Science.gov

Sample records for gallium nitride materials

  1. Gallium Nitride Crystals: Novel Supercapacitor Electrode Materials.

    PubMed

    Wang, Shouzhi; Zhang, Lei; Sun, Changlong; Shao, Yongliang; Wu, Yongzhong; Lv, Jiaxin; Hao, Xiaopeng

    2016-05-01

    A type of single-crystal gallium nitride mesoporous membrane is fabricated and its supercapacitor properties are demonstrated for the first time. The supercapacitors exhibit high-rate capability, stable cycling life at high rates, and ultrahigh power density. This study may expand the range of crystals as high-performance electrode materials in the field of energy storage.

  2. Neutron detection using boron gallium nitride semiconductor material

    SciTech Connect

    Atsumi, Katsuhiro; Inoue, Yoku; Nakano, Takayuki; Mimura, Hidenori; Aoki, Toru

    2014-03-01

    In this study, we developed a new neutron-detection device using a boron gallium nitride (BGaN) semiconductor in which the B atom acts as a neutron converter. BGaN and gallium nitride (GaN) samples were grown by metal organic vapor phase epitaxy, and their radiation detection properties were evaluated. GaN exhibited good sensitivity to α-rays but poor sensitivity to γ-rays. Moreover, we confirmed that electrons were generated in the depletion layer under neutron irradiation. This resulted in a neutron-detection signal after α-rays were generated by the capture of neutrons by the B atoms. These results prove that BGaN is useful as a neutron-detecting semiconductor material.

  3. Ohmic contacts to Gallium Nitride materials

    NASA Astrophysics Data System (ADS)

    Greco, Giuseppe; Iucolano, Ferdinando; Roccaforte, Fabrizio

    2016-10-01

    In this review article, a comprehensive study of the mechanisms of Ohmic contact formation on GaN-based materials is presented. After a brief introduction on the physics of Ohmic contacts, a resume of the most important results obtained in literature is reported for each of the systems taken in consideration (n-type GaN, p-type GaN and AlGaN/GaN heterostructures). The optimal metallization schemes and processing conditions to obtain low resistance Ohmic contacts are presented, discussing the role of the single metals composing the stack and the modification induced by the thermal annealing, either on the metal layers or at the interface with GaN. Physical insights on the mechanism of Ohmic contact formation have been gained by correlating the temperature dependence of the electrical parameters with a morphological/structural analysis of the interface. In the case of the AlGaN/GaN systems, the influence of the heterostructure parameters on the Ohmic contacts has been taken into account adapting the classical thermionic field emission model to the presence of the two dimensional electron gas (2DEG). Finally, the state of the art of "Au-free" metallization to AlGaN/GaN heterostructures is also presented, being this latter a relevant topic for the integration of GaN technology on large scale Silicon devices fabs.

  4. Gallium nitride optoelectronic devices

    NASA Technical Reports Server (NTRS)

    Chu, T. L.; Chu, S. S.

    1972-01-01

    The growth of bulk gallium nitride crystals was achieved by the ammonolysis of gallium monochloride. Gallium nitride single crystals up to 2.5 x 0.5 cm in size were produced. The crystals are suitable as substrates for the epitaxial growth of gallium nitride. The epitaxial growth of gallium nitride on sapphire substrates with main faces of (0001) and (1T02) orientations was achieved by the ammonolysis of gallium monochloride in a gas flow system. The grown layers had electron concentrations in the range of 1 to 3 x 10 to the 19th power/cu cm and Hall mobilities in the range of 50 to 100 sq cm/v/sec at room temperature.

  5. P-type gallium nitride

    DOEpatents

    Rubin, M.; Newman, N.; Fu, T.; Ross, J.; Chan, J.

    1997-08-12

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5{times}10{sup 11} /cm{sup 3} and hole mobilities of about 500 cm{sup 2} /V-sec, measured at 250 K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al. 9 figs.

  6. P-type gallium nitride

    DOEpatents

    Rubin, Michael; Newman, Nathan; Fu, Tracy; Ross, Jennifer; Chan, James

    1997-01-01

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5.times.10.sup.11 /cm.sup.3 and hole mobilities of about 500 cm.sup.2 /V-sec, measured at 250.degree. K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al.

  7. Gallium nitride nanotube lasers

    SciTech Connect

    Li, Changyi; Liu, Sheng; Hurtado, Antonio; Wright, Jeremy Benjamin; Xu, Huiwen; Luk, Ting Shan; Figiel, Jeffrey J.; Brener, Igal; Brueck, Steven R. J.; Wang, George T.

    2015-01-01

    Lasing is demonstrated from gallium nitride nanotubes fabricated using a two-step top-down technique. By optically pumping, we observed characteristics of lasing: a clear threshold, a narrow spectral, and guided emission from the nanotubes. In addition, annular lasing emission from the GaN nanotube is also observed, indicating that cross-sectional shape control can be employed to manipulate the properties of nanolasers. The nanotube lasers could be of interest for optical nanofluidic applications or application benefitting from a hollow beam shape.

  8. An electron beam induced current study of gallium nitride and diamond materials

    SciTech Connect

    Cropper, A.D.; Moore, D.J.; Scott, C.S.; Green, R.

    1995-12-31

    The continual need for microelectronic devices that operate under severe electronic and environmental conditions (high temperature, high frequency, high power, and radiation tolerance) has sustained research in wide bandgap semiconductor materials. The properties suggest these wide-bandgap semiconductor materials have tremendous potential for military and commercial applications. High frequency bipolar transistors and field effect transistors, diodes, and short wavelength optical devices have been proposed using these materials. Although research efforts involving the study of transport properties in Gallium Nitride (GaN) and Diamond have made significant advances, much work is still needed to improve the material quality so that the electrophysical behavior of device structures can be further understood and exploited. Electron beam induced current (EBIC) measurements can provide a method of understanding the transport properties in Gallium Nitride (GaN) and Diamond. This technique basically consists of measuring the current or voltage transient response to the drift and diffusion of carriers created by a short-duration pulse of radiation. This method differs from other experimental techniques because it is based on a fast transient electron beam probe created from a high speed, laser pulsed photoemission system.

  9. Electrospun Gallium Nitride Nanofibers

    SciTech Connect

    Melendez, Anamaris; Morales, Kristle; Ramos, Idalia; Campo, Eva; Santiago, Jorge J.

    2009-04-19

    The high thermal conductivity and wide bandgap of gallium nitride (GaN) are desirable characteristics in optoelectronics and sensing applications. In comparison to thin films and powders, in the nanofiber morphology the sensitivity of GaN is expected to increase as the exposed area (proportional to the length) increases. In this work we present electrospinning as a novel technique in the fabrication of GaN nanofibers. Electrospinning, invented in the 1930s, is a simple, inexpensive, and rapid technique to produce microscopically long ultrafine fibers. GaN nanofibers are produced using gallium nitrate and dimethyl-acetamide as precursors. After electrospinning, thermal decomposition under an inert atmosphere is used to pyrolyze the polymer. To complete the preparation, the nanofibers are sintered in a tube furnace under a NH{sub 3} flow. Both scanning electron microscopy and profilometry show that the process produces continuous and uniform fibers with diameters ranging from 20 to a few hundred nanometers, and lengths of up to a few centimeters. X-ray diffraction (XRD) analysis shows the development of GaN nanofibers with hexagonal wurtzite structure. Future work includes additional characterization using transmission electron microscopy and XRD to understand the role of precursors and nitridation in nanofiber synthesis, and the use of single nanofibers for the construction of optical and gas sensing devices.

  10. Gallium nitride electronics

    NASA Astrophysics Data System (ADS)

    Rajan, Siddharth; Jena, Debdeep

    2013-07-01

    In the past two decades, there has been increasing research and industrial activity in the area of gallium nitride (GaN) electronics, stimulated first by the successful demonstration of GaN LEDs. While the promise of wide band gap semiconductors for power electronics was recognized many years before this by one of the contributors to this issue (J Baliga), the success in the area of LEDs acted as a catalyst. It set the field of GaN electronics in motion, and today the technology is improving the performance of several applications including RF cell phone base stations and military radar. GaN could also play a very important role in reducing worldwide energy consumption by enabling high efficiency compact power converters operating at high voltages and lower frequencies. While GaN electronics is a rapidly evolving area with active research worldwide, this special issue provides an opportunity to capture some of the great advances that have been made in the last 15 years. The issue begins with a section on epitaxy and processing, followed by an overview of high-frequency HEMTs, which have been the most commercially successful application of III-nitride electronics to date. This is followed by review and research articles on power-switching transistors, which are currently of great interest to the III-nitride community. A section of this issue is devoted to the reliability of III-nitride devices, an area that is of increasing significance as the research focus has moved from not just high performance but also production-worthiness and long-term usage of these devices. Finally, a group of papers on new and relatively less studied ideas for III-nitride electronics, such as interband tunneling, heterojunction bipolar transistors, and high-temperature electronics is included. These areas point to new areas of research and technological innovation going beyond the state of the art into the future. We hope that the breadth and quality of articles in this issue will make it

  11. Gallium nitride junction field-effect transistor

    DOEpatents

    Zolper, John C.; Shul, Randy J.

    1999-01-01

    An all-ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorous co-implantation, in selected III-V semiconductor materials.

  12. Gallium nitride junction field-effect transistor

    DOEpatents

    Zolper, J.C.; Shul, R.J.

    1999-02-02

    An ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same are disclosed. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorus co-implantation, in selected III-V semiconductor materials. 19 figs.

  13. Study of gallium nitride-based materials for light-emitting applications

    NASA Astrophysics Data System (ADS)

    Barletta, Philip

    The purpose of this study was to explore the possibility of fabricating phosphor-free white-emitting LED's based in the gallium nitride material system. The structures were to be grown using metal-organic chemical vapor deposition (MOCVD). Toward this end, a Thomas Swan Scientific close-coupled showerhead reactor was installed. The first experimental step in this project was the optimization of nominally undoped GaN. This was achieved successfully, as smooth, non-compensated, optically-active films were demonstrated. Additionally, a full on- and off-axis x-ray diffraction study showed that the crystal quality of this material compared favorably to that of published standards. Successful n- and p-type doping of GaN were also demonstrated. Device-worthy mobility and carrier concentration values were demonstrated. Atomic force microscopy of n-type material verified that the films was sufficiently smooth as to serve as a layer upon which active-layer quantum wells could be grown. Photoluminescence of both n- and p-type material was examined as well. An extensive indium gallium nitride growth study was carried out. The effects of several growth parameters on emission characteristics were presented. PL emission wavelengths as high as 561 nm were demonstrated. The issues of uniformity and indium platelet formation were also addressed. This InGaN experimental work was complemented with a series of calculations which gave the expected emission wavelength of an InGaN/GaN quantum well structure based on In content and well width. Strain, the quantum size effect, and the quantum-confined Stark effect were all factored into these calculations in order to study their individual contributions to emission wavelength values. This work concluded with an examination of white device structure and fabrication. Both two- and three-color devices were considered. Monochromtic devices emitting in the green and yellow were fabricated. The yellow device, emitting at 575nm, yielded the

  14. Ultralow wear of gallium nitride

    NASA Astrophysics Data System (ADS)

    Zeng, Guosong; Tan, Chee-Keong; Tansu, Nelson; Krick, Brandon A.

    2016-08-01

    Here, we reveal a remarkable (and surprising) physical property of GaN: it is extremely wear resistant. In fact, we measured the wear rate of GaN is approaching wear rates reported for diamond. Not only does GaN have an ultralow wear rate but also there are quite a few experimental factors that control the magnitude of its wear rate, further contributing to the rich and complex physics of wear of GaN. Here, we discovered several primary controlling factors that will affect the wear rate of III-Nitride materials: crystallographic orientation, sliding environment, and coating composition (GaN, InN and InGaN). Sliding in the ⟨ 1 2 ¯ 10 ⟩ is significantly lower wear than ⟨ 1 1 ¯ 00 ⟩ . Wear increases by 2 orders of magnitude with increasing humidity (from ˜0% to 50% RH). III-Nitride coatings are promising as multifunctional material systems for device design and sliding wear applications.

  15. Solar cell with a gallium nitride electrode

    DOEpatents

    Pankove, Jacques I.

    1979-01-01

    A solar cell which comprises a body of silicon having a P-N junction therein with a transparent conducting N-type gallium nitride layer as an ohmic contact on the N-type side of the semiconductor exposed to solar radiation.

  16. Wurtzite Gallium Nitride as a scintillator detector for alpha particles (a Geant4 simulation)

    NASA Astrophysics Data System (ADS)

    Taheri, A.; Sheidaiy, M.

    2015-05-01

    Gallium Nitride has become a very popular material in electronics and optoelectronics. Because of its interesting properties, it is suitable for a large range of applications. This material also shows very good scintillation properties that make it a possible candidate for use as a charged particles scintillator detector. In this work, we simulated the scintillation and optical properties of the gallium nitride in the presence of alpha particles using Geant4. The results show that gallium nitride can be an appropriate choice for this purpose.

  17. Ultra-low threshold gallium nitride photonic crystal nanobeam laser

    SciTech Connect

    Niu, Nan Woolf, Alexander; Wang, Danqing; Hu, Evelyn L.; Zhu, Tongtong; Oliver, Rachel A.; Quan, Qimin

    2015-06-08

    We report exceptionally low thresholds (9.1 μJ/cm{sup 2}) for room temperature lasing at ∼450 nm in optically pumped Gallium Nitride (GaN) nanobeam cavity structures. The nanobeam cavity geometry provides high theoretical Q (>100 000) with small modal volume, leading to a high spontaneous emission factor, β = 0.94. The active layer materials are Indium Gallium Nitride (InGaN) fragmented quantum wells (fQWs), a critical factor in achieving the low thresholds, which are an order-of-magnitude lower than obtainable with continuous QW active layers. We suggest that the extra confinement of photo-generated carriers for fQWs (compared to QWs) is responsible for the excellent performance.

  18. Aqueous stability of Ga- and N-polar gallium nitride.

    PubMed

    Foster, Corey M; Collazo, Ramon; Sitar, Zlatko; Ivanisevic, Albena

    2013-01-01

    The stability of III-nitride semiconductors in various solutions becomes important as researchers begin to integrate them into sensing platforms. This study quantitatively compares the stability of GaN surfaces with different polarities. This type of quantification is important because it represents the first step toward designing semiconductor material interfaces compatible with solution conditions. A stability study of Ga- and N-polar GaN was conducted by immersion of the surfaces in deionized H(2)O, pH 5, pH 9, and H(2)O(2) solutions for 7 days. Inductively coupled plasma mass spectrometry of the solutions was conducted to determine the amount of gallium leached from the surface. X-ray photoelectron spectroscopy and atomic force microscopy were used to compare the treated surfaces to untreated surfaces. The results show that both gallium nitride surface types exhibit the greatest stability in acidic and neutral solutions. Gallium polar surfaces were found to exhibit superior stability to nitrogen polar surfaces in the solutions studied. Our findings highlight the need for further research on surface passivation and functionalization techniques for polar III-nitride semiconductors.

  19. Fabrication of Aluminum Gallium Nitride/Gallium Nitride MESFET And It's Applications in Biosensing

    NASA Astrophysics Data System (ADS)

    Alur, Siddharth

    Gallium Nitride has been researched extensively for the past three decades for its application in Light Emitting Diodes (LED's), power devices and UV photodetectors. With the recent developments in crystal growth technology and the ability to control the doping there has been an increased interest in heterostructures formed between Gallium nitride and it's alloy Aluminium Gallium Nitride. These heterostructures due to the combined effect of spontaneous and piezoelectric effect can form a high density and a high mobility electron gas channel without any intentional doping. This high density electron gas makes these heterostructures ideal to be used as sensors. Gallium Nitride is also chemically very stable. Detection of biomolecules in a fast and reliable manner is very important in the areas of food safety and medical research. For biomolecular detection it is paramount to have a robust binding of the probes on the sensor surface. Therefore, in this dissertation, the fabrication and application of the AlGaN/GaN heterostructures as biological sensors for the detection of DNA and Organophosphate hydrolase enzyme is discussed. In order to use these AlGaN/GaN heterostructures as biological sensors capable of working in a liquid environment photodefinable polydimethyl-siloxane is used as an encapsulant. The immobilization conditions for a robust binding of thiolated DNA and the catalytic receptor enzyme organophosphate hydrolase on gold surfaces is developed with the help of X-ray photoelectron spectroscopy. DNA and OPH are detected by measuring the change in the drain current of the device as a function of time.

  20. Gallium nitride based logpile photonic crystals.

    PubMed

    Subramania, Ganapathi; Li, Qiming; Lee, Yun-Ju; Figiel, Jeffrey J; Wang, George T; Fischer, Arthur J

    2011-11-01

    We demonstrate a nine-layer logpile three-dimensional photonic crystal (3DPC) composed of single crystalline gallium nitride (GaN) nanorods, ∼100 nm in size with lattice constants of 260, 280, and 300 nm with photonic band gap in the visible region. This unique GaN structure is created through a combined approach of a layer-by-layer template fabrication technique and selective metal organic chemical vapor deposition (MOCVD). These GaN 3DPC exhibit a stacking direction band gap characterized by strong optical reflectance between 380 and 500 nm. By introducing a "line-defect" cavity in the fifth (middle) layer of the 3DPC, a localized transmission mode with a quality factor of 25-30 is also observed within the photonic band gap. The realization of a group III nitride 3DPC with uniform features and a band gap at wavelengths in the visible region is an important step toward realizing complete control of the electromagnetic environment for group III nitride based optoelectronic devices.

  1. In vitro bio-functionality of gallium nitride sensors for radiation biophysics.

    PubMed

    Hofstetter, Markus; Howgate, John; Schmid, Martin; Schoell, Sebastian; Sachsenhauser, Matthias; Adigüzel, Denis; Stutzmann, Martin; Sharp, Ian D; Thalhammer, Stefan

    2012-07-27

    There is an increasing interest in the integration of hybrid bio-semiconductor systems for the non-invasive evaluation of physiological parameters. High quality gallium nitride and its alloys show promising characteristics to monitor cellular parameters. Nevertheless, such applications not only request appropriate sensing capabilities but also the biocompatibility and especially the biofunctionality of materials. Here we show extensive biocompatibility studies of gallium nitride and, for the first time, a biofunctionality assay using ionizing radiation. Analytical sensor devices are used in medical settings, as well as for cell- and tissue engineering. Within these fields, semiconductor devices have increasingly been applied for online biosensing on a cellular and tissue level. Integration of advanced materials such as gallium nitride into these systems has the potential to increase the range of applicability for a multitude of test devices and greatly enhance sensitivity and functionality. However, for such applications it is necessary to optimize cell-surface interactions and to verify the biocompatibility of the semiconductor. In this work, we present studies of mouse fibroblast cell activity grown on gallium nitride surfaces after applying external noxa. Cell-semiconductor hybrids were irradiated with X-rays at air kerma doses up to 250 mGy and the DNA repair dynamics, cell proliferation, and cell growth dynamics of adherent cells were compared to control samples. The impact of ionizing radiation on DNA, along with the associated cellular repair mechanisms, is well characterized and serves as a reference tool for evaluation of substrate effects. The results indicate that gallium nitride does not require specific surface treatments to ensure biocompatibility and suggest that cell signaling is not affected by micro-environmental alterations arising from gallium nitride-cell interactions. The observation that gallium nitride provides no bio-functional influence on

  2. Cathodoluminescence spectra of gallium nitride nanorods

    PubMed Central

    2011-01-01

    Gallium nitride [GaN] nanorods grown on a Si(111) substrate at 720°C via plasma-assisted molecular beam epitaxy were studied by field-emission electron microscopy and cathodoluminescence [CL]. The surface topography and optical properties of the GaN nanorod cluster and single GaN nanorod were measured and discussed. The defect-related CL spectra of GaN nanorods and their dependence on temperature were investigated. The CL spectra along the length of the individual GaN nanorod were also studied. The results reveal that the 3.2-eV peak comes from the structural defect at the interface between the GaN nanorod and Si substrate. The surface state emission of the single GaN nanorod is stronger as the diameter of the GaN nanorod becomes smaller due to an increased surface-to-volume ratio. PMID:22168896

  3. Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control.

    PubMed

    Sarkar, Sujoy; Sampath, S

    2016-05-11

    A ternary, ionically conducting, deep eutectic solvent based on acetamide, urea and gallium nitrate is reported for the electrodeposition of gallium nitride/gallium indium nitride under ambient conditions; blue and white light emitting photoluminescent deposits are obtained under potential control. PMID:27074315

  4. In vitro bio-functionality of gallium nitride sensors for radiation biophysics

    SciTech Connect

    Hofstetter, Markus; Howgate, John; Schmid, Martin; Schoell, Sebastian; Sachsenhauser, Matthias; Adiguezel, Denis; Stutzmann, Martin; Sharp, Ian D.; Thalhammer, Stefan

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer Gallium nitride based sensors show promising characteristics to monitor cellular parameters. Black-Right-Pointing-Pointer Cell growth experiments reveal excellent biocompatibiltiy of the host GaN material. Black-Right-Pointing-Pointer We present a biofunctionality assay using ionizing radiation. Black-Right-Pointing-Pointer DNA repair is utilized to evaluate material induced alterations in the cellular behavior. Black-Right-Pointing-Pointer GaN shows no bio-functional influence on the cellular environment. -- Abstract: There is an increasing interest in the integration of hybrid bio-semiconductor systems for the non-invasive evaluation of physiological parameters. High quality gallium nitride and its alloys show promising characteristics to monitor cellular parameters. Nevertheless, such applications not only request appropriate sensing capabilities but also the biocompatibility and especially the biofunctionality of materials. Here we show extensive biocompatibility studies of gallium nitride and, for the first time, a biofunctionality assay using ionizing radiation. Analytical sensor devices are used in medical settings, as well as for cell- and tissue engineering. Within these fields, semiconductor devices have increasingly been applied for online biosensing on a cellular and tissue level. Integration of advanced materials such as gallium nitride into these systems has the potential to increase the range of applicability for a multitude of test devices and greatly enhance sensitivity and functionality. However, for such applications it is necessary to optimize cell-surface interactions and to verify the biocompatibility of the semiconductor. In this work, we present studies of mouse fibroblast cell activity grown on gallium nitride surfaces after applying external noxa. Cell-semiconductor hybrids were irradiated with X-rays at air kerma doses up to 250 mGy and the DNA repair dynamics, cell proliferation, and cell growth

  5. Growth and Characterization of Gallium Nitride (GaN) Thin Films by Pecvd

    NASA Astrophysics Data System (ADS)

    Mahmood, Hasan; Moore, S.; Zhang, D.; McIlroy, David N.

    2004-05-01

    Gallium nitride is a good candidate of nano-optical materials. Gallium nitride thin film was grown on Si (100) substrate by using plasma enhanced chemical vapor deposition (PECVD) technique in a UHV chamber with a base pressure of 9x10-10 torr. The temperature of precursor, Ga, was maintained at 800oC. The working pressure of nitrogen plasma was around 5x10-5 torr. The substrate temperature was in the range of 750-900oC. The chemical, morphological and crystal structural properties studied with XRD, XPS, SEM and ellipsometer will be presented.

  6. Alternative substrates for gallium nitride epitaxy and devices: Laterally overgrown gallium nitride and silicon(111)

    NASA Astrophysics Data System (ADS)

    Marchand, Hugues

    Gallium nitride films grown on sapphire or silicon carbide using the conventional 'two-step' technique typically exhibit threading dislocations on the order of ˜109 cm-2, which are detrimental to device performance. In addition, sapphire and silicon carbide substrates are expensive and available only in limited size (2-3 inch diameter). This work addresses both issues by evaluating the properties of GaN films synthesized by lateral epitaxial overgrowth (LEO) and conventional growth on sapphire and Si(111) substrates. LEO consists of partially masking a previously-grown seed layer and performing a subsequent regrowth such that the regrown features extend over the masked areas. Under favorable conditions the threading dislocations originating from the seed material are blocked by the mask material or redirected by the growing facets. In this work dislocation densities as low as ˜106 cm-2 were observed in the laterally-overgrown areas. The overgrown features exhibited well-defined facets ((0001), {11¯01}, {112¯0}, {112¯1}, {112¯2}), the persistence of which depended on the orientation of the mask as well as on the growth conditions. The relationship between the morphology of the LEO stripes and the growth conditions (temperature, pressure, ammonia and trimethylgallium partial pressures) was characterized for LEO on GaN/sapphire substrates. A qualitative model of the growth mechanisms was presented based on the microscopic structure of the growing surfaces. Microstructural characterization revealed a crystallographic tilt between the seed and the LEO region, which resulted in the formation of dislocations above the mask edge and at the junction plane of adjacent stripes. GaN stripes laterally overgrown on AlN/Si(111) exhibited similar properties. However, chemical interactions between the substrate and the precursors caused morphological degradation, which could be avoided by using a thick (≥180 nm) AlN buffer layer. In addition, thermal expansion mismatch

  7. Synthesis of gallium nitride nanostructures by nitridation of electrochemically deposited gallium oxide on silicon substrate

    PubMed Central

    2014-01-01

    Gallium nitride (GaN) nanostructures were successfully synthesized by the nitridation of the electrochemically deposited gallium oxide (Ga2O3) through the utilization of a so-called ammoniating process. Ga2O3 nanostructures were firstly deposited on Si substrate by a simple two-terminal electrochemical technique at a constant current density of 0.15 A/cm2 using a mixture of Ga2O3, HCl, NH4OH and H2O for 2 h. Then, the deposited Ga2O3 sample was ammoniated in a horizontal quartz tube single zone furnace at various ammoniating times and temperatures. The complete nitridation of Ga2O3 nanostructures at temperatures of 850°C and below was not observed even the ammoniating time was kept up to 45 min. After the ammoniating process at temperature of 900°C for 15 min, several prominent diffraction peaks correspond to hexagonal GaN (h-GaN) planes were detected, while no diffraction peak of Ga2O3 structure was detected, suggesting a complete transformation of Ga2O3 to GaN. Thus, temperature seems to be a key parameter in a nitridation process where the deoxidization rate of Ga2O3 to generate gaseous Ga2O increase with temperature. The growth mechanism for the transformation of Ga2O3 to GaN was proposed and discussed. It was found that a complete transformation can not be realized without a complete deoxidization of Ga2O3. A significant change of morphological structures takes place after a complete transformation of Ga2O3 to GaN where the original nanorod structures of Ga2O3 diminish, and a new nanowire-like GaN structures appear. These results show that the presented method seems to be promising in producing high-quality h-GaN nanostructures on Si. PMID:25593562

  8. Measuring Nanoscale Heat Transfer for Gold-(Gallium Oxide)-Gallium Nitride Interfaces as a Function

    NASA Astrophysics Data System (ADS)

    Szwejkowski, Chester; Sun, Kai; Constantin, Costel; Giri, Ashutosh; Saltonstall, Christopher; Hopkins, Patrick; NanoSynCh Team; Exsite Team

    2014-03-01

    Gallium nitride (GaN) is considered the most important semiconductor after the discovery of Silicon. Understanding the properties of GaN is imperative in determining the utility and applicability of this class of materials to devices. We present results of time domain thermoreflectance (TDTR) measurements as a function of surface root mean square (RMS) roughness. We used commercially available 5mm x 5mm, single-side polished GaN (3-7 μm)/Sapphire (430 μm) substrates that have a Wurtzite crystal structure and are slightly n-type doped. The GaN substrates were annealed in the open atmosphere for 10 minutes (900-1000 °C). This high-temperature treatment produced RMS values from 1-60 nm and growth of gallium oxide (GaO) as measured with an atomic force microscopy and transmission electron microscopy respectively. A gold film (80nm) was deposited on the GaN surface using electron beam physical vapor deposition which was verified using ellipsometry and profilometry. The TDTR measurements suggest that the thermal conductivity decays exponentially with RMS roughness and that there is a minimum value for thermal boundary conductance at a roughness of 15nm.

  9. Indium nitride and gallium nitride grown from the melt at subatmospheric pressures

    NASA Astrophysics Data System (ADS)

    Dyck, Jeffrey Scott

    The wide-band-gap, group III nitride semiconductors (Al,Ga,In)N are a promising system for visible/near-UV optoelectronic devices. Despite significant technological advances, improvement in material quality is required. Moreover, pure InN has received little attention due to unavailability of high quality crystals, and uncertainty on the fundamental properties of InN exist in the literature. In this work, bulk, polycrystalline gallium nitride and indium nitride were synthesized without a substrate by saturating gallium or indium metal with atomic nitrogen from both ECR and ball plasma microwave sources. The results show that atomic nitrogen is an attractive alternative to high pressure N2 for the synthesis of the bulk nitrides. The GaN and InN crystals were confirmed to be wurtzitic by x-ray and electron diffraction. Weak yellow-band photoluminescence intensity and near-band-edge linewidths of 4 meV for some GaN crystals indicated high optical quality. The high crystalline quality of the InN crystals allowed for the most precise measurement of the lattice parameters currently possible: a = 3.5366 A, c = 5.7009 A. Raman spectra of InN were taken from both randomly oriented polycrystals and groups of oriented, faceted platelets. Phonon modes were assigned as ETO1=445cm -1,ATO1 =472cm-1, E22=448 cm-1, and ALO1=558 cm-1 , and previous disagreement in the literature is explained. The E22 and ALO1 linewidths of were 2.5 and 19 cm-1 are the narrowest ever reported. The measured TO phonon frequencies and lattice parameters were compared to those calculated from first principles and excellent agreement was found. Preliminary experiments on the growth of GaN from Ga/In alloys were performed. Addition of inert, soluble third elements to the Ga/N melt depresses the liquidus temperature, which is equivalent to increasing the solubility of GaN at constant temperature. Upon introduction of an (0001) sapphire substrate into the melt, oriented thin films of the solid nitride formed

  10. Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon

    NASA Astrophysics Data System (ADS)

    Zeng, Y.; Roland, I.; Checoury, X.; Han, Z.; El Kurdi, M.; Sauvage, S.; Gayral, B.; Brimont, C.; Guillet, T.; Mexis, M.; Semond, F.; Boucaud, P.

    2015-02-01

    We demonstrate second harmonic generation in a gallium nitride photonic crystal cavity embedded in a two-dimensional free-standing photonic crystal platform on silicon. The photonic crystal nanocavity is optically pumped with a continuous-wave laser at telecom wavelengths in the transparency window of the nitride material. The harmonic generation is evidenced by the spectral range of the emitted signal, the quadratic power dependence vs. input power, and the spectral dependence of second harmonic signal. The harmonic emission pattern is correlated to the harmonic polarization generated by the second-order nonlinear susceptibilities χzxx (2 ), χzyy (2 ) and the electric fields of the fundamental cavity mode.

  11. Visible light metasurfaces based on gallium nitride high contrast gratings

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhai; He, Shumin; Liu, Qifa; Wang, Wei

    2016-05-01

    We propose visible-light metasurfaces (VLMs) capable of serving as lens and beam deflecting element based on gallium nitride (GaN) high contrast gratings (HCGs). By precisely manipulating the wavefront of the transmitted light, we theoretically demonstrate an HCG focusing lens with transmissivity of 86.3%, and a VLM with beam deflection angle of 6.09° and transmissivity as high as 91.4%. The proposed all-dielectric metasurfaces are promising for GaN-based visible light-emitting diodes (LEDs), which would be robust and versatile for controlling the output light propagation and polarization, as well as enhancing the extraction efficiency of the LEDs.

  12. Growth of gallium nitride and indium nitride nanowires on conductive and flexible carbon cloth substrates

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Ling, Yichuan; Wang, Gongming; Lu, Xihong; Tong, Yexiang; Li, Yat

    2013-02-01

    We report a general strategy for synthesis of gallium nitride (GaN) and indium nitride (InN) nanowires on conductive and flexible carbon cloth substrates. GaN and InN nanowires were prepared via a nanocluster-mediated growth method using a home built chemical vapor deposition (CVD) system with Ga and In metals as group III precursors and ammonia as a group V precursor. Electron microscopy studies reveal that the group III-nitride nanowires are single crystalline wurtzite structures. The morphology, density and growth mechanism of these nanowires are determined by the growth temperature. Importantly, a photoelectrode fabricated by contacting the GaN nanowires through a carbon cloth substrate shows pronounced photoactivity for photoelectrochemical water oxidation. The ability to synthesize group III-nitride nanowires on conductive and flexible substrates should open up new opportunities for nanoscale photonic, electronic and electrochemical devices.We report a general strategy for synthesis of gallium nitride (GaN) and indium nitride (InN) nanowires on conductive and flexible carbon cloth substrates. GaN and InN nanowires were prepared via a nanocluster-mediated growth method using a home built chemical vapor deposition (CVD) system with Ga and In metals as group III precursors and ammonia as a group V precursor. Electron microscopy studies reveal that the group III-nitride nanowires are single crystalline wurtzite structures. The morphology, density and growth mechanism of these nanowires are determined by the growth temperature. Importantly, a photoelectrode fabricated by contacting the GaN nanowires through a carbon cloth substrate shows pronounced photoactivity for photoelectrochemical water oxidation. The ability to synthesize group III-nitride nanowires on conductive and flexible substrates should open up new opportunities for nanoscale photonic, electronic and electrochemical devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr

  13. Smooth cubic commensurate oxides on gallium nitride

    SciTech Connect

    Paisley, Elizabeth A.; Gaddy, Benjamin E.; LeBeau, James M.; Shelton, Christopher T.; Losego, Mark D.; Mita, Seiji; Collazo, Ramón; Sitar, Zlatko; Irving, Douglas L.; Maria, Jon-Paul; Biegalski, Michael D.; Christen, Hans M.

    2014-02-14

    Smooth, commensurate alloys of 〈111〉-oriented Mg{sub 0.52}Ca{sub 0.48}O (MCO) thin films are demonstrated on Ga-polar, c+ [0001]-oriented GaN by surfactant-assisted molecular beam epitaxy and pulsed laser deposition. These are unique examples of coherent cubic oxide|nitride interfaces with structural and morphological perfection. Metal-insulator-semiconductor capacitor structures were fabricated on n-type GaN. A comparison of leakage current density for conventional and surfactant-assisted growth reveals a nearly 100× reduction in leakage current density for the surfactant-assisted samples. HAADF-STEM images of the MCO|GaN interface show commensurate alignment of atomic planes with minimal defects due to lattice mismatch. STEM and DFT calculations show that GaN c/2 steps create incoherent boundaries in MCO over layers which manifest as two in-plane rotations and determine consequently the density of structural defects in otherwise coherent MCO. This new understanding of interfacial steps between HCP and FCC crystals identifies the steps needed to create globally defect-free heterostructures.

  14. Gallium nitride microcavities formed by photoenhanced wet oxidation

    SciTech Connect

    Peng, L.-H.; Lu, C.-Y.; Wu, W.-H.; Wang, S.-L.

    2005-10-17

    We report the formation of gallium nitride (GaN) microcavities by manipulating a photoenhanced oxidation rate difference between the polar and nonpolar crystallographic planes of GaN. When immersed in a buffered acetic (CH{sub 3}COOH) electrolyte of pH{approx}6.2 at room temperature, it is shown that the photo-oxidation can proceed at a rate that is one order of magnitude slower on the nonpolar plane of {l_brace}1100{r_brace}{sub GaN} than on the polar plane of {l_brace}0001{r_brace}{sub GaN} due to the reduced surface field action. Gallium nitride microcavities bounded by optically smooth {l_brace}1100{r_brace} and {l_brace}1103{r_brace} facets can thus be preferentially formed on the c-plane sapphire substrate after dissolving the oxide layer. The optical properties of these GaN hexagonal cavities reveal characteristic peaks of whispering gallery modes in resonance with the GaN band edge emission spectrum. A typical cavity Q factor of 10{sup 3} is observed in these GaN microcavities due to a reduced optical scattering loss in the wet chemical reaction process.

  15. Electron transport in zinc-blende wurtzite biphasic gallium nitride nanowires and GaNFETs

    DOE PAGESBeta

    Jacobs, Benjamin W.; Ayres, Virginia M.; Stallcup, Richard E.; Hartman, Alan; Tupta, Mary Ann; Baczewski, Andrew David; Crimp, Martin A.; Halpern, Joshua B.; He, Maoqi; Shaw, Harry C.

    2007-10-19

    Two-point and four-point probe electrical measurements of a biphasic gallium nitride nanowire and current–voltage characteristics of a gallium nitride nanowire based field effect transistor are reported. The biphasic gallium nitride nanowires have a crystalline homostructure consisting of wurtzite and zinc-blende phases that grow simultaneously in the longitudinal direction. There is a sharp transition of one to a few atomic layers between each phase. Here, all measurements showed high current densities. Evidence of single-phase current transport in the biphasic nanowire structure is discussed.

  16. Potential effects of gallium on cladding materials

    SciTech Connect

    Wilson, D.F.; Beahm, E.C.; Besmann, T.M.; DeVan, J.H.; DiStefano, J.R.; Gat, U.; Greene, S.R.; Rittenhouse, P.L.; Worley, B.A.

    1997-10-01

    This paper identifies and examines issues concerning the incorporation of gallium in weapons derived plutonium in light water reactor (LWR) MOX fuels. Particular attention is given to the more likely effects of the gallium on the behavior of the cladding material. The chemistry of weapons grade (WG) MOX, including possible consequences of gallium within plutonium agglomerates, was assessed. Based on the calculated oxidation potentials of MOX fuel, the effect that gallium may have on reactions involving fission products and possible impact on cladding performance were postulated. Gallium transport mechanisms are discussed. With an understanding of oxidation potentials and assumptions of mechanisms for gallium transport, possible effects of gallium on corrosion of cladding were evaluated. Potential and unresolved issues and suggested research and development (R and D) required to provide missing information are presented.

  17. Native gallium adatoms discovered on atomically-smooth gallium nitride surfaces at low temperature.

    PubMed

    Alam, Khan; Foley, Andrew; Smith, Arthur R

    2015-03-11

    In advanced compound semiconductor devices, such as in quantum dot and quantum well systems, detailed atomic configurations at the growth surfaces are vital in determining the structural and electronic properties. Therefore, it is important to investigate the surface reconstructions in order to make further technological advancements. Usually, conventional semiconductor surfaces (e.g., arsenides, phosphides, and antimonides) are highly reactive due to the existence of a high density of group V (anion) surface dangling bonds. However, in the case of nitrides, group III rich growth conditions in molecular beam epitaxy are usually preferred leading to group III (Ga)-rich surfaces. Here, we use low-temperature scanning tunneling microscopy to reveal a uniform distribution of native gallium adatoms with a density of 0.3%-0.5% of a monolayer on the clean, as-grown surface of nitrogen polar GaN(0001̅) having the centered 6 × 12 reconstruction. Unseen at room temperature, these Ga adatoms are strongly bound to the surface but move with an extremely low surface diffusion barrier and a high density saturation coverage in thermodynamic equilibrium with Ga droplets. Furthermore, the Ga adatoms reveal an intrinsic surface chirality and an asymmetric site occupation. These observations can have important impacts in the understanding of gallium nitride surfaces.

  18. Localized surface phonon polariton resonances in polar gallium nitride

    SciTech Connect

    Feng, Kaijun Islam, S. M.; Verma, Jai; Hoffman, Anthony J.; Streyer, William; Wasserman, Daniel; Jena, Debdeep

    2015-08-24

    We demonstrate the excitation of localized surface phonon polaritons in an array of sub-diffraction pucks fabricated in an epitaxial layer of gallium nitride (GaN) on a silicon carbide (SiC) substrate. The array is characterized via polarization- and angle-dependent reflection spectroscopy in the mid-infrared, and coupling to several localized modes is observed in the GaN Reststrahlen band (13.4–18.0 μm). The same structure is simulated using finite element methods and the charge density of the modes are studied; transverse dipole modes are identified for the transverse electric and magnetic polarizations and a quadrupole mode is identified for the transverse magnetic polarization. The measured mid-infrared spectrum agrees well with numerically simulated spectra. This work could enable optoelectronic structures and devices that support surface modes at mid- and far-infrared wavelengths.

  19. Localized surface phonon polariton resonances in polar gallium nitride

    NASA Astrophysics Data System (ADS)

    Feng, Kaijun; Streyer, William; Islam, S. M.; Verma, Jai; Jena, Debdeep; Wasserman, Daniel; Hoffman, Anthony J.

    2015-08-01

    We demonstrate the excitation of localized surface phonon polaritons in an array of sub-diffraction pucks fabricated in an epitaxial layer of gallium nitride (GaN) on a silicon carbide (SiC) substrate. The array is characterized via polarization- and angle-dependent reflection spectroscopy in the mid-infrared, and coupling to several localized modes is observed in the GaN Reststrahlen band (13.4-18.0 μm). The same structure is simulated using finite element methods and the charge density of the modes are studied; transverse dipole modes are identified for the transverse electric and magnetic polarizations and a quadrupole mode is identified for the transverse magnetic polarization. The measured mid-infrared spectrum agrees well with numerically simulated spectra. This work could enable optoelectronic structures and devices that support surface modes at mid- and far-infrared wavelengths.

  20. Indium gallium nitride/gallium nitride vacuum microelectronic cold cathodes: Piezoelectric surface barrier lowering

    NASA Astrophysics Data System (ADS)

    Underwood, Robert Douglas

    Vacuum microelectronic devices are electronic devices fabricated using microelectronic processing and using vacuum as a transport medium. The electron velocity in vacuum can be larger than in solid state, which allows higher frequency operation of vacuum devices compared to solid-state devices. The effectiveness of vacuum microelectronic devices relies on the realization of an efficient source of electrons supplied to the vacuum. Cold cathodes do not rely on thermal energy for the emission of electrons into vacuum. Cold cathodes based on field emission are the most common types of vacuum microelectronic cold cathode because they have a very high efficiency and high current density electron emission. Materials used to fabricate field emitters must have the properties of high electron concentration, low surface reactivity, resistance to sputtering by ions, high thermal conductivity, and a method of fabrication of uniform arrays of field emitters. The III--V nitride semiconductors possess these material properties and uniform arrays of GaN field emitter pyramids have been produced by selective area, self-limited metalorganic chemical vapor deposition. The first GaN field emitter arrays were fabricated and measured. Emission currents as large as 82 muA at 1100 V from 245,000 pyramids have been realized using an external anode, separated by 0.25 mm, to apply voltage bias. The operation voltage was reduced by the development of an integrated anode structure. The anode-cathode separation achievable with the integrated anode was in the range of 0.5--2.4 m. The turn-on voltages of these devices were reduced to the range of 175--435 V. The operation voltage of field emitter cathodes is related to the surface energy barrier, which for n-type semiconductors is the electron affinity. A new method to reduce the effective electron affinity using a piezoelectric dipole in an InGaN/GaN heterostructure has been proposed and tested. The piezoelectric field produced in the strained In

  1. Low temperature solid-state synthesis of nanocrystalline gallium nitride

    SciTech Connect

    Wang, Liangbiao; Shi, Liang; Li, Qianwen; Si, Lulu; Zhu, Yongchun; Qian, Yitai

    2012-11-15

    Graphical abstract: Display Omitted Highlights: ► GaN nanocrystalline was prepared via a solid-state reacion at relatively low temperature. ► The sizes and crystallinities of the GaN samples obtained at the different temperatures are investigated. ► The GaN sample has oxidation resistance and good thermal stability below 1000 °C. -- Abstract: Nanocrystalline gallium nitride was synthesized by a solid-state reaction of metallic magnesium powder, gallium sesquioxide and sodium amide in a stainless steel autoclave at a relatively low temperature (400–550 °C). The structures and morphologies of the obtained products were derived from X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). XRD patterns indicated that the products were hexagonal GaN (JCPDS card no. 76-0703). The influence of reaction temperature on size of the products was studied by XRD and TEM. Furthermore, the thermal stability and oxidation resistance of the nanocrystalline GaN were also investigated. It had good thermal stability and oxidation resistance below 800 °C in air.

  2. Manganese Atom Ordered Monolayer on Wurtzite Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Chinchore, Abhijit; Wang, Kangkang; Lin, Wenzhi; Pak, Jeongihm; Liu, Yinghao; Smith, Arthur

    2009-03-01

    While transition-metal-doped gallium nitride (GaN) thin films have been explored as potential dilute magnetic semiconductor bulk layers, the structural and magnetic effects of various transition metal adatoms on GaN surfaces are not even well understood. In this work, we investigate the sub-monolayer deposition of manganese (Mn) onto the N-polar wurtzite GaN (000-1) 1x1 surface. The growth is monitored in-situ using reflection high energy electron diffraction (RHEED). A fresh GaN(000-1) 1x1 surface is prepared by rf nitrogen plasma-assisted MBE followed by annealing to remove excess gallium adatoms. The atomically flat GaN surface, held at 200^o C, is then exposed to submonolayer doses of Mn. The deposition rate is maintained at 0.007 ML per second, and a 3x pattern develops along [10-10]; whereas, only 1x is seen along [11-20]. Analysis of the RHEED pattern and subsequent modeling indicates a 3 x3 R 30^o structure consisting of 2/3 ML Mn atoms in a row-like arrangement having spacing 3a/2 along rows and 3a/2 between rows. Scanning tunneling microscopy/spectroscopy studies are currently underway to explore this surface further. This work is supported by DOE (Grant No.DE-FG02-06ER46317) and NSF (Grant No. 0730257).

  3. Experimental investigation of electron transport properties of gallium nitride nanowires

    NASA Astrophysics Data System (ADS)

    Motayed, Abhishek; Davydov, Albert V.; Mohammad, S. N.; Melngailis, John

    2008-07-01

    We report transport properties of gallium nitride (GaN) nanowires grown using direct reaction of ammonia and gallium vapor. Reliable devices, such as four-terminal resistivity measuring structures and field-effect transistors, were realized by dielectrophoretically aligning the nanowires on an oxidized silicon substrate and subsequently applying standard microfabrication techniques. Room-temperature resistivity in the range of (1.0-6.2)×10-2 Ω cm was obtained for the nanowires with diameters ranging from 200 to 90 nm. Temperature-dependent resistivity and mobility measurements indicated the possible sources for the n-type conductivity and high background charge carrier concentration in these nanowires. Specific contact resistance in the range of 5.0×10-5 Ω cm2 was extracted for Ti/Al/Ti/Au metal contacts to GaN nanowires. Significant reduction in the activation energy of the dopants at low temperatures (<200 K) was observed in the temperature-dependent resistivity measurement of these nanowires, which is linked to the onset of degeneracy. Temperature-dependent field-effect mobility measurements indicated that the ionized impurity scattering is the dominant mechanism in these nanowires at all temperatures.

  4. Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon

    SciTech Connect

    Zeng, Y.; Roland, I.; Checoury, X.; Han, Z.; El Kurdi, M.; Sauvage, S.; Boucaud, P.; Gayral, B.; Brimont, C.; Guillet, T.; Mexis, M.; Semond, F.

    2015-02-23

    We demonstrate second harmonic generation in a gallium nitride photonic crystal cavity embedded in a two-dimensional free-standing photonic crystal platform on silicon. The photonic crystal nanocavity is optically pumped with a continuous-wave laser at telecom wavelengths in the transparency window of the nitride material. The harmonic generation is evidenced by the spectral range of the emitted signal, the quadratic power dependence vs. input power, and the spectral dependence of second harmonic signal. The harmonic emission pattern is correlated to the harmonic polarization generated by the second-order nonlinear susceptibilities χ{sub zxx}{sup (2)}, χ{sub zyy}{sup (2)} and the electric fields of the fundamental cavity mode.

  5. Nanoscale optical properties of indium gallium nitride/gallium nitride nanodisk-in-rod heterostructures.

    PubMed

    Zhou, Xiang; Lu, Ming-Yen; Lu, Yu-Jung; Jones, Eric J; Gwo, Shangjr; Gradečak, Silvija

    2015-03-24

    III-nitride based nanorods and nanowires offer great potential for optoelectronic applications such as light emitting diodes or nanolasers. We report nanoscale optical studies of InGaN/GaN nanodisk-in-rod heterostructures to quantify uniformity of light emission on the ensemble level, as well as the emission characteristics from individual InGaN nanodisks. Despite the high overall luminescence efficiency, spectral and intensity inhomogeneities were observed and directly correlated to the compositional variations among nanodisks and to the presence of structural defect, respectively. Observed light quenching is correlated to type I1 stacking faults in InGaN nanodisks, and the mechanisms for stacking fault induced nonradiative recombinations are discussed in the context of band structure around stacking faults and Fermi level pinning at nanorod surfaces. Our results highlight the importance of controlling III-nitride nanostructure growths to further reduce defect formation and ensure compositional homogeneity for optoelectronic devices with high efficiencies and desirable spectrum response.

  6. Micro and nano-structured green gallium indium nitride/gallium nitride light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Stark, Christoph J. M.

    Light-emitting diodes (LEDs) are commonly designed and studied based on bulk material properties. In this thesis different approaches based on patterns in the nano and micrometer length scale range are used to tackle low efficiency in the green spectral region, which is known as “green gap”. Since light generation and extraction are governed by microscopic processes, it is instructive to study LEDs with lateral mesa sizes scaled to the nanometer range. Besides the well-known case of the quantum size effect along the growth direction, a continuous lateral scaling could reveal the mechanisms behind the purported absence of a green gap in nanowire LEDs and the role of their extraction enhancement. Furthermore the possibility to modulate strain and piezoelectric polarization by post growth patterning is of practical interest, because the internal electric fields in conventional wurtzite GaN LEDs cause performance problems. A possible alternative is cubic phase GaN, which is free of built-in polarization fields. LEDs on cubic GaN could show the link between strong polarization fields and efficiency roll-off at high current densities, also known as droop. An additional problem for all nitride-based LEDs is efficient light extraction. For a planar GaN LED only roughly 8% of the generated light can be extracted. Novel lightextraction structures with extraction-favoring geometry can yield significant increase in light output power. To investigate the effect of scaling the mesa dimension, micro and nano-sized LED arrays of variable structure size were fabricated. The nano-LEDs were patterned by electron beam lithography and dry etching. They contained up to 100 parallel nano-stripe LEDs connected to one common contact area. The mesa width was varied over 1 μm, 200 nm, and 50 nm. These LEDs were characterized electrically and optically, and the peak emission wavelength was found to depend on the lateral structure size. An electroluminescence (EL) wavelength shift of 3 nm

  7. Aluminum gallium nitride/gallium nitride high electron mobility transistor fabrication and characterization

    NASA Astrophysics Data System (ADS)

    Disanto, David W.

    In the last decade, Al1-xGaxN/GaN High Electron Mobility Transistors (HEMTs) have been intensively studied because their intrinsic electrical properties make them attractive for high power microwave device applications. Despite much progress, current slump continues to be a problem, limiting output power, reducing reliability, and complicating device modelling. In this work, a complete Al1-xGaxN/GaN HEMT fabrication procedure was developed, and electrical characteristics related to current slump, microwave modelling, and delay time analysis were explored. Low resistance ohmic contacts were achieved, enabling high channel current densities. Schottky contacts were developed with a new ion implant isolation architecture, enabling gate leakage currents 2 to 4 orders of magnitude lower than typical results from the literature. Through pulsed current-voltage measurements, the importance of bias stresses in the gate-source region was demonstrated for the first time. In contrast to the conventional "virtual gate" model, gate-source stresses were shown to be more important than gate-drain stresses when biased near threshold. Slow slump transients were studied by passivating transistor surfaces with ultra-thin layers. These results excluded dielectric strain and electron injection reduction as viable passivation mechanisms. A novel model was proposed associating slow slump behaviour with trapping of many electrons at screw dislocation sites. The effect of slump on RF properties was examined through microwave measurements by extracting the parasitic source and drain resistances without special biasing. Besides significantly improving the accuracy of small-signal modelling, we were able to show the bias dependence of parasitic resistances which confirmed the effect of source-side bias stressing. The question of channel electron velocities in nitride transistors remains controversial. We determined an effective electron velocity of ˜ 1.9 x 107 cm/s through two methods. We

  8. Cell behavior on gallium nitride surfaces: peptide affinity attachment versus covalent functionalization.

    PubMed

    Foster, Corey M; Collazo, Ramon; Sitar, Zlatko; Ivanisevic, Albena

    2013-07-01

    Gallium nitride is a wide band gap semiconductor that demonstrates a unique set of optical and electrical properties as well as aqueous stability and biocompatibility. This combination of properties makes gallium nitride a strong candidate for use in chemical and biological applications such as sensors and neural interfaces. Molecular modification can be used to enhance the functionality and properties of the gallium nitride surface. Here, gallium nitride surfaces were functionalized with a PC12 cell adhesion promoting peptide using covalent and affinity driven attachment methods. The covalent scheme proceeded by Grignard reaction and olefin metathesis while the affinity driven scheme utilized the recognition peptide isolated through phage display. This study shows that the method of attaching the adhesion peptide influences PC12 cell adhesion and differentiation as measured by cell density and morphological analysis. Covalent attachment promoted monolayer and dispersed cell adhesion while affinity driven attachment promoted multilayer cell agglomeration. Higher cell density was observed on surfaces modified using the recognition peptide. The results suggest that the covalent and affinity driven attachment methods are both suitable for promoting PC12 cell adhesion to the gallium nitride surface, though each method may be preferentially suited for distinct applications.

  9. Probing the Surface Defect States of Gallium Nitride Nanowires

    NASA Astrophysics Data System (ADS)

    Simonsen, Lauren; Yang, Yuchen; Borys, Nicholas; Ghimire, Anil; Schuck, James; Aloni, Shaul; Gerton, Jordan

    In this work, we investigate gallium nitride nanowires (NWs) as a potential system for solar-driven water splitting. Although bulk GaN has a UV bandgap, the synthesized NWs exhibit strong absorption and fluorescence emission across the visible spectrum. Density functional theory calculations suggest that this visible fluorescence originates from mid-gap surface-defect states along the triangular facets of the NWs. The orientation of the NWs can be controlled during MOCVD growth, leading to different exposed crystallographic surface terminations with different electronic structures. High resolution microscopy techniques using AFM and confocal hyper-spectral imaging show spectral inhomogeneity across the widths of the NWs, providing evidence that various crystallographic terminations produce different surface states. These NWs also exhibit wave guiding properties, leading to Fabry-Perot fringes and high intensity spectra and the ends of the wires. Photoluminescence excitation spectroscopy reveals a non-linear dependence of the emission spectral features on excitation wavelength, indicating a complex distribution of mid-gap defect states. Time-resolved spectroscopy reveals non-exponential decay dynamics through a complicated manifold of mid-gap states.

  10. Probing the Surface Defect States of Gallium Nitride Nanowires

    NASA Astrophysics Data System (ADS)

    Simonsen, Lauren; Yang, Yuchen; Borys, Nicholas; Ghimire, Anil; Schuck, James; Aloni, Shaul; Gerton, Jordan

    2016-03-01

    In this work, we investigate gallium nitride nanowires (NWs) as a potential system for solar-driven water splitting. Although bulk GaN has a UV bandgap, the synthesized NWs exhibit strong absorption and fluorescence emission across the visible spectrum. Density functional theory calculations suggest that this visible fluorescence originates from mid-gap surface-defect states along the triangular facets of the NWs. The orientation of the NWs can be controlled during MOCVD growth, leading to different exposed crystallographic surface terminations with various electronic structures. High resolution microscopy techniques using AFM and confocal hyper-spectral imaging show spectral inhomogeneity across the widths of the NWs, providing evidence that various crystallographic terminations produce different surface states. These NWs also exhibit wave guiding properties, leading to Fabry-Perot fringes and high intensity spectra at the ends of the wires. Photoluminescence excitation spectroscopy reveals a non-linear dependence of the emission spectral features on excitation wavelength, indicating a complex distribution of mid-gap defect states. Time-resolved spectroscopy reveals non-exponential decay dynamics through a complicated manifold of mid-gap states.

  11. Lattice thermal conductivity of freestanding gallium nitride nanowires

    NASA Astrophysics Data System (ADS)

    Zou, Jie

    2010-08-01

    We report detailed calculations of the lattice thermal conductivity of freestanding gallium nitride (GaN) nanowires with diameters ranging from 20 to 140 nm. Results are compared with experimental data on GaN nanowires grown by thermal chemical vapor deposition (CVD). Calculations are based on the Boltzmann transport equation and take into account the change in the nonequilibrium phonon distribution in the case of diffuse scattering at the surfaces. Phonon dispersion relation is obtained in the elastic continuum approximation for each given nanowire. For valid comparisons with the experimental data, simulations are performed with a dopant concentration and impurity profile characteristic of thermal CVD GaN nanowires. Our results show that the room-temperature thermal conductivity of the nanowires has very low values, ranging from 6.74 W/m K at 20 nm to 16.4 W/m K at 140 nm. The obtained results are in excellent agreement with the experimental data. We have also demonstrated that in addition to impurity scattering, boundary scattering, and phonon confinement, the change in the nonequilibrium phonon distribution leads to a further reduction in the thermal conductivity of the nanowires and has to be taken into account in the calculations. Our conclusion is different from that of an earlier study which attributed the very low thermal conductivity to the unusually large mass-difference scattering in the nanowires.

  12. Size-dependent pyroelectric properties of gallium nitride nanowires

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Wang, Chengyuan

    2016-04-01

    The size scale effect on the pyroelectric properties is studied for gallium nitride (GaN) nanowires (NWs) based on molecular dynamics simulations and the theoretical analysis. Due to the significant influence of the surface thermoelasticity and piezoelectricity at the nanoscale, the pyroelectric coefficient of GaN NWs is found to depend on the cross-sectional size. This size-dependent pyroelectric coefficient of GaN NWs together with the size-dependent dielectric constant reported in our previous study is employed to study the pyroelectric potential of GaN NWs subjected to heating. The results show that the size scale effect is significant for thin NWs (cross-sectional size in nanometers) and may raise the pyroelectric potential of GaN NWs by over 10 times. Such a size scale effect on the pyroelectric properties of NWs originates from the influence of thermoelasticity, piezoelectricity, and dielectricity at the nanoscale and decreases with increasing cross-section of GaN NWs. It is expected that the present study may have strong implication in the field of energy harvesting at the nanoscale, as pyroelectricity offers a new avenue to the design of novel nanogenerators.

  13. Gallium nitride is biocompatible and non-toxic before and after functionalization with peptides.

    PubMed

    Jewett, Scott A; Makowski, Matthew S; Andrews, Benjamin; Manfra, Michael J; Ivanisevic, Albena

    2012-02-01

    The toxicity of semiconductor materials can significantly hinder their use for in vitro and in vivo applications. Gallium nitride (GaN) is a material with remarkable properties, including excellent chemical stability. This work demonstrated that functionalized and etched GaN surfaces were stable in aqueous environments and leached a negligible amount of Ga in solution even in the presence of hydrogen peroxide. Also, GaN surfaces in cell culture did not interfere with nearby cell growth, and etched GaN promoted the adhesion of cells compared to etched silicon surfaces. A model peptide, "IKVAV", covalently attached to GaN and silicon surfaces increased the adhesion of PC12 cells. Peptide terminated GaN promoted greater cell spreading and extension of neurites. The results suggest that peptide modified GaN is a biocompatible and non-toxic material that can be used to probe chemical and electrical stimuli associated with neural interfaces.

  14. Growth and fabrication of gallium nitride and indium gallium nitride-based optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Berkman, Erkan Acar

    In this study, heteroepitaxial growth of III-Nitrides was performed by metalorganic chemical vapor deposition (MOCVD) technique on (0001) Al 2O3 substrates to develop GaN and InxGa1-x N based optoelectronic devices. Comprehensive experimental studies on emission and relaxation mechanisms of InxGa1-xN quantum wells (QWs) and InxGa 1-xN single layers were performed. The grown films were characterized by x-ray diffraction (XRD), Hall Effect measurements, photoluminescence measurements (PL) and transmission electron microscopy (TEM). An investigation on the effect of number and width of QWs on PL emission properties of InxGa 1-xN single QWs and multi-quantum wells (MQW) was conducted. The experimental results were explained by the developed theoretical bandgap model. The study on the single layer InxGa1-xN films within and beyond critical layer thickness (CLT) demonstrated that thick InxGa 1-xN films display simultaneous presence of strained and (partially) relaxed layers. The In incorporation into the lattice was observed to be dependent on the strain state of the film. The findings on InxGa1-xN QWs and single layers were implemented in the development of InxGa1-xN based LEDs and photodiodes, respectively. The as-grown samples were fabricated using conventional lithography techniques into various optoelectronic devices including long wavelength LEDs, dichromatic monolithic white LEDs, and p-i-n photodiodes. Emission from InxGa1-xN/GaN MQW LEDs at wavelengths as long as 625nm was demonstrated. This is one of the longest peak emission wavelengths reported for MOCVD grown InxGa1-xN MQW structures. Dichromatic white emission in LEDs was realized by utilizing two InGaN MQW active regions emitting at complementary wavelengths. InGaN p-i-n photodiodes operating at various regions of the visible spectrum tailored by the i-layer properties were developed. This was achieved by the novel approach of employing InxGa1-xN in all layers of the p-i-n photodiodes, enabling nearly

  15. Thermal Cycling and High Temperature Reverse Bias Testing of Control and Irradiated Gallium Nitride Power Transistors

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Boomer, Kristen T.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad

    2014-01-01

    The power systems for use in NASA space missions must work reliably under harsh conditions including radiation, thermal cycling, and exposure to extreme temperatures. Gallium nitride semiconductors show great promise, but information pertaining to their performance is scarce. Gallium nitride N-channel enhancement-mode field effect transistors made by EPC Corporation in a 2nd generation of manufacturing were exposed to radiation followed by long-term thermal cycling and testing under high temperature reverse bias conditions in order to address their reliability for use in space missions. Result of the experimental work are presented and discussed.

  16. ANALYSIS OF THE WATER-SPLITTING CAPABILITIES OF GALLIUM INDIUM PHOSPHIDE NITRIDE (GaInPN)

    SciTech Connect

    Head, J.; Turner, J.

    2007-01-01

    With increasing demand for oil, the fossil fuels used to power society’s vehicles and homes are becoming harder to obtain, creating pollution problems and posing hazard’s to people’s health. Hydrogen, a clean and effi cient energy carrier, is one alternative to fossil fuels. Certain semiconductors are able to harness the energy of solar photons and direct it into water electrolysis in a process known as photoelectrochemical water-splitting. P-type gallium indium phosphide (p-GaInP2) in tandem with GaAs is a semiconductor system that exhibits water-splitting capabilities with a solar-tohydrogen effi ciency of 12.4%. Although this material is effi cient at producing hydrogen through photoelectrolysis it has been shown to be unstable in solution. By introducing nitrogen into this material, there is great potential for enhanced stability. In this study, gallium indium phosphide nitride Ga1-yInyP1-xNx samples were grown using metal-organic chemical vapor deposition in an atmospheric-pressure vertical reactor. Photocurrent spectroscopy determined these materials to have a direct band gap around 2.0eV. Mott-Schottky analysis indicated p-type behavior with variation in fl atband potentials with varied frequencies and pH’s of solutions. Photocurrent onset and illuminated open circuit potential measurements correlated to fl atband potentials determined from previous studies. Durability analysis suggested improved stability over the GaInP2 system.

  17. Niobium and niobium nitride contacts on semiconducting material

    SciTech Connect

    Cukauskas, E.; Carter, W.; Pond, J.; Newman, H.

    1989-06-30

    This invention related generally to a metallization layer of niobium or niobium nitride on a semiconductor in an integrated-circuit structure, which can function from the superconducting-temperature regime to above room temperature. Niobium or niobium nitride is deposited onto a heated gallium arsenide substrate. This metallization will maintain chemical stability after high-temperature post processing. These materials provide a low-resistivity metallization suitable for Schottky contacts used over a wide operating temperature range and are superconducting at low temperatures.

  18. Gallium arsenide-gallium nitride wafer fusion and the n-aluminum gallium arsenide/p-gallium arsenide/n-gallium nitride double heterojunction bipolar transistor

    NASA Astrophysics Data System (ADS)

    Estrada, Sarah M.

    This dissertation describes the n-AlGaAs/p-GaAs/n-GaN heterojunction bipolar transistor (HBT), the first transistor formed via wafer fusion. The fusion process was developed as a way to combine lattice-mismatched materials for high-performance electronic devices, not obtainable via conventional all-epitaxial formation methods. Despite the many challenges of wafer fusion, successful transistors were demonstrated and improved, via the optimization of material structure and fusion process conditions. Thus, this project demonstrated the integration of disparate device materials, chosen for their optimal electronic properties, unrestricted by the conventional (and very limiting) requirement of lattice-matching. By combining an AlGaAs-GaAs emitter-base with a GaN collector, the HBT benefited from the high breakdown voltage of GaN, and from the high emitter injection efficiency and low base transit time of AlGaAs-GaAs. Because the GaAs-GaN lattice mismatch precluded an all-epitaxial formation of the HBT, the GaAs-GaN heterostructure was formed via fusion. This project began with the development of a fusion process that formed mechanically robust and electrically active GaAs-GaN heterojunctions. During the correlation of device electrical performance with a systematic variation of fusion conditions over a wide range (500--750°C, 0.5--2hours), a mid-range fusion temperature was found to induce optimal HBT electrical performance. Transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS) were used to assess possible reasons for the variations observed in device electrical performance. Fusion process conditions were correlated with electrical (I-V), structural (TEM), and chemical (SIMS) analyses of the resulting heterojunctions, in order to investigate the trade-off between increased interfacial disorder (TEM) with low fusion temperature and increased diffusion (SIMS) with high fusion temperature. The best do device results (IC ˜ 2.9 kA/cm2 and beta

  19. Gallium nitride surface protection during RTA annealing with a GaOxNy cap-layer

    NASA Astrophysics Data System (ADS)

    Khalfaoui, Wahid; Oheix, T.; Cayrel, F.; Benoit, R.; Yvon, A.; Collard, E.; Alquier, D.

    2016-04-01

    Gallium nitride (GaN) is generally considered a good candidate for power electronic devices such as Schottky barrier diodes (SBDs). Nevertheless, GaN has a strong sensitivity to high temperature treatments and a cap-layer is mandatory to protect the material surface during annealing at high temperature such as post-implantation treatments. In this work, an oxidized gallium nitride layer (GaOxNy) was generated with Oxford PECVD equipment using a N2O plasma treatment to protect the GaN surface during a rapid thermal annealing (RTA), in the range of 1000 °C-1150 °C for a few minutes. Before annealing, c-TLM patterns were processed on the GaOxNy/GaN sample to characterize its sheet resistance. After the N2O plasma treatment, the sample exhibited lower sheet resistance, indicating a better n-type conduction of the GaOxNy layer due to an excess of free carriers, compared to the as-grown GaN layer. The GaOxNy/GaN surface was then annealed at 1150 °C for 3 min and observed through AFM imaging. The surface exhibited a good quality with a low roughness, nevertheless, a low density of small hexagonal pits appeared after annealing. Finally, studies to determine an efficient etching process of the GaOxNy cap-layer were conducted using both chemical and physical approaches. We observed that efficient etching of the layer was achieved using a heated hydrofluoridric acid (HF 25%) solution. To conclude, GaOxNy has proved to be an efficient cap-layer for GaN protection at high temperature.

  20. As-Grown Gallium Nitride Nanowire Electromechanical Resonators

    NASA Astrophysics Data System (ADS)

    Montague, Joshua R.

    Technological development in recent years has led to a ubiquity of micro- and nano-scale electromechanical devices. Sensors for monitoring temperature, pressure, mass, etc., are now found in nearly all electronic devices at both the industrial and consumer levels. As has been true for integrated circuit electronics, these electromechanical devices have continued to be scaled down in size. For many nanometer-scale structures with large surface-to-volume ratio, dissipation (energy loss) becomes prohibitively large causing a decreasing sensitivity with decreasing sensor size. In this work, gallium nitride (GaN) nanowires are investigated as singly-clamped (cantilever) mechanical resonators with typical mechanical quality factors, Q (equal to the ratio of resonance frequency to peak full-width-at-half-maximum-power) and resonance frequencies, respectively, at or above 30,000, and near 1 MHz. These Q values---in vacuum at room temperature---indicate very low levels of dissipation; they are essentially the same as those for bulk quartz crystal resonators that form the basis of simple clocks and mass sensors. The GaN nanowires have lengths and diameters, respectively, of approximately 15 micrometers and hundreds of nanometers. As-grown GaN nanowire Q values are larger than other similarly-sized, bottom-up, cantilever resonators and this property makes them very attractive for use as resonant sensors. We demonstrate the capability of detecting sub-monolayer levels of atomic layer deposited (ALD) films, and the robust nature of the GaN nanowires structure that allows for their 'reuse' after removal of such layers. In addition to electron microscope-based measurement techniques, we demonstrate the successful capacitive detection of a single nanowire using microwave homodyne reflectometry. This technique is then extended to allow for simultaneous measurements of large ensembles of GaN nanowires on a single sample, providing statistical information about the distribution of

  1. Surface characterization of gallium nitride modified with peptides before and after exposure to ionizing radiation in solution.

    PubMed

    Berg, Nora G; Nolan, Michael W; Paskova, Tania; Ivanisevic, Albena

    2014-12-30

    An aqueous surface modification of gallium nitride was employed to attach biomolecules to the surface. The modification was a simple two-step process using a single linker molecule and mild temperatures. The presence of the peptide on the surface was confirmed with X-ray photoelectron spectroscopy. Subsequently, the samples were placed in water baths and exposed to ionizing radiation to examine the effects of the radiation on the material in an environment similar to the body. Surface analysis confirmed degradation of the surface of GaN after radiation exposure in water; however, the peptide molecules successfully remained on the surface following exposure to ionizing radiation. We hypothesize that during radiation exposure of the samples, the radiolysis of water produces peroxide and other reactive species on the sample surface. Peroxide exposure promotes the formation of a more stable layer of gallium oxyhydroxide which passivates the surface better than other oxide species.

  2. Process Development of Gallium Nitride Phosphide Core-Shell Nanowire Array Solar Cell

    NASA Astrophysics Data System (ADS)

    Chuang, Chen

    Dilute Nitride GaNP is a promising materials for opto-electronic applications due to its band gap tunability. The efficiency of GaNxP1-x /GaNyP1-y core-shell nanowire solar cell (NWSC) is expected to reach as high as 44% by 1% N and 9% N in the core and shell, respectively. By developing such high efficiency NWSCs on silicon substrate, a further reduction of the cost of solar photovoltaic can be further reduced to 61$/MWh, which is competitive to levelized cost of electricity (LCOE) of fossil fuels. Therefore, a suitable NWSC structure and fabrication process need to be developed to achieve this promising NWSC. This thesis is devoted to the study on the development of fabrication process of GaNxP 1-x/GaNyP1-y core-shell Nanowire solar cell. The thesis is divided into two major parts. In the first parts, previously grown GaP/GaNyP1-y core-shell nanowire samples are used to develop the fabrication process of Gallium Nitride Phosphide nanowire solar cell. The design for nanowire arrays, passivation layer, polymeric filler spacer, transparent col- lecting layer and metal contact are discussed and fabricated. The property of these NWSCs are also characterized to point out the future development of Gal- lium Nitride Phosphide NWSC. In the second part, a nano-hole template made by nanosphere lithography is studied for selective area growth of nanowires to improve the structure of core-shell NWSC. The fabrication process of nano-hole templates and the results are presented. To have a consistent features of nano-hole tem- plate, the Taguchi Method is used to optimize the fabrication process of nano-hole templates.

  3. Measurement of Impact Ionization Coefficients in Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Ozbek, Ayse Merve

    2011-12-01

    of the electric field has been accurately measured for both GaN epitaxial layers grown on bulk GaN substrates and GaN epitaxial layers grown on Sapphire substrates. The impact ionization coefficients for both electrons and holes are observed to decrease with increasing temperature. This is consistent with the measured increase in the breakdown voltage with temperature for high voltage Schottky barrier diodes. This is an important observation demonstrating that stable power devices can be fabricated from Gallium Nitride. Electron Beam Induced Current (EBIC) technique was employed in order to understand the role of defects on the breakdown characteristics of GaN. The impact ionization coefficients for electrons and holes measured at the defective site were found to be higher than those measured at a non-defective site. These results indicate that the breakdown voltage of GaN devices can be reduced due to the presence of defects.

  4. Study of manganese doped gallium nitride for spintronic applications

    NASA Astrophysics Data System (ADS)

    Arkun, Fevzi Erdem

    Spintronics is an emerging field in which the spin of carriers in addition to the charge of carriers can be used to achieve new functionalities in electronic devices. The availability of materials exhibiting ferromagnetism above room temperature is prerequisite for realizing such devices. Materials suitable for spintronic applications are desired to be compatible with conventional growth and fabrication techniques in addition to exhibiting above room temperature ferromagnetic properties. In this research the growth of GaMnN has been achieved on (0001) sapphire substrates by metal organic chemical vapor deposition using TMGa and (EtCp 2)Mn as organometallic precursors. Magnetic characterization of the grown films was performed by a Superconducting Quantum Interference Device (SQUID) at room temperature. Ferromagnetic properties were observed above room temperature for this material. Co-doping of ferromagnetic GaMnN by silicon and magnesium was performed and ferromagnetic properties of GaMnN have been found to depend on the Fermi level in the crystal itself. The mechanism of ferromagnetism in this material was proposed to be carrier mediated. The magnetic properties were also altered by carrier transfer at a heterointerface indicating that the electronic band structure of the crystal affects the magnetic properties of this material. Growth of GaN based blue light emitting diode structures were achieved by MOCVD using conventional organometallic sources. Fabrication of grown structures was performed in a clean room using standard fabrication techniques for III-Nitrides. Two spin-LEDs containing GaMnN injector layers were also grown to determine the polarization state of the emission from these spin-LEDs.

  5. Advanced Epi Tools for Gallium Nitride Light Emitting Diode Devices

    SciTech Connect

    Patibandla, Nag; Agrawal, Vivek

    2012-12-01

    Over the course of this program, Applied Materials, Inc., with generous support from the United States Department of Energy, developed a world-class three chamber III-Nitride epi cluster tool for low-cost, high volume GaN growth for the solid state lighting industry. One of the major achievements of the program was to design, build, and demonstrate the world’s largest wafer capacity HVPE chamber suitable for repeatable high volume III-Nitride template and device manufacturing. Applied Materials’ experience in developing deposition chambers for the silicon chip industry over many decades resulted in many orders of magnitude reductions in the price of transistors. That experience and understanding was used in developing this GaN epi deposition tool. The multi-chamber approach, which continues to be unique in the ability of the each chamber to deposit a section of the full device structure, unlike other cluster tools, allows for extreme flexibility in the manufacturing process. This robust architecture is suitable for not just the LED industry, but GaN power devices as well, both horizontal and vertical designs. The new HVPE technology developed allows GaN to be grown at a rate unheard of with MOCVD, up to 20x the typical MOCVD rates of 3{micro}m per hour, with bulk crystal quality better than the highest-quality commercial GaN films grown by MOCVD at a much cheaper overall cost. This is a unique development as the HVPE process has been known for decades, but never successfully commercially developed for high volume manufacturing. This research shows the potential of the first commercial-grade HVPE chamber, an elusive goal for III-V researchers and those wanting to capitalize on the promise of HVPE. Additionally, in the course of this program, Applied Materials built two MOCVD chambers, in addition to the HVPE chamber, and a robot that moves wafers between them. The MOCVD chambers demonstrated industry-leading wavelength yield for GaN based LED wafers and industry

  6. Near-infrared gallium nitride two-dimensional photonic crystal platform on silicon

    SciTech Connect

    Roland, I.; Zeng, Y.; Han, Z.; Checoury, X.; Blin, C.; El Kurdi, M.; Ghrib, A.; Sauvage, S.; Boucaud, P.; Gayral, B.; Brimont, C.; Guillet, T.; Semond, F.

    2014-07-07

    We demonstrate a two-dimensional free-standing gallium nitride photonic crystal platform operating around 1550 nm and fabricated on a silicon substrate. Width-modulated waveguide cavities are integrated and exhibit loaded quality factors up to 34 000 at 1575 nm. We show the resonance tunability by varying the ratio of air hole radius to periodicity, and cavity hole displacement. We deduce a ∼7.9 dB/cm linear absorption loss for the suspended nitride structure from the power dependence of the cavity in-plane transmission.

  7. Near-infrared gallium nitride two-dimensional photonic crystal platform on silicon

    NASA Astrophysics Data System (ADS)

    Roland, I.; Zeng, Y.; Han, Z.; Checoury, X.; Blin, C.; El Kurdi, M.; Ghrib, A.; Sauvage, S.; Gayral, B.; Brimont, C.; Guillet, T.; Semond, F.; Boucaud, P.

    2014-07-01

    We demonstrate a two-dimensional free-standing gallium nitride photonic crystal platform operating around 1550 nm and fabricated on a silicon substrate. Width-modulated waveguide cavities are integrated and exhibit loaded quality factors up to 34 000 at 1575 nm. We show the resonance tunability by varying the ratio of air hole radius to periodicity, and cavity hole displacement. We deduce a ˜7.9 dB/cm linear absorption loss for the suspended nitride structure from the power dependence of the cavity in-plane transmission.

  8. Novel approach for n-type doping of HVPE gallium nitride with germanium

    NASA Astrophysics Data System (ADS)

    Hofmann, Patrick; Krupinski, Martin; Habel, Frank; Leibiger, Gunnar; Weinert, Berndt; Eichler, Stefan; Mikolajick, Thomas

    2016-09-01

    We present a novel method for germanium doping of gallium nitride by in-situ chlorination of solid germanium during the hydride vapour phase epitaxy (HVPE) process. Solid germanium pieces were placed in the doping line with a hydrogen chloride flow directed over them. We deduce a chlorination reaction taking place at 800 ° C , which leads to germanium chloroform (GeHCl3) or germanium tetrachloride (GeCl4). The reactor shows a germanium rich residue after in-situ chlorination experiments, which can be removed by hydrogen chloride etching. All gallium nitride crystals exhibit n-type conductivity, which shows the validity of the in-situ chlorination of germanium for doping. A complex doping profile is found for each crystal, which was assigned to a combination of localised supply of the dopant and sample rotation during growth and switch-off effects of the HVPE reactor.

  9. Photocurrent enhancement of an individual gallium nitride nanowire decorated with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Sundararajan, Jency Pricilla; Sargent, Meredith; McIlroy, David N.

    2011-03-01

    Variation in electron transport properties of individual n-type gallium nitride (GaN) nanowire and gold decorated gallium nitride (Au-GaN) nanowire were studied with respect to laser exposure of different wavelength and intensity. Single nanowire devices were manufactured by photolithography process in nanotechnology cleanroom, were characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). A drop in electrical conductivity of Au-GaN nanowire was observed relative to bare GaN nanowire. Under laser illumination, we noticed an enhancement in photocurrent in Au-GaN nanowire, which increased with increase in excitation power at ambient conditions. We present a comparative study of the opto-electrical behavior of bare GaN nanowire vs Au-GaN nanowire and explain the IV characteristics and FET characteristics with respect to the length and diameter of nanowire. USDA, UI-BANTech.

  10. Vapor-phase epitaxy of gallium nitride by gallium arc discharge evaporation

    NASA Astrophysics Data System (ADS)

    Heikman, S.; Keller, S.; Mishra, U. K.

    2006-08-01

    Vapor-phase epitaxy of GaN was performed by combining ammonia with gallium evaporated into an inert gas stream by a DC arc discharge, and letting the mixture pass through a pair of heated graphite susceptors. Growth rates as high as 30 μm/h were achieved. The growth on the top sample was specular in a large area, and was of high quality as characterized by atomic force microscopy and photoluminescence spectroscopy. The bottom sample had a high density of macroscopic defects, presumably caused by Ga droplets in the gas phase resulting from the arc evaporation process. The experimental growth rate was found to be less than {1}/{3} of values predicted in a computer flow dynamic model of the growth system, and Ga-NH 3 pre-reactions were implicated as the likely cause of the discrepancy. The growth efficiency, calculated to 2%, could arguably be improved by reducing the reactor growth pressure, and by changing the reactor geometry to avoid Ga condensation on walls. Potential advantages of the described growth technique are cheap source materials of high purity and low equipment costs. Furthermore, since no corrosive gasses were used, hardware corrosion and gas-phase impurities can be reduced.

  11. Thermo-piezo-electro-mechanical simulation of AlGaN (aluminum gallium nitride) / GaN (gallium nitride) High Electron Mobility Transistors

    NASA Astrophysics Data System (ADS)

    Stevens, Lorin E.

    Due to the current public demand of faster, more powerful, and more reliable electronic devices, research is prolific these days in the area of high electron mobility transistor (HEMT) devices. This is because of their usefulness in RF (radio frequency) and microwave power amplifier applications including microwave vacuum tubes, cellular and personal communications services, and widespread broadband access. Although electrical transistor research has been ongoing since its inception in 1947, the transistor itself continues to evolve and improve much in part because of the many driven researchers and scientists throughout the world who are pushing the limits of what modern electronic devices can do. The purpose of the research outlined in this paper was to better understand the mechanical stresses and strains that are present in a hybrid AlGaN (Aluminum Gallium Nitride) / GaN (Gallium Nitride) HEMT, while under electrically-active conditions. One of the main issues currently being researched in these devices is their reliability, or their consistent ability to function properly, when subjected to high-power conditions. The researchers of this mechanical study have performed a static (i.e. frequency-independent) reliability analysis using powerful multiphysics computer modeling/simulation to get a better idea of what can cause failure in these devices. Because HEMT transistors are so small (micro/nano-sized), obtaining experimental measurements of stresses and strains during the active operation of these devices is extremely challenging. Physical mechanisms that cause stress/strain in these structures include thermo-structural phenomena due to mismatch in both coefficient of thermal expansion (CTE) and mechanical stiffness between different materials, as well as stress/strain caused by "piezoelectric" effects (i.e. mechanical deformation caused by an electric field, and conversely voltage induced by mechanical stress) in the AlGaN and GaN device portions (both

  12. The Effects of Thermal Cycling on Gallium Nitride and Silicon Carbide Semiconductor Devices for Aerospace Use

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2012-01-01

    Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These Include radiation, extreme temperatures, thermal cycling, to name a few. Preliminary data obtained on new Gallium Nitride and Silicon Carbide power devices under exposure to radiation followed by long term thermal cycling are presented. This work was done in collaboration with GSFC and JPL in support of the NASA Electronic Parts and Packaging (NEPP) Program

  13. Gas source molecular beam epitaxy of scandium nitride on silicon carbide and gallium nitride surfaces

    SciTech Connect

    King, Sean W. Davis, Robert F.; Nemanich, Robert J.

    2014-11-01

    Scandium nitride (ScN) is a group IIIB transition metal nitride semiconductor with numerous potential applications in electronic and optoelectronic devices due to close lattice matching with gallium nitride (GaN). However, prior investigations of ScN have focused primarily on heteroepitaxial growth on substrates with a high lattice mismatch of 7%–20%. In this study, the authors have investigated ammonia (NH{sub 3}) gas source molecular beam epitaxy (NH{sub 3}-GSMBE) of ScN on more closely lattice matched silicon carbide (SiC) and GaN surfaces (<3% mismatch). Based on a thermodynamic analysis of the ScN phase stability window, NH{sub 3}-GSMBE conditions of 10{sup −5}–10{sup −4} Torr NH{sub 3} and 800–1050 °C where selected for initial investigation. In-situ x-ray photoelectron spectroscopy (XPS) and ex-situ Rutherford backscattering measurements showed all ScN films grown using these conditions were stoichiometric. For ScN growth on 3C-SiC (111)-(√3 × √3)R30° carbon rich surfaces, the observed attenuation of the XPS Si 2p and C 1s substrate core levels with increasing ScN thickness indicated growth initiated in a layer-by-layer fashion. This was consistent with scanning electron microscopy (SEM) images of 100–200 nm thick films that revealed featureless surfaces. In contrast, ScN films grown on 3C-SiC (111)-(3 × 3) and 3C-SiC (100)-(3 × 2) silicon rich surfaces were found to exhibit extremely rough surfaces in SEM. ScN films grown on both 3C-SiC (111)-(√3 × √3)R30° and 2H-GaN (0001)-(1 × 1) epilayer surfaces exhibited hexagonal (1 × 1) low energy electron diffraction patterns indicative of (111) oriented ScN. X-ray diffraction ω-2θ rocking curve scans for these same films showed a large full width half maximum of 0.29° (1047 arc sec) consistent with transmission electron microscopy images that revealed the films to be poly-crystalline with columnar grains oriented at ≈15° to the [0001] direction of the

  14. Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation.

    PubMed

    Agrawal, Ravi; Espinosa, Horacio D

    2011-02-01

    Nanowires made of materials with noncentrosymmetric crystal structure are under investigation for their piezoelectric properties and suitability as building blocks for next-generation self-powered nanodevices. In this work, we investigate the size dependence of piezoelectric coefficients in nanowires of two such materials - zinc oxide and gallium nitride. Nanowires, oriented along their polar axis, ranging from 0.6 to 2.4 nm in diameter were modeled quantum mechanically. A giant piezoelectric size effect is identified for both GaN and ZnO nanowires. However, GaN exhibits a larger and more extended size dependence than ZnO. The observed size effect is discussed in the context of charge redistribution near the free surfaces leading to changes in local polarization. The study reveals that local changes in polarization and reduction of unit cell volume with respect to bulk values lead to the observed size effect. These results have strong implication in the field of energy harvesting, as piezoelectric voltage output scales with the piezoelectric coefficient.

  15. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting

    PubMed Central

    Kim, Hoon-sik; Brueckner, Eric; Song, Jizhou; Li, Yuhang; Kim, Seok; Lu, Chaofeng; Sulkin, Joshua; Choquette, Kent; Huang, Yonggang; Nuzzo, Ralph G.; Rogers, John A.

    2011-01-01

    Properties that can now be achieved with advanced, blue indium gallium nitride light emitting diodes (LEDs) lead to their potential as replacements for existing infrastructure in general illumination, with important implications for efficient use of energy. Further advances in this technology will benefit from reexamination of the modes for incorporating this materials technology into lighting modules that manage light conversion, extraction, and distribution, in ways that minimize adverse thermal effects associated with operation, with packages that exploit the unique aspects of these light sources. We present here ideas in anisotropic etching, microscale device assembly/integration, and module configuration that address these challenges in unconventional ways. Various device demonstrations provide examples of the capabilities, including thin, flexible lighting “tapes” based on patterned phosphors and large collections of small light emitters on plastic substrates. Quantitative modeling and experimental evaluation of heat flow in such structures illustrates one particular, important aspect of their operation: small, distributed LEDs can be passively cooled simply by direct thermal transport through thin-film metallization used for electrical interconnect, providing an enhanced and scalable means to integrate these devices in modules for white light generation. PMID:21666096

  16. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting.

    PubMed

    Kim, Hoon-sik; Brueckner, Eric; Song, Jizhou; Li, Yuhang; Kim, Seok; Lu, Chaofeng; Sulkin, Joshua; Choquette, Kent; Huang, Yonggang; Nuzzo, Ralph G; Rogers, John A

    2011-06-21

    Properties that can now be achieved with advanced, blue indium gallium nitride light emitting diodes (LEDs) lead to their potential as replacements for existing infrastructure in general illumination, with important implications for efficient use of energy. Further advances in this technology will benefit from reexamination of the modes for incorporating this materials technology into lighting modules that manage light conversion, extraction, and distribution, in ways that minimize adverse thermal effects associated with operation, with packages that exploit the unique aspects of these light sources. We present here ideas in anisotropic etching, microscale device assembly/integration, and module configuration that address these challenges in unconventional ways. Various device demonstrations provide examples of the capabilities, including thin, flexible lighting "tapes" based on patterned phosphors and large collections of small light emitters on plastic substrates. Quantitative modeling and experimental evaluation of heat flow in such structures illustrates one particular, important aspect of their operation: small, distributed LEDs can be passively cooled simply by direct thermal transport through thin-film metallization used for electrical interconnect, providing an enhanced and scalable means to integrate these devices in modules for white light generation.

  17. Electron mobility limited by scattering from threading dislocation lines within gallium nitride

    NASA Astrophysics Data System (ADS)

    Mohammad Alavi, Seyed; Bagani, Erfan

    2016-03-01

    Theoretical as well as experimental studies in the literature suggest that defect sites associated with the threading dislocation lines within n-type gallium nitride (GaN) act to trap free electrons from the bulk of this semiconductor material. As a result, the core of the threading dislocation lines become negatively charged. The charge accumulated along the core of a threading dislocation line should be screened by a charge of opposite polarity and equal in absolute value per unit length along the dislocation line. In the present work, we model this screened charge buildup along the threading dislocation lines by two concentric space-charge cylinders. Quantum mechanical theory of scattering in cylindrical coordinates is then employed in order to numerically compute the electron mobility limited by scattering from the charged threading dislocation lines. The dependence of the computed electron mobility on the dislocation line density and on the amount of charge accumulated per unit length along the core of the dislocation lines is also investigated in this work. Our computed electron mobility results are compared with results from existing calculations of the GaN dislocation scattering limited electron mobility in the literature.

  18. Optical waveguiding properties into porous gallium nitride structures investigated by prism coupling technique

    SciTech Connect

    Alshehri, Bandar; Dogheche, Elhadj; Lee, Seung-Min; Kang, Jin-Ho; Ryu, Sang-Wan; Gong, Su-Hyun; Cho, Yong-Hoon

    2014-08-04

    In order to modulate the refractive index and the birefringence of Gallium Nitride (GaN), we have developed a chemical etching method to perform porous structures. The aim of this research is to demonstrate that optical properties of GaN can be tuned by controlling the pores density. GaN films are prepared on sapphire by metal organic chemical vapor deposition and the microstructure is characterized by transmission electron microscopy, and scanning electron microscope analysis. Optical waveguide experiment is demonstrated here to determine the key properties as the ordinary (n{sub 0}) and extraordinary (n{sub e}) refractive indices of etched structures. We report here the dispersion of refractive index for porous GaN and compare it to the bulk material. We observe that the refractive index decreases when the porous density p is increased: results obtained at 0.975 μm have shown that the ordinary index n{sub 0} is 2.293 for a bulk layer and n{sub 0} is 2.285 for a pores density of 20%. This value corresponds to GaN layer with a pore size of 30 nm and inter-distance of 100 nm. The control of the refractive index into GaN is therefore fundamental for the design of active and passive optical devices.

  19. Nonpolar m-plane gallium Nitride-based Laser Diodes in the Blue Spectrum

    NASA Astrophysics Data System (ADS)

    Kelchner, Kathryn M.

    Gallium nitride (GaN), together with its alloys with aluminum and indium, have revolutionized the solid-state optoelectronics market for their ability to emit a large portion of the visible electromagnetic spectrum from deep ultraviolet and into the infrared. GaN-based semiconductor laser diodes (LDs) with emission wavelengths in the violet, blue and green are already seeing widespread implementation in applications ranging from energy storage, lighting and displays. However, commercial GaN-based LDs use the basal c-plane orientation of the wurtzite crystal, which can suffer from large internal electric fields due to discontinuities in spontaneous and piezoelectric polarizations, limiting device performance. The nonpolar orientation of GaN benefits from the lack of polarization-induced electric field as well as enhanced gain. This dissertation discusses some of the benefits and limitations of m-plane oriented nonpolar GaN for LD applications in the true blue spectrum (450 nm). Topics include an overview of material growth by metal-organic chemical vapor deposition (MOCVD), waveguide design and processing techniques for improving device performance for multiple lateral mode and single lateral mode ridge waveguides.

  20. More Efficient Power Conversion for EVs: Gallium-Nitride Advanced Power Semiconductor and Packaging

    SciTech Connect

    2010-02-01

    Broad Funding Opportunity Announcement Project: Delphi is developing power converters that are smaller and more energy efficient, reliable, and cost-effective than current power converters. Power converters rely on power transistors which act like a very precisely controlled on-off switch, controlling the electrical energy flowing through an electrical circuit. Most power transistors today use silicon (Si) semiconductors. However, Delphi is using semiconductors made with a thin layer of gallium-nitride (GaN) applied on top of the more conventional Si material. The GaN layer increases the energy efficiency of the power transistor and also enables the transistor to operate at much higher temperatures, voltages, and power-density levels compared to its Si counterpart. Delphi is packaging these high-performance GaN semiconductors with advanced electrical connections and a cooling system that extracts waste heat from both sides of the device to further increase the device’s efficiency and allow more electrical current to flow through it. When combined with other electronic components on a circuit board, Delphi’s GaN power transistor package will help improve the overall performance and cost-effectiveness of HEVs and EVs.

  1. Effects of radiation and temperature on gallium nitride (GaN) metal-semiconductor-metal ultraviolet photodetectors

    NASA Astrophysics Data System (ADS)

    Chiamori, Heather C.; Angadi, Chetan; Suria, Ateeq; Shankar, Ashwin; Hou, Minmin; Bhattacharya, Sharmila; Senesky, Debbie G.

    2014-06-01

    The development of radiation-hardened, temperature-tolerant materials, sensors and electronics will enable lightweight space sub-systems (reduced packaging requirements) with increased operation lifetimes in extreme harsh environments such as those encountered during space exploration. Gallium nitride (GaN) is a ceramic, semiconductor material stable within high-radiation, high-temperature and chemically corrosive environments due to its wide bandgap (3.4 eV). These material properties can be leveraged for ultraviolet (UV) wavelength photodetection. In this paper, current results of GaN metal-semiconductor-metal (MSM) UV photodetectors behavior after irradiation up to 50 krad and temperatures of 15°C to 150°C is presented. These initial results indicate that GaN-based sensors can provide robust operation within extreme harsh environments. Future directions for GaN-based photodetector technology for down-hole, automotive and space exploration applications are also discussed.

  2. Sapphire surface preparation and gallium nitride nucleation by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Dwikusuma, Fransiska

    The nucleation and initial growth of gallium nitride (GaN) films on sapphire substrates using hydride vapor phase epitaxy (HVPE) technique depends on many factors including the chemical treatment of sapphire surface, nitridation, and the specific growth conditions. Liquid and gas phase treatments of the sapphire surface were systematically studied as a function of temperature and time. Phosphoric acid (H3PO4) etches sapphire preferentially at defect sites and resulted in pits formation on the surface, while etching in sulfuric acid (H2SO4) can produce a smooth, pit-free surface. Air-annealing the sapphire at 1400°C produces an atomically smooth surface consisting of a terrace-and-step structure. The mechanism of sapphire nitridation within the HVPE environment was elucidated. During nitridation, nitrogen is incorporated into the sapphire surface. The sapphire nitridation mechanism can be modeled as a diffusion couple of aluminum nitride (AlN) and aluminum oxide (Al2O 3), where N3- and O2- inter-diffuse in the 'rigid' Al3+ framework. Nitrogen diffuses into sapphire and substitutes for oxygen to bond with aluminum. The replaced oxygen diffuses out to the surface. The overall nitridation rate is controlled by the diffusion of oxygen. Sapphire surface treatments of air-annealing and liquid-based etchings have different effects on nitridation and HVPE GaN nucleation. Upon nitridation, the air-annealed sapphire has ˜1.5 times higher nitrogen content compared to liquid-based etchings. Nevertheless, the air-annealed sapphire yields the lowest density of GaN islands. Sapphire nitridation, which yields a thin AlN layer, results in the growth of higher GaN island densities with a smaller mosaic spread. Sapphire surface, which is etched in H2SO4 and then nitridated, produces a high density GaN islands resulting in improved-quality of thick GaN films. The nucleation and initial growth kinetics of GaN on sapphire grown by HVPE were investigated. As the growth temperature

  3. Charge accumulation at a threading edge dislocation in gallium nitride

    SciTech Connect

    Leung, K.; Wright, A.F.; Stechel, E.B.

    1999-04-01

    We have performed Monte Carlo calculations to determine the charge accumulation on threading edge dislocations in GaN as a function of the dislocation density and background dopant density. Four possible core structures have been examined, each of which produces defect levels in the gap and may therefore act as electron or hole traps. Our results indicate that charge accumulation, and the resulting electrostatic interactions, can change the relative stabilities of the different core structures. Structures having Ga and N vacancies at the dislocation core are predicted to be stable under nitrogen-rich and gallium-rich growth conditions, respectively. Due to dopant depletion at high dislocation density and the multitude of charge states, the line charge exhibits complex crossover behavior as the dopant and dislocation densities vary. {copyright} {ital 1999 American Institute of Physics.}

  4. Process for growing epitaxial gallium nitride and composite wafers

    DOEpatents

    Weber, Eicke R.; Subramanya, Sudhir G.; Kim, Yihwan; Kruger, Joachim

    2003-05-13

    A novel growth procedure to grow epitaxial Group III metal nitride thin films on lattice-mismatched substrates is proposed. Demonstrated are the quality improvement of epitaxial GaN layers using a pure metallic Ga buffer layer on c-plane sapphire substrate. X-ray rocking curve results indicate that the layers had excellent structural properties. The electron Hall mobility increases to an outstandingly high value of .mu.>400 cm.sup.2 /Vs for an electron background concentration of 4.times.10.sup.17 cm.sup.-3.

  5. Metalorganic chemical vapor deposition of gallium nitride on sacrificial substrates

    NASA Astrophysics Data System (ADS)

    Fenwick, William Edward

    GaN-based light emitting diodes (LEDs) face several challenges if the technology is to continue to make a significant impact in general illumination, and on technology that has become known as solid state lighting (SSL). Two of the most pressing challenges for the continued penetration of SSL into traditional lighting applications are efficacy and total lumens from the device, and their related cost. The development of alternative substrate technologies is a promising avenue toward addressing both of these challenges, as both GaN-based device technology and the associated metalorganic chemical vapor deposition (MOCVD) technology are already relatively mature technologies with a well-understood cost base. Zinc oxide (ZnO) and silicon (Si) are among the most promising alternative substrates for GaN epitaxy. These substrates offer the ability to access both higher efficacy and lumen devices (ZnO) at a much reduced cost. This work focuses on the development of MOCVD growth processes to yield high quality GaN-based materials and devices on both ZnO and Si. ZnO is a promising substrate for growth of low defect-density GaN because of its similar lattice constant and thermal expansion coefficient. The major hurdles for GaN growth on ZnO are the instability of the substrate in a hydrogen atmosphere, which is typical of nitride growth conditions, and the inter-diffusion of zinc and oxygen from the substrate into the GaN-based epitaxial layer. A process was developed for the MOCVD growth of GaN and InxGa 1-xN on ZnO that attempted to address these issues. The structural and optical properties of these films were studied using various techniques. X-ray diffraction (XRD) showed the growth of wurtzite GaN on ZnO, and room-temperature photoluminescence (RT-PL) showed near band-edge luminescence from the GaN and InxGa1-xN layers. However, high zinc and oxygen concentrations due to interdiffusion near the ZnO substrate remained an issue; therefore, the diffusion of zinc and oxygen

  6. Adsorption and adhesion of common serum proteins to nanotextured gallium nitride

    NASA Astrophysics Data System (ADS)

    Bain, Lauren E.; Hoffmann, Marc P.; Bryan, Isaac; Collazo, Ramón; Ivanisevic, Albena

    2015-01-01

    As the broader effort towards device and material miniaturization progresses in all fields, it becomes increasingly important to understand the implications of working with functional structures that approach the size scale of molecules, particularly when considering biological systems. It is well known that thin films and nanostructures feature different optical, electrical, and mechanical properties from their bulk composites; however, interactions taking place at the interface between nanomaterials and their surroundings are less understood. Here, we explore interactions between common serum proteins - serum albumin, fibrinogen, and immunoglobulin G - and a nanotextured gallium nitride surface. Atomic force microscopy with a carboxyl-terminated colloid tip is used to probe the `activity' of proteins adsorbed onto the surface, including both the accessibility of the terminal amine to the tip as well as the potential for protein extension. By evaluating the frequency of tip-protein interactions, we can establish differences in protein behaviour on the basis of both the surface roughness as well as morphology, providing an assessment of the role of surface texture in dictating protein-surface interactions. Unidirectional surface features - either the half-unit cell steppes of as-grown GaN or those produced by mechanical polishing - appear to promote protein accessibility, with a higher frequency of protein extension events taking place on these surfaces when compared with less ordered surface features. Development of a full understanding of the factors influencing surface-biomolecule interactions can pave the way for specific surface modification to tailor the bio-material interface, offering a new path for device optimization.As the broader effort towards device and material miniaturization progresses in all fields, it becomes increasingly important to understand the implications of working with functional structures that approach the size scale of molecules

  7. Synthesis and characterization of visible emission from rare-earth doped aluminum nitride, gallium nitride and gallium aluminum nitride powders and thin films

    NASA Astrophysics Data System (ADS)

    Tao, Jonathan Huai-Tse

    A three-step solution-based process had been used synthesize powders of GaN, AlN and their alloys. The complete solid solubility and tunable nature of these nitride band gaps in the visible spectrum were the motivation of these studies due to their application in solid state lighting. Energy dispersive X-ray spectroscopy confirmed the reduction in oxygen content for the GaN powders to as low as 4 atom % with an 8 % oxygen to nitrogen ratio. Relative to commercial GaN powders, the bandedge of the powders synthesized by such approach also shifted to higher energy, which indicated fewer defects, as observed from reflectance measurements. Inspired by the use of rare-earth elements as color emitters in fluorescent lamp phosphors, these elements were also used as activators in our nitride material. Visible emission was demonstrated through photoluminescence measurements in AlN powders activated with rare-earth elements Eu3+, Tb3+, Tm3+. These ions showed emission in the red, green and blue regions of the visible spectrum, respectively. Eu3+ and Tb3+ co-activation was also observed in an AlN sample that indicated successful energy transfer from the host to sensitizer, and subsequently to another activator. Tb3+ emission was observed under cathodoluminescence in GaN powders synthesized by the same method, and a concentration study showed no effect of concentration quenching up to 8 atom %. Using the same source powder, a pulsed-laser deposited thin film was fabricated that showed both band gap emission and activator-related emission, suggesting a reduction of defects when the powders were deposited as thin films. Additionally, GaN:Tb3+ films were also fabricated using metallorganic vapor phase epitaxy using precursors with and without oxygen ligands. Tb3+ emission was only observed in the sample fabricated from the precursor with oxygen ligand, suggestion that oxygen may be required for effective rare earth luminescence. Finally, Ga1-xAl xN alloy powders (x=0.5) and Ga1-x

  8. Characterization of irradiated and temperature-compensated gallium nitride surface acoustic wave resonators

    NASA Astrophysics Data System (ADS)

    Shankar, Ashwin; Angadi, Chetan; Bhattacharya, Sharmila; Lin, Chih-Ming; Senesky, Debbie G.

    2014-06-01

    Conventional electronic components are prone to failure and drift when exposed to space environments, which contain harsh conditions, such as extreme variation in temperature and radiation exposure. As a result, electronic components are often shielded with heavy and complex packaging. New material platforms that leverage the radiation and temperature tolerance of wide bandgap materials can be used to develop robust electronic components without complex packaging. One such component that is vital for communication, navigation and signal processing on space exploration systems is the on-board timing reference, which is conventionally provided by a quartz crystal resonator and is prone to damage from radiation and temperature fluctuations. As a possible alternative, this paper presents the characterization of microfabricated and wide bandgap gallium nitride (GaN) surface acoustic wave (SAW) resonators in radiation environments. Ultimately, in combination with the two-dimensional gas (2DEG) layer at the AlGaN/GaN interface, high electron mobility transistor (HEMT) structures can provide a monolithic solution for timing electronics on board space systems. One-port SAW resonators are microfabricated on a GaN-on-sapphire substrate are used to explore the impact of irradiation on the device performance. The GaN-based SAW resonator was subjected to extreme temperature conditions to study the change in resonance frequency. Thermal characterization of the resonator has revealed a self-compensating property at cryogenic temperatures. In addition, GaN-on-sapphire samples were irradiated using a Cs-137 source up to 55 krads of total ionizing dose (TID). The measured frequency response and Raman spectroscopy of the GaN/sapphire SAW resonators microfabricated from the irradiated samples are presented.

  9. Adsorption and adhesion of common serum proteins to nanotextured gallium nitride.

    PubMed

    Bain, Lauren E; Hoffmann, Marc P; Bryan, Isaac; Collazo, Ramón; Ivanisevic, Albena

    2015-02-14

    As the broader effort towards device and material miniaturization progresses in all fields, it becomes increasingly important to understand the implications of working with functional structures that approach the size scale of molecules, particularly when considering biological systems. It is well known that thin films and nanostructures feature different optical, electrical, and mechanical properties from their bulk composites; however, interactions taking place at the interface between nanomaterials and their surroundings are less understood. Here, we explore interactions between common serum proteins - serum albumin, fibrinogen, and immunoglobulin G - and a nanotextured gallium nitride surface. Atomic force microscopy with a carboxyl-terminated colloid tip is used to probe the 'activity' of proteins adsorbed onto the surface, including both the accessibility of the terminal amine to the tip as well as the potential for protein extension. By evaluating the frequency of tip-protein interactions, we can establish differences in protein behaviour on the basis of both the surface roughness as well as morphology, providing an assessment of the role of surface texture in dictating protein-surface interactions. Unidirectional surface features - either the half-unit cell steppes of as-grown GaN or those produced by mechanical polishing - appear to promote protein accessibility, with a higher frequency of protein extension events taking place on these surfaces when compared with less ordered surface features. Development of a full understanding of the factors influencing surface-biomolecule interactions can pave the way for specific surface modification to tailor the bio-material interface, offering a new path for device optimization.

  10. The challenge of decomposition and melting of gallium nitride under high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Porowski, S.; Sadovyi, B.; Gierlotka, S.; Rzoska, S. J.; Grzegory, I.; Petrusha, I.; Turkevich, V.; Stratiichuk, D.

    2015-10-01

    Gallium nitride (GaN) is considered to be one of the most important semiconductors nowadays. In this report a solution of the long standing puzzle regarding GaN decomposition and melting under high pressure and high temperature is presented. This includes the discussion of results obtained so far. The possibility of a consistent parameterisation of pressure (P) evolution of the melting temperature (Tm) in basic semiconductors (GaN, germanium, silicon…), independently from signs of dTm / dP is also presented.

  11. Effects of Radiation and Long-Term Thermal Cycling on EPC 1001 Gallium Nitride Transistors

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad

    2012-01-01

    Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These include radiation, extreme temperatures, and thermal cycling, to name a few. Data obtained on long-term thermal cycling of new un-irradiated and irradiated samples of EPC1001 gallium nitride enhancement-mode transistors are presented. This work was done by a collaborative effort including GRC, GSFC, and support the NASA www.nasa.gov 1 JPL in of Electronic Parts and Packaging (NEPP) Program

  12. Free-standing gallium nitride membrane-based sensor for the impedimetric detection of alcohols

    NASA Astrophysics Data System (ADS)

    Alifragis, Y.; Roussos, G.; Pantazis, A. K.; Konstantinidis, G.; Chaniotakis, N.

    2016-02-01

    We report on the fabrication and characterization of single-crystal Gallium Nitride (GaN) membrane organic gas sensor. The sensing device is based on the highly stable free-standing III-nitride membrane, and it is probed using non-destructive impedance spectroscopy. Monitoring the effect of a series of polar organic molecules on the electrochemical impedance spectrum of the sensing membrane in the frequency range of 1 mHz to 0.1 MHz at room temperature, we concluded that the sensor is highly sensitive to alcohols, in the gas phase, with selectivity that depends on the molecular weight and vapor pressure of the molecules. The highly robust and stable GaN crystalline membrane and the ability to test these sensors using impedance spectroscopy and electrochemical probing techniques suggest that single crystal GaN-based sensors can find a wide range of applications in harsh and extreme environments.

  13. Gallium scan

    MedlinePlus

    Liver gallium scan; Bony gallium scan ... You will get a radioactive material called gallium injected into your vein. The gallium travels through the bloodstream and collects in the bones and certain organs. Your health care provider will ...

  14. Microstructure and micro-Raman studies of nitridation and structure transition of gallium oxide nanowires

    SciTech Connect

    Ning, J.Q.; Xu, S.J.; Wang, P.W.; Song, Y.P.; Yu, D.P.; Shan, Y.Y.; Lee, S.T.; Yang, H.

    2012-11-15

    Here we present a detailed study on nitridation and structure transition in monoclinic gallium oxide ({beta}-Ga{sub 2}O{sub 3}) nanowires grown on Si substrates with chemical vapor phase epitaxy. The nanowires were systematically nitridated at different temperatures. Their morphologies and microstructures were precisely characterized using field-emission scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and confocal micro-Raman spectroscopy. It is found that heat treatment of Ga{sub 2}O{sub 3} nanowires in the gas of ammonia results in rich substructures including the Ga{sub 2}O{sub 3} phase, the crystalline GaN phase, and other meta structures. The identification of these structures helps to understand some interesting phenomena observed in nanostructures, such as the microstructural origin of the unknown Raman lines in GaN nanowires. - Highlights: Black-Right-Pointing-Pointer Nitridation and structure transition of Ga{sub 2}O{sub 3} significantly depend on temperature. Black-Right-Pointing-Pointer G-N bonds form at lower temperatures but the Ga{sub 2}O{sub 3} lattice is still dominant. Black-Right-Pointing-Pointer Amorphous GaN coexists with crystalline Ga{sub 2}O{sub 3} at higher temperatures. Black-Right-Pointing-Pointer Crystalline GaN with distinct morphology is obtained at much higher temperatures.

  15. Understanding the Impact of Point Defects on the Optoelectronic Properties of Gallium Nitride from First-Principles

    NASA Astrophysics Data System (ADS)

    Lewis, Kirk; Matsubara, Masahiko; Bellotti, Enrico; Sharifzadeh, Sahar

    Gallium nitride (GaN) and related alloys form a class of wide bandgap semiconductors that have broad applications as components in optoelectronic devices; in particular, power electronics and blue and ultraviolet optical devices. Nitride films grow with high defect densities, and understanding the relationship between structural defects and optoelectronic function will be central to the design of new high-performance materials. Here, we take a first-principles density functional theory (DFT) and many-body perturbation theory (MBPT) approach to quantify the influence of defects on the electronic and optical properties of GaN. We predict, as expected, that introduction of a N or Ga vacancy results in several energetically favorable charged states within bulk GaN; these energetically favorable defects result in a significant modification of the quasiparticle and excitonic properties of GaN. We will discuss the implications of defect-induced-states for the electron transport and absorption properties of GaN. This work was partially supported by the Army Research Office (ARO) within the Collaborative Research Alliance (CRA-MSME).

  16. Homoepitaxial growth of gallium nitride and aluminum nitride and its effects on device properties

    NASA Astrophysics Data System (ADS)

    Grandusky, James R.

    Lattice and thermal mismatch between epitaxial layers and substrates have long been the major challenge in obtaining high quality devices in the III-Nitride material system due to the lack of availability of native substrates. Recently methods for obtaining high quality free standing native substrates have been achieved and these products are beginning to enter the commercial market. However the quality of these substrates is significantly lower than those in traditional substrates such as Si and GaAs and the high cost and low availability makes it difficult to study the homoepitaxial growth. In order to use these substrates for epitaxial growth, one first must understand what features are needed for the substrates to be epi ready. In addition, one must understand what features in the substrates impact optoelectronic device performances most significantly. Initial homoepitaxial growth was carried out on both AIN and GaN substrates. On AIN substrates it was found that annealing the sample prior to growth was very important to obtain improved surface morphologies for the homoepitaxial layers. Similar annealing steps were attempted on GaN substrates, however annealing under hydrogen left large Ga droplets on the surface. For homoepitaxy on HVPE GaN substrates, the substrate characteristics, such as bowing, surface morphology, structural properties, and optical properties were found to have a large influence on growth and device performance. Even with a reduced dislocation density, substrates with poor characteristics performed worse than devices on GaN/sapphire. The effect of polishing process on the substrates was found to be very important and substrates with subsurface damage led to poor growth, even though the starting surface was very smooth. Optimization of a thin GaN layer and a multiple quantum well structure revealed very different optimum growth conditions for the HVPE substrates and the GaN/sapphire templates. Theoretical modeling using density functional

  17. Metallic impurities in gallium nitride grown by molecular beam epitaxy

    SciTech Connect

    McHugo, S.A.; Krueger, J.; Kisielowski, C.

    1997-04-01

    Transition metals are often encountered in trace amounts in semiconductors. They have been extensively studied in most elemental and compound systems, since they form deep donor and/or acceptor levels which usually degrade the electronic and optical material properties. Only very little is known about transition metals in recent III-V semiconducting materials, such as GaN, AlN and InN. These few studies have been done exclusively on Metal-Organic Chemical Vapor Deposition (MOCVD) or Hybrid Vapor Phase Epitaxy HVPE-grown GaN. Preliminary x-ray fluorescence studies at the Advanced Light Source, beamline 10.3.1, Lawrence Berkeley National Laboratory have revealed that GaN materials grown by Molecular Beam Epitaxy (MBE) have Fe, Ni and Cr as the dominant transition metal contaminants. This finding is commensurate with the extremely high concentrations of hydrogen, carbon and oxygen (up to 10{sup 20} cm{sup {minus}3}) measured by Secondary Ion Mass Spectroscopy (SIMS). Preliminary work using the mapping capabilities of the x-ray fluorescence microprobe revealed the metal impurities were inhomogeneously distributed over the film. Future work of this collaboration will be to find a correlation between the existence of transition metals in MBE films, as revealed by x-ray fluorescence, and Photoluminescence (PL) spectra taken in the infrared region. Also, the authors will make use of the 1 {mu}m spatial resolution of x-ray microprobe to locate the contaminants in relation to structural defects in the GaN films. Because of the large strain caused by the lattice mismatch between the GaN films and the substrates, the films grow in a columnar order with high densities of grain boundaries and dislocations. These structural defects offer preferential sites for metal precipitation or agglomeration which could degrade the optical properties of this material more so than if the impurities were left dissolved in the GaN.

  18. Density and morphology adjustments of gallium nitride nanowires

    NASA Astrophysics Data System (ADS)

    Teker, Kasif

    2013-10-01

    This paper presents the morphology and density adjustments of GaN nanostructures via CVD process. GaN nanostructure growth has been carried out using Ga and NH3 as source materials with various catalyst materials, such as Au, Ni, Ag, and Fe between 800 and 1100 °C. The investigation has focused on the effects of process parameters, such as growth temperature and catalyst materials on the GaN nanowire morphology and density. Low temperature (<950 °C) growth runs resulted in microscale-faceted crystals and short nanorods regardless of the catalyst type or reactor pressure. Conversely, high temperature (1100 °C) growth runs resulted in ultra-dense interwoven long nanowires with multi-prong growth mechanism. A detailed analysis for the transition from microscale-faceted crystals to ultra-dense multi-prong-grown GaN nanowires is provided. Furthermore, electrical characteristics of the grown nanowires have been demonstrated through a very efficient fabrication scheme. Consequently, multi-prong growth mechanism reduces catalyst contamination and produces high density of long nanowires, which is very crucial for scale-up manufacturing opportunities.

  19. Gallium

    SciTech Connect

    1996-01-01

    Discovered in 1875 through a study of its spectral properties, gallium was the first element to be uncovered following the publication of Mendeleev`s Periodic Table. French chemist, P.E. Lecoq de Boisbaudran, named his element discovery in honor of his native country; gallium is derived from the Latin word for France-{open_quotes}Gallia.{close_quotes}. This paper describes the properties, sources, and market for gallium.

  20. Defect reduction in gallium nitride using cantilever epitaxy.

    SciTech Connect

    Mitchell, Christine Charlotte

    2003-08-01

    Cantilever epitaxy (CE) has been developed to produce GaN on sapphire with low dislocation densities as needed for improved devices. The basic mechanism of seeding growth on sapphire mesas and lateral growth of cantilevers until they coalesce has been modified with an initial growth step at 950 C. This step produces a gable with (11{bar 2}2) facets over the mesas, which turns threading dislocations from vertical to horizontal in order to reduce the local density above mesas. This technique has produced material with densities as low as 2-3x10{sup 7}/cm{sup 2} averaged across extended areas of GaN on sapphire, as determined with AFM, TEM and cathodoluminescence (CL). This density is about two orders of magnitude below that of conventional planar growths; these improvements suggest that locating wide-area devices across both cantilever and mesa regions is possible. However, the first implementation of this technique also produced a new defect: cracks at cantilever coalescences with associated arrays of lateral dislocations. These defects have been labeled 'dark-block defects' because they are non-radiative and appear as dark rectangles in CL images. Material has been grown that does not have dark-block defects. Examination of the evolution of the cantilever films for many growths, both partial and complete, indicates that producing a film without these defects requires careful control of growth conditions and crystal morphology at multiple steps. Their elimination enhances optical emission and uniformity over large (mm) size areas.

  1. Ab Initio Calculations of Excited Carrier Dynamics in Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Jhalani, Vatsal; Bernardi, Marco

    Bulk wurtzite GaN is the primary material for blue light-emission technology. The radiative processes in GaN are regulated by the dynamics of excited (or so-called ``hot'') carriers, through microscopic processes not yet completely understood. We present ab initio calculations of electron-phonon (e-ph) scattering rates for hot carriers in GaN. Our work combines density functional theory to compute the electronic states, and density functional perturbation theory to obtain the phonon dispersions and e-ph coupling matrix elements. These quantities are interpolated on fine Brillouin zone grids with maximally localized Wannier functions, to converge the e-ph scattering rates within 5 eV of the band edges. We resolve the contribution of the different phonon modes to the total scattering rate, and study the impact on the relaxation times of the long-range Fröhlich interaction due to the longitudinal-optical phonon modes.

  2. Highly chemical reactive ion etching of gallium nitride

    SciTech Connect

    Karouta, F.; Jacobs, B.; Moerman, I.; Jacobs, K.; Weyher, J.L.; Porowski, S.; Crane, R.; Hageman, P.R.

    2000-07-01

    A highly chemical reactive ion etching process has been developed for MOVPE-grown GaN on sapphire. The key element for the enhancement of the chemical property during etching is the use of a fluorine containing gas in a chlorine based chemistry. In the perspective of using GaN substrates for homo-epitaxy of high quality GaN/AlGaN structures they have used the above described RIE process to smoothen Ga-polar GaN substrates. The RMS value, measured by AFM, went from 20 {angstrom} (after mechanical polishing) down to 4 {angstrom} after 6 minutes of RIE. Etching N-polar GaN resulted in a higher etch rate than Ga-polar materials (165 vs. 110 nm/min) but the resulting surface was quite rough and suffers from instability problems. Heat treatment and HCl dip showed a partial recovery of Schottky characteristics after RIE.

  3. Development of gallium nitride-based PNP heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Green, Daniel S.

    GaN-based electronics have progressed mightily in the last 15 years. The primary focus of this development has been the AlGaN/GaN heterostructure FET, with the commercialization of this device in progress. Bipolar transistors however offer a few key potential advantages over the FET device, including the primary advantage of normally off operation. Additionally, the pnp heterostructure bipolar transistor (HBT) in particular offers more attractive base performance relative to the npn HBT. The pnp HBT also serves as an excellent test vehicle for the several material parameters of p-Gan that remain poor defined. However, implementation of the pnp HBT has been limited by the difficulty contacting p-GaN collector material. This work was designed to demonstrate and understand the pnp HBT. The research served as both an engineering challenge as well as an investigation of physical parameters governing the transport in the device. In order to remedy the poor collector contact available with buried p-GaN, a transformation diode HBT structure was introduced that added an n-type subcollector the HBT structure. This allowed for good collector contact at the cost of introducing an offset voltage to the HBT performance due to the turn-on voltage of the transformation diode under normal operation. The first transformation diode HBT in GaN was successful demonstrated. In order to improve the transformation diode performance, successive design iterations were performed to isolate the performance limiting elements. Device designs were implemented to mitigate saturated hole velocity, as well as to decrease base transit time through aggressive base scaling and compositional grading. Physical simulations and modelling of device non-idealities were used to understand actual device performance. Hole lifetime and saturated hole velocity were identified as primary contributors to lower than expected performance device performance. Successive device iterations yielded HBT performance of

  4. Review of using gallium nitride for ionizing radiation detection

    SciTech Connect

    Wang, Jinghui; Mulligan, Padhraic; Cao, Lei R.; Brillson, Leonard

    2015-09-15

    With the largest band gap energy of all commercial semiconductors, GaN has found wide application in the making of optoelectronic devices. It has also been used for photodetection such as solar blind imaging as well as ultraviolet and even X-ray detection. Unsurprisingly, the appreciable advantages of GaN over Si, amorphous silicon (a-Si:H), SiC, amorphous SiC (a-SiC), and GaAs, particularly for its radiation hardness, have drawn prompt attention from the physics, astronomy, and nuclear science and engineering communities alike, where semiconductors have traditionally been used for nuclear particle detection. Several investigations have established the usefulness of GaN for alpha detection, suggesting that when properly doped or coated with neutron sensitive materials, GaN could be turned into a neutron detection device. Work in this area is still early in its development, but GaN-based devices have already been shown to detect alpha particles, ultraviolet light, X-rays, electrons, and neutrons. Furthermore, the nuclear reaction presented by {sup 14}N(n,p){sup 14}C and various other threshold reactions indicates that GaN is intrinsically sensitive to neutrons. This review summarizes the state-of-the-art development of GaN detectors for detecting directly and indirectly ionizing radiation. Particular emphasis is given to GaN's radiation hardness under high-radiation fields.

  5. Spectroscopic characterization of radiation-induced defects in gallium nitride

    NASA Astrophysics Data System (ADS)

    Yang, Qing

    Radiation damage studies of GaN provide insights into the fundamental properties of the material as well as the basic knowledge needed to predict degradation of GaN-based devices in space-based applications or other radiation environments. The main interests are in investigating the properties of radiation-induced defects at the microscopic level and providing data to evaluate the radiation hardness of the material. Selective damage of the N-sublattice is achieved with 0.42 MeV electron irradiation. Two new luminescence lines at 3.4732 eV and 3.4545 eV are detected by time-resolved photoluminescence after irradiation. The two lines are associated with the ground state bound exciton of a new donor B1 and its two-electron transition. The donor binding energy of B1 is determined as 24.9 +/- 0.4 meV, shallower than the impurity donors ON and Si Ga. Among the possible defects, the nitrogen vacancy (VN) is the best candidate for the new donor B1. In addition, a change under focused 267 nm laser beam is observed at cryogenic temperatures in the excitonic luminescence of the irradiated sample. The donor bound exciton intensity of ON and SiGa, the total band edge luminescence intensity, and the luminescence decay lifetime of free and bound excitons all increase with laser exposure time. In contrast, the relative intensity of the B 1 bound exciton emission decreases. The change is not observed with below bandgap illumination. We propose that the light-induced change reflects the illumination-assisted dissociation of non-radiative defect complexes O N-Ni and SiGa-Ni, and subsequently the migration of Ni and at least partial annihilation of N i at VN. The new donor B1 bound exciton emission and the light-induced change starts to disappear at annealing temperature around 300°C, indicating the annihilation of the irradiation-induced vacancy and interstitial defects. An activation energy of 1.5 eV is obtained, which is proposed to be the sum of the dissociation energy of the ON

  6. Compatibility of ITER candidate structural materials with static gallium

    SciTech Connect

    Luebbers, P.R.; Michaud, W.F.; Chopra, O.K.

    1993-12-01

    Tests were conducted on the compatibility of gallium with candidate structural materials for the International Thermonuclear Experimental Reactor, e.g., Type 316 SS, Inconel 625, and Nb-5 Mo-1 Zr alloy, as well as Armco iron, Nickel 270, and pure chromium. Type 316 stainless steel is least resistant to corrosion in static gallium and Nb-5 Mo-1 Zr alloy is most resistant. At 400{degrees}C, corrosion rates are {approx}4.0, 0.5, and 0.03 mm/yr for type 316 SS, Inconel 625, and Nb-5 Mo- 1 Zr alloy, respectively. The pure metals react rapidly with gallium. In contrast to findings in earlier studies, pure iron shows greater corrosion than nickel. The corrosion rates at 400{degrees}C are {ge}88 and 18 mm/yr, respectively, for Armco iron and Nickel 270. The results indicate that at temperatures up to 400{degrees}C, corrosion occurs primarily by dissolution and is accompanied by formation of metal/gallium intermetallic compounds. The solubility data for pure metals and oxygen in gallium are reviewed. The physical, chemical, and radioactive properties of gallium are also presented. The supply and availability of gallium, as well as price predictions through the year 2020, are summarized.

  7. Two-dimensional dopant profiling of gallium nitride p-n junctions by scanning capacitance microscopy

    NASA Astrophysics Data System (ADS)

    Lamhamdi, M.; Cayrel, F.; Frayssinet, E.; Bazin, A. E.; Yvon, A.; Collard, E.; Cordier, Y.; Alquier, D.

    2016-04-01

    Two-dimensional imaging of dopant profiles for n and p-type regions are relevant for the development of new power semiconductors, especially for gallium nitride (GaN) for which classical profiling techniques are not adapted. This is a challenging task since it needs a technique with simultaneously good sensitivity, high spatial resolution and high dopant gradient resolution. To face these challenges, scanning capacitance microscopy combined with Atomic Force Microscopy is a good candidate, presenting reproducible results, as demonstrated in literature. In this work, we attempt to distinguish reliably and qualitatively the various doping concentrations and type at p-n and unipolar junctions. For both p-n and unipolar junctions three kinds of samples were prepared and measured separately. The space-charge region of the p-n metallurgical junction, giving rise to different contrasts under SCM imaging, is clearly observed, enlightening the interest of the SCM technique.

  8. Radiation and Thermal Cycling Effects on EPC1001 Gallium Nitride Power Transistors

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Scheick, Leif Z.; Lauenstein, Jean M.; Casey, Megan C.; Hammoud, Ahmad

    2012-01-01

    Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These include radiation, extreme temperatures, and thermal cycling, to name a few. Information pertaining to performance of electronic parts and systems under hostile environments is very scarce, especially for new devices. Such data is very critical so that proper design is implemented in order to ensure mission success and to mitigate risks associated with exposure of on-board systems to the operational environment. In this work, newly-developed enhancement-mode field effect transistors (FET) based on gallium nitride (GaN) technology were exposed to various particles of ionizing radiation and to long-term thermal cycling over a wide temperature range. Data obtained on control (un-irradiated) and irradiated samples of these power transistors are presented and the results are discussed.

  9. Positive focal shift of gallium nitride high contrast grating focusing reflectors

    NASA Astrophysics Data System (ADS)

    He, Shumin; Wang, Zhenhai; Liu, Qifa

    2016-09-01

    We design a type of metasurfaces capable of serving as a visible-light focusing reflector based on gallium nitride (GaN) high contrast gratings (HCGs). The wavefront of the reflected light is precisely manipulated by spatial variation of the grating periods along the subwavelength ridge array to achieve light focusing. Different from conventional negative focal shift effect, a positive focal shift is observed in such focusing reflectors. Detailed investigations of the influence of device size on the focusing performance, especially the focal length, are preformed via a finite element method . The results show that all performance parameters are greatly affected by the reflector size. A more concentrated focal point, or a better focusing capability, can be achieved by larger size. With increasing reflector size, the achieved focal length decreases and gradually approaches to the design, thus the corresponding positive focal shift decreases. Our results are helpful for understanding the visible-light control of the planar HCG-based focusing reflectors.

  10. Gallium Nitride Nanowires and Heterostructures: Toward Color-Tunable and White-Light Sources.

    PubMed

    Kuykendall, Tevye R; Schwartzberg, Adam M; Aloni, Shaul

    2015-10-14

    Gallium-nitride-based light-emitting diodes have enabled the commercialization of efficient solid-state lighting devices. Nonplanar nanomaterial architectures, such as nanowires and nanowire-based heterostructures, have the potential to significantly improve the performance of light-emitting devices through defect reduction, strain relaxation, and increased junction area. In addition, relaxation of internal strain caused by indium incorporation will facilitate pushing the emission wavelength into the red. This could eliminate inefficient phosphor conversion and enable color-tunable emission or white-light emission by combining blue, green, and red sources. Utilizing the waveguiding modes of the individual nanowires will further enhance light emission, and the properties of photonic structures formed by nanowire arrays can be implemented to improve light extraction. Recent advances in synthetic methods leading to better control over GaN and InGaN nanowire synthesis are described along with new concept devices leading to efficient white-light emission. PMID:26032973

  11. Gallium Nitride Nanowires and Heterostructures: Toward Color-Tunable and White-Light Sources.

    PubMed

    Kuykendall, Tevye R; Schwartzberg, Adam M; Aloni, Shaul

    2015-10-14

    Gallium-nitride-based light-emitting diodes have enabled the commercialization of efficient solid-state lighting devices. Nonplanar nanomaterial architectures, such as nanowires and nanowire-based heterostructures, have the potential to significantly improve the performance of light-emitting devices through defect reduction, strain relaxation, and increased junction area. In addition, relaxation of internal strain caused by indium incorporation will facilitate pushing the emission wavelength into the red. This could eliminate inefficient phosphor conversion and enable color-tunable emission or white-light emission by combining blue, green, and red sources. Utilizing the waveguiding modes of the individual nanowires will further enhance light emission, and the properties of photonic structures formed by nanowire arrays can be implemented to improve light extraction. Recent advances in synthetic methods leading to better control over GaN and InGaN nanowire synthesis are described along with new concept devices leading to efficient white-light emission.

  12. Imaging the p-n junction in a gallium nitride nanowire with a scanning microwave microscope

    SciTech Connect

    Imtiaz, Atif; Wallis, Thomas M.; Brubaker, Matt D.; Blanchard, Paul T.; Bertness, Kris A.; Sanford, Norman A.; Kabos, Pavel; Weber, Joel C.; Coakley, Kevin J.

    2014-06-30

    We used a broadband, atomic-force-microscope-based, scanning microwave microscope (SMM) to probe the axial dependence of the charge depletion in a p-n junction within a gallium nitride nanowire (NW). SMM enables the visualization of the p-n junction location without the need to make patterned electrical contacts to the NW. Spatially resolved measurements of S{sub 11}{sup ′}, which is the derivative of the RF reflection coefficient S{sub 11} with respect to voltage, varied strongly when probing axially along the NW and across the p-n junction. The axial variation in S{sub 11}{sup ′}  effectively mapped the asymmetric depletion arising from the doping concentrations on either side of the junction. Furthermore, variation of the probe tip voltage altered the apparent extent of features associated with the p-n junction in S{sub 11}{sup ′} images.

  13. On the effect of vacancy defect on the mechanical properties of gallium nitride nanosheets

    NASA Astrophysics Data System (ADS)

    Rouhi, Saeed

    2016-08-01

    Using molecular dynamics (MD) simulations, the influence of the vacancy defects on the mechanical properties of gallium nitride (GaN) nanosheets is investigated. Two types of defective nanosheets are studied. In one of them, only one atom is removed at the vacancies and in the other, the number of removed atoms is not limited. It is shown that GaN nanosheets with multiple vacancies have larger in-plane elastic modulus than nanosheets with single vacancies. Besides, the ultimate stress and strain of GaN nanosheets are computed. Compared to perfect nanosheet, a significant decrease is observed in the ultimate stress of GaN nanosheet with only 2% defect. By plotting the fracture evolution of nanosheets under uni-directional tensile loading, three different patterns are observed. Moreover, by using bi-directional tensile tests on the nanosheets, the bulk moduli of perfect and defective GaN nanosheets are computed.

  14. Design and Characterization of p-i-n Devices for Betavoltaic Microbatteries on Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Raziuddin A.

    Betavoltaic microbatteries convert nuclear energy released as beta particles directly into electrical energy. These batteries are well suited for electrical applications such as micro-electro-mechanical systems (MEMS), implantable medical devices and sensors. Such devices are often located in hard to access places where long life, micro-size and lightweight are required. The working principle of a betavoltaic device is similar to a photovoltaic device; they differ only in that the electron hole pairs (EHPs) are generated in the device by electrons instead of photons. In this study, the performance of a betavoltaic device fabricated from gallium nitride (GaN) is investigated for beta particle energies equivalent to Tritium (3H) and Nickel-63 (N63) beta sources. GaN is an attractive choice for fabricating betavoltaic devices due to its wide band gap and radiation resistance. Another advantage GaN has is that it can be alloyed with aluminum (Al) to further increase the bandgap, resulting in a higher output power and increased efficiency. Betavoltaic devices were fabricated on p-i-n GaN structures grown by metalorganic chemical vapor deposition (MOCVD). The devices were characterized using current - voltage (IV) measurements without illumination (light or beta), using a laser driven light source, and under an electron beam. Dark IV measurements showed a turn on-voltage of ~ 3.4 V, specific-on-resistance of 15.1 m O-cm2, and a leakage current of 0.5 mA at -- 10 V. A clear photo-response was observed when IV curves were measured for these devices under a light source at a wavelength of 310 nm (4.0 eV). These devices were tested under an electron beam in order to evaluate their behavior as betavoltaic microbatteries without using radioactive materials. Output power of 70 nW and 640 nW with overall efficiencies of 1.2% and 4.0% were determined at the average energy emission of 3H (5.6 keV) and 63N (17 keV) respectively.

  15. A hybrid density functional view of native vacancies in gallium nitride.

    PubMed

    Gillen, Roland; Robertson, John

    2013-10-01

    We investigated the transition energy levels of the vacancy defects in gallium nitride by means of a hybrid density functional theory approach (DFT). We show that, in contrast to predictions from a recent study on the level of purely local DFT, the inclusion of screened exchange stabilizes the triply positive charge state of the nitrogen vacancy for Fermi energies close to the valence band. On the other hand, the defect levels associated with the negative charge states of the nitrogen vacancy hybridize with the conduction band and turn out to be energetically unfavorable, except for high n-doping. For the gallium vacancy, the increased magnetic splitting between up-spin and down-spin bands due to stronger exchange interactions in sX-LDA pushes the defect levels deeper into the band gap and significantly increases the associated charge transition levels. Based on these results, we propose the ϵ(0| - 1) transition level as an alternative candidate for the yellow luminescence in GaN.

  16. Chemical exfoliation and optical characterization of threading-dislocation-free gallium-nitride ultrathin nanomembranes

    NASA Astrophysics Data System (ADS)

    ElAfandy, Rami T.; Majid, Mohammed A.; Ng, Tien Khee; Zhao, Lan; Cha, Dongkyu; Ooi, Boon S.

    2014-11-01

    Semiconductor nanostructures have generated tremendous scientific interests as well as practical applications stemming from the engineering of low dimensional physics phenomena. Unlike 0D and 1D nanostructures, such as quantum dots and nanowires, respectively, 2D structures, such as nanomembranes, are unrivalled in their scalability for high yield manufacture and are less challenging in handling with the current transfer techniques. Furthermore, due to their planar geometry, nanomembranes are compatible with the current complementary metal oxide semiconductor (CMOS) technology. Due to these superior characteristics, there are currently different techniques in exfoliating nanomembranes with different crystallinities, thicknesses and compositions. In this work we demonstrate a new facile technique of exfoliating gallium nitride (GaN) nanomembranes with novel features, namely with the non-radiative cores of their threading-dislocations (TDs) being etched away. The exfoliation process is based on engineering the gallium vacancy (VGa) density during the GaN epitaxial growth with subsequent preferential etching. Based on scanning and transmission electron microscopies, as well as micro-photoluminescence measurements, a model is proposed to uncover the physical processes underlying the formation of the nanomembranes. Raman measurements are also performed to reveal the internal strain within the nanomembranes. After transferring these freely suspended 25 nm thin GaN nanomembranes to other substrates, we demonstrate the temperature dependence of their bandgap by photoluminescence technique, in order to shed light on the internal carrier dynamics.

  17. Surface studies of gallium nitride quantum dots grown using droplet epitaxy on bulk, native substrates

    NASA Astrophysics Data System (ADS)

    Jones, Christina; Jeon, Sunyeol; Goldman, Rachel; Yacoby, Yizhak; Clarke, Roy

    Gallium nitride (GaN) and its applications in light-emitting diodes play an integral part in efficient, solid-state lighting, as evidenced by its recognition in the 2014 Nobel prize in physics. In order to push this technology towards higher efficiency and reliability and lower cost, we must understand device growth on bulk GaN substrates, which have lower defect densities and strain than template GaN substrates grown on sapphire. In this work, we present our findings on the surface properties of GaN quantum dots (QDs) grown on commercial bulk GaN. QDs are grown using the droplet epitaxy method and analyzed using a surface X-ray diffraction technique called Coherent Bragg Rod Analysis (COBRA), which uses phase retrieval to reconstruct atomic positions near the substrate surface. While several QD growth conditions in our study produce dense QDs, COBRA reveals that only low nitridation temperatures result in GaN QDs that are coherent with the bulk GaN substrate. Results are supported with atomic force microscopy and high-resolution transmission electron microscopy.

  18. Current status and scope of gallium nitride-based vertical transistors for high-power electronics application

    NASA Astrophysics Data System (ADS)

    Chowdhury, Srabanti; Swenson, Brian L.; Hoi Wong, Man; Mishra, Umesh K.

    2013-07-01

    Gallium nitride (GaN) is becoming the material of choice for power electronics to enable the roadmap of increasing power density by simultaneously enabling high-power conversion efficiency and reduced form factor. This is because the low switching losses of GaN enable high-frequency operation which reduces bulky passive components with negligible change in efficiency. Commercialization of GaN-on-Si materials for power electronics has led to the entry of GaN devices into the medium-power market since the performance-over-cost of even first-generation products looks very attractive compared to today's mature Si-based solutions. On the other hand, the high-power market still remains unaddressed by lateral GaN devices. The current and voltage demand for high-power conversion application makes the chip area in a lateral topology so large that it becomes difficult to manufacture. Vertical GaN devices would play a big role alongside silicon carbide (SiC) to address the high-power conversion needs. In this paper vertical GaN devices are discussed with emphasis on current aperture vertical electron transistors (CAVETs) which have shown promising performance. The fabrication-related challenges and the future possibilities enabled by the availability of good-quality, cost-competitive bulk GaN material are also evaluated for CAVETs. This work was done at Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA.

  19. In situ chemical functionalization of gallium nitride with phosphonic acid derivatives during etching.

    PubMed

    Wilkins, Stewart J; Greenough, Michelle; Arellano, Consuelo; Paskova, Tania; Ivanisevic, Albena

    2014-03-01

    In situ functionalization of polar (c plane) and nonpolar (a plane) gallium nitride (GaN) was performed by adding (3-bromopropyl) phosphonic acid or propyl phosphonic acid to a phosphoric acid etch. The target was to modulate the emission properties and oxide formation of GaN, which was explored through surface characterization with atomic force microscopy, X-ray photoelectron spectroscopy, photoluminescence (PL), inductively coupled plasma-mass spectrometry, and water contact angle. The use of (3-bromopropyl) phosphonic acid and propyl phosphonic acid in phosphoric acid demonstrated lower amounts of gallium oxide formation and greater hydrophobicity for both sample sets, while also improving PL emission of polar GaN samples. In addition to crystal orientation, growth-related factors such as defect density in bulk GaN versus thin GaN films residing on sapphire substrates were investigated as well as their responses to in situ functionalization. Thin nonpolar GaN layers were the most sensitive to etching treatments due in part to higher defect densities (stacking faults and threading dislocations), which accounts for large surface depressions. High-quality GaN (both free-standing bulk polar and bulk nonpolar) demonstrated increased sensitivity to oxide formation. Room-temperature PL stands out as an excellent technique to identify nonradiative recombination as observed in the spectra of heteroepitaxially grown GaN samples. The chemical methods applied to tune optical and physical properties of GaN provide a quantitative framework for future novel chemical and biochemical sensor development.

  20. Novel approach to the growth and characterization of aligned epitaxial gallium nitride nanowires

    NASA Astrophysics Data System (ADS)

    Henry, Tania Alicia

    Nanowire devices are potential building blocks for complex electronic circuitry, however, challenges such as in-place alignment, precise positioning and nanowire device integration need to be addressed. In this work selective area grown (SAG), micron sized gallium nitride (GaN) mesas were used as growth substrates for lateral epitaxial GaN nanowire arrays. The thermodynamically stable mesa facets provide a crystallographic match for directed nanowire synthesis by minimizing the surface energy at the interface between the nanowire and substrate Nanowires grow from the sidewalls of GaN mesas forming parallel and hexagonal networks. Alignment occurs in the nonpolar m-axis <10l0> and semipolar <10ll> directions respectively. Gallium nitride nanowires are interconnected between thermodynamically stable and smooth pyramidal (10ll) , and (1l22) surfaces of adjacent GaN mesas, and they also grow from a single mesa to form free-standing nanowire cantilevers. The synthesis of lateral free-standing nanowires has led to exciting studies of their structural, electrical, and optical properties. Characterization of the electrical properties is carried out by in situ probing of single nanowires on the growth substrate inside a scanning electron microscope (SEM). The current transport is found to be largely dominated by thermionic field emission and Fowler-Nordheim tunneling, and is significantly limited by a large contact resistance at the probe-nanowire interface. The carrier concentration and mobilities of the probed nanowires are extracted and are in agreement with standard field effects transistors (FETs) fabricated from nanowires grown using similar growth conditions. These results reveal that electrical probing of lateral GaN nanowires is a reliable means of characterizing their electrical properties once the interface resistance between the probe and nanowire is considered. The optical properties of the nanowires were investigated. Photon emission at 3.26 eV dominated the

  1. The effect of hydrogen-based, high density plasma etching on the electronic properties of gallium nitride

    SciTech Connect

    Eddy, C.R. Jr.; Molnar, B.

    1996-11-01

    Development of devices based on the wide gap semiconductor gallium nitride (GaN) requires the realization of reliable, high fidelity, low damage pattern transfer processes. In this work, GaN thin films grown by OMVPE have been subjected to both chlorine- and methane/hydrogen-based etch chemistries in an electron cyclotron resonance microwave plasma reactive ion etching system. Both n-type and semi-insulating thin films have been utilized to examine the effect of these etch processes on the electronic properties of the materials. The methane/hydrogen-based etch system (CH{sub 4}/H{sub 2}/Ar) induced considerable changes in the electrical properties of both n-type and semi-insulating films, causing the former to become more insulating and the latter to become conducting. In both cases, the original electrical properties were recoverable after a short, high temperature anneal. In the chlorine-based etching system (Cl{sub 2}), no changes in the electrical properties were observed and etch rates five times greater than in the methane/hydrogen-based system were achieved. Proposed mechanism responsible for the observed behavior will be discussed. These results show that pattern transfer processes based in chlorine etch chemistries are more suitable for the generation of high performance GaN devices.

  2. Basic Equations for the Modeling of Gallium Nitride (gan) High Electron Mobility Transistors (hemts)

    NASA Technical Reports Server (NTRS)

    Freeman, Jon C.

    2003-01-01

    Gallium nitride (GaN) is a most promising wide band-gap semiconductor for use in high-power microwave devices. It has functioned at 320 C, and higher values are well within theoretical limits. By combining four devices, 20 W has been developed at X-band. GaN High Electron Mobility Transistors (HEMTs) are unique in that the two-dimensional electron gas (2DEG) is supported not by intentional doping, but instead by polarization charge developed at the interface between the bulk GaN region and the AlGaN epitaxial layer. The polarization charge is composed of two parts: spontaneous and piezoelectric. This behavior is unlike other semiconductors, and for that reason, no commercially available modeling software exists. The theme of this document is to develop a self-consistent approach to developing the pertinent equations to be solved. A Space Act Agreement, "Effects in AlGaN/GaN HEMT Semiconductors" with Silvaco Data Systems to implement this approach into their existing software for III-V semiconductors, is in place (summer of 2002).

  3. Near-infrared electroluminescence at room temperature from neodymium-doped gallium nitride thin films

    SciTech Connect

    Kim, Joo Han; Holloway, Paul H.

    2004-09-06

    Strong near-infrared (NIR) electroluminescence (EL) at room temperature from neodymium (Nd)-doped gallium nitride (GaN) thin films is reported. The Nd-doped GaN films were grown by radio-frequency planar magnetron cosputtering of separate GaN and metallic Nd targets in a pure nitrogen ambient. X-ray diffraction data did not identify the presence of any secondary phases and revealed that the Nd-doped GaN films had a highly textured wurtzite crystal structure with the c-axis normal to the surface of the film. The EL devices were fabricated with a thin-film multilayered structure of Al/Nd-doped GaN/Al{sub 2}O{sub 3}-TiO{sub 2}/indium-tin oxide and tested at room temperate. Three distinct NIR EL emission peaks were observed from the devices at 905, 1082, and 1364 nm, arising from the radiative relaxation of the {sup 4}F{sub 3sol2} excited-state energy level to the {sup 4}I{sub 9sol2}, {sup 4}I{sub 11sol2}, and {sup 4}I{sub 13sol2} levels of the Nd{sup 3+} ion, respectively. The threshold voltage for all the three emission peaks was {approx}150 V. The external power efficiency of the fabricated EL devices was {approx}1x10{sup -5} measured at 40 V above the threshold voltage.

  4. In-situ multi-information measurement system for preparing gallium nitride photocathode

    NASA Astrophysics Data System (ADS)

    Fu, Xiao-Qian; Chang, Ben-Kang; Qian, Yun-Sheng; Zhang, Jun-Ju

    2012-03-01

    We introduce the first domestic in-situ multi-information measurement system for a gallium nitride (GaN) photocathode. This system can successfully fulfill heat cleaning and activation for GaN in an ultrahigh vacuum environment and produce a GaN photocathode with a negative electron affinity (NEA) status. Information including the heat cleaning temperature, vacuum degree, photocurrent, electric current of cesium source, oxygen source, and the most important information about the spectral response, or equivalently, the quantum efficiency (QE) can be obtained during preparation. The preparation of a GaN photocathode with this system indicates that the optimal heating temperature in a vacuum is about 700 °C. We also develop a method of quickly evaluating the atomically clean surface with the vacuum degree versus wavelength curve to prevent possible secondary contamination when the atomic level cleaning surface is tested with X-ray photoelectron spectroscopy. The photocurrent shows a quick enhancement when the current ratio between the cesium source and oxygen source is 1.025. The spectral response of the GaN photocathode is flat in a wavelength range from 240 nm to 365 nm, and an abrupt decline is observed at 365 nm, which demonstrates that with the in-situ multi-information measurement system the NEA GaN photocathode can be successfully prepared.

  5. Investigation of phonon modes in gallium nitride nanowires deposited by thermal CVD

    NASA Astrophysics Data System (ADS)

    Rizal, Umesh; Swain, Bhabani. S.; Swain, Bibhu. P.

    2016-04-01

    Gallium nitride nanowires (GaN-NWs) of diameters ranging from 20 to 80 nm were grown on the p-type Si substrate by Thermal Chemical Vapor Deposition (TCVD) using Iron (Fe) catalyst via VLS mechanism. Raman and FTIR spectra reveal the presence of broad transverse optic (TO) and longitudinal optic (LO) phonon peak spreads over 500-600 cm-1 and 720 cm-1 respectively. The detail deconvolution of integrated transverse and longitudinal phonon analysis reveals phonon confinement brought out by incorporation of hydrogen atom. The red shifts of TO and LO phonon peak position indicates nanosized effect. IA1(LO)/IA1(TO) increases from 0.073 to 1.0 and their respective fwhmA1(LO)/fwhmA1(TO) also increases from 0.71 to 1.31 with increasing H2 flow rate. E1(LO) - E1(TO) and A1(LO) - A1(TO) increases from 173.83 to 190.73 and 184.89 to 193.22 respectively. Apart from this usual TO and LO phonon, we have found Surface Optic (SO) phonon at 671 cm-1 in FTIR spectra. The intensity of PL peak increases with increasing H2 dilution reveals efficient passivation of defect centre at surface of GaN-NWs.

  6. Gas phase interactions with bare and gold nanoparticle decorated gallium nitride nanowires by ultraviolet photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Niraula, Ishwar; Kengne, Blaise-Alexis; McIlroy, David

    2012-02-01

    Ultraviolet photoelectron spectroscopy (UPS) has been used to characterize the interaction of CO and H2O with the surface of bare and gold nanoparticle (Au NP) decorated gallium nitride nanowires at 298 K, 77 K and 20 K. The average diameter of the Au NPs is 4.5 ± 0.5 nm and the average nanowire diameter is 105 ± 75 nm. CO and H2O do not bond to the surface of the bare GaN nanowires at 298K, 77K, or 20K. Temperature dependent UPS analysis reveals that CO and H2O weakly physisorbed to the Au NP decorated GaN nanowires with heats of adsorption of 4.37 ± 0.03 meV and 1.25 ± 0.04 meV , respectively. The adsorption at 298K of 50 Langmuir of CO followed by 50 Langmuir of H2O showed that CO adsorption promotes H2O adsorption, while 50 Langmuir of H2O followed by 50 Langmuir of CO showed that H2O inhibits CO adsorption. The findings of this study that the adsorption of H2O inhibits CO adsorption onto the Au NP-GaN nanowires explains previous studies of the gas sensing properties of mats of Au NP- GaN nanowires.

  7. Defect Reduction in Semi-Polar (11bar 22) Gallium Nitride Grown Using Epitaxial Lateral Overgrowth

    NASA Astrophysics Data System (ADS)

    Zhu, Tongtong; Sutherland, Danny; Badcock, Tom J.; Hao, Rui; Moram, Michelle A.; Dawson, Philip; Kappers, Menno J.; Oliver, Rachel A.

    2013-08-01

    We report on the characterization of semi-polar (11bar 22) gallium nitride (GaN) films grown on m-plane (1bar 100) sapphire by an asymmetric epitaxial lateral overgrowth (ELOG) process first reported by de Mierry et al. [Appl. Phys. Lett. 94 (2009) 191903]. The overgrowth conditions were engineered to greatly enhance the growth rate along the [0001] direction, which combined with the inclination of the [0001] axis from the film surface at ˜32°, allowing a low defect density wing to overgrow the highly defective window region and thus eliminating basal plane stacking faults (BSFs). By correlating cross-sectional transmission electron microscopy and cathodoluminescence data, we confirm that BSFs and dislocations are terminated by the coalescence boundary formed as a result of the overgrowth anisotropy. Low temperature photoluminescence spectra reveal a strong GaN emission at 3.485 eV associated with donor-bound exciton recombination and very small BSF-related emission at 3.425 eV. The intensity ratio between the GaN bound exciton and the BSF emission is ˜220, which is four orders of magnitude greater than that of the semi-polar seed layer. Scanning capacitance microscopy data showed that almost the entire film is unintentionally n-type. The impurity incorporation rate is strongly dependent on which crystallographic planes are present during different stages of the ELOG process.

  8. Epitaxial Deposition of Low-Defect Aluminum Nitride and Aluminum Gallium Nitride Films

    NASA Astrophysics Data System (ADS)

    Jain, Rakesh

    The bjective of my research was to develop low-defect AlN and AlGaN templates to enable pseudo-homoepitaxial deposition of UV-LEDs. Two approaches have been used to achieve this objective. Firstly, hydride vapor phase epitaxy (HVPE) process was used to prepare thick AlN films with lower defect density. Interactions of dislocations in thicker films result in their annihilation. Secondly, since thick films grown on sapphire tend to crack beyond a critical thickness (3-5 mum), epitaxial lateral overgrowth (ELOG) approach was employed to eliminate cracking and to further reduce the defect density. The growth technique was switched from HVPE to Metalorganic chemical vapor deposition (MOCVD) due to much improved material quality with the later method. An HVPE growth system was first designed and constructed from ground up [1]. It is a vertical system with a quartz chamber and a resistively heated furnace. AlCl3 and NH3 were used as the precursors. AlCl3 was generated by passing HCl gas (diluted with H2) through Al metal source. A linear relationship between growth rate and HCl flow rate indicated that the growth rate is limited by mass transportation. Growth parameters including temperature, chamber pressure and V/III ratio were optimized to improve the film quality. Thick films of AlN with thicknesses exceeding 25 mum were grown with growth rates as high as 20 mum/hr [2]. AFM study revealed that surface roughness of HVPE grown AlN films strongly depends on the growth rate. The lowest RMS roughness for HVPE grown film was 1.9 nm. These films had typical (002) full-width at half maximum (FWHM) values ranging from 24 -- 400 arcsec, depending on the growth rate of the respective films. The crystalline quality of the films was also found to be deteriorating as the growth rate increased. It is inferred that the growth mode changes from two dimensional to three dimensional at higher growth rates due to reduced adatom migration length. PL spectrum exhibited near-band-edge (NBE

  9. Irradiation effects of graphene-enhanced gallium nitride (GaN) metal-semiconductor-metal (MSM) ultraviolet photodetectors

    NASA Astrophysics Data System (ADS)

    Chiamori, Heather C.; Miller, Ruth; Suria, Ateeq; Broad, Nicholas; Senesky, Debbie G.

    2015-05-01

    Ultraviolet (UV) photodetectors are used for applications such as flame detection, space navigation, biomedical and environmental monitoring. Robust operation within large ranges of temperatures, radiation, salinity and/or corrosive chemicals require sensor materials with the ability to withstand and function reliably within these extreme harsh environments. For example, spacecraft can utilize a sun sensor (light-based sensor) to assist with determination of orientation and may be exposed to both ionizing radiation and extreme temperature swings during operation. Gallium nitride (GaN), a wide bandgap semiconductor material, has material properties enabling visible-blindness, tunable cutoff wavelength selection based on ternary alloy mole fraction, high current density, thermal/chemical stability and high radiation tolerance due to the strength of the chemical bond. Graphene, with outstanding electrical, optical and mechanical properties and a flat absorption spectrum from 300 to 2,500 nm, has potential use as a transparent conductor for GaN-based metal-semiconductor-metal (MSM) photodetectors. Here, graphene-enhanced MSM UV photodetectors are fabricated with transparent and conductive graphene interdigitated electrodes on thin film GaN-on-sapphire substrates serving as back-to-back Schottky contacts. We report on the irradiation response of graphene/GaN-based MSM UV photodetectors up to 750 krad total ionizing dose (TID) then tested under dark and UV light (365 nm) conditions. In addition, based on current-voltage measurements from 75 krad to 750 krad TID, calculated photodetector responsivity values change slightly by 25% and 11% at -5 V and -2 V, respectively. These initial findings suggest that graphene/GaN MSM UV photodetectors could potentially be engineered to reliably operate within radiation environments.

  10. Mirowave annealing of silicon nitride materials

    SciTech Connect

    Kiggans, J.O. Jr.; Montgomery, F.C.; Tiegs, T.N.

    1997-08-01

    Dense silicon nitride-based ceramics were microwave annealed to determine if microwave heating offers advantages over conventional heating for the enhancement of the high temperature creep resistance. Gas pressure sintered silicon nitride (GPS-SN) and sintered reaction-bonded silicon nitride (SRBSN) were heated in microwave or graphite element furnaces at 1150{degrees}C and 1600{degrees}C. Annealed materials were characterized for the room and high temperature flexural strengths, room temperature fracture toughness values, and high temperature creep properties. In addition, SEM analyses were performed to study grain growth and other microstructural changes. The results of this study showed that both types of furnace anneals at 1150{degrees}C lowered the room temperature strength and toughness values of both SRBSN and GPS-SN materials; however, the anneal treatments at 1600{degrees}C had little effect on the room temperature properties. Both the SRBSN and GPS-SN control and annealed samples had reduced high temperature fast fracture strengths, when compared to the room temperature strengths. Creep tests at 1200{degrees}C indicated that both the SRBSN and the GPS-SN materials that were annealed by microwave heating at I 150{degrees}C for 20 h showed enhanced creep resistance, when compared to unheated controls and conventionally heated materials. No qualitative differences were seen in the microstructures of the SRBSN and the GPS-SN materials which could account for the differences in the creep properties of the annealed materials. Additional experimental work is in progress to further understand the mechanisms for the enhanced creep properties of silicon nitride materials annealed by microwave heating.

  11. A Monolithically Integrated Gallium Nitride Nanowire/Silicon Solar Cell Photocathode for Selective Carbon Dioxide Reduction to Methane.

    PubMed

    Wang, Yichen; Fan, Shizhao; AlOtaibi, Bandar; Wang, Yongjie; Li, Lu; Mi, Zetian

    2016-06-20

    A gallium nitride nanowire/silicon solar cell photocathode for the photoreduction of carbon dioxide (CO2 ) is demonstrated. Such a monolithically integrated nanowire/solar cell photocathode offers several unique advantages, including the absorption of a large part of the solar spectrum and highly efficient carrier extraction. With the incorporation of copper as the co-catalyst, the devices exhibit a Faradaic efficiency of about 19 % for the 8e(-) photoreduction to CH4 at -1.4 V vs Ag/AgCl, a value that is more than thirty times higher than that for the 2e(-) reduced CO (ca. 0.6 %). PMID:27128407

  12. A Monolithically Integrated Gallium Nitride Nanowire/Silicon Solar Cell Photocathode for Selective Carbon Dioxide Reduction to Methane.

    PubMed

    Wang, Yichen; Fan, Shizhao; AlOtaibi, Bandar; Wang, Yongjie; Li, Lu; Mi, Zetian

    2016-06-20

    A gallium nitride nanowire/silicon solar cell photocathode for the photoreduction of carbon dioxide (CO2 ) is demonstrated. Such a monolithically integrated nanowire/solar cell photocathode offers several unique advantages, including the absorption of a large part of the solar spectrum and highly efficient carrier extraction. With the incorporation of copper as the co-catalyst, the devices exhibit a Faradaic efficiency of about 19 % for the 8e(-) photoreduction to CH4 at -1.4 V vs Ag/AgCl, a value that is more than thirty times higher than that for the 2e(-) reduced CO (ca. 0.6 %).

  13. Electron-phonon relaxation and excited electron distribution in gallium nitride

    NASA Astrophysics Data System (ADS)

    Zhukov, V. P.; Tyuterev, V. G.; Chulkov, E. V.; Echenique, P. M.

    2016-08-01

    We develop a theory of energy relaxation in semiconductors and insulators highly excited by the long-acting external irradiation. We derive the equation for the non-equilibrium distribution function of excited electrons. The solution for this function breaks up into the sum of two contributions. The low-energy contribution is concentrated in a narrow range near the bottom of the conduction band. It has the typical form of a Fermi distribution with an effective temperature and chemical potential. The effective temperature and chemical potential in this low-energy term are determined by the intensity of carriers' generation, the speed of electron-phonon relaxation, rates of inter-band recombination, and electron capture on the defects. In addition, there is a substantial high-energy correction. This high-energy "tail" largely covers the conduction band. The shape of the high-energy "tail" strongly depends on the rate of electron-phonon relaxation but does not depend on the rates of recombination and trapping. We apply the theory to the calculation of a non-equilibrium distribution of electrons in an irradiated GaN. Probabilities of optical excitations from the valence to conduction band and electron-phonon coupling probabilities in GaN were calculated by the density functional perturbation theory. Our calculation of both parts of distribution function in gallium nitride shows that when the speed of the electron-phonon scattering is comparable with the rate of recombination and trapping then the contribution of the non-Fermi "tail" is comparable with that of the low-energy Fermi-like component. So the high-energy contribution can essentially affect the charge transport in the irradiated and highly doped semiconductors.

  14. Vertical 2D/3D Semiconductor Heterostructures Based on Epitaxial Molybdenum Disulfide and Gallium Nitride.

    PubMed

    Ruzmetov, Dmitry; Zhang, Kehao; Stan, Gheorghe; Kalanyan, Berc; Bhimanapati, Ganesh R; Eichfeld, Sarah M; Burke, Robert A; Shah, Pankaj B; O'Regan, Terrance P; Crowne, Frank J; Birdwell, A Glen; Robinson, Joshua A; Davydov, Albert V; Ivanov, Tony G

    2016-03-22

    When designing semiconductor heterostructures, it is expected that epitaxial alignment will facilitate low-defect interfaces and efficient vertical transport. Here, we report lattice-matched epitaxial growth of molybdenum disulfide (MoS2) directly on gallium nitride (GaN), resulting in high-quality, unstrained, single-layer MoS2 with strict registry to the GaN lattice. These results present a promising path toward the implementation of high-performance electronic devices based on 2D/3D vertical heterostructures, where each of the 3D and 2D semiconductors is both a template for subsequent epitaxial growth and an active component of the device. The MoS2 monolayer triangles average 1 μm along each side, with monolayer blankets (merged triangles) exhibiting properties similar to that of single-crystal MoS2 sheets. Photoluminescence, Raman, atomic force microscopy, and X-ray photoelectron spectroscopy analyses identified monolayer MoS2 with a prominent 20-fold enhancement of photoluminescence in the center regions of larger triangles. The MoS2/GaN structures are shown to electrically conduct in the out-of-plane direction, confirming the potential of directly synthesized 2D/3D semiconductor heterostructures for vertical current flow. Finally, we estimate a MoS2/GaN contact resistivity to be less than 4 Ω·cm(2) and current spreading in the MoS2 monolayer of approximately 1 μm in diameter. PMID:26866442

  15. Vertical 2D/3D Semiconductor Heterostructures Based on Epitaxial Molybdenum Disulfide and Gallium Nitride.

    PubMed

    Ruzmetov, Dmitry; Zhang, Kehao; Stan, Gheorghe; Kalanyan, Berc; Bhimanapati, Ganesh R; Eichfeld, Sarah M; Burke, Robert A; Shah, Pankaj B; O'Regan, Terrance P; Crowne, Frank J; Birdwell, A Glen; Robinson, Joshua A; Davydov, Albert V; Ivanov, Tony G

    2016-03-22

    When designing semiconductor heterostructures, it is expected that epitaxial alignment will facilitate low-defect interfaces and efficient vertical transport. Here, we report lattice-matched epitaxial growth of molybdenum disulfide (MoS2) directly on gallium nitride (GaN), resulting in high-quality, unstrained, single-layer MoS2 with strict registry to the GaN lattice. These results present a promising path toward the implementation of high-performance electronic devices based on 2D/3D vertical heterostructures, where each of the 3D and 2D semiconductors is both a template for subsequent epitaxial growth and an active component of the device. The MoS2 monolayer triangles average 1 μm along each side, with monolayer blankets (merged triangles) exhibiting properties similar to that of single-crystal MoS2 sheets. Photoluminescence, Raman, atomic force microscopy, and X-ray photoelectron spectroscopy analyses identified monolayer MoS2 with a prominent 20-fold enhancement of photoluminescence in the center regions of larger triangles. The MoS2/GaN structures are shown to electrically conduct in the out-of-plane direction, confirming the potential of directly synthesized 2D/3D semiconductor heterostructures for vertical current flow. Finally, we estimate a MoS2/GaN contact resistivity to be less than 4 Ω·cm(2) and current spreading in the MoS2 monolayer of approximately 1 μm in diameter.

  16. Synthesis, characterization, growth mechanism, photoluminescence and field emission properties of novel dandelion-like gallium nitride

    NASA Astrophysics Data System (ADS)

    Nabi, Ghulam; Cao, Chuanbao; Khan, Waheed S.; Hussain, Sajad; Usman, Zahid; Safdar, Muhammad; Shah, Sajjad Hussain; Khattak, Noor Abass Din

    2011-09-01

    Dandelion-like gallium nitride (GaN) microstructures were successfully synthesized via Ni catalyst assisted chemical vapor deposition method at 1200 °C under NH3 atmosphere by pre-treating precursors with aqueous ammonia. The as-synthesized product was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). X-ray diffraction analysis revealed that as-synthesized dandelion-like GaN was pure and has hexagonal wurtzite structure. SEM results showed that the size of the dandelion-like GaN structure was in the range of 30-60 μm. Dandelion-like GaN microstructures exhibited reasonable field emission properties with the turn-on field of 9.65 V μm-1 (0.01 mA cm-2) and threshold field of 11.35 V μm-1 (1 mA cm-2) which is sufficient for applications of electron emission devices, field emission displays and vacuum micro electronic devices. Optical properties were studied at room temperature by using fluorescence spectrophotometer. Photoluminescence (PL) measurements of dandelion-like GaN showed a strong near-band-edge emission at 370.2 nm (3.35 eV) with blue band emission at 450.4 nm (2.75 eV) and 465.2 nm (2.66 eV) but with out yellow band emission. The room-temperature photoluminescence properties showed that it has also potential application in light-emitting devices. The tentative growth mechanism for the growth of dandelion-like GaN was also described.

  17. Self-Consistent Calculation of the correct Band-Gap and Low Energy Conduction Bands in Gallium-Nitride

    NASA Astrophysics Data System (ADS)

    Zhao, G. L.; Bagayoko, D.; Fan, J. D.

    1998-03-01

    The III-V nitrides are viewed as new semiconductors for optoelectronic applications in the blue and UV wavelengths and, more recently, as high-power, high-temperature electronic devices. However, a reliable prediction of the band gap and the low energy conduction bands had, until now, remained a problem in ab initio computations. A spurious effect of the variational procedure and of basis sets is shown to be a source of this problem. We present first principle computational steps that avoid this effect. We applied our new approach to calculate the electronic structure of III-V gallium-nitride using a local density approximation (LDA) for the exchange-correlation potential. Our calculated electronic structure and band gap, for an optimum basis set, agree qualitatively and quantitatively with experiment. *Work supported in part by funding from the Department of the Navy, Office of Naval Research (ONR), and from the Physics Graduate Program at Southern University and A & M College.

  18. Non-Ideal Properties of Gallium Nitride Based Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Shan, Qifeng

    The spectacular development of gallium nitride (GaN) based light-emitting diodes (LEDs) in recent years foreshadows a new era for lighting. There are still several non-ideal properties of GaN based LEDs that hinder their widespread applications. This dissertation studies these non-ideal properties including the large reverse leakage current, large subthreshold forward leakage current, an undesired parasitic cyan luminescence and high-concentration deep levels in GaInN blue LEDs. This dissertation also studies the thermal properties of GaInN LEDs. Chapter 1 gives a brief introduction of non-ideal properties of GaN based LEDs. The leakage current of GaN based LEDs, defects in epitaxially grown GaN devices, and doping problems of p-type GaN materials are discussed. The transient junction temperature measurement technique for GaN based LEDs is introduced. The leakage current of an LED includes the subthreshold forward leakage current and the reverse leakage current. The leakage current of GaN based LEDs affects the reliability, electrostatic discharge resilience, and sub-threshold power consumption. In Chapter 2, the reverse leakage current of a GaInN LED is analyzed by temperaturedependent current-voltage measurements. At low temperature, the reverse leakage current is attributed to the variable-range-hopping conduction. At high temperature, the reverse leakage current is attributed to a thermally-assisted multi-step tunneling. The thermal activation energies (95 meV ~ 162 meV), extracted from the Arrhenius plot for the reverse current in the high-temperature range, indicate a thermally activated tunneling process. Additional room-temperature capacitance-voltage (C-V) measurements are performed to obtain information on the depletion width and doping concentration of the LED. The average internal electric field is estimated by the C-V measurements. The strong internal electric field enhances the thermal emission of electrons in the

  19. Non-Ideal Properties of Gallium Nitride Based Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Shan, Qifeng

    The spectacular development of gallium nitride (GaN) based light-emitting diodes (LEDs) in recent years foreshadows a new era for lighting. There are still several non-ideal properties of GaN based LEDs that hinder their widespread applications. This dissertation studies these non-ideal properties including the large reverse leakage current, large subthreshold forward leakage current, an undesired parasitic cyan luminescence and high-concentration deep levels in GaInN blue LEDs. This dissertation also studies the thermal properties of GaInN LEDs. Chapter 1 gives a brief introduction of non-ideal properties of GaN based LEDs. The leakage current of GaN based LEDs, defects in epitaxially grown GaN devices, and doping problems of p-type GaN materials are discussed. The transient junction temperature measurement technique for GaN based LEDs is introduced. The leakage current of an LED includes the subthreshold forward leakage current and the reverse leakage current. The leakage current of GaN based LEDs affects the reliability, electrostatic discharge resilience, and sub-threshold power consumption. In Chapter 2, the reverse leakage current of a GaInN LED is analyzed by temperaturedependent current-voltage measurements. At low temperature, the reverse leakage current is attributed to the variable-range-hopping conduction. At high temperature, the reverse leakage current is attributed to a thermally-assisted multi-step tunneling. The thermal activation energies (95 meV ~ 162 meV), extracted from the Arrhenius plot for the reverse current in the high-temperature range, indicate a thermally activated tunneling process. Additional room-temperature capacitance-voltage (C-V) measurements are performed to obtain information on the depletion width and doping concentration of the LED. The average internal electric field is estimated by the C-V measurements. The strong internal electric field enhances the thermal emission of electrons in the

  20. The effect of gallium nitride on long-term culture induced aging of neuritic function in cerebellar granule cells.

    PubMed

    Chen, Chi-Ruei; Young, Tai-Horng

    2008-04-01

    Gallium nitride (GaN) has been developed for a variety of microelectronic and optical applications due to its unique electric property and chemical stability. In the present study, n-type and p-type GaN were used as substrates to culture cerebellar granule neurons to examine the effect of GaN on cell response for a long-term culture period. It was found that GaN could rapidly induce cultured neurons to exhibit a high phosphorylated Akt level after 20h of incubation. It was assumed that the anti-apoptotic effect of Akt phosphorylation could be correlated with cell survival, neurite growth and neuronal function for up to 35 days of incubation. Morphological studies showed GaN induced larger neuronal aggregates and neurite fasciculation to exhibit a dense fiber network after 8 days of incubation. Western blot analysis and immunocytochemical characterization showed that GaN still exhibited the expression of neurite growth and function, such as high levels of GAP-43, synapsin I and synaptophysin even after 35 days of incubation. In addition, survival of cerebellar granule neurons on GaN was improved by the analysis of lactate dehydrogenase (LDH) release from damaged cells. These results indicated that neuronal connections were formed on GaN by a gradual process from Akt activation and cell aggregation to develop neurite growth, fasciculation and function. Therefore, GaN offers a good model system to identify a well-characterized pattern of neuronal behavior for a long-term culture period, consistent with the development of a neurochip requiring the integration of biological system and semiconductor material.

  1. Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting.

    PubMed

    Kibria, M G; Zhao, S; Chowdhury, F A; Wang, Q; Nguyen, H P T; Trudeau, M L; Guo, H; Mi, Z

    2014-04-30

    Solar water splitting is one of the key steps in artificial photosynthesis for future carbon-neutral, storable and sustainable source of energy. Here we show that one of the major obstacles for achieving efficient and stable overall water splitting over the emerging nanostructured photocatalyst is directly related to the uncontrolled surface charge properties. By tuning the Fermi level on the nonpolar surfaces of gallium nitride nanowire arrays, we demonstrate that the quantum efficiency can be enhanced by more than two orders of magnitude. The internal quantum efficiency and activity on p-type gallium nitride nanowires can reach ~51% and ~4.0 mol hydrogen h(-1) g(-1), respectively. The nanowires remain virtually unchanged after over 50,000 μmol gas (hydrogen and oxygen) is produced, which is more than 10,000 times the amount of photocatalyst itself (~4.6 μmol). The essential role of Fermi-level tuning in balancing redox reactions and in enhancing the efficiency and stability is also elucidated.

  2. Reliability of two sintered silicon nitride materials

    NASA Technical Reports Server (NTRS)

    Mieskowski, D. M.; Sanders, W. A.; Pierce, L. A.

    1985-01-01

    Two types of sintered silicon nitride were evaluated in terms of reliability: an experimental high pressure nitrogen sintered material and a commercial material. The results show wide variations in strength for both materials. The Weibull moduli were 5.5, 8.9, and 11 for the experimental material at room temperature, 1200, and 1370 C, respectively. The commercial material showed Weibull moduli of 9.0, 8.6, and 8.9 at these respective temperatures. No correlation between strength and flaw size was noted for the experimental material. The applicability of the Weibull and Griffith theories to processing defects on the order of 100 microns or less in size are discussed.

  3. Epitaxial growth of III-V nitrides and phase separation and ordering in indium gallium nitride alloys

    NASA Astrophysics Data System (ADS)

    Doppalapudi, Dharanipal

    The family of III-V nitrides are wide band-gap semiconductors with a broad range of opto-electronic applications in LEDs, laser diodes, UV detectors as well as high temperature/high frequency devices. Due to the lack of good quality native substrates, GaN is grown on foreign substrates that have a lattice and thermal mismatch with GaN. This results in a material with a high density of defects, which in turn adversely affects the opto-electronic properties of the epilayer. In this study, GaN films were epitaxially grown on various substrates (C-plane sapphire, A-plane sapphire, SiC and ZnO) by molecular beam epitaxy. Additionally, GaN homoepitaxy onto laterally overgrown thick GaN substrates was investigated. It was demonstrated that the polarity of the GaN film plays a major role in determining the properties of the films. The growth parameters were optimized to eliminate inversion domain boundaries, which result in domains of opposite polarity in the GaN lattice. For growth on A-plane sapphire, it was found that substrate nitridation and low temperature buffer deposition are critical in order to obtain good epitaxial growth, in spite of the relatively small mismatch between the film and substrate. A crystallographic model was developed to explain this observation. By optimizing growth parameters, GaN films with excellent structural, transport, optical and device properties were grown. The second part of this research involves growth of ternary alloys and superlattice structures, which are essential in the fabrication of many devices. It was found that the InN-GaN pseudo-binary system is not homogeneous over the entire composition range. Due to the mismatch between the tetrahedral radii of GaN and InN, InGaN alloys exhibited phase separation and long-range atomic ordering. Investigations of InxGa1-xN films grown over a wide range of compositions by XRD and TEM showed that the predominant strain relieving mechanism was phase separation in films with x > 0.2, and

  4. Magnesium-doped gallium nitride for electronic and optoelectronic device applications

    NASA Astrophysics Data System (ADS)

    Kozodoy, Peter

    1999-11-01

    Magnesium doping of gallium nitride (GaN) for p-type conductivity is a crucial technology for a host of optoelectronic and electronic device applications. The performance of many of these devices is presently limited by the various difficulties associated with Mg doping, both fundamental (such as the deep nature of the Mg acceptor) and technological (such as the problems in forming ohmic contacts). Both types of issues are addressed in this work. Heavy doping effects have been investigated in order to understand the consequences of the high dopant concentration typically employed; increased compensation and a reduction in the acceptor binding energy are among the effects observed. The compensation level is believed to limit the hole mobility in these films, and is found to depend on the choice of growth conditions; the results point to nitrogen vacancies as a likely candidate for one of the compensating donor species. The optimization of various processing procedures has also been addressed. These include the annealing procedure used to remove the hydrogen passivation as well as ohmic contact recipes. In addition, the electrical effects of plasma-induced damage to the p-type GaN surface are investigated; these effects are particularly important for bipolar transistor applications where a plasma etch is needed in order to reveal the base layer. The electrical characteristics of GaN p-n junctions formed both with and without dislocations are compared using the lateral epitaxial overgrowth technique; the dislocations are found to be the dominant leakage path in reverse-bias operation. The electrical consequences of the deep Mg acceptor are also addressed. These include the unusual nature of the low-frequency depletion region, and dispersion in the high-frequency depletion region due to the finite response time of the Mg acceptor. Finally, a novel scheme is presented that uses the strong polarization fields present in AlGaN/GaN superlattices to enhance the doping

  5. White light-emitting diodes based on nonpolar and semipolar gallium nitride orientations

    NASA Astrophysics Data System (ADS)

    Demille, Natalie Fellows

    Gallium nitride has become one of the key components when fabricating white light-emitting diodes. Its use as the blue source in conjunction with a wavelength converter such as the yellow emitting phosphor YAG:Ce 3+ is a technology that is commercially available and usable for solid state lighting applications. Currently available white phosphor-based LEDs (pcLEDs) use the basal plane of wurtzite GaN as their source. Although research over the past couple decades has developed this technology into devices with good photometric performance and high reliability, the introduction of nonbasal plane wurtzite GaN orientations have benefits over basal plane GaN that can be incorporated into the white LED. The focus of this research deals with exploring white illumination on nonpolar and semipolar planes of GaN. Light extraction techniques will be described that allowed for high output powers and efficiencies on the c-plane as well as the (1100), (10 11), and (1122) planes of GaN. With higher performing devices, white pcLEDs were fabricated on c-plane, m-plane, and the (1011) semipolar plane. The novelty in the present research is producing white LEDs with nonbasal plane diodes which exhibit optical polarization anisotropy. This feature, absent on the basal plane, allows for tuning photometric quantities both electrically and optically. This is demonstrated on pcLEDs as well as dichromatic LEDs comprised solely of InGaN diodes. As a consequence of these measurements, an apparent optical polarization was seen to be occurring in the luminescence of the YAG:Ce3+ when the system absorbed linearly polarized light. Polarized emission in YAG:Ce3+ was explored by obtaining single crystals of YAG:Ce3+ with different planar orientations. The experiments led to the conclusion that crystal orientation plays no part in the optical polarization. It is suggested that the cause is a result of electric dipole transitions given by various selection rules between the Ce 3+ ion's 4f and 5d

  6. Physical mechanisms affecting hot carrier-induced degradation in gallium nitride HEMTs

    NASA Astrophysics Data System (ADS)

    Mukherjee, Shubhajit

    Gallium Nitride or GaN-based high electron mobility transistors (HEMTs) is currently the most promising device technology in several key military and civilian applications due to excellent high-power as well as high-frequency performance. Even though the performance figures are outstanding, GaN-based HEMTs are not as mature as some competing technologies, which means that establishing the reliability of the technology is important to enable use in critical applications. The objective of this research is to understand the physical mechanisms affecting the reliability of GaN HEMTs at moderate drain biases (typically VDS < 30 V in the devices considered here). The degradation in device performance is believed to be due to the formation or modification of charged defects near the interface by hydrogen depassivation processes (due to electron-activated hydrogen removal) from energetic carriers. A rate-equation describing the defect generation process is formulated based on this assumption. A combination of ensemble Monte-Carlo (EMC) simulation statistics, ab-initio density functional theory (DFT) calculations, and accelerated stress experiments is used to relate the candidate defects to the overall degradation behavior (VT and gm). The focus of this work is on the 'semi-ON' mode of transistor operation in which the degradation is usually observed to be at its highest. This semi-ON state is reasonably close to the biasing region of class-AB high power amplifiers, which are popular because of the combination of high efficiency and low distortion that is associated with this configuration. The carrier-energy distributions are obtained using an EMC simulator that was developed specifically for III-V HFETs. The rate equation is used to model the degradation at different operating conditions as well as longer stress times from the result of one short duration stress test, by utilizing the carrier-energy distribution obtained from EMC simulations for one baseline condition

  7. Boron nitride coatings and materials for use in aggressive environments

    SciTech Connect

    Besmann, T.M.; Lee, W.Y.; Young, J.P.; Xiao, H.

    1997-12-31

    Boron nitride coatings and structures have demonstrated significant resistance to many corrosive environments. These coatings may have application in the protection of sensors needed for measuring a variety of properties such as temperature and chemistry. In addition, boron nitride materials may offer advantages as structural materials in high temperature materials processing. In this study, BN is assessed for use in aluminum smelting.

  8. Size effects in the thermal conductivity of gallium oxide (β-Ga2O3) films grown via open-atmosphere annealing of gallium nitride

    NASA Astrophysics Data System (ADS)

    Szwejkowski, Chester J.; Creange, Nicole C.; Sun, Kai; Giri, Ashutosh; Donovan, Brian F.; Constantin, Costel; Hopkins, Patrick E.

    2015-02-01

    Gallium nitride (GaN) is a widely used semiconductor for high frequency and high power devices due to of its unique electrical properties: a wide band gap, high breakdown field, and high electron mobility. However, thermal management has become a limiting factor regarding efficiency, lifetime, and advancement of GaN devices and GaN-based applications. In this work, we study the thermal conductivity of beta-phase gallium oxide (β-Ga2O3) thin films, a component of typical gate oxides used in such devices. We use time domain thermoreflectance to measure the thermal conductivity of a variety of polycrystalline β-Ga2O3 films of different thicknesses grown via open atmosphere annealing of the surfaces of GaN films on sapphire substrates. We show that the measured effective thermal conductivity of these β-Ga2O3 films can span 1.5 orders of magnitude, increasing with an increased film thickness, which is indicative of the relatively large intrinsic thermal conductivity of the β-Ga2O3 grown via this technique (8.8 ± 3.4 W m-1 K-1) and large mean free paths compared to typical gate dielectrics commonly used in GaN device contacts. By conducting time domain thermoreflectance (TDTR) measurements with different metal transducers (Al, Au, and Au with a Ti wetting layer), we attribute this variation in effective thermal conductivity to a combination of size effects in the β-Ga2O3 film resulting from phonon scattering at the β-Ga2O3/GaN interface and thermal transport across the β-Ga2O3/GaN interface. The measured thermal properties of open atmosphere-grown β-Ga2O3 and its interface with GaN set the stage for thermal engineering of gate contacts in high frequency GaN-based devices.

  9. Novel gallium nitride based microwave noise and power heterostructure field effect transistors

    NASA Astrophysics Data System (ADS)

    Chumbes, Eduardo Martin

    With the pioneering efforts of Isamu Akasaki of Meiji University and Shuji Nakamura of Nichia Chemical Industries in the late 1980's and early 1990's, the first long-lived candela-class blue and ultraviolet light emitting devices have finally come to fruition. Their success in conquering this Holy Grail in opto-electronics is due to their development of a new technology based remarkably on a class of semiconductor materials that has been practically ignored and overlooked by almost everyone for the past twenty years---the nitrides of Al, Ga and In and their alloys. The breakthroughs made from this new technology in the last decade of the 20th century has revolutionized and revitalized worldwide research and development efforts to the point where it is feasible for other important technologies such as high-density information storage, high-resolution full-color displays and efficient white light lamps and UV sensors to come much closer to realization. Equally important is the potential that this new technology can bring toward the development of efficient ultra-high power and high-temperature electronics that will revolutionize the aerospace and high-speed communication industries. Specifically, the large bandgap and strong polar properties of the group III-nitrides has at present allowed for the realization of simple doped and remarkably undoped AlGaN/GaN transistor structures on sapphire and SiC substrates with two-dimensional electron gas sheet densities significantly greater than that of conventional transistor structures based on GaAs and InP. This dissertation will look specifically at extending undoped AlGaN/GaN heterostructure field-effect transistors or HFETs towards more advanced system applications involving the integration of these devices onto a more advanced Si technology and looking at the feasibility of this integration. It will also address important issues similar devices on semi-insulating SiC substrates have in robust microwave low noise and

  10. The sensitivity of the electron transport within bulk zinc-blende gallium nitride to variations in the crystal temperature, the doping concentration, and the non-parabolicity coefficient associated with the lowest energy conduction band valley

    NASA Astrophysics Data System (ADS)

    Siddiqua, Poppy; O'Leary, Stephen K.

    2016-09-01

    Within the framework of a semi-classical three-valley Monte Carlo simulation approach, we analyze the steady-state and transient electron transport that occurs within bulk zinc-blende gallium nitride. In particular, we examine how the steady-state and transient electron transport that occurs within this material changes in response to variations in the crystal temperature, the doping concentration, and the non-parabolicity coefficient associated with the lowest energy conduction band valley. These results are then contrasted with those corresponding to a number of other compound semiconductors of interest.

  11. Analysis of Gain and Absorption Spectra of Gallium Nitride-based Laser Diodes

    NASA Astrophysics Data System (ADS)

    Melo, Thiago

    Laser diodes (LDs) based on the III-Nitride material system, (Al,In,Ga)N, stand to satisfy a number of application needs, and their huge market segment has been further growing with the use of LDs for full color laser projection. All commercially available GaN-based devices are based on the conventional c-plane (polar) orientation of this material. However, strong polarization fields caused by strained quantum-well (QW) layers on c-plane induce the quantum-confined Stark effect (QCSE), which leads to reduced radiative recombination rate and are aggravated when more indium is added into the QW(s) in order to achieve longer wavelengths. A promising solution for this is the use of nonpolar and semipolar crystal growth orientations. Elimination or mitigation of polarization-related fields within the QWs grown along these novel orientations is observed and one expects increased radiative recombination rate and stabilization of the wavelength emission with respect to the injection current. In order to have more insights on the advantages of using the novel crystal orientations of the III-Nitride material system, we compare the gain of LD structures fabricated from c-plane, nonpolar and semipolar GaN substrates. Using thesegmented contact method, single-pass gain spectra of LD epitaxial structures at wafer level are compared for the different crystal orientations as well as the single-pass absorption coefficient spectrum of the active region material and its dependence on reversed bias. Experimental gain spectra under continuous-wave (CW) operation of actual industry LDs fabricated from c-plane and nonpolar/semipolar GaN-based materials emitting wavelengths in the visible are then presented, using the Hakki-Paoli technique at high resolution. Measurements of the transparency current density, total losses and differential modal gain curves up to threshold are analyzed and compared between nonpolar/semipolar and c-plane LDs in violet and blue spectral regions regions. In a

  12. Compact, Interactive Electric Vehicle Charger: Gallium-Nitride Switch Technology for Bi-directional Battery-to-Grid Charger Applications

    SciTech Connect

    2010-10-01

    ADEPT Project: HRL Laboratories is using gallium nitride (GaN) semiconductors to create battery chargers for electric vehicles (EVs) that are more compact and efficient than traditional EV chargers. Reducing the size and weight of the battery charger is important because it would help improve the overall performance of the EV. GaN semiconductors process electricity faster than the silicon semiconductors used in most conventional EV battery chargers. These high-speed semiconductors can be paired with lighter-weight electrical circuit components, which helps decrease the overall weight of the EV battery charger. HRL Laboratories is combining the performance advantages of GaN semiconductors with an innovative, interactive battery-to-grid energy distribution design. This design would support 2-way power flow, enabling EV battery chargers to not only draw energy from the power grid, but also store and feed energy back into it.

  13. Studies of metal/gallium nitride gas sensors: Sensing response, morphology and sensing applications

    NASA Astrophysics Data System (ADS)

    Duan, Barrett Kai-Bong

    Reliable gas sensors with excellent sensitivity and robustness are important for the development of advanced technological applications while ensuring a safe environment in both industrial and household security. The chemically and mechanically robust gallium nitride (GaN) is a promising semiconductor for these important applications, especially for use at high temperatures and in extreme environments. When a metal is in contact with a semiconductor surface, a space charge region and Schottky barrier are formed on the semiconductor side. In this thesis, the sensing response of Pt and GaN to gaseous H2 and CO and the dependence of the response on Pt and GaN surface morphologies are explored. The sensing opportunities are expanded when GaN is decorated with Ag and the structure is used for small molecule analysis using surface enhanced Raman scattering (SERS). Combining the high surface area of nanoporous GaN with Pt nanoparticles deposited by electroless chemical deposition, the sensing performance of the well-known H-mediated Schottky barrier based on the Pt/GaN sensor is studied. The H2 sensing performance of, as defined by the limit of detection (LOD), Pt-decorated porous GaN measured by AC four-point probe resistance measurements is more than an order of magnitude better than planar GaN sensors based on the same Pt/GaN Schottky barrier height concept. The potential utility of high surface area porous GaN was realized by decorating the confined nanopores with metal (Pt), thus increasing the surface area available for sensing and lowering the LOD. Pt/GaN structures can also be used to detect CO at high temperature. The CO sensing response is also dependent on the Pt morphology. For continuous films, CO signal increases as the thickness of the metal film decreases. In discontinuous Pt films, increasing Pt surface area also increases the CO signal when the Pt/GaN interfacial area remains constant. A model is proposed, in which the influence of the adsorbed CO on Pt

  14. Nitride Fuel Modeling Recommendation for Nitride Fuel Material Property Measurement Priority

    SciTech Connect

    William Carmack; Richard Moore

    2005-09-01

    The purpose of this effort was to provide the basis for a model that effectively predicts nitride fuel behavior. Material property models developed for the uranium nitride fuel system have been used to approximate the general behavior of nitride fuels with specific property models for the transuranic nitride fuels utilized as they become available. The AFCI fuel development program now has the means for predicting the behavior of the transuranic nitride fuel compositions. The key data and models needed for input into this model include: Thermal conductivity with burnup Fuel expansion coefficient Fuel swelling with burnup Fission gas release with burnup. Although the fuel performance model is a fully functional FEA analysis tool, it is limited by the input data and models.

  15. Size effects in the thermal conductivity of gallium oxide (β-Ga{sub 2}O{sub 3}) films grown via open-atmosphere annealing of gallium nitride

    SciTech Connect

    Szwejkowski, Chester J.; Giri, Ashutosh; Donovan, Brian F.; Hopkins, Patrick E.; Creange, Nicole C.; Constantin, Costel; Sun, Kai

    2015-02-28

    Gallium nitride (GaN) is a widely used semiconductor for high frequency and high power devices due to of its unique electrical properties: a wide band gap, high breakdown field, and high electron mobility. However, thermal management has become a limiting factor regarding efficiency, lifetime, and advancement of GaN devices and GaN-based applications. In this work, we study the thermal conductivity of beta-phase gallium oxide (β-Ga{sub 2}O{sub 3}) thin films, a component of typical gate oxides used in such devices. We use time domain thermoreflectance to measure the thermal conductivity of a variety of polycrystalline β-Ga{sub 2}O{sub 3} films of different thicknesses grown via open atmosphere annealing of the surfaces of GaN films on sapphire substrates. We show that the measured effective thermal conductivity of these β-Ga{sub 2}O{sub 3} films can span 1.5 orders of magnitude, increasing with an increased film thickness, which is indicative of the relatively large intrinsic thermal conductivity of the β-Ga{sub 2}O{sub 3} grown via this technique (8.8 ± 3.4 W m{sup −1} K{sup −1}) and large mean free paths compared to typical gate dielectrics commonly used in GaN device contacts. By conducting time domain thermoreflectance (TDTR) measurements with different metal transducers (Al, Au, and Au with a Ti wetting layer), we attribute this variation in effective thermal conductivity to a combination of size effects in the β-Ga{sub 2}O{sub 3} film resulting from phonon scattering at the β-Ga{sub 2}O{sub 3}/GaN interface and thermal transport across the β-Ga{sub 2}O{sub 3}/GaN interface. The measured thermal properties of open atmosphere-grown β-Ga{sub 2}O{sub 3} and its interface with GaN set the stage for thermal engineering of gate contacts in high frequency GaN-based devices.

  16. Characterization of Defects on MOCVD Grown Gallium Nitride Using Transient Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Kasani, Sujan Phani Kumar

    Since the invention of the first visible spectrum (red) LED by Holonyak in 1962, there has been a need for more efficient, more reliable and less expensive LEDs. The III-nitrides revolutionized semiconductor technology with their applications in the blue LED's. However the internal quantum efficiency of LED's are limited by the deep level traps in GaN substrate. Traps are defects in the crystal lattice, which depends on growth parameters. These traps act as non-radiative centers where non-radiative recombination occurs without conversion of available energy into light. Characterization of these traps in a material is necessary for better understanding of the material growth quality and resulting device performance. In this work Capacitance-Voltage (C-V) and Deep Level Transient Spectroscopy (DLTS) are conducted which provide electronic properties of trap centers like activation energy, doping concentration and capture cross-section. In n-GaN grown by Metalorganic Chemical Vapor Deposition (MOCVD) on Sapphire two defects types are detected and are characterized by Capacitance-Voltage and Deep Level Transient Spectroscopy. Two deep levels E1 and E2 are typically observed in n-GaN with the activation energies of 0.21eV and 0.53eV at 125°K and 325°K, respectively. The deep level E1 is caused by linear line defects along dislocation cores while deep level E2 is related to point defects. The characterization techniques, experimental systems and preliminary characterization results are discussed in detail.

  17. Effect of strain on indium incorporation in heteroepitaxial (indium, gallium) nitride nanomaterials

    NASA Astrophysics Data System (ADS)

    Ewoldt, David A.

    2011-12-01

    One of the challenges facing LED lighting today is the achievement of low-cost true white lighting. Ideally, multiple LEDs of different colors, blue, red and green, would be utilized in order to achieve white light. Currently, the quality of green LEDs is low when compared to the red and blue counterparts. Green emission from LEDs is difficult to achieve due to phase segregation that occurs during growth of the (In,Ga)N LED structure, which separates into compositions of high and low InN concentration and prevents the moderate composition required for green emission. On the nanoscale, strain effects in the (In,Ga)N material system give rise to shifts in optical properties. Relieving strain allows for the incorporation of additional indium nitride, which shifts the wavelength of light emitted by the structure. In order to control strain effects, growth templates were fabricated by several methods (PAA, FIB, EBL). A robust process for fabrication of pores down to 25 nm in diameter has been developed in order to investigate this effect. From this process, a template using e-beam lithography has been created and then growth of (In,Ga)N on this template in a metallorganic chemical vapor deposition system was performed. As (In,Ga)N grows from the GaN substrate, it is naturally strained due to the lattice mismatch. Lateral growth out of the templates relieves strain by allowing the rods to expand as they grow out of the prepared pores. The effect of the diameter of pores on the emission characteristics has been analyzed and a strong logarithmic trend was discovered correlating emission wavelength to pore diameter. In addition to allowing control over the wavelength of emission based on pore diameter, the process that has been developed and demonstrated will allow a distribution of pore sizes that could facilitate color mixing.

  18. Preparation of gallium nitride surfaces for atomic layer deposition of aluminum oxide

    SciTech Connect

    Kerr, A. J.; Chagarov, E.; Kaufman-Osborn, T.; Kummel, A. C.; Gu, S.; Wu, J.; Asbeck, P. M.; Madisetti, S.; Oktyabrsky, S.

    2014-09-14

    A combined wet and dry cleaning process for GaN(0001) has been investigated with XPS and DFT-MD modeling to determine the molecular-level mechanisms for cleaning and the subsequent nucleation of gate oxide atomic layer deposition (ALD). In situ XPS studies show that for the wet sulfur treatment on GaN(0001), sulfur desorbs at room temperature in vacuum prior to gate oxide deposition. Angle resolved depth profiling XPS post-ALD deposition shows that the a-Al{sub 2}O{sub 3} gate oxide bonds directly to the GaN substrate leaving both the gallium surface atoms and the oxide interfacial atoms with XPS chemical shifts consistent with bulk-like charge. These results are in agreement with DFT calculations that predict the oxide/GaN(0001) interface will have bulk-like charges and a low density of band gap states. This passivation is consistent with the oxide restoring the surface gallium atoms to tetrahedral bonding by eliminating the gallium empty dangling bonds on bulk terminated GaN(0001)

  19. Preparation of gallium nitride surfaces for atomic layer deposition of aluminum oxide.

    PubMed

    Kerr, A J; Chagarov, E; Gu, S; Kaufman-Osborn, T; Madisetti, S; Wu, J; Asbeck, P M; Oktyabrsky, S; Kummel, A C

    2014-09-14

    A combined wet and dry cleaning process for GaN(0001) has been investigated with XPS and DFT-MD modeling to determine the molecular-level mechanisms for cleaning and the subsequent nucleation of gate oxide atomic layer deposition (ALD). In situ XPS studies show that for the wet sulfur treatment on GaN(0001), sulfur desorbs at room temperature in vacuum prior to gate oxide deposition. Angle resolved depth profiling XPS post-ALD deposition shows that the a-Al2O3 gate oxide bonds directly to the GaN substrate leaving both the gallium surface atoms and the oxide interfacial atoms with XPS chemical shifts consistent with bulk-like charge. These results are in agreement with DFT calculations that predict the oxide/GaN(0001) interface will have bulk-like charges and a low density of band gap states. This passivation is consistent with the oxide restoring the surface gallium atoms to tetrahedral bonding by eliminating the gallium empty dangling bonds on bulk terminated GaN(0001).

  20. Functionalization of nitrogen-doped carbon nanotubes with gallium to form Ga-CNx-multi-wall carbon nanotube hybrid materials

    NASA Astrophysics Data System (ADS)

    Simmons, Trevor J.; Hashim, Daniel P.; Zhan, Xiaobo; Bravo-Sanchez, Mariela; Hahm, Myung Gwan; López-Luna, Edgar; Linhardt, Robert J.; Ajayan, Pulickel M.; Navarro-Contreras, Hugo; Vidal, Miguel A.

    2012-08-01

    In an effort to combine group III-V semiconductors with carbon nanotubes, a simple solution-based technique for gallium functionalization of nitrogen-doped multi-wall carbon nanotubes has been developed. With an aqueous solution of a gallium salt (GaI3), it was possible to form covalent bonds between the Ga3+ ion and the nitrogen atoms of the doped carbon nanotubes to form a gallium nitride-carbon nanotube hybrid at room temperature. This functionalization was evaluated by x-ray photoelectron spectroscopy, energy dispersive x-ray spectroscopy, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy

  1. Optimized Spiral Metal-Gallium-Nitride Nanowire Cavity for Ultra-High Circular Dichroism Ultraviolet Lasing at Room Temperature.

    PubMed

    Liao, Wei-Chun; Liao, Shu-Wei; Chen, Kuo-Ju; Hsiao, Yu-Hao; Chang, Shu-Wei; Kuo, Hao-Chung; Shih, Min-Hsiung

    2016-01-01

    Circularly polarized laser sources with small footprints and high efficiencies can possess advanced functionalities in optical communication and biophotonic integrated systems. However, the conventional lasers with additional circular-polarization converters are bulky and hardly compatible with nanophotonic circuits, and most active chiral plasmonic nanostructures nowadays exhibit broadband emission and low circular dichroism. In this work, with spirals of gallium nitride (GaN) nanowires (NWRs) covered by a metal layer, we demonstrated an ultrasmall semiconductor laser capable of emitting circularly-polarized photons. The left- and right-hand spiral metal nanowire cavities with varied periods were designed at ultraviolet wavelengths to achieve the high quality factor circular dichroism metastructures. The dissymmetry factors characterizing the degrees of circular polarizations of the left- and right-hand chiral lasers were 1.4 and -1.6 (±2 if perfectly circular polarized), respectively. The results show that the chiral cavities with only 5 spiral periods can achieve lasing signals with the high degrees of circular polarizations. PMID:27220650

  2. Optimized Spiral Metal-Gallium-Nitride Nanowire Cavity for Ultra-High Circular Dichroism Ultraviolet Lasing at Room Temperature

    PubMed Central

    Liao, Wei-Chun; Liao, Shu-Wei; Chen, Kuo-Ju; Hsiao, Yu-Hao; Chang, Shu-Wei; Kuo, Hao-Chung; Shih, Min-Hsiung

    2016-01-01

    Circularly polarized laser sources with small footprints and high efficiencies can possess advanced functionalities in optical communication and biophotonic integrated systems. However, the conventional lasers with additional circular-polarization converters are bulky and hardly compatible with nanophotonic circuits, and most active chiral plasmonic nanostructures nowadays exhibit broadband emission and low circular dichroism. In this work, with spirals of gallium nitride (GaN) nanowires (NWRs) covered by a metal layer, we demonstrated an ultrasmall semiconductor laser capable of emitting circularly-polarized photons. The left- and right-hand spiral metal nanowire cavities with varied periods were designed at ultraviolet wavelengths to achieve the high quality factor circular dichroism metastructures. The dissymmetry factors characterizing the degrees of circular polarizations of the left- and right-hand chiral lasers were 1.4 and −1.6 (±2 if perfectly circular polarized), respectively. The results show that the chiral cavities with only 5 spiral periods can achieve lasing signals with the high degrees of circular polarizations. PMID:27220650

  3. Low-temperature growth of gallium nitride films by inductively coupled-plasma-enhanced reactive magnetron sputtering

    SciTech Connect

    Ni, Chih-Jui; Chau-Nan Hong, Franklin

    2014-05-15

    Gallium nitride (GaN) films were grown on sapphire substrate by reactive magnetron sputtering. Inductively coupled-plasma (ICP) source was installed between the substrate holder and the sputtering target to increase the plasma density and the degree of ionization of nitrogen gas. Liquid Ga and Ar/N{sub 2} were used as the sputtering target and sputtering gases, respectively. X-ray diffraction measurements confirmed that the authors could grow high quality GaN crystallites at 500 °C. However, the crystalline GaN (0002) peak remained even by lowering the growth temperature down to 300 °C. The N:Ga ratio of the film grown at 500 °C was almost 1:1, and the nitrogen composition became higher toward the 1:1 N:Ga ratio with increasing the growth temperature. The high degree of ionization induced by ICP source was essential to the growth of high crystalline quality GaN films.

  4. Mechanical Resonance and Damping Properties of Gallium Nitride Nanowires in Selected-Area Growth Arrays Measured via Optical Bragg Scattering

    NASA Astrophysics Data System (ADS)

    Houlton, John; Brubaker, M. D.; Bertness, K. A.; Rogers, C. T.

    We report the use of optical Bragg scattering to measure the mechanical resonance frequencies and quality factors (Q) of gallium nitride (GaN) nanowires (NWs) in selected-area growth arrays. The GaN NWs are grown by catalyst-free molecular beam epitaxy on silicon (111) wafers. Hexagonal arrays of approximately 100 GaN NWs with pitch spacings of 400 - 1000 nm have been prepared. The NWs contained in such arrays have diameters ranging from 100-300 nm and lengths from 3 - 10 μm. A diode laser operating at 640 nm and 2 mW of optical power is used to perform Bragg scattering homodyne detection to passively read out the thermally induced Brownian mechanical motion of the NWs. The first order cantilever-mode mechanical resonance frequencies of these NWs have been measured to be between 2 - 12 MHz. We find that the optical readout via Bragg scattered light allows the simultaneous detection of all lowest order mechanical resonances in a given array. Q factors ranging from 1,000 - 12,000 have been seen at room temperature and 10-5 Torr pressures. Qs as high as 25,000 have been seen at temperatures of 80 K. These results show that the narrow mechanical resonances observed in freely-grown GaN NWs can also be seen in NWs prepared via selected-area growth. We gratefully acknowledge funding via NIST MSE Grant # 1553451.

  5. Wet chemical functionalization of III-V semiconductor surfaces: alkylation of gallium arsenide and gallium nitride by a Grignard reaction sequence.

    PubMed

    Peczonczyk, Sabrina L; Mukherjee, Jhindan; Carim, Azhar I; Maldonado, Stephen

    2012-03-13

    Crystalline gallium arsenide (GaAs) (111)A and gallium nitride (GaN) (0001) surfaces have been functionalized with alkyl groups via a sequential wet chemical chlorine activation, Grignard reaction process. For GaAs(111)A, etching in HCl in diethyl ether effected both oxide removal and surface-bound Cl. X-ray photoelectron (XP) spectra demonstrated selective surface chlorination after exposure to 2 M HCl in diethyl ether for freshly etched GaAs(111)A but not GaAs(111)B surfaces. GaN(0001) surfaces exposed to PCl(5) in chlorobenzene showed reproducible XP spectroscopic evidence for Cl-termination. The Cl-activated GaAs(111)A and GaN(0001) surfaces were both reactive toward alkyl Grignard reagents, with pronounced decreases in detectable Cl signal as measured by XP spectroscopy. Sessile contact angle measurements between water and GaAs(111)A interfaces after various levels of treatment showed that GaAs(111)A surfaces became significantly more hydrophobic following reaction with C(n)H(2n-1)MgCl (n = 1, 2, 4, 8, 14, 18). High-resolution As 3d XP spectra taken at various times during prolonged direct exposure to ambient lab air indicated that the resistance of GaAs(111)A to surface oxidation was greatly enhanced after reaction with Grignard reagents. GaAs(111)A surfaces terminated with C(18)H(37) groups were also used in Schottky heterojunctions with Hg. These heterojunctions exhibited better stability over repeated cycling than heterojunctions based on GaAs(111)A modified with C(18)H(37)S groups. Raman spectra were separately collected that suggested electronic passivation by surficial Ga-C bonds at GaAs(111)A. Specifically, GaAs(111)A surfaces reacted with alkyl Grignard reagents exhibited Raman signatures comparable to those of samples treated with 10% Na(2)S in tert-butanol. For GaN(0001), high-resolution C 1s spectra exhibited the characteristic low binding energy shoulder demonstrative of surface Ga-C bonds following reaction with CH(3)MgCl. In addition, 4

  6. Simultaneous specimen current and time-dependent cathodoluminescence measurements on gallium nitride

    NASA Astrophysics Data System (ADS)

    Campo, E. M.; Hopkins, L.; Pophristic, M.; Ferguson, I. T.

    2016-06-01

    Time-dependent cathodoluminescence (CL) and specimen current (SC) are monitored to evaluate trapping behavior and evolution of charge storage. Examination of CL and SC suggests that the near band edge emission in GaN is reduced primarily by the activation of traps upon irradiation, and Gallium vacancies are prime candidates. At the steady state, measurement of the stored charge by empiric-analytical methods suggests that all available traps within the interaction volume have been filled, and that additional charge is being stored interstitially, necessarily beyond the interaction volume. Once established, the space charge region is responsible for the steady state CL emission and, prior to build up, it is responsible for the generation of diffusion currents. Since the non-recombination effects resulting from diffusion currents that develop early on are analogous to those leading to device failure upon aging, this study is fundamental toward a holistic insight into optical properties in GaN.

  7. Electrical properties of TiN on gallium nitride grown using different deposition conditions and annealing

    SciTech Connect

    Li, Liuan; Kishi, Akinori; Shiraishi, Takayuki; Jiang, Ying; Wang, Qingpeng; Ao, Jin-Ping

    2014-03-15

    This study evaluates the thermal stability of different refractory metal nitrides used as Schottky electrodes on GaN. The results demonstrate that TiN, MoSiN, and MoN possess good rectification and adhesion strength, with barrier heights of 0.56, 0.54, and 0.36 eV, respectively. After thermal treatment at 850 °C for 1 min, the TiN and MoN electrodes still exhibit rectifying characteristics, while the MoSiN degrades to an ohmic-like contact. For further study, several TiN films are deposited using different N{sub 2}/Ar reactive/inert sputtering gas ratios, thereby varying the nitrogen content present in the sputtering gas. Ohmic-like contact is observed with the pure Ti contact film, and Schottky characteristics are observed with the samples possessing nitrogen in the film. The average Schottky barrier height is about 0.5 eV and remains virtually constant with varying nitrogen deposition content. After examining Raman spectra and x-ray photoelectron spectroscopy results, the increase in the film resistivity after thermal treatment is attributed to oxidation and/or nitridation. Films deposited with a medium (40% and 60%) nitrogen content show the best film quality and thermal stability.

  8. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics--a Comparative Study with Gallium Nitride.

    PubMed

    Wu, Xufei; Lee, Jonghoon; Varshney, Vikas; Wohlwend, Jennifer L; Roy, Ajit K; Luo, Tengfei

    2016-01-01

    Wurtzite Zinc-Oxide (w-ZnO) is a wide bandgap semiconductor that holds promise in power electronics applications, where heat dissipation is of critical importance. However, large discrepancies exist in the literature on the thermal conductivity of w-ZnO. In this paper, we determine the thermal conductivity of w-ZnO using first-principles lattice dynamics and compare it to that of wurtzite Gallium-Nitride (w-GaN)--another important wide bandgap semiconductor with the same crystal structure and similar atomic masses as w-ZnO. However, the thermal conductivity values show large differences (400 W/mK of w-GaN vs. 50 W/mK of w-ZnO at room temperature). It is found that the much lower thermal conductivity of ZnO originates from the smaller phonon group velocities, larger three-phonon scattering phase space and larger anharmonicity. Compared to w-GaN, w-ZnO has a smaller frequency gap in phonon dispersion, which is responsible for the stronger anharmonic phonon scattering, and the weaker interatomic bonds in w-ZnO leads to smaller phonon group velocities. The thermal conductivity of w-ZnO also shows strong size effect with nano-sized grains or structures. The results from this work help identify the cause of large discrepancies in w-ZnO thermal conductivity and will provide in-depth understanding of phonon dynamics for the design of w-ZnO-based electronics. PMID:26928396

  9. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics – a Comparative Study with Gallium Nitride

    PubMed Central

    Wu, Xufei; Lee, Jonghoon; Varshney, Vikas; Wohlwend, Jennifer L.; Roy, Ajit K.; Luo, Tengfei

    2016-01-01

    Wurtzite Zinc-Oxide (w-ZnO) is a wide bandgap semiconductor that holds promise in power electronics applications, where heat dissipation is of critical importance. However, large discrepancies exist in the literature on the thermal conductivity of w-ZnO. In this paper, we determine the thermal conductivity of w-ZnO using first-principles lattice dynamics and compare it to that of wurtzite Gallium-Nitride (w-GaN) – another important wide bandgap semiconductor with the same crystal structure and similar atomic masses as w-ZnO. However, the thermal conductivity values show large differences (400 W/mK of w-GaN vs. 50 W/mK of w-ZnO at room temperature). It is found that the much lower thermal conductivity of ZnO originates from the smaller phonon group velocities, larger three-phonon scattering phase space and larger anharmonicity. Compared to w-GaN, w-ZnO has a smaller frequency gap in phonon dispersion, which is responsible for the stronger anharmonic phonon scattering, and the weaker interatomic bonds in w-ZnO leads to smaller phonon group velocities. The thermal conductivity of w-ZnO also shows strong size effect with nano-sized grains or structures. The results from this work help identify the cause of large discrepancies in w-ZnO thermal conductivity and will provide in-depth understanding of phonon dynamics for the design of w-ZnO-based electronics. PMID:26928396

  10. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics--a Comparative Study with Gallium Nitride.

    PubMed

    Wu, Xufei; Lee, Jonghoon; Varshney, Vikas; Wohlwend, Jennifer L; Roy, Ajit K; Luo, Tengfei

    2016-03-01

    Wurtzite Zinc-Oxide (w-ZnO) is a wide bandgap semiconductor that holds promise in power electronics applications, where heat dissipation is of critical importance. However, large discrepancies exist in the literature on the thermal conductivity of w-ZnO. In this paper, we determine the thermal conductivity of w-ZnO using first-principles lattice dynamics and compare it to that of wurtzite Gallium-Nitride (w-GaN)--another important wide bandgap semiconductor with the same crystal structure and similar atomic masses as w-ZnO. However, the thermal conductivity values show large differences (400 W/mK of w-GaN vs. 50 W/mK of w-ZnO at room temperature). It is found that the much lower thermal conductivity of ZnO originates from the smaller phonon group velocities, larger three-phonon scattering phase space and larger anharmonicity. Compared to w-GaN, w-ZnO has a smaller frequency gap in phonon dispersion, which is responsible for the stronger anharmonic phonon scattering, and the weaker interatomic bonds in w-ZnO leads to smaller phonon group velocities. The thermal conductivity of w-ZnO also shows strong size effect with nano-sized grains or structures. The results from this work help identify the cause of large discrepancies in w-ZnO thermal conductivity and will provide in-depth understanding of phonon dynamics for the design of w-ZnO-based electronics.

  11. Gas phase interactions at the surface of bare and gold nanoparticle decorated gallium nitride nanowires by ultraviolet photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Niraula, Ishwar B.; Kengne, Blaise-Alexis F.; McIlroy, David N.

    2012-10-01

    Ultraviolet photoelectron spectroscopy (UPS) has been used to characterize the interactions of CO and H2O with the surface of bare and gold nanoparticle decorated gallium nitride (Au-GaN) nanowires (NWs) at 20, 77, and 298 K at three different dosing pressures: 9×10-8, 9×10-7, and 9×10-6 Torr. The average diameter of the Au NPs is 4.5±0.5 nm and the average NW diameter is 105±75 nm. CO and H2O do not bond to the surface of the bare GaN NWs at 20, 77, or 298 K, even at the highest dosing pressure. Temperature and pressure dependent UPS analysis reveals that CO and H2O weakly physisorbed to the Au NP decorated GaN NWs. For the exposure up to 200 L (Langmuir), the activation energy of adsorption of CO and H2O has been found to range from 9.0±1.0 to 45.6±4.3 kJ/mol and 2.0±0.1 to 5.0±0.1 kJ/mol, respectively. The adsorption at 298 K of 100 L of CO at all the three dosing pressures, followed by 100 L of H2O, showed that CO adsorption promotes H2O adsorption, while 100 L of H2O followed by 100 L of CO showed that H2O inhibits CO adsorption. The findings of this study that the adsorption of H2O inhibits CO adsorption onto the Au-GaN NWs explain previous studies of the gas sensing properties of mats of Au-GaN NWs.

  12. Powder processing of nitrides (excluding hot isostatic processing). (Latest citations from Engineered Materials abstracts). Published Search

    SciTech Connect

    1996-02-01

    The bibliography contains citations concerning the properties and processing of metal nitride ceramics and refractories. Citations consider compacting and sintering processes. Phase transformations, crystallization, and devitrification processes are considered. Aluminum nitride, boron nitride, silicon nitride, silicon oxynitride, and titanium nitride are among materials discussed. The use of hot isostatic pressing is considered in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  13. Opaque gallium nitride photocathodes in UV imaging detectors with microchannel plates

    NASA Astrophysics Data System (ADS)

    Tremsin, Anton S.; Hull, Jeffrey S.; Siegmund, Oswald H. W.; McPhate, Jason B.; Vallerga, John V.; Dabiran, Amir M.; Mane, Anil; Elam, Jeff

    2013-09-01

    The optimization and performance of opaque Galium Nitride (GaN) photocathodes deposited directly on novel Microchannel Plates (MCPs) are presented in this paper. The novel borosilicate glass MCPs, which are manufactured with the help of Atomic Layer Deposition, can withstand higher temperatures enabling direct deposition of GaN films on their surfaces. The quantum efficiency of MBE-grown GaN photocathodes of various thickness and buffer layers was studied in the spectral range of ~200-400 nm for the films grown on different surface layers (such as Al2O3 or buffer AlN layer) in order to determine the optimal opaque photocathode configuration. The MCPs with the GaN photocathodes were activated with surface cesiation in order to achieve the negative Electron Affinity for the efficient photon detection. The opaque photocathodes enable substantial broadening of the spectral sensitivity range compared to the semitransparent configuration when the photocathodes are deposited on the input window. The design of currently processed sealed tube event counting detector with an opaque GaN photocathode are also described in this paper. Our experiments demonstrate that although there is still development work required the detection quantum efficiencies exceeding 20% level should be achievable in 200-400 nm range and <50% in 100-200 nm range for the event counting MCP detectors with high spatial resolution (better than 50 μm) and timing resolution of <100 ps and very low background levels of only few events cm-2 s-1.

  14. A study of the applicability of gallium arsenide and silicon carbide as aerospace sensor materials

    NASA Technical Reports Server (NTRS)

    Hurley, John S.

    1990-01-01

    Most of the piezoresistive sensors, to date, are made of silicon and germanium. Unfortunately, such materials are severly restricted in high temperature environments. By comparing the effects of temperature on the impurity concentrations and piezoresistive coefficients of silicon, gallium arsenide, and silicon carbide, it is being determined if gallium arsenide and silicon carbide are better suited materials for piezoresistive sensors in high temperature environments. The results show that the melting point for gallium arsenide prevents it from solely being used in high temperature situations, however, when used in the alloy Al(x)Ga(1-x)As, not only the advantage of the wider energy band gas is obtained, but also the higher desire melting temperature. Silicon carbide, with its wide energy band gap and higher melting temperature suggests promise as a high temperature piezoresistive sensor.

  15. First principles study of scandium nitride and yttrium nitride alloy system: Prospective material for optoelectronics

    NASA Astrophysics Data System (ADS)

    Haq, Bakhtiar Ul; Afaq, A.; Abdellatif, Galila; Ahmed, R.; Naseem, S.; Khenata, R.

    2015-09-01

    Besides many other state of the art promising applications, transition metal (TM) nitride materials are intensively investigated on account of considered potential materials for optoelectronic applications. In this study computations pertaining to structural, electronic as well as the optical properties of Scandium Nitride (ScN), Yttrium Nitride (YN) and their mutual alloying (ScxY1-xN), for x = 0.25, 0.50, 0.75, are presented. These computations are carried out by employing the full potential (FP) linearized augmented plane wave (LAPW) plus local orbitals (lo) method designed within density functional theory (DFT). Structural parameters are calculated at the level of Perdew Burke and Ernzerhof (PBE) parameterized generalized gradient approximations (GGA), where to investigate electronic and optical properties, Tran-Blaha modified Becke-Johnson (mBJ) potential is involved. From our calculations, a very small variation is noted in lattice constant values of ScxY1-xN alloying system as a function of Y content, reflecting to appropriate alloying of ScN and YN. Moreover, effect of the site preference for two different configurations is also analyzed. The lower absorption of ScxY1-xN system in the visible light region together with less than 30% reflectivity for entire alloying range lead to their transparent nature. Additionally fascinating characteristics, like high mechanical strength, tunable energy band gap, transparent nature, and lower reflectivity of the ScYN alloying system provoke their further potential in optoelectronics.

  16. First principles study of size and external electric field effects on the atomic and electronic properties of gallium nitride nanostructures

    NASA Astrophysics Data System (ADS)

    Yilmaz, Hulusi

    A comprehensive density functional theory study of atomic and the electronic properties of wurtzite gallium nitride (GaN) nanostructures with different sizes and shapes is presented and the effect of external electric field on these properties is examined. We show that the atomic and electronic properties of [101¯0] facet single-crystal GaN nanotubes (quasi-1D), nanowires (1D) and nanolayers (2D) are mainly determined by the surface to volume ratio. The shape dependent quantum confinement and strain effects on the atomic and electronic properties of these GaN nanostructures are found to be negligible. Based on this similarity between the atomic and electronic properties of the small size GaN nanostructures, we calculated the atomic and electronic properties of the practical size (28.1 A wall thickness) single-crystal GaN nanotubes through computational much economical GaN nanoslabs (nanolayers). Our results show that, regardless of diameter, hydrogen saturated single-crystal GaN tubes with the wall thickness of 28.1 A are energetically stable and they have a noticeably larger band gap with respect to the band gap of bulk GaN. The band gap of unsaturated single-crystal GaN tubes, on the other hand, is always smaller than the band gap of the wurtzite bulk GaN. In a separate study, we show that a transverse electric field induces a homojunction across the diameter of initially semiconducting GaN single-crystal nanotubes and nanowires. The homojunction arises due to the decreased energy of the electronic states in the higher potential region with respect to the energy of those states in the lower potential region under the transverse electric field. Calculations on single-crystal GaN nanotubes and nanowires of different diameter and wall thickness show that the threshold electric field required for the semiconductor-homojunction induction increases with increasing wall thickness and decreases significantly with increasing diameter.

  17. The Effects of Atmospheric pH on the Transport Properties of Gallium Nitride

    NASA Astrophysics Data System (ADS)

    McElroy, Andrew; Dyck, Jeffrey S.; Kash, Kathleen

    2011-04-01

    It has been theorized that there exists a thin layer of water molecules on the surface of many materials when in air. This layer is predicted to have an effect on the electrochemical properties of the material. GaN is one of these materials. It has been demonstrated that the optical properties of GaN are affected by the pH of the atmosphere around the sample. In this study the effects of pH on transport properties are tested. A system was developed to test the Hall coefficient and resistivity of samples under different ambients to discover the effects of pH on carrier concentration and Hall mobility of GaN. Thus far, the results show that the pH of the ambient water vapor does not have an effect on the transport properties. This project was funded through the National Science Foundation (DMR-1006132) and the Huntington and Codrington Foundations.

  18. Aluminum Gallium Nitride (GaN)/GaN High Electron Mobility Transistor-Based Sensors for Glucose Detection in Exhaled Breath Condensate

    PubMed Central

    Chu, Byung Hwan; Kang, Byoung Sam; Hung, Sheng Chun; Chen, Ke Hung; Ren, Fan; Sciullo, Andrew; Gila, Brent P.; Pearton, Stephen J.

    2010-01-01

    Background Immobilized aluminum gallium nitride (AlGaN)/GaN high electron mobility transistors (HEMTs) have shown great potential in the areas of pH, chloride ion, and glucose detection in exhaled breath condensate (EBC). HEMT sensors can be integrated into a wireless data transmission system that allows for remote monitoring. This technology offers the possibility of using AlGaN/GaN HEMTs for extended investigations of airway pathology of detecting glucose in EBC without the need for clinical visits. Methods HEMT structures, consisting of a 3-μm-thick undoped GaN buffer, 30-Å-thick Al0.3Ga0.7N spacer, and 220-Å-thick silicon-doped Al0.3Ga0.7N cap layer, were used for fabricating the HEMT sensors. The gate area of the pH, chloride ion, and glucose detection was immobilized with scandium oxide (Sc2O3), silver chloride (AgCl) thin film, and zinc oxide (ZnO) nanorods, respectively. Results The Sc2O3-gated sensor could detect the pH of solutions ranging from 3 to 10 with a resolution of ∼0.1 pH. A chloride ion detection limit of 10-8 M was achievedt with a HEMT sensor immobilized with the AgCl thin film. The drain–source current of the ZnO nanorod-gated AlGaN/GaN HEMT sensor immobilized with glucose oxidase showed a rapid response of less than 5 seconds when the sensor was exposed to the target glucose in a buffer with a pH value of 7.4. The sensor could detect a wide range of concentrations from 0.5 nM to 125 μM. Conclusion There is great promise for using HEMT-based sensors to enhance the detection sensitivity for glucose detection in EBC. Depending on the immobilized material, HEMT-based sensors can be used for sensingt different materials. These electronic detection approaches with rapid response and good repeatability show potential for the investigation of airway pathology. The devices can also be integrated into a wireless data transmission system for remote monitoring applications. This sensor technology could use the exhaled breath condensate to

  19. Gallium Nitride -based Microwave Power Varactors for Wireless Base Station Applications

    NASA Astrophysics Data System (ADS)

    Lu, Wei

    With the development of wireless communication systems, the demand for providing tunability in the wireless communication circuits becomes more and more intense. Among the technologies, semiconductor varactor is the critical component that is capable of implementing tunable and adaptive characteristics, particularly for the frond-end components of the wireless communication systems. For base station applications, high voltage handling capability, typically of 100 V or greater, high quality factor (Q), typically of above 100 at operation frequency, and high linearity, OIP3 > 65 dBm, are required. This work will mainly discuss in detail the design, fabrication and characterization to achieve the high-voltage high-Q and high-linearity microwave power varactors for wireless base station applications. Some preliminary varactor applications in the test tunable circuits will be demonstrated too. In this dissertation, we first introduce the physics of the semiconductor varactors and the motivation for choosing GaN as the candidate material for this microwave power varactor. Then we elucidate the critical design considerations for achieving high breakdown voltage, high quality factor and high linearity. The novel Schottky barrier engineered design using a thin InGaN surface layer on top of GaN to enhance the breakdown voltage of GaN-based Schottky diodes is therefore introduced. We then show the theoretical and experimental studies on the suppression mechanisms for electron tunneling in the InGaN/GaN Schottky barriers. The detailed material characterization for the InGaN/GaN material system and its application for the enhancement-mode HEMTs are also presented. Next, we discuss the initial device fabrication procedure and the improving methods based on the initial DC and RF measurement results. Thereafter, we report the detailed characterizations of the fabricated devices including the high-voltage I-V and C-V, S-parameters for 1-port and 2-port devices, linearity and

  20. The equilibrium state of hydrogen in gallium nitride: Theory and experiment

    SciTech Connect

    MYERS JR.,SAMUEL M.; WRIGHT,ALAN F.; PETERSEN,GARY A.; SEAGER,CARLETON H.; WAMPLER,WILLIAM R.; CRAWFORD,MARY H.; HAN,JUNG

    2000-04-17

    Formation energies and vibrational frequencies for H in wurtzite GaN were calculated from density functional theory and used to predict equilibrium state occupancies and solid solubilities for p-type, intrinsic, and n-type material. The solubility of deuterium (D) was measured at 600--800 C as a function of D{sub 2} pressure and doping and compared with theory. Agreement was obtained by reducing the H formation energies 0.2 eV from ab-initio theoretical values. The predicted stretch-mode frequency for H bound to the Mg acceptor lies 5% above an observed infrared absorption attributed to this complex. It is concluded that currently recognized H states and physical processes account for the equilibrium behavior of H examined in this work.

  1. David Adler Lectureship Award in the Field of Materials Physics Talk: Novel Nitride and Oxide Electronics

    NASA Astrophysics Data System (ADS)

    Pearton, Stephen

    2011-03-01

    Recent progress in development of GaN-based transistors for gas and bio-sensing applications and amorphous IGZO layers for use thin film transistors (TFTs)on flexible substrates, including paper,will be presented. For the detection of gases such as hydrogen, the gateless GaN transistors are typically coated with a catalyst metal such as Pd or Pt to increase the detection sensitivity at room temperature. Functionalizing the surface with oxides, polymers and nitrides is also useful in enhancing the detection sensitivity for gases and ionic solutions.The use of enzymes or adsorbed antibody layers on the semiconductor surface leads to highly specific detection of a broad range of antigens of interest in the medical and security fields. We give examples of recent work showing sensitive detection of glucose, lactic acid, prostate cancer and breast cancer markers and the integration of the sensors with wireless data transmission systems to achieve robust, portable sensors. The amorphous transparent conducting oxide InZnGaO4 (IGZO) is attracting attention because of its high electron mobility (10-50 cm2.V-1.sec-1), high transparency in the visible region of the spectrum and its ability to be deposited with a wide range of conductivities.This raises the possibility of making low-cost electronics on a very wide range of arbitrary surfaces, including paper and plastics. N-type oxides such as zinc oxide, zinc tin oxide, indium gallium oxide, and indium gallium zinc tin oxide (IGZO) exhibit surprisingly high carrier mobilities even for amorphous films deposited at 300K. This has been explained by the fact that the conduction in these materials is predominantly through non-directional s orbitals which are less affected by disorder than the directional sp3 orbitals which control electron transport in Si. Examples of progress and discussion of remaining obstacles to use of IGZO TFTs will be presented Work performed in collaboration with Fan Ren.

  2. Increased light extraction and directional emission control in gallium nitride photonic crystal light emitting diodes

    NASA Astrophysics Data System (ADS)

    McGroddy, Kelly C.

    GaN has become the prominent material for blue-green light emitting diodes (LEDs) and efficient white light sources. Advancements in LED efficiency for lighting has the potential to dramatically impact energy consumption world wide. A limiting factor to achieving high efficiencies in GaN LEDs is the light extraction efficiency. This work addresses many key issues pertaining to the use of PhCs to increase the extraction efficiency and emission directionality of GaN LEDs. Limitations in extraction efficiency of GaN photonic crystal light emitting diodes (LEDs) are addressed by implementing an LED design using both 2D photonic crystals (PhCs) in-plane and index guiding layers (IGLs) in the vertical direction. The effects of PhCs on light extraction and emission directionality from GaN LEDs are studied experimentally. Angular resolved electroluminescence clearly shows the combined effect of controlling the vertical mode profile with the IGLs and tailoring the emission profile with the periodicity of the PhC lattice. Various materials are used to increase the index contrast of the IGL and the effects are measured. Increases in vertical emission as high as 3.5x are achieved for PhC LEDs with an Al0.12Ga0.88N IGL over non-PhC LEDs with a ˜30% improvement attributed to the incorporation of the AlGaN IGL. This enhancement is achieved by tailoring both the directionality and guided mode control. The impact of incorporating PhCs and IGLs on LED device design and performance are addressed. Effects of etching the PhCs near the QWs have been observed and explanations for this behavior will be discussed. It will be shown that an un-doped IGL can severely limit current spreading in the n-type side of the device and have a detrimental impact on device performance. Finally, a method of patterning PhCs with periodicities as small as 230nm by laser interference lithography and imprint lithography has been developed to provide a fast, inexpensive method of pattering PhCs over large

  3. Investigation of thermal conductivity in silicon nanostructures and gallium nitride films

    NASA Astrophysics Data System (ADS)

    Zou, Jie

    This dissertation investigates thermal conductivity in nanostructures made of conventional semiconductor materials such as Si and in wide-band gap semiconductors such as GaN. The motivations for this research are the continuous downscaling in conventional electronic devices and applications of GaN-related compounds in high-power density devices. Thermal management of scaled-down electronic devices presents significant difficulties due to increase in power dissipation per unit area and a variety of size effects that complicate thermal transport at nanoscale. Proposed applications of GaN-based devices rely heavily on the possibility of removing the high density of excess heat from the device active area. A model is developed for phonon heat conduction in a semiconductor nanowire and thin film with lateral dimensions much smaller than the phonon mean free path and approaching the phonon thermal wavelength. The model is based on Callaway's phenomenological theory and Klemens' second-order perturbation theory for phonon scattering rates. The novel addition is the explicit account for the modification of the acoustic phonon dispersion in low-dimensional structures and change in the nonequilibrium phonon distribution due to partially diffuse boundary scattering. Phonon confinement and boundary scattering lead to a significant reduction in the in-plane lattice thermal conductivity in both nanowires and thin films. Inclusion of phonon confinement effects leads to deviation of the thermal conductivity from its bulk value even in the case of purely specular boundary scattering. The observed change in thermal resistance has to be taken into consideration in simulation of deep-sub micron and nanometer-scale devices. A detailed calculation procedure for the lattice thermal conductivity in wurtzite GaN is also developed. The proposed model is material specific, which explicitly considers the effects of impurities, dopants, and dislocations on thermal conductivity of GaN layers

  4. Selective excitation of the yellow and blue luminescence in n- and p-doped Gallium Nitride

    SciTech Connect

    Colton, John S.

    2000-12-31

    GaN is an interesting material: technologically very useful, but still having many unexplained features. Two such features are the broad defect-related luminescence bands: the YL of n-type GaN and the BL of Mg-doped p-type GaN. We have employed selective excitation to investigate these bands. In the case of the YL, most of the previous evidence has supported a recombination model between distant donors and acceptors, most likely a transition involving a shallow donor to a deep acceptor. Our selective excitation experiments have resolved finer structures within the YL. Our results indicate that the YL in bulk samples is related to the YL in film samples. We suggest that selectively excited YL involves recombination at DAP complexes, rather than between spatially distant DAPs (however other recombination channels, including that of distant DAPs may become significant under other excitation conditions). Characteristics of the DAP complexes within our YL model include (a) an electron localization energy of around 60-70 meV, (b) a localized phonon energy of around 40 meV, and (c) excited states of the complex at 200 and 370 meV above the ground state. In the case of the BL, the deep defect responsible for the BL is unknown, and there may not even be a deep defect involved. Also in dispute is the role of potential fluctuations in the properties of the BL. Our results have been explain in a model whereby emission is from DAPs, and significant effects are produced by doping-related potential fluctuations and disorder. Characteristics of the our model for the BL include (a) an Urbach tail, having width E{sub 0} = 33 meV, (b) a strong electron-LO phonon coupling occurring with a Frank-Condon shift of {approx} 180 meV between excitation and emission, (c) a mobility gap at 2.8 eV, separating highly mobile states and highly localized states, and (d) PL-like behavior for excitation energies larger than 2.8 eV, having a blue-shift with increasing excitation energy caused by the

  5. Thermal transport in SWNT-PMMA composites and individual gallium nitride nanowires

    NASA Astrophysics Data System (ADS)

    Guthy, Csaba

    2007-12-01

    Single-wall carbon nanotubes (SWNT) are considered as promising filler materials for improving the thermal conductivity of conventional polymers. We investigated the thermal conductivity of SWNT/PMMA nanocomposites with random SWNT orientations and loadings up to 10 wt% using the comparative technique. The composites were prepared by coagulation [1] and exhibit ˜250% improvement in the thermal conductivity at 10 wt%o. The experimental results were analyzed using the versatile Nielsen model [2], which accounts for many important factors, including filler aspect ratio and maximum packing fraction. In this work the aspect ratio was determined by AFM [3] and used as an input parameter in the Nielsen model. The comparison between our results and the predictions of the Nielsen model indicates that higher aspect ratio fillers are needed to achieve further enhancement. Our analysis also suggests that improved thermal contact between the SWNT network and the matrix material would be beneficial. In the second set of experiments we studied nanoscale thermal transport in individual GaN nanowires grown by thermal CVD method in our group. We measured the thermal conductivity kappa, of several GaN nanowires with diameters ranging from 97 nm to 181 nm by the "suspended islands" method [4]. An unexpectedly large reduction of kappa, is observed in these nanowires. They also exhibit an unusual T1.8 low-temperature kappa dependence. We analyzed our experimental results within the framework of the Callaway model of heat conduction [5]. A moderate reduction of kappa is expected due to the increase of boundary scattering for small cross-sections [6]. TEM analysis [7] of our GaN NWs revealed the presence of stacking faults (SFs). These SFs are expected to further reduce the phonon mean free path. Based on our extensive numerical calculations we concluded that both the unexpected reduction in kappa as well as the strange T1.8 low-temperature kappa dependence is caused by unusually large

  6. Gallium nitride based power switches for next generation of power conversion

    SciTech Connect

    Chowdhury, S

    2015-03-17

    Power conversion impacts all areas of electricity consumption, including motion control, lighting, air conditioning, and information technology. Si, the workhorse of the industry, has served well so far but reached its material limits. To keep up with the advancement of technologies enabling new conveniences, power conversion techniques need to go through significant transformation that calls for the next generation semiconductor for power switching. SiC and GaN, which have the potential to push the envelope beyond Si providing solutions for the entire range of power conversion at higher efficiencies and reduced form factors. GaN HEMTs have an added advantage over SiC MOSFETs owing to the high-mobility electron channel formed at the AlGaN/GaN interface, which has been the basis of radio frequency amplifiers. GaN has enabled systems that can run with lesser cooling at frequencies at least ten times higher than current Si-based systems, significantly reducing the form factor both electrically (passive components) and mechanically (heat sinks). The high current and voltage required for high power conversion application make the chip area in a lateral topology uneconomical and difficult to manufacture. Vertical GaN devices on bulk GaN substrates complete the portfolio of power switches required to address the power conversion market.

  7. Covalent attachment of a peptide to the surface of gallium nitride

    NASA Astrophysics Data System (ADS)

    Makowski, Matthew S.; Zemlyanov, Dmitry Y.; Lindsey, Jason A.; Bernhard, Jonathan C.; Hagen, Evan M.; Chan, Burke K.; Petersohn, Adam A.; Medow, Matthew R.; Wendel, Lindsay E.; Chen, Dafang; Canter, Jamie M.; Ivanisevic, Albena

    2011-08-01

    The properties of GaN have made it not only an ideal material for high power and high frequency electronic devices, but also a semiconductor suitable for application in biosensing devices. The utilization of GaN in electronic biosensors has increased the importance of characterizing robust and easily implemented organic functionalization methods for GaN surfaces. This work demonstrates and characterizes a route to functionalize the GaN (0001) surface with two organic molecules, hexylamine and a peptide, through olefin cross-metathesis with Grubbs first generation catalyst. The GaN (0001) surface was chlorinated, functionalized with a terminal alkene group using a Grignard reaction, and then terminated with a carboxyl group using an olefin cross-metathesis reaction. With a condensation reaction, the final step in the reaction scheme bound hexylamine or a peptide to the carboxyl terminated GaN surface. Qualitative and quantitative X-ray photoelectron spectroscopy (XPS) data verified the success of each step in the reaction scheme. Surface element composition, adlayer coverages, and adlayer thicknesses were calculated based on the XPS data. At least a monolayer of surface molecules covered the GaN surface.

  8. Alloying Element Nitride Development in Ferritic Fe-Based Materials Upon Nitriding: A Review

    NASA Astrophysics Data System (ADS)

    Steiner, T.; Mittemeijer, E. J.

    2016-06-01

    With the aim of achieving a better understanding of the nitriding process of iron-based components (steels), as applied in engineering practice, the theoretical background and experimental observations currently available on the crystallographic, morphological, and compositional properties of the nitride precipitates in nitrided model binary and ternary, ferritic Fe-based alloys are summarily presented. Thermodynamic and kinetic considerations are employed in order to highlight their importance for the nitriding reaction and the resulting properties of the nitrided zone, thereby providing a more fundamental understanding of the nitriding process.

  9. The comparison between gallium arsenide and indium gallium arsenide as materials for solar cell performance using Silvaco application

    SciTech Connect

    Zahari, Suhaila Mohd; Norizan, Mohd Natashah; Mohamad, Ili Salwani; Osman, Rozana Aina Maulat; Taking, Sanna

    2015-05-15

    The work presented in this paper is about the development of single and multilayer solar cells using GaAs and InGaAs in AM1.5 condition. The study includes the modeling structure and simulation of the device using Silvaco applications. The performance in term of efficiency of Indium Gallium Arsenide (InGaAs) and GaAs material was studied by modification of the doping concentration and thickness of material in solar cells. The efficiency of the GaAs solar cell was higher than InGaAs solar cell for single layer solar cell. Single layer GaAs achieved an efficiency about 25% compared to InGaAs which is only 2.65% of efficiency. For multilayer which includes both GaAs and InGaAs, the output power, P{sub max} was 8.91nW/cm² with the efficiency only 8.51%. GaAs is one of the best materials to be used in solar cell as a based compared to InGaAs.

  10. Self-assembled Multilayers of Silica Nanospheres for Defect Reduction in Non- and Semipolar Gallium Nitride Epitaxial Layers

    PubMed Central

    2015-01-01

    Non- and semipolar GaN have great potential to improve the efficiency of light emitting devices due to much reduced internal electric fields. However, heteroepitaxial GaN growth in these crystal orientations suffers from very high dislocation and stacking faults densities. Here, we report a facile method to obtain low defect density non- and semipolar heteroepitaxial GaN via selective area epitaxy using self-assembled multilayers of silica nanospheres (MSN). Nonpolar (11–20) and semipolar (11–22) GaN layers with high crystal quality have been achieved by epitaxial integration of the MSN and a simple one-step overgrowth process, by which both dislocation and basal plane stacking fault densities can be significantly reduced. The underlying defect reduction mechanisms include epitaxial growth through the MSN covered template, island nucleation via nanogaps in the MSN, and lateral overgrowth and coalescence above the MSN. InGaN/GaN multiple quantum wells structures grown on a nonpolar GaN/MSN template show more than 30-fold increase in the luminescence intensity compared to a control sample without the MSN. This self-assembled MSN technique provides a new platform for epitaxial growth of nitride semiconductors and offers unique opportunities for improving the material quality of GaN grown on other orientations and foreign substrates or heteroepitaxial growth of other lattice-mismatched materials. PMID:27065755

  11. Functionalization of nitrogen-doped carbon nanotubes with gallium to form Ga-CN(x)-multi-wall carbon nanotube hybrid materials.

    PubMed

    Simmons, Trevor J; Hashim, Daniel P; Zhan, Xiaobo; Bravo-Sanchez, Mariela; Hahm, Myung Gwan; López-Luna, Edgar; Linhardt, Robert J; Ajayan, Pulickel M; Navarro-Contreras, Hugo; Vidal, Miguel A

    2012-08-17

    In an effort to combine group III-V semiconductors with carbon nanotubes, a simple solution-based technique for gallium functionalization of nitrogen-doped multi-wall carbon nanotubes has been developed. With an aqueous solution of a gallium salt (GaI(3)), it was possible to form covalent bonds between the Ga(3+) ion and the nitrogen atoms of the doped carbon nanotubes to form a gallium nitride-carbon nanotube hybrid at room temperature. This functionalization was evaluated by x-ray photoelectron spectroscopy, energy dispersive x-ray spectroscopy, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy.

  12. Dual band HEIWIP detectors with nitride materials

    NASA Astrophysics Data System (ADS)

    Unil Perera, A. G.; Ariyawansa, Gamini; Jayasinghe, Ranga; Byrum, Laura; Dietz, Nikolaus; Matsik, Steven G.; Ferguson, Ian T.; Luo, Hui; Bezinger, Andrew; Liu, Hui Chun

    2007-09-01

    Detection of both UV and IR radiation is useful for numerous applications such as firefighting and military sensing. At present, UV and IR dual wavelength band detection requires separate detector elements. Here results are presented for a GaN/AlGaN single detector element capable of measuring both UV and IR response. The initial detector used to prove the dualband concept consists of an undoped AlGaN barrier layer between two highly doped GaN emitter/contact layers. The UV response is due to interband absorption in the AlGaN barrier region producing electron-hole pairs which are then swept out of the barrier by an applied electric field and collected at the contacts. The IR response is due to free carrier absorption in the emitters and internal photoemission over the work function at the emitter barrier interface, followed by collection at the opposite contact. The UV threshold for the initial detector was 360 nm while the IR response was in the 8-14 micron range. Optimization of the detector to improve response in both spectral ranges will be discussed. Designs capable of distinguishing the simultaneously measured UV and IR by using three contacts and separate IR and UV active regions will be presented. The same approach can be used with other material combinations to cover additional wavelength ranges, e.g. GaAs/AlGaAs NIR-FIR dual band detectors.

  13. Methods for forming group III-arsenide-nitride semiconductor materials

    NASA Technical Reports Server (NTRS)

    Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)

    2002-01-01

    Methods are disclosed for forming Group III-arsenide-nitride semiconductor materials. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.

  14. Crucible materials for growth of aluminum nitride crystals

    NASA Astrophysics Data System (ADS)

    Schlesser, R.; Dalmau, R.; Zhuang, D.; Collazo, R.; Sitar, Z.

    2005-07-01

    The growth of aluminum nitride (AlN) bulk crystals by sublimation of an AlN source requires elevated temperatures, typically in a range of 1800-2300 °C. These temperature requirements, combined with the chemically aggressive nature of the Al vapor, severely limit the choice of reactor hot-zone materials, and most notably, the selection of reaction crucibles. Aside from refractory elements, potentially promising compound materials include refractory nitrides, carbides, and borides. In this work, TaC crucibles were fabricated using a binderless sintering process and were tested in AlN bulk growth experiments. Elemental analysis of crystals grown in these crucibles revealed extremely low Ta contamination, below the analytical detection limit of 1 ppm by weight and C contamination levels as low as 50 ppm by weight; C contamination likely originated from sources unrelated to the crucible material. Crucibles were re-used in several consecutive growth runs; average crucible lifetimes exceeded 200 h at growth temperatures exceeding 2200 °C.

  15. Powder processing of nitrides (excluding hot isostatic processing). (Latest citations from Engineered Materials abstracts). NewSearch

    SciTech Connect

    Not Available

    1994-10-01

    The bibliography contains citations concerning the properties and processing of metal nitride ceramics and refractories. Citations consider compacting and sintering processes. Phase transformations, crystallization, and devitrification processes are considered. Aluminum nitride, boron nitride, silicon nitride, silicon oxynitride, and titanium nitride are among materials discussed. The use of hot isostatic pressing is considered in a separate bibliography. (Contains 250 citations and includes a subject term index and title list.)

  16. Deposition of metallic gallium on re-crystallized ceramic material during focused ion beam milling

    SciTech Connect

    Muñoz-Tabares, J.A.; Reyes-Gasga, J.

    2013-12-15

    We report a new kind of artifact observed in the preparation of a TEM sample of zirconia by FIB, which consists in the deposition of metallic gallium nano-dots on the TEM sample surface. High resolution TEM images showed a microstructure of fine equiaxed grains of ∼ 5 nm, with some of them possessing two particular characteristics: high contrast and well-defined fast Fourier transform. These grains could not be identified as any phase of zirconia but it was possible to identify them as gallium crystals in the zone axis [110]. Based on HRTEM simulations, the possible orientations between zirconia substrate and deposited gallium are discussed in terms of lattice mismatch and oxygen affinity. - Highlights: • We show a new type of artifact induced during preparation of TEM samples by FIB. • Deposition of Ga occurs due to its high affinity for oxygen. • Materials with small grain size (∼ 5 nm) could promote Ga deposition. • Small grain size permits the elastic accommodation of deposited Ga.

  17. Effects of post-deposition annealing ambient on band alignment of RF magnetron-sputtered Y2O3 film on gallium nitride

    PubMed Central

    2013-01-01

    The effects of different post-deposition annealing ambients (oxygen, argon, forming gas (95% N2 + 5% H2), and nitrogen) on radio frequency magnetron-sputtered yttrium oxide (Y2O3) films on n-type gallium nitride (GaN) substrate were studied in this work. X-ray photoelectron spectroscopy was utilized to extract the bandgap of Y2O3 and interfacial layer as well as establishing the energy band alignment of Y2O3/interfacial layer/GaN structure. Three different structures of energy band alignment were obtained, and the change of band alignment influenced leakage current density-electrical breakdown field characteristics of the samples subjected to different post-deposition annealing ambients. Of these investigated samples, ability of the sample annealed in O2 ambient to withstand the highest electric breakdown field (approximately 6.6 MV/cm) at 10−6 A/cm2 was related to the largest conduction band offset of interfacial layer/GaN (3.77 eV) and barrier height (3.72 eV). PMID:23360596

  18. Fabrication of conducting-filament-embedded indium tin oxide electrodes: application to lateral-type gallium nitride light-emitting diodes.

    PubMed

    Kim, Hee-Dong; Kim, Kyeong Heon; Kim, Su Jin; Kim, Tae Geun

    2015-11-01

    A novel conducting filament (CF)-embedded indium tin oxide (ITO) film is fabricated using an electrical breakdown method. To assess the performance of this layer as an ohmic contact, it is applied to GaN (gallium nitride) light-emitting diodes (LEDs) as a p-type electrode for comparison with typical GaN LEDs using metallic ITO. The operating voltage and output power of the LED with the CF embedded ITO are 3.93 V and 8.49 mW, respectively, at an injection current of 100 mA. This is comparable to the operating voltage and output power of the conventionally fabricated LEDs using metallic ITO (3.93 V and 8.43 mW). Moreover, the CF-ITO LED displays uniform and bright light emission indicating excellent current injection and spreading. These results suggest that the proposed method of forming ohmic contacts is at least as effective as the conventional method. PMID:26561146

  19. III-V aresenide-nitride semiconductor materials and devices

    NASA Technical Reports Server (NTRS)

    Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)

    1997-01-01

    III-V arsenide-nitride semiconductor crystals, methods for producing such crystals and devices employing such crystals. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.

  20. Process for forming pure silver ohmic contacts to N- and P-type gallium arsenide materials

    DOEpatents

    Hogan, S.J.

    1983-03-13

    Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components a n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffuse layer and the substrate layer wherein the n-type layer comprises a substantially low doping carrier concentration.

  1. Pure silver ohmic contacts to N- and P- type gallium arsenide materials

    DOEpatents

    Hogan, Stephen J.

    1986-01-01

    Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components an n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffused layer and the substrate layer, wherein the n-type layer comprises a substantially low doping carrier concentration.

  2. Evaluation of the indium gallium nitride/silicon broken-gap heterojunction and its potential application for solar cells

    NASA Astrophysics Data System (ADS)

    Yao, Yuan

    InGaN (especially In-rich alloy) has been actively studied for decades since the band gap of InN was revised downward from ˜2.0 eV to 0.64 eV. The potential applications for alloys of In-rich InGaN hence became apparent. Despite the promising potential, photovoltaic devices based on InGaN have struggled due to a number of key limitations and fundamental physical problems. Firstly, due to the deep excursion of the InN conduction band at the gamma point, defects in InN are almost universally n-type leading to unintentional degenerate doping. This also leads to the problem of electron accumulation at all surfaces and interfaces of InN. Secondly, p-type doping is problematic, partially due to the degenerate doping effect of defects, but it has also been observed that Mg-doping, while leading to a p-type layer, dramatically reduces the quantum efficiency. This thesis explores an alternative approach using n-type InGaN to form a heterojunction with a p-type Si substrate. One potential benefit to using p-type Si as a substrate material for InGaN is that the valence band of Si possibly lines up with the conduction band of InGaN for a specific mole fraction of indium. Such a band alignment is known as a broken gap heterojunction, an example of which is the interface between InAs and AlxGa 1--xSb. The benefits of this broken-gap junction include a low series resistance, high electron mobility, and mobility only weakly dependent on temperature. These properties enable new approach to photovoltaic devices. The InGaN/Si heterojunctions were fabricated by plasma-assisted molecular beam epitaxy under stoichiometric flux conditions. An ultra-thin SiN interface layer was introduced, by Si nitridation process, to passivate the substrate surface and prevent In-Si and Ga-Si eutectic problems. InGaN films with a variety of indium mole fractions were grown by calibrating the In/Ga flux ratio during the deposition. The chemical composition of as-grown films was characterized by x

  3. The Role of Defect Complexes in the Magneto-Optical Properties of Rare Earth Doped Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Mitchell, Brandon

    Wide band gap semiconductors doped with rare earth ions (RE) have shown great potential for applications in optoelectronics, photonics, and spintronics. The 1.54mum Erbium (Er) emission has been extensively utilized in optical fiber communications, and Europium (Eu) is commonly used as a red color component for LEDs and fluorescence lamps. For the realization of spintronic-type devices, a dilutely doped semiconductor that exhibits room temperature ferromagnetic behavior would be desirable. Such behavior has been observed in GaN:Er. Furthermore, it was demonstrated that strain may play an important role in the control of this ferromagnetism; however, this requires further investigation. One motivation of this work is the realization of an all solid state white light source monolithically integrated into III/V nitride semiconductor materials, ideally GaN. For this, the current AlGaAs-based LEDs need to be replaced. One approach for achieving efficient red emission from GaN is dilute doping with fluorescent ions. In this regard, Eu has consistently been the most promising candidate as a dopant in the active layer for a red, GaN based, LED due to the sharp 5D0 to 7F2 transitions that result in red emission around 620nm. The success of GaN:Eu as the active layer for a red LED is based on the ability for the Eu ions to be efficiently excited by electron hole pairs. Thus, the processes by which energy is transferred from the host to the Eu ions has been studied. Complications arise, however, from the fact that Eu ions incorporate into multiple center environments, the structures of which are found to have a profound influence on the excitation pathways and efficiencies of the Eu ion. Therefore the nature of Eu incorporation and the resulting luminescence efficiency in GaN has been extensively investigated. By performing a comparative study on GaN:Eu samples grown under a variety of controlled conditions and using a variety of experimental techniques, the majority site has

  4. Microwave Nonlinear Modeling and Active Frequency Multiplier Design for High Power Silicon-Carbide and Gallium-Nitride Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Yuk, Kelvin Shing-Tak

    Wide bandgap silicon-carbide (SiC) and gallium-nitride (GaN) FETs are the premier microwave solid-state power technology and are presently being deployed in a variety of commercial applications. However, performance-degrading self-heating and charge-trapping effects create new challenges for characterization and modeling of these devices. Accurate nonlinear models capable of predicting these effects are necessary to maximally exploit the benefits of this emerging, high power density technology. An empirical modeling methodology for the SiC MESFET and GaN HEMT using high power dynamic IV measurements to exploit and characterize self-heating and charge-trapping is applied over a vast range of electrothermal operating conditions. Nonlinear diode modeling and multibias, small-signal techniques are performed to create complete nonlinear models for SiC and GaN FETs, which are capable of predicting DC, pulsed, small- and large-signal RF behavior over a wide range of bias and frequency. The presented models are valid for drain currents beyond 2A, drain voltages greater than 50V and up to 10W at RF. These harmonically-accurate models permit the new application of CAD-based active frequency multiplier design for wide bandgap devices. Frequency doublers and triplers are demonstrated in SiC MESFET and GaN HEMT technology, producing some of the highest power, single-transistor microwave frequency multipliers to date. This work reports SiC- and GaN-based C-band frequency doublers with >5W output power and a GaN-based X-band frequency tripler with 1W output power.

  5. Resonant and nonresonant vibrational excitation of ammonia molecules in the growth of gallium nitride using laser-assisted metal organic chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Golgir, Hossein Rabiee; Zhou, Yun Shen; Li, Dawei; Keramatnejad, Kamran; Xiong, Wei; Wang, Mengmeng; Jiang, Li Jia; Huang, Xi; Jiang, Lan; Silvain, Jean Francois; Lu, Yong Feng

    2016-09-01

    The influence of exciting ammonia (NH3) molecular vibration in the growth of gallium nitride (GaN) was investigated by using an infrared laser-assisted metal organic chemical vapor deposition method. A wavelength tunable CO2 laser was used to selectively excite the individual vibrational modes. Resonantly exciting the NH-wagging mode (v2) of NH3 molecules at 9.219 μm led to a GaN growth rate of 84 μm/h, which is much higher than the reported results. The difference between the resonantly excited and conventional thermally populated vibrational states was studied via resonant and nonresonant vibrational excitations of NH3 molecules. Resonant excitation of various vibrational modes was achieved at 9.219, 10.35, and 10.719 μm, respectively. Nonresonant excitation was conducted at 9.201 and 10.591 μm, similar to conventional thermal heating. Compared to nonresonant excitation, resonant excitation noticeably promotes the GaN growth rate and crystalline quality. The full width at half maximum value of the XRD rocking curves of the GaN (0002) and GaN (10-12) diffraction peaks decreased at resonant depositions and reached its minimum value of 45 and 53 arcmin, respectively, at the laser wavelength of 9.219 μm. According to the optical emission spectroscopic studies, resonantly exciting the NH3 v2 mode leads to NH3 decomposition at room temperature, reduces the formation of the TMGa:NH3 adduct, promotes the supply of active species in GaN formation, and, therefore, results in the increased GaN growth rate.

  6. Impurity-induced disorder in III-nitride materials and devices

    DOEpatents

    Wierer, Jr., Jonathan J; Allerman, Andrew A

    2014-11-25

    A method for impurity-induced disordering in III-nitride materials comprises growing a III-nitride heterostructure at a growth temperature and doping the heterostructure layers with a dopant during or after the growth of the heterostructure and post-growth annealing of the heterostructure. The post-growth annealing temperature can be sufficiently high to induce disorder of the heterostructure layer interfaces.

  7. Rational design of metal nitride redox materials for solar-driven ammonia synthesis.

    PubMed

    Michalsky, Ronald; Pfromm, Peter H; Steinfeld, Aldo

    2015-06-01

    Fixed nitrogen is an essential chemical building block for plant and animal protein, which makes ammonia (NH3) a central component of synthetic fertilizer for the global production of food and biofuels. A global project on artificial photosynthesis may foster the development of production technologies for renewable NH3 fertilizer, hydrogen carrier and combustion fuel. This article presents an alternative path for the production of NH3 from nitrogen, water and solar energy. The process is based on a thermochemical redox cycle driven by concentrated solar process heat at 700-1200°C that yields NH3 via the oxidation of a metal nitride with water. The metal nitride is recycled via solar-driven reduction of the oxidized redox material with nitrogen at atmospheric pressure. We employ electronic structure theory for the rational high-throughput design of novel metal nitride redox materials and to show how transition-metal doping controls the formation and consumption of nitrogen vacancies in metal nitrides. We confirm experimentally that iron doping of manganese nitride increases the concentration of nitrogen vacancies compared with no doping. The experiments are rationalized through the average energy of the dopant d-states, a descriptor for the theory-based design of advanced metal nitride redox materials to produce sustainable solar thermochemical ammonia.

  8. Rational design of metal nitride redox materials for solar-driven ammonia synthesis

    PubMed Central

    Michalsky, Ronald; Pfromm, Peter H.; Steinfeld, Aldo

    2015-01-01

    Fixed nitrogen is an essential chemical building block for plant and animal protein, which makes ammonia (NH3) a central component of synthetic fertilizer for the global production of food and biofuels. A global project on artificial photosynthesis may foster the development of production technologies for renewable NH3 fertilizer, hydrogen carrier and combustion fuel. This article presents an alternative path for the production of NH3 from nitrogen, water and solar energy. The process is based on a thermochemical redox cycle driven by concentrated solar process heat at 700–1200°C that yields NH3 via the oxidation of a metal nitride with water. The metal nitride is recycled via solar-driven reduction of the oxidized redox material with nitrogen at atmospheric pressure. We employ electronic structure theory for the rational high-throughput design of novel metal nitride redox materials and to show how transition-metal doping controls the formation and consumption of nitrogen vacancies in metal nitrides. We confirm experimentally that iron doping of manganese nitride increases the concentration of nitrogen vacancies compared with no doping. The experiments are rationalized through the average energy of the dopant d-states, a descriptor for the theory-based design of advanced metal nitride redox materials to produce sustainable solar thermochemical ammonia. PMID:26052421

  9. Rational design of metal nitride redox materials for solar-driven ammonia synthesis.

    PubMed

    Michalsky, Ronald; Pfromm, Peter H; Steinfeld, Aldo

    2015-06-01

    Fixed nitrogen is an essential chemical building block for plant and animal protein, which makes ammonia (NH3) a central component of synthetic fertilizer for the global production of food and biofuels. A global project on artificial photosynthesis may foster the development of production technologies for renewable NH3 fertilizer, hydrogen carrier and combustion fuel. This article presents an alternative path for the production of NH3 from nitrogen, water and solar energy. The process is based on a thermochemical redox cycle driven by concentrated solar process heat at 700-1200°C that yields NH3 via the oxidation of a metal nitride with water. The metal nitride is recycled via solar-driven reduction of the oxidized redox material with nitrogen at atmospheric pressure. We employ electronic structure theory for the rational high-throughput design of novel metal nitride redox materials and to show how transition-metal doping controls the formation and consumption of nitrogen vacancies in metal nitrides. We confirm experimentally that iron doping of manganese nitride increases the concentration of nitrogen vacancies compared with no doping. The experiments are rationalized through the average energy of the dopant d-states, a descriptor for the theory-based design of advanced metal nitride redox materials to produce sustainable solar thermochemical ammonia. PMID:26052421

  10. Polar and Nonpolar Gallium Nitride and Zinc Oxide based thin film heterostructures Integrated with Sapphire and Silicon

    NASA Astrophysics Data System (ADS)

    Gupta, Pranav

    This dissertation work explores the understanding of the relaxation and integration of polar and non-polar of GaN and ZnO thin films with Sapphire and silicon substrates. Strain management and epitaxial analysis has been performed on wurtzitic GaN(0001) thin films grown on c-Sapphire and wurtzitic non-polar a-plane GaN(11-20) thin films grown on r-plane Sapphire (10-12) by remote plasma atomic nitrogen source assisted UHV Pulsed Laser Deposition process. It has been established that high-quality 2-dimensional c-axis GaN(0001) nucleation layers can be grown on c-Sapphire by PLD process at growth temperatures as low as ˜650°C. Whereas the c-axis GaN on c-sapphire has biaxially negative misfit, the crystalline anisotropy of the a-plane GaN films on r-Sapphire results in compressive and tensile misfits in the two major orthogonal directions. The measured strains have been analyzed in detail by X-ray, Raman spectroscopy and TEM. Strain relaxation in GaN(0001)/Sapphire thin film heterostructure has been explained by the principle of domain matched epitaxial growth in large planar misfit system and has been demonstrated by TEM study. An attempt has been made to qualitatively understand the minimization of free energy of the system from the strain perspective. Analysis has been presented to quantify the strain components responsible for the compressive strain observed in the GaN(0001) thin films on c-axis Sapphire substrates. It was also observed that gallium rich deposition conditions in PLD process lead to smoother nucleation layers because of higher ad-atom mobility of gallium. We demonstrate near strain relaxed epitaxial (0001) GaN thin films grown on (111) Si substrates using TiN as intermediate buffer layer by remote nitrogen plasma assisted UHV pulsed laser deposition (PLD). Because of large misfits between the TiN/GaN and TiN/Si systems the TIN buffer layer growth occurs via nucleation of interfacial dislocations under domain matching epitaxy paradigm. X-ray and

  11. Potential use of gallium-doped phosphate-based glass material for periodontitis treatment.

    PubMed

    Sahdev, Rohan; Ansari, Tahera I; Higham, Susan M; Valappil, Sabeel P

    2015-07-01

    This study aimed at evaluating the potential effect of gallium-incorporated phosphate-based glasses towards periodontitis-associated bacteria, Porphyromonas gingivalis, and matrix metalloproteinase-13. Periodontitis describes a group of inflammatory diseases of the gingiva and supporting structures of the periodontium. They are initiated by the accumulation of plaque bacteria, such as the putative periodontal pathogen Porphyromonas gingivalis, but the host immune response such as elevated matrix metalloproteinases are the major contributing factor for destruction of periodontal tissues. Antibacterial assays of gallium-incorporated phosphate-based glasses were conducted on Porphyromonas gingivalis ATCC 33277 using disc diffusion assay on fastidious anaerobe agar and liquid broth assay in a modified tryptic soy broth. In vitro study investigated the effect of gallium on purified recombinant human matrix metalloproteinase-13 activity using matrix metalloproteinase assay kit. In vivo biocompatibility of gallium-incorporated phosphate-based glass was evaluated in rats as subcutaneous implants. Antibacterial assay of gallium displayed activity against Porphyromonas gingivalis (inhibition zone of 22 ± 0.5 mm compared with 0 mm for control glass, c-PBG). Gallium in the glass contributed to growth inhibitory effect on Porphyromonas gingivalis (up to 1.30 reductions in log 10 values of the viable counts compared with control) in a modified tryptic soy broth. In vitro study showed gallium-incorporated phosphate-based glasses inhibited matrix metalloproteinase activity significantly (p ≤ 0.01) compared with c-PBG. Evaluation of in vivo biocompatibility of gallium-incorporated phosphate-based glasses in rats showed a non-toxic and foreign body response after 2 weeks of implantation. The results indicate that gallium ions might act on multiple targets of biological mechanisms underlying periodontal disease. Moreover, gallium-incorporated phosphate-based glasses

  12. Potential use of gallium-doped phosphate-based glass material for periodontitis treatment.

    PubMed

    Sahdev, Rohan; Ansari, Tahera I; Higham, Susan M; Valappil, Sabeel P

    2015-07-01

    This study aimed at evaluating the potential effect of gallium-incorporated phosphate-based glasses towards periodontitis-associated bacteria, Porphyromonas gingivalis, and matrix metalloproteinase-13. Periodontitis describes a group of inflammatory diseases of the gingiva and supporting structures of the periodontium. They are initiated by the accumulation of plaque bacteria, such as the putative periodontal pathogen Porphyromonas gingivalis, but the host immune response such as elevated matrix metalloproteinases are the major contributing factor for destruction of periodontal tissues. Antibacterial assays of gallium-incorporated phosphate-based glasses were conducted on Porphyromonas gingivalis ATCC 33277 using disc diffusion assay on fastidious anaerobe agar and liquid broth assay in a modified tryptic soy broth. In vitro study investigated the effect of gallium on purified recombinant human matrix metalloproteinase-13 activity using matrix metalloproteinase assay kit. In vivo biocompatibility of gallium-incorporated phosphate-based glass was evaluated in rats as subcutaneous implants. Antibacterial assay of gallium displayed activity against Porphyromonas gingivalis (inhibition zone of 22 ± 0.5 mm compared with 0 mm for control glass, c-PBG). Gallium in the glass contributed to growth inhibitory effect on Porphyromonas gingivalis (up to 1.30 reductions in log 10 values of the viable counts compared with control) in a modified tryptic soy broth. In vitro study showed gallium-incorporated phosphate-based glasses inhibited matrix metalloproteinase activity significantly (p ≤ 0.01) compared with c-PBG. Evaluation of in vivo biocompatibility of gallium-incorporated phosphate-based glasses in rats showed a non-toxic and foreign body response after 2 weeks of implantation. The results indicate that gallium ions might act on multiple targets of biological mechanisms underlying periodontal disease. Moreover, gallium-incorporated phosphate-based glasses

  13. Conductivity of materials made of aluminum nitride and silicon nitride mixtures

    NASA Technical Reports Server (NTRS)

    Gorbatov, A. G.; Kamyshov, V. M.

    1978-01-01

    To establish the possible mechanism for conductivity in aluminum nitride a study was made of the electric conductivity of pure AlN and its mixtures with silicon nitride at different temperatures and partial pressures of nitrogen in the gas phase. The thermoelectromotive force was also measured. The experiments used polycrystalline samples of cylindrical shape 18 mm in diameter made of powders by hot pressing in graphite press molds at a temperature of 1973-2273 K and pressure 1,470,000 n/sqm. The items obtained by this method had porosity not over 5%. After pressing, the samples were machined to remove carbon from the surface, and were annealed in a stream of dry ammonia for 10 h at a temperature of 1273-1373 K. Electric conductivity was measured according to the bridge scheme on an alternating current of frequency 10 kHz. In order to guarantee close contact of the platinum electrodes with the surface of the samples, a thin layer of platinum was sprayed on them. Experiments were conducted in the temperature interval 1273-1573 K with a half hour delay at each assigned temperature with heating and cooling.

  14. Three-dimensional tungsten nitride nanowires as high performance anode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Qiu, Yongfu; Han, Yi; Guo, Yan; Cheng, Faliang

    2016-08-01

    Nanostructure materials often achieve low capacity when the active material mass loading is high. In this communication, high mass-loading tungsten nitride nanowires (WNNWs) were fabricated on a flexible carbon cloth by hydrothermal method and post annealing. The prepared electrode exhibited remarkable cyclic stability and attractive rate capability for lithium storage. It delivers at a current density of 200 mA g-1, a high capacity of 418 mAh g-1, which is higher than that of conventional graphite. This research opens more opportunity for the fabrication of three-dimensional metal nitrides as negative electrode material for flexible lithium ion batteries.

  15. Infrared Reflectance and Ultrahigh Vacuum Cathodoluminescence of Aluminum Nitride-Gallium Nitride Short Period Superlattice Films and P-Type Porous 6h Silicon Carbide Layers

    NASA Astrophysics Data System (ADS)

    MacMillan, Michael F.

    The room temperature infrared reflectance of AlN -GaN short period superlattice films was measured. These superlattice films were deposited by switched atomic layer metal organic chemical vapor deposition onto GaN or AlN buffer layers deposited on basal plane sapphire substrates. The measured reflectance spectra are compared to calculated spectra generated using an effective medium theory to model the dielectric function of the superlattice. Optical properties of the individual materials comprising the samples are modeled with Lorentz oscillators using bulk input parameters. The effects of film and substrate anisotropy and off normal incidence are included in the calculation. Using this modeling technique, thickness estimates for the total superlattice film and the buffer layer are obtained. Cathodoluminescence of AlN-GaN short period superlattice films was measured at 6K, 77K and room temperature, and at several electron acceleration voltages to allow depth profiling of the samples. An ultraviolet peak located above the band gap energy of GaN is present in all samples and persists from 6K to room temperature. Using the film and buffer thicknesses determined by the reflectance measurement this ultraviolet peak is identified as originating from the superlattice layer. Preliminary results indicate that this peak is due to quantum confinement in the GaN layers. The room temperature infrared reflectance of thick p-type porous 6H SiC layers was measured. Samples were fabricated by anodization of p-type 6H SiC bulk crystals in dilute HF. Striking differences are seen between the reststrahl region reflectance of these porous layers and that of bulk 6H SiC crystals. Several effective medium models, which assume different morphologies of the component materials, 6H SiC and air, were used to model the dielectric function of porous SiC. Calculated reflectance spectra, generated using these dielectric functions, are compared to experimental porous SiC spectra, allowing us to

  16. The effect of neutron irradiation and annealing temperature on the electrical properties and lattice constant of epitaxial gallium nitride layers

    SciTech Connect

    Boyko, V. M.; Verevkin, S. S.; Kolin, N. G. Korulin, A. V.; Merkurisov, D. I.; Polyakov, A. Y.; Chevychelov, V. A.

    2011-01-15

    Effect of irradiation with high reactor-neutron fluences ({Phi} = 1.5 Multiplication-Sign 10{sup 17}-8 Multiplication-Sign 10{sup 19} cm{sup -2}) and subsequent heat treatments in the temperature range 100-1000 Degree-Sign C on the electrical properties and lattice constant of epitaxial GaN layers grown on an Al{sub 2}O{sub 3} substrate is considered. It is shown that, with the neutron fluence increasing to (1-2) Multiplication-Sign 10{sup 18} cm{sup -2}, the resistivity of the material grows to values of about 10{sup 10} {Omega} cm because of the formation of radiation defects, and, with the fluence raised further, the resistivity passes through a maximum and then decreases to 2 Multiplication-Sign 10{sup 6} {Omega} cm at 300 K, which is accounted for by the appearance of a hopping conductivity via deep defects in the overlapping outer parts of disordered regions. With the neutron fluence raised to 8 Multiplication-Sign 10{sup 19} cm{sup -2}, the lattice constant c increases by 0.38% at a nearly unchanged parameter a. Heat treatment of irradiated samples at temperatures as high as 1000 Degree-Sign C does not fully restore the lattice constant and the electrical parameters of the material.

  17. Investigation of an Electrochemical Method for Separation of Copper, Indium, and Gallium from Pretreated CIGS Solar Cell Waste Materials

    PubMed Central

    Gustafsson, Anna M. K.; Björefors, Fredrik; Steenari, Britt-Marie; Ekberg, Christian

    2015-01-01

    Recycling of the semiconductor material copper indium gallium diselenide (CIGS) is important to ensure a future supply of indium and gallium, which are relatively rare and therefore expensive elements. As a continuation of our previous work, where we recycled high purity selenium from CIGS waste materials, we now show that copper and indium can be recycled by electrodeposition from hydrochloric acid solutions of dissolved selenium-depleted material. Suitable potentials for the reduction of copper and indium were determined to be −0.5 V and −0.9 V (versus the Ag/AgCl reference electrode), respectively, using cyclic voltammetry. Electrodeposition of first copper and then indium from a solution containing the dissolved residue from the selenium separation and ammonium chloride in 1 M HCl gave a copper yield of 100.1 ± 0.5% and an indium yield of 98.1 ± 2.5%. The separated copper and indium fractions contained no significant contamination of the other elements. Gallium remained in solution together with a small amount of indium after the separation of copper and indium and has to be recovered by an alternative method since electrowinning from the chloride-rich acid solution was not effective. PMID:26347901

  18. Investigation of an Electrochemical Method for Separation of Copper, Indium, and Gallium from Pretreated CIGS Solar Cell Waste Materials.

    PubMed

    Gustafsson, Anna M K; Björefors, Fredrik; Steenari, Britt-Marie; Ekberg, Christian

    2015-01-01

    Recycling of the semiconductor material copper indium gallium diselenide (CIGS) is important to ensure a future supply of indium and gallium, which are relatively rare and therefore expensive elements. As a continuation of our previous work, where we recycled high purity selenium from CIGS waste materials, we now show that copper and indium can be recycled by electrodeposition from hydrochloric acid solutions of dissolved selenium-depleted material. Suitable potentials for the reduction of copper and indium were determined to be -0.5 V and -0.9 V (versus the Ag/AgCl reference electrode), respectively, using cyclic voltammetry. Electrodeposition of first copper and then indium from a solution containing the dissolved residue from the selenium separation and ammonium chloride in 1 M HCl gave a copper yield of 100.1 ± 0.5% and an indium yield of 98.1 ± 2.5%. The separated copper and indium fractions contained no significant contamination of the other elements. Gallium remained in solution together with a small amount of indium after the separation of copper and indium and has to be recovered by an alternative method since electrowinning from the chloride-rich acid solution was not effective. PMID:26347901

  19. Evaluation of critical materials for five advanced design photovoltaic cells with an assessment of indium and gallium

    SciTech Connect

    Watts, R.L.; Gurwell, W.E.; Jamieson, W.M.; Long, L.W.; Pawlewicz, W.T.; Smith, S.A.; Teeter, R.R.

    1980-05-01

    The objective of this study is to identify potential material supply constraints due to the large-scale deployment of five advanced photovoltaic (PV) cell designs, and to suggest strategies to reduce the impacts of these production capacity limitations and potential future material shortages. This report presents the results of the screening of the five following advanced PV cell designs: polycrystalline silicon, amorphous silicon, cadmium sulfide/copper sulfide frontwall, polycrystalline gallium arsenide MIS, and advanced concentrator-500X. Each of these five cells is screened individually assuming that they first come online in 1991, and that 25 GWe of peak capacity is online by the year 2000. A second computer screening assumes that each cell first comes online in 1991 and that each cell has 5 GWe of peak capacity by the year 2000, so that the total online cpacity for the five cells is 25 GWe. Based on a review of the preliminary basline screening results, suggestions were made for varying such parameters as the layer thickness, cell production processes, etc. The resulting PV cell characterizations were then screened again by the CMAP computer code. Earlier DOE sponsored work on the assessment of critical materials in PV cells conclusively identtified indium and gallium as warranting further investigation as to their availability. Therefore, this report includes a discussion of the future availability of gallium and indium. (WHK)

  20. UV-Assisted Alcohol Sensors using Gallium Nitride Nanowires Functionalized with Zinc Oxide and Tin Dioxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Bajpai, Ritu

    The motivation behind this work has been to address two of the most challenging issues posed to semiconductor gas sensors--- tuning the device selectivity and sensitivity to a wide variety of gases. In a chemiresistor type nanowire sensor, the sensitivity and selectivity depend on the interaction of different chemical analytes with the nanowire surface. Constrained by the surface properties of the nanowire material, most nanowire sensors can detect only specific type of analytes. In order to make a nano-sensor array for a wide range of analytes, there is a need to tune the device sensitivity and selectivity towards different chemicals. Employing the inherent advantages of nanostructure based sensing such as large surface area, miniature size, low power consumption, and nmol/mol (ppb) sensitivity, an attempt has been made to propose a device with tunable selectivity and sensitivity. The idea proposed in this work is to functionalize GaN nanowires which have relatively inactive surface properties (i.e., with no chemiresistive sensitivity to different classes of organic vapors), with analyte dependent active metal oxides. The selectivity of the sensor devices is controlled independent of the surface properties of the nanowire itself. It is the surface properties of the functionalizing metal oxides which determine the selectivity of these sensors. Further facilitated by the proposed fabrication technique, these sensors can be easily tuned to detect different gases. The prototype developed in this work is that of a UV assisted alcohol sensor using GaN nanowires functionalized with ZnO and SnO2 nanoparticles. As opposed to the widely demonstrated metal oxide based sensors assisted by elevated temperature, the operation of photoconductive semiconductor sensor devices such as those fabricated in this work, can also be assisted by UV illumination at room temperature. Temperature assisted sensing requires an integrated on-chip heater, which could impose constraints on the

  1. Temperature dependence of electrical properties of gallium-nitride bulk single crystals doped with Mg and their evolution with annealing

    SciTech Connect

    Litwin-Staszewska, E.; Suski, T.; Piotrzkowski, R.; Grzegory, I.; Bockowski, M.; Robert, J. L.; Konczewicz, L.; Wasik, D.; Kaminska, E.; Cote, D.

    2001-06-15

    Comprehensive studies of the electrical properties of Mg-doped bulk GaN crystals, grown by high-pressure synthesis, were performed as a function of temperature up to 750{degree}C. Annealing of the samples in nitrogen ambient modifies qualitatively their resistivity values {rho} and the {rho}(T) variation. It was found that our material is characterized by a high concentration of oxygen-related donors and that the charge transport in the studied samples is determined by two types of states, one of shallow character (Mg-related state, E{sub A}{approximately}0.15eV), and the second one much more deep, E{sub 2}{approximately}0.95eV (above the valence band). Depending on the effective concentration of either states, different resistivities {rho} can be observed: lower resistivity ({rho}{lt}10{sup 4}{Omega}cm at ambient temperature) in samples with dominant E{sub A} states and very high resistivity ({rho}{gt}10{sup 6}{Omega}cm at ambient temperature) in samples with dominant E{sub 2} states. For the first type of samples, annealing at T{sub ann}{lt}500{degree}C leads to a decrease of their resistivity and is associated with an increase of the effective concentration of the shallow Mg acceptors. Annealing of both types of samples at temperatures between 600 and 750{degree}C leads to an increase of the deep state concentration. The presence of hydrogen ambient during annealing of the low-resistivity samples strongly influences their properties. The increase of the sample resistivity and an appearance of a local vibrational mode of hydrogen at 3125 cm{minus}1 were observed. These effects can be removed by annealing in hydrogen-free ambient. {copyright} 2001 American Institute of Physics.

  2. UV-Assisted Alcohol Sensors using Gallium Nitride Nanowires Functionalized with Zinc Oxide and Tin Dioxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Bajpai, Ritu

    The motivation behind this work has been to address two of the most challenging issues posed to semiconductor gas sensors--- tuning the device selectivity and sensitivity to a wide variety of gases. In a chemiresistor type nanowire sensor, the sensitivity and selectivity depend on the interaction of different chemical analytes with the nanowire surface. Constrained by the surface properties of the nanowire material, most nanowire sensors can detect only specific type of analytes. In order to make a nano-sensor array for a wide range of analytes, there is a need to tune the device sensitivity and selectivity towards different chemicals. Employing the inherent advantages of nanostructure based sensing such as large surface area, miniature size, low power consumption, and nmol/mol (ppb) sensitivity, an attempt has been made to propose a device with tunable selectivity and sensitivity. The idea proposed in this work is to functionalize GaN nanowires which have relatively inactive surface properties (i.e., with no chemiresistive sensitivity to different classes of organic vapors), with analyte dependent active metal oxides. The selectivity of the sensor devices is controlled independent of the surface properties of the nanowire itself. It is the surface properties of the functionalizing metal oxides which determine the selectivity of these sensors. Further facilitated by the proposed fabrication technique, these sensors can be easily tuned to detect different gases. The prototype developed in this work is that of a UV assisted alcohol sensor using GaN nanowires functionalized with ZnO and SnO2 nanoparticles. As opposed to the widely demonstrated metal oxide based sensors assisted by elevated temperature, the operation of photoconductive semiconductor sensor devices such as those fabricated in this work, can also be assisted by UV illumination at room temperature. Temperature assisted sensing requires an integrated on-chip heater, which could impose constraints on the

  3. Preventing Supercooling Of Gallium

    NASA Technical Reports Server (NTRS)

    Massucco, Arthur A.; Wenghoefer, Hans M.; Wilkins, Ronnie

    1994-01-01

    Principle of heterogeneous nucleation exploited to prevent gallium from supercooling, enabling its use as heat-storage material that crystallizes reproducibly at its freezing or melting temperature of 29 to 30 degrees C. In original intended application, gallium used as heat-storage material in gloves of space suits. Terrestrial application lies in preparation of freezing-temperature reference samples for laboratories. Principle of heterogeneous nucleation also exploited similarly in heat pipes filled with sodium.

  4. The Durability of Various Crucible Materials for Aluminum Nitride Crystal growth by Sublimation

    SciTech Connect

    Liu,B.; Edgar, J.; Gu, Z.; Zhuang, D.; Raghothamachar, B.; Dudley, M.; Sarua, A.; Kuball, M.; Meyer, H.

    2004-01-01

    Producing high purity aluminum nitride crystals by the sublimation-recondensation technique is difficult due to the inherently reactive crystal growth environment, normally at temperature in excess of 2100 C. The durability of the furnace fixture materials (crucibles, retorts, etc.) at such a high temperature remains a critical problem. In the present study, the suitability of several refractory materials for AlN crystal growth is investigated, including tantalum carbide, niobium carbide, tungsten, graphite, and hot-pressed boron nitride. The thermal and chemical properties and performance of these materials in inert gas, as well as under AlN crystal growth conditions are discussed. TaC and NbC are the most stable crucible materials with very low elemental vapor pressures in the crystal growth system. Compared with refractory material coated graphite crucibles, HPBN crucible is better for AlN self-seeded growth, as crystals tend to nucleate in thin colorless platelets with low dislocation density.

  5. Silicon nitride: A ceramic material with outstanding resistance to thermal shock and corrosion

    NASA Technical Reports Server (NTRS)

    Huebner, K. H.; Saure, F.

    1983-01-01

    The known physical, mechanical and chemical properties of reaction-sintered silicon nitride are summarized. This material deserves interest especially because of its unusually good resistance to thermal shock and corrosion at high temperatures. Two types are distinguished: reaction-sintered (porous) and hot-pressed (dense) Si3N4. Only the reaction-sintered material which is being produced today in large scale as crucibles, pipes, nozzles and tiles is considered.

  6. Small, short and long fatigue crack growth in an advanced silicon nitride ceramic material

    SciTech Connect

    Zhang, Y.H.; Edwards, L.

    1996-05-15

    In metallic materials, a number of workers have reported that the growth rates of small fatigue cracks cannot be correlated with the stress intensity factor range, {Delta}K. Small cracks normally exhibit faster growth rates than long cracks and often show growth rate minima. This anomalous behavior has been attributed to the failure of the linear elastic fracture mechanics parameter {Delta}K to characterize small, or short fatigue crack growth. Ceramic materials combine a lack of dislocation deformation and a very small grain size and thus the reasons for any observed anomalous small or short crack growth effect are less clear. Previous work on small or short fatigue crack growth in ceramics is limited, and work on silicon nitride which is one of the most promising structural ceramics is particularly sparse. As the majority of the fatigue lifetime of any silicon nitride component will be controlled by the propagation of a preexisting small flaw to a critical size, the presence of any short or small crack effect in this material is of engineering importance. Thus, the objective of the work presented here is to investigate the small, short and long crack growth in an advanced silicon nitride material.

  7. High Kinetic Energy Penetrator Shielding and High Wear Resistance Materials Fabricated with Boron Nitride Nanotubes (BNNTS) and BNNT Polymer Composites

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho (Inventor); Park, Cheol (Inventor); Sauti, Godfrey (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Lowther, Sharon E. (Inventor); Bryant, Robert George (Inventor)

    2015-01-01

    Boron nitride nanotubes (BNNTs), boron nitride nanoparticles (BNNPs), carbon nanotubes (CNTs), graphites, or combinations, are incorporated into matrices of polymer, ceramic or metals. Fibers, yarns, and woven or nonwoven mats of BNNTs are used as toughening layers in penetration resistant materials to maximize energy absorption and/or high hardness layers to rebound or deform penetrators. They can be also used as reinforcing inclusions combining with other polymer matrices to create composite layers like typical reinforcing fibers such as Kevlar.RTM., Spectra.RTM., ceramics and metals. Enhanced wear resistance and usage time are achieved by adding boron nitride nanomaterials, increasing hardness and toughness. Such materials can be used in high temperature environments since the oxidation temperature of BNNTs exceeds 800.degree. C. in air. Boron nitride based composites are useful as strong structural materials for anti-micrometeorite layers for spacecraft and space suits, ultra strong tethers, protective gear, vehicles, helmets, shields and safety suits/helmets for industry.

  8. Effect of nitridation surface treatment on silicon (1 1 1) substrate for the growth of high quality single-crystalline GaN hetero-epitaxy layer by MOCVD

    NASA Astrophysics Data System (ADS)

    Rahman, Mohd Nazri Abd.; Yusuf, Yusnizam; Mansor, Mazwan; Shuhaimi, Ahmad

    2016-01-01

    A single-crystalline with high quality of gallium nitride epilayers was grown on silicon (1 1 1) substrate by metal organic chemical vapor deposition. The process of nitridation surface treatment was accomplished on silicon (1 1 1) substrate by flowing the ammonia gaseous. Then, it was followed by a thin aluminum nitride nucleation layer, aluminum nitride/gallium nitride multi-layer and a thick gallium nitride epilayer. The influence of in situ nitridation surface treatment on the crystallinity quality of gallium nitride epilayers was studied by varying the nitridation times at 40, 220 and 400 s, respectively. It was shown that the nitridation times greatly affect the structural properties of the grown top gallium nitride epilayer on silicon (1 1 1) substrate. In the (0 0 0 2) and (1 0 1 bar 2) X-ray rocking curve analysis, a narrower value of full width at half-maximum has been obtained as the nitridation time increased. This is signifying the reduction of dislocation density in the gallium nitride epilayer. This result was supported by the value of bowing and root mean square roughness measured by surface profilometer and atomic force microscopy. Furthermore, a crack-free gallium nitride surface with an abrupt cross-sectional structure that observed using field effect scanning electron microscopy was also been obtained. The phi-scan curve of asymmetric gallium nitride proved the top gallium nitride epilayer exhibited a single-crystalline structure.

  9. Thermophysical properties of materials based on silicon nitride

    SciTech Connect

    Blinder, A.V.; Bolgar, A.S.; Petrovskii, V.Ya.

    1995-09-01

    The heat capacity and thermal conductivity of materials based on Si{sub 3}N{sub 4} are investigated for the first time. The temperature dependence of the thermal diffusivity of the composites studied is calculated. The influence of structural changes on the nature of the thermophysical properties of materials based on {beta}-Si{sub 3}N{sub 4}.

  10. Preparation of Silicon Nitride Multilayer Ceramic Radome Material and Optimal Design of the Wall Structure

    SciTech Connect

    Chen Fei; Shen Qiang; Zhang Lianmeng

    2008-02-15

    A study of silicon nitride ceramic radomes, which includes preparation of the material and optimal design of the radome wall structure, is presented in this paper. Multilayer radome wall structure with high dielectric constant skins and a low dielectric constant core layer is used for broadband application. As a candidate material for both the skins and core layer, silicon nitride ceramics of controlled dielectric constant in the range 3.0{approx}7.5 were prepared by adding different content of sintering aids such as magnesia, alumina, silica and zirconium phosphate binder and choosing suitable sintering methods. A computer aided design (CAD) for the wall structure of silicon nitride multilayer ceramic radome based on microwave equivalent network method is carried out according to design requirements. By optimizing the thickness of skins and core layer, the power transmission efficiency of such a multilayer Si{sub 3}N{sub 4} ceramic radome is calculated. The calculated results suggest that when the dielectric constant of skins lies in the range 6{approx}7.5 and core layer in the range 3.5{approx}4, the power transmission efficiency is above 85% with frequency of 2{approx}18 GHz while the thickness of skins is less than 0.03{lambda} and the thickness ratio of skins to core layer is less than 1:15.

  11. Quantum cascade emission in the III-nitride material system designed with effective interface grading

    SciTech Connect

    Song, Alex Y. Huang, Tzu-Yung; Zah, Chung-En; Gmachl, Claire F.; Bhat, Rajaram; Wang, Jie; Allerman, Andrew A.

    2015-09-28

    We report the realization of quantum cascade (QC) light emission in the III-nitride material system, designed with effective interface grading (EIG). EIG induces a continuous transition between wells and barriers in the quantum confinement, which alters the eigenstate system and even delocalizes the states with higher energy. Fully transverse-magnetic spontaneous emission is observed from the fabricated III-nitride QC structure, with a center wavelength of ∼4.9 μm and a full width at half maximum of ∼110 meV, both in excellent agreement with theoretical predictions. A multi-peak photo-response spectrum is also measured from the QC structure, which again agrees well with theoretical calculations and verifies the effects of EIG.

  12. Science and technology in the recent development of boron nitride materials

    NASA Astrophysics Data System (ADS)

    Fukunaga, Osamu

    2002-11-01

    In this paper, we review recent developments relating to cubic boron nitride (cBN) abrasive grains and sintered cutting tools. The demand for high-speed machining and the ecological benefits of using ferrous materials have led to developments in the area of heavy-duty dry cutting and grinding processes in recent years. Optimization of the process of manufacturing cBN materials is an important issue, both fundamentally and as regards applications. We review recent developments in cBN applications and discuss the challenges arising from new processes encountered in basic cBN study at high pressure and high temperature.

  13. III-antimonide/nitride based semiconductors for optoelectronic materials and device studies : LDRD 26518 final report.

    SciTech Connect

    Kurtz, Steven Ross; Hargett, Terry W.; Serkland, Darwin Keith; Waldrip, Karen Elizabeth; Modine, Normand Arthur; Klem, John Frederick; Jones, Eric Daniel; Cich, Michael Joseph; Allerman, Andrew Alan; Peake, Gregory Merwin

    2003-12-01

    The goal of this LDRD was to investigate III-antimonide/nitride based materials for unique semiconductor properties and applications. Previous to this study, lack of basic information concerning these alloys restricted their use in semiconductor devices. Long wavelength emission on GaAs substrates is of critical importance to telecommunication applications for cost reduction and integration into microsystems. Currently InGaAsN, on a GaAs substrate, is being commercially pursued for the important 1.3 micrometer dispersion minima of silica-glass optical fiber; due, in large part, to previous research at Sandia National Laboratories. However, InGaAsN has not shown great promise for 1.55 micrometer emission which is the low-loss window of single mode optical fiber used in transatlantic fiber. Other important applications for the antimonide/nitride based materials include the base junction of an HBT to reduce the operating voltage which is important for wireless communication links, and for improving the efficiency of a multijunction solar cell. We have undertaken the first comprehensive theoretical, experimental and device study of this material with promising results. Theoretical modeling has identified GaAsSbN to be a similar or potentially superior candidate to InGaAsN for long wavelength emission on GaAs. We have confirmed these predictions by producing emission out to 1.66 micrometers and have achieved edge emitting and VCSEL electroluminescence at 1.3 micrometers. We have also done the first study of the transport properties of this material including mobility, electron/hole mass, and exciton reduced mass. This study has increased the understanding of the III-antimonide/nitride materials enough to warrant consideration for all of the target device applications.

  14. Improvements to III-nitride light-emitting diodes through characterization and material growth

    NASA Astrophysics Data System (ADS)

    Getty, Amorette Rose Klug

    A variety of experiments were conducted to improve or aid the improvement of the efficiency of III-nitride light-emitting diodes (LEDs), which are a critical area of research for multiple applications, including high-efficiency solid state lighting. To enhance the light extraction in ultraviolet LEDs grown on SiC substrates, a distributed Bragg reflector (DBR) optimized for operation in the range from 250 to 280 nm has been developed using MBE growth techniques. The best devices had a peak reflectivity of 80% with 19.5 periods, which is acceptable for the intended application. DBR surfaces were sufficiently smooth for subsequent epitaxy of the LED device. During the course of this work, pros and cons of AlGaN growth techniques, including analog versus digital alloying, were examined. This work highlighted a need for more accurate values of the refractive index of high-Al-content AlxGa1-xNin the UV wavelength range. We present refractive index results for a wide variety of materials pertinent to the fabrication of optical III-nitride devices. Characterization was done using Variable-Angle Spectroscopic Ellipsometry. The three binary nitrides, and all three ternaries, have been characterized to a greater or lesser extent depending on material compositions available. Semi-transparent p-contact materials and other thin metals for reflecting contacts have been examined to allow optimization of deposition conditions and to allow highly accurate modeling of the behavior of light within these devices. Standard substrate materials have also been characterized for completeness and as an indicator of the accuracy of our modeling technique. We have demonstrated a new technique for estimating the internal quantum efficiency (IQE) of nitride light-emitting diodes. This method is advantageous over the standard low-temperature photoluminescence-based method of estimating IQE, as the new method is conducted under the same conditions as normal device operation. We have developed

  15. Aluminum nitride as nonlinear optical material for on-chip frequency comb generation and frequency conversion

    NASA Astrophysics Data System (ADS)

    Jung, Hojoong; Tang, Hong X.

    2016-06-01

    A number of dielectric materials have been employed for on-chip frequency comb generation. Silicon based dielectrics such as silicon dioxide (SiO2) and silicon nitride (SiN) are particularly attractive comb materials due to their low optical loss and maturity in nanofabrication. They offer third-order Kerr nonlinearity (χ(3)), but little second-order Pockels (χ(2)) effect. Materials possessing both strong χ(2) and χ(3) are desired to enable selfreferenced frequency combs and active control of comb generation. In this review, we introduce another CMOS-compatible comb material, aluminum nitride (AlN),which offers both second and third order nonlinearities. A review of the advantages of AlN as linear and nonlinear optical material will be provided, and fabrication techniques of low loss AlN waveguides from the visible to infrared (IR) region will be discussed.We will then show the frequency comb generation including IR, red, and green combs in high-Q AlN micro-rings from single CW IR laser input via combination of Kerr and Pockels nonlinearity. Finally, the fast speed on-off switching of frequency comb using the Pockels effect of AlN will be shown,which further enriches the applications of the frequency comb.

  16. Structural silicon nitride materials containing rare earth oxides

    DOEpatents

    Andersson, Clarence A.

    1980-01-01

    A ceramic composition suitable for use as a high-temperature structural material, particularly for use in apparatus exposed to oxidizing atmospheres at temperatures of 400 to 1600.degree. C., is found within the triangular area ABCA of the Si.sub.3 N.sub.4 --SiO.sub.2 --M.sub.2 O.sub.3 ternary diagram depicted in FIG. 1. M is selected from the group of Yb, Dy, Er, Sc, and alloys having Yb, Y, Er, or Dy as one component and Sc, Al, Cr, Ti, (Mg +Zr) or (Ni+Zr) as a second component, said alloy having an effective ionic radius less than 0.89 A.

  17. Rolling-element fatigue life of silicon nitride balls. [as compared to that of steel, ceramic, and cermet materials

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.

    1974-01-01

    The five-ball fatigue tester was used to evaluate silicon nitride as a rolling-element bearing material. Results indicate that hot-pressed silicon nitride running against steel may be expected to yield fatigue lives comparable to or greater than those of bearing quality steel running against steel at stress levels typical rolling-element bearing application. The fatigue life of hot-pressed silicon nitride is considerably greater than that of any ceramic or cermet tested. Computer analysis indicates that there is no improvement in the lives of 120-mm-bore angular--contact ball bearings of the same geometry operating at DN values from 2 to 4 million where hot-pressed silicon nitride balls are used in place of steel balls.

  18. Development of novel chemical synthetic routes for nanocrystalline VN, Mo2N, and W2N nitride materials

    NASA Astrophysics Data System (ADS)

    Mishra, Pragnya Paramita; Panda, Rabi Narayan

    2015-06-01

    In this study, novel synthetic routes for the synthesis of VN, Mo2N and W2N binary nitrides have been presented. We have synthesized new precursors, i.e.V2O5 from citric acid based sol-gel method and Mo, W based ethylenediamine complex which are used for the nitridation experiments using solid urea (NH2CONH2) or ammonia (NH3(g)). We have successfully prepared phase pure nano-dimensional nitride materials. The estimated crystallite sizes and SEM particle sizes were found in the range of 4-16 nm and 111-870 nm, respectively. VN, Mo2N and W2N nitrides crystallize in fcc-cubic structures with the values of lattice parameters; 4.128, 4.165 and 4.175 Å for urea route and 4.112, 4.196 and 4.150Å for ammonia route, respectively.

  19. Materials Research Society Symposium Proceedings. Volume 339: Diamond, SiC and nitride wide bandgap semiconductors

    NASA Astrophysics Data System (ADS)

    Carter, Calvin H.; Gildenblat, Gennady; Nakamura, Shuji; Nemanich, Robert J.

    1994-04-01

    This symposium was directed toward the potential of using diamond, SiC, and nitride wide bandgap semiconductors. The symposium emphasized materials issues related to the semiconducting properties of these wide bandgap materials. Both experimental and theoretical studies were presented. Solid advances were reported in the growth techniques of all three materials groups. Contributions demonstrated the critical importance of surfaces, interfaces, doping, defects, and impurities Reports demonstrated potential device applications ranging from unique electronic devices to blue/UV light emitters/detectors and even novel structures employing a negative electron affinity. The overall theme of the symposium was that materials research into wide bandgap semiconductors will make available exciting new applications, and that we are just beginning to understand the potential of these materials.

  20. Dilute phosphide nitride materials as photocathodes for electrochemical solar energy conversion

    NASA Astrophysics Data System (ADS)

    Parameshwaran, Vijay; Xu, Xiaoqing; Kang, Yangsen; Harris, James; Wong, H.-S. Philip; Clemens, Bruce

    2013-03-01

    Dilute nitride materials have been used in a variety of III-V photonic devices, but have not been significantly explored in photoelectrochemical applications. This work focuses on using dilute phosphide nitride materials of the form (Al,In)P1-xNx as photocathodes for the generation of hydrogen fuel from solar energy. Heteroepitaxial MOCVD growth of AlPN thin films on GaP yields high quality material with a direct bandgap energy of 2.218 eV. Aligned epitaxial growth of InP and GaP nanowires on InP and Si substrates, respectively, provides a template for designing nanostructured photocathodes over a large area. Electrochemical testing of a AlPN/GaP heterostructure electrode yields up to a sixfold increase in photocurrent enhancement under blue light illumination as compared to a GaP electrode. Additionally, the AlPN/GaP electrodes exhibit no degradation in performance after galvanostatic biasing over time. These results show that (Al,In)P1-xNx is a promising materials system for use in nanoscale photocathode structures.

  1. Ab initio studies on the adsorption and implantation of Al and Fe to nitride materials

    SciTech Connect

    Riedl, H.; Zálešák, J.; Arndt, M.; Polcik, P.; Holec, D.; Mayrhofer, P. H.

    2015-09-28

    The formation of transfer material products on coated cutting and forming tools is a major failure mechanism leading to various sorts of wear. To describe the atomistic processes behind the formation of transfer materials, we use ab initio to study the adsorption energy as well as the implantation barrier of Al and Fe atoms for (001)-oriented surfaces of TiN, Ti{sub 0.50}Al{sub 0.50}N, Ti{sub 0.90}Si{sub 0.10}N, CrN, and Cr{sub 0.90}Si{sub 0.10}N. The interactions between additional atoms and nitride-surfaces are described for pure adhesion, considering no additional stresses, and for the implantation barrier. The latter, we simplified to the stress required to implant Al and Fe into sub-surface regions of the nitride material. The adsorption energies exhibit pronounced extrema at high-symmetry positions and are generally highest at nitrogen sites. Here, the binary nitrides are comparable to their ternary counterparts and the average adhesive energy is higher (more negative) on CrN than TiN based systems. Contrary, the implantation barrier for Al and Fe atoms is higher for the ternary systems Ti{sub 0.50}Al{sub 0.50}N, Ti{sub 0.90}Si{sub 0.10}N, and Cr{sub 0.90}Si{sub 0.10}N than for their binary counterparts TiN and CrN. Based on our results, we can conclude that TiN based systems outperform CrN based systems with respect to pure adhesion, while the Si-containing ternaries exhibit higher implantation barriers for Al and Fe atoms. The data obtained are important to understand the atomistic interaction of metal atoms with nitride-based materials, which is valid not just for machining operations but also for any combination such as interfaces between coatings and substrates or multilayer and phase arrangements themselves.

  2. Correct Implementation of Polarization Constants in Wurtzite Materials and Impact on III-Nitrides

    NASA Astrophysics Data System (ADS)

    Dreyer, Cyrus E.; Janotti, Anderson; Van de Walle, Chris G.; Vanderbilt, David

    2016-04-01

    Accurate values for polarization discontinuities between pyroelectric materials are critical for understanding and designing the electronic properties of heterostructures. For wurtzite materials, the zincblende structure has been used in the literature as a reference to determine the effective spontaneous polarization constants. We show that, because the zincblende structure has a nonzero formal polarization, this method results in a spurious contribution to the spontaneous polarization differences between materials. In addition, we address the correct choice of "improper" versus "proper" piezoelectric constants. For the technologically important III-nitride materials GaN, AlN, and InN, we determine polarization discontinuities using a consistent reference based on the layered hexagonal structure and the correct choice of piezoelectric constants, and discuss the results in light of available experimental data.

  3. Methods for forming group III-V arsenide-nitride semiconductor materials

    NASA Technical Reports Server (NTRS)

    Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)

    2000-01-01

    Methods are disclosed for forming Group III--arsenide-nitride semiconductor materials. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.

  4. Effect of Projectile Materials on Foreign Object Damage of a Gas-Turbine Grade Silicon Nitride

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Racz, Zsolt; Bhatt, Ramakrishna T.; Brewer, David N.; Gyekenyesi, John P.

    2005-01-01

    Foreign object damage (FOD) behavior of AS800 silicon nitride was determined using four different projectile materials at ambient temperature. The target test specimens rigidly supported were impacted at their centers by spherical projectiles with a diameter of 1.59 mm. Four different types of projectiles were used including hardened steel balls, annealed steel balls, silicon nitride balls, and brass balls. Post-impact strength of each target specimen impacted was determined as a function of impact velocity to better understand the severity of local impact damage. The critical impact velocity where target specimens fail upon impact was highest with brass balls, lowest with ceramic ball, and intermediate with annealed and hardened steel balls. Degree of strength degradation upon impact followed the same order as in the critical impact velocity with respect to projectile materials. For steel balls, hardened projectiles yielded more significant impact damage than annealed counterparts. The most important material parameter affecting FOD was identified as hardness of projectiles and was correlated in terms of critical impact velocity, impact deformation, and impact load.

  5. Transition-metal-nitride-based thin films as novel energy harvesting materials

    PubMed Central

    Kerdsongpanya, Sit; Alling, Björn

    2016-01-01

    The last few years have seen a rise in the interest in early transition-metal and rare-earth nitrides, primarily based on ScN and CrN, for energy harvesting by thermoelectricity and piezoelectricity. This is because of a number of important advances, among those the discoveries of exceptionally high piezoelectric coupling coefficient in (Sc,Al)N alloys and of high thermoelectric power factors of ScN-based and CrN-based thin films. These materials also constitute well-defined model systems for investigating thermodynamics of mixing for alloying and nanostructural design for optimization of phase stability and band structure. These features have implications for and can be used for tailoring of thermoelectric and piezoelectric properties. In this highlight article, we review the ScN- and CrN-based transition-metal nitrides for thermoelectrics, and drawing parallels with piezoelectricity. We further discuss these materials as a models systems for general strategies for tailoring of thermoelectric properties by integrated theoretical–experimental approaches. PMID:27358737

  6. Silicon nitride/silicon carbide composite densified materials prepared using composite powders

    DOEpatents

    Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.

    1997-07-01

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  7. Graded-refractive-index structures on gallium nitride-based light-emitting diodes for light-extraction-efficiency enhancement and far-field-emission control

    NASA Astrophysics Data System (ADS)

    Mont, Frank Wilhelm

    Light-emitting diodes (LEDs) represent the next generation of lighting and illumination sources. There are many challenges yet to be solved for nitride-based LEDs such as enhancing the internal quantum efficiency and enhancing the light-extraction efficiency (LEE). Both challenges need to be overcome to obtain highly efficient devices. Semiconductor materials used for LEDs have large refractive indices ( n = 2.5 to 3.5) in contrast to air (n = 1.0) or encapsulant materials (n ≈ 1.5), resulting in total internal reflection losses and high Fresnel reflection losses at semiconductor-air and semiconductor-encapsulant interfaces thereby limiting light extraction. Frequently, single-layer anti-reflection (AR) coatings are used in optical devices to eliminate reflection. However such single-layer coatings eliminate reflection at only a single wavelength and angle of incidence. In this dissertation, we demonstrate that broadband omni-directional AR characteristics are attainable by grading the refractive index of the AR coating from the substrate index to the ambient index. Furthermore, micro-patterning of graded-refractive-index (GRIN) coatings deposited on top of GaInN LEDs is demonstrated to enhance light-output power through the extraction of light that would otherwise be waveguided. Three-dimensional ray-tracing simulations for GRIN micro-pillars on GaInN LEDs predict a LEE enhancement of 85% over uncoated LEDs when the pillar height is half the pillar diameter. The theory, simulation, and fabrication steps needed to realize such a device are developed. In Chapter 1, a review of LED fundamentals is given. Furthermore, modern methods to achieve high light-extraction efficiency for LEDs are discussed. In Chapter 2, the fabrication and characterization of GRIN multi-layer structures are discussed. A method to achieve tunable-refractive-index coatings using co-sputtering is demonstrated. Ellipsometry, reflectance, and transmittance measurements of the GRIN coatings

  8. Gallium complexes and solvent extraction of gallium

    SciTech Connect

    Coleman, J.P.; Graham, C.R.; Monzyk, B.F.

    1988-05-03

    This patent describes a process for recovering gallium from aqueous solutions containing gallium which comprises contacting such a solution with an organic solvent containing at least 2% by weight of a water-insoluble N-organo hydroxamic acid having at least about 8 carbon atoms to extract gallium, and separating the gallium loaded organic solvent phase from the aqueous phase.

  9. Epitaxial Deposition Of Germanium Doped With Gallium

    NASA Technical Reports Server (NTRS)

    Huffman, James E.

    1994-01-01

    Epitaxial layers of germanium doped with gallium made by chemical vapor deposition. Method involves combination of techniques and materials used in chemical vapor deposition with GeH4 or GeCl4 as source of germanium and GaCl3 as source of gallium. Resulting epitaxial layers of germanium doped with gallium expected to be highly pure, with high crystalline quality. High-quality material useful in infrared sensors.

  10. Nitridation Temperature Effects on Electronic and Chemical Properties of (Ga1-xZnx)(N1-xOx) Solid Solution Nanocrystals

    SciTech Connect

    Ward, Matthew James; Han, Wei-Qiang; Sham, Tsun-Kong

    2013-11-15

    Solid solution nanocrystals of gallium nitride–zinc oxide have been realized as potential photocatalysts for visible light driven overall water splitting. The band gap of these materials has been found to narrow further into the visible region as a function of increasing zinc oxide concentration, and thus, it is desirable to synthesize zinc oxide-rich gallium nitride–zinc oxide solid solutions. In this paper, we discuss the effects of using nitridation temperature to control zinc oxide content on the electronic and chemical properties of gallium nitride–zinc oxide solid solution nanostructures. The effect of nitridation temperature was studied using X-ray absorption fine structure (XAFS), including both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), and X-ray excited optical luminescence (XEOL). It was determined that using nitridation temperature as a method of controlling zinc oxide concentration results in solid solutions with poor crystallinity, phase separation, and mixed surface oxide formation. These findings suggest that many complications arise from using nitridation temperature to control zinc oxide concentration in gallium nitride–zinc oxide solid solutions, and thus, it is possible that the resultant materials would exhibit poor photocatalytic activity.

  11. Indium gallium arsenide imaging with smaller cameras, higher-resolution arrays, and greater material sensitivity

    NASA Astrophysics Data System (ADS)

    Ettenberg, Martin H.; Cohen, Marshall J.; Brubaker, Robert M.; Lange, Michael J.; O'Grady, Matthew T.; Olsen, Gregory H.

    2002-08-01

    Indium Gallium Arsenide (InGaAs) photodiode arrays have numerous commercial, industrial, and military applications. During the past 10 years, great strides have been made in the development of these devices starting with simple 256-element linear photodiode arrays and progressing to the large 640 x 512 element area arrays now readily available. Linear arrays are offered with 512 elements on a 25 micron pitch with no defective pixels, and are used in spectroscopic monitors for wavelength division multiplexing (WDM) systems as well as in machine vision applications. A 320 x 240 solid-state array operates at room temperature, which allows development of a camera which is smaller than 25 cm3 in volume, weighs less than 100 g and uses less than 750 mW of power. Two dimensional focal plane arrays and cameras have been manufactured with detectivity, D*, greater than 1014 cm-(root)Hz/W at room temperature and have demonstrated the ability to image at night. Cameras are also critical tools for the assembly and performance monitoring of optical switches and add-drop multiplexers in the telecommunications industry. These same cameras are used for the inspection of silicon wafers and fine art, laser beam profiling, and metals manufacturing. By varying the Indium content, InGaAs photodiode arrays can be tailored to cover the entire short-wave infrared spectrum from 1.0 micron to 2.5 microns. InGaAs focal plane arrays and cameras sensitive to 2.0 micron wavelength light are now available in 320 x 240 formats.

  12. Development of gallium nitride-based ultraviolet and visible light-emitting diodes using hydride vapor-phase epitaxy and molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Cabalu, Jasper Sicat

    Much of the work done on ultraviolet (UV) and visible III-Nitrides-based light emitting diodes (LEDs) involves growth by metal-organic chemical vapor deposition (MOCVD). In this dissertation, the growth, development, and fabrication of III-Nitrides-based UV and visible LEDs with very high photon conversion and extraction efficiencies using hydride vapor-phase epitaxy (HVPE) and radio frequency (rf) plasma-assisted molecular beam epitaxy (PAMBE) is presented. High-power electrically-pumped UV-LEDs based on GaN/AlGaN multiple quantum wells (MQWs) emitting at 340 nm and 350 nm have been fabricated in a flip-chip configuration and evaluated. Under pulsed operation, UV-LEDs emitting at 340 nm have output powers that saturate, due to device heating, at approximately 3 mW. Devices emitting at 350 nm show DC operation output powers as high as 4.5 mW under 200 mA drive current. These results were found to be equivalent with those of UV-LEDs produced by the MOCVD and HVPE methods. The concept of using textured MQWs on UV-LED structures was tested by optical pumping of GaN/AlGaN MQWs grown on textured GaN templates. Results show highly enhanced (>700 times) blue-shifted photoluminescence (PL) at 360 nm compared to similarly produced MQWs on smooth GaN templates whose PL emission is red-shifted. These results are attributed partly to enhancement in light extraction efficiency (LEE) and partly to enhancement in internal quantum efficiency (IQE). The origin of the increase in IQE is partly due to reduction of the quantum-confined Stark effect (QCSE) on QW-planes not perpendicular to the polarization direction and partly due to charge redistribution in the QWs caused by the polarization component parallel to the planes of the QWs. Similar studies have been done for visible LEDs using InGaN/GaN MQWs. Growth of LED structures on textured GaN templates employing textured MQW-active regions resulted in the production of dichromatic (430 nm and 530 nm) phosphorless white LEDs with

  13. Noise in gallium nitride-based quantum well structures used for nanometer devices in the frequency range 1 Hz--3 Mhz and temperature range 77K--324K

    NASA Astrophysics Data System (ADS)

    Duran, Rolando Silvano

    Electronic noise has been investigated in AlxGa1-x N/GaN Modulation-Doped Field Effect Transistors (MODFETs) of submicron dimensions, grown for us by MBE (Molecular Beam Epitaxy) techniques at Virginia Commonwealth University by Dr. H. Morkoc and coworkers. Some 20 devices were grown on a GaN substrate, four of which have leads bonded to source (S), drain (D), and gate (G) pads, respectively. Conduction takes place in the quasi-2D layer of the junction (xy plane) which is perpendicular to the quantum well (z-direction) of average triangular width ˜3 nm. A non-doped intrinsic buffer layer of ˜5 nm separates the Si-doped donors in the AlxGa1-xN layer from the 2D-transistor plane, which affords a very high electron mobility, thus enabling high-speed devices. Since all contacts (S, D, and G) must reach through the AlxGa1-xN layer to connect internally to the 2D plane, parallel conduction through this layer is a feature of all modulation-doped devices. While the shunting effect may account for no more than a few percent of the current IDS, it is responsible for most excess noise, over and above thermal noise of the device. The excess noise has been analyzed as a sum of Lorentzian spectra and 1/f noise. The Lorentzian noise has been ascribed to trapping of the carriers in the AlxGa1-xN layer. A detailed, multitrapping generation-recombination noise theory is presented, which shows that an exponential relationship exists for the time constants obtained from the spectral components as a function of 1/kT. The trap depths have been obtained from Arrhenius plots of log (tauT2) vs. 1000/T. Comparison with previous noise results for GaAs devices shows that: (a) many more trapping levels are present in these nitride-based devices; (b) the traps are deeper (farther below the conduction band) than for GaAs. Furthermore, the magnitude of the noise is strongly dependent on the level of depletion of the AlxGa1-xN donor layer, which can be altered by a negative or positive gate bias

  14. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials.

    PubMed

    Nikzad, Shouleh; Hoenk, Michael; Jewell, April D; Hennessy, John J; Carver, Alexander G; Jones, Todd J; Goodsall, Timothy M; Hamden, Erika T; Suvarna, Puneet; Bulmer, J; Shahedipour-Sandvik, F; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L Douglas

    2016-01-01

    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100-300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness. PMID:27338399

  15. CMOS Humidity Sensor System Using Carbon Nitride Film as Sensing Materials

    PubMed Central

    Lee, Sung Pil; Lee, Ji Gong; Chowdhury, Shaestagir

    2008-01-01

    An integrated humidity sensor system with nano-structured carbon nitride film as humidity sensing material is fabricated by a 0.8 μm analog mixed CMOS process. The integrated sensor system consists of differential humidity sensitive field effect transistors (HUSFET), temperature sensor, and operational amplifier. The process contains two poly, two metal and twin well technology. To form CNx film on Si3N4/Si substrate, plasma etching is performed to the gate area as well as trenches. CNx film is deposited by reactive RF magnetron sputtering method and patterned by the lift-off technique. The drain current is proportional to the dielectric constant, and the sensitivity is 2.8 μA/%RH.

  16. Three-terminal nanoelectromechanical switch based on tungsten nitride--an amorphous metallic material.

    PubMed

    Mayet, Abdulilah M; Hussain, Aftab M; Hussain, Muhammad M

    2016-01-22

    Nanoelectromechanical (NEM) switches inherently have zero off-state leakage current and nearly ideal sub-threshold swing due to their mechanical nature of operation, in contrast to semiconductor switches. A challenge for NEM switches to be practical for low-power digital logic application is their relatively large operation voltage which can result in higher dynamic power consumption. Herein we report a three-terminal laterally actuated NEM switch fabricated with an amorphous metallic material: tungsten nitride (WNx). As-deposited WN x thin films have high Young's modulus (300 GPa) and reasonably high hardness (3 GPa), which are advantageous for high wear resistance. The first prototype WN x switches are demonstrated to operate with relatively low control voltage, down to 0.8 V for an air gap thickness of 150 nm. PMID:26636189

  17. Biopolymer-Activated Graphitic Carbon Nitride towards a Sustainable Photocathode Material

    PubMed Central

    Zhang, Yuanjian; Schnepp, Zoë; Cao, Junyu; Ouyang, Shuxin; Li, Ying; Ye, Jinhua; Liu, Songqin

    2013-01-01

    Photoelectrochemical (PEC) conversion of solar light into chemical fuels is one of the most promising solutions to the challenge of sustainable energy. Graphitic carbon (IV) nitride polymer (g-CN) is an interesting sustainable photocathode material due to low-cost, visible-light sensitivity, and chemical stability up to 500°C in air. However, grain boundary effects and limited active sites greatly hamper g-CN activity. Here, we demonstrate biopolymer-activation of g-CN through simultaneous soft-templating of a sponge-like structure and incorporation of active carbon-dopant sites. This facile approach results in an almost 300% increase in the cathodic PEC activity of g-CN under simulated solar-irradiation. PMID:23831846

  18. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials

    PubMed Central

    Nikzad, Shouleh; Hoenk, Michael; Jewell, April D.; Hennessy, John J.; Carver, Alexander G.; Jones, Todd J.; Goodsall, Timothy M.; Hamden, Erika T.; Suvarna, Puneet; Bulmer, J.; Shahedipour-Sandvik, F.; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L. Douglas

    2016-01-01

    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100–300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness. PMID:27338399

  19. Moving Graphitic Carbon Nitride from Electrocatalysis and Photocatalysis to a Potential Electrode Material for Photoelectric Devices.

    PubMed

    Xu, Jingsan; Antonietti, Markus; Shalom, Menny

    2016-09-20

    Carbon nitride (g-CN) has attracted significant interest in the last years as a robust, low-cost alternative to metal-based materials in different fields due to its low price, environmentally benign character, simple synthesis and tunable properties. In particular, g-CN demonstrates promising activity in energy-related applications such as photo and heterogeneous catalysis, batteries and electrolysis. However, while g-CN is already well-established as a photocatalyst, its utilization in (opto)electronic devices is still at an early stage. This Focus Review concentrates on the utilization of g-CN in solar and photoelectrochemical cells, electrolyzers and light emitting diode alongside the recap of new synthetic approaches. This review is expected to provide useful insights into the design and fabrication of g-CN based photoelectronic devices as well as g-CN working principles, including the main challenges toward its integration in optoelectronic devices. PMID:27558641

  20. Moving Graphitic Carbon Nitride from Electrocatalysis and Photocatalysis to a Potential Electrode Material for Photoelectric Devices.

    PubMed

    Xu, Jingsan; Antonietti, Markus; Shalom, Menny

    2016-09-20

    Carbon nitride (g-CN) has attracted significant interest in the last years as a robust, low-cost alternative to metal-based materials in different fields due to its low price, environmentally benign character, simple synthesis and tunable properties. In particular, g-CN demonstrates promising activity in energy-related applications such as photo and heterogeneous catalysis, batteries and electrolysis. However, while g-CN is already well-established as a photocatalyst, its utilization in (opto)electronic devices is still at an early stage. This Focus Review concentrates on the utilization of g-CN in solar and photoelectrochemical cells, electrolyzers and light emitting diode alongside the recap of new synthetic approaches. This review is expected to provide useful insights into the design and fabrication of g-CN based photoelectronic devices as well as g-CN working principles, including the main challenges toward its integration in optoelectronic devices.

  1. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials.

    PubMed

    Nikzad, Shouleh; Hoenk, Michael; Jewell, April D; Hennessy, John J; Carver, Alexander G; Jones, Todd J; Goodsall, Timothy M; Hamden, Erika T; Suvarna, Puneet; Bulmer, J; Shahedipour-Sandvik, F; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L Douglas

    2016-06-21

    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100-300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness.

  2. Sputtering Erosion Measurement on Boron Nitride as a Hall Thruster Material

    NASA Technical Reports Server (NTRS)

    Britton, Melissa; Waters, Deborah; Messer, Russell; Sechkar, Edward; Banks, Bruce

    2002-01-01

    The durability of a high-powered Hall thruster may be limited by the sputter erosion resistance of its components. During normal operation, a small fraction of the accelerated ions will impact the interior of the main discharge channel, causing its gradual erosion. A laboratory experiment was conducted to simulate the sputter erosion of a Hall thruster. Tests of sputter etch rate were carried out using 300 to 1000 eV Xenon ions impinging on boron nitride substrates with angles of attack ranging from 30 to 75 degrees from horizontal. The erosion rates varied from 3.41 to 14.37 Angstroms/[sec(mA/sq cm)] and were found to depend on the ion energy and angle of attack, which is consistent with the behavior of other materials.

  3. Picosecond pulsed laser processing of polycrystalline diamond and cubic boron nitride composite materials

    NASA Astrophysics Data System (ADS)

    Warhanek, Maximilian G.; Pfaff, Josquin; Meier, Linus; Walter, Christian; Wegener, Konrad

    2016-03-01

    Capabilities and advantages of laser ablation processes utilizing ultrashort pulses have been demonstrated in various applications of scientific and industrial nature. Of particular interest are applications that require high geometrical accuracy, excellent surface integrity and thus tolerate only a negligible heat-affected zone in the processed area. In this context, this work presents a detailed study of the ablation characteristics of common ultrahard composite materials utilized in the cutting tool industry, namely polycrystalline diamond (PCD) and polycrystalline cubic boron nitride composite (PCBN). Due to the high hardness of these materials, conventional mechanical processing is time consuming and costly. Herein, laser ablation is an appealing solution, since no process forces and no wear have to be taken into consideration. However, an industrially viable process requires a detailed understanding of the ablation characteristics of each material. Therefore, the influence of various process parameters on material removal and processing quality at 10 ps pulse duration are investigated for several PCD and PCBN grades. The main focus of this study examines the effect of different laser energy input distributions, such as pulse frequency and burst pulses, on the processing conditions in deep cutting kerfs and the resulting processing speed. Based on these results, recommendations for efficient processing of such materials are derived.

  4. Field-effect transistors based on cubic indium nitride

    PubMed Central

    Oseki, Masaaki; Okubo, Kana; Kobayashi, Atsushi; Ohta, Jitsuo; Fujioka, Hiroshi

    2014-01-01

    Although the demand for high-speed telecommunications has increased in recent years, the performance of transistors fabricated with traditional semiconductors such as silicon, gallium arsenide, and gallium nitride have reached their physical performance limits. Therefore, new materials with high carrier velocities should be sought for the fabrication of next-generation, ultra-high-speed transistors. Indium nitride (InN) has attracted much attention for this purpose because of its high electron drift velocity under a high electric field. Thick InN films have been applied to the fabrication of field-effect transistors (FETs), but the performance of the thick InN transistors was discouraging, with no clear linear-saturation output characteristics and poor on/off current ratios. Here, we report the epitaxial deposition of ultrathin cubic InN on insulating oxide yttria-stabilized zirconia substrates and the first demonstration of ultrathin-InN-based FETs. The devices exhibit high on/off ratios and low off-current densities because of the high quality top and bottom interfaces between the ultrathin cubic InN and oxide insulators. This first demonstration of FETs using a ultrathin cubic indium nitride semiconductor will thus pave the way for the development of next-generation high-speed electronics. PMID:24492240

  5. Field-effect transistors based on cubic indium nitride.

    PubMed

    Oseki, Masaaki; Okubo, Kana; Kobayashi, Atsushi; Ohta, Jitsuo; Fujioka, Hiroshi

    2014-02-04

    Although the demand for high-speed telecommunications has increased in recent years, the performance of transistors fabricated with traditional semiconductors such as silicon, gallium arsenide, and gallium nitride have reached their physical performance limits. Therefore, new materials with high carrier velocities should be sought for the fabrication of next-generation, ultra-high-speed transistors. Indium nitride (InN) has attracted much attention for this purpose because of its high electron drift velocity under a high electric field. Thick InN films have been applied to the fabrication of field-effect transistors (FETs), but the performance of the thick InN transistors was discouraging, with no clear linear-saturation output characteristics and poor on/off current ratios. Here, we report the epitaxial deposition of ultrathin cubic InN on insulating oxide yttria-stabilized zirconia substrates and the first demonstration of ultrathin-InN-based FETs. The devices exhibit high on/off ratios and low off-current densities because of the high quality top and bottom interfaces between the ultrathin cubic InN and oxide insulators. This first demonstration of FETs using a ultrathin cubic indium nitride semiconductor will thus pave the way for the development of next-generation high-speed electronics.

  6. Ga[OSi(O(t)Bu)3]3·THF, a thermolytic molecular precursor for high surface area gallium-containing silica materials of controlled dispersion and stoichiometry.

    PubMed

    Dombrowski, James P; Johnson, Gregory R; Bell, Alexis T; Tilley, T Don

    2016-07-01

    The molecular precursor tris[(tri-tert-butoxy)siloxy]gallium, as the tetrahydrofuran adduct Ga[OSi(O(t)Bu)3]3·THF (), was synthesized via the salt metathesis reaction of gallium trichloride with NaOSi(O(t)Bu)3. This complex serves as a model for isolated gallium in a silica framework. Complex decomposes thermally in hydrocarbon solvent, eliminating isobutylene, water, and tert-butanol to generate high surface area gallium-containing silica at low temperatures. When thermal decomposition was performed in the presence of P-123 Pluronic as a templating agent the generated material displayed uniform vermicular pores. Textural mesoporosity was evident in untemplated material. Co-thermolysis of with HOSi(O(t)Bu)3 in the presence of P-123 Pluronic led to materials with Ga : Si ratios ranging from 1 : 3 to 1 : 50, denoted UCB1-GaSi3, UCB1-GaSi10, UCB1-GaSi20 and UCB1-GaSi50. After calcination at 500 °C these materials exhibited decreasing surface areas and broadening pore distributions with increasing silicon content, indicating a loss of template effects. The position and dispersion of the gallium in UCB1-GaSi materials was investigated using (71)Ga MAS-NMR, powder XRD, and STEM/EDS elemental mapping. The results indicate a high degree of gallium dispersion in all samples, with gallium oxide clusters or oligomers present at higher gallium content. PMID:27312519

  7. Ga[OSi(O(t)Bu)3]3·THF, a thermolytic molecular precursor for high surface area gallium-containing silica materials of controlled dispersion and stoichiometry.

    PubMed

    Dombrowski, James P; Johnson, Gregory R; Bell, Alexis T; Tilley, T Don

    2016-07-01

    The molecular precursor tris[(tri-tert-butoxy)siloxy]gallium, as the tetrahydrofuran adduct Ga[OSi(O(t)Bu)3]3·THF (), was synthesized via the salt metathesis reaction of gallium trichloride with NaOSi(O(t)Bu)3. This complex serves as a model for isolated gallium in a silica framework. Complex decomposes thermally in hydrocarbon solvent, eliminating isobutylene, water, and tert-butanol to generate high surface area gallium-containing silica at low temperatures. When thermal decomposition was performed in the presence of P-123 Pluronic as a templating agent the generated material displayed uniform vermicular pores. Textural mesoporosity was evident in untemplated material. Co-thermolysis of with HOSi(O(t)Bu)3 in the presence of P-123 Pluronic led to materials with Ga : Si ratios ranging from 1 : 3 to 1 : 50, denoted UCB1-GaSi3, UCB1-GaSi10, UCB1-GaSi20 and UCB1-GaSi50. After calcination at 500 °C these materials exhibited decreasing surface areas and broadening pore distributions with increasing silicon content, indicating a loss of template effects. The position and dispersion of the gallium in UCB1-GaSi materials was investigated using (71)Ga MAS-NMR, powder XRD, and STEM/EDS elemental mapping. The results indicate a high degree of gallium dispersion in all samples, with gallium oxide clusters or oligomers present at higher gallium content.

  8. Conductive Graphitic Carbon Nitride as an Ideal Material for Electrocatalytically Switchable CO2 Capture

    PubMed Central

    Tan, Xin; Kou, Liangzhi; Tahini, Hassan A.; Smith, Sean C.

    2015-01-01

    Good electrical conductivity and high electron mobility of the sorbent materials are prerequisite for electrocatalytically switchable CO2 capture. However, no conductive and easily synthetic sorbent materials are available until now. Here, we examined the possibility of conductive graphitic carbon nitride (g-C4N3) nanosheets as sorbent materials for electrocatalytically switchable CO2 capture. Using first-principle calculations, we found that the adsorption energy of CO2 molecules on g-C4N3 nanosheets can be dramatically enhanced by injecting extra electrons into the adsorbent. At saturation CO2 capture coverage, the negatively charged g-C4N3 nanosheets achieve CO2 capture capacities up to 73.9 × 1013 cm−2 or 42.3 wt%. In contrast to other CO2 capture approaches, the process of CO2 capture/release occurs spontaneously without any energy barriers once extra electrons are introduced or removed, and these processes can be simply controlled and reversed by switching on/off the charging voltage. In addition, these negatively charged g-C4N3 nanosheets are highly selective for separating CO2 from mixtures with CH4, H2 and/or N2. These predictions may prove to be instrumental in searching for a new class of experimentally feasible high-capacity CO2 capture materials with ideal thermodynamics and reversibility. PMID:26621618

  9. Conductive Graphitic Carbon Nitride as an Ideal Material for Electrocatalytically Switchable CO2 Capture.

    PubMed

    Tan, Xin; Kou, Liangzhi; Tahini, Hassan A; Smith, Sean C

    2015-12-01

    Good electrical conductivity and high electron mobility of the sorbent materials are prerequisite for electrocatalytically switchable CO2 capture. However, no conductive and easily synthetic sorbent materials are available until now. Here, we examined the possibility of conductive graphitic carbon nitride (g-C4N3) nanosheets as sorbent materials for electrocatalytically switchable CO2 capture. Using first-principle calculations, we found that the adsorption energy of CO2 molecules on g-C4N3 nanosheets can be dramatically enhanced by injecting extra electrons into the adsorbent. At saturation CO2 capture coverage, the negatively charged g-C4N3 nanosheets achieve CO2 capture capacities up to 73.9 × 10(13) cm(-2) or 42.3 wt%. In contrast to other CO2 capture approaches, the process of CO2 capture/release occurs spontaneously without any energy barriers once extra electrons are introduced or removed, and these processes can be simply controlled and reversed by switching on/off the charging voltage. In addition, these negatively charged g-C4N3 nanosheets are highly selective for separating CO2 from mixtures with CH4, H2 and/or N2. These predictions may prove to be instrumental in searching for a new class of experimentally feasible high-capacity CO2 capture materials with ideal thermodynamics and reversibility.

  10. Gallium interstitial contributions to diffusion in gallium arsenide

    NASA Astrophysics Data System (ADS)

    Schick, Joseph T.; Morgan, Caroline G.

    2011-09-01

    A new diffusion path is identified for gallium interstitials, which involves lower barriers than the barriers for previously identified diffusion paths [K. Levasseur-Smith and N. Mousseau, J. Appl. Phys. 103, 113502 (2008), P. A. Schultz and O. A. von Lilienfeld, Modelling and Simulation in Materials Science and Engineering 17, 084007 (2009)] for the charge states which dominate diffusion over most of the available range of Fermi energies. This path passes through the ⟨110⟩ gallium-gallium split interstitial configuration, and has a particularly low diffusion barrier of 0.35 eV for diffusion in the neutral charge state. As a part of this work, the character of the charge states for the gallium interstitials which are most important for diffusion is investigated, and it is shown that the last electron bound to the neutral interstitial occupies a shallow hydrogenic bound state composed of conduction band states for the hexagonal interstitial and both tetrahedral interstitials. How to properly account for the contributions of such interstitials is discussed for density-functional calculations with a k-point mesh not including the conduction band edge point. Diffusion barriers for gallium interstitials are calculated in all the charge states which can be important for a Fermi level anywhere in the gap, q = 0, +1, +2, and +3, for diffusion via the ⟨110⟩ gallium-gallium split interstitial configuration and via the hexagonal interstitial configuration. The lowest activation enthalpies over most of the available range of Fermi energies are found to correspond to diffusion in the neutral or singly positive state via the ⟨110⟩ gallium-gallium split interstitial configuration. It is shown that several different charge states and diffusion paths contribute significantly for Fermi levels within 0.2 eV above the valence band edge, which may help to explain some of the difficulties [H. Bracht and S. Brotzmann, Phys. Rev. B 71, 115216 (2005)] which have been

  11. Formation of Mach angle profiles during wet etching of silica and silicon nitride materials

    NASA Astrophysics Data System (ADS)

    Ghulinyan, M.; Bernard, M.; Bartali, R.; Pucker, G.

    2015-12-01

    In integrated circuit technology peeling of masking photoresist films is a major drawback during the long-timed wet etching of materials. It causes an undesired film underetching, which is often accompanied by a formation of complex etch profiles. Here we report on a detailed study of wedge-shaped profile formation in a series of silicon oxide, silicon oxynitride and silicon nitride materials during wet etching in a buffered hydrofluoric acid (BHF) solution. The shape of etched profiles reflects the time-dependent adhesion properties of the photoresist to a particular material and can be perfectly circular, purely linear or a combination of both, separated by a knee feature. Starting from a formal analogy between the sonic boom propagation and the wet underetching process, we model the wedge formation mechanism analytically. This model predicts the final form of the profile as a function of time and fits the experimental data perfectly. We discuss how this knowledge can be extended to the design and the realization of optical components such as highly efficient etch-less vertical tapers for passive silicon photonics.

  12. Development of an aluminum nitride-silicon carbide material set for high-temperature sensor applications

    NASA Astrophysics Data System (ADS)

    Griffin, Benjamin A.; Habermehl, Scott D.; Clews, Peggy J.

    2014-06-01

    A number of important energy and defense-related applications would benefit from sensors capable of withstanding extreme temperatures (>300°C). Examples include sensors for automobile engines, gas turbines, nuclear and coal power plants, and petroleum and geothermal well drilling. Military applications, such as hypersonic flight research, would also benefit from sensors capable of 1000°C. Silicon carbide (SiC) has long been recognized as a promising material for harsh environment sensors and electronics because it has the highest mechanical strength of semiconductors with the exception of diamond and its upper temperature limit exceeds 2500°C, where it sublimates rather than melts. Yet today, many advanced SiC MEMS are limited to lower temperatures because they are made from SiC films deposited on silicon wafers. Other limitations arise from sensor transduction by measuring changes in capacitance or resistance, which require biasing or modulation schemes that can with- stand elevated temperatures. We are circumventing these issues by developing sensing structures directly on SiC wafers using SiC and piezoelectric aluminum nitride (AlN) thin films. SiC and AlN are a promising material combination due to their high thermal, electrical, and mechanical strength and closely matched coefficients of thermal expansion. AlN is also a non-ferroelectric piezoelectric material, enabling piezoelectric transduction at temperatures exceeding 1000°C. In this paper, the challenges of incorporating these two materials into a compatible MEMS fabrication process are presented. The current progress and initial measurements of the fabrication process are shown. The future direction and the need for further investigation of the material set are addressed.

  13. Superhard nanocomposite of dense polymorphs of boron nitride: Noncarbon material has reached diamond hardness

    NASA Astrophysics Data System (ADS)

    Dubrovinskaia, Natalia; Solozhenko, Vladimir L.; Miyajima, Nobuyoshi; Dmitriev, Vladimir; Kurakevych, Oleksandr O.; Dubrovinsky, Leonid

    2007-03-01

    The authors report a synthesis of unique superhard aggregated boron nitride nanocomposites (ABNNCs) showing the enhancement of hardness up to 100% in comparison with single crystal c-BN. Such a great hardness increase is due to the combination of the Hall-Petch and the quantum confinement effects. The decrease of the grain size down to 14nm and the simultaneous formation of the two dense BN phases with hexagonal and cubic structures within the grains at nano- and subnanolevel result in enormous mechanical property enhancement with maximum hardness of 85(5)GPa. Thus, ABNNC is the first non-carbon-based bulk material with the value of hard-ness approaching that of single crystal and polycrystalline diamond and aggregated diamond nanorods. ABNNC also has an unusually high fracture toughness for superhard materials (K1C=15MPam0.5) and wear resistance (WH=11; compare, for industrial polycrystalline diamond, WH=3-4), in combination with high thermal stability (above 1600K in air), making it an exceptional superabrasive.

  14. Europium (III) Organic Complexes in Porous Boron Nitride Microfibers: Efficient Hybrid Luminescent Material

    PubMed Central

    Lin, Jing; Feng, Congcong; He, Xin; Wang, Weijia; Fang, Yi; Liu, Zhenya; Li, Jie; Tang, Chengchun; Huang, Yang

    2016-01-01

    We report the design and synthesis of a novel kind of organic-inorganic hybrid material via the incorporation of europium (III) β-diketonate complexes (Eu(TTA)3, TTA = 2-thenoyltrifluoroacetone) into one-dimensional (1D) porous boron nitride (BN) microfibers. The developed Eu(TTA)3@BN hybrid composites with typical 1D fibrous morphology exhibit bright visible red-light emission on UV illumination. The confinement of Eu(TTA)3 within pores of BN microfibers not only decreases the aggregation-caused quenching in solid Eu(TTA)3, but also improves their thermal stabilities. Moreover, The strong interactions between Eu(TTA)3 and porous BN matrix result in an interesting energy transfer process from BN host to TTA ligand and TTA ligand to Eu3+ ions, leading to the remarkable increase of red emission. The synthetic approach should be a very promising strategy which can be easily expanded to other hybrid luminescent materials based on porous BN. PMID:27687246

  15. Activated boron nitride nanotubes: A potential material for room-temperature hydrogen storage

    NASA Astrophysics Data System (ADS)

    Jhi, Seung-Hoon

    2006-10-01

    Activated forms of boron nitride nanotubes are studied for potential applications to hydrogen storage with the use of pseudopotential density functional method. The binding and diffusion energies of adsorbed hydrogen are particularly calculated. The calculated binding energy of hydrogen on activated boron nitride nanotubes is found to lie in the right range for room-temperature storage. It is also shown that diffusion through the active sites enables hydrogen to access the inner surface of the nanotubes, which leads to the increase of the storage capacity. Current study provides a tangible solution to increase the operating temperature and capacity of hydrogen storage based on heteropolar nanomaterials such as boron nitride nanotubes.

  16. Laser-assisted dry etching of III-nitride wide band gap semiconductor materials

    NASA Astrophysics Data System (ADS)

    Leonard, Robert Tyler

    Laser assisted dry etching is a materials processing technique capable of producing highly anisotropic etch features with precise etch depth control and little contamination. The technique is simple: laser radiation is combined with a gaseous chemical etchant to remove material in pattern selected regions. The advantages of laser etching include the removal of etch products with photonic energy instead of ion bombardment, potential of projected patterning to combine growth and etching in situ without exposure to air, production of distinct sidewall etch features for device structures, and precise control of etching with a highly directional pulsed laser energy source. The use of pulsed laser radiation allows for pulsed etch depth control, ultimately resulting in atomic layer control. Laser assisted dry HCl etching of GaN, AlGaN and InGaN optical device materials was first demonstrated in our laboratory at North Carolina State University in a modified UHV vacuum chamber and ArF (193nm) excimer laser. Effective masking materials of Al and SiOsb2 were determined to be resistant to laser heating and HCl environment for laser etching. The process variables of laser intensity and HCl pressure were found to be dominant with the necessary condition that no etching occurs without both the excimer laser and HCl present. Successful laser etching of GaN, AlGaN, and InGaN was demonstrated indicating that deep etch features with distinct sidewall features are possible with this technique. Laser etching of a III-Nitride quantum well double heterostructure resulted in no degradation of the photoluminescence response. Also, reduction of etch damage with laser etching may be possible in comparison to ion etching. Finally, a proposed model for the etching mechanism includes the photothermal release of nitrogen from the GaN surface resulting in a Ga-rich surface which is removed by the HCl etchant.

  17. Toxicity of indium arsenide, gallium arsenide, and aluminium gallium arsenide.

    PubMed

    Tanaka, Akiyo

    2004-08-01

    Gallium arsenide (GaAs), indium arsenide (InAs), and aluminium gallium arsenide (AlGaAs) are semiconductor applications. Although the increased use of these materials has raised concerns about occupational exposure to them, there is little information regarding the adverse health effects to workers arising from exposure to these particles. However, available data indicate these semiconductor materials can be toxic in animals. Although acute and chronic toxicity of the lung, reproductive organs, and kidney are associated with exposure to these semiconductor materials, in particular, chronic toxicity should pay much attention owing to low solubility of these materials. Between InAs, GaAs, and AlGaAs, InAs was the most toxic material to the lung followed by GaAs and AlGaAs when given intratracheally. This was probably due to difference in the toxicity of the counter-element of arsenic in semiconductor materials, such as indium, gallium, or aluminium, and not arsenic itself. It appeared that indium, gallium, or aluminium was toxic when released from the particles, though the physical character of the particles also contributes to toxic effect. Although there is no evidence of the carcinogenicity of InAs or AlGaAs, GaAs and InP, which are semiconductor materials, showed the clear evidence of carcinogenic potential. It is necessary to pay much greater attention to the human exposure of semiconductor materials.

  18. Synthesis of large-area multilayer hexagonal boron nitride for high material performance

    NASA Astrophysics Data System (ADS)

    Kim, Soo Min; Hsu, Allen; Park, Min Ho; Chae, Sang Hoon; Yun, Seok Joon; Lee, Joo Song; Cho, Dae-Hyun; Fang, Wenjing; Lee, Changgu; Palacios, Tomás; Dresselhaus, Mildred; Kim, Ki Kang; Lee, Young Hee; Kong, Jing

    2015-10-01

    Although hexagonal boron nitride (h-BN) is a good candidate for gate-insulating materials by minimizing interaction from substrate, further applications to electronic devices with available two-dimensional semiconductors continue to be limited by flake size. While monolayer h-BN has been synthesized on Pt and Cu foil using chemical vapour deposition (CVD), multilayer h-BN is still absent. Here we use Fe foil and synthesize large-area multilayer h-BN film by CVD with a borazine precursor. These films reveal strong cathodoluminescence and high mechanical strength (Young's modulus: 1.16+/-0.1 TPa), reminiscent of formation of high-quality h-BN. The CVD-grown graphene on multilayer h-BN film yields a high carrier mobility of ~24,000 cm2 V-1 s-1 at room temperature, higher than that (~13,000 2 V-1 s-1) with exfoliated h-BN. By placing additional h-BN on a SiO2/Si substrate for a MoS2 (WSe2) field-effect transistor, the doping effect from gate oxide is minimized and furthermore the mobility is improved by four (150) times.

  19. Synthesis of large-area multilayer hexagonal boron nitride for high material performance

    PubMed Central

    Kim, Soo Min; Hsu, Allen; Park, Min Ho; Chae, Sang Hoon; Yun, Seok Joon; Lee, Joo Song; Cho, Dae-Hyun; Fang, Wenjing; Lee, Changgu; Palacios, Tomás; Dresselhaus, Mildred; Kim, Ki Kang; Lee, Young Hee; Kong, Jing

    2015-01-01

    Although hexagonal boron nitride (h-BN) is a good candidate for gate-insulating materials by minimizing interaction from substrate, further applications to electronic devices with available two-dimensional semiconductors continue to be limited by flake size. While monolayer h-BN has been synthesized on Pt and Cu foil using chemical vapour deposition (CVD), multilayer h-BN is still absent. Here we use Fe foil and synthesize large-area multilayer h-BN film by CVD with a borazine precursor. These films reveal strong cathodoluminescence and high mechanical strength (Young's modulus: 1.16±0.1 TPa), reminiscent of formation of high-quality h-BN. The CVD-grown graphene on multilayer h-BN film yields a high carrier mobility of ∼24,000 cm2 V−1 s−1 at room temperature, higher than that (∼13,000 2 V−1 s−1) with exfoliated h-BN. By placing additional h-BN on a SiO2/Si substrate for a MoS2 (WSe2) field-effect transistor, the doping effect from gate oxide is minimized and furthermore the mobility is improved by four (150) times. PMID:26507400

  20. Fabrication of Silicon Nitride Dental Core Ceramics with Borosilicate Veneering material

    NASA Astrophysics Data System (ADS)

    Wananuruksawong, R.; Jinawath, S.; Padipatvuthikul, P.; Wasanapiarnpong, T.

    2011-10-01

    Silicon nitride (Si3N4) ceramic is a great candidate for clinical applications due to its high fracture toughness, strength, hardness and bio-inertness. This study has focused on the Si3N4 ceramic as a dental core material. The white Si3N4 was prepared by pressureless sintering at relative low sintering temperature of 1650 °C in nitrogen atmosphere. The coefficient of thermal expansion (CTE) of Si3N4 ceramic is lower than that of Zirconia and Alumina ceramic which are popular in this field. The borosilicate glass veneering was employed due to its compatibility in thermal expansion. The sintered Si3N4 specimens represented the synthetic dental core were paintbrush coated by a veneer paste composed of borosilicate glass powder (<150 micrometer, Pyrex) with 5 wt% of zirconia powder (3 wt% Y2O3 - partial stabilized zirconia) and 30 wt% of polyvinyl alcohol (5 wt% solution). After coating the veneer on the Si3N4 specimens, the firing was performed in electric tube furnace between 1000-1200°C. The veneered specimens fired at 1100°C for 15 mins show good bonding, smooth and glossy without defect and crazing. The veneer has thermal expansion coefficient as 3.98×10-6 °C-1, rather white and semi opaque, due to zirconia addition, the Vickers hardness as 4.0 GPa which is closely to the human teeth.

  1. Narrow energy band gap gallium arsenide nitride semi-conductors and an ion-cut-synthesis method for producing the same

    DOEpatents

    Weng, Xiaojun; Goldman, Rachel S.

    2006-06-06

    A method for forming a semi-conductor material is provided that comprises forming a donor substrate constructed of GaAs, providing a receiver substrate, implanting nitrogen into the donor substrate to form an implanted layer comprising GaAs and nitrogen. The implanted layer is bonded to the receiver substrate and annealed to form GaAsN and nitrogen micro-blisters in the implanted layer. The micro-blisters allow the implanted layer to be cleaved from the donor substrate.

  2. Gallium interactions with Zircaloy

    SciTech Connect

    Woods, A.L.; West, M.K.

    1999-01-01

    This study focuses on the effects of gallium ion implantation into zircaloy cladding material to investigate the effects that gallium may have in a reactor. High fluence ion implantation of Ga ions was conducted on heated Zircaloy-4 in the range of 10{sup 16}--10{sup 18} Ga ions/cm2. Surface effects were studied using SEM and electron microprobe analysis. The depth profile of Ga in the Zircaloy was characterized with Rutherford backscattering and SIMS techniques. Results indicate that the Zirc-4 is little affected up to a fluence of 10{sup 17} Ga ions/cm{sup 2}. After implantation of 10{sup 18} Ga ions/cm{sup 2}, sub-grain features on the order of 2 {micro}m were observed which may be due to intermetallic compound formation between Ga and Zr. For the highest fluence implant, Ga content in the Zirc-4 reached a saturation value of between 30 and 40 atomic %; significant enhanced diffusion was observed but gallium was not seen to concentrate at grain boundaries.

  3. A FETISH for gallium arsenide

    SciTech Connect

    Barron, A.R.

    1996-12-31

    An overview of the development of a new dielectric material, cubic-GaS, from the synthesis of new organometallic compounds to the fabrication of a new class of gallium arsenide based transistor is presented as a representative example of the possibility that inorganic chemistry can directly effect the development of new semiconductor devices. The gallium sulfido compound [({sup t}Bu)GaS]{sub 4}, readily prepared from tri-tert-butyl gallium, may be used as a precursor for the growth of GaS thin films by metal organic chemical vapor deposition (MOCVD). Photoluminescence and electronic measurements indicate that this material provides a passivation coating for GaAs. Furthermore, the insulating properties of cubic-GaS make it suitable as the insulating gate layer in a new class of GaAs transistor: a field effect transistor with a sulfide heterojunction (FETISH).

  4. Preparation, Characterization, and Device Applications of Zinc Tin Nitride and Zinc Tin Oxynitride Materials

    NASA Astrophysics Data System (ADS)

    Ye, Shenglin

    This dissertation presents a comprehensively theoretical and experimental study on zinc tin nitride and zinc tin oxynitride materials. The purposes of this combinatorial study are to understand the fundamental properties of these two materials, and to examine the potential of these two materials for future optoelectronic applications. These fundamental properties are crystal structure, surface morphology, chemical composition, band structures, and optical as well as electrical properties. Zinc tin nitride (ZnSnN2) thin films have been synthesized on c-plane sapphire substrates and (0001) GaN templates by the reactive radio-frequency (RF) magnetron sputtering method. The properties are investigated by theoretical calculations and experimental results. In terms of theoretical calculation, the lattice constants a, b and c are calculated by using the density functional theory (DFT) method. These constants are comparable to our experimental results as well as previous calculations. In the case of experimental results, the impacts of substrate temperatures and the ratios of N2/(N 2+Ar) on films' properties are fully characterized by using various kinds of techniques including X-ray diffraction (XRD), Raman spectroscopy, X-ray photoemission spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), Hall effect measurement, and UV-Vis-NIR spectrometry. By optimizing the growth conditions, ZnSnN2 thin films with an average grain size larger than reported results have been obtained. Additionally, for the first time, the valence band structure of ZnSnN2 has been investigated by XPS analysis. The result is consistent with our calculated density of states (DOS). The vibrational modes of ZnSnN2 are also studied by Raman spectroscopy. The Schottky-behavior diodes with a structure of ZnSnN2/GaN heterojunctions have been successfully fabricated, using the standard fabricating process for semiconductor devices. Standard electrical measurements such as C

  5. Recent progress of THz-quantum cascade lasers using nitride-based materials

    NASA Astrophysics Data System (ADS)

    Hirayama, Hideki; Terashima, Wataru

    2015-08-01

    Nitride semiconductor is a material having potentials for realizing wide frequency range of quantum-cascade lasers (QCLs), i.e., 3~20 THz and 1~8 μm, including an unexplored terahertz frequency range from 5 to 12 THz, as well as realizing room temperature operation of THz-QCL. The merit of using an AlGaN-based semiconductor is that it has much higher longitudinal optical phonon energies (ELO> 90meV) than those of GaAs-based semiconductors (~ 36 meV). In this study, we demonstrate the first lasing action of GaN-based QCLs. We introduced an unique quantum design active region, i.e., "pure 3-level system design", which is consisting of 2 quantum wells (QWs) per one period. We grew GaN/AlGaN QC structures by using molecular beam epitaxy (MBE). The layer structure of the GaN/AlGaN QCL was consisting of 100~200 periods of QC active layers sandwiched by Si-doped (Al)GaN upper and lower contact layers, which were grown on a high-quality AlGaN/AlN template grown on a c-plane sapphire substrate. After the crystal growth, we fabricated QCL sample with single metal plasmon waveguide structure. Lasing spectrum was obtained at 5.39 THz measured under pulsed current injection at 5.8K. The threshold current density Jth and the threshold voltage Vth were 1.75 kA/cm2 and 14.5 V, respectively. We also fabricated similar design GaN/AlGaN QCL by metal organic chemical vapor deposition (MOCVD), and obtained lasing at 6.97 THz. The Jth and Vth of the MOCVD grown QCL were 0.75 kA/cm2 and 27 V, respectively, measured at 5.2 K.

  6. Spectroscopy of oxide-gallium nitride interfaces

    NASA Astrophysics Data System (ADS)

    Craft, Hughes Spalding

    GaN-based devices are of interest for applications requiring high-frequency, high-power operation at elevated temperatures. As in traditional, silicon-based devices, integration of semiconducting phases with insulators is critical. Additionally, applications involving the integration of GaN with polar oxides such as perovskite ferroelectrics have been proposed, due to the coupling that may be achieved between the respective polar vector. Devices utilizing such a coupling behavior would make possible two-dimensional electron gases of high charge densities that could be modulated by the oxide's polarization. The current status of oxide-GaN research is far behind that of oxide-Si research, and large-scale realization of GaN devices will require detailed understanding of oxide-GaN interfaces. This thesis focuses on the characterization of several oxide-GaN interfaces using x-ray photoelectron spectroscopy (XPS), as well as the identification of issues relating to the GaN surface. The rocksalt oxides MgO and CaO have been proposed as candidates for GaN MOSFET gate oxides, passivating layers, and buffer layers in GaN-ferroelectric structures. Thus, knowledge of film growth modes and band alignments is critical. Utilizing in-vacuo molecular beam epitaxy (MBE) and XPS, the growth of MgO on GaN was found to occur by the Volmer-Weber mode, with coalescence occurring at ˜12 nm. This coalescence behavior was not found to affect the band alignment. As measured by XPS, the valence band offset at the MgO-GaN interface is 1.2 +/- 0.2 eV, leading to a conduction band offset of 3.5 eV. A similar study was undertaken for the CaO-GaN system, in which more rapid coalescence was observed, leading to the conclusion of a Stranski-Krastanov growth mode. The difference in coalescence behavior is attributed to the increased reactivity of the CaO surface. The band offsets at the CaO-GaN interface were found to be 1.0 +/- 0.2 eV at the valence band, and 2.5 eV at the conduction band. The band structures measured in this thesis are considered to be sufficient for limiting leakage current by Schottky emission for high-temperature devices. Surface chemical stability of rocksalt oxides is a known issue with respect to hydroxylation through water adsorption. XPS characterization of water uptake was performed using the O 1s photoelectron line after several in-vacuo exposures, culminating in a one-hour exposure to a water/oxygen mixture at 1 x 10-6 Torr. Characterization of polycrystalline MgO showed a saturating coverage of --OH groups at approximately 1 monolayer, regardless of exposure. CaO films exhibited increased reactivity, with hydroxyl coverage increasing to 3 monolayers, in addition to a similar amount of physisorbed water, suggesting the possibility for further reaction. Complete recovery of both oxide surfaces is shown to be achievable using mild vacuum anneals. Finally, the surface of GaN has been characterized with respect to several issues encountered during these investigations. GaN surfaces are found to be significantly Garich, with surface stoichiometries routinely in excess of Ga2N. Several wet chemistries for GaN preparation were evaluated for their ability to modify the electrical behavior of subsequently grown oxide films. XPS could not unambiguously identify any change in surface chemistry that promotes these effects. Finally, p-type GaN films were noted to consistently possess greater oxide contamination in the as-grown state. Typical n-type or undoped GaN were marked by submonolayer quantities of oxide surface coverage, while p-type GaN typically exhibited coverages in the 1-2 nm scale. This difference has been found to be due to the p-type dopant activation anneal, during which GaN oxidation cannot be suppressed.

  7. Growth process for gallium nitride porous nanorods

    SciTech Connect

    Wildeson, Isaac Harshman; Sands, Timothy David

    2015-03-24

    A GaN nanorod and formation method. Formation includes providing a substrate having a GaN film, depositing SiN.sub.x on the GaN film, etching a growth opening through the SiN.sub.x and into the GaN film, growing a GaN nanorod through the growth opening, the nanorod having a nanopore running substantially through its centerline. Focused ion beam etching can be used. The growing can be done using organometallic vapor phase epitaxy. The nanopore diameter can be controlled using the growth opening diameter or the growing step duration. The GaN nanorods can be removed from the substrate. The SiN.sub.x layer can be removed after the growing step. A SiO.sub.x template can be formed on the GaN film and the GaN can be grown to cover the SiO.sub.x template before depositing SiN.sub.x on the GaN film. The SiO.sub.x template can be removed after growing the nanorods.

  8. Interface phenomena in (super)hard nitride nanocomposites: from coatings to bulk materials.

    PubMed

    Rafaja, David; Wüstefeld, Christina; Motylenko, Mykhailo; Schimpf, Christian; Barsukova, Tatiana; Schwarz, Marcus R; Kroke, Edwin

    2012-08-01

    Mechanical properties of nanocomposites usually surpass the mechanical properties of their micro-structured and single-crystalline counterparts. This is mainly due to an extremely high density of internal interfaces in nanocomposites like grain, crystallite and phase boundaries. When compared to diamond, carbides and borides, nitrides are of interest because of their high temperature oxidation resistance and compatibility with iron containing alloys. This tutorial review classifies the contributions of various internal interfaces to the hardness of the nanocomposites, and appreciates the outstanding role of partially coherent phase boundaries in the hardness enhancement. With selected examples of transition metal nitrides containing aluminium and silicon as well as of boron nitrides, it is explained how the nanocomposites with partially coherent phase boundaries and thus with enhanced hardness can be synthesised. As the possible ways of the formation of coherent phase boundaries, the local epitaxial growth of phases with limited mutual solubility, the production of supersaturated solid solutions followed by the segregation of elements during the spinodal decomposition and the incomplete phase transformation are discussed. The most important techniques, used for synthesis of nitride nanocomposites, like CVD, PVD, precursor-based methods, mechanical alloying and high-pressure-high-temperature synthesis are briefly reviewed. Besides, a short overview on hardness definitions and hardness measurements is included.

  9. Synthesis and characterization of actinide nitrides

    SciTech Connect

    Jaques, Brian; Butt, Darryl P.; Marx, Brian M.; Hamdy, A.S.; Osterberg, Daniel; Balfour, Gordon

    2007-07-01

    A carbothermic reduction of the metal oxides in a hydrogen/nitrogen mixed gas stream prior to nitriding in a nitrogen gas stream was used to synthesize uranium nitride at 1500 deg. C, cerium nitride at 1400 deg. C, and dysprosium nitride at 1500 deg. C. Cerium nitride and dysprosium nitride were also synthesized via hydriding and nitriding the metal shavings at 900 deg. C and 1500 deg. C, respectively. Also, a novel ball-milling synthesis route was used to produce cerium nitride and dysprosium nitride from the metal shavings at room temperature. Dysprosium nitride was also produced by reacting the metal shavings in a high purity nitrogen gas stream at 1300 deg. C. All materials were characterized by phase analysis via X-ray diffraction. Only the high purity materials were further analyzed via chemical analysis to characterize the trace oxygen concentration. (authors)

  10. Electro-optic and magneto-dielectric properties of multifunctional nitride and oxide materials

    NASA Astrophysics Data System (ADS)

    Dixit, Ambesh

    Materials that simultaneously exhibit different physical properties provide a rich area of research leading to the development of new devices. For example, materials having a strong coupling between charge and spin degrees of freedom are essential to realizing a new class of devices referred to generally as spintronics. However, these multifunctional systems pose new scientific challenges in understanding the origin and mechanisms for cross-control of different functionalities. The core of this Ph.D. dissertation deals with multifunctional nitride and oxide compound semiconductors as well as multiferroic magnetic oxide systems by investigating structural, optical, electrical, magnetic, magnetodielectric and magnetoelectric properties. Thin films of InN nitride compound semiconductors and closely related alloys have been investigated to understand the effects of intrinsic defects on the materials properties while considering possible applications of highly degenerate InN thin films. As grown rf sputtered InN films on c-axis (0001) sapphire exhibit highly degenerate n-type behaviour due to oxygen defects introduced during growth. The effect of oxygen in InN matrix has been further investigated by intentionally adding oxygen into the films. These studies confirm that oxygen is one of the main sources of donor electrons in degenerate InN. Above some critical concentration of oxygen, secondary phases of In 2O3 and In-O-N complexes were formed. It was also possible to tune the carrier concentration to produce changes in the plasmon frequency, which varied from 0.45 eV to 0.8 eV. This characteristic energy scale suggests that these highly degenerate InN thin films could be used for thermophotovoltaic cells, optical filters, and other IR electro-optic applications. To probe the magnetism in transition metal doped InN system, In 0.98Cr0.02N and In0.95Cr0.05N thin films were fabricated. Our results suggest that these films develop ferromagnetic order above room temperature

  11. Foreign Object Damage in a Gas-Turbine Grade Silicon Nitride by Spherical Projectiles of Various Materials

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Racz, Zsolt; Bhatt, Ramakrishna T.; Brewer, David N.

    2006-01-01

    Assessments of foreign object damage (FOD) of a commercial, gas-turbine grade, in situ toughened silicon nitride ceramic (AS800, Honeywell Ceramics Components) were made using four different projectile materials at ambient temperature. AS800 flexure target specimens rigidly supported were impacted at their centers in a velocity range from 50 to 450 m/s by spherical projectiles with a diameter of 1.59 mm. Four different projectile materials were used including hardened steel, annealed steel, silicon nitride ceramic, and brass. Post-impact strength of each target specimen impacted was determined as a function of impact velocity to appraise the severity of local impact damage. For a given impact velocity, the degree of strength degradation was greatest for ceramic balls, least for brass balls, and intermediate for annealed and hardened steel balls. For steel balls, hardened projectiles yielded more significant impact damage than annealed counterparts. The most important material parameter affecting FOD was identified as hardness of projectiles. Impact load as a function of impact velocity was quasi-statically estimated based on both impact and static indentation associated data.

  12. A Graphene-like Oxygenated Carbon Nitride Material for Improved Cycle-Life Lithium/Sulfur Batteries.

    PubMed

    Liu, Jinghai; Li, Wanfei; Duan, Limei; Li, Xin; Ji, Lei; Geng, Zhibin; Huang, Keke; Lu, Luhua; Zhou, Lisha; Liu, Zongrui; Chen, Wei; Liu, Liwei; Feng, Shouhua; Zhang, Yuegang

    2015-08-12

    Novel sulfur (S) anchoring materials and the corresponding mechanisms for suppressing capacity fading are urgently needed to advance the performance of Li/S batteries. Here, we designed and synthesized a graphene-like oxygenated carbon nitride (OCN) host material that contains tens of micrometer scaled two-dimensional (2D) rippled sheets, micromesopores, and oxygen heteroatoms. N content can reach as high as 20.49 wt %. A sustainable approach of one-step self-supporting solid-state pyrolysis (OSSP) was developed for the low-cost and large-scale production of OCN. The urea in solid sources not only provides self-supporting atmospheres but also produces graphitic carbon nitride (g-C3N4) working as 2D layered templates. The S/OCN cathode can deliver a high specific capacity of 1407.6 mA h g(-1) at C/20 rate with 84% S utilization and retain improved reversible capacity during long-term cycles at high current density. The increasing micropores, graphitic N, ether, and carboxylic O at the large sized OCN sheet favor S utilization and trapping for polysulfides.

  13. Methods for and products of processing nanostructure nitride, carbonitride and oxycarbonitride electrode power materials by utilizing sol gel technology for supercapacitor applications

    DOEpatents

    Huang, Yuhong; Wei, Oiang; Chu, Chung-tse; Zheng, Haixing

    2001-01-01

    Metal nitride, carbonitride, and oxycarbonitride powder with high surface area (up to 150 m.sup.2 /g) is prepared by using sol-gel process. The metal organic precursor, alkoxides or amides, is synthesized firstly. The metal organic precursor is modified by using unhydrolyzable organic ligands or templates. A wet gel is formed then by hydrolysis and condensation process. The solvent in the wet gel is then be removed supercritically to form porous amorphous hydroxide. This porous hydroxide materials is sintered to 725.degree. C. under the ammonia flow and porous nitride powder is formed. The other way to obtain high surface area nitride, carbonitride, and oxycarbonitride powder is to pyrolyze polymerized templated metal amides aerogel in an inert atmosphere. The electrochemical capacitors are prepared by using sol-gel prepared nitride, carbonitride, and oxycarbonitride powder. Two methods are used to assemble the capacitors. Electrode is formed either by pressing the mixture of nitride powder and binder to a foil, or by depositing electrode coating onto metal current collector. The binder or coating is converted into a continuous network of electrode material after thermal treatment to provide enhanced energy and power density. Liquid electrolyte is soaked into porous electrode. The electrochemical capacitor assembly further has a porous separator layer between two electrodes/electrolyte and forming a unit cell.

  14. Synthesis and characterization of co-deposited carbon nitride and boron materials

    SciTech Connect

    Bousetta, A.; Badi, N.; Bensaoula, A.

    1995-12-31

    Carbon boron nitride (CBN) thin films were grown on Si and NaCl at temperatures in the range of 100-400{degrees}C using electron-beam evaporation of graphite and boron assisted with electron cyclotron resonance (ECR) plasma generated nitrogen species. The effect of varying the boron flux on the compositional, structural, and electrical properties of the films was investigated using electron probe microanalysis (EPMA), Auger depth profiling (ADP), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and Hall measurements.

  15. A modern perspective on the history of semiconductor nitride blue light sources

    NASA Astrophysics Data System (ADS)

    Maruska, Herbert Paul; Rhines, Walden Clark

    2015-09-01

    In this paper we shall discuss the development of blue light-emitting (LED) and laser diodes (LD), starting early in the 20th century. Various materials systems were investigated, but in the end, the nitrides of aluminum, gallium and indium proved to be the most effective. Single crystal thin films of GaN first emerged in 1968. Blue light-emitting diodes were first reported in 1971. Devices grown in the 1970s were prepared by the halide transport method, and were never efficient enough for commercial products due to contamination. Devices created by metal-organic vapor-phase epitaxy gave far superior performance. Actual true blue LEDs based on direct band-to-band transitions, free of recombination through deep levels, were finally developed in 1994, leading to a breakthrough in LED performance, as well as nitride based laser diodes in 1996. In 2014, the scientists who achieved these critical results were awarded the Nobel Prize in Physics.

  16. Investigations in gallium removal

    SciTech Connect

    Philip, C.V.; Pitt, W.W.; Beard, C.A.

    1997-11-01

    Gallium present in weapons plutonium must be removed before it can be used for the production of mixed-oxide (MOX) nuclear reactor fuel. The main goal of the preliminary studies conducted at Texas A and M University was to assist in the development of a thermal process to remove gallium from a gallium oxide/plutonium oxide matrix. This effort is being conducted in close consultation with the Los Alamos National Laboratory (LANL) personnel involved in the development of this process for the US Department of Energy (DOE). Simple experiments were performed on gallium oxide, and cerium-oxide/gallium-oxide mixtures, heated to temperatures ranging from 700--900 C in a reducing environment, and a method for collecting the gallium vapors under these conditions was demonstrated.

  17. Gallium nitrate revisited.

    PubMed

    Chitambar, Christopher R

    2003-04-01

    Gallium nitrate, the nitrate salt of the "near-metal" element gallium, is highly effective in the treatment of cancer-related hypercalcemia. Unlike bisphosphonates, gallium nitrate is effective in both parathyroid hormone-related protein-mediated and non-parathyroid hormone-related protein-mediated hypercalcemia. Gallium nitrate's effects on bone are clearly different from those of bisphosphonates. Gallium nitrate enhances calcium and phosphate content of bone and has direct, noncytotoxic effects on osteoclasts at markedly lower doses than those used for the treatment of cancer-related hypercalcemia. The drug may have clinical application in a variety of disorders associated with accelerated bone loss, including multiple myeloma. Gallium nitrate was originally evaluated as an antitumor agent. Its antitumor activity occurs at somewhat higher doses than those used in the treatment of cancer-related hypercalcemia. Gallium nitrate has substantial single-agent activity in the treatment of advanced lymphoma, particularly diffuse large cell lymphoma, small lymphocytic lymphoma, and follicular lymphoma. Because of its profile, including a different mechanism of action and minimal myelosuppression, the drug merits further evaluation in the treatment of advanced lymphoma. Gallium nitrate also has activity in advanced bladder cancer and may be useful in patients with metastatic or unresectable disease failing first-line chemotherapy regimens. Gallium nitrate exhibits a range of dose-dependent pharmacologic actions that provide a basis for its therapeutic potential in a variety of diseases and warrants further investigational evaluation as an antiresorptive and antitumor agent. PMID:12776253

  18. Sintering and characterization of ZrN and (Dy,Zr)N as surrogate materials for fast reactor nitride fuel

    NASA Astrophysics Data System (ADS)

    Pukari, Merja; Takano, Masahide

    2014-01-01

    Pellets of inert matrix material ZrN, and surrogate nitride fuel material (Dy0.4Zr0.6)N, are fabricated for the purpose of investigating the origin and the effect of carbon and oxygen impurity concentrations. Oxygen concentrations of up to 1.2 wt% are deliberately introduced into the materials with two separate methods. The achievable pellet densities of these materials, as a function of O content, sintering temperature and dimensional powder properties are determined. O dissolved into (Dy,Zr)N increases the achievable densities to a larger extent than if dissolved into ZrN. The segregation of O-rich phases in ZrN indicates a low O solubility in the material. Oxygen pick-up during the fabrication of the product as well as its exposure to air is demonstrated. The quality of the materials is monitored by the systematic analysis of O, N and C contents throughout the fabrication and sintering processes, supported by XRD and SEM analyses.

  19. Physisorption of Nucleic Acid Bases on Boron Nitride Nanotubes: A new class of Hybrid Nano-Bio Materials

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Saikat; Gowtham, S.; Scheicher, Ralph; Pandey, Ravindra; Karna, Shashi

    2010-03-01

    We investigate the adsorption of the nucleic acid bases, adenine (A), guanine (G), cytosine (C), thymine (T) and uracil (U) on the outer wall of a high curvature semiconducting single-walled boron nitride nanotube (BNNT) by first principles density functional theory calculations. The calculated binding energy shows the order: G>A C T U implying that the interaction strength of the (high-curvature) BNNT with the nucleobases, G being an exception, is nearly the same. A higher binding energy for the G-BNNT conjugate appears to result from a stronger hybridization of the molecular orbitals of G and BNNT, since the charge transfer involved in the physisorption process is insignificant. A smaller energy gap predicted for the G-BNNT conjugate relative to that of the pristine BNNT may be useful in application of this class of biofunctional materials to the design of the next generation sensing devices.

  20. Influence of Cooling Hole Geometry and Material Conductivity on the Thermal Response of Cooled Silicon Nitride Plate

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Bhatt, Ramakrishna T.; Girgis, Morris

    2002-01-01

    To complement the effectiveness of ceramic materials and the applicability to turbine engine applications, a parametric study using the finite element method was carried out. This study conducted thorough analyses of a thermal-barrier-coated silicon nitride (Si3N4) plate specimen with cooling channels, where its thermal conductivity was verified in an attempt to minimize the thermal stresses and reach an optimal rate of stress. The thermal stress profile was generated for specimens with circular and square cooling channels. Lower stresses were reported for a higher magnitude of thermal conductivity and in particular for the circular cooling channel arrangement. Contour plots for the stresses and the temperature are presented and discussed.

  1. Molten-Salt-Based Growth of Group III Nitrides

    DOEpatents

    Waldrip, Karen E.; Tsao, Jeffrey Y.; Kerley, Thomas M.

    2008-10-14

    A method for growing Group III nitride materials using a molten halide salt as a solvent to solubilize the Group-III ions and nitride ions that react to form the Group III nitride material. The concentration of at least one of the nitride ion or Group III cation is determined by electrochemical generation of the ions.

  2. Microstructure of nitride semiconductors for ultra-violet light emitters

    NASA Astrophysics Data System (ADS)

    Liu, Rong

    Group III-nitride semiconductors are important materials for the fabrication of light-emitting-diodes (LEDs) and laser diodes operating in the blue-ultraviolet region. While their unique physical properties have made it possible to fabricate high-efficiency blue devices, the ultraviolet (UV) counterparts face many challenges. High-performance, nitride-based UV-LEDs should revolutionize the general lighting technology. In the near future, fluorescent bulbs are expected to be replaced by long-life and compact-size UV-LEDs coated with phosphors. This dissertation addresses the challenges facing the development of such UV-emitting nitride semiconductor materials. Three critical issues need to be resolved in order to fabricate high-performance UV-LEDs based on aluminum gallium nitride (AlGaN) alloys: (a) the growth of crack-free AlGaN films, (b) the elimination of crystalline defects, and (c) control of doping. In order to address these issues, epitaxy on a new substrate, ZrB2, has been studied. This substrate is closely matched to AlGaN and permits minimization of residual strain due to lattice and thermal-expansion mismatch and thus avoids the formation of cracks. The growth of crack-free AlGaN using facet-controlled epitaxial lateral overgrowth has also been studied. Plastic relaxation mechanism of mismatch strain has been understood by detailed characterization of the microstructure. The defect density has been reduced by more than one order of magnitude using these approaches, with a significant improvement in the UV-LEDs' efficiency. Distinct dopant incorporation behavior has been observed in lateral overgrowth. The effects of silicon doping on the optical properties and microstructure of AlGaN/GaN quantum wells have also been investigated. These studies have resulted in significant improvement of UV-LEDs' performance. Finally, recommendations for further work are made.

  3. Long-chain amine-templated synthesis of gallium sulfide and gallium selenide nanotubes

    NASA Astrophysics Data System (ADS)

    Seral-Ascaso, A.; Metel, S.; Pokle, A.; Backes, C.; Zhang, C. J.; Nerl, H. C.; Rode, K.; Berner, N. C.; Downing, C.; McEvoy, N.; Muñoz, E.; Harvey, A.; Gholamvand, Z.; Duesberg, G. S.; Coleman, J. N.; Nicolosi, V.

    2016-06-01

    We describe the soft chemistry synthesis of amine-templated gallium chalcogenide nanotubes through the reaction of gallium(iii) acetylacetonate and the chalcogen (sulfur, selenium) using a mixture of long-chain amines (hexadecylamine and dodecylamine) as a solvent. Beyond their role as solvent, the amines also act as a template, directing the growth of discrete units with a one-dimensional multilayer tubular nanostructure. These new materials, which broaden the family of amine-stabilized gallium chalcogenides, can be tentatively classified as direct large band gap semiconductors. Their preliminary performance as active material for electrodes in lithium ion batteries has also been tested, demonstrating great potential in energy storage field even without optimization.We describe the soft chemistry synthesis of amine-templated gallium chalcogenide nanotubes through the reaction of gallium(iii) acetylacetonate and the chalcogen (sulfur, selenium) using a mixture of long-chain amines (hexadecylamine and dodecylamine) as a solvent. Beyond their role as solvent, the amines also act as a template, directing the growth of discrete units with a one-dimensional multilayer tubular nanostructure. These new materials, which broaden the family of amine-stabilized gallium chalcogenides, can be tentatively classified as direct large band gap semiconductors. Their preliminary performance as active material for electrodes in lithium ion batteries has also been tested, demonstrating great potential in energy storage field even without optimization. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01663d

  4. Characterization and reliability of aluminum gallium nitride/gallium nitride high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Douglas, Erica Ann

    Compound semiconductor devices, particularly those based on GaN, have found significant use in military and civilian systems for both microwave and optoelectronic applications. Future uses in ultra-high power radar systems will require the use of GaN transistors operated at very high voltages, currents and temperatures. GaN-based high electron mobility transistors (HEMTs) have proven power handling capability that overshadows all other wide band gap semiconductor devices for high frequency and high-power applications. Little conclusive research has been reported in order to determine the dominating degradation mechanisms of the devices that result in failure under standard operating conditions in the field. Therefore, it is imperative that further reliability testing be carried out to determine the failure mechanisms present in GaN HEMTs in order to improve device performance, and thus further the ability for future technologies to be developed. In order to obtain a better understanding of the true reliability of AlGaN/GaN HEMTs and determine the MTTF under standard operating conditions, it is crucial to investigate the interaction effects between thermal and electrical degradation. This research spans device characterization, device reliability, and device simulation in order to obtain an all-encompassing picture of the device physics. Initially, finite element thermal simulations were performed to investigate the effect of device design on self-heating under high power operation. This was then followed by a study of reliability of HEMTs and other tests structures during high power dc operation. Test structures without Schottky contacts showed high stability as compared to HEMTs, indicating that degradation of the gate is the reason for permanent device degradation. High reverse bias of the gate has been shown to induce the inverse piezoelectric effect, resulting in a sharp increase in gate leakage current due to crack formation. The introduction of elevated temperatures during high reverse gate bias indicated that device failure is due to the breakdown of an unintentional gate oxide. RF stress of AlGaN/GaN HEMTs showed comparable critical voltage breakdown regime as that of similar devices stressed under dc conditions. Though RF device characteristics showed stability up to a drain bias of 20 V, Schottky diode characteristics degraded substantially at all voltages investigated. Results from both dc and RF stress conditions, under several bias regimes, confirm that the primary root for stress induced degradation was due to the Schottky contact. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  5. Thermal oxidation of gallium arsenide

    SciTech Connect

    Monteiro, O.R.; Evans, J.W.

    1989-01-01

    Here we present some results of transmission electron microscopy and secondary ion mass spectroscopy of thermally oxidized gallium arsenide with different types of dopants. At temperatures below 400 /sup 0/C an amorphous oxide is formed. Oxidation at temperatures between 500 and 600 /sup 0/C initially produces an epitaxial film of ..gamma..-Ga/sub 2/O/sub 3/. As the reaction proceeds, this film becomes polycrystalline and then transforms to ..beta..-Ga/sub 2/O/sub 3/. This film contains small crystallites of As/sub 2/O/sub 5/ and As/sub 2/O/sub 3/ in the case of the chromium doped samples, whereas only the former was detected in the case of silicon and tellurium doped samples. Elemental arsenic was always found at the interface between the oxide and GaAs. Chromium doped gallium also exhibited a slower oxidation kinetics than the other materials.

  6. Assessment of Material Properties of Gallium Orthophosphate Piezoelectric Elements for Development of Phased Array Probes for Continuous Operation at 580°C

    NASA Astrophysics Data System (ADS)

    Kostan, Mario; Mohimi, Abbas; Nageswaran, Channa; Kappatos, Vassilios; Cheng, Liang; Gan, Tat-Hean; Wrobel, Luiz; Selcuk, Cem

    2016-03-01

    In this paper, the thickness extension mode gallium orthophosphate single crystal elements were characterised using the impedance analyser. Impedance characteristics of piezoelectric elements were investigated at temperatures from 25°C up to 580°C at first and then at a constant temperature of 580°C for a period of 25 days. The resonant and anti-resonant frequencies extracted from the impedance characteristics, capacitance (measured at 1 kHz), density and dimensions of the gallium orthophosphate elements were used to calculate electromechanical, piezoelectric and elastic properties of these elements at high temperatures as a function of time. The tested gallium orthophosphate elements proved to possess very stable efficiency and sensing capability when subjected to high temperature. The results are very encouraging for proceeding with development of phased array probes using gallium orthophosphate, for inspection and condition monitoring of high temperature pipelines in power plants at a temperature up to 580°C.

  7. Gallium Zeolites for Light Paraffin Aromatization

    SciTech Connect

    Price, G.L.; Dooley, K.M.

    1999-02-10

    The primary original goal of this project was to investigate the active state of gallium-containing MFI catalysts for light paraffin aromatization, in particular the state of gallium in the active material. Our original hypothesis was that the most active and selective materials were those which contained gallium zeolitic cations, and that previously reported conditions for the activation of gallium-containing catalysts served to create these active centers. We believed that in high silica materials such as MFI, ion-exchange is most effectively accomplished with metals in their 1+ oxidation state, both because of the sparsity of the anionic ion-exchange sites associated with the zeolite, and because the large hydration shells associated with aqueous 3+ cations hinder transport. Metals such as Ga which commonly exist in higher oxidation states need to be reduced to promote ion-exchange and this is the reason that reduction of gallium-containing catalysts for light paraffin aromatization often yields a dramatic enhancement in catalytic activity. We have effectively combined reduction with ion-exchange and we term this combined process ''reductive solid-state ion-exchange''. Our hypothesis has largely been proven true, and a number of the papers we have published directly address this hypothesis.

  8. Structural study of growth, orientation and defects characteristics in the functional microelectromechanical system material aluminium nitride

    SciTech Connect

    Hrkac, Viktor Schürmann, Ulrich; Kienle, Lorenz; Kobler, Aaron; Kübel, Christian; Marauska, Stephan; Wagner, Bernhard; Petraru, Adrian; Kohlstedt, Hermann; Kiran Chakravadhanula, Venkata Sai; Duppel, Viola; Lotsch, Bettina Valeska

    2015-01-07

    The real structure and morphology of piezoelectric aluminum nitride (AlN) thin films as essential components of magnetoelectric sensors are investigated via advanced transmission electron microscopy methods. State of the art electron diffraction techniques, including precession electron diffraction and automated crystal orientation mapping (ACOM), indicate a columnar growth of the AlN grains optimized for piezoelectric application with a (0 0 0 1) texture. Comparing ACOM with piezoresponse force microscopy measurements, a visual correlation of the structure and the piezoelectric properties is enabled. With a quantitative analysis of the ACOM measurements, a statistical evaluation of grain rotations is performed, indicating the presence of coincidence site lattices with Σ7, Σ13a, Σ13b, Σ25. Using a geometric phase analysis on high resolution micrographs, the occurrence of strain is detected almost exclusively at the grain boundaries. Moreover, high resolution imaging was applied for solving the atomic structure at stacking mismatch boundaries with a displacement vector of 1/2 〈1 0 -1 1〉. All real structural features can be interpreted via simulations based on crystallographic computing in terms of a supercell approach.

  9. Surface toughness of silicon nitride bioceramics: II, Comparison with commercial oxide materials.

    PubMed

    McEntire, Bryan J; Enomoto, Yuto; Zhu, Wenliang; Boffelli, Marco; Marin, Elia; Pezzotti, Giuseppe

    2016-02-01

    Raman microprobe-assisted indentation, a micromechanics method validated in a companion paper, was used to compare the surface toughening behaviors of silicon nitride (Si3N4) and alumina-based bioceramics employed in joint arthroplasty (i.e., monolithic alumina, Al2O3, and yttria-stabilized zirconia (ZrO2)-toughened alumina, ZTA). Quantitative assessments of microscopic stress fields both ahead and behind the tip of Vickers indentation cracks propagated under increasing indentation loads were systematically made using a Raman microprobe with spatial resolution on the order of a single micrometer. Concurrently, crack opening displacement (COD) profiles were monitored on the same microcracks screened by Raman spectroscopy. The Raman eye clearly visualized different mechanisms operative in toughening Si3N4 and ZTA bioceramics (i.e., crack-face bridging and ZrO2 polymorphic transformation, respectively) as compared to the brittle behavior of monolithic Al2O3. Moreover, emphasis was placed on assessing not only the effectiveness but also the durability of such toughening effects when the biomaterials were aged in a hydrothermal environment. A significant degree of embrittlement at the biomaterial surface was recorded in the transformation-toughened ZTA, with the surface toughness reduced by exposure to the hydrothermal environment. Conversely, the Si3N4 biomaterial experienced a surface toughness value independent of hydrothermal attack. Crack-face bridging thus appears to be a durable surface toughening mechanism for biomaterials in joint arthroplasty. PMID:26437609

  10. Practical Issues for Atom Probe Tomography Analysis of III-Nitride Semiconductor Materials.

    PubMed

    Tang, Fengzai; Moody, Michael P; Martin, Tomas L; Bagot, Paul A J; Kappers, Menno J; Oliver, Rachel A

    2015-06-01

    Various practical issues affecting atom probe tomography (APT) analysis of III-nitride semiconductors have been studied as part of an investigation using a c-plane InAlN/GaN heterostructure. Specimen preparation was undertaken using a focused ion beam microscope with a mono-isotopic Ga source. This enabled the unambiguous observation of implantation damage induced by sample preparation. In the reconstructed InAlN layer Ga implantation was demonstrated for the standard "clean-up" voltage (5 kV), but this was significantly reduced by using a lower voltage (e.g., 1 kV). The characteristics of APT data from the desorption maps to the mass spectra and measured chemical compositions were examined within the GaN buffer layer underlying the InAlN layer in both pulsed laser and pulsed voltage modes. The measured Ga content increased monotonically with increasing laser pulse energy and voltage pulse fraction within the examined ranges. The best results were obtained at very low laser energy, with the Ga content close to the expected stoichiometric value for GaN and the associated desorption map showing a clear crystallographic pole structure. PMID:25926083

  11. Structural study of growth, orientation and defects characteristics in the functional microelectromechanical system material aluminium nitride

    NASA Astrophysics Data System (ADS)

    Hrkac, Viktor; Kobler, Aaron; Marauska, Stephan; Petraru, Adrian; Schürmann, Ulrich; Kiran Chakravadhanula, Venkata Sai; Duppel, Viola; Kohlstedt, Hermann; Wagner, Bernhard; Lotsch, Bettina Valeska; Kübel, Christian; Kienle, Lorenz

    2015-01-01

    The real structure and morphology of piezoelectric aluminum nitride (AlN) thin films as essential components of magnetoelectric sensors are investigated via advanced transmission electron microscopy methods. State of the art electron diffraction techniques, including precession electron diffraction and automated crystal orientation mapping (ACOM), indicate a columnar growth of the AlN grains optimized for piezoelectric application with a {0 0 0 1} texture. Comparing ACOM with piezoresponse force microscopy measurements, a visual correlation of the structure and the piezoelectric properties is enabled. With a quantitative analysis of the ACOM measurements, a statistical evaluation of grain rotations is performed, indicating the presence of coincidence site lattices with Σ7, Σ13a, Σ13b, Σ25. Using a geometric phase analysis on high resolution micrographs, the occurrence of strain is detected almost exclusively at the grain boundaries. Moreover, high resolution imaging was applied for solving the atomic structure at stacking mismatch boundaries with a displacement vector of 1/2 ⟨1 0 -1 1⟩. All real structural features can be interpreted via simulations based on crystallographic computing in terms of a supercell approach.

  12. An Amorphous Carbon Nitride Composite Derived from ZIF-8 as Anode Material for Sodium-Ion Batteries.

    PubMed

    Fan, Jing-Min; Chen, Jia-Jia; Zhang, Qian; Chen, Bin-Bin; Zang, Jun; Zheng, Ming-Sen; Dong, Quan-Feng

    2015-06-01

    An composite comprising amorphous carbon nitride (ACN) and zinc oxide is derived from ZIF-8 by pyrolysis. The composite is a promising anode material for sodium-ion batteries. The nitrogen content of the ACN composite is as high as 20.4 %, and the bonding state of nitrogen is mostly pyridinic, as determined by X-ray photoelectron spectroscopy (XPS). The composite exhibits an excellent Na(+) storage performance with a reversible capacity of 430 mA h g(-1) and 146 mA h g(-1) at current densities of 83 mA g(-1) and 8.33 A g(-1) , respectively. A specific capacity of 175 mA h g(-1) was maintained after 2000 cycles at 1.67 A g(-1) , with only 0.016 % capacity degradation per cycle. Moreover, an accelerating rate calorimetry (ARC) test demonstrates the excellent thermal stability of the composite, with a low self heating rate and high onset temperature (210 °C). These results shows its promise as a candidate material for high-capacity, high-rate anodes for sodium-ion batteries.

  13. Transition Metal Nitride Clusters and Solid State Materials via Alkyl Ammonolyses of Molecular Precursors.

    NASA Astrophysics Data System (ADS)

    Banaszak Holl, Mark Monroe

    A research program designed to synthesize new types of metal nitride clusters and apply them to the syntheses of solids resulted in several new cluster compounds and low temperature routes to binary transition metal nitrides. The reaction of Cp*TaMe_4 (1) with excess ammonia generates yellow (Cp*(Me)TaN) _3 (2). 2 has equivalent bond lengths about the ring of 1.886 (17)_{rm av} A. EHMO calculations predicted that a non-bonding metal centered LUMO should be ~ 1.2 eV above the HOMO. Cyclic voltammetry and coulometry demonstrated the existence of a reversible one-electron reduction at -2.5 V vs SSCE. Chemical reduction of 2 with NaK amalgam generated purple (K cdotn Et_2O) ^+ ({Cp*(Me)TaN }_3^-) (3, 83%). Treatment of (^{rm t }BuCH_2)_3TaCH ^{rm t}Bu (4) with ammonia generated orange to green-orange precipitates (17, 17^'), which upon annealing at 820^circC formed metastable Fm3m TaN. Yellow ((^{rm t} BuCH_2)_2TaN) _5 (7) could be isolated in 42% yield if the reaction was protected from exposure to light. The geometrical similarity between 7 and Fm3m TaN prompted mechanistic experiments to determine if 7 dictated the formation of the Fm3m phase. The results of a variety of experiments involving electron microscopy, FAB and high resolution mass spectrometry, MAS and Spin-Echo NMR were inconclusive. Treatment of (tritox)ZrBz_3 (8) with 1.8 equivalents of ammonia generated a white, square-pyramidal cluster, (tritoxZr)_5( mu_5-N)(mu_3 -NH)_4(mu_2-NH _2)_4 (10) in 32% yield. Treatment of 8 or 10 with excess ammonia resulted in the formation of (tritoxZr)_5(mu_5 -N)(mu_2-NH_2) _8(NH_2)_4 (11) (56% from 8). Upon treating 8 with one equivalent of NH_3, crystals containing (tritoxZr) _6(mu_6-N)( mu_3-NH)_6(mu _2-NH_2)_3 (12) formed. The crystals were determined to contain a 0.6:1 ratio of 12:10 via ^{15} N CPMAS solid state NMR. A system to model the reaction of ammonia with metal alkyls was developed. The reaction of (silox) _2TaBz_3 (13) with one and two equivalents of

  14. Technical Progress Report for "Optical and Electrical Properties of III-Nitrides and Related Materials"

    SciTech Connect

    Jiang, Hongxing

    2008-10-31

    Investigations have been conducted focused on the fundamental material properties of AIN and high AI-content AIGaN alloys and further developed MOCVD growth technologies for obtaining these materials with improved crystalline quality and conductivities.

  15. (Gallium arsenide solar cells)

    SciTech Connect

    Not Available

    1985-01-01

    A transient liquid phase epitaxial growth system is described, including the growth procedure. Also discussed are the antireflection coating of a gallium arsenide solar cell, the metal contact pattern, and current-voltage characteristics. (LEW)

  16. Lung gallium scan

    MedlinePlus

    ... inflammation in the lungs, most often due to sarcoidosis or a certain type of pneumonia. Normal Results ... up very little gallium. What Abnormal Results Mean Sarcoidosis Other respiratory infections, most often pneumocystis jirovecii pneumonia ...

  17. Properties of gallium arsenide

    SciTech Connect

    Not Available

    1985-01-01

    Properties of Gallium Arsenide' is a handbook of evaluated numeric data and reviewed knowledge distilled by those working at the frontiers of gallium arsenide research. In addition to providing numeric data on basic physical, electronic and optical properties, the book covers many device-related aspects of gallium arsenide. Carrier attributes (ionisation coefficients, concentration, mobility, diffusion etc), deep levels and defects are surveyed and related to the various growth techniques such as MBE, VPE, and MOCVD. Sections on surface structure, oxidation, interfaces and etching are of particular relevance to integrated circuit research. Especially important in the race to achieve commercially usable samples is a state-of-the-art survey on the infra-red imaging of defects in semi-insulating gallium arsenide produced by the liquid-encapsulated Czochralski process.

  18. Growth and characterization of III-nitrides materials system for photonic and electronic devices by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yoo, Dongwon

    A wide variety of group III-Nitride-based photonic and electronic devices have opened a new era in the field of semiconductor research in the past ten years. The direct and large bandgap nature, intrinsic high carrier mobility, and the capability of forming heterostructures allow them to dominate photonic and electronic device market such as light emitters, photodiodes, or high-speed/high-power electronic devices. Avalanche photodiodes (APDs) based on group III-Nitrides materials are of interest due to potential capabilities for low dark current densities, high sensitivities and high optical gains in the ultraviolet (UV) spectral region. Wide-bandgap GaN-based APDs are excellent candidates for short-wavelength photodetectors because they have the capability for cut-off wavelengths in the UV spectral region (lambda < 290 nm). These intrinsically solar-blind UV APDs will not require filters to operate in the solar-blind spectral regime of lambda < 290 nm. For the growth of GaN-based heteroepitaxial layers on lattice-mismatched substrates, a high density of defects is usually introduced during the growth; thereby, causing a device failure by premature microplasma, which has been a major issue for GaN-based APDs. The extensive research on epitaxial growth and optimization of AlxGa 1-xN (0 ≤ x ≤ 1) grown on low dislocation density native bulk III-N substrates have brought UV APDs into realization. GaN and AlGaN UV p-i-n APDs demonstrated first and record-high true avalanche gain of > 10,000 and 50, respectively. The large stable optical gains are attributed to the improved crystalline quality of epitaxial layers grown on low dislocation density bulk substrates. GaN p-i-n rectifiers have brought much research interest due to its superior physical properties. The AIN-free full-vertical GaN p-i-n rectifiers on n-type 6H-SiC substrates by employing a conducting AIGaN:Si buffer layer provides the advantages of the reduction of sidewall damage from plasma etching and

  19. Novel nitrogen/gallium precursor [Ga(bdma)H2] for MOVPE

    NASA Astrophysics Data System (ADS)

    Sterzer, E.; Beyer, A.; Nattermann, L.; Schorn, W.; Schlechter, K.; Pulz, S.; Sundermeyer, J.; Stolz, W.; Volz, K.

    2016-11-01

    Dilute nitrogen (N) containing III/V semiconductors are promising candidates for solar cell and laser applications. The N incorporation efficiency of 1,1-dimethylhydrazine (UMDHy) in metal organic vapor phase epitaxy (MOVPE), however, happens to be only in the one percentage range and below. This leads to an extremely high offer of UDMHy in the MOVPE reactor and, therefore, a drastic change in the growth conditions. Furthermore, the device efficiency of dilute nitride materials is currently hampered by carbon (C) incorporation, which is believed to be incorporated either jointly with the N from the dimethylamine radical of the UMDHy or from short hydrocarbon radicals originating from the decomposition of the other metal organics. Therefore, this work presents a novel N precursor N,N'-Bis(dimethylamino)acetamidinato-galliumdihydride [Ga(bdma)H2], which provides not only N but also gallium (Ga) during MOVPE. The direct N-Ga bond in this molecule might facilitate the N incorporation and hence increase the efficiency. For a systematic N incorporation study Ga(NAs)/GaAs heterostructures were grown by MOVPE. The N content was determined via high resolution X-ray diffraction and photoluminescence (PL) studies. Good structural quality and as grown room temperature PL were obtained. It will be also shown that the N incorporation efficiency in GaAs using [Ga(bdma)H2] is significantly higher than for growths using UDMHy under comparable conditions, making this class of molecules promising candidates for the growth of dilute nitride materials.

  20. Nuclear microprobe imaging of gallium nitrate in cancer cells

    NASA Astrophysics Data System (ADS)

    Ortega, Richard; Suda, Asami; Devès, Guillaume

    2003-09-01

    Gallium nitrate is used in clinical oncology as treatment for hypercalcemia and for cancer that has spread to the bone. Its mechanism of antitumor action has not been fully elucidated yet. The knowledge of the intracellular distribution of anticancer drugs is of particular interest in oncology to better understand their cellular pharmacology. In addition, most metal-based anticancer compounds interact with endogenous trace elements in cells, altering their metabolism. The purpose of this experiment was to examine, by use of nuclear microprobe analysis, the cellular distribution of gallium and endogenous trace elements within cancer cells exposed to gallium nitrate. In a majority of cellular analyses, gallium was found homogeneously distributed in cells following the distribution of carbon. In a smaller number of cells, however, gallium appeared concentrated together with P, Ca and Fe within round structures of about 2-5 μm diameter located in the perinuclear region. These intracellular structures are typical of lysosomial material.

  1. Luminescence properties of M2Si5N8:Ce3+ (M = Ca, Sr, Ba) mixed nitrides prepared by metal hydrides as starting materials

    NASA Astrophysics Data System (ADS)

    Kuramoto, Daiki; Kim, Hyo Sung; Horikawa, Takashi; Itoh, Masahiro; Machida, Ken-ichi

    2012-08-01

    Mixed metal nitrides, M2Si5N8:Ce3+ (M = Ca, Sr, Ba), were synthesized from M2-yCeySi5 or an appropriate mixture of MSiHx, Si3N4 and CeF3, by a direct nitriding process in N2 gas: 2 MSiHx + Si3N4 + CeF3 → M2Si5N8:Ce3+. Also, charge-compensated materials, M2AlzSi5-zN8:Ce3+ were prepared (from an appropriate mixture of MSiHx, MAlSiHx, Si3N4 and CeF3) and the luminescence properties were characterized. The resultant phosphors showed green emission suitable for LED illumination by optimizing the mixing ratio of metal elements.

  2. Electrodeposition of gallium for photovoltaics

    DOEpatents

    Bhattacharya, Raghu N.

    2016-08-09

    An electroplating solution and method for producing an electroplating solution containing a gallium salt, an ionic compound and a solvent that results in a gallium thin film that can be deposited on a substrate.

  3. Experimental and theoretical investigations of functionalized boron nitride as electrode materials for Li-ion batteries

    SciTech Connect

    Zhang, Fan; Nemeth, Karoly; Bareño, Javier; Dogan, Fulya; Bloom, Ira D.; Shaw, Leon L.

    2016-01-01

    The feasibility of synthesizing functionalized h-BN (FBN) via the reaction between molten LiOH and solid h-BN is studied for the first time and its first ever application as an electrode material in Li-ion batteries is evaluated. Density functional theory (DFT) calculations are performed to provide mechanistic understanding of the possible electrochemical reactions derived from the FBN. Various materials characterizations reveal that the melt-solid reaction can lead to exfoliation and functionalization of h-BN simultaneously, while electrochemical analysis proves that the FBN can reversibly store charges through surface redox reactions with good cycle stability and coulombic efficiency. DFT calculations have provided physical insights into the observed electrochemical properties derived from the FBN.

  4. Amorphous carbon nitride as an alternative electrode material in electroanalysis: simultaneous determination of dopamine and ascorbic acid.

    PubMed

    Medeiros, Roberta A; Matos, Roberto; Benchikh, Abdelkader; Saidani, Boualem; Debiemme-Chouvy, Catherine; Deslouis, Claude; Rocha-Filho, Romeu C; Fatibello-Filho, Orlando

    2013-10-01

    Boron-doped diamond (BDD) films are excellent electrode materials, whose electrochemical activity for some analytes can be tuned by controlling their surface termination, most commonly either to predominantly hydrogen or oxygen. This tuning can be accomplished by e.g. suitable cathodic or anodic electrochemical pretreatments. Recently, it has been shown that amorphous carbon nitride (a-CNx) films may present electrochemical characteristics similar to those of BDD, including the influence of surface termination on their electrochemical activity toward some analytes. In this work, we report for the first time a complete electroanalytical method using an a-CNx electrode. Thus, an a-CNx film deposited on a stainless steel foil by DC magnetron sputtering is proposed as an alternative electrode for the simultaneous determination of dopamine (DA) and ascorbic acid (AA) in synthetic biological samples by square-wave voltammetry. The obtained results are compared with those attained using a BDD electrode. For both electrodes, a same anodic pretreatment in 0.1 mol L(-1) KOH was necessary to attain an adequate and equivalent separation of the DA and AA oxidation potential peaks of about 330 mV. The detection limits obtained for the simultaneous determination of these analytes using the a-CNx electrode were 0.0656 μmol L(-1) for DA and 1.05 μmol L(-1) for AA, whereas with the BDD electrode these values were 0.283 μmol L(-1) and 0.968 μmol L(-1), respectively. Furthermore, the results obtained in the analysis of the analytes in synthetic biological samples were satisfactory, attesting the potential application of the a-CNx electrode in electroanalysis.

  5. Efficient water reduction with gallium phosphide nanowires

    PubMed Central

    Standing, Anthony; Assali, Simone; Gao, Lu; Verheijen, Marcel A.; van Dam, Dick; Cui, Yingchao; Notten, Peter H. L.; Haverkort, Jos E. M.; Bakkers, Erik P. A. M.

    2015-01-01

    Photoelectrochemical hydrogen production from solar energy and water offers a clean and sustainable fuel option for the future. Planar III/V material systems have shown the highest efficiencies, but are expensive. By moving to the nanowire regime the demand on material quantity is reduced, and new materials can be uncovered, such as wurtzite gallium phosphide, featuring a direct bandgap. This is one of the few materials combining large solar light absorption and (close to) ideal band-edge positions for full water splitting. Here we report the photoelectrochemical reduction of water, on a p-type wurtzite gallium phosphide nanowire photocathode. By modifying geometry to reduce electrical resistance and enhance optical absorption, and modifying the surface with a multistep platinum deposition, high current densities and open circuit potentials were achieved. Our results demonstrate the capabilities of this material, even when used in such low quantities, as in nanowires. PMID:26183949

  6. Long-chain amine-templated synthesis of gallium sulfide and gallium selenide nanotubes.

    PubMed

    Seral-Ascaso, A; Metel, S; Pokle, A; Backes, C; Zhang, C J; Nerl, H C; Rode, K; Berner, N C; Downing, C; McEvoy, N; Muñoz, E; Harvey, A; Gholamvand, Z; Duesberg, G S; Coleman, J N; Nicolosi, V

    2016-06-01

    We describe the soft chemistry synthesis of amine-templated gallium chalcogenide nanotubes through the reaction of gallium(iii) acetylacetonate and the chalcogen (sulfur, selenium) using a mixture of long-chain amines (hexadecylamine and dodecylamine) as a solvent. Beyond their role as solvent, the amines also act as a template, directing the growth of discrete units with a one-dimensional multilayer tubular nanostructure. These new materials, which broaden the family of amine-stabilized gallium chalcogenides, can be tentatively classified as direct large band gap semiconductors. Their preliminary performance as active material for electrodes in lithium ion batteries has also been tested, demonstrating great potential in energy storage field even without optimization. PMID:27221399

  7. Fabrication and evaluation of room temperature operated radiation detectors processed from undoped LEC bulk gallium arsenide material

    SciTech Connect

    McGregor, D.S.; Knoll, G.F.; Eisen, Y.; Brake, R.

    1994-09-01

    Semi-insulating undoped bulk LEC GaAs was investigated as a possible detector material for room temperature operated charged particle and gamma ray spectrometers. GaAs Schottky based diode detectors were fabricated with thicknesses of 45 microns, 100 microns, 250 microns, and 750 microns. Pulse height analysis utilizing an alpha particle source disclosed non-constant electric field distributions that decreased rapidly from the Schottky contact into the bulk of the detectors. Results from pulsed X-ray analysis and the alpha particle pulse height analysis indicate an active region width voltage dependence that strongly deviates from {radical}{bar V} behavior. Resolution at room temperature for {sup 241}Am alpha particles ranged from 2.2% to 3.1% FWHM for different detectors with a typical resolution of 2.5% FWHM. Room temperature measurements of 60 keV gamma rays ({sup 24l}Am) and 122 keV gamma rays ({sup 57}Co) resulted in observed full energy peaks with FWHM`s of 22 keV and 40 keV, respectively.

  8. Characterization of bulk hexagonal boron nitride single crystals grown by the metal flux technique

    NASA Astrophysics Data System (ADS)

    Edgar, J. H.; Hoffman, T. B.; Clubine, B.; Currie, M.; Du, X. Z.; Lin, J. Y.; Jiang, H. X.

    2014-10-01

    The optical and physical properties of hexagonal boron nitride single crystals grown from a molten metal solution are reported. The hBN crystals were grown by precipitation from a nickel-chromium flux with a boron nitride source, by slowly cooling from 1500 °C at 2-4 °C/h under a nitrogen flow at atmospheric pressure. The hBN crystals formed on the surface of the flux with an apparent crystal size up to 1-2 mm in diameter. Individual grains were as large as 100-200 μm across. Typically, the flakes removed from the metal were 6-20 μm thick. Optical absorption measurements suggest a bandgap of 5.8 eV by neglecting the binding energy of excitons in hBN. The highest energy photoluminescence peak was at 5.75 eV at room temperature. The hBN crystals typically had a pit density of 5×106 cm-2 after etching in a molten eutectic mixture of potassium hydroxide and sodium hydroxide. The quality of these crystals suggests they are suitable as substrates for two dimensional materials such as graphene and gallium nitride based devices.

  9. Sources of Shockley-Read-Hall recombination in III-nitride light emitters

    NASA Astrophysics Data System (ADS)

    Dreyer, Cyrus E.; Alkauskas, Audrius; Lyons, John L.; Speck, James S.; van de Walle, Chris G.

    Group-III nitrides are the key materials for high efficiency light-emitting diodes in the blue part of the visible spectrum, and a large research effort is aimed at extending this success to the green and the yellow range, where nitride LEDs are significantly less efficient. Though it has been noted that the efficiency of III-nitride devices may be limited by Shockley-Read-Hall recombination at point defects, the microscopic mechanism and defects responsible are unknown. Based on first-principles calculations of defect formation energies, charge-state transition levels, and nonradiative capture coefficients, we describe a mechanism by which complexes between gallium vacancies and oxygen and/or hydrogen can act as efficient channels for nonradiative recombination in InGaN alloys. The dependence of these quantities on alloy composition is analyzed. We find that modest concentrations of the proposed defect complexes, around 1016cm-3, can give rise to Shockley-Read-Hall coefficients A = (107 -109) s-1. The resulting nonradiative recombination can significantly reduce the internal quantum efficiency of optoelectronic devices. This work was supported by DOE and by EU Marie Sklodowska-Curie Action.

  10. Designing nanoscale constructs from atomic thin sheets of graphene, boron nitride and gold nanoparticles for advanced material applications

    NASA Astrophysics Data System (ADS)

    Jasuja, Kabeer

    2011-12-01

    Nanoscale materials invite immense interest from diverse scientific disciplines as these provide access to precisely understand the physical world at their most fundamental atomic level. In concert with this aim of enhancing our understanding of the fundamental behavior at nanoscale, this dissertation presents research on three nanomaterials: Gold nanoparticles (GNPs), Graphene and ultra-thin Boron Nitride sheets (UTBNSs). The three-fold goals which drive this research are: incorporating mobility in nanoparticle based single-electron junction constructs, developing effective strategies to functionalize graphene with nano-forms of metal, and exfoliating ultrathin sheets of Boron Nitride. Gold nanoparticle based electronic constructs can achieve a new degree of operational freedom if nanoscale mobility is incorporated in their design. We achieved such a nano-electromechanical construct by incorporating elastic polymer molecules between GNPs to form 2-dimensional (2-D) molecular junctions which show a nanoscale reversible motion on applying macro scale forces. This GNP-polymer assembly works like a molecular spring opening avenues to maneuver nano components and store energy at nano-scale. Graphene is the first isolated nanomaterial that displays single-atom thickness. It exhibits quantum confinement that enables it to possess a unique combination of fascinating electronic, optical, and mechanical properties. Modifying the surface of graphene is extremely significant to enable its incorporation into applications of interest. We demonstrated the ability of chemically modified graphene sheets to act as GNP stabilizing templates in solution, and utilized this to process GNP composites of graphene. We discovered that GNPs synthesized by chemical or microwave reduction stabilize on graphene-oxide sheets to form snow-flake morphologies and bare-surfaces respectively. These hybrid nano constructs were extensively studied to understand the effect and nature of GNPs

  11. Efficiency Improvement of Nitride-Based Solid State Light Emitting Materials -- CRADA Final Report

    SciTech Connect

    Kisielowski, Christian; Weber, Eicke

    2010-05-13

    The development of In{sub x}Ga{sub 1-x} N/GaN thin film growth by Molecular Beam Epitaxy has opened a new route towards energy efficient solid-state lighting. Blue and green LED's became available that can be used to match the whole color spectrum of visible light with the potential to match the eye response curve. Moreover, the efficiency of such devices largely exceeds that of incandescent light sources (tungsten filaments) and even competes favorably with lighting by fluorescent lamps. It is, however, also seen in Figure 1 that it is essential to improve on the luminous performance of green LED's in order to mimic the eye response curve. This lack of sufficiently efficient green LED's relates to particularities of the In{sub x}Ga{sub 1-x}N materials system. This ternary alloy system is polar and large strain is generated during a lattice mismatched thin film growth because of the significantly different lattice parameters between GaN and InN and common substrates such as sapphire. Moreover, it is challenging to incorporate indium into GaN at typical growth temperatures because a miscibility gap exists that can be modified by strain effects. As a result a large parameter space needs exploration to optimize the growth of In{sub x}Ga{sub 1-x}N and to date it is unclear what the detailed physical processes are that affect device efficiencies. In particular, an inhomogeneous distribution indium in GaN modifies the device performance in an unpredictable manner. As a result technology is pushed forward on a trial and error basis in particular in Asian countries such as Japan and Korea, which dominate the market and it is desirable to strengthen the competitiveness of the US industry. This CRADA was initiated to help Lumileds Lighting/USA boosting the performance of their green LED's. The tasks address the distribution of the indium atoms in the active area of their blue and green LED's and its relation to internal and external quantum efficiencies. Procedures to

  12. Powder processing of nitrides by hot isostatic pressing. (Latest citations from Engineered Materials abstracts). NewSearch

    SciTech Connect

    Not Available

    1994-10-01

    The bibliography contains citations concerning the use of hot isostatic pressing to process metal nitrides. Citations discuss the fabrication of components for internal combustion, advanced heat, and gas turbine engines. Ceramic matrix composites are considered. (Contains a minimum of 77 citations and includes a subject term index and title list.)

  13. Growth of 1.5 micron gallium indium nitrogen arsenic antimonide vertical cavity surface emitting lasers by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wistey, Mark Allan

    Fiber optics has revolutionized long distance communication and long haul networks, allowing unimaginable data speeds and noise-free telephone calls around the world for mere pennies per hour at the trunk level. But the high speeds of optical fiber generally do not extend to individual workstations or to the home, in large part because it has been difficult and expensive to produce lasers which emitted light at wavelengths which could take advantage of optical fiber. One of the most promising solutions to this problem is the development of a new class of semiconductors known as dilute nitrides. Dilute nitrides such as GaInNAs can be grown directly on gallium arsenide, which allows well-established processing techniques. More important, gallium arsenide allows the growth of vertical-cavity surface-emitting lasers (VCSELs), which can be grown in dense, 2D arrays on each wafer, providing tremendous economies of scale for manufacturing, testing, and packaging. Unfortunately, GaInNAs lasers have suffered from what has been dubbed the "nitrogen penalty," with high thresholds and low efficiency as the fraction of nitrogen in the semiconductor was increased. This thesis describes the steps taken to identify and essentially eliminate the nitrogen penalty. Protecting the wafer surface from plasma ignition, using an arsenic cap, greatly improved material quality. Using a Langmuir probe, we further found that the nitrogen plasma source produced a large number of ions which damaged the wafer during growth. The ions were dramatically reduced using deflection plates. Low voltage deflection plates were found to be preferable to high voltages, and simulations showed low voltages to be adequate for ion removal. The long wavelengths from dilute nitrides can be partly explained by wafer damage during growth. As a result of these studies, we demonstrated the first CW, room temperature lasers at wavelengths beyond 1.5mum on gallium arsenide, and the first GaInNAs(Sb) VCSELs beyond 1

  14. Hard and low friction nitride coatings and methods for forming the same

    DOEpatents

    Erdemir, Ali; Urgen, Mustafa; Cakir, Ali Fuat; Eryilmaz, Osman Levent; Kazmanli, Kursat; Keles, Ozgul

    2007-05-01

    An improved coating material possessing super-hard and low friction properties and a method for forming the same. The improved coating material includes the use of a noble metal or soft metal homogeneously distributed within a hard nitride material. The addition of small amounts of such metals into nitrides such as molybdenum nitride, titanium nitride, and chromium nitride results in as much as increasing of the hardness of the material as well as decreasing the friction coefficient and increasing the oxidation resistance.

  15. Group III-nitride thin films grown using MBE and bismuth

    DOEpatents

    Kisielowski, Christian K.; Rubin, Michael

    2000-01-01

    The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.

  16. Group III-nitride thin films grown using MBE and bismuth

    DOEpatents

    Kisielowski, Christian K.; Rubin, Michael

    2002-01-01

    The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.

  17. Method of preparation of uranium nitride

    DOEpatents

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  18. Antitumor effect of novel gallium compounds and efficacy of nanoparticle-mediated gallium delivery in lung cancer.

    PubMed

    Wehrung, Daniel; Oyewumi, Moses O

    2012-02-01

    The widespread application of gallium (Ga) in cancer therapy has been greatly hampered by lack of specificity resulting in poor tumor accumulation and retention. To address the challenge, two lipophilic gallium (III) compounds (gallium hexanedione; GaH and gallium acetylacetonate; GaAcAc) were synthesized and antitumor studies were conducted in human lung adenocarcinoma (A549) cells. Nanoparticles (NPs) containing various concentrations of the Ga compounds were prepared using a binary mixture of Gelucire 44/14 and cetyl alcohol as matrix materials. NPs were characterized based on size, morphology, stability and biocompatibility. Antitumor effects of free or NP-loaded Ga compounds were investigated based on cell viability, production of reactive oxygen species and reduction of mitochondrial potential. Compared to free Ga compounds, cytotoxicity of NP-loaded Ga (5-150 microg/ml) was less dependent on concentration and incubation time (exposure) with A549 cells. NP-mediated delivery (5-150 microg Ga/ml) enhanced antitumor effects of Ga compounds and the effect was pronounced at: (i) shorter incubation times; and (ii) at low concentrations of gallium (approximately 50 microg/ml) (p < 0.0006). Additional studies showed that NP-mediated Ga delivery was not dependent on transferrin receptor uptake mechanism (p > 0.13) suggesting the potential in overcoming gallium resistance in some tumors. In general, preparation of stable and biocompatible NPs that facilitated Ga tumor uptake and antitumor effects could be effective in gallium-based cancer therapy.

  19. Cu-doped carbon nitride: Bio-inspired synthesis of H2-evolving electrocatalysts using graphitic carbon nitride (g-C3N4) as a host material

    NASA Astrophysics Data System (ADS)

    Zou, Xiaoxin; Silva, Rafael; Goswami, Anandarup; Asefa, Tewodros

    2015-12-01

    Splitting water effectively to produce hydrogen (H2) requires the development of non-noble-metal electrocatalysts that are able to make this reaction feasible and energy efficient. Herein, we present a novel "structure upgrading" synthetic approach for the design and synthesis of bio-inspired hydrogen-evolving electrocatalysts based on earth-abundant elements. Using g-C3N4 - an inexpensive inorganic polymer material - as a host material for copper ions, novel Cu-doped g-C3N4 materials with supramolecular structure, efficient electrocatalytic activity and modest overpotentials for hydrogen evolution reaction (HER) are synthesized. Compared with most single-molecule analogs of hydrogenases that work only in organic media, the supramolecular Cu-doped g-C3N4 materials can serve as heterogeneous electrocatalysts with greater stability and good catalytic activity for HER in aqueous media. The materials afford a current density as high as 10 mA cm-2 at an overpotential as low as 390 mV, and work well in acidic media for, at least, 43 h.

  20. Boron nitride insulating material

    DOEpatents

    Morgan, Jr., Chester S.; Cavin, O. Burl; McCulloch, Reginald W.; Clark, David L.

    1978-01-01

    High temperature BN-insulated heaters for use as fuel pin simulators in reactor thermal hydraulic test facility studies comprise a cylindrical housing and a concentric heating element disposed within the housing and spaced apart from the housing to define an annular region therebetween. The annular region contains BN for providing electrical resistance and thermal conductivity between the housing and the heating element. The fabrication method of this invention comprises the steps of cold pressing BN powder at a pressure of 20 to 80,000 psig and a dwell time of at least 0.1-3 seconds to provide hollow cylindrical preforms of suitable dimensions for insertion into the annular region, the BN powder having a tap density of about 0.6-1.1 g/cm.sup.3 and an orientation ratio of at least about 100/3.5. The preforms are inserted into the annular region and crushed in place.

  1. Gallium-containing anticancer compounds.

    PubMed

    Chitambar, Christopher R

    2012-06-01

    There is an ever pressing need to develop new drugs for the treatment of cancer. Gallium nitrate, a group IIIa metal salt, inhibits the proliferation of tumor cells in vitro and in vivo and has shown activity against non-Hodgkin's lymphoma and bladder cancer in clinical trials. Gallium can function as an iron mimetic and perturb iron-dependent proliferation and other iron-related processes in tumor cells. Gallium nitrate lacks crossresistance with conventional chemotherapeutic drugs and is not myelosuppressive; it can be used when other drugs have failed or when the blood count is low. Given the therapeutic potential of gallium, newer generations of gallium compounds are now in various phases of preclinical and clinical development. These compounds hold the promise of greater anti-tumor activity against a broader spectrum of cancers. The development of gallium compounds for cancer treatment and their mechanisms of action will be discussed.

  2. Hafnium nitride buffer layers for growth of GaN on silicon

    DOEpatents

    Armitage, Robert D.; Weber, Eicke R.

    2005-08-16

    Gallium nitride is grown by plasma-assisted molecular-beam epitaxy on (111) and (001) silicon substrates using hafnium nitride buffer layers. Wurtzite GaN epitaxial layers are obtained on both the (111) and (001) HfN/Si surfaces, with crack-free thickness up to 1.2 {character pullout}m. However, growth on the (001) surface results in nearly stress-free films, suggesting that much thicker crack-free layers could be obtained.

  3. Effects of Hydrogen on Tantalum Nitride Resistors

    NASA Technical Reports Server (NTRS)

    Weiler, James

    2000-01-01

    In this paper we report on observations of degradation of thin film Tantalum Nitride chip resistors in a hermetically sealed hybrid. The observations have been attributed to the reaction of residual Palladium with desorbed Hydrogen on the surface of the resistor film. Hydrogen gas has been observed to desorb from various sources within the sealed hybrid as a result of temperature elevation. The hydrogen gas has been reported to undergo a reaction with elements such as Platinum and Palladium causing device degradation in Gallium Arsenide Field Effect Transistors. The experimental procedures and data relating to this observation along with a discussion of available risk mitigation techniques will be presented.

  4. EDITORIAL: Non-polar and semipolar nitride semiconductors Non-polar and semipolar nitride semiconductors

    NASA Astrophysics Data System (ADS)

    Han, Jung; Kneissl, Michael

    2012-02-01

    topics including growth and heteroepitaxy, bulk GaN substrates, theory and modelling, optical properties, laser diodes and LEDs as well as transport properties and electronics. Farrell et al review materials and growth issues for high-performance non- and semipolar light-emitting devices, and Scholz provides an overview of heteroepitaxial growth of semipolar GaN. Okada et al review growth mechanisms of non- and semipolar GaN layers on patterned sapphire substrates, and Vennéguès discusses defect reduction methods for heteroepitaxially grown non- and semipolar III-nitride films. Leung et al explain how kinetic Wulff plots can be used to design and control non-polar and semipolar GaN heteroepitaxy, and a contribution by Sawaki et al explores the impurity incorporation in (1-101) GaN grown on Si substrates. In the area of bulk crystal growth Kucharski et al review non- and semipolar GaN substrates by ammonothermal growth, and Chichibu et al discuss the challenges for epitaxial growth of InGaN on free-standing m-plane GaN substrates. Calculation of semipolar orientations for wurtzitic semiconductor heterostructures and their application to nitrides and oxides are reviewed by Bigenwald et al, and Ito et al present an ab initio approach to reconstruction, adsorption, and incorporation on GaN surfaces. Finally, the theoretical description of non-polar and semipolar nitride semiconductor quantum-well structures is presented by Ahn et al. In a discussion of the optical properties, Kisin et al discuss the effect of the quantum well population on the optical characteristics of polar, semipolar and non-polar III-nitride light emitters, and Jönen et al investigate the indium incorporation and optical properties of non- and semipolar GaInN QW structures. Wernicke et al explore the emission wavelength of polar, non-polar, and semipolar InGaN quantum wells and the incorporation of indium. In a contribution by Melo et al, the gain in polar and non-polar/semipolar gallium-nitride

  5. Manual modification and plasma exposure of boron nitride ceramic to study Hall effect thruster plasma channel material erosion

    NASA Astrophysics Data System (ADS)

    Satonik, Alexander J.

    Worn Hall effect thrusters (HET) show a variety of unique microstructures and elemental compositions in the boron nitride thruster channel walls. Worn thruster channels are typically created by running test thrusters in vacuum chambers for hundreds of hours. Studies were undertaken to manually modify samples of boron nitride without the use of a hall effect thruster. Samples were manually abraded with an abrasive blaster and sandpaper, in addition to a vacuum heater. Some of these samples were further exposed to a xenon plasma in a magnetron sputter device. Sandpaper and abrasive blaster tests were used to modify surface roughness values of the samples from 10,000 A to 150,000 A, matching worn thruster values. Vacuum heat treatments were performed on samples. These treatments showed the ability to modify chemical compositions of boron nitride samples, but not in a manner matching changes seen in worn thruster channels. Plasma erosion rate was shown to depend on the grade of the BN ceramic and the preparation of the surface prior to plasma exposure. Abraded samples were shown to erode 43% more than their pristine counterparts. Unique surface features and elemental compositions on the worn thruster channel samples were overwritten by new surface features on the ceramic grains. The microscope images of the ceramic surface show that the magnetron plasma source rounded the edges of the ceramic grains to closely match the worn HET surface. This effect was not as pronounced in studies of ion beam bombardment of the surface and appears to be a result of the quasi-neutral plasma environment.

  6. Method of fabricating germanium and gallium arsenide devices

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzban (Inventor)

    1990-01-01

    A method of semiconductor diode fabrication is disclosed which relies on the epitaxial growth of a precisely doped thickness layer of gallium arsenide or germanium on a semi-insulating or intrinsic substrate, respectively, of gallium arsenide or germanium by either molecular beam epitaxy (MBE) or by metal-organic chemical vapor deposition (MOCVD). The method involves: depositing a layer of doped or undoped silicon dioxide on a germanium or gallium arsenide wafer or substrate, selectively removing the silicon dioxide layer to define one or more surface regions for a device to be fabricated thereon, growing a matched epitaxial layer of doped germanium or gallium arsenide of an appropriate thickness using MBE or MOCVD techniques on both the silicon dioxide layer and the defined one or more regions; and etching the silicon dioxide and the epitaxial material on top of the silicon dioxide to leave a matched epitaxial layer of germanium or gallium arsenide on the germanium or gallium arsenide substrate, respectively, and upon which a field effect device can thereafter be formed.

  7. Oxidative dissolution of gallium arsenide and separation of gallium from arsenic

    SciTech Connect

    Coleman, J.P.; Monzyk, B.F.

    1988-07-26

    The method of dissociating gallium arsenide into a gallium-containing component and an arsenic-containing component, is described which comprises contacting the gallium arsenide with an oxidizing agent and a liquid comprising hydroxamic acid to convert the gallium to a gallium-hydroxamic acid complex and to oxidize the arsenic to a positive valence state.

  8. Gallium--A smart metal

    USGS Publications Warehouse

    Foley, Nora; Jaskula, Brian W.

    2013-01-01

    Gallium is a soft, silvery metallic element with an atomic number of 31 and the chemical symbol Ga. The French chemist Paul-Emile Lecoq de Boisbaudran discovered gallium in sphalerite (a zinc-sulfide mineral) in 1875 using spectroscopy. He named the element "gallia" after his native land of France (formerly Gaul; in Latin, Gallia). The existence of gallium had been predicted in 1871 by Dmitri Mendeleev, the Russian chemist who published the first periodic table of the elements. Mendeleev noted a gap in his table and named the missing element "eka-aluminum" because he determined that its location was one place away from aluminum in the table. Mendeleev thought that the missing element (gallium) would be very much like aluminum in its chemical properties, and he was right. Solid gallium has a low melting temperature (~29 degrees Celsius, or °C) and an unusually high boiling point (~2,204 °C). Because of these properties, the earliest uses of gallium were in high-temperature thermometers and in designing metal alloys that melt easily. The development of a gallium-based direct band-gap semiconductor in the 1960s led to what is now one of the most well-known applications for gallium-based products--the manufacture of smartphones and data-centric networks.

  9. Low temperature recombination and trapping analysis in high purity gallium arsenide by microwave photodielectric techniques

    NASA Technical Reports Server (NTRS)

    Khambaty, M. B.; Hartwig, W. H.

    1972-01-01

    Some physical theories pertinent to the measurement properties of gallium arsenide are presented and experimental data are analyzed. A model for explaining recombination and trapping high purity gallium arsenide, valid below 77 K is assembled from points made at various places and an appraisal is given of photodielectric techniques for material property studies.

  10. Estimations of the spontaneous polarization of binary and ternary compounds of group III nitrides

    NASA Astrophysics Data System (ADS)

    Davydov, S. Yu.; Posrednik, O. V.

    2016-04-01

    The dependences of spontaneous polarizations P sp of solid solutions of aluminum, gallium, and indium nitrides on the compositions were estimated using the Harrison bond-orbital method. A simple formula was proposed to estimate P sp using only lengths of the interatomic bonds between the nearest neighbor atoms and the angles between these bonds.

  11. Aluminum nitride grating couplers.

    PubMed

    Ghosh, Siddhartha; Doerr, Christopher R; Piazza, Gianluca

    2012-06-10

    Grating couplers in sputtered aluminum nitride, a piezoelectric material with low loss in the C band, are demonstrated. Gratings and a waveguide micromachined on a silicon wafer with 600 nm minimum feature size were defined in a single lithography step without partial etching. Silicon dioxide (SiO(2)) was used for cladding layers. Peak coupling efficiency of -6.6 dB and a 1 dB bandwidth of 60 nm have been measured. This demonstration of wire waveguides and wideband grating couplers in a material that also has piezoelectric and elasto-optic properties will enable new functions for integrated photonics and optomechanics.

  12. Preparation of a smooth GaN-Gallium solid-liquid interface

    NASA Astrophysics Data System (ADS)

    de Jong, A. E. F.; Vonk, V.; Ruat, M.; Boćkowski, M.; Kamler, G.; Grzegory, I.; Honkimäki, V.; Vlieg, E.

    2016-08-01

    We discuss the preparation of an atomically flat solid-liquid interface between solid gallium nitride and liquid gallium using in situ surface X-ray diffraction to probe the interface roughness. For the creation of this interface it is necessary to start the experiment with liquid gallium which first etches into the solid at a temperature of 823 K in a nitrogen free ambient. After this rigorous cleaning procedure there is perfect wetting between solid and liquid. The roughness created due to the fast etching of the solid has to be repaired at a nitrogen pressure of 10-20 bar and a temperature around 1150 K. The (2,1) crystal truncation rod data are excellently described by a surface model having 0±0.1 Å roughness, which indicates a successful repair. The lateral length scale on which the roughness is determined has a lower limit of 750±50 Å.

  13. Seed/Catalyst-Free Growth of Gallium-Based Compound Materials on Graphene on Insulator by Electrochemical Deposition at Room Temperature

    NASA Astrophysics Data System (ADS)

    Rashiddy Wong, Freddawati; Ahmed Ali, Amgad; Yasui, Kanji; Hashim, Abdul Manaf

    2015-05-01

    We report the growth of gallium-based compounds, i.e., gallium oxynitride (GaON) and gallium oxide (Ga2O3) on multilayer graphene (MLG) on insulator using a mixture of ammonium nitrate (NH4NO3) and gallium nitrate (Ga(NO3)3) by electrochemical deposition (ECD) method at room temperature (RT) for the first time. The controlling parameters of current density and electrolyte molarity were found to greatly influence the properties of the grown structures. The thicknesses of the deposited structures increase with the current density since it increases the chemical reaction rates. The layers grown at low molarities of both solutions basically show grain-like layer with cracking structures and dominated by both Ga2O3 and GaON. Such cracking structures seem to diminish with the increases of molarities of one of the solutions. It is speculated that the increase of current density and ions in the solutions helps to promote the growth at the area with uneven thicknesses of graphene. When the molarity of Ga(NO3)3 is increased while keeping the molarity of NH4NO3 at the lowest value of 2.5 M, the grown structures are basically dominated by the Ga2O3 structure. On the other hand, when the molarity of NH4NO3 is increased while keeping the molarity of Ga(NO3)3 at the lowest value of 0.8 M, the GaON structure seems to dominate where their cubic and hexagonal arrangements are coexisting. It was found that when the molarities of Ga(NO3)3 are at the high level of 7.5 M, the grown structures tend to be dominated by Ga2O3 even though the molarity of NH4NO3 is made equal or higher than the molarity of Ga(NO3)3. When the grown structure is dominated by the Ga2O3 structure, the deposition process became slow or unstable, resulting to the formation of thin layer. When the molarity of Ga(NO3)3 is increased to 15 M, the nanocluster-like structures were formed instead of continuous thin film structure. This study seems to successfully provide the conditions in growing either GaON-dominated or

  14. Seed/Catalyst-Free Growth of Gallium-Based Compound Materials on Graphene on Insulator by Electrochemical Deposition at Room Temperature.

    PubMed

    Rashiddy Wong, Freddawati; Ahmed Ali, Amgad; Yasui, Kanji; Hashim, Abdul Manaf

    2015-12-01

    We report the growth of gallium-based compounds, i.e., gallium oxynitride (GaON) and gallium oxide (Ga2O3) on multilayer graphene (MLG) on insulator using a mixture of ammonium nitrate (NH4NO3) and gallium nitrate (Ga(NO3)3) by electrochemical deposition (ECD) method at room temperature (RT) for the first time. The controlling parameters of current density and electrolyte molarity were found to greatly influence the properties of the grown structures. The thicknesses of the deposited structures increase with the current density since it increases the chemical reaction rates. The layers grown at low molarities of both solutions basically show grain-like layer with cracking structures and dominated by both Ga2O3 and GaON. Such cracking structures seem to diminish with the increases of molarities of one of the solutions. It is speculated that the increase of current density and ions in the solutions helps to promote the growth at the area with uneven thicknesses of graphene. When the molarity of Ga(NO3)3 is increased while keeping the molarity of NH4NO3 at the lowest value of 2.5 M, the grown structures are basically dominated by the Ga2O3 structure. On the other hand, when the molarity of NH4NO3 is increased while keeping the molarity of Ga(NO3)3 at the lowest value of 0.8 M, the GaON structure seems to dominate where their cubic and hexagonal arrangements are coexisting. It was found that when the molarities of Ga(NO3)3 are at the high level of 7.5 M, the grown structures tend to be dominated by Ga2O3 even though the molarity of NH4NO3 is made equal or higher than the molarity of Ga(NO3)3. When the grown structure is dominated by the Ga2O3 structure, the deposition process became slow or unstable, resulting to the formation of thin layer. When the molarity of Ga(NO3)3 is increased to 15 M, the nanocluster-like structures were formed instead of continuous thin film structure. This study seems to successfully provide the conditions in growing either GaON-dominated or

  15. Gallium Arsenide Domino Circuit

    NASA Technical Reports Server (NTRS)

    Yang, Long; Long, Stephen I.

    1990-01-01

    Advantages include reduced power and high speed. Experimental gallium arsenide field-effect-transistor (FET) domino circuit replicated in large numbers for use in dynamic-logic systems. Name of circuit denotes mode of operation, which logic signals propagate from each stage to next when successive stages operated at slightly staggered clock cycles, in manner reminiscent of dominoes falling in a row. Building block of domino circuit includes input, inverter, and level-shifting substages. Combinational logic executed in input substage. During low half of clock cycle, result of logic operation transmitted to following stage.

  16. Gallium phosphide energy converters

    NASA Technical Reports Server (NTRS)

    Sims, P. E.; DiNetta, Louis C.; DuganCavanagh, K.; Goetz, M. A.

    1996-01-01

    Betavoltaic power supplies based on gallium phosphide can supply long term low-level power with high reliability. Results are presented for GaP devices powered by Ni-63 and tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/cm(exp 2) have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. A small demonstration system has been assembled that generates and stores enough electricity to light up an LED.

  17. Aluminum Nitride Micro-Channels Grown via Metal Organic Vapor Phase Epitaxy for MEMs Applications

    SciTech Connect

    Rodak, L.E.; Kuchibhatla, S.; Famouri, P.; Ting, L.; Korakakis, D.

    2008-01-01

    Aluminum nitride (AlN) is a promising material for a number of applications due to its temperature and chemical stability. Furthermore, AlN maintains its piezoelectric properties at higher temperatures than more commonly used materials, such as Lead Zirconate Titanate (PZT) [1, 2], making AlN attractive for high temperature micro and nanoelectromechanical (MEMs and NEMs) applications including, but not limited to, high temperature sensors and actuators, micro-channels for fuel cell applications, and micromechanical resonators. This work presents a novel AlN micro-channel fabrication technique using Metal Organic Vapor Phase Epitaxy (MOVPE). AlN easily nucleates on dielectric surfaces due to the large sticking coefficient and short diffusion length of the aluminum species resulting in a high quality polycrystalline growth on typical mask materials, such as silicon dioxide and silicon nitride [3,4]. The fabrication process introduced involves partially masking a substrate with a silicon dioxide striped pattern and then growing AlN via MOVPE simultaneously on the dielectric mask and exposed substrate. A buffered oxide etch is then used to remove the underlying silicon dioxide and leave a free standing AlN micro-channel. The width of the channel has been varied from 5 ìm to 110 ìm and the height of the air gap from 130 nm to 800 nm indicating the stability of the structure. Furthermore, this versatile process has been performed on (111) silicon, c-plane sapphire, and gallium nitride epilayers on sapphire substrates. Reflection High Energy Electron Diffraction (RHEED), Atomic Force Microscopy (AFM), and Raman measurements have been taken on channels grown on each substrate and indicate that the substrate is influencing the growth of the AlN micro-channels on the SiO2 sacrificial layer.

  18. Application of a new composite cubic-boron nitride gasket assembly for high pressure inelastic x-ray scattering studies of carbon related materials

    SciTech Connect

    Wang, Lin; Yang, Wenge; Xiao, Yuming; Liu, Bingbing; Chow, Paul; Shen, Guoyin; Mao, Wendy L.; Mao, Ho-kwang

    2011-01-01

    We have developed a new composite cubic-boron nitride (c-BN) gasket assembly for high pressurediamond anvil cell studies, and applied it to inelastic x-ray scattering (IXS) studies of carbon related materials in order to maintain a larger sample thickness and avoid the interference from the diamond anvils. The gap size between the two diamond anvils remained ~80 μm at 48.0 GPa with this new composite c-BN gasket assembly. The sample can be located at the center of the gap, ~20 μm away from the surface of both diamond anvils, which provides ample distance to separate the sample signal from the diamond anvils. The high pressure IXS of a solvated C₆₀ sample was studied up to 48 GPa, and a pressure induced bonding transition from sp² to sp³ was observed at 27 GPa.

  19. Fundamental studies of the metallurgical, electrical, and optical properties of gallium phosphide and gallium phosphide alloys

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Abstracts, bibliographic data, oral presentations, and published papers on (1) Diffusion of Sulfur in Gallium Phosphide and Gallium Arsenide, and (2) Properties of Gallium Phosphide Schottky Barrier Rectifiers for Use at High Temperature are presented.

  20. Chrome doped gallium arsenide evaluation

    SciTech Connect

    Pocha, M.D.; Morse, J.D.; Brazes, W.F.

    1987-10-10

    We received, for free, two sets of Chrome doped Gallium Arsenide (GaAs:Cr) wafers, one from Cominco Electronic Materials, Inc., and the other from Furakawa Electric Co., for the purpose of evaluation as potential material for high speed photoconductive detectors. In return for the free material we promised to give the two manufacturers feed back on our evaluation of these wafers. The primary purpose of this report is to present the results of our evaluation of these wafers and conclusions regarding the usefulness of heavily doped GaAs:Cr for photoconductive detectors. We have found that response times of less than 100 ps (FWHM) are possible with GaAs:Cr detectors, but that there are several time constants to the decay which result in very long ''tails'' to the impulse response of these detectors. These long tails are unacceptable for most detector applications, but there may be some special cases where GaAs:Cr could be used. 5 figs., 1 tab.

  1. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells.

    PubMed

    Mansor, Noramalina; Jorge, A Belen; Corà, Furio; Gibbs, Christopher; Jervis, Rhodri; McMillan, Paul F; Wang, Xiaochen; Brett, Daniel J L

    2014-04-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li(+)Cl(-)), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li(+)Cl(-) catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA.

  2. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells

    PubMed Central

    2014-01-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li+Cl–), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li+Cl– catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA. PMID:24748912

  3. Neutron irradiation effects on metal-gallium nitride contacts

    SciTech Connect

    Katz, Evan J.; Lin, Chung-Han; Zhang, Zhichun; Qiu, Jie; Cao, Lei; Mishra, Umesh K.; Brillson, Leonard J.

    2014-03-28

    We have measured the effect of fast and thermal neutrons on GaN Schottky barriers and ohmic contacts using current–voltage and transmission line method electrical techniques, optical, atomic force and scanning electron microscopy morphological techniques, and X-ray photoemission spectroscopy chemical techniques. These studies reveal a 10{sup 15} n/cm{sup 2} neutron threshold for Schottky barrier ideality factor increases, a 10{sup 15} n/cm{sup 2} fast plus thermal neutron threshold for ohmic contact sheet and contact resistance increases, and 10{sup 16} n/cm{sup 2} neutron fluence threshold for major device degradation identified with thermally driven diffusion of Ga and N into the metal contacts and surface phase changes. These results demonstrate the need for protecting metal-GaN contacts in device applications subject to neutron radiation.

  4. Harmonic surface acoustic waves on gallium nitride thin films.

    PubMed

    Justice, Joshua; Lee, Kyoungnae; Korakakis, D

    2012-08-01

    SAW devices operating at the fundamental frequency and the 5th, 7th, 9th, and 11th harmonics have been designed, fabricated, and measured. Devices were fabricated on GaN thin films on sapphire substrates, which were grown via metal organic vapor phase epitaxy (MOVPE). Operating frequencies of 230, 962, 1338, 1720, and 2100 MHz were achieved with devices that had a fundamental wavelength, lambda0 = 20 μm. Gigahertz operation is realized with relatively large interdigital transducers that do not require complicated submicrometer fabrication techniques. SAW devices fabricated on the GaN/sapphire bilayer have an anisotropic propagation when the wavelength is longer than the GaN film thickness. It is shown that for GaN thin films, where kh(GaN) > 10 (k = 2pi/lambda and h(GaN) = GaN film thickness), effects of the substrate on the SAW propagation are eliminated. Bulk mode suppression at harmonic operation is also demonstrated. PMID:22899127

  5. Neutron irradiation effects on gallium nitride-based Schottky diodes

    SciTech Connect

    Lin, Chung-Han; Katz, Evan J.; Zhang, Zhichun; Qiu, Jie; Cao, Lei; Mishra, Umesh K.; Brillson, Leonard J.

    2013-10-14

    Depth-resolved cathodoluminescence spectroscopy (DRCLS), time-resolved surface photovoltage spectroscopy, X-ray photoemission spectroscopy (XPS), and current-voltage measurements together show that fast versus thermal neutrons differ strongly in their electronic and morphological effects on metal-GaN Schottky diodes. Fast and thermal neutrons introduce GaN displacement damage and native point defects, while thermal neutrons also drive metallurgical reactions at metal/GaN interfaces. Defect densities exhibit a threshold neutron fluence below which thermal neutrons preferentially heal versus create new native point defects. Scanning XPS and DRCLS reveal strong fluence- and metal-dependent electronic and chemical changes near the free surface and metal interfaces that impact diode properties.

  6. Nanostructures of Indium Gallium Nitride Crystals Grown on Carbon Nanotubes.

    PubMed

    Park, Ji-Yeon; Man Song, Keun; Min, Yo-Sep; Choi, Chel-Jong; Seok Kim, Yoon; Lee, Sung-Nam

    2015-01-01

    Nanostructure (NS) InGaN crystals were grown on carbon nanotubes (CNTs) using metalorganic chemical vapor deposition. The NS-InGaN crystals, grown on a ~5-μm-long CNT/Si template, were estimated to be ~100-270 nm in size. Transmission electron microscope examinations revealed that single-crystalline InGaN NSs were formed with different crystal facets. The observed green (~500 nm) cathodoluminescence (CL) emission was consistent with the surface image of the NS-InGaN crystallites, indicating excellent optical properties of the InGaN NSs on CNTs. Moreover, the CL spectrum of InGaN NSs showed a broad emission band from 490 to 600 nm. Based on these results, we believe that InGaN NSs grown on CNTs could aid in overcoming the green gap in LED technologies.

  7. Defects in gallium nitride nanowires: First principles calculations

    NASA Astrophysics Data System (ADS)

    Wang, Zhiguo; Li, Jingbo; Gao, Fei; Weber, William J.

    2010-08-01

    Atomic configurations and formation energies of native defects in an unsaturated GaN nanowire grown along the [001] direction and with (100) lateral facets are studied using large-scale ab initio calculation. Cation and anion vacancies, antisites, and interstitials in the neutral charge state are all considered. The configurations of these defects in the core region and outermost surface region of the nanowire are different. The atomic configurations of the defects in the core region are same as those in the bulk GaN, and the formation energy is large. The defects at the surface show different atomic configurations with low formation energy. Starting from a Ga vacancy at the edge of the side plane of the nanowire, a N-N split interstitial is formed after relaxation. As a N site is replaced by a Ga atom in the suboutermost layer, the Ga atom will be expelled out of the outermost layers and leaves a vacancy at the original N site. The Ga interstitial at the outmost surface will diffuse out by interstitialcy mechanism. For all the tested cases N-N split interstitials are easily formed with low formation energy in the nanowires, indicating N2 molecular will appear in the GaN nanowire, which agrees well with experimental findings.

  8. Kinase detection with gallium nitride based high electron mobility transistors

    PubMed Central

    Makowski, Matthew S.; Bryan, Isaac; Sitar, Zlatko; Arellano, Consuelo; Xie, Jinqiao; Collazo, Ramon; Ivanisevic, Albena

    2013-01-01

    A label-free kinase detection system was fabricated by the adsorption of gold nanoparticles functionalized with kinase inhibitor onto AlGaN/GaN high electron mobility transistors (HEMTs). The HEMTs were operated near threshold voltage due to the greatest sensitivity in this operational region. The Au NP/HEMT biosensor system electrically detected 1 pM SRC kinase in ionic solutions. These results are pertinent to drug development applications associated with kinase sensing. PMID:23918992

  9. Kinase detection with gallium nitride based high electron mobility transistors.

    PubMed

    Makowski, Matthew S; Bryan, Isaac; Sitar, Zlatko; Arellano, Consuelo; Xie, Jinqiao; Collazo, Ramon; Ivanisevic, Albena

    2013-07-01

    A label-free kinase detection system was fabricated by the adsorption of gold nanoparticles functionalized with kinase inhibitor onto AlGaN/GaN high electron mobility transistors (HEMTs). The HEMTs were operated near threshold voltage due to the greatest sensitivity in this operational region. The Au NP/HEMT biosensor system electrically detected 1 pM SRC kinase in ionic solutions. These results are pertinent to drug development applications associated with kinase sensing.

  10. Modeling of Gallium Nitride Hydride Vapor Phase Epitaxy

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    A reactor model for the hydride vapor phase epitaxy of GaN is presented. The governing flow, energy, and species conservation equations are solved in two dimensions to examine the growth characteristics as a function of process variables and reactor geometry. The growth rate varies with GaCl composition but independent of NH3 and H2 flow rates. A change in carrier gas for Ga source from H2 to N2 affects the growth rate and uniformity for a fixed reactor configuration. The model predictions are in general agreement with observed experimental behavior.

  11. Kinase detection with gallium nitride based high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Makowski, Matthew S.; Bryan, Isaac; Sitar, Zlatko; Arellano, Consuelo; Xie, Jinqiao; Collazo, Ramon; Ivanisevic, Albena

    2013-07-01

    A label-free kinase detection system was fabricated by the adsorption of gold nanoparticles functionalized with kinase inhibitor onto AlGaN/GaN high electron mobility transistors (HEMTs). The HEMTs were operated near threshold voltage due to the greatest sensitivity in this operational region. The Au NP/HEMT biosensor system electrically detected 1 pM SRC kinase in ionic solutions. These results are pertinent to drug development applications associated with kinase sensing.

  12. Strongly localized donor level in oxygen doped gallium nitride

    SciTech Connect

    Wetzel, C.; Suski, T.; Ager, J.W. III; Fischer, S.; Meyer, B.K.; Grzegory, I.; Porowski, S.

    1996-08-01

    A classification in terms of localization of donor defects in GaN is performed by Raman spectroscopy under large hydrostatic pressure. We observe a significant decrease of free carrier concentration in highly O doped GaN epitaxial films at 22 GPa, indicating the presence of a strongly localized donor defect at large pressure. Monitoring the phonon plasmon coupled mode, we find similarities with results on highly n-type bulk crystals. We refine the model of localized defects in GaN and transfer it to the AlGaN system.

  13. The Behavior of Ion-Implanted Hydrogen in Gallium Nitride

    SciTech Connect

    Myers, S.M.; Headley, T.J.; Hills, C.R.; Han, J.; Petersen, G.A.; Seager, C.H.; Wampler, W.R.

    1999-01-07

    Hydrogen was ion-implanted into wurtzite-phase GaN, and its transport, bound states, and microstructural effects during annealing up to 980 C were investigated by nuclear-reaction profiling, ion-channeling analysis, transmission electron microscopy, and infrared (IR) vibrational spectroscopy. At implanted concentrations 1 at.%, faceted H{sub 2} bubbles formed, enabling identification of energetically preferred surfaces, examination of passivating N-H states on these surfaces, and determination of the diffusivity-solubility product of the H. Additionally, the formation and evolution of point and extended defects arising from implantation and bubble formation were characterized. At implanted H concentrations 0.1 at.%, bubble formation was not observed, and ion-channeling analysis indicated a defect-related H site located within the [0001] channel.

  14. Auger Recombination in Indium Gallium Nitride: Experimental Evidence

    NASA Astrophysics Data System (ADS)

    Krames, Michael

    2010-03-01

    Progress in InGaN-based light-emitting diode (LED) technology has resulted in white-light emitters with efficiencies far exceeding those of conventional light sources such as tungsten-filament-based incandescence and mercury-vapor based fluorescence. Indeed, by now efficacies exceeding 150 lumens per Watt for InGaN-based phosphor-converted white LEDs are claimed, which represent a 90% energy savings compared to the conventional incandescent (i.e., ``light bulb'') solution. However, these high performance levels are obtained under conditions of very low forward current-density for the InGaN LED and do not represent true operating conditions (nor cost-effective utilization) for the device. In order to reduce the cost (and thus increase market penetration of) solid-state lighting, more lumens per unit of semiconductor area are required which in practice necessitates higher drive current densities. Unfortunately, at these higher driver current densities, the internal quantum efficiency of InGaN-based LEDs is observed to decrease significantly. In the fall of 2007, researchers at the Advanced Laboratories of Philips Lumileds were the first to propose Auger recombination as the root-cause mechanism in InGaN which was behind this ``efficiency droop'' [1]. They further proposed to circumvent the problem by employing InGaN-based active region designs that maintain low carrier density, and demonstrated an LED device design that reaches a maximum quantum efficiency above 200 A/cm2, compared to ˜1-10 A/cm^2 for typical multiple-quantum-well heterostructures [2]. In this talk we will review the experimental evidence for Auger recombination in InGaN, beginning with the early work from 2007 and then considering additional work from more recent efforts to better understand the details behind this loss mechanism. [4pt] [1] Y. C. Shen, G. O. M"uller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, ``Auger recombination in InGaN measured by photoluminescence'', Appl. Phys. Lett. 91, 141101 (2007). [0pt] [2] N. F. Gardner, G. O. M"uller, Y. C. Shen, G. Chen, S. Watanabe, W. G"otz, and M. R. Krames, ``Blue-emitting InGaN--GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm^2'', Appl. Phys. Lett. 91, 243506 (2007).

  15. Harmonic surface acoustic waves on gallium nitride thin films.

    PubMed

    Justice, Joshua; Lee, Kyoungnae; Korakakis, D

    2012-08-01

    SAW devices operating at the fundamental frequency and the 5th, 7th, 9th, and 11th harmonics have been designed, fabricated, and measured. Devices were fabricated on GaN thin films on sapphire substrates, which were grown via metal organic vapor phase epitaxy (MOVPE). Operating frequencies of 230, 962, 1338, 1720, and 2100 MHz were achieved with devices that had a fundamental wavelength, lambda0 = 20 μm. Gigahertz operation is realized with relatively large interdigital transducers that do not require complicated submicrometer fabrication techniques. SAW devices fabricated on the GaN/sapphire bilayer have an anisotropic propagation when the wavelength is longer than the GaN film thickness. It is shown that for GaN thin films, where kh(GaN) > 10 (k = 2pi/lambda and h(GaN) = GaN film thickness), effects of the substrate on the SAW propagation are eliminated. Bulk mode suppression at harmonic operation is also demonstrated.

  16. Nanostructures of Indium Gallium Nitride Crystals Grown on Carbon Nanotubes

    PubMed Central

    Park, Ji-Yeon; Man Song, Keun; Min, Yo-Sep; Choi, Chel-Jong; Seok Kim, Yoon; Lee, Sung-Nam

    2015-01-01

    Nanostructure (NS) InGaN crystals were grown on carbon nanotubes (CNTs) using metalorganic chemical vapor deposition. The NS-InGaN crystals, grown on a ~5-μm-long CNT/Si template, were estimated to be ~100–270 nm in size. Transmission electron microscope examinations revealed that single-crystalline InGaN NSs were formed with different crystal facets. The observed green (~500 nm) cathodoluminescence (CL) emission was consistent with the surface image of the NS-InGaN crystallites, indicating excellent optical properties of the InGaN NSs on CNTs. Moreover, the CL spectrum of InGaN NSs showed a broad emission band from 490 to 600 nm. Based on these results, we believe that InGaN NSs grown on CNTs could aid in overcoming the green gap in LED technologies. PMID:26568414

  17. Nanostructures of Indium Gallium Nitride Crystals Grown on Carbon Nanotubes.

    PubMed

    Park, Ji-Yeon; Man Song, Keun; Min, Yo-Sep; Choi, Chel-Jong; Seok Kim, Yoon; Lee, Sung-Nam

    2015-01-01

    Nanostructure (NS) InGaN crystals were grown on carbon nanotubes (CNTs) using metalorganic chemical vapor deposition. The NS-InGaN crystals, grown on a ~5-μm-long CNT/Si template, were estimated to be ~100-270 nm in size. Transmission electron microscope examinations revealed that single-crystalline InGaN NSs were formed with different crystal facets. The observed green (~500 nm) cathodoluminescence (CL) emission was consistent with the surface image of the NS-InGaN crystallites, indicating excellent optical properties of the InGaN NSs on CNTs. Moreover, the CL spectrum of InGaN NSs showed a broad emission band from 490 to 600 nm. Based on these results, we believe that InGaN NSs grown on CNTs could aid in overcoming the green gap in LED technologies. PMID:26568414

  18. Nanostructures of Indium Gallium Nitride Crystals Grown on Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Park, Ji-Yeon; Man Song, Keun; Min, Yo-Sep; Choi, Chel-Jong; Seok Kim, Yoon; Lee, Sung-Nam

    2015-11-01

    Nanostructure (NS) InGaN crystals were grown on carbon nanotubes (CNTs) using metalorganic chemical vapor deposition. The NS-InGaN crystals, grown on a ~5-μm-long CNT/Si template, were estimated to be ~100-270 nm in size. Transmission electron microscope examinations revealed that single-crystalline InGaN NSs were formed with different crystal facets. The observed green (~500 nm) cathodoluminescence (CL) emission was consistent with the surface image of the NS-InGaN crystallites, indicating excellent optical properties of the InGaN NSs on CNTs. Moreover, the CL spectrum of InGaN NSs showed a broad emission band from 490 to 600 nm. Based on these results, we believe that InGaN NSs grown on CNTs could aid in overcoming the green gap in LED technologies.

  19. Direct access to macroporous chromium nitride and chromium titanium nitride with inverse opal structure.

    PubMed

    Zhao, Weitian; DiSalvo, Francis J

    2015-03-21

    We report a facile synthesis of single-phase, nanocrystalline macroporous chromium nitride and chromium titanium nitride with an inverse opal morphology. The material is characterized using XRD, SEM, HR-TEM/STEM, TGA and XPS. Interconversion of macroporous CrN to Cr2O3 and back to CrN while retaining the inverse opal morphology is also demonstrated. PMID:25705745

  20. Direct access to macroporous chromium nitride and chromium titanium nitride with inverse opal structure.

    PubMed

    Zhao, Weitian; DiSalvo, Francis J

    2015-03-21

    We report a facile synthesis of single-phase, nanocrystalline macroporous chromium nitride and chromium titanium nitride with an inverse opal morphology. The material is characterized using XRD, SEM, HR-TEM/STEM, TGA and XPS. Interconversion of macroporous CrN to Cr2O3 and back to CrN while retaining the inverse opal morphology is also demonstrated.

  1. Nitride tuning of lanthanide chromites.

    PubMed

    Black, Ashley P; Johnston, Hannah E; Oró-Solé, Judith; Bozzo, Bernat; Ritter, Clemens; Frontera, Carlos; Attfield, J Paul; Fuertes, Amparo

    2016-03-21

    LnCrO(3-x)N(x) perovskites with Ln = La, Pr and Nd and nitrogen contents up to x = 0.59 have been synthesised through ammonolysis of LnCrO4 precursors. These new materials represent one of the few examples of chromium oxynitrides. Hole-doping through O(2-)/N(3-) anion substitution suppresses the magnetic transition far less drastically than Ln(3+)/M(2+) (M = Ca, Sr) cation substitutions because of the greater covalency of metal-nitride bonds. Hence, nitride-doping is a more benign method for doping metal oxides without suppressing electronic transitions. PMID:26916315

  2. Functionalized boron nitride nanotubes

    DOEpatents

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  3. III-Nitride nanowire optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhao, Songrui; Nguyen, Hieu P. T.; Kibria, Md. G.; Mi, Zetian

    2015-11-01

    Group-III nitride nanowire structures, including GaN, InN, AlN and their alloys, have been intensively studied in the past decade. Unique to this material system is that its energy bandgap can be tuned from the deep ultraviolet (~6.2 eV for AlN) to the near infrared (~0.65 eV for InN). In this article, we provide an overview on the recent progress made in III-nitride nanowire optoelectronic devices, including light emitting diodes, lasers, photodetectors, single photon sources, intraband devices, solar cells, and artificial photosynthesis. The present challenges and future prospects of III-nitride nanowire optoelectronic devices are also discussed.

  4. Gallium Safety in the Laboratory

    SciTech Connect

    Lee C. Cadwallader

    2003-06-01

    A university laboratory experiment for the US Department of Energy magnetic fusion research program required a simulant for liquid lithium. The simulant choices were narrowed to liquid gallium and galinstan (Ga-In-Sn) alloy. Safety information on liquid gallium and galinstan were compiled, and the choice was made to use galinstan. A laboratory safety walkthrough was performed in the fall of 2002 to support the galinstan experiment. The experiment has been operating successfully since early 2002.

  5. Gallium Safety in the Laboratory

    SciTech Connect

    Cadwallader, L.C.

    2003-05-07

    A university laboratory experiment for the US Department of Energy magnetic fusion research program required a simulant for liquid lithium. The simulant choices were narrowed to liquid gallium and galinstan (Ga-In-Sn) alloy. Safety information on liquid gallium and galinstan were compiled, and the choice was made to use galinstan. A laboratory safety walkthrough was performed in the fall of 2002 to support the galinstan experiment. The experiment has been operating successfully since early 2002.

  6. Advanced processing of gallium nitride and gallium nitride-based devices: Ultra-high temperature annealing and implantation incorporation

    NASA Astrophysics Data System (ADS)

    Yu, Haijiang

    This dissertation is focused on three fields: ultra-high temperature annealing of GaN, activation of implanted GaN and the implantation incorporation into AlGaN/GaN HEMT processing, with an aim to increase the performance, manufacturability and reliability of AlGaN/GaN HEMTs. First, the ultra high temperature (around 1500°C) annealing of MOCVD grown GaN on sapphire has been studied, and a thermally induced threading dislocation (TD) motion and reaction are reported. Using a rapid thermal annealing (RTA) approach capable of heating 2 inch wafers to around 1500°C with 100 bar N2 over-pressure, evidence of dislocation motion was first observed in transmission electron microscopy (TEM) micrographs of both planar and patterned GaN films protected by an AIN capping layer. An associated decrease in x-ray rocking curve (XRC) full-width-half-maximum (FWHM) was also observed for both the symmetric and asymmetric scans. After annealing, the AIN capping layer remained intact, and optical measurements showed no degradation of the opto-electronic properties of the films. Then activation annealing of Si implants in MOCVD grown GaN has been studied for use in ohmic contacts. Si was implanted in semi-insulating GaN at 100 keV with doses from 5 x 1014 cm-2 to 1.5 x 1016 cm-2. Rapid thermal annealing at 1500°C with 100 bar N2 over-pressure was used for dopant activation, resulting in a minimum sheet resistance of 13.9 O/square for a dose of 7 x 1015 cm-2. Secondary ion mass spectroscopy measurements showed a post-activation broadening of the dopant concentration peak by 20 nm (at half the maximum), while X-Ray triple axis o-2theta scans indicated nearly complete implant damage recovery. Transfer length method measurements of the resistance of Ti/Al/Ni/Au contacts to activated GaN:Si (5 x 1015 cm-2 at 100 keV) indicated lowest contact resistances of 0.07 Omm and 0.02 Omm for as-deposited and subsequently annealed contacts, respectively. Finally, the incorporation of Si implantation into AlGaN/GaN high electron mobility transistor processing has been first demonstrated. An ultra-high temperature (1500°C) rapid thermal annealing technique was developed for the activation of Si dopants implanted in the source and drain. In comparison to control devices processed by conventional fabrication, the implanted device with nonalloyed ohmic contact showed comparable device performance with a contact resistance of 0.4 Omm Imax 730 mA/mm ft/f max; 26/62 GHz and power 3.4 W/mm on sapphire. These early results demonstrate the feasibility of implantation incorporation into GaN based device processing as well as the potential to increase yield, reproducibility and reliability in AlGaN/GaN HEMTs.

  7. Growth and characterization of room temperature ferromagnetic manganese:gallium nitride and manganese:gallium indium nitride for spintronic applications

    NASA Astrophysics Data System (ADS)

    Reed, Meredith Lynn

    Dilute magnetic semiconductors Mn:GaN and Mn:InGaN showing ferromagnetic behavior at room temperature and above were achieved. Light emitting diode devices doped with Mn via diffusion produced operational devices with ferromagnetic properties at room temperature. Mn:GaN films were grown by: Mn diffusion into metal organic chemical vapor deposition (MOCVD) grown GaN; ion implantation of Mn into MOCVD grown GaN substrates; and MOCVD growth of Mn:GaN using (Et,Cp)2Mn as a Mn precursor. Curie temperatures of these Mn:GaN films ranged from 228 to 520 K, as determined by temperature dependent super conducting quantum interference device (SQUID) and extraordinary Hall effect (EHE) measurements. Ferromagnetic properties were observed over a Mn concentration range of 0.09--3.5% depending on the growth technique used. The Mn:GaN coercivity ranged from 100--1500 Oe, where the saturation magnetization varied from 2 to 45 emu/cm3. The easy axes for these films were determined to be along the c direction (i.e. out of plane). The electrical properties of the Mn:GaN films indicated that the films were highly resistive or n-type. Temperature dependent SQUID and EHE measurements verified the absence of superparamagnetism in the films, confirming the absence of small phase separated particles within the films. XRD and TEM determined that no secondary phases were present in any of the films studied, confirming that the ferromagnetic properties result from a solid solution of Mn in the GaN lattice. Mn:InGaN films were grown by Mn diffusion into InGaN films and by MOCVD using (Et,Cp)2Mn as a Mn precursor. All Mn:InGaN films were grown on an undoped GaN template. We report on the room temperature ferromagnetic properties of Mn-doped InxGa1- xN with x < 0.15. The Curie temperatures for these Mn:InGaN films ranged from 300 to 700 K, which was confirmed by temperature dependent SQUID measurements. The ferromagnetic properties were observed in a Mn concentration range of 0.12--8% depending on how the films were grown. The coercivity of Mn:InGaN films were found to range from 100--800 Oe, where the saturation magnetization varied from 1 to 28 emu/cm3. The easy axis of magnetization depends on the stress state of the InxGa 1-xN film. The easy axis rotates from in-plane to out of plane by changing the film thickness, thus going from strained to fully relaxed films. For intermediate film thickness a transition region of partially relaxed film was identified with isotropic magnetic behavior. The electrical properties of the Mn:InGaN films indicated that the films were n-type or highly resistive. Temperature dependent SQUID measurements verified the absence of superparamagnetism in the films, confirming the absence of small phase separated particles within the films. XRD and TEM determined that no secondary phases were present in any of the films studied, confirming that the ferromagnetic properties result from a solid solution of Mn in the InGaN lattice.

  8. Optical bistability in a silicon nitride microring resonator with azo dye-doped liquid crystal as cladding material.

    PubMed

    Wang, Chun-Ta; Tseng, Chih-Wei; Yu, Jui-Hao; Li, Yuan-Cheng; Lee, Chun-Hong; Jau, Hung-Chang; Lee, Ming-Chang; Chen, Yung-Jui; Lin, Tsung-Hsien

    2013-05-01

    This investigation reports observations of optical bistability in a silicon nitride (SiN) micro-ring resonator with azo dye-doped liquid crystal cladding. The refractive index of the cladding can be changed by switching the liquid crystal between nematic (NLC) and photo-induced isotropic (PHI) states by. Both the NLC and the PHI states can be maintained for many hours, and can be rapidly switched from one state to the other by photo-induced isomerization using 532 nm and 408 nm addressing light, respectively. The proposed device exhibits optical bistable switching of the resonance wavelength without sustained use of a power source. It has a 1.9 nm maximum spectral shift with a Q-factor of over 10000. The hybrid SiN- LC micro-ring resonator possesses easy switching, long memory, and low power consumption. It therefore has the potential to be used in signal processing elements and switching elements in optically integrated circuits. PMID:23669955

  9. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy.

    PubMed

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R

    2014-04-01

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  10. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy

    SciTech Connect

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R.

    2014-04-15

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  11. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R.

    2014-04-01

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  12. Low-loss binder for hot pressing boron nitride

    DOEpatents

    Maya, Leon

    1991-01-01

    Borazine derivatives used as low-loss binders and precursors for making ceramic boron nitride structures. The derivative forms the same composition as the boron nitride starting material, thereby filling the voids with the same boron nitride material upon forming and hot pressing. The derivatives have a further advantage of being low in carbon thus resulting in less volatile byproduct that can result in bubble formation during pressing.

  13. Cordierite silicon nitride filters

    SciTech Connect

    Sawyer, J.; Buchan, B. ); Duiven, R.; Berger, M. ); Cleveland, J.; Ferri, J. )

    1992-02-01

    The objective of this project was to develop a silicon nitride based crossflow filter. This report summarizes the findings and results of the project. The project was phased with Phase I consisting of filter material development and crossflow filter design. Phase II involved filter manufacturing, filter testing under simulated conditions and reporting the results. In Phase I, Cordierite Silicon Nitride (CSN) was developed and tested for permeability and strength. Target values for each of these parameters were established early in the program. The values were met by the material development effort in Phase I. The crossflow filter design effort proceeded by developing a macroscopic design based on required surface area and estimated stresses. Then the thermal and pressure stresses were estimated using finite element analysis. In Phase II of this program, the filter manufacturing technique was developed, and the manufactured filters were tested. The technique developed involved press-bonding extruded tiles to form a filter, producing a monolithic filter after sintering. Filters manufactured using this technique were tested at Acurex and at the Westinghouse Science and Technology Center. The filters did not delaminate during testing and operated and high collection efficiency and good cleanability. Further development in areas of sintering and filter design is recommended.

  14. Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis

    NASA Astrophysics Data System (ADS)

    Hinuma, Yoyo; Hatakeyama, Taisuke; Kumagai, Yu; Burton, Lee A.; Sato, Hikaru; Muraba, Yoshinori; Iimura, Soshi; Hiramatsu, Hidenori; Tanaka, Isao; Hosono, Hideo; Oba, Fumiyasu

    2016-06-01

    Nitride semiconductors are attractive because they can be environmentally benign, comprised of abundant elements and possess favourable electronic properties. However, those currently commercialized are mostly limited to gallium nitride and its alloys, despite the rich composition space of nitrides. Here we report the screening of ternary zinc nitride semiconductors using first-principles calculations of electronic structure, stability and dopability. This approach identifies as-yet-unreported CaZn2N2 that has earth-abundant components, smaller carrier effective masses than gallium nitride and a tunable direct bandgap suited for light emission and harvesting. High-pressure synthesis realizes this phase, verifying the predicted crystal structure and band-edge red photoluminescence. In total, we propose 21 promising systems, including Ca2ZnN2, Ba2ZnN2 and Zn2PN3, which have not been reported as semiconductors previously. Given the variety in bandgaps of the identified compounds, the present study expands the potential suitability of nitride semiconductors for a broader range of electronic, optoelectronic and photovoltaic applications.

  15. Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis.

    PubMed

    Hinuma, Yoyo; Hatakeyama, Taisuke; Kumagai, Yu; Burton, Lee A; Sato, Hikaru; Muraba, Yoshinori; Iimura, Soshi; Hiramatsu, Hidenori; Tanaka, Isao; Hosono, Hideo; Oba, Fumiyasu

    2016-01-01

    Nitride semiconductors are attractive because they can be environmentally benign, comprised of abundant elements and possess favourable electronic properties. However, those currently commercialized are mostly limited to gallium nitride and its alloys, despite the rich composition space of nitrides. Here we report the screening of ternary zinc nitride semiconductors using first-principles calculations of electronic structure, stability and dopability. This approach identifies as-yet-unreported CaZn2N2 that has earth-abundant components, smaller carrier effective masses than gallium nitride and a tunable direct bandgap suited for light emission and harvesting. High-pressure synthesis realizes this phase, verifying the predicted crystal structure and band-edge red photoluminescence. In total, we propose 21 promising systems, including Ca2ZnN2, Ba2ZnN2 and Zn2PN3, which have not been reported as semiconductors previously. Given the variety in bandgaps of the identified compounds, the present study expands the potential suitability of nitride semiconductors for a broader range of electronic, optoelectronic and photovoltaic applications. PMID:27325228

  16. Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis

    PubMed Central

    Hinuma, Yoyo; Hatakeyama, Taisuke; Kumagai, Yu; Burton, Lee A.; Sato, Hikaru; Muraba, Yoshinori; Iimura, Soshi; Hiramatsu, Hidenori; Tanaka, Isao; Hosono, Hideo; Oba, Fumiyasu

    2016-01-01

    Nitride semiconductors are attractive because they can be environmentally benign, comprised of abundant elements and possess favourable electronic properties. However, those currently commercialized are mostly limited to gallium nitride and its alloys, despite the rich composition space of nitrides. Here we report the screening of ternary zinc nitride semiconductors using first-principles calculations of electronic structure, stability and dopability. This approach identifies as-yet-unreported CaZn2N2 that has earth-abundant components, smaller carrier effective masses than gallium nitride and a tunable direct bandgap suited for light emission and harvesting. High-pressure synthesis realizes this phase, verifying the predicted crystal structure and band-edge red photoluminescence. In total, we propose 21 promising systems, including Ca2ZnN2, Ba2ZnN2 and Zn2PN3, which have not been reported as semiconductors previously. Given the variety in bandgaps of the identified compounds, the present study expands the potential suitability of nitride semiconductors for a broader range of electronic, optoelectronic and photovoltaic applications. PMID:27325228

  17. Preparation of uranium nitride

    DOEpatents

    Potter, Ralph A.; Tennery, Victor J.

    1976-01-01

    A process for preparing actinide-nitrides from massive actinide metal which is suitable for sintering into low density fuel shapes by partially hydriding the massive metal and simultaneously dehydriding and nitriding the dehydrided portion. The process is repeated until all of the massive metal is converted to a nitride.

  18. Plasmonic spectral tunability of conductive ternary nitrides

    NASA Astrophysics Data System (ADS)

    Kassavetis, S.; Bellas, D. V.; Abadias, G.; Lidorikis, E.; Patsalas, P.

    2016-06-01

    Conductive binary transition metal nitrides, such as TiN and ZrN, have emerged as a category of promising alternative plasmonic materials. In this work, we show that ternary transition metal nitrides such as TixTa1-xN, TixZr1-xN, TixAl1-xN, and ZrxTa1-xN share the important plasmonic features with their binary counterparts, while having the additional asset of the exceptional spectral tunability in the entire visible (400-700 nm) and UVA (315-400 nm) spectral ranges depending on their net valence electrons. In particular, we demonstrate that such ternary nitrides can exhibit maximum field enhancement factors comparable with gold in the aforementioned broadband range. We also critically evaluate the structural features that affect the quality factor of the plasmon resonance and we provide rules of thumb for the selection and growth of materials for nitride plasmonics.

  19. The Construction and Characterization of Native Insulators on Gallium-Arsenide and Germanium

    NASA Astrophysics Data System (ADS)

    Crisman, Everett Earle

    Because of the excellent electrical properties that are obtained at the interfaces between silicon and thermally grown "native" oxides and nitrides, metal-insulator -semiconductor field effect transistors (MISFET's) have become the basic elements in fast high density computer memories as well as a primary structure for probing semiconductor surface charge transport phenomena. As silicon surface mobilities approach the bulk mobility a physical constraint is also being approached with respect to speed and density. Other semiconductors with higher bulk mobilities have, therefore, been suggested as replacements for silicon: gallium arsenide because of its very high room temperature electron mobility and germanium because it is one of the few well studied semiconductors with electron and hole mobilities of nearly the same magnitude. Unlike silicon, Ge and GaAs do not react readily wit oxygen or nitrogen to form uniform layers of interface passivating "native" insulators. In this study, techniques are reported for making native insulators on gallium arsenide and germanium. On gallium arsenide, the insulator is an oxide formed by a plasma oxidation technique (POX). On germanium, oxides have been formed by a high pressure oxidation technique (HPO) and these subsequently have been converted to nitrides (or oxynitride) by reaction with ammonia gas. Details of the formation techniques and basic characterization of the insulators and insulator/semiconductor interface electrical properties are present. Surface mobilities of about 20% of the bulk values were measured for MISFET's constructed on both GaAs and Ge using native oxides as the insulator. Fixed interface charge density in the low to mid 10('11)/cm('2) and midgap densities of states in the high 10('11)/cm('2)-eV range were also measured on similar MIS capacitors. On germanium nitride structures fixed surface charge density and interface density of states were both measured to be on the order of 10('10). Characterization

  20. Alkylamine-functionalized hexagonal boron nitride nanoplatelets as a novel material for the reduction of friction and wear.

    PubMed

    Kumari, Sangita; Sharma, Om P; Khatri, Om P

    2016-08-17

    Hexagonal boron nitride nanoplatelets (h-BNNPs), which are structurally analogous to graphene, were prepared via the ultrasound-assisted exfoliation of h-BN powder using N-methyl pyrrolidone as the solvent. The alkylamines with variable alkyl chains and electron-rich nitrogen atoms were grafted onto the boron sites of the h-BNNPs based on Lewis acid-base chemistry. The grafting of the alkylamines onto the h-BNNPs was confirmed using FTIR, XPS, TGA and (13)C SSNMR analyses. The crystalline and structural features of the alkylamine-functionalized h-BNNPs were studied using XRD and HRTEM analyses. The TGA and FTIR results revealed a higher grafting of octadecylamine (ODA) on the h-BNNPs compared to trioctylamine (TOA). The cohesive interaction between the alkyl chains grafted onto the h-BNNPs and the hydrocarbon chains of mineral lube base oil facilitates the dispersion of the alkylamine-functionalized h-BNNPs. The TOA-grafted h-BNNPs (h-BNNPs-TOA) exhibited long-term dispersion stability compared to the ODA-grafted h-BNNPs and this was attributed to a higher degree of van der Waals interactions between the octyl chains of the TOA molecules grafted onto the h-BNNPs and the hydrocarbon chains of the mineral lube base oil. The tribo-performance of the h-BNNPs-TOA as an additive to mineral lube base oil was evaluated in terms of the coefficient of friction and wear using ball-on-disc contact geometry. A minute dosing (0.02 mg mL(-1)) of h-BNNPs-TOA significantly improved the lubrication characteristics of the mineral lube base oil and showed a 35 and 25% reduction of friction and wear, respectively. The presence of boron and nitrogen on the worn scar of an aluminium disc, as deduced from elemental mapping, confirmed the formation of a tribo-chemical thin film of h-BN lamellae on the contact interfaces, which not only reduced the friction but also protected the contact interfaces against undesirable wear events. PMID:27484045

  1. Alkylamine-functionalized hexagonal boron nitride nanoplatelets as a novel material for the reduction of friction and wear.

    PubMed

    Kumari, Sangita; Sharma, Om P; Khatri, Om P

    2016-08-17

    Hexagonal boron nitride nanoplatelets (h-BNNPs), which are structurally analogous to graphene, were prepared via the ultrasound-assisted exfoliation of h-BN powder using N-methyl pyrrolidone as the solvent. The alkylamines with variable alkyl chains and electron-rich nitrogen atoms were grafted onto the boron sites of the h-BNNPs based on Lewis acid-base chemistry. The grafting of the alkylamines onto the h-BNNPs was confirmed using FTIR, XPS, TGA and (13)C SSNMR analyses. The crystalline and structural features of the alkylamine-functionalized h-BNNPs were studied using XRD and HRTEM analyses. The TGA and FTIR results revealed a higher grafting of octadecylamine (ODA) on the h-BNNPs compared to trioctylamine (TOA). The cohesive interaction between the alkyl chains grafted onto the h-BNNPs and the hydrocarbon chains of mineral lube base oil facilitates the dispersion of the alkylamine-functionalized h-BNNPs. The TOA-grafted h-BNNPs (h-BNNPs-TOA) exhibited long-term dispersion stability compared to the ODA-grafted h-BNNPs and this was attributed to a higher degree of van der Waals interactions between the octyl chains of the TOA molecules grafted onto the h-BNNPs and the hydrocarbon chains of the mineral lube base oil. The tribo-performance of the h-BNNPs-TOA as an additive to mineral lube base oil was evaluated in terms of the coefficient of friction and wear using ball-on-disc contact geometry. A minute dosing (0.02 mg mL(-1)) of h-BNNPs-TOA significantly improved the lubrication characteristics of the mineral lube base oil and showed a 35 and 25% reduction of friction and wear, respectively. The presence of boron and nitrogen on the worn scar of an aluminium disc, as deduced from elemental mapping, confirmed the formation of a tribo-chemical thin film of h-BN lamellae on the contact interfaces, which not only reduced the friction but also protected the contact interfaces against undesirable wear events.

  2. Gallium phosphide energy converters

    NASA Technical Reports Server (NTRS)

    Sims, P. E.; Dinetta, L. C.; Goetz, M. A.

    1995-01-01

    Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/sq cm have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.

  3. An investigation on corrosion protection of chromium nitride coated Fe-Cr alloy as a bipolar plate material for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Pan, T. J.; Zhang, B.; Li, J.; He, Y. X.; Lin, F.

    2014-12-01

    The corrosion properties of chromium nitride (CrN) coating are investigated to assess the potential use of this material as a bipolar plate for proton exchange membrane fuel cells (PEMFCs). Conductive metallic ceramic CrN layers are firstly deposited onto Fe-Cr alloy using a multi-arc ion plating technique to increase the corrosion resistance of the base alloy. Electrochemical measurements indicate that the corrosion resistance of the substrate alloy is greatly enhanced by the CrN coating. The free corrosion potential of the substrate is increased by more than 50 mV. Furthermore, a decrease in three orders of magnitude of corrosive current density for the CrN-coated alloy is observed compared to the as-received Fe-Cr alloy. Long-term immersion tests show that the CrN layer is highly stable and effectively acts as a barrier to inhibit permeation of corrosive species. On the contrary, corrosion of the Fe-Cr alloy is rather severe without the protection of CrN coating due to the active dissolution. Finally, the corresponding electrochemical impedance models are proposed to elucidate the corrosion process of the CrN/Fe-Cr alloy submerged in a simulated PEMFCs environment.

  4. Boron Nitride Nanotube Mat as a Low- k Dielectric Material with Relative Dielectric Constant Ranging from 1.0 to 1.1

    NASA Astrophysics Data System (ADS)

    Hong, Xinghua; Wang, Daojun; Chung, D. D. L.

    2016-01-01

    This paper reports that a boron nitride nanotube (BNNT) mat containing air and 1.4 vol.% BNNTs is a low- k dielectric material for microelectronic packaging, exhibiting relative dielectric constant of 1.0 to 1.1 (50 Hz to 2 MHz) and elastic modulus of 10 MPa. The mat is prepared by compacting BNNTs at 5.8 kPa. This paper also presents measurements of the dielectric properties of BNNTs (mostly multiwalled). The relative dielectric constant of the BNNT solid in the mat decreases with increasing frequency, with attractively low values ranging from 3.0 to 6.2; the alternating-current (AC) electrical conductivity increases with increasing frequency, with attractively low values ranging from 10-10 S/m to 10-6 S/m and an approximately linear relationship between log conductivity and log frequency. The specific contact capacitance of the interface between BNNTs and the electrical contact decreases with increasing frequency, with attractively high values ranging from 1.6 μF/m2 to 2.3 μF/m2. The AC electrical resistivity of the BNNT-contact interface decreases with increasing frequency, with high values ranging from 0.14 MΩ cm2 to 440 MΩ cm2.

  5. Measurement of arsenic and gallium content of gallium arsenide semiconductor waste streams by ICP-MS.

    PubMed

    Torrance, Keith W; Keenan, Helen E; Hursthouse, Andrew S; Stirling, David

    2010-01-01

    The chemistry of semiconductor wafer processing liquid waste, contaminated by heavy metals, was investigated to determine arsenic content. Arsenic and gallium concentrations were determined for waste slurries collected from gallium arsenide (GaAs) wafer processing at three industrial sources and compared to slurries prepared under laboratory conditions. The arsenic and gallium content of waste slurries was analyzed using inductively coupled plasma mass-spectrometry (ICP-MS) and it is reported that the arsenic content of the waste streams was related to the wafer thinning process, with slurries from wafer polishing having the highest dissolved arsenic content at over 1,900 mgL(-1). Lapping slurries had much lower dissolved arsenic (< 90 mgL(-1)) content, but higher particulate contents. It is demonstrated that significant percentage of GaAs becomes soluble during wafer lapping. Grinding slurries had the lowest dissolved arsenic content at 15 mgL(-1). All three waste streams are classified as hazardous waste, based on their solids content and dissolved arsenic levels and treatment is required before discharge or disposal. It is calculated that as much as 93% of material is discarded through the entire GaAs device manufacturing process, with limited recycling. Although gallium can be economically recovered from waste slurries, there is little incentive to recover arsenic, which is mostly landfilled. Options for treating GaAs processing waste streams are reviewed and some recommendations made for handling the waste. Therefore, although the quantities of hazardous waste generated are miniscule in comparison to other industries, sustainable manufacturing practices are needed to minimize the environmental impact of GaAs semiconductor device fabrication.

  6. High-surface Thermally Stable Mesoporous Gallium Phosphates Constituted by Nanoparticles as Primary Building Blocks

    SciTech Connect

    V Parvulescu; V Parvulescu; D Ciuparu; C Hardacre; H Garcia

    2011-12-31

    In constant, search for micro/mesoporous materials, gallium phosphates, have attracted continued interest due to the large pore size reported for some of these solids in comparison with analogous aluminum phosphates. However up to now, the porosity of gallium phosphates collapsed upon template removal or exposure to the ambient moisture. In the present work, we describe high-surface thermally stable mesoporous gallium phosphates synthesized from gallium propoxide and PCl{sub 3} and different templating agents such as amines (dipropylamine, piperidine and aminopiperidine) and quaternary ammonium salts (C{sub 16}H{sub 33}(CH{sub 3})3NBr and C{sub 16}PyCl). These highly reactive precursors have so far not been used as gallium and phosphate sources for the synthesis of gallophosphates. Conceptually, our present synthetic procedure is based on the fast formation of gallium phosphate nanoparticles via the reaction of gallium propoxide with PCl{sub 3} and subsequent construction of the porous material with nanoparticles as building blocks. The organization of the gallophosphate nanoparticles in stable porous structures is effected by the templates. Different experimental procedures varying the molar composition of the sol-gel, pH and the pretreatment of gallium precursor were assayed, most of them leading to satisfactory materials in terms of thermal stability and porosity. In this way, a series of gallium phosphates with surface are above 200 m{sup 2} g{sup -1}, and narrow pore size from 3 to 6 nm and remarkable thermal stability (up to 550 C) have been prepared. In some cases, the structure tends to show some periodicity and regularity as determined by XRD. The remarkable stability has allowed us to test the catalytic activity of gallophosphates for the aerobic oxidation of alkylaromatics with notable good results. Our report reopens the interest for gallophosphates in heterogeneous catalysis.

  7. Medical applications and toxicities of gallium compounds.

    PubMed

    Chitambar, Christopher R

    2010-05-01

    Over the past two to three decades, gallium compounds have gained importance in the fields of medicine and electronics. In clinical medicine, radioactive gallium and stable gallium nitrate are used as diagnostic and therapeutic agents in cancer and disorders of calcium and bone metabolism. In addition, gallium compounds have displayed anti-inflammatory and immunosuppressive activity in animal models of human disease while more recent studies have shown that gallium compounds may function as antimicrobial agents against certain pathogens. In a totally different realm, the chemical properties of gallium arsenide have led to its use in the semiconductor industry. Gallium compounds, whether used medically or in the electronics field, have toxicities. Patients receiving gallium nitrate for the treatment of various diseases may benefit from such therapy, but knowledge of the therapeutic index of this drug is necessary to avoid clinical toxicities. Animals exposed to gallium arsenide display toxicities in certain organ systems suggesting that environmental risks may exist for individuals exposed to this compound in the workplace. Although the arsenic moiety of gallium arsenide appears to be mainly responsible for its pulmonary toxicity, gallium may contribute to some of the detrimental effects in other organs. The use of older and newer gallium compounds in clinical medicine may be advanced by a better understanding of their mechanisms of action, drug resistance, pharmacology, and side-effects. This review will discuss the medical applications of gallium and its mechanisms of action, the newer gallium compounds and future directions for development, and the toxicities of gallium compounds in current use.

  8. Medical Applications and Toxicities of Gallium Compounds

    PubMed Central

    Chitambar, Christopher R.

    2010-01-01

    Over the past two to three decades, gallium compounds have gained importance in the fields of medicine and electronics. In clinical medicine, radioactive gallium and stable gallium nitrate are used as diagnostic and therapeutic agents in cancer and disorders of calcium and bone metabolism. In addition, gallium compounds have displayed anti-inflammatory and immunosuppressive activity in animal models of human disease while more recent studies have shown that gallium compounds may function as antimicrobial agents against certain pathogens. In a totally different realm, the chemical properties of gallium arsenide have led to its use in the semiconductor industry. Gallium compounds, whether used medically or in the electronics field, have toxicities. Patients receiving gallium nitrate for the treatment of various diseases may benefit from such therapy, but knowledge of the therapeutic index of this drug is necessary to avoid clinical toxicities. Animals exposed to gallium arsenide display toxicities in certain organ systems suggesting that environmental risks may exist for individuals exposed to this compound in the workplace. Although the arsenic moiety of gallium arsenide appears to be mainly responsible for its pulmonary toxicity, gallium may contribute to some of the detrimental effects in other organs. The use of older and newer gallium compounds in clinical medicine may be advanced by a better understanding of their mechanisms of action, drug resistance, pharmacology, and side-effects. This review will discuss the medical applications of gallium and its mechanisms of action, the newer gallium compounds and future directions for development, and the toxicities of gallium compounds in current use. PMID:20623028

  9. Investigation into nitrided spur gears

    SciTech Connect

    Yilbas, B.S.; Coban, A.; Nickel, J.; Sunar, M.; Sami, M.; Abdul Aleem, B.J.

    1996-12-01

    The cold forging method has been widely used in industry to produce machine parts. In general, gears are produced by shaping or hobbing. One of the shaping techniques is precision forging, which has several advantages over hobbing. In the present study, cold forging of spur gears from Ti-6Al-4V material is introduced. To improve the surface properties of the resulting gears, plasma nitriding was carried out. Nuclear reaction analysis was carried out to obtain the nitrogen concentration, while the micro-PIXE technique was used to determine the elemental distribution in the matrix after forging and nitriding processes. Scanning electron microscopy and x-ray powder diffraction were used to investigate the metallurgical changes and formation of nitride components in the surface region. Microhardness and friction tests were carried out to measure the hardness depth profile and friction coefficient at the surface. Finally, scoring failure tests were conducted to determine the rotational speed at which the gears failed. Three distinct regions were obtained in the nitride region, and at the initial stages of the scoring tests, failure in surface roughness was observed in the vicinity of the tip of the gear tooth. This occurred at a particular rotational speed and work input.

  10. Mineral resource of the month: gallium

    USGS Publications Warehouse

    Jaskula, Brian W.

    2009-01-01

    The metal element gallium occurs in very small concentrations in rocks and ores of other metals — native gallium is not known. As society gets more and more high-tech, gallium becomes more useful. Gallium is one of only five metals that are liquid at or close to room temperature. It has one of the longest liquid ranges of any metal (29.8 degrees Celsius to 2204 degrees Celsius) and has a low vapor pressure even at high temperatures. Ultra-pure gallium has a brilliant silvery appearance, and the solid metal exhibits conchoidal fracture similar to glass.

  11. Lysosomal accumulation of gallium-67 in Morris hepatoma-7316A and Shionogi mammary carcinoma-115.

    PubMed

    Takeda, S; Okuyama, S; Takusagawa, K; Matsuzawa, T

    1978-04-01

    Intracellular localization of gallium-67 was investigated in Morris hepatoma-7316A and Shionogi mammary carcinoma-115 cells by the cell fractionation method 48 hr after an intraperitoneal injection of the nuclide. When lysosomes were purified from both tumors by discontinuous sucrose density gradient centrifugation, they had a strikingly high relative specific activity of the nuclide. From these results it was confirmed that gallium-67 is concentrated most specifically in the lysosomes of both tumor cells, which consist chiefly of phagolysosomes and can engulf only limited amount of foreign materials such as Triton and gallium-67. PMID:210077

  12. Microfluidic platforms for gallium-based liquid metal alloy

    NASA Astrophysics Data System (ADS)

    Kim, Daeyoung

    As an alternative to toxic mercury, non-toxic gallium-based liquid metal alloy has been gaining popularity due to its higher thermal and electrical conductivities, and low toxicity along with liquid property. However, it is difficult to handle as the alloy becomes readily oxidized in atmospheric air environment. This instant oxidation causes the gallium-based liquid metal alloy to wet almost any solid surface. Therefore, it has been primarily limited to applications which rely only on its deformability, not on its mobility. In this research, various approaches to mobilize gallium-based liquid metal alloy were investigated. Multi-scale surface patterned with polydimethylsiloxane (PDMS) micro pillar array showed super-lyophobic property against gallium-based liquid metal alloy by minimizing the contact area between the solid surface and the liquid metal, and it was expanded to a three-dimensional tunnel shaped microfluidic channel. Vertically-aligned carbon nanotube forest leads to another promising super-lyophobic surface due to its hierarchical micro/nano scale combined structures and chemical inertness. When the carbon nanotubes were transferred onto flexible PDMS by imprinting, the super-lyophobic property was still maintained even under the mechanical deformation such as stretching and bending. Alternatively, the gallium-based liquid metal can be manipulated by modifying the surface of liquid metal itself. With chemical reaction with HCl 'vapor', the oxidized surface (mainly Ga2O3/Ga2O) of gallium-based liquid metal was converted to GaCl3/InCl 3 resulting in the recovery of non-wetting characteristics. Paper which is intrinsically porous is attractive as a super-lyophobic surface and it was found that hydrochloric acid (HCl) impregnation enhanced the anti-wetting property by the chemical reaction. As another alternative method, by coating the viscoelastic oxidized surface of liquid metal with ferromagnetic materials (CoNiMnP or Fe), it showed non

  13. Dissolution of bulk specimens of silicon nitride

    NASA Technical Reports Server (NTRS)

    Davis, W. F.; Merkle, E. J.

    1981-01-01

    An accurate chemical characterization of silicon nitride has become important in connection with current efforts to incorporate components of this material into advanced heat engines. However, there are problems concerning a chemical analysis of bulk silicon nitride. Current analytical methods require the pulverization of bulk specimens. A pulverization procedure making use of grinding media, on the other hand, will introduce contaminants. A description is given of a dissolution procedure which overcomes these difficulties. It has been found that up to at least 0.6 g solid pieces of various samples of hot pressed and reaction bonded silicon nitride can be decomposed in a mixture of 3 mL hydrofluoric acid and 1 mL nitric acid overnight at 150 C in a Parr bomb. High-purity silicon nitride is completely soluble in nitric acid after treatment in the bomb. Following decomposition, silicon and hydrofluoric acid are volatilized and insoluble fluorides are converted to a soluble form.

  14. Corrosion behavior of mesoporous transition metal nitrides

    SciTech Connect

    Yang, Minghui; Allen, Amy J.; Nguyen, Minh T.; Ralston, Walter T.; MacLeod, Michelle J.; DiSalvo, Francis J.

    2013-09-15

    Transition metal nitrides (TMN) have many desirable characteristics such as high hardness and good thermal stability under reducing conditions. This work reports an initial survey of the chemical stability of mesoporous TMNs (TM=Nb, V, Cr and Ti) in water at 80 °C at neutral, acidic and alkaline pH. The mesoporous TMNs had specific surface areas of 25–60 m{sup 2}/g with average pore sizes ranging from 10 to 50 nm. The high surface areas of these materials enhance the rate of corrosion per unit mass over that of a bulk material, making detection of corrosion much easier. The products were characterized by Rietveld refinement of powder X-ray diffraction (PXRD) patterns and by scanning electron microscopy (SEM). Several nitrides have corrosion rates that are, within error, not distinguishable from zero (±1 Å/day). Of the nitrides examined, CrN appears to be the most corrosion resistant under acidic conditions. None of the nitrides studied are corrosion resistant under alkaline conditions. - Graphical abstract: Corrosion behavior of mesoporous transition metal nitrides (TM=Nb, V, Cr and Ti) in acidic and alkaline solutions at 80 °C for 2 weeks. Display Omitted - highlights: • Corrosion rates of mesoporous transition metal nitrides in aqueous solution is reported. • The mesoporous TMNs had surface areas of 25–60 m{sup 2}/g. • CrN is the most corrosion resistant under the conditions studied.

  15. Byproduct Metal Availability Constrained by Dynamics of Carrier Metal Cycle: The Gallium-Aluminum Example.

    PubMed

    Løvik, Amund N; Restrepo, Eliette; Müller, Daniel B

    2016-08-16

    Future availability of byproduct metals is not limited by geological stocks, but by the rate of primary production of their carrier metals, which in turn depends on the development of their in-use stocks, the product lifetimes, and the recycling rates. This linkage, while recognized conceptually in past studies, has not been adequately taken into account in resource availability estimates. Here, we determine the global supply potential for gallium up to 2050 based on scenarios for the global aluminum cycle, and compare it with scenarios for gallium demand derived from a dynamic model of the gallium cycle. We found that the gallium supply potential is heavily influenced by the development of the in-use stocks and recycling rates of aluminum. With current applications, a shortage of gallium is unlikely by 2050. However, the gallium industry may need to introduce ambitious recycling- and material efficiency strategies to meet its demand. If in-use stocks of aluminum saturate or decline, a shift to other gallium sources such as zinc or coal fly ash may be required. PMID:27400378

  16. Gallium-containing phospho-silicate glasses: synthesis and in vitro bioactivity.

    PubMed

    Franchini, Mirco; Lusvardi, Gigliola; Malavasi, Gianluca; Menabue, Ledi

    2012-08-01

    A series of Ga-containing phospho-silicate glasses based on Bioglass 45S5, having molar formula 46.2SiO2·24.3Na2O·26.9CaO·2.6P2O5·xGa2O3 (x=1.0, 1.6, 3.5), were prepared by fusion method. The reference Bioglass 45S5 without gallium was also prepared. The synthesized glasses were immersed in simulated body fluid (SBF) for 30 days in order to observe ion release and hydroxyapatite (HA) formation. All Ga-containing glasses maintain the ability of HA formation as indicated by main X-ray diffractometric peaks and/or electronic scanning microscopy results. HA layer was formed after 1 day of SBF soaking in 45S5 glass containing up to 1.6% Ga2O3 content. Moreover, gallium released by the glasses was found to be partially precipitated on the glass surface as gallium phosphate. Further increase in gallium content reduced the ion release in SBF. The maximum of Ga(3+) concentration measured in solution is ~6 ppm determined for 3.5% Ga2O3 content. This amount is about half of the toxic level (14 ppm) of gallium and the glasses release gallium till 30 days of immersion in SBF. Considering the above results, the studied materials can be proposed as bioactive glasses with additional antimicrobial effect of gallium having no toxic outcome.

  17. Byproduct Metal Availability Constrained by Dynamics of Carrier Metal Cycle: The Gallium-Aluminum Example.

    PubMed

    Løvik, Amund N; Restrepo, Eliette; Müller, Daniel B

    2016-08-16

    Future availability of byproduct metals is not limited by geological stocks, but by the rate of primary production of their carrier metals, which in turn depends on the development of their in-use stocks, the product lifetimes, and the recycling rates. This linkage, while recognized conceptually in past studies, has not been adequately taken into account in resource availability estimates. Here, we determine the global supply potential for gallium up to 2050 based on scenarios for the global aluminum cycle, and compare it with scenarios for gallium demand derived from a dynamic model of the gallium cycle. We found that the gallium supply potential is heavily influenced by the development of the in-use stocks and recycling rates of aluminum. With current applications, a shortage of gallium is unlikely by 2050. However, the gallium industry may need to introduce ambitious recycling- and material efficiency strategies to meet its demand. If in-use stocks of aluminum saturate or decline, a shift to other gallium sources such as zinc or coal fly ash may be required.

  18. Optical and structural properties of an Eu implanted gallium nitride quantum dots/aluminium nitride superlattice.

    PubMed

    Peres, M; Neves, A J; Monteiro, T; Magalhães, S; Franco, N; Lorenz, K; Alves, E; Damilano, B; Massies, J; Dussaigne, A; Grandjean, N

    2010-04-01

    GaN/AIN structures made of GaN quantum dots (QDs) separated by AIN spacer layers, were doped with Europium by ion implantation. Rutherford Backscattering/Channelling measurements showed that Eu is incorporated mainly on near-substitutional cation sites within the superlattice region. Only slight deterioration of the crystal quality and no intermixing of the different layers are observed after implantation and annealing. After thermal annealing, photoluminescence associated with Eu3+ ions was observed. From its behaviour under different photon energy excitation and sample temperature we concluded that the Eu-related emitting centres are located inside the GaN QDs or dispersed in the GaN and AIN buffer or spacer layers. The 624 nm PL line, associated with Eu-doped GaN QDs, shows very low thermal quenching, suggesting recombination of confined carriers through rare-earth ion excitation.

  19. Gallium scan in intracerebral sarcoidosis

    SciTech Connect

    Makhija, M.C.; Anayiotos, C.P.

    1981-07-01

    Sarcoidosis involving the nervous system probably occurs in about 4% of patients. The usefulness of brain scintigraphy in these cases has been suggested. In this case of cerebral sarcoid granuloma, gallium imaging demonstrated the lesion before treatment and showed disappearance of the lesion after corticosteroid treatment, which correlated with the patient's clinical improvement.

  20. Gallium scintigraphy in acute panniculitis

    SciTech Connect

    Choy, D.; Murray, I.P.C.; Ford, J.C.

    1981-11-01

    Gallium scintigraphy was performed in a 27-yr-old female in search of a possible occult focus of infection; it showed an unusual diffuse superficial accumulation in the thighs and buttocks. Biopsy of an area of abnormal uptake showed lobular panniculitis which, in the clinical context, led to the diagnosis of Weber-Christian syndrome.

  1. Liquid gallium rotary electric contract

    NASA Technical Reports Server (NTRS)

    Przybyszewski, J. S.

    1969-01-01

    Due to its low vapor pressure, gallium, when substituted for mercury in a liquid slip ring system, transmits substantial amounts of electrical current to rotating components in an ultrahigh vacuum. It features low electrical loss, little or no wear, and long maintenance-free life.

  2. Evaluation of silicon-nitride ceramic valves.

    SciTech Connect

    Sun, J. G.; Zhang, J. M.; Andrews, M. J.; Tretheway, J. S.; Phillips, N. S .L.; Jensen, J. A.; Nuclear Engineering Division; Univ. of Texas; Caterpillar, Inc.

    2008-01-01

    Silicon-nitride ceramic valves can improve the performance of both light- and heavy-duty automotive engines because of the superior material properties of silicon nitrides over current metal alloys. However, ceramics are brittle materials that may introduce uncertainties in the reliability and durability of ceramic valves. As a result, the lifetime of ceramic valves are difficult to predict theoretically due to wide variations in the type and distribution of microstructural flaws in the material. Nondestructive evaluation (NDE) methods are therefore required to assess the quality and reliability of these valves. Because ceramic materials are optically translucent and the strength-limiting flaws are normally located near the valve surface, a laser-scatter method can be used for NDE evaluation of ceramic valves. This paper reviews the progress in the development of this NDE method and its application to inspect silicon-nitride ceramic valves at various stages of manufacturing and bench and engine tests.

  3. Performance of GaN-on-Si-based vertical light-emitting diodes using silicon nitride electrodes with conducting filaments: correlation between filament density and device reliability.

    PubMed

    Kim, Kyeong Heon; Kim, Su Jin; Lee, Tae Ho; Lee, Byeong Ryong; Kim, Tae Geun

    2016-08-01

    Transparent conductive electrodes with good conductivity and optical transmittance are an essential element for highly efficient light-emitting diodes. However, conventional indium tin oxide and its alternative transparent conductive electrodes have some trouble with a trade-off between electrical conductivity and optical transmittance, thus limiting their practical applications. Here, we present silicon nitride transparent conductive electrodes with conducting filaments embedded using the electrical breakdown process and investigate the dependence of the conducting filament density formed in the transparent conductive electrode on the device performance of gallium nitride-based vertical light-emitting diodes. Three gallium nitride-on-silicon-based vertical light-emitting diodes using silicon nitride transparent conductive electrodes with high, medium, and low conducting filament densities were prepared with a reference vertical light-emitting diode using metal electrodes. This was carried to determine the optimal density of the conducting filaments in the proposed silicon nitride transparent conductive electrodes. In comparison, the vertical light-emitting diodes with a medium conducting filament density exhibited the lowest optical loss, direct ohmic behavior, and the best current injection and distribution over the entire n-type gallium nitride surface, leading to highly reliable light-emitting diode performance.

  4. Performance of GaN-on-Si-based vertical light-emitting diodes using silicon nitride electrodes with conducting filaments: correlation between filament density and device reliability.

    PubMed

    Kim, Kyeong Heon; Kim, Su Jin; Lee, Tae Ho; Lee, Byeong Ryong; Kim, Tae Geun

    2016-08-01

    Transparent conductive electrodes with good conductivity and optical transmittance are an essential element for highly efficient light-emitting diodes. However, conventional indium tin oxide and its alternative transparent conductive electrodes have some trouble with a trade-off between electrical conductivity and optical transmittance, thus limiting their practical applications. Here, we present silicon nitride transparent conductive electrodes with conducting filaments embedded using the electrical breakdown process and investigate the dependence of the conducting filament density formed in the transparent conductive electrode on the device performance of gallium nitride-based vertical light-emitting diodes. Three gallium nitride-on-silicon-based vertical light-emitting diodes using silicon nitride transparent conductive electrodes with high, medium, and low conducting filament densities were prepared with a reference vertical light-emitting diode using metal electrodes. This was carried to determine the optimal density of the conducting filaments in the proposed silicon nitride transparent conductive electrodes. In comparison, the vertical light-emitting diodes with a medium conducting filament density exhibited the lowest optical loss, direct ohmic behavior, and the best current injection and distribution over the entire n-type gallium nitride surface, leading to highly reliable light-emitting diode performance. PMID:27505739

  5. Amorphous and nanocrystalline titanium nitride and carbonitride materials obtained by solution phase ammonolysis of Ti(NMe 2) 4

    NASA Astrophysics Data System (ADS)

    Jackson, Andrew W.; Shebanova, Olga; Hector, Andrew L.; McMillan, Paul F.

    2006-05-01

    Solution phase reactions between tetrakisdimethylamidotitanium (Ti(NMe 2) 4) and ammonia yield precipitates with composition TiC 0.5N 1.1H 2.3. Thermogravimetric analysis (TGA) indicates that decomposition of these precursor materials proceeds in two steps to yield rocksalt-structured TiN or Ti(C,N), depending upon the gas atmosphere. Heating to above 700 °C in NH 3 yields nearly stoichiometric TiN. However, heating in N 2 atmosphere leads to isostructural carbonitrides, approximately TiC 0.2N 0.8 in composition. The particle sizes of these materials range between 4-12 nm. Heating to a temperature that corresponds to the intermediate plateau in the TGA curve (450 °C) results in a black powder that is X-ray amorphous and is electrically conducting. The bulk chemical composition of this material is found to be TiC 0.22N 1.01H 0.07, or Ti 3(C 0.17N 0.78H 0.05) 3.96, close to Ti 3(C,N) 4. Previous workers have suggested that the intermediate compound was an amorphous form of Ti 3N 4. TEM investigation of the material indicates the presence of nanocrystalline regions <5 nm in dimension embedded in an amorphous matrix. Raman and IR reflectance data indicate some structural similarity with the rocksalt-structured TiN and Ti(C,N) phases, but with disorder and substantial vacancies or other defects. XAS indicates that the local structure of the amorphous solid is based on the rocksalt structure, but with a large proportion of vacancies on both the cation (Ti) and anion (C,N) sites. The first shell Ti coordination is approximately 4.5 and the second-shell coordination ˜5.5 compared with expected values of 6 and 12, respectively, for the ideal rocksalt structure. The material is thus approximately 50% less dense than known Ti x(C,N) y crystalline phases.

  6. [Dimensional changes of silver and gallium-based alloy].

    PubMed

    Ballester, R Y; Markarian, R A; Loguercio, A D

    2001-01-01

    Gallium-based dental alloys were created with the aim of solving the problem of toxicity of mercury. The material shows mechanical properties similar to those of dental amalgam, but researches point out two unfavorable characteristics: great corrosion and excessive post-setting expansion, and the latter is capable of cracking dental structures. The aim of this study was to evaluate, during 7 days, the in vitro dimensional alteration of a gallium dental alloy (Galloy, SDI, Australia), in comparison with a dental amalgam containing zinc (F400, SDI, Australia), as a function of the contact with saline solution (0.9% NaCl) during the setting period. The storage experimental conditions were: storage in dry environment, immersion in saline solution and contamination during condensation. Additionally, the effects of contamination during the trituration of dental amalgam and the effects of protecting the surface of the gallium alloy with a fluid resin were studied. Specimens were stored at 37 degrees C +/- 1 degree C, and measuring was carried out, sequentially, every 24 h during 7 days. When the gallium alloy was either contaminated or immersed, an expansion significantly greater than that observed in the other experimental conditions was noticed after 7 days. The application of a fluid resin to protect the surface of the cylinders was able to avoid the increase in expansion caused by superficial moisture. The amalgam alloy did not show significant dimensional alterations, except when it was contaminated during trituration.

  7. Gallium antimonide texturing for enhanced light extraction from infrared optoelectronics devices

    NASA Astrophysics Data System (ADS)

    Wassweiler, Ella; Toor, Fatima

    2016-06-01

    The use of gallium antimonide (GaSb) is increasing, especially for optoelectronic devices in the infrared wavelengths. It has been demonstrated in gallium nitride (GaN) devices operating at ultraviolet (UV) wavelengths, that surface textures increase the overall device efficiency. In this work, we fabricated eight different surface textures in GaSb to be used in enhancing efficiency in infrared wavelength devices. Through chemical etching with hydrofluoric acid, hydrogen peroxide, and tartaric acid we characterize the types of surface textures formed and the removal rate of entire layers of GaSb. Through optimization of the etching recipes we lower the reflectivity from 35.7% to 1% at 4 μm wavelength for bare and textured GaSb, respectively. In addition, we simulate surface textures using ray optics in finite element method solver software to provide explanation of our experimental findings.

  8. Design of nitride semiconductors for solar energy conversion

    SciTech Connect

    Zakutayev, Andriy

    2016-01-01

    Nitride semiconductors are a promising class of materials for solar energy conversion applications, such as photovoltaic and photoelectrochemical cells. Nitrides can have better solar absorption and electrical transport properties than the more widely studied oxides, as well as the potential for better scalability than other pnictides or chalcogenides. In addition, nitrides are also relatively unexplored compared to other chemistries, so they provide a great opportunity for new materials discovery. This paper reviews the recent advances in the design of novel semiconducting nitrides for solar energy conversion technologies. Both binary and multinary nitrides are discussed, with a range of metal chemistries (Cu3N, ZnSnN2, Sn3N4, etc.) and crystal structures (delafossite, perovskite, spinel, etc.), including a brief overview of wurtzite III-N materials and devices. The current scientific challenges and promising future directions in the field are also highlighted.

  9. Methods of forming boron nitride

    DOEpatents

    Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J; Crandall, David L

    2015-03-03

    A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boron nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.

  10. Boron nitride - Composition, optical properties, and mechanical behavior

    NASA Technical Reports Server (NTRS)

    Pouch, John J.; Alterovitz, Samuel A.; Miyoshi, Kazuhisa; Warner, Joseph D.

    1987-01-01

    A low energy ion beam deposition technique was used to grow boron nitride films on quartz, germanium, silicon, gallium arsenide, and indium phosphate. The film structure was amorphous with evidence of a hexagonal phase. The peak boron concentration was 82 at. percent. The carbon and oxygen impurities were in the 5 to 8 at. percent range. Boron-nitrogen and boron-boron bonds were revealed by X-ray photoelectron spectroscopy. The index of refraction varied from 1.65 to 1.67 for films deposited on III-V compound semiconductors. The coefficient of friction for boron nitride in sliding contact with diamond was less than 0.1. The substrate was silicon.

  11. Boron nitride: Composition, optical properties and mechanical behavior

    NASA Technical Reports Server (NTRS)

    Pouch, John J.; Alterovitz, Samuel A.; Miyoshi, Kazuhisa; Warner, Joseph D.

    1987-01-01

    A low energy ion beam deposition technique was used to grow boron nitride films on quartz, germanium, silicon, gallium arsenide, and indium phosphate. The film structure was amorphous with evidence of a hexagonal phase. The peak boron concentration was 82 at %. The carbon and oxygen impurities were in the 5 to 8 at % range. Boron-nitrogen and boron-boron bonds were revealed by X-ray photoelectron spectroscopy. The index of refraction varied from 1.65 to 1.67 for films deposited on III-V compound semiconductors. The coefficient of friction for boron nitride in sliding contact with diamond was less than 0.1. The substrate was silicon.

  12. Boron nitride: composition, optical properties and mechanical behavior

    SciTech Connect

    Pouch, J.J.; Alterovitz, S.A.; Miyoshi, K.; Warner, J.D.

    1987-04-01

    A low energy ion beam deposition technique was used to grow boron nitride films on quartz, germanium, silicon, gallium arsenide, and indium phosphate. The film structure was amorphous with evidence of a hexagonal phase. The peak boron concentration was 82 at %. The carbon and oxygen impurities were in the 5 to 8 at % range. Boron-nitrogen and boron-boron bonds were revealed by x-ray photoelectron spectroscopy. The index of refraction varied from 1.65 to 1.67 for films deposited on III-V compound semiconductors. The coefficient of friction for boron nitride in sliding contact with diamond was less than 0.1. The substrate was silicon.

  13. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride, carbide and carbonitride

    DOEpatents

    Wong, Ming-Show; Li, Dong; Chung, Yip-Wah; Sproul, William D.; Chu, Xi; Barnett, Scott A.

    1998-01-01

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN.sub.x where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN.sub.x. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45-55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating.

  14. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride, carbide and carbonitride

    DOEpatents

    Wong, M.S.; Li, D.; Chung, Y.W.; Sproul, W.D.; Chu, X.; Barnett, S.A.

    1998-07-07

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN{sub x} where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN{sub x}. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45--55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating. 10 figs.

  15. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride carbide and carbonitride

    DOEpatents

    Wong, Ming-Show; Li, Dong; Chung, Yin-Wah; Sproul, William D.; Chu, Xi; Barnett, Scott A.

    1998-01-01

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN.sub.x where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN.sub.x. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45-55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating.

  16. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride carbide and carbonitride

    DOEpatents

    Wong, M.S.; Li, D.; Chung, Y.W.; Sproul, W.D.; Xi Chu; Barnett, S.A.

    1998-03-10

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN{sub x} where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN{sub x}. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45--55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating. 10 figs.

  17. Running droplets of gallium from evaporation of gallium arsenide.

    PubMed

    Tersoff, J; Jesson, D E; Tang, W X

    2009-04-10

    High-temperature annealing of gallium arsenide in vacuum causes excess evaporation of arsenic, with accumulation of gallium as liquid droplets on the surface. Using real-time in situ surface electron microscopy, we found that these droplets spontaneously run across the crystal surface. Running droplets have been seen in many systems, but they typically require special surface preparation or gradient forces. In contrast, we show that noncongruent evaporation automatically provides a driving force for running droplets. The motion is predicted and observed to slow and stop near a characteristic temperature, with the speed increasing both below and above this temperature. The same behavior is expected to occur during the evaporation of similar III-V semiconductors such as indium arsenide.

  18. Gallium Content in PuO{sub 2} Using Laser Induced Breakdown Spectroscopy (LIBS)

    SciTech Connect

    Smith, C.A.; Martinez, M.A.; Veirs, D.K.

    1999-08-29

    Laser Induced Breakdown Spectroscopy (LIBS) has been applied to the semi-quantitative analysis of gallium in plutonium oxide at the Los Alamos Plutonium Facility. The oxide samples were generated by the Thermally Induced Gallium Removal (TIGR) process, a pretreatment step prior to MOX fuel processing. The TIGR process uses PuO{sub 2} containing 1 wt% gallium (nominal) as feed material. Following the TIGR process, gallium content was analyzed by LIBS and also by conventional wet chemical analysis (ICP-MS). Although the data range was insufficient to obtain an adequate calibration, general agreement between the two techniques was good. LIBS was found to have a useful analytical range of 34-400 ppm for Ga in PuO{sub 2}.

  19. Influence of neodymium concentration on excitation and emission properties of Nd doped gallium oxide nanocrystalline films

    NASA Astrophysics Data System (ADS)

    Podhorodecki, A.; Banski, M.; Misiewicz, J.; Lecerf, C.; Marie, P.; Cardin, J.; Portier, X.

    2010-09-01

    Gallium oxide and more particularly β-Ga2O3 matrix is an excellent material for new generation of devices electrically or optically driven as it is known as the widest band gap transparent conductive oxide. In this paper, the optical properties of neodymium doped gallium oxide films grown by magnetron sputtering have been analyzed. The influence of the Nd ions concentration on the excitation/emission mechanisms of Nd ions and the role of gallium oxide matrix have been investigated. The grain size reduction into gallium oxide films have been observed when concentration of Nd increases. It has been found for all samples that the charge transfer is the main excitation mechanism for Nd ions where defect states play an important role as intermediate states. As a consequence Nd emission efficiency increases with temperature giving rise to most intensive emission at 1087 nm at room temperature.

  20. Influence of neodymium concentration on excitation and emission properties of Nd doped gallium oxide nanocrystalline films

    SciTech Connect

    Podhorodecki, A.; Banski, M.; Misiewicz, J.; Lecerf, C.; Marie, P.; Cardin, J.; Portier, X.

    2010-09-15

    Gallium oxide and more particularly {beta}-Ga{sub 2}O{sub 3} matrix is an excellent material for new generation of devices electrically or optically driven as it is known as the widest band gap transparent conductive oxide. In this paper, the optical properties of neodymium doped gallium oxide films grown by magnetron sputtering have been analyzed. The influence of the Nd ions concentration on the excitation/emission mechanisms of Nd ions and the role of gallium oxide matrix have been investigated. The grain size reduction into gallium oxide films have been observed when concentration of Nd increases. It has been found for all samples that the charge transfer is the main excitation mechanism for Nd ions where defect states play an important role as intermediate states. As a consequence Nd emission efficiency increases with temperature giving rise to most intensive emission at 1087 nm at room temperature.

  1. Pair distribution function study on compression of liquid gallium

    SciTech Connect

    Luo, Shengnian; Yu, Tony; Chen, Jiuhua; Ehm, Lars; Guo, Quanzhong; Parise, John

    2008-01-01

    Integrating a hydrothermal diamond anvil cell (HDAC) and focused high energy x-ray beam from the superconductor wiggler X17 beamline at the National Synchrotron Light Source (NSLS) at the Brookhaven National Laboratory (BNL), we have successfully collected high quality total x-ray scattering data of liquid gallium. The experiments were conducted at a pressure range from 0.1GPa up to 2GPa at ambient temperature. For the first time, pair distribution functions (PDF) for liquid gallium at high pressure were derived up to 10 {angstrom}. Liquid gallium structure has been studied by x-ray absorption (Di Cicco & Filipponi, 1993; Wei et al., 2000; Comez et al., 2001), x-ray diffraction studies (Waseda & Suzuki, 1972), and molecular dynamics simulation (Tsay, 1993; Hui et al., 2002). These previous reports have focused on the 1st nearest neighbor structure, which tells us little about the atomic arrangement outside the first shell in non- crystalline materials. This study focuses on the structure of liquid gallium and the atomic structure change due to compression. The PDF results show that the observed atomic distance of the first nearest neighbor at 2.78 {angstrom} (first G(r) peak and its shoulder at the higher Q position) is consistent with previous studies by x-ray absorption (2.76 {angstrom}, Comez et al., 2001). We have also observed that the first nearest neighbor peak position did not change with pressure increasing, while the farther peaks positions in the intermediate distance range decreased with pressure increasing. This leads to a conclusion of the possible existence of 'locally rigid units' in the liquid. With the addition of reverse Monte Carlo modeling, we have observed that the coordination number in the local rigit unit increases with pressure. The bulk modulus of liquid gallium derived from the volume compression curve at ambient temperature (300K) is 12.1(6) GPa.

  2. Gallium-cladding compatibility testing plan: Phase 3 -- Test plan for centrally heated surrogate rodlet test. Revision 2

    SciTech Connect

    Morris, R.N.; Baldwin, C.A.; Wilson, D.F.

    1998-07-01

    The Fissile Materials Disposition Program (FMDP) is investigating the use of weapons grade plutonium in mixed oxide (MOX) fuel for light-water reactors (LWR). Commercial MOX fuel has been successfully used in overseas reactors for many years; however, weapons derived fuel may differ from the previous commercial fuels because of small amounts of gallium impurities. A concern presently exists that the gallium may migrate out of the fuel, react with and weaken the clad, and thereby promote loss of fuel pin integrity. Phases 1 and 2 of the gallium task are presently underway to investigate the types of reactions that occur between gallium and clad materials. This is a Level-2 document as defined in the Fissile Materials Disposition Program Light-Water Reactor Mixed-Oxide Fuel Irradiation Test Project Plan. This Plan summarizes the projected Phase 3 Gallium-Cladding compatibility heating test and the follow-on post test examination (PTE). This work will be performed using centrally-heated surrogate pellets, to avoid unnecessary complexities and costs associated with working with plutonium and an irradiation environment. Two sets of rodlets containing pellets prepared by two different methods will be heated. Both sets will have an initial bulk gallium content of approximately 10 ppm. The major emphasis of the PTE task will be to examine the material interactions, particularly indications of gallium transport from the pellets to the clad.

  3. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOEpatents

    Murduck, James M.; Lepetre, Yves J.; Schuller, Ivan K.; Ketterson, John B.

    1989-01-01

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources.

  4. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOEpatents

    Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

    1989-07-04

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs.

  5. Recovering gallium from residual bayer process liquor

    NASA Astrophysics Data System (ADS)

    Afonso de Magalhães, Maria Elizabeth; Tubino, Matthieu

    1991-06-01

    Gallium is normally obtained by direct electrolysis as a by-product from Bayer process residual liquor at an aluminum processing plant. However, to permit any net accumulation of the metal, the gallium concentration must be at least about 0.3 g/l in the liquor. This article describes a continuous process of extraction with organic solvents and rhodamine-B, followed by a re-extraction step into aqueous media. The final product is a solid containing up to 18 wt.% Ga in a solid mixture of hydroxides and oxides of gallium and aluminum. This final product can then be electrolyzed to recover the gallium more efficiently.

  6. Aluminum Nitride Nanofibers fabricated using Electrospinning and Nitridation

    NASA Astrophysics Data System (ADS)

    Barbosa, Xenia; Campo, Eva; Santiago, Jorge; Ramos, Idalia

    2012-02-01

    Aluminum Nitride (AlN) and other nitride semiconductors are important materials in the fields of optoelectronics and electronics. AlN nanofibers were synthesized using electrospinning and subsequent heating under N2 and NH3 atmospheres. The precursor solution for electrospining contains aluminium nitrate and cellulose acetate. The electrospun nanofibers were heated in N2 to eliminate the polymer and produce Al2O3, and then nitridized at a temperature of 1200 C under NH3 flow. Scanning Electron Microscopy (SEM) observations demonstrate the production of fibers with diameters ranging from a few nanometers to several micrometers. X-Ray Diffraction and UV-VIs analyses show the production of AlN nanofibers with hexagonal wurzite structure and a band gap of approximately approximately 6 eV. Current-Voltage measurements on a single AlN fiber with gold electrodes suggest the formation of a Schottky contact The fabrication method and results from the fibers characterization will be presented.

  7. Mesoporous gallium oxide structurally stabilized by yttrium oxide

    SciTech Connect

    Yada, Mitsunori; Ohya, Masahumi; Machida, Masato; Kijima, Tsuyoshi

    2000-05-16

    Since the synthesis of mesoporous silicas such as MCM-41 and FSM-16 with large internal surface areas and uniform pore sizes, the surfactant templating method has been used to synthesize mesoporous metal oxides, including titanium, aluminum, niobium, and tantalum oxides. The mesostructured metal oxides are taken to be useful not only as catalysts and separating or adsorbing agents but also as functional host materials with optically, electrically, or magnetically unique properties, owing to the shape-specific and/or quantum effects of their thin inorganic skeletons. Mesoporous zirconium oxide and phosphate and hafnium oxide are promising as acid catalysts. Layered and hexagonal mesostructured titanium oxides, for example, were observed to be photocatalytically active. Aluminum and gallium oxides with a mesoporous structure are also expected to serve as a catalytic of other functional material. In this paper, the authors report the synthesis and characterization of mesoporous gallium oxide stabilized by yttrium oxide.

  8. Optical properties of Eu{sup 2+}/Eu{sup 3+} mixed valence, silicon nitride based materials

    SciTech Connect

    Kate, Otmar M. ten; Vranken, Thomas; Kolk, Erik van der; Jansen, Antonius P.J.; Hintzen, Hubertus T.

    2014-05-01

    Eu{sub 2}SiN{sub 3}, a mixed valence europium nitridosilicate, has been prepared via solid-state reaction synthesis and its oxidation behavior and optical properties have been determined. Furthermore, the stability of several isostructural compounds of the type M{sup 2+}L{sup 3+}SiN{sub 3} has been predicted by using the density functional theory calculations, and verified by the actual synthesis of CaLaSiN{sub 3}, CaEuSiN{sub 3} and EuLaSiN{sub 3}. The band gap of CaLaSiN{sub 3} was found around 3.2 eV giving the material its yellow color. Eu{sub 2}SiN{sub 3} on the other hand is black due to a combination of the 4f–5d absorption band of Eu{sup 2+} and the charge transfer band of Eu{sup 3+}. Thermogravimetric analysis and Raman spectroscopic study of Eu{sub 2}SiN{sub 3} revealed that oxidation of this compound in dry air takes place via a nitrogen retention complex. - Graphical abstract: Energy level scheme of Eu{sub 2}SiN{sub 3} showing the occupied N{sup 3−} 2p band (blue rectangle), unoccupied Eu{sup 2+} 5d band (white rectangle), occupied Eu{sup 2+} 4f ground states (filled red circles) and unoccupied Eu{sup 2+} ground states (open red circles). - Highlights: • Density functional theory calculations on the stability of M{sup 2+}L{sup 3+}SiN{sub 3} compounds. • Solid-state reaction synthesis of Eu{sub 2}SiN{sub 3}, CaLaSiN{sub 3}, EuLaSiN{sub 3} and CaEuSiN{sub 3}. • Determination of the Eu{sup 2+} 4f–5d and Eu{sup 3+} CT transitions in M{sup 2+}L{sup 3+}SiN{sub 3} compounds. • Oxidation of Eu{sub 2}SiN{sub 3} in dry air takes place via a nitrogen retention complex.

  9. Method for preparing actinide nitrides

    DOEpatents

    Bryan, G.H.; Cleveland, J.M.; Heiple, C.R.

    1975-12-01

    Actinide nitrides, and particularly plutonium and uranium nitrides, are prepared by reacting an ammonia solution of an actinide compound with an ammonia solution of a reactant or reductant metal, to form finely divided actinide nitride precipitate which may then be appropriately separated from the solution. The actinide nitride precipitate is particularly suitable for forming nuclear fuels.

  10. Contact formation in gallium arsenide solar cells

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1988-01-01

    Gold and gold-based alloys, commonly used as solar cell contact materials, are known to react readily with gallium arsenide. Experiments were performed to identify the mechanisms involved in these GaAs-metal interactions. It is shown that the reaction of GaAs with gold takes place via a dissociative diffusion process. It is shown further that the GaAs-metal reaction rate is controlled to a very great extent by the condition of the free surface of the contact metal, an interesting example of which is the previously unexplained increase in the reaction rate that has been observed for samples annealed in a vacuum environment as compared to those annealed in a gaseous ambient. A number of other hard-to-explain observations, such as the low-temperature formation of voids in the gold lattice and crystallite growth on the gold surface, are explained by invoking this mechanism.

  11. The interaction of gold with gallium arsenide

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1988-01-01

    Gold and gold-based alloys, commonly used as solar-cell contact materials, are known to react readily with gallium arsenide. Experiments designed to identify the mechanisms involved in these GaAs-metal interactions have yielded several interesting results. It is shown that the reaction of GaAs with gold takes place via a dissociative diffusion process. It is shown further that the GaAs-metal reaction rate is controlled to a very great extent by the condition of the free surface of the contact metal, an interesting example of which is the previously unexplained increase in the reaction rate that has been observed for samples annealed in a vacuum environment as compared to those annealed in a gaseous ambient. A number of other hard-to-explain observations, such as the low-temperature formation of voids in the gold lattice and crystallite growth on the gold surface, are also explained by invoking this mechanism.

  12. Producing gallium arsenide crystals in space

    NASA Technical Reports Server (NTRS)

    Randolph, R. L.

    1984-01-01

    The production of high quality crystals in space is a promising near-term application of microgravity processing. Gallium arsenide is the selected material for initial commercial production because of its inherent superior electronic properties, wide range of market applications, and broad base of on-going device development effort. Plausible product prices can absorb the high cost of space transportation for the initial flights provided by the Space Transportation System. The next step for bulk crystal growth, beyond the STS, is planned to come later with the use of free flyers or a space station, where real benefits are foreseen. The use of these vehicles, together with refinement and increasing automation of space-based crystal growth factories, will bring down costs and will support growing demands for high quality GaAs and other specialty electronic and electro-optical crystals grown in space.

  13. Cavity optomechanics in gallium phosphide microdisks

    NASA Astrophysics Data System (ADS)

    Mitchell, Matthew; Hryciw, Aaron C.; Barclay, Paul E.

    2014-04-01

    We demonstrate gallium phosphide (GaP) microdisk optical cavities with intrinsic quality factors >2.8 × 105 and mode volumes <10(λ/n)3, and study their nonlinear and optomechanical properties. For optical intensities up to 8.0 × 104 intracavity photons, we observe optical loss in the microcavity to decrease with increasing intensity, indicating that saturable absorption sites are present in the GaP material, and that two-photon absorption is not significant. We observe optomechanical coupling between optical modes of the microdisk around 1.5 μm and several mechanical resonances, and measure an optical spring effect consistent with a theoretically predicted optomechanical coupling rate g0/2π˜30 kHz for the fundamental mechanical radial breathing mode at 488 MHz.

  14. Direct band gap wurtzite gallium phosphide nanowires.

    PubMed

    Assali, S; Zardo, I; Plissard, S; Kriegner, D; Verheijen, M A; Bauer, G; Meijerink, A; Belabbes, A; Bechstedt, F; Haverkort, J E M; Bakkers, E P A M

    2013-04-10

    The main challenge for light-emitting diodes is to increase the efficiency in the green part of the spectrum. Gallium phosphide (GaP) with the normal cubic crystal structure has an indirect band gap, which severely limits the green emission efficiency. Band structure calculations have predicted a direct band gap for wurtzite GaP. Here, we report the fabrication of GaP nanowires with pure hexagonal crystal structure and demonstrate the direct nature of the band gap. We observe strong photoluminescence at a wavelength of 594 nm with short lifetime, typical for a direct band gap. Furthermore, by incorporation of aluminum or arsenic in the GaP nanowires, the emitted wavelength is tuned across an important range of the visible light spectrum (555-690 nm). This approach of crystal structure engineering enables new pathways to tailor materials properties enhancing the functionality.

  15. Gallium arsenide solar array subsystem study

    NASA Technical Reports Server (NTRS)

    Miller, F. Q.

    1982-01-01

    The effects on life cycle costs of a number of technology areas are examined for a gallium arsenide space solar array. Four specific configurations were addressed: (1) a 250 KWe LEO mission - planer array; (2) a 250 KWe LEO mission - with concentration; (3) a 50 KWe GEO mission planer array; (4) a 50 KWe GEO mission - with concentration. For each configuration, a baseline system conceptual design was developed and the life cycle costs estimated in detail. The baseline system requirements and design technologies were then varied and their relationships to life cycle costs quantified. For example, the thermal characteristics of the baseline design are determined by the array materials and masses. The thermal characteristics in turn determine configuration, performance, and hence life cycle costs.

  16. Cavity optomechanics in gallium phosphide microdisks

    SciTech Connect

    Mitchell, Matthew; Barclay, Paul E.; Hryciw, Aaron C.

    2014-04-07

    We demonstrate gallium phosphide (GaP) microdisk optical cavities with intrinsic quality factors >2.8 × 10{sup 5} and mode volumes <10(λ/n){sup 3}, and study their nonlinear and optomechanical properties. For optical intensities up to 8.0 × 10{sup 4} intracavity photons, we observe optical loss in the microcavity to decrease with increasing intensity, indicating that saturable absorption sites are present in the GaP material, and that two-photon absorption is not significant. We observe optomechanical coupling between optical modes of the microdisk around 1.5 μm and several mechanical resonances, and measure an optical spring effect consistent with a theoretically predicted optomechanical coupling rate g{sub 0}/2π∼30 kHz for the fundamental mechanical radial breathing mode at 488 MHz.

  17. Direct Band Gap Wurtzite Gallium Phosphide Nanowires

    PubMed Central

    2013-01-01

    The main challenge for light-emitting diodes is to increase the efficiency in the green part of the spectrum. Gallium phosphide (GaP) with the normal cubic crystal structure has an indirect band gap, which severely limits the green emission efficiency. Band structure calculations have predicted a direct band gap for wurtzite GaP. Here, we report the fabrication of GaP nanowires with pure hexagonal crystal structure and demonstrate the direct nature of the band gap. We observe strong photoluminescence at a wavelength of 594 nm with short lifetime, typical for a direct band gap. Furthermore, by incorporation of aluminum or arsenic in the GaP nanowires, the emitted wavelength is tuned across an important range of the visible light spectrum (555–690 nm). This approach of crystal structure engineering enables new pathways to tailor materials properties enhancing the functionality. PMID:23464761

  18. Monolithic gyroidal mesoporous mixed titanium-niobium nitrides.

    PubMed

    Robbins, Spencer W; Sai, Hiroaki; DiSalvo, Francis J; Gruner, Sol M; Wiesner, Ulrich

    2014-08-26

    Mesoporous transition metal nitrides are interesting materials for energy conversion and storage applications due to their conductivity and durability. We present ordered mixed titanium-niobium (8:2, 1:1) nitrides with gyroidal network structures synthesized from triblock terpolymer structure-directed mixed oxides. The materials retain both macroscopic integrity and mesoscale ordering despite heat treatment up to 600 °C, without a rigid carbon framework as a support. Furthermore, the gyroidal lattice parameters were varied by changing polymer molar mass. This synthesis strategy may prove useful in generating a variety of monolithic ordered mesoporous mixed oxides and nitrides for electrode and catalyst materials.

  19. Monolithic Gyroidal Mesoporous Mixed Titanium–Niobium Nitrides

    PubMed Central

    2015-01-01

    Mesoporous transition metal nitrides are interesting materials for energy conversion and storage applications due to their conductivity and durability. We present ordered mixed titanium–niobium (8:2, 1:1) nitrides with gyroidal network structures synthesized from triblock terpolymer structure-directed mixed oxides. The materials retain both macroscopic integrity and mesoscale ordering despite heat treatment up to 600 °C, without a rigid carbon framework as a support. Furthermore, the gyroidal lattice parameters were varied by changing polymer molar mass. This synthesis strategy may prove useful in generating a variety of monolithic ordered mesoporous mixed oxides and nitrides for electrode and catalyst materials. PMID:25122534

  20. Optimization of processing temperature in the nitridation process for the synthesis of iron nitride nanoparticles

    SciTech Connect

    Rohith Vinod, K.; Sakar, M.; Balakumar, S.; Saravanan, P.

    2015-06-24

    We have demonstrated an effective strategy on the nitridation process to synthesize ε-Fe{sub 3}N nanoparticles (NPs) from the zero valent iron NPs as a starting material. The transformation of iron into iron nitride phase was systematically studied by performing the nitridation process at different processing temperatures. The phase, crystal structure was analyzed by XRD. Morphology and size of the ZVINPs and ε-Fe{sub 3}N NPs were analyzed by field emission scanning electron microscope. Further, their room temperature magnetic properties were studied by using vibrating sample magnetometer and it revealed that the magnetic property of ε-Fe{sub 3}N is associated with ratio of Fe-N in the iron nitride system.

  1. Facile synthesis of gallium oxide hydroxide by ultrasonic irradiation of molten gallium in water.

    PubMed

    Kumar, Vijay Bhooshan; Gedanken, Aharon; Porat, Ze'ev

    2015-09-01

    This work describes the single-step synthesis of GaO(OH) by ultrasonic irradiation of molten gallium in warm water. The ultrasonic energy causes dispersion of the liquid gallium into micrometric spheres, as-well-as decomposition of some of the water into H and OH radicals. The OH radicals and the dissolved oxygen react on the surface of the gallium spheres to form crystallites of GaO(OH). These crystallites prevent the re-coalescence of the gallium spheres, and as the reaction proceeds all the gallium is converted into crystalline GaO(OH).

  2. Silicon Nitride Equation of State

    NASA Astrophysics Data System (ADS)

    Swaminathan, Pazhayannur; Brown, Robert

    2015-06-01

    This report presents the development a global, multi-phase equation of state (EOS) for the ceramic silicon nitride (Si3N4) . Structural forms include amorphous silicon nitride normally used as a thin film and three crystalline polymorphs. Crystalline phases include hexagonal α-Si3N4, hexagonalβ-Si3N4, and the cubic spinel c-Si3N4. Decomposition at about 1900 °C results in a liquid silicon phase and gas phase products such as molecular nitrogen, atomic nitrogen, and atomic silicon. The silicon nitride EOS was developed using EOSPro which is a new and extended version of the PANDA II code. Both codes are valuable tools and have been used successfully for a variety of material classes. Both PANDA II and EOSPro can generate a tabular EOS that can be used in conjunction with hydrocodes. The paper describes the development efforts for the component solid phases and presents results obtained using the EOSPro phase transition model to investigate the solid-solid phase transitions in relation to the available shock data. Furthermore, the EOSPro mixture model is used to develop a model for the decomposition products and then combined with the single component solid models to study the global phase diagram. Sponsored by the NASA Goddard Space Flight Center Living With a Star program office.

  3. Synthesis of cubic silicon nitride

    NASA Astrophysics Data System (ADS)

    Zerr, Andreas; Miehe, Gerhard; Serghiou, George; Schwarz, Marcus; Kroke, Edwin; Riedel, Ralf; Fueß, Hartmut; Kroll, Peter; Boehler, Reinhard

    1999-07-01

    Silicon nitride (Si3N4) is used in a variety of important technological applications. The high fracture toughness, hardness and wear resistance of Si3N4-based ceramics are exploited in cutting tools and anti-friction bearings; in electronic applications, Si3N4 is used as an insulating, masking and passivating material. Two polymorphs of silicon nitride are known, both of hexagonal structure: α- and β-Si3N4. Here we report the synthesis of a third polymorph of silicon nitride, which has a cubic spinel structure. This new phase, c-Si3N4, is formed at pressures above 15GPa and temperatures exceeding 2,000K, yet persists metastably in air at ambient pressure to at least 700K. First-principles calculations of the properties of this phase suggest that the hardness of c-Si3N4 should be comparable to that of the hardest known oxide (stishovite, a high-pressure phase of SiO2), and significantly greater than the hardness of the two hexagonal polymorphs.

  4. Gallium Electromagnetic (GEM) Thrustor Concept and Design

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Markusic, Thomas E.

    2006-01-01

    We describe the design of a new type of two-stage pulsed electromagnetic accelerator, the gallium electromagnetic (GEM) thruster. A schematic illustration of the GEM thruster concept is given in Fig. 1. In this concept, liquid gallium propellant is pumped into the first stage through a porous metal electrode using an electromagneticpump[l]. At a designated time, a pulsed discharge (approx.10-50 J) is initiated in the first stage, ablating the liquid gallium from the porous electrode surface and ejecting a dense thermal gallium plasma into the second state. The presence of the gallium plasma in the second stage serves to trigger the high-energy (approx.500 I), send-stage puke which provides the primary electromagnetic (j x B) acceleration.

  5. Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles.

    PubMed

    Knight, Mark W; Coenen, Toon; Yang, Yang; Brenny, Benjamin J M; Losurdo, Maria; Brown, April S; Everitt, Henry O; Polman, Albert

    2015-02-24

    Gallium has recently been demonstrated as a phase-change plasmonic material offering UV tunability, facile synthesis, and a remarkable stability due to its thin, self-terminating native oxide. However, the dense irregular nanoparticle (NP) ensembles fabricated by molecular-beam epitaxy make optical measurements of individual particles challenging. Here we employ hyperspectral cathodoluminescence (CL) microscopy to characterize the response of single Ga NPs of various sizes within an irregular ensemble by spatially and spectrally resolving both in-plane and out-of-plane plasmonic modes. These modes, which include hybridized dipolar and higher-order terms due to phase retardation and substrate interactions, are correlated with finite difference time domain (FDTD) electrodynamics calculations that consider the Ga NP contact angle, substrate, and native Ga/Si surface oxidation. This study experimentally confirms previous theoretical predictions of plasmonic size-tunability in single Ga NPs and demonstrates that the plasmonic modes of interacting Ga nanoparticles can hybridize to produce strong hot spots in the ultraviolet. The controlled, robust UV plasmonic resonances of gallium nanoparticles are applicable to energy- and phase-specific applications such as optical memory, environmental remediation, and simultaneous fluorescence and surface-enhanced Raman spectroscopies.

  6. Method and apparatus for use of III-nitride wide bandgap semiconductors in optical communications

    DOEpatents

    Hui, Rongqing; Jiang,Hong-Xing; Lin, Jing-Yu

    2008-03-18

    The present disclosure relates to the use of III-nitride wide bandgap semiconductor materials for optical communications. In one embodiment, an optical device includes an optical waveguide device fabricated using a III-nitride semiconductor material. The III-nitride semiconductor material provides for an electrically controllable refractive index. The optical waveguide device provides for high speed optical communications in an infrared wavelength region. In one embodiment, an optical amplifier is provided using optical coatings at the facet ends of a waveguide formed of erbium-doped III-nitride semiconductor materials.

  7. The Effect of Polymer Char on Nitridation Kinetics of Silicon

    NASA Technical Reports Server (NTRS)

    Chan, Rickmond C.; Bhatt, Ramakrishna T.

    1994-01-01

    Effects of polymer char on nitridation kinetics of attrition milled silicon powder have been investigated from 1200 to 1350 C. Results indicate that at and above 1250 C, the silicon compacts containing 3.5 wt percent polymer char were fully converted to Si3N4 after 24 hr exposure in nitrogen. In contrast, the silicon compacts without polymer char could not be fully converted to Si3N4 at 1350 C under similar exposure conditions. At 1250 and 1350 C, the silicon compacts with polymer char showed faster nitridation kinetics than those without the polymer char. As the polymer char content is increased, the amount of SiC in the nitrided material is also increased. By adding small amounts (approx. 2.5 wt percent) of NiO, the silicon compacts containing polymer char can be completely nitrided at 1200 C. The probable mechanism for the accelerated nitridation of silicon containing polymer char is discussed.

  8. Effect of processing parameters on reaction bonding of silicon nitride

    NASA Technical Reports Server (NTRS)

    Richman, M. H.; Gregory, O. J.; Magida, M. B.

    1980-01-01

    Reaction bonded silicon nitride was developed. The relationship between the various processing parameters and the resulting microstructures was to design and synthesize reaction bonded materials with improved room temperature mechanical properties.

  9. Abrasion resistant silicon nitride based articles

    SciTech Connect

    Sarin, V.K.; Buijan, S.T.; Penty, R.A.

    1984-02-28

    A composite article and cutting tool are prepared by densification to form a body consisting essentially of particles of hard refractory material uniformly distributed in a matrix consisting essentially of a first phase and a second phase, said first phase consisting essentially of crystalline silicon nitride and said second phase being an intergranular refractory phase comprising silicon nitride and a suitable densification aid selected from the group consisting of yttrium oxide, zirconium oxide, hafnium oxide and the lanthanade rare earth oxides and mixture thereof.

  10. Boron Nitride Nanotubes

    NASA Technical Reports Server (NTRS)

    Smith, Michael W. (Inventor); Jordan, Kevin (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  11. Boron nitride nanotubes

    DOEpatents

    Smith, Michael W.; Jordan, Kevin; Park, Cheol

    2012-06-06

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  12. Boron nitride composites

    DOEpatents

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2016-02-16

    According to one embodiment, a composite product includes hexagonal boron nitride (hBN), and a plurality of cubic boron nitride (cBN) particles, wherein the plurality of cBN particles are dispersed in a matrix of the hBN. According to another embodiment, a composite product includes a plurality of cBN particles, and one or more borate-containing binders.

  13. The HIP-nitriding of steels and titanium based alloys

    SciTech Connect

    Jacobs, M.H.; Ashworth, M.A.; Marshall, A.J.

    1996-12-31

    The paper discusses the HIP processing of nitriding steels (S106 and EN41B), austenitic stainless steel and titanium based alloys (cp Ti, Ti-6Al-4V and Ti-48Al-2Mn-2Nb), using ammonia and nitrogen gases as the pressurizing media to produce a nitrided surface. The paper compares the HIP-nitrided material with conventionally nitrided samples in terms of microstructure, case depths (in particular the ability to nitride uniformly down blind holes) and mechanical properties. The effect of HIP process parameters (time, temperature and pressure) on the resultant nitrided surface will also be discussed. Results obtained using NH{sub 3} will be compared with those obtained on samples HIPed in a pure N{sub 2} atmosphere with particular reference to the nitriding steels and the formation of a white layer. The use of NH{sub 3}/N{sub 2} gas mixtures on the nitriding of steels is investigated to determine the effect of NH{sub 3} concentration on process kinetics.

  14. Anisotropic Hexagonal Boron Nitride Nanomaterials - Synthesis and Applications

    SciTech Connect

    Han,W.Q.

    2008-08-01

    Boron nitride (BN) is a synthetic binary compound located between III and V group elements in the Periodic Table. However, its properties, in terms of polymorphism and mechanical characteristics, are rather close to those of carbon compared with other III-V compounds, such as gallium nitride. BN crystallizes into a layered or a tetrahedrally linked structure, like those of graphite and diamond, respectively, depending on the conditions of its preparation, especially the pressure applied. Such correspondence between BN and carbon readily can be understood from their isoelectronic structures [1, 2]. On the other hand, in contrast to graphite, layered BN is transparent and is an insulator. This material has attracted great interest because, similar to carbon, it exists in various polymorphic forms exhibiting very different properties; however, these forms do not correspond strictly to those of carbon. Crystallographically, BN is classified into four polymorphic forms: Hexagonal BN (h-BN) (Figure 1(b)); rhombohedral BN (r-BN); cubic BN (c-BN); and wurtzite BN (w-BN). BN does not occur in nature. In 1842, Balmain [3] obtained BN as a reaction product between molten boric oxide and potassium cyanide under atmospheric pressure. Thereafter, many methods for its synthesis were reported. h-BN and r-BN are formed under ambient pressure. c-BN is synthesized from h-BN under high pressure at high temperature while w-BN is prepared from h-BN under high pressure at room temperature [1]. Each BN layer consists of stacks of hexagonal plate-like units of boron and nitrogen atoms linked by SP{sup 2} hybridized orbits and held together mainly by Van der Waals force (Fig 1(b)). The hexagonal polymorph has two-layered repeating units: AA'AA'... that differ from those in graphite: ABAB... (Figure 1(a)). Within the layers of h-BN there is coincidence between the same phases of the hexagons, although the boron atoms and nitrogen atoms are alternatively located along the c-axis. The

  15. Evaluation of the male reproductive toxicity of gallium arsenide.

    PubMed

    Bomhard, Ernst M; Cohen, Samuel M; Gelbke, Heinz-Peter; Williams, Gary M

    2012-10-01

    Gallium arsenide is an important semiconductor material marketed in the shape of wafers and thus is not hazardous to the end user. Exposure to GaAs particles may, however, occur during manufacture and processing. Potential hazards require evaluation. In 14-week inhalation studies with small GaAs particles, testicular effects have been reported in rats and mice. These effects occurred only in animals whose lungs showed marked inflammation and also had hematologic changes indicating anemia and hemolysis. The time- and concentration-dependent progressive nature of the lung and blood effects together with bioavailability data on gallium and arsenic lead us to conclude that the testicular/sperm effects are secondary to hypoxemia resulting from lung damage rather than due to a direct chemical effect of gallium or arsenide. Conditions leading to such primary effects are not expected to occur in humans at production and processing sites. This has to be taken into consideration for any classification decision for reproductive toxicity; especially a category 1 according to the EU CLP system is not warranted.

  16. Clinical applications of Gallium-68.

    PubMed

    Banerjee, Sangeeta Ray; Pomper, Martin G

    2013-06-01

    Gallium-68 is a positron-emitting radioisotope that is produced from a (68)Ge/(68)Ga generator. As such it is conveniently used, decoupling radiopharmacies from the need for a cyclotron on site. Gallium-68-labeled peptides have been recognized as a new class of radiopharmaceuticals showing fast target localization and blood clearance. (68)Ga-DOTATOC, (8)Ga-DOTATATE, (68)Ga-DOTANOC, are the most prominent radiopharmaceuticals currently in use for imaging and differentiating lesions of various somatostatin receptor subtypes, overexpressed in many neuroendocrine tumors. There has been a tremendous increase in the number of clinical studies with (68)Ga over the past few years around the world, including within the United States. An estimated ∼10,000 scans are being performed yearly in Europe at about 100 centers utilizing (68)Ga-labeled somatostatin analogs within clinical trials. Two academic sites within the US have also begun to undertake human studies. This review will focus on the clinical experience of selected, well-established and recently applied (68)Ga-labeled imaging agents used in nuclear medicine.

  17. Ion-nitriding of Maraging steel (250 Grade) for Aeronautical application

    NASA Astrophysics Data System (ADS)

    Shetty, K.; Kumar, S.; Rao, P. R.

    2008-03-01

    Ion nitriding is one of the surface modification processes to obtain better wear resistance of the component. Maraging steel (250 Grade) is used to manufacture a critical component in the control surface of a combat aircraft. This part requires high strength and good wear resistance. Maraging steels belong to a new class of high strength steels with the combination of strength and toughness that are among the highest attainable in general engineering alloys. Good wear resistance is achieved by ion-nitriding (also called as plasma nitriding or glow discharge nitriding) process of case nitriding. Ion-nitriding is a method of surface hardening using glow discharge technology to introduce nascent (elemental) nitrogen to the surface of a metal part for subsequent diffusion into the material. In the present investigation, ion-nitriding of Maraging steel (250 grade) is carried out at 450°C and its effect on microstructure and various properties is discussed.

  18. The surface tension of liquid gallium

    NASA Technical Reports Server (NTRS)

    Hardy, S. C.

    1985-01-01

    The surface tension of liquid gallium has been measured using the sessile drop technique in an Auger spectrometer. The experimental method is described. The surface tension in mJ/sq m is found to decrease linearly with increasing temperature and may be represented as 708-0.66(T-29.8), where T is the temperature in centigrade. This result is of interest because gallium has been suggested as a model fluid for Marangoni flow experiments. In addition, the surface tension is of technological significance in the processing of compound semiconductors involving gallium.

  19. Biofilm formation on titanium implants counteracted by grafting gallium and silver ions.

    PubMed

    Cochis, Andrea; Azzimonti, Barbara; Della Valle, Cinzia; Chiesa, Roberto; Arciola, Carla Renata; Rimondini, Lia

    2015-03-01

    Biofilm-associated infections remain the leading cause of implant failure. Thanks to its established biocompatibility and biomechanical properties, titanium has become one of the most widely used materials for bone implants. Engineered surface modifications of titanium able to thwart biofilm formation while endowing a safe anchorage to eukaryotic cells are being progressively developed. Here surfaces of disks of commercial grade 2 titanium for bone implant were grafted with gallium and silver ions by anodic spark deposition. Scanning electron microscopy of the surface morphology and energy dispersive X-ray spectroscopy were used for characterization. Gallium-grafted titanium was evaluated in comparison with silver-grafted titanium for both in vivo and in vitro antibiofilm properties and for in vitro compatibility with human primary gingival fibroblasts. Surface-modified materials showed: (i) homogeneous porous morphology, with pores of micrometric size; (ii) absence of cytotoxic effects; (iii) ability to support in vitro the adhesion and spreading of gingival fibroblasts; and (iv) antibiofilm properties. Although both silver and gallium exhibited in vitro strong antibacterial properties, in vivo gallium was significantly more effective than silver in reducing number and viability of biofilm bacteria colonies. Gallium-based treatments represent promising titanium antibiofilm coatings to develop new bone implantable devices for oral, maxillofacial, and orthopedic applications.

  20. Growth, structural, electronic and optical characterization of nitride semiconductors

    NASA Astrophysics Data System (ADS)

    Constantin, Costel

    This project investigates the growth, optical, electronic, surface, magnetic and bulk properties of scandium gallium nitride on Sapphire(0001), manganese scandium nitride on MgO(001), heterostructures of cubic gallium nitride and scandium nitride on Mg(001), and chromium nitride on MgO(001) grown by radio frequency molecular beam epitaxy. The growth of ScxGa1- xN films has been performed at a substrate temperature of 650°C. The diffraction and optical experiments confirm the existence of two main regimes of growth; for high Sc concentration (x ≥ 0.54), a rocksalt crystal structure is obtained. For low x ( x ≤ 0.17), a wurtzite-like crystal structure is observed with local lattice distortions at the sites where the Sc atoms incorporate substitutionally into the Ga sites. The growth of MnxSc1- xN films, with x = 0.03-0.05, has been performed at a substrate temperature of ˜500°C. A rocksalt structure is observed for the MnxSc1-xN films. Magnetic measurements preformed on the Mn0.03Sc0.97 N film show ferromagnetic with a TC ˜ 50 K. As the manganese concentration is increased to x = 0.05, the ferromagnetism is reduced. The growth of heterostructures c-GaN(001)/ScN(001)/MgO(001) and ScN(001)/c-GaN(001)/MgO(001) adopt a cubical symmetry of the MgO(001) substrate. The zincblend c-GaN grown atop of ScN(001) shows a smoother surface (predominantly 2D growth) as compared to the rocksalt ScN(001) grown on atop of c-GaN(001). The growth of stoichiometric CrN(001) films is performed at a substrate temperature of 450°C. A novel growth method of highly crystalline stoichiometric CrN(001) films has been proposed. The room temperature scanning tunneling microscopy together with resistivity versus temperature experiments reveal the electronic behavior of CrN(001) films to be metallic below T N ≃ 270 K, and semiconductor above TN.

  1. I. Plasma Enhanced Chemical Vapor Deposition of Main Group Nitride Thin Films, and II. Synthesis of Niobium Amido Complexes.

    NASA Astrophysics Data System (ADS)

    Rangarajan, Sri Prakash

    I. Main group nitride films were deposited at low substrate temperatures (<400 ^circC) by using plasma activated ammonia and the amido complexes, M(NMe_2)_4 (M = Si, Ge and Sn) and rm M_2(NMe _2)_6(M = Al, Ga) as precursors. In addition, tin, aluminum and gallium nitride films were thermally deposited from the amides and ammonia for comparison with the plasma deposited materials. The films were nearly stoichiometric with low carbon and oxygen contamination as determined by backscattering spectrometry. The growth rates of the group 14 nitrides increased going down the column, consistent with an associative mechanism involving the plasma-activated NH_3 and the amido complex. Elastic recoil detection measurements indicated that the films had hydrogen contents comparable to those reported for films deposited by other deposition techniques. Transmittance measurements indicated that all the films are highly transparent in the visible and near infrared regions. The silicon, germanium and aluminum nitride films displayed promising barrier properties in Au/MN_{x}/Si metallization schemes. II. The syntheses and characterization of several niobium(IV) amido complexes and their derivatives are reported. Reactions of rm NbX_4(thf)_2(X = Cl, Br) with LiN(SiMe_3)_2 gave Nb(N(SiMe_3)_2)_2Cl _2 and Nb(N(SiMe_3) _2)_2Br_2 in moderate yields. Nb(NPh _2)_4 was synthesized in 63% yield by the reaction of NbCl_4(thf) _2 with four equiv of LiNPh_2. . The reaction of one equivalent of ZnPh _2 with Nb(N(SiMe_3) _2)_2Cl_2 gave Nb(N(SiMe _3)_2)_2PhCl and in one case a mixture of Nb(N(SiMe_3)_2)_2 PhCl and Nb(N(SiMe_3)_2) _2Ph_2. Cp_2NbN(SiMe_3)SiMe _2CH_2, a metallacycle with a four membered planar ring, was prepared by reacting Nb(N(SiMe _3)_2)_2Cl_2 with two equiv of ZnCp_2.. X-ray crystallographic studies were carried out for Nb(NPh_2)_4, Nb(N(SiMe _3)_2)_2Br_2, Nb(N(SiMe _3)_2)_2PhCl and Nb(N(SiMe _3)_2)_2Ph_2. All have highly distorted tetrahedral geometries. The distortions usually are

  2. Silicon nitride protective coatings for silvered glass mirrors

    DOEpatents

    Tracy, C.E.; Benson, D.K.

    1984-07-20

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate prior to metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.

  3. Silicon nitride protective coatings for silvered glass mirrors

    DOEpatents

    Tracy, C. Edwin; Benson, David K.

    1988-01-01

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.

  4. Gallium and its competing roles with iron in biological systems.

    PubMed

    Chitambar, Christopher R

    2016-08-01

    Gallium, a group IIIa metal, shares chemical properties with iron. Studies have shown that gallium-based compounds have potential therapeutic activity against certain cancers and infectious microorganisms. By functioning as an iron mimetic, gallium perturbs iron-dependent proliferation processes in tumor cells. Gallium's action on iron homeostasis leads to disruption of ribonucleotide reductase, mitochondrial function, and the regulation of transferrin receptor and ferritin. In addition, gallium nitrate stimulates an increase in mitochondrial reactive oxygen species in cells which triggers downstream upregulation of metallothionein and hemoxygenase-1. Gallium's anti-infective activity against bacteria and fungi results from disruption of microbial iron utilization through mechanisms which include gallium binding to siderophores and downregulation of bacterial iron uptake. Gallium compounds lack cross-resistance to conventional chemotherapeutic drugs and antibiotics thus making them attractive agents for drug development. This review will focus on the mechanisms of action of gallium with emphasis on its interaction with iron and iron proteins. PMID:27150508

  5. Gallium and its competing roles with iron in biological systems.

    PubMed

    Chitambar, Christopher R

    2016-08-01

    Gallium, a group IIIa metal, shares chemical properties with iron. Studies have shown that gallium-based compounds have potential therapeutic activity against certain cancers and infectious microorganisms. By functioning as an iron mimetic, gallium perturbs iron-dependent proliferation processes in tumor cells. Gallium's action on iron homeostasis leads to disruption of ribonucleotide reductase, mitochondrial function, and the regulation of transferrin receptor and ferritin. In addition, gallium nitrate stimulates an increase in mitochondrial reactive oxygen species in cells which triggers downstream upregulation of metallothionein and hemoxygenase-1. Gallium's anti-infective activity against bacteria and fungi results from disruption of microbial iron utilization through mechanisms which include gallium binding to siderophores and downregulation of bacterial iron uptake. Gallium compounds lack cross-resistance to conventional chemotherapeutic drugs and antibiotics thus making them attractive agents for drug development. This review will focus on the mechanisms of action of gallium with emphasis on its interaction with iron and iron proteins.

  6. Antitumor efficacy and tolerability of systemically administered gallium acetylacetonate-loaded gelucire-stabilized nanoparticles.

    PubMed

    Wehrung, Daniel; Bi, Lipeng; Geldenhuys, Werner J; Oyewumi, Moses O

    2013-06-01

    The widespread clinical success with most gallium compounds in cancer therapy is markedly hampered by lack of tumor specific accumulation, poor tumor permeability and undesirable toxicity to healthy tissues. The aim of this work was to investigate for the first time antitumor mechanism of a new gallium compound (gallium acetylacetonate; GaAcAc) while assessing effectiveness of gelucire-stabilized nanoparticles (NPs) for potential application in gallium-based lung cancer therapy. NPs loaded with GaAcAc (Ga-NPs) were prepared using mixtures of cetyl alcohol with Gelucire 44/14 (Ga-NP-1) or Gelucire 53/13 (Ga-NP-2) as matrix materials. Of special note from this work is the direct evidence of involvement of microtubule disruption in antitumor effects of GaAcAc on human lung adenocarcinoma (A549). In-vivo tolerability studies were based on plasma ALT, creatinine levels and histopathological examination of tissues. The superior in-vivo antitumor efficacy of Ga-NPs over GaAcAc was depicted in marked reduction of tumor weight and tumor volume as well as histological assessment of excised tumors. Compared to free GaAcAc, Ga-NPs showed a 3-fold increase in tumor-to-blood gallium concentrations with minimized overall exposure to healthy tissues. Overall, enhancement of antitumor effects of GaAcAc by gelucire-stabilized NPs coupled with reduced exposure of healthy tissues to gallium would likely ensure desired therapeutic outcomes and safety of gallium-based cancer treatment.

  7. Gallium-containing phospho-silicate glasses: synthesis and in vitro bioactivity.

    PubMed

    Franchini, Mirco; Lusvardi, Gigliola; Malavasi, Gianluca; Menabue, Ledi

    2012-08-01

    A series of Ga-containing phospho-silicate glasses based on Bioglass 45S5, having molar formula 46.2SiO2·24.3Na2O·26.9CaO·2.6P2O5·xGa2O3 (x=1.0, 1.6, 3.5), were prepared by fusion method. The reference Bioglass 45S5 without gallium was also prepared. The synthesized glasses were immersed in simulated body fluid (SBF) for 30 days in order to observe ion release and hydroxyapatite (HA) formation. All Ga-containing glasses maintain the ability of HA formation as indicated by main X-ray diffractometric peaks and/or electronic scanning microscopy results. HA layer was formed after 1 day of SBF soaking in 45S5 glass containing up to 1.6% Ga2O3 content. Moreover, gallium released by the glasses was found to be partially precipitated on the glass surface as gallium phosphate. Further increase in gallium content reduced the ion release in SBF. The maximum of Ga(3+) concentration measured in solution is ~6 ppm determined for 3.5% Ga2O3 content. This amount is about half of the toxic level (14 ppm) of gallium and the glasses release gallium till 30 days of immersion in SBF. Considering the above results, the studied materials can be proposed as bioactive glasses with additional antimicrobial effect of gallium having no toxic outcome. PMID:24364938

  8. Electrooptic Waveguide Directional Coupler Modulator in Aluminum Gallium Arsenide-Gallium Arsenide.

    NASA Astrophysics Data System (ADS)

    Khan, Mujibun Nisa

    A novel optical waveguide intensity modulator in aluminum gallium arsenide and gallium arsenide material system is modeled, designed, and experimentally demonstrated at 0.83 μm wavelength. The modulator utilizes the linear electrooptic effect in a coupled waveguide structure to achieve high extinction ratio at low drive voltage. The device structure consists of a differentially -etched ridge directional coupler, where the ridge height in the gap is smaller that that of the outer sides. The effective index and semivectorial finite difference modeling techniques are developed to analyze the single ridge guides and directional coupler structures. The mode structure results from the two models are compared and the limitations of the effective index method are determined. The differential -etch design is employed to reduce the length as well as the drive voltage of the modulator. A modulation voltage of 2 volts for a 3.5-mm-long device is achieved, which is the lowest reported in literature. These results are compared with those obtained from the simplified analytical expressions for conventional couplers, and higher performance expected from the differential-etch design is verified. The modulator extinction ratio is measured to be 13 dB at 2 volts. The measured optical propagation loss of approximately 3.4 dB/cm for the modulator is speculated to be primarily due to the surface morphology of the epitaxially-grown material, and the light scattering from rough ridge walls produced during the anisotropic dry etching process. The high microwave loss of 15 dB/cm calculated for the modulator electrode design suggests a trade-off between the modulation voltage and the bandwidth, which is expected to be limited to 500 MHz. The measurement of the modulator frequency response up to 100 KHz is presented, because of the test limitations at higher frequencies due to the weak modulated intensity signals.

  9. Gallium-67 activity in bronchoalveolar lavage fluid in sarcoidosis

    SciTech Connect

    Trauth, H.A.; Heimes, K.; Schubotz, R.; von Wichert, P.

    1986-01-01

    Roentgenograms and gallium-67 scans and gallium-67 counts of BAL fluid samples, together with differential cell counts, have proved to be useful in assessing activity and lung involvement in sarcoidosis. In active pulmonary sarcoidosis gallium-67 scans are usually positive. Quantitation of gallium-67 uptake in lung scans, however, may be difficult. Because gallium-67 uptake and cell counts in BAL fluid may be correlated, we set out to investigate gallium-67 activity in BAL fluid recovered from patient of different groups. Sixteen patients with recently diagnosed and untreated sarcoidosis, nine patients with healthy lungs, and five patients with CFA were studied. Gallium-67 uptake of the lung, gallium-67 activity in the lavage fluid, SACE and LACE levels, and alpha 1-AT activity were measured. Significantly more gallium-67 activity was found in BAL fluid from sarcoidosis patients than in that from CFA patients (alpha = .001) or patients with healthy lungs (alpha = .001). Gallium-67 activity in BAL fluid could be well correlated with the number of lymphocytes in BAL fluid, but poorly with the number of macrophages. Subjects with increased levels of SACE or serum alpha 1-AT showed higher lavage gallium-67 activity than did normals, but no correlation could be established. High gallium-67 activity in lavage fluid may be correlated with acute sarcoidosis or physiological deterioration; low activity denotes change for the better. The results show that gallium-67 counts in BAL fluid reflects the intensity of gallium-67 uptake and thus of activity of pulmonary sarcoidosis.

  10. Boron Nitride Nanotubes for Engineering Applications

    NASA Technical Reports Server (NTRS)

    Hurst, Janet; Hull, David; Gorican, Daniel

    2005-01-01

    Boron nitride nanotubes (BNNT) are of significant interest to the scientific and technical communities for many of the same reasons that carbon nanotubes (CNT) have attracted wide attention. Both materials have potentially unique and important properties for structural and electronic applications. However of even more consequence than their similarities may be the complementary differences between carbon and boron nitride nanotubes While BNNT possess a very high modulus similar to CNT, they also possess superior chemical and thermal stability. Additionally, BNNT have more uniform electronic properties, with a uniform band gap of 5.5 eV while CNT vary from semi-conductive to highly conductive behavior. Boron nitride nanotubes have been synthesized both in the literature and at NASA Glenn Research Center, by a variety of methods such as chemical vapor deposition, arc discharge and reactive milling. Consistent large scale production of a reliable product has proven difficult. Progress in the reproducible synthesis of 1-2 gram sized batches of boron nitride nanotubes will be discussed as well as potential uses for this unique material.

  11. Recovery of gallium from aluminum industry residues

    SciTech Connect

    Carvalho, M.S.; Neto, K.C.M.; Nobrega, A.W.; Medeiros, J.A.

    2000-01-01

    A procedure is proposed to recover gallium from flue dust aluminum residues produced in plants by using solid-phase extraction with a commercial polyether-type polyurethane foam (PUF). Gallium can be separated from high concentrations of aluminum, iron, nickel, titanium, vanadium, copper, zinc, sulfate, fluoride, and chloride by extraction with PUF from 3 M sulfuric acid and 3 M sodium chloride concentration medium with at least a 92% efficiency. Gallium backextraction was fast and quantitative with ethanol solution. In all recovery steps commercial-grade reagents could be used, including tap water. The recovered gallium was precipitated with sodium hydroxide solution, purified by dissolution and precipitation, calcinated, and the final oxide was 98.6% pure.

  12. Radiochemical separation of gallium by amalgam exchange

    USGS Publications Warehouse

    Ruch, R.R.

    1969-01-01

    An amalgam-exchange separation of radioactive gallium from a number of interfering radioisotopes has been developed. A dilute (ca. 0.3%) gallium amalgam is agitated with a slightly acidic solution of 72Ga3+ containing concentrations of sodium thiocyanate and either perchlorate or chloride. The amalgam is then removed and the radioactive gallium stripped by agitation with dilute nitric acid. The combined exchange yield of the perchlorate-thiocyanate system is 90??4% and that of the chloride-thiocyanate system is 75??4%. Decontamination yields of most of the 11 interfering isotopes studied were less than 0.02%. The technique is applicable for use with activation analysis for the determination of trace amounts of gallium. ?? 1969.

  13. Development of gallium arsenide solar cells

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The potential of ion implantation as a means of developing gallium arsenide solar cells with high efficiency performance was investigated. Computer calculations on gallium arsenide cell characteristics are presented to show the effects of surface recombination, junction space-charge recombination, and built-in fields produced by nonuniform doping of the surface region. The fabrication technology is summarized. Electrical and optical measurements on samples of solar cells are included.

  14. Generator for gallium-68 and compositions obtained therefrom

    DOEpatents

    Neirinckx, Rudi D.; Davis, Michael A.

    1981-01-01

    A generator for obtaining radioactive gallium-68 from germanium-68 bound in a resin containing unsubstituted phenolic hydroxyl groups. The germanium-68 is loaded into the resin from an aqueous solution of the germanium-68. A physiologically acceptable solution of gallium-68 having an activity of 0.1 to 50 millicuries per milliliter of gallium-68 solution is obtained. The solution is obtained from the bound germanium-68 which forms gallium-68 in situ by eluting the column with a hydrochloric acid solution to form an acidic solution of gallium-68. The acidic solution of gallium-68 can be neutralized.

  15. Gallium poisoning: a rare case report.

    PubMed

    Ivanoff, Chris S; Ivanoff, Athena E; Hottel, Timothy L

    2012-02-01

    The authors present a case of a college student who suffered acute gallium poisoning as a result of accidental exposure to gallium halide complexes. This is extremely rare and has never been reported in the literature. Acute symptoms after the incident, which initially presented as dermatitis and appeared relatively not life-threatening, rapidly progressed to dangerous episodes of tachycardia, tremors, dyspnea, vertigo, and unexpected black-outs. Had there been effective emergency medical care protocols, diagnostic testing, treatment and antidotes, the latent manifestations of irreversible cardiomyopathy may have been prevented. Given how quickly exposure led to morbidity, this article aims to raise an awareness of the toxic potential of gallium. This has particular relevance for workers involved in the production of semiconductors where there is a potential for accidental exposure to gallium by-products during device processing. It may also have implications for dentists who use gallium alloys to replace mercury containing amalgam. In the absence of threshold limit values and exposure limits for humans, as well as emergency medical guidelines for treatment of poisoning, the case calls on the National Institute for Occupational Safety and Health and the Occupational Safety and Health Administration to establish guidelines and medical management protocols specific for gallium.

  16. Cubic nitride templates

    DOEpatents

    Burrell, Anthony K; McCleskey, Thomas Mark; Jia, Quanxi; Mueller, Alexander H; Luo, Hongmei

    2013-04-30

    A polymer-assisted deposition process for deposition of epitaxial cubic metal nitride films and the like is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures under a suitable atmosphere to yield metal nitride films and the like. Such films can be used as templates for the development of high quality cubic GaN based electronic devices.

  17. III-Nitride UV Devices

    NASA Astrophysics Data System (ADS)

    Asif Khan, M.; Shatalov, M.; Maruska, H. P.; Wang, H. M.; Kuokstis, E.

    2005-10-01

    The need for efficient, compact and robust solid-state UV optical sources and sensors had stimulated the development of optical devices based on III-nitride material system. Rapid progress in material growth, device fabrication and packaging enabled demonstration of high efficiency visible-blind and solar-blind photodetectors, deep-UV light-emitting diodes with emission from 400 to 250 nm, and UV laser diodes with operation wavelengths ranging from 340 to 350 nm. Applications of these UV optical devices include flame sensing; fluorescence-based biochemical sensing; covert communications; air, water and food purification and disinfection; and biomedical instrumentation. This paper provides a review of recent advances in the development of UV optical devices. Performance of state-of-the-art devices as well as future prospects and challenges are discussed.

  18. Fabrication of turbine components and properties of sintered silicon nitride

    NASA Technical Reports Server (NTRS)

    Neil, J. T.; French, K. W.; Quackenbush, C. L.; Smith, J. T.

    1982-01-01

    This paper presents a status report on the injection molding of sinterable silicon nitride at GTE Laboratories. The effort involves fabrication of single axial turbine blades and monolithic radial turbine rotors. The injection molding process is reviewed and the fabrication of the turbine components discussed. Oxidation resistance and strength results of current injection molded sintered silicon nitride as well as dimensional checks on sintered turbine blades demonstrate that this material is a viable candidate for high temperature structural applications.

  19. Synthesis, Crystal Structure, and Elastic Properties of Novel Tungsten Nitrides

    SciTech Connect

    Wang, Shanmin; Yu, Xiaohui; Lin, Zhijun; Zhang, Ruifeng; He, Duanwei; Qin, Jiaqian; Zhu, Jinlong; Han, Jiantao; Wang, Lin; Mao, Ho-kwang; Zhang, Jianzhong; Zhao, Yusheng

    2012-12-13

    Among transition metal nitrides, tungsten nitrides possess unique and/or superior chemical, mechanical, and thermal properties. Preparation of these nitrides, however, is challenging because the incorporation of nitrogen into tungsten lattice is thermodynamically unfavorable at atmospheric pressure. To date, most materials in the W-N system are in the form of thin films produced by nonequilibrium processes and are often poorly crystallized, which severely limits their use in diverse technological applications. Here we report synthesis of tungsten nitrides through new approaches involving solid-state ion exchange and nitrogen degassing under pressure. We unveil a number of novel nitrides including hexagonal and rhombohedral W{sub 2}N{sub 3}. The final products are phase-pure and well-crystallized in bulk forms. For hexagonal W{sub 2}N{sub 3}, hexagonal WN, and cubic W3N4, they exhibit elastic properties rivaling or even exceeding cubic-BN. All four nitrides are prepared at a moderate pressure of 5 GPa, the lowest among high-pressure synthesis of transition metal nitrides, making it practically feasible for massive and industrial-scale production.

  20. The global anthropogenic gallium system: determinants of demand, supply and efficiency improvements.

    PubMed

    Løvik, Amund N; Restrepo, Eliette; Müller, Daniel B

    2015-05-01

    Gallium has been labeled as a critical metal due to rapidly growing consumption, importance for low-carbon technologies such as solid state lighting and photovoltaics, and being produced only as a byproduct of other metals (mainly aluminum). The global system of primary production, manufacturing, use and recycling has not yet been described or quantified in the literature. This prevents predictions of future demand, supply and possibilities for efficiency improvements on a system level. We present a description of the global anthropogenic gallium system and quantify the system using a combination of statistical data and technical parameters. We estimated that gallium was produced from 8 to 21% of alumina plants in 2011. The most important applications of gallium are NdFeB permanent magnets, integrated circuits and GaAs/GaP-based light-emitting diodes, demanding 22-37%, 16-27%, and 11-21% of primary metal production, respectively. GaN-based light-emitting diodes and photovoltaics are less important, both with 2-6%. We estimated that 120-170 tons, corresponding to 40-60% of primary production, ended up in production wastes that were either disposed of or stored. While demand for gallium is expected to rise in the future, our results indicated that it is possible to increase primary production substantially with conventional technology, as well as improve the system-wide material efficiency.