumination from such a device is provided. The device has a plurality of regions, each region having an organic emissive layer adapted to emit a different spectrum of light. The regions in combination emit light suitable for illumination purposes. The area of each region may be selected such that the device is more efficient than an otherwise equivalent device having regions of equal size. The regions may have an aspect ratio of at least about four. All parts of any given region may be driven at the same current.

  15. A Photonic 1 × 4 Power Splitter Based on Multimode Interference in Silicon-Gallium-Nitride Slot Waveguide Structures.

    PubMed

    Malka, Dror; Danan, Yossef; Ramon, Yehonatan; Zalevsky, Zeev

    2016-06-25

    In this paper, a design for a 1 × 4 optical power splitter based on the multimode interference (MMI) coupler in a silicon (Si)-gallium nitride (GaN) slot waveguide structure is presented-to our knowledge, for the first time. Si and GaN were found as suitable materials for the slot waveguide structure. Numerical optimizations were carried out on the device parameters using the full vectorial-beam propagation method (FV-BPM). Simulation results show that the proposed device can be useful to divide optical signal energy uniformly in the C-band range (1530-1565 nm) into four output ports with low insertion losses (0.07 dB).

  16. Perovskite Materials for Light-Emitting Diodes and Lasers.

    PubMed

    Veldhuis, Sjoerd A; Boix, Pablo P; Yantara, Natalia; Li, Mingjie; Sum, Tze Chien; Mathews, Nripan; Mhaisalkar, Subodh G

    2016-08-01

    Organic-inorganic hybrid perovskites have cemented their position as an exceptional class of optoelectronic materials thanks to record photovoltaic efficiencies of 22.1%, as well as promising demonstrations of light-emitting diodes, lasers, and light-emitting transistors. Perovskite materials with photoluminescence quantum yields close to 100% and perovskite light-emitting diodes with external quantum efficiencies of 8% and current efficiencies of 43 cd A(-1) have been achieved. Although perovskite light-emitting devices are yet to become industrially relevant, in merely two years these devices have achieved the brightness and efficiencies that organic light-emitting diodes accomplished in two decades. Further advances will rely decisively on the multitude of compositional, structural variants that enable the formation of lower-dimensionality layered and three-dimensional perovskites, nanostructures, charge-transport materials, and device processing with architectural innovations. Here, the rapid advancements in perovskite light-emitting devices and lasers are reviewed. The key challenges in materials development, device fabrication, operational stability are addressed, and an outlook is presented that will address market viability of perovskite light-emitting devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. ANALYSIS OF THE WATER-SPLITTING CAPABILITIES OF GALLIUM INDIUM PHOSPHIDE NITRIDE (GaInPN)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Head, J.; Turner, J.

    2007-01-01

    With increasing demand for oil, the fossil fuels used to power society’s vehicles and homes are becoming harder to obtain, creating pollution problems and posing hazard’s to people’s health. Hydrogen, a clean and effi cient energy carrier, is one alternative to fossil fuels. Certain semiconductors are able to harness the energy of solar photons and direct it into water electrolysis in a process known as photoelectrochemical water-splitting. P-type gallium indium phosphide (p-GaInP2) in tandem with GaAs is a semiconductor system that exhibits water-splitting capabilities with a solar-tohydrogen effi ciency of 12.4%. Although this material is effi cient at producing hydrogenmore » through photoelectrolysis it has been shown to be unstable in solution. By introducing nitrogen into this material, there is great potential for enhanced stability. In this study, gallium indium phosphide nitride Ga1-yInyP1-xNx samples were grown using metal-organic chemical vapor deposition in an atmospheric-pressure vertical reactor. Photocurrent spectroscopy determined these materials to have a direct band gap around 2.0eV. Mott-Schottky analysis indicated p-type behavior with variation in fl atband potentials with varied frequencies and pH’s of solutions. Photocurrent onset and illuminated open circuit potential measurements correlated to fl atband potentials determined from previous studies. Durability analysis suggested improved stability over the GaInP2 system.« less

  18. Magnesium acceptor in gallium nitride. II. Koopmans-tuned Heyd-Scuseria-Ernzerhof hybrid functional calculations of its dual nature and optical properties

    NASA Astrophysics Data System (ADS)

    Demchenko, D. O.; Diallo, I. C.; Reshchikov, M. A.

    2018-05-01

    The problem of magnesium acceptor in gallium nitride is that experimental photoluminescence measurements clearly reveal a shallow defect state, while most theoretical predictions favor a localized polaronic defect state. To resolve this contradiction, we calculate properties of magnesium acceptor using the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional, tuned to fulfill the generalized Koopmans condition. We test Koopmans tuning of HSE for defect calculations in GaN using two contrasting test cases: a deep state of gallium vacancy and a shallow state of magnesium acceptor. The obtained parametrization of HSE allows calculations of optical properties of acceptors using neutral defect-state eigenvalues, without relying on corrections due to charged defects in periodic supercells. Optical transitions and vibrational properties of M gGa defect are analyzed to bring the dual (shallow and deep) nature of this defect into accord with experimental photoluminescence measurements of the ultraviolet band in Mg-doped GaN samples.

  19. Broadband light-emitting diode

    DOEpatents

    Fritz, Ian J.; Klem, John F.; Hafich, Michael J.

    1998-01-01

    A broadband light-emitting diode. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3-2 .mu.m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-division-multiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft.

  20. Broadband light-emitting diode

    DOEpatents

    Fritz, I.J.; Klem, J.F.; Hafich, M.J.

    1998-07-14

    A broadband light-emitting diode is disclosed. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3--2 {micro}m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-divisionmultiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft. 10 figs.

  1. Two-dimensional dopant profiling of gallium nitride p-n junctions by scanning capacitance microscopy

    NASA Astrophysics Data System (ADS)

    Lamhamdi, M.; Cayrel, F.; Frayssinet, E.; Bazin, A. E.; Yvon, A.; Collard, E.; Cordier, Y.; Alquier, D.

    2016-04-01

    Two-dimensional imaging of dopant profiles for n and p-type regions are relevant for the development of new power semiconductors, especially for gallium nitride (GaN) for which classical profiling techniques are not adapted. This is a challenging task since it needs a technique with simultaneously good sensitivity, high spatial resolution and high dopant gradient resolution. To face these challenges, scanning capacitance microscopy combined with Atomic Force Microscopy is a good candidate, presenting reproducible results, as demonstrated in literature. In this work, we attempt to distinguish reliably and qualitatively the various doping concentrations and type at p-n and unipolar junctions. For both p-n and unipolar junctions three kinds of samples were prepared and measured separately. The space-charge region of the p-n metallurgical junction, giving rise to different contrasts under SCM imaging, is clearly observed, enlightening the interest of the SCM technique.

  2. Slot silicon-gallium nitride waveguide in MMI structures based 1x8 wavelength demultiplexer

    NASA Astrophysics Data System (ADS)

    Ben Zaken, Bar Baruch; Zanzury, Tal; Malka, Dror

    2017-06-01

    We propose a novel 8-channel wavelength multimode interference (MMI) demultiplexer in slot waveguide structures that operated at 1530 nm, 1535 nm, 1540 nm, 1545 nm, 1550 nm, 1555 nm, 1560 nm and 1565 nm wavelengths. Gallium nitride (GaN) surrounded by silicon (Si) was founded as suitable materials for the slot-waveguide structures. The proposed device was designed by seven 1x2 MMI couplers, fourteen S-band and one input taper. Numerical investigations were carried out on the geometrical parameters by using a full vectorial-beam propagation method (FVBPM). Simulation results show that the proposed device can transmit 8-channel that works in the whole C-band (1530- 1565 nm) with low crosstalk ((-19.97)-(-13.77) dB) and bandwidth (1.8-3.6 nm). Thus, the device can be very useful in optical networking systems that work on dense wavelength division multiplexing (DWDM) technology.

  3. Evaluation of light-emitting diode beacon light fixtures.

    DOT National Transportation Integrated Search

    2009-12-01

    Rotating beacons containing filament light sources have long been used on highway maintenance trucks : to indicate the presence of the truck to other drivers. Because of advances in light-emitting diode (LED) : technologies, flashing lights containin...

  4. Reshaping Light-Emitting Diodes To Increase External Efficiency

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert; Egalon, Claudio

    1995-01-01

    Light-emitting diodes (LEDs) reshaped, according to proposal, increasing amount of light emitted by decreasing fraction of light trapped via total internal reflection. Results in greater luminous output power for same electrical input power; greater external efficiency. Furthermore, light emitted by reshaped LEDs more nearly collimated (less diffuse). Concept potentially advantageous for conventional red-emitting LEDs. More advantageous for new "blue" LEDs, because luminous outputs and efficiencies of these devices very low. Another advantage, proposed conical shapes achieved relatively easily by chemical etching of semiconductor surfaces.

  5. Printing method for organic light emitting device lighting

    NASA Astrophysics Data System (ADS)

    Ki, Hyun Chul; Kim, Seon Hoon; Kim, Doo-Gun; Kim, Tae-Un; Kim, Snag-Gi; Hong, Kyung-Jin; So, Soon-Yeol

    2013-03-01

    Organic Light Emitting Device (OLED) has a characteristic to change the electric energy into the light when the electric field is applied to the organic material. OLED is currently employed as a light source for the lighting tools because research has extensively progressed in the improvement of luminance, efficiency, and life time. OLED is widely used in the plate display device because of a simple manufacture process and high emitting efficiency. But most of OLED lighting projects were used the vacuum evaporator (thermal evaporator) with low molecular. Although printing method has lower efficiency and life time of OLED than vacuum evaporator method, projects of printing OLED actively are progressed because was possible to combine with flexible substrate and printing technology. Printing technology is ink-jet, screen printing and slot coating. This printing method allows for low cost and mass production techniques and large substrates. In this research, we have proposed inkjet printing for organic light-emitting devices has the dominant method of thick film deposition because of its low cost and simple processing. In this research, the fabrication of the passive matrix OLED is achieved by inkjet printing, using a polymer phosphorescent ink. We are measured optical and electrical characteristics of OLED.

  6. Properties of Zn-doped GaN. I - Photoluminescence

    NASA Technical Reports Server (NTRS)

    Pankove, J. I.; Berkeyheiser, J. E.; Miller, E. A.

    1974-01-01

    It is shown that zinc in gallium nitride forms an efficient radiative center emitting blue light at 2.86 plus or minus 0.02 eV and acts as a deep acceptor that can render the crystal insulating. A systematic variation of growth conditions indicates that an optimization of the photoluminescence efficiency is possible. Under nonoptimal conditions lower photon energy emission is obtained.

  7. III-V arsenide-nitride semiconductor

    NASA Technical Reports Server (NTRS)

    Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)

    2000-01-01

    III-V arsenide-nitride semiconductor are disclosed. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V materials varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V material can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.

  8. Improvement of efficiency in graphene/gallium nitride nanowire on Silicon photoelectrode for overall water splitting

    NASA Astrophysics Data System (ADS)

    Bae, Hyojung; Rho, Hokyun; Min, Jung-Wook; Lee, Yong-Tak; Lee, Sang Hyun; Fujii, Katsushi; Lee, Hyo-Jong; Ha, Jun-Seok

    2017-11-01

    Gallium nitride (GaN) nanowires are one of the most promising photoelectrode materials due to their high stability in acidic and basic electrolytes, and tunable band edge potentials. In this study, GaN nanowire arrays (GaN NWs) were prepared by molecular beam epitaxy (MBE); their large surface area enhanced the solar to hydrogen conversion efficiency. More significantly, graphene was grown by chemical vapor deposition (CVD), which enhanced the electron transfer between NWs for water splitting and protected the GaN NW surface. Structural characterizations of the prepared composite were performed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The photocurrent density of Gr/GaN NWs exhibited a two-fold increase over pristine GaN NWs and sustained water splitting up to 70 min. These improvements may accelerate possible applications for hydrogen generation with high solar to hydrogen conversion efficiency.

  9. Effects of radiation and temperature on gallium nitride (GaN) metal-semiconductor-metal ultraviolet photodetectors

    NASA Astrophysics Data System (ADS)

    Chiamori, Heather C.; Angadi, Chetan; Suria, Ateeq; Shankar, Ashwin; Hou, Minmin; Bhattacharya, Sharmila; Senesky, Debbie G.

    2014-06-01

    The development of radiation-hardened, temperature-tolerant materials, sensors and electronics will enable lightweight space sub-systems (reduced packaging requirements) with increased operation lifetimes in extreme harsh environments such as those encountered during space exploration. Gallium nitride (GaN) is a ceramic, semiconductor material stable within high-radiation, high-temperature and chemically corrosive environments due to its wide bandgap (3.4 eV). These material properties can be leveraged for ultraviolet (UV) wavelength photodetection. In this paper, current results of GaN metal-semiconductor-metal (MSM) UV photodetectors behavior after irradiation up to 50 krad and temperatures of 15°C to 150°C is presented. These initial results indicate that GaN-based sensors can provide robust operation within extreme harsh environments. Future directions for GaN-based photodetector technology for down-hole, automotive and space exploration applications are also discussed.

  10. III-N light emitting diodes fabricated using RF nitrogen gas source MBE

    NASA Astrophysics Data System (ADS)

    Van Hove, J. M.; Carpenter, G.; Nelson, E.; Wowchak, A.; Chow, P. P.

    1996-07-01

    Homo- and heterojunction III-N light emitting diodes using RF atomic nitrogen plasma molecular beam epitaxy have been grown. GaN films deposited on sapphire using this growth technique exhibited an extremely sharp X-ray diffraction with a full width half maximum of 112 arc sec. p-type doping of the nitride films was done with elemental Mg and resulted in as-grown p-type material with resistivities as low as 2 Ω · cm. Both homo- and heterojunction LEDs showed clear rectification. Emission from the GaN homojunction deposited on n-type SiC was peaked at 410 nm while the AlGaNGaN(Zn)AlGaN double heterojunction LEDs emission was centered about 520 nm.

  11. An entangled-light-emitting diode.

    PubMed

    Salter, C L; Stevenson, R M; Farrer, I; Nicoll, C A; Ritchie, D A; Shields, A J

    2010-06-03

    An optical quantum computer, powerful enough to solve problems so far intractable using conventional digital logic, requires a large number of entangled photons. At present, entangled-light sources are optically driven with lasers, which are impractical for quantum computing owing to the bulk and complexity of the optics required for large-scale applications. Parametric down-conversion is the most widely used source of entangled light, and has been used to implement non-destructive quantum logic gates. However, these sources are Poissonian and probabilistically emit zero or multiple entangled photon pairs in most cycles, fundamentally limiting the success probability of quantum computational operations. These complications can be overcome by using an electrically driven on-demand source of entangled photon pairs, but so far such a source has not been produced. Here we report the realization of an electrically driven source of entangled photon pairs, consisting of a quantum dot embedded in a semiconductor light-emitting diode (LED) structure. We show that the device emits entangled photon pairs under d.c. and a.c. injection, the latter achieving an entanglement fidelity of up to 0.82. Entangled light with such high fidelity is sufficient for application in quantum relays, in core components of quantum computing such as teleportation, and in entanglement swapping. The a.c. operation of the entangled-light-emitting diode (ELED) indicates its potential function as an on-demand source without the need for a complicated laser driving system; consequently, the ELED is at present the best source on which to base future scalable quantum information applications.

  12. Direct Band Gap Wurtzite Gallium Phosphide Nanowires

    PubMed Central

    2013-01-01

    The main challenge for light-emitting diodes is to increase the efficiency in the green part of the spectrum. Gallium phosphide (GaP) with the normal cubic crystal structure has an indirect band gap, which severely limits the green emission efficiency. Band structure calculations have predicted a direct band gap for wurtzite GaP. Here, we report the fabrication of GaP nanowires with pure hexagonal crystal structure and demonstrate the direct nature of the band gap. We observe strong photoluminescence at a wavelength of 594 nm with short lifetime, typical for a direct band gap. Furthermore, by incorporation of aluminum or arsenic in the GaP nanowires, the emitted wavelength is tuned across an important range of the visible light spectrum (555–690 nm). This approach of crystal structure engineering enables new pathways to tailor materials properties enhancing the functionality. PMID:23464761

  13. A Photonic 1 × 4 Power Splitter Based on Multimode Interference in Silicon–Gallium-Nitride Slot Waveguide Structures

    PubMed Central

    Malka, Dror; Danan, Yossef; Ramon, Yehonatan; Zalevsky, Zeev

    2016-01-01

    In this paper, a design for a 1 × 4 optical power splitter based on the multimode interference (MMI) coupler in a silicon (Si)–gallium nitride (GaN) slot waveguide structure is presented—to our knowledge, for the first time. Si and GaN were found as suitable materials for the slot waveguide structure. Numerical optimizations were carried out on the device parameters using the full vectorial-beam propagation method (FV-BPM). Simulation results show that the proposed device can be useful to divide optical signal energy uniformly in the C-band range (1530–1565 nm) into four output ports with low insertion losses (0.07 dB). PMID:28773638

  14. On the Hole Injection for III-Nitride Based Deep Ultraviolet Light-Emitting Diodes.

    PubMed

    Li, Luping; Zhang, Yonghui; Xu, Shu; Bi, Wengang; Zhang, Zi-Hui; Kuo, Hao-Chung

    2017-10-24

    The hole injection is one of the bottlenecks that strongly hinder the quantum efficiency and the optical power for deep ultraviolet light-emitting diodes (DUV LEDs) with the emission wavelength smaller than 360 nm. The hole injection efficiency for DUV LEDs is co-affected by the p-type ohmic contact, the p-type hole injection layer, the p-type electron blocking layer and the multiple quantum wells. In this report, we review a large diversity of advances that are currently adopted to increase the hole injection efficiency for DUV LEDs. Moreover, by disclosing the underlying device physics, the design strategies that we can follow have also been suggested to improve the hole injection for DUV LEDs.

  15. Reduced-droop green III-nitride light-emitting diodes utilizing GaN tunnel junction

    NASA Astrophysics Data System (ADS)

    Alhassan, Abdullah I.; Young, Erin C.; Alyamani, Ahmed Y.; Albadri, Abdulrahman; Nakamura, Shuji; DenBaars, Steven P.; Speck, James S.

    2018-04-01

    We report the fabrication of low-droop high-efficiency green c-plane light-emitting diodes (LEDs) utilizing GaN tunnel junction (TJ) contacts. The LED epitaxial layers with a top p-GaN layer were grown by metal organic chemical vapor deposition and an n++-GaN layer was deposited by molecular beam epitaxy to form a TJ. The TJ LEDs were then compared with equivalent LEDs having a tin-doped indium oxide (ITO) contact. The TJ LEDs exhibited a higher performance and a lower efficiency droop than did the ITO LEDs. At 35 A/cm2, the external quantum efficiencies for the TJ and ITO LEDs were 31.2 and 27%, respectively.

  16. On the Hole Injection for III-Nitride Based Deep Ultraviolet Light-Emitting Diodes

    PubMed Central

    Li, Luping; Zhang, Yonghui; Kuo, Hao-Chung

    2017-01-01

    The hole injection is one of the bottlenecks that strongly hinder the quantum efficiency and the optical power for deep ultraviolet light-emitting diodes (DUV LEDs) with the emission wavelength smaller than 360 nm. The hole injection efficiency for DUV LEDs is co-affected by the p-type ohmic contact, the p-type hole injection layer, the p-type electron blocking layer and the multiple quantum wells. In this report, we review a large diversity of advances that are currently adopted to increase the hole injection efficiency for DUV LEDs. Moreover, by disclosing the underlying device physics, the design strategies that we can follow have also been suggested to improve the hole injection for DUV LEDs. PMID:29073738

  17. Light emitting diodes as a plant lighting source

    NASA Technical Reports Server (NTRS)

    Bula, R. J.; Tennessen, D. J.; Morrow, R. C.; Tibbitts, T. W.

    1994-01-01

    Electroluminescence in solid materials is defined as the generation of light by the passage of an electric current through a body of solid material under an applied electric field. A specific type of electroluminescence, first noted in 1923, involves the generation of photons when electrons are passed through a p-n junction of certain solid materials (junction of a n-type semiconductor, an electron donor, and a p-type semiconductor, an electron acceptor). The development of this light emitting semiconductor technology dates back less than 30 years. During this period of time, the LED has evolved from a rare and expensive light generating device to one of the most widely used electronic components. A number of LED characteristics are of considerable importance in selecting a light source for plant lighting in a controlled environment facility. Of particular importance is the characteristic that light is generated by an LED at a rate far greater than the corresponding thermal radiation predicted by the bulk temperature of the device as defined by Plank's radiation law. This is in sharp contrast to other light sources, such as an incandescent or high intensity discharge lamp. A plant lighting system for controlled environments must provide plants with an adequate flux of photosynthetically active radiation, plus providing photons in the spectral regions that are involved in the photomorphogenic and phototropic responses that result in normal plant growth and development. Use of light sources that emit photons over a broad spectral range generally meet these two lighting requirements. Since the LED's emit over specific spectral regions, they must be carefully selected so that the levels of photsynthetically active and photomorphogenic and phototropic radiation meet these plant requirements.

  18. Indium Gallium Nitride Multijunction Solar Cell Simulation Using Silvaco Atlas

    DTIC Science & Technology

    2007-06-01

    models is of great interest in space applications. By increasing the efficiency of photovoltaics, the number of solar panels is decreased. Therefore...obtained in single-junction solar cells by using Gallium Arsenide. Monocrystalline Gallium Arsenide has a maximum efficiency of approximately 25.1% [10

  19. Effect of Annealing Time of YAG:Ce3+ Phosphor on White Light Chromaticity Values

    NASA Astrophysics Data System (ADS)

    Abd, Husnen R.; Hassan, Z.; Ahmed, Naser M.; Almessiere, Munirah Abdullah; Omar, A. F.; Alsultany, Forat H.; Sabah, Fayroz A.; Osman, Ummu Shuhada

    2018-02-01

    Yttrium and aluminium nitrate phosphors doped with cerium nitrate and mixed with urea (fuel) are prepared by using microwave-induced combustion synthesis according to the formula Y(3-0.06)Al5O12:0.06Ce3+ (YAG:Ce3+) to produce white light emitting diodes by conversion from blue indium gallium nitride-light emitting diode chips. The sintering time with fixed temperature (1050°C) for phosphor powder was optimized and found to be 5 h. The crystallinity, structure, chemical composition, luminescent properties with varying currents densities and chromaticity were characterized by x-ray diffraction, field emission-scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, photoluminescence emission, electroluminescence and standard CIE 1931 chromaticity diagram, respectively. The energy levels of Ce3+ in YAG were discussed based on its absorption and excitation spectra. The results show that the obtained YAG:Ce3+ phosphor sintered for 5 h has good crystallinity with pure phase, low agglomerate with spherical shaped particles and strong yellow emission, offering cool-white LED with tuneable correlated color temperature and a good color rendering index compared to those prepared by sintering for 2 h and as-prepared phosphor powders.

  20. Light extraction efficiency of GaN-based LED with pyramid texture by using ray path analysis.

    PubMed

    Pan, Jui-Wen; Wang, Chia-Shen

    2012-09-10

    We study three different gallium-nitride (GaN) based light emitting diode (LED) cases based on the different locations of the pyramid textures. In case 1, the pyramid texture is located on the sapphire top surface, in case 2, the pyramid texture is locate on the P-GaN top surface, while in case 3, the pyramid texture is located on both the sapphire and P-GaN top surfaces. We study the relationship between the light extraction efficiency (LEE) and angle of slant of the pyramid texture. The optimization of total LEE was highest for case 3 among the three cases. Moreover, the seven escape paths along which most of the escaped photon flux propagated were selected in a simulation of the LEDs. The seven escape paths were used to estimate the slant angle for the optimization of LEE and to precisely analyze the photon escape path.

  1. White organic light-emitting diodes with ultra-thin mixed emitting layer

    NASA Astrophysics Data System (ADS)

    Jeon, T.; Forget, S.; Chenais, S.; Geffroy, B.; Tondelier, D.; Bonnassieux, Y.; Ishow, E.

    2012-02-01

    White light can be obtained from Organic Light Emitting Diodes by mixing three primary colors, (i.e. red, green and blue) or two complementary colors in the emissive layer. In order to improve the efficiency and stability of the devices, a host-guest system is generally used as an emitting layer. However, the color balance to obtain white light is difficult to control and optimize because the spectrum is very sensitive to doping concentration (especially when a small amount of material is used). We use here an ultra-thin mixed emitting layer (UML) deposited by thermal evaporation to fabricate white organic light emitting diodes (WOLEDs) without co-evaporation. The UML was inserted in the hole-transporting layer consisting of 4, 4'-bis[N-(1-naphtyl)-N-phenylamino]biphenyl (α-NPB) instead of using a conventional doping process. The UML was formed from a single evaporation boat containing a mixture of two dipolar starbust triarylamine molecules (fvin and fcho) presenting very similar structures and thermal properties and emitting in complementary spectral regions (orange and blue respectively) and mixed according to their weight ratio. The composition of the UML specifically allows for fine tuning of the emission color despite its very thin thickness down to 1 nm. Competitive energy transfer processes from fcho and the host interface toward fvin are key parameters to control the relative intensity between red and blue emission. White light with very good CIE 1931 color coordinate (0.34, 0.34) was obtained by simply adjusting the UML film composition.

  2. A Pedagogical Measurement of the Velocity of Light

    ERIC Educational Resources Information Center

    Tyler, Charles E.

    1969-01-01

    Describes an inexpensive, easily constructed device for demonstrating that the speed of light is finite, and for measuring its value. The main components are gallium arsenide light emitting diodes, a light pulser, transistors, and an oscilloscope. Detailed instructions of procedure and experimental results are given. (LC)

  3. Design of p-type cladding layers for tunnel-injected UV-A light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih

    Here, we discuss the engineering of p-AlGaN cladding layers for achieving efficient tunnel-injected III-Nitride ultraviolet light emitting diodes (UV LEDs) in the UV-A spectral range. We show that the capacitance-voltage measurements can be used to estimate the compensation and doping in the p-AlGaN layers located between the multi-quantum well region and the tunnel junction layer. By increasing the p-type doping concentration to overcome the background compensation, on-wafer external quantum efficiency and wall-plug efficiency of 3.37% and 1.62%, respectively, were achieved for the tunnel-injected UV LEDs emitting at 325 nm. We also show that interband tunneling hole injection can be usedmore » to realize UV LEDs without any acceptor doping. The work discussed here provides new understanding of hole doping and transport in AlGaN-based UV LEDs and demonstrates the excellent performance of tunnel-injected LEDs for the UV-A wavelength range.« less

  4. Design of p-type cladding layers for tunnel-injected UV-A light emitting diodes

    DOE PAGES

    Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih; ...

    2016-11-09

    Here, we discuss the engineering of p-AlGaN cladding layers for achieving efficient tunnel-injected III-Nitride ultraviolet light emitting diodes (UV LEDs) in the UV-A spectral range. We show that the capacitance-voltage measurements can be used to estimate the compensation and doping in the p-AlGaN layers located between the multi-quantum well region and the tunnel junction layer. By increasing the p-type doping concentration to overcome the background compensation, on-wafer external quantum efficiency and wall-plug efficiency of 3.37% and 1.62%, respectively, were achieved for the tunnel-injected UV LEDs emitting at 325 nm. We also show that interband tunneling hole injection can be usedmore » to realize UV LEDs without any acceptor doping. The work discussed here provides new understanding of hole doping and transport in AlGaN-based UV LEDs and demonstrates the excellent performance of tunnel-injected LEDs for the UV-A wavelength range.« less

  5. Optical design of tunnel lighting with white light-emitting diodes.

    PubMed

    Tsai, Ming-Shiou; Lee, Xuan-Hao; Lo, Yi-Chien; Sun, Ching-Cherng

    2014-10-10

    This paper presents a tunnel lighting design consisting of a cluster light-emitting diode and a free-form lens. Most of the energy emitted from the proposed luminaire is transmitted onto the surface of the road in front of drivers, and the probability that that energy is emitted directly into drivers' eyes is low. Compared with traditional fluorescent lamps, the proposed luminaire, of which the optical utilization factor, optical efficiency, and uniformity are, respectively, 44%, 92.5%, and 0.72, exhibits favorable performance in energy saving, glare reduction, and traffic safety.

  6. Enhanced thermaly managed packaging for III-nitride light emitters

    NASA Astrophysics Data System (ADS)

    Kudsieh, Nicolas

    In this Dissertation our work on `enhanced thermally managed packaging of high power semiconductor light sources for solid state lighting (SSL)' is presented. The motivation of this research and development is to design thermally high stable cost-efficient packaging of single and multi-chip arrays of III-nitrides wide bandgap semiconductor light sources through mathematical modeling and simulations. Major issues linked with this technology are device overheating which causes serious degradation in their illumination intensity and decrease in the lifetime. In the introduction the basics of III-nitrides WBG semiconductor light emitters are presented along with necessary thermal management of high power cingulated and multi-chip LEDs and laser diodes. This work starts at chip level followed by its extension to fully packaged lighting modules and devices. Different III-nitride structures of multi-quantum well InGaN/GaN and AlGaN/GaN based LEDs and LDs were analyzed using advanced modeling and simulation for different packaging designs and high thermal conductivity materials. Study started with basic surface mounted devices using conventional packaging strategies and was concluded with the latest thermal management of chip-on-plate (COP) method. Newly discovered high thermal conductivity materials have also been incorporated for this work. Our study also presents the new approach of 2D heat spreaders using such materials for SSL and micro LED array packaging. Most of the work has been presented in international conferences proceedings and peer review journals. Some of the latest work has also been submitted to well reputed international journals which are currently been reviewed for publication. .

  7. Demonstrating the Light-Emitting Diode.

    ERIC Educational Resources Information Center

    Johnson, David A.

    1995-01-01

    Describes a simple inexpensive circuit which can be used to quickly demonstrate the basic function and versatility of the solid state diode. Can be used to demonstrate the light-emitting diode (LED) as a light emitter, temperature sensor, light detector with both a linear and logarithmic response, and charge storage device. (JRH)

  8. Hexagonal Ag nanoarrays induced enhancement of blue light emission from amorphous oxidized silicon nitride via localized surface plasmon coupling.

    PubMed

    Ma, Zhongyuan; Ni, Xiaodong; Zhang, Wenping; Jiang, Xiaofan; Yang, Huafeng; Yu, Jie; Wang, Wen; Xu, Ling; Xu, Jun; Chen, Kunji; Feng, Duan

    2014-11-17

    A significant enhancement of blue light emission from amorphous oxidized silicon nitride (a-SiNx:O) films is achieved by introduction of ordered and size-controllable arrays of Ag nanoparticles between the silicon substrate and a-SiNx:O films. Using hexagonal arrays of Ag nanoparticles fabricated by nanosphere lithography, the localized surface plasmons (LSPs) resonance can effectively increase the internal quantum efficiency from 3.9% to 13.3%. Theoretical calculation confirms that the electromagnetic field-intensity enhancement is through the dipole surface plasma coupling with the excitons of a-SiNx:O films, which demonstrates a-SiNx:O films with enhanced blue emission are promising for silicon-based light-emitting applications by patterned Ag arrays.

  9. [A novel yellow organic light-emitting device].

    PubMed

    Ma, Chen; Wang, Hua; Hao, Yu-Ying; Gao, Zhi-Xiang; Zhou, He-Feng; Xu, Bing-She

    2008-07-01

    The fabrication of a novel organic yellow-light-emitting device using Rhodamine B as dopant with double quantum-well (DQW) structure was introduced in the present article. The structure and thickness of this device is ITO/CuPc (6 nm) /NPB (20 nm) /Alq3 (3 nm)/Alq3 : Rhodamine B (3 nm) /Alq3 (3 nm) /Al q3 : Rhodamine B(3 nm) /Alq3 (30 nm) /Liq (5 nm)/Al (30 nm). With the detailed investigation of electroluminescence of the novel organic yellow-light-emitting device, the authors found that the doping concentration of Rhodamine B (RhB) had a very big influence on luminance and efficiency of the organic yellow-light-emitting device. When doping concentration of Rhodamine B (RhB) was 1.5 wt%, the organic yellow-light-emitting device was obtained with the maximum current efficiency of 1.526 cd x A(-1) and the maximum luminance of 1 309 cd x m(-2). It can be seen from the EL spectra of the devices that there existed energy transferring from Alq3 to RhB in the organic light-emitting layers. When the doping concentration of RhB increased, lambda(max) of EL spectra redshifted obviously. The phenomenon was attributed to the Stokes effect of quantum wells and self-polarization of RhB dye molecules.

  10. Single photon emitters in boron nitride: More than a supplementary material

    NASA Astrophysics Data System (ADS)

    Koperski, M.; Nogajewski, K.; Potemski, M.

    2018-03-01

    We present comprehensive optical studies of recently discovered single photon sources in boron nitride, which appear in form of narrow lines emitting centres. Here, we aim to compactly characterise their basic optical properties, including the demonstration of several novel findings, in order to inspire discussion about their origin and utility. Initial inspection reveals the presence of narrow emission lines in boron nitride powder and exfoliated flakes of hexagonal boron nitride deposited on Si/SiO2 substrates. Generally rather stable, the boron nitride emitters constitute a good quality visible light source. However, as briefly discussed, certain specimens reveal a peculiar type of blinking effects, which are likely related to existence of meta-stable electronic states. More advanced characterisation of representative stable emitting centres uncovers a strong dependence of the emission intensity on the energy and polarisation of excitation. On this basis, we speculate that rather strict excitation selectivity is an important factor determining the character of the emission spectra, which allows the observation of single and well-isolated emitters. Finally, we investigate the properties of the emitting centres in varying external conditions. Quite surprisingly, it is found that the application of a magnetic field introduces no change in the emission spectra of boron nitride emitters. Further analysis of the impact of temperature on the emission spectra and the features seen in second-order correlation functions is used to provide an assessment of the potential functionality of boron nitride emitters as single photon sources capable of room temperature operation.

  11. Nitride micro-LEDs and beyond--a decade progress review.

    PubMed

    Jiang, H X; Lin, J Y

    2013-05-06

    Since their inception, micro-size light emitting diode (µLED) arrays based on III-nitride semiconductors have emerged as a promising technology for a range of applications. This paper provides an overview on a decade progresses on realizing III-nitride µLED based high voltage single-chip AC/DC-LEDs without power converters to address the key compatibility issue between LEDs and AC power grid infrastructure; and high-resolution solid-state self-emissive microdisplays operating in an active driving scheme to address the need of high brightness, efficiency and robustness of microdisplays. These devices utilize the photonic integration approach by integrating µLED arrays on-chip. Other applications of nitride µLED arrays are also discussed.

  12. Defining the light emitting area for displays in the unipolar regime of highly efficient light emitting transistors

    PubMed Central

    Ullah, Mujeeb; Armin, Ardalan; Tandy, Kristen; Yambem, Soniya D.; Burn, Paul L.; Meredith, Paul; Namdas, Ebinazar B.

    2015-01-01

    Light-emitting field effect transistors (LEFETs) are an emerging class of multifunctional optoelectronic devices. It combines the light emitting function of an OLED with the switching function of a transistor in a single device architecture. The dual functionality of LEFETs has the potential applications in active matrix displays. However, the key problem of existing LEFETs thus far has been their low EQEs at high brightness, poor ON/OFF and poorly defined light emitting area - a thin emissive zone at the edge of the electrodes. Here we report heterostructure LEFETs based on solution processed unipolar charge transport and an emissive polymer that have an EQE of up to 1% at a brightness of 1350 cd/m2, ON/OFF ratio > 104 and a well-defined light emitting zone suitable for display pixel design. We show that a non-planar hole-injecting electrode combined with a semi-transparent electron-injecting electrode enables to achieve high EQE at high brightness and high ON/OFF ratio. Furthermore, we demonstrate that heterostructure LEFETs have a better frequency response (fcut-off = 2.6 kHz) compared to single layer LEFETs. The results presented here therefore are a major step along the pathway towards the realization of LEFETs for display applications. PMID:25743444

  13. High-temperature performance of gallium-nitride-based pin alpha-particle detectors grown on sapphire substrates

    NASA Astrophysics Data System (ADS)

    Zhu, Zhifu; Zhang, Heqiu; Liang, Hongwei; Tang, Bin; Peng, Xincun; Liu, Jianxun; Yang, Chao; Xia, Xiaochuan; Tao, Pengcheng; Shen, Rensheng; Zou, Jijun; Du, Guotong

    2018-06-01

    The temperature-dependent radiation-detection performance of an alpha-particle detector that was based on a gallium-nitride (GaN)-based pin structure was studied from 290 K to 450 K. Current-voltage-temperature measurements (I-V-T) of the reverse bias show the exponential dependence of leakage currents on the voltage and temperature. The current transport mechanism of the GaN-based pin diode from the reverse bias I-V fitting was analyzed. The temperature-dependent pulse-height spectra of the detectors were studied using an 241 Am alpha-particle source at a reverse bias of 10 V, and the peak positions shifted from 534 keV at 290 K to 490 keV at 450 K. The variation of full width at half maximum (FWHM) from 282 keV at 290 K to 292 keV at 450 K is almost negligible. The GaN-based pin detectors are highly promising for high-temperature environments up to 450 K.

  14. Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation.

    PubMed

    Agrawal, Ravi; Espinosa, Horacio D

    2011-02-09

    Nanowires made of materials with noncentrosymmetric crystal structure are under investigation for their piezoelectric properties and suitability as building blocks for next-generation self-powered nanodevices. In this work, we investigate the size dependence of piezoelectric coefficients in nanowires of two such materials - zinc oxide and gallium nitride. Nanowires, oriented along their polar axis, ranging from 0.6 to 2.4 nm in diameter were modeled quantum mechanically. A giant piezoelectric size effect is identified for both GaN and ZnO nanowires. However, GaN exhibits a larger and more extended size dependence than ZnO. The observed size effect is discussed in the context of charge redistribution near the free surfaces leading to changes in local polarization. The study reveals that local changes in polarization and reduction of unit cell volume with respect to bulk values lead to the observed size effect. These results have strong implication in the field of energy harvesting, as piezoelectric voltage output scales with the piezoelectric coefficient.

  15. Light emission mechanism of mixed host organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Song, Wook; Lee, Jun Yeob

    2015-03-01

    Light emission mechanism of organic light-emitting diodes with a mixed host emitting layer was studied using an exciplex type mixed host and an exciplex free mixed host. Monitoring of the current density and luminance of the two type mixed host devices revealed that the light emission process of the exciplex type mixed host was dominated by energy transfer, while the light emission of the exciplex free mixed host was controlled by charge trapping. Mixed host composition was also critical to the light emission mechanism, and the contribution of the energy transfer process was maximized at 50:50 mixed host composition. Therefore, it was possible to manage the light emission process of the mixed host devices by managing the mixed host composition.

  16. A flexible top-emitting organic light-emitting diode on steel foil

    NASA Astrophysics Data System (ADS)

    Xie, Zhiyuan; Hung, Liang-Sun; Zhu, Furong

    2003-11-01

    An efficient flexible top-emitting organic light-emitting diode (FTOLED) was developed on a thin steel foil. The FTOLED was constructed on the spin-on-glass (SOG)-coated steel substrate with an organic stack of NPB/Alq 3 sandwiched by a highly reflective Ag anode and a semitransparent Sm cathode. An ultrathin plasma-polymerized hydrocarbon film (CF X) was interposed between the Ag anode and the NPB layer to enhance hole-injection, and an additional Alq 3 layer was overlaid on the Sm cathode to increase light output. The FTOLED showed a peak efficiency of 4.4 cd/A higher than 3.7 cd/A of a convention NPB/Alq 3-based bottom-emitting OLED.

  17. Basic Equations for the Modeling of Gallium Nitride (gan) High Electron Mobility Transistors (hemts)

    NASA Technical Reports Server (NTRS)

    Freeman, Jon C.

    2003-01-01

    Gallium nitride (GaN) is a most promising wide band-gap semiconductor for use in high-power microwave devices. It has functioned at 320 C, and higher values are well within theoretical limits. By combining four devices, 20 W has been developed at X-band. GaN High Electron Mobility Transistors (HEMTs) are unique in that the two-dimensional electron gas (2DEG) is supported not by intentional doping, but instead by polarization charge developed at the interface between the bulk GaN region and the AlGaN epitaxial layer. The polarization charge is composed of two parts: spontaneous and piezoelectric. This behavior is unlike other semiconductors, and for that reason, no commercially available modeling software exists. The theme of this document is to develop a self-consistent approach to developing the pertinent equations to be solved. A Space Act Agreement, "Effects in AlGaN/GaN HEMT Semiconductors" with Silvaco Data Systems to implement this approach into their existing software for III-V semiconductors, is in place (summer of 2002).

  18. Surface Preparation and Deposited Gate Oxides for Gallium Nitride Based Metal Oxide Semiconductor Devices

    PubMed Central

    Long, Rathnait D.; McIntyre, Paul C.

    2012-01-01

    The literature on polar Gallium Nitride (GaN) surfaces, surface treatments and gate dielectrics relevant to metal oxide semiconductor devices is reviewed. The significance of the GaN growth technique and growth parameters on the properties of GaN epilayers, the ability to modify GaN surface properties using in situ and ex situ processes and progress on the understanding and performance of GaN metal oxide semiconductor (MOS) devices are presented and discussed. Although a reasonably consistent picture is emerging from focused studies on issues covered in each of these topics, future research can achieve a better understanding of the critical oxide-semiconductor interface by probing the connections between these topics. The challenges in analyzing defect concentrations and energies in GaN MOS gate stacks are discussed. Promising gate dielectric deposition techniques such as atomic layer deposition, which is already accepted by the semiconductor industry for silicon CMOS device fabrication, coupled with more advanced physical and electrical characterization methods will likely accelerate the pace of learning required to develop future GaN-based MOS technology.

  19. Platinum nanoparticles on gallium nitride surfaces: effect of semiconductor doping on nanoparticle reactivity.

    PubMed

    Schäfer, Susanne; Wyrzgol, Sonja A; Caterino, Roberta; Jentys, Andreas; Schoell, Sebastian J; Hävecker, Michael; Knop-Gericke, Axel; Lercher, Johannes A; Sharp, Ian D; Stutzmann, Martin

    2012-08-01

    Platinum nanoparticles supported on n- and p-type gallium nitride (GaN) are investigated as novel hybrid systems for the electronic control of catalytic activity via electronic interactions with the semiconductor support. In situ oxidation and reduction were studied with high pressure photoemission spectroscopy. The experiments revealed that the underlying wide-band-gap semiconductor has a large influence on the chemical composition and oxygen affinity of supported nanoparticles under X-ray irradiation. For as-deposited Pt cuboctahedra supported on n-type GaN, a higher fraction of oxidized surface atoms was observed compared to cuboctahedral particles supported on p-type GaN. Under an oxygen atmosphere, immediate oxidation was recorded for nanoparticles on n-type GaN, whereas little oxidation was observed for nanoparticles on p-type GaN. Together, these results indicate that changes in the Pt chemical state under X-ray irradiation depend on the type of GaN doping. The strong interaction between the nanoparticles and the support is consistent with charge transfer of X-ray photogenerated free carriers at the semiconductor-nanoparticle interface and suggests that GaN is a promising wide-band-gap support material for photocatalysis and electronic control of catalysis.

  20. More Efficient Power Conversion for EVs: Gallium-Nitride Advanced Power Semiconductor and Packaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-02-01

    Broad Funding Opportunity Announcement Project: Delphi is developing power converters that are smaller and more energy efficient, reliable, and cost-effective than current power converters. Power converters rely on power transistors which act like a very precisely controlled on-off switch, controlling the electrical energy flowing through an electrical circuit. Most power transistors today use silicon (Si) semiconductors. However, Delphi is using semiconductors made with a thin layer of gallium-nitride (GaN) applied on top of the more conventional Si material. The GaN layer increases the energy efficiency of the power transistor and also enables the transistor to operate at much higher temperatures,more » voltages, and power-density levels compared to its Si counterpart. Delphi is packaging these high-performance GaN semiconductors with advanced electrical connections and a cooling system that extracts waste heat from both sides of the device to further increase the device’s efficiency and allow more electrical current to flow through it. When combined with other electronic components on a circuit board, Delphi’s GaN power transistor package will help improve the overall performance and cost-effectiveness of HEVs and EVs.« less

  1. Light emitting elastomer compositions and method of use

    DOEpatents

    McElhanon, James R.; Zifer, Thomas; Whinnery, LeRoy L.

    2004-11-23

    There is provided a light emitting device comprising a plurality of triboluminescent particles dispersed throughout an elastomeric body and activated by deforming the body in order to transfer mechanical energy to some portion of the particles. The light emitted by these mechanically excited particles is collected and directed into a light conduit and transmitted to a detector/indicator means.

  2. Evaluation of light-emitting diode beacon light fixtures : final report.

    DOT National Transportation Integrated Search

    2009-12-01

    Rotating beacons containing filament light sources have long been used on highway maintenance trucks : to indicate the presence of the truck to other drivers. Because of advances in light-emitting diode (LED) : technologies, flashing lights containin...

  3. Differential carrier lifetime and transport effects in electrically injected III-nitride light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Rashidi, A.; Nami, M.; Monavarian, M.; Aragon, A.; DaVico, K.; Ayoub, F.; Mishkat-Ul-Masabih, S.; Rishinaramangalam, A.; Feezell, D.

    2017-07-01

    This work describes a small-signal microwave method for determining the differential carrier lifetime and transport effects in electrically injected InGaN/GaN light-emitting diodes (LEDs). By considering the carrier diffusion, capture, thermionic escape, and recombination, the rate equations are used to derive an equivalent small-signal electrical circuit for the LEDs, from which expressions for the input impedance and modulation response are obtained. The expressions are simultaneously fit to the experimental data for the input impedance and modulation response for nonpolar InGaN/GaN micro-LEDs on free-standing GaN substrates. The fittings are used to extract the transport related circuit parameters and differential carrier lifetimes. The dependence of the parameters on the device diameter and current density is reported. We also derive approximations for the modulation response under low and high injection levels and show that the transport of carriers affects the modulation response of the device, especially at low injection levels. The methods presented are relevant to the design of high-speed LEDs for visible-light communication.

  4. Organic-Inorganic Hybrid Ruddlesden-Popper Perovskites: An Emerging Paradigm for High-Performance Light-Emitting Diodes.

    PubMed

    Liu, Xiao-Ke; Gao, Feng

    2018-05-03

    Recently, lead halide perovskite materials have attracted extensive interest, in particular, in the research field of solar cells. These materials are fascinating "soft" materials with semiconducting properties comparable to the best inorganic semiconductors like silicon and gallium arsenide. As one of the most promising perovskite family members, organic-inorganic hybrid Ruddlesden-Popper perovskites (HRPPs) offer rich chemical and structural flexibility for exploring excellent properties for optoelectronic devices, such as solar cells and light-emitting diodes (LEDs). In this Perspective, we present an overview of HRPPs on their structural characteristics, synthesis of pure HRPP compounds and thin films, control of their preferential orientations, and investigations of heterogeneous HRPP thin films. Based on these recent advances, future directions and prospects have been proposed. HRPPs are promising to open up a new paradigm for high-performance LEDs.

  5. Super-Lattice Light Emitting Diodes (SLEDS) on GaAs

    DTIC Science & Technology

    2016-03-31

    Super-Lattice Light Emitting Diodes (SLEDS) on GaAs Kassem Nabha1, Russel Ricker2, Rodney McGee1, Nick Waite1, John Prineas2, Sydney Provence2...infrared light emitting diodes (LEDs). Typically, the LED arrays are mated with CMOS read-in integrated circuit (RIIC) chips using flip-chip bonding. In...circuit (RIIC) chips using flip-chip bonding. This established technology is called Hybrid-super-lattice light emitting diodes (Hybrid- SLEDS). In

  6. A novel technique based on a plasma focus device for nano-porous gallium nitride formation on P-type silicon

    NASA Astrophysics Data System (ADS)

    Sharifi Malvajerdi, S.; Salar Elahi, A.; Habibi, M.

    2017-04-01

    A new deposition formation was observed with a Mather-type Plasma Focus Device (MPFD). MPFD was unitized to fabricate porous Gallium Nitride (GaN) on p-type Silicon (Si) substrate with a (100) crystal orientation for the first time in a deposition process. GaN was deposited on Si with 4 and 7 shots. The samples were subjected to a 3 phase annealing procedure. First, the semiconductors were annealed in the PFD with nitrogen plasma shots after their deposition. Second, a thermal chemical vapor deposition annealed the samples for 1 h at 1050 °C by nitrogen gas at a pressure of 1 Pa. Finally, an electric furnace annealed the samples for 1 h at 1150 °C with continuous flow of nitrogen. Porous GaN structures were observed by Field emission scanning electron microscopy and atomic force microscopy. Furthermore, X-Ray diffraction analysis was carried out to determine the crystallinity of GaN after the samples were annealed. Energy-Dispersive X-Ray Spectroscopy indicated the amount of gallium, nitrogen, and oxygen due to the self-oxidation of the samples. Photoluminescence spectroscopy revealed emissions at 2.94 eV and 3.39 eV, which shows that hexagonal wurtzite crystal structures were formed.

  7. Electronic structure descriptor for the discovery of narrow-band red-emitting phosphors

    DOE PAGES

    Wang, Zhenbin; Chu, Iek -Heng; Zhou, Fei; ...

    2016-05-09

    Narrow-band red-emitting phosphors are a critical component of phosphor-converted light-emitting diodes for highly efficient illumination-grade lighting. In this work, we report the discovery of a quantitative descriptor for narrow-band Eu 2+-activated emission identified through a comparison of the electronic structures of known narrow-band and broad-band phosphors. We find that a narrow emission bandwidth is characterized by a large splitting of more than 0.1 eV between the two highest Eu 2+ 4 f 7 bands. By incorporating this descriptor in a high-throughput first-principles screening of 2259 nitride compounds, we identify five promising new nitride hosts for Eu 2+-activated red-emitting phosphors thatmore » are predicted to exhibit good chemical stability, thermal quenching resistance, and quantum efficiency, as well as narrow-band emission. Lastly, our findings provide important insights into the emission characteristics of rare-earth activators in phosphor hosts and a general strategy to the discovery of phosphors with a desired emission peak and bandwidth.« less

  8. Electronic structure descriptor for the discovery of narrow-band red-emitting phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhenbin; Chu, Iek -Heng; Zhou, Fei

    Narrow-band red-emitting phosphors are a critical component of phosphor-converted light-emitting diodes for highly efficient illumination-grade lighting. In this work, we report the discovery of a quantitative descriptor for narrow-band Eu 2+-activated emission identified through a comparison of the electronic structures of known narrow-band and broad-band phosphors. We find that a narrow emission bandwidth is characterized by a large splitting of more than 0.1 eV between the two highest Eu 2+ 4 f 7 bands. By incorporating this descriptor in a high-throughput first-principles screening of 2259 nitride compounds, we identify five promising new nitride hosts for Eu 2+-activated red-emitting phosphors thatmore » are predicted to exhibit good chemical stability, thermal quenching resistance, and quantum efficiency, as well as narrow-band emission. Lastly, our findings provide important insights into the emission characteristics of rare-earth activators in phosphor hosts and a general strategy to the discovery of phosphors with a desired emission peak and bandwidth.« less

  9. GaN-based light-emitting diodes on various substrates: a critical review.

    PubMed

    Li, Guoqiang; Wang, Wenliang; Yang, Weijia; Lin, Yunhao; Wang, Haiyan; Lin, Zhiting; Zhou, Shizhong

    2016-05-01

    GaN and related III-nitrides have attracted considerable attention as promising materials for application in optoelectronic devices, in particular, light-emitting diodes (LEDs). At present, sapphire is still the most popular commercial substrate for epitaxial growth of GaN-based LEDs. However, due to its relatively large lattice mismatch with GaN and low thermal conductivity, sapphire is not the most ideal substrate for GaN-based LEDs. Therefore, in order to obtain high-performance and high-power LEDs with relatively low cost, unconventional substrates, which are of low lattice mismatch with GaN, high thermal conductivity and low cost, have been tried as substitutes for sapphire. As a matter of fact, it is not easy to obtain high-quality III-nitride films on those substrates for various reasons. However, by developing a variety of techniques, distincts progress has been made during the past decade, with high-performance LEDs being successfully achieved on these unconventional substrates. This review focuses on state-of-the-art high-performance GaN-based LED materials and devices on unconventional substrates. The issues involved in the growth of GaN-based LED structures on each type of unconventional substrate are outlined, and the fundamental physics behind these issues is detailed. The corresponding solutions for III-nitride growth, defect control, and chip processing for each type of unconventional substrate are discussed in depth, together with a brief introduction to some newly developed techniques in order to realize LED structures on unconventional substrates. This is very useful for understanding the progress in this field of physics. In this review, we also speculate on the prospects for LEDs on unconventional substrates.

  10. Hybrid light emitting transistors (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Muhieddine, Khalid; Ullah, Mujeeb; Namdas, Ebinazar B.; Burn, Paul L.

    2015-10-01

    Organic light-emitting diodes (OLEDs) are well studied and established in current display applications. Light-emitting transistors (LETs) have been developed to further simplify the necessary circuitry for these applications, combining the switching capabilities of a transistor with the light emitting capabilities of an OLED. Such devices have been studied using mono- and bilayer geometries and a variety of polymers [1], small organic molecules [2] and single crystals [3] within the active layers. Current devices can often suffer from low carrier mobilities and most operate in p-type mode due to a lack of suitable n-type organic charge carrier materials. Hybrid light-emitting transistors (HLETs) are a logical step to improve device performance by harnessing the charge carrier capabilities of inorganic semiconductors [4]. We present state of the art, all solution processed hybrid light-emitting transistors using a non-planar contact geometry [1, 5]. We will discuss HLETs comprised of an inorganic electron transport layer prepared from a sol-gel of zinc tin oxide and several organic emissive materials. The mobility of the devices is found between 1-5 cm2/Vs and they had on/off ratios of ~105. Combined with optical brightness and efficiencies of the order of 103 cd/m2 and 10-3-10-1 %, respectively, these devices are moving towards the performance required for application in displays. [1] M. Ullah, K. Tandy, S. D. Yambem, M. Aljada, P. L. Burn, P. Meredith, E. B. Namdas., Adv. Mater. 2013, 25, 53, 6213 [2] R. Capelli, S. Toffanin, G. Generali, H. Usta, A. Facchetti, M. Muccini, Nature Materials 2010, 9, 496 [3] T. Takenobu, S. Z. Bisri, T. Takahashi, M. Yahiro, C. Adachi, Y. Iwasa, Phys. Rev. Lett. 2008, 100, 066601 [4] H. Nakanotani, M. Yahiro, C. Adachi, K. Yano, Appl. Phys. Lett. 2007, 90, 262104 [5] K. Muhieddine, M. Ullah, B. N. Pal, P. Burn E. B. Namdas, Adv. Mater. 2014, 26,37, 6410

  11. Light emission in forward and reverse bias operation in OLED with amorphous silicon carbon nitride thin films

    NASA Astrophysics Data System (ADS)

    Reyes, R.; Cremona, M.; Achete, C. A.

    2011-01-01

    Amorphous silicon carbon nitride (a-SiC:N) thin films deposited by magnetron sputtering were used in the structure of an organic light emitting diode (OLED), obtaining an OLED operating in forward and reverse bias mode. The device consist of the heterojunction structure ITO/a-SiC:N/Hole Transport Layer (HTL)/ Electron Transport Layer (ETL)/a-SiC:N/Al. As hole transporting layer was used a thin film of 1-(3-methylphenyl)-1,2,3,4 tetrahydroquinoline - 6 - carboxyaldehyde - 1,1'- diphenylhydrazone (MTCD), while the tris(8-hydroxyquinoline aluminum) (Alq3) is used as electron transport and emitting layer. A significant increase in the voltage operation compared to the conventional ITO/MTCD/Alq3/Al structure was observed, so the onset of electroluminescence occurs at about 22 V in the forward and reverse bias mode of operation. The electroluminescence spectra is similar in both cases, only slightly shifted 0.14 eV to lower energies in relation to the conventional device.

  12. Glass-Based Transparent Conductive Electrode: Its Application to Visible-to-Ultraviolet Light-Emitting Diodes.

    PubMed

    Lee, Tae Ho; Kim, Kyeong Heon; Lee, Byeong Ryong; Park, Ju Hyun; Schubert, E Fred; Kim, Tae Geun

    2016-12-28

    Nitride-based ultraviolet light-emitting diodes (UV LEDs) are promising replacements for conventional UV lamps. However, the external quantum efficiency of UV LEDs is much lower than for visible LEDs due to light absorption in the p-GaN contact and electrode layers, along with p-AlGaN growth and doping issues. To minimize such absorption, we should obtain direct ohmic contact to p-AlGaN using UV-transparent ohmic electrodes and not use p-GaN as a contact layer. Here, we propose a glass-based transparent conductive electrode (TCE) produced using electrical breakdown (EBD) of an AlN thin film, and we apply the thin film to four (Al)GaN-based visible and UV LEDs with thin buffer layers for current spreading and damage protection. Compared to LEDs with optimal ITO contacts, our LEDs with AlN TCEs exhibit a lower forward voltage, higher light output power, and brighter light emission for all samples. The ohmic transport mechanism for current injection and spreading from the metal electrode to p-(Al)GaN layer via AlN TCE is also investigated by analyzing the p-(Al)GaN surface before and after EBD.

  13. Low-cost growth of magnesium doped gallium nitride thin films by sol-gel spin coating method

    NASA Astrophysics Data System (ADS)

    Amin, N. Mohd; Ng, S. S.

    2018-01-01

    Low-cost sol-gel spin coating growth of magnesium (Mg) doped gallium nitride (GaN) thin films with different concentrations of Mg was reported. The effects of the Mg concentration on the structural, surface morphology, elemental compositions, lattice vibrational, and electrical properties of the deposited films were investigated. X-ray diffraction results show that the Mg-doped samples have wurtzite structure with preferred orientation of GaN(002). The crystallite size decreases and the surface of the films with pits/pores were formed, while the crystalline quality of the films degraded as the Mg concentration increases from 2% to 6. %. All the Raman active phonon modes of the wurtzite GaN were observed while a broad peak attributed to the Mg-related lattice vibrational mode was detected at 669 cm-1. Hall effect results show that the resistivity of the thin films decreases while the hole concentration and hall mobility of thin films increases as the concentration of the Mg increases.

  14. Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact

    NASA Astrophysics Data System (ADS)

    Leonard, J. T.; Young, E. C.; Yonkee, B. P.; Cohen, D. A.; Margalith, T.; DenBaars, S. P.; Speck, J. S.; Nakamura, S.

    2015-08-01

    We report on a III-nitride vertical-cavity surface-emitting laser (VCSEL) with a III-nitride tunnel junction (TJ) intracavity contact. The violet nonpolar VCSEL employing the TJ is compared to an equivalent VCSEL with a tin-doped indium oxide (ITO) intracavity contact. The TJ VCSEL shows a threshold current density (Jth) of ˜3.5 kA/cm2, compared to the ITO VCSEL Jth of 8 kA/cm2. The differential efficiency of the TJ VCSEL is also observed to be significantly higher than that of the ITO VCSEL, reaching a peak power of ˜550 μW, compared to ˜80 μW for the ITO VCSEL. Both VCSELs display filamentary lasing in the current aperture, which we believe to be predominantly a result of local variations in contact resistance, which may induce local variations in refractive index and free carrier absorption. Beyond the analyses of the lasing characteristics, we discuss the molecular-beam epitaxy (MBE) regrowth of the TJ, as well as its unexpected performance based on band-diagram simulations. Furthermore, we investigate the intrinsic advantages of using a TJ intracavity contact in a VCSEL using a 1D mode profile analysis to approximate the threshold modal gain and general loss contributions in the TJ and ITO VCSEL.

  15. Structural, electrical and optical characterization of high brightness phosphor-free white light emitting diodes

    NASA Astrophysics Data System (ADS)

    Omiya, Hiromasa

    Much interest currently exists in GaN and related materials for applications such as light-emitting devices operating in the amber to ultraviolet range. Solid-state lighting (SSL) using these materials is widely being investigated worldwide, especially due to their high-energy efficiency and its impact on environmental issues. A new approach for solid-state lighting uses phosphor-free white light emitting diodes (LEDs) that consist of blue, green, and red quantum wells (QW), all in a single device. This approach leads to improved color rendering, and directionality, compared to the conventional white LEDs that use yellow phosphor on blue or ultraviolet emitters. Improving the brightness of these phosphor-free white LEDs should enhance and accelerate the development of SSL technology. The main objective of the research reported in this dissertation is to provide a comprehensive understanding of the nature of the multiple quantum wells used in phosphor-free white LEDs. This dissertation starts with an introduction to lighting history, the fundamental concepts of nitride semiconductors, and the evolution of LED technology. Two important challenges in LED technology today are metal-semiconductor contacts and internal piezoelectric fields present in quantum well structures. Thus, the main portion of this dissertation consists of three parts dealing with metal-semiconductor interfaces, single quantum well structures, and multiple quantum well devices. Gold-nickel alloys are widely used as contacts to the p-region of LEDs. We have performed a detailed study for its evolution under standard annealing steps. The atomic arrangement of gold at its interface with GaN gives a clear explanation for the improved ohmic contact performance. We next focus on the nature of InGaN QWs. The dynamic response of the QWs was studied with electron holography and time-resolved cathodoluminescence. Establishing the correlation between energy band structure and the light emission spectra

  16. Long Persistent Light Emitting Diode Indicators

    ERIC Educational Resources Information Center

    Jia, Dongdong; Ma, Yiwei; Hunter, D. N.

    2007-01-01

    An undergraduate laboratory was designed for undergraduate students to make long persistent light emitting diode (LED) indicators using phosphors. Blue LEDs, which emit at 465 nm, were characterized and used as an excitation source. Long persistent phosphors, SrAl[subscript 2]O[subscript 4]:Eu[superscript 2+],Dy[superscript 3+] (green) and…

  17. White-light-emitting supramolecular gels.

    PubMed

    Praveen, Vakayil K; Ranjith, Choorikkat; Armaroli, Nicola

    2014-01-07

    Let there be light, let it be white: Recent developments in the use of chromophore-based gels as scaffolds for the assembly of white-light-emitting soft materials have been significant. The main advantage of this approach lies in the facile accommodation of selected luminescent components within the gel. Excitation-energy-transfer processes between these components ultimately generate the desired light output. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Compact, Interactive Electric Vehicle Charger: Gallium-Nitride Switch Technology for Bi-directional Battery-to-Grid Charger Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-10-01

    ADEPT Project: HRL Laboratories is using gallium nitride (GaN) semiconductors to create battery chargers for electric vehicles (EVs) that are more compact and efficient than traditional EV chargers. Reducing the size and weight of the battery charger is important because it would help improve the overall performance of the EV. GaN semiconductors process electricity faster than the silicon semiconductors used in most conventional EV battery chargers. These high-speed semiconductors can be paired with lighter-weight electrical circuit components, which helps decrease the overall weight of the EV battery charger. HRL Laboratories is combining the performance advantages of GaN semiconductors with anmore » innovative, interactive battery-to-grid energy distribution design. This design would support 2-way power flow, enabling EV battery chargers to not only draw energy from the power grid, but also store and feed energy back into it.« less

  19. High extraction efficiency ultraviolet light-emitting diode

    DOEpatents

    Wierer, Jonathan; Montano, Ines; Allerman, Andrew A.

    2015-11-24

    Ultraviolet light-emitting diodes with tailored AlGaN quantum wells can achieve high extraction efficiency. For efficient bottom light extraction, parallel polarized light is preferred, because it propagates predominately perpendicular to the QW plane and into the typical and more efficient light escape cones. This is favored over perpendicular polarized light that propagates along the QW plane which requires multiple, lossy bounces before extraction. The thickness and carrier density of AlGaN QW layers have a strong influence on the valence subband structure, and the resulting optical polarization and light extraction of ultraviolet light-emitting diodes. At Al>0.3, thinner QW layers (<2.5 nm are preferred) result in light preferentially polarized parallel to the QW plane. Also, active regions consisting of six or more QWs, to reduce carrier density, and with thin barriers, to efficiently inject carriers in all the QWs, are preferred.

  20. The Light-Emitting Diode as a Light Detector

    ERIC Educational Resources Information Center

    Baird, William H.; Hack, W. Nathan; Tran, Kiet; Vira, Zeeshan; Pickett, Matthew

    2011-01-01

    A light-emitting diode (LED) and operational amplifier can be used as an affordable method to provide a digital output indicating detection of an intense light source such as a laser beam or high-output LED. When coupled with a microcontroller, the combination can be used as a multiple photogate and timer for under $50. A similar circuit is used…

  1. Efficient and bright organic light-emitting diodes on single-layer graphene electrodes

    NASA Astrophysics Data System (ADS)

    Li, Ning; Oida, Satoshi; Tulevski, George S.; Han, Shu-Jen; Hannon, James B.; Sadana, Devendra K.; Chen, Tze-Chiang

    2013-08-01

    Organic light-emitting diodes are emerging as leading technologies for both high quality display and lighting. However, the transparent conductive electrode used in the current organic light-emitting diode technologies increases the overall cost and has limited bendability for future flexible applications. Here we use single-layer graphene as an alternative flexible transparent conductor, yielding white organic light-emitting diodes with brightness and efficiency sufficient for general lighting. The performance improvement is attributed to the device structure, which allows direct hole injection from the single-layer graphene anode into the light-emitting layers, reducing carrier trapping induced efficiency roll-off. By employing a light out-coupling structure, phosphorescent green organic light-emitting diodes exhibit external quantum efficiency >60%, while phosphorescent white organic light-emitting diodes exhibit external quantum efficiency >45% at 10,000 cd m-2 with colour rendering index of 85. The power efficiency of white organic light-emitting diodes reaches 80 lm W-1 at 3,000 cd m-2, comparable to the most efficient lighting technologies.

  2. Gallium nitride vertical power devices on foreign substrates: a review and outlook

    NASA Astrophysics Data System (ADS)

    Zhang, Yuhao; Dadgar, Armin; Palacios, Tomás

    2018-07-01

    Vertical gallium nitride (GaN) power devices have attracted increased attention due to their superior high-voltage and high-current capacity as well as easier thermal management than lateral GaN high electron mobility transistors. Vertical GaN devices are promising candidates for next-generation power electronics in electric vehicles, data centers, smart grids and renewable energy process. The use of low-cost foreign substrates such as silicon (Si) substrates, instead of the expensive free-standing GaN substrates, could greatly trim material cost and enable large-diameter wafer processing while maintaining high device performance. This review illustrates recent progress in material epitaxy, device design, device physics and processing technologies for the development of vertical GaN power devices on low-cost foreign substrates. Although the device technologies are still at the early stage of development, state-of-the-art vertical GaN-on-Si power diodes have already shown superior Baliga’s figure of merit than commercial SiC and Si power devices at the voltage classes beyond 600 V. Furthermore, we unveil the design space of vertical GaN power devices on native and different foreign substrates, from the analysis of the impact of dislocation and defects on device performance. We conclude by identifying the application space, current challenges and exciting research opportunities in this very dynamic research field.

  3. Enhanced Performance of GaN-Based Green Light-Emitting Diodes with Gallium-Doped ZnO Transparent Conducting Oxide

    NASA Astrophysics Data System (ADS)

    Oh, Min-Suk; Seo, Inseok

    2014-04-01

    Ga-doped ZnO (GZO) transparent conducting oxide was grown by oxygen plasma-enhanced pulsed laser deposition. GZO grown in the presence of oxygen radicals had resistivity of 1 × 10-3 Ω cm and average visible (500-700 nm) transmittance of 92.5%. A low specific contact resistance of 6.5 × 10-4 Ω cm2 of GZO on p-GaN was achieved by excimer laser annealing (ELA) treatment of p-GaN before GZO electrode deposition. The ELA-treated light emitting diode (LED) fabricated with the GZO electrode as a current-spreading layer resulted in light-output power enhanced by 56.2% at 100 mA compared with that fabricated with a conventional Ni/Au metal electrode. The high-light output and low degradation of light-output power were attributed to the decrease in contact resistance between the p-GaN layer and the GZO electrode and uniform current spreading over the p-GaN layer. In addition, low contact resistance results in a decrease of self-heat generation during current drive.

  4. Towards fully spray coated organic light emitting devices

    NASA Astrophysics Data System (ADS)

    Gilissen, Koen; Stryckers, Jeroen; Manca, Jean; Deferme, Wim

    2014-10-01

    Pi-conjugated polymer light emitting devices have the potential to be the next generation of solid state lighting. In order to achieve this goal, a low cost, efficient and large area production process is essential. Polymer based light emitting devices are generally deposited using techniques based on solution processing e.g.: spin coating, ink jet printing. These techniques are not well suited for cost-effective, high throughput, large area mass production of these organic devices. Ultrasonic spray deposition however, is a deposition technique that is fast, efficient and roll to roll compatible which can be easily scaled up for the production of large area polymer light emitting devices (PLEDs). This deposition technique has already successfully been employed to produce organic photovoltaic devices (OPV)1. Recently the electron blocking layer PEDOT:PSS2 and metal top contact3 have been successfully spray coated as part of the organic photovoltaic device stack. In this study, the effects of ultrasonic spray deposition of polymer light emitting devices are investigated. For the first time - to our knowledge -, spray coating of the active layer in PLED is demonstrated. Different solvents are tested to achieve the best possible spray-able dispersion. The active layer morphology is characterized and optimized to produce uniform films with optimal thickness. Furthermore these ultrasonic spray coated films are incorporated in the polymer light emitting device stack to investigate the device characteristics and efficiency. Our results show that after careful optimization of the active layer, ultrasonic spray coating is prime candidate as deposition technique for mass production of PLEDs.

  5. Stable blue phosphorescent organic light emitting devices

    DOEpatents

    Forrest, Stephen R.; Thompson, Mark; Giebink, Noel

    2014-08-26

    Novel combination of materials and device architectures for organic light emitting devices is provided. An organic light emitting device, is provided, having an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer includes a host and a phosphorescent emissive dopant having a peak emissive wavelength less than 500 nm, and a radiative phosphorescent lifetime less than 1 microsecond. Preferably, the phosphorescent emissive dopant includes a ligand having a carbazole group.

  6. Hot electron light emission in gallium arsenide/aluminium(x) gallium(1-x) arsenic heterostructures

    NASA Astrophysics Data System (ADS)

    Teke, Ali

    In this thesis we have demonstrated the operation of a novel tunable wavelength surface light emitting device. The device is based on a p-GaAs, and n-Ga1- xAlxAs heterojunction containing an inversion layer on the p- side, and GaAs quantum wells on the n- side, and, is referred to as HELLISH-2 (Hot Electron Light Emitting and Lasing in Semiconductor Heterostructure-Type 2). The devices utilise hot electron longitudinal transport and, therefore, light emission is independent of the polarity of the applied voltage. The wavelength of the emitted light can be tuned with the applied bias from GaAs band-to-band transition in the inversion layer to e1-hh1 transition in the quantum wells. In this work tunable means that the device can be operated at either single or multiple wavelength emission. The operation of the device requires only two diffused in point contacts. In this project four HELLISH-2 samples coded as ES1, ES2, ES6 and QT919 have been studied. First three samples were grown by MBE and the last one was grown by MOVPE techniques. ES1 was designed for single and double wavelength operation. ES2 was a control sample used to compare our results with previous work on HELLISH-2 and ES6 was designed for single, double and triple wavelength operation. Theoretical modelling of the device operation was carried out and compared with the experimental results. HELLISH-2 structure was optimised for low threshold and high efficiency operation as based on our model calculations. The last sample QT919 has been designed as an optimised device for single and double wavelength operation like ES1. HELLISH-2 has a number of advantages over the conventional light emitters, resulting in some possible applications, such as light logic gates and wavelength division multiplexing in optoelectronic.

  7. Polarized micro-cavity organic light-emitting devices.

    PubMed

    Park, Byoungchoo; Kim, Mina; Park, Chan Hyuk

    2009-04-27

    We present the results of a study of light emissions from a polarized micro-cavity Organic Light-Emitting Device (OLED), which consisted of a flexible, anisotropic one-dimensional (1-D) photonic crystal (PC) film substrate. It is shown that luminous Electroluminescent (EL) emissions from the polarized micro-cavity OLED were produced at relatively low operating voltages. It was also found that the peak wavelengths of the emitted EL light corresponded to the two split eigen modes of the high-energy band edges of the anisotropic PC film, with a strong dependence on the polarization state of the emitting light. For polarization along the ordinary axis of the anisotropic PC film, the optical split micro-cavity modes occurred at the longer high-energy photonic band gap (PBG) edge, while for polarization along the extraordinary axis, the split micro-cavity modes occurred at the shorter high-energy PBG edge, with narrow bandwidths. We demonstrated that the polarization and emission mode of the micro-cavity OLED may be selected by choosing the appropriate optical axis of the anisotropic 1-D PC film.

  8. Electron-phonon relaxation and excited electron distribution in gallium nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukov, V. P.; Donostia International Physics Center; Tyuterev, V. G., E-mail: valtyut00@mail.ru

    2016-08-28

    We develop a theory of energy relaxation in semiconductors and insulators highly excited by the long-acting external irradiation. We derive the equation for the non-equilibrium distribution function of excited electrons. The solution for this function breaks up into the sum of two contributions. The low-energy contribution is concentrated in a narrow range near the bottom of the conduction band. It has the typical form of a Fermi distribution with an effective temperature and chemical potential. The effective temperature and chemical potential in this low-energy term are determined by the intensity of carriers' generation, the speed of electron-phonon relaxation, rates ofmore » inter-band recombination, and electron capture on the defects. In addition, there is a substantial high-energy correction. This high-energy “tail” largely covers the conduction band. The shape of the high-energy “tail” strongly depends on the rate of electron-phonon relaxation but does not depend on the rates of recombination and trapping. We apply the theory to the calculation of a non-equilibrium distribution of electrons in an irradiated GaN. Probabilities of optical excitations from the valence to conduction band and electron-phonon coupling probabilities in GaN were calculated by the density functional perturbation theory. Our calculation of both parts of distribution function in gallium nitride shows that when the speed of the electron-phonon scattering is comparable with the rate of recombination and trapping then the contribution of the non-Fermi “tail” is comparable with that of the low-energy Fermi-like component. So the high-energy contribution can essentially affect the charge transport in the irradiated and highly doped semiconductors.« less

  9. Improved performance of GaN based light emitting diodes with ex-situ sputtered AlN nucleation layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shuo-Wei; Epistar Corporation, Hsinchu 300, Taiwan; Li, Heng

    The crystal quality, electrical and optical properties of GaN based light emitting diodes (LEDs) with ex-situ sputtered physical vapor deposition (PVD) aluminum nitride (AlN) nucleation layers were investigated. It was found that the crystal quality in terms of defect density and x-ray diffraction linewidth was greatly improved in comparison to LEDs with in-situ low temperature GaN nucleation layer. The light output power was 3.7% increased and the reverse bias voltage of leakage current was twice on LEDs with ex-situ PVD AlN nucleation layers. However, larger compressive strain was discovered in LEDs with ex-situ PVD AlN nucleation layers. The study showsmore » the potential and constrain in applying ex-situ PVD AlN nucleation layers to fabricate high quality GaN crystals in various optoelectronics.« less

  10. Broadband mid-infrared superlattice light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Ricker, R. J.; Provence, S. R.; Norton, D. T.; Boggess, T. F.; Prineas, J. P.

    2017-05-01

    InAs/GaSb type-II superlattice light-emitting diodes were fabricated to form a device that provides emission over the entire 3-5 μm mid-infrared transmission window. Variable bandgap emission regions were coupled together using tunnel junctions to emit at peak wavelengths of 3.3 μm, 3.5 μm, 3.7 μm, 3.9 μm, 4.1 μm, 4.4 μm, 4.7 μm, and 5.0 μm. Cascading the structure recycles the electrons in each emission region to emit several wavelengths simultaneously. At high current densities, the light-emitting diode spectra broadened into a continuous, broadband spectrum that covered the entire mid-infrared band. When cooled to 77 K, radiances of over 1 W/cm2 sr were achieved, demonstrating apparent temperatures above 1000 K over the 3-5 μm band. InAs/GaSb type-II superlattices are capable of emitting from 3 μm to 30 μm, and the device design can be expanded to include longer emission wavelengths.

  11. Light Extraction From Solution-Based Processable Electrophosphorescent Organic Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Krummacher, Benjamin C.; Mathai, Mathew; So, Franky; Choulis, Stelios; Choong, And-En, Vi

    2007-06-01

    Molecular dye dispersed solution processable blue emitting organic light-emitting devices have been fabricated and the resulting devices exhibit efficiency as high as 25 cd/A. With down-conversion phosphors, white emitting devices have been demonstrated with peak efficiency of 38 cd/A and luminous efficiency of 25 lm/W. The high efficiencies have been a product of proper tuning of carrier transport, optimization of the location of the carrier recombination zone and, hence, microcavity effect, efficient down-conversion from blue to white light, and scattering/isotropic remission due to phosphor particles. An optical model has been developed to investigate all these effects. In contrast to the common misunderstanding that light out-coupling efficiency is about 22% and independent of device architecture, our device data and optical modeling results clearly demonstrated that the light out-coupling efficiency is strongly dependent on the exact location of the recombination zone. Estimating the device internal quantum efficiencies based on external quantum efficiencies without considering the device architecture could lead to erroneous conclusions.

  12. Significant improvement in the electrical characteristics of Schottky barrier diodes on molecularly modified Gallium Nitride surfaces

    NASA Astrophysics Data System (ADS)

    Garg, Manjari; Naik, Tejas R.; Pathak, C. S.; Nagarajan, S.; Rao, V. Ramgopal; Singh, R.

    2018-04-01

    III-Nitride semiconductors face the issue of localized surface states, which causes fermi level pinning and large leakage current at the metal semiconductor interface, thereby degrading the device performance. In this work, we have demonstrated the use of a Self-Assembled Monolayer (SAM) of organic molecules to improve the electrical characteristics of Schottky barrier diodes (SBDs) on n-type Gallium Nitride (n-GaN) epitaxial films. The electrical characteristics of diodes were improved by adsorption of SAM of hydroxyl-phenyl metallated porphyrin organic molecules (Zn-TPPOH) onto the surface of n-GaN. SAM-semiconductor bonding via native oxide on the n-GaN surface was confirmed using X-ray photoelectron spectroscopy measurements. Surface morphology and surface electronic properties were characterized using atomic force microscopy and Kelvin probe force microscopy. Current-voltage characteristics of different metal (Cu, Ni) SBDs on bare n-GaN were compared with those of Cu/Zn-TPPOH/n-GaN and Ni/Zn-TPPOH/n-GaN SBDs. It was found that due to the molecular monolayer, the surface potential of n-GaN was decreased by ˜350 mV. This caused an increase in the Schottky barrier height of Cu and Ni SBDs from 1.13 eV to 1.38 eV and 1.07 eV to 1.22 eV, respectively. In addition to this, the reverse bias leakage current was reduced by 3-4 orders of magnitude for both Cu and Ni SBDs. Such a significant improvement in the electrical performance of the diodes can be very useful for better device functioning.

  13. Ultraviolet light-absorbing and emitting diodes consisting of a p-type transparent-semiconducting NiO film deposited on an n-type GaN homoepitaxial layer

    NASA Astrophysics Data System (ADS)

    Nakai, Hiroshi; Sugiyama, Mutsumi; Chichibu, Shigefusa F.

    2017-05-01

    Gallium nitride (GaN) and related (Al,Ga,In)N alloys provide practical benefits in the production of light-emitting diodes (LEDs) and laser diodes operating in ultraviolet (UV) to green wavelength regions. However, obtaining low resistivity p-type AlN or AlGaN of large bandgap energies (Eg) is a critical issue in fabricating UV and deep UV-LEDs. NiO is a promising candidate for useful p-type transparent-semiconducting films because its Eg is 4.0 eV and it can be doped into p-type conductivity of sufficiently low resistivity. By using these technologies, heterogeneous junction diodes consisting of a p-type transparent-semiconducting polycrystalline NiO film on an n-type single crystalline GaN epilayer on a low threading-dislocation density, free-standing GaN substrate were fabricated. The NiO film was deposited by using the conventional RF-sputtering method, and the GaN homoepitaxial layer was grown by metalorganic vapor phase epitaxy. They exhibited a significant photovoltaic effect under UV light and also exhibited an electroluminescence peak at 3.26 eV under forward-biased conditions. From the conduction and valence band (EV) discontinuities, the NiO/GaN heterointerface is assigned to form a staggered-type (TYPE-II) band alignment with the EV of NiO higher by 2.0 eV than that of GaN. A rectifying property that is consistent with the proposed band diagram was observed in the current-voltage characteristics. These results indicate that polycrystalline NiO functions as a hole-extracting and injecting layer of UV optoelectronic devices.

  14. III-V aresenide-nitride semiconductor materials and devices

    NASA Technical Reports Server (NTRS)

    Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)

    1997-01-01

    III-V arsenide-nitride semiconductor crystals, methods for producing such crystals and devices employing such crystals. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.

  15. Light-emitting block copolymers composition, process and use

    DOEpatents

    Ferraris, John P.; Gutierrez, Jose J.

    2006-11-14

    Generally, and in one form, the present invention is a composition of light-emitting block copolymer. In another form, the present invention is a process producing a light-emitting block copolymers that intends polymerizing a first di(halo-methyl) aromatic monomer compound in the presence of an anionic initiator and a base to form a polymer and contacting a second di(halo-methyl) aromatic monomer compound with the polymer to form a homopolymer or block copolymer wherein the block copolymer is a diblock, triblock, or star polymer. In yet another form, the present invention is an electroluminescent device comprising a light-emitting block copolymer, wherein the electroluminescent device is to be used in the manufacturing of optical and electrical devices.

  16. Oxycarbonitride phosphors and light emitting devices using the same

    DOEpatents

    Li, Yuanqiang; Romanelli, Michael Dennis; Tian, Yongchi

    2013-10-08

    Disclosed herein is a novel family of oxycarbidonitride phosphor compositions and light emitting devices incorporating the same. Within the sextant system of M--Al--Si--O--N--C--Ln and quintuplet system of M--Si--O--N--C--Ln (M=alkaline earth element, Ln=rare earth element), the phosphors are composed of either one single crystalline phase or two crystalline phases with high chemical and thermal stability. In certain embodiments, the disclosed phosphor of silicon oxycarbidonitrides emits green light at wavelength between 530-550 nm. In further embodiments, the disclosed phosphor compositions emit blue-green to yellow light in a wavelength range of 450-650 nm under near-UV and blue light excitation.

  17. Oxycarbonitride phosphors and light emitting devices using the same

    DOEpatents

    Li, Yuanqiang; Romanelli, Michael Dennis; Tian, Yongchi

    2014-07-08

    Disclosed herein is a novel family of oxycarbonitride phosphor compositions and light emitting devices incorporating the same. Within the sextant system of M--Al--Si--O--N--C--Ln and quintuplet system of M--Si--O--N--C--Ln (M=alkaline earth element, Ln=rare earth element), the phosphors are composed of either one single crystalline phase or two crystalline phases with high chemical and thermal stability. In certain embodiments, the disclosed phosphor of silicon oxycarbonitrides emits green light at wavelength between 530-550 nm. In further embodiments, the disclosed phosphor compositions emit blue-green to yellow light in a wavelength range of 450-650 nm under near-UV and blue light excitation.

  18. Organic emitters: Light-emitting fabrics

    NASA Astrophysics Data System (ADS)

    Ortí, Enrique; Bolink, Henk J.

    2015-04-01

    Light-emitting fibres that suit integration with textiles are prepared by dip-coating a steel wire with an electroluminescent material and then cleverly wrapping the structure with a carbon nanotube sheet that functions as a transparent electrode.

  19. Combinational light emitting diode-high frequency focused ultrasound treatment for HeLa cell.

    PubMed

    Choe, Se-Woon; Park, Kitae; Park, Chulwoo; Ryu, Jaemyung; Choi, Hojong

    2017-12-01

    Light sources such as laser and light emitting diode or ultrasound devices have been widely used for cancer therapy and regenerative medicines, since they are more cost-effective and less harmful than radiation therapy, chemotherapy or magnetic treatment. Compared to laser and low intensity ultrasound techniques, light emitting diode and high frequency focused ultrasound shows enhanced therapeutic effects, especially for small tumors. We propose combinational light emitting diode-high frequency focused ultrasound treatment for human cervical cancer HeLa cells. Individual red, green, and blue light emitting diode light only, high frequency focused ultrasound only, or light emitting diode light combined with high frequency focused ultrasound treatments were applied in order to characterize the responses of HeLa cells. Cell density exposed by blue light emitting diode light combined with high frequency focused ultrasound (2.19 ± 0.58%) was much lower than that of cells exposed by red and green light emitting diode lights (81.71 ± 9.92% and 61.81 ± 4.09%), blue light emitting diode light (11.19 ± 2.51%) or high frequency focused ultrasound only (9.72 ± 1.04%). We believe that the proposed combinational blue light emitting diode-high frequency focused ultrasound treatment could have therapeutic benefits to alleviate cancer cell proliferation.

  20. Nanocluster-based white-light-emitting material employing surface tuning

    DOEpatents

    Wilcoxon, Jess P [Albuquerque, NM; Abrams, Billie L [Albuquerque, NM; Thoma, Steven G [Albuquerque, NM

    2007-06-26

    A method for making a nanocrystal-based material capable of emitting light over a sufficiently broad spectral range to appear white. Surface-modifying ligands are used to shift and broaden the emission of semiconductor nanocrystals to produce nanoparticle-based materials that emit white light.

  1. Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard, J. T., E-mail: jtleona01@gmail.com; Young, E. C.; Yonkee, B. P.

    2015-08-31

    We report on a III-nitride vertical-cavity surface-emitting laser (VCSEL) with a III-nitride tunnel junction (TJ) intracavity contact. The violet nonpolar VCSEL employing the TJ is compared to an equivalent VCSEL with a tin-doped indium oxide (ITO) intracavity contact. The TJ VCSEL shows a threshold current density (J{sub th}) of ∼3.5 kA/cm{sup 2}, compared to the ITO VCSEL J{sub th} of 8 kA/cm{sup 2}. The differential efficiency of the TJ VCSEL is also observed to be significantly higher than that of the ITO VCSEL, reaching a peak power of ∼550 μW, compared to ∼80 μW for the ITO VCSEL. Both VCSELs display filamentary lasing inmore » the current aperture, which we believe to be predominantly a result of local variations in contact resistance, which may induce local variations in refractive index and free carrier absorption. Beyond the analyses of the lasing characteristics, we discuss the molecular-beam epitaxy (MBE) regrowth of the TJ, as well as its unexpected performance based on band-diagram simulations. Furthermore, we investigate the intrinsic advantages of using a TJ intracavity contact in a VCSEL using a 1D mode profile analysis to approximate the threshold modal gain and general loss contributions in the TJ and ITO VCSEL.« less

  2. Polarization of edge emission from III-nitride light emitting diodes of emission wavelength from 395 to 455 nm

    NASA Astrophysics Data System (ADS)

    Jia, Chuanyu; Yu, Tongjun; Mu, Sen; Pan, Yaobo; Yang, Zhijian; Chen, Zhizhong; Qin, Zhixin; Zhang, Guoyi

    2007-05-01

    Polarization-resolved edge-emitting electroluminescence of InGaN /GaN multiple quantum well (MQW) light emitting diodes (LEDs) from 395to455nm was measured. Polarization ratio decreased from 3.2 of near-ultraviolet LEDs (395nm) to 1.9 of blue LEDs (455nm). Based on TE mode dominant emissions in InGaN /GaN MQWs, compressive strain in well region favors TE mode, indium induced quantum-dot-like behavior leads to an increased TM component. As wavelength increased, indium enhanced quantum-dot-like behavior became obvious and E ‖C electroluminescence signal increased thus lower polarization ratio. Electroluminescence spectrum shifts confirmed that quantum dotlike behaviors rather than strain might be dominant in modifying luminescence mode of InGaN /GaN MQWs from near ultraviolet to blue.

  3. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting

    NASA Technical Reports Server (NTRS)

    Goins, G. D.; Yorio, N. C.; Sanwo, M. M.; Brown, C. S.; Sager, J. C. (Principal Investigator)

    1997-01-01

    Red light-emitting diodes (LEDs) are a potential light source for growing plants in spaceflight systems because of their safety, small mass and volume, wavelength specificity, and longevity. Despite these attractive features, red LEDs must satisfy requirements for plant photosynthesis and photomorphogenesis for successful growth and seed yield. To determine the influence of gallium aluminium arsenide (GaAlAs) red LEDs on wheat photomorphogenesis, photosynthesis, and seed yield, wheat (Triticum aestivum L., cv. 'USU-Super Dwarf') plants were grown under red LEDs and compared to plants grown under daylight fluorescent (white) lamps and red LEDs supplemented with either 1% or 10% blue light from blue fluorescent (BF) lamps. Compared to white light-grown plants, wheat grown under red LEDs alone demonstrated less main culm development during vegetative growth through preanthesis, while showing a longer flag leaf at 40 DAP and greater main culm length at final harvest (70 DAP). As supplemental BF light was increased with red LEDs, shoot dry matter and net leaf photosynthesis rate increased. At final harvest, wheat grown under red LEDs alone displayed fewer subtillers and a lower seed yield compared to plants grown under white light. Wheat grown under red LEDs+10% BF light had comparable shoot dry matter accumulation and seed yield relative to wheat grown under white light. These results indicate that wheat can complete its life cycle under red LEDs alone, but larger plants and greater amounts of seed are produced in the presence of red LEDs supplemented with a quantity of blue light.

  4. Modulating dual-wavelength multiple quantum wells in white light emitting diodes to suppress efficiency droop and improve color rendering index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yukun; Wang, Shuai; Zheng, Min

    2015-10-14

    In this paper, gallium nitride (GaN) based white light-emitting diodes (WLEDs) with modulated quantities of blue (In{sub 0.15}Ga{sub 0.85}N) quantum wells (QWs) and cyan QWs (In{sub 0.18}Ga{sub 0.82}N) in multiple QW (MQW) structures have been investigated numerically and experimentally. It is demonstrated that the optical performance of LEDs is sensitive to the quantities of cyan QWs in dual-wavelength MQW structures. Compared to the LEDs with respective 0, 4, and 8 cyan QWs (12 QWs in total), the optical performance of the sample with 6 cyan QWs is the best. The deterioration of the optical performance in the sample with lessmore » (4 pairs) cyan QWs or more (8 pairs) cyan QWs than 6 cyan QWs may be ascribed to weakened reservoir effect or more defects induced. Compared to conventional blue LEDs (12 blue QWs), the sample with 6 cyan QWs could effectively suppress the efficiency droop (the experimental droop ratio decreases from 50.3% to 39.5% at 80 A/cm{sup 2}) and significantly improve the color rendering index (CRI, increases from 66.4 to 77.0) simultaneously. We attribute the droop suppression to the strengthened reservoir effect and carrier confinement of deeper QWs (higher indium composition) incorporated in the dual-wavelength MQW structures, which lead to the better hole spreading and enhanced radiative recombination. Meanwhile, the remarkable experimental CRI improvement may result from the wider full-width at half-maximum of electroluminescence spectra and higher cyan intensity in WLED chips with dual-wavelength MQW structures.« less

  5. Atomic Layer Deposition Enabled Interconnect Technology for Vertical Nanowire Arrays

    DTIC Science & Technology

    2009-06-01

    Diodes”, Nano Lett., Vol. 5, No. 11, 2005. [5] Hwa-Mok Kim, Tae Won Kang and Kwan Soo Chung,“Nanoscale Ultraviolet-Light- Emitting Diodes Using Wide...Bandgap Gallium Nitride Nanorods”, Adv. Materi. 2003, 15, No. 7-8. [6] Candace K. Chan, Hailin Peng, Gao Liu, Kevin McIlwrath, Xiao Feng Zhang...Coatings”Adv. Mater. (Weinheim, Ger.) 19, 1801 2007. [13] Candace K. Chan, Hailin Peng, Gao Liu, Kevin McIlwrath, Xiao Feng Zhang, Robert A. Huggins

  6. Aluminum-nanodisc-induced collective lattice resonances: Controlling the light extraction in organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Auer-Berger, Manuel; Tretnak, Veronika; Wenzl, Franz-Peter; Krenn, Joachim R.; List-Kratochvil, Emil J. W.

    2017-10-01

    We examine aluminum-nanodisc-induced collective lattice resonances as a means to enhance the efficiency of organic light emitting diodes. Thus, nanodisc arrays were embedded in the hole transporting layer of a solution-processed phosphorescent organic blue-light emitting diode. Through extinction spectroscopy, we confirm the emergence of array-induced collective lattice resonances within the organic light emitting diode. Through finite-difference time domain simulations, we show that the collective lattice resonances yield an enhancement of the electric field intensity within the emissive layer. The effectiveness for improving the light generation and light outcoupling is demonstrated by electro-optical characterization, realizing a gain in a current efficiency of 35%.

  7. Perspective: Toward efficient GaN-based red light emitting diodes using europium doping

    NASA Astrophysics Data System (ADS)

    Mitchell, Brandon; Dierolf, Volkmar; Gregorkiewicz, Tom; Fujiwara, Yasufumi

    2018-04-01

    While InGaN/GaN blue and green light-emitting diodes (LEDs) are commercially available, the search for an efficient red LED based on GaN is ongoing. The realization of this LED is crucial for the monolithic integration of the three primary colors and the development of nitride-based full-color high-resolution displays. In this perspective, we will address the challenges of attaining red luminescence from GaN under current injection and the methods that have been developed to circumvent them. While several approaches will be mentioned, a large emphasis will be placed on the recent developments of doping GaN with Eu3+ to achieve an efficient red GaN-based LED. Finally, we will provide an outlook to the future of this material as a candidate for small scale displays such as mobile device screens or micro-LED displays.

  8. Assessment of the performance of light-emitting diode roadway lighting technology.

    DOT National Transportation Integrated Search

    2015-10-01

    This study, championed by the Virginia Department of Transportation (VDOT) Traffic Engineering : Division, involved a thorough investigation of light-emitting diode (LED) roadway lighting technology by : testing six types of roadway luminaires (inclu...

  9. Monolithically integrated Si gate-controlled light-emitting device: science and properties

    NASA Astrophysics Data System (ADS)

    Xu, Kaikai

    2018-02-01

    The motivation of this study is to develop a p-n junction based light emitting device, in which the light emission is conventionally realized using reverse current driving, by voltage driving. By introducing an additional terminal of insulated gate for voltage driving, a novel three-terminal Si light emitting device is described where both the light intensity and spatial light pattern of the device are controlled by the gate voltage. The proposed light emitting device employs injection-enhanced Si in avalanche mode where electric field confinement occurs in the corner of a reverse-biased p+n junction. It is found that, depending on the bias conditions, the light intensity is either a linear or a quadratic function of the applied gate voltage or the reverse-bias. Since the light emission is based on the avalanching mode, the Si light emitting device offers the potential for very large scale integration-compatible light emitters for inter- or intra-chip signal transmission and contactless functional testing of wafers.

  10. Enhanced luminescence efficiency by surface plasmon coupling of Ag nanoparticles in a polymer light-emitting diode

    NASA Astrophysics Data System (ADS)

    Chen, Sy-Hann; Jhong, Jhen-Yu

    2011-08-01

    This study achieved a substantial enhancement in electroluminescence by coupling localized surface plasmons in a single layer of Ag nanoparticles. Thermal evaporation was used to fabricate 20-nm Ag particles sandwiched between a gallium-doped zinc oxide film and a glass substrate to form novel window materials for use in polymer light-emitting diodes (PLEDs). The PLEDs discussed herein are single-layer devices based on a poly(9,9-di-n-octyl-2,7-fluorene) (PFO) emissive layer. In addition to low cost, this novel fabrication method can effectively prevent interruption or degradation of the charge transport properties of the active layer to meet the high performance requirements of PLEDs. Due to the surface-plasmon-enhanced emission, the electroluminescence intensity was increased by nearly 1-fold, compared to that of the same PLED without the interlayer of Ag nanoparticles.

  11. Near-infrared light emitting device using semiconductor nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supran, Geoffrey J.S.; Song, Katherine W.; Hwang, Gyuweon

    A near-infrared light emitting device can include semiconductor nanocrystals that emit at wavelengths beyond 1 .mu.m. The semiconductor nanocrystals can include a core and an overcoating on a surface of the core.

  12. Organic light emitting diode with surface modification layer

    DOEpatents

    Basil, John D.; Bhandari, Abhinav; Buhay, Harry; Arbab, Mehran; Marietti, Gary J.

    2017-09-12

    An organic light emitting diode (10) includes a substrate (12) having a first surface (14) and a second surface (16), a first electrode (32), and a second electrode (38). An emissive layer (36) is located between the first electrode (32) and the second electrode (38). The organic light emitting diode (10) further includes a surface modification layer (18). The surface modification layer (18) includes a non-planar surface (30, 52).

  13. Light-emitting device test systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCord, Mark; Brodie, Alan; George, James

    Light-emitting devices, such as LEDs, are tested using a photometric unit. The photometric unit, which may be an integrating sphere, can measure flux, color, or other properties of the devices. The photometric unit may have a single port or both an inlet and outlet. Light loss through the port, inlet, or outlet can be reduced or calibrated for. These testing systems can provide increased reliability, improved throughput, and/or improved measurement accuracy.

  14. Highly ultraviolet transparent textured indium tin oxide thin films and the application in light emitting diodes

    NASA Astrophysics Data System (ADS)

    Chen, Zimin; Zhuo, Yi; Tu, Wenbin; Ma, Xuejin; Pei, Yanli; Wang, Chengxin; Wang, Gang

    2017-06-01

    Various kinds of materials have been developed as transparent conductors for applications in semiconductor optoelectronic devices. However, there is a bottleneck that transparent conductive materials lose their transparency at ultraviolet (UV) wavelengths and could not meet the demands for commercial UV device applications. In this work, textured indium tin oxide (ITO) is grown and its potential to be used at UV wavelengths is explored. It is observed that the pronounced Burstein-Moss effect could widen the optical bandgap of the textured ITO to 4.7 eV. The average transmittance in UVA (315 nm-400 nm) and UVB (280 nm-315 nm) ranges is as high as 94% and 74%, respectively. The excellent optical property of textured ITO is attributed to its unique structural property. The compatibility of textured ITO thin films to the device fabrication is demonstrated on 368-nm nitride-based light emitting diodes, and the enhancement of light output power by 14.8% is observed compared to sputtered ITO.

  15. Methods for forming group III-arsenide-nitride semiconductor materials

    NASA Technical Reports Server (NTRS)

    Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)

    2002-01-01

    Methods are disclosed for forming Group III-arsenide-nitride semiconductor materials. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.

  16. High power ultraviolet light emitting diodes based on GaN /AlGaN quantum wells produced by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Cabalu, J. S.; Bhattacharyya, A.; Thomidis, C.; Friel, I.; Moustakas, T. D.; Collins, C. J.; Komninou, Ph.

    2006-11-01

    In this paper, we report on the growth by molecular beam epitaxy and fabrication of high power nitride-based ultraviolet light emitting diodes emitting in the spectral range between 340 and 350nm. The devices were grown on (0001) sapphire substrates via plasma-assisted molecular beam epitaxy. The growth of the light emitting diode (LED) structures was preceded by detailed materials studies of the bottom n-AlGaN contact layer, as well as the GaN /AlGaN multiple quantum well (MQW) active region. Specifically, kinetic conditions were identified for the growth of the thick n-AlGaN films to be both smooth and to have fewer defects at the surface. Transmission-electron microscopy studies on identical GaN /AlGaN MQWs showed good quality and well-defined interfaces between wells and barriers. Large area mesa devices (800×800μm2) were fabricated and were designed for backside light extraction. The LEDs were flip-chip bonded onto a Si submount for better heat sinking. For devices emitting at 340nm, the measured differential on-series resistance is 3Ω with electroluminescence spectrum full width at half maximum of 18nm. The output power under dc bias saturates at 0.5mW, while under pulsed operation it saturates at approximately 700mA to a value of 3mW, suggesting that thermal heating limits the efficiency of these devices. The output power of the investigated devices was found to be equivalent with those produced by the metal-organic chemical vapor deposition and hydride vapor-phase epitaxy methods. The devices emitting at 350nm were investigated under dc operation and the output power saturates at 4.5mW under 200mA drive current.

  17. Hafnium nitride buffer layers for growth of GaN on silicon

    DOEpatents

    Armitage, Robert D.; Weber, Eicke R.

    2005-08-16

    Gallium nitride is grown by plasma-assisted molecular-beam epitaxy on (111) and (001) silicon substrates using hafnium nitride buffer layers. Wurtzite GaN epitaxial layers are obtained on both the (111) and (001) HfN/Si surfaces, with crack-free thickness up to 1.2 {character pullout}m. However, growth on the (001) surface results in nearly stress-free films, suggesting that much thicker crack-free layers could be obtained.

  18. Optical waveguiding properties into porous gallium nitride structures investigated by prism coupling technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alshehri, Bandar; Dogheche, Elhadj, E-mail: elhadj.dogheche@univ-valenciennes.fr; Lee, Seung-Min

    2014-08-04

    In order to modulate the refractive index and the birefringence of Gallium Nitride (GaN), we have developed a chemical etching method to perform porous structures. The aim of this research is to demonstrate that optical properties of GaN can be tuned by controlling the pores density. GaN films are prepared on sapphire by metal organic chemical vapor deposition and the microstructure is characterized by transmission electron microscopy, and scanning electron microscope analysis. Optical waveguide experiment is demonstrated here to determine the key properties as the ordinary (n{sub 0}) and extraordinary (n{sub e}) refractive indices of etched structures. We report heremore » the dispersion of refractive index for porous GaN and compare it to the bulk material. We observe that the refractive index decreases when the porous density p is increased: results obtained at 0.975 μm have shown that the ordinary index n{sub 0} is 2.293 for a bulk layer and n{sub 0} is 2.285 for a pores density of 20%. This value corresponds to GaN layer with a pore size of 30 nm and inter-distance of 100 nm. The control of the refractive index into GaN is therefore fundamental for the design of active and passive optical devices.« less

  19. MOCVD growth and characterization of gallium nitride and gallium antimonide nanowires

    NASA Astrophysics Data System (ADS)

    Burke, Robert Alan

    Group-III nitride and group-III antimonide thin films have been used for years in optoelectronic, high-speed applications, and high power/high temperature applications such as light emitting diodes (LEDs), microwave power devices, and thermovoltaics. In recent years, nanowires have gained interest due to the ability to take advantage of their geometry for increased light absorption and the synthesis of radial heterostructures. Several growth techniques have been explored for the growth of GaN and GaSb nanowires. Metal-organic chemical vapor deposition (MOCVD) is of particular interest due to its use in the commercial growth and fabrication of GaN-based and GaSb-based devices. The first part of this thesis focused on addressing several key issues related to the growth of GaN nanowires by MOCVD. Preliminary studies investigated the effect of growth conditions on GaN nanowire formation in a hot wall MOCVD reactor. A computational fluid dynamics-based model was developed to predict the gas phase velocity, temperature and concentration profiles in the reactor. The results demonstrate a strong dependence of GaN nanowire growth on substrate position within the reactor which is due to the rapid reaction and depletion of precursors near the gas inlet of the reactor. Ni-catalyzed GaN nanowire growth was observed to occur over the temperature range of 800-900°C, which is significantly lower than typical GaN thin film temperatures. The nanowires, however, exhibited a tapered diameter due to thin film deposition which occurred simultaneously with nanowire growth. Based on the low growth temperatures, TEM characterization was carried out to investigate the nature of the catalyst. Through these studies, the catalyst was found to consist of Ni3Ga, indicating the presence of a vapor-solid-solid growth mechanism. In an attempt to improve the nanowire growth selectivity, GeCl4 was added during growth resulting in a drastic increase in nanowire density and a reduction in the tapering

  20. A tunable lighting system integrated by inorganic and transparent organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Jing-jing; Zhang, Tao; Jin, Ya-fang; Liu, Shi-shen; Yuan, Shi-dong; Cui, Zhao; Zhang, Li; Wang, Wei-hui

    2014-05-01

    A tunable surface-emitting integrated lighting system is constructed using a combination of inorganic light-emitting diodes (LEDs) and transparent organic LEDs (OLEDs). An RB two-color LED is used to supply red and blue light emission, and a green organic LED is used to supply green light emission. Currents of the LED and OLED are tuned to produce a white color, showing different Commission Internationale d'Eclairage (CIE) chromaticity coordinates and correlated color temperatures with a wide adjustable range. Such an integration can compensate for the lack of the LED's luminance uniformity and the transparent OLED's luminance intensity.

  1. Environmental barrier material for organic light emitting device and method of making

    DOEpatents

    Graff, Gordon L [West Richland, WA; Gross, Mark E [Pasco, WA; Affinito, John D [Kennewick, WA; Shi, Ming-Kun [Richland, WA; Hall, Michael [West Richland, WA; Mast, Eric [Richland, WA

    2003-02-18

    An encapsulated organic light emitting device. The device includes a first barrier stack comprising at least one first barrier layer and at least one first polymer layer. There is an organic light emitting layer stack adjacent to the first barrier stack. A second barrier stack is adjacent to the organic light emitting layer stack. The second barrier stack has at least one second barrier layer and at least one second polymer layer. A method of making the encapsulated organic light emitting device is also provided.

  2. Modelling of the modulation properties of arsenide and nitride VCSELs

    NASA Astrophysics Data System (ADS)

    Wasiak, Michał; Śpiewak, Patrycja; Moser, Philip; Gebski, Marcin; Schmeckebier, Holger; Sarzała, Robert P.; Lott, James A.

    2017-02-01

    In this paper, using our model of capacitance in vertical-cavity surface-emitting lasers (VCSELs), we analyze certain differences between an oxide-confined arsenide VCSEL emitting in the NIR region, and a nitride VCSEL emitting violet radiation. In the nitride laser its high differential resistance, caused partially by the low conductivity of p-type GaN material and the bottom contact configuration, is one of the main reasons why the nitride VCSEL has much worse modulation properties than the arsenide VCSEL. Using the complicated arsenide structure, we also analyze different possible ways of constructing the laser's equivalent circuit.

  3. Formation of gallium nitride templates and freestanding substrates by hydride vapor phase epitaxy for homoepitaxial growth of III-nitride devices

    NASA Astrophysics Data System (ADS)

    Williams, Adrian Daniel

    Gallium nitride (GaN) is a direct wide band gap semiconductor currently under heavy development worldwide due to interest in its applications in ultra-violet optoelectronics, power electronics, devices operating in harsh environments (high temperature or corrorsive), etc. While a number of devices have been demonstrated with this material and its related alloys, the unavailability of GaN substrates is seen as one of the current major bottlenecks to both material quality and device performance. This dissertation is concerned with the synthesis of high quality GaN substrates by the hydride vapor phase epitaxy method (HVPE). In this work, the flow of growth precursors in a home-built HVPE reactor was modeled by the Navier-Stokes equation and solved by finite element analysis to promote uniformity of GaN on 2'' sapphire substrates. Kinetics of growth was studied and various regimes of growth were identified to establish a methodology for HVPE GaN growth, independent of reactor geometry. GaN templates as well as bulk substrates were fabricated in this work. Realization of freestanding GaN substrates was achieved through discovery of a natural stress-induced method of separating bulk GaN from sapphire via mechanical failure of a low-temperature GaN buffer layer. Such a process eliminates the need for pre- or post-processing of sapphire substrates, as is currently the standard. Stress in GaN-on-sapphire is discussed, with the dominant contributor identified as thermal stress due to thermal expansion coefficient mismatch between the two materials. This thermal stress is analyzed using Stoney's equation and conditions for crack-free growth of thick GaN substrates were identified. An etch-back process for planarizing GaN templates was also developed and successfully applied to rough GaN templates. The planarization of GaN has been mainly addressed by chemo-mechanical polishing (CMP) methods in the literature, with notable shortcomings including the inability to effectively

  4. Porous light-emitting compositions

    DOEpatents

    Burrell, Anthony K [Los Alamos, NM; McCleskey, Thomas Mark [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM; Bauer, Eve [Los Alamos, NM; Mueller, Alexander H [Los Alamos, NM

    2012-04-17

    Light-emitting devices are prepared by coating a porous substrate using a polymer-assisted deposition process. Solutions of metal precursor and soluble polymers having binding properties for metal precursor were coated onto porous substrates. The coated substrates were heated at high temperatures under a suitable atmosphere. The result was a substrate with a conformal coating that did not substantially block the pores of the substrate.

  5. Polyfluorene light-emitting devices and amorphous silicon:hydrogen TFT pixel circuits for active-matrix organic light-emitting displays

    NASA Astrophysics Data System (ADS)

    He, Yi

    2000-10-01

    Organic light-emitting devices (OLEDs) made of single-layer and double-layer polymer thin films have been fabricated and studied. The hole transporting (polymer A) and emissive (polymer B) polymers were poly(9,9' -dioctyl fluorene-2,7-diyl)-co-poly(diphenyl-p-tolyl-amine-4,4 '-diyl) and poly(9,9'-dioctyl fluorene-2,7-diyl)-co-poly(benzothiadiazole 2,5-diyl), respectively. The optical bandgaps of polymer A and B were 2.72 and 2.82 eV, respectively. The photoluminescence (PL) peaks for polymer A and B were 502 and 546 nm, respectively. The electroluminescence (EL) peak for polymer B was 547 nm. No EL has been observed from polymer A single layer OLEDs. To obtain the spectral distribution of the emission properties of the light-emitting devices, a new light-output measurement technique was developed. Using this technique, the spectral distribution of the luminance, radiance, photon density emission can be obtained. Moreover, the device external quantum efficiency calculated using this technique is accurate and insensitive to the light emission spectrum shape. Organic light-emitting devices have been fabricated and studied on both glass and flexible plastic substrates. The OLEDs showed a near-linear relationship between the luminance and the applied current density over four orders of magnitude. For the OLEDs fabricated on the glass substrate, luminance ˜9,300 cd/m2, emission efficiency ˜14.5 cd/A, luminescence power efficiency ˜2.26 lm/W, and external quantum efficiency ˜3.85% have been achieved. For the OLEDs fabricated on the flexible plastic substrates, both aluminum and calcium were used as cathode materials. The achieved maximum OLED luminance, emission efficiency, luminescence power efficiency, and external quantum efficiency were ˜13,000 cd/m2, ˜66.1 cd/A, ˜17.2 lm/W, and 16.7%, respectively. To make an active-matrix organic light-emitting display (AM-OLED), a two-TFT pixel electrode circuit was designed and fabricated based on amorphous silicon TFT

  6. Metal organic vapour-phase epitaxy growth of GaN wires on Si (111) for light-emitting diode applications

    PubMed Central

    2013-01-01

    GaN wires are grown on a Si (111) substrate by metal organic vapour-phase epitaxy on a thin deposited AlN blanket and through a thin SiNx layer formed spontaneously at the AlN/Si interface. N-doped wires are used as templates for the growth of core-shell InGaN/GaN multiple quantum wells coated by a p-doped shell. Standing single-wire heterostructures are connected using a metallic tip and a Si substrate backside contact, and the electroluminescence at room temperature and forward bias is demonstrated at 420 nm. This result points out the feasibility of lower cost nitride-based wires for light-emitting diode applications. PMID:23391377

  7. Principles of phosphorescent organic light emitting devices.

    PubMed

    Minaev, Boris; Baryshnikov, Gleb; Agren, Hans

    2014-02-07

    Organic light-emitting device (OLED) technology has found numerous applications in the development of solid state lighting, flat panel displays and flexible screens. These applications are already commercialized in mobile phones and TV sets. White OLEDs are of especial importance for lighting; they now use multilayer combinations of organic and elementoorganic dyes which emit various colors in the red, green and blue parts of the visible spectrum. At the same time the stability of phosphorescent blue emitters is still a major challenge for OLED applications. In this review we highlight the basic principles and the main mechanisms behind phosphorescent light emission of various classes of photofunctional OLED materials, like organic polymers and oligomers, electron and hole transport molecules, elementoorganic complexes with heavy metal central ions, and clarify connections between the main features of electronic structure and the photo-physical properties of the phosphorescent OLED materials.

  8. Weak-microcavity organic light-emitting diodes with improved light out-coupling.

    PubMed

    Cho, Sang-Hwan; Song, Young-Woo; Lee, Joon-gu; Kim, Yoon-Chang; Lee, Jong Hyuk; Ha, Jaeheung; Oh, Jong-Suk; Lee, So Young; Lee, Sun Young; Hwang, Kyu Hwan; Zang, Dong-Sik; Lee, Yong-Hee

    2008-08-18

    We propose and demonstrate weak-microcavity organic light-emitting diode (OLED) displays with improved light-extraction and viewing-angle characteristics. A single pair of low- and high-index layers is inserted between indium tin oxide (ITO) and a glass substrate. The electroluminescent (EL) efficiencies of discrete red, green, and blue weak-microcavity OLEDs are enhanced by 56%, 107%, and 26%, respectively, with improved color purity. Moreover, full-color passive-matrix bottom-emitting OLED displays are fabricated by employing low-index layers of two thicknesses. As a display, the EL efficiency of white color was 27% higher than that of a conventional OLED display.

  9. Low Voltage, Low Power Organic Light Emitting Transistors for AMOLED Displays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, M. A.; Liu, B.; Donoghue, E. P.

    2011-01-01

    Low voltage, low power dissipation, high aperture ratio organic light emitting transistors are demonstrated. The high level of performance is enabled by a carbon nanotube source electrode that permits integration of the drive transistor and the organic light emitting diode into an efficient single stacked device. Given the demonstrated performance, this technology could break the technical logjam holding back widespread deployment of active matrix organic light emitting displays at flat panel screen sizes.

  10. Light-Emitting Diodes: A Hidden Treasure

    ERIC Educational Resources Information Center

    Planinšic, Gorazd; Etkina, Eugenia

    2014-01-01

    LEDs, or light-emitting diodes, are cheap, easy to purchase, and thus commonly used in physics instruction as indicators of electric current or as sources of light (Fig. 1). In our opinion LEDs represent a unique piece of equipment that can be used to collect experimental evidence, and construct and test new ideas in almost every unit of a general…

  11. Organic light-emitting diodes with direct contact-printed red, green, blue, and white light-emitting layers

    NASA Astrophysics Data System (ADS)

    Chen, Sun-Zen; Peng, Shiang-Hau; Ting, Tzu-Yu; Wu, Po-Shien; Lin, Chun-Hao; Chang, Chin-Yeh; Shyue, Jing-Jong; Jou, Jwo-Huei

    2012-10-01

    We demonstrate the feasibility of using direct contact-printing in the fabrication of monochromatic and polychromatic organic light-emitting diodes (OLEDs). Bright devices with red, green, blue, and white contact-printed light-emitting layers with a respective maximum luminance of 29 000, 29 000, 4000, and 18 000 cd/m2 were obtained with sound film integrity by blending a polymeric host into a molecular host. For the red OLED as example, the maximum luminance was decreased from 29 000 to 5000 cd/m2 as only the polymeric host was used, or decreased to 7000 cd/m2 as only the molecular host was used. The markedly improved device performance achieved in the devices with blended hosts may be attributed to the employed polymeric host that contributed a good film-forming character, and the molecular host that contributed a good electroluminescence character.

  12. As-Grown Gallium Nitride Nanowire Electromechanical Resonators

    NASA Astrophysics Data System (ADS)

    Montague, Joshua R.

    Technological development in recent years has led to a ubiquity of micro- and nano-scale electromechanical devices. Sensors for monitoring temperature, pressure, mass, etc., are now found in nearly all electronic devices at both the industrial and consumer levels. As has been true for integrated circuit electronics, these electromechanical devices have continued to be scaled down in size. For many nanometer-scale structures with large surface-to-volume ratio, dissipation (energy loss) becomes prohibitively large causing a decreasing sensitivity with decreasing sensor size. In this work, gallium nitride (GaN) nanowires are investigated as singly-clamped (cantilever) mechanical resonators with typical mechanical quality factors, Q (equal to the ratio of resonance frequency to peak full-width-at-half-maximum-power) and resonance frequencies, respectively, at or above 30,000, and near 1 MHz. These Q values---in vacuum at room temperature---indicate very low levels of dissipation; they are essentially the same as those for bulk quartz crystal resonators that form the basis of simple clocks and mass sensors. The GaN nanowires have lengths and diameters, respectively, of approximately 15 micrometers and hundreds of nanometers. As-grown GaN nanowire Q values are larger than other similarly-sized, bottom-up, cantilever resonators and this property makes them very attractive for use as resonant sensors. We demonstrate the capability of detecting sub-monolayer levels of atomic layer deposited (ALD) films, and the robust nature of the GaN nanowires structure that allows for their 'reuse' after removal of such layers. In addition to electron microscope-based measurement techniques, we demonstrate the successful capacitive detection of a single nanowire using microwave homodyne reflectometry. This technique is then extended to allow for simultaneous measurements of large ensembles of GaN nanowires on a single sample, providing statistical information about the distribution of

  13. Active tracking system for visible light communication using a GaN-based micro-LED and NRZ-OOK.

    PubMed

    Lu, Zhijian; Tian, Pengfei; Chen, Hong; Baranowski, Izak; Fu, Houqiang; Huang, Xuanqi; Montes, Jossue; Fan, Youyou; Wang, Hongyi; Liu, Xiaoyan; Liu, Ran; Zhao, Yuji

    2017-07-24

    Visible light communication (VLC) holds the promise of a high-speed wireless network for indoor applications and competes with 5G radio frequency (RF) system. Although the breakthrough of gallium nitride (GaN) based micro-light-emitting-diodes (micro-LEDs) increases the -3dB modulation bandwidth exceptionally from tens of MHz to hundreds of MHz, the light collected onto a fast photo receiver drops dramatically, which determines the signal to noise ratio (SNR) of VLC. To fully implement the practical high data-rate VLC link enabled by a GaN-based micro-LED, it requires focusing optics and a tracking system. In this paper, we demonstrate an active on-chip tracking system for VLC using a GaN-based micro-LED and none-return-to-zero on-off keying (NRZ-OOK). Using this novel technique, the field of view (FOV) was enlarged to 120° and data rates up to 600 Mbps at a bit error rate (BER) of 2.1×10 -4 were achieved without manual focusing. This paper demonstrates the establishment of a VLC physical link that shows enhanced communication quality by orders of magnitude, making it optimized for practical communication applications.

  14. Hybrid GaN LED with capillary-bonded II-VI MQW color-converting membrane for visible light communications

    NASA Astrophysics Data System (ADS)

    Santos, Joao M. M.; Jones, Brynmor E.; Schlosser, Peter J.; Watson, Scott; Herrnsdorf, Johannes; Guilhabert, Benoit; McKendry, Jonathan J. D.; De Jesus, Joel; Garcia, Thor A.; Tamargo, Maria C.; Kelly, Anthony E.; Hastie, Jennifer E.; Laurand, Nicolas; Dawson, Martin D.

    2015-03-01

    The rapid emergence of gallium-nitride (GaN) light-emitting diodes (LEDs) for solid-state lighting has created a timely opportunity for optical communications using visible light. One important challenge to address this opportunity is to extend the wavelength coverage of GaN LEDs without compromising their modulation properties. Here, a hybrid source for emission at 540 nm consisting of a 450 nm GaN micro-sized LED (micro-LED) with a micron-thick ZnCdSe/ZnCdMgSe multi-quantum-well color-converting membrane is reported. The membrane is liquid-capillary-bonded directly onto the sapphire window of the micro-LED for full hybridization. At an injection current of 100 mA, the color-converted power was found to be 37 μW. At this same current, the -3 dB optical modulation bandwidth of the bare GaN and hybrid micro-LEDs were 79 and 51 MHz, respectively. The intrinsic bandwidth of the color-converting membrane was found to be power-density independent over the range of the micro-LED operation at 145 MHz, which corresponds to a mean carrier lifetime of 1.9 ns.

  15. Micro-light-emitting diodes with III-nitride tunnel junction contacts grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hwang, David; Mughal, Asad J.; Wong, Matthew S.; Alhassan, Abdullah I.; Nakamura, Shuji; DenBaars, Steven P.

    2018-01-01

    Micro-light-emitting diodes (µLEDs) with tunnel junction (TJ) contacts were grown entirely by metalorganic chemical vapor deposition. A LED structure was grown, treated with UV ozone and hydrofluoric acid, and reloaded into the reactor for TJ regrowth. The silicon doping level of the n++-GaN TJ was varied to examine its effect on voltage. µLEDs from 2.5 × 10-5 to 0.01 mm2 in area were processed, and the voltage penalty of the TJ for the smallest µLED at 20 A/cm2 was 0.60 V relative to that for a standard LED with indium tin oxide. The peak external quantum efficiency of the TJ LED was 34%.

  16. [Progress of light extraction enhancement in organic light-emitting devices].

    PubMed

    Liu, Mo; Li, Tong; Wang, Yan; Zhang, Tian-Yu; Xie, Wen-Fa

    2011-04-01

    Organic light emitting devices (OLEDs) have been used in flat-panel displays and lighting with a near-30-year development. OLEDs possess many advantages, such as full solid device, fast response, flexible display, and so on. As the application of phosphorescence material, the internal quantum efficiency of OLED has almost reached 100%, but its external quantum efficiency is still not very high due to the low light extraction efficiency. In this review the authors summarizes recent advances in light extraction techniques that have been developed to enhance the light extraction efficiency of OLEDs.

  17. Ag nanocluster-based color converters for white organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Nishikitani, Yoshinori; Takizawa, Daisuke; Uchida, Soichi; Lu, Yue; Nishimura, Suzushi; Oyaizu, Kenichi; Nishide, Hiroyuki

    2017-11-01

    The authors present Ag nanocluster-based color converters (Ag NC color converters), which convert part of the blue light from a light source to yellow light so as to create white organic light-emitting devices that could be suitable for lighting systems. Ag NCs synthesized by poly(methacrylic acid) template methods have a statistical size distribution with a mean diameter of around 4.5 nm, which is larger than the Fermi wavelength of around 2 nm. Hence, like free electrons in metals, the Ag NC electrons are thought to form a continuous energy band, leading to the formation of surface plasmons by photoexcitation. As for the fluorescence emission mechanism, the fact that the photoluminescence is excitation wavelength dependent suggests that the fluorescence originates from surface plasmons in Ag NCs of different sizes. By using Ag NC color converters and suitable blue light sources, white organic light-emitting devices can be fabricated based on the concept of light-mixing. For our blue light sources, we used polymer light-emitting electrochemical cells (PLECs), which, like organic light-emitting diodes, are area light sources. The PLECs were fabricated with a blue fluorescent π-conjugated polymer, poly[(9,9-dihexylfluoren-2,7-diyl)-co-(anthracen-9,10-diyl)] (PDHFA), and a polymeric solid electrolyte composed of poly(ethylene oxide) and KCF3SO3. In this device structure, the Ag NC color converter absorbs blue light from the PDHFA-based PLEC (PDHFA-PLEC) and then emits yellow light. When the PDHFA-PLEC is turned on by applying an external voltage, pure white light emission can be produced with Commission Internationale de l'Eclairage coordinates of (x = 0.32, y = 0.33) and a color rendering index of 93.6. This study shows that utilization of Ag NC color converters and blue PLECs is a very promising and highly effective method for realizing white organic light-emitting devices.

  18. Light Emitting Diode (LED)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique called photodynamic therapy, requires the surgeon to use tiny pinhead-size Light Emitting Diodes (LEDs) (a source releasing long wavelengths of light) to activate light-sensitive, tumor-treating drugs. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can also be used for hours at a time while still remaining cool to the touch. The LED probe consists of 144 tiny pinhead-size diodes, is 9-inches long, and about one-half-inch in diameter. The small balloon aids in even distribution of the light source. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The probe was developed for photodynamic cancer therapy by the Marshall Space Flight Center under a NASA Small Business Innovative Research program grant.

  19. Methods for forming group III-V arsenide-nitride semiconductor materials

    NASA Technical Reports Server (NTRS)

    Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)

    2000-01-01

    Methods are disclosed for forming Group III--arsenide-nitride semiconductor materials. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.

  20. Salt-Doped Polymer Light-Emitting Devices

    NASA Astrophysics Data System (ADS)

    Gautier, Bathilde

    Polymer Light-Emitting Electrochemical Cells (PLECs) are solid state devices based on the in situ electrochemical doping of the luminescent polymer and the formation of a p-n junction where light is emitted upon the application of a bias current or voltage. PLECs answer the drawbacks of polymer light-emitting diodes as they do not require an ultra-thin active layer nor are they reliant on low work function cathode materials that are air unstable. However, because of the dynamic nature of the doping, they suffer from slow response times and poor stability over time. Frozen-junction PLECs offer a solution to these drawbacks, yet they are impractical due to their sub-ambient operation temperature requirement. Our work presented henceforth aims to achieve room temperature frozen-junction PLECS. In order to do that we removed the ion solvating/transporting polymer from the active layer, resulting in a luminescent polymer combined solely with a salt sandwiched between an ITO electrode and an aluminum electrode. The resulting device was not expected to operate like a PLEC due to the absence of an ion-solvating and ion-transporting medium. However, we discovered that the polymer/salt devices could be activated by applying a large voltage bias, resulting in much higher current and luminance. More important, the activated state is quasi static. Devices based on the well-known orange-emitting polymer MEH-PPV displayed a luminance storage half-life of 150 hours when activated by forward bias (ITO biased positively with respect to the aluminum) and 200 hours when activated by reverse bias. More remarkable yet, devices based on a green co-polymer displayed no notable decay in current density or luminance even after being stored for 1200 hours at room temperature! PL imaging under UV excitation demonstrates the presence of doping. These devices are described herein along with an explanation of their operating mechanisms.

  1. Broadband visible light source based on AllnGaN light emitting diodes

    DOEpatents

    Crawford, Mary H.; Nelson, Jeffrey S.

    2003-12-16

    A visible light source device is described based on a light emitting diode and a nanocluster-based film. The light emitting diode utilizes a semiconductor quantum well structure between n-type and p-type semiconductor materials on the top surface a substrate such as sapphire. The nanocluster-based film is deposited on the bottom surface of the substrate and can be derived from a solution of MoS.sub.2, MoSe.sub.2, WS.sub.2, and WSe.sub.2 particles of size greater than approximately 2 nm in diameter and less than approximately 15 nm in diameter, having an absorption wavelength greater than approximately 300 nm and less than approximately 650 nm.

  2. Influences of wide-angle and multi-beam interference on the chromaticity and efficiency of top-emitting white organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Deng, Lingling; Zhou, Hongwei; Chen, Shufen; Shi, Hongying; Liu, Bin; Wang, Lianhui; Huang, Wei

    2015-02-01

    Wide-angle interference (WI) and multi-beam interference (MI) in microcavity are analyzed separately to improve chromaticity and efficiency of the top-emitting white organic light-emitting diodes (TWOLEDs). A classic electromagnetic theory is used to calculate the resonance intensities of WI and MI in top-emitting organic light-emitting diodes (TOLEDs) with influence factors (e.g., electrodes and exciton locations) being considered. The role of WI on the performances of TOLEDs is revealed through using δ-doping technology and comparing blue and red EML positions in top-emitting and bottom-emitting devices. The blue light intensity significantly increases and the chromaticity of TWOLEDs is further improved with the use of enhanced WI (the blue emitting layer moving towards the reflective electrode) in the case of a weak MI. In addition, the effect of the thicknesses of light output layer and carrier transport layers on WI and MI are also investigated. Apart from the microcavity effect, other factors, e.g., carrier balance and carrier recombination regions are considered to obtain TWOLEDs with high efficiency and improved chromaticity near white light equal-energy point.

  3. All-nitride AlxGa1−xN:Mn/GaN distributed Bragg reflectors for the near-infrared

    PubMed Central

    Capuzzo, Giulia; Kysylychyn, Dmytro; Adhikari, Rajdeep; Li, Tian; Faina, Bogdan; Tarazaga Martín-Luengo, Aitana; Bonanni, Alberta

    2017-01-01

    Since the technological breakthrough prompted by the inception of light emitting diodes based on III-nitrides, these material systems have emerged as strategic semiconductors not only for the lighting of the future, but also for the new generation of high-power electronic and spintronic devices. While III-nitride optoelectronics in the visible and ultraviolet spectral range is widely established, all-nitride efficient devices in the near-infrared (NIR) are still wanted. Here, through a comprehensive protocol of design, modeling, epitaxial growth and in-depth characterization, we develop AlxGa1−xN:Mn/GaN NIR distributed Bragg reflectors and we show their efficiency in combination with GaN:(Mn,Mg) layers containing Mn-Mgk complexes optically active in the near-infrared range of wavelengths. PMID:28198432

  4. Opposite Behavior of Multilayer Graphene/ Indium-Tin-Oxide p-Electrode for Gallium Nitride Based-Light Emitting Diodes Depending on Thickness of Indium-Tin-Oxide Layer.

    PubMed

    Kim, Tae Kyoung; Yoon, Yeo Jin; Oh, Seung Kyu; Cha, Yu-Jung; Hong, In Yeol; Cho, Moon Uk; Hong, Chan-Hwa; Choi, Hong Kyw; Kwak, Joon Seop

    2018-09-01

    In order to improve EQE, we have investigated on the role of multilayer graphene (MLG) on the electrical and optical properties of GaN based light-emitting diodes (LEDs) with ultrathin ITO (5 nm or 10 nm)/p-GaN contacts. The MLG was transferred on the ITO/p-GaN to decrease sheet resistance of thin ITO p-electrode and improve the current spreading of LEDs. The LEDs with the ITO 5 nm and MLG/ITO 5 nm structures showed 3.25 and 3.06 V at 20 mA, and 11.69 and 13.02 mW/sr at 400 mA, respectively. After forming MLG on ITO 5 nm, the electro-optical properties were enhanced. Furthermore, the GaN based-LEDs applied to the ITO 10 nm, and MLG/ITO (10 nm) structures showed 2.95 and 3.06 V at 20 mA, and 20.28 and 16.74 mW/sr at 400 mA, respectively. The sheet resistance of the MLG transferred to ITO 5 nm was decreased approximately four fold compared to ITO 5 nm. On the other hand, the ITO 10 nm and MLG/ITO 10 nm showed a similar sheet resistance; the transmittance of the LEDs with ITO 10 nm decreased to 16% due to MLG formation on ITO. This suggests that the relationship between the sheet resistance and transmittance according to the ITO film thickness affected the electro-optical properties of the LEDs with a transparent p-electrode with the MLG/ITO dual structure.

  5. III-Nitride Nanowire Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Jeremy Benjamin

    2014-07-01

    In recent years there has been a tremendous interest in nanoscale optoelectronic devices. Among these devices are semiconductor nanowires whose diameters range from 10-100 nm. To date, nanowires have been grown using many semiconducting material systems and have been utilized as light emitting diodes, photodetectors, and solar cells. Nanowires possess a relatively large index contrast relative to their dielectric environment and can be used as lasers. A key gure of merit that allows for nanowire lasing is the relatively high optical con nement factor. In this work, I discuss the optical characterization of 3 types of III-nitride nanowire laser devices.more » Two devices were designed to reduce the number of lasing modes to achieve singlemode operation. The third device implements low-group velocity mode lasing with a photonic crystal constructed of an array of nanowires. Single-mode operation is necessary in any application where high beam quality and single frequency operation is required. III-Nitride nanowire lasers typically operate in a combined multi-longitudinal and multi-transverse mode state. Two schemes are introduced here for controlling the optical modes and achieving single-mode op eration. The rst method involves reducing the diameter of individual nanowires to the cut-o condition, where only one optical mode propagates in the wire. The second method employs distributed feedback (DFB) to achieve single-mode lasing by placing individual GaN nanowires onto substrates with etched gratings. The nanowire-grating substrate acted as a distributed feedback mirror producing single mode operation at 370 nm with a mode suppression ratio (MSR) of 17 dB. The usage of lasers for solid state lighting has the potential to further reduce U.S. lighting energy usage through an increase in emitter e ciency. Advances in nanowire fabrication, speci cally a two-step top-down approach, have allowed for the demonstration of a multi-color array of lasers on a single chip that

  6. Multicolor white light-emitting diodes for illumination applications

    NASA Astrophysics Data System (ADS)

    Chi, Solomon W. S.; Chen, Tzer-Perng; Tu, Chuan-Cheng; Chang, Chih-Sung; Tsai, Tzong-Liang; Hsieh, Mario C. C.

    2004-01-01

    Semiconductor light emitting diode (LED) has become a promising device for general-purpose illumination applications. LED has the features of excellent durability, long operation life, low power consumption, no mercury containing and potentially high efficiency. Several white LED technologies appear capable of meeting the technical requirements of illumination. In this paper we present a new multi-color white (MCW) LED as a high luminous efficacy, high color rendering index and low cost white illuminator. The device consists of two LED chips, one is AlInGaN LED for emitting shorter visible spectra, another is AlInGaP LED for emitting longer visible spectra. At least one chip in the MCW-LED has two or more transition energy levels used for emitting two or more colored lights. The multiple colored lights generated from the MCW-LED can be mixed into a full-spectral white light. Besides, there is no phosphors conversion layer used in the MCW-LED structure. Therefore, its color rendering property and illumination efficiency are excellent. The Correlated Color Temperature (CCT) of the MCW-LED may range from 2,500 K to over 10,000 K. The theoretical General Color Rendering Index (Ra) could be as high as 94, which is close to the incandescent and halogen sources, while the Ra of binary complementary white (BCW) LED is about 30 ~ 45. Moreover, compared to the expensive ternary RGB (Red AlInGaP + Green AlInGaN + Blue AlInGaN) white LED sources, the MCW-LED uses only one AlInGaN chip in combination with one cheap AlInGaP chip, to form a low cost, high luminous performance white light source. The MCW-LED is an ideal light source for general-purpose illumination applications.

  7. Si light-emitting device in integrated photonic CMOS ICs

    NASA Astrophysics Data System (ADS)

    Xu, Kaikai; Snyman, Lukas W.; Aharoni, Herzl

    2017-07-01

    The motivation for integrated Si optoelectronics is the creation of low-cost photonics for mass-market applications. Especially, the growing demand for sensitive biochemical sensors in the environmental control or medicine leads to the development of integrated high resolution sensors. Here CMOS-compatible Si light-emitting device structures are presented for investigating the effect of various depletion layer profiles and defect engineering on the photonic transition in the 1.4-2.8 eV. A novel Si device is proposed to realize both a two-terminal Si-diode light-emitting device and a three-terminal Si gate-controlled diode light-emitting device in the same device structure. In addition to the spectral analysis, differences between two-terminal and three-terminal devices are discussed, showing the light emission efficiency change. The proposed Si optical source may find potential applications in micro-photonic systems and micro-optoelectro-mechanical systems (MOEMS) in CMOS integrated circuitry.

  8. Organic light-emitting diode materials

    DOEpatents

    Aspuru-Guzik, Alan; Gomez-Bombarelli, Rafael; Aguilera-Iparraguirre, Jorge; Baldo, Marc; Van Voorhis, Troy; Hirzel, Timothy D.; Bahlke, Matthias; McMahon, David; Wu, Tony Chang-Chi

    2018-05-15

    Described herein are molecules for use in organic light emitting diodes. Example molecules comprise at least one moiety A and at least one moiety D. Values and preferred values of the moieties A and D are described herein. The molecules comprise at least one atom selected from Si, Se, Ge, Sn, P, or As.

  9. Prospects of III-nitride optoelectronics grown on Si.

    PubMed

    Zhu, D; Wallis, D J; Humphreys, C J

    2013-10-01

    The use of III-nitride-based light-emitting diodes (LEDs) is now widespread in applications such as indicator lamps, display panels, backlighting for liquid-crystal display TVs and computer screens, traffic lights, etc. To meet the huge market demand and lower the manufacturing cost, the LED industry is moving fast from 2 inch to 4 inch and recently to 6 inch wafer sizes. Although Al2O3 (sapphire) and SiC remain the dominant substrate materials for the epitaxy of nitride LEDs, the use of large Si substrates attracts great interest because Si wafers are readily available in large diameters at low cost. In addition, such wafers are compatible with existing processing lines for 6 inch and larger wafers commonly used in the electronics industry. During the last decade, much exciting progress has been achieved in improving the performance of GaN-on-Si devices. In this contribution, the status and prospects of III-nitride optoelectronics grown on Si substrates are reviewed. The issues involved in the growth of GaN-based LED structures on Si and possible solutions are outlined, together with a brief introduction to some novel in situ and ex situ monitoring/characterization tools, which are especially useful for the growth of GaN-on-Si structures.

  10. Ultraviolet light emitting diodes and bio-aerosol sensing

    NASA Astrophysics Data System (ADS)

    Davitt, Kristina M.

    Recent interest in compact ultraviolet (UV) light emitters has produced advances in material quality and device performance from aluminum-rich alloys of the nitride semiconductor system. The epitaxial growth of device structures from this material poses remarkable challenges, and state-of-the-art in semiconductor UV light sources at wavelengths shorter than 350 nm is currently limited to LEDs. A portion of the work presented in this thesis involves the design and characterization of UV LED structures, with particular focus on sub-300 nm LEDs which have only been demonstrated within the last four years. Emphasis has been placed on the integration of early devices with modest efficiencies and output powers into a practical, fluorescence-based bio-sensing instrument. The quality of AlGaInN and AlGaN-based materials is characterized by way of the performance of 340 nm and 290 nm LEDs respectively. A competitive level of device operation is achieved, although much room remains for improvement in the efficiency of light emission from this material system. A preliminary investigation of 300 nm LEDs grown on bulk AIN shows promising electrical and optical characteristics, and illustrates the numerous advantages that this native substrate offers to the epitaxy of wide bandgap nitride semiconductors. The application of UV LEDs to the field of bio-aerosol sensing is pursued by constructing an on-the-fly fluorescence detection system. A linear array of UV LEDs is designed and implemented, and the capability of test devices to excite native fluorescence from bacterial spores is established. In order to fully capitalize on the reduction in size afforded by LEDs, effort is invested in re-engineering the remaining sensor components. Operation of a prototype system for physically sorting bio-aerosols based on fluorescence spectra acquired in real-time from single airborne particles excited by a UV-LED array is demonstrated using the bio-fluorophores NADH and tryptophan. Sensor

  11. Optical absorption and oxygen passivation of surface states in III-nitride photonic devices

    NASA Astrophysics Data System (ADS)

    Rousseau, Ian; Callsen, Gordon; Jacopin, Gwénolé; Carlin, Jean-François; Butté, Raphaël; Grandjean, Nicolas

    2018-03-01

    III-nitride surface states are expected to impact high surface-to-volume ratio devices, such as nano- and micro-wire light-emitting diodes, transistors, and photonic integrated circuits. In this work, reversible photoinduced oxygen desorption from III-nitride microdisk resonator surfaces is shown to increase optical attenuation of whispering gallery modes by 100 cm-1 at λ = 450 nm. Comparison of photoinduced oxygen desorption in unintentionally and n+-doped microdisks suggests that the spectral changes originate from the unpinning of the surface Fermi level, likely taking place at etched nonpolar III-nitride sidewalls. An oxygen-rich surface prepared by thermal annealing results in a broadband Q improvement to state-of-the-art values exceeding 1 × 104 at 2.6 eV. Such findings emphasize the importance of optically active surface states and their passivation for future nanoscale III-nitride optoelectronic and photonic devices.

  12. Synthesis of metal free ultrathin graphitic carbon nitride sheet for photocatalytic dye degradation of Rhodamine B under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Rahman, Shakeelur; Momin, Bilal; Higgins M., W.; Annapure, Uday S.; Jha, Neetu

    2018-04-01

    In recent times, low cost and metal free photocatalyts driven under visible light have attracted a lot of interest. One such photo catalyst researched extensively is bulk graphitic carbon nitride sheets. But the low surface area and weak mobility of photo generated electrons limits its photocatalytic performance in the visible light spectrum. Here we present the facile synthesis of ultrathin graphitic carbon nitride using a cost effective melamine precursor and its application in highly efficient photocatalytic dye degradation of Rhodamine B molecules. Compared to bulk graphitic carbon nitride, the synthesized ultrathin graphitic carbon nitride shows an increase in surface area, a a decrease in optical band gap and effective photogenerated charge separation which facilitates the harvest of visible light irradiation. Due to these optimal properties of ultrathin graphitic carbon nitride, it shows excellent photocatalytic activity with photocatalytic degradation of about 95% rhodamine B molecules in 1 hour.

  13. Three-peak standard white organic light-emitting devices for solid-state lighting

    NASA Astrophysics Data System (ADS)

    Guo, Kunping; Wei, Bin

    2014-12-01

    Standard white organic light-emitting device (OLED) lighting provides a warm and comfortable atmosphere and shows mild effect on melatonin suppression. A high-efficiency red OLED employing phosphorescent dopant has been investigated. The device generates saturated red emission with Commission Internationale de l'Eclairage (CIE) coordinates of (0.66, 0.34), characterized by a low driving voltage of 3.5 V and high external quantum efficiency of 20.1% at 130 cd m-2. In addition, we have demonstrated a two-peak cold white OLED by combining with a pure blue emitter with the electroluminescent emission of 464 nm, 6, 12-bis{[N-(3,4-dimethylpheyl)-N-(2,4,5-trimethylphenyl)]} chrysene (BmPAC). It was found that the man-made lighting device capable of yielding a relatively stable color emission within the luminance range of 1000-5000 cd m-2. And the chromaticity coordinates, varying from (0.25, 0.21) to (0.23, 0.21). Furthermore, an ultrathin layer of green-light-emitting tris (2-phenylpyridinato)iridium(Ⅲ) Ir(ppy)3 in the host material was introduced to the emissive region for compensating light. By appropriately controlling the layer thickness, the white light OLED achieved good performance of 1280 cd m-2 at 5.0 V and 5150 cd m-2 at 7.0 V, respectively. The CIE coordinates of the emitted light are quite stable at current densities from 759 cd m-2 to 5150 cd m-2, ranging from (0.34, 0.37) to (0.33, 0.33).

  14. Electronic properties of blue phosphorene/graphene and blue phosphorene/graphene-like gallium nitride heterostructures.

    PubMed

    Sun, Minglei; Chou, Jyh-Pin; Yu, Jin; Tang, Wencheng

    2017-07-05

    Blue phosphorene (BlueP) is a graphene-like phosphorus nanosheet which was synthesized very recently for the first time [Nano Lett., 2016, 16, 4903-4908]. The combination of electronic properties of two different two-dimensional materials in an ultrathin van der Waals (vdW) vertical heterostructure has been proved to be an effective approach to the design of novel electronic and optoelectronic devices. Therefore, we used density functional theory to investigate the structural and electronic properties of two BlueP-based heterostructures - BlueP/graphene (BlueP/G) and BlueP/graphene-like gallium nitride (BlueP/g-GaN). Our results showed that the semiconducting nature of BlueP and the Dirac cone of G are well preserved in the BlueP/G vdW heterostructure. Moreover, by applying a perpendicular electric field, it is possible to tune the position of the Dirac cone of G with respect to the band edge of BlueP, resulting in the ability to control the Schottky barrier height. For the BlueP/g-GaN vdW heterostructure, BlueP forms an interface with g-GaN with a type-II band alignment, which is a promising feature for unipolar electronic device applications. Furthermore, we discovered that both G and g-GaN can be used as an active layer for BlueP to facilitate charge injection and enhance the device performance.

  15. Vacuum Nanohole Array Embedded Phosphorescent Organic Light Emitting Diodes

    PubMed Central

    Jeon, Sohee; Lee, Jeong-Hwan; Jeong, Jun-Ho; Song, Young Seok; Moon, Chang-Ki; Kim, Jang-Joo; Youn, Jae Ryoun

    2015-01-01

    Light extraction from organic light-emitting diodes that utilize phosphorescent materials has an internal efficiency of 100% but is limited by an external quantum efficiency (EQE) of 30%. In this study, extremely high-efficiency organic light emitting diodes (OLEDs) with an EQE of greater than 50% and low roll-off were produced by inserting a vacuum nanohole array (VNHA) into phosphorescent OLEDs (PhOLEDs). The resultant extraction enhancement was quantified in terms of EQE by comparing experimentally measured results with those produced from optical modeling analysis, which assumes the near-perfect electric characteristics of the device. A comparison of the experimental data and optical modeling results indicated that the VNHA extracts the entire waveguide loss into the air. The EQE obtained in this study is the highest value obtained to date for bottom-emitting OLEDs. PMID:25732061

  16. Selective layer disordering in III-nitrides with a capping layer

    DOEpatents

    Wierer, Jr., Jonathan J.; Allerman, Andrew A.

    2016-06-14

    Selective layer disordering in a doped III-nitride superlattice can be achieved by depositing a dielectric capping layer on a portion of the surface of the superlattice and annealing the superlattice to induce disorder of the layer interfaces under the uncapped portion and suppress disorder of the interfaces under the capped portion. The method can be used to create devices, such as optical waveguides, light-emitting diodes, photodetectors, solar cells, modulators, laser, and amplifiers.

  17. Influences of wide-angle and multi-beam interference on the chromaticity and efficiency of top-emitting white organic light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Lingling; Zhou, Hongwei; Chen, Shufen, E-mail: iamsfchen@njupt.edu.cn

    Wide-angle interference (WI) and multi-beam interference (MI) in microcavity are analyzed separately to improve chromaticity and efficiency of the top-emitting white organic light-emitting diodes (TWOLEDs). A classic electromagnetic theory is used to calculate the resonance intensities of WI and MI in top-emitting organic light-emitting diodes (TOLEDs) with influence factors (e.g., electrodes and exciton locations) being considered. The role of WI on the performances of TOLEDs is revealed through using δ-doping technology and comparing blue and red EML positions in top-emitting and bottom-emitting devices. The blue light intensity significantly increases and the chromaticity of TWOLEDs is further improved with the usemore » of enhanced WI (the blue emitting layer moving towards the reflective electrode) in the case of a weak MI. In addition, the effect of the thicknesses of light output layer and carrier transport layers on WI and MI are also investigated. Apart from the microcavity effect, other factors, e.g., carrier balance and carrier recombination regions are considered to obtain TWOLEDs with high efficiency and improved chromaticity near white light equal-energy point.« less

  18. Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes.

    PubMed

    Qian, Fang; Gradecak, Silvija; Li, Yat; Wen, Cheng-Yen; Lieber, Charles M

    2005-11-01

    We report the growth and characterization of core/multishell nanowire radial heterostructures, and their implementation as efficient and synthetically tunable multicolor nanophotonic sources. Core/multishell nanowires were prepared by metal-organic chemical vapor deposition with an n-GaN core and InxGa1-xN/GaN/p-AlGaN/p-GaN shells, where variation of indium mole fraction is used to tune emission wavelength. Cross-sectional transmission electron microscopy studies reveal that the core/multishell nanowires are dislocation-free single crystals with a triangular morphology. Energy-dispersive X-ray spectroscopy clearly shows shells with distinct chemical compositions, and quantitatively confirms that the thickness and composition of individual shells can be well controlled during synthesis. Electrical measurements show that the p-AlGaN/p-GaN shell structure yields reproducible hole conduction, and electroluminescence measurements demonstrate that in forward bias the core/multishell nanowires function as light-emitting diodes, with tunable emission from 365 to 600 nm and high quantum efficiencies. The ability to synthesize rationally III-nitride core/multishell nanowire heterostructures opens up significant potential for integrated nanoscale photonic systems, including multicolor lasers.

  19. Lead iodide perovskite light-emitting field-effect transistor

    PubMed Central

    Chin, Xin Yu; Cortecchia, Daniele; Yin, Jun; Bruno, Annalisa; Soci, Cesare

    2015-01-01

    Despite the widespread use of solution-processable hybrid organic–inorganic perovskites in photovoltaic and light-emitting applications, determination of their intrinsic charge transport parameters has been elusive due to the variability of film preparation and history-dependent device performance. Here we show that screening effects associated to ionic transport can be effectively eliminated by lowering the operating temperature of methylammonium lead iodide perovskite (CH3NH3PbI3) field-effect transistors. Field-effect carrier mobility is found to increase by almost two orders of magnitude below 200 K, consistent with phonon scattering-limited transport. Under balanced ambipolar carrier injection, gate-dependent electroluminescence is also observed from the transistor channel, with spectra revealing the tetragonal to orthorhombic phase transition. This demonstration of CH3NH3PbI3 light-emitting field-effect transistors provides intrinsic transport parameters to guide materials and solar cell optimization, and will drive the development of new electro-optic device concepts, such as gated light-emitting diodes and lasers operating at room temperature. PMID:26108967

  20. GdN nanoisland-based GaN tunnel junctions.

    PubMed

    Krishnamoorthy, Sriram; Kent, Thomas F; Yang, Jing; Park, Pil Sung; Myers, Roberto C; Rajan, Siddharth

    2013-06-12

    Tunnel junctions could have a great impact on gallium nitride and aluminum nitride-based devices such as light-emitting diodes and lasers by overcoming critical challenges related to hole injection and p-contacts. This paper demonstrates the use of GdN nanoislands to enhance interband tunneling and hole injection into GaN p-n junctions by several orders of magnitude, resulting in low tunnel junction specific resistivity (1.3 × 10(-3) Ω-cm(2)) compared to the previous results in wide band gap semiconductors. Tunnel injection of holes was confirmed by low-temperature operation of GaN p-n junction with a tunneling contact layer, and strong electroluminescence down to 20 K. The low tunnel junction resistance combined with low optical absorption loss in GdN is very promising for incorporation in GaN-based light emitters.

  1. Organic light-emitting device with a phosphor-sensitized fluorescent emission layer

    DOEpatents

    Forrest, Stephen [Ann Arbor, MI; Kanno, Hiroshi [Osaka, JP

    2009-08-25

    The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters. The emissive region of the devices of the present invention comprise at least one phosphor-sensitized layer which has a combined emission from a phosphorescent emitter and a fluorescent emitter. In preferred embodiments, the invention relates to white-emitting OLEDS (WOLEDs).

  2. All-solution processed transparent organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Höfle, Stefan; Czolk, Jens; Mertens, Adrian; Colsmann, Alexander

    2015-11-01

    In this work, we report on indium tin oxide-free, all-solution processed transparent organic light emitting diodes (OLEDs) with inverted device architecture. Conductive polymer layers are employed as both transparent cathodes and transparent anodes, with the top anodes having enhanced conductivities from a supporting stochastic silver nanowire mesh. Both electrodes exhibit transmittances of 80-90% in the visible spectral regime. Upon the incorporation of either yellow- or blue-light emitting fluorescent polymers, the OLEDs show low onset voltages, demonstrating excellent charge carrier injection from the polymer electrodes into the emission layers. Overall luminances and current efficiencies equal the performance of opaque reference OLEDs with indium tin oxide and aluminium electrodes, proving excellent charge carrier-to-light conversion within the device.

  3. Design Considerations for a Water Treatment System Utilizing Ultra-Violet Light Emitting Diodes

    DTIC Science & Technology

    2014-03-27

    DESIGN CONSIDERATIONS FOR A WATER TREATMENT SYSTEM UTILIZING ULTRA-VIOLET LIGHT EMITTING DIODES...the United States. ii AFIT-ENV-14-M-58 DESIGN CONSIDERATIONS FOR A WATER TREATMENT SYSTEM UTILIZING ULTRA-VIOLET LIGHT EMITTING DIODES...DISTRIBUTION UNLIMITED. iii AFIT-ENV-14-M-58 DESIGN CONSIDERATIONS FOR A WATER TREATMENT SYSTEM UTILIZING ULTRA-VIOLET LIGHT EMITTING

  4. Method and apparatus for improving the performance of light emitting diodes

    DOEpatents

    Lowery, Christopher H.; McElfresh, David K.; Burchet, Steve; Adolf, Douglas B.; Martin, James

    1996-01-01

    A method for increasing the resistance of a light emitting diode and other semiconductor devices to extremes of temperature is disclosed. During the manufacture of the light emitting diode, a liquid coating is applied to the light emitting die after the die has been placed in its lead frame. After the liquid coating has been placed on the die and its lead frames, a thermosetting encapsulant material is placed over the coating. The operation that cures the thermosetting material leaves the coating liquid intact. As the die and the encapsulant expand and contract at different rates with respect to changes in temperature, and as in known light emitting diodes the encapsulating material adheres to the die and lead frames, this liquid coating reduces the stresses that these different rates of expansion and contraction normally cause by eliminating the adherence of the encapsulating material to the die and frame.

  5. Silver free III-nitride flip chip light-emitting-diode with wall plug efficiency over 70% utilizing a GaN tunnel junction

    NASA Astrophysics Data System (ADS)

    Yonkee, B. P.; Young, E. C.; DenBaars, S. P.; Nakamura, S.; Speck, J. S.

    2016-11-01

    A molecular beam epitaxy regrowth technique was demonstrated on standard industrial patterned sapphire substrate light-emitting diode (LED) epitaxial wafers emitting at 455 nm to form a GaN tunnel junction. By using an HF pretreatment on the wafers before regrowth, a voltage of 3.08 V at 20 A/cm2 was achieved on small area devices. A high extraction package was developed for comparison with flip chip devices which utilize an LED floating in silicone over a BaSO4 coated header and produced a peak external quantum efficiency (EQE) of 78%. A high reflectivity mirror was designed using a seven-layer dielectric coating backed by aluminum which has a calculated angular averaged reflectivity over 98% between 400 and 500 nm. This was utilized to fabricate a flip chip LED which had a peak EQE and wall plug efficiency of 76% and 73%, respectively. This flip chip could increase light extraction over a traditional flip chip LED due to the increased reflectivity of the dielectric based mirror.

  6. Finding the average speed of a light-emitting toy car with a smartphone light sensor

    NASA Astrophysics Data System (ADS)

    Kapucu, Serkan

    2017-07-01

    This study aims to demonstrate how the average speed of a light-emitting toy car may be determined using a smartphone’s light sensor. The freely available Android smartphone application, ‘AndroSensor’, was used for the experiment. The classroom experiment combines complementary physics knowledge of optics and kinematics to find the average speed of a moving object. The speed of the toy car is found by determining the distance between the light-emitting toy car and the smartphone, and the time taken to travel these distances. To ensure that the average speed of the toy car calculated with the help of the AndroSensor was correct, the average speed was also calculated by analyzing video-recordings of the toy car. The resulting speeds found with these different methods were in good agreement with each other. Hence, it can be concluded that reliable measurements of the average speed of light-emitting objects can be determined with the help of the light sensor of an Android smartphone.

  7. Self-assembled Multilayers of Silica Nanospheres for Defect Reduction in Non- and Semipolar Gallium Nitride Epitaxial Layers

    PubMed Central

    2015-01-01

    Non- and semipolar GaN have great potential to improve the efficiency of light emitting devices due to much reduced internal electric fields. However, heteroepitaxial GaN growth in these crystal orientations suffers from very high dislocation and stacking faults densities. Here, we report a facile method to obtain low defect density non- and semipolar heteroepitaxial GaN via selective area epitaxy using self-assembled multilayers of silica nanospheres (MSN). Nonpolar (11–20) and semipolar (11–22) GaN layers with high crystal quality have been achieved by epitaxial integration of the MSN and a simple one-step overgrowth process, by which both dislocation and basal plane stacking fault densities can be significantly reduced. The underlying defect reduction mechanisms include epitaxial growth through the MSN covered template, island nucleation via nanogaps in the MSN, and lateral overgrowth and coalescence above the MSN. InGaN/GaN multiple quantum wells structures grown on a nonpolar GaN/MSN template show more than 30-fold increase in the luminescence intensity compared to a control sample without the MSN. This self-assembled MSN technique provides a new platform for epitaxial growth of nitride semiconductors and offers unique opportunities for improving the material quality of GaN grown on other orientations and foreign substrates or heteroepitaxial growth of other lattice-mismatched materials. PMID:27065755

  8. Facile Atmospheric Pressure Synthesis of High Thermal Stability and Narrow-Band Red-Emitting SrLiAl3N4:Eu(2+) Phosphor for High Color Rendering Index White Light-Emitting Diodes.

    PubMed

    Zhang, Xuejie; Tsai, Yi-Ting; Wu, Shin-Mou; Lin, Yin-Chih; Lee, Jyh-Fu; Sheu, Hwo-Shuenn; Cheng, Bing-Ming; Liu, Ru-Shi

    2016-08-03

    Red phosphors (e.g., SrLiAl3N4:Eu(2+)) with high thermal stability and narrow-band properties are urgently explored to meet the next-generation high-power white light-emitting diodes (LEDs). However, to date, synthesis of such phosphors remains an arduous task. Herein, we report, for the first time, a facile method to synthesize SrLiAl3N4:Eu(2+) through Sr3N2, Li3N, Al, and EuN under atmospheric pressure. The as-synthesized narrow-band red-emitting phosphor exhibits excellent thermal stability, including small chromaticity shift and low thermal quenching. Intriguingly, the title phosphor shows an anomalous increase in theoretical lumen equivalent with the increase of temperature as a result of blue shift and band broadening of the emission band, which is crucial for high-power white LEDs. Utilizing the title phosphor, commercial YAG:Ce(3+), and InGaN-based blue LED chip, a proof-of-concept warm white LEDs with a color rendering index (CRI) of 91.1 and R9 = 68 is achieved. Therefore, our results highlight that this method, which is based on atmospheric pressure synthesis, may open a new means to explore narrow-band-emitting nitride phosphor. In addition, the underlying requirements to design Eu(2+)-doped narrow-band-emitting phosphors were also summarized.

  9. Spin-polarized light-emitting diodes based on organic bipolar spin valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vardeny, Zeev Valentine; Nguyen, Tho Duc; Ehrenfreund, Eitan Avraham

    Spin-polarized organic light-emitting diodes are provided. Such spin-polarized organic light-emitting diodes incorporate ferromagnetic electrodes and show considerable spin-valve magneto-electroluminescence and magneto-conductivity responses, with voltage and temperature dependencies that originate from the bipolar spin-polarized space charge limited current.

  10. Systematic Study of p-type Doping and Related Defects in III-Nitrides: Pathway toward a Nitride HBT

    DTIC Science & Technology

    2012-11-20

    InGaN growth where an intermediate regime does not exist.40 Considering GaN molecular - beam epitaxy (MBE) growth phase diagrams such as those...1009 (2007). 44 S. D. Burnham, Improved Understanding and Control of Magnesium-Doped Gallium Nitride by Plasma Assisted Molecular Beam Epitaxy , in...reported using a modified form of molecular beam epitaxy (MBE) called Metal-Modulated Epitaxy (MME).11, 12 The details of this shuttered technique

  11. Gallium phosphide energy converters

    NASA Astrophysics Data System (ADS)

    Sims, P. E.; Dinetta, L. C.; Goetz, M. A.

    1995-10-01

    Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/sq cm have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.

  12. Gallium phosphide energy converters

    NASA Technical Reports Server (NTRS)

    Sims, P. E.; Dinetta, L. C.; Goetz, M. A.

    1995-01-01

    Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/sq cm have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.

  13. Characteristics of blue organic light emitting diodes with different thick emitting layers

    NASA Astrophysics Data System (ADS)

    Li, Chong; Tsuboi, Taiju; Huang, Wei

    2014-08-01

    We fabricated blue organic light emitting diodes (called blue OLEDs) with emitting layer (EML) of diphenylanthracene derivative 9,10-di(2-naphthyl)anthracene (ADN) doped with blue-emitting DSA-ph (1-4-di-[4-(N,N-di-phenyl)amino]styryl-benzene) to investigate how the thickness of EML and hole injection layer (HIL) influences the electroluminescence characteristics. The driving voltage was observed to increase with increasing EML thickness from 15 nm to 70 nm. The maximum external quantum efficiency of 6.2% and the maximum current efficiency of 14 cd/A were obtained from the OLED with 35 nm thick EML and 75 nm thick HIL. High luminance of 120,000 cd/m2 was obtained at 7.5 V from OLED with 15 nm thick EML.

  14. Light Emitting Diodes (LEDs)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique, called Photodynamic Therapy, requires the surgeon to use tiny, pinhead-size Light Emitting Diodes (LEDs) (a source that releases long wavelengths of light ) to activate light-sensitive, tumor-treating drugs. 'A young woman operated on in May 1999 has fully recovered with no complications and no evidence of the tumor coming back,' said Dr. Harry Whelan, a pediatric neurologist at the Medical Hospital of Wisconsin in Milwaukee. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can be used for hours at a time while still remaining cool to the touch. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The LEDs, developed and managed by NASA's Marshall Space Flight Center, have been used on seven Space Shuttle flights inside the Microgravity Astroculture Facility. This technology has also been successfully used to further commercial research in crop growth.

  15. Progress in wet-coated organic light-emitting devices for lighting

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Ye, Qing; Lewis, Larry N.; Duggal, Anil R.

    2007-09-01

    Here we present recent progress in developing efficient wet-coated organic light-emitting devices (OLEDs) for lighting applications. In particular, we describe a novel approach for building efficient wet-coated dye-doped blue phosphorescent devices. Further, a novel approach for achieving arbitrary emission patterning for OLEDs is discussed. This approach utilizes a photo-induced chemical doping strategy for selectively activating charge injection materials, thus enabling devices with arbitrary emission patterning. This approach may provide a simple, low cost path towards specialty lighting and signage applications for OLED technology.

  16. Size effects in the thermal conductivity of gallium oxide (β-Ga{sub 2}O{sub 3}) films grown via open-atmosphere annealing of gallium nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szwejkowski, Chester J.; Giri, Ashutosh; Donovan, Brian F.

    2015-02-28

    Gallium nitride (GaN) is a widely used semiconductor for high frequency and high power devices due to of its unique electrical properties: a wide band gap, high breakdown field, and high electron mobility. However, thermal management has become a limiting factor regarding efficiency, lifetime, and advancement of GaN devices and GaN-based applications. In this work, we study the thermal conductivity of beta-phase gallium oxide (β-Ga{sub 2}O{sub 3}) thin films, a component of typical gate oxides used in such devices. We use time domain thermoreflectance to measure the thermal conductivity of a variety of polycrystalline β-Ga{sub 2}O{sub 3} films of differentmore » thicknesses grown via open atmosphere annealing of the surfaces of GaN films on sapphire substrates. We show that the measured effective thermal conductivity of these β-Ga{sub 2}O{sub 3} films can span 1.5 orders of magnitude, increasing with an increased film thickness, which is indicative of the relatively large intrinsic thermal conductivity of the β-Ga{sub 2}O{sub 3} grown via this technique (8.8 ± 3.4 W m{sup −1} K{sup −1}) and large mean free paths compared to typical gate dielectrics commonly used in GaN device contacts. By conducting time domain thermoreflectance (TDTR) measurements with different metal transducers (Al, Au, and Au with a Ti wetting layer), we attribute this variation in effective thermal conductivity to a combination of size effects in the β-Ga{sub 2}O{sub 3} film resulting from phonon scattering at the β-Ga{sub 2}O{sub 3}/GaN interface and thermal transport across the β-Ga{sub 2}O{sub 3}/GaN interface. The measured thermal properties of open atmosphere-grown β-Ga{sub 2}O{sub 3} and its interface with GaN set the stage for thermal engineering of gate contacts in high frequency GaN-based devices.« less

  17. Top-emitting white organic light-emitting devices with down-conversion phosphors: theory and experiment.

    PubMed

    Ji, Wenyu; Zhang, Letian; Gao, Ruixue; Zhang, Liming; Xie, Wenfa; Zhang, Hanzhuang; Li, Bin

    2008-09-29

    White top-emitting organic light-emitting devices (TEOLEDs) with down-conversion phosphors are investigated from theory and experiment. The theoretical simulation was described by combining the microcavity model with the down-conversion model. A White TEOLED by the combination of a blue TEOLED with organic down-conversion phosphor 3-(4-(diphenylamino)phenyl)-1-pheny1prop-2-en-1-one was fabricated to validate the simulated results. It is shown that this approach permits the generation of white light in TEOLEDs. The efficiency of the white TEOLED is twice over the corresponding blue TEOLED. The feasible methods to improve the performance of such white TEOLEDs are discussed.

  18. Preparation of gallium nitride surfaces for atomic layer deposition of aluminum oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, A. J.; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093; Chagarov, E.

    2014-09-14

    A combined wet and dry cleaning process for GaN(0001) has been investigated with XPS and DFT-MD modeling to determine the molecular-level mechanisms for cleaning and the subsequent nucleation of gate oxide atomic layer deposition (ALD). In situ XPS studies show that for the wet sulfur treatment on GaN(0001), sulfur desorbs at room temperature in vacuum prior to gate oxide deposition. Angle resolved depth profiling XPS post-ALD deposition shows that the a-Al{sub 2}O{sub 3} gate oxide bonds directly to the GaN substrate leaving both the gallium surface atoms and the oxide interfacial atoms with XPS chemical shifts consistent with bulk-like charge.more » These results are in agreement with DFT calculations that predict the oxide/GaN(0001) interface will have bulk-like charges and a low density of band gap states. This passivation is consistent with the oxide restoring the surface gallium atoms to tetrahedral bonding by eliminating the gallium empty dangling bonds on bulk terminated GaN(0001)« less

  19. Reduction of Defects on Microstructure Aluminium Nitride Using High Temperature Annealing Heat Treatment

    NASA Astrophysics Data System (ADS)

    Tanasta, Z.; Muhamad, P.; Kuwano, N.; Norfazrina, H. M. Y.; Unuh, M. H.

    2018-03-01

    Aluminium Nitride (AlN) is a ceramic 111-nitride material that is used widely as components in functional devices. Besides good thermal conductivity, it also has a high band gap in emitting light which is 6 eV. AlN thin film is grown on the sapphire substrate (0001). However, lattice mismatch between both materials has caused defects to exist along the microstructure of AlN thin films. The defects have affected the properties of Aluminium Nitride. Annealing heat treatment has been proved by the previous researcher to be the best method to improve the microstructure of Aluminium Nitride thin films. Hence, this method is applied at four different temperatures for two hour. The changes of Aluminium Nitride microstructures before and after annealing is observed using Transmission Electron Microscope. It is observed that inversion domains start to occur at temperature of 1500 °C. Convergent Beam Electron Diffraction pattern simulation has confirmed the defects as inversion domain. Therefore, this paper is about to extract the matters occurred during the process of producing high quality Aluminium Nitride thin films and the ways to overcome this problem.

  20. Nitride based quantum well light-emitting devices having improved current injection efficiency

    DOEpatents

    Tansu, Nelson; Zhao, Hongping; Liu, Guangyu; Arif, Ronald

    2014-12-09

    A III-nitride based device provides improved current injection efficiency by reducing thermionic carrier escape at high current density. The device includes a quantum well active layer and a pair of multi-layer barrier layers arranged symmetrically about the active layer. Each multi-layer barrier layer includes an inner layer abutting the active layer; and an outer layer abutting the inner layer. The inner barrier layer has a bandgap greater than that of the outer barrier layer. Both the inner and the outer barrier layer have bandgaps greater than that of the active layer. InGaN may be employed in the active layer, AlInN, AlInGaN or AlGaN may be employed in the inner barrier layer, and GaN may be employed in the outer barrier layer. Preferably, the inner layer is thin relative to the other layers. In one embodiment the inner barrier and active layers are 15 .ANG. and 24 .ANG. thick, respectively.

  1. Spectroscopic Ellipsometry Measurements of Wurtzite Gallium Nitride Surfaces as a Function of Buffered Oxide Etch Substrate Submersion

    NASA Astrophysics Data System (ADS)

    Szwejkowski, Chester; Constantin, Costel; Duda, John; Hopkins, Patrick; Optical Studies of GaN interfaces Collaboration

    2013-03-01

    Gallium nitride (GaN) is considered the most important semiconductor after the discovery of silicon. Understanding the optical properties of GaN surfaces is imperative in determining the utility and applicability of this class of materials to devices. In this work, we present preliminary results of spectroscopic ellipsometry measurements as a function of surface root mean square (RMS). We used commercially available 5mm x 5mm, one side polished GaN (3-7 μm)/Sapphire (430 μm) substrates that have a wurtzite crystal structure and they are slightly n-type doped. The GaN substrates were cleaned with Acetone (20 min)/Isopropanol(20 min)/DI water (20 min) before they were submerged into Buffered Oxide Etch (BOE) for 10s - 60s steps. This BOE treatment produced RMS values of 1-30 nm as measured with an atomic force microscope. Preliminary qualitative ellipsometric measurements show that the complex refractive index and the complex dielectric function decrease with an increase of RMS. More measurements need to be done in order to provide explicit quantitative results. This work was supported by the 4-VA Collaborative effort between James Madison University and University of Virginia.

  2. Light emitting ceramic device and method for fabricating the same

    DOEpatents

    Valentine, Paul; Edwards, Doreen D.; Walker Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard

    2004-11-30

    A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, and alternative methods of fabrication for the same are claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.

  3. Boron nitride - Composition, optical properties, and mechanical behavior

    NASA Technical Reports Server (NTRS)

    Pouch, John J.; Alterovitz, Samuel A.; Miyoshi, Kazuhisa; Warner, Joseph D.

    1987-01-01

    A low energy ion beam deposition technique was used to grow boron nitride films on quartz, germanium, silicon, gallium arsenide, and indium phosphate. The film structure was amorphous with evidence of a hexagonal phase. The peak boron concentration was 82 at. percent. The carbon and oxygen impurities were in the 5 to 8 at. percent range. Boron-nitrogen and boron-boron bonds were revealed by X-ray photoelectron spectroscopy. The index of refraction varied from 1.65 to 1.67 for films deposited on III-V compound semiconductors. The coefficient of friction for boron nitride in sliding contact with diamond was less than 0.1. The substrate was silicon.

  4. Boron nitride: Composition, optical properties and mechanical behavior

    NASA Technical Reports Server (NTRS)

    Pouch, John J.; Alterovitz, Samuel A.; Miyoshi, Kazuhisa; Warner, Joseph D.

    1987-01-01

    A low energy ion beam deposition technique was used to grow boron nitride films on quartz, germanium, silicon, gallium arsenide, and indium phosphate. The film structure was amorphous with evidence of a hexagonal phase. The peak boron concentration was 82 at %. The carbon and oxygen impurities were in the 5 to 8 at % range. Boron-nitrogen and boron-boron bonds were revealed by X-ray photoelectron spectroscopy. The index of refraction varied from 1.65 to 1.67 for films deposited on III-V compound semiconductors. The coefficient of friction for boron nitride in sliding contact with diamond was less than 0.1. The substrate was silicon.

  5. Naturally formed graded junction for organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Shao, Yan; Yang, Yang

    2003-09-01

    In this letter, we report naturally-formed graded junctions (NFGJ) for organic light-emitting diodes (OLEDs). These junctions are fabricated using single thermal evaporation boat loaded with uniformly mixed charge transport and light-emitting materials. Upon heating, materials sublimate sequentially according to their vaporizing temperatures forming the graded junction. Two kinds of graded structures, sharp and shallow graded junctions, can be formed based on the thermal properties of the selected materials. The NFGJ OLEDs have shown excellent performance in both brightness and lifetime compared with heterojunction devices.

  6. Light up-conversion from near-infrared to blue using a photoresponsive organic light-emitting device

    NASA Astrophysics Data System (ADS)

    Chikamatsu, Masayuki; Ichino, Yoshiro; Takada, Noriyuki; Yoshida, Manabu; Kamata, Toshihide; Yase, Kiyoshi

    2002-07-01

    A photoresponsive organic light-emitting device combining blue-emitting organic electroluminescent (EL) diode with titanyl phthalocyanine as a near-infrared (IR) sensitive layer was fabricated. By irradiating near-IR light to the device, blue emission occurred in the lower drive voltage (between 5 and 12 V). The result indicates that the device acts as a light switch and/or an up-converter from near-IR light (1.6 eV) to blue (2.6 eV). The EL response times of rise and decay using a near-IR light trigger were 260 and 330 mus, respectively. At a higher voltage (above 12 V), enhancement of blue emission was observed with near-IR light irradiation. The ON/OFF ratio reached a maximum of 103.

  7. Compact light-emitting diode lighting ring for video-assisted thoracic surgery.

    PubMed

    Lu, Ming-Kuan; Chang, Feng-Chen; Wang, Wen-Zhe; Hsieh, Chih-Cheng; Kao, Fu-Jen

    2014-01-01

    In this work, a foldable ring-shaped light-emitting diode (LED) lighting assembly, designed to attach to a rubber wound retractor, is realized and tested through porcine animal experiments. Enabled by the small size and the high efficiency of LED chips, the lighting assembly is compact, flexible, and disposable while providing direct and high brightness lighting for more uniform background illumination in video-assisted thoracic surgery (VATS). When compared with a conventional fiber bundle coupled light source that is usually used in laparoscopy and endoscopy, the much broader solid angle of illumination enabled by the LED assembly allows greatly improved background lighting and imaging quality in VATS.

  8. Light extraction from organic light-emitting diodes for lighting applications by sand-blasting substrates.

    PubMed

    Chen, Shuming; Kwok, Hoi Sing

    2010-01-04

    Light extraction from organic light-emitting diodes (OLEDs) by scattering the light is one of the effective methods for large-area lighting applications. In this paper, we present a very simple and cost-effective method to rough the substrates and hence to scatter the light. By simply sand-blasting the edges and back-side surface of the glass substrates, a 20% improvement of forward efficiency has been demonstrated. Moreover, due to scattering effect, a constant color over all viewing angles and uniform light pattern with Lambertian distribution has been obtained. This simple and cost-effective method may be suitable for mass production of large-area OLEDs for lighting applications.

  9. Hybrid daylight/light-emitting diode illumination system for indoor lighting.

    PubMed

    Ge, Aiming; Qiu, Peng; Cai, Jinlin; Wang, Wei; Wang, Junwei

    2014-03-20

    A hybrid illumination method using both daylight and light-emitting diodes (LEDs) for indoor lighting is presented in this study. The daylight can be introduced into the indoor space by a panel-integration system. The daylight part and LEDs are combined within a specific luminaire that can provide uniform illumination. The LEDs can be turned on and dimmed through closed-loop control when the daylight illuminance is inadequate. We simulated the illumination and calculated the indoor lighting efficiency of our hybrid daylight and LED lighting system, and compared this with that of LED and fluorescent lighting systems. Simulation results show that the efficiency of the hybrid daylight/LED illumination method is better than that of LED and traditional lighting systems, under the same lighting conditions and lighting time; the method has hybrid lighting average energy savings of T5 66.28%, and that of the LEDs is 41.62%.

  10. GaN light-emitting device based on ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Hirai, Tomoaki; Sakanoue, Tomo; Takenobu, Taishi

    2018-06-01

    Ionic liquids (ILs) are attractive materials for fabricating unique hybrid devices based on electronics and electrochemistry; thus, IL-gated transistors and organic light-emitting devices of light-emitting electrochemical cells (LECs) are investigated for future low-voltage and high-performance devices. In LECs, voltage application induces the formation of electrochemically doped p–n homojunctions owing to ion rearrangements in composites of semiconductors and electrolytes, and achieves electron–hole recombination for light emission at the homojunctions. In this work, we applied this concept of IL-induced electrochemical doping to the fabrication of GaN-based light-emitting devices. We found that voltage application to the layered IL/GaN structure accumulated electrons on the GaN surface owing to ion rearrangements and improved the conductivity of GaN. The ion rearrangement also enabled holes to be injected by the strong electric field of electric double layers on hole injection contacts. This simultaneous injection of holes and electrons into GaN mediated by ions achieves light emission at a low voltage of around 3.4 V. The light emission from the simple IL/GaN structure indicates the usefulness of an electrochemical technique in generating light emission with great ease of fabrication.

  11. Investigation of organic light emitting diodes for interferometric purposes

    NASA Astrophysics Data System (ADS)

    Pakula, Anna; Zimak, Marzena; Sałbut, Leszek

    2011-05-01

    Recently the new type of light source has been introduced to the market. Organic light emitting diode (OLED) is not only interesting because of the low applying voltage, wide light emitting areas and emission efficiency. It gives the possibility to create a light source of a various shape, various color and in the near future very likely even the one that will change shape and spectrum in time in controlled way. Those opportunities have not been in our reach until now. In the paper authors try to give an answer to the question if the new light source -OLED - is suitable for interferometric purposes. Tests cover the short and long term spectrum stability, spectrum changes due to the emission area selection. In the paper the results of two OLEDs (red and white) are shown together with the result of an attempt to use them in an interferometric setup.

  12. Method of making organic light emitting devices

    DOEpatents

    Shiang, Joseph John [Niskayuna, NY; Janora, Kevin Henry [Schenectady, NY; Parthasarathy, Gautam [Saratoga Springs, NY; Cella, James Anthony [Clifton Park, NY; Chichak, Kelly Scott [Clifton Park, NY

    2011-03-22

    The present invention provides a method for the preparation of organic light-emitting devices comprising a bilayer structure made by forming a first film layer comprising an electroactive material and an INP precursor material, and exposing the first film layer to a radiation source under an inert atmosphere to generate an interpenetrating network polymer composition comprising the electroactive material. At least one additional layer is disposed on the reacted first film layer to complete the bilayer structure. The bilayer structure is comprised within an organic light-emitting device comprising standard features such as electrodes and optionally one or more additional layers serving as a bipolar emission layer, a hole injection layer, an electron injection layer, an electron transport layer, a hole transport layer, exciton-hole transporting layer, exciton-electron transporting layer, a hole transporting emission layer, or an electron transporting emission layer.

  13. Light Emitting Diode Flashlights as Effective and Inexpensive Light Sources for Fluorescence Microscopy

    PubMed Central

    Robertson, J. Brian; Zhang, Yunfei; Johnson, Carl Hirschie

    2009-01-01

    Summary Light-emitting diodes (LEDs) are becoming more commonly used as light sources for fluorescence microscopy. We describe the adaptation of a commercially available LED flashlight for use as a source for fluorescence excitation. This light source is long-lived, inexpensive, and is effective for excitation in the range of 440–600 nm. PMID:19772530

  14. Soft lithography microlens fabrication and array for enhanced light extraction from organic light emitting diodes (OLEDs)

    DOEpatents

    Leung, Wai Y.; Park, Joong-Mok; Gan, Zhengqing; Constant, Kristen P.; Shinar, Joseph; Shinar, Ruth; ho, Kai-Ming

    2014-06-03

    Provided are microlens arrays for use on the substrate of OLEDs to extract more light that is trapped in waveguided modes inside the devices and methods of manufacturing same. Light extraction with microlens arrays is not limited to the light emitting area, but is also efficient in extracting light from the whole microlens patterned area where waveguiding occurs. Large microlens array, compared to the size of the light emitting area, extract more light and result in over 100% enhancement. Such a microlens array is not limited to (O)LEDs of specific emission, configuration, pixel size, or pixel shape. It is suitable for all colors, including white, for microcavity OLEDs, and OLEDs fabricated directly on the (modified) microlens array.

  15. Light-Emitting Diodes: Learning New Physics

    ERIC Educational Resources Information Center

    Planinšic, Gorazd; Etkina, Eugenia

    2015-01-01

    This is the third paper in our Light-Emitting Diodes series. The series aims to create a systematic library of LED-based materials and to provide the readers with the description of experiments and pedagogical treatment that would help their students construct, test, and apply physics concepts and mathematical relations. The first paper, published…

  16. Light-Emitting Diodes: Solving Complex Problems

    ERIC Educational Resources Information Center

    Planinšic, Gorazd; Etkina, Eugenia

    2015-01-01

    This is the fourth paper in our Light-Emitting Diodes series. The series aims to create a systematic library of LED-based materials and to provide readers with the description of experiments and the pedagogical treatment that would help their students construct, test, and apply physics concepts and mathematical relations. The first paper provided…

  17. Light-emitting diode technology status and directions: Opportunities for horticultural lighting

    DOE PAGES

    Tsao, Jeffrey Y.; Pattison, P. Morgan; Krames, Michael R.

    2016-01-01

    Here, light-emitting diode (LED) technology has advanced rapidly over the last decade, primarily driven by display and general illumination applications ("solid-state lighting (SSL) for humans"). These advancements have made LED lighting technically and economically advantageous not only for these applications, but also, as an indirect benefit, for adjacent applications such as horticultural lighting ("SSL for plants"). Moreover, LED technology has much room for continued improvement. In the near-term, these improvements will continue to be driven by SSL for humans (with indirect benefit to SSL for plants), the most important of which can be anticipated.

  18. Energy Impacts of Wide Band Gap Semiconductors in U.S. Light-Duty Electric Vehicle Fleet.

    PubMed

    Warren, Joshua A; Riddle, Matthew E; Graziano, Diane J; Das, Sujit; Upadhyayula, Venkata K K; Masanet, Eric; Cresko, Joe

    2015-09-01

    Silicon carbide and gallium nitride, two leading wide band gap semiconductors with significant potential in electric vehicle power electronics, are examined from a life cycle energy perspective and compared with incumbent silicon in U.S. light-duty electric vehicle fleet. Cradle-to-gate, silicon carbide is estimated to require more than twice the energy as silicon. However, the magnitude of vehicle use phase fuel savings potential is comparatively several orders of magnitude higher than the marginal increase in cradle-to-gate energy. Gallium nitride cradle-to-gate energy requirements are estimated to be similar to silicon, with use phase savings potential similar to or exceeding that of silicon carbide. Potential energy reductions in the United States vehicle fleet are examined through several scenarios that consider the market adoption potential of electric vehicles themselves, as well as the market adoption potential of wide band gap semiconductors in electric vehicles. For the 2015-2050 time frame, cumulative energy savings associated with the deployment of wide band gap semiconductors are estimated to range from 2-20 billion GJ depending on market adoption dynamics.

  19. Finding the Acceleration and Speed of a Light-Emitting Object on an Inclined Plane with a Smartphone Light Sensor

    ERIC Educational Resources Information Center

    Kapucu, Serkan

    2017-01-01

    This study investigates how the acceleration and speed of a light-emitting object on an inclined plane may be determined using a smartphone's light sensor. A light-emitting object was released from the top of an inclined plane and its illuminance values were detected by a smartphone's light sensor during its subsequent motion down the plane. Using…

  20. High Intensity Organic Light-emitting Diodes

    NASA Astrophysics Data System (ADS)

    Qi, Xiangfei

    This thesis is dedicated to the fabrication, modeling, and characterization to achieve high efficiency organic light-emitting diodes (OLEDs) for illumination applications. Compared to conventional lighting sources, OLEDs enabled the direct conversion of electrical energy into light emission and have intrigued the world's lighting designers with the long-lasting, highly efficient illumination. We begin with a brief overview of organic technology, from basic organic semiconductor physics, to its application in optoelectronics, i.e. light-emitting diodes, photovoltaics, photodetectors and thin-film transistors. Due to the importance of phosphorescent materials, we will focus on the photophysics of metal complexes that is central to high efficiency OLED technology, followed by a transient study to examine the radiative decay dynamics in a series of phosphorescent platinum binuclear complexes. The major theme of this thesis is the design and optimization of a novel architecture where individual red, green and blue phosphorescent OLEDs are vertically stacked and electrically interconnected by the compound charge generation layers. We modeled carrier generation from the metal-oxide/doped organic interface based on a thermally assisted tunneling mechanism. The model provides insights to the optimization of a stacked OLED from both electrical and optical point of view. To realize the high intensity white lighting source, the efficient removal of heat is of a particular concern, especially in large-area devices. A fundamental transfer matrix analysis is introduced to predict the thermal properties in the devices. The analysis employs Laplace transforms to determine the response of the system to the combined effects of conduction, convection, and radiation. This perspective of constructing transmission matrices greatly facilitates the calculation of transient coupled heat transfer in a general multi-layer composite. It converts differential equations to algebraic forms, and

  1. Electrical Activation Studies of Silicon Implanted Aluminum Gallium Nitride with High Aluminum Mole Fraction

    DTIC Science & Technology

    2007-12-01

    realized with silicon due to its indirect band gap that results in poor quantum efficiency . The first LEDs and laser diodes were developed with...deep UV (λ < 340 nm) still face many challenges and have low internal quantum efficiency . Jong Kyu Kim et al. have developed a light emitting triode...LET) to try to overcome some of the challenges and 16 have produced a lighting device with increased quantum efficiency (16). AlxGa1-xN has been

  2. LIGHT-EMITTING DIODE TECHNOLOGY IMPROVES INSECT TRAPPING

    PubMed Central

    GILLEN, JONATHON I.; MUNSTERMANN, LEONARD E.

    2008-01-01

    In a climate of increased funding for vaccines, chemotherapy, and prevention of vector-borne diseases, fewer resources have been directed toward improving disease and vector surveillance. Recently developed light-emitting diode (LED) technology was applied to standard insect-vector traps to produce a more effective lighting system. This approach improved phlebotomine sand fly capture rates by 50%, and simultaneously reduced the energy consumption by 50–60%. The LEDs were incorporated into 2 lighting designs, 1) a LED combination bulb for current light traps and 2) a chip-based LED design for a modified Centers for Disease Control and Prevention light trap. Detailed descriptions of the 2 designs are presented. PMID:18666546

  3. Blue-light emitting electrochemical cells comprising pyrene-imidazole derivatives

    NASA Astrophysics Data System (ADS)

    Lee, Hyeonji; Sunesh, Chozhidakath Damodharan; Subeesh, Madayanad Suresh; Choe, Youngson

    2018-04-01

    Light-emitting electrochemical cells (LECs), the next-generation lighting sources are the potential replacements for organic light-emitting diodes (OLEDs). In recent years, organic small molecules (SMs) have established the applicability in solid-state lighting, and considered as prospective active materials for LECs with higher device performance. Here, we describe the synthesis of pyrene-imidazole based SMs, PYR1, and PYR2 that differ by one pyrene unit and their characterization by various spectroscopic methods. To investigate the thermal, photophysical, and electrochemical properties of the two synthesized compounds, we performed thermogravimetric, UV-visible, photoluminescence (PL), and voltammetric measurements. The photoluminescence (PL) emission spectra of PYR1 and PYR2 measured in the acetonitrile solution, where PYR1 and PYR2 emit in the blue spectral region with peaks aligned at 383 nm and 389 nm, respectively. The fabricated LEC devices exhibited broader electroluminescence (EL) spectra with a significant red shift of the emission maxima to 446 nm and 487 nm, with CIE coordinates of (0.17, 0.18) and (0.18, 0.25) for PYR1 and PYR2, respectively. The LECs based on PYR1 and PYR2 produced maximum brightness values of 180 and 72 cd m-2 and current densities of 55 and 27 mA cm-2, respectively.

  4. Investigation of transparent zinc oxide-based contacts for high performance III-nitride light emitting diodes

    NASA Astrophysics Data System (ADS)

    Jung, Sungpyo

    In this dissertation, we investigate Al-doped ZnO(AZO) contact structure to a variety of GaN LED structures. Our results show that ZnO is a potentially viable transparent contact for GaN-based LEDs. We began our investigation by depositing AZO and Ni/AZO contacts to p-GaN. However, these contacts are highly resistive. Next, we deposited thin Ni/Au layer, oxidized the Ni/Au layer to form a good ohmic contact to p-GaN, and then followed by the deposition of thick AZO layer. However, the electrical resistance of oxidized Ni/Au-AZO contacts is higher than that of the conventional Ni/Au contacts. We solve the high contact resistance problem by using a two-step thermal annealing process. In this method, Ni/Au layer is deposited first followed by the AZO layer without any annealing step. After finishing the device fabrication, the samples are annealed in air first to achieve low contact resistance with Ni/Au/AZO and p-GaN and then annealed in nitrogen to achieve low sheet resistance for the AZO layer. The improved electrical and optical characteristics of this scheme compared to conventional Ni/Au contact scheme are demonstrated on a variety of GaN LEDs: blue, green, small area, large area and bottom emitting LEDs. The benefits of ZnO-based contacts are more significant in large area LEDs that include lower forward voltage, and higher optical emission, better emission uniformity and reliability. The advantages of ZnO-based contact in terms of lower contact resistance and higher optical emission on LED fabricated on roughened GaN wafers are also demonstrated. For bottom emitting LED structure intended for flip chip applications, our original oxidized Ni/Au layer over coated with either Al or Ag contacts have shown to simultaneously yield superior I-V characteristics and greatly enhanced optical performance compared to conventional LEDs using a thick Ni/Au contact in the flip-chip configuration. However, the contact is unstable at operating temperatures > 100°C due to

  5. Ferrocene-modified carbon nitride for direct oxidation of benzene to phenol with visible light.

    PubMed

    Ye, Xiangju; Cui, Yanjuan; Wang, Xinchen

    2014-03-01

    Ferrocene moieties were heterogenized onto carbon nitride polymers by a covalent -C=N- linkage bridging the two conjugation systems, enabling the merging of the redox function of ferrocene with carbon nitride photocatalysis to construct a heterogeneous Photo-Fenton system for green organocatalysis at neutral conditions. The synergistic donor-acceptor interaction between the carbon nitride matrix and ferrocene group, improved exciton splitting, and coupled photocatalytic performance allowed the direct synthesis of phenol from benzene in the presence of H2 O2 under visible light irradiation. This innovative modification method will offer an avenue to construct functionalized two-dimensional polymers useful also for other green synthesis processes using solar irradiation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Method to generate high efficient devices which emit high quality light for illumination

    DOEpatents

    Krummacher, Benjamin C.; Mathai, Mathew; Choong, Vi-En; Choulis, Stelios A.

    2009-06-30

    An electroluminescent apparatus includes an OLED device emitting light in the blue and green spectrums, and at least one down conversion layer. The down conversion layer absorbs at least part of the green spectrum light and emits light in at least one of the orange spectra and red spectra.

  7. Health-friendly high-quality white light using violet-green-red laser and InGaN nanowires-based true yellow nanowires light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Janjua, Bilal; Ng, Tien K.; Zhao, Chao; Anjum, Dalaver H.; Prabaswara, Aditya; Consiglio, Giuseppe Bernardo; Shen, Chao; Ooi, Boon S.

    2017-02-01

    White light based on blue laser - YAG: Ce3+ phosphor has the advantage of implementing solid-state lighting and optical wireless communications combined-functionalities in a single lamp. However, the blue light was found to disrupt melatonin production, and therefore the human circadian rhythm in general; while the yellow phosphor is susceptible to degradation by laser irradiation and also lack tunability in color rendering index (CRI). In this investigation, by using a violet laser, which has 50% less impact on circadian response, as compared to blue light, and an InGaN-quantum-disks nanowires-based light-emitting diode (NWs-LED), we address both issues simultaneously. The white light is therefore generated using violet-green-red lasers, in conjunction with a yellow NWs-LED realized using molecular beam epitaxy technique, on titanium-coated silicon substrates. Unlike the conventional quantum-well-based LED, the NWs-LED showed efficiency-droop free behavior up to 9.8 A/cm2 with peak output power of 400 μW. A low turn-on voltage of 2.1 V was attributed to the formation of conducting titanium nitride layer at NWs nucleation site and improved fabrication process in the presence of relatively uniform height distribution. The 3D quantum confinement and the reduced band bending improve carriers-wavefunctions overlap, resulting in an IQE of 39 %. By changing the relative intensities of the individual color components, CRI of >85 was achieved with tunable correlated color temperature (CCT), thus covering the desired room lighting conditions. Our architecture provides important considerations in designing smart solid-state lighting while addressing the harmful effect of blue light.

  8. An intraocular micro light-emitting diode device for endo-illumination during pars plana vitrectomy.

    PubMed

    Koelbl, Philipp S; Lingenfelder, Christian; Spraul, Christoph W; Kampmeier, Juergen; Koch, Frank Hj; Kim, Yong Keun; Hessling, Martin

    2018-03-01

    Development of a new, fiber-free, single-use endo-illuminator for pars plana vitrectomy as a replacement for fiber-based systems with external light sources. The hand-guided intraocularly placed white micro light-emitting diode is evaluated for its illumination properties and potential photochemical and thermal hazards. A micro light-emitting diode was used to develop a single-use intraocular illumination system. The light-source-on-tip device was implemented in a prototype with 23G trocar compatible outer diameter of 0.6 mm. The experimental testing was performed on porcine eyes. All calculations of possible photochemical and thermal hazards during the application of the intraocular micro light-emitting diode were calculated according to DIN EN ISO 15007-2: 2014. The endo-illuminator generated a homogeneous and bright illumination of the intraocular space. The color impression was physiologic and natural. Contrary to initial apprehension, the possible risk caused by inserting a light-emitting diode into the intraocular vitreous was much smaller when compared to conventional fiber-based illumination systems. The photochemical and thermal hazards allowed a continuous exposure time to the retina of at least 4.7 h. This first intraocular light source showed that a light-emitting diode can be introduced into the eye. The system can be built as single-use illumination system. This light-source-on-tip light-emitting diode-endo-illumination combines a chandelier wide-angle illumination with an adjustable endo-illuminator.

  9. Nanoscale current uniformity and injection efficiency of nanowire light emitting diodes

    NASA Astrophysics Data System (ADS)

    May, Brelon J.; Selcu, Camelia M.; Sarwar, A. T. M. G.; Myers, Roberto C.

    2018-02-01

    As an alternative to light emitting diodes (LEDs) based on thin films, nanowire based LEDs are the focus of recent development efforts in solid state lighting as they offer distinct photonic advantages and enable direct integration on a variety of different substrates. However, for practical nanowire LEDs to be realized, uniform electrical injection must be achieved through large numbers of nanowire LEDs. Here, we investigate the effect of the integration of a III-Nitride polarization engineered tunnel junction (TJ) in nanowire LEDs on Si on both the overall injection efficiency and nanoscale current uniformity. By using conductive atomic force microscopy (cAFM) and current-voltage (IV) analysis, we explore the link between the nanoscale nonuniformities and the ensemble devices which consist of many diodes wired in parallel. Nanometer resolved current maps reveal that the integration of a TJ on n-Si increases the amount of current a single nanowire can pass at a given applied bias by up to an order of magnitude, with the top 10% of wires passing more than ×3.5 the current of nanowires without a TJ. This manifests at the macroscopic level as a reduction in threshold voltage by more than 3 V and an increase in differential conductance as a direct consequence of the integration of the TJ. These results show the utility of cAFM to quantitatively probe the electrical inhomogeneities in as-grown nanowire ensembles without introducing uncertainty due to additional device processing steps, opening the door to more rapid development of nanowire ensemble based photonics.

  10. Physical mechanisms affecting hot carrier-induced degradation in gallium nitride HEMTs

    NASA Astrophysics Data System (ADS)

    Mukherjee, Shubhajit

    Gallium Nitride or GaN-based high electron mobility transistors (HEMTs) is currently the most promising device technology in several key military and civilian applications due to excellent high-power as well as high-frequency performance. Even though the performance figures are outstanding, GaN-based HEMTs are not as mature as some competing technologies, which means that establishing the reliability of the technology is important to enable use in critical applications. The objective of this research is to understand the physical mechanisms affecting the reliability of GaN HEMTs at moderate drain biases (typically VDS < 30 V in the devices considered here). The degradation in device performance is believed to be due to the formation or modification of charged defects near the interface by hydrogen depassivation processes (due to electron-activated hydrogen removal) from energetic carriers. A rate-equation describing the defect generation process is formulated based on this assumption. A combination of ensemble Monte-Carlo (EMC) simulation statistics, ab-initio density functional theory (DFT) calculations, and accelerated stress experiments is used to relate the candidate defects to the overall degradation behavior (VT and gm). The focus of this work is on the 'semi-ON' mode of transistor operation in which the degradation is usually observed to be at its highest. This semi-ON state is reasonably close to the biasing region of class-AB high power amplifiers, which are popular because of the combination of high efficiency and low distortion that is associated with this configuration. The carrier-energy distributions are obtained using an EMC simulator that was developed specifically for III-V HFETs. The rate equation is used to model the degradation at different operating conditions as well as longer stress times from the result of one short duration stress test, by utilizing the carrier-energy distribution obtained from EMC simulations for one baseline condition

  11. Recent advances in light outcoupling from white organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Gather, Malte C.; Reineke, Sebastian

    2015-01-01

    Organic light-emitting diodes (OLEDs) have been successfully introduced to the smartphone display market and have geared up to become contenders for applications in general illumination where they promise to combine efficient generation of white light with excellent color quality, glare-free illumination, and highly attractive designs. Device efficiency is the key requirement for such white OLEDs, not only from a sustainability perspective, but also because at the high brightness required for general illumination, losses lead to heating and may, thus, cause rapid device degradation. The efficiency of white OLEDs increased tremendously over the past two decades, and internal charge-to-photon conversion can now be achieved at ˜100% yield. However, the extraction of photons remains rather inefficient (typically <30%). Here, we provide an introduction to the underlying physics of outcoupling in white OLEDs and review recent progress toward making light extraction more efficient. We describe how structures that scatter, refract, or diffract light can be attached to the outside of white OLEDs (external outcoupling) or can be integrated close to the active layers of the device (internal outcoupling). Moreover, the prospects of using top-emitting metal-metal microcavity designs for white OLEDs and of tuning the average orientation of the emissive molecules within the OLED are discussed.

  12. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    DOEpatents

    Li, Ting [Ventura, CA

    2011-04-26

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  13. Non-Toxic Gold Nanoclusters for Solution-Processed White Light-Emitting Diodes.

    PubMed

    Chao, Yu-Chiang; Cheng, Kai-Ping; Lin, Ching-Yi; Chang, Yu-Li; Ko, Yi-Yun; Hou, Tzu-Yin; Huang, Cheng-Yi; Chang, Walter H; Lin, Cheng-An J

    2018-06-11

    Solution-processed optoelectronic devices are attractive because of the potential low-cost fabrication and the compatibility with flexible substrate. However, the utilization of toxic elements such as lead and cadmium in current optoelectronic devices on the basis of colloidal quantum dots raises environmental concerns. Here we demonstrate that white-light-emitting diodes can be achieved by utilizing non-toxic and environment-friendly gold nanoclusters. Yellow-light-emitting gold nanoclusters were synthesized and capped with trioctylphosphine. These gold nanoclusters were then blended with the blue-light-emitting organic host materials to form the emissive layer. A current efficiency of 0.13 cd/A was achieved. The Commission Internationale de l'Eclairage chromaticity coordinates of (0.27, 0.33) were obtained from our experimental analysis, which is quite close to the ideal pure white emission coordinates (0.33, 0.33). Potential applications include innovative lighting devices and monitor backlight.

  14. Composition of the core from gallium metal–silicate partitioning experiments

    DOE PAGES

    Blanchard, I.; Badro, J.; Siebert, J.; ...

    2015-07-24

    We present gallium concentration (normalized to CI chondrites) in the mantle is at the same level as that of lithophile elements with similar volatility, implying that there must be little to no gallium in Earth's core. Metal-silicate partitioning experiments, however, have shown that gallium is a moderately siderophile element and should be therefore depleted in the mantle by core formation. Moreover, gallium concentrations in the mantle (4 ppm) are too high to be only brought by the late veneer; and neither pressure, nor temperature, nor silicate composition has a large enough effect on gallium partitioning to make it lithophile. Wemore » therefore systematically investigated the effect of core composition (light element content) on the partitioning of gallium by carrying out metal–silicate partitioning experiments in a piston–cylinder press at 2 GPa between 1673 K and 2073 K. Four light elements (Si, O, S, C) were considered, and their effect was found to be sufficiently strong to make gallium lithophile. The partitioning of gallium was then modeled and parameterized as a function of pressure, temperature, redox and core composition. A continuous core formation model was used to track the evolution of gallium partitioning during core formation, for various magma ocean depths, geotherms, core light element contents, and magma ocean composition (redox) during accretion. The only model for which the final gallium concentration in the silicate Earth matched the observed value is the one involving a light-element rich core equilibrating in a FeO-rich deep magma ocean (>1300 km) with a final pressure of at least 50 GPa. More specifically, the incorporation of S and C in the core provided successful models only for concentrations that lie far beyond their allowable cosmochemical or geophysical limits, whereas realistic O and Si amounts (less than 5 wt.%) in the core provided successful models for magma oceans deeper that 1300 km. In conclusion, these results

  15. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

    NASA Astrophysics Data System (ADS)

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-01

    Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as 3He/4He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high 3He/4He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application.

  16. Hole injection and electron overflow improvement in InGaN/GaN light-emitting diodes by a tapered AlGaN electron blocking layer.

    PubMed

    Lin, Bing-Chen; Chen, Kuo-Ju; Wang, Chao-Hsun; Chiu, Ching-Hsueh; Lan, Yu-Pin; Lin, Chien-Chung; Lee, Po-Tsung; Shih, Min-Hsiung; Kuo, Yen-Kuang; Kuo, Hao-Chung

    2014-01-13

    A tapered AlGaN electron blocking layer with step-graded aluminum composition is analyzed in nitride-based blue light-emitting diode (LED) numerically and experimentally. The energy band diagrams, electrostatic fields, carrier concentration, electron current density profiles, and hole transmitting probability are investigated. The simulation results demonstrated that such tapered structure can effectively enhance the hole injection efficiency as well as the electron confinement. Consequently, the LED with a tapered EBL grown by metal-organic chemical vapor deposition exhibits reduced efficiency droop behavior of 29% as compared with 44% for original LED, which reflects the improvement in hole injection and electron overflow in our design.

  17. Stolephorus sp Behavior in Different LED (Light Emitting Diode) Color and Light Intensities

    NASA Astrophysics Data System (ADS)

    Fitri Aristi, D. P.; Ramadanita, I. A.; Hapsari, T. D.; Susanto, A.

    2018-02-01

    This research aims to observe anchovy (Stolephorus sp) behavior under different LED light intensities that affect eye physiology (cell cone structure). The materials used were Stolephorus sp taken from the waters off Jepara and 13 and 10 watt light emitting diode (LED). The research method was an experiment conducted from March through August 2015 in the waters off Jepara. Data analysis of visual histology and fish respond was carried out at the fishing gear material laboratory, anatomy and cultivate. Cone cell structure (mosaic cone) of Stolephorus sp forms a connected regular square pattern with every single cone surrounded by four double cones, which indicate that anchovies are sensitive to light. The 13 watt LED (628 lux) has faster response than the 10 watt LED (531 lux) as it has wider and higher emitting intensity, which also attracts fish to gather quicker.

  18. Pure white-light emitting ultrasmall organic-inorganic hybrid perovskite nanoclusters.

    PubMed

    Teunis, Meghan B; Lawrence, Katie N; Dutta, Poulami; Siegel, Amanda P; Sardar, Rajesh

    2016-10-14

    Organic-inorganic hybrid perovskites, direct band-gap semiconductors, have shown tremendous promise for optoelectronic device fabrication. We report the first colloidal synthetic approach to prepare ultrasmall (∼1.5 nm diameter), white-light emitting, organic-inorganic hybrid perovskite nanoclusters. The nearly pure white-light emitting ultrasmall nanoclusters were obtained by selectively manipulating the surface chemistry (passivating ligands and surface trap-states) and controlled substitution of halide ions. The nanoclusters displayed a combination of band-edge and broadband photoluminescence properties, covering a major part of the visible region of the solar spectrum with unprecedentedly large quantum yields of ∼12% and photoluminescence lifetime of ∼20 ns. The intrinsic white-light emission of perovskite nanoclusters makes them ideal and low cost hybrid nanomaterials for solid-state lighting applications.

  19. Organic light emitting board for dynamic interactive display

    PubMed Central

    Kim, Eui Hyuk; Cho, Sung Hwan; Lee, Ju Han; Jeong, Beomjin; Kim, Richard Hahnkee; Yu, Seunggun; Lee, Tae-Woo; Shim, Wooyoung; Park, Cheolmin

    2017-01-01

    Interactive displays involve the interfacing of a stimuli-responsive sensor with a visual human-readable response. Here, we describe a polymeric electroluminescence-based stimuli-responsive display method that simultaneously detects external stimuli and visualizes the stimulant object. This organic light-emitting board is capable of both sensing and direct visualization of a variety of conductive information. Simultaneous sensing and visualization of the conductive substance is achieved when the conductive object is coupled with the light emissive material layer on application of alternating current. A variety of conductive materials can be detected regardless of their work functions, and thus information written by a conductive pen is clearly visualized, as is a human fingerprint with natural conductivity. Furthermore, we demonstrate that integration of the organic light-emitting board with a fluidic channel readily allows for dynamic monitoring of metallic liquid flow through the channel, which may be suitable for biological detection and imaging applications. PMID:28406151

  20. Organic light-emitting devices using spin-dependent processes

    DOEpatents

    Vardeny, Z. Valy; Wohlgenannt, Markus

    2010-03-23

    The maximum luminous efficiency of organic light-emitting materials is increased through spin-dependent processing. The technique is applicable to all electro-luminescent processes in which light is produced by singlet exciton decay, and all devices which use such effects, including LEDs, super-radiant devices, amplified stimulated emission devices, lasers, other optical microcavity devices, electrically pumped optical amplifiers, and phosphorescence (Ph) based light emitting devices. In preferred embodiments, the emissive material is doped with an impurity, or otherwise modified, to increase the spin-lattice relaxation rate (i.e., decrease the spin-lattice time), and hence raise the efficiency of the device. The material may be a polymer, oligomer, small molecule, single crystal, molecular crystal, or fullerene. The impurity is preferably a magnetic or paramagnetic substance. The invention is applicable to IR, UV, and other electromagnetic radiation generation and is thus not limited to the visible region of the spectrum. The methods of the invention may also be combined with other techniques used to improve device performance.

  1. Organic light emitting board for dynamic interactive display

    NASA Astrophysics Data System (ADS)

    Kim, Eui Hyuk; Cho, Sung Hwan; Lee, Ju Han; Jeong, Beomjin; Kim, Richard Hahnkee; Yu, Seunggun; Lee, Tae-Woo; Shim, Wooyoung; Park, Cheolmin

    2017-04-01

    Interactive displays involve the interfacing of a stimuli-responsive sensor with a visual human-readable response. Here, we describe a polymeric electroluminescence-based stimuli-responsive display method that simultaneously detects external stimuli and visualizes the stimulant object. This organic light-emitting board is capable of both sensing and direct visualization of a variety of conductive information. Simultaneous sensing and visualization of the conductive substance is achieved when the conductive object is coupled with the light emissive material layer on application of alternating current. A variety of conductive materials can be detected regardless of their work functions, and thus information written by a conductive pen is clearly visualized, as is a human fingerprint with natural conductivity. Furthermore, we demonstrate that integration of the organic light-emitting board with a fluidic channel readily allows for dynamic monitoring of metallic liquid flow through the channel, which may be suitable for biological detection and imaging applications.

  2. Droop-Free, Reliable, and High-Power InGaN/GaN Nanowire Light-Emitting Diodes for Monolithic Metal-Optoelectronics.

    PubMed

    Zhao, Chao; Ng, Tien Khee; ElAfandy, Rami T; Prabaswara, Aditya; Consiglio, Giuseppe Bernardo; Ajia, Idris A; Roqan, Iman S; Janjua, Bilal; Shen, Chao; Eid, Jessica; Alyamani, Ahmed Y; El-Desouki, Munir M; Ooi, Boon S

    2016-07-13

    A droop-free nitride light-emitting diode (LED) with the capacity to operate beyond the "green gap" has been a subject of intense scientific and engineering interest. While several properties of nanowires on silicon make them promising for use in LED development, the high aspect ratio of individual nanowires and their laterally discontinuous features limit phonon transport and device performance. Here, we report on the monolithic integration of metal heat-sink and droop-free InGaN/GaN quantum-disks-in-nanowire LEDs emitting at ∼710 nm. The reliable operation of our uncooled nanowire-LEDs (NW-LEDs) epitaxially grown on molybdenum was evident in the constant-current soft burn-in performed on a 380 μm × 380 μm LED. The square LED sustained 600 mA electrical stress over an 8 h period, providing stable light output at maturity without catastrophic failure. The absence of carrier and phonon transport barriers in NW-LEDs was further inferred from current-dependent Raman measurements (up to 700 mA), which revealed the low self-heating. The radiative recombination rates of NW-LEDs between room temperature and 40 °C was not limited by Shockley-Read-Hall recombination, Auger recombination, or carrier leakage mechanisms, thus realizing droop-free operation. The discovery of reliable, droop-free devices constitutes significant progress toward the development of nanowires for practical applications. Our monolithic approach realized a high-performance device that will revolutionize the way high power, low-junction-temperature LED lamps are manufactured for solid-state lighting and for applications in high-temperature harsh environment.

  3. Enhanced light extraction from a GaN-based green light-emitting diode with hemicylindrical linear grating structure.

    PubMed

    Jin, Yuanhao; Yang, Fenglei; Li, Qunqing; Zhu, Zhendong; Zhu, Jun; Fan, Shoushan

    2012-07-02

    Significant enhancement in the light output from GaN-based green light-emitting diodes (LEDs) was achieved with a hemicylindrical grating structure on the top layer of the diodes. The grating structure was first optimized by the finite-difference time-domain (FDTD) method, which showed that the profile of the grating structure was critical for light extraction efficiency. It was found that the transmission efficiency of the 530 nm light emitted from the inside of the GaN LED increased for incidence angles between 23.58° and 60°. Such a structure was fabricated by electron-beam lithography and an etching method. The light output power from the LED was increased approximately 4.7 times compared with that from a conventional LED. The structure optimization is the key to the great increase in transmission efficiency. Furthermore, the light emitted from the edge of the LED units could be collected and extracted by the grating structures in adjacent LED units, thus enhancing the performance of the whole LED chip.

  4. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ting

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE processmore » is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.« less

  5. General method to evaluate substrate surface modification techniques for light extraction enhancement of organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Krummacher, B. C.; Mathai, M. K.; Choong, V.; Choulis, S. A.; So, F.; Winnacker, A.

    2006-09-01

    The external light output of organic light emitting diodes (OLEDs) can be increased by modifying the light emitting surface. The apparent light extraction enhancement is given by the ratio between the efficiency of the unmodified device and the efficiency of the modified device. This apparent light extraction enhancement is dependent on the OLED architecture itself and is not the correct value to judge the effectiveness of a technique to enhance light outcoupling due to substrate surface modification. We propose a general method to evaluate substrate surface modification techniques for light extraction enhancement of OLEDs independent from the device architecture. This method is experimentally demonstrated using green electrophosphorescent OLEDs with different device architectures. The substrate surface of these OLEDs was modified by applying a prismatic film to increase light outcoupling from the device stack. It was demonstrated that the conventionally measured apparent light extraction enhancement by means of the prismatic film does not reflect the actual performance of the light outcoupling technique. Rather, by comparing the light extracted out of the prismatic film to that generated in the OLED layers and coupled into the substrate (before the substrate/air interface), a more accurate evaluation of light outcoupling enhancement can be achieved. Furthermore we show that substrate surface modification can change the output spectrum of a broad band emitting OLED.

  6. Nonlinear behaviour of reflectivity of gallium - Silica interface & its applications

    NASA Astrophysics Data System (ADS)

    Naruka, Preeti; Bissa, Shivangi

    2018-05-01

    In this paper Optical properties and nonlinear behaviour of Gallium-Silica Interface is studied. Change in reflectivity of gallium film is explained as a function of thickness of metallic layer and intensity of incident light by using non-thermal mechanism. Here variation of dielectric constant of gallium with temperature is also explained on considering Binary nanoshell model of gallium nanoparticles of spherical shape. In the present paper application of structural phase transformation of gallium is explained as a Grating assisted coupler.

  7. Thermally evaporated hybrid perovskite for hetero-structured green light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Mariano, Fabrizio; Listorti, Andrea; Rizzo, Aurora; Colella, Silvia; Gigli, Giuseppe; Mazzeo, Marco

    2017-10-01

    Thermal evaporation of green-light emitting perovskite (MaPbBr3) films is reported. Morphological studies show that a soft thermal treatment is needed to induce an outstanding crystal growth and film organization. Hetero-structured light-emitting diodes, embedding as-deposited and annealed MAPbBr3 films as active layers, are fabricated and their performances are compared, highlighting that the perovskite evolution is strongly dependent on the growing substrate, too.

  8. Gallium phosphide energy converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sims, P.E.; Dinetta, L.C.; Goetz, M.A.

    1995-10-01

    Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp {minus}17) A/sq cm have been measured andmore » the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.« less

  9. A promising red-emitting phosphor for white-light-emitting diodes prepared by a modified solid-state reaction

    NASA Astrophysics Data System (ADS)

    Ren, Fuqiang; Chen, Donghua

    2010-02-01

    Using urea, boric acid and polyethylene glycol (PEG) as auxiliary reagents, the novel red-emitting phosphors Ca 19Zn 2 (PO 4) 14:Eu 3+ have been successfully synthesized by a modified solid-state reaction. Thermogravimetric (TG) analysis, X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence (PL) spectra were used to characterize the resulting phosphors. The dependence of the photoluminescence properties of Ca 19Zn 2 (PO 4) 14:Eu 3+ phosphors upon urea, boric acid and PEG concentration and the quadric-sintered temperature were investigated. Luminescent measurements showed that the phosphors can be efficiently excited by ultraviolet (UV) to visible region, emitting a red light with a peak wavelength of 616 nm. The material has potential application as a fluorescent material for ultraviolet light-emitting diodes (UV-LEDs).

  10. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes

    PubMed Central

    Zhang, Liuqi; Yang, Xiaolei; Jiang, Qi; Wang, Pengyang; Yin, Zhigang; Zhang, Xingwang; Tan, Hairen; Yang, Yang (Michael); Wei, Mingyang; Sutherland, Brandon R.; Sargent, Edward H.; You, Jingbi

    2017-01-01

    Inorganic perovskites such as CsPbX3 (X=Cl, Br, I) have attracted attention due to their excellent thermal stability and high photoluminescence quantum efficiency. However, the electroluminescence quantum efficiency of their light-emitting diodes was <1%. We posited that this low efficiency was a result of high leakage current caused by poor perovskite morphology, high non-radiative recombination at interfaces and perovskite grain boundaries, and also charge injection imbalance. Here, we incorporated a small amount of methylammonium organic cation into the CsPbBr3 lattice and by depositing a hydrophilic and insulating polyvinyl pyrrolidine polymer atop the ZnO electron-injection layer to overcome these issues. As a result, we obtained light-emitting diodes exhibiting a high brightness of 91,000 cd m−2 and a high external quantum efficiency of 10.4% using a mixed-cation perovskite Cs0.87MA0.13PbBr3 as the emitting layer. To the best of our knowledge, this is the brightest and most-efficient green perovskite light-emitting diodes reported to date. PMID:28589960

  11. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Liuqi; Yang, Xiaolei; Jiang, Qi; Wang, Pengyang; Yin, Zhigang; Zhang, Xingwang; Tan, Hairen; Yang, Yang (Michael); Wei, Mingyang; Sutherland, Brandon R.; Sargent, Edward H.; You, Jingbi

    2017-06-01

    Inorganic perovskites such as CsPbX3 (X=Cl, Br, I) have attracted attention due to their excellent thermal stability and high photoluminescence quantum efficiency. However, the electroluminescence quantum efficiency of their light-emitting diodes was <1%. We posited that this low efficiency was a result of high leakage current caused by poor perovskite morphology, high non-radiative recombination at interfaces and perovskite grain boundaries, and also charge injection imbalance. Here, we incorporated a small amount of methylammonium organic cation into the CsPbBr3 lattice and by depositing a hydrophilic and insulating polyvinyl pyrrolidine polymer atop the ZnO electron-injection layer to overcome these issues. As a result, we obtained light-emitting diodes exhibiting a high brightness of 91,000 cd m-2 and a high external quantum efficiency of 10.4% using a mixed-cation perovskite Cs0.87MA0.13PbBr3 as the emitting layer. To the best of our knowledge, this is the brightest and most-efficient green perovskite light-emitting diodes reported to date.

  12. Using Organic Light-Emitting Electrochemical Thin-Film Devices to Teach Materials Science

    ERIC Educational Resources Information Center

    Sevian, Hannah; Muller, Sean; Rudmann, Hartmut; Rubner, Michael F.

    2004-01-01

    Materials science can be taught by applying organic light-emitting electrochemical thin-film devices and in this method students were allowed to make a light-emitting device by spin coating a thin film containing ruthenium (II) complex ions onto a glass slide. Through this laboratory method students are provided with the opportunity to learn about…

  13. Vibrio azureus emits blue-shifted light via an accessory blue fluorescent protein.

    PubMed

    Yoshizawa, Susumu; Karatani, Hajime; Wada, Minoru; Kogure, Kazuhiro

    2012-04-01

    Luminous marine bacteria usually emit bluish-green light with a peak emission wavelength (λ(max) ) at about 490 nm. Some species belonging to the genus Photobacterium are exceptions, producing an accessory blue fluorescent protein (lumazine protein: LumP) that causes a blue shift, from λ(max)  ≈ 490 to λ(max)  ≈ 476 nm. However, the incidence of blue-shifted light emission or the presence of accessory fluorescent proteins in bacteria of the genus Vibrio has never been reported. From our spectral analysis of light emitted by 16 luminous strains of the genus Vibrio, it was revealed that most strains of Vibrio azureus emit a blue-shifted light with a peak at approximately 472 nm, whereas other Vibrio strains emit light with a peak at around 482 nm. Therefore, we investigated the mechanism underlying this blue shift in V. azureus NBRC 104587(T) . Here, we describe the blue-shifted light emission spectra and the isolation of a blue fluorescent protein. Intracellular protein analyses showed that this strain had a blue fluorescent protein (that we termed VA-BFP), the fluorescent spectrum of which was almost identical to that of the in vivo light emission spectrum of the strain. This result strongly suggested that VA-BFP was responsible for the blue-shifted light emission of V. azureus. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. Colored lenses suppress blue light-emitting diode light-induced damage in photoreceptor-derived cells.

    PubMed

    Hiromoto, Kaho; Kuse, Yoshiki; Tsuruma, Kazuhiro; Tadokoro, Nobuyuki; Kaneko, Nobuyuki; Shimazawa, Masamitsu; Hara, Hideaki

    2016-03-01

    Blue light-emitting diodes (LEDs) in liquid crystal displays emit high levels of blue light, exposure to which is harmful to the retina. Here, we investigated the protective effects of colored lenses in blue LED light-induced damage to 661W photoreceptor-derived cells. We used eight kinds of colored lenses and one lens that reflects blue light. Moreover, we evaluated the relationship between the protective effects of the lens and the transmittance of lens at 464 nm. Lenses of six colors, except for the SY, PN, and reflective coating lenses, strongly decreased the reduction in cell damage induced by blue LED light exposure. The deep yellow lens showed the most protective effect from all the lenses, but the reflective coating lens and pink lens did not show any effects on photoreceptor-derived cell damage. Moreover, these results were correlated with the lens transmittance of blue LED light (464 nm). These results suggest that lenses of various colors, especially deep yellow lenses, may protect retinal photoreceptor cells from blue LED light in proportion to the transmittance for the wavelength of blue LED and the suppression of reactive oxygen species production and cell damage.

  15. Ultraviolet light-emitting diodes in water disinfection.

    PubMed

    Vilhunen, Sari; Särkkä, Heikki; Sillanpää, Mika

    2009-06-01

    The novel system of ultraviolet light-emitting diodes (UV LEDs) was studied in water disinfection. Conventional UV lamps, like mercury vapor lamp, consume much energy and are considered to be problem waste after use. UV LEDs are energy efficient and free of toxicants. This study showed the suitability of LEDs in disinfection and provided information of the effect of two emitted wavelengths and different test mediums to Escherichia coli destruction. Common laboratory strain of E. coli (K12) was used and the effects of two emitted wavelengths (269 and 276 nm) were investigated with two photolytic batch reactors both including ten LEDs. The effects of test medium were examined with ultrapure water, nutrient and water, and nutrient and water with humic acids. Efficiency of reactors was almost the same even though the one emitting higher wavelength had doubled optical power compared to the other. Therefore, the effect of wavelength was evident and the radiation emitted at 269 nm was more powerful. Also, the impact of background was studied and noticed to have only slight deteriorating effect. In the 5-min experiment, the bacterial reduction of three to four log colony-forming units (CFU) per cubic centimeter was achieved, in all cases. When turbidity of the test medium was greater, part of the UV radiation was spent on the absorption and reactions with extra substances on liquid. Humic acids can also coat the bacteria reducing the sensitivity of the cells to UV light. The lower wavelength was distinctly more efficient when the optical power is considered, even though the difference of wavelengths was small. The reason presumably is the greater absorption of DNA causing more efficient bacterial breakage. UV LEDs were efficient in E. coli destruction, even if LEDs were considered to have rather low optical power. The effect of wavelengths was noticeable but the test medium did not have much impact. This study found UV LEDs to be an optimal method for bacterial

  16. Transfer Printing Method to Obtain Polarized Light Emission in Organic Light-Emitting Device

    NASA Astrophysics Data System (ADS)

    Noh, Hee Yeon; Park, Chang-sub; Park, Ji-Sub; Kang, Shin-Won; Kim, Hak-Rin

    2012-06-01

    We demonstrate a transfer printing method to obtain polarized light emission in organic light-emitting devices (OLEDs). On a rubbed self-assembled monolayer (SAM), a spin-coated liquid crystalline light-emissive polymer is aligned along the rubbing direction because of the anisotropic interfacial intermolecular interaction. Owing to the low surface energy of the SAM surface, the light-emissive layer was easily transferred to a patterned poly(dimethylsiloxane) (PDMS) stamp surface without degrading the ordering. Finally, a polarized light-emissive OLED device was prepared by transferring the patterned light-emissive layer to the charge transport layer of the OLED structure.

  17. Solution-Grown ZnO Films toward Transparent and Smart Dual-Color Light-Emitting Diode.

    PubMed

    Huang, Xiaohu; Zhang, Li; Wang, Shijie; Chi, Dongzhi; Chua, Soo Jin

    2016-06-22

    An individual light-emitting diode (LED) capable of emitting different colors of light under different bias conditions not only allows for compact device integration but also extends the functionality of the LED beyond traditional illumination and display. Herein, we report a color-switchable LED based on solution-grown n-type ZnO on p-GaN/n-GaN heterojunction. The LED emits red light with a peak centered at ∼692 nm and a full width at half-maximum of ∼90 nm under forward bias, while it emits green light under reverse bias. These two lighting colors can be switched repeatedly by reversing the bias polarity. The bias-polarity-switched dual-color LED enables independent control over the lighting color and brightness of each emission with two-terminal operation. The results offer a promising strategy toward transparent, miniaturized, and smart LEDs, which hold great potential in optoelectronics and optical communication.

  18. Near Field Imaging of Gallium Nitride Nanowires for Characterization of Minority Carrier Diffusion

    DTIC Science & Technology

    2009-12-01

    diffusion length in nanowires is critical to potential applications in solar cells , spectroscopic sensing, and/or lasers and light emitting diodes (LED...technique has been successfully demonstrated with thin film solar cell materials [4, 5]. In these experiments, the diffusion length was measured using a...minority carrier diffusion length . This technique has been used in the near-field collection mode to image the diffusion of holes in n-type GaN

  19. Polymer Light-Emitting Diode (PLED) Process Development

    DTIC Science & Technology

    2003-12-01

    conclusions and recommendations for Phase II of the Flexible Display Program. 15. SUBJECT TERMS LIGHT EMITTING DIODES LIQUID CRYSTAL DISPLAY SYSTEMS...space for Phase I and II confined by backplane complexity and substrate form...12 Figure 6. Semi automated I-V curve measurement setup consisting of Keithley power supply, computer and

  20. Experimental effective intensity of steady and flashing light emitting diodes for aircraft anti-collision lighting.

    DOT National Transportation Integrated Search

    2013-08-01

    Research was conducted to determine the effective intensity of flashing lights that incorporate light-emitting diodes (LEDs). LEDs require less power and have the ability to flash without the addition of moving parts. Compared with incandescent bulbs...

  1. A gallium(III) Schiff base-curcumin complex that binds to amyloid-β plaques.

    PubMed

    Lange, Jaclyn L; Hayne, David J; Roselt, Peter; McLean, Catriona A; White, Jonathan M; Donnelly, Paul S

    2016-09-01

    Gallium-68 is a positron-emitting isotope that can be used in positron-emission tomography imaging agents. Alzheimer's disease is associated with the formation of plaques in the brain primarily comprised of aggregates of a 42 amino acid protein called amyloid-β. With the goal of synthesising charge neutral, low molecular weight, lipophilic gallium complexes with the potential to cross the blood-brain barrier and bind to Aβ plaques we have used an ancillary tetradentate N 2 O 2 Schiff base ligand and the β-diketone curcumin as a bidentate ligand to give a six-coordinate Ga 3+ complex. The tetradentate Schiff base ligand adopts the cis-β configuration with deprotonated curcumin acting as a bidentate ligand. The complex binds to amyloid-β plaques in human brain tissue and it is possible that extension of this chemistry to positron-emitting gallium-68 could provide useful imaging agents for Alzheimer's disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Photolithographic patterning of vacuum-deposited organic light emitting devices

    NASA Astrophysics Data System (ADS)

    Tian, P. F.; Burrows, P. E.; Forrest, S. R.

    1997-12-01

    We demonstrate a photolithographic technique to fabricate vacuum-deposited organic light emitting devices. Photoresist liftoff combined with vertical deposition of the emissive organic materials and the metal cathode, followed by oblique deposition of a metal cap, avoids the use of high processing temperatures and the exposure of the organic materials to chemical degradation. The unpackaged devices show no sign of deterioration in room ambient when compared with conventional devices fabricated using low-resolution, shadow mask patterning. Furthermore, the devices are resistant to rapid degradation when operated in air for extended periods. This work illustrates a potential foundation for the volume production of very high-resolution, full color, flat panel displays based on small molecular weight organic light emitting devices.

  3. The sensitivity of the electron transport within bulk zinc-blende gallium nitride to variations in the crystal temperature, the doping concentration, and the non-parabolicity coefficient associated with the lowest energy conduction band valley

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siddiqua, Poppy; O'Leary, Stephen K., E-mail: stephen.oleary@ubc.ca

    2016-09-07

    Within the framework of a semi-classical three-valley Monte Carlo simulation approach, we analyze the steady-state and transient electron transport that occurs within bulk zinc-blende gallium nitride. In particular, we examine how the steady-state and transient electron transport that occurs within this material changes in response to variations in the crystal temperature, the doping concentration, and the non-parabolicity coefficient associated with the lowest energy conduction band valley. These results are then contrasted with those corresponding to a number of other compound semiconductors of interest.

  4. Visualization of deep ultraviolet photons based on Förster resonance energy transfer and cascade photon reabsorption in diphenylalanine-carbon nitrides composite film

    NASA Astrophysics Data System (ADS)

    Gan, Zhixing; Zhou, Weiping; Chen, Zhihui; Wang, Huan; Di, Yunsong; Huang, Shisong

    2016-11-01

    A diphenylalanine (L-Phe-L-Phe, FF)-carbon nitride composite film is designed and fabricated to visualize the deep ultraviolet (DUV, 245-290 nm) photons. The FF film, composed of diphenylalanine molecules, doped with carbon nitrides shows blue emission under excitation of DUV light, which makes the DUV beam observable. Both Förster resonance energy transfer and cascade photon reabsorption contribute to the conversion of photon energy. First, the FF is excited by the DUV photons. On one hand, the energy transfers to the embedded carbon nitrides through nonradiative dipole-dipole couplings. On the other hand, the 284 nm photons emitted from the FF would further excite the carbon nitrides, which will finally convert to blue fluorescence. Herein, the experimental demonstration of a simple device for the visualization of high DUV fluxes is reported.

  5. Electrically and Optically Readable Light Emitting Memories

    PubMed Central

    Chang, Che-Wei; Tan, Wei-Chun; Lu, Meng-Lin; Pan, Tai-Chun; Yang, Ying-Jay; Chen, Yang-Fang

    2014-01-01

    Electrochemical metallization memories based on redox-induced resistance switching have been considered as the next-generation electronic storage devices. However, the electronic signals suffer from the interconnect delay and the limited reading speed, which are the major obstacles for memory performance. To solve this problem, here we demonstrate the first attempt of light-emitting memory (LEM) that uses SiO2 as the resistive switching material in tandem with graphene-insulator-semiconductor (GIS) light-emitting diode (LED). By utilizing the excellent properties of graphene, such as high conductivity, high robustness and high transparency, our proposed LEM enables data communication via electronic and optical signals simultaneously. Both the bistable light-emission state and the resistance switching properties can be attributed to the conducting filament mechanism. Moreover, on the analysis of current-voltage characteristics, we further confirm that the electroluminescence signal originates from the carrier tunneling, which is quite different from the standard p-n junction model. We stress here that the newly developed LEM device possesses a simple structure with mature fabrication processes, which integrates advantages of all composed materials and can be extended to many other material systems. It should be able to attract academic interest as well as stimulate industrial application. PMID:24894723

  6. Light scattering and random lasing in aqueous suspensions of hexagonal boron nitride nanoflakes

    NASA Astrophysics Data System (ADS)

    O'Brien, S. A.; Harvey, A.; Griffin, A.; Donnelly, T.; Mulcahy, D.; Coleman, J. N.; Donegan, J. F.; McCloskey, D.

    2017-11-01

    Liquid phase exfoliation allows large scale production of 2D materials in solution. The particles are highly anisotropic and strongly scatter light. While spherical particles can be accurately and precisely described by a single parameter—the radius, 2D nanoflakes, however, cannot be so easily described. We investigate light scattering in aqueous solutions of 2D hexagonal boron nitride nanoflakes in the single and multiple scattering regimes. In the single scattering regime, the anisotropic 2D materials show a much stronger depolarization of light when compared to spherical particles of similar size. In the multiple scattering regime, the scattering as a function of optical path for hexagonal boron nitride nanoflakes of a given lateral length was found to be qualitatively equivalent to scattering from spheres with the same diameter. We also report the presence of random lasing in high concentration suspensions of aqueous h-BN mixed with Rhodamine B dye. The h-BN works as a scattering agent and Rhodamine B as a gain medium for the process. We observed random lasing at 587 nm with a threshold energy of 0.8 mJ.

  7. Light scattering and random lasing in aqueous suspensions of hexagonal boron nitride nanoflakes.

    PubMed

    O'Brien, S A; Harvey, A; Griffin, A; Donnelly, T; Mulcahy, D; Coleman, J N; Donegan, J F; McCloskey, D

    2017-11-24

    Liquid phase exfoliation allows large scale production of 2D materials in solution. The particles are highly anisotropic and strongly scatter light. While spherical particles can be accurately and precisely described by a single parameter-the radius, 2D nanoflakes, however, cannot be so easily described. We investigate light scattering in aqueous solutions of 2D hexagonal boron nitride nanoflakes in the single and multiple scattering regimes. In the single scattering regime, the anisotropic 2D materials show a much stronger depolarization of light when compared to spherical particles of similar size. In the multiple scattering regime, the scattering as a function of optical path for hexagonal boron nitride nanoflakes of a given lateral length was found to be qualitatively equivalent to scattering from spheres with the same diameter. We also report the presence of random lasing in high concentration suspensions of aqueous h-BN mixed with Rhodamine B dye. The h-BN works as a scattering agent and Rhodamine B as a gain medium for the process. We observed random lasing at 587 nm with a threshold energy of 0.8 mJ.

  8. SPEAKING IN LIGHT - Jupiter radio signals as deflections of light-emitting electron beams in a vacuum chamber

    NASA Astrophysics Data System (ADS)

    Petrovic, K.

    2015-10-01

    Light emitting electron beam generated in a vacuum chamber is used as a medium for visualizing Jupiter's electromagnetic radiation. Dual dipole array antenna is receiving HF radio signals that are next amplified to radiate a strong electromagnetic field capable of influencing the propagation of electron beam in plasma. Installation aims to provide a platform for observing the characteristics of light emitting beam in 3D, as opposed to the experiments with cathode ray tubes in 2-dimensional television screens. Gas giant 'speaking' to us by radio waves bends the light in the tube, allowing us to see and hear the messages of Jupiter - God of light and sky.

  9. Determining Planck's Constant Using a Light-emitting Diode.

    ERIC Educational Resources Information Center

    Sievers, Dennis; Wilson, Alan

    1989-01-01

    Describes a method for making a simple, inexpensive apparatus which can be used to determine Planck's constant. Provides illustrations of a circuit diagram using one or more light-emitting diodes and a BASIC computer program for simplifying calculations. (RT)

  10. New yellow Ba 0.93Eu 0.07Al 2O 4 phosphor for warm-white light-emitting diodes through single-emitting-center conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xufan; Budai, John D.; Liu, Feng

    2013-01-01

    Phosphor-converted white light-emitting diodes for indoor illumination need to be warm-white (i.e., correlated color temperature <4000 K) with good color rendition (i.e., color rendering index >80). However, no single-phosphor, single-emitting-center-converted white light-emitting diodes can simultaneously satisfy the color temperature and rendition requirements due to the lack of sufficient red spectral component in the phosphors’ emission spectrum. Here, we report a new yellow Ba 0.93Eu 0.07Al 2O 4 phosphor that has a new orthorhombic lattice structure and exhibits a broad yellow photoluminescence band with sufficient red spectral component. Warm-white emissions with correlated color temperature <4000 K and color rendering index >80more » were readily achieved when combining the Ba 0.93Eu 0.07Al 2O 4 phosphor with a blue light-emitting diode (440–470 nm). This study demonstrates that warm-white light-emitting diodes with high color rendition (i.e., color rendering index >80) can be achieved based on single-phosphor, single-emitting-center conversion.« less

  11. Resonant-cavity light-emitting diodes for optical interconnects

    NASA Astrophysics Data System (ADS)

    Jin, Xu

    This dissertation addresses the issues related to external quantum efficiencies and light coupling efficiency of novel 1.3 mum Resonant-cavity light-emitting diodes (RCLEDs) on GaAs substrates. External quantum efficiency (QE) is defined as the number of extracted photons per injected electrons, i.e., the product of injection efficiency, internal QE, and light extraction efficiency. This study focuses on the latter two terms. Internal QE mainly depends on the properties of the active region quantum wells (QWs) used in the RCLEDs, such as composition, thickness, and strain compensation. GaAsSb/GaAs QW edge-emitting (EE) lasers are characterized experimentally to extract key parameters, such as internal QE and internal loss. With optimized QWs and a novel self-aligned EE lasers process, room temperature continuous wave (CW) operation of GaAsSb EE lasers has been demonstrated for the first time. The highest operational temperature for the EE lasers is 48°C at a wavelength as long as 1260 nm. This result is the best ever reported by a university group. In conventional LEDs, very little light generated by the active region, succeeds in escaping from the semiconductor material due to the small critical angle of total internal reflection. With the use of a resonant cavity, the light extraction efficiency of RCLEDs is significantly improved. Front and back reflectivities, detuning (offset) between resonant-cavity peak and electroluminescence, and electroluminescence linewidth have been identified as key factors influencing light extraction efficiency. Numerical simulations indicate that the fraction of luminescence transmitted through the top mirror of an optimized RCLED is around 9%, which is more than double that of conventional LEDs. This number will be larger when multiple reflections and photon recycling are considered; which are not included in the current model since they are structure dependent. The best GaAsSb/GaAs QW RCLEDs demonstrated in this work have shown

  12. Light-emitting nanolattices with enhanced brightness

    NASA Astrophysics Data System (ADS)

    Ng, Ryan C.; Mandal, Rajib; Anthony, Rebecca J.; Greer, Julia R.

    2017-02-01

    Three-dimensional (3D) photonic crystals have potential in solid state lighting applications due to their advantages over conventional planar thin film devices. Periodicity in a photonic crystal structure enables engineering of the density of states to improve spontaneous light emission according to Fermi's golden rule. Unlike planar thin films, which suffer significantly from total internal reflection, a 3D architectured structure is distributed in space with many non-flat interfaces, which facilitates a substantial enhancement in light extraction. We demonstrate the fabrication of 3D nano-architectures with octahedron geometry that utilize luminescing silicon nanocrystals as active media with an aluminum cathode and indium tin oxide anode towards the realization of a 3D light emitting device. The developed fabrication procedure allows charge to pass through the nanolattice between two contacts for electroluminescence. These initial fabrication efforts suggest that 3D nano-architected devices are realizable and can reach greater efficiencies than planar devices.

  13. Organic Light-Emitting Transistors: Materials, Device Configurations, and Operations.

    PubMed

    Zhang, Congcong; Chen, Penglei; Hu, Wenping

    2016-03-09

    Organic light-emitting transistors (OLETs) represent an emerging class of organic optoelectronic devices, wherein the electrical switching capability of organic field-effect transistors (OFETs) and the light-generation capability of organic light-emitting diodes (OLEDs) are inherently incorporated in a single device. In contrast to conventional OFETs and OLEDs, the planar device geometry and the versatile multifunctional nature of OLETs not only endow them with numerous technological opportunities in the frontier fields of highly integrated organic electronics, but also render them ideal scientific scaffolds to address the fundamental physical events of organic semiconductors and devices. This review article summarizes the recent advancements on OLETs in light of materials, device configurations, operation conditions, etc. Diverse state-of-the-art protocols, including bulk heterojunction, layered heterojunction and laterally arranged heterojunction structures, as well as asymmetric source-drain electrodes, and innovative dielectric layers, which have been developed for the construction of qualified OLETs and for shedding new and deep light on the working principles of OLETs, are highlighted by addressing representative paradigms. This review intends to provide readers with a deeper understanding of the design of future OLETs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Light-extraction enhancement for light-emitting diodes: a firefly-inspired structure refined by the genetic algorithm

    NASA Astrophysics Data System (ADS)

    Bay, Annick; Mayer, Alexandre

    2014-09-01

    The efficiency of light-emitting diodes (LED) has increased significantly over the past few years, but the overall efficiency is still limited by total internal reflections due to the high dielectric-constant contrast between the incident and emergent media. The bioluminescent organ of fireflies gave incentive for light-extraction enhance-ment studies. A specific factory-roof shaped structure was shown, by means of light-propagation simulations and measurements, to enhance light extraction significantly. In order to achieve a similar effect for light-emitting diodes, the structure needs to be adapted to the specific set-up of LEDs. In this context simulations were carried out to determine the best geometrical parameters. In the present work, the search for a geometry that maximizes the extraction of light has been conducted by using a genetic algorithm. The idealized structure considered previously was generalized to a broader variety of shapes. The genetic algorithm makes it possible to search simultaneously over a wider range of parameters. It is also significantly less time-consuming than the previous approach that was based on a systematic scan on parameters. The results of the genetic algorithm show that (1) the calculations can be performed in a smaller amount of time and (2) the light extraction can be enhanced even more significantly by using optimal parameters determined by the genetic algorithm for the generalized structure. The combination of the genetic algorithm with the Rigorous Coupled Waves Analysis method constitutes a strong simulation tool, which provides us with adapted designs for enhancing light extraction from light-emitting diodes.

  15. Organic light emitting device structure for obtaining chromaticity stability

    DOEpatents

    Tung, Yeh-Jiun [Princeton, NJ; Ngo, Tan [Levittown, PA

    2007-05-01

    The present invention relates to organic light emitting devices (OLEDs). The devices of the present invention are efficient white or multicolored phosphorescent OLEDs which have a high color stability over a wide range of luminances. The devices of the present invention comprise an emissive region having at least two emissive layers, with each emissive layer comprising a different host and emissive dopant, wherein at least one of the emissive dopants emits by phosphorescence.

  16. Organic light emitting device structures for obtaining chromaticity stability

    DOEpatents

    Tung, Yeh-Jiun; Lu, Michael; Kwong, Raymond C.

    2005-04-26

    The present invention relates to organic light emitting devices (OLEDs). The devices of the present invention are efficient white or multicolored phosphorescent OLEDs which have a high color stability over a wide range of luminances. The devices of the present invention comprise an emissive region having at least two emissive layers, with each emissive layer comprising a different host and emissive dopant, wherein at least one of the emissive dopants emits by phosphorescence.

  17. Lighting theory and luminous characteristics of white light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Uchida, Yuji; Taguchi, Tsunemasa

    2005-12-01

    A near-ultraviolet (UV)-based white light-emitting diode (LED) lighting system linked with a semiconductor InGaN LED and compound phosphors for general lighting applications is proposed. We have developed for the first time a novel type of high-color rendering index (Ra) white LED light source, which is composed of near-UV LED and multiphosphor materials showing orange (O), yellow (Y), green (G), and blue (B) emissions. The white LED shows the superior characteristics of luminous efficacy and high Ra to be about 40 lm/W and 93, respectively. Luminous and chromaticity characteristics, and their spectral distribution of the present white LED can be evaluated using the multipoint LED light source theory. It is revealed that the OYGB white LED can provide better irradiance properties than that of conventional white LEDs. Near-UV white LED technologies, in conjunction with phosphor blends, can offer superior color uniformity, high Ra, and excellent light quality. Consequently we are carrying out a "white LEDs for medical applications" program in the second phase of this national project from 2004 to 2009.

  18. Energy Impacts of Wide Band Gap Semiconductors in U.S. Light-Duty Electric Vehicle Fleet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Joshua A.; Riddle, Matthew E.; Graziano, Diane J.

    2015-08-12

    Silicon carbide and gallium nitride, two leading wide band gap semiconductors with significant potential in electric vehicle power electronics, are examined from a life cycle energy perspective and compared with incumbent silicon in U.S. light-duty electric vehicle fleet. Cradle-to-gate, silicon carbide is estimated to require more than twice the energy as silicon. However, the magnitude of vehicle use phase fuel savings potential is comparatively several orders of magnitude higher than the marginal increase in cradle-to-gate energy. Gallium nitride cradle-to-gate energy requirements are estimated to be similar to silicon, with use phase savings potential similar to or exceeding that of siliconmore » carbide. Potential energy reductions in the United States vehicle fleet are examined through several scenarios that consider the market adoption potential of electric vehicles themselves, as well as the market adoption potential of wide band gap semiconductors in electric vehicles. For the 2015–2050 time frame, cumulative energy savings associated with the deployment of wide band gap semiconductors are estimated to range from 2–20 billion GJ depending on market adoption dynamics.« less

  19. 229 nm UV LEDs on aluminum nitride single crystal substrates using p-type silicon for increased hole injection

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Cho, Sang June; Park, Jeongpil; Seo, Jung-Hun; Dalmau, Rafael; Zhao, Deyin; Kim, Kwangeun; Gong, Jiarui; Kim, Munho; Lee, In-Kyu; Albrecht, John D.; Zhou, Weidong; Moody, Baxter; Ma, Zhenqiang

    2018-02-01

    AlGaN based 229 nm light emitting diodes (LEDs), employing p-type Si to significantly increase hole injection, were fabricated on single crystal bulk aluminum nitride (AlN) substrates. Nitride heterostructures were epitaxially deposited by organometallic vapor phase epitaxy and inherit the low dislocation density of the native substrate. Following epitaxy, a p-Si layer is bonded to the heterostructure. LEDs were characterized both electrically and optically. Owing to the low defect density films, large concentration of holes from p-Si, and efficient hole injection, no efficiency droop was observed up to a current density of 76 A/cm2 under continuous wave operation and without external thermal management. An optical output power of 160 μW was obtained with the corresponding external quantum efficiency of 0.03%. This study demonstrates that by adopting p-type Si nanomembrane contacts as a hole injector, practical levels of hole injection can be realized in UV light-emitting diodes with very high Al composition AlGaN quantum wells, enabling emission wavelengths and power levels that were previously inaccessible using traditional p-i-n structures with poor hole injection efficiency.

  20. Organic light-emitting diodes from homoleptic square planar complexes

    DOEpatents

    Omary, Mohammad A

    2013-11-12

    Homoleptic square planar complexes [M(N.LAMBDA.N).sub.2], wherein two identical N.LAMBDA.N bidentate anionic ligands are coordinated to the M(II) metal center, including bidentate square planar complexes of triazolates, possess optical and electrical properties that make them useful for a wide variety of optical and electrical devices and applications. In particular, the complexes are useful for obtaining white or monochromatic organic light-emitting diodes ("OLEDs"). Improved white organic light emitting diode ("WOLED") designs have improved efficacy and/or color stability at high brightness in single- or two-emitter white or monochrome OLEDs that utilize homoleptic square planar complexes, including bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) ("Pt(ptp).sub.2").

  1. Effects of post-deposition annealing ambient on band alignment of RF magnetron-sputtered Y2O3 film on gallium nitride

    PubMed Central

    2013-01-01

    The effects of different post-deposition annealing ambients (oxygen, argon, forming gas (95% N2 + 5% H2), and nitrogen) on radio frequency magnetron-sputtered yttrium oxide (Y2O3) films on n-type gallium nitride (GaN) substrate were studied in this work. X-ray photoelectron spectroscopy was utilized to extract the bandgap of Y2O3 and interfacial layer as well as establishing the energy band alignment of Y2O3/interfacial layer/GaN structure. Three different structures of energy band alignment were obtained, and the change of band alignment influenced leakage current density-electrical breakdown field characteristics of the samples subjected to different post-deposition annealing ambients. Of these investigated samples, ability of the sample annealed in O2 ambient to withstand the highest electric breakdown field (approximately 6.6 MV/cm) at 10−6 A/cm2 was related to the largest conduction band offset of interfacial layer/GaN (3.77 eV) and barrier height (3.72 eV). PMID:23360596

  2. Recipient luminophoric mediums having narrow spectrum luminescent materials and related semiconductor light emitting devices and methods

    DOEpatents

    LeToquin, Ronan P; Tong, Tao; Glass, Robert C

    2014-12-30

    Light emitting devices include a light emitting diode ("LED") and a recipient luminophoric medium that is configured to down-convert at least some of the light emitted by the LED. In some embodiments, the recipient luminophoric medium includes a first broad-spectrum luminescent material and a narrow-spectrum luminescent material. The broad-spectrum luminescent material may down-convert radiation emitted by the LED to radiation having a peak wavelength in the red color range. The narrow-spectrum luminescent material may also down-convert radiation emitted by the LED into the cyan, green or red color range.

  3. Light-Emitting Diode (LED) Traps Improve the Light-Trapping of Anopheline Mosquitoes.

    PubMed

    Costa-Neta, B M; da Silva, A A; Brito, J M; Moraes, J L P; Rebêlo, J M M; Silva, F S

    2017-11-07

    Numerous advantages over the standard incandescent lamp favor the use of light-emitting diodes (LEDs) as an alternative and inexpensive light source for sampling medically important insects in surveillance studies. Previously published studies examined the response of mosquitoes to different wavelengths, but data on anopheline mosquito LED attraction are limited. Center for Disease Control and Prevention-type light traps were modified by replacing the standard incandescent lamp with 5-mm LEDs, one emitting at 520 nm (green) and the other at 470 nm (blue). To test the influence of moon luminosity on LED catches, the experiments were conducted during the four lunar phases during each month of the study period. A total of 1,845 specimens representing eight anopheline species were collected. Anopheles (Nyssorhynchus) evansae (35.2%) was the most frequently collected, followed by An. (Nys.) triannulatus (21.9%), An. (Nys.) goeldii (12.9%), and An. (Nys.) argyritarsis (11.5%). The green LED was the most attractive light source, accounting for 43.3% of the individuals collected, followed by the blue (31.8%) and control (24.9%) lights. The LED traps were significantly more attractive than the control, independent of the lunar phase. Light trapping of anopheline mosquitoes was more efficient when the standard incandescent lamp was replaced with LEDs, regardless of the moon phase. The efficiency of LEDs improves light trapping results, and it is suggested that the use of LEDs as an attractant for anopheline mosquitoes should be taken into consideration when sampling anopheline mosquitoes. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Application of gallium nitride nanostructures and nitrogen doped carbon spheres as supports for the hydrogenation of cinnamaldehyde.

    PubMed

    Kente, Thobeka; Dube, Sibongile M A; Coville, Neil J; Mhlanga, Sabelo D

    2013-07-01

    This paper reports on the synthesis and use of nanostructures of gallium nitride (GaN NSs) and nitrogen doped carbon spheres (NCSs) as support materials for the hydrogenation of cinnamaldehyde. This study provides the first investigation of GaN as a catalyst support in hydrogenation reactions. The GaN NSs were synthesized via chemical vapour deposition (CVD) in a double stage furnace (750 degrees C) while NCSs were made by CVD in a single stage furnace (950 degrees C) respectively. TEM analysis revealed that the GaN NSs were rod-like with average diameters of 200 nm, while the NCSs were solid with smoother surfaces, and with diameters of 450 nm. Pd nanoparticles (1 and 3% loadings) were uniformly dispersed on acid functionalized GaN NSs and NCS. The Pd nanoparticles had average diameters that were influenced by the type of support material used. The GaN NSs and NCSs were tested for the selective hydrogenation of cinnamaldehyde in isopropanol at 40 and 60 degrees C under atmospheric pressure. A comparative study of the activity of the nanostructured materials revealed that the order of catalyst activity was 3% Pd/GaN > 3% Pd/NCSs > 1% Pd/NCSs > 1% Pd/GaN. However, 100% selectivity to hydrocinnamaldehyde (HCALD) was obtained with 1% Pd/GaN at reasonable conversion rates.

  5. A dual-emitting core-shell carbon dot-silica-phosphor composite for white light emission

    NASA Astrophysics Data System (ADS)

    Chen, Yonghao; Lei, Bingfu; Zheng, Mingtao; Zhang, Haoran; Zhuang, Jianle; Liu, Yingliang

    2015-11-01

    A unique dual-emitting core-shell carbon dot-silica-phosphor (CDSP) was constructed from carbon dots (CDs), tetraethoxysilane (TEOS) and Sr2Si5N8:Eu2+ phosphor through a one-pot sol-gel method. Blue emitting CDs uniformly disperse in the silica layer covering the orange emitting phosphor via a polymerization process, which makes CDSP achieve even white light emission. Tunable photoluminescence of CDSP is observed and the preferable white light emission is achieved through changing the excitation wavelength or controlling the mass ratio of the phosphor. When CDSP powders with a phosphor rate of 3.9% and 5.1% are excited at a wavelength of 400 nm, preferable white light emission is observed, with Commission Internationale de l'Eclairage (CIE) coordinates of (0.32, 0.32) and (0.34, 0.32), respectively. Furthermore, CDSP can mix well with epoxy resin to emit strong and even white light, and based on this, a CDSP-based white LED with a high colour rendering index (CRI) of 94 was fabricated.A unique dual-emitting core-shell carbon dot-silica-phosphor (CDSP) was constructed from carbon dots (CDs), tetraethoxysilane (TEOS) and Sr2Si5N8:Eu2+ phosphor through a one-pot sol-gel method. Blue emitting CDs uniformly disperse in the silica layer covering the orange emitting phosphor via a polymerization process, which makes CDSP achieve even white light emission. Tunable photoluminescence of CDSP is observed and the preferable white light emission is achieved through changing the excitation wavelength or controlling the mass ratio of the phosphor. When CDSP powders with a phosphor rate of 3.9% and 5.1% are excited at a wavelength of 400 nm, preferable white light emission is observed, with Commission Internationale de l'Eclairage (CIE) coordinates of (0.32, 0.32) and (0.34, 0.32), respectively. Furthermore, CDSP can mix well with epoxy resin to emit strong and even white light, and based on this, a CDSP-based white LED with a high colour rendering index (CRI) of 94 was fabricated

  6. Efficient and Stable CsPb(Br/I)3@Anthracene Composites for White Light-Emitting Devices.

    PubMed

    Shen, Xinyu; Sun, Chun; Bai, Xue; Zhang, Xiaoyu; Wang, Yu; Wang, Yiding; Song, Hongwei; Yu, William W

    2018-05-16

    Inorganic perovskite quantum dots bear many unique properties that make them potential candidates for optoelectronic applications, including color display and lighting. However, the white emission with inorganic perovskite quantum dots has rarely been realized due to the anion-exchange reaction. Here, we proposed a one-pot preparation to fabricate inorganic perovskite quantum dot-based white light-emitting composites by introducing anthracene as a blue emission component. The as-prepared white light-emitting composite exhibited a photoluminescence quantum yield of 41.9%. By combining CsPb(Br/I) 3 @anthracene composites with UV light-emitting device (LED) chips, white light-emitting devices with a color rendering index of 90 were realized with tunable color temperature from warm white to cool white. These results can promote the application of inorganic perovskite quantum dots in the field of white LEDs.

  7. Optimization of light quality from color mixing light-emitting diode systems for general lighting

    NASA Astrophysics Data System (ADS)

    Thorseth, Anders

    2012-03-01

    Given the problem of metamerisms inherent in color mixing in light-emitting diode (LED) systems with more than three distinct colors, a method for optimizing the spectral output of multicolor LED system with regards to standardized light quality parameters has been developed. The composite spectral power distribution from the LEDs are simulated using spectral radiometric measurements of single commercially available LEDs for varying input power, to account for the efficiency droop and other non-linear effects in electrical power vs. light output. The method uses electrical input powers as input parameters in a randomized steepest decent optimization. The resulting spectral power distributions are evaluated with regard to the light quality using the standard characteristics: CIE color rendering index, correlated color temperature and chromaticity distance. The results indicate Pareto optimal boundaries for each system, mapping the capabilities of the simulated lighting systems with regard to the light quality characteristics.

  8. Nanoparticle embedded p-type electrodes for GaN-based flip-chip light emitting diodes.

    PubMed

    Kwak, Joon Seop; Song, J O; Seong, T Y; Kim, B I; Cho, J; Sone, C; Park, Y

    2006-11-01

    We have investigated high-quality ohmic contacts for flip-chip light emitting diodes using Zn-Ni nanoparticles/Ag schemes. The Zn-Ni nanoparticles/Ag contacts produce specific contact resistances of 10(-5)-10(-6) omegacm2 when annealed at temperatures of 330-530 degrees C for 1 min in air ambient, which are much better than those obtained from the Ag contacts. It is shown that blue InGaN/GaN multi-quantum well light emitting diodes fabricated with the annealed Zn-Ni nanoparticles/Ag contacts give much lower forward-bias voltages at 20 mA compared with those of the multi-quantum well light emitting diodes made with the as-deposited Ag contacts. It is further presented that the multi-quantum well light emitting diodes made with the Zn-Ni nanoparticles/Ag contacts show similar output power compared to those fabricated with the Ag contact layers.

  9. Flexible bottom-emitting white organic light-emitting diodes with semitransparent Ni/Ag/Ni anode.

    PubMed

    Koo, Ja-Ryong; Lee, Seok Jae; Lee, Ho Won; Lee, Dong Hyung; Yang, Hyung Jin; Kim, Woo Young; Kim, Young Kwan

    2013-05-06

    We fabricated a flexible bottom-emitting white organic light-emitting diode (BEWOLED) with a structure of PET/Ni/Ag/Ni (3/6/3 nm)/ NPB (50 nm)/mCP (10 nm)/7% FIrpic:mCP (10 nm)/3% Ir(pq)(2) acac:TPBi (5 nm)/7% FIrpic:TPBi (5 nm)/TPBi (10 nm)/Liq (2 nm)/ Al (100 nm). To improve the performance of the BEWOLED, a multilayered metal stack anode of Ni/Ag/Ni treated with oxygen plasma for 60 sec was introduced into the OLED devices. The Ni/Ag/Ni anode effectively enhanced the probability of hole-electron recombination due to an efficient hole injection into and charge balance in an emitting layer. By comparing with a reference WOLED using ITO on glass, it is verified that the flexible BEWOLED showed a similar or better electroluminescence (EL) performance.

  10. Multisite silicon neural probes with integrated silicon nitride waveguides and gratings for optogenetic applications.

    PubMed

    Shim, Euijae; Chen, Yu; Masmanidis, Sotiris; Li, Mo

    2016-03-04

    Optimal optogenetic perturbation of brain circuit activity often requires light delivery in a precise spatial pattern that cannot be achieved with conventional optical fibers. We demonstrate an implantable silicon-based probe with a compact light delivery system, consisting of silicon nitride waveguides and grating couplers for out-of-plane light emission with high spatial resolution. 473 nm light is coupled into and guided in cm-long waveguide and emitted at the output grating coupler. Using the direct cut-back and out-scattering measurement techniques, the propagation optical loss of the waveguide is measured to be below 3 dB/cm. The grating couplers provide collimated light emission with sufficient irradiance for neural stimulation. Finally, a probe with multisite light delivery with three output grating emitters from a single laser input is demonstrated.

  11. Photoluminescence Analysis of White-Light-Emitting Si Nanoparticles Using Effective Mass Approximation Method

    NASA Astrophysics Data System (ADS)

    Lee, Soojin; Cho, Woon Jo; Kim, Yang Do; Kim, Eun Kyu; Park, Jae Gwan

    2005-07-01

    White-light-emitting Si nanoparticles were prepared from the sodium silicide (NaSi) precursor. The photoluminescence of colloidal Si nanoparticles has been fitted by effective mass approximation (EMA). We analyzed the correlation between experimental photoluminescence and simulated fitting curves. Both the mean diameter and the size dispersion of the white-light-emitting Si nanoparticles were estimated.

  12. An enhanced surface passivation effect in InGaN/GaN disk-in-nanowire light emitting diodes for mitigating Shockley-Read-Hall recombination.

    PubMed

    Zhao, Chao; Ng, Tien Khee; Prabaswara, Aditya; Conroy, Michele; Jahangir, Shafat; Frost, Thomas; O'Connell, John; Holmes, Justin D; Parbrook, Peter J; Bhattacharya, Pallab; Ooi, Boon S

    2015-10-28

    We present a detailed study of the effects of dangling bond passivation and the comparison of different sulfide passivation processes on the properties of InGaN/GaN quantum-disk (Qdisk)-in-nanowire based light emitting diodes (NW-LEDs). Our results demonstrated the first organic sulfide passivation process for nitride nanowires (NWs). The results from Raman spectroscopy, photoluminescence (PL) measurements, and X-ray photoelectron spectroscopy (XPS) showed that octadecylthiol (ODT) effectively passivated the surface states, and altered the surface dynamic charge, and thereby recovered the band-edge emission. The effectiveness of the process with passivation duration was also studied. Moreover, we also compared the electro-optical performance of NW-LEDs emitting at green wavelength before and after ODT passivation. We have shown that the Shockley-Read-Hall (SRH) non-radiative recombination of NW-LEDs can be greatly reduced after passivation by ODT, which led to a much faster increasing trend of quantum efficiency and higher peak efficiency. Our results highlighted the possibility of employing this technique to further design and produce high performance NW-LEDs and NW-lasers.

  13. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control.

    PubMed

    Sun, Liangfeng; Choi, Joshua J; Stachnik, David; Bartnik, Adam C; Hyun, Byung-Ryool; Malliaras, George G; Hanrath, Tobias; Wise, Frank W

    2012-05-06

    Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr(-1) m(-2)) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH(2) groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.

  14. Blue laser diode (LD) and light emitting diode (LED) applications

    NASA Astrophysics Data System (ADS)

    Bergh, Arpad A.

    2004-09-01

    The family of blue LEDs, edge emitting and surface emitting lasers, enable a number of applications. Blue lasers are used in digital applications such as optical storage in high density DVDs. The resolution of the spot size and hence the storage density is diffraction limited and is inversely proportional to the square of the wavelength of the laser. Other applications include printing, optical scanners, and high-resolution photo-lithography.As light emitters, blue LEDs are used for signaling and in direct view large area emissive displays. They are also making inroads into signage and LCD back-lighting, mobile platforms, and decorative accent lighting in curtains, furniture, etc.Blue LEDs produce white light either with phosphor wavelength converters or in combination with red and green LEDs. The full potential of LED light sources will require three devices to enable complete control over color and intensity.Sensing and medical/bio applications have a major impact on home security, on monitoring the environment, and on health care. New emerging diagnostic and therapeutic applications will improve the quality and reduce the cost of health care.

  15. High efficiency and brightness fluorescent organic light emitting diode by triplet-triplet fusion

    DOEpatents

    Forrest, Stephen; Zhang, Yifan

    2015-02-10

    A first device is provided. The first device further comprises an organic light emitting device. The organic light emitting device further comprises an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer may include an organic host compound and at least one organic emitting compound capable of fluorescent emission at room temperature. Various configurations are described for providing a range of current densities in which T-T fusion dominates over S-T annihilation, leading to very high efficiency fluorescent OLEDs.

  16. Metal-halide perovskites for photovoltaic and light-emitting devices.

    PubMed

    Stranks, Samuel D; Snaith, Henry J

    2015-05-01

    Metal-halide perovskites are crystalline materials originally developed out of scientific curiosity. Unexpectedly, solar cells incorporating these perovskites are rapidly emerging as serious contenders to rival the leading photovoltaic technologies. Power conversion efficiencies have jumped from 3% to over 20% in just four years of academic research. Here, we review the rapid progress in perovskite solar cells, as well as their promising use in light-emitting devices. In particular, we describe the broad tunability and fabrication methods of these materials, the current understanding of the operation of state-of-the-art solar cells and we highlight the properties that have delivered light-emitting diodes and lasers. We discuss key thermal and operational stability challenges facing perovskites, and give an outlook of future research avenues that might bring perovskite technology to commercialization.

  17. Bipolar Electrode Array Embedded in a Polymer Light-Emitting Electrochemical Cell.

    PubMed

    Gao, Jun; Chen, Shulun; AlTal, Faleh; Hu, Shiyu; Bouffier, Laurent; Wantz, Guillaume

    2017-09-20

    A linear array of aluminum discs is deposited between the driving electrodes of an extremely large planar polymer light-emitting electrochemical cell (PLEC). The planar PLEC is then operated at a constant bias voltage of 100 V. This promotes in situ electrochemical doping of the luminescent polymer from both the driving electrodes and the aluminum discs. These aluminum discs function as discrete bipolar electrodes (BPEs) that can drive redox reactions at their extremities. Time-lapse fluorescence imaging reveals that p- and n-doping that originated from neighboring BPEs can interact to form multiple light-emitting p-n junctions in series. This provides direct evidence of the working principle of bulk homojunction PLECs. The propagation of p-doping is faster from the BPEs than from the positive driving electrode due to electric field enhancement at the extremities of BPEs. The effect of field enhancement and the fact that the doping fronts only need to travel the distance between the neighboring BPEs to form a light-emitting junction greatly reduce the response time for electroluminescence in the region containing the BPE array. The near simultaneous formation of multiple light-emitting p-n junctions in series causes a measurable increase in cell current. This indicates that the region containing a BPE is much more conductive than the rest of the planar cell despite the latter's greater width. The p- and n-doping originating from the BPEs is initially highly confined. Significant expansion and divergence of doping occurred when the region containing the BPE array became more conductive. The shape and direction of expanded doping strongly suggest that the multiple light-emitting p-n junctions, formed between and connected by the array of metal BPEs, have functioned as a single rod-shaped BPE. This represents a new type of BPE that is formed in situ and as a combination of metal, doped polymers, and forward-biased p-n junctions connected in series.

  18. High-performance light-emitting diodes based on carbene-metal-amides

    NASA Astrophysics Data System (ADS)

    Di, Dawei; Romanov, Alexander S.; Yang, Le; Richter, Johannes M.; Rivett, Jasmine P. H.; Jones, Saul; Thomas, Tudor H.; Abdi Jalebi, Mojtaba; Friend, Richard H.; Linnolahti, Mikko; Bochmann, Manfred; Credgington, Dan

    2017-04-01

    Organic light-emitting diodes (OLEDs) promise highly efficient lighting and display technologies. We introduce a new class of linear donor-bridge-acceptor light-emitting molecules, which enable solution-processed OLEDs with near-100% internal quantum efficiency at high brightness. Key to this performance is their rapid and efficient utilization of triplet states. Using time-resolved spectroscopy, we establish that luminescence via triplets occurs within 350 nanoseconds at ambient temperature, after reverse intersystem crossing to singlets. We find that molecular geometries exist at which the singlet-triplet energy gap (exchange energy) is close to zero, so that rapid interconversion is possible. Calculations indicate that exchange energy is tuned by relative rotation of the donor and acceptor moieties about the bridge. Unlike other systems with low exchange energy, substantial oscillator strength is sustained at the singlet-triplet degeneracy point.

  19. Fabrication of white light-emitting diodes based on UV light-emitting diodes with conjugated polymers-(CdSe/ZnS) quantum dots as hybrid phosphors.

    PubMed

    Jung, Hyunchul; Chung, Wonkeun; Lee, Chang Hun; Kim, Sung Hyun

    2012-07-01

    White light-emitting diodes (LEDs) were fabricated using GaN-based 380-nm UV LEDs precoated with the composite of blue-emitting polymer (poly[(9,9-dihexylfluorenyl-2,7-diyl)-alt-co-(2-methoxy-5-{2-ethylhexyloxy)-1 ,4-phenylene)]), yellow green-emitting polymer (poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-{2,1',3}-thiadiazole)]), and 605-nm red-emitting quantum dots (QDs). CdSe cores were obtained by solvothermal route using CdO, Se precursors and ZnS shells were synthesized by using diethylzinc, and hexamethyldisilathiane precursors. The optical properties of CdSe/ZnS QDs were characterized by UV-visible and photoluminescence (PL) spectra. The structural data and composition of the QDs were transmission electron microscopy (TEM), and EDX technique. The quantum yield and size of the QDs were 58.7% and about 6.7 nm, respectively. Three-band white light was generated by hybridizing blue (430 nm), green (535 nm), and red (605 nm) emission. The color-rendering index (CRI) of the device was extremely improved by introducing the QDs. The CIE-1931 chromaticity coordinate, color temperature, and CRI of a white LED at 20 mA were (0.379, 0.368), 3969 K, and 90, respectively.

  20. Development of aluminum gallium nitride based optoelectronic devices operating in deep UV and terahertz spectrum ranges

    NASA Astrophysics Data System (ADS)

    Zhang, Wei

    In this research project I have investigated AlGaN alloys and their quantum structures for applications in deep UV and terahertz optoelectronic devices. For the deep UV emitter applications the materials and devices were grown by rf plasma-assisted molecular beam epitaxy on 4H-SiC, 6H-SiC and c-plane sapphire substrates. In the growth of AlGaN/AlN multiple quantum wells on SiC substrates, the AlGaN wells were grown under excess Ga, far beyond than what is required for the growth of stoichiometric AlGaN films, which resulted in liquid phase epitaxy growth mode. Due to the statistical variations of the excess Ga on the growth front we found that this growth mode leads to films with lateral variations in the composition and thus, band structure potential fluctuations. Transmission electron microscopy shows that the wells in such structures are not homogeneous but have the appearance of quantum dots. We find by temperature dependent photoluminescence measurements that the multiple quantum wells with band structure potential fluctuations emit at 240 nm and have room temperature internal quantum efficiency as high as 68%. Furthermore, they were found to have a maximum net modal optical gain of 118 cm-1 at a transparency threshold corresponding to 1.4 x 1017 cm-3 excited carriers. We attribute this low transparency threshold to population inversion of only the regions of the potential fluctuations rather than of the entire matrix. Some prototype deep UV emitting LED structures were also grown by the same method on sapphire substrates. Optoelectronic devices for terahertz light emission and detection, based on intersubband transitions in III-nitride semiconductor quantum wells, were grown on single crystal c-plane GaN substrates. Growth conditions such the ratio of group III to active nitrogen fluxes, which determines the appropriate Ga-coverage for atomically smooth growth without requiring growth interruptions were employed. Emitters designed in the quantum cascade

  1. High-Fluence Light-Emitting Diode-Generated Red Light Modulates the Transforming Growth Factor-Beta Pathway in Human Skin Fibroblasts.

    PubMed

    Mamalis, Andrew; Jagdeo, Jared

    2018-05-24

    Skin fibrosis is a significant medical problem with limited available treatment modalities. The key cellular characteristics include increased fibroblast proliferation, collagen production, and transforming growth factor-beta (TGF-B)/SMAD pathway signaling. The authors have previously shown that high-fluence light-emitting diode red light (HF-LED-RL) decreases cellular proliferation and collagen production. Herein, the authors investigate the ability of HF-LED-RL to modulate the TGF-B/SMAD pathway. Normal human dermal fibroblasts were cultured and irradiated with a commercially available hand-held LED array. After irradiation, cell lysates were collected and levels of pSMAD2, TGF-Beta 1, and TGF-Beta I receptor were measured using Western blot. High-fluence light-emitting diode red light decreased TGF-Beta 1 ligand (TGF-B1) levels after irradiation. 320 J/cm HF-LED-RL resulted in 59% TGF-B1 and 640 J/cm HF-LED-RL resulted in 54% TGF-B1, relative to controls. 640 J/cm HF-LED-RL resulted in 62% pSMAD2 0 hours after irradiation, 65% pSMAD2 2 hours after irradiation, and 95% 4 hours after irradiation, compared with matched controls. High-fluence light-emitting diode red light resulted in no significant difference in transforming growth factor-beta receptor I levels compared with matched controls. Skin fibrosis is a significant medical problem with limited available treatment modalities. Light-emitting diode-generated red light is a safe, economic, and noninvasive modality that has a body of in vitro evidence supporting the reduction of key cellular characteristics associated with skin fibrosis.

  2. Doehlert experimental design applied to optimization of light emitting textile structures

    NASA Astrophysics Data System (ADS)

    Oguz, Yesim; Cochrane, Cedric; Koncar, Vladan; Mordon, Serge R.

    2016-07-01

    A light emitting fabric (LEF) has been developed for photodynamic therapy (PDT) for the treatment of dermatologic diseases such as Actinic Keratosis (AK). A successful PDT requires homogenous and reproducible light with controlled power and wavelength on the treated skin area. Due to the shape of the human body, traditional PDT with external light sources is unable to deliver homogenous light everywhere on the skin (head vertex, hand, etc.). For better light delivery homogeneity, plastic optical fibers (POFs) have been woven in textile in order to emit laterally the injected light. The previous studies confirmed that the light power could be locally controlled by modifying the radius of POF macro-bendings within the textile structure. The objective of this study is to optimize the distribution of macro-bendings over the LEF surface in order to increase the light intensity (mW/cm2), and to guarantee the best possible light deliver homogeneity over the LEF which are often contradictory. Fifteen experiments have been carried out with Doehlert experimental design involving Response Surface Methodology (RSM). The proposed models are fitted to the experimental data to enable the optimal set up of the warp yarns tensions.

  3. A white organic light emitting diode based on anthracene-triphenylamine derivatives

    NASA Astrophysics Data System (ADS)

    Jiang, Quan; Qu, Jianjun; Yu, Junsheng; Tao, Silu; Gan, Yuanyuan; Jiang, Yadong

    2010-10-01

    White organic lighting-diode (WOLED) can be used as flat light sources, backlights for liquid crystal displays and full color displays. Recently, a research mainstream of white OLED is to develop the novel materials and optimize the structure of devices. In this work a WOLED with a structure of ITO/NPB/PAA/Alq3: x% rubrene/Alq3/Mg: Ag, was fabricated. The device has two light-emitting layers. NPB is used as a hole transport layer, PAA as a blue emitting layer, Alq3: rubrene host-guest system as a yellow emitting layer, and Alq3 close to the cathode as an electron transport layer. In the experiment, the doping concentration of rubrene was optimized. WOLED 1 with 4% rubrene achieved a maximum luminous efficiency of 1.80 lm/W, a maximum luminance of 3926 cd/m2 and CIE coordinates of (0.374, 0.341) .WOLED 2 with 2% rubrene achieved a maximum luminous efficiency of 0.65 lm/W, a maximum luminance of 7495cd/m2 and CIE coordinates of (0.365,0.365).

  4. Printing Smart Designs of Light Emitting Devices with Maintained Textile Properties.

    PubMed

    Verboven, Inge; Stryckers, Jeroen; Mecnika, Viktorija; Vandevenne, Glen; Jose, Manoj; Deferme, Wim

    2018-02-13

    To maintain typical textile properties, smart designs of light emitting devices are printed directly onto textile substrates. A first approach shows improved designs for alternating current powder electroluminescence (ACPEL) devices. A configuration with the following build-up, starting from the textile substrate, was applied using the screen printing technique: silver (10 µm)/barium titanate (10 µm)/zinc-oxide (10 µm) and poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (10 µm). Textile properties such as flexibility, drapability and air permeability are preserved by implementing a pixel-like design of the printed layers. Another route is the application of organic light emitting devices (OLEDs) fabricated out of following layers, also starting from the textile substrate: polyurethane or acrylate (10-20 µm) as smoothing layer/silver (200 nm)/poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (35 nm)/super yellow (80 nm)/calcium/aluminum (12/17 nm). Their very thin nm-range layer thickness, preserving the flexibility and drapability of the substrate, and their low working voltage, makes these devices the possible future in light-emitting wearables.

  5. Finding the Average Speed of a Light-Emitting Toy Car with a Smartphone Light Sensor

    ERIC Educational Resources Information Center

    Kapucu, Serkan

    2017-01-01

    This study aims to demonstrate how the average speed of a light-emitting toy car may be determined using a smartphone's light sensor. The freely available Android smartphone application, "AndroSensor," was used for the experiment. The classroom experiment combines complementary physics knowledge of optics and kinematics to find the…

  6. Phototoxic action of light emitting diode in the in vitro viability of Trichophyton rubrum.

    PubMed

    Amorim, José Cláudio Faria; Soares, Betania Maria; Alves, Orley Araújo; Ferreira, Marcus Vinícius Lucas; Sousa, Gerdal Roberto; Silveira, Lívio de Barros; Piancastelli, André Costa Cruz; Pinotti, Marcos

    2012-01-01

    Trichophyton rubrum is the most common agent of superficial mycosis of the skin and nails causing long lasting infections and high recurrence rates. Current treatment drawbacks involve topical medications not being able to reach the nail bed at therapeutic concentrations, systemic antifungal drugs failing to eradicate the fungus before the nails are renewed, severe side effects and selection of resistant fungal isolates. Photodynamic therapy (PDT) has been a promising alternative to conventional treatments. This study evaluated the in vitro effectiveness of toluidine blue O (TBO) irradiated by Light emitting diode (LED) in the reduction of T. rubrum viability. The fungal inoculums' was prepared and exposed to different TBO concentrations and energy densities of Light emitting diode for evaluate the T. rubrum sensibility to PDT and production effect fungicidal after photodynamic treatment. In addition, the profiles of the area and volume of the irradiated fungal suspensions were also investigated. A small reduction, in vitro, of fungal cells was observed after exposition to 100 µM toluidine blue O irradiated by 18 J/cm² Light emitting diode. Fungicidal effect occurred after 25 µM toluidine blue O irradiation by Light emitting diode with energy density of 72 J/cm². The analysis showed that the area and volume irradiated by the Light emitting diode were 52.2 mm² and 413.70 mm³, respectively. The results allowed to conclude that Photodynamic therapy using Light emitting diode under these experimental conditions is a possible alternative approach to inhibit in vitro T. rubrum and may be a promising new treatment for dermatophytosis caused by this fungus.

  7. Effect of 670-nm Light-Emitting Diode Light On Neuronal Cultures

    NASA Technical Reports Server (NTRS)

    Wong-Riley, Margaret T. T.; Whelan, Harry T.

    2002-01-01

    Light close to and within the near infrared range has documented benefits for promoting wound healing in human and animal studies. Our preliminary results using light-emitting diodes (LEDs) in this range have also demonstrated two-to five-fold increases in growth-phase-specific DNA synthesis in normal fibroblasts, muscle cells, osteoblasts, and mucosal epithelial cells in tissue cultures. However, the mechanisms of action of such light on cells are poorly understood. We hypothesized that the therapeutic effects of such light result from the stimulation of cellular events associated with increases in cytochrome oxidase activity. As a first step in testing our hypothesis, we subjected primary neuronal cultures to impulse blockade by tetrodotoxin (TTX), a voltage-dependent sodium channel blocker, and applied LED light at 670 nm to determine if it could partially or fully reverse the reduction of cytochrome oxidase activity by TTX. The wavelength and parameters were previously tested to be beneficial for wound healing.

  8. Synthesis and characterization of organic/inorganic heterostructure films for hybrid light emitting diode

    NASA Astrophysics Data System (ADS)

    Toyama, Toshihiko; Ichihara, Tokuyuki; Yamaguchi, Daisuke; Okamoto, Hiroaki

    2007-10-01

    Thin-film light emitting devices based on organic materials have been gathering attentions for applying a flat-panel display and a solid-state lighting. Alternatively, inorganic technologies such as Si-based thin-film technology have been growing almost independently. It is then expected that combining the Si-based thin-film technology with the organic light emitting diode (OLED) technology will develop innovative devices. Here, we report syntheses of the hybrid light emitting diode (LED) with a heterostructure consisting of p-type SiC x and tris-(8-hydroxyquinoline) aluminum films and characterization for the hybrid LEDs. We present the energy diagram of the heterostructure, and describe that the use of high dark conductivities of the p-type SiC x as well as inserting wide-gap intrinsic a-SiC x at the p-type SiC x/Alq interface are effective for improving device performance.

  9. Phosphorescent organic light emitting diodes with high efficiency and brightness

    DOEpatents

    Forrest, Stephen R; Zhang, Yifan

    2015-11-12

    An organic light emitting device including a) an anode; b) a cathode; and c) an emissive layer disposed between the anode and the cathode, the emissive layer comprising an organic host compound and a phosphorescent compound exhibiting a Stokes Shift overlap greater than 0.3 eV. The organic light emitting device may further include a hole transport layer disposed between the emissive layer and the anode; and an electron transport layer disposed between the emissive layer and the cathode. In some embodiments, the phosphorescent compound exhibits a phosphorescent lifetime of less than 10 .mu.s. In some embodiments, the concentration of the phosphorescent compound ranges from 0.5 wt. % to 10 wt. %.

  10. Benzoporphyrin derivative and light-emitting diode for use in photodynamic therapy: Applications of space light-emitting diode technology

    NASA Astrophysics Data System (ADS)

    Whelan, Harry T.; Houle, John M.; Bajic, Dawn M.; Schmidt, Meic H.; Reichert, Kenneth W.; Meyer, Glenn A.

    1998-01-01

    Photodynamic therapy (PDT) is a cancer treatment modality that recently has been applied as adjuvant therapy for brain tumors. PDT consists of intravenously injecting a photosensitizer, which preferentially accumulates in tumor cells, into a patient and then activating the photosensitizer with a light source. This results in free radical generation followed by cell death. The development of more effective light sources for PDT of brain tumors has been facilitated by applications of space light-emitting diode array technology; thus permitting deeper tumor penetration of light and use of better photosensitizers. Currently, the most commonly used photosensitizer for brain tumor PDT is Photofrin®. Photofrin® is a heterogeneous mixture of compounds derived from hematoporphyrin. Photofrin® is activated with a 630 nm laser light and does destroy tumor cells in animal models and humans. However, treatment failure does occur using this method. Most investigators attribute this failure to the limited penetration of brain tissue by a 630 nm laser light and to the fact that Photofrin® has only a minor absorption peak at 630 nm, meaning that only a small fraction of the chemical is activated. Benzoporphyrin Derivative Monoacid Ring A (BPD) is a new, second generation photosensitizer that can potentially improve PDT for brain tumors. BPD has a major absorption peak at 690 nm, which gives it two distinct advantages over Photofrin®. First, longer wavelengths of light penetrate brain tissue more easily so that larger tumors could be treated, and second, the major absorption peak means that a larger fraction of the drug is activated upon exposure to light. In the first part of this project we have studied the tumoricidal effects of BPD in vitro using 2A9 canine glioma and U373 human glioblastoma cell cultures. Using light emitting diodes (LED) with a peak emission of 688 nm as a light source, cell kill of up to 86 percent was measured in these cell lines by tumor DNA synthesis

  11. Short-Wavelength Light-Emitting Devices With Enhanced Hole Injection Currents

    DTIC Science & Technology

    2005-05-01

    hot-hole injector with appreciably enhancement of the injection current is proposed and developed to be integrated with commonly used vertical...structures of the emitting devices. Second, we develop the alternative design of UV-light sources on the base of lateral p+ - i - n+ superlattice structures...enhancement of the injection current is proposed and developed to be integrated with commonly used vertical structures of the emitting devices. Second

  12. Printable candlelight-style organic light-emitting diode

    NASA Astrophysics Data System (ADS)

    Jou, J. H.; Singh, M.; Song, W. C.; Liu, S. H.

    2017-06-01

    Candles or oil lamps are currently the most friendly lighting source to human eyes, physiology, ecosystems, artifacts, environment, and night skies due to their blue light-less emission. Candle light also exhibits high light-quality that provides visual comfort. However, they are relatively low in power efficacy (0.3 lm/W), making them energy-wasting, besides having problems like scorching hot, burning, catching fire, flickering, carbon blacking, oxygen consuming, and release of green house gas etc. In contrast, candlelight organic light-emitting diode (OLED) can be made blue-hazard free and energy-efficient. The remaining challenges are to maximize its light-quality and enable printing feasibility, the latter of which would pave a way to cost-effective manufacturing. We hence demonstrate herein the design and fabrication of a candlelight OLED via wet-process. From retina protection perspective, its emission is 13, 12 and 8 times better than those of the blue-enriched white CFL, LED and OLED. If used at night, it is 9, 6 and 4 times better from melatonin generation perspective.

  13. III-Nitride, SiC and Diamond Materials for Electronic Devices. Symposium Held April 8-12 1996, San Francisco, California, U.S.A. Volume 423.

    DTIC Science & Technology

    1996-12-01

    gallium, nitrogen and gallium nitride structures. Thus it can be shown to be transferable and efficient for predictive molecular -dynamic simulations on...potentials and forces for the molecular dynamics simulations are derived by means of a density-functional based nonorthogonal tight-binding (DF-TB) scheme...LDA). Molecular -dynamics simulations for determining the different reconstructions of the SiC surface use the slab method (two-dimensional periodic

  14. Using light emitting diodes in traffic signals : final report.

    DOT National Transportation Integrated Search

    1998-07-01

    In 1993, the Oregon Department of Transportation (ODOT) began testing red light emitting diodes (LED's) as a replacement to the incandescent lamps in vehicular and pedestrian signals. Field performance was found to be reliable and subsequently ODOT b...

  15. White organic light-emitting devices with high color purity and stability

    NASA Astrophysics Data System (ADS)

    Bai, Yajie; Liu, Su; Li, Hairong; Liu, Chunjuan; Wang, Jinshun; Chang, Jinxian

    2014-04-01

    A white organic light-emitting device (WOLED) with dual-emitting layers was presented, in which the blue fluorescent dye 2,5,8,11-terta-tertbutylperylene (TBPe) was doped in 2-methyl-9, 10-di(2-naphthyl)-anthracene (MADN) as a blue-emitting layer, while 5,6,11,12-tetraphenylnaphthacene (rubrene, Rb) was doped in the above-mentioned materials as a yellow-emitting layer. The fabricated monochromatic devices using the blue- and yellow-emitting layer have demonstrated that the direct charge trapping mechanism is the dominant emission mechanism in the yellow OLED. Studies on the WOLEDs with dual-emitting layers have shown that the performances of these devices are strongly susceptible to the thickness of the emitting layer and the stack order of two emitting layers. Structure of ITO(160 nm)/NPB(30 nm)/MADN: 5 wt%TBPe: 3 wt%Rb(10 nm)/MADN: 5 wt%TBPe(20 nm)/BCP (10 nm)/Alq3(20 nm)/Al(100 nm) was determined to be the most favorable WOLED. The maximum luminance of 16 000 cd cm-2 at the applied voltage of 13.4 V and Commission International de 1‧Eclairage (CIE) coordinates of (0.3263, 0.3437) which is closer to the standard white light (CIE (0.33, 0.33)) than the most recent reported WOLEDs were obtained. Moreover, there is just slight variation of CIE coordinates (ΔCIEx, y = 0.0171, 0.0167; corresponding Δu‧v‧ = 0.0119) when the current density increases from 10 to 100 mA cm-2. It reveals that the emissive dopant Rb acts as charge traps to improve electron-hole balance, provides sites for electron-hole recombination and thus makes carriers distribute more evenly in the dual-emitting layers which broaden the recombination zone and improve the stability of the CIE coordinates.

  16. High-Power 365 nm UV LED Mercury Arc Lamp Replacement for Photochemistry and Chemical Photolithography

    PubMed Central

    2016-01-01

    Ultraviolet light emitting diodes (UV LEDs) have become widespread in chemical research as highly efficient light sources for photochemistry and photopolymerization. However, in more complex experimental setups requiring highly concentrated light and highly spatially resolved patterning of the light, high-pressure mercury arc lamps are still widely used because they emit intense UV light from a compact arc volume that can be efficiently coupled into optical systems. Advances in the deposition and p-type doping of gallium nitride have recently permitted the manufacture of UV LEDs capable of replacing mercury arc lamps also in these applications. These UV LEDs exceed the spectral radiance of mercury lamps even at the intense I-line at 365 nm. Here we present the successful exchange of a high-pressure mercury arc lamp for a new generation UV LED as a light source in photolithographic chemistry and its use in the fabrication of high-density DNA microarrays. We show that the improved light radiance and efficiency of these LEDs offer substantial practical, economic and ecological advantages, including faster synthesis, lower hardware costs, very long lifetime, an >85-fold reduction in electricity consumption and the elimination of mercury waste and contamination. PMID:28066690

  17. High-Power 365 nm UV LED Mercury Arc Lamp Replacement for Photochemistry and Chemical Photolithography.

    PubMed

    Hölz, K; Lietard, J; Somoza, M M

    2017-01-03

    Ultraviolet light emitting diodes (UV LEDs) have become widespread in chemical research as highly efficient light sources for photochemistry and photopolymerization. However, in more complex experimental setups requiring highly concentrated light and highly spatially resolved patterning of the light, high-pressure mercury arc lamps are still widely used because they emit intense UV light from a compact arc volume that can be efficiently coupled into optical systems. Advances in the deposition and p -type doping of gallium nitride have recently permitted the manufacture of UV LEDs capable of replacing mercury arc lamps also in these applications. These UV LEDs exceed the spectral radiance of mercury lamps even at the intense I-line at 365 nm. Here we present the successful exchange of a high-pressure mercury arc lamp for a new generation UV LED as a light source in photolithographic chemistry and its use in the fabrication of high-density DNA microarrays. We show that the improved light radiance and efficiency of these LEDs offer substantial practical, economic and ecological advantages, including faster synthesis, lower hardware costs, very long lifetime, an >85-fold reduction in electricity consumption and the elimination of mercury waste and contamination.

  18. The use of ionic salt dyes as amorphous, thermally stable emitting layers in organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Chondroudis, Konstantinos; Mitzi, David B.

    2000-01-01

    The conversion of two neutral dye molecules (D) to ionic salts (H2N-D-NH2ṡ2HX) and their utilization as emitting layers in organic light-emitting diodes (OLEDs) is described. The dye salts, AEQTṡ2HCl and APTṡ2HCl, can be deposited as amorphous films using conventional evaporation techniques. X-ray diffraction and scanning electron microscopy analysis, coupled with thermal annealing studies, demonstrate the resistance of the films to crystallization. This stability is attributed to strong ionic forces between the relatively rigid molecules. OLEDs incorporating such salts for emitting layers exhibit better thermal stability compared with devices made from the corresponding neutral dyes (H2N-D-NH2). These results suggest that ionic salts may more generally enable the formation of thermally stable, amorphous emitting, and charge transporting layers.

  19. Vibrationally induced center reconfiguration in co-doped GaN:Eu, Mg epitaxial layers: Local hydrogen migration vs. activation of non-radiative channels

    NASA Astrophysics Data System (ADS)

    Mitchell, B.; Lee, D.; Lee, D.; Fujiwara, Y.; Dierolf, V.

    2013-12-01

    Europium doped gallium nitride (GaN:Eu) is a promising candidate as a material for red light emitting diodes. When Mg was co-doped into GaN:Eu, additional incorporation environments were discovered that show high excitation efficiency at room temperature and have been attributed to the coupling of Mg-H complexes to the majority Eu site. Electron beam irradiation, indirect and resonant (direct) laser excitation were found to modify these complexes, indicating that vibrational energy alone can trigger the migration of the H while the presence of additional charges and excess energy controls the type of reconfiguration and the activation of non-radiative decay channels.

  20. Synthesis of galium nitride thin films using sol-gel dip coating method

    NASA Astrophysics Data System (ADS)

    Hamid, Maizatul Akmam Ab; Ng, Sha Shiong

    2017-12-01

    In this research, gallium nitride (GaN) thin film were grown on silicon (Si) substrate by a low-cost sol-gel dip coating deposition method. The GaN precursor solution was prepared using gallium (III) nitrate hydrate powder, ethanol and diethanolamine as a starting material, solvent and surfactant respectively. The structural, morphological and optical characteristics of the deposited GaN thin film were investigated. Field-emission scanning electron microscopy observations showed that crack free and dense grains GaN thin films were formed. Energy dispersive X-ray analysis confirmed that the oxygen content in the deposited films was low. X-ray diffraction results revealed that deposited GaN thin films have hexagonal wurtzite structure.