Sample records for gallium oxide ga2o3

  1. β-Ga2O3 versus ε-Ga2O3: Control of the crystal phase composition of gallium oxide thin film prepared by metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhuo, Yi; Chen, Zimin; Tu, Wenbin; Ma, Xuejin; Pei, Yanli; Wang, Gang

    2017-10-01

    Gallium oxide thin films of β and ε phase were grown on c-plane sapphire using metal-organic chemical vapor deposition and the phase compositions were analyzed using X-ray diffraction. The epitaxial phase diagram was constructed as a function of the growth temperature and VI/III ratio. A low growth temperature and low VI/III ratio were beneficial for the formation of hexagonal-type ε-Ga2O3. Further structure analysis revealed that the epitaxial relationship between ε-Ga2O3 and c-plane sapphire is ε-Ga2O3 (0001) || Al2O3 (0001) and ε-Ga2O3 || Al2O3 . The structural evolution of the mixed-phase sample during film thickening was investigated. By reducing the growth rate, the film evolved from a mixed phase to the energetically favored ε phase. Based on these results, a Ga2O3 thin film with a phase-pure ε-Ga2O3 upper layer was successfully obtained.

  2. Size effects in the thermal conductivity of gallium oxide (β-Ga{sub 2}O{sub 3}) films grown via open-atmosphere annealing of gallium nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szwejkowski, Chester J.; Giri, Ashutosh; Donovan, Brian F.

    2015-02-28

    Gallium nitride (GaN) is a widely used semiconductor for high frequency and high power devices due to of its unique electrical properties: a wide band gap, high breakdown field, and high electron mobility. However, thermal management has become a limiting factor regarding efficiency, lifetime, and advancement of GaN devices and GaN-based applications. In this work, we study the thermal conductivity of beta-phase gallium oxide (β-Ga{sub 2}O{sub 3}) thin films, a component of typical gate oxides used in such devices. We use time domain thermoreflectance to measure the thermal conductivity of a variety of polycrystalline β-Ga{sub 2}O{sub 3} films of differentmore » thicknesses grown via open atmosphere annealing of the surfaces of GaN films on sapphire substrates. We show that the measured effective thermal conductivity of these β-Ga{sub 2}O{sub 3} films can span 1.5 orders of magnitude, increasing with an increased film thickness, which is indicative of the relatively large intrinsic thermal conductivity of the β-Ga{sub 2}O{sub 3} grown via this technique (8.8 ± 3.4 W m{sup −1} K{sup −1}) and large mean free paths compared to typical gate dielectrics commonly used in GaN device contacts. By conducting time domain thermoreflectance (TDTR) measurements with different metal transducers (Al, Au, and Au with a Ti wetting layer), we attribute this variation in effective thermal conductivity to a combination of size effects in the β-Ga{sub 2}O{sub 3} film resulting from phonon scattering at the β-Ga{sub 2}O{sub 3}/GaN interface and thermal transport across the β-Ga{sub 2}O{sub 3}/GaN interface. The measured thermal properties of open atmosphere-grown β-Ga{sub 2}O{sub 3} and its interface with GaN set the stage for thermal engineering of gate contacts in high frequency GaN-based devices.« less

  3. Gallium oxide thin films from the AACVD of [Ga(NMe2)3]2 and donor functionalised alcohols.

    PubMed

    Basharat, Siama; Carmalt, Claire J; Binions, Russell; Palgrave, Robert; Parkin, Ivan P

    2008-02-07

    Thin films of Ga(2)O(3) have been produced from [Ga(NMe(2))(3)](2) and ROH (R = CH(2)CH(2)NMe(2), CH(CH(2)NMe(2))(2), CH(CH(3))CH(2)NMe(2), CH(2)CH(2)OMe and C(CH(3))(2)CH(2)OMe) by aerosol assisted chemical vapour deposition on glass. Transparent, unreflective films were obtained at a deposition temperature of 550 degrees C using toluene as solvent. The gallium oxide films were analyzed by Scanning electron microscopy (SEM), Raman spectroscopy, wavelength dispersive analysis of X-rays (WDX) and X-ray photoelectron spectroscopy (XPS). The gallium oxide films obtained were X-ray amorphous. Gas-sensing experiments indicated that the films showed an n-type response to ethanol at a variety of temperatures.

  4. Synthesis and properties of γ-Ga2O3-Al2O3 solid solutions

    NASA Astrophysics Data System (ADS)

    Afonasenko, T. N.; Leont'eva, N. N.; Talzi, V. P.; Smirnova, N. S.; Savel'eva, G. G.; Shilova, A. V.; Tsyrul'nikov, P. G.

    2017-10-01

    The textural and structural properties of mixed oxides Ga2O3-Al2O3, obtained via impregnating γ-Al2O3 with a solution of Ga(NO3)3 and subsequent heat treatment, are studied. According to the results from X-ray powder diffraction, gallium ions are incorporated into the structure of aluminum oxide to form a solid solution of spinel-type γ-Ga2O3-Al2O3 up to a Ga2O3 content of 50 wt % of the total weight of the sample, accompanied by a reduction in the specific surface area, volume, and average pore diameter. It is concluded that when the Ga2O3 content exceeds 50 wt %, the β-Ga2O3 phase is observed along with γ-Ga2O3-Al2O3 solid solution. 71Ga and 27Al NMR spectroscopy shows that gallium replaces aluminum atoms from the tetrahedral position to the octahedral coordination in the structure of γ-Ga2O3-Al2O3.

  5. Gallium hydride complexes stabilised by multidentate alkoxide ligands: precursors to thin films of Ga2O3 at low temperatures.

    PubMed

    Pugh, David; Bloor, Leanne G; Parkin, Ivan P; Carmalt, Claire J

    2012-05-07

    The donor-functionalised alkoxides {Me(3-x)N(CH(2)CH(2)O)(x)} (L(x); x = 1, 2) have been used to form gallium hydride complexes [{GaH(2)(L(1))}(2)] and [{GaH(L(2))}(2)] that are stable and isolable at room temperature. Along with a heteroleptic gallium tris(alkoxide) complex [Ga(L(1))(3)] and the dimeric complex [{GaMe(L(2))}(2)], these compounds have been used as single-source precursors for the deposition of Ga(2)O(3) by aerosol-assisted chemical vapour deposition (AACVD) with toluene as solvent. The resulting films were mostly transparent, indicating low levels of carbon contamination, and they were also mainly amorphous. However, [Ga(L(1))(3)] did contain visibly crystalline material deposited at a substrate temperature of 450 °C, by far the lowest ever observed for the CVD of gallium oxide. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Tin-Assisted Synthesis of ɛ -Ga2O3 by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Kracht, M.; Karg, A.; Schörmann, J.; Weinhold, M.; Zink, D.; Michel, F.; Rohnke, M.; Schowalter, M.; Gerken, B.; Rosenauer, A.; Klar, P. J.; Janek, J.; Eickhoff, M.

    2017-11-01

    The synthesis of ɛ -Ga2O3 and β -Ga2O3 by plasma-assisted molecular beam epitaxy on (001 )Al2O3 substrates is studied. The growth window of β -Ga2O3 in the Ga-rich regime, usually limited by the formation of volatile gallium suboxide, is expanded due to the presence of tin during the growth process, which stabilizes the formation of gallium oxides. X-ray diffraction, transmission electron microscopy, time-of-flight secondary-ion mass spectrometry, Raman spectroscopy, and atomic force microscopy are used to analyze the influence of tin on the layer formation. We demonstrate that it allows the synthesis of phase-pure ɛ -Ga2O3 . A growth model based on the oxidation of gallium suboxide by reduction of an intermediate sacrificial tin oxide is suggested.

  7. Hydrothermal Synthesis and Photocatalytic Property of β-Ga2O3 Nanorods

    NASA Astrophysics Data System (ADS)

    Reddy, L. Sivananda; Ko, Yeong Hwan; Yu, Jae Su

    2015-09-01

    Gallium oxide (Ga2O3) nanorods were facilely prepared by a simple hydrothermal synthesis, and their morphology and photocatalytic property were studied. The gallium oxide hydroxide (GaOOH) nanorods were formed in aqueous growth solution containing gallium nitrate and ammonium hydroxide at 95 °C of growth temperature. Through the calcination treatment at 500 and 1000 °C for 3 h, the GaOOH nanorods were converted into single crystalline α-Ga2O3 and β-Ga2O3 phases. From X-ray diffraction analysis, it could be confirmed that a high crystalline quality of β-Ga2O3 nanorods was achieved by calcinating at 1000 °C. The thermal behavior of the Ga2O3 nanorods was also investigated by differential thermal analysis, and their vibrational bands were identified by Fourier transform infrared spectroscopy. In order to examine the photocatalytic activity of samples, the photodegradation of Rhodamine B solution was observed under UV light irradiation. As a result, the α-Ga2O3 and β-Ga2O3 nanorods exhibited high photodegeneration efficiencies of 62 and 79 %, respectively, for 180 min of UV irradiation time.

  8. Hydrothermal Synthesis and Photocatalytic Property of β-Ga2O3 Nanorods.

    PubMed

    Reddy, L Sivananda; Ko, Yeong Hwan; Yu, Jae Su

    2015-12-01

    Gallium oxide (Ga2O3) nanorods were facilely prepared by a simple hydrothermal synthesis, and their morphology and photocatalytic property were studied. The gallium oxide hydroxide (GaOOH) nanorods were formed in aqueous growth solution containing gallium nitrate and ammonium hydroxide at 95 °C of growth temperature. Through the calcination treatment at 500 and 1000 °C for 3 h, the GaOOH nanorods were converted into single crystalline α-Ga2O3 and β-Ga2O3 phases. From X-ray diffraction analysis, it could be confirmed that a high crystalline quality of β-Ga2O3 nanorods was achieved by calcinating at 1000 °C. The thermal behavior of the Ga2O3 nanorods was also investigated by differential thermal analysis, and their vibrational bands were identified by Fourier transform infrared spectroscopy. In order to examine the photocatalytic activity of samples, the photodegradation of Rhodamine B solution was observed under UV light irradiation. As a result, the α-Ga2O3 and β-Ga2O3 nanorods exhibited high photodegeneration efficiencies of 62 and 79 %, respectively, for 180 min of UV irradiation time.

  9. Capacitive Behavior of Single Gallium Oxide Nanobelt

    PubMed Central

    Cai, Haitao; Liu, Hang; Zhu, Huichao; Shao, Pai; Hou, Changmin

    2015-01-01

    In this research, monocrystalline gallium oxide (Ga2O3) nanobelts were synthesized through oxidation of metal gallium at high temperature. An electronic device, based on an individual Ga2O3 nanobelt on Pt interdigital electrodes (IDEs), was fabricated to investigate the electrical characteristics of the Ga2O3 nanobelt in a dry atmosphere at room temperature. The current-voltage (I-V) and I/V-t characteristics show the capacitive behavior of the Ga2O3 nanobelt, indicating the existence of capacitive elements in the Pt/Ga2O3/Pt structure. PMID:28793506

  10. Structure property relationships in gallium oxide thin films grown by pulsed laser deposition [Structure property relationships in Ga 2O 3 thin films grown by pulsed laser deposition

    DOE PAGES

    Garten, Lauren M.; Zakutayev, Andriy; Perkins, John D.; ...

    2016-11-21

    Beta-gallium oxide (β-Ga 2O 3) is of increasing interest to the optoelectronic community for transparent conductor and power electronic applications. Considerable variability exists in the literature on the growth and doping of Ga 2O 3 films, especially as a function of growth approach, temperature, and oxygen partial pressure. Here pulsed laser deposition (PLD) was used to grow high-quality β-Ga 2O 3 films on (0001) sapphire and (–201) Ga 2O 3 single crystals and to explore the growth, stability, and dopability of these films as function of temperature and oxygen partial pressure. As a result, there is a strong temperature dependencemore » to the phase formation, morphology, and electronic properties of β-Ga 2O 3 from 350 to 550 °C.« less

  11. Group 13 β-ketoiminate compounds: gallium hydride derivatives as molecular precursors to thin films of Ga2O3.

    PubMed

    Pugh, David; Marchand, Peter; Parkin, Ivan P; Carmalt, Claire J

    2012-06-04

    Bis(β-ketoimine) ligands, [R{N(H)C(Me)-CHC(Me)═O}(2)] (L(1)H(2), R = (CH(2))(2); L(2)H(2), R = (CH(2))(3)), linked by ethylene (L(1)) and propylene (L(2)) bridges have been used to form aluminum, gallium, and indium chloride complexes [Al(L(1))Cl] (3), [Ga(L(n))Cl] (4, n = 1; 6, n = 2) and [In(L(n))Cl] (5, n = 1; 7, n = 2). Ligand L(1) has also been used to form a gallium hydride derivative [Ga(L(1))H] (8), but indium analogues could not be made. β-ketoimine ligands, [Me(2)N(CH(2))(3)N(H)C(R')-CHC(R')═O] (L(3)H, R' = Me; L(4)H, R' = Ph), with a donor-functionalized Lewis base have also been synthesized and used to form gallium and indium alkyl complexes, [Ga(L(3))Me(2)] (9) and [In(L(3))Me(2)] (10), which were isolated as oils. The related gallium hydride complexes, [Ga(L(n))H(2)] (11, n = 3; 12, n = 4), were also prepared, but again no indium hydride species could be made. The complexes were characterized mainly by NMR spectroscopy, mass spectrometry, and single crystal X-ray diffraction. The β-ketoiminate gallium hydride compounds (8 and 11) have been used as single-source precursors for the deposition of Ga(2)O(3) by aerosol-assisted (AA)CVD with toluene as the solvent. The quality of the films varied according to the precursor used, with the complex [Ga(L(1))H] (8) giving by far the best quality films. Although the films were amorphous as deposited, they could be annealed at 1000 °C to form crystalline Ga(2)O(3). The films were analyzed by powder XRD, SEM, and EDX.

  12. Ga2O3 and GaN nanocrystalline film: reverse micelle assisted solvothermal synthesis and characterization.

    PubMed

    Sinha, Godhuli; Ganguli, Dibyendu; Chaudhuri, Subhadra

    2008-03-01

    Gallium oxide (beta-Ga2O3) nanoparticles were successfully deposited on quartz glass substrates using sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/n-hexane/ethylene glycol monomethyl ether (EGME) reverse micelle-mediated solvothermal process with different omega values. The mean diameter of Ga2O3 particles was approximately 2-3 nm and found to be approximately independent of omega values of the reverse micelles. However, when the Ga2O3 nanocrystalline films were nitrided at 900 degrees C under flowing NH3 atmosphere for 1 h, the mean diameter of the resulted gallium nitride (wurtzite-GaN) nanoparticles varied from 3-9 nm. Both nanocrystalline films of Ga2O3 and GaN were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, UV-vis spectroscopy and photoluminescence in order to study their chemical and physical properties explicitly.

  13. Lifetime laser damage performance of β -Ga2O3 for high power applications

    NASA Astrophysics Data System (ADS)

    Yoo, Jae-Hyuck; Rafique, Subrina; Lange, Andrew; Zhao, Hongping; Elhadj, Selim

    2018-03-01

    Gallium oxide (Ga2O3) is an emerging wide bandgap semiconductor with potential applications in power electronics and high power optical systems where gallium nitride and silicon carbide have already demonstrated unique advantages compared to gallium arsenide and silicon-based devices. Establishing the stability and breakdown conditions of these next-generation materials is critical to assessing their potential performance in devices subjected to large electric fields. Here, using systematic laser damage performance tests, we establish that β-Ga2O3 has the highest lifetime optical damage performance of any conductive material measured to date, above 10 J/cm2 (1.4 GW/cm2). This has direct implications for its use as an active component in high power laser systems and may give insight into its utility for high-power switching applications. Both heteroepitaxial and bulk β-Ga2O3 samples were benchmarked against a heteroepitaxial gallium nitride sample, revealing an order of magnitude higher optical lifetime damage threshold for β-Ga2O3. Photoluminescence and Raman spectroscopy results suggest that the exceptional damage performance of β-Ga2O3 is due to lower absorptive defect concentrations and reduced epitaxial stress.

  14. Tin-gallium-oxide-based UV-C detectors

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Partha; Toporkov, Mykyta; Schoenfeld, Winston V.

    2018-02-01

    The emergence of conductive gallium oxide single crystal substrates offers the potential for vertical Schottky detectors operating in the UV-C spectral region. We report here on our recent work in the development of Tin Gallium oxide (TGO) thin film metal-semiconductor-metal (MSM) and Schottky detectors using plasma-assisted molecular beam epitaxy on c plane sapphire and bulk Ga2O3 substrates. Tin alloying of gallium oxide thin films was found to systematically reduce the optical band gap of the compound, providing tunability in the UV-C spectral region. Tin concentration in the TGO epilayers was found to be highly dependent on growth conditions, and Ga flux in particular. First attempts to demonstrate vertical Schottky photodetectors using TGO epilayers on bulk n-type Ga2O3 substrates were successful. Resultant devices showed strong photoresponse to UV-C light with peak responsivities clearly red shifted in comparison to Ga2O3 homoepitaxial Schottky detectors due to TGO alloying.

  15. Infrared and infrared emission spectroscopy of gallium oxide alpha-GaO(OH) nanostructures.

    PubMed

    Yang, Jing Jeanne; Zhao, Yanyan; Frost, Ray L

    2009-10-01

    Infrared spectroscopy has been used to study nano- to micro-sized gallium oxyhydroxide alpha-GaO(OH), prepared using a low temperature hydrothermal route. Rod-like alpha-GaO(OH) crystals with average length of approximately 2.5 microm and width of 1.5 microm were prepared when the initial molar ratio of Ga to OH was 1:3. beta-Ga(2)O(3) nano and micro-rods were prepared through the calcination of alpha-GaO(OH). The initial morphology of alpha-GaO(OH) is retained in the beta-Ga(2)O(3) nanorods. The combination of infrared and infrared emission spectroscopy complimented with dynamic thermal analysis were used to characterise the alpha-GaO(OH) nanotubes and the formation of beta-Ga(2)O(3) nanorods. Bands at around 2903 and 2836 cm(-1) are assigned to the -OH stretching vibration of alpha-GaO(OH) nanorods. Infrared bands at around 952 and 1026 cm(-1) are assigned to the Ga-OH deformation modes of alpha-GaO(OH). A significant number of bands are observed in the 620-725 cm(-1) region and are assigned to GaO stretching vibrations.

  16. Large-scale synthesis and photoluminescence of single-crystalline β-Ga 2O 3 nanobelts

    NASA Astrophysics Data System (ADS)

    Geng, Baoyou; Zhang, Lide; Meng, Guowen; Xie, Ting; Peng, Xinsheng; Lin, Yu

    2003-12-01

    Gallium oxide ( β-Ga 2O 3) nanobelts were synthesized on a large scale by a simple thermal evaporation method from a mixture of gallium (Ga) and silicon oxide (SiO 2) nanopowder at 850°C in argon atmosphere, which is 200-300°C less than that of thermal evaporation methods reported formerly. The nanobelts had a uniform single-crystal monoclinic structure with width ranging from 50 to 300 nm, thickness about 10-20 nm and lengths up to several tens or hundreds of micrometers. The growth of β-Ga 2O 3 nanobelts is controlled by vapor-solid crystal growth mechanism. Photoluminescence measurement shows that the nanobelts have one broad, strong blue emission and a UV emission.

  17. Cathodoluminescence of rare earth implanted Ga2O3 and GeO2 nanostructures.

    PubMed

    Nogales, E; Hidalgo, P; Lorenz, K; Méndez, B; Piqueras, J; Alves, E

    2011-07-15

    Rare earth (RE) doped gallium oxide and germanium oxide micro- and nanostructures, mostly nanowires, have been obtained and their morphological and optical properties have been characterized. Undoped oxide micro- and nanostructures were grown by a thermal evaporation method and were subsequently doped with gadolinium or europium ions by ion implantation. No significant changes in the morphologies of the nanostructures were observed after ion implantation and thermal annealing. The luminescence emission properties have been studied with cathodoluminescence (CL) in a scanning electron microscope (SEM). Both β-Ga(2)O(3) and GeO(2) structures implanted with Eu show the characteristic red luminescence peak centered at around 610 nm, due to the (5)D(0)-(7)F(2) Eu(3+) intraionic transition. Sharpening of the luminescence peaks after thermal annealing is observed in Eu implanted β-Ga(2)O(3), which is assigned to the lattice recovery. Gd(3+) as-implanted samples do not show rare earth related luminescence. After annealing, optical activation of Gd(3+) is obtained in both matrices and a sharp ultraviolet peak centered at around 315 nm, associated with the Gd(3+) (6)P(7/2)-(8)S(7/2) intraionic transition, is observed. The influence of the Gd ion implantation and the annealing temperature on the gallium oxide broad intrinsic defect band has been analyzed.

  18. Conversion between hexagonal GaN and beta-Ga(2)O(3) nanowires and their electrical transport properties.

    PubMed

    Li, Jianye; An, Lei; Lu, Chenguang; Liu, Jie

    2006-02-01

    We have observed that the hexagonal GaN nanowires grown from a simple chemical vapor deposition method using gallium metal and ammonia gas are usually gallium-doped. By annealing in air, the gallium-doped hexagonal GaN nanowires could be completely converted to beta-Ga(2)O(3) nanowires. Annealing the beta-Ga(2)O(3) nanowires in ammonia could convert them back to undoped hexagonal GaN nanowires. Field effect transistors based on these three kinds of nanowires were fabricated, and their performances were studied. Because of gallium doping, the as-grown GaN nanowires show a weak gating effect. Through the conversion process of GaN nanowires (gallium-doped) --> Ga(2)O(3) nanowires --> GaN nanowires (undoped) via annealing, the final undoped GaN nanowires display different electrical properties than the initial gallium-doped GaN nanowires, show a pronounced n-type gating effect, and can be completely turned off.

  19. Demonstration of high mobility and quantum transport in modulation-doped β-(AlxGa1-x)2O3/Ga2O3 heterostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Yuewei; Neal, Adam; Xia, Zhanbo; Joishi, Chandan; Johnson, Jared M.; Zheng, Yuanhua; Bajaj, Sanyam; Brenner, Mark; Dorsey, Donald; Chabak, Kelson; Jessen, Gregg; Hwang, Jinwoo; Mou, Shin; Heremans, Joseph P.; Rajan, Siddharth

    2018-04-01

    In this work, we demonstrate a high mobility two-dimensional electron gas (2DEG) formed at the β-(AlxGa1-x)2O3/Ga2O3 interface through modulation doping. Shubnikov-de Haas (SdH) oscillations were observed in the modulation-doped β-(AlxGa1-x)2O3/Ga2O3 structure, indicating a high-quality electron channel formed at the heterojunction interface. The formation of the 2DEG channel was further confirmed by the weak temperature dependence of the carrier density, and the peak low temperature mobility was found to be 2790 cm2/Vs, which is significantly higher than that achieved in bulk-doped Beta-phase Gallium Oxide (β-Ga2O3). The observed SdH oscillations allowed for the extraction of the electron effective mass in the (010) plane to be 0.313 ± 0.015 m0 and the quantum scattering time to be 0.33 ps at 3.5 K. The demonstrated modulation-doped β-(AlxGa1-x)2O3/Ga2O3 structure lays the foundation for future exploration of quantum physical phenomena and semiconductor device technologies based on the β-Ga2O3 material system.

  20. Ga[OSi(O(t)Bu)3]3·THF, a thermolytic molecular precursor for high surface area gallium-containing silica materials of controlled dispersion and stoichiometry.

    PubMed

    Dombrowski, James P; Johnson, Gregory R; Bell, Alexis T; Tilley, T Don

    2016-07-05

    The molecular precursor tris[(tri-tert-butoxy)siloxy]gallium, as the tetrahydrofuran adduct Ga[OSi(O(t)Bu)3]3·THF (), was synthesized via the salt metathesis reaction of gallium trichloride with NaOSi(O(t)Bu)3. This complex serves as a model for isolated gallium in a silica framework. Complex decomposes thermally in hydrocarbon solvent, eliminating isobutylene, water, and tert-butanol to generate high surface area gallium-containing silica at low temperatures. When thermal decomposition was performed in the presence of P-123 Pluronic as a templating agent the generated material displayed uniform vermicular pores. Textural mesoporosity was evident in untemplated material. Co-thermolysis of with HOSi(O(t)Bu)3 in the presence of P-123 Pluronic led to materials with Ga : Si ratios ranging from 1 : 3 to 1 : 50, denoted UCB1-GaSi3, UCB1-GaSi10, UCB1-GaSi20 and UCB1-GaSi50. After calcination at 500 °C these materials exhibited decreasing surface areas and broadening pore distributions with increasing silicon content, indicating a loss of template effects. The position and dispersion of the gallium in UCB1-GaSi materials was investigated using (71)Ga MAS-NMR, powder XRD, and STEM/EDS elemental mapping. The results indicate a high degree of gallium dispersion in all samples, with gallium oxide clusters or oligomers present at higher gallium content.

  1. Low Temperature Flux Growth of 2H-SiC and Beta-Gallium Oxide

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Choa, Fow-Sen; Su, Ching-Hua; Arnold, Bradley; Kelly, Lisa

    2016-01-01

    We present brief overview of our study on the low temperature flux growth of two very important novel wide bandgap materials 2H-SiC and Beta-gallium oxide (Beta-Ga2O3). We have synthesized and grown 5 millimeter to 1 centimeter size single crystals of Beta-gallium oxide (Beta-Ga2O3). We used a flux and semi wet method to grow transparent good quality crystals. In the semi-wet method Ga2O3 was synthesized with starting gallium nitrate solution and urea as a nucleation agent. In the flux method we used tin and other metallic flux. This crystal was placed in an alumina crucible and temperature was raised above 1050 degrees Centigrade. After a time period of thirty hours, we observed prismatic and needle shaped crystals of gallium oxide. Scanning electron microscopic studies showed step growth morphology. Crystal was polished to measure the properties. Bandgap was measured 4.7electronvolts using the optical absorption curve. Another wide bandgap hexagonal 2H-SiC was grown by using Si-Al eutectic flux in the graphite crucible. We used slight AlN also as the impurity in the flux. The temperature was raised up to 1050 degrees Centigrade and slowly cooled to 850 degrees Centigrade. Preliminary characterization results of this material are also reported.

  2. Latest progress in gallium-oxide electronic devices

    NASA Astrophysics Data System (ADS)

    Higashiwaki, Masataka; Wong, Man Hoi; Konishi, Keita; Nakata, Yoshiaki; Lin, Chia-Hung; Kamimura, Takafumi; Ravikiran, Lingaparthi; Sasaki, Kohei; Goto, Ken; Takeyama, Akinori; Makino, Takahiro; Ohshima, Takeshi; Kuramata, Akito; Yamakoshi, Shigenobu; Murakami, Hisashi; Kumagai, Yoshinao

    2018-02-01

    Gallium oxide (Ga2O3) has emerged as a new competitor to SiC and GaN in the race toward next-generation power switching and harsh environment electronics by virtue of the excellent material properties and the relative ease of mass wafer production. In this proceedings paper, an overview of our recent development progress of Ga2O3 metal-oxide-semiconductor field-effect transistors and Schottky barrier diodes will be reported.

  3. Effects of O2 plasma post-treatment on ZnO: Ga thin films grown by H2O-thermal ALD

    NASA Astrophysics Data System (ADS)

    Lee, Yueh-Lin; Chuang, Jia-Hao; Huang, Tzu-Hsuan; Ho, Chong-Long; Wu, Meng-Chyi

    2013-03-01

    Transparent conducting oxides have been widely employed in optoelectronic devices using the various deposition methods such as sputtering, thermal evaporator, and e-gun evaporator technologies.1-3 In this work, gallium doped zinc oxide (ZnO:Ga) thin films were grown on glass substrates via H2O-thermal atomic layer deposition (ALD) at different deposition temperatures. ALD-GZO thin films were constituted as a layer-by-layer structure by stacking zinc oxides and gallium oxides. Diethylzinc (DEZ), triethylgallium (TEG) and H2O were used as zinc, gallium precursors and oxygen source, respectively. Furthermore, we investigated the influences of O2 plasma post-treatment power on the surface morphology, electrical and optical property of ZnO:Ga films. As the result of O2 plasma post-treatment, the characteristics of ZnO:Ga films exhibit a smooth surface, low resistivity, high carrier concentration, and high optical transmittance in the visible spectrum. However, the transmittance decreases with O2 plasma power in the near- and mid-infrared regions.

  4. Shape Engineering Driven by Selective Growth of SnO2 on Doped Ga2O3 Nanowires.

    PubMed

    Alonso-Orts, Manuel; Sánchez, Ana M; Hindmarsh, Steven A; López, Iñaki; Nogales, Emilio; Piqueras, Javier; Méndez, Bianchi

    2017-01-11

    Tailoring the shape of complex nanostructures requires control of the growth process. In this work, we report on the selective growth of nanostructured tin oxide on gallium oxide nanowires leading to the formation of SnO 2 /Ga 2 O 3 complex nanostructures. Ga 2 O 3 nanowires decorated with either crossing SnO 2 nanowires or SnO 2 particles have been obtained in a single step treatment by thermal evaporation. The reason for this dual behavior is related to the growth direction of trunk Ga 2 O 3 nanowires. Ga 2 O 3 nanowires grown along the [001] direction favor the formation of crossing SnO 2 nanowires. Alternatively, SnO 2 forms rhombohedral particles on [110] Ga 2 O 3 nanowires leading to skewer-like structures. These complex oxide structures were grown by a catalyst-free vapor-solid process. When pure Ga and tin oxide were used as source materials and compacted powders of Ga 2 O 3 acted as substrates, [110] Ga 2 O 3 nanowires grow preferentially. High-resolution transmission electron microscopy analysis reveals epitaxial relationship lattice matching between the Ga 2 O 3 axis and SnO 2 particles, forming skewer-like structures. The addition of chromium oxide to the source materials modifies the growth direction of the trunk Ga 2 O 3 nanowires, growing along the [001], with crossing SnO 2 wires. The SnO 2 /Ga 2 O 3 junctions does not meet the lattice matching condition, forming a grain boundary. The electronic and optical properties have been studied by XPS and CL with high spatial resolution, enabling us to get both local chemical and electronic information on the surface in both type of structures. The results will allow tuning optical and electronic properties of oxide complex nanostructures locally as a function of the orientation. In particular, we report a dependence of the visible CL emission of SnO 2 on its particular shape. Orange emission dominates in SnO 2 /Ga 2 O 3 crossing wires while green-blue emission is observed in SnO 2 particles attached to Ga 2

  5. Growth and characterization of spindle-like Ga2O3 nanocrystals by electrochemical reaction in hydrofluoric solution

    NASA Astrophysics Data System (ADS)

    Feng, Lungang; Li, Yufeng; Su, Xilin; Wang, Shuai; Liu, Hao; Wang, Jiangteng; Gong, Zhina; Ding, Wen; Zhang, Ye; Yun, Feng

    2016-12-01

    We report a novel fabrication method of spindle-like gallium oxide (Ga2O3) nanocrystals via two steps processed by electrochemical reaction of the MOVPE-grown GaN epitaxial layer in HF/ethanol (1:6) electrolyte and subsequent heat treatment. Depending on the electrolyte concentration, reaction time and applied voltage, micrometer- to nanometer-size spindle-like gallium fluoride tri-hydrate (GaF3·3H2O) of different densities and geometrical dimensions were formed on the surface of GaN. EDS, XPS and XRD were used to characterize the properties of the material before and after heat treatment. It is found that due to heat treatment at above 600 °C, nanocrystalline Ga2O3 were transformed from the GaF3·3H2O via pyrohydrolysis reaction mechanism. The band gap of ∼5.1 eV of the spindle-like Ga2O3 was measured by the optical absorption spectroscopy.

  6. Growth and characterization of β-Ga2O3 crystals

    NASA Astrophysics Data System (ADS)

    Nikolaev, V. I.; Maslov, V.; Stepanov, S. I.; Pechnikov, A. I.; Krymov, V.; Nikitina, I. P.; Guzilova, L. I.; Bougrov, V. E.; Romanov, A. E.

    2017-01-01

    Here we report on the growth and characterization of β-Ga2O3 bulk crystals and polycrystalline layer on different substrates. Bulk β-Ga2O3 crystals were produced by free crystallisation of gallium oxide melt in sapphire crucible. Transparent single crystals measuring up to 8 mm across were obtained. Good structural quality was confirmed by x-ray diffraction rocking curve FWHM values of 46″. Young's modulus, shear modulus and hardness of the β-Ga2O3 crystals were measured by nanoindentation and Vickers microindentation techniques. Polycrystalline β-Ga2O3 films were deposited on silicon and sapphire substrates by sublimation method. It was found that structure and morphology of the films were greatly influenced by the material and orientation of the substrates. The best results were achieved on a-plane sapphire substrates where predominantly (111) oriented films were obtained.

  7. Intrinsic electronic defects and multiple-atom processes in the oxidic semiconductor Ga2O3

    NASA Astrophysics Data System (ADS)

    Schmeißer, Dieter; Henkel, Karsten

    2018-04-01

    We report on the electronic structure of gallium oxide (Ga2O3) single crystals as studied by resonant photoelectron spectroscopy (resPES). We identify intrinsic electronic defects that are formed by mixed-atomic valence states. We differentiate three coexisting defect states that differ in their electronic correlation energy and their spatial localization lengths. Their relative abundance is described by a fractional ionicity with covalent and ionic bonding contributions. For Ga2O3, our analyses of the resPES data enable us to derive two main aspects: first, experimental access is given to determine the ionicity based on the original concepts of Pauling and Phillips. Second, we report on multi-atomic energy loss processes in the Ga2p core level and X-ray absorption data. The two experimental findings can be explained consistently in the same context of mixed-atomic valence states and intrinsic electronic defects.

  8. Dopant activation in Sn-doped Ga2O3 investigated by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Siah, S. C.; Brandt, R. E.; Lim, K.; Schelhas, L. T.; Jaramillo, R.; Heinemann, M. D.; Chua, D.; Wright, J.; Perkins, J. D.; Segre, C. U.; Gordon, R. G.; Toney, M. F.; Buonassisi, T.

    2015-12-01

    Doping activity in both beta-phase (β-) and amorphous (a-) Sn-doped gallium oxide (Ga2O3:Sn) is investigated by X-ray absorption spectroscopy (XAS). A single crystal of β-Ga2O3:Sn grown using edge-defined film-fed growth at 1725 °C is compared with amorphous Ga2O3:Sn films deposited at low temperature (<300 °C). Our XAS analyses indicate that activated Sn dopant atoms in conductive single crystal β-Ga2O3:Sn are present as Sn4+, preferentially substituting for Ga at the octahedral site, as predicted by theoretical calculations. In contrast, inactive Sn atoms in resistive a-Ga2O3:Sn are present in either +2 or +4 charge states depending on growth conditions. These observations suggest the importance of growing Ga2O3:Sn at high temperature to obtain a crystalline phase and controlling the oxidation state of Sn during growth to achieve dopant activation.

  9. Study of GaN nanorods converted from β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Li, Yuewen; Xiong, Zening; Zhang, Dongdong; Xiu, Xiangqian; Liu, Duo; Wang, Shuang; Hua, Xuemei; Xie, Zili; Tao, Tao; Liu, Bin; Chen, Peng; Zhang, Rong; Zheng, Youdou

    2018-05-01

    We report here high-quality β-Ga2O3 nanorods (NRs) grown on sapphire substrates by hydrothermal method. Ammoniating the β-Ga2O3 NRs results in strain-free wurtzite gallium nitride (GaN) NRs. It was shown by XRD and Raman spectroscopy that β-Ga2O3 was partially converted to GaN/β-Ga2O3 at 1000 °C and then completely converted to GaN NRs at 1050 °C, as confirmed by high-resolution transmission electron microscopy (HRTEM). There is no band-edge emission of β-Ga2O3 in the cathodoluminescence spectrum, and only a deep-level broad emission observed at 3.68-3.73 eV. The band edge emission (3.39 eV) of GaN NRs converted from β-Ga2O3 can also be observed.

  10. Carbon agent chemical vapor transport growth of Ga2O3 crystal

    NASA Astrophysics Data System (ADS)

    Jie, Su; Tong, Liu; Jingming, Liu; Jun, Yang; Guiying, Shen; Yongbiao, Bai; Zhiyuan, Dong; Youwen, Zhao

    2016-10-01

    Beta-type gallium oxide (β-Ga2O3) is a new attractive material for optoelectronic devices. Different methods had been tried to grow high quality β-Ga2O3 crystals. In this work, crystal growth of Ga2O3 has been carried out by chemical vapor transport (CVT) method in a closed quartz tube using C as transport agent and sapphire wafer as seed. The CVT mass flux has been analyzed by theoretical calculations based on equilibrium thermodynamics and 1D diffusional mass transport. The crystal growth experimental results are in agreement with the theoretical predictions. Influence factors of Ga2O3 crystal growth, such as temperature distribution, amount of C as transport agent used, have also been discussed. Structural (XRD) and optical (Raman spectroscopy, photoluminescence spectrum) properties of the CVT-Ga2O3 crystal are presented. Project supported by the National Natural Science Foundation of China (Nos. 61474104, 61504131).

  11. Coaxial metal-oxide-semiconductor (MOS) Au/Ga2O3/GaN nanowires.

    PubMed

    Hsieh, Chin-Hua; Chang, Mu-Tung; Chien, Yu-Jen; Chou, Li-Jen; Chen, Lih-Juann; Chen, Chii-Dong

    2008-10-01

    Coaxial metal-oxide-semiconductor (MOS) Au-Ga2O3-GaN heterostructure nanowires were successfully fabricated by an in situ two-step process. The Au-Ga2O3 core-shell nanowires were first synthesized by the reaction of Ga powder, a mediated Au thin layer, and a SiO2 substrate at 800 degrees C. Subsequently, these core-shell nanowires were nitridized in ambient ammonia to form a GaN coating layer at 600 degrees C. The GaN shell is a single crystal, an atomic flat interface between the oxide and semiconductor that ensures that the high quality of the MOS device is achieved. These novel 1D nitride-based MOS nanowires may have promise as building blocks to the future nitride-based vertical nanodevices.

  12. Atomic Layer Deposition of Gallium Oxide Films as Gate Dielectrics in AlGaN/GaN Metal-Oxide-Semiconductor High-Electron-Mobility Transistors

    NASA Astrophysics Data System (ADS)

    Shih, Huan-Yu; Chu, Fu-Chuan; Das, Atanu; Lee, Chia-Yu; Chen, Ming-Jang; Lin, Ray-Ming

    2016-04-01

    In this study, films of gallium oxide (Ga2O3) were prepared through remote plasma atomic layer deposition (RP-ALD) using triethylgallium and oxygen plasma. The chemical composition and optical properties of the Ga2O3 thin films were investigated; the saturation growth displayed a linear dependence with respect to the number of ALD cycles. These uniform ALD films exhibited excellent uniformity and smooth Ga2O3-GaN interfaces. An ALD Ga2O3 film was then used as the gate dielectric and surface passivation layer in a metal-oxide-semiconductor high-electron-mobility transistor (MOS-HEMT), which exhibited device performance superior to that of a corresponding conventional Schottky gate HEMT. Under similar bias conditions, the gate leakage currents of the MOS-HEMT were two orders of magnitude lower than those of the conventional HEMT, with the power-added efficiency enhanced by up to 9 %. The subthreshold swing and effective interfacial state density of the MOS-HEMT were 78 mV decade-1 and 3.62 × 1011 eV-1 cm-2, respectively. The direct-current and radio-frequency performances of the MOS-HEMT device were greater than those of the conventional HEMT. In addition, the flicker noise of the MOS-HEMT was lower than that of the conventional HEMT.

  13. Catalytic growth and structural characterization of semiconducting beta-Ga2O3 nanowires.

    PubMed

    Choi, Kyo-Hong; Cho, Kwon-Koo; Kim, Ki-Won; Cho, Gyu-Bong; Ahn, Hyo-Jun; Nam, Tae-Hyun

    2009-06-01

    We have successfully synthesized beta-Ga2O3 nanomaterials with various morphologies, such as wire, rod, belt and sheet-like, through simple thermal evaporation of metal gallium powder in the presence of nickel oxide catalyst. beta-Ga2O3 nanomaterials with different morphology were observed as a function of synthesis time and temperature. In this report, generation sites of the beta-Ga2O3 nanomaterials have been delicately surveyed by FESEM. The growth mechanisms of nanomaterials are distinguished by the view of its generation site. The growth of nanowire follows both VLS and VS mechanism and other kinds of materials such as nanorod, nanobelt and nanosheet follows VS mechanism.

  14. Synthesis and cathodoluminescence of beta-Ga2O3 nanowires with holes.

    PubMed

    Zhang, Xitian; Liu, Zhuang; Hark, Suikong

    2008-03-01

    Gallium oxide nanowires were synthesized on Si (001) substrate by chemical vapor deposition, using a Ga/Ga2O3 mixture as a precursor and Au as a catalyst. The structure of the as-synthesized products was examined by X-ray powder diffraction and high-resolution transmission electron microscopy, and found to be monoclinic beta-Ga2O3. The morphologies of the beta-Ga2O3 nanowires were characterized by scanning electron microscopy. The majority of the nanowires contain holes along their length, but a few were also found without holes. The holes are believed to be formed by the reaction of adsorbed Ga droplets on reactive terminating surfaces of the nanowires. For nanowires where these reactive surfaces are not exposed, the reaction of Ga is retarded. Cathodoluminescence (CL) of the nanowires was measured. Three emission bands centered at 376, 454, and 666 nm, respectively, were observed.

  15. A review of Ga2O3 materials, processing, and devices

    NASA Astrophysics Data System (ADS)

    Pearton, S. J.; Yang, Jiancheng; Cary, Patrick H.; Ren, F.; Kim, Jihyun; Tadjer, Marko J.; Mastro, Michael A.

    2018-03-01

    Gallium oxide (Ga2O3) is emerging as a viable candidate for certain classes of power electronics, solar blind UV photodetectors, solar cells, and sensors with capabilities beyond existing technologies due to its large bandgap. It is usually reported that there are five different polymorphs of Ga2O3, namely, the monoclinic (β-Ga2O3), rhombohedral (α), defective spinel (γ), cubic (δ), or orthorhombic (ɛ) structures. Of these, the β-polymorph is the stable form under normal conditions and has been the most widely studied and utilized. Since melt growth techniques can be used to grow bulk crystals of β-GaO3, the cost of producing larger area, uniform substrates is potentially lower compared to the vapor growth techniques used to manufacture bulk crystals of GaN and SiC. The performance of technologically important high voltage rectifiers and enhancement-mode Metal-Oxide Field Effect Transistors benefit from the larger critical electric field of β-Ga2O3 relative to either SiC or GaN. However, the absence of clear demonstrations of p-type doping in Ga2O3, which may be a fundamental issue resulting from the band structure, makes it very difficult to simultaneously achieve low turn-on voltages and ultra-high breakdown. The purpose of this review is to summarize recent advances in the growth, processing, and device performance of the most widely studied polymorph, β-Ga2O3. The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed. Areas where continued development is needed to fully exploit the properties of Ga2O3 are identified.

  16. First principles study of gallium cleaning for hydrogen-contaminated α-Al2O3(0001) surfaces.

    PubMed

    Yang, Rui; Rendell, Alistair P

    2013-05-15

    The use of gallium for cleaning hydrogen-contaminated Al2O3 surfaces is explored by performing first principles density functional calculations of gallium adsorption on a hydrogen-contaminated Al-terminated α-Al2O3(0001) surface. Both physisorbed and chemisorbed H-contaminated α-Al2O3(0001) surfaces with one monolayer (ML) gallium coverage are investigated. The thermodynamics of gallium cleaning are considered for a variety of different asymptotic products, and are found to be favorable in all cases. Physisorbed H atoms have very weak interactions with the Al2O3 surface and can be removed easily by the Ga ML. Chemisorbed H atoms form stronger interactions with the surface Al atoms. Bonding energy analysis and departure simulations indicate, however, that chemisorbed H atoms can be effectively removed by the Ga ML. Copyright © 2013 Wiley Periodicals, Inc.

  17. The SAM, not the electrodes, dominates charge transport in metal-monolayer//Ga2O3/gallium-indium eutectic junctions.

    PubMed

    Reus, William F; Thuo, Martin M; Shapiro, Nathan D; Nijhuis, Christian A; Whitesides, George M

    2012-06-26

    The liquid-metal eutectic of gallium and indium (EGaIn) is a useful electrode for making soft electrical contacts to self-assembled monolayers (SAMs). This electrode has, however, one feature whose effect on charge transport has been incompletely understood: a thin (approximately 0.7 nm) film-consisting primarily of Ga(2)O(3)-that covers its surface when in contact with air. SAMs that rectify current have been measured using this electrode in Ag(TS)-SAM//Ga(2)O(3)/EGaIn (where Ag(TS) = template-stripped Ag surface) junctions. This paper organizes evidence, both published and unpublished, showing that the molecular structure of the SAM (specifically, the presence of an accessible molecular orbital asymmetrically located within the SAM), not the difference between the electrodes or the characteristics of the Ga(2)O(3) film, causes the observed rectification. By examining and ruling out potential mechanisms of rectification that rely either on the Ga(2)O(3) film or on the asymmetry of the electrodes, this paper demonstrates that the structure of the SAM dominates charge transport through Ag(TS)-SAM//Ga(2)O(3)/EGaIn junctions, and that the electrical characteristics of the Ga(2)O(3) film have a negligible effect on these measurements.

  18. Ga2O3-In2O3 thin films on sapphire substrates: Synthesis and ultraviolet photoconductivity

    NASA Astrophysics Data System (ADS)

    Muslimov, A. E.; Butashin, A. V.; Kolymagin, A. B.; Nabatov, B. V.; Kanevsky, V. M.

    2017-11-01

    The structure and electrical and optical properties of β-Ga2O3-In2O3 thin films on sapphire substrates with different orientations have been investigated. The samples have been prepared by annealing of gallium-indium metallic films on sapphire substrates in air at different gallium-to-indium ratios in the initial mixture. The photoconductivity of these structures in the solar-blind ultraviolet spectral region has been examined.

  19. One-step rapid synthesis of ultrafine γ-Ga2O3 nanocrystals by microwave hydrothermal method in ammonium hydroxide medium

    NASA Astrophysics Data System (ADS)

    Cui, Lu; Wang, Hong; Xin, Baifu; Mao, Guijie

    2017-10-01

    Ultrafine nanocrystals of γ-gallium oxide (γ-Ga2O3) were rapidly synthesized via microwave hydrothermal method at 140 °C, in which Ga(NO3)3 was used as the gallium source and urea was the precipitant. The samples were characterized by X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), transmission electron microscopy (TEM), nitrogen physisorption and photoluminescence spectroscopy (PL). The crystallite size of ultrafine spinel γ-Ga2O3 was in the range from 4 to 5 nm and the optical bandgap was 4.61 eV. To improve the crystallinity, the ultrafine γ-Ga2O3 nanocrystals were calcined at 300-700 °C further. The ultrafine γ-Ga2O3 calcined at 500 °C (calcined-γ-Ga2O3) still remained the metastable γ-phase with relatively high crystallinity and the crystallite size around 5-7 nm. Photocatalytic performances of the synthesized samples were also evaluated by the degradation of rhodamine B (RhB). Results revealed that the ultrafine γ-Ga2O3 and the calcined-γ-Ga2O3 samples exhibited high photocatalytic efficiencies of 68.2 and 90.7%, respectively.

  20. Dopant activation in Sn-doped Ga{sub 2}O{sub 3} investigated by X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siah, S. C., E-mail: sincheng@alum.mit.edu; Brandt, R. E.; Jaramillo, R.

    2015-12-21

    Doping activity in both beta-phase (β-) and amorphous (a-) Sn-doped gallium oxide (Ga{sub 2}O{sub 3}:Sn) is investigated by X-ray absorption spectroscopy (XAS). A single crystal of β-Ga{sub 2}O{sub 3}:Sn grown using edge-defined film-fed growth at 1725 °C is compared with amorphous Ga{sub 2}O{sub 3}:Sn films deposited at low temperature (<300 °C). Our XAS analyses indicate that activated Sn dopant atoms in conductive single crystal β-Ga{sub 2}O{sub 3}:Sn are present as Sn{sup 4+}, preferentially substituting for Ga at the octahedral site, as predicted by theoretical calculations. In contrast, inactive Sn atoms in resistive a-Ga{sub 2}O{sub 3}:Sn are present in either +2 or +4more » charge states depending on growth conditions. These observations suggest the importance of growing Ga{sub 2}O{sub 3}:Sn at high temperature to obtain a crystalline phase and controlling the oxidation state of Sn during growth to achieve dopant activation.« less

  1. Raman enhancement by graphene-Ga2O3 2D bilayer film

    PubMed Central

    2014-01-01

    2D β-Ga2O3 flakes on a continuous 2D graphene film were prepared by a one-step chemical vapor deposition on liquid gallium surface. The composite was characterized by optical microscopy, scanning electron microscopy, Raman spectroscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy (XPS). The experimental results indicate that Ga2O3 flakes grew on the surface of graphene film during the cooling process. In particular, tenfold enhancement of graphene Raman scattering signal was detected on Ga2O3 flakes, and XPS indicates the C-O bonding between graphene and Ga2O3. The mechanism of Raman enhancement was discussed. The 2D Ga2O3-2D graphene structure may possess potential applications. PMID:24472433

  2. Raman enhancement by graphene-Ga2O3 2D bilayer film.

    PubMed

    Zhu, Yun; Yu, Qing-Kai; Ding, Gu-Qiao; Xu, Xu-Guang; Wu, Tian-Ru; Gong, Qian; Yuan, Ning-Yi; Ding, Jian-Ning; Wang, Shu-Min; Xie, Xiao-Ming; Jiang, Mian-Heng

    2014-01-28

    2D β-Ga2O3 flakes on a continuous 2D graphene film were prepared by a one-step chemical vapor deposition on liquid gallium surface. The composite was characterized by optical microscopy, scanning electron microscopy, Raman spectroscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy (XPS). The experimental results indicate that Ga2O3 flakes grew on the surface of graphene film during the cooling process. In particular, tenfold enhancement of graphene Raman scattering signal was detected on Ga2O3 flakes, and XPS indicates the C-O bonding between graphene and Ga2O3. The mechanism of Raman enhancement was discussed. The 2D Ga2O3-2D graphene structure may possess potential applications.

  3. Design consideration of high voltage Ga2O3 vertical Schottky barrier diode with field plate

    NASA Astrophysics Data System (ADS)

    Choi, J.-H.; Cho, C.-H.; Cha, H.-Y.

    2018-06-01

    Gallium oxide (Ga2O3) based vertical Schottky barrier diodes (SBDs) were designed for high voltage switching applications. Since p-type Ga2O3 epitaxy growth or p-type ion implantation technique has not been developed yet, a field plate structure was employed in this study to maximize the breakdown voltage by suppressing the electric field at the anode edge. TCAD simulation was used for the physical analysis of Ga2O3 SBDs from which it was found that careful attention must be paid to the insulator under the field plate. Due to the extremely high breakdown field property of Ga2O3, an insulator with both high permittivity and high breakdown field must be used for the field plate formation.

  4. Free-Standing β-Ga2O3 Thin Diaphragms

    NASA Astrophysics Data System (ADS)

    Zheng, Xu-Qian; Lee, Jaesung; Rafique, Subrina; Han, Lu; Zorman, Christian A.; Zhao, Hongping; Feng, Philip X.-L.

    2018-02-01

    Free-standing, very thin, single-crystal β-gallium oxide (β-Ga2O3) diaphragms have been constructed and their dynamical mechanical properties characterized by noncontact, noninvasive optical measurements harnessing the multimode nanomechanical resonances of these suspended nanostructures. We synthesized single-crystal β-Ga2O3 using low-pressure chemical vapor deposition (LPCVD) on a 3C-SiC epilayer grown on Si substrate at temperature of 950°C for 1.5 h. The synthesized single-crystal nanoflakes had widths of ˜ 2 μm to 30 μm and thicknesses of ˜ 20 nm to 140 nm, from which we fabricated free-standing circular drumhead β-Ga2O3 diaphragms with thicknesses of ˜ 23 nm to 73 nm and diameters of ˜ 3.2 μm and ˜ 5.2 μm using a dry stamp-transfer technique. Based on measurements of multiple flexural-mode mechanical resonances using ultrasensitive laser interferometric detection and performing thermal annealing at 250°C for 1.5 h, we quantified the effects of annealing and adsorption of atmospheric gas molecules on the resonant characteristics of the diaphragms. Furthermore, we studied the effects of structural nonidealities on these free-standing β-Ga2O3 nanoscale diaphragms. We present extensive characterization of the mechanical and optical properties of free-standing β-Ga2O3 diaphragms, paving the way for realization of resonant transducers using such nanomechanical structures for use in applications including gas sensing and ultraviolet radiation detection.

  5. Twin-induced phase transition from β-Ga2O3 to α-Ga2O3 in Ga2O3 thin films

    NASA Astrophysics Data System (ADS)

    Choi, Byeongdae; Allabergenov, Bunyod; Lyu, Hong-Kun; Lee, Seong Eui

    2018-06-01

    We deposited a 300-nm-thick Ga2O3 thin film on an amorphous SiO2/Si substrate via pulsed laser deposition. X-ray diffraction patterns revealed the formation of β-Ga2O3 phase at a substrate temperature of 700 °C. X-ray photoelectron spectra indicated that the degree of oxidation increased after annealing at 700 °C. Further annealings at higher temperatures led to a transition of the β-Ga2O3 phase to the α-Ga2O3 phase; this transition was caused by the twin structure formed during the crystallinity improvement process. In addition, we discuss the mechanism of the transition from the β phase to the α phase in the β-Ga2O3 thin films.

  6. Synthesis of gallium nitride nanostructures by nitridation of electrochemically deposited gallium oxide on silicon substrate.

    PubMed

    Ghazali, Norizzawati Mohd; Yasui, Kanji; Hashim, Abdul Manaf

    2014-01-01

    Gallium nitride (GaN) nanostructures were successfully synthesized by the nitridation of the electrochemically deposited gallium oxide (Ga2O3) through the utilization of a so-called ammoniating process. Ga2O3 nanostructures were firstly deposited on Si substrate by a simple two-terminal electrochemical technique at a constant current density of 0.15 A/cm(2) using a mixture of Ga2O3, HCl, NH4OH and H2O for 2 h. Then, the deposited Ga2O3 sample was ammoniated in a horizontal quartz tube single zone furnace at various ammoniating times and temperatures. The complete nitridation of Ga2O3 nanostructures at temperatures of 850°C and below was not observed even the ammoniating time was kept up to 45 min. After the ammoniating process at temperature of 900°C for 15 min, several prominent diffraction peaks correspond to hexagonal GaN (h-GaN) planes were detected, while no diffraction peak of Ga2O3 structure was detected, suggesting a complete transformation of Ga2O3 to GaN. Thus, temperature seems to be a key parameter in a nitridation process where the deoxidization rate of Ga2O3 to generate gaseous Ga2O increase with temperature. The growth mechanism for the transformation of Ga2O3 to GaN was proposed and discussed. It was found that a complete transformation can not be realized without a complete deoxidization of Ga2O3. A significant change of morphological structures takes place after a complete transformation of Ga2O3 to GaN where the original nanorod structures of Ga2O3 diminish, and a new nanowire-like GaN structures appear. These results show that the presented method seems to be promising in producing high-quality h-GaN nanostructures on Si.

  7. Synthesis of gallium nitride nanostructures by nitridation of electrochemically deposited gallium oxide on silicon substrate

    PubMed Central

    2014-01-01

    Gallium nitride (GaN) nanostructures were successfully synthesized by the nitridation of the electrochemically deposited gallium oxide (Ga2O3) through the utilization of a so-called ammoniating process. Ga2O3 nanostructures were firstly deposited on Si substrate by a simple two-terminal electrochemical technique at a constant current density of 0.15 A/cm2 using a mixture of Ga2O3, HCl, NH4OH and H2O for 2 h. Then, the deposited Ga2O3 sample was ammoniated in a horizontal quartz tube single zone furnace at various ammoniating times and temperatures. The complete nitridation of Ga2O3 nanostructures at temperatures of 850°C and below was not observed even the ammoniating time was kept up to 45 min. After the ammoniating process at temperature of 900°C for 15 min, several prominent diffraction peaks correspond to hexagonal GaN (h-GaN) planes were detected, while no diffraction peak of Ga2O3 structure was detected, suggesting a complete transformation of Ga2O3 to GaN. Thus, temperature seems to be a key parameter in a nitridation process where the deoxidization rate of Ga2O3 to generate gaseous Ga2O increase with temperature. The growth mechanism for the transformation of Ga2O3 to GaN was proposed and discussed. It was found that a complete transformation can not be realized without a complete deoxidization of Ga2O3. A significant change of morphological structures takes place after a complete transformation of Ga2O3 to GaN where the original nanorod structures of Ga2O3 diminish, and a new nanowire-like GaN structures appear. These results show that the presented method seems to be promising in producing high-quality h-GaN nanostructures on Si. PMID:25593562

  8. The effect of sub-oxide phases on the transparency of tin-doped gallium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, K.; Schelhas, L. T.; Siah, S. C.

    2016-10-03

    There have been a number of studies on the fabrication of Sn-doped gallium oxide (Ga 2O 3:Sn) films with both conductive and transparent properties using a variety of deposition methods. However, often, synthesis results in films that are not transparent. In this paper, we examine the mechanisms underlying these results in Ga 2O 3:Sn thin films prepared at various growth temperatures, Sn concentrations, and oxygen partial pressures. With X-ray absorption spectroscopy, transmission electron microscopy and energy dispersive spectroscopy, we find that when films are grown under the oxygen deficient conditions there are Ga sub-oxide and SnOx phases in the Gamore » 2O 3:Sn thin film. These Ga sub-oxide phases are only found in non-transparent films, and so we infer that the Ga sub-oxide is responsible for the non-transparency. These observations suggest that to obtain transparent Ga 2O 3:Sn, films deposition or subsequent annealing must be carefully controlled in both temperature and oxygen partial pressure to avoid the formation of Ga sub-oxide phases.« less

  9. The effect of sub-oxide phases on the transparency of tin-doped gallium oxide

    DOE PAGES

    Lim, K.; Schelhas, L. T.; Siah, S. C.; ...

    2016-10-07

    There have been a number of studies on the fabrication of Sn-doped gallium oxide (Ga 2O 3:Sn) films with both conductive and transparent properties using a variety of deposition methods. However, often, synthesis results in films that are not transparent. In this paper, we examine the mechanisms underlying these results in Ga 2O 3:Sn thin films prepared at various growth temperatures, Sn concentrations, and oxygen partial pressures. With X-ray absorption spectroscopy, transmission electron microscopy and energy dispersive spectroscopy, we find that when films are grown under the oxygen deficient conditions there are Ga sub-oxide and SnO x phases in themore » Ga 2O 3:Sn thin film. These Ga sub-oxide phases are only found in non-transparent films, and so we infer that the Ga sub-oxide is responsible for the non-transparency. Furthermore, these observations suggest that to obtain transparent Ga 2O 3:Sn, films deposition or subsequent annealing must be carefully controlled in both temperature and oxygen partial pressure to avoid the formation of Ga sub-oxide phases.« less

  10. Atomic layer deposition TiO 2-Al 2O 3 stack: An improved gate dielectric on Ga-polar GaN metal oxide semiconductor capacitors

    DOE PAGES

    Wei, Daming; Edgar, James H.; Briggs, Dayrl P.; ...

    2014-10-15

    This research focuses on the benefits and properties of TiO 2-Al 2O 3 nano-stack thin films deposited on Ga 2O 3/GaN by plasma-assisted atomic layer deposition (PA-ALD) for gate dielectric development. This combination of materials achieved a high dielectric constant, a low leakage current, and a low interface trap density. Correlations were sought between the films’ structure, composition, and electrical properties. The gate dielectrics were approximately 15 nm thick and contained 5.1 nm TiO 2, 7.1 nm Al 2O 3 and 2 nm Ga 2O 3 as determined by spectroscopic ellipsometry. The interface carbon concentration, as measured by x-ray photoelectronmore » spectroscopy (XPS) depth profile, was negligible for GaN pretreated by thermal oxidation in O 2 for 30 minutes at 850°C. The RMS roughness slightly increased after thermal oxidation and remained the same after ALD of the nano-stack, as determined by atomic force microscopy. The dielectric constant of TiO 2-Al 2O 3 on Ga2O3/GaN was increased to 12.5 compared to that of pure Al 2O 3 (8~9) on GaN. In addition, the nano-stack's capacitance-voltage (C-V) hysteresis was small, with a total trap density of 8.74 × 10 11 cm -2. The gate leakage current density (J=2.81× 10 -8 A/cm 2) was low at +1 V gate bias. These results demonstrate the promising potential of plasma ALD deposited TiO 2/Al 2O 3 for serving as the gate oxide on Ga 2O 3/GaN based MOS devices.« less

  11. Atomic layer deposition TiO 2-Al 2O 3 stack: An improved gate dielectric on Ga-polar GaN metal oxide semiconductor capacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Daming; Edgar, James H.; Briggs, Dayrl P.

    This research focuses on the benefits and properties of TiO 2-Al 2O 3 nano-stack thin films deposited on Ga 2O 3/GaN by plasma-assisted atomic layer deposition (PA-ALD) for gate dielectric development. This combination of materials achieved a high dielectric constant, a low leakage current, and a low interface trap density. Correlations were sought between the films’ structure, composition, and electrical properties. The gate dielectrics were approximately 15 nm thick and contained 5.1 nm TiO 2, 7.1 nm Al 2O 3 and 2 nm Ga 2O 3 as determined by spectroscopic ellipsometry. The interface carbon concentration, as measured by x-ray photoelectronmore » spectroscopy (XPS) depth profile, was negligible for GaN pretreated by thermal oxidation in O 2 for 30 minutes at 850°C. The RMS roughness slightly increased after thermal oxidation and remained the same after ALD of the nano-stack, as determined by atomic force microscopy. The dielectric constant of TiO 2-Al 2O 3 on Ga2O3/GaN was increased to 12.5 compared to that of pure Al 2O 3 (8~9) on GaN. In addition, the nano-stack's capacitance-voltage (C-V) hysteresis was small, with a total trap density of 8.74 × 10 11 cm -2. The gate leakage current density (J=2.81× 10 -8 A/cm 2) was low at +1 V gate bias. These results demonstrate the promising potential of plasma ALD deposited TiO 2/Al 2O 3 for serving as the gate oxide on Ga 2O 3/GaN based MOS devices.« less

  12. Liquid metal/metal oxide frameworks with incorporated Ga2O3 for photocatalysis.

    PubMed

    Zhang, Wei; Naidu, Boddu S; Ou, Jian Zhen; O'Mullane, Anthony P; Chrimes, Adam F; Carey, Benjamin J; Wang, Yichao; Tang, Shi-Yang; Sivan, Vijay; Mitchell, Arnan; Bhargava, Suresh K; Kalantar-Zadeh, Kourosh

    2015-01-28

    Solvothermally synthesized Ga2O3 nanoparticles are incorporated into liquid metal/metal oxide (LM/MO) frameworks in order to form enhanced photocatalytic systems. The LM/MO frameworks, both with and without incorporated Ga2O3 nanoparticles, show photocatalytic activity due to a plasmonic effect where performance is related to the loading of Ga2O3 nanoparticles. Optimum photocatalytic efficiency is obtained with 1 wt % incorporation of Ga2O3 nanoparticles. This can be attributed to the sub-bandgap states of LM/MO frameworks, contributing to pseudo-ohmic contacts which reduce the free carrier injection barrier to Ga2O3.

  13. Soft-template mediated synthesis of GaOOH nanorod-shelled microspheres and thermal conversion to beta-Ga2O3.

    PubMed

    Wang, Jian; Li, Qi; Qiu, Xiaohui; He, Yujian; Liu, Wei

    2010-07-01

    Micrometer-scale hollow spheres self-assembled by GaOOH nanorods were synthesized under hydrothermal conditions using gallium nitrate and sodium hydroxide as starting materials. The structures and morphologies of the products were studied by X-ray diffraction and scanning electron microscopy. Time-dependent experiments revealed three stages involved in the process of reaction including the initial stage of formation of surfactant vesicles which can be considered as soft templates, followed by the nucleation of GaOOH nanoclusters, and the assembling and growth of nanorods under the modulation of the spherical vesicles. The growth kinetics of the GaOOH nanorods was systematically investigated. Based on the experimental observation, a template-mediated assembling mechanism was proposed. We further demonstrated that the GaOOH nanorods could be converted to gallium oxide (beta-Ga2O3) nanorods by calcination without changing the spherical morphology of the assemblies.

  14. Gallium Oxide Nanostructures for High Temperature Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chintalapalle, Ramana V.

    Gallium oxide (Ga 2O 3) thin films were produced by sputter deposition by varying the substrate temperature (T s) in a wide range (T s=25-800 °C). The structural characteristics and electronic properties of Ga 2O 3 films were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), Rutherford backscattering spectrometry (RBS) and spectrophotometric measurements. The effect of growth temperature is significant on the chemistry, crystal structure and morphology of Ga 2O 3 films. XRD and SEM analyses indicate that the Ga 2O 3 films grown at lower temperatures were amorphous while those grown at T s≥500more » oC were nanocrystalline. RBS measurements indicate the well-maintained stoichiometry of Ga 2O 3 films at T s=300-800 °C. The electronic structure determination indicated that the nanocrystalline Ga 2O 3films exhibit a band gap of ~5 eV. Tungsten (W) incorporated Ga 2O 3 films were produced by co-sputter deposition. W-concentration was varied by the applied sputtering-power. No secondary phase formation was observed in W-incorporated Ga 2O 3 films. W-induced effects were significant on the structure and electronic properties of Ga2O3 films. The band gap of Ga 2O 3 films without W-incorporation was ~5 eV. Oxygen sensor characteristics evaluated using optical and electrical methods indicate a faster response in W-doped Ga 2O 3 films compared to intrinsic Ga 2O 3 films. The results demonstrate the applicability of both intrinsic and W-doped Ga-oxide films for oxygen sensor application at temperatures ≥700 °C.« less

  15. Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n-type GaN

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Ting; Chen, Hong-Wei; Lee, Hsin-Ying

    2003-06-01

    Using a photoelectrochemical method involving a He-Cd laser, Ga2O3 oxide layers were directly grown on n-type GaN. We demonstrated the performance of the resultant metal-oxide-semiconductor devices based on the grown Ga2O3 layer. An extremely low reverse leakage current of 200 pA was achieved when devices operated at -20 V. Furthermore, high forward and reverse breakdown electric fields of 2.80 MV/cm and 5.70 MV/cm, respectively, were obtained. Using a photoassisted current-voltage method, a low interface state density of 2.53×1011 cm-2 eV-1 was estimated. The varactor devices permit formation of inversion layers, so that they may be applied for the fabrication of metal-oxide-semiconductor field-effect transistors.

  16. Growth and characterization of β-Ga2O3 thin films by molecular beam epitaxy for deep-UV photodetectors

    NASA Astrophysics Data System (ADS)

    Ghose, Susmita; Rahman, Shafiqur; Hong, Liang; Rojas-Ramirez, Juan Salvador; Jin, Hanbyul; Park, Kibog; Klie, Robert; Droopad, Ravi

    2017-09-01

    The growth of high quality epitaxial beta-gallium oxide (β-Ga2O3) using a compound source by molecular beam epitaxy has been demonstrated on c-plane sapphire (Al2O3) substrates. The compound source provides oxidized gallium molecules in addition to oxygen when heated from an iridium crucible in a high temperature effusion cell enabling a lower heat of formation for the growth of Ga2O3, resulting in a more efficient growth process. This source also enabled the growth of crystalline β-Ga2O3 without the need for additional oxygen. The influence of the substrate temperatures on the crystal structure and quality, chemical bonding, surface morphology, and optical properties has been systematically evaluated by x-ray diffraction, scanning transmission electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, spectroscopic ellipsometry, and UV-vis spectroscopy. Under optimized growth conditions, all films exhibited pure (" separators="|2 ¯01 ) oriented β-Ga2O3 thin films with six-fold rotational symmetry when grown on a sapphire substrate. The thin films demonstrated significant absorption in the deep-ultraviolet (UV) region with an optical bandgap around 5.0 eV and a refractive index of 1.9. A deep-UV photodetector fabricated on the high quality β-Ga2O3 thin film exhibits high resistance and small dark current (4.25 nA) with expected photoresponse for 254 nm UV light irradiation suggesting that the material grown using the compound source is a potential candidate for deep-ultraviolet photodetectors.

  17. Preparation of gallium nitride surfaces for atomic layer deposition of aluminum oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, A. J.; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093; Chagarov, E.

    2014-09-14

    A combined wet and dry cleaning process for GaN(0001) has been investigated with XPS and DFT-MD modeling to determine the molecular-level mechanisms for cleaning and the subsequent nucleation of gate oxide atomic layer deposition (ALD). In situ XPS studies show that for the wet sulfur treatment on GaN(0001), sulfur desorbs at room temperature in vacuum prior to gate oxide deposition. Angle resolved depth profiling XPS post-ALD deposition shows that the a-Al{sub 2}O{sub 3} gate oxide bonds directly to the GaN substrate leaving both the gallium surface atoms and the oxide interfacial atoms with XPS chemical shifts consistent with bulk-like charge.more » These results are in agreement with DFT calculations that predict the oxide/GaN(0001) interface will have bulk-like charges and a low density of band gap states. This passivation is consistent with the oxide restoring the surface gallium atoms to tetrahedral bonding by eliminating the gallium empty dangling bonds on bulk terminated GaN(0001)« less

  18. [Synthesis and spectral characteristic of Ga-Fe3O4 at room temperature].

    PubMed

    Wang, Jing; Deng, Tong; Yang, Cai-Qin; Lin, Yu-Long; Wang, Wei; Wu, Hai-Yan

    2008-03-01

    Gallium bearing ferrites with different gallium content were synthesized by oxidation of ferrous and gallium ions under alkaline condition and room temperature. The samples were subjected to IR, XRD, Mossbauer spectral analysis and magnetization characterization. The results indicated that the green-rust intermediate phase would be produced during the procedure of Ga-Fe3O4 formation, and the green-rust intermediate phase was converted to ferrites with spinel structure during the drying under hot-N2 atmosphere. With the introduction of gallium into the spinel structure, the interplanar crystal spacing of the spinel structure decreased, as indicated from XRD spectra, and the lattice vibration of M(T)-O-M(o) moved to the high-frequency resulting from IR spectra. A small amount gallium introduction entered the tetrahedral sites preferentially rather than the octahedral sites, and increasing gallium introduction would enhance the occupation of octahedral sites. Furthermore, a small content of gallium in the initial solution could prevent the formation of non-magnetic Fe2O3.

  19. Interfacial Engineering of Nanoporous Architectures in Ga2O3 Film toward Self-Aligned Tubular Nanostructure with an Enhanced Photocatalytic Activity on Water Splitting.

    PubMed

    Shrestha, Nabeen K; Bui, Hoa Thi; Lee, Taegweon; Noh, Yong-Young

    2018-04-17

    The present work demonstrates the formation of self-aligned nanoporous architecture of gallium oxide by anodization of gallium metal film controlled at -15 °C in aqueous electrolyte consisting of phosphoric acid. SEM examination of the anodized film reveals that by adding ethylene glycol to the electrolyte and optimizing the ratio of phosphoric acid and water, chemical etching at the oxide/electrolyte interfaces can be controlled, leading to the formation of aligned nanotubular oxide structures with closed bottom. XPS analysis confirms the chemical composition of the oxide film as Ga 2 O 3 . Further, XRD and SAED examination reveals that the as-synthesized nanotubular structure is amorphous, and can be crystallized to β-Ga 2 O 3 phase by annealing the film at 600 °C. The nanotubular structured film, when used as photoanode for photoelectrochemical splitting of water, achieved a higher photocurrent of about two folds than that of the nanoporous film, demonstrating the rewarding effect of the nanotubular structure. In addition, the work also demonstrates the formation of highly organized nonporous Ga 2 O 3 structure on a nonconducting glass substrate coated with thin film of Ga-metal, highlighting that the current approach can be extended for the formation of self-organized nanoporous Ga 2 O 3 thin film even on nonconducting flexible substrates.

  20. Size-tunable phosphorescence in colloidal metastable gamma-Ga2O3 nanocrystals.

    PubMed

    Wang, Ting; Farvid, Shokouh S; Abulikemu, Mutalifu; Radovanovic, Pavle V

    2010-07-14

    We report a colloidal synthesis of gallium oxide (Ga(2)O(3)) nanocrystals having metastable cubic crystal structure (gamma phase) and uniform size distribution. Using the synthesized nanocrystal size series we demonstrate for the first time a size-tunable photoluminescence in Ga(2)O(3) from ultraviolet to blue, with the emission shifting to lower energies with increasing nanocrystal size. The observed photoluminescence is dominated by defect-based donor-acceptor pair recombination and has a lifetime of several milliseconds. Importantly, the decay of this phosphorescence is also size dependent. The phosphorescence energy and the decay rate increase with decreasing nanocrystal size, owing to a reduced donor-acceptor separation. These results allow for a rational and predictable tuning of the optical properties of this technologically important material and demonstrate the possibility of manipulating the localized defect interactions via nanocrystal size. Furthermore, the same defect states, particularly donors, are also implicated in electrical conductivity rendering monodispersed Ga(2)O(3) nanocrystals a promising material for multifunctional optoelectronic structures and devices.

  1. Indium Gallium Nitride/Gallium Nitride (InGaN/GaN) Nanorods Superlattice (SL)

    DTIC Science & Technology

    2006-03-29

    Final Report (Technical) 3. DATES COVERED 29-03-2005 to 29-05-2006 4. TITLE AND SUBTITLE Indium Gallium Nitride/ Gallium Nitride (InGaN/GaN...Institution: Quantum functional Semiconductor Research Center (QSRC), Dongguk University - Title of project: Indium Gallium Nitride/ Gallium Nitride...Accepted with minor revision Indium Gallium Nitride / Gallium Nitride (InGaN/ GaN) Nanorods Superlattice (SL) Abstract The growth condition, electrical

  2. Ultrawide Band Gap β-Ga2O3 Nanomechanical Resonators with Spatially Visualized Multimode Motion.

    PubMed

    Zheng, Xu-Qian; Lee, Jaesung; Rafique, Subrina; Han, Lu; Zorman, Christian A; Zhao, Hongping; Feng, Philip X-L

    2017-12-13

    Beta gallium oxide (β-Ga 2 O 3 ) is an emerging ultrawide band gap (4.5 eV-4.9 eV) semiconductor with attractive properties for future power electronics, optoelectronics, and sensors for detecting gases and ultraviolet radiation. β-Ga 2 O 3 thin films made by various methods are being actively studied toward such devices. Here, we report on the experimental demonstration of single-crystal β-Ga 2 O 3 nanomechanical resonators using β-Ga 2 O 3 nanoflakes grown via low-pressure chemical vapor deposition (LPCVD). By investigating β-Ga 2 O 3 circular drumhead structures, we demonstrate multimode nanoresonators up to the sixth mode in high and very high frequency (HF/VHF) bands, and also realize spatial mapping and visualization of the multimode motion. These measurements reveal a Young's modulus of E Y = 261 GPa and anisotropic biaxial built-in tension of 37.5 MPa and 107.5 MPa. We find that thermal annealing can considerably improve the resonance characteristics, including ∼40% upshift in frequency and ∼90% enhancement in quality (Q) factor. This study lays a foundation for future exploration and development of mechanically coupled and tunable β-Ga 2 O 3 electronic, optoelectronic, and physical sensing devices.

  3. Influence of gate recess on the electronic characteristics of β-Ga2O3 MOSFETs

    NASA Astrophysics Data System (ADS)

    Lv, Yuanjie; Mo, Jianghui; Song, Xubo; He, Zezhao; Wang, Yuangang; Tan, Xin; Zhou, Xingye; Gu, Guodong; Guo, Hongyu; Feng, Zhihong

    2018-05-01

    Gallium oxide (Ga2O3) metal-oxide-semiconductor field-effect transistors (MOSFETs) were fabricated with gate recess depths of 110 nm and 220 nm, respectively. The gate recess was formed by dry plasma etching with Cr metal as the mask. The fabricated devices with a 25-nm HfO2 gate dielectric both showed a low off-state drain current of about 1.8 × 10-10 A/mm. The effects of recess depth on the electronic characteristics of Ga2O3 MOSFETs were investigated. Upon increasing the recess depth from 110 nm to 220 nm, the saturated drain current decreased from 20.7 mA/mm to 2.6 mA/mm, while the threshold voltage moved increased to +3 V. Moreover, the breakdown voltage increased from 122 V to 190 V. This is mainly because the inverted-trapezoidal gate played the role of a gate-field plate, which suppressed the peak electric field close to the gate.

  4. Heterojunction solar cell with 6% efficiency based on an n-type aluminum-gallium-oxide thin film and p-type sodium-doped Cu2O sheet

    NASA Astrophysics Data System (ADS)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2015-02-01

    In this paper, we describe efforts to enhance the efficiency of Cu2O-based heterojunction solar cells fabricated with an aluminum-gallium-oxide (Al-Ga-O) thin film as the n-type layer and a p-type sodium (Na)-doped Cu2O (Cu2O:Na) sheet prepared by thermally oxidizing copper sheets. The optimal Al content [X; Al/(Ga + Al) atomic ratio] of an AlX-Ga1-X-O thin-film n-type layer was found to be approximately 2.5 at. %. The optimized resistivity was approximately 15 Ω cm for n-type AlX-Ga1-X-O/p-type Cu2O:Na heterojunction solar cells. A MgF2/AZO/Al0.025-Ga0.975-O/Cu2O:Na heterojunction solar cell with 6.1% efficiency was fabricated using a 60-nm-thick n-type oxide thin-film layer and a 0.2-mm-thick Cu2O:Na sheet with the optimized resistivity.

  5. Retardation mechanism of ultrathin Al2O3 interlayer on Y2O3 passivated gallium nitride surface.

    PubMed

    Quah, Hock Jin; Cheong, Kuan Yew

    2014-05-28

    A systematic investigation was carried out by incorporating an ultrathin aluminum oxide (Al2O3) as an interlayer between yttrium oxide (Y2O3) passivation layer and GaN substrate. The sandwiched samples were then subjected to postdeposition annealing in oxygen ambient from 400 to 800 °C. The Al2O3 interlayer was discovered to play a significant role in slowing down inward diffusion of oxygen through the Y2O3 passivation layer as well as in impeding outward diffusion of Ga(3+) and N(3-) from the decomposed GaN surface. These beneficial effects have suppressed subsequent formation of interfacial layer. A mechanism in association with the function of Al2O3 as an interlayer was suggested and discussed. The mechanism was explicitly described on the basis of the obtained results from X-ray diffraction, X-ray photoelectron spectroscopy, energy-filtered transmission electron microscopy (TEM), high resolution TEM, and electron energy loss spectroscopy line scan. A correlation between the proposed mechanism and metal-oxide-semiconductor characteristics of Y2O3/Al2O3/GaN structure has been proposed.

  6. Comparison of the physical, chemical and electrical properties of ALD Al 2 O 3 on c- and m- plane GaN: Comparison of the physical, chemical and electrical properties of ALD Al 2 O 3 on c- and m- plane GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, D.; Hossain, T.; Nepal, N.

    2014-02-01

    Our study compares the physical, chemical and electrical properties of Al 2O 3 thin films deposited on gallium polar c- and nonpolar m -plane GaN substrates by atomic layer deposition (ALD). Correlations were sought between the film's structure, composition, and electrical properties. The thickness of the Al 2O 3 films was 19.2 nm as determined from a Si witness sample by spectroscopic ellipsometry. We measured the gate dielectric was slightly aluminum-rich (Al:O=1:1.3) from X-ray photoelectron spectroscopy (XPS) depth profile, and the oxide-semiconductor interface carbon concentration was lower on c -plane GaN. The oxide's surface morphology was similar on both substrates,more » but was smoothest on c -plane GaN as determined by atomic force microscopy (AFM). Circular capacitors (50-300 μm diameter) with Ni/Au (20/100 nm) metal contacts on top of the oxide were created by standard photolithography and e-beam evaporation methods to form metal-oxide-semiconductor capacitors (MOSCAPs). Moreover, the alumina deposited on c -plane GaN showed less hysteresis (0.15 V) than on m -plane GaN (0.24 V) in capacitance-voltage (CV) characteristics, consistent with its better quality of this dielectric as evidenced by negligible carbon contamination and smooth oxide surface. These results demonstrate the promising potential of ALD Al 2O 3 on c -plane GaN, but further optimization of ALD is required to realize the best properties of Al 2O 3 on m -plane GaN.« less

  7. Thermal Plasma Synthesis of Crystalline Gallium Nitride Nanopowder from Gallium Nitrate Hydrate and Melamine

    PubMed Central

    Kim, Tae-Hee; Choi, Sooseok; Park, Dong-Wha

    2016-01-01

    Gallium nitride (GaN) nanopowder used as a blue fluorescent material was synthesized by using a direct current (DC) non-transferred arc plasma. Gallium nitrate hydrate (Ga(NO3)3∙xH2O) was used as a raw material and NH3 gas was used as a nitridation source. Additionally, melamine (C3H6N6) powder was injected into the plasma flame to prevent the oxidation of gallium to gallium oxide (Ga2O3). Argon thermal plasma was applied to synthesize GaN nanopowder. The synthesized GaN nanopowder by thermal plasma has low crystallinity and purity. It was improved to relatively high crystallinity and purity by annealing. The crystallinity is enhanced by the thermal treatment and the purity was increased by the elimination of residual C3H6N6. The combined process of thermal plasma and annealing was appropriate for synthesizing crystalline GaN nanopowder. The annealing process after the plasma synthesis of GaN nanopowder eliminated residual contamination and enhanced the crystallinity of GaN nanopowder. As a result, crystalline GaN nanopowder which has an average particle size of 30 nm was synthesized by the combination of thermal plasma treatment and annealing. PMID:28344295

  8. Superspace description of the homologous series Ga2O3(ZnO)m.

    PubMed

    Michiue, Yuichi; Kimizuka, Noboru

    2010-04-01

    A unified description for the structures of the homologous series Ga(2)O(3)(ZnO)(m), gallium zinc oxide, is presented using the superspace formalism. The structures were treated as a compositely modulated structure consisting of two subsystems. One is constructed with metal ions and the other with O ions. The ideal model is given, in which the displacive modulations of ions are well described by the zigzag function with large amplitudes. Alternative settings are also proposed which are analogous to the so-called modular structures. The validity of the model has been confirmed by refinements for phases with m = 6 and m = 9 in the homologous series. A few complex phenomena in real structures are taken into account by modifying the ideal model.

  9. Optical signatures of deep level defects in Ga2O3

    NASA Astrophysics Data System (ADS)

    Gao, Hantian; Muralidharan, Shreyas; Pronin, Nicholas; Karim, Md Rezaul; White, Susan M.; Asel, Thaddeus; Foster, Geoffrey; Krishnamoorthy, Sriram; Rajan, Siddharth; Cao, Lei R.; Higashiwaki, Masataka; von Wenckstern, Holger; Grundmann, Marius; Zhao, Hongping; Look, David C.; Brillson, Leonard J.

    2018-06-01

    We used depth-resolved cathodoluminescence spectroscopy and surface photovoltage spectroscopy to measure the effects of near-surface plasma processing and neutron irradiation on native point defects in β-Ga2O3. The near-surface sensitivity and depth resolution of these optical techniques enabled us to identify spectral changes associated with removing or creating these defects, leading to identification of one oxygen vacancy-related and two gallium vacancy-related energy levels in the β-Ga2O3 bandgap. The combined near-surface detection and processing of Ga2O3 suggests an avenue for identifying the physical nature and reducing the density of native point defects in this and other semiconductors.

  10. Biomineralization of uniform gallium oxide rods with cellular compatibility.

    PubMed

    Yan, Danhong; Yin, Guangfu; Huang, Zhongbing; Liao, Xiaoming; Kang, Yunqing; Yao, Yadong; Hao, Baoqing; Gu, Jianwen; Han, Dong

    2009-07-20

    Monodispersed single crystalline alpha-GaOOH rods coated by silk fibroin (SF) have been prepared via a facile biomineralization process in the template of SF peptide. The carbon-coated alpha-Ga(2)O(3) and beta-Ga(2)O(3) rods are obtained by thermal treatment of the alpha-GaOOH rods at 600 and 800 degrees C, respectively. In vitro cytotoxicity studies of these gallium oxide rods showed no significant effect leading to restraint of cell proliferation of L929, Hela, and HaCat cells in less than 0.1 mg/mL prepared rods. On the basis of their excellent luminescence emission properties and cellular compatibilities, possible applications for bio-optoelectronic devices can be envisioned.

  11. Behavior of GaSb (100) and InSb (100) surfaces in the presence of H2O2 in acidic and basic cleaning solutions

    NASA Astrophysics Data System (ADS)

    Seo, Dongwan; Na, Jihoon; Lee, Seunghyo; Lim, Sangwoo

    2017-03-01

    Gallium antimonide (GaSb) and indium antimonide (InSb) have attracted strong attention as new channel materials for transistors due to their excellent electrical properties and lattice matches with various group III-V compound semiconductors. In this study, the surface behavior of GaSb (100) and InSb (100) was investigated and compared in hydrochloric acid/hydrogen peroxide mixture (HPM) and ammonium hydroxide/hydrogen peroxide mixture (APM) solutions. In the acidic HPM solution, surface oxidation was greater and the etching rates of the GaSb and InSb surfaces increased when the solution is concentrated, which indicates that H2O2 plays a key role in the surface oxidation of GaSb and InSb in acidic HPM solution. However, the GaSb and InSb surfaces were hardly oxidized in basic APM solution in the presence of H2O2 because gallium and indium are in the thermodynamically stable forms of H2GaO3- and InO2-, respectively. When the APM solution was diluted, however, the Ga on the GaSb surface was oxidized by H2O, increasing the etching rate. However, the effect of dilution of the APM solution on the oxidation of the InSb surface was minimal; thus, the InSb surface was less oxidized than the GaSb surface and the change in the etching rate of InSb with dilution of the APM solution was not significant. Additionally, the oxidation behavior of gallium and indium was more sensitive to the composition of the HPM and APM solutions than that of antimony. Therefore, the surface properties and etching characteristics of GaSb and InSb in HPM and APM solutions are mainly dependent on the behavior of the group III elements rather than the group V elements.

  12. Europium gallium garnet (Eu3Ga5O12) and Eu3GaO6: Synthesis and material properties

    NASA Astrophysics Data System (ADS)

    Sawada, Kenji; Nakamura, Toshihiro; Adachi, Sadao

    2016-10-01

    Eu-Ga-O ternary compounds were synthesized from a mixture of cubic (c-) Eu2O3 and monoclinic Ga2O3 (β-Ga2O3) raw powders using the solid-state reaction method by calcination at Tc = 1200 °C. The structural and optical properties of the Eu-Ga-O ternary compounds were investigated using X-ray diffraction analysis, photoluminescence (PL) analysis, PL excitation (PLE) spectroscopy, and Raman scattering measurements. Stoichiometric compounds such as cubic Eu3Ga5O12 (EGG) and orthorhombic Eu3GaO6 were synthesized using molar ratios of x = 0.375 and 0.75 [x≡Eu2O3/(Eu2O3 + Ga2O3)], respectively, together with the end-point binary compounds β-Ga2O3 (x = 0) and monoclinic (m-) Eu2O3 (x = 1.0). The structural change from "cubic" to "monoclinic" in Eu2O3 is due to the structural phase transition occurring at Tc ≥ 1050 °C. In principle, the perovskite-type EuGaO3 and monoclinic Eu4Ga2O9 can also be synthesized at x = 0.5 and 0.667, respectively; however, such stoichiometric compounds could not be synthesized in this study. The PL and PLE properties of EGG and Eu3GaO6 were studied in detail. The temperature dependence of the PL spectra was observed through measurements carried out between T = 20 and 300 K and explained using a newly developed model. Raman scattering measurements were also performed on the Eu-Ga-O ternary systems over the entire composition range from x = 0 (β-Ga2O3) to 1.0 (m-Eu2O3).

  13. Improvement of Self-Heating of Indium Gallium Zinc Aluminum Oxide Thin-Film Transistors Using Al2O3 Barrier Layer

    NASA Astrophysics Data System (ADS)

    Jian, Li-Yi; Lee, Hsin-Ying; Lin, Yung-Hao; Lee, Ching-Ting

    2018-02-01

    To study the self-heating effect, aluminum oxide (Al2O3) barrier layers of various thicknesses have been inserted between the channel layer and insulator layer in bottom-gate-type indium gallium zinc aluminum oxide (IGZAO) thin-film transistors (TFTs). Each IGZAO channel layer was deposited on indium tin oxide (ITO)-coated glass substrate by using a magnetron radiofrequency cosputtering system with dual targets composed of indium gallium zinc oxide (IGZO) and Al. The 3 s orbital of Al cation provided an extra transport pathway and widened the conduction-band bottom, thus increasing the electron mobility of the IGZAO films. The Al-O bonds were able to sustain the oxygen stability of the IGZAO films. The self-heating behavior of the resulting IGZAO TFTs was studied by Hall measurements on the IGZAO films as well as the electrical performance of the IGZAO TFTs with Al2O3 barrier layers of various thicknesses at different temperatures. IGZAO TFTs with 50-nm-thick Al2O3 barrier layer were stressed by positive gate bias stress (PGBS, at gate-source voltage V GS = 5 V and drain-source voltage V DS = 0 V); at V GS = 5 V and V DS = 10 V, the threshold voltage shifts were 0.04 V and 0.2 V, respectively, much smaller than for the other IGZAO TFTs without Al2O3 barrier layer, which shifted by 0.2 V and 1.0 V when stressed under the same conditions.

  14. AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors using Sc2O3 as the gate oxide and surface passivation

    NASA Astrophysics Data System (ADS)

    Mehandru, R.; Luo, B.; Kim, J.; Ren, F.; Gila, B. P.; Onstine, A. H.; Abernathy, C. R.; Pearton, S. J.; Gotthold, D.; Birkhahn, R.; Peres, B.; Fitch, R.; Gillespie, J.; Jenkins, T.; Sewell, J.; Via, D.; Crespo, A.

    2003-04-01

    We demonstrated that Sc2O3 thin films deposited by plasma-assisted molecular-beam epitaxy can be used simultaneously as a gate oxide and as a surface passivation layer on AlGaN/GaN high electron mobility transistors (HEMTs). The maximum drain source current, IDS, reaches a value of over 0.8 A/mm and is ˜40% higher on Sc2O3/AlGaN/GaN transistors relative to conventional HEMTs fabricated on the same wafer. The metal-oxide-semiconductor HEMTs (MOS-HEMTs) threshold voltage is in good agreement with the theoretical value, indicating that Sc2O3 retains a low surface state density on the AlGaN/GaN structures and effectively eliminates the collapse in drain current seen in unpassivated devices. The MOS-HEMTs can be modulated to +6 V of gate voltage. In particular, Sc2O3 is a very promising candidate as a gate dielectric and surface passivant because it is more stable on GaN than is MgO.

  15. Low temperature growth of gallium oxide thin films via plasma enhanced atomic layer deposition.

    PubMed

    O'Donoghue, Richard; Rechmann, Julian; Aghaee, Morteza; Rogalla, Detlef; Becker, Hans-Werner; Creatore, Mariadriana; Wieck, Andreas Dirk; Devi, Anjana

    2017-12-21

    Herein we describe an efficient low temperature (60-160 °C) plasma enhanced atomic layer deposition (PEALD) process for gallium oxide (Ga 2 O 3 ) thin films using hexakis(dimethylamido)digallium [Ga(NMe 2 ) 3 ] 2 with oxygen (O 2 ) plasma on Si(100). The use of O 2 plasma was found to have a significant improvement on the growth rate and deposition temperature when compared to former Ga 2 O 3 processes. The process yielded the second highest growth rates (1.5 Å per cycle) in terms of Ga 2 O 3 ALD and the lowest temperature to date for the ALD growth of Ga 2 O 3 and typical ALD characteristics were determined. From in situ quartz crystal microbalance (QCM) studies and ex situ ellipsometry measurements, it was deduced that the process is initially substrate-inhibited. Complementary analytical techniques were employed to investigate the crystallinity (grazing-incidence X-ray diffraction), composition (Rutherford backscattering analysis/nuclear reaction analysis/X-ray photoelectron spectroscopy), morphology (X-ray reflectivity/atomic force microscopy) which revealed the formation of amorphous, homogeneous and nearly stoichiometric Ga 2 O 3 thin films of high purity (carbon and nitrogen <2 at.%) under optimised process conditions. Tauc plots obtained via UV-Vis spectroscopy yielded a band gap of 4.9 eV and the transmittance values were more than 80%. Upon annealing at 1000 °C, the transformation to oxygen rich polycrystalline β-gallium oxide took place, which also resulted in the densification and roughening of the layer, accompanied by a slight reduction in the band gap. This work outlines a fast and efficient method for the low temperature ALD growth of Ga 2 O 3 thin films and provides the means to deposit Ga 2 O 3 upon thermally sensitive polymers like polyethylene terephthalate.

  16. Structural and electrical characteristics of gallium tin oxide thin films prepared by electron cyclotron resonance-metal organic chemical vapor deposition.

    PubMed

    Park, Ji Hun; Byun, Dongjin; Lee, Joong Kee

    2011-08-01

    Gallium tin oxide composite (GTO) thin films were prepared by electron cyclotron resonance-metal organic chemical vapor deposition (ECR-MOCVD). The organometallics of tetramethlytin and trimethylgallium were used for precursors of gallium and tin, respectively. X-ray diffraction (XRD) characterization indicated that the gallium tin oxide composite thin films show the nanopolycrystalline of tetragonal rutile structure. Hall measurement indicated that the Ga/[O+Sn] mole ratio play an important role to determine the electrical properties of gallium tin composite oxide thin films. n-type conducting film obtained Ga/[O+Sn] mole ratio of 0.05 exhibited the lowest electrical resistivity of 1.21 x 10(-3) ohms cm. In our experimental range, the optimized carrier concentration of 3.71 x 10(18) cm(-3) was prepared at the Ga/[O+Sn] mole ratio of 0.35.

  17. Passivation of surface states of α-Fe2O3(0001) surface by deposition of Ga2O3 overlayers: A density functional theory study.

    PubMed

    Ulman, Kanchan; Nguyen, Manh-Thuong; Seriani, Nicola; Gebauer, Ralph

    2016-03-07

    There is a big debate in the community regarding the role of surface states of hematite in the photoelectrochemical water splitting. Experimental studies on non-catalytic overlayers passivating the hematite surface states claim a favorable reduction in the overpotential for the water splitting reaction. As a first step towards understanding the effect of these overlayers, we have studied the system Ga2O3 overlayers on hematite (0001) surfaces using first principles computations in the PBE+U framework. Our computations suggest that stoichiometric terminations of Ga2O3 overlayers are energetically more favored than the bare surface, at ambient oxygen chemical potentials. Energetics suggest that the overlayers prefer to grow via a layer-plus-island (Stranski-Krastanov) growth mode with a critical layer thickness of 1-2 layers. Thus, a complete wetting of the hematite surface by an overlayer of gallium oxide is thermodynamically favored. We establish that the effect of deposition of the Ga2O3 overlayers on the bare hematite surface is to passivate the surface states for the stoichiometric termination. For the oxygen terminated surface which is the most stable termination under photoelectrochemical conditions, the effect of deposition of the Ga2O3 overlayer is to passivate the hole-trapping surface state.

  18. Effects of post-deposition annealing ambient on band alignment of RF magnetron-sputtered Y2O3 film on gallium nitride

    PubMed Central

    2013-01-01

    The effects of different post-deposition annealing ambients (oxygen, argon, forming gas (95% N2 + 5% H2), and nitrogen) on radio frequency magnetron-sputtered yttrium oxide (Y2O3) films on n-type gallium nitride (GaN) substrate were studied in this work. X-ray photoelectron spectroscopy was utilized to extract the bandgap of Y2O3 and interfacial layer as well as establishing the energy band alignment of Y2O3/interfacial layer/GaN structure. Three different structures of energy band alignment were obtained, and the change of band alignment influenced leakage current density-electrical breakdown field characteristics of the samples subjected to different post-deposition annealing ambients. Of these investigated samples, ability of the sample annealed in O2 ambient to withstand the highest electric breakdown field (approximately 6.6 MV/cm) at 10−6 A/cm2 was related to the largest conduction band offset of interfacial layer/GaN (3.77 eV) and barrier height (3.72 eV). PMID:23360596

  19. Transparent conductive oxide films mixed with gallium oxide nanoparticle/single-walled carbon nanotube layer for deep ultraviolet light-emitting diodes

    PubMed Central

    2013-01-01

    We propose a transparent conductive oxide electrode scheme of gallium oxide nanoparticle mixed with a single-walled carbon nanotube (Ga2O3 NP/SWNT) layer for deep ultraviolet light-emitting diodes using spin and dipping methods. We investigated the electrical, optical and morphological properties of the Ga2O3 NP/SWNT layers by increasing the thickness of SWNTs via multiple dipping processes. Compared with the undoped Ga2O3 films (current level 9.9 × 10-9 A @ 1 V, transmittance 68% @ 280 nm), the current level flowing in the Ga2O3 NP/SWNT increased by approximately 4 × 105 times and the transmittance improved by 9% after 15 times dip-coating (current level 4 × 10-4 A at 1 V; transmittance 77.0% at 280 nm). These improvements result from both native high transparency of Ga2O3 NPs and high conductivity and effective current spreading of SWNTs. PMID:24295342

  20. Native amorphous nanoheterogeneity in gallium germanosilicates as a tool for driving Ga2O3 nanocrystal formation in glass for optical devices.

    PubMed

    Sigaev, Vladimir N; Golubev, Nikita V; Ignat'eva, Elena S; Champagnon, Bernard; Vouagner, Dominique; Nardou, Eric; Lorenzi, Roberto; Paleari, Alberto

    2013-01-07

    Nanoparticles in amorphous oxides are a powerful tool for embedding a wide range of functions in optical glasses, which are still the best solutions in several applications in the ever growing field of photonics. However, the control of the nanoparticle size inside the host material is often a challenging task, even more challenging when detrimental effects on light transmittance have to be avoided. Here we show how the process of phase separation and subsequent nanocrystallization of a Ga-oxide phase can be controlled in germanosilicates - prototypal systems in optical telecommunications - starting from a Ga-modified glass composition designed to favour uniform liquid-liquid phase separation in the melt. Small angle neutron scattering data demonstrate that nanosized structuring occurs in the amorphous as-quenched glass and gives rise to initially smaller nanoparticles, by heating, as in a secondary phase separation. By further heating, the nanophase evolves with an increase of nanoparticle gyration radius, from a few nm to a saturation value of about 10 nm, through an initial growing process followed by an Ostwald ripening mechanism. Nanoparticles finally crystallize, as indicated by transmission electron microscopy and X-ray diffraction, as γ-Ga(2)O(3)- a metastable gallium oxide polymorph. Infrared reflectance and photoluminescence, together with the optical absorption of Ni ions used as a probe, give an indication of the underlying interrelated processes of the structural change in the glass and in the segregated phase. As a result, our data give for the first time a rationale for designing Ga-modified germanosilicates at the nanoscale, with the perspective of a detailed nanostructuring control.

  1. Gallium-Doped Poly-Si:Ga/SiO 2 Passivated Emitters to n-Cz Wafers With iV oc >730 mV

    DOE PAGES

    Young, David L.; Lee, Benjamin G.; Fogel, Derek; ...

    2017-09-26

    Here, we form gallium-doped poly-Si:Ga/SiO 2 passivated contacts on n-type Czochralski (n-Cz) wafers using ion implantation of Ga and Ga-containing spin-on dopants. After annealing and passivation with Al 2O 3, the contacts exhibit i Voc values of >730 mV with corresponding Joe values of <5 fA/cm 2. These are among the best-reported values for p-type poly-Si/SiO 2 contacts. Secondary ion mass spectroscopic depth profile data show that, in contrast to B, Ga does not pileup at the SiO 2 interface in agreement with its known high diffusivity in SiO 2. This lack of Ga pileup may imply fewer dopant-related defectsmore » in the SiO 2, compared with B dopants, and account for the excellent passivation.« less

  2. Quasi-Two-Dimensional h-BN/β-Ga2O3 Heterostructure Metal-Insulator-Semiconductor Field-Effect Transistor.

    PubMed

    Kim, Janghyuk; Mastro, Michael A; Tadjer, Marko J; Kim, Jihyun

    2017-06-28

    β-gallium oxide (β-Ga 2 O 3 ) and hexagonal boron nitride (h-BN) heterostructure-based quasi-two-dimensional metal-insulator-semiconductor field-effect transistors (MISFETs) were demonstrated by integrating mechanical exfoliation of (quasi)-two-dimensional materials with a dry transfer process, wherein nanothin flakes of β-Ga 2 O 3 and h-BN were utilized as the channel and gate dielectric, respectively, of the MISFET. The h-BN dielectric, which has an extraordinarily flat and clean surface, provides a minimal density of charged impurities on the interface between β-Ga 2 O 3 and h-BN, resulting in superior device performances (maximum transconductance, on/off ratio, subthreshold swing, and threshold voltage) compared to those of the conventional back-gated configurations. Also, double-gating of the fabricated device was demonstrated by biasing both top and bottom gates, achieving the modulation of the threshold voltage. This heterostructured wide-band-gap nanodevice shows a new route toward stable and high-power nanoelectronic devices.

  3. Valorization of GaN based metal-organic chemical vapor deposition dust a semiconductor power device industry waste through mechanochemical oxidation and leaching: A sustainable green process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swain, Basudev, E-mail: Swain@iae.re.kr; Mishra, Chinmayee; Lee, Chan Gi

    2015-07-15

    Dust generated during metal organic vapor deposition (MOCVD) process of GaN based semiconductor power device industry contains significant amounts of gallium and indium. These semiconductor power device industry wastes contain gallium as GaN and Ga{sub 0.97}N{sub 0.9}O{sub 0.09} is a concern for the environment which can add value through recycling. In the present study, this waste is recycled through mechanochemical oxidation and leaching. For quantitative recovery of gallium, two different mechanochemical oxidation leaching process flow sheets are proposed. In one process, first the Ga{sub 0.97}N{sub 0.9}O{sub 0.09} of the MOCVD dust is leached at the optimum condition. Subsequently, the leachmore » residue is mechanochemically treated, followed by oxidative annealing and finally re-leached. In the second process, the MOCVD waste dust is mechanochemically treated, followed by oxidative annealing and finally leached. Both of these treatment processes are competitive with each other, appropriate for gallium leaching and treatment of the waste MOCVD dust. Without mechanochemical oxidation, 40.11 and 1.86 w/w% of gallium and Indium are leached using 4 M HCl, 100 °C and pulp density of 100 kg/m{sup 3,} respectively. After mechanochemical oxidation, both these processes achieved 90 w/w% of gallium and 1.86 w/w% of indium leaching at their optimum condition. - Highlights: • Waste MOCVD dust is treated through mechanochemical leaching. • GaN is hardly leached, and converted to NaGaO{sub 2} through ball milling and annealing. • Process for gallium recovery from waste MOCVD dust has been developed. • Thermal analysis and phase properties of GaN to Ga{sub 2}O{sub 3} and GaN to NaGaO{sub 2} is revealed. • Solid-state chemistry involved in this process is reported.« less

  4. A Gallium Oxide-Graphene Oxide Hybrid Composite for Enhanced Photocatalytic Reaction

    PubMed Central

    Kim, Seungdu; Han, Kook In; Lee, In Gyu; Park, Won Kyu; Yoon, Yeojoon; Yoo, Chan Sei; Yang, Woo Seok; Hwang, Wan Sik

    2016-01-01

    Hybrid composites (HCs) made up of gallium oxide (GaO) and graphene oxide (GO) were investigated with the intent of enhancing a photocatalytic reaction under ultraviolet (UV) radiation. The material properties of both GaO and GO were preserved, even after the formation of the HCs. The incorporation of the GO into the GaO significantly enhanced the photocatalytic reaction, as indicated by the amount of methylene blue (MB) degradation. The improvements in the reaction were discussed in terms of increased surface area and the retarded recombination of generated charged carriers. PMID:28335255

  5. Structure and Photoluminescence Properties of β-Ga2O3 Nanofibres Synthesized via Electrospinning Method

    NASA Astrophysics Data System (ADS)

    Sun, Chao; Deng, Jinxiang; Kong, Le; Chen, Liang; Shen, Zhen; Cao, Yisen; Zhang, Hao; Wang, Xiaoran

    2017-12-01

    This paper reported the β-Ga2O3 nanofibres which fabricated by electrospinning, and then calcining in oxygen at 750, 850, 950 and 1050°C. The structure and properties of β-Ga2O3 nanofibers have been studied though kinds of methods such as XRD, Photoluminescence (PL) spectrum, Raman spectrum, Scanning electron microscope (SEM) and FT-IR. The diameters of these nanofibres are from 60 to 130nm and the lengths of these nanofibres are about couple millimetres. The spectrum of PL which excitation at 365nm gave us the information that the emission peak of these β-Ga2O3 nanofibres is about 470nm, it may be coursed by the various defects including the vacancies of gallium and oxygen and the gallium-oxygen vacancy pairs as well, and observed that with the increasing of the annealing temperature, the emission peaks have a small bule swifting, and the crystallinity become better at the same time.

  6. Optical properties of β-Ga2O3 nanorods synthesized by a simple and cost-effective method using egg white solution

    NASA Astrophysics Data System (ADS)

    Phumying, Santi; Labauyai, Sarawut; Chareonboon, Wirat; Phokha, Sumalin; Maensiri, Santi

    2015-06-01

    In this paper, we report on the optical properties of gallium oxide (β-Ga2O3) nanorods synthesized by a simple, cost-effective and environment-friendly method using gallium(III) nitrate hydrate and freshly extracted egg white (ovalbumin) in an aqueous medium. The extracted egg white acted as a matrix for the entrapment of gallium ions to generate a gelled precursor. The structure of the prepared samples was studied by X-ray diffraction and Raman spectroscopy to confirm the formation of β-Ga2O3 with a monoclinic structure after calcination of the precursor in air at 750, 850, and 950 °C for 3 h. Scanning electron microscopy images revealed the morphology and formation of nanorods with different sizes and shapes in the samples, resulting from the effect of the calcination temperature. All the samples showed a strong UV absorption with the band gap in the range of 3.87-3.97 eV. Room-temperature photoluminescence spectra of all the samples also showed a strong UV emission. The UV emission results were discussed based on the basis of charge recombination.

  7. Synthesis and luminescent properties of Gd3Ga2Al3O12 phosphors doped with Eu3+ or Ce3+

    NASA Astrophysics Data System (ADS)

    Oh, M. J.; Kim, H. J.

    2016-09-01

    Eu3+-or Ce3+-doped gadolinium gallium aluminum garnet (GGAG), Gd3Ga2Al3O12, phosphors are fabricated using solid-state reactions with Gd2O3, Ga2O3, Al2O3, CeO2 and Eu2O3 powders. The Eu3+-or Ce3+-doped Gd3Ga2Al3O12 phosphors are sintered at 1300 °C or 1600 °C for 5 hours by using an electric furnace under normal atmosphere. X-ray diffraction and field-emission scanning electron microscopy studies are carried out in order to analyze the physical properties of these materials, and their luminescence properties are also measured by using UV and X-ray sources. The Eu3+-or Ce3+-doped Gd3Ga2Al3O12 phosphors show higher light yields in comparison to commercial phosphors such as Gd2O2S:Tb (gadox). This indicates that Gd3Ga2Al3O12:Eu3+ phosphors are promising materials for use in X-ray imaging and dose monitoring at proton beamlines.

  8. Impacts of oxidants in atomic layer deposition method on Al2O3/GaN interface properties

    NASA Astrophysics Data System (ADS)

    Taoka, Noriyuki; Kubo, Toshiharu; Yamada, Toshikazu; Egawa, Takashi; Shimizu, Mitsuaki

    2018-01-01

    The electrical interface properties of GaN metal-oxide-semiconductor (MOS) capacitors with an Al2O3 gate insulator formed by atomic layer deposition method using three kinds of oxidants were investigated by the capacitance-voltage technique, Terman method, and conductance method. We found that O3 and the alternate supply of H2O and O3 (AS-HO) are effective for reducing the interface trap density (D it) at the energy range of 0.15 to 0.30 eV taking from the conduction band minimum. On the other hand, we found that surface potential fluctuation (σs) induced by interface charges for the AS-HO oxidant is much larger than that for a Si MOS capacitor with a SiO2 layer formed by chemical vapor deposition despite the small D it values for the AS-HO oxidant compared with the Si MOS capacitor. This means that the total charged center density including the fixed charge density, charged slow trap density, and charged interface trap density for the GaN MOS capacitor is higher than that for the Si MOS capacitor. Therefore, σs has to be reduced to improve the performances and reliability of GaN devices with the Al2O3/GaN interfaces.

  9. Nanophotonic switch: gold-in-Ga2O3 peapod nanowires.

    PubMed

    Hsieh, Chin-Hua; Chou, Li-Jen; Lin, Gong-Ru; Bando, Yoshio; Golberg, Dimitri

    2008-10-01

    A novel metal-insulator heterostructure made of twinned Ga2O3 nanowires embedding discrete gold particles along the twin boundary was formed through a reaction between gold, gallium, and silica at 800 degrees C during simple thermal annealing. The Au-in-Ga2O3 peapods spontaneously crystallized under phase separation induced by the formation of twin boundaries. The nanostructures were analyzed by field emission scanning (FESEM) and transmission electron microscopes (FETEM), and their photoresponse was investigated using a double-frequency Nd:YAG laser with a wavelength of 532 nm on a designed single-nanowire device. The surface plasmon resonance (SPR) effects of embedded Au nanoparticles are proposed to be responsible for the remarkable photoresponse of these novel structures.

  10. Determination of gallium at trace levels using a spectrofluorimetric method in synthetic U-Ga and Ga-As solutions.

    PubMed

    Kara, Derya; Fisher, Andrew; Foulkes, Mike; Hill, Steve J

    2010-01-01

    A simple, easy to use and selective spectrofluorimetric method for the determination of trace levels of gallium has been developed. A new Schiff base, N-o-vanillidine-2-amino-p-cresol (OVAC) was synthesized and its fluorescence activity with gallium investigated. Based on this chelation reaction, a spectrofluorimetric method has been developed for the determination of gallium in synthetically prepared Ga-U and Ga-As samples buffered at pH 4.0 using acetic acid-sodium acetate. The chelation reaction between Ga(III) and N-o-vanillidine-2-amino-p-cresol was very fast, requiring only 30min at room temperature to complex completely. The limit of detection (LOD) (3sigma) for Ga(III) was 7.17 nM (0.50 microgL(-1)), determined from the analysis of 11 different solutions of 20 microg L(-1) Ga(III). Copyright 2009 Elsevier B.V. All rights reserved.

  11. Solution epitaxy of gallium-doped ZnO on p-GaN for heterojunction light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Le, H. Q.; Lim, S. K.; Goh, G. K. L.; Chua, S. J.; Ang, N. S. S.; Liu, W.

    2010-09-01

    We report white light emission from a Ga-doped ZnO/p-GaN heterojunction light-emitting diode which was fabricated by growing gallium-doped ZnO film on the p-GaN in water at 90°C. As determined from Ga-doped ZnO films grown on (111) oriented MgAl2O4 spinel single crystal substrates, thermal treatment at 600°C in nitrogen ambient leads to a carrier concentration of 3.1×1020 cm-3 (and carrier mobility of 28 cm2/Vs) which is two orders of magnitude higher than that of the undoped films. Electroluminescence emissions at wavelengths of 393 nm (3.155 eV) and 529.5 nm (2.4 eV) were observed under forward bias in the heterojunction diode and white light could be visibly observed. The high concentration of electrons supplied from the Ga-doped ZnO films helped to enhance the carrier recombination and increase the light-emitting efficiency of the heterojunction diode.

  12. Visible cathodoluminescence of Er ions in β-Ga(2)O(3) nanowires and microwires.

    PubMed

    Nogales, E; Méndez, B; Piqueras, J

    2008-01-23

    Erbium doped β-Ga(2)O(3) nanowires and microwires have been obtained by a vapour-solid process from an initial mixture of Ga(2)O(3) and Er(2)O(3) powders. X-ray diffraction (XRD) analysis reveals the presence of erbium gallium garnet as well as β-Ga(2)O(3) phases in the microwires. Scanning electron microscopy (SEM) images show that the larger microwires have a nearly rectangular cross-section. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analysis show good crystal quality of the β-Ga(2)O(3) nanowires. The nanostructures have been studied by means of the cathodoluminescence technique in the scanning electron microscope. Er intraionic blue, green and red emission lines are observed in luminescence spectra even at room temperature, which confirms the optical activity of the rare earth ions in the grown structures. Mapping of the main 555 nm emission intensity shows a non-homogeneous distribution of Er ions in the microstructures.

  13. Band offsets in ITO/Ga2O3 heterostructures

    NASA Astrophysics Data System (ADS)

    Carey, Patrick H.; Ren, F.; Hays, David C.; Gila, B. P.; Pearton, S. J.; Jang, Soohwan; Kuramata, Akito

    2017-11-01

    The valence band offsets in rf-sputtered Indium Tin Oxide (ITO)/single crystal β-Ga2O3 (ITO/Ga2O3) heterostructures were measured with X-Ray Photoelectron Spectroscopy using the Kraut method. The bandgaps of the component materials in the heterostructure were determined by Reflection Electron Energy Loss Spectroscopy as 4.6 eV for Ga2O3 and 3.5 eV for ITO. The valence band offset was determined to be -0.78 ± 0.30 eV, while the conduction band offset was determined to be -0.32 ± 0.13 eV. The ITO/Ga2O3 system has a nested gap (type I) alignment. The use of a thin layer of ITO between a metal and the Ga2O3 is an attractive approach for reducing contact resistance on Ga2O3-based power electronic devices and solar-blind photodetectors.

  14. Effect of composition on properties of In2O3-Ga2O3 thin films

    NASA Astrophysics Data System (ADS)

    Demin, I. E.; Kozlov, A. G.

    2017-06-01

    The In2O3-Ga2O3 mixed oxide polycrystalline thin films with various ratios of components were obtained by pulsed laser deposition. The effect of films composition on surface morphology, electrophysical and gas sensing properties and energies of adsorption and desorption of combustible gases was studied. The films with50%In2O3-50%Ga2O3 composition showed maximum gas response (˜25 times) combined with minimum optimal working temperature (˜530 °C) as compared with the other films. The optical transmittance of the films in visible range was investigated. For 50%In2O3-50%Ga2O3 films, the transmittance is higher in comparison with the other films. The explanation of the dependency of films behaviors on their composition was presented.The In2O3-Ga2O3 films were assumed to have perspectives as gas sensing material for semiconducting gas sensors.

  15. Theoretical prediction of a self-forming gallium oxide layer at an n-type GaN/SiO2 interface

    NASA Astrophysics Data System (ADS)

    Chokawa, Kenta; Narita, Tetsuo; Kikuta, Daigo; Kachi, Tetsu; Shiozaki, Koji; Shiraishi, Kenji

    2018-03-01

    We examine the energy band diagram at the n-type GaN (n-GaN)/SiO2 interface and show that electron transfer from n-GaN to SiO2 leads to the formation of negatively charged oxygen vacancies in the SiO2, resulting in the self-formation of an n-GaN/Ga2O3/SiO2 structure. On the other hand, it is difficult to automatically form Ga2O3 at a p-type GaN (p-GaN)/SiO2 interface. This electron-transfer-induced self-formation of Ga2O3 causes an interface dipole, which leads to band bending, resulting in an increase in the conduction band offset between GaN and SiO2. Accordingly, by using this self-forming phenomenon, GaN MOSFETs with lower leakage current can be realized.

  16. Gallium nitride microcavities formed by photoenhanced wet oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, L.-H.; Lu, C.-Y.; Wu, W.-H.

    We report the formation of gallium nitride (GaN) microcavities by manipulating a photoenhanced oxidation rate difference between the polar and nonpolar crystallographic planes of GaN. When immersed in a buffered acetic (CH{sub 3}COOH) electrolyte of pH{approx}6.2 at room temperature, it is shown that the photo-oxidation can proceed at a rate that is one order of magnitude slower on the nonpolar plane of {l_brace}1100{r_brace}{sub GaN} than on the polar plane of {l_brace}0001{r_brace}{sub GaN} due to the reduced surface field action. Gallium nitride microcavities bounded by optically smooth {l_brace}1100{r_brace} and {l_brace}1103{r_brace} facets can thus be preferentially formed on the c-plane sapphire substratemore » after dissolving the oxide layer. The optical properties of these GaN hexagonal cavities reveal characteristic peaks of whispering gallery modes in resonance with the GaN band edge emission spectrum. A typical cavity Q factor of 10{sup 3} is observed in these GaN microcavities due to a reduced optical scattering loss in the wet chemical reaction process.« less

  17. High-Performance Ga2O3 Anode for Lithium-Ion Batteries.

    PubMed

    Tang, Xun; Huang, Xin; Huang, Yongmin; Gou, Yong; Pastore, James; Yang, Yao; Xiong, Yin; Qian, Jiangfeng; Brock, Joel D; Lu, Juntao; Xiao, Li; Abruña, Héctor D; Zhuang, Lin

    2018-02-14

    There is a great deal of interest in developing battery systems that can exhibit self-healing behavior, thus enhancing cyclability and stability. Given that gallium (Ga) is a metal that melts near room temperature, we wanted to test if it could be employed as a self-healing anode material for lithium-ion batteries (LIBs). However, Ga nanoparticles (NPs), when directly applied, tended to aggregate upon charge/discharge cycling. To address this issue, we employed carbon-coated Ga 2 O 3 NPs as an alternative. By controlling the pH of the precursor solution, highly dispersed and ultrafine Ga 2 O 3 NPs, embedded in carbon shells, could be synthesized through a hydrothermal carbonization method. The particle size of the Ga 2 O 3 NPs was 2.6 nm, with an extremely narrow size distribution, as determined by high-resolution transmission electron microscopy and Brunauer-Emmett-Teller measurements. A lithium-ion battery anode based on this material exhibited stable charging and discharging, with a capacity of 721 mAh/g after 200 cycles. The high cyclability is due to not only the protective effects of the carbon shell but also the formation of Ga 0 during the lithiation process, as indicated by operando X-ray absorption near-edge spectroscopy.

  18. Electrical compensation by Ga vacancies in Ga2O3 thin films

    NASA Astrophysics Data System (ADS)

    Korhonen, E.; Tuomisto, F.; Gogova, D.; Wagner, G.; Baldini, M.; Galazka, Z.; Schewski, R.; Albrecht, M.

    2015-06-01

    The authors have applied positron annihilation spectroscopy to study the vacancy defects in undoped and Si-doped Ga2O3 thin films. The results show that Ga vacancies are formed efficiently during metal-organic vapor phase epitaxy growth of Ga2O3 thin films. Their concentrations are high enough to fully account for the electrical compensation of Si doping. This is in clear contrast to another n-type transparent semiconducting oxide In2O3, where recent results show that n-type conductivity is not limited by cation vacancies but by other intrinsic defects such as Oi.

  19. Efficient photodecomposition of herbicide imazapyr over mesoporous Ga2O3-TiO2 nanocomposites.

    PubMed

    Ismail, Adel A; Abdelfattah, Ibrahim; Faisal, M; Helal, Ahmed

    2018-01-15

    The unabated release of herbicide imazapyr into the soil and groundwater led to crop destruction and several pollution-related concerns. In this contribution, heterogeneous photocatalytic technique was employed utilizing mesoporous Ga 2 O 3 -TiO 2 nanocomposites for degrading imazapyr herbicide as a model pollutant molecule. Mesoporous Ga 2 O 3 -TiO 2 nanocomposites with varied Ga 2 O 3 contents (0-5wt%) were synthesized through sol-gel process. XRD and Raman spectra exhibited extremely crystalline anatase TiO 2 phase at low Ga 2 O 3 content which gradually reduced with the increase of Ga 2 O 3 content. TEM images display uniform TiO 2 particles (10±2nm) with mesoporous structure. The mesoporous TiO 2 exhibits large surface areas of 167m 2 g -1 , diminished to 108m 2 g -1 upon 5% Ga 2 O 3 incorporation, with tunable mesopore diameter in the range of 3-9nm. The photocatalytic efficiency of synthesized Ga 2 O 3 -TiO 2 nanocomposites was assessed by degrading imazapyr herbicide and comparing with commercial photocatalyst UV-100 and mesoporous Ga 2 O 3 under UV illumination. 0.1% Ga 2 O 3 -TiO 2 nanocomposite is considered the optimum photocatalyst, which degrades 98% of imazapyr herbicide within 180min. Also, the photodegradation rate of imazapyr using 0.1% Ga 2 O 3 -TiO 2 nanocomposite is nearly 10 and 3-fold higher than that of mesoporous Ga 2 O 3 and UV-100, respectively. The high photonic efficiency and long-term stability of the mesoporous Ga 2 O 3 -TiO 2 nanocomposites are ascribed to its stronger oxidative capability in comparison with either mesoporous TiO 2 , Ga 2 O 3 or commercial UV-100. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Oxidation of ultrathin GaSe

    DOE PAGES

    Thomas Edwin Beechem; McDonald, Anthony E.; Ohta, Taisuke; ...

    2015-10-26

    Oxidation of exfoliated gallium selenide (GaSe) is investigated through Raman, photoluminescence, Auger, and X-ray photoelectron spectroscopies. Photoluminescence and Raman intensity reductions associated with spectral features of GaSe are shown to coincide with the emergence of signatures emanating from the by-products of the oxidation reaction, namely, Ga 2Se 3 and amorphous Se. Furthermore, photoinduced oxidation is initiated over a portion of a flake highlighting the potential for laser based patterning of two-dimensional heterostructures via selective oxidation.

  1. Impact of La{sub 2}O{sub 3} interfacial layers on InGaAs metal-oxide-semiconductor interface properties in Al{sub 2}O{sub 3}/La{sub 2}O{sub 3}/InGaAs gate stacks deposited by atomic-layer-deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, C.-Y., E-mail: cychang@mosfet.t.u-tokyo.ac.jp; Takenaka, M.; Takagi, S.

    We examine the electrical properties of atomic layer deposition (ALD) La{sub 2}O{sub 3}/InGaAs and Al{sub 2}O{sub 3}/La{sub 2}O{sub 3}/InGaAs metal-oxide-semiconductor (MOS) capacitors. It is found that the thick ALD La{sub 2}O{sub 3}/InGaAs interface provides low interface state density (D{sub it}) with the minimum value of ∼3 × 10{sup 11} cm{sup −2} eV{sup −1}, which is attributable to the excellent La{sub 2}O{sub 3} passivation effect for InGaAs surfaces. It is observed, on the other hand, that there are a large amount of slow traps and border traps in La{sub 2}O{sub 3}. In order to simultaneously satisfy low D{sub it} and small hysteresis, the effectivenessmore » of Al{sub 2}O{sub 3}/La{sub 2}O{sub 3}/InGaAs gate stacks with ultrathin La{sub 2}O{sub 3} interfacial layers is in addition evaluated. The reduction of the La{sub 2}O{sub 3} thickness to 0.4 nm in Al{sub 2}O{sub 3}/La{sub 2}O{sub 3}/InGaAs gate stacks leads to the decrease in hysteresis. On the other hand, D{sub it} of the Al{sub 2}O{sub 3}/La{sub 2}O{sub 3}/InGaAs interfaces becomes higher than that of the La{sub 2}O{sub 3}/InGaAs ones, attributable to the diffusion of Al{sub 2}O{sub 3} through La{sub 2}O{sub 3} into InGaAs and resulting modification of the La{sub 2}O{sub 3}/InGaAs interface structure. As a result of the effective passivation effect of La{sub 2}O{sub 3} on InGaAs, however, the Al{sub 2}O{sub 3}/10 cycle (0.4 nm) La{sub 2}O{sub 3}/InGaAs gate stacks can realize still lower D{sub it} with maintaining small hysteresis and low leakage current than the conventional Al{sub 2}O{sub 3}/InGaAs MOS interfaces.« less

  2. Investigation on Surface Polarization of Al2O3-capped GaN/AlGaN/GaN Heterostructure by Angle-Resolved X-ray Photoelectron Spectroscopy.

    PubMed

    Duan, Tian Li; Pan, Ji Sheng; Wang, Ning; Cheng, Kai; Yu, Hong Yu

    2017-08-17

    The surface polarization of Ga-face gallium nitride (GaN) (2 nm)/AlGaN (22 nm)/GaN channel (150 nm)/buffer/Si with Al 2 O 3 capping layer is investigated by angle-resolved X-ray photoelectron spectroscopy (ARXPS). It is found that the energy band varies from upward bending to downward bending in the interface region, which is believed to be corresponding to the polarization variation. An interfacial layer is formed between top GaN and Al 2 O 3 due to the occurrence of Ga-N bond break and Ga-O bond forming during Al 2 O 3 deposition via the atomic layer deposition (ALD). This interfacial layer is believed to eliminate the GaN polarization, thus reducing the polarization-induced negative charges. Furthermore, this interfacial layer plays a key role for the introduction of the positive charges which lead the energy band downward. Finally, a N 2 annealing at 400 °C is observed to enhance the interfacial layer growth thus increasing the density of positive charges.

  3. Homoepitaxial growth of β-Ga{sub 2}O{sub 3} thin films by low pressure chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rafique, Subrina; Han, Lu; Zhao, Hongping, E-mail: hongping.zhao@case.edu

    2016-05-02

    This paper presents the homoepitaxial growth of phase pure (010) β-Ga{sub 2}O{sub 3} thin films on (010) β-Ga{sub 2}O{sub 3} substrate by low pressure chemical vapor deposition. The effects of growth temperature on the surface morphology and crystal quality of the thin films were systematically investigated. The thin films were synthesized using high purity metallic gallium (Ga) and oxygen (O{sub 2}) as precursors for gallium and oxygen, respectively. The surface morphology and structural properties of the thin films were characterized by atomic force microscopy, X-ray diffraction, and high resolution transmission electron microscopy. Material characterization indicates the growth temperature played anmore » important role in controlling both surface morphology and crystal quality of the β-Ga{sub 2}O{sub 3} thin films. The smallest root-mean-square surface roughness of ∼7 nm was for thin films grown at a temperature of 950 °C, whereas the highest growth rate (∼1.3 μm/h) with a fixed oxygen flow rate was obtained for the epitaxial layers grown at 850 °C.« less

  4. Interfacing epitaxial oxides to gallium nitride

    NASA Astrophysics Data System (ADS)

    Losego, Mark Daniel

    Molecular beam epitaxy (MBE) is lauded for its ability to control thin film material structures at the atomic level. This precision of control can improve performance of microelectronic devices and cultivate the development of novel device structures. This thesis explores the utility of MBE for designing interfaces between oxide epilayers and the wide band gap semiconductor gallium nitride (GaN). The allure of wide gap semiconductor microelectronics (like GaN, 3.4 eV) is their ability to operate at higher frequencies, higher powers, and higher temperatures than current semiconductor platforms. Heterostructures between ferroelectric oxides and GaN are also of interest for studying the interaction between GaN's fixed polarization and the ferroelectric's switchable polarization. Two major obstacles to successful integration of oxides with GaN are: (1) interfacial trap states; and (2) small electronic band offsets across the oxide/nitride interface due to the semiconductor's large band gap. For this thesis, epitaxial rocksalt oxide interfacial layers (˜8 eV band gap) are investigated as possible solutions to overcoming the challenges facing oxide integration with GaN. The cubic close-packed structure of rocksalt oxides forms a suitable epitaxial interface with the hexagonal close-packed wurtzite lattice of GaN. Three rocksalt oxide compounds are investigated in this thesis: MgO, CaO, and YbO. All are found to have a (111) MO || (0001) GaN; <1 10> MO || <11 20> GaN epitaxial relationship. Development of the epilayer microstructure is dominated by the high-energy polar growth surface (drives 3D nucleation) and the interfacial symmetry, which permits the formation of twin boundaries. Using STEM, strain relief for these ionicly bonded epilayers is observed to occur through disorder within the initial monolayer of growth. All rocksalt oxides demonstrate chemical stability with GaN to >1000°C. Concurrent MBE deposition of MgO and CaO is known to form complete solid

  5. Structures, Properties and Defects of SrTiO3/GaAs Hetero-interfaces

    NASA Astrophysics Data System (ADS)

    Hong, Liang; Bhatnagar, Kunal; Droopad, Ravi; Öğüt, Serdar; Klie, Robert

    SrTiO3 thin film can be epitaxially grown on GaAs substrate and used as a platform for growing other oxides to create functional metal-oxide-semiconductor devices, where a high-quality SrTiO3/GaAs interface is essential. We studied the structural and electronic properties of SrTiO3/GaAs hetero-interfaces at atomic level using scanning transmission electron microscopy and first-principles calculations. Our results suggest the preferred termination of GaAs (001) is significantly dependent on the oxygen concentration in the first oxide layer. The favorable interface structure is characterized as oxygen-deficient SrO in contact with arsenic and is observed in both experiment and simulation. The electronic properties are calculated and found to be tunable by interfacial defects such as oxygen, gallium and arsenic vacancies. This work was supported by the National Science Foundation (Grant No. DMR-1408427). This work made use of instruments in the Electron Microscopy Service and the High Performance Computing Clusters at University of Illinois at Chicago.

  6. Phase composition and magnetism of sol-gel synthesized Ga-Fe-O nanograins

    NASA Astrophysics Data System (ADS)

    Rećko, K.; Waliszewski, J.; Klekotka, U.; Soloviov, D.; Ostapczuk, G.; Satuła, D.; Biernacka, M.; Balasoiu, M.; Basa, A.; Kalska-Szostko, B.; Szymański, K.

    2018-02-01

    We have succeeded in synthesizing orthorhombic Ga(1-x)Fe(1+x)O3 (-0.05? x?0.5), hexagonal GayFe(2-y)O3 (0?y?1.8) and cubic Ga(1+z)Fe(2-z)O4 (-0.1?z?0.8) nanograins of gallium ferrites using conventional precursors and an organic environment of Pechini scenario under atmospheric-pressure conditions (SG method). Phase composition and homogeneity were analyzed using X-ray diffraction. Small angle neutron scattering disclosed ellipsoidal particle shapes of gallium iron oxides (GFO) crystallizing in orthorhombic (o-GFO) and hexagonal (h-GFO) symmetry and parallelepiped shapes of Ga(1+y)Fe(2-y)O4 (c-GFO) grains. Despite local agglomeration among the magnetic grains, the scanning electron microscopy and transmission electron microscopy images point to faced-elliptical shapes. The Mössbauer spectroscopy with magnetization measurements was carried out in the temperature range of 5-295 K. The analysis of gallium ferrites magnetism demonstrates that iron atoms locate with various probabilities in crystallographic positions and the spontaneous magnetization preserves up to room temperature (RT).

  7. Beta-Ga2O3: A transparent conductive oxide for potential resistive switching applications

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaohao

    My primary research focus is controlling conductivity in Ga2O3, with the broader goal of seeking both new materials science and possible applications. Regarding new materials science, the key goal is to elucidate connections between defects and conductivity in β- Ga2O3, then, based on an understanding of the conduction mechanism of Ga2O3, determine and evaluate the potential of β-Ga2O3 as a resistive switching (RS) material. To systematically investigate the feasibility of Ga2O3 in memristor applications, several aspects was examined. One of the first questions to be answered is how defects play a role in the conductivity of Ga2O3. To establish connections between conductivity and defects, a direct approach is to investigate the connections between the local structure and the concomitant electronic responses, paying particular attention to the role of both intrinsic and extrinsic defects. The approach I used was to compare the directional and thermal dependence of the conductivity induced through annealing in various environments (i.e., intentionally changing the intrinsic and extrinsic defect concentrations), and elucidate the roles of dimensionality and sample processing in controlling these processes through a comparison of the bulk. Such a strategy involves careful characterization of both the atomic and electronic structure at both nanoscopic and macroscopic length scales. Although various calculations has predicted conductivity is independent from oxygen vacancy, no experimental work is reported as supports to theoretical studies due to the hardness to dissociate oxygen vacancy increase from other defect changes, such as Hydrogen interstitial increase, surface band bending reduction from surface population of charged vacancies, metal contact to Ga2O3 interface changes, etc . We intentionally inject and/or remove oxygen defects through annealing in oxidizing and reducing atmospheres. The effects of such annealing treatments were investigated using X

  8. Chemical depth profiles of the GaAs/native oxide interface

    NASA Technical Reports Server (NTRS)

    Grunthaner, P. J.; Vasquez, R. P.; Grunthaner, F. J.

    1980-01-01

    The final-state oxidation products and their distribution in thin native oxides (30-40 A) on GaAs have been studied using X-ray photoelectron spectroscopy in conjunction with chemical depth profiling. Extended room-temperature-oxidation conditions have been chosen to allow the native oxide to attain its equilibrium composition and structure. The work emphasizes the use of chemical depth-profiling methods which make it possible to examine the variation in chemical reactivity of the oxide structure. A minimum of two distinct regions of Ga2O3 with differing chemical reactivity is observed. Chemical shift data indicate the presence of As2O3 in the oxide together with an elemental As overlayer at the interface. A change in relative charge transfer between oxygen and both arsenic and gallium-oxide species is observed in the region of the interface.

  9. First-principles studies of electron transport in Ga2O3

    NASA Astrophysics Data System (ADS)

    Kang, Youngho; Krishnaswamy, Karthik; Peelaers, Hartwin; van de Walle, Chris G.

    Ga2O3 is a wide-gap semiconductor with a monoclinic crystal structure and a band gap of 4.8 eV. Its high carrier mobility and large band gap have attracted a lot of attention for use in high power electronics and transparent conductors. Despite its potential for adoption in these applications, an understanding of its carrier transport properties is still lacking. In this study we use first-principles calculations to analyze and compute the electron scattering rates in Ga2O3. Scattering due to ionized impurities and polar longitudinal-optical (LO) phonon is taken into account. We find that the electron mobility is nearly isotropic, despite the low-symmetry monoclinic structure of Ga2O3. At low carrier densities ( 1017 cm-3), the mobility is limited by LO phonon scattering. Scattering by ionized impurities becomes increasingly important at higher carrier densities. This type of scattering is enhanced when compensating native point defects are present; in particular, gallium vacancies, which are triply negatively charged, can have a strong effect on mobility. These effects explain the downturn in mobility observed in experiments at high carrier densities. This work was supported by ARO and NSF.

  10. On the feasibility of p-type Ga2O3

    NASA Astrophysics Data System (ADS)

    Kyrtsos, Alexandros; Matsubara, Masahiko; Bellotti, Enrico

    2018-01-01

    We investigate the various cation substitutional dopants in Ga2O3 for the possibility of p-type conductivity using density functional theory. Our calculations include both standard density functional theory and hybrid functional calculations. We demonstrate that all the investigated dopants result in deep acceptor levels, not able to contribute to the p-type conductivity of Ga2O3. In light of these results, we compare our findings with other wide bandgap oxides and reexamine previous experiments on zinc doping in Ga2O3.

  11. Measuring Nanoscale Heat Transfer for Gold-(Gallium Oxide)-Gallium Nitride Interfaces as a Function

    NASA Astrophysics Data System (ADS)

    Szwejkowski, Chester; Sun, Kai; Constantin, Costel; Giri, Ashutosh; Saltonstall, Christopher; Hopkins, Patrick; NanoSynCh Team; Exsite Team

    2014-03-01

    Gallium nitride (GaN) is considered the most important semiconductor after the discovery of Silicon. Understanding the properties of GaN is imperative in determining the utility and applicability of this class of materials to devices. We present results of time domain thermoreflectance (TDTR) measurements as a function of surface root mean square (RMS) roughness. We used commercially available 5mm x 5mm, single-side polished GaN (3-7 μm)/Sapphire (430 μm) substrates that have a Wurtzite crystal structure and are slightly n-type doped. The GaN substrates were annealed in the open atmosphere for 10 minutes (900-1000 °C). This high-temperature treatment produced RMS values from 1-60 nm and growth of gallium oxide (GaO) as measured with an atomic force microscopy and transmission electron microscopy respectively. A gold film (80nm) was deposited on the GaN surface using electron beam physical vapor deposition which was verified using ellipsometry and profilometry. The TDTR measurements suggest that the thermal conductivity decays exponentially with RMS roughness and that there is a minimum value for thermal boundary conductance at a roughness of 15nm.

  12. The solubility of gallium oxide in vapor and two-phase fluid filtration in hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Bychkov, Andrew; Matveeva, Svetlana; Nekrasov, Stanislav

    2010-05-01

    The solubility of gallium and aluminum oxides in gas phase in the system Ga2O3 (Al2O3)-HCl-H2O was studied at 150-350°C and pressure up to saturated vapor. The concentration of gallium increases with the increasing of HCl pressure. The formulae of gallium gaseous specie was determined as GaOHCl2. The constant of gallium oxide solubility reaction was calculated at 150, 200, 250, 300 and 350°C. The concentration of aluminum in gas phase is insignificant in the same conditions. The possibility of gallium transportation in gas phase with small quantity of Al allow to divide this elements in hydrothermal processes with gas phase. The Ga/Al ratio in muscovite can be used as the indicator of gas phase separation and condensation. This indicator was not considered in the geochemical literature earlier. The separation of gas and liquid phases was determined in Akchatau (Kazahstan) and Spokoinoe (Russia) greisen W deposit by carbon isotope fractionation of carbon dioxide in fluid inclusion. The important feature of both ore mains is heterogenization and boiling of ore-forming fluids. Greisen ore bodies are formed as a result of strongly focused solution flow in the T-P gradient fields. It is possible to divide ore bodies of Akchatau in two types: muscovite and quartz. Muscovite type veins are thin and have small metasyntactic zone. Quartz type veins are localized in fault with large vertical extent (500 m) and content the large quantity of wolframite. These veins formed in condition of significant pressure decreasing from 2.5 to 0.5 kbar with fluid boiling. Gas and liquid phase separation specifies the vertical zonality of quartz type veins. The gas phase with the high gallium concentration is separated from a flow of liquid phase. Liquid phase react with the granites forming greisen metasomatites. Condensation of the gas phase in upper parts of massive produces the increasing of Ga/Al ratio in muscovite 3-5 times more, then in granites and bottom part of vein (from 2×10

  13. Migration mechanisms and diffusion barriers of vacancies in Ga2O3

    NASA Astrophysics Data System (ADS)

    Kyrtsos, Alexandros; Matsubara, Masahiko; Bellotti, Enrico

    2017-06-01

    We employ the nudged elastic band and the dimer methods within the standard density functional theory (DFT) formalism to study the migration of the oxygen and gallium vacancies in the monoclinic structure of β -Ga2O3 . We identify all the first nearest neighbor paths and calculate the migration barriers for the diffusion of the oxygen and gallium vacancies. We also identify the metastable sites of the gallium vacancies which are critical for the diffusion of the gallium atoms. The migration barriers for the diffusion of the gallium vacancies are lower than the migration barriers for oxygen vacancies by 1 eV on average, suggesting that the gallium vacancies are mobile at lower temperatures. Using the calculated migration barriers we estimate the annealing temperature of these defects within the harmonic transition state theory formalism, finding excellent agreement with the observed experimental annealing temperatures. Finally, we suggest the existence of percolation paths which enable the migration of the species without utilizing all the migration paths of the crystal.

  14. Influence of neodymium concentration on excitation and emission properties of Nd doped gallium oxide nanocrystalline films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podhorodecki, A.; Banski, M.; Misiewicz, J.

    Gallium oxide and more particularly {beta}-Ga{sub 2}O{sub 3} matrix is an excellent material for new generation of devices electrically or optically driven as it is known as the widest band gap transparent conductive oxide. In this paper, the optical properties of neodymium doped gallium oxide films grown by magnetron sputtering have been analyzed. The influence of the Nd ions concentration on the excitation/emission mechanisms of Nd ions and the role of gallium oxide matrix have been investigated. The grain size reduction into gallium oxide films have been observed when concentration of Nd increases. It has been found for all samplesmore » that the charge transfer is the main excitation mechanism for Nd ions where defect states play an important role as intermediate states. As a consequence Nd emission efficiency increases with temperature giving rise to most intensive emission at 1087 nm at room temperature.« less

  15. Cr3+-Doped Yb3Ga5O12 Nanophosphor: Synthesis, Optical, EPR, Studies

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Sivaramaiah, G.; Rao, J. L.; Singh, N.; Pathak, M. S.; Jirimali, H. D.; Singh, Pramod K.; Srivastava, Anoop K.; Dhoble, S. J.; Mohapatra, M.

    2016-08-01

    Gallium garnets of lanthanides are multifunctional materials especially known for their complicated structure and magnetic properties. In addition, with a suitable transition metal dopant ion, these matrices have been proved to be excellent materials for lasers. In particular, gallium garnet of ytterbium (Yb3Ga5O12) is known to possess excellent properties with regards to these applications. In this connection, Yb3Ga5O12 doped with Cr3+ nanophosphors were synthesized by a solution combustion route. The synthesized material was characterized by powder x-ray diffraction and scanning electron microscopy for phase purity and homogenous morphology. In order to ascertain the oxidation state of the doped ion, diffuse reflectance (DRF), photoluminescence (PL) and electron paramagnetic resonance (EPR) experiments were performed on the sample. The DRF and PL data suggested the stabilisation of the trivalent Cr ion in the matrix. The EPR spectra exhibited two resonance signals with effective g values at g ≈ 7.6 and 4. The EPR data corroborated the DRF and PL results, suggesting the stabilisation of Cr3+ in the matrix at octahedral-type geometries.

  16. Density Functional Theory Simulations of Water Adsorption and Activation on the (-201) β-Ga2 O3 Surface.

    PubMed

    Anvari, Roozbeh; Spagnoli, Dino; Parish, Giacinta; Nener, Brett

    2018-03-09

    Density functional theory calculations are used to study the molecular and dissociative adsorption of water on the (-201) β-Ga 2 O 3 surface. The effect of adsorption of different water-like species on the geometry, binding energies, vibrational spectra and the electronic structure of the surface are discussed. The study shows that although the hydrogen evolution reaction requires a small amount of energy to become energetically favourable, the over potential for activating the oxygen evolution reaction is quite high. The results of our calculations provide insight as to why a high voltage is required in experiments to activate the water-splitting reaction, whereas previous studies of gallium oxide predicted very low activation energies for other energetically more favourable facets. Application of this work to studies of GaN-based chemical sensors with gallium oxide surfaces shows that it is possible to select the gate bias so that the sensors are not influenced by water-splitting reactions. It was also found that in the region where water splitting does not occur, the surface can exist in two states, that is, water or hydroxyl terminated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Gallium diffusion in zinc oxide via the paired dopant-vacancy mechanism

    NASA Astrophysics Data System (ADS)

    Sky, T. N.; Johansen, K. M.; Riise, H. N.; Svensson, B. G.; Vines, L.

    2018-02-01

    Isochronal and isothermal diffusion experiments of gallium (Ga) in zinc oxide (ZnO) have been performed in the temperature range of 900-1050 °C. The samples used consisted of a sputter-deposited and highly Ga-doped ZnO film at the surface of a single-crystal bulk material. We use a novel reaction diffusion (RD) approach to demonstrate that the diffusion behavior of Ga in ZnO is consistent with zinc vacancy (VZn) mediation via the formation and dissociation of GaZnVZn complexes. In the RD modeling, experimental diffusion data are fitted utilizing recent density-functional-theory estimates of the VZn formation energy and the binding energy of GaZnVZn. From the RD modeling, a migration energy of 2.3 eV is deduced for GaZnVZn, and a total/effective activation energy of 3.0 eV is obtained for the Ga diffusion. Furthermore, and for comparison, employing the so-called Fair model, a total/effective activation energy of 2.7 eV is obtained for the Ga diffusion, reasonably close to the total value extracted from the RD-modeling.

  18. Self-trapped holes in β-Ga2O3 crystals

    NASA Astrophysics Data System (ADS)

    Kananen, B. E.; Giles, N. C.; Halliburton, L. E.; Foundos, G. K.; Chang, K. B.; Stevens, K. T.

    2017-12-01

    We have experimentally observed self-trapped holes (STHs) in a β-Ga2O3 crystal using electron paramagnetic resonance (EPR). These STHs are an intrinsic defect in this wide-band-gap semiconductor and may serve as a significant deterrent to producing usable p-type material. In our study, an as-grown undoped n-type β-Ga2O3 crystal was initially irradiated near room temperature with high-energy neutrons. This produced gallium vacancies (acceptors) and lowered the Fermi level. The STHs (i.e., small polarons) were then formed during a subsequent irradiation at 77 K with x rays. Warming the crystal above 90 K destroyed the STHs. This low thermal stability is a strong indicator that the STH is the correct assignment for these new defects. The S = 1/2 EPR spectrum from the STHs is easily observed near 30 K. A holelike angular dependence of the g matrix (the principal values are 2.0026, 2.0072, and 2.0461) suggests that the defect's unpaired spin is localized on one oxygen ion in a nonbonding p orbital aligned near the a direction in the crystal. The EPR spectrum also has resolved hyperfine structure due to equal and nearly isotropic interactions with 69,71Ga nuclei at two neighboring Ga sites. With the magnetic field along the a direction, the hyperfine parameters are 0.92 mT for the 69Ga nuclei and 1.16 mT for the 71Ga nuclei.

  19. Gallium isotope fractionation during Ga adsorption on calcite and goethite

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Saldi, Giuseppe D.; Chen, JiuBin; Vetuschi Zuccolini, Marino; Birck, Jean-Louis; Liu, Yujie; Schott, Jacques

    2018-02-01

    Gallium (Ga) isotopic fractionation during its adsorption on calcite and goethite was investigated at 20 °C as a function of the solution pH, Ga aqueous concentration and speciation, and the solid to solution ratio. In all experiments Ga was found to be enriched in light isotopes at the solid surface with isotope fractionation △71Gasolid-solution up to -1.27‰ and -0.89‰ for calcite and goethite, respectively. Comparison of Ga isotopic data of this study with predictions for 'closed system' equilibrium and 'Rayleigh fractionation' models indicates that the experimental data are consistent with a 'closed system' equilibrium exchange between the fluid and the solid. The results of this study can be interpreted based on Ga aqueous speciation and the structure of Ga complexes formed at the solid surfaces. For calcite, Ga isotope fractionation is mainly triggered by increased Ga coordination and Ga-O bond length, which vary respectively from 4 and 1.84 Å in Ga(OH)4- to 6 and 1.94 Å in the >Ca-O-GaOH(OH2)4+ surface complex. For goethite, despite the formation of Ga hexa-coordinated >FeOGa(OH)20 surface complexes (Ga-O distances of 1.96-1.98 Å) both at acid and alkaline pH, a similar extent of isotope fractionation was found at acid and alkaline pH, suggesting that Ga(OH)4- is preferentially adsorbed on goethite for all investigated pH conditions. In addition, the observed decrease of Ga isotope fractionation magnitude observed with increasing Ga surface coverage for both calcite and goethite is likely related to the formation of Ga surface polymers and/or hydroxides with reduced Ga-O distances. This first study of Ga isotope fractionation during solid-fluid interactions suggests that the adsorption of Ga by oxides, carbonates or clay minerals could yield significant Ga isotope fractionation between secondary minerals and surficial fluids including seawater. Ga isotopes thus should help to better characterize the surficial biogeochemical cycles of gallium and its

  20. A hetero-homogeneous investigation of chemical bath deposited Ga-doped ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Rakhsha, Amir Hosein; Abdizadeh, Hossein; Pourshaban, Erfan; Golobostanfard, Mohammad Reza

    2018-01-01

    One-dimensional nanostructures of zinc oxide (ZnO) have been in the center of attention, mostly for electronic applications due to their distinctive properties such as high electron mobility (100 cm2V-1s-1) and crystallinity. Thanks to its high density of vacancies and interstitial sites, wurtzite lattice of ZnO is a suitable host for gallium (Ga) as a dopant element. Herein, ZnO nanorod arrays (NRAs) are synthesized by a low-temperature chemical bath deposition (CBD) method with various concentrations of gallium nitrate hydrate as a dopant precursor. Structural and morphological analyses confirm that optimum properties of gallium-doped ZnO (GZO) are obtained at 1% (Ga to Zn molar ratio). Owing to the replacement of smaller Ga3+ ions with Zn2+ ions in the GZO structure, a slight shift of (002) peak to higher angles could be observed in XRD pattern of GZO NRAs. The scanning electron microscope images demonstrate a proliferation in the ZnO NRAs length from 650 nm for undoped ZnO (UZO) to 1200 nm for GZO-1%. However, increasing the dopant concentration above 2.5% results in formation of homogeneous zinc gallium oxide in the bulk solution, which is a sign of inefficient process of doping in GZO NRAs. Furthermore, photoluminescence spectroscopy is used to characterize the band-gap variation of the samples, which demonstrates a small red-shift in the UV emission peak and a decrease in visible emission peak intensity with introducing Ga in ZnO lattice. Lower resistivity for GZO-1% (1.1 MΩ) sample compared to UZO (1.4 MΩ) is recorded, which is compelling evidence for the presence of Ga3+ in ZnO lattice. The results suggest that incorporating Ga into ZnO lattice using CBD method is an easy and effective technique to improve the electrical properties of ZnO NRAs that is an essential factor for a broad range of devices.

  1. Radiation hardness of β-Ga2O3 metal-oxide-semiconductor field-effect transistors against gamma-ray irradiation

    NASA Astrophysics Data System (ADS)

    Wong, Man Hoi; Takeyama, Akinori; Makino, Takahiro; Ohshima, Takeshi; Sasaki, Kohei; Kuramata, Akito; Yamakoshi, Shigenobu; Higashiwaki, Masataka

    2018-01-01

    The effects of ionizing radiation on β-Ga2O3 metal-oxide-semiconductor field-effect transistors (MOSFETs) were investigated. A gamma-ray tolerance as high as 1.6 MGy(SiO2) was demonstrated for the bulk Ga2O3 channel by virtue of weak radiation effects on the MOSFETs' output current and threshold voltage. The MOSFETs remained functional with insignificant hysteresis in their transfer characteristics after exposure to the maximum cumulative dose. Despite the intrinsic radiation hardness of Ga2O3, radiation-induced gate leakage and drain current dispersion ascribed respectively to dielectric damage and interface charge trapping were found to limit the overall radiation hardness of these devices.

  2. Depletion-mode vertical Ga2O3 trench MOSFETs fabricated using Ga2O3 homoepitaxial films grown by halide vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Sasaki, Kohei; Thieu, Quang Tu; Wakimoto, Daiki; Koishikawa, Yuki; Kuramata, Akito; Yamakoshi, Shigenobu

    2017-12-01

    We developed depletion-mode vertical Ga2O3 trench metal-oxide-semiconductor field-effect transistors by using n+ contact and n- drift layers. These epilayers were grown on an n+ (001) Ga2O3 single-crystal substrate by halide vapor phase epitaxy. Cu and HfO2 were used for the gate metal and dielectric film, respectively. The mesa width and gate length were approximately 2 and 1 µm, respectively. The devices showed good DC characteristics, with a specific on-resistance of 3.7 mΩ cm2 and clear current modulation. An on-off ratio of approximately 103 was obtained.

  3. Valence band offset of β-Ga2O3/wurtzite GaN heterostructure measured by X-ray photoelectron spectroscopy.

    PubMed

    Wei, Wei; Qin, Zhixin; Fan, Shunfei; Li, Zhiwei; Shi, Kai; Zhu, Qinsheng; Zhang, Guoyi

    2012-10-10

    A sample of the β-Ga2O3/wurtzite GaN heterostructure has been grown by dry thermal oxidation of GaN on a sapphire substrate. X-ray diffraction measurements show that the β-Ga2O3 layer was formed epitaxially on GaN. The valence band offset of the β-Ga2O3/wurtzite GaN heterostructure is measured by X-ray photoelectron spectroscopy. It is demonstrated that the valence band of the β-Ga2O3/GaN structure is 1.40 ± 0.08 eV.

  4. Investigation of 'surface donors' in Al2O3/AlGaN/GaN metal-oxide-semiconductor heterostructures: Correlation of electrical, structural, and chemical properties

    NASA Astrophysics Data System (ADS)

    Ťapajna, M.; Stoklas, R.; Gregušová, D.; Gucmann, F.; Hušeková, K.; Haščík, Š.; Fröhlich, K.; Tóth, L.; Pécz, B.; Brunner, F.; Kuzmík, J.

    2017-12-01

    III-N surface polarization compensating charge referred here to as 'surface donors' (SD) was analyzed in Al2O3/AlGaN/GaN metal-oxide-semiconductor (MOS) heterojunctions using scaled oxide films grown by metal-organic chemical vapor deposition at 600 °C. We systematically investigated impact of HCl pre-treatment prior to oxide deposition and post-deposition annealing (PDA) at 700 °C. SD density was reduced down to 1.9 × 1013 cm-2 by skipping HCl pre-treatment step as compared to 3.3 × 1013 cm-2 for structures with HCl pre-treatment followed by PDA. The nature and origin of SD was then analyzed based on the correlation between electrical, micro-structural, and chemical properties of the Al2O3/GaN interfaces with different SD density (NSD). From the comparison between distributions of interface traps of MOS heterojunction with different NSD, it is demonstrated that SD cannot be attributed to interface trapped charge. Instead, variation in the integrity of the GaOx interlayer confirmed by X-ray photoelectron spectroscopy is well correlated with NSD, indicating SD may be formed by border traps at the Al2O3/GaOx interface.

  5. High-Throughput Continuous Hydrothermal Synthesis of Transparent Conducting Aluminum and Gallium Co-doped Zinc Oxides.

    PubMed

    Howard, Dougal P; Marchand, Peter; McCafferty, Liam; Carmalt, Claire J; Parkin, Ivan P; Darr, Jawwad A

    2017-04-10

    High-throughput continuous hydrothermal flow synthesis was used to generate a library of aluminum and gallium-codoped zinc oxide nanoparticles of specific atomic ratios. Resistivities of the materials were determined by Hall Effect measurements on heat-treated pressed discs and the results collated into a conductivity-composition map. Optimal resistivities of ∼9 × 10 -3 Ω cm were reproducibly achieved for several samples, for example, codoped ZnO with 2 at% Ga and 1 at% Al. The optimum sample on balance of performance and cost was deemed to be ZnO codoped with 3 at% Al and 1 at% Ga.

  6. Valence band offset of β-Ga2O3/wurtzite GaN heterostructure measured by X-ray photoelectron spectroscopy

    PubMed Central

    2012-01-01

    A sample of the β-Ga2O3/wurtzite GaN heterostructure has been grown by dry thermal oxidation of GaN on a sapphire substrate. X-ray diffraction measurements show that the β-Ga2O3 layer was formed epitaxially on GaN. The valence band offset of the β-Ga2O3/wurtzite GaN heterostructure is measured by X-ray photoelectron spectroscopy. It is demonstrated that the valence band of the β-Ga2O3/GaN structure is 1.40 ± 0.08 eV. PMID:23046910

  7. Simulating equilibrium processes in the Ga(NO3)3-H2O-NaOH system

    NASA Astrophysics Data System (ADS)

    Fedorova, E. A.; Bakhteev, S. A.; Maskaeva, L. N.; Yusupov, R. A.; Markov, V. F.

    2016-06-01

    Equilibrium processes in the Ga(NO3)3-H2O-NaOH system are simulated with allowance for the formation of precipitates of various compositions using experimental data from potentiometric titration and theoretical studies. The values of the instability constants are calculated along with the stoichiometric compositions of the resulting compounds. It is found that pH ranges of 1.0 to 4.3 and 12.0 to 14.0 are best for the deposition of gallium chalcogenide films.

  8. Tungsten Incorporation into Gallium Oxide: Crystal Structure, Surface and Interface Chemistry, Thermal Stability and Interdiffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubio, E. J.; Mates, T. E.; Manandhar, S.

    Tungsten (W) incorporated gallium oxide (Ga2O3) (GWO) thin films were deposited by radio-frequency magnetron co-sputtering of W-metal and Ga2O3-ceramic targets. Films were produced by varying sputtering power applied to the W-target in order to achieve variable W-content (0-12 at%) into Ga2O3 while substrate temperature was kept constant at 500 °C. Chemical composition, chemical valence states, microstructure and crystal structure of as-deposited and annealed GWO films were evaluated as a function of W-content. The structural and chemical analyses indicate that the samples deposited without any W-incorporation are stoichiometric, nanocrystalline Ga2O3 films, which crystallize in β-phase monoclinic structure. While GWO films alsomore » crystallize in monoclinic β-Ga2O3 phase, W-incorporation induces surface amorphization as revealed by structural studies. The chemical valence state of Ga ions probed by X-ray photoelectron spectroscopic (XPS) analyses is characterized by the highest oxidation state i.e., Ga3+. No changes in Ga chemical state are noted for variable W-incorporation in the range of 0-12 at%. Rutherford backscattering spectrometry (RBS) analyses indicate the uniform distribution of W-content in the GWO films. However, XPS analyses indicate the formation of mixed valence states for W ions, which may be responsible for surface amorphization in GWO films. GWO films were stable up to 900 oC, at which point thermally induced secondary phase (W-oxide) formation was observed. A transition to mesoporous structure coupled with W interdiffusion occurs due to thermal annealing as derived from the chemical analyses at the GWO films’ surface as well as depth-profiling towards the GWO-Si interface. A model has been formulated to account for the mechanism of W-incorporation, thermal stability and interdiffusion via pore formation in GWO films.« less

  9. Structure of (Ga2O3)2(ZnO)13 and a unified description of the homologous series (Ga2O3)2(ZnO)(2n + 1).

    PubMed

    Michiue, Yuichi; Kimizuka, Noboru; Kanke, Yasushi; Mori, Takao

    2012-06-01

    The structure of (Ga(2)O(3))(2)(ZnO)(13) has been determined by a single-crystal X-ray diffraction technique. In the monoclinic structure of the space group C2/m with cell parameters a = 19.66 (4), b = 3.2487 (5), c = 27.31 (2) Å, and β = 105.9 (1)°, a unit cell is constructed by combining the halves of the unit cell of Ga(2)O(3)(ZnO)(6) and Ga(2)O(3)(ZnO)(7) in the homologous series Ga(2)O(3)(ZnO)(m). The homologous series (Ga(2)O(3))(2)(ZnO)(2n + 1) is derived and a unified description for structures in the series is presented using the (3+1)-dimensional superspace formalism. The phases are treated as compositely modulated structures consisting of two subsystems. One is constructed by metal ions and another is by O ions. In the (3 + 1)-dimensional model, displacive modulations of ions are described by the asymmetric zigzag function with large amplitudes, which was replaced by a combination of the sawtooth function in refinements. Similarities and differences between the two homologous series (Ga(2)O(3))(2)(ZnO)(2n + 1) and Ga(2)O(3)(ZnO)(m) are clarified in (3 + 1)-dimensional superspace. The validity of the (3 + 1)-dimensional model is confirmed by the refinements of (Ga(2)O(3))(2)(ZnO)(13), while a few complex phenomena in the real structure are taken into account by modifying the model.

  10. Impact of oxygen plasma postoxidation process on Al2O3/n-In0.53Ga0.47As metal-oxide-semiconductor capacitors

    NASA Astrophysics Data System (ADS)

    Lechaux, Y.; Fadjie-Djomkam, A. B.; Bollaert, S.; Wichmann, N.

    2016-09-01

    Capacitance-voltage (C-V) measurements and x-ray photoelectron spectroscopy (XPS) analysis were performed in order to investigate the effect of a oxygen (O2) plasma after oxide deposition on the Al2O3/n-In0.53Ga0.47As metal-oxide-semiconductor structure passivated with ammonia NH4OH solution. From C-V measurements, an improvement of charge control is observed using the O2 plasma postoxidation process on In0.53Ga0.47As, while the minimum of interface trap density remains at a good value lower than 1 × 1012 cm-2 eV-1. From XPS measurements, we found that NH4OH passivation removes drastically the Ga and As native oxides on the In0.53Ga0.47As surface and the O2 plasma postoxidation process enables the reduction of interface re-oxidation after post deposition annealing (PDA) of the oxide. The advanced hypothesis is the formation of interfacial barrier between Al2O3 and In0.53Ga0.47As which prevents the diffusion of oxygen species into the semiconductor surface during PDA.

  11. Visible light-induced OH radicals in Ga2O3: an EPR study.

    PubMed

    Tzitrinovich, Zeev; Lipovsky, Anat; Gedanken, Aharon; Lubart, Rachel

    2013-08-21

    Reactive oxygen species (ROS) were found to exist in water suspensions of several metal oxide nanoparticles (NPs), such as CuO, TiO2 and ZnO. Visible light irradiation enhanced the capability of TiO2 and ZnO NPs to generate ROS, thus increasing their antibacterial effects. Because of the possible toxic effects on the host tissue it is desired to find nano-metal oxides which do not produce ROS under room light, but only upon a strong external stimulus. Using the technique of electron-spin resonance (ESR) coupled with spin trapping, we examined the ability of Ga2O3 submicron-particle suspensions in water to produce reactive oxygen species with and without visible light irradiation. We found that in contrast to ZnO and TiO2 NPs, no ROS are produced by Ga2O3 under room light. Nevertheless blue light induced hydroxyl radical formation in Ga2O3. This finding might suggest that NPs of Ga2O3 could be used safely for infected skin sterilization.

  12. Synthesis and characterization of beta-Ga2O3 nanorod array clumps by chemical vapor deposition.

    PubMed

    Shi, Feng; Wei, Xiaofeng

    2012-11-01

    beta-Ga2O3 nanorod array clumps were successfully synthesized on Si (111) substrates by chemical vapor deposition. The composition, microstructure, morphology, and light-emitting property of these clumps were characterized by X-ray diffraction, Fourier transform infrared spectrophotometry, X-ray photoelectron spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, Raman spectroscopy, and photoluminescence. The results demonstrate that the sample synthesized at 1050 degrees C for 15 min was composed of monoclinic beta-Ga2O3 nanorod array clumps, where each single nanorod was about 300 nm in diameter with some nano-droplets on its tip. These results reveal that the growth mechanism agrees with the vapor-liquid-solid (VLS) process. The photoluminescence spectrum shows that the Ga2O3 nanorods have a blue emission at 438 nm, which may be attributed to defects, such as oxygen vacancies and gallium-oxygen vacancy pairs. Defect-energy aggregation confinement growth theory was proposed to explain the growth mechanism of Ga2O3 nanorod array clumps collaborated with the VLS mechanism.

  13. Demonstration of β-(AlxGa1-x)2O3/Ga2O3 double heterostructure field effect transistors

    NASA Astrophysics Data System (ADS)

    Zhang, Yuewei; Joishi, Chandan; Xia, Zhanbo; Brenner, Mark; Lodha, Saurabh; Rajan, Siddharth

    2018-06-01

    In this work, we demonstrate modulation-doped β-(AlxGa1-x)2O3/Ga2O3 double heterostructure field effect transistors. The maximum sheet carrier density for a two-dimensional electron gas (2DEG) in a β-(AlxGa1-x)2O3/Ga2O3 heterostructure is limited by the conduction band offset and parasitic channel formation in the barrier layer. We demonstrate a double heterostructure to realize a β-(AlxGa1-x)2O3/Ga2O3/(AlxGa1-x)2O3 quantum well, where electrons can be transferred from below and above the β-Ga2O3 quantum well. The confined 2DEG charge density of 3.85 × 1012 cm-2 was estimated from the low-temperature Hall measurement, which is higher than that achievable in a single heterostructure. Hall mobilities of 1775 cm2/V.s at 40 K and 123 cm2/V.s at room temperature were measured. Modulation-doped double heterostructure field effect transistors showed a maximum drain current of IDS = 257 mA/mm, a peak transconductance (gm) of 39 mS/mm, and a pinch-off voltage of -7.0 V at room temperature. The three-terminal off-state breakdown measurement on the device with a gate-drain spacing (LGD) of 1.55 μm showed a breakdown voltage of 428 V, corresponding to an average breakdown field of 2.8 MV/cm. The breakdown measurement on the device with a scaled gate-drain spacing of 196 nm indicated an average breakdown field of 3.2 MV/cm. The demonstrated modulation-doped β-(AlxGa1-x)2O3/Ga2O3 double heterostructure field effect transistor could act as a promising candidate for high power and high frequency device applications.

  14. Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Sriram; Xia, Zhanbo; Joishi, Chandan; Zhang, Yuewei; McGlone, Joe; Johnson, Jared; Brenner, Mark; Arehart, Aaron R.; Hwang, Jinwoo; Lodha, Saurabh; Rajan, Siddharth

    2017-07-01

    Modulation-doped heterostructures are a key enabler for realizing high mobility and better scaling properties for high performance transistors. We report the realization of a modulation-doped two-dimensional electron gas (2DEG) at the β-(Al0.2Ga0.8)2O3/Ga2O3 heterojunction by silicon delta doping. The formation of a 2DEG was confirmed using capacitance voltage measurements. A modulation-doped 2DEG channel was used to realize a modulation-doped field-effect transistor. The demonstration of modulation doping in the β-(Al0.2Ga0.8)2O3/Ga2O3 material system could enable heterojunction devices for high performance electronics.

  15. High rate dry etching of InGaZnO by BCl3/O2 plasma

    NASA Astrophysics Data System (ADS)

    Park, Wanjae; Whang, Ki-Woong; Gwang Yoon, Young; Hwan Kim, Jeong; Rha, Sang-Ho; Seong Hwang, Cheol

    2011-08-01

    This paper reports the results of the high-rate dry etching of indium gallium zinc oxide (IGZO) at room temperature using BCl3/O2 plasma. We achieved an etch rate of 250 nm/min. We inferred from the x-ray photoelectron spectroscopy analysis that BOx or BOClx radicals generated from BCl3/O2 plasma cause the etching of the IGZO material. O2 initiates the etching of IGZO, and Ar removes nonvolatile byproducts from the surface during the etching process. Consequently, a smooth etched surface results when these gases are added to the etch gas.

  16. Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swain, Basudev, E-mail: swain@iae.re.kr; Mishra, Chinmayee; Kang, Leeseung

    Waste dust generated during manufacturing of LED contains significant amounts of gallium and indium, needs suitable treatment and can be an important resource for recovery. The LED industry waste dust contains primarily gallium as GaN. Leaching followed by purification technology is the green and clean technology. To develop treatment and recycling technology of these GaN bearing e-waste, leaching is the primary stage. In our current investigation possible process for treatment and quantitative leaching of gallium and indium from the GaN bearing e-waste or waste of LED industry dust has been developed. To recycle the waste and quantitative leaching of gallium,more » two different process flow sheets have been proposed. In one, process first the GaN of the waste the LED industry dust was leached at the optimum condition. Subsequently, the leach residue was mixed with Na{sub 2}CO{sub 3}, ball milled followed by annealing, again leached to recover gallium. In the second process, the waste LED industry dust was mixed with Na{sub 2}CO{sub 3}, after ball milling and annealing, followed acidic leaching. Without pretreatment, the gallium leaching was only 4.91 w/w % using 4 M HCl, 100 °C and pulp density of 20 g/L. After mechano-chemical processing, both these processes achieved 73.68 w/w % of gallium leaching at their optimum condition. The developed process can treat and recycle any e-waste containing GaN through ball milling, annealing and leaching. - Highlights: • Simplest process for treatment of GaN an LED industry waste developed. • The process developed recovers gallium from waste LED waste dust. • Thermal analysis and phase properties of GaN to Ga{sub 2}O{sub 3} and GaN to NaGaO{sub 2} revealed. • Solid-state chemistry involved in this process reported. • Quantitative leaching of the GaN was achieved.« less

  17. Oxidation of GaAs substrates to enable β-Ga2O3 films for sensors and optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Mao, Howard; Alhalaili, Badriyah; Kaya, Ahmet; Dryden, Daniel M.; Woodall, Jerry M.; Islam, M. Saif

    2017-08-01

    A very simple and inexpensive method for growing β-Ga2O3 films by heating GaAs wafers at high temperature in a furnace was found to contribute to large-area, high-quality β-Ga2O3 nanoscale thin films as well as nanowires depending on the growth conditions. We present the material characterization results including the optical band gap, Schottky barrier height with metal (gold), field ionization and photoconductance of β-Ga2O3 film and nanowires.

  18. Interface trapping in (2 ¯ 01 ) β-Ga2O3 MOS capacitors with deposited dielectrics

    NASA Astrophysics Data System (ADS)

    Jayawardena, Asanka; Ramamurthy, Rahul P.; Ahyi, Ayayi C.; Morisette, Dallas; Dhar, Sarit

    2018-05-01

    The electrical properties of interfaces and the impact of post-deposition annealing have been investigated in gate oxides formed by low pressure chemical vapor deposition (LPCVD SiO2) and atomic layer deposition (Al2O3) on ( 2 ¯ 01 ) oriented n-type β-Ga2O3 single crystals. Capacitance-voltage based methods have been used to extract the interface state densities, including densities of slow `border' traps at the dielectric-Ga2O3 interfaces. It was observed that SiO2-β-Ga2O3 has a higher interface and border trap density than the Al2O3-β-Ga2O3. An increase in shallow interface states was also observed at the Al2O3-β-Ga2O3 interface after post-deposition annealing at higher temperature suggesting the high temperature annealing to be detrimental for Al2O3-Ga2O3 interfaces. Among the different dielectrics studied, LPCVD SiO2 was found to have the lowest dielectric leakage and the highest breakdown field, consistent with a higher conduction band-offset. These results are important for the processing of high performance β-Ga2O3 MOS devices as these factors will critically impact channel transport, threshold voltage stability, and device reliability.

  19. Crystal orientation of monoclinic β-Ga2O3 thin films formed on cubic MgO substrates with a γ-Ga2O3 interfacial layer

    NASA Astrophysics Data System (ADS)

    Nakagomi, Shinji; Kokubun, Yoshihiro

    2017-12-01

    The crystal orientation relationship between β-Ga2O3 and MgO in β-Ga2O3 thin films prepared on (1 0 0), (1 1 1), and (1 1 0) MgO substrates was investigated by X-ray diffraction measurements and cross-sectional transmission electron microscopy images. The γ-Ga2O3 interfacial layer was present between β-Ga2O3 and MgO acted as a buffer to connect β-Ga2O3 on MgO. The following conditions were satisfied under each case: β-Ga2O3 (1 0 0)||MgO (1 0 0) and β-Ga2O3 [0 0 1]||MgO 〈0 1 1〉 for the formation of β-Ga2O3 on (1 0 0) MgO, and β-Ga2O3 (2 bar 0 1)||MgO (1 1 1) for the formation of β-Ga2O3 on (1 1 1) MgO, as well as each condition of β-Ga2O3 [0 1 0] (1 0 0)||MgO [ 1 bar 1 0 ] (0 0 1), β-Ga2O3 [0 1 0] (1 0 0)||MgO [ 0 1 bar 1 ] (1 0 0), and β-Ga2O3 [0 1 0] (1 0 0)||MgO [ 1 0 1 bar ] (0 1 0). β-Ga2O3 (1 bar 0 2)||MgO(1 1 0) and β-Ga2O3 [0 1 0] ⊥ MgO [0 0 1] for β-Ga2O3 formed on (1 1 0) MgO. The β-Ga2O3 formed on (1 1 1) MgO at 800 °C exhibited a threefold structure. The β-Ga2O3 formed on (1 1 0) MgO had a twofold structure but different by 90° from the result reported previously.

  20. Ohmic contact mechanism for RF superimposed DC sputtered-ITO transparent p-electrodes with a variety of Sn2O3 content for GaN-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kim, Tae Kyoung; Yoon, Yeo Jin; Oh, Seung Kyu; Lee, Yu Lim; Cha, Yu-Jung; Kwak, Joon Seop

    2018-02-01

    The dependence of the electrical and optical properties of radio frequency (RF) superimposed direct current (DC) sputtered-indium tin oxide (ITO) on the tin oxide (Sn2O3) content of the ITO is investigated, in order to elucidate an ohmic contact mechanism for the sputtered-ITO transparent electrodes on p-type gallium nitride (p-GaN). Contact resistivity of the RF superimposed DC sputtered-ITO on p-GaN in LEDs decreased when Sn2O3 content was increased from 3 wt% to 7 wt% because of the reduced sheet resistance of the sputtered-ITO with the increasing Sn2O3 content. Further increases in Sn2O3 content from 7 wt% to 15 wt% resulted in deterioration of the contact resistivity, which can be attributed to reduction of the work function of the ITO with increasing Sn2O3 content, followed by increasing Schottky barrier height at the sputtered ITO/p-GaN interface. Temperature-dependent contact resistivity of the sputtered-ITO on p-GaN also revealed that the ITO contacts with 7 wt% Sn2O3 yielded the lowest effective barrier height of 0.039 eV. Based on these results, we devised sputtered-ITO transparent p-electrodes having dual compositions of Sn2O3 content (7/10 wt%). The radiant intensity of LEDs having sputtered-ITO transparent p-electrodes with the dual compositions (7/10 wt%) was enhanced by 13% compared to LEDs having ITO with Sn2O3 content of 7 wt% only.

  1. Gallium-containing phospho-silicate glasses: synthesis and in vitro bioactivity.

    PubMed

    Franchini, Mirco; Lusvardi, Gigliola; Malavasi, Gianluca; Menabue, Ledi

    2012-08-01

    A series of Ga-containing phospho-silicate glasses based on Bioglass 45S5, having molar formula 46.2SiO2·24.3Na2O·26.9CaO·2.6P2O5·xGa2O3 (x=1.0, 1.6, 3.5), were prepared by fusion method. The reference Bioglass 45S5 without gallium was also prepared. The synthesized glasses were immersed in simulated body fluid (SBF) for 30 days in order to observe ion release and hydroxyapatite (HA) formation. All Ga-containing glasses maintain the ability of HA formation as indicated by main X-ray diffractometric peaks and/or electronic scanning microscopy results. HA layer was formed after 1 day of SBF soaking in 45S5 glass containing up to 1.6% Ga2O3 content. Moreover, gallium released by the glasses was found to be partially precipitated on the glass surface as gallium phosphate. Further increase in gallium content reduced the ion release in SBF. The maximum of Ga(3+) concentration measured in solution is ~6 ppm determined for 3.5% Ga2O3 content. This amount is about half of the toxic level (14 ppm) of gallium and the glasses release gallium till 30 days of immersion in SBF. Considering the above results, the studied materials can be proposed as bioactive glasses with additional antimicrobial effect of gallium having no toxic outcome. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Manipulating Conduction in Metal Oxide Semiconductors: Mechanism Investigation and Conductance Tuning in Doped Fe2O3 Hematite and Metal/Ga2O3/Metal Heterostructure

    NASA Astrophysics Data System (ADS)

    Zhao, Bo

    This study aims at understanding the fundamental mechanisms of conduction in several metal oxide semiconductors, namely alpha-Fe2O 3 and beta-Ga2O3, and how it could be tuned to desired values/states to enable a wide range of application. In the first effort, by adding Ti dopant, we successfully turned Fe2O3 from insulating to conductive by fabricated compositionally and structurally well-defined epitaxial alpha-(TixFe1-x)2 O3(0001) films for x ≤ 0.09. All films were grown by oxygen plasma assisted molecular beam epitaxy on Al2O3(0001) sapphire substrate with a buffer layer of Cr2O3 to relax the strain from lattice mismatch. Van der Pauw resistivity and Hall effect measurements reveal carrier concentrations between 1019 and 1020 cm-3 at room temperature and mobilities in the range of 0.1 to 0.6 cm2/V˙s. Such low mobility, unlike conventional band-conduction semiconductor, was attributed to hopping mechanism due to strong electron-phonon interaction in the lattice. More interestingly, conduction mechanism transitions from small-polaron hopping at higher temperatures to variable range hopping at lower temperatures with a transition temperature between 180 to 140 K. Consequently, by adding Ti dopant, conductive Fe 2O3 hematite thin films were achieved with a well-understood conducting mechanism that could guide further device application such as spin transistor and water splitting. In the case of Ga2O3, while having a band gap as high as 5 eV, they are usually conductive for commercially available samples due to unintentional Si doping. However, we discovered the conductance could be repeatedly switched between high resistance state and low resistance state when made into metal/Ga2O3 /metal heterostructure. However, to obtain well controlled switching process with consistent switching voltages and resistances, understanding switching mechanism is the key. In this study, we fabricated resistive switching devices utilizing a Ni/Ga2O3/Ir heterostructure. Bipolar

  3. Epitaxial Gd2O3 on GaN and AlGaN: a potential candidate for metal oxide semiconductor based transistors on Si for high power application

    NASA Astrophysics Data System (ADS)

    Ghosh, Kankat; Das, S.; Khiangte, K. R.; Choudhury, N.; Laha, Apurba

    2017-11-01

    We report structural and electrical properties of hexagonal Gd2O3 grown epitaxially on GaN/Si (1 1 1) and AlGaN/GaN/Si(1 1 1) virtual substrates. GaN and AlGaN/GaN heterostructures were grown on Si(1 1 1) substrates by plasma assisted molecular beam epitaxy (PA-MBE), whereas the Gd2O3 layer was grown by the pulsed laser ablation (PLA) technique. Initial structural characterizations show that Gd2O3 grown on III-nitride layers by PLA, exhibit a hexagonal structure with an epitaxial relationship as {{≤ft[ 0 0 0 1 \\right]}G{{d2}{{O}3}}}||{{≤ft[ 0 0 0 1 \\right]}GaN} and {{≤ft[ 1 \\bar{1} 0 0 \\right]}G{{d2}{{O}3}}}||{{≤ft[ 1 \\bar{1} 0 0 \\right]}GaN} . X-ray photoelectron measurements of the valence bands revealed that Gd2O3 exhibits band offsets of 0.97 eV and 0.4 eV, for GaN and Al0.3Ga0.7N, respectively. Electrical measurements such as capacitance-voltage and leakage current characteristics further confirm that epi-Gd2O3 on III-nitrides could be a potential candidate for future metal-oxide-semiconductor (MOS)-based transistors also for high power applications in radio frequency range.

  4. Bias induced transition from an ohmic to a non-ohmic interface in supramolecular tunneling junctions with Ga2O3/EGaIn top electrodes.

    PubMed

    Wimbush, Kim S; Fratila, Raluca M; Wang, Dandan; Qi, Dongchen; Liang, Cao; Yuan, Li; Yakovlev, Nikolai; Loh, Kian Ping; Reinhoudt, David N; Velders, Aldrik H; Nijhuis, Christian A

    2014-10-07

    This study describes that the current rectification ratio, R ≡ |J|(-2.0 V)/|J|(+2.0 V) for supramolecular tunneling junctions with a top-electrode of eutectic gallium indium (EGaIn) that contains a conductive thin (0.7 nm) supporting outer oxide layer (Ga2O3), increases by up to four orders of magnitude under an applied bias of >+1.0 V up to +2.5 V; these junctions did not change their electrical characteristics when biased in the voltage range of ±1.0 V. The increase in R is caused by the presence of water and ions in the supramolecular assemblies which react with the Ga2O3/EGaIn layer and increase the thickness of the Ga2O3 layer. This increase in the oxide thickness from 0.7 nm to ∼2.0 nm changed the nature of the monolayer-top-electrode contact from an ohmic to a non-ohmic contact. These results unambiguously expose the experimental conditions that allow for a safe bias window of ±1.0 V (the range of biases studies of charge transport using this technique are normally conducted) to investigate molecular effects in molecular electronic junctions with Ga2O3/EGaIn top-electrodes where electrochemical reactions are not significant. Our findings also show that the interpretation of data in studies involving applied biases of >1.0 V may be complicated by electrochemical side reactions which can be recognized by changes of the electrical characteristics as a function voltage cycling or in current retention experiments.

  5. Highly conductive homoepitaxial Si-doped Ga2O3 films on (010) β-Ga2O3 by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Leedy, Kevin D.; Chabak, Kelson D.; Vasilyev, Vladimir; Look, David C.; Boeckl, John J.; Brown, Jeff L.; Tetlak, Stephen E.; Green, Andrew J.; Moser, Neil A.; Crespo, Antonio; Thomson, Darren B.; Fitch, Robert C.; McCandless, Jonathan P.; Jessen, Gregg H.

    2017-07-01

    Si-doped Ga2O3 thin films were fabricated by pulsed laser deposition on semi-insulating (010) β-Ga2O3 and (0001) Al2O3 substrates. Films deposited on β-Ga2O3 showed single crystal, homoepitaxial growth as determined by high resolution transmission electron microscopy and x-ray diffraction. Corresponding films deposited on Al2O3 were mostly single phase, polycrystalline β-Ga2O3 with a preferred (20 1 ¯ ) orientation. An average conductivity of 732 S cm-1 with a mobility of 26.5 cm2 V-1 s-1 and a carrier concentration of 1.74 × 1020 cm-3 was achieved for films deposited at 550 °C on β-Ga2O3 substrates as determined by Hall-Effect measurements. Two orders of magnitude improvement in conductivity were measured using native substrates versus Al2O3. A high activation efficiency was obtained in the as-deposited condition. The high carrier concentration Ga2O3 thin films achieved by pulsed laser deposition enable application as a low resistance ohmic contact layer in β-Ga2O3 devices.

  6. Effect of Al2O3 insulator thickness on the structural integrity of amorphous indium-gallium-zinc-oxide based thin film transistors.

    PubMed

    Kim, Hak-Jun; Hwang, In-Ju; Kim, Youn-Jea

    2014-12-01

    The current transparent oxide semiconductors (TOSs) technology provides flexibility and high performance. In this study, multi-stack nano-layers of TOSs were designed for three-dimensional analysis of amorphous indium-gallium-zinc-oxide (a-IGZO) based thin film transistors (TFTs). In particular, the effects of torsional and compressive stresses on the nano-sized active layers such as the a-IGZO layer were investigated. Numerical simulations were carried out to investigate the structural integrity of a-IGZO based TFTs with three different thicknesses of the aluminum oxide (Al2O3) insulator (δ = 10, 20, and 30 nm), respectively, using a commercial code, COMSOL Multiphysics. The results are graphically depicted for operating conditions.

  7. Fermi Level Unpinning of GaSb (100) using Plasma Enhanced Atomic Layer Deposition of Al2O3

    DTIC Science & Technology

    2010-01-01

    of high-/GaSb semiconductor interface. GaSb has a highly reactive surface and on exposure to air it will form a native oxide layer composed of Ga2O3 ...and Sb2O3 2GaSb+3O2Ga2O3 +Sb2O3. The Sb2O3 can fur- ther react with the GaSb surface forming elemental Sb and Ga2O3 Sb2O3+2GaSb→ Ga2O3 +4Sb.5,6...rights_and_permissions mentioned before, Sb2O3 reacts with GaSb forming Ga2O3 and elemental Sb.6 The kinetics of this reaction is enhanced at higher temperatures200 °C.14

  8. Low phonon energies and wideband optical windows of La2O3-Ga2O3 glasses prepared using an aerodynamic levitation technique.

    PubMed

    Yoshimoto, Kohei; Masuno, Atsunobu; Ueda, Motoi; Inoue, Hiroyuki; Yamamoto, Hiroshi; Kawashima, Tastunori

    2017-03-30

    xLa 2 O 3 -(100 - x)Ga 2 O 3 binary glasses were synthesized by an aerodynamic levitation technique. The glass-forming region was found to be 20 ≤ x ≤ 57. The refractive indices were greater than 1.92 and increased linearly with increasing x. The polarizabilities of oxide ions were estimated to be 2.16-2.41 Å 3 , indicating that the glasses were highly ionic. The glasses were transparent over a very wide range from the ultraviolet to the mid-infrared region. The widest transparent window among the oxide glasses was from 270 nm to 10 μm at x = 55. From the Raman scattering spectra, a decrease in bridging oxide ions and an increase in non-bridging oxide ions were confirmed to occur with increasing La 2 O 3 content. The maximum phonon energy was found to be approximately 650 cm -1 , being one of the lowest among oxide glasses. These results show that La 2 O 3 -Ga 2 O 3 binary glasses should be promising host materials for optical applications such as lenses, windows, and filters over a very wide wavelength range.

  9. Low phonon energies and wideband optical windows of La2O3-Ga2O3 glasses prepared using an aerodynamic levitation technique

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Kohei; Masuno, Atsunobu; Ueda, Motoi; Inoue, Hiroyuki; Yamamoto, Hiroshi; Kawashima, Tastunori

    2017-03-01

    xLa2O3-(100 - x)Ga2O3 binary glasses were synthesized by an aerodynamic levitation technique. The glass-forming region was found to be 20 ≤ x ≤ 57. The refractive indices were greater than 1.92 and increased linearly with increasing x. The polarizabilities of oxide ions were estimated to be 2.16-2.41 Å3, indicating that the glasses were highly ionic. The glasses were transparent over a very wide range from the ultraviolet to the mid-infrared region. The widest transparent window among the oxide glasses was from 270 nm to 10 μm at x = 55. From the Raman scattering spectra, a decrease in bridging oxide ions and an increase in non-bridging oxide ions were confirmed to occur with increasing La2O3 content. The maximum phonon energy was found to be approximately 650 cm-1, being one of the lowest among oxide glasses. These results show that La2O3-Ga2O3 binary glasses should be promising host materials for optical applications such as lenses, windows, and filters over a very wide wavelength range.

  10. In2O3-based multicomponent metal oxide films and their prospects for thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Korotcenkov, G.; Brinzari, V.; Cho, B. K.

    2016-02-01

    Thermoelectric properties of In2O3-SnO2-based multi-component metal oxide films formed by spray pyrolysis method are studied. It is shown that the introduction of additional components such as gallium and zinc can control the parameters of the deposited layers. At that, the doping with gallium is more effective for optimization of the efficiency of the thermoelectric conversion. The explanation of the observed changes in the electro-physical and thermoelectric properties of the films at the composition change is given. It is found that the main changes in the properties of multicomponent metal oxide films take place at concentrations of dopants which correspond to their limit solubility in the dominant oxide.

  11. Laser-diode-excited blue upconversion in Tm3+/Yb3+ -codoped TeO2-Ga2O3-R2O (R=Li, Na, K) glasses.

    PubMed

    Zhao, Chun; Zhang, Qinyuan; Yang, Gangfeng; Jiang, Zhonghong

    2008-01-01

    This paper reports on intense blue upconversion in Tm(3+)/Yb(3+) codoped TeO(2)-Ga(2)O(3)-R(2)O(R=Li, Na, K) glasses upon excitation with commercial available laser diode (LD). Effects of alkali ions on the Raman spectra, thermal stability and spectroscopic properties of the tellurite-gallium glasses have also been investigated. Energy transfer and the involved upconversion mechanisms have been discussed. Intense blue upconversion emission centered at 476 nm along with a weak red emission at 650 nm has been observed upon excitation of 977 nm LD, assigned to the transitions of 1G4-->3H6, and 1G4-->3H4 and/or 3F(2,3)-->3H6 of Tm(3+), respectively. The blue upconversion intensity has a cubelike dependence on incident pump laser power, indicating a three-photon process. However, a quadratic dependence of the 476 nm upconversion intensity on the incident pump laser power has been observed when samples under excitation of 808 nm LD due to a two-photon absorption process. Enhanced upconversion luminescence have been observed with replacing K(+) for Na(+) and Li(+).

  12. Real structure of (Sb1/3Zn2/3)GaO3(ZnO)3, a member of the homologous series ARO3(ZnO)m with ordered site occupation

    NASA Astrophysics Data System (ADS)

    Garling, Jennifer; Assenmacher, Wilfried; Schmid, Herbert; Longo, Paolo; Mader, Werner

    2018-02-01

    The hitherto unknown compound (Sb1/3Zn2/3)GaO3(ZnO)3, a member of the homologous series with general formula ARO3(ZnO)m (A,R = trivalent metal cation), was prepared by solid state methods from the binary oxides in sealed Pt-tubes. The structure of (Sb1/3Zn2/3)GaO3(ZnO)3 has been determined by X-ray diffraction from flux-grown single crystals (R 3 ̅ m , Z = 3, aR = 3.2387(7) Å, cR = 41.78(1) Å. The analysis revealed that (Sb1/3Zn2/3)GaO3(ZnO)m is isostructural with InGaO3(ZnO)m, where In3+ on octahedral sites is replaced by Sb5+ and Zn2+ in a ratio of 1:2, preserving an average charge of 3+. (Sb1/3Zn2/3)GaO3(ZnO)3 was furthermore analyzed by electron diffraction, High Angle Annular Dark Field (HAADF) scanning TEM, and high precision EELS spectroscopic imaging, where a periodic ordering of SbO6 octahedra connected via edge sharing to six ZnO6 octahedra in the octahedral layers in a honeycomb motif is found. Due to the large lateral distance of ca. 1.4 nm between adjacent octahedral layers, electrostatic interaction might hardly dictate Sb and Zn positions in neighbouring layers, and hence is a characteristic of the real structure of (Sb1/3Zn2/3)GaO3(ZnO)3. A structure model of the compound in space group P3112 (Nr. 151) with strictly ordered and discrete Sb and Zn positions is derived by crystallographic transformations as closest approximant for the real structure of (Sb1/3Zn2/3)GaO3(ZnO)3. UV-vis measurements confirm this compound to be a transparent oxide with an optical band gap in the UV region with Eg = 3.15 eV.

  13. Comparison of structural and electrical properties of Lu{sub 2}O{sub 3} and Lu{sub 2}TiO{sub 5} gate dielectrics for α-InGaZnO thin-film transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Tung-Ming, E-mail: tmpan@mail.cgu.edu.tw; Chen, Ching-Hung; Her, Jim-Long

    We compared the structural properties and electrical characteristics of high-κ Lu{sub 2}O{sub 3} and Lu{sub 2}TiO{sub 5} gate dielectrics for amorphous indium-gallium-zinc oxide (α-InGaZnO) thin-film transistor (TFT) applications. The Lu{sub 2}O{sub 3} film has a strong Lu{sub 2}O{sub 3} (400) peak in the X-ray diffraction pattern, while the Lu{sub 2}TiO{sub 5} sample shows a relatively weak Lu{sub 2}TiO{sub 5} (102) peak. Atomic force microscopy reveals that the Lu{sub 2}O{sub 3} dielectric exhibits a rougher surface (about three times) than Lu{sub 2}TiO{sub 5} one. In X-ray photoelectron spectroscopy analysis, we found that the intensity of the O 1s peak corresponding tomore » Lu(OH){sub x} for Lu{sub 2}O{sub 3} film was higher than that of Lu{sub 2}TiO{sub 5} film. Furthermore, compared with the Lu{sub 2}O{sub 3} dielectric, the α-InGaZnO TFT using the Lu{sub 2}TiO{sub 5} gate dielectric exhibited a lower threshold voltage (from 0.43 to 0.25 V), a higher I{sub on}/I{sub off} current ratio (from 3.5 × 10{sup 6} to 1.3 × 10{sup 8}), a smaller subthreshold swing (from 276 to 130 mV/decade), and a larger field-effect mobility (from 14.5 to 24.4 cm{sup 2}/V s). These results are probably due to the incorporation of TiO{sub x} into the Lu{sub 2}O{sub 3} film to form a Lu{sub 2}TiO{sub 5} structure featuring a smooth surface, a low moisture absorption, a high dielectric constant, and a low interface state density at the oxide/channel interface. Furthermore, the stability of Lu{sub 2}O{sub 3} and Lu{sub 2}TiO{sub 5} α-InGaZnO TFTs was investigated under positive gate-bias stress (PGBS) and negative gate-bias stress (NGBS). The threshold voltage of the TFT performed under NGBS is more degradation than that under PGBS. This behavior may be attributed to the electron charge trapping at the dielectric–channel interface under PGBS, whereas the oxygen vacancies occurred in the InGaZnO under NGBS.« less

  14. Atomic Layer Deposition of Al2O3-Ga2O3 Alloy Coatings for Li[Ni0.5Mn0.3Co0.2]O2 Cathode to Improve Rate Performance in Li-Ion Battery.

    PubMed

    Laskar, Masihhur R; Jackson, David H K; Guan, Yingxin; Xu, Shenzhen; Fang, Shuyu; Dreibelbis, Mark; Mahanthappa, Mahesh K; Morgan, Dane; Hamers, Robert J; Kuech, Thomas F

    2016-04-27

    Metal oxide coatings can improve the electrochemical stability of cathodes and hence, their cycle-life in rechargeable batteries. However, such coatings often impose an additional electrical and ionic transport resistance to cathode surfaces leading to poor charge-discharge capacity at high C-rates. Here, a mixed oxide (Al2O3)1-x(Ga2O3)x alloy coating, prepared via atomic layer deposition (ALD), on Li[Ni0.5Mn0.3Co0.2]O2 (NMC) cathodes is developed that has increased electron conductivity and demonstrated an improved rate performance in comparison to uncoated NMC. A "co-pulsing" ALD technique was used which allows intimate and controlled ternary mixing of deposited film to obtain nanometer-thick mixed oxide coatings. Co-pulsing allows for independent control over film composition and thickness in contrast to separate sequential pulsing of the metal sources. (Al2O3)1-x(Ga2O3)x alloy coatings were demonstrated to improve the cycle life of the battery. Cycle tests show that increasing Al-content in alloy coatings increases capacity retention; whereas a mixture of compositions near (Al2O3)0.5(Ga2O3)0.5 was found to produce the optimal rate performance.

  15. Control of Ga-oxide interlayer growth and Ga diffusion in SiO2/GaN stacks for high-quality GaN-based metal-oxide-semiconductor devices with improved gate dielectric reliability

    NASA Astrophysics Data System (ADS)

    Yamada, Takahiro; Watanabe, Kenta; Nozaki, Mikito; Yamada, Hisashi; Takahashi, Tokio; Shimizu, Mitsuaki; Yoshigoe, Akitaka; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2018-01-01

    A simple and feasible method for fabricating high-quality and highly reliable GaN-based metal-oxide-semiconductor (MOS) devices was developed. The direct chemical vapor deposition of SiO2 films on GaN substrates forming Ga-oxide interlayers was carried out to fabricate SiO2/GaO x /GaN stacked structures. Although well-behaved hysteresis-free GaN-MOS capacitors with extremely low interface state densities below 1010 cm-2 eV-1 were obtained by postdeposition annealing, Ga diffusion into overlying SiO2 layers severely degraded the dielectric breakdown characteristics. However, this problem was found to be solved by rapid thermal processing, leading to the superior performance of the GaN-MOS devices in terms of interface quality, insulating property, and gate dielectric reliability.

  16. α-Al2O3/Ga2O3 superlattices coherently grown on r-plane sapphire

    NASA Astrophysics Data System (ADS)

    Oshima, Takayoshi; Kato, Yuji; Imura, Masataka; Nakayama, Yoshiko; Takeguchi, Masaki

    2018-06-01

    Ten-period binary α-Al2O3/Ga2O3 superlattices were fabricated on r-plane sapphire substrates by molecular beam epitaxy. By systematic variation of α-Ga2O3 thickness and evaluation through X-ray reflectivity and diffraction measurements and scanning transmission electron microscopy, we verified that the superlattice with α-Ga2O3 thickness up to ∼1 nm had coherent interfaces without misfit dislocation in spite of the large lattice mismatches. This successful fabrication of coherent α-Al2O3/Ga2O3 superlattices will encourage further development of α-(Al x Ga1‑ x )2O3-based heterostructures including superlattices.

  17. Low phonon energies and wideband optical windows of La2O3-Ga2O3 glasses prepared using an aerodynamic levitation technique

    PubMed Central

    Yoshimoto, Kohei; Masuno, Atsunobu; Ueda, Motoi; Inoue, Hiroyuki; Yamamoto, Hiroshi; Kawashima, Tastunori

    2017-01-01

    xLa2O3-(100 − x)Ga2O3 binary glasses were synthesized by an aerodynamic levitation technique. The glass-forming region was found to be 20 ≤ x ≤ 57. The refractive indices were greater than 1.92 and increased linearly with increasing x. The polarizabilities of oxide ions were estimated to be 2.16–2.41 Å3, indicating that the glasses were highly ionic. The glasses were transparent over a very wide range from the ultraviolet to the mid-infrared region. The widest transparent window among the oxide glasses was from 270 nm to 10 μm at x = 55. From the Raman scattering spectra, a decrease in bridging oxide ions and an increase in non-bridging oxide ions were confirmed to occur with increasing La2O3 content. The maximum phonon energy was found to be approximately 650 cm−1, being one of the lowest among oxide glasses. These results show that La2O3-Ga2O3 binary glasses should be promising host materials for optical applications such as lenses, windows, and filters over a very wide wavelength range. PMID:28358112

  18. Aluminum gallium nitride (GaN)/GaN high electron mobility transistor-based sensors for glucose detection in exhaled breath condensate.

    PubMed

    Chu, Byung Hwan; Kang, Byoung Sam; Hung, Sheng Chun; Chen, Ke Hung; Ren, Fan; Sciullo, Andrew; Gila, Brent P; Pearton, Stephen J

    2010-01-01

    Immobilized aluminum gallium nitride (AlGaN)/GaN high electron mobility transistors (HEMTs) have shown great potential in the areas of pH, chloride ion, and glucose detection in exhaled breath condensate (EBC). HEMT sensors can be integrated into a wireless data transmission system that allows for remote monitoring. This technology offers the possibility of using AlGaN/GaN HEMTs for extended investigations of airway pathology of detecting glucose in EBC without the need for clinical visits. HEMT structures, consisting of a 3-microm-thick undoped GaN buffer, 30-A-thick Al(0.3)Ga(0.7)N spacer, and 220-A-thick silicon-doped Al(0.3)Ga(0.7)N cap layer, were used for fabricating the HEMT sensors. The gate area of the pH, chloride ion, and glucose detection was immobilized with scandium oxide (Sc(2)O(3)), silver chloride (AgCl) thin film, and zinc oxide (ZnO) nanorods, respectively. The Sc(2)O(3)-gated sensor could detect the pH of solutions ranging from 3 to 10 with a resolution of approximately 0.1 pH. A chloride ion detection limit of 10(-8) M was achieved with a HEMT sensor immobilized with the AgCl thin film. The drain-source current of the ZnO nanorod-gated AlGaN/GaN HEMT sensor immobilized with glucose oxidase showed a rapid response of less than 5 seconds when the sensor was exposed to the target glucose in a buffer with a pH value of 7.4. The sensor could detect a wide range of concentrations from 0.5 nM to 125 microM. There is great promise for using HEMT-based sensors to enhance the detection sensitivity for glucose detection in EBC. Depending on the immobilized material, HEMT-based sensors can be used for sensing different materials. These electronic detection approaches with rapid response and good repeatability show potential for the investigation of airway pathology. The devices can also be integrated into a wireless data transmission system for remote monitoring applications. This sensor technology could use the exhaled breath condensate to measure the

  19. Aluminum Gallium Nitride (GaN)/GaN High Electron Mobility Transistor-Based Sensors for Glucose Detection in Exhaled Breath Condensate

    PubMed Central

    Chu, Byung Hwan; Kang, Byoung Sam; Hung, Sheng Chun; Chen, Ke Hung; Ren, Fan; Sciullo, Andrew; Gila, Brent P.; Pearton, Stephen J.

    2010-01-01

    Background Immobilized aluminum gallium nitride (AlGaN)/GaN high electron mobility transistors (HEMTs) have shown great potential in the areas of pH, chloride ion, and glucose detection in exhaled breath condensate (EBC). HEMT sensors can be integrated into a wireless data transmission system that allows for remote monitoring. This technology offers the possibility of using AlGaN/GaN HEMTs for extended investigations of airway pathology of detecting glucose in EBC without the need for clinical visits. Methods HEMT structures, consisting of a 3-μm-thick undoped GaN buffer, 30-Å-thick Al0.3Ga0.7N spacer, and 220-Å-thick silicon-doped Al0.3Ga0.7N cap layer, were used for fabricating the HEMT sensors. The gate area of the pH, chloride ion, and glucose detection was immobilized with scandium oxide (Sc2O3), silver chloride (AgCl) thin film, and zinc oxide (ZnO) nanorods, respectively. Results The Sc2O3-gated sensor could detect the pH of solutions ranging from 3 to 10 with a resolution of ∼0.1 pH. A chloride ion detection limit of 10-8 M was achievedt with a HEMT sensor immobilized with the AgCl thin film. The drain–source current of the ZnO nanorod-gated AlGaN/GaN HEMT sensor immobilized with glucose oxidase showed a rapid response of less than 5 seconds when the sensor was exposed to the target glucose in a buffer with a pH value of 7.4. The sensor could detect a wide range of concentrations from 0.5 nM to 125 μM. Conclusion There is great promise for using HEMT-based sensors to enhance the detection sensitivity for glucose detection in EBC. Depending on the immobilized material, HEMT-based sensors can be used for sensingt different materials. These electronic detection approaches with rapid response and good repeatability show potential for the investigation of airway pathology. The devices can also be integrated into a wireless data transmission system for remote monitoring applications. This sensor technology could use the exhaled breath condensate to

  20. Spectroscopic and thermal study of a new glass from TeO2sbnd Ga2O3sbnd GeO2 system

    NASA Astrophysics Data System (ADS)

    Marczewska, Agnieszka; Środa, Marcin

    2018-07-01

    Tellurium oxide and germanium oxide based glasses are classified as the heavy metal oxide glasses, with phonon energies below 880 cm-1. These glasses transmit to longer wavelengths when compared to borate, phosphate and silicate glasses because of the heavier mass of germanium. In this paper we present a new promising TeO2sbnd Ga2O3sbnd GeO2 glasses with high thermal stability and good optical properties in the near and mid-IR regions. The glass can be easily obtained for the wide range of Te/Ge ratio, which gives opportunity to engineering desirable properties. Based on the FT-IR spectra it could be stated that the tellurite network is monotonically transformed into germanate one as the GeO2 content increases. Admixtures of GeO2 into the network of tellurite glass causes the conversion of [TeO4] to [TeO3] units. Thus, the network of the glass could be consider as a mixture of the [TeO4], [TeO3] and [GeO4] units and with Ga3+ ions playing the role of its modifier. The glasses demonstrate high transmittance in mid-IR up to 6 μm what makes these materials suitable for mid-IR applications.

  1. Valorization of GaN based metal-organic chemical vapor deposition dust a semiconductor power device industry waste through mechanochemical oxidation and leaching: A sustainable green process.

    PubMed

    Swain, Basudev; Mishra, Chinmayee; Lee, Chan Gi; Park, Kyung-Soo; Lee, Kun-Jae

    2015-07-01

    Dust generated during metal organic vapor deposition (MOCVD) process of GaN based semiconductor power device industry contains significant amounts of gallium and indium. These semiconductor power device industry wastes contain gallium as GaN and Ga0.97N0.9O0.09 is a concern for the environment which can add value through recycling. In the present study, this waste is recycled through mechanochemical oxidation and leaching. For quantitative recovery of gallium, two different mechanochemical oxidation leaching process flow sheets are proposed. In one process, first the Ga0.97N0.9O0.09 of the MOCVD dust is leached at the optimum condition. Subsequently, the leach residue is mechanochemically treated, followed by oxidative annealing and finally re-leached. In the second process, the MOCVD waste dust is mechanochemically treated, followed by oxidative annealing and finally leached. Both of these treatment processes are competitive with each other, appropriate for gallium leaching and treatment of the waste MOCVD dust. Without mechanochemical oxidation, 40.11 and 1.86 w/w% of gallium and Indium are leached using 4M HCl, 100°C and pulp density of 100 kg/m(3,) respectively. After mechanochemical oxidation, both these processes achieved 90 w/w% of gallium and 1.86 w/w% of indium leaching at their optimum condition. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Characterisation of Ga-coated and Ga-brazed aluminium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferchaud, E.; Christien, F., E-mail: frederic.christien@univ-nantes.fr; Barnier, V.

    This work is devoted to the brazing of aluminium using liquid gallium. Gallium was deposited on aluminium samples at {approx} 50 Degree-Sign C using a liquid gallium 'polishing' technique. Brazing was undertaken for 30 min at 500 Degree-Sign C in air. EDS (Energy Dispersive X-ray Spectroscopy) and AES (Auger Electron Spectroscopy) characterisation of Ga-coated samples has shown that the Ga surface layer thickness is of ten (or a few tens of) nanometres. Furthermore, aluminium oxide layer (Al{sub 2}O{sub 3}) was shown to be 'descaled' during Ga deposition, which ensures good conditions for further brazing. Cross-section examination of Ga-coated samples showsmore » that liquid gallium penetrates into the aluminium grain boundaries during deposition. The thickness of the grain boundary gallium film was measured using an original EDS technique and is found to be of a few tens of nanometres. The depth of gallium grain boundary penetration is about 300 {mu}m at the deposition temperature. The fracture stress of the brazed joints was measured from tensile tests and was determined to be 33 MPa. Cross-section examination of brazed joints shows that gallium has fully dissolved into the bulk and that the joint is really autogenous. - Highlights: Black-Right-Pointing-Pointer Aluminium can be brazed using liquid gallium deposited by a 'polishing' technique. Black-Right-Pointing-Pointer The aluminium oxide layer is 'descaled' during liquid Ga 'polishing' deposition. Black-Right-Pointing-Pointer EDS can be used for determination of surface and grain boundary Ga film thickness. Black-Right-Pointing-Pointer The surface and grain boundary Ga film thickness is of a few tens of nm. Black-Right-Pointing-Pointer Surface and grain boundary gallium dissolves in the bulk during brazing.« less

  3. Ethanol surface chemistry on MBE-grown GaN(0001), GaOx/GaN(0001), and Ga2O3(2¯01).

    PubMed

    Kollmannsberger, Sebastian L; Walenta, Constantin A; Winnerl, Andrea; Knoller, Fabian; Pereira, Rui N; Tschurl, Martin; Stutzmann, Martin; Heiz, Ueli

    2017-09-28

    In this work, ethanol is used as a chemical probe to study the passivation of molecular beam epitaxy-grown GaN(0001) by surface oxidation. With a high degree of oxidation, no reaction from ethanol to acetaldehyde in temperature-programmed desorption experiments is observed. The acetaldehyde formation is attributed to a mechanism based on α-H abstraction from the dissociatively bound alcohol molecule. The reactivity is related to negatively charged surface states, which are removed upon oxidation of the GaN(0001) surface. This is compared with the Ga 2 O 3 (2¯01) single crystal surface, which is found to be inert for the acetaldehyde production. These results offer a toolbox to explore the surface chemistry of nitrides and oxynitrides on an atomic scale and relate their intrinsic activity to systems under ambient atmosphere.

  4. Fast growth rate of epitaxial β-Ga2O3 by close coupled showerhead MOCVD

    NASA Astrophysics Data System (ADS)

    Alema, Fikadu; Hertog, Brian; Osinsky, Andrei; Mukhopadhyay, Partha; Toporkov, Mykyta; Schoenfeld, Winston V.

    2017-10-01

    We report on the growth of epitaxial β-Ga2O3 thin films on c-plane sapphire substrates using a close coupled showerhead MOCVD reactor. Ga(DPM)3 (DPM = dipivaloylmethanate), triethylgallium (TEGa) and trimethylgallium (TMGa) metal organic (MO) precursors were used as Ga sources and molecular oxygen was used for oxidation. Films grown from each of the Ga sources had high growth rates, with up to 10 μm/hr achieved using a TMGa precursor at a substrate temperature of 900 °C. As confirmed by X-ray diffraction, the films grown from each of the Ga sources were the monoclinic (2 bar 0 1) oriented β-Ga2O3 phase. The optical bandgap of the films was also estimated to be ∼4.9 eV. The fast growth rate of β-Ga2O3 thin films obtained using various Ga-precursors has been achieved due to the close couple showerhead design of the MOCVD reactor as well as the separate injection of oxygen and MO precursors, preventing the premature oxidation of the MO sources. These results suggest a pathway to overcoming the long-standing challenge of realizing fast growth rates for Ga2O3 using the MOCVD method.

  5. Electrical hysteresis in p-GaN metal-oxide-semiconductor capacitor with atomic-layer-deposited Al2O3 as gate dielectric

    NASA Astrophysics Data System (ADS)

    Zhang, Kexiong; Liao, Meiyong; Imura, Masataka; Nabatame, Toshihide; Ohi, Akihiko; Sumiya, Masatomo; Koide, Yasuo; Sang, Liwen

    2016-12-01

    The electrical hysteresis in current-voltage (I-V) and capacitance-voltage characteristics was observed in an atomic-layer-deposited Al2O3/p-GaN metal-oxide-semiconductor capacitor (PMOSCAP). The absolute minimum leakage currents of the PMOSCAP for forward and backward I-V scans occurred not at 0 V but at -4.4 and +4.4 V, respectively. A negative flat-band voltage shift of 5.5 V was acquired with a capacitance step from +4.4 to +6.1 V during the forward scan. Mg surface accumulation on p-GaN was demonstrated to induce an Mg-Ga-Al-O oxidized layer with a trap density on the order of 1013 cm-2. The electrical hysteresis is attributed to the hole trapping and detrapping process in the traps of the Mg-Ga-Al-O layer via the Poole-Frenkel mechanism.

  6. Effects of Post-Deposition Annealing on ZrO2/n-GaN MOS Capacitors with H2O and O3 as the Oxidizers

    NASA Astrophysics Data System (ADS)

    Zheng, Meijuan; Zhang, Guozhen; Wang, Xiao; Wan, Jiaxian; Wu, Hao; Liu, Chang

    2017-04-01

    GaN-based metal-oxide-semiconductor capacitors with ZrO2 as the dielectric layer have been prepared by atomic layer deposition. The accumulation and depletion regions can be clearly distinguished when the voltage was swept from -4 to 4 V. Post-annealing results suggested that the capacitance in accumulation region went up gradually as the annealing temperature increased from 300 to 500 °C. A minimum leakage current density of 3 × 10-9 A/cm2 at 1 V was obtained when O3 was used for the growth of ZrO2. Leakage analysis revealed that Schottky emission and Fowler-Nordheim tunneling were the main leakage mechanisms.

  7. Synthesis and Structural characterization of β-ketoiminate-stabilized gallium hydrides for chemical vapor deposition applications.

    PubMed

    Marchand, Peter; Pugh, David; Parkin, Ivan P; Carmalt, Claire J

    2014-08-11

    Bis-β-ketoimine ligands of the form [(CH2 )n {N(H)C(Me)CHC(Me)O}2 ] (L(n) H2 , n=2, 3 and 4) were employed in the formation of a range of gallium complexes [Ga(L(n) )X] (X=Cl, Me, H), which were characterised by NMR spectroscopy, mass spectrometry and single-crystal X-ray diffraction analysis. The β-ketoimine ligands have also been used for the stabilisation of rare gallium hydride species [Ga(L(n) )H] (n=2 (7); n=3 (8)), which have been structurally characterised for the first time, confirming the formation of five-coordinate, monomeric species. The stability of these hydrides has been probed through thermal analysis, revealing stability at temperatures in excess of 200 °C. The efficacy of all the gallium β-ketoiminate complexes as molecular precursors for the deposition of gallium oxide thin films by chemical vapour deposition (CVD) has been investigated through thermogravimetric analysis and deposition studies, with the best results being found for a bimetallic gallium methyl complex [L(3) {GaMe2 }2 ] (5) and the hydride [Ga(L(3) )H] (8). The resulting films (F5 and F8, respectively) were amorphous as-deposited and thus were characterised primarily by XPS, EDXA and SEM techniques, which showed the formation of stoichiometric (F5) and oxygen-deficient (F8) Ga2 O3 thin films. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Spray deposited gallium doped tin oxide thinfilm for acetone sensor application

    NASA Astrophysics Data System (ADS)

    Preethi, M. S.; Bharath, S. P.; Bangera, Kasturi V.

    2018-04-01

    Undoped and gallium doped (1 at.%, 2 at.% and 3 at.%) tin oxide thin films were prepared using spray pyrolysis technique by optimising the deposition conditions such as precursor concentration, substrate temperature and spraying rate. X-ray diffraction analysis revealed formation of tetragonally structured polycrystalline films. The SEM micrographs of Ga doped films showed microstructures. The electrical resistivity of the doped films was found to be more than that of the undoped films. The Ga-doped tin oxide thin films were characterised for gas sensors. 1 at.% Ga doped thin films were found to be better acetone gas sensor, showed 68% sensitivity at 350°C temperature.

  9. Ultra-wide bandgap beta-Ga2O3 for deep-UV solar blind photodetectors(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rafique, Subrina; Han, Lu; Zhao, Hongping

    2017-03-01

    Deep-ultraviolet (DUV) photodetectors based on wide bandgap (WB) semiconductor materials have attracted strong interest because of their broad applications in military surveillance, fire detection and ozone hole monitoring. Monoclinic β-Ga2O3 with ultra-wide bandgap of 4.9 eV is a promising candidate for such application because of its high optical transparency in UV and visible wavelength region, and excellent thermal and chemical stability at elevated temperatures. Synthesis of high qualityβ-Ga2O3 thin films is still at its early stage and knowledge on the origins of defects in this material is lacking. The conventional epitaxy methods used to grow β-Ga2O3 thin films such as molecular beam epitaxy (MBE) and metal organic chemical vapor deposition (MOCVD) still face great challenges such as limited growth rate and relatively high defects levels. In this work, we present the growth of β-Ga2O3 thin films on c-plane (0001) sapphire substrate by our recently developed low pressure chemical vapor deposition (LPCVD) method. The β-Ga2O3 thin films synthesized using high purity metallic gallium and oxygen as the source precursors and argon as carrier gas show controllable N-type doping and high carrier mobility. Metal-semiconductor-metal (MSM) photodetectors (PDs) were fabricated on the as-grown β-Ga2O3 thin films. Au/Ti thin films deposited by e-beam evaporation served as the contact metals. Optimization of the thin film growth conditions and the effects of thermal annealing on the performance of the PDs were investigated. The responsivity of devices under 250 nm UV light irradiation as well as dark light will be characterized and compared.

  10. Epitaxial growth and magnetic properties of ultraviolet transparent Ga2O3/(Ga1-xFex)2O3 multilayer thin films.

    PubMed

    Guo, Daoyou; An, Yuehua; Cui, Wei; Zhi, Yusong; Zhao, Xiaolong; Lei, Ming; Li, Linghong; Li, Peigang; Wu, Zhenping; Tang, Weihua

    2016-04-28

    Multilayer thin films based on the ferromagnetic and ultraviolet transparent semiconductors may be interesting because their magnetic/electronic/photonic properties can be manipulated by the high energy photons. Herein, the Ga2O3/(Ga1-xFex)2O3 multilayer epitaxial thin films were obtained by alternating depositing of wide band gap Ga2O3 layer and Fe ultrathin layer due to inter diffusion between two layers at high temperature using the laser molecular beam epitaxy technique. The multilayer films exhibits a preferred growth orientation of crystal plane, and the crystal lattice expands as Fe replaces Ga site. Fe ions with a mixed valence of Fe(2+) and Fe(3+) are stratified distributed in the film and exhibit obvious agglomerated areas. The multilayer films only show a sharp absorption edge at about 250 nm, indicating a high transparency for ultraviolet light. What's more, the Ga2O3/(Ga1-xFex)2O3 multilayer epitaxial thin films also exhibits room temperature ferromagnetism deriving from the Fe doping Ga2O3.

  11. Stoichiometric control for heteroepitaxial growth of smooth ɛ-Ga2O3 thin films on c-plane AlN templates by mist chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Tahara, Daisuke; Nishinaka, Hiroyuki; Morimoto, Shota; Yoshimoto, Masahiro

    2017-07-01

    Epitaxial ɛ-Ga2O3 thin films with smooth surfaces were successfully grown on c-plane AlN templates by mist chemical vapor deposition. Using X-ray diffraction 2θ-ω and φ scans, the out-of-plane and in-plane epitaxial relationship was determined to be (0001) ɛ-Ga2O3 [10\\bar{1}0] ∥ (0001)AlN[10\\bar{1}0]. The gallium/oxygen ratio was controlled by varying the gallium precursor concentration in the solution. While scanning electron microscopy showed the presence of large grains on the surfaces of the films formed for low concentrations of oxygen species, no large grains were observed under stoichiometric conditions. Cathodoluminescence measurements showed a deep-level emission ranging from 1.55-3.7 eV; however, no band-edge emission was observed.

  12. Optical and scintillation characteristics of Gd2YAl2Ga3O12:Ce and Lu2YAl2Ga3O12:Ce single crystals

    NASA Astrophysics Data System (ADS)

    Chewpraditkul, Warut; Sakthong, Ongsa; Pattanaboonmee, Nakarin; Chewpraditkul, Weerapong; Szczesniak, Tomasz; Swiderski, Lukasz; Moszynski, Marek; Kamada, Kei; Yoshikawa, Akira; Nikl, Martin

    2017-06-01

    The optical and scintillation characteristics of Gd2YAl2Ga3O12:Ce and Lu2YAl2Ga3O12:Ce single crystals are investigated. At 662 keV γ-rays, light yield (LY) of 37,900 ph/MeV and energy resolution of 7.0% obtained for Gd2YAl2Ga3O12:Ce are superior to those of 18,900 ph/MeV and 11.5% obtained for Lu2YAl2Ga3O12:Ce. Scintillation decays are measured using the time-correlated single photon counting technique. A fast component decay time of 45 ns with relative intensity of 88% obtained for Lu2YAl2Ga3O12:Ce is superior to that of 50 ns (65%) for Gd2YAl2Ga3O12:Ce. The linear attenuation coefficient at 662 keV γ-rays is also determined and discussed.

  13. Improvement of bias-stability in amorphous-indium-gallium-zinc-oxide thin-film transistors by using solution-processed Y{sub 2}O{sub 3} passivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Sungjin; Mativenga, Mallory; Kim, Youngoo

    2014-08-04

    We demonstrate back channel improvement of back-channel-etch amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors by using solution-processed yttrium oxide (Y{sub 2}O{sub 3}) passivation. Two different solvents, which are acetonitrile (35%) + ethylene glycol (65%), solvent A and deionized water, solvent B are investigated for the spin-on process of the Y{sub 2}O{sub 3} passivation—performed after patterning source/drain (S/D) Mo electrodes by a conventional HNO{sub 3}-based wet-etch process. Both solvents yield devices with good performance but those passivated by using solvent B exhibit better light and bias stability. Presence of yttrium at the a-IGZO back interface, where it occupies metal vacancy sites, is confirmed by X-ray photoelectronmore » spectroscopy. The passivation effect of yttrium is more significant when solvent A is used because of the existence of more metal vacancies, given that the alcohol (65% ethylene glycol) in solvent A may dissolve the metal oxide (a-IGZO) through the formation of alkoxides and water.« less

  14. The growth of ultralong and highly blue luminescent gallium oxide nanowires and nanobelts, and direct horizontal nanowire growth on substrates.

    PubMed

    Kuo, Chi-Liang; Huang, Michael H

    2008-04-16

    We report the growth of ultralong β-Ga(2)O(3) nanowires and nanobelts on silicon substrates using a vapor phase transport method. The growth was carried out in a tube furnace, with gallium metal serving as the gallium source. The nanowires and nanobelts can grow to lengths of hundreds of nanometers and even millimeters. Their full lengths have been captured by both scanning electron microscope (SEM) and optical images. X-ray diffraction (XRD) patterns and transmission electron microscope (TEM) images have been used to study the crystal structures of these nanowires and nanobelts. Strong blue emission from these ultralong nanostructures can be readily observed by irradiation with an ultraviolet (UV) lamp. Diffuse reflectance spectroscopy measurements gave a band gap of 4.56 eV for these nanostructures. The blue emission shows a band maximum at 470 nm. Interestingly, by annealing the silicon substrates in an oxygen atmosphere to form a thick SiO(2) film, and growing Ga(2)O(3) nanowires over the sputtered gold patterned regions, horizontal Ga(2)O(3) nanowire growth in the non-gold-coated regions can be observed. These horizontal nanowires can grow to as long as over 10 µm in length. Their composition has been confirmed by TEM characterization. This represents one of the first examples of direct horizontal growth of oxide nanowires on substrates.

  15. Ethanol surface chemistry on MBE-grown GaN(0001), GaOx/GaN(0001), and Ga2O3(2 \\xAF 01 )

    NASA Astrophysics Data System (ADS)

    Kollmannsberger, Sebastian L.; Walenta, Constantin A.; Winnerl, Andrea; Knoller, Fabian; Pereira, Rui N.; Tschurl, Martin; Stutzmann, Martin; Heiz, Ueli

    2017-09-01

    In this work, ethanol is used as a chemical probe to study the passivation of molecular beam epitaxy-grown GaN(0001) by surface oxidation. With a high degree of oxidation, no reaction from ethanol to acetaldehyde in temperature-programmed desorption experiments is observed. The acetaldehyde formation is attributed to a mechanism based on α -H abstraction from the dissociatively bound alcohol molecule. The reactivity is related to negatively charged surface states, which are removed upon oxidation of the GaN(0001) surface. This is compared with the Ga2O3(2 ¯ 01 ) single crystal surface, which is found to be inert for the acetaldehyde production. These results offer a toolbox to explore the surface chemistry of nitrides and oxynitrides on an atomic scale and relate their intrinsic activity to systems under ambient atmosphere.

  16. Effects of Post-Deposition Annealing on ZrO2/n-GaN MOS Capacitors with H2O and O3 as the Oxidizers.

    PubMed

    Zheng, Meijuan; Zhang, Guozhen; Wang, Xiao; Wan, Jiaxian; Wu, Hao; Liu, Chang

    2017-12-01

    GaN-based metal-oxide-semiconductor capacitors with ZrO 2 as the dielectric layer have been prepared by atomic layer deposition. The accumulation and depletion regions can be clearly distinguished when the voltage was swept from -4 to 4 V. Post-annealing results suggested that the capacitance in accumulation region went up gradually as the annealing temperature increased from 300 to 500 °C. A minimum leakage current density of 3 × 10 -9  A/cm 2 at 1 V was obtained when O 3 was used for the growth of ZrO 2 . Leakage analysis revealed that Schottky emission and Fowler-Nordheim tunneling were the main leakage mechanisms.

  17. Leakage current conduction mechanisms and electrical properties of atomic-layer-deposited HfO2/Ga2O3 MOS capacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Hongpeng; Jia, Renxu; Lei, Yuan; Tang, Xiaoyan; Zhang, Yimen; Zhang, Yuming

    2018-02-01

    In this paper, current conduction mechanisms in HfO2/β-Ga2O3 metal-oxide-semiconductor (MOS) capacitors under positive and negative biases are investigated using the current-voltage (I-V) measurements conducted at temperatures from 298 K to 378 K. The Schottky emission is dominant under positively biased electric fields of 0.37-2.19 MV cm-1, and the extracted Schottky barrier height ranged from 0.88 eV to 0.91 eV at various temperatures. The Poole-Frenkel emission dominates under negatively biased fields of 1.92-4.83 MV cm-1, and the trap energy levels are from 0.71 eV to 0.77 eV at various temperatures. The conduction band offset (ΔE c) of HfO2/β-Ga2O3 is extracted to be 1.31  ±  0.05 eV via x-ray photoelectron spectroscopy, while a large negative sheet charge density of 1.04  ×  1013 cm-2 is induced at the oxide layer and/or HfO2/β-Ga2O3 interface. A low C-V hysteresis of 0.76 V, low interface state density (D it) close to 1  ×  1012 eV-1 cm-2, and low leakage current density of 2.38  ×  10-5 A cm-2 at a gate voltage of 7 V has been obtained, suggesting the great electrical properties of HfO2/β-Ga2O3 MOSCAP. According to the above analysis, ALD-HfO2 is an attractive candidate for high voltage β-Ga2O3 power devices.

  18. β-(Al{sub x}Ga{sub 1−x}){sub 2}O{sub 3}/Ga{sub 2}O{sub 3} (010) heterostructures grown on β-Ga{sub 2}O{sub 3} (010) substrates by plasma-assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaun, Stephen W., E-mail: skaun@umail.ucsb.edu; Wu, Feng; Speck, James S.

    2015-07-15

    By systematically changing growth parameters, the growth of β-(Al{sub x}Ga{sub 1−x}){sub 2}O{sub 3}/Ga{sub 2}O{sub 3} (010) heterostructures by plasma-assisted molecular beam epitaxy was optimized. Through variation of the Al flux under O-rich conditions at 600 °C, β-(Al{sub x}Ga{sub 1−x}){sub 2}O{sub 3} (010) layers spanning ∼10% to ∼18% Al{sub 2}O{sub 3} were grown directly on β-Ga{sub 2}O{sub 3} (010) substrates. Nominal β-(Al{sub x}Ga{sub 1−x}){sub 2}O{sub 3} (010) compositions were determined through Al:Ga flux ratios. With x = ∼0.18, the β-(Al{sub x}Ga{sub 1−x}){sub 2}O{sub 3} (020) layer peak in a high-resolution x-ray diffraction (HRXRD) ω-2θ scan was barely discernible, and Pendellösung fringes were not visible.more » This indicated that the phase stability limit of Al{sub 2}O{sub 3} in β-Ga{sub 2}O{sub 3} (010) at 600 °C was less than ∼18%. The substrate temperature was then varied for a series of β-(Al{sub ∼0.15}Ga{sub ∼0.85}){sub 2}O{sub 3} (010) layers, and the smoothest layer was grown at 650 °C. The phase stability limit of Al{sub 2}O{sub 3} in β-Ga{sub 2}O{sub 3} (010) appeared to increase with growth temperature, as the β-(Al{sub x}Ga{sub 1−x}){sub 2}O{sub 3} (020) layer peak with x = ∼0.18 was easily distinguishable by HRXRD in a sample grown at 650 °C. Cross-sectional transmission electron microscopy (TEM) indicated that β-(Al{sub ∼0.15}Ga{sub ∼0.85}){sub 2}O{sub 3} (010) layers (14.4% Al{sub 2}O{sub 3} by energy dispersive x-ray spectroscopy) grown at 650 °C were homogeneous. β-(Al{sub ∼0.20}Ga{sub ∼0.80}){sub 2}O{sub 3} (010) layers, however, displayed a phase transition. TEM images of a β-(Al{sub ∼0.15}Ga{sub ∼0.85}){sub 2}O{sub 3}/Ga{sub 2}O{sub 3} (010) superlattice grown at 650 °C showed abrupt layer interfaces and high alloy homogeneity.« less

  19. Efficient decomposition of benzene over a beta-Ga2O3 photocatalyst under ambient conditions.

    PubMed

    Hou, Yidong; Wang, Xinchen; Wu, Ling; Ding, Zhengxin; Fu, Xianzhi

    2006-09-15

    A porous beta-Ga2O3 photocatalyst has been successfully prepared. The photocatalyst was characterized by XRD, N2 adsorption-desorption, TEM, UV/vis, and FTIR techniques. The photocatalytic activity of the sample was evaluated by the decomposition of benzene in air under UV light illumination and was compared with that of the commercial titania (Degussa P25) and Pt/P25. Results revealed that the synthesized Ga2O3 was porous beta-Ga2O3 and was highly photoactive for mineralizing benzene and its derivatives (e.g., toluene and ethylbenzene) to CO2 under ambient conditions. The photocatalytic conversion of benzene over beta-Ga2O3 was about 1 order of magnitude higher than that over P25, and no obvious deactivation of beta-Ga2O3 was observed during the prolonged operation of 80 h. The high activity and long-term stability of the Ga2O3 have been ascribed to its stronger oxidative capability and higher specific surface area in comparison with P25.

  20. Structural and electronic properties of Ga2O3-Al2O3 alloys

    NASA Astrophysics Data System (ADS)

    Peelaers, Hartwin; Varley, Joel B.; Speck, James S.; Van de Walle, Chris G.

    2018-06-01

    Ga2O3 is emerging as an important electronic material. Alloying with Al2O3 is a viable method to achieve carrier confinement, to increase the bandgap, or to modify the lattice parameters. However, the two materials have very different ground-state crystal structures (monoclinic β-gallia for Ga2O3 and corundum for Al2O3). Here, we use hybrid density functional theory calculations to assess the alloy stabilities and electronic properties of the alloys. We find that the monoclinic phase is the preferred structure for up to 71% Al incorporation, in close agreement with experimental phase diagrams, and that the ordered monoclinic AlGaO3 alloy is exceptionally stable. We also discuss bandgap bowing, lattice constants, and band offsets that can guide future synthesis and device design efforts.

  1. Novel ethylenediamine-gallium phosphate containing 6-fold coordinated gallium atoms with unusual four equatorial Ga–N bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torre-Fernández, Laura; Espina, Aránzazu; Khainakov, Sergei A.

    2014-07-01

    A novel ethylenediamine-gallium phosphate, formulated as Ga(H{sub 2}NCH{sub 2}CH{sub 2}NH{sub 2}){sub 2}PO{sub 4}·2H{sub 2}O, was synthesized under hydrothermal conditions. The crystal structure, including hydrogen positions, was determined using single-crystal X-ray diffraction data (monoclinic, a=9.4886(3) Å, b=6.0374(2) Å, c=10.2874(3) Å, and β=104.226(3)°, space group Pc) and the bulk was characterized by chemical (Ga–P–C–H–N) and thermal analysis (TG–MS and DSC), including activation energy data of its thermo-oxidative degradation, powder X-ray diffraction (PXRD), solid-state nuclear magnetic resonance (SS-NMR) measurements, and transmission electron microscopy (TEM, SAED/NBD, and STEM BF-EDX). The crystal structure is built up of infinite zig-zag chains running along the c-axis, formedmore » by vertex-shared (PO{sub 4}) and (GaO{sub 2}N{sub 4}) polyhedra. The new compound is characterized by unusual four equatorial Ga–N bonds coming from two nonequivalent ethylenediamine molecules and exhibits strong blue emission at 430 nm (λ{sub ex}=350 nm) in the solid state at room temperature. - Graphical abstract: Single crystals of a new ethylenediamine-gallium phosphate, Ga(H{sub 2}NCH{sub 2}CH{sub 2}NH{sub 2}){sub 2}PO{sub 4}·2H{sub 2}O, were obtained and the structural features presented. This structure is one of the scarce examples of GaPO with Ga–N bonds reported. - Highlights: • A novel ethylenediamine-gallium phosphate was hydrothermally synthesized. • The new compound is characterized by unusual four equatorial Ga–N bonds. • Void-volume analysis shows cages and channels with sizes ideally suited to accommodate small molecules. • The new compound exhibits strong blue emission.« less

  2. Epitaxial growth and magnetic properties of ultraviolet transparent Ga2O3/(Ga1−xFex)2O3 multilayer thin films

    PubMed Central

    Guo, Daoyou; An, Yuehua; Cui, Wei; Zhi, Yusong; Zhao, Xiaolong; Lei, Ming; Li, Linghong; Li, Peigang; Wu, Zhenping; Tang, Weihua

    2016-01-01

    Multilayer thin films based on the ferromagnetic and ultraviolet transparent semiconductors may be interesting because their magnetic/electronic/photonic properties can be manipulated by the high energy photons. Herein, the Ga2O3/(Ga1−xFex)2O3 multilayer epitaxial thin films were obtained by alternating depositing of wide band gap Ga2O3 layer and Fe ultrathin layer due to inter diffusion between two layers at high temperature using the laser molecular beam epitaxy technique. The multilayer films exhibits a preferred growth orientation of crystal plane, and the crystal lattice expands as Fe replaces Ga site. Fe ions with a mixed valence of Fe2+ and Fe3+ are stratified distributed in the film and exhibit obvious agglomerated areas. The multilayer films only show a sharp absorption edge at about 250 nm, indicating a high transparency for ultraviolet light. What’s more, the Ga2O3/(Ga1−xFex)2O3 multilayer epitaxial thin films also exhibits room temperature ferromagnetism deriving from the Fe doping Ga2O3. PMID:27121446

  3. Determining oxide trapped charges in Al2O3 insulating films on recessed AlGaN/GaN heterostructures by gate capacitance transients measurements

    NASA Astrophysics Data System (ADS)

    Fiorenza, Patrick; Greco, Giuseppe; Schilirò, Emanuela; Iucolano, Ferdinando; Lo Nigro, Raffaella; Roccaforte, Fabrizio

    2018-05-01

    This letter presents time-dependent gate-capacitance transient measurements (C–t) to determine the oxide trapped charges (N ot) in Al2O3 films deposited on recessed AlGaN/GaN heterostructures. The C–t transients acquired at different temperatures under strong accumulation allowed to accurately monitor the gradual electron trapping, while hindering the re-emission by fast traps that may affect conventional C–V hysteresis measurements. Using this method, an increase of N ot from 2 to 6 × 1012 cm‑2 was estimated between 25 and 150 °C. The electron trapping is ruled by an Arrhenius dependence with an activation energy of 0.12 eV which was associated to points defects present in the Al2O3 films.

  4. Microfluidic platforms for gallium-based liquid metal alloy

    NASA Astrophysics Data System (ADS)

    Kim, Daeyoung

    As an alternative to toxic mercury, non-toxic gallium-based liquid metal alloy has been gaining popularity due to its higher thermal and electrical conductivities, and low toxicity along with liquid property. However, it is difficult to handle as the alloy becomes readily oxidized in atmospheric air environment. This instant oxidation causes the gallium-based liquid metal alloy to wet almost any solid surface. Therefore, it has been primarily limited to applications which rely only on its deformability, not on its mobility. In this research, various approaches to mobilize gallium-based liquid metal alloy were investigated. Multi-scale surface patterned with polydimethylsiloxane (PDMS) micro pillar array showed super-lyophobic property against gallium-based liquid metal alloy by minimizing the contact area between the solid surface and the liquid metal, and it was expanded to a three-dimensional tunnel shaped microfluidic channel. Vertically-aligned carbon nanotube forest leads to another promising super-lyophobic surface due to its hierarchical micro/nano scale combined structures and chemical inertness. When the carbon nanotubes were transferred onto flexible PDMS by imprinting, the super-lyophobic property was still maintained even under the mechanical deformation such as stretching and bending. Alternatively, the gallium-based liquid metal can be manipulated by modifying the surface of liquid metal itself. With chemical reaction with HCl 'vapor', the oxidized surface (mainly Ga2O3/Ga2O) of gallium-based liquid metal was converted to GaCl3/InCl 3 resulting in the recovery of non-wetting characteristics. Paper which is intrinsically porous is attractive as a super-lyophobic surface and it was found that hydrochloric acid (HCl) impregnation enhanced the anti-wetting property by the chemical reaction. As another alternative method, by coating the viscoelastic oxidized surface of liquid metal with ferromagnetic materials (CoNiMnP or Fe), it showed non

  5. Self-assembly and hierarchical organization of Ga2O3/In2O3 nanostructures.

    PubMed

    Xu, Liang; Su, Yong; Li, Sen; Chen, Yiqing; Zhou, Qingtao; Yin, Song; Feng, Yi

    2007-02-01

    We report on the realization of novel 3-D hierarchical heterostructures with 6-and 4-fold symmetries by a transport and condensation technique. It was found that the major core nanowires or nanobelts are single-crystalline In2O3, and the secondary nanorods are single-crystalline monoclinic beta-Ga2O3 and grow either perpendicular on or slanted to all the facets of the core In2O3 nanobelts. Depending on the diameter of the core In2O3 nanostructures, the secondary Ga2O3 nanorods grow either as a single row or multiple rows. The one-step growth of the unique Ga2O3/In2O3 heteronanostructures is a spontaneous and self-organized process. The simultaneous control of nanocrystal size and shape together with the possibility of growing heterostructures on certain nanocrystal facets opens up novel routes to the synthesis of more sophisticated heterostructures as building blocks for opto- and nanoelectronics.

  6. Electrical characterization of ALD HfO2 high-k dielectrics on ( 2 ¯ 01) β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Shahin, David I.; Tadjer, Marko J.; Wheeler, Virginia D.; Koehler, Andrew D.; Anderson, Travis J.; Eddy, Charles R.; Christou, Aris

    2018-01-01

    The electrical quality of HfO2 dielectrics grown by thermal atomic layer deposition at 175 °C on n-type ( 2 ¯ 01) β-Ga2O3 has been studied through capacitance- and current-voltage measurements on metal-oxide-semiconductor capacitors. These capacitors exhibited excellent electrical characteristics, including dual-sweep capacitance-voltage curves with low hysteresis and stretch-out and a frequency-stable dielectric constant of k˜14 when measured between 10 kHz and 1 MHz. The C-V curves exhibited a uniform and repeatable +1.05 V shift relative to the ideal case when swept from 3.5 to -5 V, yielding positively measured flatband (+2.15 V) and threshold (+1.05 V) voltages that may be useful for normally off n-channel Ga2O3 devices. Using the Terman method, an average interface trap density of 1.3 × 1011 cm-2.eV-1 was obtained between 0.2 and 0.6 eV below the conduction band edge. The forward bias current-voltage characteristic was successfully fitted to the Fowler-Nordheim tunneling model at a field strength of 5 MV/cm, allowing an extraction of a 1.3 eV conduction band offset between HfO2 and Ga2O3, which matches the value previously determined from x-ray photoelectron spectroscopy. However, a temperature dependence in the leakage current was observed. These results suggest that HfO2 is an appealing dielectric for Ga2O3 device applications.

  7. Phase relationships in the BaO-Ga2O3-Ta2O5 system and the structure of Ba6Ga21TaO40.

    PubMed

    Cao, Jiang; Yu, Xiaodi; Kuang, Xiaojun; Su, Qiang

    2012-07-16

    Phase relationships in the BaO-Ga(2)O(3)-Ta(2)O(5) ternary system at 1200 °C were determined. The A(6)B(10)O(30) tetragonal tungsten bronze (TTB) related solution in the BaO-Ta(2)O(5) subsystem dissolved up to ~11 mol % Ga(2)O(3), forming a ternary trapezoid-shaped TTB-related solid solution region defined by the BaTa(2)O(6), Ba(1.1)Ta(5)O(13.6), Ba(1.58)Ga(0.92)Ta(4.08)O(13.16), and Ba(6)GaTa(9)O(30) compositions in the BaO-Ga(2)O(3)-Ta(2)O(5) system. Two ternary phases Ba(6)Ga(21)TaO(40) and eight-layer twinned hexagonal perovskite solid solution Ba(8)Ga(4-x)Ta(4+0.6x)O(24) were confirmed in the BaO-Ga(2)O(3)-Ta(2)O(5) system. Ba(6)Ga(21)TaO(40) crystallized in a monoclinic cell of a = 15.9130(2) Å, b = 11.7309(1) Å, c = 5.13593(6) Å, β = 107.7893(9)°, and Z = 1 in space group C2/m. The structure of Ba(6)Ga(21)TaO(40) was solved by the charge flipping method, and it represents a three-dimensional (3D) mixed GaO(4) tetrahedral and GaO(6)/TaO(6) octahedral framework, forming mixed 1D 5/6-fold tunnels that accommodate the Ba cations along the c axis. The electrical property of Ba(6)Ga(21)TaO(40) was characterized by using ac impedance spectroscopy.

  8. Subnanometer Ga2O3 tunnelling layer by atomic layer deposition to achieve 1.1 V open-circuit potential in dye-sensitized solar cells.

    PubMed

    Chandiran, Aravind Kumar; Tetreault, Nicolas; Humphry-Baker, Robin; Kessler, Florian; Baranoff, Etienne; Yi, Chenyi; Nazeeruddin, Mohammad Khaja; Grätzel, Michael

    2012-08-08

    Herein, we present the first use of a gallium oxide tunnelling layer to significantly reduce electron recombination in dye-sensitized solar cells (DSC). The subnanometer coating is achieved using atomic layer deposition (ALD) and leading to a new DSC record open-circuit potential of 1.1 V with state-of-the-art organic D-π-A sensitizer and cobalt redox mediator. After ALD of only a few angstroms of Ga(2)O(3), the electron back reaction is reduced by more than an order of magnitude, while charge collection efficiency and fill factor are increased by 30% and 15%, respectively. The photogenerated exciton separation processes of electron injection into the TiO(2) conduction band and the hole injection into the electrolyte are characterized in detail.

  9. Broadband 1.2- and 2.4-mm Gallium Nitride (GaN) Power Amplifier Designs

    DTIC Science & Technology

    2017-10-01

    showing double the power of a single 1.2-mm HEMT with 55% PAE at a comparable gain compression level. 3. Summary and Conclusion A preliminary design of...combined, 2.4-mm HEMT power amplifier should achieve comparable performance based on a preliminary design using ideal, lossless matching elements. For...ARL-TR-8180 ● OCT 2017 US Army Research Laboratory Broadband 1.2- and 2.4-mm Gallium Nitride (GaN) Power Amplifier Designs by

  10. Synthesis of mesoporous β-Ga2O3 nanorods using PEG as template: preparation, characterization and photocatalytic properties.

    PubMed

    Zhao, Weirong; Yang, Yong; Hao, Rui; Liu, Feifei; Wang, Yan; Tan, Min; Tang, Jing; Ren, Daqing; Zhao, Dongye

    2011-09-15

    Mesoporous wide bandgap semiconductors offer high photocatalytic oxidation and mineralization activities. In this study, mesoporous β-Ga(2)O(3) diamond nanorods with 200-300 nm in diameter and 1.0-1.2 μm in length were synthesized via a urea-based hydrothermal method using polyethylene glycol (PEG) as template agent. The UV photocatalytic oxidation activity of β-Ga(2)O(3) for gaseous toluene was evaluated, and 7 kinds of intermediates were monitored online by a proton transfer reaction mass spectrometry. Photoluminescence spectra manifested that the dosage and molecular weight of PEG are crucial for formation of vacancies and photocatalytic oxidation activities. A PEG-assisted hydrothermal formation mechanism of mesoporous β-Ga(2)O(3) diamond nanorods was proposed. Based on the health risk influence index (η) of the intermediates, the calculated health risks revealed that the β-Ga(2)O(3) nanorods with a η value of 9.6 are much safer than TiO(2) (η = 17.6). Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Effects of Ga:N addition on the electrical performance of zinc tin oxide thin film transistor by solution-processing.

    PubMed

    Ahn, Byung Du; Jeon, Hye Ji; Park, Jin-Seong

    2014-06-25

    This paper addressed the effect of gallium nitrate hydrate addition on thin film transistor (TFT) performance and positive bias stability of amorphous zinc tin oxide (ZTO) TFTs by solution processing, Further, the mechanisms responsible for chemical properties and electronic band structure are explored. A broad exothermic peak accompanied by weight loss appeared in the range from about 350 to 570 °C for the ZTO solution; the thermal reaction of the Ga-ZTO:N solution was completed at 520 °C. This is because the gallium nitrate hydrate precursor promoted the decomposition and dehydroxylation reaction for Zn(CH3COO)2·2H2O and/or SnCl2·2H2O precursors. The concentrations of carbon and chloride in gallium nitrate hydrate added ZTO films annealed at 400 °C have a lower value (C 0.65, Cl 0.65 at. %) compared with those of ZTO films (C 3.15, Cl 0.82 at. %). Absorption bands at 416, 1550, and 1350 cm(-1) for GaZTO:N films indicated the presence of ZnGa2O4, N-H, and N═O groups by Fourier transform infrared spectroscopy measurement, respectively. As a result, an inverted staggered Ga-ZTO:N TFT exhibited a mobility of 4.84 cm(2) V(-1) s(-1) in the saturation region, a subthreshold swing of 0.35 V/decade, and a threshold gate voltage (Vth) of 0.04 V. In addition, the instability of Vth values of the ZTO TFTs under positive bias stress conditions was suppressed by adding Ga and N from 13.6 to 3.17 V, which caused a reduction in the oxygen-related defects located near the conduction band.

  12. Seed/Catalyst-Free Growth of Gallium-Based Compound Materials on Graphene on Insulator by Electrochemical Deposition at Room Temperature.

    PubMed

    Rashiddy Wong, Freddawati; Ahmed Ali, Amgad; Yasui, Kanji; Hashim, Abdul Manaf

    2015-12-01

    We report the growth of gallium-based compounds, i.e., gallium oxynitride (GaON) and gallium oxide (Ga2O3) on multilayer graphene (MLG) on insulator using a mixture of ammonium nitrate (NH4NO3) and gallium nitrate (Ga(NO3)3) by electrochemical deposition (ECD) method at room temperature (RT) for the first time. The controlling parameters of current density and electrolyte molarity were found to greatly influence the properties of the grown structures. The thicknesses of the deposited structures increase with the current density since it increases the chemical reaction rates. The layers grown at low molarities of both solutions basically show grain-like layer with cracking structures and dominated by both Ga2O3 and GaON. Such cracking structures seem to diminish with the increases of molarities of one of the solutions. It is speculated that the increase of current density and ions in the solutions helps to promote the growth at the area with uneven thicknesses of graphene. When the molarity of Ga(NO3)3 is increased while keeping the molarity of NH4NO3 at the lowest value of 2.5 M, the grown structures are basically dominated by the Ga2O3 structure. On the other hand, when the molarity of NH4NO3 is increased while keeping the molarity of Ga(NO3)3 at the lowest value of 0.8 M, the GaON structure seems to dominate where their cubic and hexagonal arrangements are coexisting. It was found that when the molarities of Ga(NO3)3 are at the high level of 7.5 M, the grown structures tend to be dominated by Ga2O3 even though the molarity of NH4NO3 is made equal or higher than the molarity of Ga(NO3)3. When the grown structure is dominated by the Ga2O3 structure, the deposition process became slow or unstable, resulting to the formation of thin layer. When the molarity of Ga(NO3)3 is increased to 15 M, the nanocluster-like structures were formed instead of continuous thin film structure. This study seems to successfully provide the conditions in growing either GaON-dominated or

  13. Enhanced Performance of GaN-Based Green Light-Emitting Diodes with Gallium-Doped ZnO Transparent Conducting Oxide

    NASA Astrophysics Data System (ADS)

    Oh, Min-Suk; Seo, Inseok

    2014-04-01

    Ga-doped ZnO (GZO) transparent conducting oxide was grown by oxygen plasma-enhanced pulsed laser deposition. GZO grown in the presence of oxygen radicals had resistivity of 1 × 10-3 Ω cm and average visible (500-700 nm) transmittance of 92.5%. A low specific contact resistance of 6.5 × 10-4 Ω cm2 of GZO on p-GaN was achieved by excimer laser annealing (ELA) treatment of p-GaN before GZO electrode deposition. The ELA-treated light emitting diode (LED) fabricated with the GZO electrode as a current-spreading layer resulted in light-output power enhanced by 56.2% at 100 mA compared with that fabricated with a conventional Ni/Au metal electrode. The high-light output and low degradation of light-output power were attributed to the decrease in contact resistance between the p-GaN layer and the GZO electrode and uniform current spreading over the p-GaN layer. In addition, low contact resistance results in a decrease of self-heat generation during current drive.

  14. Interface Trap Density Reduction for Al2O3/GaN (0001) Interfaces by Oxidizing Surface Preparation prior to Atomic Layer Deposition.

    PubMed

    Zhernokletov, Dmitry M; Negara, Muhammad A; Long, Rathnait D; Aloni, Shaul; Nordlund, Dennis; McIntyre, Paul C

    2015-06-17

    We correlate interfacial defect state densities with the chemical composition of the Al2O3/GaN interface in metal-oxide-semiconductor (MOS) structures using synchrotron photoelectron emission spectroscopy (PES), cathodoluminescence and high-temperature capacitance-voltage measurements. The influence of the wet chemical pretreatments involving (1) HCl+HF etching or (2) NH4OH(aq) exposure prior to atomic layer deposition (ALD) of Al2O3 were investigated on n-type GaN (0001) substrates. Prior to ALD, PES analysis of the NH4OH(aq) treated surface shows a greater Ga2O3 component compared to either HCl+HF treated or as-received surfaces. The lowest surface concentration of oxygen species is detected on the acid etched surface, whereas the NH4OH treated sample reveals the lowest carbon surface concentration. Both surface pretreatments improve electrical characteristics of MOS capacitors compared to untreated samples by reducing the Al2O3/GaN interface state density. The lowest interfacial trap density at energies in the upper band gap is detected for samples pretreated with NH4OH. These results are consistent with cathodoluminescence data indicating that the NH4OH treated samples show the strongest band edge emission compared to as-received and acid etched samples. PES results indicate that the combination of reduced carbon contamination while maintaining a Ga2O3 interfacial layer by NH4OH(aq) exposure prior to ALD results in fewer interface traps after Al2O3 deposition on the GaN substrate.

  15. Optimization of the Al2O3/GaSb Interface and a High-Mobility GaSb pMOSFET

    DTIC Science & Technology

    2011-10-01

    explored the use of in situ deposition of Al2O3 on GaSb grown on InP using molecular beam epitaxy and reported Dit values in the low 1012/cm2eV range near...M. Heyns, M. Caymax, and J. Dekoster, “GaSb mole- cular beam epitaxial growth on p-InP(001) and passivation with in situ deposited Al2O3 gate oxide...transmission electron microscopy. Capacitors were made on these films using platinum (Pt) electrode deposited in an e- beam evaporator through a shadow

  16. Comparison of the growth kinetics of In{sub 2}O{sub 3} and Ga{sub 2}O{sub 3} and their suboxide desorption during plasma-assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogt, Patrick, E-mail: vogt@pdi-berlin.de; Bierwagen, Oliver, E-mail: bierwagen@pdi-berlin.de

    2016-08-08

    We present a comprehensive study of the In{sub 2}O{sub 3} growth kinetics during plasma-assisted molecular beam epitaxy and compare it to that of the related oxide Ga{sub 2}O{sub 3} [P. Vogt and O. Bierwagen, Appl. Phys. Lett. 108, 072101 (2016)]. The growth rate and desorbing fluxes were measured during growth in-situ by a laser reflectometry set-up and line-of-sight quadrupole mass spectrometer, respectively. We extracted the In incorporation as a function of the provided In flux, different growth temperatures T{sub G}, and In-to-O flux ratios r. The data are discussed in terms of the competing formation of In{sub 2}O{sub 3} andmore » desorption of the suboxide In{sub 2}O and O. The same three growth regimes as in the case of Ga{sub 2}O{sub 3} can be distinguished: (i) In-transport limited, O-rich (ii) In{sub 2}O-desorption limited, O-rich, and (iii) O-transport limited, In-rich. In regime (iii), In droplets are formed on the growth surface at low T{sub G}. The growth kinetics follows qualitatively that of Ga{sub 2}O{sub 3} in agreement with their common oxide and suboxide stoichiometry. The quantitative differences are mainly rationalized by the difference in In{sub 2}O and Ga{sub 2}O desorption rates and vapor pressures. For the In{sub 2}O, Ga{sub 2}O, and O desorption, we extracted the activation energies and frequency factors by means of Arrhenius-plots.« less

  17. Electrodeposition of crystalline GaAs on liquid gallium electrodes in aqueous electrolytes.

    PubMed

    Fahrenkrug, Eli; Gu, Junsi; Maldonado, Stephen

    2013-01-09

    Crystalline GaAs (c-GaAs) has been prepared directly through electroreduction of As(2)O(3) dissolved in an alkaline aqueous solution at a liquid gallium (Ga(l)) electrode at modest temperatures (T ≥ 80 °C). Ga(l) pool electrodes yielded consistent electrochemical behavior, affording repetitive measurements that illustrated the interdependences of applied potential, concentration of dissolved As(2)O(3), and electrodeposition temperature on the quality of the resultant c-GaAs(s). Raman spectra indicated the composition of the resultant film was strongly dependent on both the electrodeposition temperature and dissolved concentration of As(2)O(3) but not to the applied bias. For electrodepositions performed either at room temperature or with high (≥0.01 M) concentrations of dissolved As(2)O(3), Raman spectra of the electrodeposited films were consistent with amorphous As(s). X-ray diffractograms of As(s) films collected after thermal annealing indicated metallurgical alloying occurred only at temperatures in excess of 200 °C. Optical images and Raman spectra separately showed the composition of the as-electrodeposited film in dilute (≤0.001 M) solutions of dissolved As(2)O(3)(aq) was pure c-GaAs(s) at much lower temperatures than 200 °C. Diffractograms and transmission electron microscopy performed on as-prepared films confirmed the identity of c-GaAs(s). The collective results thus provide the first clear demonstration of an electrochemical liquid-liquid-solid (ec-LLS) process involving a liquid metal that serves simultaneously as an electrode, a solvent/medium for crystal growth, and a coreactant for the synthesis of a polycrystalline semiconductor. The presented data serve as impetus for the further development of the ec-LLS process as a controllable, simple, and direct route for technologically important optoelectronic materials such as c-GaAs(s).

  18. Organometallic model complexes elucidate the active gallium species in alkane dehydrogenation catalysts based on ligand effects in Ga K-edge XANES

    DOE PAGES

    Getsoian, Andrew "Bean"; Das, Ujjal; Camacho-Bunquin, Jeffrey; ...

    2016-06-13

    Gallium-modified zeolites are known catalysts for the dehydrogenation of alkanes, reactivity that finds industrial application in the aromatization of light alkanes by Ga-ZSM5. While the role of gallium cations in alkane activation is well known, the oxidation state and coordination environment of gallium under reaction conditions has been the subject of debate. Edge shifts in Ga K-edge XANES spectra acquired under reaction conditions have long been interpreted as evidence for reduction of Ga(III) to Ga(I). However, a change in oxidation state is not the only factor that can give rise to a change in the XANES spectrum. In order tomore » better understand the XANES spectra of working catalysts, we have synthesized a series of molecular model compounds and grafted surface organometallic Ga species and compared their XANES spectra to those of gallium-based catalysts acquired under reducing conditions. We demonstrate that changes in the identity and number of gallium nearest neighbors can give rise to changes in XANES spectra similar to those attributed in literature to changes in oxidation state. Specifically, spectral features previously attributed to Ga(I) may be equally well interpreted as evidence for low-coordinate Ga(III) alkyl or hydride species. Furthermore, these findings apply both to gallium-impregnated zeolite catalysts and to silica-supported single site gallium catalysts, the latter of which is found to be active and selective for dehydrogenation of propane and hydrogenation of propylene.« less

  19. Disorder induced gap states as a cause of threshold voltage instabilities in Al2O3/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors

    NASA Astrophysics Data System (ADS)

    Matys, M.; Kaneki, S.; Nishiguchi, K.; Adamowicz, B.; Hashizume, T.

    2017-12-01

    We proposed that the disorder induced gap states (DIGS) can be responsible for the threshold voltage (Vth) instability in Al2O3/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors. In order to verify this hypothesis, we performed the theoretical calculations of the capacitance voltage (C-V) curves for the Al2O3/AlGaN/GaN structures using the DIGS model and compared them with measured ones. We found that the experimental C-V curves with a complex hysteresis behavior varied with the maximum forward bias and the sweeping rate can be well reproduced theoretically by assuming a particular distribution in energy and space of the DIGS continuum near the Al2O3/AlGaN interface, i.e., a U-shaped energy density distribution and exponential depth decay from the interface into Al2O3 layer (up to 4 nm), as well as suitable DIGS capture cross sections (the order of magnitude of 10-15 cm2). Finally, we showed that the DIGS model can also explain the negative bias induced threshold voltage instability. We believe that these results should be critical for the successful development of the passivation techniques, which allows to minimize the Vth instability related effects.

  20. New oxyfluorotellurates(IV): MTeO3F (M = FeIII, GaIII and CrIII).

    PubMed

    Laval, Jean Paul; Jennene Boukharrata, Nefla; Thomas, Philippe

    2008-02-01

    The crystal structures of the new isomorphous compounds iron(III) oxyfluorotellurate(IV), FeTeO(3)F, gallium(III) oxyfluorotellurate(IV), GaTeO(3)F, and chromium(III) oxyfluorotellurate(IV), CrTeO(3)F, consist of zigzag chains of MO(4)F(2) distorted octahedra alternately sharing O-O and F-F edges and connected via TeO(3) trigonal pyramids. A full O/F anionic ordering is observed and the electronic lone pair of the Te(IV) cation is stereochemically active.

  1. Variation of crystal structure and optical properties of wurtzite-type oxide semiconductor alloys of β-Cu(Ga,Al)O2

    NASA Astrophysics Data System (ADS)

    Nagatani, Hiraku; Mizuno, Yuki; Suzuki, Issei; Kita, Masao; Ohashi, Naoki; Omata, Takahisa

    2017-06-01

    Band-gap engineering of β-CuGaO2 was demonstrated by the alloying of gallium with aluminum, that is, Cu(Ga1-xAlx)O2. The ternary wurtzite β-NaFeO2-type alloys were obtained in the range 0 ≤ x ≤ 0.7, and γ-LiAlO2-type phase appeared in the range 0.7 ≤ x ≤ 1. The energy band gap of wurtzite β-CuGaO2 was controlled in the range between 1.47 and 2.09 eV. A direct band gap for x < 0.6 and indirect band gap for x ≥ 0.6 were proposed based on the structural distortion in the β-NaFeO2-type phase and density functional theory (DFT) calculation of β-CuAlO2. The DFT calculation also indicated that the γ-LiAlO2-type phases appeared in 0.7 ≤ x ≤ 1 are also indirect-gap semiconductors.

  2. Band alignment at β-(AlxGa1-x)2O3/β-Ga2O3 (100) interface fabricated by pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Ryo; Hattori, Mai; Yoshimatsu, Kohei; Horiba, Koji; Kumigashira, Hiroshi; Ohtomo, Akira

    2018-06-01

    High-quality β-(AlxGa1-x)2O3 (x = 0-0.37) films were epitaxially grown on β-Ga2O3 (100) substrates by oxygen-radical-assisted pulsed-laser deposition with repeating alternate ablation of single crystals of β-Ga2O3 and α-Al2O3. The bandgap was tuned from 4.55 ± 0.01 eV (x = 0) to 5.20 ± 0.02 eV (x = 0.37), where bowing behavior was observed. The band alignment at the β-(AlxGa1-x)2O3/β-Ga2O3 interfaces was found to be type-I with conduction- and valence-band offsets of 0.52 ± 0.08 eV (0.37 ± 0.08 eV) and 0.13 ± 0.07 eV (0.02 ± 0.07 eV) for x = 0.37 (0.27), respectively. The large conduction-band offsets are ascribed to the dominant contribution of the cation-site substitution to the conduction band.

  3. Low-temperature preparation of GaN-SiO2 interfaces with low defect density. II. Remote plasma-assisted oxidation of GaN and nitrogen incorporation

    NASA Astrophysics Data System (ADS)

    Bae, Choelhwyi; Lucovsky, Gerald

    2004-11-01

    Low-temperature remote plasma-assisted oxidation and nitridation processes for interface formation and passivation have been extended from Si and SiC to GaN. The initial oxidation kinetics and chemical composition of thin interfacial oxide were determined from analysis of on-line Auger electron spectroscopy features associated with Ga, N, and O. The plasma-assisted oxidation process is self-limiting with power-law kinetics similar to those for the plasma-assisted oxidation of Si and SiC. Oxidation using O2/He plasma forms nearly pure GaOx, and oxidation using 1% N2O in N2 forms GaOxNy with small nitrogen content, ~4-7 at. %. The interface and dielectric layer quality was investigated using fabricated GaN metal-oxide-semiconductor capacitors. The lowest density of interface states was achieved with a two-step plasma-assisted oxidation and nitridation process before SiO2 deposition.

  4. Enhanced Ga2O3-photocatalyzed and photochemical degradation of the Fipronil insecticide by UVC irradiation in mixed aqueous/organic media under an inert atmosphere.

    PubMed

    Hidaka, Hisao; Tsukamoto, Tohru; Mitsutsuka, Yoshihiro; Oyama, Toshiyuki; Serpone, Nick

    2015-05-01

    Agrochemicals such as the insecticide Fipronil that bear fluoro groups are generally fat-soluble and nearly insoluble in water, so that their photodegradation in a heterogeneous aqueous gallium oxide dispersion presents some challenges. This article examined the photodegradation of this insecticide by solubilizing it through the addition of organic solvents (EtOH, MeOH, THF, 1,4-dioxane and ethylene glycol) to an aqueous medium and then subjecting the insecticide to 254 nm UVC radiation under photocatalytically inert (Ga2O3/N2) and air-equilibrated (Ga2O3/O2) conditions, as well as photochemically in the absence of Ga2O3 but also under inert and air-equilibrated conditions. Defluorination, dechlorination, desulfonation and denitridation of Fipronil were examined in mixed aqueous/organic media (10, 25 and 50 vol% in organic solvent). After 3 h of UVC irradiation (50 vol% mixed media) defluorination with Ga2O3/N2 was ∼65% greater than in aqueous media, and ca. 80% greater than the direct photolysis of Fipronil under inert (N2) conditions; under air-equilibrated conditions both Ga2O3-photocatalyzed and photochemical defluorination were significantly lower than in aqueous media. Dechlorination of Fipronil was ∼160% (Ga2O3/N2) and 140% (photochemically, N2) greater than in aqueous media; under air-equilibrated conditions, both photocatalyzed and photochemical formation of Cl(-) ions in mixed media fell rather short relative to aqueous media. The photocatalyzed (Ga2O3/N2) and photochemical (N2) conversion of the sulfur group in Fipronil to SO4(2(-)) ions was ca. 20% and 30% greater, respectively, in mixed media, while under air-equilibrated conditions photocatalyzed desulfonation was nearly twofold less than in the aqueous phase; direct photolysis showed little variations in mixed media. Denitridation of the nitrogens in Fipronil occurred mostly through the formation of ammonia (as NH4(+)) under all conditions with negligible quantities of NO3(-); again mixed media

  5. Bragg Reflector-Induced Increased Nonradiative Lifetime in Gallium Arsenide (GaAs)/Aluminum Gallium Arsenide (AlGaAs) Double Heterostructures

    DTIC Science & Technology

    2015-09-01

    ARL-TR-7473 ● SEP 2015 US Army Research Laboratory Bragg Reflector-Induced Increased Nonradiative Lifetime in Gallium Arsenide...return it to the originator. ARL-TR-7473 ● SEP 2015 US Army Research Laboratory Bragg Reflector-Induced Increased Nonradiative ...3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Bragg Reflector-Induced Increased Nonradiative Lifetime in Gallium Arsenide (GaAs)/Aluminum

  6. Structure and vibrational properties of the dominant O-H center in β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Weiser, Philip; Stavola, Michael; Fowler, W. Beall; Qin, Ying; Pearton, Stephen

    2018-06-01

    Hydrogen has a strong influence on the electrical properties of transparent conducting oxides where it can give rise to shallow donors and can passivate deep compensating defects. We have carried out infrared absorption experiments on H- and D-doped β-Ga2O3 that involve temperature- and polarization-dependent effects as well as relative H- and D-concentrations to probe the defect structures that hydrogen can form. The results of analysis of these data, coupled with detailed theoretical calculations, show that the dominant O-H vibrational line observed at 3437 cm-1 for hydrogenated Ga2O3 is due to a relaxed VGa-2H center.

  7. Intrinsic and metal-doped gallium oxide based high-temperature oxygen sensors for combustion processes

    NASA Astrophysics Data System (ADS)

    Rubio, Ernesto Javier

    Currently, there is enormous interest in research, development and optimization of the combustion processes for energy harvesting. Recent statistical and economic analyses estimated that by improving the coal-based firing/combustion processes in the power plants, savings up to $450-500 million yearly can be achieved. Advanced sensors and controls capable of withstanding extreme environments such as high temperatures, highly corrosive atmospheres, and high pressures are critical to such efficiency enhancement and cost savings. For instance, optimization of the combustion processes in power generation systems can be achieved by sensing, monitoring and control of oxygen, which is a measure of the completeness of the process and can lead to enhanced efficiency and reduced greenhouse gas emissions. However, despite the fact that there exists a very high demand for advanced sensors, the existing technologies suffer from poor 'response and recovery times' and 'long-term stability.' Motivated by the aforementioned technological challenges, the present work was focused on high-temperature (≥700 °C) oxygen sensors for application in power generation systems. The objective of the present work is to investigate nanostructured gallium oxide (2O3) based sensors for oxygen sensing, where we propose to conduct in-depth exploration of the role of refractory metal (tungsten, W, in this case) doping into 2O 3 to enhance the sensitivity, selectivity, stability ("3S" criteria) and reliability of such sensors while keeping cost economical. Tungsten (W) doped gallium oxide (2O3) thin films were deposited via rf-magnetron co-sputtering of W-metal and Ga2O3-ceramic targets. Films were produced by varying the sputtering power applied to the W-target in order to achieve variable W content into 2O3 films while substrate temperature was kept constant at 500 °C. Chemical composition, chemical valence states, microstructure and crystal structure of as-grown and post-annealed W-doped 2O3

  8. MOVPE growth of violet GaN LEDs on β-Ga2O3 substrates

    NASA Astrophysics Data System (ADS)

    Li, Ding; Hoffmann, Veit; Richter, Eberhard; Tessaro, Thomas; Galazka, Zbigniew; Weyers, Markus; Tränkle, Günther

    2017-11-01

    We report that a H2-free atmosphere is essential for the initial stage of metalorganic vapour phase epitaxy (MOVPE) growth of GaN on β-Ga2O3 to prevent the surface from damage. A simple growth method is proposed that can easily transfer established GaN growth recipes from sapphire to β-Ga2O3 with both (-2 0 1) and (1 0 0) orientations. This method features a thin AlN nucleation layer grown below 900 °C in N2 atmosphere to protect the surface of β-Ga2O3 from deterioration during further growth under the H2 atmosphere. Based on this, we demonstrate working violet vertical light emitting diodes (VLEDs) on n-conductive β-Ga2O3 substrates.

  9. Temperature effects on luminescence properties of Cr3+ ions in alkali gallium silicate nanostructured media

    NASA Astrophysics Data System (ADS)

    Lipinska-Kalita, Kristina E.; Krol, Denise M.; Hemley, Russell J.; Kalita, Patricia E.; Gobin, Cedric L.; Ohki, Yoshimichi

    2005-09-01

    We have investigated the optical properties of Cr3+ ions in an alkali gallium silicate glass system and in two glass-based nanocomposites with nucleated β-Ga2O3 nanocrystals. The nucleation and growth of the nanocrystalline phase in the host glass matrix were monitored by Raman scattering spectroscopy and angle-dispersive x-ray diffraction. A broadband luminescence, associated with the 4T2-4A2 transition from the weak crystal field of octahedral Cr3+ sites, dominated the emission of the precursor as-quenched glass. The luminescence spectra of the synthesized glass-ceramic nanocomposites revealed a crystal-like 2E-4A2 strong emission and indicated that the major fraction of Cr3+ ions was located within the nanocrystalline environment. The variable-temperature studies of the nanocomposites demonstrated that the fluorescence of Cr3+ ions can be transformed from sharp R lines of the 2E-4A2 transition to a combination of R lines and of the broad band of the 4T2-4A2 transition. We propose a simple distribution model where the major part of Cr3+ ions is located in the nanocrystalline phase of the glass-ceramic composites in the octahedral environment, substituting the gallium atoms in the β-Ga2O3 crystal structure. The developed nanocrystalline glass-ceramics are a promising class of Cr3+-doped oxide glass-based optically active composite materials.

  10. Cu(In,Ga)Se2 Solar Cells with Amorphous In2O3-Based Front Contact Layers.

    PubMed

    Koida, Takashi; Ueno, Yuko; Nishinaga, Jiro; Higuchi, Hirohumi; Takahashi, Hideki; Iioka, Masayuki; Shibata, Hajime; Niki, Shigeru

    2017-09-06

    Amorphous (a-) In 2 O 3 -based front contact layers composed of transparent conducting oxide (TCO) and transparent oxide semiconductor (TOS) layers were proved to be effective in enhancing the short-circuit current density (J sc ) of Cu(In,Ga)Se 2 (CIGS) solar cells with a glass/Mo/CIGS/CdS/TOS/TCO structure, while maintaining high fill factor (FF) and open-circuit voltage (V oc ). An n-type a-In-Ga-Zn-O layer was introduced between the CdS and TCO layers. Unlike unintentionally doped ZnO broadly used as TOS layers in CIGS solar cells, the grain-boundary(GB)-free amorphous structure of the a-In-Ga-Zn-O layers allowed high electron mobility with superior control over the carrier density (N). High FF and V oc values were achieved in solar cells containing a-In-Ga-Zn-O layers with N values broadly ranging from 2 × 10 15 to 3 × 10 18 cm -3 . The decrease in FF and V oc produced by the electronic inhomogeneity of solar cells was mitigated by controlling the series resistance within the TOS layer of CIGS solar cells. In addition, a-In 2 O 3 :H and a-In-Zn-O layers exhibited higher electron mobilities than the ZnO:Al layers conventionally used as TCO layers in CIGS solar cells. The In 2 O 3 -based layers exhibited lower free carrier absorption while maintaining similar sheet resistance than ZnO:Al. The TCO and TOS materials and their combinations did not significantly change the V oc of the CIGS solar cells and the mini-modules.

  11. Evaluation of band alignment of α-Ga2O3/α-(Al x Ga1‑ x )2O3 heterostructures by X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Uchida, Takayuki; Jinno, Riena; Takemoto, Shu; Kaneko, Kentaro; Fujita, Shizuo

    2018-04-01

    The band alignment at an α-Ga2O3/α-(Al x Ga1‑ x )2O3 heterointerface, with different Al compositions (x), grown on a c-plane sapphire substrate was evaluated by X-ray photoelectron spectroscopy. The experimental results show that the heterointerface has the type-I band discontinuity with the valence band offsets of 0.090, 0.12, and 0.14 eV, and the conduction band offsets of 0.34, 0.79, and 1.87 eV, for x values of 0.1, 0.4, and 0.8, respectively. The small band offset for the valence band is attributed to the fact that the valence band of oxides is constituted by the localized O 2p level, which is dominated by the nature of oxygen atoms. The type-I band discontinuity is desirable for a variety of heterostructure devices.

  12. Highly-Bioreactive Silica-Based Mesoporous Bioactive Glasses Enriched with Gallium(III)

    PubMed Central

    Malavasi, Gianluca; Lusvardi, Gigliola; Menabue, Ledi

    2018-01-01

    Beneficial effects in bone cell growth and antibacterial action are currently attributed to Ga3+ ions. Thus, they can be used to upgrade mesoporous bioactive glasses (MBGs), investigated for tissue engineering, whenever they released therapeutic amounts of gallium ions to the surrounding medium. Three gallium-enriched MBGs with composition (in mol %) xSiO2–yCaO–zP2O5–5Ga2O3, being x = 70, y = 15, z = 10 for Ga_1; x = 80, y = 12, z = 3 for Ga_2; and x = 80, y = 15, z = 0 for Ga_3, were investigated and compared with the gallium-free 80SiO2–15CaO–5P2O5 MBG (B). 29Si and 31P MAS NMR analyses indicated that Ga3+ acts as network modifier in the glass regions with higher polymerization degree and as network former in the zones with high concentration of classical modifiers (Ca2+ ions). Ga_1 and Ga_2 exhibited a quick in vitro bioactive response because they were coated by an apatite-like layer after 1 and 3 days in simulated body fluid. Although we have not conducted biological tests in this paper (cells or bacteria), Ga_1 released high but non-cytotoxic amounts of Ga3+ ions in Todd Hewitt Broth culture medium that were 140 times higher than the IC90 of Pseudomonas aeruginosa bacteria, demonstrating its potential for tissue engineering applications. PMID:29498654

  13. Controlled delivery of antimicrobial gallium ions from phosphate-based glasses.

    PubMed

    Valappil, S P; Ready, D; Abou Neel, E A; Pickup, D M; O'Dell, L A; Chrzanowski, W; Pratten, J; Newport, R J; Smith, M E; Wilson, M; Knowles, J C

    2009-05-01

    Gallium-doped phosphate-based glasses (PBGs) have been recently shown to have antibacterial activity. However, the delivery of gallium ions from these glasses can be improved by altering the calcium ion concentration to control the degradation rate of the glasses. In the present study, the effect of increasing calcium content in novel gallium (Ga2O3)-doped PBGs on the susceptibility of Pseudomonas aeruginosa is examined. The lack of new antibiotics in development makes gallium-doped PBG potentially a highly promising new therapeutic agent. The results show that an increase in calcium content (14, 15 and 16 mol.% CaO) cause a decrease in degradation rate (17.6, 13.5 and 7.3 microg mm(-2) h(-1)), gallium ion release and antimicrobial activity against planktonic P. aeruginosa. The most potent glass composition (containing 14 mol.% CaO) was then evaluated for its ability to prevent the growth of biofilms of P. aeruginosa. Gallium release was found to reduce biofilm growth of P. aeruginosa with a maximum effect (0.86 log(10) CFU reduction compared to Ga2O3-free glasses) after 48 h. Analysis of the biofilms by confocal microscopy confirmed the anti-biofilm effect of these glasses as it showed both viable and non-viable bacteria on the glass surface. Results of the solubility and ion release studies show that this glass system is suitable for controlled delivery of Ga3+. 71Ga NMR and Ga K-edge XANES measurements indicate that the gallium is octahedrally coordinated by oxygen atoms in all samples. The results presented here suggest that PBGs may be useful in controlled drug delivery applications, to deliver gallium ions in order to prevent infections due to P. aeruginosa biofilms.

  14. Fabrication of a transparent ultraviolet detector by using n-type Ga2O3 and p-type Ga-doped SnO2 core-shell nanowires.

    PubMed

    Hsu, Cheng-Liang; Lu, Ying-Ching

    2012-09-21

    This study investigates the feasibility of synthesizing high-density transparent Ga(2)O(3)/SnO(2):Ga core-shell nanowires on a sapphire substrate at 1000 °C by VLS. The doping Ga concentrations are 0.46, 1.07, 2.30 and 17.53 atomic%. The XRD spectrum and HR-TEM reveal Ga(2)O(3) and SnO(2) as having monoclinic and tetragonal rutile structures, respectively. Experimental results indicate that the XRD peak shift of SnO(2) to a larger angle increases with the increasing amount of Ga doping. According to the CL spectrum, SnO(2) and Ga(2)O(3) peak at approximately 528-568 nm and 422-424 nm, respectively. The maximum quantum efficiency of Ga(2)O(3)/SnO(2):Ga core-shell nanowires is around 0.362%. The UV light on-off current contrast ratio of Ga(2)O(3)/SnO(2):Ga core-shell nanowires is around 1066.7 at a bias of 5 V. Moreover, the dynamic response of Ga(2)O(3)/SnO(2):Ga core-shell nanowires has an on-off current contrast ratio of around 16. Furthermore, the Ga(2)O(3) region functions similar to a capacitor and continues to accumulate SnO(2):Ga excited electrons under UV light exposure.

  15. Comparative analysis of the effects of tantalum doping and annealing on atomic layer deposited (Ta2O5)x(Al2O3)1-x as potential gate dielectrics for GaN/AlxGa1-xN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Partida-Manzanera, T.; Roberts, J. W.; Bhat, T. N.; Zhang, Z.; Tan, H. R.; Dolmanan, S. B.; Sedghi, N.; Tripathy, S.; Potter, R. J.

    2016-01-01

    This paper describes a method to optimally combine wide band gap Al2O3 with high dielectric constant (high-κ) Ta2O5 for gate dielectric applications. (Ta2O5)x(Al2O3)1-x thin films deposited by thermal atomic layer deposition (ALD) on GaN-capped AlxGa1-xN/GaN high electron mobility transistor (HEMT) structures have been studied as a function of the Ta2O5 molar fraction. X-ray photoelectron spectroscopy shows that the bandgap of the oxide films linearly decreases from 6.5 eV for pure Al2O3 to 4.6 eV for pure Ta2O5. The dielectric constant calculated from capacitance-voltage measurements also increases linearly from 7.8 for Al2O3 up to 25.6 for Ta2O5. The effect of post-deposition annealing in N2 at 600 °C on the interfacial properties of undoped Al2O3 and Ta-doped (Ta2O5)0.12(Al2O3)0.88 films grown on GaN-HEMTs has been investigated. These conditions are analogous to the conditions used for source/drain contact formation in gate-first HEMT technology. A reduction of the Ga-O to Ga-N bond ratios at the oxide/HEMT interfaces is observed after annealing, which is attributed to a reduction of interstitial oxygen-related defects. As a result, the conduction band offsets (CBOs) of the Al2O3/GaN-HEMT and (Ta2O5)0.16(Al2O3)0.84/GaN-HEMT samples increased by ˜1.1 eV to 2.8 eV and 2.6 eV, respectively, which is advantageous for n-type HEMTs. The results demonstrate that ALD of Ta-doped Al2O3 can be used to control the properties of the gate dielectric, allowing the κ-value to be increased, while still maintaining a sufficient CBO to the GaN-HEMT structure for low leakage currents.

  16. Microwave and millimeter wave dielectric permittivity and magnetic permeability of epsilon-gallium-iron-oxide nano-powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Liu, E-mail: liu.chao@tufts.edu; Afsar, Mohammed N.; Ohkoshi, Shin-ichi

    2015-05-07

    In millimeter wave frequency range, hexagonal ferrites with high uniaxial anisotropic magnetic fields are used as absorbers. These ferrites include M-type barium ferrite (BaFe{sub 12}O{sub 19}) and strontium ferrite (SrFe{sub 12}O{sub 19}), which have natural ferromagnetic resonant frequency range from 40 GHz to 60 GHz. However, the higher frequency range lacks suitable materials that support the higher frequency ferromagnetic resonance. A series of gallium-substituted ε-iron oxides (ε-Ga{sub x}Fe{sub 2−x}O{sub 3}) are synthesized, which have ferromagnetic resonant frequencies appearing over the frequency range of 30 GHz to 150 GHz. The ε-Ga{sub x}Fe{sub 2−x}O{sub 3} is synthesized by the sol-gel method. The particlemore » sizes are observed to be smaller than 100 nm. In this paper, in-waveguide transmission and reflection method and the free space magneto-optical approach have been employed to study these newly developed ε-Ga{sub x}Fe{sub 2−x}O{sub 3} particles in millimeter waves. These techniques enable to obtain precise transmission spectra to determine the dielectric and magnetic properties of both isotropic and anisotropic ferrites in the microwave and millimeter wave frequency range from single set of direct measurements. The complex dielectric permittivity and magnetic permeability spectra of ε-Ga{sub x}Fe{sub 2−x}O{sub 3} are shown in this paper. Strong ferromagnetic resonances at different frequencies determined by the x parameter are found.« less

  17. Cu2O-based solar cells using oxide semiconductors

    NASA Astrophysics Data System (ADS)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2016-01-01

    We describe significant improvements of the photovoltaic properties that were achieved in Al-doped ZnO (AZO)/n-type oxide semiconductor/p-type Cu2O heterojunction solar cells fabricated using p-type Cu2O sheets prepared by thermally oxidizing Cu sheets. The multicomponent oxide thin film used as the n-type semiconductor layer was prepared with various chemical compositions on non-intentionally heated Cu2O sheets under various deposition conditions using a pulsed laser deposition method. In Cu2O-based heterojunction solar cells fabricated using various ternary compounds as the n-type oxide thin-film layer, the best photovoltaic performance was obtained with an n-ZnGa2O4 thin-film layer. In most of the Cu2O-based heterojunction solar cells using multicomponent oxides composed of combinations of various binary compounds, the obtained photovoltaic properties changed gradually as the chemical composition was varied. However, with the ZnO-MgO and Ga2O3-Al2O3 systems, higher conversion efficiencies (η) as well as a high open circuit voltage (Voc) were obtained by using a relatively small amount of MgO or Al2O3, e.g., (ZnO)0.91-(MgO)0.09 and (Ga2O3)0.975-(Al2O3)0.025, respectively. When Cu2O-based heterojunction solar cells were fabricated using Al2O3-Ga2O3-MgO-ZnO (AGMZO) multicomponent oxide thin films deposited with metal atomic ratios of 10, 60, 10 and 20 at.% for the Al, Ga, Mg and Zn, respectively, a high Voc of 0.98 V and an η of 4.82% were obtained. In addition, an enhanced η and an improved fill factor could be achieved in AZO/n-type multicomponent oxide/p-type Cu2O heterojunction solar cells fabricated using Na-doped Cu2O (Cu2O:Na) sheets that featured a resistivity controlled by optimizing the post-annealing temperature and duration. Consequently, an η of 6.25% and a Voc of 0.84 V were obtained in a MgF2/AZO/n-(Ga2O3-Al2O3)/p-Cu2O:Na heterojunction solar cell fabricated using a Cu2O:Na sheet with a resistivity of approximately 10 Ω·cm and a (Ga0.975Al0.025)2

  18. Perovskite nanoparticle-sensitized Ga 2O 3 nanorod arrays for CO detection at high temperature

    DOE PAGES

    Lin, Hui -Jan; Baltrus, John P.; Gao, Haiyong; ...

    2016-04-04

    Here, noble metal nanoparticles are extensively used for sensitizing metal oxide chemical sensors through the catalytic spillover mechanism. However, due to earth-scarcity and high cost of noble metals, finding replacements presents a great economic benefit. Besides, high temperature and harsh environment sensor applications demand material stability under conditions approaching thermal and chemical stability limits of noble metals. In this study, we employed thermally stable perovskite-type La 0.8Sr 0.2FeO 3 (LSFO) nanoparticle surface decoration on Ga 2O 3 nanorod array gas sensors and discovered an order of magnitude enhanced sensitivity to carbon monoxide at 500 °C. The LSFO nanoparticle catalysts wasmore » of comparable performance to that achieved by Pt nanoparticles, with a much lower weight loading than Pt. Detailed electron microscopy and X-ray photoelectron spectroscopy studies suggested the LSFO nanoparticle sensitization effect is attributed to a spillover-like effect associated with the gas-LSFO-Ga 2O 3 triple-interfaces that spread the negatively charged surface oxygen ions from LSFO nanoparticles surfaces over to β-Ga 2O 3 nanorod surfaces with faster surface CO oxidation reactions.« less

  19. Perovskite Nanoparticle-Sensitized Ga2O3 Nanorod Arrays for CO Detection at High Temperature.

    PubMed

    Lin, Hui-Jan; Baltrus, John P; Gao, Haiyong; Ding, Yong; Nam, Chang-Yong; Ohodnicki, Paul; Gao, Pu-Xian

    2016-04-13

    Noble metal nanoparticles are extensively used for sensitizing metal oxide chemical sensors through the catalytic spillover mechanism. However, due to earth-scarcity and high cost of noble metals, finding replacements presents a great economic benefit. Besides, high temperature and harsh environment sensor applications demand material stability under conditions approaching thermal and chemical stability limits of noble metals. In this study, we employed thermally stable perovskite-type La(0.8)Sr(0.2)FeO3 (LSFO) nanoparticle surface decoration on Ga2O3 nanorod array gas sensors and discovered an order of magnitude enhanced sensitivity to carbon monoxide at 500 °C. The LSFO nanoparticle catalysts was of comparable performance to that achieved by Pt nanoparticles, with a much lower weight loading than Pt. Detailed electron microscopy and X-ray photoelectron spectroscopy studies suggested the LSFO nanoparticle sensitization effect is attributed to a spillover-like effect associated with the gas-LSFO-Ga2O3 triple-interfaces that spread the negatively charged surface oxygen ions from LSFO nanoparticles surfaces over to β-Ga2O3 nanorod surfaces with faster surface CO oxidation reactions.

  20. Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation.

    PubMed

    Hwang, Jih-Shang; Liu, Tai-Yan; Chattopadhyay, Surjit; Hsu, Geng-Ming; Basilio, Antonio M; Chen, Han-Wei; Hsu, Yu-Kuei; Tu, Wen-Hsun; Lin, Yan-Gu; Chen, Kuei-Hsien; Li, Chien-Cheng; Wang, Sheng-Bo; Chen, Hsin-Yi; Chen, Li-Chyong

    2013-02-08

    Enhanced photoelectrochemical (PEC) performances of Ga(2)O(3) and GaN nanowires (NWs) grown in situ from GaN were demonstrated. The PEC conversion efficiencies of Ga(2)O(3) and GaN NWs have been shown to be 0.906% and 1.09% respectively, in contrast to their 0.581% GaN thin film counterpart under similar experimental conditions. A low crystallinity buffer layer between the grown NWs and the substrate was found to be detrimental to the PEC performance, but the layer can be avoided at suitable growth conditions. A band bending at the surface of the GaN NWs generates an electric field that drives the photogenerated electrons and holes away from each other, preventing recombination, and was found to be responsible for the enhanced PEC performance. The enhanced PEC efficiency of the Ga(2)O(3) NWs is aided by the optical absorption through a defect band centered 3.3 eV above the valence band of Ga(2)O(3). These findings are believed to have opened up possibilities for enabling visible absorption, either by tailoring ion doping into wide bandgap Ga(2)O(3) NWs, or by incorporation of indium to form InGaN NWs.

  1. Ga2O3 photocatalyzed on-line tagging of cysteine to facilitate peptide mass fingerprinting.

    PubMed

    Qiao, Liang; Su, Fangzheng; Bi, Hongyan; Girault, Hubert H; Liu, Baohong

    2011-09-01

    β-Ga(2)O(3) is a wide-band-gap semiconductor having strong oxidation ability under light irradiation. Herein, the steel target plates modified with β-Ga(2)O(3) nanoparticles have been developed to carry out in-source photo-catalytic oxidative reactions for online peptide tagging during laser desorption/ionization mass spectrometry (LDI-MS) analysis. Under UV laser irradiation, β-Ga(2)O(3) can catalyze the photo-oxidation of 2-methoxyhydroquinone added to a sample mixture to 2-methoxy benzoquinone that can further react with the thiol groups of cysteine residues by Michael addition reaction. The tagging process leads to appearance of pairs of peaks with an m/z shift of 138.1Th. This online labelling strategy is demonstrated to be sensitive and efficient with a detection-limit at femtomole level. Using the strategy, the information on cysteine content in peptides can be obtained together with peptide mass, therefore constraining the database searching for an advanced identification of cysteine-containing proteins from protein mixtures. The current peptide online tagging method can be important for specific analysis of cysteine-containing proteins especially the low-abundant ones that cannot be completely isolated from other high-abundant non-cysteine-proteins. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Elastomeric nanoparticle composites covalently bound to Al2O3/GaAs surfaces.

    PubMed

    Song, Hyon Min; Ye, Peide D; Ivanisevic, Albena

    2007-08-28

    This article reports the modification of Al2O3/GaAs surfaces with multifunctional soft materials. Siloxane elastomers were covalently bound to dopamine-modified Al2O3/GaAs semiconductor surfaces using MPt (M = Fe, Ni) nanoparticles. The sizes of the monodisperse FePt and NiPt nanoparticles were less than 5 nm. The surfaces of the nanoparticles as well as the Al2O3/GaAs substrates were modified with allyl-functionalized dopamine that utilized a dihydroxy group as a strong ligand. The immobilization of the elastomers was performed via a hydrosilation reaction of the allyl-functionalized dopamines with the siloxane backbones. X-ray photoelectron spectroscopy (XPS) experiments confirmed the covalent bonding of the siloxane elastomers to the oxide layer on the semiconductor surface. Fourier transform-infrared reflection absorption spectroscopy (FT-IRRAS) measurements revealed that the allyl functional groups are bonded to the siloxane backbones. The FT-IRRAS data also showed that the density of the allyl groups on the surface was lower than that of the siloxane backbones. The mechanical properties of the surface-bound nanocomposites were tested using nanoindentation experiments. The nanoindentation data showed that the soft matrix composed of the elastomeric coating on the surfaces behaves differently from the inner, hard Al2O3/GaAs substrate.

  3. Thermoreflectance characterization of beta-Ga2O3 thin-film nanostrips.

    PubMed

    Ho, Ching-Hwa; Tseng, Chiao-Yeh; Tien, Li-Chia

    2010-08-02

    Nanostructure of beta-Ga(2)O(3) is wide-band-gap material with white-light-emission function because of its abundance in gap states. In this study, the gap states and near-band-edge transitions in beta-Ga(2)O(3) nanostrips have been characterized using temperature-dependent thermoreflectance (TR) measurements in the temperature range between 30 and 320 K. Photoluminescence (PL) measurements were carried to identify the gap-state transitions in the beta-Ga(2)O(3) nanostrips. Experimental analysis of the TR spectra revealed that the direct gap (E(0)) of beta-Ga(2)O(3) is 4.656 eV at 300 K. There are a lot of gap-state and near-band-edge (GSNBE) transitions denoted as E(D3), E(W1), E(W2), E(W3), E(D2), EDBex, E(DB), E(D1), E(0), and E(0)' can be detected in the TR and PL spectra at 30 K. Transition origins for the GSNBE features in the beta-Ga(2)O(3) nanostrips are respectively evaluated. Temperature dependences of transition energies of the GSNBE transitions in the beta-Ga(2)O(3) nanostrips are analyzed. The probable band scheme for the GSNBE transitions in the beta-Ga(2)O(3) nanostrips is constructed.

  4. Biomimetic and Aggregation-Driven Crystallization Route for Room-Temperature Material Synthesis: Growth of β-Ga2O3 Nanoparticles Using Peptide Assemblies as Nanoreactors

    PubMed Central

    Lee, Sang-Yup; Gao, Xueyun; Matsui, Hiroshi

    2008-01-01

    The room temperature synthesis of β-Ga2O3 nanocrystal was examined by coupling two biomimetic crystallization techniques, the enzymatic peptide nano-assembly templating and the aggregation-driven crystallization. The catalytic template of peptide assembly nucleated and mineralized primary β-Ga2O3 crystals, and then fused them to grow single-crystalline and monodisperse nanoparticles in the cavity of the peptide assembly at room temperature. In this work, the peptide assembly was exploited as a nano-reactor with an enzymatic functionality catalyzing the hydrolysis of gallium precursors. In addition, the characteristic ring-structure of peptide assembly is expected to provide an efficient dehydration pathway and the crystallization control over the surface tension, which are advantageous for the β-Ga2O3 crystal growth. This multifunctional peptide assembly could be applied for syntheses of a variety of nanomaterials that are kinetically difficult to grow at room temperature. PMID:17302413

  5. Hydrogen sensors based on Sc2O3/AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Kang, B. S.; Mehandru, R.; Kim, S.; Ren, F.; Fitch, R. C.; Gillespie, J. K.; Moser, N.; Jessen, G.; Jenkins, T.; Dettmer, R.; Via, D.; Crespo, A.; Baik, K. H.; Gila, B. P.; Abernathy, C. R.; Pearton, S. J.

    2005-05-01

    Pt contacted AlGaN/GaN high electron mobility transistors with Sc2O3 gate dielectrics show reversible changes in drain-source current upon exposure to H2-containing ambients, even at room temperature. The changes in current (as high as 3 mA for relatively low gate voltage and drain-source voltage at 25 °C for the HEMTs and a change in forward current of 40 μA at a bias of 2.5 V was obtained for the MOS-diodes in response to a change in ambient from pure N2 to 10% H2/90% N2. The current changes in the latter case are almost linearly proportional to the testing temperature and reach around 400 μA at 400 °C. These signals are approximately an order of magnitude larger than for Pt /GaN Schottky diodes and a factor of 5 larger than Sc2O3/AlGaN/GaN metal-oxide semiconductor (MOS) diodes exposed under the same conditions. This shows the advantage of using a transistor structure in which the gain produces larger current changes upon exposure to hydrogen-containing ambients. The increase in current is the result of a decrease in effective barrier height of the MOS gate of 30-50 mV at 25 °C for 10%H2/90%N2 ambients relative to pure N2 and is due to catalytic dissociation of the H2 on the Pt contact, followed by diffusion to the Sc2O3/AlGaN interface.

  6. Infrared spectroscopy and surface chemistry of beta-Ga(2)O(3) nanoribbons.

    PubMed

    Bermudez, V M; Prokes, S M

    2007-12-04

    The structure and surface chemistry of crystalline beta-Ga2O3 nanoribbons (NRs), deposited in a thin layer on various metallic and dielectric substrates (mainly on Au), have been characterized using vibrational spectroscopy. The results have been analyzed with the aid of a previous ab initio theoretical model for the beta-Ga2O3 surface structure. Raman spectra and normal-incidence infrared (IR) transmission data show little if any difference from corresponding results for bulk single crystals. For a layer formed on a metallic substrate, IR reflection-absorption spectroscopy (IRRAS) shows longitudinal-optic (LO) modes that are red-shifted by approximately 37 cm-1 relative to those of a bulk crystal. Evidence is also seen for a bonding interaction at the Ga2O3/Au interface following heating in room air. Polarization-modulated IRRAS has been used to study the adsorption of pyridine under steady-state conditions in ambient pressures as high as approximately 5 Torr. The characteristic nu19b and nu8a modes of adsorbed pyridine exhibit little or no shift from the corresponding gas-phase values. This indicates that the surface is only weakly acidic, consistent with the theoretical prediction that singly unsaturated octahedral Ga sites are the only reactive cation sites on the NR surface. However, evidence for adsorption at defect sites is seen in the form of more strongly shifted modes that saturate in intensity at low pyridine coverage. The effect of H atoms, formed by thermal cracking of H2, has also been studied. No Ga-H or O-H bonds are observed on the pristine NR surface. This suggests that the previously reported presence of such species on Ga2O3 powders heated in H2 is a result of a partial reduction of the oxide surface. The heat of adsorption of atomic H on the pristine beta-Ga2O3(100) surface at 0 K is computed to be -1.79 eV per H at saturation (average of Ga-H and O-H sites), whereas a value of +0.45 eV per H is found for the dissociative adsorption of H2. This

  7. Temperature dependence of trapping effects in metal gates/Al2O3/InGaAs stacks

    NASA Astrophysics Data System (ADS)

    Palumbo, F.; Pazos, S.; Aguirre, F.; Winter, R.; Krylov, I.; Eizenberg, M.

    2017-06-01

    The influence of the temperature on Metal Gate/Al2O3/n-InGaAs stacks has been studied by means of capacitance-voltage (C-V) hysteresis and flat band voltage as function of both negative and positive stress fields. It was found that the de-trapping effect decreases at low-temperature, indicating that the de-trapping of trapped electrons from oxide traps may be performed via Al2O3/InGaAs interface defects. The dependence of the C-V hysteresis on the stress field at different temperatures in our InGaAs stacks can be explained in terms of the defect spatial distribution. An oxide defect distribution can be found very close to the metal gate/Al2O3 interface. On the other side, the Al2O3/InGaAs interface presents defects distributed from the interface into the bulk of the oxide, showing the influence of InGaAs on Al2O3 in terms of the spatial defect distribution. At the present, he is a research staff of the National Council of Science and Technology (CONICET), working in the National Commission of Atomic Energy (CNEA) in Buenos Aires, Argentina, well embedded within international research collaboration. Since 2008, he is Professor at the National Technological University (UTN) in Buenos Aires, Argentina. Dr. Palumbo has received research fellowships from: Marie Curie Fellowship within the 7th European Community Framework Programme, Abdus Salam International Centre for Theoretical Physics (ICTP) Italy, National Council of Science and Technology (CONICET) Argentina, and Consiglio Nazionale delle Ricerche (CNR) Italy. He is also a frequent scientific visitor of academic institutions as IMM-CNR-Italy, Minatec Grenoble-France, the Autonomous University of Barcelona-Spain, and the Israel Institute of Technology-Technion. He has authored and co-authored more than 50 papers in international conferences and journals.

  8. Preparation and electrical properties of ultrafine Ga2O3 nanowires.

    PubMed

    Huang, Yang; Yue, Shuanglin; Wang, Zhongli; Wang, Qiang; Shi, Chengying; Xu, Z; Bai, X D; Tang, Chengcun; Gu, Changzhi

    2006-01-19

    Uniform and well-crystallized beta-Ga2O3 nanowires are prepared by reacting metal Ga with water vapor based on the vapor-liquid-solid (VLS) mechanism. Electron microscopy studies show that the nanowires have diameters ranging from 10 to 40 nm and lengths up to tens of micrometers. The contact properties of individual Ga2O3 nanowires with Pt or Au/Ti electrodes are studied, respectively, finding that Pt can form Schottky-barrier junctions and Au/Ti is advantageous to fabricate ohmic contacts with individual Ga2O3 nanowires. In ambient air, the conductivity of the Ga2O3 nanowires is about 1 (Omega.m)-1, while with adsorption of NH3 (or NO2) molecules, the conductivity can increase (or decrease) dramatically at room temperature. The as-grown Ga2O3 nanowires have the properties of an n-type semiconductor.

  9. Hydrogen-induced reversible changes in drain current in Sc2O3/AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Kang, B. S.; Mehandru, R.; Kim, S.; Ren, F.; Fitch, R. C.; Gillespie, J. K.; Moser, N.; Jessen, G.; Jenkins, T.; Dettmer, R.; Via, D.; Crespo, A.; Gila, B. P.; Abernathy, C. R.; Pearton, S. J.

    2004-06-01

    Pt contacted AlGaN/GaN high electron mobility transistors with Sc2O3 gate dielectrics show reversible changes in drain-source current upon exposure to H2-containing ambients, even at room temperature. The changes in current (as high as 3 mA for relatively low gate voltage and drain-source voltage) are approximately an order of magnitude larger than for Pt/GaN Schottky diodes and a factor of 5 larger than Sc2O3/AlGaN/GaN metal-oxide-semiconductor (MOS) diodes exposed under the same conditions. This shows the advantage of using a transistor structure in which the gain produces larger current changes upon exposure to hydrogen-containing ambients. The increase in current is the result of a decrease in effective barrier height of the MOS gate of 30-50 mV at 25 °C for 10% H2/90% N2 ambients relative to pure N2 and is due to catalytic dissociation of the H2 on the Pt contact, followed by diffusion to the Sc2O3/AlGaN interface.

  10. Homologous compounds of type ARO3(ZnO)m in the system Ga-Sn-Zn-O

    NASA Astrophysics Data System (ADS)

    Eichhorn, Simon; Schmid, Herbert; Assenmacher, Wilfried; Mader, Werner

    2017-02-01

    Several members of hitherto unknown homologous compounds [Sn0.5Zn0.5]GaO3(ZnO)m (m=3-7) of the general formula ARO3(ZnO)m were prepared by solid state methods from the binary oxides in sealed Pt-tubes. UV-vis measurements confirm these compounds to be transparent oxides with an optical band gap in the UV region with Eg≈3 eV. Rietveld refinements on powder samples of [Sn0.5Zn0.5]GaO3(ZnO)m proved the compounds to be isostructural with InGaO3(ZnO)m, where In3+ on octahedral sites is replaced statistically by Sn4+ and Zn2+ in equal amounts preserving an average charge of 3+. Additionally, the structure of [Sn0.5Zn0.5]GaO3(ZnO)3 has been determined from flux-grown single crystals by X-ray diffraction (R 3 ̅ m , Z=3, a=3.2387(7) Å, c=41.78(1) Å, 19 parameters, 201 independent reflections, R1=0.047, wR2=0.074). The compound [Sn0.5Zn0.5]GaO3(ZnO)3 is isostructural with InGaO3(ZnO)3. [Sn0.5Zn0.5]GaO3(ZnO)3 was furthermore analyzed by High Angle Annular Dark Field (HAADF) scanning TEM and EELS spectroscopic imaging, supporting the structure model derived from X-ray diffraction data.

  11. The role of cleaning conditions and epitaxial layer structure on reliability of Sc 2O 3 and MgO passivation on AlGaN/GaN HEMTS

    NASA Astrophysics Data System (ADS)

    Luo, B.; Mehandru, R. M.; Kim, Jihyun; Ren, F.; Gila, B. P.; Onstine, A. H.; Abernathy, C. R.; Pearton, S. J.; Fitch, R. C.; Gillespie, J.; Dellmer, R.; Jenkins, T.; Sewell, J.; Via, D.; Crespo, A.

    2002-12-01

    The effect of layer structure (GaN versus AlGaN cap) and cleaning procedure prior to Sc 2O 3 or MgO deposition at 100 °C were examined for their effects on the long-term bias-stress stability of AlGaN/GaN high electron mobility transistors (HEMTs). Surface cleaning by itself was not sufficient to prevent current collapse in the devices. The forward and reverse gate leakage currents were decreased under most conditions upon deposition of the oxide passivation layers. After ≈13 h of bias-stressing, the MgO-passivated HEMTs retain ⩾90% their initial drain-source current. The Sc 2O 3-passivated devices retained ˜80% recovery of the current under the same conditions.

  12. Masking of Lewis acidity trends in the solid-state structures of trichlorido- and tribromido(2,2':6',2''-terpyridine-κ(3)N,N',N'')gallium(III).

    PubMed

    Kazakov, Igor V; Bodensteiner, Michael; Timoshkin, Alexey Y

    2014-03-01

    The molecular structures of trichlorido(2,2':6',2''-terpyridine-κ(3)N,N',N'')gallium(III), [GaCl3(C15H11N3)], and tribromido(2,2':6',2''-terpyridine-κ(3)N,N',N'')gallium(III), [GaBr3(C15H11N3)], are isostructural, with the Ga(III) atom displaying an octahedral geometry. It is shown that the Ga-N distances in the two complexes are the same within experimental error, in contrast to expected bond lengthening in the bromide complex due to the lower Lewis acidity of GaBr3. Thus, masking of the Lewis acidity trends in the solid state is observed not only for complexes of group 13 metal halides with monodentate ligands but for complexes with the polydentate 2,2':6',2''-terpyridine donor as well.

  13. Polarization-induced interfacial coupling modulations in BaTiO3/GaN heterojunction devices

    NASA Astrophysics Data System (ADS)

    Bhat, Thirumaleshwara N.; Pandey, B. K.; Krupanidhi, S. B.

    2017-07-01

    We report on the ferroelectric polarization-induced switchable interfacial coupling modulations in BaTiO3/GaN heterojunction transport behaviour. The ferroelectric barium titanate, BaTiO3 (BTO) was integrated with polar semiconductor gallium nitride (GaN). BTO with a tetragonal structure was deposited on a wurtzite (0 0 0 1) epitaxial GaN/c-Al2O3 substrate by pulsed laser deposition, which was further confirmed by x-ray diffraction and Raman spectroscopy. BTO/GaN heterojunctions with resistive switching behaviour exhibited modulations in transport characteristics due to the interfacial coupling. The ferroelectric nature and interfacial coupling effect of this heterojunction was confirmed with the help of piezo-response force microscopy. A valence band offset of 0.82 eV and conduction band offset of 0.62 eV were obtained for BTO/GaN heterojunctions by x-ray photo-electron spectroscopy. This interfacial coupling phenomenon was analysed and its effect on the carrier conduction in the heterojunction was investigated by band alignment studies.

  14. Gallium(III) adsorption on carbonates and oxides: X-ray absorption fine structure spectroscopy study and surface complexation modeling.

    PubMed

    Pokrovsky, O S; Pokrovski, G S; Schott, J

    2004-11-15

    Adsorption of Ga on calcite, magnesite, amorphous silica, and manganese oxide as a function of pH and gallium concentration in solution was studied using a batch adsorption technique. Adsorbed complexes of Ga on calcite, magnesite, and delta-MnO2 were further characterized using XAFS spectroscopy. At high surface loadings from supersaturated solutions, Ga is likely to form a polymeric network at the surface (edge- and corner-sharing octahedra). At low surface loadings, Ga presents as isolated octahedra, probably attached to the Me-O sites on the surface, and coordinated by water molecules and hydroxide groups at 1.90-1.94 A. At pH>6, Ga therefore changes its coordination from 4 to 6 when adsorbing from solution (Ga(OH)(-)4(aq)) onto metal surface sites (MeOGa(OH)n(H2O)2-n(5-n), Me = Ca, Mg, or Mn, and n=1 and 2 for carbonate minerals and MnO2, respectively). Because the EXAFS is not capable of seeing hydrogen atoms, the protonation of surface complexes was determined by fitting the experimental pH-dependent Ga adsorption edge. A surface complexation model which assumes the constant capacitance of the electric double layer (CCM) and postulates the formation of positively charged, neutral and negatively charged surface complexes for carbonates, manganese oxide and silica, respectively, was used to describe the dependence of adsorption equilibria on aqueous solution composition in a wide range of pH and Ga concentration.

  15. Sub-band-gap absorption in Ga2O3

    NASA Astrophysics Data System (ADS)

    Peelaers, Hartwin; Van de Walle, Chris G.

    2017-10-01

    β-Ga2O3 is a transparent conducting oxide that, due to its large bandgap of 4.8 eV, exhibits transparency into the UV. However, the free carriers that enable the conductivity can absorb light. We study the effect of free carriers on the properties of Ga2O3 using hybrid density functional theory. The presence of free carriers leads to sub-band-gap absorption and a Burstein-Moss shift in the onset of absorption. We find that for a concentration of 1020 carriers, the Fermi level is located 0.23 eV above the conduction-band minimum. This leads to an increase in the electron effective mass from 0.27-0.28 me to 0.35-0.37 me and a sub-band-gap absorption band with a peak value of 0.6 × 103 cm-1 at 3.37 eV for light polarized along the x or z direction. Both across-the-gap and free-carrier absorption depend strongly on the polarization of the incoming light. We also provide parametrizations of the conduction-band shape and the effective mass as a function of the Fermi level.

  16. Growth of AlGaN under the conditions of significant gallium evaporation: Phase separation and enhanced lateral growth

    NASA Astrophysics Data System (ADS)

    Mayboroda, I. O.; Knizhnik, A. A.; Grishchenko, Yu. V.; Ezubchenko, I. S.; Zanaveskin, Maxim L.; Kondratev, O. A.; Presniakov, M. Yu.; Potapkin, B. V.; Ilyin, V. A.

    2017-09-01

    The growth kinetics of AlGaN in NH3 MBE under significant Ga desorption was studied. It was found that the addition of gallium stimulates 2D growth and provides better morphology of films compared to pure AlN. The effect was experimentally observed at up to 98% desorption of the impinging gallium. We found that under the conditions of significant thermal desorption, larger amounts of gallium were retained at lateral boundaries of 3D surface features than at flat terraces because of the higher binding energy of Ga atoms at specific surface defects. The selective accumulation of gallium resulted in an increase in the lateral growth component through the formation of the Ga-enriched AlGaN phase at boundaries of 3D surface features. We studied the temperature dependence of AlGaN growth rate and developed a kinetic model analytically describing this dependence. As the model was in good agreement with the experimental data, we used it to estimate the increase in the binding energy of Ga atoms at surface defects compared to terrace surface sites using data on the Ga content in different AlGaN phases. We also applied first-principles calculations to the thermodynamic analysis of stable configurations on the AlN surface and then used these surface configurations to compare the binding energy of Ga atoms at terraces and steps. Both first-principles calculations and analytical estimations of the experimental results gave similar values of difference in binding energies; this value is 0.3 eV. Finally, it was studied experimentally whether gallium can act as a surfactant in AlN growth by NH3 MBE at elevated temperatures. Gallium application has allowed us to grow a 300 nm thick AlN film with a RMS surface roughness of 2.2 Å over an area of 10 × 10 μm and a reduced density of screw dislocations.

  17. Controlled Growth of Parallel Oriented ZnO Nanostructural Arrays on Ga2O3 Nanowires

    DTIC Science & Technology

    2008-11-01

    Controlled Growth of Parallel Oriented ZnO Nanostructural Arrays on Ga2O3 Nanowires Lena Mazeina,* Yoosuf N. Picard, and Sharka M. Prokes Electronics...Manuscript ReceiVed NoVember 6, 2008 ABSTRACT: Novel hierarchical ZnO- Ga2O3 nanostructures were fabricated via a two stage growth process. Nanowires of Ga2O3 ...nanobrushes (NBs) with Ga2O3 as the core and ZnO as the branches self-assembling symmetrically in six equiangular directions around the core

  18. Imaging TiO2 nanoparticles on GaN nanowires with electrostatic force microscopy

    NASA Astrophysics Data System (ADS)

    Xie, Ting; Wen, Baomei; Liu, Guannan; Guo, Shiqi; Motayed, Abhishek; Murphy, Thomas; Gomez, R. D.

    Gallium nitride (GaN) nanowires that are functionalized with metal-oxides nanoparticles have been explored extensively for gas sensing applications in the past few years. These sensors have several advantages over conventional schemes, including miniature size, low-power consumption and fast response and recovery times. The morphology of the oxide functionalization layer is critical to achieve faster response and recovery times, with the optimal size distribution of nanoparticles being in the range of 10 to 30 nm. However, it is challenging to characterize these nanoparticles on GaN nanowires using common techniques such as scanning electron microscopy, transmission electron microscopy, and x-ray diffraction. Here, we demonstrate electrostatic force microscopy in combination with atomic force microscopy as a non-destructive technique for morphological characterization of the dispersed TiO2 nanoparticles on GaN nanowires. We also discuss the applicability of this method to other material systems with a proposed tip-surface capacitor model. This project was sponsored through N5 Sensors and the Maryland Industrial Partnerships (MIPS, #5418).

  19. β-Ga2O3:Cr(3+) nanoparticle: A new platform with near infrared photoluminescence for drug targeting delivery and bio-imaging simultaneously.

    PubMed

    Wang, Xin-Shi; Situ, Jun-Qing; Ying, Xiao-Ying; Chen, Hui; Pan, Hua-fei; Jin, Yi; Du, Yong-Zhong

    2015-08-01

    Multifunctional nanoparticles which integrate the therapeutic agents and bio-imaging agents into one carrier are emerging as a promising therapeutic platform. Herein, GaOOH:Cr(3+) was firstly synthesized using improved hydrothermal method (atmospheric pressure, 95 °C), and by manipulating the pH of the reaction medium, GaOOH:Cr(3+) with different sizes (125.70 nm, 200.60 nm and 313.90 nm) were synthesized. Then β-Ga2O3:Cr(3+) nanoparticles with porous structures were developed as a result of the calcination of GaOOH:Cr(3+). The fabricated, porous β-Ga2O3:Cr(3+) nanoparticles could effectively absorb doxorubicin hydrochloride (DOX) (loading rate: 8% approximately) and had near infrared photoluminescence with a 695 nm emission. Furthermore, β-Ga2O3:Cr(3+) nanoparticles were coated with l-Cys modified hyaluronic acid (HA-Cys) by exploiting the electrostatic interaction and the cross-link effect of disulfide bond to improve the stability. The DOX loaded HA-Cys coated β-Ga2O3:Cr(3+) nanoparticles (HA/β-Ga2O3:Cr(3+)/DOX) showed an oxidation-reduction sensitive drug release behavior. The HA-Cys coated β-Ga2O3:Cr(3+) nanoparticles showed a low cytotoxicity on MCF-7 and Hela cell lines. The cellular uptake of HA/β-Ga2O3:Cr(3+)/DOX using the near infrared photoluminescence of β-Ga2O3:Cr(3+) nanoparticles and the fluorescence of DOX demonstrated the HA/β-Ga2O3:Cr(3+)/DOX could internalize into tumor cells quickly, which was affected by the size and shape of β-Ga2O3:Cr(3+)nanoparticles. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Catalyst-Free Growth of Large Scale Ga2O3 Nanowires

    DTIC Science & Technology

    2001-11-01

    XRD and TEM analyses indicate that the Ga 20 3 nanowires exhibit a monoclinic structure. PL characteristic of the Ga2O3 nanowires shows a UV emission...using Ga metal and N2 / H 20 reactants. The Ga2O3 nanowires, which have diameters ranging from 60 to 150 nm and lengths of several micrometers, are 133

  1. ASSESSMENT OF GALLIUM OXIDE TECHNOLOGY

    DTIC Science & Technology

    2017-08-01

    molecular beam epitaxy (MBE)) [45], this approach was abandoned. More recently, anodic oxides of GaAs grown at low temperatures were treated in oxygen ... temperature . In general, more oxygen is provided than that can be incorporated during the growth (i.e. oxygen rich growth). Sometimes, it is...26 Figure 19: Temperature -dependent Thermal Conductivity of β-Ga2O3 Measured along Different Crystal

  2. Heterojunction p-Cu2O/n-Ga2O3 diode with high breakdown voltage

    NASA Astrophysics Data System (ADS)

    Watahiki, Tatsuro; Yuda, Yohei; Furukawa, Akihiko; Yamamuka, Mikio; Takiguchi, Yuki; Miyajima, Shinsuke

    2017-11-01

    Heterojunction p-Cu2O/n-β-Ga2O3 diodes were fabricated on an epitaxially grown β-Ga2O3(001) layer. The reverse breakdown voltage of these p-n diodes reached 1.49 kV with a specific on-resistance of 8.2 mΩ cm2. The leakage current of the p-n diodes was lower than that of the Schottky barrier diode due to the higher barrier height against the electron. The ideality factor of the p-n diode was 1.31. It indicated that some portion of the recombination current at the interface contributed to the forward current, but the diffusion current was the dominant. The forward current more than 100 A/cm2 indicated the lower conduction band offset at the hetero-interface between Cu2O and Ga2O3 layers than that predicted from the bulk properties, resulting in such a high forward current without limitation. These results open the possibility of advanced device structures for wide bandgap Ga2O3 to achieve higher breakdown voltage and lower on-resistance.

  3. A review of molecular beam epitaxy of ferroelectric BaTiO 3 films on Si, Ge and GaAs substrates and their applications

    DOE PAGES

    Mazet, Lucie; Yang, Sang Mo; Kalinin, Sergei V.; ...

    2015-06-30

    SrTiO 3 epitaxial growth by molecular beam epitaxy (MBE) on silicon has opened up the route to the monolithic integration of various complex oxides on the complementary metal-oxide-semiconductor silicon platform. Among functional oxides, ferroelectric perovskite oxides offer promising perspectives to improve or add functionalities on-chip. We review the growth by MBE of the ferroelectric compound BaTiO 3 on silicon (Si), germanium (Ge) and gallium arsenide (GaAs) and we discuss the film properties in terms of crystalline structure, microstructure and ferroelectricity. Lastly, we review the last developments in two areas of interest for the applications of BaTiO 3 films on silicon,more » namely integrated photonics, which benefits from the large Pockels effect of BaTiO 3, and low power logic devices, which may benefit from the negative capacitance of the ferroelectric.« less

  4. A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications

    PubMed Central

    Mazet, Lucie; Yang, Sang Mo; Kalinin, Sergei V; Schamm-Chardon, Sylvie; Dubourdieu, Catherine

    2015-01-01

    SrTiO3 epitaxial growth by molecular beam epitaxy (MBE) on silicon has opened up the route to the monolithic integration of various complex oxides on the complementary metal-oxide–semiconductor silicon platform. Among functional oxides, ferroelectric perovskite oxides offer promising perspectives to improve or add functionalities on-chip. We review the growth by MBE of the ferroelectric compound BaTiO3 on silicon (Si), germanium (Ge) and gallium arsenide (GaAs) and we discuss the film properties in terms of crystalline structure, microstructure and ferroelectricity. Finally, we review the last developments in two areas of interest for the applications of BaTiO3 films on silicon, namely integrated photonics, which benefits from the large Pockels effect of BaTiO3, and low power logic devices, which may benefit from the negative capacitance of the ferroelectric. PMID:27877816

  5. First principles calculations of La2O3/GaAs interface properties under biaxial strain and hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Shi, Li-Bin; Li, Ming-Biao; Xiu, Xiao-Ming; Liu, Xu-Yang; Zhang, Kai-Cheng; Li, Chun-Ran; Dong, Hai-Kuan

    2017-04-01

    La2O3 is a potential dielectric material with high permittivity (high-κ) for metal-oxide-semiconductor (MOS) devices. However, band offsets and oxide defects should still be concerned. Smaller band offsets and carrier traps increase leakage current, and degenerate performance of the devices. In this paper, the interface behaviors of La2O3/GaAs under biaxial strain and hydrostatic pressure are investigated, which is performed by first principles calculations based on density functional theory (DFT). Strain engineering is attempted to improve performance of the metal/La2O3/GaAs devices. First of all, we creatively realize band alignment of La2O3/GaAs interface under biaxial strain and hydrostatic pressure. The proper biaxial tensile strain can effectively increase valence band offsets (VBO) and conduction band offsets (CBO), which can be used to suppress leakage current. However, the VBO will decrease with the increase of hydrostatic pressure, indicating that performance of the devices is degenerated. Then, a direct tunneling leakage current model is used to investigate current and voltage characteristics of the metal/La2O3/GaAs. The impact of biaxial strain and hydrostatic pressure on leakage current is discussed. At last, formation energies and transition levels of oxygen interstitial (Oi) and oxygen vacancy (VO) in La2O3 are assessed. We investigate how they will affect performance of the devices.

  6. Lack of quantum confinement in Ga2O3 nanolayers

    NASA Astrophysics Data System (ADS)

    Peelaers, Hartwin; Van de Walle, Chris G.

    2017-08-01

    β -Ga2Ox3 is a wide-band-gap semiconductor with promising applications in transparent electronics and in power devices. β -Ga2O3 has monoclinic crystal symmetry and does not display a layered structured characteristic of 2D materials in the bulk; nevertheless, monolayer-thin Ga2O3 layers can be created. We used first-principles techniques to investigate the structural and electronic properties of these nanolayers. Surprisingly, freestanding films do not exhibit any signs of quantum confinement and exhibit the same electronic structure as bulk material. A detailed examination reveals that this can be attributed to the presence of states that are strongly confined near the surface. When the Ga2O3 layers are embedded in a wider band-gap material such as Al2O3 , the expected effects of quantum confinement can be observed. The effective mass of electrons in all the nanolayers is small, indicating promising device applications.

  7. Gallium as a Therapeutic Agent: A Thermodynamic Evaluation of the Competition between Ga(3+) and Fe(3+) Ions in Metalloproteins.

    PubMed

    Nikolova, Valia; Angelova, Silvia; Markova, Nikoleta; Dudev, Todor

    2016-03-10

    Gallium has been employed (in the form of soluble salts) to fight various forms of cancer, infectious, and inflammatory diseases. The rationale behind this lies in the ability of Ga(3+) cation to mimic closely in appearance the native ferric ion, Fe(3+), thus interfering with the biological processes requiring ferric cofactors. However, Ga(3+) ion cannot participate in redox reactions and, when substituting for the "native" Fe(3+) ion in the enzyme active site, renders it inactive. Although a significant body of information on the Ga(3+)-Fe(3+) competition in biological systems has been accumulated, the intimate mechanism of the process is still not well understood and several questions remain: What are the basic physical principles governing the competition between the two trivalent cations in proteins? What type of metal centers are the most likely targets for gallium therapy? To what extent are the Fe(3+)-binding sites in the key enzyme ribonucleotide reductase vulnerable to Ga(3+) substitution? Here, we address these questions by studying the competition between Ga(3+) and Fe(3+) ions in model metal binding sites of various compositions and charge states. The results obtained are in line with available experimental data and shed light on the intimate mechanism of the Ga(3+)/Fe(3+) selectivity in various model metal binding sites and biological systems such as serum transferrin and ribonucleotide reductase.

  8. Proton irradiation of MgO- or Sc 2O 3 passivated AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Luo, B.; Ren, F.; Allums, K. K.; Gila, B. P.; Onstine, A. H.; Abernathy, C. R.; Pearton, S. J.; Dwivedi, R.; Fogarty, T. N.; Wilkins, R.; Fitch, R. C.; Gillespie, J. K.; Jenkins, T. J.; Dettmer, R.; Sewell, J.; Via, G. D.; Crespo, A.; Baca, A. G.; Shul, R. J.

    2003-06-01

    AlGaN/GaN high electron mobility transistors with either MgO or Sc 2O 3 surface passivation were irradiated with 40 MeV protons at a dose of 5×10 9 cm -2. While both forward and reverse bias current were decreased in the devices as a result of decreases in channel doping and introduction of generation-recombination centers, there was no significant change observed in gate lag measurements. By sharp contrast, unpassivated devices showed significant decreases in drain current under pulsed conditions for the same proton dose. These results show the effectiveness of the oxide passivation in mitigating the effects of surface states present in the as-grown structures and also of surface traps created by the proton irradiation.

  9. Band-Bending of Ga-Polar GaN Interfaced with Al2O3 through Ultraviolet/Ozone Treatment.

    PubMed

    Kim, Kwangeun; Ryu, Jae Ha; Kim, Jisoo; Cho, Sang June; Liu, Dong; Park, Jeongpil; Lee, In-Kyu; Moody, Baxter; Zhou, Weidong; Albrecht, John; Ma, Zhenqiang

    2017-05-24

    Understanding the band bending at the interface of GaN/dielectric under different surface treatment conditions is critically important for device design, device performance, and device reliability. The effects of ultraviolet/ozone (UV/O 3 ) treatment of the GaN surface on the energy band bending of atomic-layer-deposition (ALD) Al 2 O 3 coated Ga-polar GaN were studied. The UV/O 3 treatment and post-ALD anneal can be used to effectively vary the band bending, the valence band offset, conduction band offset, and the interface dipole at the Al 2 O 3 /GaN interfaces. The UV/O 3 treatment increases the surface energy of the Ga-polar GaN, improves the uniformity of Al 2 O 3 deposition, and changes the amount of trapped charges in the ALD layer. The positively charged surface states formed by the UV/O 3 treatment-induced surface factors externally screen the effect of polarization charges in the GaN, in effect, determining the eventual energy band bending at the Al 2 O 3 /GaN interfaces. An optimal UV/O 3 treatment condition also exists for realizing the "best" interface conditions. The study of UV/O 3 treatment effect on the band alignments at the dielectric/III-nitride interfaces will be valuable for applications of transistors, light-emitting diodes, and photovoltaics.

  10. Effect of Thermochemical Synthetic Conditions on the Structure and Dielectric Properties of Ga1.9Fe0.1O3 Compounds.

    PubMed

    Roy, Swadipta; Ramana, C V

    2018-02-05

    We report on the tunable and controlled dielectric properties of iron (Fe)-doped gallium oxide (Ga 2 O 3 ; Ga 1.9 Fe 0.1 O 3 , referred to as GFO) inorganic compounds. The GFO materials were synthesized using a standard high-temperature, solid-state chemical reaction method by varying the thermochemical processing conditions, namely, different calcination and sintering environments. Structural characterization by X-ray diffraction revealed that GFO compounds crystallize in the β-Ga 2 O 3 phase. The Fe doping has induced slight lattice strain in GFO, which is evident in structural analysis. The effect of the sintering temperature (T sint ), which was varied in the range of 900-1200 °C, is significant, as revealed by electron microscopy analysis. T sint influences the grain size and microstructure evolution, which, in turn, influences the dielectric and electrical properties of GFO compounds. The energy-dispersive X-ray spectrometry and mapping data demonstrate the uniform distribution of the elemental composition over the microstructure. The temperature- and frequency-dependent dielectric measurements indicate the characteristic features that are specifically due to Fe doping in Ga 2 O 3 . The spreading factor and relaxation time, calculated using Cole-Cole plots, are in the ranges of 0.65-0.76 and 10 -4 s, respectively. The results demonstrate that densification and control over the microstructure and properties of GFO can be achieved by optimizing T sint .

  11. Raman tensor elements of β-Ga2O3.

    PubMed

    Kranert, Christian; Sturm, Chris; Schmidt-Grund, Rüdiger; Grundmann, Marius

    2016-11-03

    The Raman spectrum and particularly the Raman scattering intensities of monoclinic β-Ga 2 O 3 are investigated by experiment and theory. The low symmetry of β-Ga 2 O 3 results in a complex dependence of the Raman intensity for the individual phonon modes on the scattering geometry which is additionally affected by birefringence. We measured the Raman spectra in dependence on the polarization direction for backscattering on three crystallographic planes of β-Ga 2 O 3 and modelled these dependencies using a modified Raman tensor formalism which takes birefringence into account. The spectral position of all 15 Raman active phonon modes and the Raman tensor elements of 13 modes were determined and are compared to results from ab-initio calculations.

  12. Raman tensor elements of β-Ga2O3

    PubMed Central

    Kranert, Christian; Sturm, Chris; Schmidt-Grund, Rüdiger; Grundmann, Marius

    2016-01-01

    The Raman spectrum and particularly the Raman scattering intensities of monoclinic β-Ga2O3 are investigated by experiment and theory. The low symmetry of β-Ga2O3 results in a complex dependence of the Raman intensity for the individual phonon modes on the scattering geometry which is additionally affected by birefringence. We measured the Raman spectra in dependence on the polarization direction for backscattering on three crystallographic planes of β-Ga2O3 and modelled these dependencies using a modified Raman tensor formalism which takes birefringence into account. The spectral position of all 15 Raman active phonon modes and the Raman tensor elements of 13 modes were determined and are compared to results from ab-initio calculations. PMID:27808113

  13. Interface science of virtual GaN substrates on Si(111) via Sc2O3/Y2O3 buffers: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Tarnawska, L.; Dabrowski, J.; Grzela, T.; Lehmann, M.; Niermann, T.; Paszkiewicz, R.; Storck, P.; Schroeder, T.

    2013-06-01

    The final film quality of GaN on foreign substrates is known to crucially depend on the initial GaN interface and nucleation characteristics. To shed light on these characteristics of recently pioneered virtual, hexagonal GaN(0001) substrates on Si(111) via step graded Sc2O3(111)/Y2O3(111) buffers, a complex GaN(0001)/Sc2O3(111) interface structure model and the initial nucleation scenario is derived from a combined experimental (reflection high energy electron diffraction and X-ray photoelectron spectroscopy) and theoretical ab initio study. It is shown that the GaN/Sc2O3 interface chemistry is determined by a N-Ga-O-Sc atomic arrangement leading to N-polar GaN films. However, the atomic GaN(0001)/Sc2O3(111) interface configuration is complex and local perturbations might be at the origin of Ga-polar inversion domains in the mainly N-polar GaN films. The initial growth of GaN on Sc2O3 is characterized by an ultrathin N-Ga-O-Sc wetting layer which carries tensile strain and relaxes with increasing thickness. Further GaN deposition results in the formation of 3D islands which fully relax before island coalescence occurs. The implications of the GaN/Sc2O3 interface configuration, the 3D nucleation growth mode, and the coalescence process of misaligned islands are discussed with respect to the defect characteristics (inversion domains, cubic inclusions, threading dislocations) of the final GaN layer.

  14. Recovery of nonwetting characteristics by surface modification of gallium-based liquid metal droplets using hydrochloric acid vapor.

    PubMed

    Kim, Daeyoung; Thissen, Peter; Viner, Gloria; Lee, Dong-Weon; Choi, Wonjae; Chabal, Yves J; Lee, Jeong-Bong J B

    2013-01-01

    The applicability of gallium-based liquid metal alloy has been limited by the oxidation problem. In this paper, we report a simple method to remove the oxide layer on the surface of such alloy to recover its nonwetting characteristics, using hydrochloric acid (HCl) vapor. Through the HCl vapor treatment, we successfully restored the nonwetting characteristics of the alloy and suppressed its viscoelasticity. We analyzed the change of surface chemistry before and after the HCl vapor treatment using X-ray photoelectron spectroscopy (XPS) and low-energy ion-scattering spectroscopy (LEIS). Results showed that the oxidized surface of the commercial gallium-based alloy Galinstan (Ga(2)O(3) and Ga(2)O) was replaced with InCl(3) and GaCl(3) after the treatment. Surface tension and static contact angle on a Teflon-coated glass of the HCl-vapor-treated Galinstan were measured to be 523.8 mN/m and 152.5°. A droplet bouncing test was successfully carried out to demonstrate the nonwetting characteristics of the HCl-vapor-treated Galinstan. Finally, the stability of the transformed surface of the HCl-vapor-treated Galinstan was investigated by measuring the contact angle and LEIS spectra after reoxidation in an ambient environment.

  15. Improvement of the GaSb/Al2O3 interface using a thin InAs surface layer

    NASA Astrophysics Data System (ADS)

    Greene, Andrew; Madisetti, Shailesh; Nagaiah, Padmaja; Yakimov, Michael; Tokranov, Vadim; Moore, Richard; Oktyabrsky, Serge

    2012-12-01

    The highly reactive GaSb surface was passivated with a thin InAs layer to limit interface trap state density (Dit) at the III-V/high-k oxide interface. This InAs surface was subjected to various cleaning processes to effectively reduce native oxides before atomic layer deposition (ALD). Ammonium sulfide pre-cleaning and trimethylaluminum/water ALD were used in conjunction to provide a clean interface and annealing in forming gas (FG) at 350 °C resulted in an optimized fabrication for n-GaSb/InAs/high-k gate stacks. Interface trap density, Dit ≈ 2-3 × 1012 cm-2eV-1 resided near the n-GaSb conductance band which was extracted and compared with three different methods. Conductance-voltage-frequency plots showed efficient Fermi level movement and a sub-threshold slope of 200 mV/dec. A composite high-k oxide process was also developed using ALD of Al2O3 and HfO2 resulting in a Dit ≈ 6-7 × 1012 cm-2eV-1. Subjecting these samples to a higher (450 °C) processing temperature results in increased oxidation and a thermally unstable interface. p-GaSb displayed very fast minority carrier generation/recombination likely due to a high density of bulk traps in GaSb.

  16. Optical properties of (AlxGa1-x)2O3 on sapphire

    NASA Astrophysics Data System (ADS)

    Hu, Zhuangzhuang; Feng, Qian; Zhang, Jincheng; Li, Fuguo; Li, Xiang; Feng, Zhaoqing; Zhang, Chunfu; Hao, Yue

    2018-02-01

    The (AlxGa1-x)2O3 and Ga2O3 films are epitaxially grown on sapphire by pulsed laser deposition (PLD). From X-ray photoelectron spectroscopy (XPS) and X-ray diffraction measurements, the (AlxGa1-x)2O3 films with Al compositions of 0.39, 0.49 and up to 0.53 are all single crystal and there is an out-of-plane tensile strain in (AlxGa1-x)2O3 films within the range from 0.164% to 0.345%. The optical properties are investigated by Spectral Ellipsometry (SE) together with the optical transmission method. The spectral dependence of the refractive index (n) by SE is in accordance with the reported experiment results. The thicknesses of the Ga2O3 and (AlxGa1-x)2O3 films obtained by SE fitting are 201, 116.8, 40 and 84.61 nm, respectively, which is consistent with the field emission scanning electron microscopy (FESEM) measurement results. In addition, with the Al composition increasing, the bandgaps of the (AlxGa1-x)2O3 films determined from the SE are both increase from 4.95 to 5.49, 5.7 and 5.75 eV, almost identical to the values determined by the transmittance spectra, which is larger than some extent compared to reference [13] for the compressive strain in the (AlxGa1-x)2O3 films.

  17. Morphology, mechanical stability, and protective properties of ultrathin gallium oxide coatings.

    PubMed

    Lawrenz, Frank; Lange, Philipp; Severin, Nikolai; Rabe, Jürgen P; Helm, Christiane A; Block, Stephan

    2015-06-02

    Ultrathin gallium oxide layers with a thickness of 2.8 ± 0.2 nm were transferred from the surface of liquid gallium onto solid substrates, including conjugated polymer poly(3-hexylthiophene) (P3HT). The gallium oxide exhibits high mechanical stability, withstanding normal pressures of up to 1 GPa in contact mode scanning force microscopy imaging. Moreover, it lowers the rate of photodegradation of P3HT by 4 orders of magnitude, as compared to uncovered P3HT. This allows us to estimate the upper limits for oxygen and water vapor transmission rates of 0.08 cm(3) m(-2) day(-1) and 0.06 mg m(-2) day(-1), respectively. Hence, similar to other highly functional coatings such as graphene, ultrathin gallium oxide layers can be regarded as promising candidates for protective layers in flexible organic (opto-)electronics and photovoltaics because they offer permeation barrier functionalities in conjunction with high optical transparency.

  18. Energy-band alignment of (HfO2)x(Al2O3)1-x gate dielectrics deposited by atomic layer deposition on β-Ga2O3 (-201)

    NASA Astrophysics Data System (ADS)

    Yuan, Lei; Zhang, Hongpeng; Jia, Renxu; Guo, Lixin; Zhang, Yimen; Zhang, Yuming

    2018-03-01

    Energy band alignments between series band of Al-rich high-k materials (HfO2)x(Al2O3)1-x and β-Ga2O3 are investigated using X-Ray Photoelectron Spectroscopy (XPS). The results exhibit sufficient conduction band offsets (1.42-1.53 eV) in (HfO2)x(Al2O3)1-x/β-Ga2O3. In addition, it is also obtained that the value of Eg, △Ec, and △Ev for (HfO2)x(Al2O3)1-x/β-Ga2O3 change linearly with x, which can be expressed by 6.98-1.27x, 1.65-0.56x, and 0.48-0.70x, respectively. The higher dielectric constant and higher effective breakdown electric field of (HfO2)x(Al2O3)1-x compared with Al2O3, coupled with sufficient barrier height and lower gate leakage makes it a potential dielectric for high voltage β-Ga2O3 power MOSFET, and also provokes interest in further investigation of HfAlO/β-Ga2O3 interface properties.

  19. Enhancement-mode GaAs metal-oxide-semiconductor high-electron-mobility transistors with atomic layer deposited Al2O3 as gate dielectric

    NASA Astrophysics Data System (ADS)

    Lin, H. C.; Yang, T.; Sharifi, H.; Kim, S. K.; Xuan, Y.; Shen, T.; Mohammadi, S.; Ye, P. D.

    2007-11-01

    Enhancement-mode GaAs metal-oxide-semiconductor high-electron-mobility transistors (MOS-HEMTs) with ex situ atomic-layer-deposited Al2O3 as gate dielectrics are studied. Maximum drain currents of 211 and 263mA/mm are obtained for 1μm gate-length Al2O3 MOS-HEMTs with 3 and 6nm thick gate oxide, respectively. C-V characteristic shows negligible hysteresis and frequency dispersion. The gate leakage current density of the MOS-HEMTs is 3-5 orders of magnitude lower than the conventional HEMTs under similar bias conditions. The drain current on-off ratio of MOS-HEMTs is ˜3×103 with a subthreshold swing of 90mV/decade. A maximum cutoff frequency (fT) of 27.3GHz and maximum oscillation frequency (fmax) of 39.9GHz and an effective channel mobility of 4250cm2/Vs are measured for the 1μm gate-length Al2O3 MOS-HEMT with 6nm gate oxide. Hooge's constant measured by low frequency noise spectral density characterization is 3.7×10-5 for the same device.

  20. Band alignment of atomic layer deposited SiO2 and HfSiO4 with (\\bar{2}01) β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Carey, Patrick H., IV; Ren, Fan; Hays, David C.; Gila, Brent P.; Pearton, Stephen J.; Jang, Soohwan; Kuramata, Akito

    2017-07-01

    The valence band offset at both SiO2/β-Ga2O3 and HfSiO4/β-Ga2O3 heterointerfaces was measured using X-ray photoelectron spectroscopy. Both dielectrics were deposited by atomic layer deposition (ALD) onto single-crystal β-Ga2O3. The bandgaps of the materials were determined by reflection electron energy loss spectroscopy as 4.6 eV for Ga2O3, 8.7 eV for Al2O3 and 7.0 eV for HfSiO4. The valence band offset was determined to be 1.23 ± 0.20 eV (straddling gap, type I alignment) for ALD SiO2 on β-Ga2O3 and 0.02 ± 0.003 eV (also type I alignment) for HfSiO4. The respective conduction band offsets were 2.87 ± 0.70 eV for ALD SiO2 and 2.38 ± 0.50 eV for HfSiO4, respectively.

  1. Oxygen partial pressure influence on the character of InGaZnO thin films grown by PLD

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Wang, Li

    2012-11-01

    The amorphous oxide semiconductors (AOSs) are promising for emerging large-area optoelectronic applications because of capability of large-area, uniform deposition at low temperatures such as room temperature (RT). Indium-gallium-zinc oxide (InGaZnO) thin film is a promising amorphous semiconductors material in thin film transistors (TFT) for its excellent electrical properties. In our work, the InGaZnO thin films are fabricated on the SiO2 glass using pulsed laser deposition (PLD) in the oxygen partial pressure altered from 1 to 10 Pa at RT. The targets were prepared by mixing Ga2O3, In2O3, and ZnO powder at a mol ratio of 1: 7: 2 before the solid-state reactions in a tube furnace at the atmospheric pressure. The targets were irradiated by an Nd:YAG laser(355nm). Finally, we have three films of 270nm, 230nm, 190nm thick for 1Pa, 5Pa, 10Pa oxygen partial pressure. The product thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), Hall-effect investigation. The comparative study demonstrated the character changes of the structure and electronic transport properties, which is probably occurred as a fact of the different oxygen partial pressure used in the PLD.

  2. Metal-organic chemical vapor deposition of cerium oxide, gallium-indium-oxide, and magnesium oxide thin films: Precursor design, film growth, and film characterization

    NASA Astrophysics Data System (ADS)

    Edleman, Nikki Lynn

    A new class of volatile, low-melting, fluorine-free lanthanide metal-organic chemical vapor deposition (MOCVD) precursors has been developed. The neutral, monomeric cerium, neodymium, gadolinium, and erbium complexes are coordinatively saturated by a versatile, multidentate, ether-functionalized beta-ketoiminate ligand, and complex melting point and volatility characteristics can be tuned by altering the alkyl substituents on the ligand periphery. Direct comparison with lanthanide beta-diketonate complexes reveals that the present precursor class is a superior choice for lanthanide oxide MOCVD. Epitaxial CeO 2 buffer layer films have been grown on (001) YSZ substrates by MOCVD at significantly lower temperatures than previously reported using one of the newly developed cerium precursors. High-quality YBCO films grown on these CeO2 buffer layers by POMBE exhibit very good electrical transport properties. The cerium complex has therefore been explicitly demonstrated to be a stable and volatile precursor and is attractive for low-temperature growth of coated conductor multilayer structures by MOCVD. Gallium-indium-oxide thin films (GaxIn2-xO 3), x = 0.0˜1.1, have been grown by MOCVD using the volatile metal-organic precursors In(dpm)3 and Ga(dpm)3. The films have a homogeneously Ga-substituted, cubic In2O3 microstructure randomly oriented on quartz or heteroepitaxial on (100) YSZ single-crystal substrates. The highest conductivity of the as-grown films is found at x = 0.12. The optical transmission window and absolute transparency of the films rivals or exceeds that of the most transparent conductive oxides known. Reductive annealing results in improved charge transport characteristics with little loss of optical transparency. No significant difference in electrical properties is observed between randomly oriented and heteroepitaxial films, thus arguing that carrier scattering effects at high-angle grain boundaries play a minor role in the film conductivity mechanism

  3. Synthesis and Biodistribution of Lipophilic Monocationic Gallium Radiopharmaceuticals Derived from N,N′-bis(3-aminopropyl)-N,N′-dimethylethylenediamine: Potential Agents for PET Myocardial Imaging with 68Ga

    PubMed Central

    Hsiao, Yui-May; Mathias, Carla J.; Wey, Shiaw-Pyng; Fanwick, Phillip E.; Green, Mark A.

    2009-01-01

    Introduction In locations that lack nearby cyclotron facilities for radionuclide production, generator-based 68Ga-radiopharmaceuticals might have clinical utility for positron emission tomography (PET) studies of myocardial perfusion and other physiologic processes. Methods The lipophilic, monocationic 67Ga-labeled gallium chelates of five novel hexadentate bis(salicylaldimine) ligands, the bis(salicylaldimine), bis(3-methoxysalicylaldimine), bis(4-methoxysalicylaldimine), bis(6-methoxysalicylaldimine), and bis(4,6-dimethoxysalicylaldimine) of N,N′-bis(3-aminopropyl)-N,N′-dimethylethylenediamine (BAPDMEN), were prepared. The structure of the unlabeled [Ga(4-MeOsal)2BAPDMEN]+PF6− salt was determined by X-ray crystallography, and the biodistribution of each of the 67Ga-labeled gallium chelates determined in rats following i.v. administration and compared to the biodistribution of [86Rb]rubidium chloride. Results The [Ga(4-MeOsal)2BAPDMEN]+PF6− complex exhibits the expected pseudo-octahedral N4O22− coordination sphere about the Ga3+ center with a trans-disposition of the phenolate oxygen atoms. All five of the 67Ga-radiopharmaceuticals were found to afford the desired myocardial retention of the radiogallium. The [67/68Ga][Ga(3-MeOsal)2BAPDMEN]1+ radiopharmaceutical appears to have the best properties for myocardial imaging, exhibiting 2% of the injected dose in the heart at both 1-minute and 2-hours post-injection and very high heart/non-target ratios (heart/blood ratios of 7.6 ± 1.0 and 54 ± 10 at 1-min and 120-min, respectively; heart/liver ratios of 1.8 ± 0.4 and 39 ± 3 at 1-min and 120-min, respectively). Conclusions Most of these new agents, particularly [67/68Ga][Ga(3-MeOsal)2BAPDMEN]1+, would appear superior to previously reported bis(salicyaldimines) of N,N′-bis(3-aminopropyl)ethylenediamine as candidates for PET imaging of the heart with 68Ga. PMID:19181267

  4. Spinel, YbFe2O4, and Yb2Fe3O7 types of structure for compounds in the In2O3 and Sc2O3-A2O3-BO systems (A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, Cu, or Zn) at temperatures over 1000C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimizuka, N.; Mohri, T.

    In the Sc2O3-Ga2O3-CuO, Sc2O3-Ga2O3-ZnO, and Sc2O3-Al2O3-CuO systems, ScGaCuO4, ScGaZnO4, and ScAlCuO4 with the YbFe2O4-type structure and Sc2Ga2CuO7 with the Yb2Fe3O7-type structure were obtained. In the In2O3-A2O3-BO systems (A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, or Zn), InGaFeO4, InGaNiO4, and InFeT MgO4 with the spinel structure, InGaZnO4, InGaMgO4, and InAl-CuO4 with the YbFe2O4-type structure, and In2Ga2MnO7 and In2Ga2ZnO7 with the Yb2Fe3O7-type structure were obtained. InGaMnO4 and InFe2O4 had both the YbFe2O4-type and spinel-type structures. The revised classification for the crystal structures of AB2O4 compounds is presented, based upon the coordination numbers of constituent A and B cations. 5more » references, 2 tables.« less

  5. Longitudinal spin Seebeck effect in Nd{sub 2}BiFe{sub 5−x}Ga{sub x}O{sub 12} prepared on gadolinium gallium garnet (001) by metal organic decomposition method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asada, H., E-mail: asada@yamaguchi-u.ac.jp; Kuwahara, A.; Sakata, N.

    2015-05-07

    Nd{sub 2}BiFe{sub 5−x}Ga{sub x}O{sub 12} thin films with the Ga composition x = 0, 0.5, and 1.0 are prepared on (001) oriented gadolinium gallium garnet substrates by a metal organic decomposition method. Only (001) peaks are observed in x-ray diffraction patterns for all the films, suggesting that the highly oriented Nd{sub 2}BiFe{sub 5−x}Ga{sub x}O{sub 12} thin films were formed. Increasing Ga composition, the saturation magnetization decreases, and the perpendicular easy axis is enhanced due to the decrease of the shape anisotropy. Longitudinal spin Seebeck effects (LSSEs) in Nd{sub 2}BiFe{sub 5−x}Ga{sub x}O{sub 12} thin films with a Pt layer of 10 nm in thicknessmore » were investigated. Magnetic field dependence of the thermoelectric voltage caused by the LSSE in Nd{sub 2}BiFe{sub 5−x}Ga{sub x}O{sub 12} films indicates the hysteresis loop with the small coercivity reflecting the magnetization curve. The decrease of LSSE voltage in Nd{sub 2}BiFe{sub 5−x}Ga{sub x}O{sub 12} is clearly observed with the decrease of Fe composition.« less

  6. Sodium enhances indium-gallium interdiffusion in copper indium gallium diselenide photovoltaic absorbers.

    PubMed

    Colombara, Diego; Werner, Florian; Schwarz, Torsten; Cañero Infante, Ingrid; Fleming, Yves; Valle, Nathalie; Spindler, Conrad; Vacchieri, Erica; Rey, Germain; Guennou, Mael; Bouttemy, Muriel; Manjón, Alba Garzón; Peral Alonso, Inmaculada; Melchiorre, Michele; El Adib, Brahime; Gault, Baptiste; Raabe, Dierk; Dale, Phillip J; Siebentritt, Susanne

    2018-02-26

    Copper indium gallium diselenide-based technology provides the most efficient solar energy conversion among all thin-film photovoltaic devices. This is possible due to engineered gallium depth gradients and alkali extrinsic doping. Sodium is well known to impede interdiffusion of indium and gallium in polycrystalline Cu(In,Ga)Se 2 films, thus influencing the gallium depth distribution. Here, however, sodium is shown to have the opposite effect in monocrystalline gallium-free CuInSe 2 grown on GaAs substrates. Gallium in-diffusion from the substrates is enhanced when sodium is incorporated into the film, leading to Cu(In,Ga)Se 2 and Cu(In,Ga) 3 Se 5 phase formation. These results show that sodium does not decrease per se indium and gallium interdiffusion. Instead, it is suggested that sodium promotes indium and gallium intragrain diffusion, while it hinders intergrain diffusion by segregating at grain boundaries. The deeper understanding of dopant-mediated atomic diffusion mechanisms should lead to more effective chemical and electrical passivation strategies, and more efficient solar cells.

  7. α-Ga2O3 grown by low temperature atomic layer deposition on sapphire

    NASA Astrophysics Data System (ADS)

    Roberts, J. W.; Jarman, J. C.; Johnstone, D. N.; Midgley, P. A.; Chalker, P. R.; Oliver, R. A.; Massabuau, F. C.-P.

    2018-04-01

    α-Ga2O3 is a metastable phase of Ga2O3 of interest for wide bandgap engineering since it is isostructural with α-In2O3 and α-Al2O3. α-Ga2O3 is generally synthesised under high pressure (several GPa) or relatively high temperature (∼500 °C). In this study, we report the growth of α-Ga2O3 by low temperature atomic layer deposition (ALD) on sapphire substrate. The film was grown at a rate of 0.48 Å/cycle, and predominantly consists of α-Ga2O3 in the form of (0001) -oriented columns originating from the interface with the substrate. Some inclusions were also present, typically at the tips of the α phase columns and most likely comprising ε-Ga2O3. The remainder of the Ga2O3 film - i.e. nearer the surface and between the α-Ga2O3 columns, was amorphous. The film was found to be highly resistive, as is expected for undoped material. This study demonstrates that α-Ga2O3 films can be grown by low temperature ALD and suggests the possibility of a new range of ultraviolet optoelectronic and power devices grown by ALD. The study also shows that scanning electron diffraction is a powerful technique to identify the different polymorphs of Ga2O3 present in multiphase samples.

  8. High-performance InGaN/GaN MQW LEDs with Al-doped ZnO transparent conductive layers grown by MOCVD using H2O as an oxidizer

    NASA Astrophysics Data System (ADS)

    Lin, Jia-Yong; Pei, Yan-Li; Zhuo, Yi; Chen, Zi-Min; Hu, Rui-Qin; Cai, Guang-Shuo; Wang, Gang

    2016-11-01

    In this study, the high performance of InGaN/GaN multiple quantum well light-emitting diodes (LEDs) with Al-doped ZnO (AZO) transparent conductive layers (TCLs) has been demonstrated. The AZO-TCLs were fabricated on the n+-InGaN contact layer by metal organic chemical vapor deposition (MOCVD) using H2O as an oxidizer at temperatures as low as 400 °C without any post-deposition annealing. It shows a high transparency (98%), low resistivity (510-4 Ω·cm), and an epitaxial-like excellent interface on p-GaN with an n+-InGaN contact layer. A forward voltage of 2.82 V @ 20 mA was obtained. Most importantly, the power efficiencies can be markedly improved by 53.8%@20 mA current injection and 39.6%@350 mA current injection compared with conventional LEDs with indium tin oxide TCL (LED-III), and by 28.8%@20 mA current injection and 4.92%@350 mA current injection compared with LEDs with AZO-TCL prepared by MOCVD using O2 as an oxidizer (LED-II), respectively. The results indicate that the AZO-TCL grown by MOCVD using H2O as an oxidizer is a promising TCL for a low-cost and high-efficiency GaN-based LED application. Project supported by the National Natural Science Foundation of China (Grant Nos. 61204091, 61404177, 51402366, and U1201254) and the Science and Technology Planning Project of Guangdong Province, China (Grant No. 2015B010132006).

  9. Enhanced, robust light-driven H 2 generation by gallium-doped titania nanoparticles

    DOE PAGES

    Luo, Si; Nguyen-Phan, Thuy-Duong; Vovchok, Dimitriy; ...

    2017-12-14

    The splitting of water into molecular hydrogen and oxygen with the use of renewable solar energy is considered one of the most promising routes to yield sustainable fuel. In this paper, we report the H 2 evolution performance of gallium doped TiO 2 photocatalysts with varying degrees of Ga dopant. The gallium(III) ions induced significant changes in the structural, textural and electronic properties of TiO 2 nanoparticles, resulting in remarkably enhanced photocatalytic activity and good stability for H 2 production. Ga 3+ ions can act as hole traps that enable a large number of excited electrons to migrate towards themore » TiO 2 surface, thereby facilitating electron transfer and charge separation. Additionally, the cationic dopant and its induced defects might introduce a mid-gap state, promoting electron migration and prolonging the lifetime of charge carrier pairs. We have discovered that the optimal Ga dopant concentration was 3.125 at% and that the incorporation of platinum (0.5 wt%) as a co-catalyst further improved the H 2 evolution rate up to 5722 μmol g -1 h -1. Pt not only acts as an electron sink, drastically increasing the electron/hole pair lifetime, but it also creates an intimate contact at the heterojunction between Pt and Ga-TiO 2, thus improving the interfacial electron transfer process. Finally, these catalyst design strategies provide new ways of designing transition metal photocatalysts that improve green fuel production from renewable solar energy and water.« less

  10. Studies on the sensing behaviour of nanocrystalline CuGa(2)O(4) towards hydrogen, liquefied petroleum gas and ammonia.

    PubMed

    Biswas, Soumya Kanti; Sarkar, Arpita; Pathak, Amita; Pramanik, Panchanan

    2010-06-15

    In the present article, the gas sensing behaviour of nanocrystalline CuGa(2)O(4) towards H(2), liquefied petroleum gas (LPG) and NH(3) has been reported for the first time. Nanocrystalline powders of CuGa(2)O(4) having average particle sizes in the range of 30-60nm have been prepared through thermal decomposition of an aqueous precursor solution comprising copper nitrate, gallium nitrate and triethanol amine (TEA), followed by calcination at 750 degrees C for 2h. The synthesized nanocrystalline CuGa(2)O(4) powders have been characterised through X-ray diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM) study, energy dispersive X-ray (EDX) analysis and BET (Brunauer-Emmett-Teller) surface area measurement. The synthesized CuGa(2)O(4) having spinel structure with specific surface area of 40m(2)/g exhibits maximum sensitivity towards H(2), LPG, and NH(3) at 350 degrees C.

  11. The effect of surfactants on epitaxial growth of gallium nitride from gas phase in the Ga-HCl-NH3-H2-Ar system

    NASA Astrophysics Data System (ADS)

    Zhilyaev, Yu. V.; Zelenin, V. V.; Orlova, T. A.; Panteleev, V. N.; Poletaev, N. K.; Rodin, S. N.; Snytkina, S. A.

    2015-05-01

    We have studied epitaxial layers of gallium nitride (GaN) in a template composition grown by surfactant-mediated hydride-chloride vapor phase epitaxy. The surfactant component was provided by 5 mass % additives of antimony and indium to the source of gallium. Comparative analysis of the obtained results shows evidence of the positive influence of surfactants on the morphology of epitaxial GaN layers.

  12. High performance GaN-based LEDs on patterned sapphire substrate with patterned composite SiO2/Al2O3 passivation layers and TiO2/Al2O3 DBR backside reflector.

    PubMed

    Guo, Hao; Zhang, Xiong; Chen, Hongjun; Zhang, Peiyuan; Liu, Honggang; Chang, Hudong; Zhao, Wei; Liao, Qinghua; Cui, Yiping

    2013-09-09

    GaN-based light-emitting diodes (LEDs) on patterned sapphire substrate (PSS) with patterned composite SiO(2)/Al(2)O(3) passivation layers and TiO(2)/Al(2)O(3) distributed Bragg reflector (DBR) backside reflector have been proposed and fabricated. Highly passivated Al(2)O(3) layer deposited on indium tin oxide (ITO) layer with excellent uniformity and quality has been achieved with atomic layer deposition (ALD) technology. With a 60 mA current injection, an enhancement of 21.6%, 59.7%, and 63.4% in the light output power (LOP) at 460 nm wavelength was realized for the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layers, the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layers and Ag mirror + 3-pair TiO(2)/SiO(2) DBR backside reflector, and the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layer and Ag mirror + 3-pair ALD-grown TiO(2)/Al(2)O(3) DBR backside reflector as compared with the conventional LED only with a single SiO(2) passivation layer, respectively.

  13. Spectroscopic properties and energy transfer analysis of Tm3+-doped BaF2-Ga2O3-GeO2-La2O3 glass.

    PubMed

    Yu, Shenglei; Yang, Zhongmin; Xu, Shanhui

    2010-05-01

    This paper reports on the spectroscopic properties and energy transfer analysis of Tm(3+)-doped BaF(2)-Ga(2)O(3)-GeO(2)-La(2)O(3) glasses with different Tm(2)O(3) doping concentrations (0.2, 0.5, 2.0, 2.5, 3.0, 3.5, 3.5, 4.0 wt%). Mid-IR fluorescence intensities in the range of 1,300 nm-2,200 nm have been measured when excited under an 808 nm LD for all the samples with the same pump power. Energy level structure and Judd-Ofelt parameters have been calculated based on the absorption spectra of Tm(3+), cross-relaxation rates and multi-phonon relaxation rates have been estimated with different Tm(2)O(3) doping concentrations. The maximum fluorescence intensity at around 1.8 mum has been obtained in Tm(2)O(3)-3 wt% sample and the maximum value of calculated stimulated emission cross-section of Tm(3+) in this sample is about 0.48 x 10(-20) cm(2) at 1,793 nm, and there is not any crystallization peak in the DSC curve of this sample, which indicate the potential utility of Tm(3+)-doped BaF(2)-Ga(2)O(3)-GeO(2)- La(2)O(3) glass for 2.0-microm optical fiber laser.

  14. Electrical and optical properties of Si-doped Ga2O3

    NASA Astrophysics Data System (ADS)

    Li, Yin; Yang, Chuanghua; Wu, Liyuan; Zhang, Ru

    2017-05-01

    The charge densities, band structure, density of states, dielectric functions of Si-doped β-Ga2O3 have been investigated based on the density functional theory (DFT) within the hybrid functional HSE06. The heavy doping makes conduction band split out more bands and further influences the band structure. It decreases the band gap and changes from a direct gap to an indirect gap. After doping, the top of the valence bands is mainly composed by the O-2p states, Si-3p states and Ga-4p states and the bottom of the conduction bands is almost formed by the Si-3s, Si-3p and Ga-4s orbits. The anisotropic optical properties have been investigated by means of the complex dielectric function. After the heavy Si doping, the position of absorption band edges did not change much. The slope of the absorption curve descends and indicates that the absorption became more slow for Si-doped β-Ga2O3 than undoped one due to the indirect gap of Si-doped β-Ga2O3.

  15. The Preparation and Structural Characterization of Three Structural Types of Gallium Compounds Derived from Gallium (II) Chloride

    NASA Technical Reports Server (NTRS)

    Gordon, Edward M.; Hepp, Aloysius F.; Duraj. Stan A.; Habash, Tuhfeh S.; Fanwick, Phillip E.; Schupp, John D.; Eckles, William E.; Long, Shawn

    1997-01-01

    The three compounds Ga2Cl4(4-mepy)2 (1),[GaCl2(4-mepy)4]GaCl4x1/2(4-mepy); (2) and GaCl2(4-mepy)2(S2CNEt2); (3) (4-mepy= 4-methylpyridine) have been prepared from reactions of gallium (II) chloride in 4-methylpyridine and characterized by single-crystal X-ray analysis. Small variations in the reaction conditions for gallium(II) chloride can produce crystals with substantially different structural properties. The three compounds described here encompass a neutral gallium(II) dimer in which each gallium is four-coordinate, an ionic compound containing both anionic and cationic gallium complex ions with different coordination numbers and a neutral six-coordinate heteroleptic

  16. Mesoporous mixed-phase Ga{sub 2}O{sub 3}: Green synthesis and enhanced photocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jin; The Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University, Zhoukou 466001; Zhang, Gaoke, E-mail: gkzhang@whut.edu.cn

    2015-08-15

    Highlights: • Mixed-phase Ga{sub 2}O{sub 3} was synthesized by a facile and green method. • Mixed-phase Ga{sub 2}O{sub 3} exhibited good photocatalytic activity and stability. • The reactive species in the photocatalytic process were investigated. - Abstract: Mesoporous mixed-phase Ga{sub 2}O{sub 3} was synthesized by calcining the GaOOH precursor. The composition, crystal phase and microstructures of Ga{sub 2}O{sub 3} were characterized in detail. The phase composition of the as-prepared Ga{sub 2}O{sub 3} depended on the calcination temperature and the mixed-phase Ga{sub 2}O{sub 3} was obtained at 600–700 °C. As compared to the pure-phase α-Ga{sub 2}O{sub 3} and β-Ga{sub 2}O{sub 3},more » the mixed-phase Ga{sub 2}O{sub 3} exhibited an enhanced photocatalytic property for the degradation of metronidazole solution. The heterojunction in the mixed-phase Ga{sub 2}O{sub 3} was beneficial to the separation of photogenerated electrons and holes. Moreover, the mixed-phase Ga{sub 2}O{sub 3} possessed mesopore structure, which increased more reaction sites and was in favor of the contact of metronidazole molecules with reaction sites. The recycling experiments show that the mixed-phase Ga{sub 2}O{sub 3} has good stability and can be separated easily from the reaction system.« less

  17. Synthetic routes to a nanoscale inorganic cluster [Ga{sub 13}(μ{sub 3}-OH){sub 6}(μ{sub 2}-OH){sub 18}(H{sub 2}O)](NO{sub 3}){sub 15} evaluated by solid-state {sup 71}Ga NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammann, Blake A.; Marsh, David A.; Ma, Zayd L.

    Solid-state {sup 71}Ga NMR was used to characterize a series of [Ga{sub 13}(μ{sub 3}-OH){sub 6}(μ{sub 2}-OH){sub 18}(H{sub 2}O)](NO{sub 3}){sub 15} “Ga{sub 13}” molecular clusters synthesized by multiple methods. These molecular clusters are precursors to thin film electronics and may be employed in energy applications. The synthetic routes provide varying levels of impurities in the solid phase, and these impurities often elude traditional characterization techniques such as powder X-ray diffraction and Raman spectroscopy. Solid-state NMR can provide a window into the gallium species even in amorphous phases. This information is vital in order to prevent the impurities from causing defect sitesmore » in the corresponding thin films upon gelation and condensation (polymerization) of the Ga{sub 13} clusters. This work demonstrates the resolving power of solid-state NMR to evaluate structure and synthetic quality in the solid state, and the application of high-field NMR to study quadrupolar species, such as {sup 71}Ga. - Graphical abstract: The various synthetic routes and {sup 71}Ga solid-state NMR spectra of the nanoscale inorganic cluster [Ga{sub 13}(μ{sub 3}-OH){sub 6}(μ{sub 2}-OH){sub 18}(H{sub 2}O)](NO{sub 3}){sub 15}. - Highlights: • Solid-state {sup 71}Ga NMR of hydroxo-aquo metal clusters and the impurities present. • High-field NMR capability allows for quadrupolar species, such as {sup 71}Ga, to be routinely studied. • Efficient and environmentally friendly synthetic routes have been developed to prepare hydroxo-aquo metal clusters.« less

  18. Synthesis, structure and characterization of two new organic template-directed gallium phosphate/phosphite-oxalates

    NASA Astrophysics Data System (ADS)

    Xue, Zhen-Zhen; Pan, Jie; Li, Jin-Hua; Wang, Zong-Hua; Wang, Guo-Ming

    2017-06-01

    Two new gallium phosphate/phosphite-oxalates hybrid solids, {[H2dmpip][Ga2(HPO4)2(PO4)(C2O4)0.5]·H2O} (1) and [H2apm][Ga2(H2PO3)2(HPO3)2(C2O4)] (2), where dmpip = 2,6-dimethyl-piperazine and apm = N-(3-aminopropyl)morpholine, have been synthesized and structurally characterized. Both of compounds 1 and 2 are formed by the connectivity of the Ga-based polyhedral, phosphite/phosphate groups as well as oxalate units. Compound 1 possesses a two-dimensional layer structure, in which the C2O4 units via an in-plane linkage connect two Ga center within the sheet. While in 2, the C2O4 units serve as bis-bidentates ligands bridging two GaO6 octahedra from two distinct gallium-phosphite chains to give rise to inorganic-organic hybrid layer with 8-membered rings. In these materials, the structure-directing amines reside in the interlayer region and interact with the layers by way of hydrogen-bonds.

  19. Assessment of Ga2O3 technology

    DTIC Science & Technology

    2016-09-15

    29 Figure 19: Temperature-dependent thermal conductivity of β-Ga2O3 measured along different crystal...also have crystal orientation dependence (anisotropy) based on the observation that electron mobility, optical bandgap and thermal conductivity values...ℎ ⋅ � ⋅ 4 � 1 2 Minimize thermal limitations , ℎ = thermal conductivity [80] BFOM 3

  20. Enhanced non-enzymatic glucose biosensor of Ga-doped ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Peng, Wan-Chan; Wang, Zi-Hao; Yang, Chih-Chiang; Huang, Chien-Sheng; Su, Yan-Kuin; Ruan, Jian-Long

    2017-04-01

    In this work gallium (Ga)-Doped ZnO nanorods (GZO NRs) successfully applied for the development of enzyme free glucose. GZO NRs synthesized by using the hydrothermal on ZnO seed layer was subsequently deposited onto the glass substrate. The GZO NRs electrode has peak currents increasing from 620 to 941μA with glucose concentration (6, 8 and 10 mM) in cyclic voltammograms. GZO NRs electrode sensitivity of the sensor to glucose oxidation was 33.4 (μA/mM-cm2). The GZO NRs modified electrode showed a greatly enhanced electrocatalytic property toward glucose oxidation, as well as an excellent anti-interference and a good stability.

  1. Mixed nickel-gallium tellurides Ni{sub 3−x}GaTe{sub 2} as a matrix for incorporating magnetic cations: A Ni{sub 3−x}Fe{sub x}GaTe{sub 2} series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsov, Alexey N., E-mail: alexei@inorg.chem.msu.ru; N.S. Kurnakov Institute of General and Inorganic Chemistry, RAS, Leninsky pr. 31, GSP-1, 119991 Moscow; Stroganova, Ekaterina A.

    Using a high-temperature ampoule technique, a series of mixed nickel-iron-gallium metal-rich tellurides with layered structures, Ni{sub 3-x}Fe{sub x}GaTe{sub 2}, were prepared and characterized based on X-ray powder diffraction, energy-dispersive spectroscopy, and {sup 57}Fe Mössbauer spectroscopy data. These compounds may be regarded as a result of partial substitution of nickel by iron in the recently reported ternary Ni{sub 3-x}GaTe{sub 2} series, which are based on NiAs/Ni{sub 2}In type of structure. The compositional boundary for the substitution was found to be at x~1. According to the Mössbauer spectroscopy data, the substitution is not statistical, and iron atoms with the increase in xmore » tend to preferentially occupy those nickel positions that are partially vacant in the initial ternary compound. Magnetic measurements data for the Ni{sub 3-x}Fe{sub x}GaTe{sub 2} series show dramatic change in behavior from temperature-independent paramagnetic properties of the initial matrix to a low-temperature (~75 K) ferromagnetic ordering in the Ni{sub 2}FeGaTe{sub 2}. - Graphical abstract: Ordered substitution of nickel by iron in the Ni{sub 3−x}GaTe{sub 2} series leading to ferromagnetic ordering. - Highlights: • A series of Ni{sub 3−x}Fe{sub x}GaTe{sub 2} compounds were synthesized. • They adopt the NiAs/Ni{sub 2}In type of structure with ordered iron distribution. • The distribution of iron was studied using {sup 57}Fe Mössbauer spectroscopy. • An increase in iron content leads to the strong ferromagnetic coupling.« less

  2. 10.3%-efficient submicron-thick Cu(In,Ga)Se2 solar cells with absorber fabricated by sputtering In2Se3, CuGaSe2 and Cu2Se targets

    NASA Astrophysics Data System (ADS)

    Peng, Xiao; Zhao, Ming; Zhuang, Daming; Sun, Rujun; Zhang, Leng; Wei, Yaowei; Lv, Xunyan; Wu, Yixuan; Ren, Guoan

    2018-06-01

    We reported a new method to fabricate submicron-thick CIGS with smooth surface by sputtering In2Se3, CuGaSe2 and Cu2Se targets with post-selenization. The influence of gallium content on the properties of CIGS thin film was evaluated by the crystallinity and the cells performance. The most suitable value of Ga content in our submicron-thick CIGS is 0.32 and cells based on it demonstrated the highest efficiency of 10.3%.

  3. Characterization of manganese?gallium mixed oxide powders

    NASA Astrophysics Data System (ADS)

    Sánchez Escribano, Vicente; Fernández López, Enrique; Sánchez Huidobro, Paula; Panizza, Marta; Resini, Carlo; Gallardo-Amores, José M.; Busca, Guido

    2003-11-01

    MnGa mixed oxides have been prepared by coprecipitation of the corresponding oxo-hydroxides as powders and have been characterized in relation to their structural and optical properties. The materials have been characterized by XRD, TG-DTA, skeletal IR and UV-visible-NIR spectroscopies. Large solubility of Mn in the diaspore type α-GaOOH oxo-hydroxide has been found. The spinel related structures of hausmannite Mn 3O 4 and of β-gallia present large reciprocal solubilities at least in a metastable form. At high temperature also bixbyite-type α-Mn 2O 3 solid solutions containing up to 20% at. Ga have been observed.

  4. Cathodoluminescence Studies of the Inhomogeneities in Sn-doped Ga2O3 Nanowires

    DTIC Science & Technology

    2009-01-01

    Cathodoluminescence Studies of the Inhomogeneities in Sn-doped Ga2O3 Nanowires S. I. Maximenko, L. Mazeina, Y. N. Picard, J. A. Freitas, Jr., V. M...color imaging and spectroscopy were employed to study the properties of Ga2O3 nanowires grown with different Sn/Ga ratios. The structures grown under...green to red emission correlates with a phase transition of β- Ga2O3 to polycrystalline SnO2. The origin of the green emission band is discussed based

  5. Valence and conduction band offsets of β-Ga2O3/AlN heterojunction

    NASA Astrophysics Data System (ADS)

    Sun, Haiding; Torres Castanedo, C. G.; Liu, Kaikai; Li, Kuang-Hui; Guo, Wenzhe; Lin, Ronghui; Liu, Xinwei; Li, Jingtao; Li, Xiaohang

    2017-10-01

    Both β-Ga2O3 and wurtzite AlN have wide bandgaps of 4.5-4.9 and 6.1 eV, respectively. We calculated the in-plane lattice mismatch between the (-201) plane of β-Ga2O3 and the (0002) plane of AlN, which was found to be 2.4%. This is the smallest mismatch between β-Ga2O3 and binary III-nitrides which is beneficial for the formation of a high quality β-Ga2O3/AlN heterojunction. However, the valence and conduction band offsets (VBO and CBO) at the β-Ga2O3/AlN heterojunction have not yet been identified. In this study, a very thin (less than 2 nm) β-Ga2O3 layer was deposited on an AlN/sapphire template to form the heterojunction by pulsed laser deposition. High-resolution X-ray photoelectron spectroscopy revealed the core-level (CL) binding energies of Ga 3d and Al 2p with respect to the valence band maximum in individual β-Ga2O3 and AlN layers, respectively. The separation between Ga 3d and Al 2p CLs at the β-Ga2O3/AlN interface was also measured. Eventually, the VBO was found to be -0.55 ± 0.05 eV. Consequently, a staggered-gap (type II) heterojunction with a CBO of -1.75 ± 0.05 eV was determined. The identification of the band alignment of the β-Ga2O3/AlN heterojunction could facilitate the design of optical and electronic devices based on these and related alloys.

  6. Effect of annealing on morphology and photoluminescence of beta-Ga2O3 nanostructures.

    PubMed

    Zhang, Shiying; Zhuang, Huizhao; Xue, Chengshan; Li, Baoli

    2008-07-01

    A novel method was applied to prepare one-dimensional beta-Ga2O3 nanostructure films. In this method, beta-Ga2O3 nanostructures have been successfully synthesized on Si(111) substrates through annealing sputtered Ga22O3/Mo films for differernt time under flowing ammonia. The as-synthesized beta-Ga2O3 nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) spectrum. The results show that the formed nanostructures are single-crystalline Ga2O3 with monoclinic structure. The annealing time of the samples has an evident influence on the morphology and optical property of the nanostructured beta-Ga2O3 synthesized. The representative photoluminescence spectrum at room temperature exhibits a strong and broad emission band centered at 411.5 nm and a relatively weak emission peak located at 437.6 nm. The growth mechanism of the beta-Ga2O3 nanostructured materials is also discussed briefly.

  7. Simultaneous growth of pure hyperbranched Zn3As2 structures and long Ga2O3 nanowires.

    PubMed

    Li, Jianye; Wang, Lung-Shen; Buchholz, D Bruce; Chang, Robert P H

    2009-05-01

    Through a facile and highly repeatable chemical vapor method, pure three-dimensional hyperbranched Zn(3)As(2) structures and ultralong Ga(2)O(3) nanowires were simultaneously grown with controllable locations in the same experiment. The hyperbranched Zn(3)As(2) consists of cone-shaped submicro-/nanowires and has a single-crystalline tetragonal structure. This is the first report of nano Zn(3)As(2) and hyperbranched Zn(3)As(2) structures. The as-grown Ga(2)O(3) nanowires are monoclinic single crystals. A vapor-solid-solid mechanism is suggested for the growth of the Ga(2)O(3) nanowires, and a vapor-solid mechanism, for the Zn(3)As(2) structures.

  8. A power device material of corundum-structured α-Ga2O3 fabricated by MIST EPITAXY® technique

    NASA Astrophysics Data System (ADS)

    Kaneko, Kentaro; Fujita, Shizuo; Hitora, Toshimi

    2018-02-01

    Corundum-structured oxides have been attracting much attention as next-generation power device materials. A corundum-structured α-Ga2O3 successfully demonstrated power device operations of Schottky barrier diodes (SBDs) with the lowest on-resistance of 0.1 mΩ cm2. The SBDs as a mounting device of TO220 also showed low switching-loss properties with a capacitance of 130 pF. Moreover, the thermal resistance was 13.9 °C/W, which is comparable to that of the SiC TO220 device (12.5 °C/W). On the other hand, corundum-structured α-(Rh,Ga)2O3 showed p-type conductivity, which was confirmed by Hall effect measurements. The Hall coefficient, carrier density, and mobility were 8.22 cm3/C, 7.6 × 1017/cm3, and 1.0 cm2 V-1 s-1, respectively. These values were acceptable for the p-type layer of pn diodes based on α-Ga2O3.

  9. Rare-earth gate oxides for GaAs MOSFET application

    NASA Astrophysics Data System (ADS)

    Kwon, Kwang-Ho; Yang, Jun-Kyu; Park, Hyung-Ho; Kim, Jongdae; Roh, Tae Moon

    2006-08-01

    Rare-earth oxide films for gate dielectric on n-GaAs have been investigated. The oxide films were e-beam evaporated on S-passivated GaAs, considering interfacial chemical bonding state and energy band structure. Rare-earth oxides such as Gd 2O 3, (Gd xLa 1- x) 2O 3, and Gd-silicate were employed due to high resistivity and no chemical reaction with GaAs. Structural and bonding properties were characterized by X-ray photoemission, absorption, and diffraction. The electrical characteristics of metal-oxide-semiconductor (MOS) diodes were correlated with material properties and energy band structures to guarantee the feasibility for MOS field effect transistor (FET) application. Gd 2O 3 films were grown epitaxially on S-passivated GaAs (0 0 1) at 400 °C. The passivation induced a lowering of crystallization temperature with an epitaxial relationship of Gd 2O 3 (4 4 0) and GaAs (0 0 1). A better lattice matching relation between Gd 2O 3 and GaAs substrate was accomplished by the substitution of Gd with La, which has larger ionic radius. The in-plane relationship of (Gd xLa 1- x) 2O 3 (4 4 0) with GaAs (0 0 1) was found and the epitaxial films showed an improved crystalline quality. Amorphous Gd-silicate film was synthesized by the incorporation of SiO 2 into Gd 2O 3. These amorphous Gd-silicate films excluded defect traps or current flow path due to grain boundaries and showed a relatively larger energy band gap dependent on the contents of SiO 2. Energy band parameters such as Δ EC, Δ EV, and Eg were effectively controlled by the film composition.

  10. Effect of Gallium Substitution on Lithium-Ion Conductivity and Phase Evolution in Sputtered Li7-3 xGa xLa3Zr2O12 Thin Films.

    PubMed

    Rawlence, M; Filippin, A N; Wäckerlin, A; Lin, T-Y; Cuervo-Reyes, E; Remhof, A; Battaglia, C; Rupp, J L M; Buecheler, S

    2018-04-25

    Replacing the liquid electrolyte in conventional lithium-ion batteries with thin-film solid-state lithium-ion conductors is a promising approach for increasing energy density, lifetime, and safety. In particular, Li 7 La 3 Zr 2 O 12 is appealing due to its high lithium-ion conductivity and wide electrochemical stability window. Further insights into thin-film processing of this material are required for its successful integration into solid-state batteries. In this work, we investigate the phase evolution of Li 7-3 x Ga x La 3 Zr 2 O 12 in thin films with various amounts of Li and Ga for stabilizing the cubic phase. Through this work, we gain valuable insights into the crystallization processes unique to thin films and are able to form dense Li 7-3 x Ga x La 3 Zr 2 O 12 layers stabilized in the cubic phase with high in-plane lithium-ion conductivities of up to 1.6 × 10 -5 S cm -1 at 30 °C. We also note the formation of cubic Li 7 La 3 Zr 2 O 12 at the relatively low temperature of 500 °C.

  11. Gallium(III)-Containing, Sandwich-Type Heteropolytungstates: Synthesis, Solution Characterization, and Hydrolytic Studies toward Phosphoester and Phosphoanhydride Bond Cleavage.

    PubMed

    Kandasamy, Balamurugan; Vanhaecht, Stef; Nkala, Fiona Marylyn; Beelen, Tessa; Bassil, Bassem S; Parac-Vogt, Tatjana N; Kortz, Ulrich

    2016-09-19

    The gallium(III)-containing heteropolytungstates [Ga4(H2O)10(β-XW9O33)2](6-) (X = As(III), 1; Sb(III), 2) were synthesized in aqueous acidic medium by reaction of Ga(3+) ions with the trilacunary, lone-pair-containing [XW9O33](9-). Polyanions 1 and 2 are isostructural and crystallized as the hydrated sodium salts Na6[Ga4(H2O)10(β-AsW9O33)2]·28H2O (Na-1) and Na6[Ga4(H2O)10(β-SbW9O33)2]·30H2O (Na-2) in the monoclinic space group P21/c, with unit cell parameters a = 16.0218(12) Å, b = 15.2044(10) Å, c = 20.0821(12) Å, and β = 95.82(0)°, as well as a = 16.0912(5) Å, b = 15.2178(5) Å, c = 20.1047(5) Å, and β = 96.2(0)°, respectively. The corresponding tellurium(IV) derivative [Ga4(H2O)10(β-TeW9O33)2](4-) (3) was also prepared, by direct reaction of sodium tungstate, tellurium(IV) oxide, and gallium nitrate. Polyanion 3 crystallized as the mixed rubidium/sodium salt Rb2Na2[Ga4(H2O)10(β-TeW9O33)2]·28H2O (RbNa-3) in the triclinic space group P1̅ with unit cell parameters a = 12.5629(15) Å, b = 13.2208(18) Å, c = 15.474(2) Å, α = 80.52(1)°, β = 84.37(1)°, and γ = 65.83(1)°. All polyanions 1-3 were characterized in the solid state by single-crystal XRD, FT-IR, TGA, and elemental analysis, and polyanion 2 was also characterized in solution by (183)W NMR and UV-vis spectroscopy. Polyanion 2 was used as a homogeneous catalyst toward adenosine triphosphate (ATP) and the DNA model substrate 4-nitrophenylphosphate, monitored by (1)H and (31)P NMR spectroscopy. The encapsulated gallium(III) centers in 2 promote the Lewis acidic synergistic activation of the hydrolysis of ATP and DNA model substrates at a higher rate in near-physiological conditions. A strong interaction of 2 with the P-O bond of ATP was evidenced by changes in chemical shift values and line broadening of the (31)P nucleus in ATP upon addition of the polyanion.

  12. Degradation of 2DEG transport properties in GaN-capped AlGaN/GaN heterostructures at 600 °C in oxidizing and inert environments

    NASA Astrophysics Data System (ADS)

    Hou, Minmin; Jain, Sambhav R.; So, Hongyun; Heuser, Thomas A.; Xu, Xiaoqing; Suria, Ateeq J.; Senesky, Debbie G.

    2017-11-01

    In this paper, the electron mobility and sheet density of the two-dimensional electron gas (2DEG) in both air and argon environments at 600 °C were measured intermittently over a 5 h duration using unpassivated and Al2O3-passivated AlGaN/GaN (with 3 nm GaN cap) van der Pauw test structures. The unpassivated AlGaN/GaN heterostructures annealed in air showed the smallest decrease (˜8%) in 2DEG electron mobility while Al2O3-passivated samples annealed in argon displayed the largest drop (˜70%) based on the Hall measurements. Photoluminescence and atomic force microscopy showed that minimal strain relaxation and surface roughness changes have occurred in the unpassivated samples annealed in air, while those with Al2O3 passivation annealed in argon showed significant microstructural degradations. This suggests that cracks developed in the samples annealed in air were healed by oxidation reactions. To further confirm this, Auger electron spectroscopy was conducted on the unpassivated samples after the anneal in air and results showed that extra surface oxides have been generated, which could act as a dislocation pinning layer to suppress the strain relaxation in AlGaN. On the other hand, similar 2DEG sheet densities were observed in passivated and unpassivated AlGaN/GaN samples at the end of the 5-h anneal in air or argon due to the combined impact of strain relaxation and changes in the ionized electronic states. The results support the use of unpassivated GaN-capped AlGaN/GaN heterostructures as the material platform for high-temperature electronics and sensors used in oxidizing environmental conditions.

  13. XPS Study of Oxide/GaAs and SiO2/Si Interfaces

    NASA Technical Reports Server (NTRS)

    Grunthaner, F. J.; Grunthaner, P. J.; Vasquez, R. P.; Lewis, B. F.; Maserjian, J.; Madhukar, A.

    1982-01-01

    Concepts developed in study of SiO2/Si interface applied to analysis of native oxide/GaAs interface. High-resolution X-ray photoelectron spectroscopy (XPS) has been combined with precise chemical-profiling technique and resolution-enhancement methods to study stoichiometry of transitional layer. Results are presented in report now available.

  14. Ga2O3 Schottky barrier and heterojunction diodes for power electronics applications

    NASA Astrophysics Data System (ADS)

    Tadjer, Marko J.; Mahadik, Nadeemullah A.; Freitas, Jaime A.; Glaser, Evan R.; Koehler, Andrew D.; Luna, Lunet E.; Feigelson, Boris N.; Hobart, Karl D.; Kub, Fritz J.; Kuramata, A.

    2018-02-01

    We present novel approaches for the development of Ga2O3 Schottky barrier and heterojunction diodes. Samples of β- Ga2O3 were first annealed in N2 and O2 to demonstrate the effect of annealing on the carrier concentration. Cathodoluminescence and electron spin resonance measurements were also performed. Schottky barrier diodes on asgrown and O2-annealed epitaxial Ga2O3 films were fabricated and breakdown voltages were compared. Lower reverse current and a breakdown voltage of about 857 V were measured on the O2-annealed device. Finally, we report preliminary results from the development of anisotype heterojunctions between n-type Ga2O3 with a sputtered NiO layer. Rectifying current-voltage characteristics were obtained when the NiO was deposited both at room temperature and at 450 °C.

  15. The possibly important role played by Ga{sub 2}O{sub 3} during the activation of GaN photocathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Xiaoqian, E-mail: ise-fuxq@ujn.edu.cn, E-mail: 214808748@qq.com; Institute of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing 210094; Wang, Honggang

    2015-08-14

    Three different chemical solutions are used to remove the possible contamination on GaN surface, while Ga{sub 2}O{sub 3} is still found at the surface. After thermal annealing at 710 °C in the ultrahigh vacuum (UHV) chamber and activated with Cs/O, all the GaN samples are successfully activated to the effective negative electron affinity (NEA) photocathodes. Among all samples, the GaN sample with the highest content of Ga{sub 2}O{sub 3} after chemical cleaning obtains the highest quantum efficiency. By analyzing the property of Ga{sub 2}O{sub 3}, the surface processing results, and electron affinity variations during Cs and Cs/O{sub 2} deposition on GaNmore » of other groups, it is suggested that before the adsorption of Cs, Ga{sub 2}O{sub 3} is not completely removed from GaN surface in our samples, which will combine with Cs and lead to a large decrease in electron affinity. Furthermore, the effective NEA is formed for GaN photocathode, along with the surface downward band bending. Based on this assumption, a new dipole model Ga{sub 2}O{sub 3}-Cs is suggested, and the experimental effects are explained and discussed.« less

  16. Interfacial reactions of nano-structured Cu-doped indium oxide/indium tin oxide ohmic contacts to p-GaN.

    PubMed

    Yoon, Young Joon; Chae, S W; Kim, B K; Park, Min Joo; Kwak, Joon Seop

    2010-05-01

    Interfacial microstructure and elemental diffusion of Cu-doped indium oxide (CIO)/indium tin oxide (ITO) ohmic contacts to p-type GaN for light-emitting diodes (LEDs) were investigated using cross-sectional transmission electron microscopy (XTEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction. The CIO/ITO contacts gave specific contact resistances of approximately 10(-4) omegacm2 and transmittance greater than 95% at a wavelength of 405 nm when annealed at 630 degrees C for 1 min in air. After annealing at 630 degrees C, multi-component oxides composed of Ga2O3-In2O3, Ga2O3-CuO, and In2O3-CuO formed at the interface between p-GaN and ITO. Formation of multi-component oxides reduced the barrier height between p-GaN and ITO due to their higher work functions than that of ITO, and caused Ga in the GaN to diffuse into the CIO/ITO layer, followed by generation of acceptor-like Ga vacancies near the GaN surface, which lowered contact resistivity of the CIO/ITO contacts to p-GaN after the annealing.

  17. Group 13 ligand supported heavy-metal complexes: first structural evidence for gallium-lead and gallium-mercury bonds.

    PubMed

    Prabusankar, Ganesan; Gemel, Christian; Winter, Manuela; Seidel, Rüdiger W; Fischer, Roland A

    2010-05-25

    Heavy-metal complexes of lead and mercury stabilized by Group 13 ligands were derived from the oxidative addition of Ga(ddp) (ddp=HC(CMeNC(6)H(3)-2,6-iPr(2))(2), 2-diisopropylphenylamino-4-diisopropyl phenylimino-2-pentene) with corresponding metal precursors. The reaction of Me(3)PbCl and Ga(ddp) afforded compound [{(ddp)Ga(Cl)}PbMe(3)] (1) composed of Ga-Pb(IV) bonds. In addition, the monomeric plumbylene-type compound [{(ddp)Ga(OSO(2)CF(3))}(2)Pb(thf)] (2a) with an unsupported Ga-Pb(II)-Ga linkage was obtained by the reaction of [Pb(OSO(2)CF(3))(3)] with Ga(ddp) (2 equiv). Compound 2a falls under the rare example of a discrete plumbylene-type compound supported by a nonclassical ligand. Interesting structural changes were observed when [Pb(OSO(2)CF(3))(3)]2.H(2)O was treated with Ga(ddp) in a 1:2 ratio to yield [{(ddp)Ga(mu-OSO(2)CF(3))}(2)(OH(2))Pb] (2b) at below -10 degrees C. Compound 2b consists of a bent Ga-Pb-Ga backbone with a bridging triflate group between the Ga-Pb bond and a weakly interacting water molecule at the gallium center. Similarly, the reaction of mercury thiolate Hg(SC(6)F(5)) with Ga(ddp) (2 equiv) produced the bimetallic homoleptic compounds anti-[{(ddp)Ga(SC(6)F(5))}(2)Hg] (3a) and gauche-[{(ddp)Ga(SC(6)F(5))}(2)Hg] (3b), respectively, with a linear Ga-Hg-Ga linkage. Compounds 1-3 were structurally characterized and these are the first examples of compounds comprised of Ga-Pb(II), Ga-Pb(IV), and Ga-Hg bonds.

  18. Czochralski growth of 2 in. Ca3Ta(Ga,Al)3Si2O14 single crystals for piezoelectric applications

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Akira; Shoji, Yasuhiro; Ohashi, Yuji; Yokota, Yuui; Chani, Valery I.; Kitahara, Masanori; Kudo, Tetsuo; Kamada, Kei; Kurosawa, Shunsuke; Medvedev, Andrey; Kochurikhin, Vladimir

    2016-10-01

    Growth of 2-in. diameter Al-substituted Ca3TaGa3Si2O14 crystals by Czochralski method is reported. The crystals were grown from the melt of Ca3TaGa1.5Al1.5Si2O14 composition and had langasite structure. No inclusions of secondary phases were detected in these crystals. The Ca3Ta(Ga,Al)3Si2O14 mixed crystals produced using non-substituted Ca3TaGa3Si2O14 seeds were defective. They had cracks and/or poly-crystalline structure. However, those grown on the seed of approximately Ca3TaGa1.5Al1.5Si2O14 composition were defect-free. Phase diagram of the Ca3TaGa3Si2O14-Ca3TaAl3Si2O14 pseudo-binary system and segregation phenomenon are discussed in some details. Homogeneity of the crystals was evaluated by measuring 2D-mapping of leaky surface acoustic wave (LSAW) velocities for Y-cut Ca3TaGa1.5Al1.5Si2O14 substrate. Although some inhomogeneities were observed due to slight variations in chemical composition, the crystal had acceptable homogeneity for applications in acoustic wave devices exhibiting the LSAW velocity variation within ±0.048%.

  19. Hydrogen Adsorption on Ga2O3 Surface: A Combined Experimental and Computational Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Yun-xiang; Mei, Donghai; Liu, Chang-jun

    In the present work, hydrogen adsorption on the Ga2O3 surfaces was investigated using Fourier transform infrared spectroscopy (FTIR) measurements and periodic density functional theory (DFT) calculations. Both the FTIR and DFT studies suggest that H2 dissociates on the Ga2O3 surfaces, producing OH and GaH species. The FTIR bands at 3730, 3700, 3630 and 3600 cm-1 are attributed to the vibration of the OH species whereas those at 2070 and 1990 cm-1 to the GaH species. The structures of the species detected in experiments are established through a comparison with the DFT calculated stretching frequencies. The O atom of the experimentallymore » detected OH species is believed to originate from the surface O3c atom. On the other hand, the H atom that binds the coordinately unsaturated Ga atom results in the experimentally detected GaH species. Dissociation of H2 on the perfect Ga2O3 surface, with the formation of both OH and GaH species, is endothermic and has an energy barrier of 0.90 eV. In contrast, H2 dissociation on the defective Ga2O3 surface with oxygen vacancies, which mainly produces GaH species, is exothermic, with an energy barrier of 0.61 eV. Accordingly, presence of the oxygen vacancies promotes H2 dissociation and production of GaH species on the Ga2O3 surfaces. Higher temperatures are expected to favor oxygen vacancy creation on the Ga2O3 surfaces, and thereby benefit the production of GaH species. This analysis is consistent with the FTIR results that the bands assigned to GaH species become stronger at higher temperatures. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less

  20. Highly-Bioreactive Silica-Based Mesoporous Bioactive Glasses Enriched with Gallium(III).

    PubMed

    Sanchez-Salcedo, Sandra; Malavasi, Gianluca; Salinas, Antonio J; Lusvardi, Gigliola; Rigamonti, Luca; Menabue, Ledi; Vallet-Regi, Maria

    2018-03-02

    Beneficial effects in bone cell growth and antibacterial action are currently attributed to Ga 3+ ions. Thus, they can be used to upgrade mesoporous bioactive glasses (MBGs), investigated for tissue engineering, whenever they released therapeutic amounts of gallium ions to the surrounding medium. Three gallium-enriched MBGs with composition (in mol %) x SiO₂- y CaO- z P₂O₅-5Ga₂O₃, being x = 70, y = 15, z = 10 for Ga_1 ; x = 80, y = 12, z = 3 for Ga_2 ; and x = 80, y = 15, z = 0 for Ga_3 , were investigated and compared with the gallium-free 80SiO₂-15CaO-5P₂O₅ MBG ( B ). 29 Si and 31 P MAS NMR analyses indicated that Ga 3+ acts as network modifier in the glass regions with higher polymerization degree and as network former in the zones with high concentration of classical modifiers (Ca 2+ ions). Ga_1 and Ga_2 exhibited a quick in vitro bioactive response because they were coated by an apatite-like layer after 1 and 3 days in simulated body fluid. Although we have not conducted biological tests in this paper (cells or bacteria), Ga_1 released high but non-cytotoxic amounts of Ga 3+ ions in Todd Hewitt Broth culture medium that were 140 times higher than the IC90 of Pseudomonas aeruginosa bacteria, demonstrating its potential for tissue engineering applications.

  1. Gallium hole traps in irradiated KTiOPO{sub 4}:Ga crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grachev, V.; Meyer, M.; Malovichko, G.

    2014-12-07

    Nominally pure and gallium doped single crystals of potassium titanyl phosphate (KTiOPO{sub 4}) have been studied by Electron Paramagnetic Resonance at low temperatures before and after irradiation. Irradiation with 20 MeV electrons performed at room temperature and liquid nitrogen temperature caused an appearance of electrons and holes. Gallium impurities act as hole traps in KTiOPO{sub 4} creating Ga{sup 4+} centers. Two different Ga{sup 4+} centers were observed, Ga1 and Ga2. The Ga1 centers are dominant in Ga-doped samples. For the Ga1 center, a superhyperfine structure with one nucleus with nuclear spin ½ was registered and attributed to the interaction of galliummore » electrons with a phosphorus nucleus or proton in its surrounding. In both Ga1 and Ga2 centers, Ga{sup 4+} ions substitute for Ti{sup 4+} ions, but with a preference to one of two electrically distinct crystallographic positions (site selective substitution). The Ga doping eliminates one of the shortcomings of KTP crystals—ionic conductivity of bulk crystals. However, this does not improve significantly the resistance of the crystals to electron and γ-radiation.« less

  2. Nature of electron trap states under inversion at In0.53Ga0.47As/Al2O3 interfaces

    NASA Astrophysics Data System (ADS)

    Colleoni, Davide; Pourtois, Geoffrey; Pasquarello, Alfredo

    2017-03-01

    In and Ga impurities substitutional to Al in the oxide layer resulting from diffusion out of the substrate are identified as candidates for electron traps under inversion at In0.53Ga0.47As/Al2O3 interfaces. Through density-functional calculations, these defects are found to be thermodynamically stable in amorphous Al2O3 and to be able to capture two electrons in a dangling bond upon breaking bonds with neighboring O atoms. Through a band alignment based on hybrid functional calculations, it is inferred that the corresponding defect levels lie at ˜1 eV above the conduction band minimum of In0.53Ga0.47As, in agreement with measured defect densities. These results support the technological importance of avoiding cation diffusion into the oxide layer.

  3. Synthesis of In2O3 nanowire-decorated Ga2O3 nanobelt heterostructures and their electrical and field-emission properties.

    PubMed

    Lin, Jing; Huang, Yang; Bando, Yoshio; Tang, Chengchun; Li, Chun; Golberg, Dmitri

    2010-04-27

    We report on the synthesis of In2O3 nanowire-decorated Ga2O3 nanobelt heterostructures via a simple catalyst-free method. A typical heterostructure, where an In2O3 nanowire forms a sort of a "dorsal fin" on the Ga2O3 nanobelt, exhibits the T-shaped cross-section. The structure, electrical porperties, and field-emission properties of this material are systematically investigated. The heterostructures possess a typical n-type semiconducting behavior with enhanced conductivity. Field-emission measurements show that they have a low turn-on field (approximately 1.31 V/microm) and a high field-enhancement factor (over 4000). The excellent field-emission characteristics are attributed to their special geometry and good electrical properties. The present In2O3-decorated Ga2O3 heterostructures are envisaged to be decent field-emitters useful in advanced electronic and optoelectronic nanodevices.

  4. Trans-Metal-Trapping Meets Frustrated-Lewis-Pair Chemistry: Ga(CH2SiMe3)3-Induced C–H Functionalizations

    PubMed Central

    2017-01-01

    Merging two topical themes in main-group chemistry, namely, cooperative bimetallics and frustrated-Lewis-pair (FLP) activity, this Forum Article focuses on the cooperativity-induced outcomes observed when the tris(alkyl)gallium compound GaR3 (R = CH2SiMe3) is paired with the lithium amide LiTMP (TMP = 2,2,6,6-tetramethylpiperidide) or the sterically hindered N-heterocyclic carbene (NHC) 1,3-bis(tert-butyl)imidazol-2-ylidene (ItBu). When some previously published work are drawn together with new results, unique tandem reactivities are presented that are driven by the steric mismatch between the individual reagents of these multicomponent reagents. Thus, the LiTMP/GaR3 combination, which on its own fails to form a cocomplex, functions as a highly regioselective base (LiTMP)/trap (GaR3) partnership for the metalation of N-heterocycles such as diazines, 1,3-benzoazoles, and 2-picolines in a trans-metal-trapping (TMT) process that stabilizes the emerging sensitive carbanions. Taking advantage of related steric incompatibility, a novel monometallic FLP system pairing GaR3 with ItBu has been developed for the activation of carbonyl compounds (via C=O insertion) and other molecules with acidic hydrogen atoms such as phenol and phenylacetylene. Shedding new light on how these non-cocomplexing partnerships operate and showcasing the potential of gallium reagents to engage in metalation reactions or FLP activations, areas where the use of this group 13 metal is scant, this Forum Article aims to stimulate more interest and activity toward the advancement of organogallium chemistry. PMID:28485929

  5. Effect of photocatalytic oxidation technology on GaN CMP

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Wang, Tongqing; Pan, Guoshun; Lu, Xinchun

    2016-01-01

    GaN is so hard and so chemically inert that it is difficult to obtain a high material removal rate (MRR) in the chemical mechanical polishing (CMP) process. This paper discusses the application of photocatalytic oxidation technology in GaN planarization. Three N-type semiconductor particles (TiO2, SnO2, and Fe2O3) are used as catalysts and added to the H2O2-SiO2-based slurry. By optical excitation, highly reactive photoinduced holes are produced on the surface of the particles, which can oxidize OH- and H2O absorbed on the surface of the catalysts; therefore, more OH* will be generated. As a result, GaN MRRs in an H2O2-SiO2-based polishing system combined with catalysts are improved significantly, especially when using TiO2, the MRR of which is 122 nm/h. The X-ray photoelectron spectroscopy (XPS) analysis shows the variation trend of chemical composition on the GaN surface after polishing, revealing the planarization process. Besides, the effect of pH on photocatalytic oxidation combined with TiO2 is analyzed deeply. Furthermore, the physical model of GaN CMP combined with photocatalytic oxidation technology is proposed to describe the removal mechanism of GaN.

  6. Serum and tissue concentrations of gallium after oral administration of gallium nitrate and gallium maltolate to neonatal calves.

    PubMed

    Monk, Caroline S; Sweeney, Raymond W; Bernstein, Lawrence R; Fecteau, Marie-Eve

    2016-02-01

    To determine serum and tissue concentrations of gallium (Ga) after oral administration of gallium nitrate (GaN) and gallium maltolate (GaM) to neonatal calves. 8 healthy neonatal calves. Calves were assigned to 1 of 2 groups (4 calves/group). Gallium (50 mg/kg) was administered as GaN or GaM (equivalent to 13.15 mg of Ga/kg for GaN and 7.85 mg of Ga/kg for GaM) by oral gavage once daily for 5 days. Blood samples were collected 0, 0.25, 0.5, 1, 2, 4, 8, 12, and 24 hours after Ga administration on day 1; 4 and 24 hours after Ga administration on days 2, 3, and 4; and 4, 12, and 24 hours after Ga administration on day 5. On day 6, calves were euthanized and tissue samples were obtained. Serum and tissue Ga concentrations were measured by use of mass spectrometry. Data were adjusted for total Ga dose, and comparisons were made between the 2 groups. Calves receiving GaM had a significantly higher dose-adjusted area under the curve and dose-adjusted maximum serum Ga concentration than did calves receiving GaN. Despite receiving less Ga per dose, calves receiving GaM had tissue Ga concentrations similar to those for calves receiving GaN. In this study, calves receiving GaM had significantly higher Ga absorption than did calves receiving GaN. These findings suggested that GaM might be useful as a prophylactic agent against Mycobacterium avium subsp paratuberculosis infection in neonatal calves.

  7. Novel nitrogen/gallium precursor [Ga(bdma)H2] for MOVPE

    NASA Astrophysics Data System (ADS)

    Sterzer, E.; Beyer, A.; Nattermann, L.; Schorn, W.; Schlechter, K.; Pulz, S.; Sundermeyer, J.; Stolz, W.; Volz, K.

    2016-11-01

    Dilute nitrogen (N) containing III/V semiconductors are promising candidates for solar cell and laser applications. The N incorporation efficiency of 1,1-dimethylhydrazine (UMDHy) in metal organic vapor phase epitaxy (MOVPE), however, happens to be only in the one percentage range and below. This leads to an extremely high offer of UDMHy in the MOVPE reactor and, therefore, a drastic change in the growth conditions. Furthermore, the device efficiency of dilute nitride materials is currently hampered by carbon (C) incorporation, which is believed to be incorporated either jointly with the N from the dimethylamine radical of the UMDHy or from short hydrocarbon radicals originating from the decomposition of the other metal organics. Therefore, this work presents a novel N precursor N,N'-Bis(dimethylamino)acetamidinato-galliumdihydride [Ga(bdma)H2], which provides not only N but also gallium (Ga) during MOVPE. The direct N-Ga bond in this molecule might facilitate the N incorporation and hence increase the efficiency. For a systematic N incorporation study Ga(NAs)/GaAs heterostructures were grown by MOVPE. The N content was determined via high resolution X-ray diffraction and photoluminescence (PL) studies. Good structural quality and as grown room temperature PL were obtained. It will be also shown that the N incorporation efficiency in GaAs using [Ga(bdma)H2] is significantly higher than for growths using UDMHy under comparable conditions, making this class of molecules promising candidates for the growth of dilute nitride materials.

  8. Surface Preparation and Deposited Gate Oxides for Gallium Nitride Based Metal Oxide Semiconductor Devices

    PubMed Central

    Long, Rathnait D.; McIntyre, Paul C.

    2012-01-01

    The literature on polar Gallium Nitride (GaN) surfaces, surface treatments and gate dielectrics relevant to metal oxide semiconductor devices is reviewed. The significance of the GaN growth technique and growth parameters on the properties of GaN epilayers, the ability to modify GaN surface properties using in situ and ex situ processes and progress on the understanding and performance of GaN metal oxide semiconductor (MOS) devices are presented and discussed. Although a reasonably consistent picture is emerging from focused studies on issues covered in each of these topics, future research can achieve a better understanding of the critical oxide-semiconductor interface by probing the connections between these topics. The challenges in analyzing defect concentrations and energies in GaN MOS gate stacks are discussed. Promising gate dielectric deposition techniques such as atomic layer deposition, which is already accepted by the semiconductor industry for silicon CMOS device fabrication, coupled with more advanced physical and electrical characterization methods will likely accelerate the pace of learning required to develop future GaN-based MOS technology.

  9. Strategies for gallium removal after focused ion beam patterning of ferroelectric oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Schilling, A.; Adams, T.; Bowman, R. M.; Gregg, J. M.

    2007-01-01

    As part of a study into the properties of ferroelectric single crystals at nanoscale dimensions, the effects that focused ion beam (FIB) processing can have, in terms of structural damage and ion implantation, on perovskite oxide materials has been examined, and a post-processing procedure developed to remove such effects. Single crystal material of the perovskite ferroelectric barium titanate (BaTiO3) has been patterned into thin film lamellae structures using a FIB microscope. Previous work had shown that FIB patterning induced gallium impregnation and associated creation of amorphous layers in a surface region of the single crystal material some 20 nm thick, but that both recrystallization and expulsion of gallium could be achieved through thermal annealing in air. Here we confirm this observation, but find that thermally induced gallium expulsion is associated with the formation of gallium-rich platelets on the surface of the annealed material. These platelets are thought to be gallium oxide. Etching using nitric and hydrochloric acids had no effect on the gallium-rich platelets. Effective platelet removal involved thermal annealing at 700 °C for 1 h in a vacuum followed by 1 h in oxygen, and then a post-annealing low-power plasma clean in an Ar/O atmosphere. Similar processing is likely to be necessary for the full recovery of post FIB-milled nanostructures in oxide ceramic systems in general.

  10. Growth of langasite via Bridgman technique along [ 0 0 0 1], [ 2 1¯ 1¯ 0] and [ 0 1 1¯ 1] for piezoelectric applications

    NASA Astrophysics Data System (ADS)

    Uda, Satoshi; Inaba, Hitoshi; Harada, Jiro; Hoshikawa, Keigo

    2004-10-01

    2-inch langasite (La 3Ga 5SiO 14) single crystals were grown for the first time via a vertical Bridgman method, assisted by the accelerated crucible rotation technique (ACRT) along [ 0 0 0 1] ( Z-axis), [ 2 1¯ 1¯ 0] ( X-axis) and [ 0 1 1¯ 1] (54°-rotated Y-axis) for piezoelectric applications. Because of the possible liquid immiscibility, incongruency and segregation, secondary phases other than langasite are formed during growth. The mode of occurrence of these phases was closely related to the interface instability that was specific to the growth direction. The formation of inclusions consisting of lanthanum gallate (LaGaO 3), aligned parallel to ( 0 1 1¯ 0), was associated with the constitutional supercooling. The residual products during the terminal transient were the mixture of gallium oxide (Ga 2O 3) and lanthanum gallate (LaGaO 3) or the mixture of gallium oxide and lanthanum silicate (La 2Si 2O 7) reflecting the position of the initial melt, relative to the tie line connecting the langasite solid solution with gallium oxide in the system of La 2O 3-Ga 2O 3-SiO 2. The homogeneity of the grown crystal was evaluated by the distribution of SAW velocities of the devices fabricated on the ( 0 1 1¯ 0) wafer, as well as by the uniformity of d-spacing of 0 5 5¯ 5.

  11. One step growth of GaN/SiO2 core/shell nanowire in vapor-liquid-solid route by chemical vapor deposition technique

    NASA Astrophysics Data System (ADS)

    Barick, B. K.; Yadav, Shivesh; Dhar, S.

    2017-11-01

    GaN/SiO2 core/shell nanowires are grown by cobalt phthalocyanine catalyst assisted vapor-liquid-solid route, in which Si wafer coated with a mixture of gallium and indium is used as the source for Ga and Si and ammonia is used as the precursor for nitrogen and hydrogen. Gallium in the presence of indium and hydrogen, which results from the dissociation of ammonia, forms Si-Ga-In alloy at the growth temperature ∼910 °C. This alloy acts as the source of Si, Ga and In. A detailed study using a variety of characterization tools reveals that these wires, which are several tens of micron long, has a diameter distribution of the core ranging from 20 to 50 nm, while the thickness of the amorphous SiO2 shell layer is about 10 nm. These wires grow along [ 1 0 1 bar 0 ] direction. It has also been observed that the average diameter of these wires decreases, while their density increases as the gallium proportion in the Ga-In mixture is increased.

  12. Effect of SrO Doping on LaGaO 3 Synthesis via Magnetron Sputtering

    DOE PAGES

    Highland, Matthew J.; Perret, Edith; Folkman, Chad M.; ...

    2016-10-28

    The high temperature growth behavior of epitaxial LaGaO 3 thin films with and without SrO is determined with real-time X-ray scattering. In this study, we find SrO alters the thin film growth mode of LaGaO 3, both when predeposited on a surface as well as when SrO and LaGaO 3 are codeposited. We also find that depositing a small amount of SrO on a LaGaO 3 surface induces significant structural rearrangement in the film. We describe mechanisms under which these transformations can occur. In conclusion, the strong effect of SrO on the microstructure of La 1–xSr xGaO 3 likely hasmore » wider implications for other ionically conducting oxide materials.« less

  13. Study of GaN nanowires converted from β-Ga2O3 and photoconduction in a single nanowire

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Kumar, Sudheer; Chauhan, Neha; Sakthi Kumar, D.; Kumar, Vikram; Singh, R.

    2017-08-01

    The formation of GaN nanowires from β-Ga2O3 nanowires and photoconduction in a fabricated single GaN nanowire device has been studied. Wurtzite phase GaN were formed from monoclinic β-Ga2O3 nanowires with or without catalyst particles at their tips. The formation of faceted nanostructures from catalyst droplets presented on a nanowire tip has been discussed. The nucleation of GaN phases in β-Ga2O3 nanowires and their subsequent growth due to interfacial strain energy has been examined using a high resolution transmission electron microscope. The high quality of the converted GaN nanowire is confirmed by fabricating single nanowire photoconducting devices which showed ultra high responsivity under ultra-violet illumination.

  14. Optical characterization of Tm(3+) doped Bi2O3-GeO2-Ga2O3 glasses in absence and presence of BaF2.

    PubMed

    Han, Kexuan; Zhang, Peng; Wang, Shunbin; Guo, Yanyan; Zhou, Dechun; Yu, Fengxia

    2016-08-10

    In this paper, Two new Bi2O3-GeO2-Ga2O3 glasses (one presence of BaF2) doped with 1mol% Tm2O3 were prepared by melt-quenching technique. Differential thermal analysis (DTA), the absorption, Raman, IR spectra and fluorescence spectra were measured. The Judd-Ofelt intensity parameters, emission cross section, absorption cross section, and gain coefficient of Tm(3+) ions were comparatively investigated. After the BaF2 introduced, the glass showed a better thermal stability, lower phonon energy and weaker OH(-) absorption coefficient, meanwhile, a larger ~1.8 μm emission cross section σem (7.56 × 10(-21) cm(2)) and a longer fluorescence lifetime τmea (2.25 ms) corresponding to the Tm(3+): (4)F3 → (3)H6 transition were obtained, which is due to the addition of fluoride in glass could reduce the quenching rate of hydroxyls and raise the cross-relaxation ((3)H6 + (3)H4 → (3)F4 + (3)F4) rate. Our results suggest that the Tm(3+) doped Bi2O3-GeO2-Ga2O3 glass with BaF2 might be potential to the application in efficient ~1.8 μm lasers system.

  15. Optical characterization of Tm3+ doped Bi2O3-GeO2-Ga2O3 glasses in absence and presence of BaF2

    PubMed Central

    Han, Kexuan; Zhang, Peng; Wang, Shunbin; Guo, Yanyan; Zhou, Dechun; Yu, Fengxia

    2016-01-01

    In this paper, Two new Bi2O3-GeO2-Ga2O3 glasses (one presence of BaF2) doped with 1mol% Tm2O3 were prepared by melt-quenching technique. Differential thermal analysis (DTA), the absorption, Raman, IR spectra and fluorescence spectra were measured. The Judd–Ofelt intensity parameters, emission cross section, absorption cross section, and gain coefficient of Tm3+ ions were comparatively investigated. After the BaF2 introduced, the glass showed a better thermal stability, lower phonon energy and weaker OH− absorption coefficient, meanwhile, a larger ~1.8 μm emission cross section σem (7.56 × 10−21 cm2) and a longer fluorescence lifetime τmea (2.25 ms) corresponding to the Tm3+: 4F3 → 3H6 transition were obtained, which is due to the addition of fluoride in glass could reduce the quenching rate of hydroxyls and raise the cross-relaxation (3H6 + 3H4 → 3F4 + 3F4) rate. Our results suggest that the Tm3+ doped Bi2O3-GeO2-Ga2O3 glass with BaF2 might be potential to the application in efficient ~1.8 μm lasers system. PMID:27506152

  16. Defect phase diagram for doping of Ga2O3

    NASA Astrophysics Data System (ADS)

    Lany, Stephan

    2018-04-01

    For the case of n-type doping of β-Ga2O3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association of dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO2) conditions. Considering further the stability constraints due to sublimation of molecular Ga2O, specific predictions of optimized pO2 and Si dopant concentrations are given. The incomplete passivation of dopant-defect complexes in β-Ga2O3 suggests a design rule for metastable doping above the solubility limit.

  17. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Konishi, Keita; Goto, Ken; Murakami, Hisashi; Kumagai, Yoshinao; Kuramata, Akito; Yamakoshi, Shigenobu; Higashiwaki, Masataka

    2017-03-01

    Ga2O3 field-plated Schottky barrier diodes (FP-SBDs) were fabricated on a Si-doped n--Ga2O3 drift layer grown by halide vapor phase epitaxy on a Sn-doped n+-Ga2O3 (001) substrate. The specific on-resistance of the Ga2O3 FP-SBD was estimated to be 5.1 mΩ.cm2. Successful field-plate engineering resulted in a high breakdown voltage of 1076 V. A larger-than-expected effective barrier height of 1.46 eV, which was extracted from the temperature-dependent current-voltage characteristics, could be caused by the effect of fluorine atoms delivered in a hydrofluoric acid solution process.

  18. HABIT CHANGES OF Y3Al5O12 AND Y3Ga5O12 GROWN FROM A PbO-PbF2 FLUX,

    DTIC Science & Technology

    Al2O3 or - Ga2O3 ratio in the melt. Y3Ga5O12 crystals have a pure (211) habit when grown from either a Y2O3- or PbO-rich melt. The crystals develop...small (110) faces when grown from a Ga2O3 - or PbF2-rich melt. Y3Al5O12 crystals have a pure (110) when grown from either a PbF2- or Al2O3-rich melt... Ga2O3 -rich melts. It is believed that the habit variations are caused by changes in either the surface diffusion or step propagation, due to Pb

  19. Multielectronic conduction in La1-xSrxGa1/2Mn1/2O3-δ as solid oxide fuel cell cathode

    NASA Astrophysics Data System (ADS)

    Iguchi, E.; Hashimoto, Y.; Kurumada, M.; Munakata, F.

    2003-08-01

    Four-probe dc conductivities, capacitances, and thermopower have been measured in the temperature range of 80-1123 K for La1-xSrxGa1/2Mn1/2O3-δ, which is a desirable cathode material for lanthanum-gallate electrolytes of solid oxide fuel cells. The dc conductivities in the specimens (0.1⩽x⩽0.3) are insensitive to x but the thermopower is very sensitive to x, although the x=0 specimen exhibits a somewhat different conduction behavior. At T<300 K, a relaxation process has shown in dielectric loss factor with the activation energy higher than that for dc conduction in every specimen. These results at T<300 K have been numerically analyzed within the framework of the multielectronic conduction consisting of the polaronic conduction of Mn 3d eg holes created by Sr doping, the band conduction of O 2p holes and the hopping conduction of Mn 3d eg electrons, where the O 2p holes and Mn 3d eg electrons are created by thermal excitation of electrons from O 2p bands to Mn 3d eg narrow bands. At T>500 K, the band conduction dominates the electronic transports. The ionic conduction due to O2- migration seems difficult to contribute directly to the dc conduction even at high temperature.

  20. Schottky x-ray detectors based on a bulk β-Ga2O3 substrate

    NASA Astrophysics Data System (ADS)

    Lu, Xing; Zhou, Leidang; Chen, Liang; Ouyang, Xiaoping; Liu, Bo; Xu, Jun; Tang, Huili

    2018-03-01

    β-Ga2O3 Schottky barrier diodes (SBDs) have been fabricated on a bulk (100) β-Ga2O3 substrate and tested as X-ray detectors in this study. The devices exhibited good rectification properties, such as a high rectification ratio and a close-to-unity ideality factor. A high photo-to-dark current ratio exceeding 800 was achieved for X-ray detection, which was mainly attributed to the low reverse leakage current in the β-Ga2O3 SBDs. Furthermore, transient response of the β-Ga2O3 X-ray detectors was investigated, and two different detection mechanisms, photovoltaic and photoconductive, were identified. The results imply the great potential of β-Ga2O3 based devices for X-ray detection.

  1. Properties of epitaxial BaTiO{sub 3} deposited on GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Contreras-Guerrero, R.; Droopad, R.; Veazey, J. P.

    2013-01-07

    Single crystal BaTiO{sub 3} (BTO) has been grown epitaxially on GaAs using molecular beam epitaxy with a 2 unit cell SrTiO{sub 3} nucleation layer. The oxide film is lattice-matched to GaAs through an in-plane rotation of 45 Degree-Sign relative to the (100) surface leading to c-axis orientation of the BaTiO{sub 3}. X-ray diffraction confirmed the crystallinity and orientation of the oxide film with a full width half maximum of 0.58 Degree-Sign for a 7.5 nm thick layer. Piezoresponse force microscopy was used to characterize the ferroelectric domains in the BaTiO{sub 3} layer, and a coercive voltage of 1-2 V andmore » piezoresponse amplitude {approx}5 pm/V was measured.« less

  2. Radiation and process-induced damage in Ga2O3

    NASA Astrophysics Data System (ADS)

    Pearton, S. J.; Yang, Jiancheng; Ren, F.; Yang, G.; Kim, Jihyun; Stavola, M.; Kuramata, A.

    2018-02-01

    Ga2O3 is gaining attention for high breakdown electronics. The β-polymorph is air-stable, has a wide bandgap ( 4.6 eV) and is available in both bulk and epitaxial form. Different types of power diodes and transistors fabricated on Ga2O3 have shown impressive performance. Etching processes for Ga2O3 are needed for patterning for mesa isolation, threshold adjustment in transistors, thinning of nano-belts and selective area contact formation. Electrical damage in the near-surface region was found through barrier height changes of Schottky diodes on the etched surface. The damage is created by energetic ion bombardment, but may also consist of changes to near-surface stoichiometry through loss of lattice elements or deposition of etch residues. Annealing at 450°C removes this damage. We also discuss recent results on damage introduction by proton and electron irradiation. In this case, the carrier removal rates are found to be similar to those reported for GaN under similar conditions of dose and energy of the radiation.

  3. Nitride passivation reduces interfacial traps in atomic-layer-deposited Al2O3/GaAs (001) metal-oxide-semiconductor capacitors using atmospheric metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Aoki, T.; Fukuhara, N.; Osada, T.; Sazawa, H.; Hata, M.; Inoue, T.

    2014-07-01

    Using an atmospheric metal-organic chemical vapor deposition system, we passivated GaAs with AlN prior to atomic layer deposition of Al2O3. This AlN passivation incorporated nitrogen at the Al2O3/GaAs interface, improving the capacitance-voltage (C-V) characteristics of the resultant metal-oxide-semiconductor capacitors (MOSCAPs). The C-V curves of these devices showed a remarkable reduction in the frequency dispersion of the accumulation capacitance. Using the conductance method at various temperatures, we extracted the interfacial density of states (Dit). The Dit was reduced over the entire GaAs band gap. In particular, these devices exhibited Dit around the midgap of less than 4 × 1012 cm-2eV-1, showing that AlN passivation effectively reduced interfacial traps in the MOS structure.

  4. Ga2O3 doping and vacancy effect in KNN—LT lead-free piezoceramics

    NASA Astrophysics Data System (ADS)

    Tan, Zhi; Xing, Jie; Jiang, Laiming; Zhu, Jianguo; Wu, Bo

    2017-12-01

    Ga2O3 was doped into 0.95(K0.48Na0.52)NbO3—0.05LiTaO3 (KNN—LT) ceramics and its influences on the sintering behavior, phase structure and electrical properties of ceramics were studied. Firstly, SEM observation exhibits that more and more glass phase appears in ceramics with the gradual addition of Ga2O3, which determines the continuous decrease in sintering temperatures. And the addition of Ga2O3 is also found to increase the orthorhombic—tetragonal transition temperature ( T O—T) of system to a higher level. Secondly, both the density and the coercive field ( E C) of ceramics increase firstly and then decrease with increasing the Ga2O3 content, and the KNN—LT— xGa sample at x = 0.004 shows a pinched P— E hysteresis loop. Finally, the impedance characteristics of KNN—LT— xGa ceramics were investigated at different temperatures, revealing a typical vacancy related conduction mechanism. This work demonstrates that Ga2O3 is a good sintering aid for KNN-based ceramics, and the vacancy plays an important role in the sintering and electrical behaviors of ceramics.

  5. Synthesis and strong optical limiting response of graphite oxide covalently functionalized with gallium phthalocyanine

    NASA Astrophysics Data System (ADS)

    Li, Yong-Xi; Zhu, Jinhui; Chen, Yu; Zhang, Jinjuan; Wang, Jun; Zhang, Bin; He, Ying; Blau, Werner J.

    2011-05-01

    A soluble graphite oxide (GO) axially substituted gallium phthalocyanine (PcGa) hybrid material (GO-PcGa) was for the first time synthesized by the reaction of tBu4PcGaCl with GO in anhydrous DMSO at 110 °C in the presence of K2CO3. The formation of a Ga-O bond between PcGa and GO has been confirmed by x-ray photoelectron spectroscopy. In contrast to GO, the D and G bands of GO-PcGa in the Raman spectrum are shifted to the lower wavenumbers by Δν = 11 and 18 cm - 1, respectively. At the same level of concentration of 0.1 g l - 1, GO-PcGa exhibit much larger nonlinear optical extinction coefficients and strong optical limiting performance than GO, tBu4PcGaCl and C60 at both 532 and 1064 nm, implying a remarkable accumulation effect as a result of the covalent link between GO and PcGa. GO-PcGa possesses three main mechanisms for the nonlinear optical response—nonlinear light scattering, two-photon absorption and reverse saturable absorption for the 532 nm pulses and nonlinear light scattering for the 1064 nm pulses. tBu4PcGaCl does not make any significant contribution to the optical limiting at 1064 nm, while GO-PcGa has a much greater optical limiting response than GO at this wavelength, this suggesting that the PcGa moiety could certainly play an unknown but important role in the GO-PcGa material system.

  6. Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching.

    PubMed

    Swain, Basudev; Mishra, Chinmayee; Kang, Leeseung; Park, Kyung-Soo; Lee, Chan Gi; Hong, Hyun Seon

    2015-04-01

    Waste dust generated during manufacturing of LED contains significant amounts of gallium and indium, needs suitable treatment and can be an important resource for recovery. The LED industry waste dust contains primarily gallium as GaN. Leaching followed by purification technology is the green and clean technology. To develop treatment and recycling technology of these GaN bearing e-waste, leaching is the primary stage. In our current investigation possible process for treatment and quantitative leaching of gallium and indium from the GaN bearing e-waste or waste of LED industry dust has been developed. To recycle the waste and quantitative leaching of gallium, two different process flow sheets have been proposed. In one, process first the GaN of the waste the LED industry dust was leached at the optimum condition. Subsequently, the leach residue was mixed with Na2CO3, ball milled followed by annealing, again leached to recover gallium. In the second process, the waste LED industry dust was mixed with Na2CO3, after ball milling and annealing, followed acidic leaching. Without pretreatment, the gallium leaching was only 4.91 w/w % using 4M HCl, 100°C and pulp density of 20g/L. After mechano-chemical processing, both these processes achieved 73.68 w/w % of gallium leaching at their optimum condition. The developed process can treat and recycle any e-waste containing GaN through ball milling, annealing and leaching. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Self-assembled metastable γ-Ga2O3 nanoflowers with hexagonal nanopetals for solar-blind photodetection.

    PubMed

    Teng, Yue; Song, Le Xin; Ponchel, Anne; Yang, Zheng Kun; Xia, Juan

    2014-09-01

    Metastable γ-Ga2O3 nanoflowers assembled from hexagonal nanopetals are successfully constructed by the oxidation of metallic Ga in acetone solution. The nanoflowers with a hollow interior structure exhibit a short response time and a large light-current-dark-current ratio under a relatively low bias voltage, suggesting an especially important potential application in solar-blind photodetection. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Crossed Ga2O3/SnO2 multiwire architecture: a local structure study with nanometer resolution.

    PubMed

    Martínez-Criado, Gema; Segura-Ruiz, Jaime; Chu, Manh-Hung; Tucoulou, Remi; López, Iñaki; Nogales, Emilio; Mendez, Bianchi; Piqueras, Javier

    2014-10-08

    Crossed nanowire structures are the basis for high-density integration of a variety of nanodevices. Owing to the critical role of nanowires intersections in creating hybrid architectures, it has become a challenge to investigate the local structure in crossing points in metal oxide nanowires. Thus, if intentionally grown crossed nanowires are well-patterned, an ideal model to study the junction is formed. By combining electron and synchrotron beam nanoprobes, we show here experimental evidence of the role of impurities in the coupling formation, structural modifications, and atomic site configuration based on crossed Ga2O3/SnO2 nanowires. Our experiment opens new avenues for further local structure studies with both nanometer resolution and elemental sensitivity.

  9. Effects of Zn2+ and Pb2+ dopants on the activity of Ga2O3-based photocatalysts for water splitting.

    PubMed

    Wang, Xiang; Shen, Shuai; Jin, Shaoqing; Yang, Jingxiu; Li, Mingrun; Wang, Xiuli; Han, Hongxian; Li, Can

    2013-11-28

    Zn-doped and Pb-doped β-Ga2O3-based photocatalysts were prepared by an impregnation method. The photocatalyst based on the Zn-doped β-Ga2O3 shows a greatly enhanced activity in water splitting while the Pb-doped β-Ga2O3 one shows a dramatic decrease in activity. The effects of Zn(2+) and Pb(2+) dopants on the activity of Ga2O3-based photocatalysts for water splitting were investigated by HRTEM, XPS and time-resolved IR spectroscopy. A ZnGa2O4-β-Ga2O3 heterojunction is formed in the surface region of the Zn-doped β-Ga2O3 and a slower decay of photogenerated electrons is observed. The ZnGa2O4-β-Ga2O3 heterojunction exhibits type-II band alignment and facilitates charge separation, thus leading to an enhanced photocatalytic activity for water splitting. Unlike Zn(2+) ions, Pb(2+) ions are coordinated by oxygen atoms to form polyhedra as dopants, resulting in distorted surface structure and fast decay of photogenerated electrons of β-Ga2O3. These results suggest that the Pb dopants act as charge recombination centers expediting the recombination of photogenerated electrons and holes, thus decreasing the photocatalytic activity.

  10. Analysis of SAW properties in ZnO/AlxGa1-xN/c-Al2O3 structures.

    PubMed

    Chen, Ying; Emanetoglu, Nuri William; Saraf, Gaurav; Wu, Pan; Lu, Yicheng; Parekh, Aniruddh; Merai, Vinod; Udovich, Eric; Lu, Dong; Lee, Dong S; Armour, Eric A; Pophristic, Milan

    2005-07-01

    Piezoelectric thin films on high acoustic velocity nonpiezoelectric substrates, such as ZnO, AlN, or GaN deposited on diamond or sapphire substrates, are attractive for high frequency and low-loss surface acoustic wave devices. In this work, ZnO films are deposited on AlxGa1-xN/c-Al2O3 (0 < or = chi < or = 1) substrates using the radio frequency (RF) sputtering technique. In comparison with a single AlxGa1-xN layer deposited on c-Al2O3 with the same total film thickness, a ZnO/AlxGa1-xN/c-Al2O3 multilayer structure provides several advantages, including higher order wave modes with higher velocity and larger electromechanical coupling coefficient (K2). The surface acoustic wave (SAW) velocities and coupling coefficients of the ZnO/AlxGa1-xN/c-Al2O3 structure are tailored as a function of the Al mole percentage in AlxGa1-xN films, and as a function of the ZnO (h1) to AlxGa1-xN (h2) thickness ratio. It is found that a wide thickness-frequency product (hf) region in which coupling is close to its maximum value, K(2)max, can be obtained. The K(2)max of the second order wave mode (h1 = h2) is estimated to be 4.3% for ZnO/GaN/c-Al2O3, and 3.8% for ZnO/AlN/c-Al2O3. The bandwidth of second and third order wave modes, in which the coupling coefficient is within +/- 0.3% of K(2)max, is calculated to be 820 hf for ZnO/GaN/c-Al2O3, and 3620 hf for ZnO/AlN/c-Al2O3. Thus, the hf region in which the coupling coefficient is close to the maximum value broadens with increasing Al content, while K(2)max decreases slightly. When the thickness ratio of AlN to ZnO increases, the K(2)max and hf bandwidth of the second and third higher wave modes increases. The SAW test devices are fabricated and tested. The theoretical and experimental results of velocity dispersion in the ZnO/AlxGa1-xN/c-Al2O3 structures are found to be well matched.

  11. Self-Powered Solar-Blind Photodetector with Fast Response Based on Au/β-Ga2O3 Nanowires Array Film Schottky Junction.

    PubMed

    Chen, Xing; Liu, Kewei; Zhang, Zhenzhong; Wang, Chunrui; Li, Binghui; Zhao, Haifeng; Zhao, Dongxu; Shen, Dezhen

    2016-02-17

    Because of the direct band gap of 4.9 eV, β-Ga2O3 has been considered as an ideal material for solar-blind photodetection without any bandgap tuning. Practical applications of the photodetectors require fast response speed, high signal-to-noise ratio, low energy consumption and low fabrication cost. Unfortunately, most reported β-Ga2O3-based photodetectors usually possess a relatively long response time. In addition, the β-Ga2O3 photodetectors based on bulk, the individual 1D nanostructure, and the film often suffer from the high cost, the low repeatability, and the relatively large dark current, respectively. In this paper, a Au/β-Ga2O3 nanowires array film vertical Schottky photodiode is successfully fabricated by a simple thermal partial oxidation process. The device exhibits a very low dark current of 10 pA at -30 V with a sharp cutoff at 270 nm. More interestingly, the 90-10% decay time of our device is only around 64 μs, which is much quicker than any other previously reported β-Ga2O3-based photodetectors. Besides, the self-powering, the excellent stability and the good reproducibility of Au/β-Ga2O3 nanowires array film photodetector are helpful to its commercialization and practical applications.

  12. Effect of Homo-buffer Layers on the Properties of Sputtering Deposited Ga2O3 Films

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Li, Bing; Ma, Yuncheng; Tang, Ke; Huang, Haofei; Hu, Yan; Zou, Tianyu; Wang, Linjun

    2018-05-01

    β- Ga2O3 films were grown by radio-frequency magnetron sputtering method. The influence of Ga2O3 buffer layers and annealing treatment on the structural, optical, morphological and electrical properties of Ga2O3 films was studied. The results revealed an improvement of crystalline quality and transmittance of annealed β- Ga2O3 films prepared with homo-buffer layers. Ga2O3 film UV photodetectors were fabricated with a new B and Ga co-doped ZnO films (BGZO)/Au interdigitated electrode. A good ohmic contact was formed between the film and the electrode. For the detector based on Ga2O3 films with buffer layers, a higher value of photo response and faster response times was obtained.

  13. Epitaxial growth of MgO/Ga2O3 heterostructure and its band alignment studied by X-ray photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Matsuo, Norihiro; Doko, Naoki; Yasukawa, Yukiko; Saito, Hidekazu; Yuasa, Shinji

    2018-07-01

    We have grown an epitaxial MgO/Ga2O3 heterostructure on a MgO(001) substrate by molecular beam epitaxy. Crystallographic studies revealed the out-of-plane and in-plane crystal orientations between the MgO overlayer and the Ga2O3 layer, which were MgO(001) ∥ β-Ga2O3(001) and MgO[100] ∥ β-Ga2O3 [02\\bar{1}], respectively. The valence band offset at the MgO/β-Ga2O3 interface was determined to be 0.19 eV (type-II band alignment) by X-ray photoelectron spectroscopy, resulting in a large conduction band offset of 2.7–3.2 eV. These results indicate that MgO is a promising potential barrier for electrons in an epitaxial MgO/Ga2O3 multilayered structure.

  14. Comparing electrical characteristics of in situ and ex situ Al2O3/GaN interfaces formed by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Chan, Silvia H.; Bisi, Davide; Tahhan, Maher; Gupta, Chirag; DenBaars, Steven P.; Keller, Stacia; Zanoni, Enrico; Mishra, Umesh K.

    2018-04-01

    Al2O3/n-GaN MOS-capacitors grown by metalorganic chemical vapor deposition with in-situ- and ex-situ-formed Al2O3/GaN interfaces were characterized. Capacitors grown entirely in situ exhibited ˜4 × 1012 cm-2 fewer positive fixed charges and up to ˜1 × 1013 cm-2 eV-1 lower interface-state density near the band-edge than did capacitors with ex situ oxides. When in situ Al2O3/GaN interfaces were reformed via the insertion of a 10-nm-thick GaN layer, devices exhibited behavior between the in situ and ex situ limits. These results illustrate the extent to which an in-situ-formed dielectric/GaN gate stack improves the interface quality and breakdown performance.

  15. Investigation of Gate-Stacked In-Ga-Zn-O TFTs with Ga-Zn-O Source/Drain Electrodes by Atmospheric Pressure Plasma-Enhanced Chemical Vapor Deposition.

    PubMed

    Wu, Chien-Hung; Chang, Kow-Ming; Chen, Yi-Ming; Huang, Bo-Wen; Zhang, Yu-Xin; Wang, Shui-Jinn; Hsu, Jui-Mei

    2018-03-01

    Atmospheric pressure plasma-enhanced chemical vapor deposition (AP-PECVD) was employed for the fabrication of indium gallium zinc oxide thin-film transistors (IGZO TFTs) with high transparent gallium zinc oxide (GZO) source/drain electrodes. The influence of post-deposition annealing (PDA) temperature on GZO source/drain and device performance was studied. Device with a 300 °C annealing demonstrated excellent electrical characteristics with on/off current ratio of 2.13 × 108, saturation mobility of 10 cm2/V-s, and low subthreshold swing of 0.2 V/dec. The gate stacked LaAlO3/ZrO2 of AP-IGZO TFTs with highly transparent and conductive AP-GZO source/drain electrode show excellent gate control ability at a low operating voltage.

  16. A light-stimulated synaptic transistor with synaptic plasticity and memory functions based on InGaZnO{sub x}–Al{sub 2}O{sub 3} thin film structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, H. K.; Chen, T. P., E-mail: echentp@ntu.edu.sg; Liu, P.

    In this work, a synaptic transistor based on the indium gallium zinc oxide (IGZO)–aluminum oxide (Al{sub 2}O{sub 3}) thin film structure, which uses ultraviolet (UV) light pulses as the pre-synaptic stimulus, has been demonstrated. The synaptic transistor exhibits the behavior of synaptic plasticity like the paired-pulse facilitation. In addition, it also shows the brain's memory behaviors including the transition from short-term memory to long-term memory and the Ebbinghaus forgetting curve. The synapse-like behavior and memory behaviors of the transistor are due to the trapping and detrapping processes of the holes, which are generated by the UV pulses, at the IGZO/Al{submore » 2}O{sub 3} interface and/or in the Al{sub 2}O{sub 3} layer.« less

  17. Demonstration of β-(Al x Ga1- x )2O3/β-Ga2O3 modulation doped field-effect transistors with Ge as dopant grown via plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ahmadi, Elaheh; Koksaldi, Onur S.; Zheng, Xun; Mates, Tom; Oshima, Yuichi; Mishra, Umesh K.; Speck, James S.

    2017-07-01

    β-(Al x Ga1- x )2O3/β-Ga2O3 heterostructures were grown via plasma-assisted molecular beam epitaxy. The β-(Al x Ga1- x )2O3 barrier was partially doped by Ge to achieve a two-dimensional electron gas (2DEG) in Ga2O3. The formation of the 2DEG was confirmed by capacitance-voltage measurements. The impact of Ga-polishing on both the surface morphology and the reduction of the unintentionally incorporated Si at the growth interface was investigated using atomic force microscopy and secondary-ion mass spectrometry. Modulation doped field-effect transistors were fabricated. A maximum current density of 20 mA/mm with a pinch-off voltage of -6 V was achieved on a sample with a 2DEG sheet charge density of 1.2 × 1013 cm-2.

  18. Defect phase diagram for doping of Ga 2O 3

    DOE PAGES

    Lany, Stephan

    2018-04-01

    For the case of n-type doping of β-Ga 2O 3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO 2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association ofmore » dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO 2) conditions. Considering further the stability constraints due to sublimation of molecular Ga 2O, specific predictions of optimized pO 2 and Si dopant concentrations are given. To conclude, the incomplete passivation of dopant-defect complexes in β-Ga 2O 3 suggests a design rule for metastable doping above the solubility limit.« less

  19. Defect phase diagram for doping of Ga 2O 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lany, Stephan

    For the case of n-type doping of β-Ga 2O 3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO 2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association ofmore » dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO 2) conditions. Considering further the stability constraints due to sublimation of molecular Ga 2O, specific predictions of optimized pO 2 and Si dopant concentrations are given. To conclude, the incomplete passivation of dopant-defect complexes in β-Ga 2O 3 suggests a design rule for metastable doping above the solubility limit.« less

  20. Sn-doped β-Ga2O3 nanowires deposited by radio frequency powder sputtering

    NASA Astrophysics Data System (ADS)

    Lee, Su Yong; Kang, Hyon Chol

    2018-01-01

    We report the synthesis and characterization of Sn-doped β-Ga2O3 nanowires (NWs) deposited using radio frequency powder sputtering. The growth sequence of Sn-doped β-Ga2O3 NWs is similar to that of the undoped β-Ga2O3 NWs. Self-assembled Ga clusters act as seeds for initiating the growth of Sn-doped β-Ga2O3 NWs through a vapor-liquid-solid process, while Sn atoms are incorporated into the trunk of NWs uniformly. Different from the straight shape of undoped NWs, the conical shape of NWs is observed, which is attributed to the change in supersaturation conditions and the diffusion of the catalyst tip and reaction species.

  1. ZnO nanorod arrays and direct wire bonding on GaN surfaces for rapid fabrication of antireflective, high-temperature ultraviolet sensors

    NASA Astrophysics Data System (ADS)

    So, Hongyun; Senesky, Debbie G.

    2016-11-01

    Rapid, cost-effective, and simple fabrication/packaging of microscale gallium nitride (GaN) ultraviolet (UV) sensors are demonstrated using zinc oxide nanorod arrays (ZnO NRAs) as an antireflective layer and direct bonding of aluminum wires to the GaN surface. The presence of the ZnO NRAs on the GaN surface significantly reduced the reflectance to less than 1% in the UV and 4% in the visible light region. As a result, the devices fabricated with ZnO NRAs and mechanically stable aluminum bonding wires (pull strength of 3-5 gf) showed higher sensitivity (136.3% at room temperature and 148.2% increase at 250 °C) when compared with devices with bare (uncoated) GaN surfaces. In addition, the devices demonstrated reliable operation at high temperatures up to 300 °C, supporting the feasibility of simple and cost-effective UV sensors operating with higher sensitivity in high-temperature conditions, such as in combustion, downhole, and space exploration applications.

  2. Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation.

    PubMed

    Agrawal, Ravi; Espinosa, Horacio D

    2011-02-09

    Nanowires made of materials with noncentrosymmetric crystal structure are under investigation for their piezoelectric properties and suitability as building blocks for next-generation self-powered nanodevices. In this work, we investigate the size dependence of piezoelectric coefficients in nanowires of two such materials - zinc oxide and gallium nitride. Nanowires, oriented along their polar axis, ranging from 0.6 to 2.4 nm in diameter were modeled quantum mechanically. A giant piezoelectric size effect is identified for both GaN and ZnO nanowires. However, GaN exhibits a larger and more extended size dependence than ZnO. The observed size effect is discussed in the context of charge redistribution near the free surfaces leading to changes in local polarization. The study reveals that local changes in polarization and reduction of unit cell volume with respect to bulk values lead to the observed size effect. These results have strong implication in the field of energy harvesting, as piezoelectric voltage output scales with the piezoelectric coefficient.

  3. Low-temperature fabrication of an HfO2 passivation layer for amorphous indium-gallium-zinc oxide thin film transistors using a solution process.

    PubMed

    Hong, Seonghwan; Park, Sung Pyo; Kim, Yeong-Gyu; Kang, Byung Ha; Na, Jae Won; Kim, Hyun Jae

    2017-11-24

    We report low-temperature solution processing of hafnium oxide (HfO 2 ) passivation layers for amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). At 150 °C, the hafnium chloride (HfCl 4 ) precursor readily hydrolyzed in deionized (DI) water and transformed into an HfO 2 film. The fabricated HfO 2 passivation layer prevented any interaction between the back surface of an a-IGZO TFT and ambient gas. Moreover, diffused Hf 4+ in the back-channel layer of the a-IGZO TFT reduced the oxygen vacancy, which is the origin of the electrical instability in a-IGZO TFTs. Consequently, the a-IGZO TFT with the HfO 2 passivation layer exhibited improved stability, showing a decrease in the threshold voltage shift from 4.83 to 1.68 V under a positive bias stress test conducted over 10,000 s.

  4. High temperature mass spectrometric studies on Usbnd Ga system: Thermodynamic properties over (U3Ga5 + UGa2) and (UGa2 + UGa3) phase regions

    NASA Astrophysics Data System (ADS)

    Manikandan, P.; Trinadh, V. V.; Bera, Suranjan; Narasimhan, T. S. Lakshmi; Joseph, M.

    2016-07-01

    Vaporisation studies over gallium rich biphasic regions (U3Ga5 + UGa2) and (UGa2 + UGa3) in the Usbnd Ga system were carried out by Knusen effusion mass spectrometry in the temperature ranges of 1208-1366 K and 1133-1338 K, respectively. Ga(g) was the species observed in the mass spectra of the equilibrium vapour over both phase regions. From temperature dependence measurements, pressure-temperature relations were deduced as: log (pGa/Pa) = (-18216 ± 239)/(T/K) + (12.88 ± 0.18) over (U3Ga5 + UGa2) and log (pGa/Pa) = (-16225 ± 124)/(T/K) + (11.78 ± 0.10) over (UGa2 + UGa3). From these data, Gibbs free energy changes for the reactions 3UGa2(s) = U3Ga5(s) + Ga(g) and UGa3(s) = UGa2(s) + Ga(g) were computed and subsequently Gibbs free energies of formation of U3Ga5(s) and UGa3(s) were deduced as ΔfGTo U3Ga5(s) (±5.5) = -352.4 + 0.133 T(K) (kJ mol-1) (1208-1366 K) and ΔfGTo UGa3(s) (±3.8) = -191.9 + 0.082 T(K) (kJ mol-1) (1133-1338 K). The Gibbs free energy of formation of U3Ga5(s) is being reported for the first time.

  5. Realization of write-once-read-many-times memory device with O{sub 2} plasma-treated indium gallium zinc oxide thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, P., E-mail: liup0013@ntu.edu.sg; Chen, T. P., E-mail: echentp@ntu.edu.sg; Li, X. D.

    2014-01-20

    A write-once-read-many-times (WORM) memory devices based on O{sub 2} plasma-treated indium gallium zinc oxide (IGZO) thin films has been demonstrated. The device has a simple Al/IGZO/Al structure. The device has a normally OFF state with a very high resistance (e.g., the resistance at 2 V is ∼10{sup 9} Ω for a device with the radius of 50 μm) as a result of the O{sub 2} plasma treatment on the IGZO thin films. The device could be switched to an ON state with a low resistance (e.g., the resistance at 2 V is ∼10{sup 3} Ω for the radius of 50 μm) by applying amore » voltage pulse (e.g., 10 V/1 μs). The WORM device has good data-retention and reading-endurance capabilities.« less

  6. Low-temperature processed Ga-doped ZnO coatings from colloidal inks.

    PubMed

    Della Gaspera, Enrico; Bersani, Marco; Cittadini, Michela; Guglielmi, Massimo; Pagani, Diego; Noriega, Rodrigo; Mehra, Saahil; Salleo, Alberto; Martucci, Alessandro

    2013-03-06

    We present a new colloidal synthesis of gallium-doped zinc oxide nanocrystals that are transparent in the visible and absorb in the near-infrared. Thermal decomposition of zinc stearate and gallium nitrate after hot injection of the precursors in a mixture of organic amines leads to nanocrystals with tunable properties according to gallium amount. Substitutional Ga(3+) ions trigger a plasmonic resonance in the infrared region resulting from an increase in the free electrons concentration. These nanocrystals can be deposited by spin coating, drop casting, and spray coating resulting in homogeneous and high-quality thin films. The optical transmission of the Ga-ZnO nanoparticle assemblies in the visible is greater than 90%, and at the same time, the near-infrared absorption of the nanocrystals is maintained in the films as well. Several strategies to improve the films electrical and optical properties have been presented, such as UV treatments to remove the organic compounds responsible for the observed interparticle resistance and reducing atmosphere treatments on both colloidal solutions and thin films to increase the free carriers concentration, enhancing electrical conductivity and infrared absorption. The electrical resistance of the nanoparticle assemblies is about 30 kΩ/sq for the as-deposited, UV-exposed films, and it drops down to 300 Ω/sq after annealing in forming gas at 450 °C, comparable with state of the art tin-doped indium oxide coatings deposited from nanocrystal inks.

  7. Contributions from gallium vacancies and carbon-related defects to the ``yellow luminescence'' in GaN

    NASA Astrophysics Data System (ADS)

    Armitage, R.; Hong, William; Yang, Qing; Feick, H.; Gebauer, J.; Weber, E. R.; Hautakangas, S.; Saarinen, K.

    2003-05-01

    Carbon-doped GaN layers grown by molecular-beam epitaxy are studied with photoluminescence and positron annihilation spectroscopy. Semi-insulating layers doped with >1018 cm-3 carbon show a strong luminescence band centered at ˜2.2 eV (yellow luminescence). The absolute intensity of the 2.2 eV band is compared with the gallium vacancy concentration determined by positron annihilation spectroscopy. The results indicate that a high concentration of gallium vacancies is not necessary for yellow luminescence and that there is in fact a causal relationship between carbon and the 2.2 eV band. Markedly different deep-level ionization energies are found for the high-temperature quenching of the 2.2 eV photoluminescence in carbon-doped and reference samples. We propose that while the model of Neugebauer and Van de Walle [Appl. Phys. Lett. 69, 503 (1996)] applies for GaN of low carbon concentration, a different yellow luminescence mechanism is involved when the interstitial carbon concentration is comparable to or exceeds the gallium vacancy concentration.

  8. A Rutile Chevron Modulation in Delafossite-Like Ga 3–x In 3 Ti x O 9+x/2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rickert, Karl; Boullay, Philippe; Malo, Sylvie

    2016-05-02

    The structure solution of the modulated, delafossite-related, orthorhombic Ga 3–xIn 3Ti xO 9+x/2 for x = 1.5 is reported here in conjunction with a model describing the modulation as a function of x for the entire system. Previously reported structures in the related A 3–xIn 3Ti xO 9+x/2 (A = Al, Cr, or Fe) systems use X-ray diffraction to determine that the anion lattice is the source of modulation. Neutron diffraction, with its enhanced sensitivity to light atoms, offers a route to solving the modulation and is used here, in combination with precession electron diffraction tomography (PEDT), to solve themore » structure of Ga 1.5In 3Ti 1.5O 9.75. We construct a model that describes the anion modulation through the formation of rutile chevrons as a function of x. This model accommodates the orthorhombic phase (1.5 ≤ x ≤ 2.1) in the Ga 3-xIn 3Ti xO 9+x/2 system, which transitions to a biphasic mixture (2.2 ≤ x ≤ 2.3) with a monoclinic, delafossite-related phase (2.4 ≤ x ≤ 2.5). The optical band gaps of this system are determined, and are stable at ~3.4 eV before a ~0.4 eV decrease between x = 1.9 and 2.0. After this decrease, stability resumes at ~3.0 eV. Resistance to oxidation and reduction is also presented.« less

  9. A survey of acceptor dopants for β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Lyons, John L.

    2018-05-01

    With a wide band gap, high critical breakdown voltage and commercially available substrates, Ga2O3 is a promising material for next-generation power electronics. Like most wide-band-gap semiconductors, obtaining better control over its electrical conductivity is critically important, but has proven difficult to achieve. Although efficient p-type doping in Ga2O3 is not expected, since theory and experiment indicate the self-trapping of holes, the full development of this material will require a better understanding of acceptor dopants. Here the properties of group 2, group 5 and group 12 acceptor impurities in β-Ga2O3 are explored using hybrid density functional calculations. All impurities are found to exhibit acceptor transition levels above 1.3 eV. After examining formation energies as a function of chemical potential, Mg (followed closely by Be) is determined to be the most stable acceptor species.

  10. Gallium-containing phosphosilicate glasses: functionalization and in-vitro bioactivity.

    PubMed

    Lusvardi, Gigliola; Malavasi, Gianluca; Menabue, Ledi; Shruti, Shruti

    2013-08-01

    A gallium containing glass 45.7SiO2·24.1Na2O·26.6CaO·2.6P2O5·1.0Ga2O3 (referred to as "Ga1.0") and a parent Ga-free glass 46.2SiO2·24.3Na2O·26.9CaO·2.6P2O5 (hereinafter represented as "H"), corresponding to Bioglass® 45S5, were functionalized with Tetraethoxysilane (TEOS) and (3-Aminopropyl)triethoxysilane (APTS) in order to improve their ability to bond with biomolecules, such as drugs, proteins, and peptides. Functionalization with TEOS and APTS promoted the increment in OH groups and formation of NH2 groups on the glass surface, respectively. The presence of OH or NH2 groups was investigated by means of IR spectroscopy and elemental analysis. Moreover, in vitro study of these functionalized glasses was performed in simulated body fluid (SBF) so as to investigate the effect of functionalization on the bioactive behavior of H and Ga1.0. The results showed that the functionalization was obtained along with maintaining their bioactivity. The surfaces of both functionalized glasses were covered by a layer of apatite within 30 days of SBF immersion. In addition, CaCO3 was also identified on the surface of APTS functionalized glasses. However, no gallium release was detected during SBF soaking. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Comparative analysis of the effects of tantalum doping and annealing on atomic layer deposited (Ta{sub 2}O{sub 5}){sub x}(Al{sub 2}O{sub 3}){sub 1−x} as potential gate dielectrics for GaN/Al{sub x}Ga{sub 1−x}N/GaN high electron mobility transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Partida-Manzanera, T., E-mail: sgtparti@liv.ac.uk; Institute of Materials Research and Engineering, A*STAR; Roberts, J. W.

    2016-01-14

    This paper describes a method to optimally combine wide band gap Al{sub 2}O{sub 3} with high dielectric constant (high-κ) Ta{sub 2}O{sub 5} for gate dielectric applications. (Ta{sub 2}O{sub 5}){sub x}(Al{sub 2}O{sub 3}){sub 1−x} thin films deposited by thermal atomic layer deposition (ALD) on GaN-capped Al{sub x}Ga{sub 1−x}N/GaN high electron mobility transistor (HEMT) structures have been studied as a function of the Ta{sub 2}O{sub 5} molar fraction. X-ray photoelectron spectroscopy shows that the bandgap of the oxide films linearly decreases from 6.5 eV for pure Al{sub 2}O{sub 3} to 4.6 eV for pure Ta{sub 2}O{sub 5}. The dielectric constant calculated from capacitance-voltage measurementsmore » also increases linearly from 7.8 for Al{sub 2}O{sub 3} up to 25.6 for Ta{sub 2}O{sub 5}. The effect of post-deposition annealing in N{sub 2} at 600 °C on the interfacial properties of undoped Al{sub 2}O{sub 3} and Ta-doped (Ta{sub 2}O{sub 5}){sub 0.12}(Al{sub 2}O{sub 3}){sub 0.88} films grown on GaN-HEMTs has been investigated. These conditions are analogous to the conditions used for source/drain contact formation in gate-first HEMT technology. A reduction of the Ga-O to Ga-N bond ratios at the oxide/HEMT interfaces is observed after annealing, which is attributed to a reduction of interstitial oxygen-related defects. As a result, the conduction band offsets (CBOs) of the Al{sub 2}O{sub 3}/GaN-HEMT and (Ta{sub 2}O{sub 5}){sub 0.16}(Al{sub 2}O{sub 3}){sub 0.84}/GaN-HEMT samples increased by ∼1.1 eV to 2.8 eV and 2.6 eV, respectively, which is advantageous for n-type HEMTs. The results demonstrate that ALD of Ta-doped Al{sub 2}O{sub 3} can be used to control the properties of the gate dielectric, allowing the κ-value to be increased, while still maintaining a sufficient CBO to the GaN-HEMT structure for low leakage currents.« less

  12. In2Ga2ZnO7 oxide semiconductor based charge trap device for NAND flash memory.

    PubMed

    Hwang, Eun Suk; Kim, Jun Shik; Jeon, Seok Min; Lee, Seung Jun; Jang, Younjin; Cho, Deok-Yong; Hwang, Cheol Seong

    2018-04-01

    The programming characteristics of charge trap flash memory device adopting amorphous In 2 Ga 2 ZnO 7 (a-IGZO) oxide semiconductors as channel layer were evaluated. Metal-organic chemical vapor deposition (MOCVD) and RF-sputtering processes were used to grow a 45 nm thick a-IGZO layer on a 20 nm thick SiO 2 (blocking oxide)/p ++ -Si (control gate) substrate, where 3 nm thick atomic layer deposited Al 2 O 3 (tunneling oxide) and 5 nm thick low-pressure CVD Si 3 N 4 (charge trap) layers were intervened between the a-IGZO and substrate. Despite the identical stoichiometry and other physicochemical properties of the MOCVD and sputtered a-IGZO, a much faster programming speed of MOCVD a-IGZO was observed. A comparable amount of oxygen vacancies was found in both MOCVD and sputtered a-IGZO, confirmed by x-ray photoelectron spectroscopy and bias-illumination-instability test measurements. Ultraviolet photoelectron spectroscopy analysis revealed a higher Fermi level (E F ) of the MOCVD a-IGZO (∼0.3 eV) film than that of the sputtered a-IGZO, which could be ascribed to the higher hydrogen concentration in the MOCVD a-IGZO film. Since the programming in a flash memory device is governed by the tunneling of electrons from the channel to charge trapping layer, the faster programming performance could be the result of a higher E F of MOCVD a-IGZO.

  13. In2Ga2ZnO7 oxide semiconductor based charge trap device for NAND flash memory

    NASA Astrophysics Data System (ADS)

    Hwang, Eun Suk; Kim, Jun Shik; Jeon, Seok Min; Lee, Seung Jun; Jang, Younjin; Cho, Deok-Yong; Hwang, Cheol Seong

    2018-04-01

    The programming characteristics of charge trap flash memory device adopting amorphous In2Ga2ZnO7 (a-IGZO) oxide semiconductors as channel layer were evaluated. Metal-organic chemical vapor deposition (MOCVD) and RF-sputtering processes were used to grow a 45 nm thick a-IGZO layer on a 20 nm thick SiO2 (blocking oxide)/p++-Si (control gate) substrate, where 3 nm thick atomic layer deposited Al2O3 (tunneling oxide) and 5 nm thick low-pressure CVD Si3N4 (charge trap) layers were intervened between the a-IGZO and substrate. Despite the identical stoichiometry and other physicochemical properties of the MOCVD and sputtered a-IGZO, a much faster programming speed of MOCVD a-IGZO was observed. A comparable amount of oxygen vacancies was found in both MOCVD and sputtered a-IGZO, confirmed by x-ray photoelectron spectroscopy and bias-illumination-instability test measurements. Ultraviolet photoelectron spectroscopy analysis revealed a higher Fermi level (E F) of the MOCVD a-IGZO (∼0.3 eV) film than that of the sputtered a-IGZO, which could be ascribed to the higher hydrogen concentration in the MOCVD a-IGZO film. Since the programming in a flash memory device is governed by the tunneling of electrons from the channel to charge trapping layer, the faster programming performance could be the result of a higher E F of MOCVD a-IGZO.

  14. High quality HfO{sub 2}/p-GaSb(001) metal-oxide-semiconductor capacitors with 0.8 nm equivalent oxide thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barth, Michael; Datta, Suman, E-mail: sdatta@engr.psu.edu; Bruce Rayner, G.

    2014-12-01

    We investigate in-situ cleaning of GaSb surfaces and its effect on the electrical performance of p-type GaSb metal-oxide-semiconductor capacitor (MOSCAP) using a remote hydrogen plasma. Ultrathin HfO{sub 2} films grown by atomic layer deposition were used as a high permittivity gate dielectric. Compared to conventional ex-situ chemical cleaning methods, the in-situ GaSb surface treatment resulted in a drastic improvement in the impedance characteristics of the MOSCAPs, directly evidencing a much lower interface trap density and enhanced Fermi level movement efficiency. We demonstrate that by using a combination of ex-situ and in-situ surface cleaning steps, aggressively scaled HfO{sub 2}/p-GaSb MOSCAP structuresmore » with a low equivalent oxide thickness of 0.8 nm and efficient gate modulation of the surface potential are achieved, allowing to push the Fermi level far away from the valence band edge high up into the band gap of GaSb.« less

  15. Origin of and tuning the optical and fundamental band gaps in transparent conducting oxides: The case of M2O3(M =Al ,Ga ,In )

    NASA Astrophysics Data System (ADS)

    Sabino, Fernando P.; Besse, Rafael; Oliveira, Luiz Nunes; Wei, Su-Huai; Da Silva, Juarez L. F.

    2015-11-01

    Good transparent conducting oxides (TCOs), such as In2O3 :Sn (ITO), usually combine large optical band gaps, essential for high transparency, with relatively small fundamental band gaps due to low conduction-band minima, which favor n -type doping and enhance the electrical conductivity. It has been understood that the optical band gaps are wider than the fundamental band gaps because optical transitions between the band-edge states are forbidden. The mechanism blocking such transitions, which can play a crucial role in the designing of alternative TCOs, nonetheless remains obscure. Here, based on first-principles density functional theory calculations and symmetry analysis of three oxides, M2O3 (M =Al ,Ga ,In ), we identify the physical origin of the gap disparities. Three conditions are necessary: (1) the crystal structure must have global inversion symmetry; (2) in order to belong to the Ag or A1 g irreducible representations, the states at the conduction-band minimum must have cation and oxygen s character; (3) in order to have g parity, the oxygen p orbitals constituting the states near the valence-band maximum must be strongly coupled to the cation d orbitals. Under these conditions, optical excitations across the fundamental gap will be forbidden. The three criteria explain the trends in the M2O3 (M =Al,Ga,In) sequence, in particular, explaining why In2O3 in the bixbyite structure yields the highest figure of merit. Our study provides guidelines expected to be instrumental in the search for new TCO materials.

  16. Eu3+-doped β-Ga2O3 nanophosphors: annealing effect, electronic structure and optical spectroscopy.

    PubMed

    Zhu, Haomiao; Li, Renfu; Luo, Wenqin; Chen, Xueyuan

    2011-03-14

    A comprehensive survey of electronic structure and optical properties of rare-earth ions-doped semiconductor is of vital importance for their potential applications. In this work, Eu(3+)-doped β-Ga(2)O(3) nanocrystals were synthesized via a combustion method. The evolution of the optical properties of nanophosphors with increasing the annealing temperature was investigated in detail by means of excitation and emission spectra at room temperature and 10 K. Eu(3+) ions were proved to be incorporated into the crystal lattice of the β-Ga(2)O(3) phase after annealing the as-prepared nanoparticles at 1100 °C. It was observed that the substitution of Eu(3+) for Ga(3+) occurred at merely single site, in spite of two crystallographically nonequivalent sites of Ga(3+) in β-Ga(2)O(3). Spectroscopic evidence corroborated and clarified the local symmetry of C(s) for Eu(3+) at this single site. From the high-resolution excitation and emission spectra, 71 crystal-field levels of Eu(3+) in β-Ga(2)O(3) were identified and analyzed in terms of 19 freely varied free-ions and crystal-field parameters based on C(s) symmetry. The standard deviation of the final fitting is as low as 12.9 cm(-1), indicating an excellent agreement between experimental and calculated energy levels. The temperature-dependent luminescence dynamics of the (5)D(0) multiplet for Eu(3+) in β-Ga(2)O(3) phosphors has also been revealed for the first time from 10 to 300 K.

  17. Structural and optical characterization of Eu3+ doped beta-Ga2O3 nanoparticles using a liquid-phase precursor method.

    PubMed

    Kim, Moung-O; Kang, Bongkyun; Yoon, Daeho

    2013-08-01

    Eu3+ doped beta-Ga2O3 and non-doped beta-Ga2O3 nanoparticles were synthesized at 800 degrees C using a liquid-phase precursor (LPP) method, with different annealing times and Eu3+ ion concentrations. Eu3+ doped beta-Ga2O3 nanoparticles showed broad XRD peaks, revealing a second phase compared with the non-doped beta-Ga2O3 nanoparticles. The cathode luminescence (CL) spectra of beta-Ga2O3 and Eu3+ doped beta-Ga2O3 nanoparticles showed a broad band emission (300-500 nm) of imperfection and two component emissions. The luminescence quenching properties of Eu3+ dopant ion concentration appeared gradually beyond 5 mol% in our investigation.

  18. Effect of proton irradiation dose on InAlN/GaN metal-oxide semiconductor high electron mobility transistors with Al 2O 3 gate oxide

    DOE PAGES

    Ahn, Shihyun; Kim, Byung -Jae; Lin, Yi -Hsuan; ...

    2016-07-26

    The effects of proton irradiation on the dc performance of InAlN/GaN metal-oxide-semiconductor high electron mobility transistors (MOSHEMTs) with Al 2O 3 as the gate oxide were investigated. The InAlN/GaN MOSHEMTs were irradiated with doses ranging from 1×10 13 to 1×10 15cm –2 at a fixed energy of 5MeV. There was minimal damage induced in the two dimensional electron gas at the lowest irradiation dose with no measurable increase in sheet resistance, whereas a 9.7% increase of the sheet resistance was observed at the highest irradiation dose. By sharp contrast, all irradiation doses created more severe degradation in the Ohmic metalmore » contacts, with increases of specific contact resistance from 54% to 114% over the range of doses investigated. These resulted in source-drain current–voltage decreases ranging from 96 to 242 mA/mm over this dose range. The trap density determined from temperature dependent drain current subthreshold swing measurements increased from 1.6 × 10 13 cm –2 V –1 for the reference MOSHEMTs to 6.7 × 10 13 cm –2 V –1 for devices irradiated with the highest dose. In conclusion, the carrier removal rate was 1287 ± 64 cm –1, higher than the authors previously observed in AlGaN/GaN MOSHEMTs for the same proton energy and consistent with the lower average bond energy of the InAlN.« less

  19. Unveiling structural, chemical and magnetic interfacial peculiarities in ε-Fe2O3/GaN (0001) epitaxial films.

    PubMed

    Ukleev, Victor; Suturin, Sergey; Nakajima, Taro; Arima, Taka-Hisa; Saerbeck, Thomas; Hanashima, Takayasu; Sitnikova, Alla; Kirilenko, Demid; Yakovlev, Nikolai; Sokolov, Nikolai

    2018-06-07

    The metastable ε-Fe 2 O 3 is known to be the most intriguing ferrimagnetic and multiferroic iron oxide phase exhibiting a bunch of exciting physical properties both below and above room temperature. The present paper unveils the structural and magnetic peculiarities of a few nm thick interface layer discovered in these films by a number of techniques. The polarized neutron reflectometry data suggests that the interface layer resembles GaFeO 3 in composition and density and is magnetically softer than the rest of the ε-Fe 2 O 3 film. While the in-depth density variation is in agreement with the transmission electron microscopy measurements, the layer-resolved magnetization profiles are qualitatively consistent with the unusual wasp-waist magnetization curves observed by superconducting quantum interference device magnetometry. Interestingly a noticeable Ga diffusion into the ε-Fe 2 O 3 films has been detected by secondary ion mass spectroscopy providing a clue to the mechanisms guiding the nucleation of exotic metastable epsilon ferrite phase on GaN at high growth temperature and influencing the interfacial properties of the studied films.

  20. Comparison of O2 and H2O as oxygen source for homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Konishi, Keita; Goto, Ken; Togashi, Rie; Murakami, Hisashi; Higashiwaki, Masataka; Kuramata, Akito; Yamakoshi, Shigenobu; Monemar, Bo; Kumagai, Yoshinao

    2018-06-01

    Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy (HVPE) using O2 or H2O as an oxygen source was investigated by thermodynamic analysis, and compared with measured properties after growth. The thermodynamic analysis revealed that Ga2O3 growth is expected even at 1000 °C using both oxygen sources due to positive driving forces for Ga2O3 deposition. The experimental results for homoepitaxial growth on (0 0 1) β-Ga2O3 substrates showed that the surfaces of the layers grown with H2O were smoother than those grown with O2, although the growth rate with H2O was approximately half that with O2. However, in the homoepitaxial layer grown using H2O, incorporation of Si impurities with a concentration almost equal to the effective donor concentration (2 × 1016 cm-3) was confirmed, which was caused by decomposition of the quartz glass reactor due to the presence of hydrogen in the system.

  1. Amorphous oxides as electron transport layers in Cu(In,Ga)Se 2 superstrate devices: Amorphous oxides in Cu(In,Ga)Se 2 superstrate devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinemann, M. D.; van Hest, M. F. A. M.; Contreras, M.

    Cu(In,Ga)Se2 (CIGS) solar cells in superstrate configuration promise improved light management and higher stability compared to substrate devices, but they have yet to deliver comparable power conversion efficiencies (PCEs). Chemical reactions between the CIGS layer and the front contact were shown in the past to deteriorate the p-n junction in superstrate devices, which led to lower efficiencies compared to the substrate-type devices. This work aims to solve this problem by identifying a buffer layer between the CIGS layer and the front contact, acting as the electron transport layer, with an optimized electron affinity, doping density and chemical stability. Using combinatorialmore » material exploration we identified amorphous gallium oxide (a-GaOx) as a potentially suitable buffer layer material. The best results were obtained for a-GaOx with an electron affinity that was found to be comparable to that of CIGS. Based on the results of device simulations, it is assumed that detrimental interfacial acceptor states are present at the interface between CIGS and a-GaOx. However, these initial experiments indicate the potential of a-GaOx in this application, and how to reach performance parity with substrate devices, by further increase of its n-type doping density.« less

  2. Luminescence and luminescence quenching in Gd3(Ga,Al)5O12 scintillators doped with Ce3+.

    PubMed

    Ogiegło, Joanna M; Katelnikovas, Arturas; Zych, Aleksander; Jüstel, Thomas; Meijerink, Andries; Ronda, Cees R

    2013-03-28

    The optical properties of gadolinium gallium aluminum garnet, Gd3(Ga,Al)5O12, doped with Ce(3+) are investigated as a function of the Ga/Al ratio, aimed at an improved understanding of the energy flow and luminescence quenching in these materials. A decrease of both the crystal field strength and band gap with increasing content of Ga(3+) is observed and explained by the geometrical influence of Ga(3+) on the crystal field splitting of the 5d level in line with theoretical work of Muñoz-García et al. ( uñoz-García, A. B.; Seijo, L. Phys. Rev. B 2010, 82, 184118 ). Thermal quenching results in shorter decay times as well as reduced emission intensities for all samples in the temperature range from 100 to 500 K. An activation energy for emission quenching is calculated from the data. The band gap of the host is measured upon Ga substitution and the decrease in band gap is related to Ga(3+) substitution into tetrahedral sites after all octahedral sites are occupied in the garnet material. Based on the change in band gap and crystal field splitting, band diagrams can be constructed explaining the low thermal quenching temperatures in the samples with high Ga content. The highest luminescence intensity is found for Gd3(Ga,Al)5O12 with 40% of Al(3+) replaced by Ga(3+).

  3. Shear-induced mechanical failure of β -G a2O3 from quantum mechanics simulations

    NASA Astrophysics Data System (ADS)

    An, Qi; Li, Guodong

    2017-10-01

    Monoclinic gallium oxide (β -G a2O3 ) has important applications in power devices and deep UV optoelectronic devices because of such novel properties as a wide band gap, high breakdown electric field, and a wide range of n -type doping conductivity. However, the intrinsic failure mechanisms of β -G a2O3 remain unknown, which limits the fabrication and packaging of β -G a2O3 -based electronic devices. Here we used density-functional theory at the Perdew-Burke-Ernzerhof level to examine the shear-induced failure mechanisms of β -G a2O3 along various plausible slip systems. We found that the (001 )/〈010 〉 slip system has the lowest ideal shear strength of 3.8 GPa among five plausible slip systems, suggesting that (001 )/〈010 〉 is the most plausible activated slip system. This slip leads to an intrinsic failure mechanism arising from breaking the longest Ga-O bond between octahedral Ga and fourfold-coordinated O. Then we identified the same failure mechanism of β -G a2O3 under biaxial shear deformation that mimics indentation stress conditions. Finally, the general stacking fault energy (SFE) surface is calculated for the (001) surface from which we concluded that there is no intrinsic stacking fault structure for β -G a2O3 . The deformation modes and SFE calculations are essential to understand the intrinsic mechanical processes of this semiconductor material, which provides insightful guidance for designing high-performance semiconductor devices.

  4. Luminescence analysis of SrGa2 Si2 O8 : RE3+ (RE = Dy, Tm) phosphors.

    PubMed

    R Kadukar, Monali; Dhoble, S J; Sahu, A K; Nayar, V; Sailaja, S; Reddy, B Sudhakar

    2017-03-01

    This article reports on the luminescence properties of rare earth (Dy 3 + and Tm 3 + )ions doped SrGa 2 Si 2 O 8 phosphor were studied. SrGa 2 Si 2 O 8 phosphors weresynthesizedby employing solid state reaction method.From the measured X-ray diffraction (XRD) pattern of the samplemonoclinic phase structure has been observed. Thermoluminescenceand Mechanoluminescence properties of the γ-ray irradiated samples have been studied. Photoluminescence spectra of Dy 3 + activated SrGa 2 Si 2 O 8 phosphor has been measured with an excitation wavelength at 348 nm,and it shows two emission bands at 483 and 574 nm due to 4 F 9 /2  →  6 H 15 /2 and 4 F 9 /2  →  6 H 13 /2 transitions respectively. Whereas the photoluminescence spectra of Tm 3 + activated SrGa 2 Si 2 O 8 phosphor has been measured with an excitation wavelength at 359 nm and it exhibits two emission bands at 454 and 472 nm due to 1 D 2  →  3 F 4 and 1 G 4  →  3 H 6 transitions respectively. In thermoluminescence study, γ-irradiatedthermoluminescence glow curve of SrGa 2 Si 2 O 8 :Dy 3 + phosphor shows two well defined peaks at 293 °C (peak1)and 170 °C (peak2) whereas thermoluminescence glow curve of SrGa 2 Si 2 O 8 :Tm 3 + phosphor shows peaks at 292 °C (peak1) and 184 °C (peak2) indicating that two sets of traps are being activated within the particular temperature range and the trapping parameters associated with the prominent glow peaks of SrGa 2 Si 2 O 8 :Dy 3 + and SrGa 2 Si 2 O 8 :Tm 3 + are calculated using Chen's peak shape and initial rise method.From the Mechanoluminescence study, only one glow peak has been observed. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Analytical drain current model for symmetric dual-gate amorphous indium gallium zinc oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Qin, Ting; Liao, Congwei; Huang, Shengxiang; Yu, Tianbao; Deng, Lianwen

    2018-01-01

    An analytical drain current model based on the surface potential is proposed for amorphous indium gallium zinc oxide (a-InGaZnO) thin-film transistors (TFTs) with a synchronized symmetric dual-gate (DG) structure. Solving the electric field, surface potential (φS), and central potential (φ0) of the InGaZnO film using the Poisson equation with the Gaussian method and Lambert function is demonstrated in detail. The compact analytical model of current-voltage behavior, which consists of drift and diffusion components, is investigated by regional integration, and voltage-dependent effective mobility is taken into account. Comparison results demonstrate that the calculation results obtained using the derived models match well with the simulation results obtained using a technology computer-aided design (TCAD) tool. Furthermore, the proposed model is incorporated into SPICE simulations using Verilog-A to verify the feasibility of using DG InGaZnO TFTs for high-performance circuit designs.

  6. Aqueous Solution-Deposited Gallium Oxide Dielectric for Low-Temperature, Low-Operating-Voltage Indium Oxide Thin-Film Transistors: A Facile Route to Green Oxide Electronics.

    PubMed

    Xu, Wangying; Cao, Hongtao; Liang, Lingyan; Xu, Jian-Bin

    2015-07-15

    We reported a novel aqueous route to fabricate Ga2O3 dielectric at low temperature. The formation and properties of Ga2O3 were investigated by a wide range of characterization techniques, revealing that Ga2O3 films could effectively block leakage current even after annealing in air at 200 °C. Furthermore, all aqueous solution-processed In2O3/Ga2O3 TFTs fabricated at 200 and 250 °C showed mobilities of 1.0 and 4.1 cm2 V(-1) s(-1), on/off current ratio of ∼10(5), low operating voltages of 4 V, and negligible hysteresis. Our study represents a significant step toward the development of low-cost, low-temperature, and large-area green oxide electronics.

  7. Methanol, ethanol and hydrogen sensing using metal oxide and metal (TiO(2)-Pt) composite nanoclusters on GaN nanowires: a new route towards tailoring the selectivity of nanowire/nanocluster chemical sensors.

    PubMed

    Aluri, Geetha S; Motayed, Abhishek; Davydov, Albert V; Oleshko, Vladimir P; Bertness, Kris A; Sanford, Norman A; Mulpuri, Rao V

    2012-05-04

    We demonstrate a new method for tailoring the selectivity of chemical sensors using semiconductor nanowires (NWs) decorated with metal and metal oxide multicomponent nanoclusters (NCs). Here we present the change of selectivity of titanium dioxide (TiO(2)) nanocluster-coated gallium nitride (GaN) nanowire sensor devices on the addition of platinum (Pt) nanoclusters. The hybrid sensor devices were developed by fabricating two-terminal devices using individual GaN NWs followed by the deposition of TiO(2) and/or Pt nanoclusters (NCs) using the sputtering technique. This paper present the sensing characteristics of GaN/(TiO(2)-Pt) nanowire-nanocluster (NWNC) hybrids and GaN/(Pt) NWNC hybrids, and compare their selectivity with that of the previously reported GaN/TiO(2) sensors. The GaN/TiO(2) NWNC hybrids showed remarkable selectivity to benzene and related aromatic compounds, with no measurable response for other analytes. Addition of Pt NCs to GaN/TiO(2) sensors dramatically altered their sensing behavior, making them sensitive only to methanol, ethanol and hydrogen, but not to any other chemicals we tested. The GaN/(TiO(2)-Pt) hybrids were able to detect ethanol and methanol concentrations as low as 100 nmol mol(-1) (ppb) in air in approximately 100 s, and hydrogen concentrations from 1 µmol mol(-1) (ppm) to 1% in nitrogen in less than 60 s. However, GaN/Pt NWNC hybrids showed limited sensitivity only towards hydrogen and not towards any alcohols. All these hybrid sensors worked at room temperature and are photomodulated, i.e. they responded to analytes only in the presence of ultraviolet (UV) light. We propose a qualitative explanation based on the heat of adsorption, ionization energy and solvent polarity to explain the observed selectivity of the different hybrids. These results are significant from the standpoint of applications requiring room-temperature hydrogen sensing and sensitive alcohol monitoring. These results demonstrate the tremendous potential for

  8. Impact of oxygen precursor flow on the forward bias behavior of MOCVD-Al2O3 dielectrics grown on GaN

    NASA Astrophysics Data System (ADS)

    Chan, Silvia H.; Bisi, Davide; Liu, Xiang; Yeluri, Ramya; Tahhan, Maher; Keller, Stacia; DenBaars, Steven P.; Meneghini, Matteo; Mishra, Umesh K.

    2017-11-01

    This paper investigates the effects of the oxygen precursor flow supplied during metalorganic chemical vapor deposition (MOCVD) of Al2O3 films on the forward bias behavior of Al2O3/GaN metal-oxide-semiconductor capacitors. The low oxygen flow (100 sccm) delivered during the in situ growth of Al2O3 on GaN resulted in films that exhibited a stable capacitance under forward stress, a lower density of stress-generated negative fixed charges, and a higher dielectric breakdown strength compared to Al2O3 films grown under high oxygen flow (480 sccm). The low oxygen grown Al2O3 dielectrics exhibited lower gate current transients in stress/recovery measurements, providing evidence of a reduced density of trap states near the GaN conduction band and an enhanced robustness under accumulated gate stress. This work reveals oxygen flow variance in MOCVD to be a strategy for controlling the dielectric properties and performance.

  9. Electrochemically deposited gallium oxide nanostructures on silicon substrates

    PubMed Central

    2014-01-01

    We report a synthesis of β-Ga2O3 nanostructures on Si substrate by electrochemical deposition using a mixture of Ga2O3, HCl, NH4OH, and H2O. The presence of Ga3+ ions contributed to the deposition of Ga2O3 nanostructures on the Si surface with the assistance of applied potentials. The morphologies of the grown structures strongly depended on the molarity of Ga2O3 and pH level of electrolyte. β-Ga2O3 nanodot-like structures were grown on Si substrate at a condition with low molarity of Ga2O3. However, Ga2O3 nanodot structures covered with nanorods on top of their surfaces were obtained at higher molarity, and the densities of nanorods seem to increase with the decrease of pH level. High concentration of Ga3+ and OH- ions may promote the reaction of each other to produce Ga2O3 nanorods in the electrolyte. Such similar nature of Ga2O3 nanorods was also obtained by using hydrothermal process. The grown structures seem to be interesting for application in electronic and optoelectronic devices as well as to be used as a seed structure for subsequent chemical synthesis of GaN by thermal transformation method. PMID:24629107

  10. Phase Constitution in Sr and Mg doped LaGaO3 System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, F; Bordia, Rajendra K.; Pederson, Larry R.

    Sr and Mg doped lanthanum gallate perovskites (La1-xSrxGa1-yMgyO3-delta, shortened as LSGM-XY where X and Y are the doping levels in mole percentage (mol%) at the La- or A-site and the Ga- or B-site, respectively) are promising electrolyte materials for intermediate temperature solid oxide fuel cells (SOFCs). In this study, we have investigated the primary perovskites as well as the secondary phases formed in terms of doping content changes and A/B ratio variations in these materials. Fifteen powder compositions (three doping levels, X = Y = 0, 0.1, and 0.2 mol; and five A/B ratios 0.95, 0.98, 1.00, 1.02, and 1.05)more » were synthesized by the glycine-nitrate combustion process (GNP). These powders were equilibrated by calcining at 1500 degreesC for 9 h prior to crystalline phase characterization by X-ray powder diffraction (XRD). From the results of this study and the available phase diagrams in the literature on constituent binary oxide systems, we propose a crystalline phase diagram of the La2O3-SrO-Ga2O3-MgO quaternary system at elevated temperature (1500 degreesC). (C) 2003 Elsevier Ltd. All rights reserved« less

  11. ALD TiO x as a top-gate dielectric and passivation layer for InGaZnO115 ISFETs

    NASA Astrophysics Data System (ADS)

    Pavlidis, S.; Bayraktaroglu, B.; Leedy, K.; Henderson, W.; Vogel, E.; Brand, O.

    2017-11-01

    The suitability of atomic layer deposited (ALD) titanium oxide (TiO x ) as a top gate dielectric and passivation layer for indium gallium zinc oxide (InGaZnO115) ion sensitive field effect transistors (ISFETs) is investigated. TiO x is an attractive barrier material, but reports of its use for InGaZnO thin film transistor (TFT) passivation have been conflicting thus far. In this work, it is found that the passivated TFT’s behavior depends on the TiO x deposition temperature, affecting critical device characteristics such as threshold voltage, field-effect mobility and sub-threshold swing. An O2 annealing step is required to recover TFT performance post passivation. It is also observed that the positive bias stress response of the passivated TFTs improves compared the original bare device. Secondary ion mass spectroscopy excludes the effects of hydrogen doping and inter-diffusion as sources of the temperature-dependent performance change, therefore indicating that oxygen gettering induced by TiO x passivation is the likely source of oxygen vacancies and, consequently, carriers in the InGaZnO film. It is also shown that potentiometric sensing using ALD TiO x exhibits a near Nernstian response to pH change, as well as minimizes V TH drift in TiO x passivated InGaZnO TFTs immersed in an acidic liquid. These results add to the understanding of InGaZnO passivation effects and underscore the potential for low-temperature fabricated InGaZnO ISFETs to be used as high-performance mobile chemical sensors.

  12. Violet-green excitation for NIR luminescence of Yb3+ ions in Bi2O3-B2O3-SiO2-Ga2O3 glasses.

    PubMed

    Li, Weiwei; Cheng, Jimeng; Zhao, Guoying; Chen, Wei; Hu, Lili; Guzik, Malgorzata; Boulon, Georges

    2014-04-21

    60Bi(2)O(3)-20B(2)O(3)-10SiO(2)-10Ga(2)O(3) glasses doped with 1-9 mol% Yb(2)O(3) were prepared and investigated mainly on their violet-green excitation for the typical NIR emission of Yb(3+), generally excited in the NIR. Two violet excitation bands at 365 nm and 405 nm are related to Yb(2+) and Bi(3+). 465 nm excitation band and 480 nm absorption band in the blue-green are assigned to Bi(0) metal nanoparticles/grains. Yb-content-dependence of the excitation and absorption means that Bi(0) is the reduced product of Bi(3+), but greatly competed by the redox reaction of Yb(2+) ↔ Yb(3+). It is proved that the violet-green excitations result in the NIR emission of Yb(3+). On the energy transfer, the virtual level of Yb(3+)-Yb(3+) as well as Bi(0) dimers probably plays an important role. An effective and controllable way is suggested to achieve nano-optical applications by Bi(0) metal nanoparticles/grains and Yb(3+).

  13. Luminescence spectra of chromium-doped LiGaO 2 crystals as indicator of their phase heterogeneity

    NASA Astrophysics Data System (ADS)

    Meylman, Mikhail L.

    2006-02-01

    The luminescent properties of chromium-doped LiGaO2 single crystals grown from melt by Cz pulling technique are considered and compared with similar data for the other stable crystalline compounds in Li2O-Ga2O3 oxide system. It is proposed that co-crystallization of large LiGaO2 single crystal and a great number of LiGa5O8 spinel microcrystallites of nano scale dimensions is the key cause for appearance of numerous inclusions observed in LiGaO2 plates used as substrates at the III nitride films epitaxial growth.

  14. Formation of self-organized nanoporous anodic oxide from metallic gallium.

    PubMed

    Pandey, Bipin; Thapa, Prem S; Higgins, Daniel A; Ito, Takashi

    2012-09-25

    This paper reports the formation of self-organized nanoporous gallium oxide by anodization of solid gallium metal. Because of its low melting point (ca. 30 °C), metallic gallium can be shaped into flexible structures, permitting the fabrication of nanoporous anodic oxide monoliths within confined spaces like the inside of a microchannel. Here, solid gallium films prepared on planar substrates were employed to investigate the effects of anodization voltage (1, 5, 10, 15 V) and H(2)SO(4) concentration (1, 2, 4, 6 M) on anodic oxide morphology. Self-organized nanopores aligned perpendicular to the film surface were obtained upon anodization of gallium films in ice-cooled 4 and 6 M aqueous H(2)SO(4) at 10 and 15 V. Nanopore formation could be recognized by an increase in anodic current after a current decrease reflecting barrier oxide formation. The average pore diameter was in the range of 18-40 nm with a narrow diameter distribution (relative standard deviation ca. 10-20%), and was larger at lower H(2)SO(4) concentration and higher applied voltage. The maximum thickness of nanoporous anodic oxide was ca. 2 μm. In addition, anodic formation of self-organized nanopores was demonstrated for a solid gallium monolith incorporated at the end of a glass capillary. Nanoporous anodic oxide monoliths formed from a fusible metal will lead to future development of unique devices for chemical sensing and catalysis.

  15. Play the heavy: An effective mass study for α-Fe{sub 2}O{sub 3} and corundum oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neufeld, Ofer; Caspary Toroker, Maytal, E-mail: maytalc@tx.technion.ac.il

    2016-04-28

    Iron(III) oxide (α-Fe{sub 2}O{sub 3}) is a known water splitting catalyst commonly used in photoelectrochemical cells. These cells are severely impaired by poor conductivity in α-Fe{sub 2}O{sub 3}, and resolving the conductivity issue is therefore crucial. One of the most intrinsic properties of matter, which governs conductivity, is the carrier effective masses. In this work, we investigate the carrier effective masses in α-Fe{sub 2}O{sub 3} and other corundum oxides, including Al{sub 2}O{sub 3}, Cr{sub 2}O{sub 3}, Ga{sub 2}O{sub 3}, and In{sub 2}O{sub 3} with different theoretical constructs: density functional theory (DFT), DFT+U, hybrid DFT, and G{sub 0}W{sub 0}. We findmore » DFT sufficiently describes the carrier masses and a quasi-particle theory is only required for accuracies better than 30% for the conduction band effective mass. Additionally, we compare the density of states (DOS) and band effective mass approximations and conclude the DOS effective mass provides poor results whenever the band structure is anisotropic. We find that the charge carriers in Fe{sub 2}O{sub 3} “play the heavy” since they have large effective masses that reduce conductivity and device efficiency. Finally, we conclude that the less heavy electron effective masses of other corundum oxides studied relative to Fe{sub 2}O{sub 3} could contribute to efficiency improvements in Fe{sub 2}O{sub 3} upon Al{sub 2}O{sub 3}, Ga{sub 2}O{sub 3}, and In{sub 2}O{sub 3} coverage.« less

  16. GaAsP on GaP top solar cells

    NASA Technical Reports Server (NTRS)

    Mcneely, J. B.; Negley, G. H.; Barnett, A. M.

    1985-01-01

    GaAsP on GaP top solar cells as an attachment to silicon bottom solar cells are being developed. The GaAsP on GaP system offers several advantages for this top solar cell. The most important is that the gallium phosphide substrate provides a rugged, transparent mechanical substrate which does not have to be removed or thinned during processing. Additional advantages are that: (1) gallium phosphide is more oxidation resistant than the III-V aluminum compounds, (2) a range of energy band gaps higher than 1.75 eV is readily available for system efficiency optimization, (3) reliable ohmic contact technology is available from the light-emitting diode industry, and (4) the system readily lends itself to graded band gap structures for additional increases in efficiency.

  17. Insulator-semiconductor interface fixed charges in AlGaN/GaN metal-insulator-semiconductor devices with Al2O3 or AlTiO gate dielectrics

    NASA Astrophysics Data System (ADS)

    Le, Son Phuong; Nguyen, Duong Dai; Suzuki, Toshi-kazu

    2018-01-01

    We have investigated insulator-semiconductor interface fixed charges in AlGaN/GaN metal-insulator-semiconductor (MIS) devices with Al2O3 or AlTiO (an alloy of Al2O3 and TiO2) gate dielectrics obtained by atomic layer deposition on AlGaN. Analyzing insulator-thickness dependences of threshold voltages for the MIS devices, we evaluated positive interface fixed charges, whose density at the AlTiO/AlGaN interface is significantly lower than that at the Al2O3/AlGaN interface. This and a higher dielectric constant of AlTiO lead to rather shallower threshold voltages for the AlTiO gate dielectric than for Al2O3. The lower interface fixed charge density also leads to the fact that the two-dimensional electron concentration is a decreasing function of the insulator thickness for AlTiO, whereas being an increasing function for Al2O3. Moreover, we discuss the relationship between the interface fixed charges and interface states. From the conductance method, it is shown that the interface state densities are very similar at the Al2O3/AlGaN and AlTiO/AlGaN interfaces. Therefore, we consider that the lower AlTiO/AlGaN interface fixed charge density is not owing to electrons trapped at deep interface states compensating the positive fixed charges and can be attributed to a lower density of oxygen-related interface donors.

  18. Nano SnO 2-Al 2O 3 mixed oxide and SnO 2-Al 2O 3-carbon composite oxides as new and novel electrodes for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Jayalakshmi, M.; Venugopal, N.; Raja, K. Phani; Rao, M. Mohan

    New nano-materials like SnO 2-Al 2O 3 and SnO 2-Al 2O 3-carbon were synthesized by a single step hydrothermal method in searching for novel mixed oxides with high electrochemical double layer capacitance. A SnO 2-Al 2O 3-carbon sample was calcined at 600 °C and tested for its performance. The source of carbon was tetrapropyl ammonium hydroxide. The capacitive behavior of SnO 2 was compared to the performance of SnO 2-Al 2O 3, SnO 2-Al 2O 3-carbon and calcined SnO 2-Al 2O 3-carbon using the techniques of cyclic voltammetry, double potential step, chronopotentiometry and E-log I polarization. In 0.1 M NaCl solutions, SnO 2-Al 2O 3 gave the best performance with a value of 119 Fg -1 and cycled 1000 times. The nano-material mixed oxides were characterized by TEM, XRD, ICP-AES and SEM-EDAX.

  19. Solid oxide reversible cells (SORCs) using LaGaO3-based oxide electrolyte and oxide fuel electrode

    NASA Astrophysics Data System (ADS)

    Ishihara, Tatsumi

    2017-09-01

    Activity of La0.8Sr0.2FeO3 (LSF) to the fuel electrode reaction in Solid Oxide Reversible Cells (SORCs) was investigated by using La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) and Ba0.6La0.4CoO3 (BLC) as electrolyte and air electrode, respectively. In electrolysis mode (SOEC), LSF electrode exhibited small overpotential under the atmosphere without H2 co-feeding; the current densities reached -1.42, -0.92, -0.36 A/cm2 at 1.4 V at 900, 800, 700 °C, respectively and H2 formation rate is well agreed with that estimated by Faraday's law. On the other hand, in the SOEC-SOFC reversible mode with the gas composition of 20% steam /20%H2/60%Ar, the maximum power densities of 0.42, 0.28, 0.11 W/cm2 were achieved at 900, 800 and 700 °C, respectively. In addition, the cyclic reversible operation was also investigated at 800 °C, and it was found that the cell showed high stability over 30 cycles. DC polarization measurement suggests that the exchange current density of LSF is 14 mA/cm2 at 700 °C, which is almost the same with that of Ni-YSZ reported. XRD measurement and SEM observation after the reversible measurement suggest that LSF is highly stable under SOEC-SOFC cyclic operation condition. Therefore, LSF is promising as the fuel electrode for SORCs, although the conductivity is not sufficiently high as electrode.

  20. Direct charge carrier injection into Ga2O3 thin films using an In2O3 cathode buffer layer: their optical, electrical and surface state properties

    NASA Astrophysics Data System (ADS)

    Cui, W.; Zhao, X. L.; An, Y. H.; Guo, D. Y.; Qing, X. Y.; Wu, Z. P.; Li, P. G.; Li, L. H.; Cui, C.; Tang, W. H.

    2017-04-01

    Conductive Ga2O3 thin films with an In2O3 buffer layer have been prepared on c-plane sapphire substrates using a laser molecular beam epitaxy technique. The effects of the In2O3 buffer layer on the structure and optical, electrical and surface state properties of the Ga2O3 films have been studied. The change in conductivity of the thin films is attributed to different thicknesses of the In2O3 buffer layer, which determine the concentration of charge carriers injected into the upper Ga2O3 layer from the interface of the bilayer thin films. In addition, the increase in flat band voltage shift and capacitance values as the In2O3 buffer layer thickens are attributed to the increase in surface state density, which also contributes to the rapid shrinkage of the optical band gap of the Ga2O3. With transparency to visible light, high n-type conduction and the ability to tune the optical band gap and surface state density, we propose that Ga2O3/In2O3 bilayer thin film is an ideal n-type semiconductor for fabrication of transparent power devices, solar cell electrodes and gas sensors.

  1. Electrical characteristics of proton-irradiated Sc2O3 passivated AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Luo, B.; Kim, Jihyun; Ren, F.; Gillespie, J. K.; Fitch, R. C.; Sewell, J.; Dettmer, R.; Via, G. D.; Crespo, A.; Jenkins, T. J.; Gila, B. P.; Onstine, A. H.; Allums, K. K.; Abernathy, C. R.; Pearton, S. J.; Dwivedi, R.; Fogarty, T. N.; Wilkins, R.

    2003-03-01

    Sc2O3-passivated AlGaN/GaN high electron mobility transistors (HEMTs) were irradiated with 40 MeV protons to a fluence corresponding to approximately 10 years in low-earth orbit (5×109 cm-2). Devices with an AlGaN cap layer showed less degradation in dc characteristics than comparable GaN-cap devices, consistent with differences in average band energy. The changes in device performance could be attributed completely to bulk trapping effects, demonstrating that the effectiveness of the Sc2O3 layers in passivating surface states in the drain-source region was undiminished by the proton irradiation. Sc2O3-passivated AlGaN/HEMTs appear to be attractive candidates for space and terrestrial applications where resistance to high fluxes of ionizing radiation is a criteria.

  2. Effect of Ga2O3 on the spectroscopic properties of erbium-doped boro-bismuth glasses.

    PubMed

    Ling, Zhou; Ya-Xun, Zhou; Shi-Xun, Dai; Tie-Feng, Xu; Qiu-Hua, Nie; Xiang, Shen

    2007-11-01

    The spectroscopic properties and thermal stability of Er3+-doped Bi2O3-B2O3-Ga2O3 glasses are investigated experimentally. The effect of Ga2O3 content on absorption spectra, the Judd-Ofelt parameters Omega t (t=2, 4, 6), fluorescence spectra and the lifetimes of Er3+:4I 13/2 level are also investigated, and the stimulated emission cross-section is calculated from McCumber theory. With the increasing of Ga2O3 content in the glass composition, the Omega t (t=2, 4, 6) parameters, fluorescence full width at half maximum (FWHM) and the 4I 13/2 lifetimes of Er3+ first increase, reach its maximum at Ga2O3=8 mol.%, and then decrease. The results show that Er3+-doped 50Bi2O3-42B2O3-8Ga2O3 glass has the broadest FWHM (81nm) and large stimulated emission cross-section (1.03 x1 0(-20)cm2) in these glass samples. Compared with other glass hosts, the gain bandwidth properties of Er+3-doped Bi2O3-B2O3-Ga2O3 glass is better than tellurite, silicate, phosphate and germante glasses. In addition, the lifetime of 4I 13/2 level of Er(3+) in bismuth-based glass, compared with those in other glasses, is relative low due to the high-phonon energy of the B-O bond, the large refractive index of the host and the existence of OH* in the glass. At the same time, the glass thermal stability is improved in which the substitution of Ga2O3 for B2O3 strengthens the network structure. The suitability of bismuth-based glass as a host for a Er3+-doped broadband amplifier and its advantages over other glass hosts are also discussed.

  3. Vacancy-type defects in Al2O3/GaN structure probed by monoenergetic positron beams

    NASA Astrophysics Data System (ADS)

    Uedono, Akira; Nabatame, Toshihide; Egger, Werner; Koschine, Tönjes; Hugenschmidt, Christoph; Dickmann, Marcel; Sumiya, Masatomo; Ishibashi, Shoji

    2018-04-01

    Defects in the Al2O3(25 nm)/GaN structure were probed by using monoenergetic positron beams. Al2O3 films were deposited on GaN by atomic layer deposition at 300 °C. Temperature treatment above 800 °C leads to the introduction of vacancy-type defects in GaN due to outdiffusion of atoms from GaN into Al2O3. The width of the damaged region was determined to be 40-50 nm from the Al2O3/GaN interface, and some of the vacancies were identified to act as electron trapping centers. In the Al2O3 film before and after annealing treatment at 300-900 °C, open spaces with three different sizes were found to coexist. The density of medium-sized open spaces started to decrease above 800 °C, which was associated with the interaction between GaN and Al2O3. Effects of the electron trapping/detrapping processes of interface states on the flat band voltage and the defects in GaN were also discussed.

  4. Investigation of luminescence and laser transition of Dy3+ ion in P2O5sbnd PbOsbnd Bi2O3sbnd R2O3 (R = Al, Ga, In) glasses

    NASA Astrophysics Data System (ADS)

    Ram, G. Chinna; Narendrudu, T.; Suresh, S.; Kumar, A. Suneel; Rao, M. V. Sambasiva; Kumar, V. Ravi; Rao, D. Krishna

    2017-04-01

    P2O5sbnd PbOsbnd Bi2O3sbnd R2O3 (R = Al, Ga, In) glasses doped with Dy2O3 were prepared by melt quenching technique. The prepared glasses were characterized by XRD, optical absorption, FTIR, luminescence studies. Judd-Ofelt parameters have been evaluated for three glass systems from optical absorption spectra and in turn radiative parameters for excited luminescent levels of Dy3+ ion are also calculated. Emission cross section and branching ratio values are observed to high for 6H13/2 level for Dy3+ ion. The yellow to blue intensity ratios and CIE chromaticity coordinates were calculated. Decay curves exhibit non exponential behavior. Quantum efficiency of prepared glasses was measured by using radiative and calculated life times. IR studies, J-O parameters and Y/B ratio values indicate that more asymmetry around Dy3+ ions in Ga2O3 mixed glass was observed. Chromaticity coordinates lie near ideal white light region. These coordinates and CCT values have revealed that all the prepared glasses emit quality white light especially the glasses mixed with Ga2O3 are suitable for development of white LEDs.

  5. Microwave Integrated Circuit Amplifier Designs Submitted to Qorvo for Fabrication with 0.09-micron High Electron Mobility Transistors (HEMTs) using 2-mil Gallium Nitride (GaN) on Silicon Carbide (SiC)

    DTIC Science & Technology

    2016-03-01

    Fabrication with 0.09-µm High-Electron-Mobility Transistors (HEMTs) Using 2-mil Gallium Nitride (GaN) on Silicon Carbide (SiC) by John E Penn...for Fabrication with 0.09-µm High-Electron-Mobility Transistors (HEMTs) using 2-mil Gallium Nitride (GaN) on Silicon Carbide by John E Penn...µm High-Electron-Mobility Transistors (HEMTs) using 2-mil Gallium Nitride (GaN) on Silicon Carbide 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  6. Investigation of the interface characteristics of Y2O3/GaAs under biaxial strain, triaxial strain, and non-strain conditions

    NASA Astrophysics Data System (ADS)

    Shi, Li-Bin; Liu, Xu-Yang; Dong, Hai-Kuan

    2016-09-01

    We investigate the interface behaviors of Y2O3/GaAs under biaxial strain, triaxial strain, and non-strain conditions. This study is performed by first principles calculations based on density functional theory (DFT). First of all, the biaxial strain is realized by changing the lattice constants in ab plane. Averaged electrostatic potential (AEP) is aligned by establishing Y2O3 and GaAs (110) surfaces. The band offsets of Y2O3/GaAs interface under biaxial strain are investigated by generalized gradient approximation and Heyd-Scuseria-Ernzerhof (HSE) functionals. The interface under biaxial strain is suitable for the design of metal oxide semiconductor (MOS) devices because the valence band offsets (VBO) and conduction band offsets (CBO) are larger than 1 eV. Second, the triaxial strain is applied to Y2O3/GaAs interface by synchronously changing the lattice constants in a, b, and c axis. The band gaps of Y2O3 and GaAs under triaxial strain are investigated by HSE functional. We compare the VBO and CBO under triaxial strain with those under biaxial strain. Third, in the absence of lattice strain, the formation energies, charge state switching levels, and migration barriers of native defects in Y2O3 are assessed. We investigate how they will affect the MOS device performance. It is found that VO+2 and Oi-2 play a very dangerous role in MOS devices. Finally, a direct tunneling leakage current model is established. The model is used to analyze current and voltage characteristics of the metal/Y2O3/GaAs.

  7. Gallium

    USGS Publications Warehouse

    Foley, Nora K.; Jaskula, Brian W.; Kimball, Bryn E.; Schulte, Ruth F.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Gallium is a soft, silvery metallic element with an atomic number of 31 and the chemical symbol Ga. Gallium is used in a wide variety of products that have microelectronic components containing either gallium arsenide (GaAs) or gallium nitride (GaN). GaAs is able to change electricity directly into laser light and is used in the manufacture of optoelectronic devices (laser diodes, light-emitting diodes [LEDs], photo detectors, and solar cells), which are important for aerospace and telecommunications applications and industrial and medical equipment. GaAs is also used in the production of highly specialized integrated circuits, semiconductors, and transistors; these are necessary for defense applications and high-performance computers. For example, cell phones with advanced personal computer-like functionality (smartphones) use GaAs-rich semiconductor components. GaN is used principally in the manufacture of LEDs and laser diodes, power electronics, and radio-frequency electronics. Because GaN power transistors operate at higher voltages and with a higher power density than GaAs devices, the uses for advanced GaN-based products are expected to increase in the future. Gallium technologies also have large power-handling capabilities and are used for cable television transmission, commercial wireless infrastructure, power electronics, and satellites. Gallium is also used for such familiar applications as screen backlighting for computer notebooks, flat-screen televisions, and desktop computer monitors.Gallium is dispersed in small amounts in many minerals and rocks where it substitutes for elements of similar size and charge, such as aluminum and zinc. For example, gallium is found in small amounts (about 50 parts per million) in such aluminum-bearing minerals as diaspore-boehmite and gibbsite, which form bauxite deposits, and in the zinc-sulfide mineral sphalerite, which is found in many mineral deposits. At the present time, gallium metal is derived mainly as a

  8. High-pressure synthesis and crystal structures of the strontium oxogallates Sr2Ga2O5 and Sr5Ga6O14

    NASA Astrophysics Data System (ADS)

    Kahlenberg, Volker; Goettgens, Valerie; Mair, Philipp; Schmidmair, Daniela

    2015-08-01

    High-pressure synthesis experiments in a piston-cylinder apparatus at 1.5 GPa/3.0 GPa and 1000 °C resulted in the formation of single-crystals of Sr2Ga2O5 and Sr5Ga6O14, respectively. The structures of both compounds have been solved from single-crystal diffraction data sets using direct methods. The first compound is orthorhombic with space group type Pbca (a=10.0021(4) Å, b=9.601(4) Å, c=10.6700(4) Å, V=1024.6(4) Å3, Mr=394.68 u, Z=8, Dx=5.12 g/cm3) and belongs to the group of single layer gallates. Individual sheets are parallel to (0 0 1) and can be built from the condensation of unbranched vierer single chains running along [0 1 0]. The layers are characterized by the presence of four- and strongly elliptical eight-membered rings of corner connected tetrahedra in UUDD and UUUUDDDD conformation. Strontium atoms are sandwiched between the tetrahedral layers for charge compensation and are coordinated by six and seven oxygen ligands, respectively. Sr2Ga2O5 is isotypic with several other double sulfides and selenides. To the best of our knowledge, it is the first example of an oxide with this structure type. From a structural point of view, Sr5Ga6O14 is a phyllogallate as well. The crystal structure adopts the monoclinic space group P21/c (a=8.1426(3) Å, b=8.1803(3) Å, c=10.8755(4) Å, β=91.970(4)° V=723.98(5) Å3, Mr=1080.42 u, Z=2, Dx=4.96 g/cm3). Individual sheets extend along (0 0 1). Basic building units are unbranched dreier single chains parallel to [1 0 0]. The layers contain tertiary (Q3) und quaternary (Q4) connected [GaO4]-tetrahedra in the ratio 2:1 resulting in a Ga:O ratio of 3:7 and the formation of exclusively five-membered rings. Linkage between adjacent tetrahedral sheets is provided by three symmetrically independent strontium ions which are surrounded by six to eight oxygen atoms. The layers in Sr5Ga6O14 are similar to those observed in the melilite structure-type. Crystallochemical relationships between the present phases and other

  9. Gallium(III)/4-(2-pyridylazo)resorcinol system in water and SDS solution: kinetics and thermodynamics.

    PubMed

    Biver, T; Boggioni, A; Secco, F; Venturini, M

    2008-01-01

    The equilibria and kinetics of the complex formation and dissociation reaction between gallium(III) and PAR [4-(2-pyridylazo)resorcinol] have been investigated in water and in the presence of SDS micelles. The reactive form of Ga(III) is GaOH2+ in both cases. The addition of SDS results in an increase of both the binding affinity and velocity, the maximum accelerating effect being observed just above the cmc value of SDS that, under the conditions of the experiments, is 5.6 x 10-3 M. At pH = 3.2, the maximum value of the equilibrium constant ratio Kapp(SDS)/Kapp(H2O) is 27.4, whereas that of the binding rate constants kf(SDS)/kf(H2O) is 16. The results are interpreted in terms of increased concentrations of the reactants on the micelle surface and on competition of PAR and SDS for GaOH2+.

  10. Synthesis of Ga 2O 3 chains with closely spaced knots connected by nanowires

    NASA Astrophysics Data System (ADS)

    Dai, L.; You, L. P.; Duan, X. F.; Lian, W. C.; Qin, G. G.

    2004-07-01

    Chains of closely spaced metal or semiconductor particles have potential applications in optoelectronics and single electron devices. We report, for the first time, the synthesis of Ga 2O 3 chains with closely spaced knots connected by nanowires using the thermal evaporation method with a specially designed quartz boat. The Ga 2O 3 chains grew only on the Si substrates where Au catalyst or Ga droplets were coated. The average diameter of the knots is about 450 nm and that of the nanowires is about 50 nm. The selected area electron diffraction of either a knot or a connecting nanowire includes two sets of overlapped single crystal electron diffraction patterns which belong to the [1 0 2] and [1 0 1¯] crystal zone axes of the monoclinic β-Ga 2O 3 phase, respectively. The knot and its neighbor nanowire have the common ( 2¯ 0 1) growth planes at their interface. A mechanism model for the Ga 2O 3 chains synthesis based on the vapor-liquid-solid mechanism is discussed.

  11. Enhancement of CO Evolution by Modification of Ga2O3 with Rare-Earth Elements for the Photocatalytic Conversion of CO2 by H2O.

    PubMed

    Tatsumi, Hiroyuki; Teramura, Kentaro; Huang, Zeai; Wang, Zheng; Asakura, Hiroyuki; Hosokawa, Saburo; Tanaka, Tsunehiro

    2017-12-12

    Modification of the surface of Ga 2 O 3 with rare-earth elements enhanced the evolution of CO as a reduction product in the photocatalytic conversion of CO 2 using H 2 O as an electron donor under UV irradiation in aqueous NaHCO 3 as a pH buffer, with the rare-earth species functioning as a CO 2 capture and storage material. Isotope experiments using 13 CO 2 as a substrate clearly revealed that CO was generated from the introduced gaseous CO 2 . In the presence of the NaHCO 3 additive, the rare-earth (RE) species on the Ga 2 O 3 surface are transformed into carbonate hydrates (RE 2 (CO 3 ) 3 ·nH 2 O) and/or hydroxycarbonates (RE 2 (OH) 2(3-x) (CO 3 ) x ) which are decomposed upon photoirradiation. Consequently, Ag-loaded Yb-modified Ga 2 O 3 exhibits much higher activity (209 μmol h -1 of CO) than the pristine Ag-loaded Ga 2 O 3 . The further modification of the surface of the Yb-modified Ga 2 O 3 with Zn afforded a selectivity toward CO evolution of 80%. Thus, we successfully achieved an efficient Ag-loaded Yb- and Zn-modified Ga 2 O 3 photocatalyst with high activity and controllable selectivity, suitable for use in artificial photosynthesis.

  12. Influence of High-Energy Proton Irradiation on β-Ga2O3 Nanobelt Field-Effect Transistors.

    PubMed

    Yang, Gwangseok; Jang, Soohwan; Ren, Fan; Pearton, Stephen J; Kim, Jihyun

    2017-11-22

    The robust radiation resistance of wide-band gap materials is advantageous for space applications, where the high-energy particle irradiation deteriorates the performance of electronic devices. We report on the effects of proton irradiation of β-Ga 2 O 3 nanobelts, whose energy band gap is ∼4.85 eV at room temperature. Back-gated field-effect transistor (FET) based on exfoliated quasi-two-dimensional β-Ga 2 O 3 nanobelts were exposed to a 10 MeV proton beam. The proton-dose- and time-dependent characteristics of the radiation-damaged FETs were systematically analyzed. A 73% decrease in the field-effect mobility and a positive shift of the threshold voltage were observed after proton irradiation at a fluence of 2 × 10 15 cm -2 . Greater radiation-induced degradation occurs in the conductive channel of the β-Ga 2 O 3 nanobelt than at the contact between the metal and β-Ga 2 O 3 . The on/off ratio of the exfoliated β-Ga 2 O 3 FETs was maintained even after proton doses up to 2 × 10 15 cm -2 . The radiation-induced damage in the β-Ga 2 O 3 -based FETs was significantly recovered after rapid thermal annealing at 500 °C. The outstanding radiation durability of β-Ga 2 O 3 renders it a promising building block for space applications.

  13. Growth and characterization of sol-gel derived CuGaO2 semiconductor thin films for UV photodetector application

    NASA Astrophysics Data System (ADS)

    Tsay, Chien-Yie; Chen, Ching-Lien

    2017-06-01

    In this study, a p-type wide-bandgap oxide semiconductor CuGaO2 thin film was grown on quartz substrate by sol-gel method. The authors report the influence of annealing temperature on the phase transformation, structural features, and electrical properties of sol-gel derived Cu-Ga-O thin films. At relatively low annealing temperatures (≤900 °C), the films are a mixture of CuGa2O4, CuGaO2, and CuO phases. At relatively high annealing temperatures (≥925 °C), the majority phase in the films is delafossite CuGaO2. All as-prepared Cu-Ga-O thin films exhibited p-type conductivity, as confirmed by Hall measurements. The mean electrical resistivity of the Cu-Ga-O films decreased from 3.54×104 Ω-cm to 1.35×102 Ω-cm and then increased slightly to 3.51×102 Ω-cm when the annealing temperature was increased from 850 °C to 950 °C. We found that annealing the Cu-based oxide thin films at 925 °C produced nearly phase-pure CuGaO2 thin films with good densification. Such thin films exhibited the best electrical properties: a mean electrical resistivity of 1.35×102 Ω-cm, and a mean hole concentration of 1.60×1016 cm-3. In addition, we also fabricated and characterized MSM-type CuGaO2 UV photodetectors on quartz substrates.

  14. High breakdown electric field in β-Ga2O3/graphene vertical barristor heterostructure

    NASA Astrophysics Data System (ADS)

    Yan, Xiaodong; Esqueda, Ivan S.; Ma, Jiahui; Tice, Jesse; Wang, Han

    2018-01-01

    In this work, we study the high critical breakdown field in β-Ga2O3 perpendicular to its (100) crystal plane using a β-Ga2O3/graphene vertical heterostructure. Measurements indicate a record breakdown field of 5.2 MV/cm perpendicular to the (100) plane that is significantly larger than the previously reported values on lateral β-Ga2O3 field-effect-transistors (FETs). This result is compared with the critical field typically measured within the (100) crystal plane, and the observed anisotropy is explained through a combined theoretical and experimental analysis.

  15. Melioration of Optical and Electrical Performance of Ga-N Codoped ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Narayanan, Nripasree; Deepak, N. K.

    2018-06-01

    Transparent and conducting p-type zinc oxide (ZnO) thin films doped with gallium (Ga) and nitrogen (N) simultaneously were deposited on glass substrates by spray pyrolysis technique. Phase composition analysis by X-ray diffraction confirmed the polycrystallinity of the films with pure ZnO phase. Energy dispersive X-ray analysis showed excellent incorporation of N in the ZnO matrix by means of codoping. The optical transmittance of N monodoped film was poor but got improved with Ga-N codoping and also resulted in the enhancement of optical energy gap. Hole concentration increased with codoping and consequently, lower resistivity and high stability were obtained.

  16. High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer.

    PubMed

    Muhammed, M M; Roldan, M A; Yamashita, Y; Sahonta, S-L; Ajia, I A; Iizuka, K; Kuramata, A; Humphreys, C J; Roqan, I S

    2016-07-14

    We demonstrate the high structural and optical properties of InxGa1-xN epilayers (0 ≤ x ≤ 23) grown on conductive and transparent (01)-oriented β-Ga2O3 substrates using a low-temperature GaN buffer layer rather than AlN buffer layer, which enhances the quality and stability of the crystals compared to those grown on (100)-oriented β-Ga2O3. Raman maps show that the 2″ wafer is relaxed and uniform. Transmission electron microscopy (TEM) reveals that the dislocation density reduces considerably (~4.8 × 10(7) cm(-2)) at the grain centers. High-resolution TEM analysis demonstrates that most dislocations emerge at an angle with respect to the c-axis, whereas dislocations of the opposite phase form a loop and annihilate each other. The dislocation behavior is due to irregular (01) β-Ga2O3 surface at the interface and distorted buffer layer, followed by relaxed GaN epilayer. Photoluminescence results confirm high optical quality and time-resolved spectroscopy shows that the recombination is governed by bound excitons. We find that a low root-mean-square average (≤1.5 nm) of InxGa1-xN epilayers can be achieved with high optical quality of InxGa1-xN epilayers. We reveal that (01)-oriented β-Ga2O3 substrate has a strong potential for use in large-scale high-quality vertical light emitting device design.

  17. A flatter gallium profile for high-efficiency Cu(In,Ga)(Se,S)2 solar cell and improved robustness against sulfur-gradient variation

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Yao; Lee, Wen-Chin; Lin, Albert

    2016-09-01

    Co-optimization of the gallium and sulfur profiles in penternary Cu(In,Ga)(Se,S)2 thin film solar cell and its impacts on device performance and variability are investigated in this work. An absorber formation method to modulate the gallium profiling under low sulfur-incorporation is disclosed, which solves the problem of Ga-segregation in selenization. Flatter Ga-profiles, which lack of experimental investigations to date, are explored and an optimal Ga-profile achieving 17.1% conversion efficiency on a 30 cm × 30 cm sub-module without anti-reflection coating is presented. Flatter Ga-profile gives rise to the higher Voc × Jsc by improved bandgap matching to solar spectrum, which is hard to be achieved by the case of Ga-accumulation. However, voltage-induced carrier collection loss is found, as evident from the measured voltage-dependent photocurrent characteristics based on a small-signal circuit model. The simulation results reveal that the loss is attributed to the synergistic effect of the detrimental gallium and sulfur gradients, which can deteriorate the carrier collection especially in quasi-neutral region (QNR). Furthermore, the underlying physics is presented, and it provides a clear physical picture to the empirical trends of device performance, I-V characteristics, and voltage-dependent photocurrent, which cannot be explained by the standard solar circuit model. The parameter "FGa" and front sulfur-gradient are found to play critical roles on the trade-off between space charge region (SCR) recombination and QNR carrier collection. The co-optimized gallium and sulfur gradients are investigated, and the corresponding process modification for further efficiency-enhancement is proposed. In addition, the performance impact of sulfur-gradient variation is studied, and a gallium design for suppressing the sulfur-induced variability is proposed. Device performances of varied Ga-profiles with front sulfur-gradients are simulated based on a compact device model

  18. Fabrication of gallium hexacyanoferrate modified carbon ionic liquid paste electrode for sensitive determination of hydrogen peroxide and glucose.

    PubMed

    Haghighi, Behzad; Khosravi, Mehdi; Barati, Ali

    2014-07-01

    Gallium hexacyanoferrate (GaHCFe) and graphite powder were homogeneously dispersed into n-dodecylpyridinium hexafluorophosphate and paraffin to fabricate GaHCFe modified carbon ionic liquid paste electrode (CILPE). Mixture experimental design was employed to optimize the fabrication of GaHCFe modified CILPE (GaHCFe-CILPE). A pair of well-defined redox peaks due to the redox reaction of GaHCFe through one-electron process was observed for the fabricated electrode. The fabricated GaHCFe-CILPE exhibited good electrocatalytic activity towards reduction and oxidation of H2O2. The observed sensitivities for the electrocatalytic oxidation and reduction of H2O2 at the operating potentials of +0.8 and -0.2V were about 13.8 and 18.3 mA M(-1), respectively. The detection limit (S/N=3) for H2O2 was about 1 μM. Additionally, glucose oxidase (GOx) was immobilized on GaHCFe-CILPE using two methodology, entrapment into Nafion matrix and cross-linking with glutaraldehyde and bovine serum albumin, in order to fabricate glucose biosensor. Linear dynamic rage, sensitivity and detection limit for glucose obtained by the biosensor fabricated using cross-linking methodology were 0.1-6mM, 0.87 mA M(-1) and 30 μM, respectively and better than those obtained (0.2-6mM, 0.12 mA M(-1) and 50 μM) for the biosensor fabricated using entrapment methodology. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Oxygen-induced Al surface segregation in Al(x)Ga(1-x)As and the effect of Y overlayers on the oxidation of the Y/Al(x)Ga(1-x)As interface

    NASA Technical Reports Server (NTRS)

    Mesarwi, A.; Ignatiev, A.

    1992-01-01

    The oxidation of Al(x)Ga(1-x)As (x = 0.15, AlGaAs) was studied by AES and XPS at 350 C and different oxygen exposures (up to 5 x 10 exp 4 L). Also studied were the effects of yttrium overlayers (theta = 3 ML) on the oxidation of the AlGaAs surface. Substantial oxygen-induced Al surface segregation has been observed for both yttriated and nonyttriated AlGaAs surfaces which increased with increasing oxygen exposure. Also observed is a significant Y-enhanced oxidation of the AlGaAs surface. Oxidation of the yttriated AlGaAs surface was found to be a factor of 4 greater than that of the nonyttriated surface. Also, while oxidation of the nonyttriated AlGaAs yielded mainly Al2O(x) (x less than 3) and only little Ga2O3, the yttriated AlGaAs surface oxide layer was principally Ga2O3 and stoichiometric Al2O3. However, both the yttriated and nonyttriated surfaces were found to contain metallic As within the oxide layer.

  20. Structural and elastoplastic properties of β -Ga2O3 films grown on hybrid SiC/Si substrates

    NASA Astrophysics Data System (ADS)

    Osipov, A. V.; Grashchenko, A. S.; Kukushkin, S. A.; Nikolaev, V. I.; Osipova, E. V.; Pechnikov, A. I.; Soshnikov, I. P.

    2018-04-01

    Structural and mechanical properties of gallium oxide films grown on (001), (011) and (111) silicon substrates with a buffer layer of silicon carbide are studied. The buffer layer was fabricated by the atom substitution method, i.e., one silicon atom per unit cell in the substrate was substituted by a carbon atom by chemical reaction with carbon monoxide. The surface and bulk structure properties of gallium oxide films have been studied by atomic-force microscopy and scanning electron microscopy. The nanoindentation method was used to investigate the elastoplastic characteristics of gallium oxide, and also to determine the elastic recovery parameter of the films under study. The ultimate tensile strength, hardness, elastic stiffness constants, elastic compliance constants, Young's modulus, linear compressibility, shear modulus, Poisson's ratio and other characteristics of gallium oxide have been calculated by quantum chemistry methods based on the PBESOL functional. It is shown that all these properties of gallium oxide are essentially anisotropic. The calculated values are compared with experimental data. We conclude that a change in the silicon orientation leads to a significant reorientation of gallium oxide.

  1. Structural and electrical properties of Pb(Zr ,Ti)O3 grown on (0001) GaN using a double PbTiO3/PbO bridge layer

    NASA Astrophysics Data System (ADS)

    Xiao, Bo; Gu, Xing; Izyumskaya, Natalia; Avrutin, Vitaliy; Xie, Jinqiao; Liu, Huiyong; Morkoç, Hadis

    2007-10-01

    Pb(Zr0.52Ti0.48)O3 films were deposited by rf magnetron sputtering on silicon-doped GaN(0001)/c-sapphire with a PbTiO3/PbO oxide bridge layer grown by molecular beam epitaxy. X-ray diffraction data showed the highly (111)-oriented perovskite phase in lead zirconate titanate (PZT) films with PbTiO3/PbO bridge layers, compared to the pyrochlore phase grown directly on GaN. The in-plane epitaxial relationships were found from x-ray pole figures to be PZT[112¯]‖GaN[11¯00] and PZT[11¯0]‖GaN[112¯0]. The polarization-electric field measurements revealed the ferroelectric behavior with remanent polarization of 30-40μC /cm2 and asymmetric hysteresis loops due to the depletion layer formed in GaN under reverse bias which resulted in a high negative coercive electric field (950kV/cm).

  2. Effects of H2 High-pressure Annealing on HfO2/Al2O3/In0.53Ga0.47As Capacitors: Chemical Composition and Electrical Characteristics.

    PubMed

    Choi, Sungho; An, Youngseo; Lee, Changmin; Song, Jeongkeun; Nguyen, Manh-Cuong; Byun, Young-Chul; Choi, Rino; McIntyre, Paul C; Kim, Hyoungsub

    2017-08-29

    We studied the impact of H 2 pressure during post-metallization annealing on the chemical composition of a HfO 2 /Al 2 O 3 gate stack on a HCl wet-cleaned In 0.53 Ga 0.47 As substrate by comparing the forming gas annealing (at atmospheric pressure with a H 2 partial pressure of 0.04 bar) and H 2 high-pressure annealing (H 2 -HPA at 30 bar) methods. In addition, the effectiveness of H 2 -HPA on the passivation of the interface states was compared for both p- and n-type In 0.53 Ga 0.47 As substrates. The decomposition of the interface oxide and the subsequent out-diffusion of In and Ga atoms toward the high-k film became more significant with increasing H 2 pressure. Moreover, the increase in the H 2 pressure significantly improved the capacitance‒voltage characteristics, and its effect was more pronounced on the p-type In 0.53 Ga 0.47 As substrate. However, the H 2 -HPA induced an increase in the leakage current, probably because of the out-diffusion and incorporation of In/Ga atoms within the high-k stack.

  3. Study of the Anisotropic Elastoplastic Properties of β-Ga2O3 Films Synthesized on SiC/Si Substrates

    NASA Astrophysics Data System (ADS)

    Grashchenko, A. S.; Kukushkin, S. A.; Nikolaev, V. I.; Osipov, A. V.; Osipova, E. V.; Soshnikov, I. P.

    2018-05-01

    The structural and mechanical properties of gallium oxide films grown on silicon crystallographic planes (001), (011), and (111) with a buffer layer of silicon carbide are investigated. Nanoindentation was used to study the elastoplastic properties of gallium oxide and also to determine the elastic recovery parameter of the films under study. The tensile strength, hardness, elasticity tensor, compliance tensor, Young's modulus, Poisson's ratio, and other characteristics of gallium oxide were calculated using quantum chemistry methods. It was found that the gallium oxide crystal is auxetic because, for some stretching directions, the Poisson's ratio takes on negative values. The calculated values correspond quantitatively to the experimental data. It is concluded that the elastoplastic properties of gallium oxide films approximately correspond to the properties of bulk crystals and that a change in the orientation of the silicon surface leads to a significant change in the orientation of gallium oxide.

  4. Photocatalytic overall water splitting promoted by an α-β phase junction on Ga2O3.

    PubMed

    Wang, Xiang; Xu, Qian; Li, Mingrun; Shen, Shuai; Wang, Xiuli; Wang, Yaochuan; Feng, Zhaochi; Shi, Jingying; Han, Hongxian; Li, Can

    2012-12-21

    When Alpha met Beta: a tuneable α-β surface phase junction on Ga(2)O(3) can significantly improve photocatalytic overall water splitting into H(2) and O(2) over individual α-Ga(2)O(3) or β-Ga(2)O(3) surface phases. This enhanced photocatalytic performance is mainly attributed to the efficient charge separation and transfer across the α-β phase junction. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Band alignment of SiO2/(AlxGa1-x)2O3 (0 ≤ x ≤ 0.49) determined by X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Feng, Zhaoqing; Feng, Qian; Zhang, Jincheng; Li, Xiang; Li, Fuguo; Huang, Lu; Chen, Hong-Yan; Lu, Hong-Liang; Hao, Yue

    2018-03-01

    In this work, we report the investigation of the band alignment of SiO2/(AlxGa1-x)2O3 (0 ≤ x ≤ 0.49) utilizing the high resolution X-ray photoelectron spectroscopy (XPS) measurements. The single crystallinity and orientation of β-(AlxGa1-x)2O3 films grown on sapphire by pulsed laser deposition were studied with the high resolution X-ray diffraction. The Ga 2p3/2 and Si 2p core-level spectra as well as valence band spectra were used in the analysis of band alignment. As the mole fraction x of Al increases from 0 to 0.49, the bandgap and conduction band offset values of SiO2/(AlxGa1-x)2O3 increases from 4.9 to 5.6 eV and from 1.5 to 2.1 eV, respectively, while that of valence band offset decreases from 2.2 to 0.9 eV. From the results obtained, the energy band diagram of the studied SiO2/(AlxGa1-x)2O3 (0 ≤ x ≤ 0.49) interfaces is found to be of type I. Energy band lineups of SiO2/(AlxGa1-x)2O3 were thus determined which can be used as for Ga2O3 based power device technology.

  6. Polarized Raman spectra in β-Ga2O3 single crystals

    NASA Astrophysics Data System (ADS)

    Onuma, T.; Fujioka, S.; Yamaguchi, T.; Itoh, Y.; Higashiwaki, M.; Sasaki, K.; Masui, T.; Honda, T.

    2014-09-01

    Polarized Raman spectra were measured from (010) Mg-doped, (100) Si-doped, and (001) unintentionally-doped β-Ga2O3 substrates prepared by either the floating zone growth or edge-defined film-fed growth methods. The Ag and Bg Raman active modes were perfectly separated in the spectra according to the polarization selection rules. To the best of our knowledge, this is the first experimental observation of a complete set of polarized Raman spectra of β-Ga2O3. The results are ensured by the high uniformity of crystalline orientation and surface flatness of the present substrates.

  7. First-principle calculations of electronic structures and polar properties of (κ,ε)-Ga2O3

    NASA Astrophysics Data System (ADS)

    Kim, Juyeong; Tahara, Daisuke; Miura, Yoshino; Kim, Bog G.

    2018-06-01

    Physical properties of κ- and ε-Ga2O3 are investigated using density functional theory. We utilized the supercell method considering the partial occupancies in ε-Ga2O3. The polarization values of these materials were analyzed to overcome the inconsistency between experimental and theoretical studies. The polarization values of κ- and ε-Ga2O3 were ∼26.39 and 24.44 µC/cm2, respectively. The bandgap values of 4.62 and 4.27 eV were estimated with the hybrid functional method, which suggested an underestimation of the PBEsol functional values of 2.32 and 2.06 eV for κ- and ε-Ga2O3, respectively.

  8. Ten Ghz YBa2Cu3O(7-Delta) Superconducting Ring Resonators on NdGaO3 Substrates

    NASA Technical Reports Server (NTRS)

    To, H. Y.; Valco, G. J.; Bhasin, K. B.

    1993-01-01

    YBa2Cu3O(7-delta) thin films were formed on NdGaO3 substrates by laser ablation. Critical temperatures greater than 89 K and critical current densities exceeding 2 x 10(exp 8) Acm(sub -2) at 77 K were obtained. The microwave performance of films patterned into microstrip ring resonators with gold ground planes was measured. An unloaded quality factor six times larger than that of a gold resonator of identical geometry was achieved. The unloaded quality factor decreased below 70 K for both the superconducting and gold resonators due to increasing dielectric losses in the substrate. The temperature dependence of the loss tangent of NdGaO3 was extracted from the measurements.

  9. High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer

    PubMed Central

    Muhammed, M. M.; Roldan, M. A.; Yamashita, Y.; Sahonta, S.-L.; Ajia, I. A.; Iizuka, K.; Kuramata, A.; Humphreys, C. J.; Roqan, I. S.

    2016-01-01

    We demonstrate the high structural and optical properties of InxGa1−xN epilayers (0 ≤ x ≤ 23) grown on conductive and transparent (01)-oriented β-Ga2O3 substrates using a low-temperature GaN buffer layer rather than AlN buffer layer, which enhances the quality and stability of the crystals compared to those grown on (100)-oriented β-Ga2O3. Raman maps show that the 2″ wafer is relaxed and uniform. Transmission electron microscopy (TEM) reveals that the dislocation density reduces considerably (~4.8 × 107 cm−2) at the grain centers. High-resolution TEM analysis demonstrates that most dislocations emerge at an angle with respect to the c-axis, whereas dislocations of the opposite phase form a loop and annihilate each other. The dislocation behavior is due to irregular (01) β-Ga2O3 surface at the interface and distorted buffer layer, followed by relaxed GaN epilayer. Photoluminescence results confirm high optical quality and time-resolved spectroscopy shows that the recombination is governed by bound excitons. We find that a low root-mean-square average (≤1.5 nm) of InxGa1−xN epilayers can be achieved with high optical quality of InxGa1−xN epilayers. We reveal that (01)-oriented β-Ga2O3 substrate has a strong potential for use in large-scale high-quality vertical light emitting device design. PMID:27412372

  10. Doping of Czochralski-grown bulk β-Ga2O3 single crystals with Cr, Ce and Al

    NASA Astrophysics Data System (ADS)

    Galazka, Zbigniew; Ganschow, Steffen; Fiedler, Andreas; Bertram, Rainer; Klimm, Detlef; Irmscher, Klaus; Schewski, Robert; Pietsch, Mike; Albrecht, Martin; Bickermann, Matthias

    2018-03-01

    We experimentally evaluated segregation of Cr, Ce and Al in bulk β-Ga2O3 single crystals grown by the Czochralski method, as well as the impact of these dopants on optical properties. The segregation of Cr and Ce and their incorporation into the β-Ga2O3 crystal structure strongly depends on O2 concentration in the growth atmosphere which has a noticeable impact on decomposition of Ga2O3 and Cr2O3, as well as on the charge state of Cr and Ce. Effective segregation coefficients for Cr are in the range of 3.1-1.5 at 7-24 vol% O2, while for Ce they are roughly below 0.01 at 1.5-34 vol% O2. The effective segregation coefficient for Al is 1.1 at 1.5-21 vol% O2. Both dopants Ce and Al have a thermodynamically stabilizing effect on β-Ga2O3 crystal growth by supressing decomposition. While Ce has no impact on the optical transmittance in the ultraviolet and visible regions, in Cr doped crystals we observe three absorption bands due to Cr3+ on octahedral Ga sites, one in the ultraviolet merging with the band edge absorption of β-Ga2O3 and two in the visible spectrum, for which we estimate the absorption cross sections. Al doping also does not induce dopant related absorption bands but clearly shifts the absorption edge as one expects for a solid-solution crystal Ga2(1-x)Al2xO3 still in the monoclinic phase. For the highest doping concentration (Ga1.9Al0.1O3) we estimate an increase of the energy gap by 0.11 eV.

  11. Intense 2.7 µm emission and structural origin in Er3+-doped bismuthate (Bi2O3-GeO2-Ga2O3-Na2O) glass.

    PubMed

    Guo, Yanyan; Li, Ming; Hu, Lili; Zhang, Junjie

    2012-01-15

    The 2.7 μm emission properties in Er3+-doped bismuthate (Bi2O3-GeO2-Ga2O3-Na2O) glass were investigated in the present Letter. An intense 2.7 μm emission in Er3+-doped bismuthate glass was observed. It is found that Er3+-doped bismuthate glass possesses high spontaneous transition probability A (65.26 s(-1)) and large 2.7 μm emission cross section σ(em) (9.53×10(-21) cm2) corresponding to the stimulated emission of Er3+:4I11/2→4I13/2 transition. The emission characteristic and energy transfer process upon excitation of a conventional 980 nm laser diode in bismuthate glass were analyzed. Additionally, the structure of bismuthate glass was analyzed by the Raman spectrum. The advantageous spectroscopic characteristics of Er3+ single-doped bismuthate glass together with the prominent thermal property indicate that bismuthate glass might become an attractive host for developing solid-state lasers around 2.7 μm.

  12. Influence of Ga-concentration on the electrical and magnetic properties of magnetoelectric CoGa xFe 2–xO 4/BaTiO 3 composite

    DOE PAGES

    Ni, Yan; Zhang, Zhen; Nlebedim, Cajetan I.; ...

    2015-03-20

    Multiferroic materials exhibit magnetoelectric (ME) coupling and promise new device applications including magnetic sensors, generators, and filters. An effective method for developing ME materials with enhanced ME effect is achieved by the coupling through the interfacial strain between piezoelectric and magnetostrictive materials. In this study, the electrical and magnetic properties of Ga doped magnetoelectric CoGa xFe 2–xO 4/BaTiO 3 composite are studied systematically. It is found that Ga doping improves the sensitivity of magnetoelastic response and stabilizes the magnetic phase of the composites. More importantly, Ga doping reduces the electrical conductivity of composite, as well as the dielectric loss. Anmore » enhancement of the electrostrain with doping Ga is also observed. Quantitative estimation indicates that magnetoelectric coupling is enhanced for Ga-doped CoGa xFe 2–xO 4/BaTiO 3 composites. As a result, the present work is beneficial to the practical application of composite CoFe 2O 4/BaTiO 3-based multiferroic materials.« less

  13. Electrical and carrier transport properties of the Au/Y2O3/n-GaN metal-insulator-semiconductor (MIS) diode with rare-earth oxide interlayer

    NASA Astrophysics Data System (ADS)

    Venkata Prasad, C.; Rajagopal Reddy, V.; Choi, Chel-Jong

    2017-04-01

    The electrical and transport properties of rare-earth Y2O3 on n-type GaN with Au electrode have been investigated by current-voltage and capacitance-voltage techniques at room temperature. The Au/Y2O3/n-GaN metal-insulator-semiconductor (MIS) diode shows a good rectification behavior compared to the Au/n-GaN metal-semiconductor (MS) diode. Statistical analysis showed that a mean barrier height (BH) and ideality factor are 0.78 eV and 1.93, and 0.96 eV and 2.09 for the Au/n-GaN MS and Au/Y2O3/n-GaN MIS diodes, respectively. Results indicate that the high BH is obtained for the MIS diode compared to the MS diode. The BH, ideality factor and series resistance are also estimated by Cheung's function and Norde method. From the forward current-voltage data, the interface state density ( N SS) is estimated for both the MS and MIS Schottky diodes, and found that the estimated N SS is lower for the MIS diode compared to the MS diode. The results reveal that the introduction of Y2O3 interlayer facilitated the reduction of N SS of the Au/n-GaN interface. Experimental results suggest that the Poole-Frenkel emission is a dominant conduction mechanism in the reverse bias region of both Au/n-GaN MS and Au/Y2O3/n-GaN MIS diodes.

  14. Phase constitution in Sr and Mg doped LaGaO{sub 3} system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Feng; Bordia, Rajendra K.; Pederson, Larry R

    2004-01-03

    Sr and Mg doped lanthanum gallate perovskites (La{sub 1-x}Sr{sub x}Ga{sub 1-y}Mg{sub y}O{sub 3-{delta}}, shortened as LSGM-XY where X and Y are the doping levels in mole percentage (mol%) at the La- or A-site and the Ga- or B-site, respectively) are promising electrolyte materials for intermediate temperature solid oxide fuel cells (SOFCs). In this study, we have investigated the primary perovskites as well as the secondary phases formed in terms of doping content changes and A/B ratio variations in these materials. Fifteen powder compositions (three doping levels, X=Y=0, 0.1, and 0.2 mol; and five A/B ratios 0.95, 0.98, 1.00, 1.02, andmore » 1.05) were synthesized by the glycine-nitrate combustion process (GNP). These powders were equilibrated by calcining at 1500 deg. C for 9 h prior to crystalline phase characterization by X-ray powder diffraction (XRD). From the results of this study and the available phase diagrams in the literature on constituent binary oxide systems, we propose a crystalline phase diagram of the La{sub 2}O{sub 3}-SrO-Ga{sub 2}O{sub 3}-MgO quaternary system at elevated temperature (1500 deg. C)« less

  15. Effects of oxygen vacancies on the structural and optical properties of β-Ga2O3

    PubMed Central

    Dong, Linpeng; Jia, Renxu; Xin, Bin; Peng, Bo; Zhang, Yuming

    2017-01-01

    The structural, electronic, and optical properties of β-Ga2O3 with oxygen vacancies are studied by employing first-principles calculations based on density function theory. Based on the defects formation energies, we conclude the oxygen vacancies are most stable in their fully charge states. The electronic structures and optical properties of β-Ga2O3 are calculated by Generalized Gradient Approximation + U formalisms with the Hubbard U parameters set 7.0 eV and 8.5 eV for Ga and O ions, respectively. The calculated bandgap is 4.92 eV, which is consistent with the experimental value. The static real dielectric constants of the defective structures are increased compared with the intrinsic one, which is attributed to the level caused by the Ga-4s states in the bandgap. Extra peaks are introduced in the absorption spectra, which are related to Ga-4s and O-2p states. Experimentally, β-Ga2O3 films are deposited under different O2 volume percentage with ratio-frequency magnetron sputtering method. The measured results indicate that oxygen vacancies can induce extra emission peaks in the photoluminescence spectrum, the location of these peaks are close to the calculated results. Extra O2 can increase the formation energies of oxygen vacancies and thus reduce oxygen vacancies in β-Ga2O3. PMID:28065936

  16. Effects of oxygen vacancies on the structural and optical properties of β-Ga2O3.

    PubMed

    Dong, Linpeng; Jia, Renxu; Xin, Bin; Peng, Bo; Zhang, Yuming

    2017-01-09

    The structural, electronic, and optical properties of β-Ga 2 O 3 with oxygen vacancies are studied by employing first-principles calculations based on density function theory. Based on the defects formation energies, we conclude the oxygen vacancies are most stable in their fully charge states. The electronic structures and optical properties of β-Ga 2 O 3 are calculated by Generalized Gradient Approximation + U formalisms with the Hubbard U parameters set 7.0 eV and 8.5 eV for Ga and O ions, respectively. The calculated bandgap is 4.92 eV, which is consistent with the experimental value. The static real dielectric constants of the defective structures are increased compared with the intrinsic one, which is attributed to the level caused by the Ga-4s states in the bandgap. Extra peaks are introduced in the absorption spectra, which are related to Ga-4s and O-2p states. Experimentally, β-Ga 2 O 3 films are deposited under different O 2 volume percentage with ratio-frequency magnetron sputtering method. The measured results indicate that oxygen vacancies can induce extra emission peaks in the photoluminescence spectrum, the location of these peaks are close to the calculated results. Extra O 2 can increase the formation energies of oxygen vacancies and thus reduce oxygen vacancies in β-Ga 2 O 3 .

  17. Electrical characteristics and thermal stability of HfO{sub 2} metal-oxide-semiconductor capacitors fabricated on clean reconstructed GaSb surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyata, Noriyuki, E-mail: nori.miyata@aist.go.jp; Mori, Takahiro; Yasuda, Tetsuji

    2014-06-09

    HfO{sub 2}/GaSb interfaces fabricated by high-vacuum HfO{sub 2} deposition on clean reconstructed GaSb surfaces were examined to explore a thermally stable GaSb metal-oxide-semiconductor structure with low interface-state density (D{sub it}). Interface Sb-O bonds were electrically and thermally unstable, and post-metallization annealing at temperatures higher than 200 °C was required to stabilize the HfO{sub 2}/GaSb interfaces. However, the annealing led to large D{sub it} in the upper-half band gap. We propose that the decomposition products that are associated with elemental Sb atoms act as interface states, since a clear correlation between the D{sub it} and the Sb coverage on the initial GaSbmore » surfaces was observed.« less

  18. Nitride passivation reduces interfacial traps in atomic-layer-deposited Al{sub 2}O{sub 3}/GaAs (001) metal-oxide-semiconductor capacitors using atmospheric metal-organic chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, T., E-mail: aokit@sc.sumitomo-chem.co.jp; Fukuhara, N.; Osada, T.

    2014-07-21

    Using an atmospheric metal-organic chemical vapor deposition system, we passivated GaAs with AlN prior to atomic layer deposition of Al{sub 2}O{sub 3}. This AlN passivation incorporated nitrogen at the Al{sub 2}O{sub 3}/GaAs interface, improving the capacitance-voltage (C–V) characteristics of the resultant metal-oxide-semiconductor capacitors (MOSCAPs). The C–V curves of these devices showed a remarkable reduction in the frequency dispersion of the accumulation capacitance. Using the conductance method at various temperatures, we extracted the interfacial density of states (D{sub it}). The D{sub it} was reduced over the entire GaAs band gap. In particular, these devices exhibited D{sub it} around the midgap ofmore » less than 4 × 10{sup 12} cm{sup −2}eV{sup −1}, showing that AlN passivation effectively reduced interfacial traps in the MOS structure.« less

  19. Fundamental limits on the electron mobility of β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Kang, Youngho; Krishnaswamy, Karthik; Peelaers, Hartwin; Van de Walle, Chris G.

    2017-06-01

    We perform first-principles calculations to investigate the electronic and vibrational spectra and the electron mobility of β-Ga2O3. We calculate the electron-phonon scattering rate of the polar optical phonon modes using the Vogl model in conjunction with Fermi’s golden rule; this enables us to fully take the anisotropic phonon spectra of the monoclinic lattice of β-Ga2O3 into account. We also examine the scattering rate due to ionized impurities or defects using a Yukawa-potential-based model. We consider scattering due to donor impurities, as well as the possibility of compensation by acceptors such as Ga vacancies. We then calculate the room-temperature mobility of β-Ga2O3 using the Boltzmann transport equation within the relaxation time approximation, for carrier densities in the range from 1017 to 1020 cm-3. We find that the electron-phonon interaction dominates the mobility for carrier densities of up to 1019 cm-3. We also find that the intrinsic anisotropy in the mobility is small; experimental findings of large anisotropy must therefore be attributed to other factors. We attribute the experimentally observed reduction of the mobility with increasing carrier density to increasing levels of compensation, which significantly affect the mobility.

  20. Fundamental limits on the electron mobility of β-Ga2O3.

    PubMed

    Kang, Youngho; Krishnaswamy, Karthik; Peelaers, Hartwin; Van de Walle, Chris G

    2017-06-14

    We perform first-principles calculations to investigate the electronic and vibrational spectra and the electron mobility of β-Ga 2 O 3 . We calculate the electron-phonon scattering rate of the polar optical phonon modes using the Vogl model in conjunction with Fermi's golden rule; this enables us to fully take the anisotropic phonon spectra of the monoclinic lattice of β-Ga 2 O 3 into account. We also examine the scattering rate due to ionized impurities or defects using a Yukawa-potential-based model. We consider scattering due to donor impurities, as well as the possibility of compensation by acceptors such as Ga vacancies. We then calculate the room-temperature mobility of β-Ga 2 O 3 using the Boltzmann transport equation within the relaxation time approximation, for carrier densities in the range from 10 17 to 10 20 cm -3 . We find that the electron-phonon interaction dominates the mobility for carrier densities of up to 10 19 cm -3 . We also find that the intrinsic anisotropy in the mobility is small; experimental findings of large anisotropy must therefore be attributed to other factors. We attribute the experimentally observed reduction of the mobility with increasing carrier density to increasing levels of compensation, which significantly affect the mobility.

  1. Electrical conductivity of In2O3 and Ga2O3 after low temperature ion irradiation; implications for instrinsic defect formation and charge neutrality level

    NASA Astrophysics Data System (ADS)

    Vines, L.; Bhoodoo, C.; von Wenckstern, H.; Grundmann, M.

    2018-01-01

    The evolution of sheet resistance of n-type In2O3 and Ga2O3 exposed to bombardment with MeV 12C and 28Si ions at 35 K is studied in situ. While the sheet resistance of Ga2O3 increased by more than eight orders of magnitude as a result of ion irradiation, In2O3 showed a more complex defect evolution and became more conductive when irradiated at the highest doses. Heating up to room temperature reduced the sheet resistivity somewhat, but Ga2O3 remained highly resistive, while In2O3 showed a lower resistance than as deposited samples. Thermal admittance spectroscopy and deep level transient spectroscopy did not reveal new defect levels for irradiation up to 2 × 1012 cm-2. A model where larger defect complexes preferentially produce donor like defects in In2O3 is proposed, and may reveal a microscopic view of a charge neutrality level within the conduction band, as previously proposed.

  2. Fabrication of cerium-doped β-Ga2O3 epitaxial thin films and deep ultraviolet photodetectors.

    PubMed

    Li, Wenhao; Zhao, Xiaolong; Zhi, Yusong; Zhang, Xuhui; Chen, Zhengwei; Chu, Xulong; Yang, Hujiang; Wu, Zhenping; Tang, Weihua

    2018-01-20

    High-quality cerium-doped β-Ga 2 O 3 (Ga 2 O 3 :Ce) thin films could be achieved on (0001)α-Al 2 O 3 substrates using a pulsed-laser deposition method. The impact of dopant contents concentration on crystal structure, optical absorption, photoluminescence, and photoelectric properties has been intensively studied. X-ray diffraction analysis results have shown that Ga 2 O 3 :Ce films are highly (2¯01) oriented, and the lattice spacing of the (4¯02) planes is sensitive to the Ce doping level. The prepared Ga 2 O 3 :Ce films show a sharp absorption edge at about 250 nm, meaning a high transparency to deep ultraviolet (DUV) light. The photoluminescence results revealed that the emissions were in the violet-blue-green region, which are associated with the donor-acceptor transitions with the Ce 3+ and oxygen vacancies related defects. A simple DUV photodetector device with a metal-semiconductor-metal structure has also been fabricated based on Ga 2 O 3 :Ce thin film. A distinct DUV photoresponse was obtained, suggesting a potential application in DUV photodetector devices.

  3. Electrical conductivity of In2O3 and Ga2O3 after low temperature ion irradiation; implications for instrinsic defect formation and charge neutrality level.

    PubMed

    Vines, L; Bhoodoo, C; von Wenckstern, H; Grundmann, M

    2017-12-13

    The evolution of sheet resistance of n-type In 2 O 3 and Ga 2 O 3 exposed to bombardment with MeV 12 C and 28 Si ions at 35 K is studied in situ. While the sheet resistance of Ga 2 O 3 increased by more than eight orders of magnitude as a result of ion irradiation, In 2 O 3 showed a more complex defect evolution and became more conductive when irradiated at the highest doses. Heating up to room temperature reduced the sheet resistivity somewhat, but Ga 2 O 3 remained highly resistive, while In 2 O 3 showed a lower resistance than as deposited samples. Thermal admittance spectroscopy and deep level transient spectroscopy did not reveal new defect levels for irradiation up to [Formula: see text] cm -2 . A model where larger defect complexes preferentially produce donor like defects in In 2 O 3 is proposed, and may reveal a microscopic view of a charge neutrality level within the conduction band, as previously proposed.

  4. Designing a porous-crystalline structure of β-Ga2O3: a potential approach to tune its opto-electronic properties.

    PubMed

    Banerjee, Swastika; Jiang, Xiangwei; Wang, Lin-Wang

    2018-04-04

    β-Ga2O3 has drawn recent attention as a state-of-the-art electronic material due to its stability, optical transparency and appealing performance in power devices. However, it has also found a wider range of opto-electronic applications including photocatalysis, especially in its porous form. For such applications, a lower band gap must be obtained and an electron-hole spatial separation would be beneficial. Like many other metal oxides (e.g. Al2O3), Ga2O3 can also form various types of porous structure. In the present study, we investigate how its optical and electronic properties can be changed in a particular porous structure with stoichiometrically balanced and extended vacancy channels. We apply a set of first principles computational methods to investigate the formation and the structural, dynamic, and opto-electronic properties. We find that such an extended vacancy channel is mechanically stable and has relatively low formation energy. We also find that this results in a spatial separation of the electron and hole, forming a long-lived charge transfer state that has desirable characteristics for a photocatalyst. In addition, the electronic band gap reduces to the vis-region unlike the transparency in the pure β-Ga2O3 crystal. Thus, our systematic study is promising for the application of such a porous structure of β-Ga2O3 as a versatile electronic material.

  5. Preparation and Optoelectronic Characteristics of ZnO/CuO-Cu2O Complex Inverse Heterostructure with GaP Buffer for Solar Cell Applications

    PubMed Central

    Hsu, Chih-Hung; Chen, Lung-Chien; Lin, Yi-Feng

    2013-01-01

    This study reports the optoelectronic characteristics of ZnO/GaP buffer/CuO-Cu2O complex (COC) inverse heterostructure for solar cell applications. The GaP and COC layers were used as buffer and absorber in the cell structure, respectively. An energy gap widening effect and CuO whiskers were observed as the copper (Cu) layer was exerted under heat treatment for oxidation at 500 °C for 10 min, and arose from the center of the Cu2O rods. For preparation of the 30 nm-thick GaP buffer by sputtering from GaP target, as the nitrogen gas flow rate increased from 0 to 2 sccm, the transmittance edge of the spectra demonstrated a blueshift form 2.24 to 3.25 eV. Therefore, the layer can be either GaP, GaNP, or GaN by changing the flow rate of nitrogen gas. PMID:28788341

  6. Same Precursor, Two Different Products: Comparing the Structural Evolution of In–Ga–O “Gel-Derived” Powders and Solution-Cast Films Using Pair Distribution Function Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Suzannah R.; Woods, Keenan N.; Plassmeyer, Paul N.

    Amorphous metal oxides are central to a variety of technological applications. In particular, indium gallium oxide has garnered attention as a thin-film transistor channel layer material. In this work we examine the structural evolution of indium gallium oxide gel-derived powders and thin films using infrared vibrational spectroscopy, X-ray diffraction, and pair distribution function (PDF) analysis of X-ray total scattering from standard and normal incidence thin-film geometries (tfPDF). We find that the gel-derived powders and films from the same aqueous precursor evolve differently with temperature, forming mixtures of Ga-substituted In2O3 and In-substituted β-Ga2O3 with different degrees of substitution. X-ray total scatteringmore » and PDF analysis indicate that the majority phase for both the powders and films is an amorphous/nanocrystalline β-Ga2O3 phase, with a minor constituent of In2O3 with significantly larger coherence lengths. This amorphous β-Ga2O3 phase could not be identified using the conventional Bragg diffraction techniques traditionally used to study crystalline metal oxide thin films. The combination of Bragg diffraction and tfPDF provides a much more complete description of film composition and structure, which can be used to detail the effect of processing conditions and structure–property relationships. This study also demonstrates how structural features of amorphous materials, traditionally difficult to characterize by standard diffraction, can be elucidated using tfPDF.« less

  7. Multiple S and O isotope constraints on O2 at 2.25 Ga

    NASA Astrophysics Data System (ADS)

    Killingsworth, B.; Sansjofre, P.; Philippot, P.; Thomazo, C.; Cartigny, P.; Lalonde, S.

    2017-12-01

    The composition of Earth's atmosphere around the time of the Great Oxidation Event (GOE) at the Archean-Proterozoic boundary is of great interest for reconstructing the redox evolution of the Earth. Sulfate has been shown to be a valuable recorder of isotopic signals of atmospheric O2 but its records are sparse around the time of the GOE. To constrain O2 around the GOE, we have measured quadruple sulfur and triple oxygen isotopes of sulfate from barite in sedimentary drill core from the Turee Creek Group, Australia from 2.25 Ga. A combined sulfur and oxygen approach for estimating the triple oxygen isotope composition of O2 at 2.25 Ga will be presented and its implications for the Paleoproterozoic atmosphere will be discussed.

  8. Introducing ionic and/or hydrogen bonds into the SAM//Ga2O3 top-interface of Ag(TS)/S(CH2)nT//Ga2O3/EGaIn junctions.

    PubMed

    Bowers, Carleen M; Liao, Kung-Ching; Yoon, Hyo Jae; Rappoport, Dmitrij; Baghbanzadeh, Mostafa; Simeone, Felice C; Whitesides, George M

    2014-06-11

    Junctions with the structure Ag(TS)/S(CH2)nT//Ga2O3/EGaIn (where S(CH2)nT is a self-assembled monolayer, SAM, of n-alkanethiolate bearing a terminal functional group T) make it possible to examine the response of rates of charge transport by tunneling to changes in the strength of the interaction between T and Ga2O3. Introducing a series of Lewis acidic/basic functional groups (T = -OH, -SH, -CO2H, -CONH2, and -PO3H) at the terminus of the SAM gave values for the tunneling current density, J(V) in A/cm(2), that were indistinguishable (i.e., differed by less than a factor of 3) from the values observed with n-alkanethiolates of equivalent length. The insensitivity of the rate of tunneling to changes in the terminal functional group implies that replacing weak van der Waals contact interactions with stronger hydrogen- or ionic bonds at the T//Ga2O3 interface does not change the shape (i.e., the height or width) of the tunneling barrier enough to affect rates of charge transport. A comparison of the injection current, J0, for T = -CO2H, and T = -CH2CH3--two groups having similar extended lengths (in Å, or in numbers of non-hydrogen atoms)--suggests that both groups make indistinguishable contributions to the height of the tunneling barrier.

  9. GaN-based light-emitting diodes with graphene/indium tin oxide transparent layer.

    PubMed

    Lai, Wei-Chih; Lin, Chih-Nan; Lai, Yi-Chun; Yu, Peichen; Chi, Gou Chung; Chang, Shoou-Jinn

    2014-03-10

    We have demonstrated a gallium nitride (GaN)-based green light-emitting diode (LED) with graphene/indium tin oxide (ITO) transparent contact. The ohmic characteristic of the p-GaN and graphene/ITO contact could be preformed by annealing at 500 °C for 5 min. The specific contact resistance of p-GaN/graphene/ITO (3.72E-3 Ω·cm²) is one order less than that of p-GaN/ITO. In addition, the 20-mA forward voltage of LEDs with graphene/ITO transparent (3.05 V) is 0.09 V lower than that of ITO LEDs (3.14 V). Besides, We have got an output power enhancement of 11% on LEDs with graphene/ITO transparent contact.

  10. Low-pressure CVD-grown β-Ga2O3 bevel-field-plated Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Joishi, Chandan; Rafique, Subrina; Xia, Zhanbo; Han, Lu; Krishnamoorthy, Sriram; Zhang, Yuewei; Lodha, Saurabh; Zhao, Hongping; Rajan, Siddharth

    2018-03-01

    We report (010)-oriented β-Ga2O3 bevel-field-plated mesa Schottky barrier diodes grown by low-pressure chemical vapor deposition (LPCVD) using a solid Ga precursor and O2 and SiCl4 sources. Schottky diodes with good ideality and low reverse leakage were realized on the epitaxial material. Edge termination using beveled field plates yielded a breakdown voltage of -190 V, and maximum vertical electric fields of 4.2 MV/cm in the center and 5.9 MV/cm at the edge were estimated, with extrinsic R ON of 3.9 mΩ·cm2 and extracted intrinsic R ON of 0.023 mΩ·cm2. The reported results demonstrate the high quality of homoepitaxial LPCVD-grown β-Ga2O3 thin films for vertical power electronics applications, and show that this growth method is promising for future β-Ga2O3 technology.

  11. Tailoring the Two Dimensional Electron Gas at Polar ABO3/SrTiO3 Interfaces for Oxide Electronics.

    PubMed

    Li, Changjian; Liu, Zhiqi; Lü, Weiming; Wang, Xiao Renshaw; Annadi, Anil; Huang, Zhen; Zeng, Shengwei; Ariando; Venkatesan, T

    2015-08-26

    The 2D electron gas at the polar/non-polar oxide interface has become an important platform for several novel oxide electronic devices. In this paper, the transport properties of a wide range of polar perovskite oxide ABO3/SrTiO3 (STO) interfaces, where ABO3 includes LaAlO3, PrAlO3, NdAlO3, NdGaO3 and LaGaO3 in both crystalline and amorphous forms, were investigated. A robust 4 unit cell (uc) critical thickness for metal insulator transition was observed for crystalline polar layer/STO interface while the critical thickness for amorphous ones was strongly dependent on the B site atom and its oxygen affinity. For the crystalline interfaces, a sharp transition to the metallic state (i.e. polarization catastrophe induced 2D electron gas only) occurs at a growth temperature of 515 °C which corresponds to a critical relative crystallinity of ~70 ± 10% of the LaAlO3 overlayer. This temperature is generally lower than the metal silicide formation temperature and thus offers a route to integrate oxide heterojunction based devices on silicon.

  12. Ferromagnetic behavior in mixed valence europium (Eu2+/Eu3+) oxide EuTi1-xMxO3 (M = Al3+ and Ga3+)

    NASA Astrophysics Data System (ADS)

    Akahoshi, Daisuke; Horie, Hiroki; Sakai, Shingo; Saito, Toshiaki

    2013-10-01

    We have investigated the Ti-site substitution effect on the magnetic properties of antiferromagnetic insulator EuTiO3 with a Néel temperature of ˜5 K. Partial substitution of Ti4+ with heterovalent Al3+ or Ga3+ turns the corresponding amount of magnetic Eu2+ into non-magnetic Eu3+. Both EuTi1-xAlxO3 (0.05 ≤ x ≤ 0.10) and EuTi1-xGaxO3 (0.05 ≤ x ≤ 0.10) exhibit ferromagnetic (FM) insulating behavior below ˜4 K. The Eu2+/Eu3+ mixed valence state probably contributes to the emergence of the FM behavior. Fine control of the magneto-electric (ME) phases of EuTi1-xAlxO3 and EuTi1-xGaxO3 would lead to intriguing ME phenomena such as giant ME effect.

  13. Technology of GaAs metal-oxide-semiconductor solar cells

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.; Yeh, Y. C. M.

    1977-01-01

    The growth of an oxide interfacial layer was recently found to increase the open-circuit voltage (OCV) and efficiency by up to 60 per cent in GaAs metal-semiconductor solar cells. Details of oxidation techniques to provide the necessary oxide thickness and chemical structure and using ozone, water-vapor-saturated oxygen, or oxygen gas discharges are described, as well as apparent crystallographic orientation effects. Preliminary results of the oxide chemistry obtained from X-ray, photoelectron spectroscopy are given. Ratios of arsenic oxide to gallium oxide of unity or less seem to be preferable. Samples with the highest OVC predominantly have As(+3) in the arsenic oxide rather than As(+5). A major difficulty at this time is a reduction in OCV by 100-200 mV when the antireflection coating is vacuum deposited.

  14. Synthesis and characterization of cerium- and gallium-containing borate bioactive glass scaffolds for bone tissue engineering.

    PubMed

    Deliormanlı, Aylin M

    2015-02-01

    Bioactive glasses are widely used in biomedical applications due to their ability to bond to bone and even to soft tissues. In this study, borate based (13-93B3) bioactive glass powders containing up to 5 wt% Ce2O3 and Ga2O3 were prepared by the melt quench technique. Cerium (Ce+3) and gallium (Ga+3) were chosen because of their low toxicity associated with bacteriostatic properties. Bioactive glass scaffolds were fabricated using the polymer foam replication method. In vitro degradation and bioactivity of the scaffolds were evaluated in SBF under static conditions. Results revealed that the cerium- and gallium-containing borate glasses have much lower degradation rates compared to the bare borate glass 13-93B3. In spite of the increased chemical durability, substituted glasses exhibited a good in vitro bioactive response except when the Ce2O3 content was 5 wt%. Taking into account the high in vitro hydroxyapatite forming ability, borate glass scaffolds containing Ce+3 and Ga+3 therapeutic ions are promising candidates for bone tissue engineering applications.

  15. Controlled optical properties via chemical composition tuning in molybdenum-incorporated β-Ga2O3 nanocrystalline films

    NASA Astrophysics Data System (ADS)

    Battu, Anil K.; Manandhar, S.; Shutthanandan, V.; Ramana, C. V.

    2017-09-01

    An approach is presented to design refractory-metal incorporated Ga2O3-based materials with controlled structural and optical properties. The molybdenum (Mo)-content in Ga2O3 was varied from 0 to 11 at% in the sputter-deposited Ga-Mo-O films. Molybdenum was found to significantly affect the structure and optical properties. While low Mo-content (≤4 at%) results in the formation of single-phase (β-Ga2O3), higher Mo-content results in amorphization. Chemically-induced band gap variability (Eg ∼ 1 eV) coupled with structure-modification indicates the electronic-structure changes in Ga-Mo-O. The linear relationship between chemical-composition and optical properties suggests that tailoring the optical-quality and performance of Ga-Mo-O films is possible by tuning the Mo-content.

  16. Controlled optical properties via chemical composition tuning in molybdenum-incorporated β-Ga 2 O 3 nanocrystalline films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battu, Anil K.; Manandhar, S.; Shutthanandan, V.

    An approach is presented to design refractory-metal incorporated Ga2O3-based materials with controlled structural and optical properties. The molybdenum (Mo)-content in Ga2O3 was varied from 0 to 11 at% in the sputter-deposited Ga-Mo-O films. Molybdenum was found to significantly affect the structure and optical properties. While low Mo-content (≤4 at%) results in the formation of single-phase (β-Ga2O3), higher Mo-content results in amorphization. Chemically-induced band gap variability (Eg~1 eV) coupled with structure-modification indicates the electronic-structure changes in Ga-Mo-O. The linear relationship between chemical-composition and optical properties suggests that tailoring the optical-quality and performance of Ga-Mo-O films is possible by tuning the Mo-content.

  17. Epitaxial engineering of polar ɛ-Ga2O3 for tunable two-dimensional electron gas at the heterointerface

    NASA Astrophysics Data System (ADS)

    Cho, Sung Beom; Mishra, Rohan

    2018-04-01

    We predict the formation of a polarization-induced two-dimensional electron gas (2DEG) at the interface of ɛ-Ga2O3 and CaCO3, wherein the density of the 2DEG can be tuned by reversing the spontaneous polarization in ɛ-Ga2O3, for example, with an applied electric field. ɛ-Ga2O3 is a polar and metastable ultra-wide band-gap semiconductor. We use density-functional theory (DFT) calculations and coincidence-site lattice model to predict the region of epitaxial strain under which ɛ-Ga2O3 can be stabilized over its other competing polymorphs and suggest promising substrates. Using group-theoretical methods and DFT calculations, we show that ɛ-Ga2O3 is a ferroelectric material where the spontaneous polarization can be reversed through a non-polar phase by using an electric field. Based on the calculated band alignment of ɛ-Ga2O3 with various substrates, we show the formation of a 2DEG with a high sheet charge density of 1014 cm-2 at the interface with CaCO3 due to the spontaneous and piezoelectric polarization in ɛ-Ga2O3, which makes the system attractive for high-power and high-frequency applications.

  18. Tailoring the electronic structure of β-Ga2O3 by non-metal doping from hybrid density functional theory calculations.

    PubMed

    Guo, Weiyan; Guo, Yating; Dong, Hao; Zhou, Xin

    2015-02-28

    A systematic study using density functional theory has been performed for β-Ga2O3 doped with non-metal elements X (X = C, N, F, Si, P, S, Cl, Se, Br, and I) to evaluate the effect of doping on the band edges and photocatalytic activity of β-Ga2O3. The utilization of a more reliable hybrid density functional, as prescribed by Heyd, Scuseria and Ernzerhof, is found to be effective in predicting the band gap of β-Ga2O3 (4.5 eV), in agreement with the experimental result (4.59 eV). Based on the relaxed structures of X-doped systems, the defect formation energies and the plots of density of states have been calculated to analyze the band edges, the band gap states and the preferred doping sites. Our results show that the doping is energetically favored under Ga-rich growth conditions with respect to O-rich growth conditions. It is easier to replace the threefold coordinated O atom with non-metal elements compared to the fourfold coordinated O atom. X-doped systems (X = C, Si, P) show no change in the band gap, with the presence of discrete midgap states, which have adverse effect on the photocatalytic properties. The photocatalytic redox ability can be improved to a certain extent by doping with N, S, Cl, Se, Br, and I. The band alignments for Se-doped and I-doped β-Ga2O3 are well positioned for the feasibility of both photo-oxidation and photo-reduction of water, which are promising photocatalysts for water splitting in the visible region.

  19. Synthesis of GaN by high-pressure ammonolysis of gallium triiodide

    NASA Astrophysics Data System (ADS)

    Purdy, Andrew P.; Case, Sean; Muratore, Nicole

    2003-05-01

    The ammonothermal conversion of GaI 3 to both cubic (zinc-blende) and hexagonal GaN was explored in detail. Gallium triiodide, anhydrous NH 3, and in some cases CuI or LiI co-mineralizers, were sealed in quartz tubes and heated in a pressurized autoclave from 300°C to 515°C. At hot-zone temperatures above 430°C, a deposit of mostly c-GaN collects in the upper portion of the tube, and deposits of phase-pure c-GaN were reliably produced on a 50-60 mg scale when CuI co-mineralizer was added. Crystal morphologies of these microcrystalline c-GaN products are highly dependent on growth conditions and range from triangular prisms to triangular plates, dendritic crystals, and irregular particles. Hexagonal GaN products were either in the form of microrods or micron sized prisms. Nanorods, of presumably h-GaN, also formed in some reactions in low yields, intermixed with microcrystalline c-GaN products.

  20. The synthesis and the luminescence properties of Sr2Ga3La1-xDyxGe3O14

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Mu, Zhongfei; Yang, Lurong; Zhang, Shaoan; Zhu, Daoyun; Yang, Yibin; Luo, Dongxiang; Wu, Fugen

    2018-02-01

    A series of Sr2Ga3La1-xDyxGe3O14 (x = 0, 0.015, 0.03, 0.045, 0.06, 0.075, 0.09) phosphors were synthesized by high temperature solid state reactions. X-ray diffraction analysis proves that single-phase Sr2Ga3La1-xDyxGe3O14 (0 ≤ x ≤ 0.09) has been obtained. The particle size of these powders is in the range from 1 to 3 μm. The host Sr2Ga3LaGe3O14 emits blue white light under the excitation of 260 nm ultraviolet light. Dy3+ doped samples can be effectively excited with near ultraviolet light and exhibit two emission bands in the blue (4F9/2 → 6H15/2) and yellow regions (4F9/2 → 6H13/2), which can form white light. Present research indicates that Dy3+ doped Sr2Ga3LaGe3O14 have the potential to be a single-phase full-color emitting phosphor.

  1. Microwave irradiation-assisted deposition of Ga2O3 on III-nitrides for deep-UV opto-electronics

    NASA Astrophysics Data System (ADS)

    Jaiswal, Piyush; Ul Muazzam, Usman; Pratiyush, Anamika Singh; Mohan, Nagaboopathy; Raghavan, Srinivasan; Muralidharan, R.; Shivashankar, S. A.; Nath, Digbijoy N.

    2018-01-01

    We report on the deposition of Ga2O3 on III-nitride epi-layers using the microwave irradiation technique. We also report on the demonstration of a Ga2O3 device: a visible-blind, deep-UV detector, with a GaN-based heterostructure as the substrate. The film deposited in the solution medium, at <200 °C, using a metalorganic precursor, was nanocrystalline. XRD confirms that the as-deposited film, when annealed at high temperature, turns to polycrystalline β-Ga2O3. SEM shows the as-deposited film to be uniform, with a surface roughness of 4-5 nm, as revealed by AFM. Interdigitated metal-semiconductor-metal devices with Ni/Au contact exhibited a peak spectral response at 230 nm and a good visible rejection ratio. This demonstration of a deep-UV detector on the β-Ga2O3/III-nitride stack is expected to open up possibilities of functional and physical integration of β-Ga2O3 and GaN material families towards enabling next-generation high-performance devices by exciting band and heterostructure engineering.

  2. Magnetic interactions in La0.7Sr0.3Mn1-xMexO3 (Me=Ga, Fe, Cr) manganites

    NASA Astrophysics Data System (ADS)

    Troyanchuk, I. O.; Bushinsky, M. V.; Karpinsky, D. V.; Tereshko, N. V.; Dobryansky, V. M.; Többens, D. M.; Sikolenko, V.; Efimov, V.

    2015-11-01

    Magnetic properties and crystal structure of La0.7Sr0.3Mn1-xMexO3 (Me=Ga, Fe, Cr; x≤0.3) have been studied by neutron powder diffraction and magnetization measurements. It is shown that substitution of manganese ions by chromium or gallium ions (x=0.3) leads to phase separation into antiferromagnetic and ferromagnetic phases whereas replacement by Fe ions stabilizes spin glass state (x=0.3). Ferromagnetic interactions in Cr-substituted compounds are much more pronounced than in Fe- and Ga-doped ones. Magnetic properties are discussed in the model assuming a dominance of superexchange interactions. It is considered that ferromagnetism in the Cr-substituted compositions is associated with nearly equal contributions from positive and negative components of the superexchange interaction between Mn3+ and Cr3+ ions as well as to mixed valence of chromium ions. The spin glass state observed for the Fe-doped sample (x=0.3) is associated with strong antiferromagnetic superexchange between Fe3+-O-Fe3+ and Fe3+-O-(Mn3+, Mn4+).

  3. Effects of HfO2/Al2O3 gate stacks on electrical performance of planar In x Ga1- x As tunneling field-effect transistors

    NASA Astrophysics Data System (ADS)

    Ahn, Dae-Hwan; Yoon, Sang-Hee; Takenaka, Mitsuru; Takagi, Shinichi

    2017-08-01

    We study the impact of gate stacks on the electrical characteristics of Zn-diffused source In x Ga1- x As tunneling field-effect transistors (TFETs) with Al2O3 or HfO2/Al2O3 gate insulators. Ta and W gate electrodes are compared in terms of the interface trap density (D it) of InGaAs MOS interfaces. It is found that D it is lower at the W/HfO2/Al2O3 InGaAs MOS interface than at the Ta/HfO2/Al2O3 interface. The In0.53Ga0.47As TFET with a W/HfO2 (2.7 nm)/Al2O3 (0.3 nm) gate stack of 1.4-nm-thick capacitance equivalent thickness (CET) has a steep minimum subthreshold swing (SS) of 57 mV/dec, which is attributed to the thin CET and low D it. Also, the In0.53Ga0.47As (2.6 nm)/In0.67Ga0.33As (3.2 nm)/In0.53Ga0.47As (96.5 nm) quantum-well (QW) TFET supplemented with this 1.4-nm-thick CET gate stack exhibits a steeper minimum SS of 54 mV/dec and a higher on-current (I on) than those of the In0.53Ga0.47As TFET.

  4. Enhanced two dimensional electron gas transport characteristics in Al2O3/AlInN/GaN metal-oxide-semiconductor high-electron-mobility transistors on Si substrate

    NASA Astrophysics Data System (ADS)

    Freedsman, J. J.; Watanabe, A.; Urayama, Y.; Egawa, T.

    2015-09-01

    The authors report on Al2O3/Al0.85In0.15N/GaN Metal-Oxide-Semiconductor High-Electron-Mobility Transistor (MOS-HEMT) on Si fabricated by using atomic layer deposited Al2O3 as gate insulator and passivation layer. The MOS-HEMT with the gate length of 2 μm exhibits excellent direct-current (dc) characteristics with a drain current maximum of 1270 mA/mm at a gate bias of 3 V and an off-state breakdown voltage of 180 V for a gate-drain spacing of 4 μm. Also, the 1 μm-gate MOS-HEMT shows good radio-frequency (rf) response such as current gain and maximum oscillation cut-off frequencies of 10 and 34 GHz, respectively. The capacitance-voltage characteristics at 1 MHz revealed significant increase in two-dimensional electron gas (2DEG) density for the MOS-HEMT compared to conventional Schottky barrier HEMTs. Analyses using drain-source conductivity measurements showed improvements in 2DEG transport characteristics for the MOS-HEMT. The enhancements in dc and rf performances of the Al2O3/Al0.85In0.15N/GaN MOS-HEMT are attributed to the improvements in 2DEG characteristics.

  5. Magnetooptics of the luminescent transitions in Tb3+:Gd3Ga5O12

    NASA Astrophysics Data System (ADS)

    Valiev, Uygun V.; Gruber, John B.; Ivanov, Igor'A.; Burdick, Gary W.; Liang, Hongbin; Zhou, Lei; Fu, Dejun; Pelenovich, Oleg V.; Pelenovich, Vasiliy O.; Lin, Zhou

    2015-08-01

    The spectra of the luminescence and magnetic circular polarization of luminescence in terbium-gadolinium gallium garnet Tb3+:Gd3Ga5O12 (Tb3+:GGG) were studied within the visible spectral range at temperatures T = 90 and 300 K in an external magnetic field of 0.45 T. The Zeeman effect in the luminescence "green" band associated with 4f → 4f transition 5D4 → 7F5 of Tb3+:GGG was also studied at T = 90 K in an external field of 0.55 T. Measurement of the Zeeman effect in Tb3+:GGG carried out for some doublet lines of the luminescence band 5D4 → 7F5 at T = 90 K shows that a magnetooptical effect of the intensity change of the emitted light is observed on these lines, in contrast to pure Zeeman splitting of the emission lines measured in the luminescence band 5D4 → 7F6. For the systems we have studied, the maximal value of the magnetooptical effect of the intensity change of the luminescence line at low temperatures has been achieved in paramagnetic garnet Tb0.2Y2.8Al5O12 at comparatively low magnetic fields.

  6. Molecular Beam Epitaxial Growth of Iron Nitrides on Zinc-Blende Gallium Nitride(001)

    NASA Astrophysics Data System (ADS)

    Pak, Jeongihm; Lin, Wenzhi; Chinchore, Abhijit; Wang, Kangkang; Smith, Arthur R.

    2008-03-01

    Iron nitrides are attractive materials for their high magnetic moments, corrosion, and oxidation resistance. We present the successful epitaxial growth of iron nitride on zinc-blende gallium nitride (c-GaN) in order to develop a novel magnetic transition metal nitride/semiconductor system. First, GaN is grown on magnesium oxide (MgO) substrates having (001) orientation using rf N2-plasma molecular beam epitaxy. Then we grow FeN at substrate temperature of ˜ 210 ^oC up to a thickness of ˜ 10.5 nm. In-situ reflection high-energy electron diffraction (RHEED) is used to monitor the surface during growth. Initial results suggest that the epitaxial relationship is FeN[001] || GaN[001] and FeN[100] || GaN[100]. Work in progress is to investigate the surface using in-situ scanning tunneling microscopy (STM) to reveal the surface structure at atomic scale, as well as to explore more Fe-rich magnetic phases.

  7. Studies on gallium nitride doped ferrite-polypyrrole nanocomposites

    NASA Astrophysics Data System (ADS)

    Indrakanti, Rajani; Brahmaji Rao, V.; Udaya Kiran, C.

    2018-06-01

    This communication reports the synthesis and characterisation of two novel Intrinsic conducting polymer nano composites (ICPN s) with the formulae Ga (2x+2) N Fe 2(49-x) O3—PPY synthesized using Impregnation technique. The Gallium nitride ferrite nano particles were synthesized for x = 1 and x = 5 using the above stichiometric equation earlier by Sol—Gel route. The chemical composition in the assembly of the ICPNs were Ga4NFe96O3-3%,10%,30% Polypyrrole, Ga12NFe88O3-3%,10%,30% Polypyrrole by weight. The Sci-Finder software failed to trace any earlier articles or reviews related to these ICNPs synthesised by us in the literature. X-ray Diffractometric (Structural), Morphological, EDAX SAED, IR spectroscopic characterizations were done on the synthesized nanocomposites. Structural studies reveal the semi-crystalline nature of composites. The average crystallite size of nano composites is decreased when compared with nano ferrites. SEM findings reveal that the shape for higher percentage of PPY is nano rods; for lower percentage it is globular. TEM reveals good dispersion and average particle size from histograms are calculated. The FT- IR bands of PPY and GaNFe2O3 are observed which show strong interaction between PPY- GaNFe2O3. Also there is a shift of bands in GaNFe2O3-PPY nano composites when compared to the bands of PPY.

  8. Composition dependent cation distribution in ZnxGa2O3+x nanocrystals

    NASA Astrophysics Data System (ADS)

    Li, Nannan; Zhu, Pengfei; Duan, Xiulan

    2018-02-01

    ZnxGa2O3+x (0.8 ≤ x ≤ 1.1) nanocrystals with the size of 15-30 nm were prepared by the sol-gel method. The effect of composition (Zn/Ga ratio) on the distribution of Zn2+ and Ga3+ ions was studied using X-ray photoelectron spectroscopy (XPS). Both of these cations occupied tetrahedral sites as well as octahedral sites of spinel structure in the studied samples. Octahedral Ga3+ ions are dominant and the as-synthesized samples are partially inverse spinel-structure. The fraction of tetrahedral Ga3+ ions was calculated to be 0.07-0.16, and increased with Zn/Ga ratio increasing. The inverse parameter (two times the fraction of Ga3+ in the tetrahedral sites) increases from 0.14 to 0.32 when x value increases from 0.8 to 1.1. The EPR and emission spectra indicated that oxygen vacancies formed in the nanocrystals. The emission intensity of the peak due to oxygen vacancies decreased with increasing Zn/Ga ratio, indicating the decreasing of the concentration of oxygen vacancy.

  9. Ohmic contacts on n-type β-Ga2O3 using AZO/Ti/Au

    NASA Astrophysics Data System (ADS)

    Carey, Patrick H.; Yang, Jiancheng; Ren, F.; Hays, David C.; Pearton, S. J.; Jang, Soohwan; Kuramata, Akito; Kravchenko, Ivan I.

    2017-09-01

    AZO interlayers between n-Ga2O3 and Ti/Au metallization significantly enhance Ohmic contact formation after annealing at ≥ 30 0°C. Without the presence of the AZO, similar anneals produce only rectifying current-voltage characteristics. Transmission Line Measurements of the Au/Ti/AZO/Ga2O3 stacks showed the specific contact resistance and transfer resistance decreased sharply from as-deposited values with annealing. The minimum contact resistance and specific contact resistance of 0.42 Ω-mm and 2.82 × 10-5 Ω-cm2 were achieved after a relatively low temperature 40 0°C annealing. The conduction band offset between AZO and Ga2O3 is 0.79 eV and provides a favorable pathway for improved electron transport across this interface.

  10. Ohmic contacts on n-type β-Ga 2O 3 using AZO/Ti/Au

    DOE PAGES

    Carey, IV, Patrick H.; Yang, Jiancheng; Ren, F.; ...

    2017-09-14

    AZO interlayers between n-Ga 2O 3 and Ti/Au metallization significantly enhance Ohmic contact formation after annealing at ≥ 300°C. Without the presence of the AZO, similar anneals produce only rectifying current-voltage characteristics. Transmission Line Measurements of the Au/Ti/AZO/Ga 2O 3 stacks showed the specific contact resistance and transfer resistance decreased sharply from as-deposited values with annealing. The minimum contact resistance and specific contact resistance of 0.42 Ω-mm and 2.82 × 10 -5 Ω-cm 2 were achieved after a relatively low temperature 400°C annealing. In conclusion, the conduction band offset between AZO and Ga 2O 3 is 0.79 eV and providesmore » a favorable pathway for improved electron transport across this interface.« less

  11. P-type gallium nitride

    DOEpatents

    Rubin, M.; Newman, N.; Fu, T.; Ross, J.; Chan, J.

    1997-08-12

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5{times}10{sup 11} /cm{sup 3} and hole mobilities of about 500 cm{sup 2} /V-sec, measured at 250 K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al. 9 figs.

  12. P-type gallium nitride

    DOEpatents

    Rubin, Michael; Newman, Nathan; Fu, Tracy; Ross, Jennifer; Chan, James

    1997-01-01

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5.times.10.sup.11 /cm.sup.3 and hole mobilities of about 500 cm.sup.2 /V-sec, measured at 250.degree. K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al.

  13. Magnetic properties of solid solutions between BiCrO3 and BiGaO3 with perovskite structures

    NASA Astrophysics Data System (ADS)

    Belik, Alexei A.

    2015-04-01

    Magnetic properties of BiCr1-xGaxO3 perovskite-type solid solutions are reported, and a magnetic phase diagram is established. As-synthesized BiCrO3 and BiCr0.9Ga0.1O3 crystallize in a monoclinic (m) C2/c structure. The Néel temperature (TN) decreases from 111 K in BiCrO3 to 98 K in BiCr0.9Ga0.1O3, and spin-reorientation transition temperature increases from 72 K in BiCrO3 to 83 K in BiCr0.9Ga0.1O3. o-BiCr0.9Ga0.1O3 with a PbZrO3-type orthorhombic structure is obtained by heating m-BiCr0.9Ga0.1O3 up to 573 K in air; it shows similar magnetic properties with those of m-BiCr0.9Ga0.1O3. TN of BiCr0.8Ga0.2O3 is 81 K, and TN of BiCr0.7Ga0.3O3 is 63 K. Samples with x = 0.4, 0.5, 0.6 and 0.7 crystallize in a polar R3c structure. Long-range antiferromagnetic order with weak ferromagnetism is observed below TN = 56 K in BiCr0.6Ga0.4O3, TN = 36 K in BiCr0.5Ga0.5O3 and TN = 18 K in BiCr0.4Ga0.6O3. BiCr0.3Ga0.7O3 shows a paramagnetic behaviour because the Cr concentration is below the percolation threshold of 31%.

  14. [Mechanism and performance of styrene oxidation by O3/H2O2].

    PubMed

    He, Jue-Cong; Huang, Qian-Ru; Ye, Qi-Hong; Luo, Yu-Wei; Zhang, Zai-Li; Fan, Qing-Juan; Wei, Zai-Shan

    2013-10-01

    It can produce a large number of free radicals in O3/H2O2, system, ozone and free radical coupling oxidation can improve the styrene removal efficiency. Styrene oxidation by O3/H2O2 was investigated. Ozone dosage, residence time, H2o2 volume fraction, spray density and molar ratio of O3/C8H8 on styrene removal were evaluated. The experimental results showed that styrene removal efficiency achieved 85.7%. The optimal residence time, H2O2, volume fraction, spray density and O3/C8H8 molar ratio were 20. 6 s, 10% , 1.72 m3.(m2.h)-1 and 0.46, respectively. The gas-phase degradation intermediate products were benzaldehyde(C6H5CHO) and benzoic acid (C6H5 COOH) , which were identified by means of gas chromatography-mass spectrometry(GC-MS). The degradation mechanism of styrene is presented.

  15. Controlled optical properties via chemical composition tuning in molybdenum-incorporated β-Ga 2O 3 nanocrystalline films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battu, Anil K.; Manandhar, S.; Shutthanandan, V.

    Here, an approach is presented to design refractory-metal incorporated Ga 2O 3-based materials with controlled structural and optical properties. The molybdenum (Mo)-content in Ga 2O 3 was varied from 0 to 11 at% in the sputter-deposited Ga-Mo-O films. Molybdenum was found to significantly affect the structure and optical properties. While low Mo-content (≤4 at%) results in the formation of single-phase (β-Ga 2O 3), higher Mo-content results in amorphization. Chemically-induced band gap variability (E g ~ 1 eV) coupled with structure-modification indicates the electronic-structure changes in Ga-Mo-O. The linear relationship between chemical-composition and optical properties suggests that tailoring the optical-quality andmore » performance of Ga-Mo-O films is possible by tuning the Mo-content.« less

  16. Controlled optical properties via chemical composition tuning in molybdenum-incorporated β-Ga 2O 3 nanocrystalline films

    DOE PAGES

    Battu, Anil K.; Manandhar, S.; Shutthanandan, V.; ...

    2017-07-01

    Here, an approach is presented to design refractory-metal incorporated Ga 2O 3-based materials with controlled structural and optical properties. The molybdenum (Mo)-content in Ga 2O 3 was varied from 0 to 11 at% in the sputter-deposited Ga-Mo-O films. Molybdenum was found to significantly affect the structure and optical properties. While low Mo-content (≤4 at%) results in the formation of single-phase (β-Ga 2O 3), higher Mo-content results in amorphization. Chemically-induced band gap variability (E g ~ 1 eV) coupled with structure-modification indicates the electronic-structure changes in Ga-Mo-O. The linear relationship between chemical-composition and optical properties suggests that tailoring the optical-quality andmore » performance of Ga-Mo-O films is possible by tuning the Mo-content.« less

  17. Study on Wide-gap Gallium-nitride Based Films and Their Quantum-dots Devices

    DTIC Science & Technology

    2006-09-05

    The chemical reaction is give by 2GaN + 6h+ +6OH- --> Ga2O3 + 3H2O + N2 (2.3.1) From the Faraday’s law, the photocurrent should be... Ga2O3 start to growth whiles the light on. The photocurrent decreased gradually due to the oxide thickness increasing. During the light off duration...the oxide dissolved in KOH solution in dark. The chemical reaction is give by 20 Ga2O3 +6OH- --> 2GaO33- + 3H2O (2.3.3) The oxide

  18. CO Oxidation and Subsequent CO 2 Chemisorption on Alkaline Zirconates: Li 2 ZrO 3 and Na 2 ZrO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alcántar-Vázquez, Brenda; Duan, Yuhua; Pfeiffer, Heriberto

    Here, two different alkaline zirconates (Li 2ZrO 3 and Na 2ZrO 3) were studied as possible bifunctional catalytic-captor materials for CO oxidation and the subsequent CO 2 chemisorption process. Initially, CO oxidation reactions were analyzed in a catalytic reactor coupled to a gas chromatograph, using Li 2ZrO 3 and Na 2ZrO 3, under different O 2 partial flows. We found results clearly showed that Na 2ZrO 3 possesses much better catalytic properties than Li 2ZrO 3. After the CO-O 2 oxidation catalytic analysis, CO2 chemisorption process was analyzed by thermogravimetric analysis, only for the Na 2ZrO 3 ceramic. The resultsmore » confirmed that Na 2ZrO 3 is able to work as a bifunctional material (CO oxidation and subsequent CO 2 chemisorption), although the kinetic CO 2 capture process was not the best one under the physicochemical condition used in this case. For Na 2ZrO 3, the best CO conversions were found between 445 and 580 °C (100%), while Li 2ZrO 3 only showed a 35% of efficiency between 460 and 503 °C. However, in the Na 2ZrO 3 case, at temperatures higher than 580 °C its catalytic activity gradually decreases as a result of CO 2 capture process. Finally, all these experiments were compared and supported with theoretical thermodynamic data.« less

  19. CO Oxidation and Subsequent CO 2 Chemisorption on Alkaline Zirconates: Li 2 ZrO 3 and Na 2 ZrO 3

    DOE PAGES

    Alcántar-Vázquez, Brenda; Duan, Yuhua; Pfeiffer, Heriberto

    2016-08-26

    Here, two different alkaline zirconates (Li 2ZrO 3 and Na 2ZrO 3) were studied as possible bifunctional catalytic-captor materials for CO oxidation and the subsequent CO 2 chemisorption process. Initially, CO oxidation reactions were analyzed in a catalytic reactor coupled to a gas chromatograph, using Li 2ZrO 3 and Na 2ZrO 3, under different O 2 partial flows. We found results clearly showed that Na 2ZrO 3 possesses much better catalytic properties than Li 2ZrO 3. After the CO-O 2 oxidation catalytic analysis, CO2 chemisorption process was analyzed by thermogravimetric analysis, only for the Na 2ZrO 3 ceramic. The resultsmore » confirmed that Na 2ZrO 3 is able to work as a bifunctional material (CO oxidation and subsequent CO 2 chemisorption), although the kinetic CO 2 capture process was not the best one under the physicochemical condition used in this case. For Na 2ZrO 3, the best CO conversions were found between 445 and 580 °C (100%), while Li 2ZrO 3 only showed a 35% of efficiency between 460 and 503 °C. However, in the Na 2ZrO 3 case, at temperatures higher than 580 °C its catalytic activity gradually decreases as a result of CO 2 capture process. Finally, all these experiments were compared and supported with theoretical thermodynamic data.« less

  20. Wide band gap Ga2O3 as efficient UV-C photocatalyst for gas-phase degradation applications.

    PubMed

    Jędrzejczyk, Marcin; Zbudniewek, Klaudia; Rynkowski, Jacek; Keller, Valérie; Grams, Jacek; Ruppert, Agnieszka M; Keller, Nicolas

    2017-12-01

    α, β, γ, and δ polymorphs of 4.6-4.8 eV wide band gap Ga 2 O 3 photocatalysts were prepared via a soft chemistry route. Their photocatalytic activity under 254 nm UV-C light in the degradation of gaseous toluene was strongly depending on the polymorph phase. α- and β-Ga 2 O 3 photocatalysts enabled achieving high and stable conversions of toluene with selectivities to CO 2 within the 50-90% range, by contrast to conventional TiO 2 photocatalysts that fully deactivate very rapidly on stream in similar operating conditions with rather no CO 2 production, no matter whether UV-A or UV-C light was used. The highest performances were achieved on the high specific surface area β-Ga 2 O 3 photocatalyst synthesized by adding polyethylene glycol (PEG) as porogen before precipitation, with stable toluene conversion and mineralization rate into CO 2 strongly overcoming those obtained on commercial β-Ga 2 O 3 . They were attributed to favorable physicochemical properties in terms of high specific surface area, small mean crystallite size, good crystallinity, high pore volume with large size mesopore distribution and appropriate surface acidity, and to the possible existence of a double local internal field within Ga 3+ units. In the degradation of hydrogen sulfide, PEG-derived β-Ga 2 O 3 takes advantage from its high specific surface area for storing sulfate, and thus for increasing its resistance to deactivation and the duration at total sulfur removal when compared to other β-Ga 2 O 3 photocatalysts. So, we illustrated the interest of using high surface area β-Ga 2 O 3 in environmental photocatalysis for gas-phase depollution applications.

  1. Growth mechanism and elemental distribution of beta-Ga2O3 crystalline nanowires synthesized by cobalt-assisted chemical vapor deposition.

    PubMed

    Wang, Hui; Lan, Yucheng; Zhang, Jiaming; Crimp, Martin A; Ren, Zhifeng

    2012-04-01

    Long beta-Ga2O3 crystalline nanowires are synthesized on patterned silicon substrates using chemical vapor deposition technique. Advanced electron microscopy indicates that the as-grown beta-Ga2O3 nanowires are consisted of poly-crystalline (Co, Ga)O tips and straight crystalline beta-Ga2O3 stems. The catalytic cobalt not only locates at the nanowire tips but diffuses into beta-Ga2O3 nanowire stems several ten nanometers. A solid diffusion growth mechanism is proposed based on the spatial elemental distribution along the beta-Ga2O3 nanowires at nanoscale.

  2. n-type dopants in (001) β-Ga2O3 grown on (001) β-Ga2O3 substrates by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Han, Sang-Heon; Mauze, Akhil; Ahmadi, Elaheh; Mates, Tom; Oshima, Yuichi; Speck, James S.

    2018-04-01

    Ge and Sn as n-type dopants in (001) β-Ga2O3 films were investigated using plasma-assisted molecular beam epitaxy. The Ge concentration showed a strong dependence on the growth temperature, whereas the Sn concentration remains independent of the growth temperature. The maximum growth temperature at which a wide range of Ge concentrations (from 1017 to 1020 cm-3) could be achieved was 675 °C while the same range of Sn concentration could be achieved at growth temperature of 750 °C. Atomic force microscopy results revealed that higher growth temperature shows better surface morphology. Therefore, our study reveals a tradeoff between higher Ge doping concentration and high quality surface morphology on (001) β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy. The Ge doped films had an electron mobility of 26.3 cm2 V-1 s-1 at the electron concentration of 6.7 × 1017 cm-3 whereas the Sn doped films had an electron mobility of 25.3 cm2 V-1 s-1 at the electron concentration of 1.1 × 1018 cm-3.

  3. First-principles study of Ga-vacancy induced magnetism in β-Ga2O3.

    PubMed

    Yang, Ya; Zhang, Jihua; Hu, Shunbo; Wu, Yabei; Zhang, Jincang; Ren, Wei; Cao, Shixun

    2017-11-01

    First principles calculations based on density functional theory were performed to study the electronic structure and magnetic properties of β-Ga 2 O 3 in the presence of cation vacancies. We investigated two kinds of Ga vacancies at different symmetry sites and the consequent structural distortion and defect states. We found that both the six-fold coordinated octahedral site and the four-fold coordinated tetrahedral site vacancies can lead to a spin polarized ground state. Furthermore, the calculation identified a relationship between the spin polarization and the charge states of the vacancies, which might be explained by a molecular orbital model consisting of uncompensated O 2- 2p dangling bonds. The calculations for the two vacancy systems also indicated a potential long-range ferromagnetic order which is beneficial for spintronics application.

  4. Improvements of electronic and optical characteristics of n-GaN-based structures by photoelectrochemical oxidation in glycol solution

    NASA Astrophysics Data System (ADS)

    Shiozaki, Nanako; Hashizume, Tamotsu

    2009-03-01

    Surface control of n-GaN was performed by applying a photoelectrochemical oxidation method in a glycol solution to improve the optical and electronic characteristics. The fundamental properties of the oxidation were investigated. The oxidation, chemical composition, and bonding states were analyzed by x-ray photoelectron spectroscopy and micro-Auger electron spectroscopy, in which confirmed the formation of gallium oxide on the surface. The oxide formation rate was about 8 nm/min under UV illumination of 4 mW/cm2. After establishing the basic properties for control of n-GaN oxidation, the surface control technique was applied to achieve low-damage etching, enhancement of the photoluminescence intensity, and selective passivation of the air-exposed sidewalls in an AlGaN/GaN high electron mobility transistor wire structure. The capacitance-voltage measurement revealed the minimum interface-state density between GaN and anodic oxide to be about 5×1011 cm-2 eV-1, which is rather low value for compound semiconductors.

  5. Recent Progress of B-Ga2O3 MOSFETs for Power Electronic Applications

    DTIC Science & Technology

    2017-03-20

    variety of group 4 elements such as Silicon, Tin , and Germanium.[2, 9] Multiple samples will be referenced throughout the text, but it should be noted...Ga2O3 channel. Fabrication steps 2-4 are used in the standard fabrication as seen in Figure 1. Figure 8a below shows a top-down SEM image of the gated...voltage of 567V. Please see reference [11] for more information. 393 Figure 8. (a) Colored SEM image of a β-Ga2O3 finFET. (b) Transfer

  6. Effect of RE (Nd3+, Sm3+) oxide on structural, optical properties of Na2O-Li2O-ZnO-B2O3 glass system

    NASA Astrophysics Data System (ADS)

    Hivrekar, Mahesh M.; Bhoyar, D. N.; Mande, V. K.; Dhole, V. V.; Solunke, M. B.; Jadhav, K. M.

    2018-05-01

    Zinc borate glass activated with rare earth oxide (Nd2O3, Sm2O3) of Na2O-Li2O-ZnO-B2O3 quaternary system has been prepared successfully by melt quenching method. The nucleation and growth of RE oxide were controlled temperature range 950-1000° C and rapid cooling at room temperature. The physical, structural and optical properties were characterized by using X-ray diffraction (XRD), SEM, Ultraviolet-visible spectroscopy (UV-Vis). XRD and SEM studies confirmed the amorphous nature, surface morphology of prepared zinc borate glass. The physical parameters like density, molar volume, molar mass of Nd3+, Sm3+ doped borate glass are summarized in the present article. The optical absorption spectra along with tauc's plot are presented. The optical energy band gap increases due to the addition of rare earth oxide confirming the role of network modifier.

  7. Catalytic activity of CuOn-La2O3/gamma-Al2O3 for microwave assisted ClO2 catalytic oxidation of phenol wastewater.

    PubMed

    Bi, Xiaoyi; Wang, Peng; Jiang, Hong

    2008-06-15

    In order to develop a catalyst with high activity and stability for microwave assisted ClO2 catalytic oxidation, we prepared CuOn-La2O3/gamma-Al2O3 by impregnation-deposition method, and determined its properties using BET, XRF, XPS and chemical analysis techniques. The test results show that, better thermal ability of gamma-Al2O3 and high loading of Cu in the catalyst can be achieved by adding La2O3. The microwave assisted ClO2 catalytic oxidation process with CuOn-La2O3/gamma-Al2O3 used as catalyst was also investigated, and the results show that the catalyst has an excellent catalytic activity in treating synthetic wastewater containing 100 mg/L phenol, and 91.66% of phenol and 50.35% of total organic carbon (TOC) can be removed under the optimum process conditions. Compared with no catalyst process, CuOn-La2O3/gamma-Al2O3 can effectively degrade contaminants in short reaction time and with low oxidant dosage, extensive pH range. The comparison of phenol removal efficiency in the different process indicates that microwave irradiation and catalyst work together to oxidize phenol effectively. It can therefore be concluded from results and discussion that CuOn-La2O3/gamma-Al2O3 is a suitable catalyst in microwave assisted ClO2 catalytic oxidation process.

  8. Defects in doped LaGaO3 anionic conductors: linking NMR spectral features, local environments, and defect thermodynamics.

    PubMed

    Blanc, Frédéric; Middlemiss, Derek S; Gan, Zhehong; Grey, Clare P

    2011-11-09

    Doped lanthanum gallate perovskites (LaGaO(3)) constitute some of the most promising electrolyte materials for solid oxide fuel cells operating in the intermediate temperature regime. Here, an approach combining experimental multinuclear NMR spectroscopy with density functional theory total energy and GIPAW NMR calculations yields a comprehensive understanding of the structural and defect chemistries of Sr- and Mg-doped LaGaO(3) anionic conductors. The DFT energetics demonstrate that Ga-V(O)-Ga (V(O) = oxygen vacancy) environments are favored (vs Ga-V(O)-Mg, Mg-V(O)-Mg and Mg-O-Mg-V(O)-Ga) across a range y = 0.0625, 0.125, and 0.25 of fractional Mg contents in LaGa(1-y)Mg(y)O(3-y/2). The results are interpreted in terms of doping and mean phase formation energies (relative to binary oxides) and are compared with previous calculations and experimental calorimetry data. Experimental multinuclear NMR data reveal that while Mg sites remain six-fold coordinated across the range of phase stoichiometries, albeit with significant structural disorder, a stoichiometry-dependent minority of the Ga sites resonate at a shift consistent with Ga(V) coordination, demonstrating that O vacancies preferentially locate in the first anion coordination shell of Ga. The strong Mg-V(O) binding inferred by previous studies is not observed here. The (17)O NMR spectra reveal distinct resonances that can be assigned by using the GIPAW NMR calculations to anions occupying equatorial and axial positions with respect to the Ga(V)-V(O) axis. The disparate shifts displayed by these sites are due to the nature and extent of the structural distortions caused by the O vacancies.

  9. Crystal Structure and Ferroelectric Properties of ε-Ga2O3 Films Grown on (0001)-Sapphire.

    PubMed

    Mezzadri, Francesco; Calestani, Gianluca; Boschi, Francesco; Delmonte, Davide; Bosi, Matteo; Fornari, Roberto

    2016-11-21

    The crystal structure and ferroelectric properties of ε-Ga 2 O 3 deposited by low-temperature MOCVD on (0001)-sapphire were investigated by single-crystal X-ray diffraction and the dynamic hysteresis measurement technique. A thorough investigation of this relatively unknown polymorph of Ga 2 O 3 showed that it is composed of layers of both octahedrally and tetrahedrally coordinated Ga 3+ sites, which appear to be occupied with a 66% probability. The refinement of the crystal structure in the noncentrosymmetric space group P6 3 mc pointed out the presence of uncompensated electrical dipoles suggesting ferroelectric properties, which were finally demonstrated by independent measurements of the ferroelectric hysteresis. A clear epitaxial relation is observed with respect to the c-oriented sapphire substrate, with the Ga 2 O 3 [10-10] direction being parallel to the Al 2 O 3 direction [11-20], yielding a lattice mismatch of about 4.1%.

  10. Band alignments at Ga2O3 heterojunction interfaces with Si and Ge

    NASA Astrophysics Data System (ADS)

    Gibbon, J. T.; Jones, L.; Roberts, J. W.; Althobaiti, M.; Chalker, P. R.; Mitrovic, Ivona Z.; Dhanak, V. R.

    2018-06-01

    Amorphous Ga2O3 thin films were deposited on p-type (111) and (100) surfaces of silicon and (100) germanium by atomic layer deposition (ALD). X-ray photoelectron spectroscopy (XPS) was used to investigate the band alignments at the interfaces using the Kraut Method. The valence band offsets were determined to be 3.49± 0.08 eV and 3.47± 0.08 eV with Si(111) and Si(100) respectively and 3.51eV± 0.08 eV with Ge(100). Inverse photoemission spectroscopy (IPES) was used to investigate the conduction band of a thick Ga2O3 film and the band gap of the film was determined to be 4.63±0.14 eV. The conduction band offsets were found to be 0.03 eV and 0.05eV with Si(111) and Si(100) respectively, and 0.45eV with Ge(100). The results indicate that the heterojunctions of Ga2O3 with Si(100), Si(111) and Ge(100) are all type I heterojunctions.

  11. Low-temperature formation of Ga-oxide/GaN interface with remote oxygen plasma and its interface properties

    NASA Astrophysics Data System (ADS)

    Yamamoto, Taishi; Taoka, Noriyuki; Ohta, Akio; Truyen, Nguyen Xuan; Yamada, Hisashi; Takahashi, Tokio; Ikeda, Mitsuhisa; Makihara, Katsunori; Shimizu, Mitsuaki; Miyazaki, Seiichi

    2018-06-01

    The Ga-oxide/GaN structures formed by remote oxygen plasma (ROP) exposure at various temperatures (T s) and times have been systematically investigated. X-ray photoelectron spectroscopy clarified the formation of Ga2O3 layers with close-to-stoichiometric composition and a slight N incorporation of ∼6 at. %. Also, we found that a high T s increases the intensity of a signal related to the N–O bond, which is located near the Ga-oxide/GaN interfaces. Total photoelectron yield spectroscopy (PYS) also revealed that the ROP exposure at T s of 300 °C produces fewer filled defect states in the bandgap of GaN than at 500 °C. This difference in the filled defect states could be attributable to the amount of N–O bonds at the interface.

  12. Tuning the thickness of exfoliated quasi-two-dimensional β-Ga2O3 flakes by plasma etching

    NASA Astrophysics Data System (ADS)

    Kwon, Yongbeom; Lee, Geonyeop; Oh, Sooyeoun; Kim, Jihyun; Pearton, Stephen J.; Ren, Fan

    2017-03-01

    We demonstrated the thinning of exfoliated quasi-two-dimensional β-Ga2O3 flakes by using a reactive ion etching technique. Mechanical exfoliation of the bulk β-Ga2O3 by using an adhesive tape was followed by plasma etching to tune its thickness. Since β-Ga2O3 is not a van der Waals material, it is challenging to obtain ultra-thin flakes below a thickness of 100 nm. In this study, an etch rate of approximately 16 nm/min was achieved at a power of 200 W with a flow of 50 sccm of SF6, and under these conditions, thinning of β-Ga2O3 flakes from 300 nm down to ˜60 nm was achieved with smooth morphology. We believe that the reaction between SF6 and Ga2O3 results in oxygen and volatile oxygen fluoride compounds, and non-volatile compounds such as GaFX that can be removed by ion bombardment. The opto-electrical properties were also characterized by fabricating solar-blind photodetectors using the plasma-thinned β-Ga2O3 flakes; these detectors showed fast response and decay with excellent responsivity and selectivity. Our results pave the way for tuning the thickness of two-dimensional materials by using this scalable, industry-compatible dry etching technique.

  13. Structuring β-Ga2O3 photonic crystal photocatalyst for efficient degradation of organic pollutants.

    PubMed

    Li, Xiaofang; Zhen, Xiuzheng; Meng, Sugang; Xian, Jiangjun; Shao, Yu; Fu, Xianzhi; Li, Danzhen

    2013-09-03

    Coupling photocatalysts with photonic crystals structure is based on the unique property of photonic crystals in confining, controlling, and manipulating the incident photons. This combination enhances the light absorption in photocatalysts and thus greatly improves their photocatalytic performance. In this study, Ga2O3 photonic crystals with well-arranged skeleton structures were prepared via a dip-coating infiltration method. The positions of the electronic band absorption for Ga2O3 photonic crystals could be made to locate on the red edge, on the blue edge, and away from the edge of their photonic band gaps by changing the pore sizes of the samples, respectively. Particularly, the electronic band absorption of the Ga2O3 photonic crystal with a pore size of 135 nm was enhanced more than other samples by making it locate on the red edge of its photonic band gap, which was confirmed by the higher instantaneous photocurrent and photocatalytic activity for the degradation of various organic pollutants under ultraviolet light irradiation. Furthermore, the degradation mechanism over Ga2O3 photonic crystals was discussed. The design of Ga2O3 photonic crystals presents a prospective application of photonic crystals in photocatalysis to address light harvesting and quantum efficiency problems through manipulating photons or constructing photonic crystal structure as groundwork.

  14. Oxygen deficiency and Sn doping of amorphous Ga{sub 2}O{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinemann, M. D.; Unold, T.; Berry, J.

    2016-01-11

    The potential of effectively n-type doping Ga{sub 2}O{sub 3} considering its large band gap has made it an attractive target for integration into transistors and solar cells. As a result amorphous GaO{sub x} is now attracting interest as an electron transport layer in solar cells despite little information on its opto-electrical properties. Here we present the opto-electronic properties, including optical band gap, electron affinity, and charge carrier density, for amorphous GaO{sub x} thin films deposited by pulsed laser deposition. These properties are strongly dependent on the deposition temperature during the deposition process. The deposition temperature has no significant influence onmore » the general structural properties but produces significant changes in the oxygen stoichiometry of the films. The density of the oxygen vacancies is found to be related to the optical band gap of the GaO{sub x} layer. It is proposed that the oxygen deficiency leads to defect band below the conduction band minimum that increases the electron affinity. These properties facilitate the use of amorphous GaO{sub x} as an electron transport layer in Cu(In,Ga)Se{sub 2} and in Cu{sub 2}O solar cells. Further it is shown that at low deposition temperatures, extrinsic doping with Sn is effective at low Sn concentrations.« less

  15. Heavier Group 13 Metal(I) Heterocycles Stabilized by Sterically Demanding Diiminophosphinates: A Structurally Characterized Monomer-Dimer Pair For Gallium.

    PubMed

    Hawley, Andrew L; Ohlin, C André; Fohlmeister, Lea; Stasch, Andreas

    2017-01-05

    We have synthesized and characterized the monomeric diiminophosphinate-stabilized Group 13 metal(I) complexes [ Dip LE:], Dip L=Ph 2 P(NDip) 2 , Dip=2,6-iPr 2 C 6 H 3 ; E=Ga (1), In (2) and Tl (3). In addition, we structurally characterized the dimeric complex [( Dip LGa) 2 ], 1 2 . Similar synthetic attempts using Mes L=Ph 2 P(NMes) 2 , Mes=2,4,6-Me 3 C 6 H 2 afforded product mixtures from which the mixed oxidation state species [( Mes L) 3 Ga 4 I 3 ] 4 was isolated. [ Dip LGa:] 1 is converted with dry air to the gallium(III) oxide species [( Dip LGaO) 2 ] 5. Density Functional Theory studies on [ Dip LE:] and [( Dip LE) 2 ], E=Al-Tl, shed light on the bonding in these compounds and show that the newly formed E-E bonding interactions can be described as weak single σ-bond with no significant π-bonding contribution for E=Al, Ga. A large contribution to the dimer binding enthalpies results from London dispersion forces. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Growth and characterization of β-Ga2O3 nanowires obtained on not-catalyzed and Au/Pt catalyzed substrates

    NASA Astrophysics Data System (ADS)

    Calestani, Davide; Alabi, Aderemi Babatunde; Coppedè, Nicola; Villani, Marco; Lazzarini, Laura; Fabbri, Filippo; Salviati, Giancarlo; Zappettini, Andrea

    2017-01-01

    In recent years, a large interest has been reported on low-dimensional β-Ga2O3 structures, like nanowires, nanobelts, nanorods or nanosheets, because of their peculiar and sometimes superior properties. These properties, however, can be strongly affected by the growth procedure, especially if metal growth catalysts are used. In this work we report the successful synthesis of β-Ga2O3 nanowires/nanobelts using a simple combination of thermal evaporation of a metallic Ga source and controlled oxidation. The same growth procedure has been used to grow nanostructures on different kind of substrates (silicon and alumina), without catalyst as well as with Au or Pt deposited on the substrates, in order to promote the nucleation of nanowires. The morphological, structural and optical properties of the obtained nanostructures have been characterized and compared. Different growth distributions on the substrates and possible growth mechanisms have been highlighted, while a strong increase in luminescence intensity has been observed on samples grown with Au and Pt catalysts.

  17. Control of Defects in Aluminum Gallium Nitride ((Al)GaN) Films on Grown Aluminum Nitride (AlN) Substrates

    DTIC Science & Technology

    2013-02-01

    Nord, J.; Albe, K.; Erhart, P.; Nordlund, K. Modelling of Compound Semiconductors: Analytical Bond-order Potential for Gallium , Nitrogen and Gallium ...Control of Defects in Aluminum Gallium Nitride ((Al)GaN) Films on Grown Aluminum Nitride (AlN) Substrates by Iskander G. Batyrev, Chi-Chin Wu...Aluminum Gallium Nitride ((Al)GaN) Films on Grown Aluminum Nitride (AlN) Substrates Iskander G. Batyrev and N. Scott Weingarten Weapons and

  18. HfO2 Gate Dielectric on (NH4)2S Passivated (100) GaAs Grown by Atomic Layer Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, P.T.; /Stanford U., Materials Sci. Dept.; Sun, Y.

    2007-09-28

    The interface between hafnium oxide grown by atomic layer deposition and (100) GaAs treated with HCl cleaning and (NH{sub 4}){sub 2}S passivation has been characterized. Synchrotron radiation photoemission core level spectra indicated successful removal of the native oxides and formation of passivating sulfides on the GaAs surface. Layer-by-layer removal of the hafnia film revealed a small amount of As{sub 2}O{sub 3} formed at the interface during the dielectric deposition. Traces of arsenic and sulfur out-diffusion into the hafnia film were observed after a 450 C post-deposition anneal, and may be the origins for the electrically active defects. Transmission electron microscopymore » cross section images showed thicker HfO{sub 2} films for a given precursor exposure on S-treated GaAs versus the non-treated sample. In addition, the valence-band and the conduction-band offsets at the HfO{sub 2}/GaAs interface were deduced to be 3.18 eV and a range of 0.87-0.97 eV, respectively. It appears that HCl+(NH{sub 4})2{sub S} treatments provide a superior chemical passivation for GaAs and initial surface for ALD deposition.« less

  19. Anionic Gallium-Based Metal;#8722;Organic Framework and Its Sorption and Ion-Exchange Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Debasis; Kim, Sun Jin; Wu, Haohan

    2012-04-30

    A gallium-based metal-organic framework Ga{sub 6}(C{sub 9}H{sub 3}O{sub 6}){sub 8} {center_dot} (C{sub 2}H{sub 8}N){sub 6}(C{sub 3}H{sub 7}NO){sub 3}(H{sub 2}O){sub 26} [1, Ga{sub 6}(1,3,5-BTC){sub 8} {center_dot} 6DMA {center_dot} 3DMF {center_dot} 26H{sub 2}O], GaMOF-1; BTC = benzenetricarboxylate/trimesic acid and DMA = dimethylamine, with space group I{bar 4}3d, a = 19.611(1) {angstrom}, and V = 7953.4(6) {angstrom}{sup 3}, was synthesized using solvothermal techniques and characterized by synchrotron-based X-ray microcrystal diffraction. Compound 1 contains isolated gallium tetrahedra connected by the organic linker (BTC) forming a 3,4-connected anionic porous network. Disordered positively charged ions and solvent molecules are present in the pore, compensating for themore » negative charge of the framework. These positively charged molecules could be exchanged with alkali-metal ions, as is evident by an ICP-MS study. The H{sub 2} storage capacity of the parent framework is moderate with a H{sub 2} storage capacity of {approx}0.5 wt % at 77 K and 1 atm.« less

  20. Structure of β-AgGaO{sub 2}; ternary I–III–VI{sub 2} oxide semiconductor with a wurtzite-derived structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagatani, Hiraku; Suzuki, Issei; Kita, Masao

    2015-02-15

    The structure of the wurtzite-derived β-AgGaO{sub 2} was refined by Rietveld analysis of high-resolution powder diffraction data obtained using synchrotron X-ray radiation. The space group of the crystal is Pna2{sub 1} with lattice parameters of a{sub 0}=5.56175 Å, b{sub 0}=7.14749 Å, and c{sub 0}=5.46875 Å. The deviation of O–Ag–O and M–O–M bond angles from the regular tetrahedral angle of 109.5° was very large at ∼8° and ∼11°, respectively. The electronic structure of β-AgGaO{sub 2} is discussed based on its structure, and the indirect band gap of β-AgGaO{sub 2} was related to significant tetrahedral distortion. Although β-AgGaO{sub 2} decomposes into metallicmore » silver and Ga{sub 2}O{sub 3} at a high temperature in any atmosphere, β-AgGaO{sub 2} is stable up to 690 °C under an O{sub 2} atmosphere. No direct transformation from the wurtzite-derived phase to a delafossite phase occurs in β-AgGaO{sub 2}. - Graphical abstract: Crystal structure of β-AgGaO{sub 2} was refined by Rietveld analysis. AgO{sub 4} and O(Ag,Ga){sub 4} tetrahedra are significantly distorted from ideal tetrahedron. - Highlights: • Orthorhombic β-AgGaO{sub 2} with a wurtzite-derived β-NaFeO{sub 2} structure was synthesized. • Its structure was refined by Rietveld analysis of high-resolution XRD data. • Silver and oxygen tetrahedra are significantly distorted from an ideal tetrahedron. • The extent of this tetrahedral distortion is related to the band gap nature. • β-AgGaO{sub 2} is a metastable phase but is stable up to 690 °C in an O{sub 2} atmosphere.« less

  1. Plasma treatment of p-GaN/n-ZnO nanorod light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Leung, Yu Hang; Ng, Alan M. C.; Djurišic, Aleksandra B.; Chan, Wai Kin; Fong, Patrick W. K.; Lui, Hsien Fai; Surya, Charles

    2014-03-01

    Zinc oxide (ZnO) is a material of great interest for short-wavelength optoelectronic applications due to its wide band gap (3.37 eV) and high exciton binding energy (60 meV). Due to the difficulty in stable p-type doping of ZnO, other p-type materials such as gallium nitride (GaN) have been used to form heterojunctions with ZnO. p-GaN/n-ZnO heterojunction devices, in particular light-emitting diodes (LED) have been extensively studied. There was a huge variety of electronic properties and emission colors on the reported devices. It is due to the different energy alignment at the interface caused by different properties of the GaN layer and ZnO counterpart in the junction. Attempts have been made on modifying the heterojunction by various methods, such as introducing a dielectric interlayer and post-growth surface treatment, and changing the growth methods of ZnO. In this study, heterojunction LED devices with p-GaN and ZnO nanorods array are demonstrated. The ZnO nanorods were grown by a solution method. The ZnO nanorods were exposed to different kinds of plasma treatments (such as nitrogen and oxygen) after the growth. It was found that the treatment could cause significant change on the optical properties of the ZnO nanorods, as well as the electronic properties and light emissions of the resultant LED devices.

  2. Ceramic oxide reactions with V2O5 and SO3

    NASA Technical Reports Server (NTRS)

    Jones, R. L.; Williams, C. E.

    1985-01-01

    Ceramic oxides are not inert in combustion environments, but can react with, inter alia, SO3, and Na2SO4 to yield low melting mixed sulfate eutectics, and with vanadium compounds to produce vanadates. Assuming ceramic degradation to become severe only when molten phases are generated in the surface salt (as found for metallic hot corrosion), the reactivity of ceramic oxides can be quantified by determining the SO3 partial pressure necessary for molten mixed sulfate formation with Na2SO3. Vanadium pentoxide is an acidic oxide that reacts with Na2O, SO3, and the different ceramic oxides in a series of Lux-Flood type of acid-base displacement reactions. To elucidate the various possible vanadium compound-ceramic oxide interactions, a study was made of the reactions of a matrix involving, on the one axis, ceramix oxides of increasing acidity, and on the other axis, vanadium compounds of increasing acidity. Resistance to vanadium compound reaction increased as the oxide acidity increased. Oxides more acidic than ZrO2 displaced V2O5. Examination of Y2O3- and CeO2-stabilized ZrO2 sintered ceramics which were degraded in 700 C NaVO3 has shown good agreement with the reactions predicted above, except that the CeO2-ZrO2 ceramic appears to be inexplicably degraded by NaVO3.

  3. Epitaxial ZnO gate dielectrics deposited by RF sputter for AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors

    NASA Astrophysics Data System (ADS)

    Yoon, Seonno; Lee, Seungmin; Kim, Hyun-Seop; Cha, Ho-Young; Lee, Hi-Deok; Oh, Jungwoo

    2018-01-01

    Radio frequency (RF)-sputtered ZnO gate dielectrics for AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors (MOS-HEMTs) were investigated with varying O2/Ar ratios. The ZnO deposited with a low oxygen content of 4.5% showed a high dielectric constant and low interface trap density due to the compensation of oxygen vacancies during the sputtering process. The good capacitance-voltage characteristics of ZnO-on-AlGaN/GaN capacitors resulted from the high crystallinity of oxide at the interface, as investigated by x-ray diffraction and high-resolution transmission electron microscopy. The MOS-HEMTs demonstrated comparable output electrical characteristics with conventional Ni/Au HEMTs but a lower gate leakage current. At a gate voltage of -20 V, the typical gate leakage current for a MOS-HEMT with a gate length of 6 μm and width of 100 μm was found to be as low as 8.2 × 10-7 mA mm-1, which was three orders lower than that of the Ni/Au Schottky gate HEMT. The reduction of the gate leakage current improved the on/off current ratio by three orders of magnitude. These results indicate that RF-sputtered ZnO with a low O2/Ar ratio is a good gate dielectric for high-performance AlGaN/GaN MOS-HEMTs.

  4. Synthesis, Structure, and Antiproliferative Activity of Three Gallium(III) Azole Complexes

    PubMed Central

    Zanias, Stergios; Papaefstathiou, Giannis S.; Raptopoulou, Catherine P.; Papazisis, Konstantinos T.; Vala, Vasiliki; Zambouli, Dimitra; Kortsaris, Alexandros H.; Kyriakidis, Dimitrios A.; Zafiropoulos, Theodoros F.

    2010-01-01

    As part of our interest into the bioinorganic chemistry of gallium, gallium(III) complexes of the azole ligands 2,1,3-benzothiadiazole (btd), 1,2,3-benzotriazole (btaH), and 1-methyl-4,5-diphenylimidazole (L) have been isolated. Reaction of btaH or btd with GaBr3 or GaCl3 resulted in the mononuclear complexes [GaBr3(btaH)2] (1) and [GaCl3(btd)2] (2), respectively, while treatment of GaCl3 with L resulted in the anionic complex (LH)2[GaCl4] (3). All three complexes were characterized by single-crystal X-ray crystallography and IR spectroscopy, while their antiproliferative activities were investigated against a series of human and mouse cancer cell lines. PMID:20721278

  5. Phenolic aminocarboxylic acids as gallium-binding radiopharmaceuticals.

    PubMed

    Hunt, F C

    1984-06-01

    The phenolic aminocarboxylic acids ethylenediamine di [o-hydroxyphenylacetic acid] (EDDHA) and N,N'-bis [2-hydroxybenzyl] ethylenediamine N,N'-diacetic acid (HBED) form gallium complexes having high stability constants which enable them to resist exchange of gallium with plasma transferrin. 67Ga complexes were synthesized with these ligands, placing substituent groups in the phenolic ring to direct excretion via the renal or hepatobiliary route. The amount of 67Ga-Br-EDDHA excreted via the hepatobiliary route was comparable with that of some of the 99mTc agents. Excretion of 67Ga-Br-HBED was similar but with delayed transit from the liver. 67Ga COOH-EDDHA was excreted exclusively via the renal route. These findings provide a basis for developing new 67Ga or 68Ga radiopharmaceuticals, the latter for use in positron emission tomography, using these phenolic aminocarboxylates.

  6. Growth and etching characteristics of (001) β-Ga2O3 by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Oshima, Yuichi; Ahmadi, Elaheh; Kaun, Stephen; Wu, Feng; Speck, James S.

    2018-01-01

    We investigated the homoepitaxial growth and etching characteristics of (001) β-Ga2O3 by plasma-assisted molecular beam epitaxy. The growth rate of β-Ga2O3 increased with increasing Ga-flux, reaching a clear plateau of 56 nm h-1, and then decreased at higher Ga-flux. The growth rate decreased from 56 to 42 nm h-1 when the substrate temperature was increased from 750 °C to 800 °C. The growth rate was negative (net etching) when only Ga-flux was supplied. The etching rate proportionally increased with increasing the Ga-flux, reaching 84 nm h-1. The etching was enhanced at higher temperatures. It was found that Ga-etching of (001) β-Ga2O3 substrates prior to the homoepitaxial growth markedly improved the surface roughness of the film.

  7. Biological study of the effect of water soluble [N-(2-hydroxybenzyl)-L-aspartato] gallium complexes on breast carcinoma and fibrosarcoma cells.

    PubMed

    Mohsen, Ahmed; Saby, Charles; Collery, Philippe; Sabry, Gilane Mohamed; Hassan, Rasha Elsherif; Badawi, Abdelfattah; Jeannesson, Pierre; Desmaële, Didier; Morjani, Hamid

    2016-10-01

    Two water soluble gallium complexes described as [Ga(III)LCl], where L is the deprotonated form of N-2-hydroxybenzyl aspartic acid derivatives, were synthesized and characterized by (1)H NMR, (13)C NMR, FT-IR, mass spectrometry, and elemental analysis. The 2-(5-chloro-2-hydroxybenzylamino)succinic acid derivative (GS2) has been found to be a promising anticancer drug candidate. This compound was found to be more cytotoxic against human breast carcinoma MDA-MB231 and fibrosarcoma HT-1080 cell lines than the unsubstituted derivative and GaCl3. GS2 was able to induce apoptosis through downregulation of AKT phosphorylation, G2M arrest in cell cycle, and caspase 3/7 pathway. This gallium complex was found to induce an increase in mitochondrial ROS level in HT-1080 cells but not in MDA-MB231 cells. This suggests that the mechanism of action of GS2 would not be mediated by the drug-induced oxidative stress but probably by directly and indirectly inhibiting the AKT cell-signaling pathway.

  8. Atomic-scale structural and electronic properties of SrTiO3/GaAs interfaces: A combined STEM-EELS and first-principles study

    NASA Astrophysics Data System (ADS)

    Hong, Liang; Bhatnagar, Kunal; Droopad, Ravi; Klie, Robert F.; Öǧüt, Serdar

    2017-07-01

    The electronic properties of epitaxial oxide thin films grown on compound semiconductors are largely determined by the interfacial atomic structure, as well as the thermodynamic conditions during synthesis. Ferroelectric polarization and Fermi-level pinning in SrTiO3 films have been attributed to the presence of oxygen vacancies at the oxide/semiconductor interface. Here, we present scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy analyses of GaAs films grown on SrTiO3 combined with first-principles calculations to determine the atomic and electronic structures of the SrTiO3/GaAs interfaces. An atomically abrupt SrO/As interface is observed and the interfacial SrO layer is found to be O-deficient. First-principles density functional theory (DFT) calculations show SrO/Ga and Sr/As interfaces are favorable under O-rich and O-poor conditions, respectively. The SrO/Ga interface is reconstructed via the formation of Ga-Ga dimers while the Sr/As interface is abrupt and consistent with the experiment. DFT calculations further reveal that intrinsic two-dimensional electron gas (2DEG) forms in both SrO/Ga and Sr/As interfaces, and the Fermi level is pinned to the localized 2DEG states. Interfacial O vacancies can enhance the 2DEG density while it is possible for Ga/As vacancies to unpin the Fermi level from the 2DEG states.

  9. Small signal measurement of Sc 2O 3 AlGaN/GaN moshemts

    NASA Astrophysics Data System (ADS)

    Luo, B.; Mehandru, R.; Kang, B. S.; Kim, J.; Ren, F.; Gila, B. P.; Onstine, A. H.; Abernathy, C. R.; Pearton, S. J.; Gotthold, D.; Birkhahn, R.; Peres, B.; Fitch, R.; Gillespie, J. K.; Jenkins, T.; Sewell, J.; Via, D.; Crespo, A.

    2004-02-01

    The rf performance of 1 × 200 μm 2 AlGaN/GaN MOS-HEMTs with Sc 2O 3 used as both the gate dielectric and as a surface passivation layer is reported. A maximum fT of ˜11 GHz and fMAX of 19 GHz were obtained. The equivalent device parameters were extracted by fitting this data to obtain the transconductance, drain resistance, drain-source resistance, transfer time and gate-drain and gate-source capacitance as a function of gate voltage. The transfer time is in the order 0.5-1 ps and decreases with increasing gate voltage.

  10. Luminescence Characteristics of ZnGa2O4 Thick Film Doped with Mn2+ and Cr3+ at Various Sintering Temperatures

    NASA Astrophysics Data System (ADS)

    Cha, Jae Hyeok; Kim, Kyung Hwan; Park, Yong Seo; Kwon, Sang Jik; Choi, Hyung Wook

    2007-10-01

    ZnGa2O4 phosphor separately doped with Mn2+ and Cr3+ was synthesized by solid-state reaction, and thick films were deposited by screen printing. The X-ray diffraction (XRD) patterns of ZnGa2O4 phosphor thick films show a (311) main peak and a spinal phase. Uniform distribution and filled morphology of the doped ZnGa2O4 phosphor thick films were formed at the sintering temperature of 1100 °C. The CL spectrum of Mn2+-doped ZnGa2O4 shows the main peak of 512 nm green emission with the 4T1→6A1 transition of Mn2+ ions and the CL spectrum of Cr3+-doped ZnGa2O4 shows the main peak of 716 nm red emission with the 2E→4A2 transition of Cr3+ ions.

  11. The electrical properties of low pressure chemical vapor deposition Ga doped ZnO thin films depending on chemical bonding configuration

    NASA Astrophysics Data System (ADS)

    Jung, Hanearl; Kim, Doyoung; Kim, Hyungjun

    2014-04-01

    The electrical and chemical properties of low pressure chemical vapor deposition (LP-CVD) Ga doped ZnO (ZnO:Ga) films were systematically investigated using Hall measurement and X-ray photoemission spectroscopy (XPS). Diethylzinc (DEZ) and O2 gas were used as precursor and reactant gas, respectively, and trimethyl gallium (TMGa) was used as a Ga doping source. Initially, the electrical properties of undoped LP-CVD ZnO films depending on the partial pressure of DEZ and O2 ratio were investigated using X-ray diffraction (XRD) by changing partial pressure of DEZ from 40 to 140 mTorr and that of O2 from 40 to 80 mTorr. The resistivity was reduced by Ga doping from 7.24 × 10-3 Ω cm for undoped ZnO to 2.05 × 10-3 Ω cm for Ga doped ZnO at the TMG pressure of 8 mTorr. The change of electric properties of Ga doped ZnO with varying the amount of Ga dopants was systematically discussed based on the structural crystallinity and chemical bonding configuration, analyzed by XRD and XPS, respectively.

  12. Raising the superconducting Tc of gallium: In situ characterization of the transformation of α -Ga into β -Ga

    NASA Astrophysics Data System (ADS)

    Campanini, D.; Diao, Z.; Rydh, A.

    2018-05-01

    Gallium (Ga) displays several metastable phases. Superconductivity is strongly enhanced in the metastable β -Ga with a critical temperature Tc=6.04 (5 ) K , while stable α -Ga has a much lower Tc<1.2 K . Here we use a membrane-based nanocalorimeter to initiate the transition from α -Ga to β -Ga on demand, as well as study the specific heat of the two phases on one and the same sample. The in situ transformation is initiated by bringing the temperature to about 10 K above the melting temperature of α -Ga. After such treatment, the liquid supercools down to 232 K , where β -Ga solidifies. We find that β -Ga is a strong-coupling type-I superconductor with Δ (0 ) /kBTc=2.00 (5 ) and a Sommerfeld coefficient γn=1.53 (4 ) mJ /molK2 , 2.55 times higher than that in the α phase. The results allow a detailed comparison of fundamental thermodynamic properties between the two phases.

  13. Characterization of the GaN-MgO Transistor Interface: More Power and Efficiency

    NASA Astrophysics Data System (ADS)

    Sanchez, Jose; Kumah, Divine; Walker, Fred

    2012-02-01

    In this age of high-energy consumption, the development of more efficient and more reliable devices is indispensable. Gallium nitride (GaN)-based devices are an option in achieving this goal. GaN's wide bandgap of 3.4 eV allows the device to handle large amount of current before leakage makes its energy consumption inefficient. The characteristics of GaN, in conjunction with those of Magnesium oxide (MgO), would allow for improvement of different electronic applications such as mobile phone communication technology. In this work, the fabrication of the GaN/MgO device was done by Molecular Beam Epitaxy. This device was grown under a variety of parameters where the growth temperature, growth chamber pressure, and the rate of material deposition were changed. To determine the optimal growth parameters, current-voltage and capacitance-voltage measurements were conducted on to evaluate the effects of these growth conditions. Atomic Force Microscopy was also used in characterizing the crystallinity and morphology of the samples. A conclusion of the research is that by improving the roughness of the substrate, the breakdown voltage of the MgO layer and the overall performance of the device can be improve, yielding a device with very low energy loss in the current transmission process.

  14. Improvement of Ohmic contacts on Ga 2O 3 through use of ITO-interlayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carey, Patrick H.; Yang, Jiancheng; Ren, Fan

    In this work, the use of ITO interlayers between Ga 2O 3 and Ti/Au metallization is shown to produce Ohmic contacts after annealing in the range of 500–600 °C. Without the ITO, similar anneals do not lead to linear current–voltage characteristics. Transmission line measurements were used to extract the specific contact resistance of the Au/Ti/ITO/Ga 2O 3 stacks as a function of annealing temperature. Sheet, specific contact, and transfer resistances all decreased sharply from as-deposited values with annealing. The minimum transfer resistance and specific contact resistance of 0.60 Ω mm and 6.3 × 10 -5 Ω cm 2 were achievedmore » after 600 °C annealing, respectively. Lastly, the conduction band offset between ITO and Ga 2O 3 is 0.32 eV and is consistent with the improved electron transport across the heterointerface.« less

  15. Dipicolinate Complexes of Gallium(III) and Lanthanum(III).

    PubMed

    Weekes, David M; Ramogida, Caterina F; Jaraquemada-Peláez, Maria de Guadalupe; Patrick, Brian O; Apte, Chirag; Kostelnik, Thomas I; Cawthray, Jacqueline F; Murphy, Lisa; Orvig, Chris

    2016-12-19

    Three dipicolinic acid amine-derived compounds functionalized with a carboxylate (H 3 dpaa), phosphonate (H 4 dppa), and bisphosphonate (H 7 dpbpa), as well as their nonfunctionalized analogue (H 2 dpa), were successfully synthesized and characterized. The 1:1 lanthanum(III) complexes of H 2 dpa, H 3 dpaa, and H 4 dppa, the 1:2 lanthanum(III) complex of H 2 dpa, and the 1:1 gallium(III) complex of H 3 dpaa were characterized, including via X-ray crystallography for [La 4 (dppa) 4 (H 2 O) 2 ] and [Ga(dpaa)(H 2 O)]. H 2 dpa, H 3 dpaa, and H 4 dppa were evaluated for their thermodynamic stability with lanthanum(III) via potentiometric and either UV-vis spectrophotometric (H 3 dpaa) or NMR spectrometric (H 2 dpa and H 4 dppa) titrations, which showed that the carboxylate (H 3 dpaa) and phosphonate (H 4 dppa) containing ligands enhanced the lanthanum(III) complex stability by 3-4 orders of magnitude relative to the unfunctionalized ligand (comparing log β ML and pM values) at physiological pH. In addition, potentiometric titrations with H 3 dpaa and gallium(III) were performed, which gave significantly (8 orders of magnitude) higher thermodynamic stability constants than with lanthanum(III). This was predicted to be a consequence of better size matching between the dipicolinate cavity and gallium(III), which was also evident in the aforementioned crystal structures. Because of a potential link between lanthanum(III) and osteoporosis, the ligands were tested for their bone-directing properties via a hydroxyapatite (HAP) binding assay, which showed that either a phosphonate or bisphosphonate moiety was necessary in order to elicit a chemical binding interaction with HAP. The oral activity of the ligands and their metal complexes was also assessed by experimentally measuring log P o/w values using the shake-flask method, and these were compared to a currently prescribed osteoporosis drug (alendronate). Because of the potential therapeutic applications of the radionuclides

  16. Effect of Ga incorporation on morphology and defect structures evolution in VLS grown 1D In2O3 nanostructures

    NASA Astrophysics Data System (ADS)

    Ramos-Ramón, Jesús Alberto; Pal, Umapada; Cremades, Ana; Maestre, David

    2018-05-01

    Fabrication of 1D metal oxide nanostructures of controlled morphology and defect structure is of immense importance for their application in optoelectronics. While the morphology of these nanostructures depends primarily on growth parameters utilized in physical deposition processes, incorporation of foreign elements or dopants not only affects their morphology, but also affects their crystallinity and defect structure, which are the most important parameters for their device applications. Herein we report on the growth of highly crystalline 1D In2O3 nanostructures through vapor-liquid-solid process at relatively low temperature, and the effect of Ga incorporation on their morphology and defect structures. Through electron microscopy, Raman spectroscopy and cathodoluminescence spectroscopy techniques, we demonstrate that incorporation of Ga in In2O3 nanostructures not only strongly affects their morphology, but also generates new defect levels in the band gap of In2O3, shifting the overall emission of the nanostructures towards visible spectral range.

  17. Study of the phase transformation of single particles of Ga2O3 by UV-Raman spectroscopy and high-resolution TEM.

    PubMed

    Wang, Xiang; Xu, Qian; Fan, Fengtao; Wang, Xiuli; Li, Mingrun; Feng, Zhaochi; Li, Can

    2013-09-01

    By taking advantage of UV-Raman spectroscopy and high-resolution TEM (HRTEM), combined with the focused ion beam (FIB) technique, the transformation from GaOOH into α-Ga2O3 and then into β-Ga2O3 was followed. We found that the stepwise transformations took place from the surface region before developing into the bulk of single particles without particle agglomeration and growth. During the transformation from GaOOH into α-Ga2O3, the elimination of water vapor through the dehydroxylation of GaOOH resulted in the formation of micropores in the single particles, whilst maintaining their particle size. For the phase transformation from α-Ga2O3 into β-Ga2O3, the nucleation of β-Ga2O3 was found to occur at the surface defects and this process could be retarded by occupying these defects with a small amount of La2O3. By finely controlling the process of the phase transformation, the β-Ga2O3 domains gradually developed from the surface into the bulk of the single particles without particle agglomeration. Therefore, the surface structure of the α-Ga2O3 single particles can be easily tuned and a particle with an α@β core-shell phase structure has been obtained. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. [Structure and luminescence properties of Ga2O3 : Cr3+ by Al doping].

    PubMed

    Wang, Xian-Sheng; Wan, Min-Hua; Wang, Yin-Hai; Zhao, Hui; Hu, Zheng-Fa; Li, Hai-Ling

    2013-11-01

    The Al doping gallate phosphor (Ga(1-x)Al(x))2O3 : Cr3+ (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) was synthesized by a high temperature solid-state reaction method. The X-ray diffractions show that the phase of the phosphors remains to be Ga2 O3 structure with increase in the contents of Al3+ ion. Beside, the fact that the X-ray diffraction peak shifts towards big angles with increasing Al3+ ions content shows that Al3+ ions entered the Ga2 O3 lattice. The peaks of the excitation spectra located at 258, 300, 410 and 550 nm are attributed to the band to band transition of the matrix, charge transfer band transition, and 4A2 --> 4T1 and 4A2 --> 4T2 transition of Cr3+ ions, respectively. Those excitation spectrum peak positions show different degrees of blue shift with the increase in the Al3+ ions content. The blue shift of the first two peaks are due to the band gap energy of substrate and the electronegativity between Cr3+ ions and ligands increasing, respectively. The blue shift of the energy level transition of Cr3+ ion is attributed to crystal field strength increasing. The Cr3+ ion luminescence changes from a broadband emission to a narrow-band emission with Al3+ doping, because the emission of Cr3+ ion changed from 4 T2 --> 4A2 to 2E --> 4A2 transition with the crystal field change after Al3+ ions doping. The Al3+ ions doping improved the long afterglow luminescence properties of samples, and the sample showed a longer visible near infrared when Al3+ ions content reaches 0.5. The thermoluminescence curve shows the sample with suitable trap energy level, and this is also the cause of the long afterglow luminescence materials.

  19. Formation mechanism of self-assembled polarization-dependent periodic nanostructures in β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Nakanishi, Y.; Shimotsuma, Y.; Sakakura, M.; Shimizu, M.; Miura, K.

    2018-02-01

    We have successfully observed self-assembled periodic nanostructures inside Si single crystal and GaP crystal, by the femtosecond double-pulse irradiation. These results experimentally indicate that the self-assembly of the periodic nanostructures inside semiconductors triggered by ultrashort pulses irradiation are possibly associated with a direct or an indirect band gap. More recently we have also empirically classified the photoinduced bulk nanogratings into the following three types: (1) structural deficiency, (2) compressed structure, (3) partial crystallization. We have still a big question about what material properties are involved in the bulk nanograting structure formation. In this study, to expand the selectivity of the material for bulk nanograting formation, we have employed β-Ga2O3 crystals (indirect bandgap Eg 4.8 eV) as a sample for femtosecond laser irradiation. The nanograting structure inside β-Ga2O3 crystal was aligned perpendicular to the laser polarization direction. Such phenomenon is similar to the nanograting in SiO2 glass (Eg 9 eV). Moreover, to clarify the band structure, we have also investigate the photoinduced structure in Sn doped β-Ga2O3 crystals, which exhibit direct bandgap according to the first principle calculation.

  20. Synthesis of a mesoporous single crystal Ga2O3 nanoplate with improved photoluminescence and high sensitivity in detecting CO.

    PubMed

    Yan, Shicheng; Wan, Lijuan; Li, Zhaosheng; Zhou, Yong; Zou, Zhigang

    2010-09-14

    A new approach is proposed to synthesize a mesoporous single crystal Ga(2)O(3) nanoplate by heating a single crystal nanoplate of GaOOH, which involves an ion exchange between KGaO(2) and CH(3)COOH at room temperature for the formation of GaOOH and pseudomorphic and topotactic phase transformation from GaOOH to Ga(2)O(3).