Sample records for gallon chilled water

  1. Implementing the 40 Gallon Challenge to Increase Water Conservation

    ERIC Educational Resources Information Center

    Sheffield, Mary Carol; Bauske, Ellen; Pugliese, Paul; Kolich, Heather; Boellstorff, Diane

    2016-01-01

    The 40 Gallon Challenge is an easy-to-use, comprehensive indoor and outdoor water conservation educational tool. It can be used nationwide and easily incorporated into existing educational programs. Promotional materials and pledge cards are available on the 40 Gallon Challenge website and can be modified by educators. The website displays data…

  2. ONE MILLION GALLON WATER TANK, PUMP HEADER PIPE (AT LEFT), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ONE MILLION GALLON WATER TANK, PUMP HEADER PIPE (AT LEFT), HEADER BYPASS PIPE (AT RIGHT), AND PUMPHOUSE FOUNDATIONS. Looking northeast - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Flame Deflector Water System, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  3. Modeling Chilled-Water Storage System Components for Coupling to a Small Modular Reactor in a Nuclear Hybrid Energy System

    NASA Astrophysics Data System (ADS)

    Misenheimer, Corey Thomas

    absorption chiller model is presented. The transient FORTRAN model is grounded on time-dependent mass, species, and energy conservation equations. Due to the vast computational costs of the high-fidelity model, a low-fidelity absorption chiller model is formulated and calibrated to mimic the behavior of the high-fidelity model. Stratified chilled-water storage tank performance is characterized using Computational Fluid Dynamics (CFD). The geometry employed in the CFD model represents a 5-million-gallon storage tank currently in use at a North Carolina college campus. Simulation results reveal the laminar numerical model most closely aligns with actual tank charging and discharging data. A subsequent parametric study corroborates storage tank behavior documented throughout literature and industry. Two absorption chiller configurations are considered. The first involves bypassing lowpressure steam from the low-pressure turbine to absorption chillers during periods of excess reactor capacity in order to keep reactor power constant. Simulation results show steam conditions downstream of the turbine control valves are a strong function of turbine load, and absorption chiller performance is hindered by reduced turbine impulse pressures at reduced turbine demands. A more suitable configuration entails integrating the absorption chillers into a flash vessel system that is thermally coupled to a sensible heat storage system. The sensible heat storage system is able to maintain reactor thermal output constant at 100% and match turbine output with several different electric demand profiles. High-pressure condensate in the sensible heat storage system is dropped across a let-down orifice and flashed in an ideal separator. Generated steam is sent to a bank of absorption chillers. Simulation results show enough steam is available during periods of reduced turbine demand to power four large absorption chillers to charge a 5-million-gallon stratified chilled-water storage tank, which is

  4. Chilled water study EEAP program for Walter Reed Army Medical Center: Book 2. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-02-01

    The Energy Engineering Analysis Program (EEAP) Study for Walter Reed Army Medical Center (WRAMC) was to provide a thorough examination of the central chilled water plants on site. WRAMC is comprised of seventy-one (71) buildings located on a 113-acre site in Washington, D.C. There are two (2) central chilled water plants (Buildings 48 and 49) each with a primary chilled water distribution system. In addition to the two (2) central plants, three (3) buildings utilize their own independent chillers. Two (2) of the independent chillers (Buildings 7 and T-2), one of which is inoperative (T-2), are smaller air-cooled units, whilemore » the third (Building 54) has a 1,900-ton chilled water plant comprised of three (3) centrifugal chillers. Of the two (2) central chilled water plants, Building 48 houses six (6) chillers totalling 7,080 tons of cooling and Building 49 houses one (1) chiller with 660 tons of cooling. The total chiller cooling capacity available on site is 9,840 tons. The chilled water systems were reviewed for alternative ways of conserving energy on site and reducing the peak-cooling load. Distribution systems were reviewed to determine which buildings were served by each of the chilled water plants and to determine chilled water usage on site. Evaluations were made of building exterior and interior composition in order to estimate cooling loads. Interviews with site personnel helped Entech better understand the chilled water plants, the distribution systems, and how each system was utilized.« less

  5. Influence of chilling and drought on water relations and abscisic acid accumulation in bean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernieri, P.; Pardossi, A.; Tognoni, F.

    Intact bean seedlings were subjected to either chilling (4{degree}C) or drought stress. Leaf water relations and abscisic acid (ABA) content were monitored throughout a stress-recovery cycle. Chilling at low relative humidity (RH) and drought caused similar water deficits, as indicated by the decline in relative water content and water potentials, but they had different effects on ABA accumulation. There was a rapid increase in ABA levels in the leaves of water-deprived plants while only slight ABA accumulation was observed after 48 h of chilling (4{degree}C). After 24 h cold treatment there were large changes in turgor but no change inmore » ABA content. Plants chilled for 24 h accumulated ABA only when transferred to recovery conditions (20{degree}C, 90-95% RH, in the dark) to an extent that was related to the rate of leaf rehydration. When the chilling treatment was performed in a water-saturated atmosphere, plants did not suffer any water stress and ABA levels did not increase over a period of 48 h. However, when the chilling treatment lasted for a longer period (72 h), a significant increase in ABA levels was found also in the absence of water deficit. Experiments performed with leaf discs incubated in a mannitol solution (osmotic potential {minus}1{center dot}6 MPa) at different temperatures indicated that low temperature markedly inhibits ABA synthesis and that water stress induces increases in ABA content only at non-limiting warm temperatures.« less

  6. Georgia Institute of Technology chilled water system evaluation and master plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-05-15

    As the host of the Olympic Village for the 1996 Atlanta Olympics, Georgia Tech has experienced a surge in construction activities over the last three years. Over 1.3 million square feet of new buildings have been constructed on the Georgia Tech campus. This growth has placed a strain on the Georgia Tech community and challenged the facilities support staff charged with planning and organizing utility services. In concert with Olympic construction, utility planners have worked to ensure long term benefits for Georgia Tech facilities while meeting the short term requirements of the Olympic Games. The concentration of building construction inmore » the northwest quadrant of the campus allowed planners to construct a satellite chilled water plant to serve the needs of this area and provide the opportunity to integrate this section of the campus with the main campus chilled water system. This assessment and master plan, funded in part by the US Department of Energy, has evaluated the chilled water infrastructure at Georgia Tech, identified ongoing problems and made recommendations for long term chilled water infrastructure development and efficiency improvements. The Georgia Tech office of Facilities and RDA Engineering, Inc. have worked together to assemble relevant information and prepare the recommendations contained in this document.« less

  7. Chilled water study EEAP program for Walter Reed Army Medical Center. Book 1. Final Submission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-02-01

    The Energy Engineering Analysis Program (EEAP) Study for Walter Reed Army Medical Center (WRAMC) was to provide a thorough examination of the central chilled water plants on site. WRAMC is comprised of seventy-one (71) buildings located on a 113-acre site in Washington, D.C. There are two (2) central chilled water plants (Buildings 48 and 49) each with a primary chilled water distribution system. In addition to the two (2) central plants, three (3) buildings utilize their own independent chillers. Two (2) of the independent chillers (Buildings 7 and T-2), one of which is inoperative (T-2), are smaller air-cooled units, whilemore » the third (Building 54) has a 1,900-ton chilled water plant comprised of three (3) centrifugal chillers. Of the two (2) central chilled water plants, Building 48 houses six (6) chillers totalling 7,080 tons of cooling and Building 49 houses one (1) chiller with 660 tons of cooling. The total chiller cooling capacity available on site is 9,840 tons.« less

  8. Heat Transfer Characteristics of Fan Coil Unit (FCU) Under The Effect of Chilled Water Volume Flowrate

    NASA Astrophysics Data System (ADS)

    Wijaya Sunu, Putu; Anakottapary, Daud Simon; Mulawarman, A. A. N. B.; Cipta Santosa, I. D. M.; Putu Sastra Negara, I.

    2018-01-01

    In this paper, the volume flowrate of chilled water in the water chiller simulation apparatus was optimized using experimental studied. The experimental analysis was performed on the fan coil unit (FCU) of the system. The chilled water flows in tube side and the air as a hot fluid flows throughout the tube and fin of FCU. The thermal performance and analysis of the heat transfer is examined using various chilled water flowrate e.g. 11, 12, 13, 14, 15 lpm. The effect of the flowrate to the important parameter such as LMTD temperature, heat absorb used for investigate the heat transfer characteristics. The result showed that the heat transfer characteristics has been increased with the increased of chilled water volume flowrate.

  9. Photograph of drawing building 523 and 100,000gallon water tank above ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photograph of drawing building 523 and 100,000-gallon water tank above it, dated 1979. Drawing in collection of Caretaker Site Office, Philadelphia Naval Business Center. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Building No. 523, Delaware Avenue between East Fourth Street & Webster Avenue, League Island, Philadelphia, Philadelphia County, PA

  10. Modeling Hybrid Nuclear Systems With Chilled-Water Storage

    DOE PAGES

    Misenheimer, Corey T.; Terry, Stephen D.

    2016-06-27

    Air-conditioning loads during the warmer months of the year are large contributors to an increase in the daily peak electrical demand. Traditionally, utility companies boost output to meet daily cooling load spikes, often using expensive and polluting fossil fuel plants to match the demand. Likewise, heating, ventilation, and air conditioning (HVAC) system components must be sized to meet these peak cooling loads. However, the use of a properly sized stratified chilled-water storage system in conjunction with conventional HVAC system components can shift daily energy peaks from cooling loads to off-peak hours. This process is examined in light of the recentmore » development of small modular nuclear reactors (SMRs). In this paper, primary components of an air-conditioning system with a stratified chilled-water storage tank were modeled in FORTRAN 95. A basic chiller operation criterion was employed. Simulation results confirmed earlier work that the air-conditioning system with thermal energy storage (TES) capabilities not only reduced daily peaks in energy demand due to facility cooling loads but also shifted the energy demand from on-peak to off-peak hours, thereby creating a more flattened total electricity demand profile. Thus, coupling chilled-water storage-supplemented HVAC systems to SMRs is appealing because of the decrease in necessary reactor power cycling, and subsequently reduced associated thermal stresses in reactor system materials, to meet daily fluctuations in cooling demand. Finally and also, such a system can be used as a thermal sink during reactor transients or a buffer due to renewable intermittency in a nuclear hybrid energy system (NHES).« less

  11. Modeling Hybrid Nuclear Systems With Chilled-Water Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misenheimer, Corey T.; Terry, Stephen D.

    Air-conditioning loads during the warmer months of the year are large contributors to an increase in the daily peak electrical demand. Traditionally, utility companies boost output to meet daily cooling load spikes, often using expensive and polluting fossil fuel plants to match the demand. Likewise, heating, ventilation, and air conditioning (HVAC) system components must be sized to meet these peak cooling loads. However, the use of a properly sized stratified chilled-water storage system in conjunction with conventional HVAC system components can shift daily energy peaks from cooling loads to off-peak hours. This process is examined in light of the recentmore » development of small modular nuclear reactors (SMRs). In this paper, primary components of an air-conditioning system with a stratified chilled-water storage tank were modeled in FORTRAN 95. A basic chiller operation criterion was employed. Simulation results confirmed earlier work that the air-conditioning system with thermal energy storage (TES) capabilities not only reduced daily peaks in energy demand due to facility cooling loads but also shifted the energy demand from on-peak to off-peak hours, thereby creating a more flattened total electricity demand profile. Thus, coupling chilled-water storage-supplemented HVAC systems to SMRs is appealing because of the decrease in necessary reactor power cycling, and subsequently reduced associated thermal stresses in reactor system materials, to meet daily fluctuations in cooling demand. Finally and also, such a system can be used as a thermal sink during reactor transients or a buffer due to renewable intermittency in a nuclear hybrid energy system (NHES).« less

  12. Water Status Related Root-to-Shoot Communication Regulates the Chilling Tolerance of Shoot in Cucumber (Cucumis sativus L.) Plants.

    PubMed

    Zhang, Zi-Shan; Liu, Mei-Jun; Gao, Hui-Yuan; Jin, Li-Qiao; Li, Yu-Ting; Li, Qing-Ming; Ai, Xi-Zhen

    2015-10-16

    Although root-to-shoot communication has been intensively investigated in plants under drought, few studies have examined root-to-shoot communication under chilling. Here we explored whether root-to-shoot communication contributes to the chilling-light tolerance of cucumber shoots and clarified the key signal involves in this communication. After leaf discs chilling-light treatment, the photoinhibitions of Photosystem I (PSI) and Photosystem II (PSII) were similar in leaf discs of two cucumber varieties (JY-3 and JC-4). When the whole plants, including roots, were chilled under light, the photosynthetic performances in JC-4 leaves decreased more seriously than that in JY-3 leaves. However, when the water status of leaves was maintained by warming roots or floating the attached leaves on water, the PSII activity and amount of PSI in the leaves of the two varieties were similar after chilling-light treatment. In addition, the differences of PSII activities and amount of PSI between the two varieties under whole plant chilling-light treatment were independent of ABA pretreatment. Above results indicate that (1) the better water status in leaves under chilling contributes to the higher chilling tolerance of JY-3; (2) the water status, rather than an ABA signal, dominates root-to-shoot communication under chilling and the chilling tolerance of cucumber shoot.

  13. Identification of Clathrate Hydrates, Hexagonal Ice, Cubic Ice, and Liquid Water in Simulations: the CHILL+ Algorithm.

    PubMed

    Nguyen, Andrew H; Molinero, Valeria

    2015-07-23

    Clathrate hydrates and ice I are the most abundant crystals of water. The study of their nucleation, growth, and decomposition using molecular simulations requires an accurate and efficient algorithm that distinguishes water molecules that belong to each of these crystals and the liquid phase. Existing algorithms identify ice or clathrates, but not both. This poses a challenge for cases in which ice and hydrate coexist, such as in the synthesis of clathrates from ice and the formation of ice from clathrates during self-preservation of methane hydrates. Here we present an efficient algorithm for the identification of clathrate hydrates, hexagonal ice, cubic ice, and liquid water in molecular simulations. CHILL+ uses the number of staggered and eclipsed water-water bonds to identify water molecules in cubic ice, hexagonal ice, and clathrate hydrate. CHILL+ is an extension of CHILL (Moore et al. Phys. Chem. Chem. Phys. 2010, 12, 4124-4134), which identifies hexagonal and cubic ice but not clathrates. In addition to the identification of hydrates, CHILL+ significantly improves the detection of hexagonal ice up to its melting point. We validate the use of CHILL+ for the identification of stacking faults in ice and the nucleation and growth of clathrate hydrates. To our knowledge, this is the first algorithm that allows for the simultaneous identification of ice and clathrate hydrates, and it does so in a way that is competitive with respect to existing methods used to identify any of these crystals.

  14. Performance Monitoring of Chilled-Water Distribution Systems Using HVAC-Cx

    PubMed Central

    Ferretti, Natascha Milesi; Galler, Michael A.; Bushby, Steven T.

    2017-01-01

    In this research we develop, test, and demonstrate the newest extension of the software HVAC-Cx (NIST and CSTB 2014), an automated commissioning tool for detecting common mechanical faults and control errors in chilled-water distribution systems (loops). The commissioning process can improve occupant comfort, ensure the persistence of correct system operation, and reduce energy consumption. Automated tools support the process by decreasing the time and the skill level required to carry out necessary quality assurance measures, and as a result they enable more thorough testing of building heating, ventilating, and air-conditioning (HVAC) systems. This paper describes the algorithm, developed by National Institute of Standards and Technology (NIST), to analyze chilled-water loops and presents the results of a passive monitoring investigation using field data obtained from BACnet® (ASHRAE 2016) controllers and presents field validation of the findings. The tool was successful in detecting faults in system operation in its first field implementation supporting the investigation phase through performance monitoring. Its findings led to a full energy retrocommissioning of the field site. PMID:29167584

  15. Performance Monitoring of Chilled-Water Distribution Systems Using HVAC-Cx.

    PubMed

    Ferretti, Natascha Milesi; Galler, Michael A; Bushby, Steven T

    2017-01-01

    In this research we develop, test, and demonstrate the newest extension of the software HVAC-Cx (NIST and CSTB 2014), an automated commissioning tool for detecting common mechanical faults and control errors in chilled-water distribution systems (loops). The commissioning process can improve occupant comfort, ensure the persistence of correct system operation, and reduce energy consumption. Automated tools support the process by decreasing the time and the skill level required to carry out necessary quality assurance measures, and as a result they enable more thorough testing of building heating, ventilating, and air-conditioning (HVAC) systems. This paper describes the algorithm, developed by National Institute of Standards and Technology (NIST), to analyze chilled-water loops and presents the results of a passive monitoring investigation using field data obtained from BACnet ® (ASHRAE 2016) controllers and presents field validation of the findings. The tool was successful in detecting faults in system operation in its first field implementation supporting the investigation phase through performance monitoring. Its findings led to a full energy retrocommissioning of the field site.

  16. Surface water accumulation and subsquent drip loss for processed broiler carcasses subjected to a post-chill water dip or spray

    USDA-ARS?s Scientific Manuscript database

    To estimate the potential for residual antimicrobial solution carryover, surface water accumulation and loss was measured on post-chill carcasses that were either dipped or sprayed with water. For all experiments, broilers were slaughtered, soft scalded or hard scalded, defeathered, and eviscerated....

  17. High-resolution mapping of a major effect QTL from wild tomato Solanum habrochaites that influences water relations under root chilling.

    PubMed

    Arms, Erin M; Bloom, Arnold J; St Clair, Dina A

    2015-09-01

    QTL stm9 controlling rapid-onset water stress tolerance in S. habrochaites was high-resolution mapped to a chromosome 9 region that contains genes associated with abiotic stress tolerances. Wild tomato (Solanum habrochaites) exhibits tolerance to abiotic stresses, including drought and chilling. Root chilling (6 °C) induces rapid-onset water stress by impeding water movement from roots to shoots. S. habrochaites responds to such changes by closing stomata and maintaining shoot turgor, while cultivated tomato (S. lycopersicum) fails to close stomata and wilts. This response (shoot turgor maintenance under root chilling) is controlled by a major QTL (designated stm9) on chromosome 9, which was previously fine-mapped to a 2.7-cM region. Recombinant sub-near-isogenic lines for chromosome 9 were marker-selected, phenotyped for shoot turgor maintenance under root chilling in two sets of replicated experiments (Fall and Spring), and the data were used to high-resolution map QTL stm9 to a 0.32-cM region. QTL mapping revealed a single QTL that was coincident for both the Spring and Fall datasets, suggesting that the gene or genes contributing to shoot turgor maintenance under root chilling reside within the marker interval H9-T1673. In the S. lycopersicum reference genome sequence, this chromosome 9 region is gene-rich and contains representatives of gene families that have been associated with abiotic stress tolerance.

  18. Diurnal Changes in the Chilling Sensitivity of Seedlings

    PubMed Central

    King, Ann I.; Reid, Michael S.; Patterson, Brian D.

    1982-01-01

    Seedlings of tomato (Lycopersicon esculentum, Mill.) varied diurnally in their sensitivity to chilling temperatures. If chilled near the end of the dark period when they were most sensitive, the time taken to kill half of the seedlings was approximately 3 days, whereas in samples taken 4 hours after the onset of dark, a period of 6 days of chilling was required. Sensitivity dropped rapidly after the onset of the light period. This rhythm was exogenously controlled by the diurnal changes in light, rather than in the temperature. The susceptibility of predawn seedlings could be reduced by exposure to light, by water stress, or by abscisic acid applied to the leaves. However, the subsequent changes in sensitivity to chilling did not correlate with stomatal aperture. Six other chilling-sensitive species showed similar diurnal changes in their chilling sensitivity. Images Fig. 2 PMID:16662448

  19. Boron nutrition and chilling tolerance of warm climate crop species.

    PubMed

    Huang, Longbin; Ye, Zhengqian; Bell, Richard W; Dell, Bernard

    2005-10-01

    Field observations and glasshouse studies have suggested links between boron (B)-deficiency and leaf damage induced by low temperature in crop plants, but causal relationships between these two stresses at physiological, biochemical and molecular levels have yet to be explored. Limited evidence at the whole-plant level suggests that chilling temperature in the root zone restricts B uptake capacity and/or B distribution/utilization efficiency in the shoot, but the nature of this interaction depends on chilling tolerance of species concerned, the mode of low temperature treatment (abrupt versus gradual temperature decline) and growth conditions (e.g. photon flux density and relative humidity) that may exacerbate chilling stress. This review explores roles of B nutrition in chilling tolerance of continual root or transient shoot chills in crop species adapted to warm season conditions. It reviews current research on combined effects of chilling temperature (ranging from >0 to 20 degrees C) and B deficiency on growth and B nutrition responses in crop species differing in chilling tolerance. For subtropical/tropical species (e.g. cucumber, cassava, sunflower), root chilling at 10-17 degrees C decreases B uptake efficiency and B utilization in the shoot and increases the shoot : root ratio, but chilling-tolerant temperate species (e.g. oilseed rape, wheat) require much lower root chill temperatures (2-5 degrees C) to achieve the same responses. Boron deficiency exacerbates chilling injuries in leaf tissues, particularly under high photon flux density. Suggested mechanisms for B x chilling interactions in plants are: (a) chilling-induced reduction in plasmalemma hydraulic conductivity, membrane fluidity, water channel activity and root pressure, which contribute to the decrease in root hydraulic conductance, water uptake and associated B uptake; (b) chilling-induced stomatal dysfunction affecting B transport from root to shoot and B partitioning in the shoot; and (c) B

  20. 4. VIEW SOUTHWEST OF 15MILLION GALLON UNDERGROUND CLEARWELL (foreground), HEAD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW SOUTHWEST OF 15-MILLION GALLON UNDERGROUND CLEARWELL (foreground), HEAD HOUSE (left), OLD PUMP STATION (center), AND EAST FILTER BUILDING (background) - Dalecarlia Water Treatment Plant, 5900 MacArthur Boulevard, Northwest, Washington, District of Columbia, DC

  1. Solar heating and cooling system for an office building at Reedy Creek Utilities

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The solar energy system installed in a two story office building at a utilities company, which provides utility service to Walt Disney World, is described. The solar energy system application is 100 percent heating, 80 percent cooling, and 100 percent hot water. The storage medium is water with a capacity of 10,000 gallons hot and 10,000 gallons chilled water. Performance to date has equaled or exceeded design criteria.

  2. 49 CFR 538.8 - Gallon Equivalents for Gaseous Fuels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Gallon Equivalents for Gaseous Fuels. 538.8... TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION MANUFACTURING INCENTIVES FOR ALTERNATIVE FUEL VEHICLES § 538.8 Gallon Equivalents for Gaseous Fuels. The gallon equivalent of gaseous fuels, for purposes...

  3. 49 CFR 538.8 - Gallon Equivalents for Gaseous Fuels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Gallon Equivalents for Gaseous Fuels. 538.8... TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION MANUFACTURING INCENTIVES FOR ALTERNATIVE FUEL VEHICLES § 538.8 Gallon Equivalents for Gaseous Fuels. The gallon equivalent of gaseous fuels, for purposes...

  4. Solar heating, cooling, and hot water systems installed at Richland, Washington

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The project described is part of the U. S. Department of Energy's solar demonstration program, and became operational in April 1978. The solar system uses 6,000 square feet of flat-plate liquid collectors in a closed loop to deliver solar energy through a liquid-liquid heat exchanger to the building heat-pump duct work or 9,000-gallon thermal energy storage tank. A 25-ton Arkla solar-driven absorption chiller provides the cooling, in conjunction with a 2,000 gallon chilled water storage tank and reflective ponds on three sides of the building surplus heat. A near-by building is essentially identical except for having conventional heat-pump heating and cooling, and can serve as an experimental control. An on-going public relations program was provided from the beginning of the program, and resulted in numerous visitors and tour groups.

  5. Impact of broiler processing scalding and chilling profiles on carcass and breast meat yield.

    PubMed

    Buhr, R J; Walker, J M; Bourassa, D V; Caudill, A B; Kiepper, B H; Zhuang, H

    2014-06-01

    The effect of scalding and chilling procedures was evaluated on carcass and breast meat weight and yield in broilers. On 4 separate weeks (trials), broilers were subjected to feed withdrawal, weighed, and then stunned and bled in 4 sequential batches (n = 16 broilers/batch, 64 broilers/trial). In addition, breast skin was collected before scalding, after scalding, and after defeathering for proximate analysis. Each batch of 16 carcasses was subjected to either hard (60.0°C for 1.5 min) or soft (52.8°C for 3 min) immersion scalding. Following defeathering and evisceration, 8 carcasses/batch were air-chilled (0.5°C, 120 min, 86% RH) and 8 carcasses/batch were immersion water-chilled (water and ice 0.5°C, 40 min). Carcasses were reweighed individually following evisceration and following chilling. Breast meat was removed from the carcass and weighed within 4 h postmortem. There were significant (P < 0.05) differences among the trials for all weights and yields; however, postfeed withdrawal shackle weight and postscald-defeathered eviscerated weights did not differ between the scalding and chilling treatments. During air-chilling all carcasses lost weight, resulting in postchill carcass yield of 73.0% for soft-scalded and 71.3% for hard-scalded carcasses, a difference of 1.7%. During water-chilling all carcasses gained weight, resulting in heavier postchill carcass weights (2,031 g) than for air-chilled carcasses (1,899 g). Postchill carcass yields were correspondingly higher for water-chilled carcasses, 78.2% for soft-scalded and 76.1% for hard-scalded carcasses, a difference of 2.1%. Only in trials 1 and 4 was breast meat yield significantly lower for hard-scalded, air-chilled carcasses (16.1 and 17.5%) than the other treatments. Proximate analysis of skin sampled after scalding or defeathering did not differ significantly in moisture (P = 0.2530) or lipid (P = 0.6412) content compared with skin sampled before scalding. Skin protein content was significantly

  6. 7 CFR 160.92 - Meaning of word “gallon.”

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... “gallon,” when used on or impressed into any container of spirits of turpentine, or when used in an invoice referring to spirits of turpentine in containers of 10 gallons content or less, shall mean a United States standard gallon of 231 cubic inches of turpentine, regardless of any other definitive terms...

  7. 7 CFR 160.92 - Meaning of word “gallon.”

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... “gallon,” when used on or impressed into any container of spirits of turpentine, or when used in an invoice referring to spirits of turpentine in containers of 10 gallons content or less, shall mean a United States standard gallon of 231 cubic inches of turpentine, regardless of any other definitive terms...

  8. 7 CFR 160.92 - Meaning of word “gallon.”

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... “gallon,” when used on or impressed into any container of spirits of turpentine, or when used in an invoice referring to spirits of turpentine in containers of 10 gallons content or less, shall mean a United States standard gallon of 231 cubic inches of turpentine, regardless of any other definitive terms...

  9. 7 CFR 160.92 - Meaning of word “gallon.”

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... “gallon,” when used on or impressed into any container of spirits of turpentine, or when used in an invoice referring to spirits of turpentine in containers of 10 gallons content or less, shall mean a United States standard gallon of 231 cubic inches of turpentine, regardless of any other definitive terms...

  10. Reestablishment of ion homeostasis during chill-coma recovery in the cricket Gryllus pennsylvanicus

    PubMed Central

    MacMillan, Heath A.; Williams, Caroline M.; Staples, James F.; Sinclair, Brent J.

    2012-01-01

    The time required to recover from cold-induced paralysis (chill-coma) is a common measure of insect cold tolerance used to test central questions in thermal biology and predict the effects of climate change on insect populations. The onset of chill-coma in the fall field cricket (Gryllus pennsylvanicus, Orthoptera: Gryllidae) is accompanied by a progressive drift of Na+ and water from the hemolymph to the gut, but the physiological mechanisms underlying recovery from chill-coma are not understood for any insect. Using a combination of gravimetric methods and atomic absorption spectroscopy, we demonstrate that recovery from chill-coma involves a reestablishment of hemolymph ion content and volume driven by removal of Na+ and water from the gut. Recovery is associated with a transient elevation of metabolic rate, the time span of which increases with increasing cold exposure duration and closely matches the duration of complete osmotic recovery. Thus, complete recovery from chill-coma is metabolically costly and encompasses a longer period than is required for the recovery of muscle potentials and movement. These findings provide evidence that physiological mechanisms of hemolymph ion content and volume regulation, such as ion-motive ATPase activity, are instrumental in chill-coma recovery and may underlie natural variation in insect cold tolerance. PMID:23184963

  11. Solar energy retrofit for Clarksville Middle School, Clarksville, Indiana

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar energy retrofit heating system installed to provide heating for two gymnasiums at the Clarksville Middle School located in Clarksville, Indiana is described in detail. The system type is hot water using existing chilled water piping and chilled water coils in an air handler system. Flat plate, single-glazed selectively coated solar collectors were installed on the roof of each gymnasium. Total collector area covers 6,520 square feet. The liquid is stored in a 10,000 gallon steel tank installed below grade.

  12. Thermal characteristics of non-edible oils as phase change materials candidate to application of air conditioning chilled water system

    NASA Astrophysics Data System (ADS)

    Irsyad, M.; Indartono, Y. S.; Suwono, A.; Pasek, A. D.

    2015-09-01

    The addition of phase change material in the secondary refrigerant has been able to reduce the energy consumption of air conditioning systems in chilled water system. This material has a high thermal density because its energy is stored as latent heat. Based on material melting and freezing point, there are several non-edible oils that can be studied as a phase change material candidate for the application of chilled water systems. Forests and plantations in Indonesia have great potential to produce non-edible oil derived from the seeds of the plant, such as; Calophyllum inophyllum, Jatropha curcas L, and Hevea braziliensis. Based on the melting temperature, these oils can further studied to be used as material mixing in the secondary refrigerant. Thermal characteristics are obtained from the testing of T-history, Differential Scanning Calorimetric (DSC) and thermal conductivity materials. Test results showed an increase in the value of the latent heat when mixed with water with the addition of surfactant. Thermal characteristics of each material of the test results are shown completely in discussion section of this article.

  13. Comparative transcriptome and lipidome analyses reveal molecular systems underlying chilling response in chilling-tolerant sorghums

    USDA-ARS?s Scientific Manuscript database

    Chilling temperatures are a major constraint for temperate cultivation of tropical-origin crops, including the cereal crop sorghum (Sorghum bicolor [L.] Moench). Northern Chinese sorghums have adapted to early-season chilling, but molecular mechanisms of chilling tolerance are unknown. We used RNA ...

  14. Quality assessment of rainbow trout (Oncorhynchus mykiss) fillets during super chilling and chilled storage.

    PubMed

    Shen, Song; Jiang, Yan; Liu, Xiaochang; Luo, Yongkang; Gao, Liang

    2015-08-01

    In order to evaluate the effect of super chilling (-3 °C) and chilled (3 °C) storage on the quality of rainbow trout fillets, total volatile base nitrogen (TVB-N), drip loss, pH, electric conductivity (EC), total aerobic count (TAC), K and related values, adenosine triphosphate (ATP) and related compounds, color and sensory score were determined and correlation between these indicators were analyzed. According to the comprehensive evaluation of TAC, K value and sensory score, the limit for acceptability of rainbow trout fillets was 5 days at 3 °C and 11 days at -3 °C. Additionally, the correlation coefficients between TVB-N and other freshness indicators (TAC, K value, sensory score) were relatively low. TVB-N may be inadequate for evaluating freshness changes of rainbow trout fillets compared with other indicators. Among the K and related values, H value was a better freshness indicator in rainbow trout fillets during chilled and super chilling storage for its better correlation coefficients with other freshness indicators. Super chilling storage could extend the shelf life of rainbow trout fillets by 6 days compared to chilled storage.

  15. Effects of broiler carcass scalding and chilling methods on quality of early-deboned breast fillets.

    PubMed

    Zhuang, Hong; Bowker, Brian C; Buhr, R Jeff; Bourassa, Dianna V; Kiepper, Brian H

    2013-05-01

    The impact of scalding and chilling methods on quality of broiler breast fillets (pectoralis major) was evaluated. In 4 replications, 6- to 7-wk-old male and female broilers were slaughtered and scalded either at 60°C for 1.5 min (hard scalding) or 52.8°C for 3 min (soft scalding). Following evisceration, the carcasses were either air-chilled (0.5°C, 120 min) or immersion-chilled in water and ice (79 L/carcass, 0.5°C, 40 min, air agitated). Breast fillets were removed from the carcass within 4 h postmortem. Quality attributes including fillet color (both dorsal-bone and ventral-skin sides), pH, total moisture content, water-holding capacity (drip loss and cook loss), and Warner-Bratzler shear force were determined. Significant interactions between replication and scalding were found for pH, ventral side redness (a*) value, and cook loss and between replication and chilling for pH and ventral side a* and yellowness (b*) values. There were no interactions (P > 0.05) between chilling and scalding methods for any of the measurements. Immersion chilling resulted in higher (P < 0.05) ventral side lightness (L*) values, dorsal side b* values, drip loss, cook loss, and shear force compared with air chilling. No significant differences (P > 0.05) between the 2 scalding methods were observed for any of the quality attributes. These results indicate that broiler carcass chilling method has a much greater impact on quality of breast meat than scalding method and that the influence of chilling on breast meat quality is independent of scalding treatment.

  16. Chemical additive to enhance antimicrobial efficacy of chlorine and control cross-contamination during immersion chill of broiler carcasses.

    PubMed

    Schambach, B T; Berrang, M E; Harrison, M A; Meinersmann, R J

    2014-09-01

    Immersion chilling of broiler carcasses can be a site for cross-contamination between the occasional highly contaminated carcass and those that are co-chilled. Chlorine is often used as an antimicrobial but can be overcome by organic material. A proprietary chlorine stabilizer (T-128) based on phosphoric acid-propylene glycol was tested as a chill tank additive in experiments simulating commercial broiler chilling. In bench-scale experiments, 0.5% T-128 was compared with plain water (control), 50 ppm of chlorine, and the combination of 0.5% T-128 with 50 ppm of chlorine to control transfer of Salmonella and Campylobacter from inoculated wing drummettes to co-chilled uninoculated drummettes. Both chlorine and T-128 lessened cross-contamination with Salmonella (P < 0.05); T-128 and T-128 with chlorine were significantly more effective (P < 0.05) than the control or plain chlorine for control of Campylobacter. T-128 treatments were noted to have a pH of less than 4.0; an additional experiment demonstrated that the antimicrobial effect of T-128 was not due merely to a lower pH. In commercial broiler chilling, a pH close to 6.0 is preferred to maximize chlorine effectiveness, while maintaining water-holding capacity of the meat. In a set of pilot-scale experiments with T-128, a near-ideal pH of 6.3 was achieved by using tap water instead of the distilled water used in bench-scale experiments. Pilot-scale chill tanks were used to compare the combination of 0.5% T-128 and 50 ppm of chlorine with 50 ppm of plain chlorine for control of cross-contamination between whole carcasses inoculated with Salmonella and Campylobacter and co-chilled uninoculated carcasses. The T-128 treatment resulted in significantly less crosscontamination by either direct contact or water transfer with both organisms compared with plain chlorine treatment. T-128 may have use in commercial broiler processing to enhance the effectiveness of chlorine in processing water.

  17. Chilling hours: Myths and facts

    Treesearch

    David B. South

    2013-01-01

    This paper is a critical review of over four decades of research on chilling with southern pine seedlings. For most pines, freeze tolerance, seed dormancy, and endodormancy of terminal buds are affected by natural chilling (0° to 8 °C [32 to 46 °F]). Unfortunately, in the field of reforestation, several myths have emerged regarding the importance of chilling. One myth...

  18. The effect of evaporative air chilling and storage temperature on quality and shelf life of fresh chicken carcasses.

    PubMed

    Mielnik, M B; Dainty, R H; Lundby, F; Mielnik, J

    1999-07-01

    The effect of evaporative air chilling on quality of fresh chicken carcasses was compared with air chilling as reference method. Cooling efficiency and total heat loss were significantly higher for evaporative air chilling. The chilling method was of great importance for weight loss. Chicken chilled in cold air lost considerably more weight than chicken cooled by evaporative air chilling; the difference was 1.8%. The chilling method also affected the skin color and the amount of moisture on skin surface. After evaporative air chilling, the chicken carcasses had a lighter color and more water on the back and under the wings. The moisture content in skin and meat, cooking loss, and pH were not affected by chilling method. Odor attributes of raw chicken and odor and flavor attributes of cooked chicken did not show any significant differences between the two chilling methods. The shelf life of chicken stored at 4 and -1 C were not affected significantly by chilling method. Storage time and temperature appeared to be the decisive factors for sensory and microbiological quality of fresh chicken carcasses.

  19. Estimated water use in the Southwest Florida Water Management District and adjacent areas, 1980

    USGS Publications Warehouse

    Duerr, A.D.; Trommer, J.T.

    1981-01-01

    Water-use data for 1980 are summarized in this report for 16 counties in the Southwest Florida Water Management District. Data include total use of ground water and surface water for each of five water-use categories. The 1980 withdrawals for each category were as follows: 290 million gallons per day for public supply, 63 million gallons per day for rural, 325 million gallons per day for industry, 416 million gallons per day for irrigation, and 6,605 million gallons per day for thermoelectric power generation. Withdrawals totaled 7,699 million gallons per day and included 983 million gallons per day of ground water and 6,716 million gallons per day of surface water. Excluding thermoelectric power generation, all water withdrawn was freshwater except 38 million gallons per day of saline ground water withdrawn for industrial use in Hillsborough County. (USGS)

  20. Design improvement of automated gallon washing machine to minimize musculoskeletal disorders (MSDs) in CV Barokah Abadi using ergonomic function deployment (EFD) approach

    NASA Astrophysics Data System (ADS)

    Fakhriza, Z.; Rahayu, M.; Iqbal, M.

    2017-12-01

    In the production activity of Bottled Drinking Water (AMDK) in CV Barokah Abadi there is a gallon washing station. At the work station it involves three stages of activity such as washing and rinsing the outside of the gallon, spraying the inside of the gallon and rubbing the inside of the gallon which is done in a separate place. Distribution of Nordic Body Map (NBM) questionnaires showing employee complaints data at gallon washing stations where workers complained of pain in the right upper arm, right forearm and right wrist respectively 88% and workers also complained of pain in the waist and The right hand respectively by 81%. Ergonomic gallon washer is one way to minimize the risk of MSDs. The design begins with an ergonomic evaluation of the existing conditions and the concept of the initial design of the gallon washer. The evaluation is utilized for consideration of design improvements with the utilization of Ergonomic Function Deployment (EFD) in order for the product concept to conform to the ECSHE principle (Effective, Comfortable, Safe, Healthy and Efficient). The tool improvement design can minimize the risk of MSDs seen from the worker’s posture while using an ergonomic washer.

  1. Nut crop yield records show that budbreak-based chilling requirements may not reflect yield decline chill thresholds

    NASA Astrophysics Data System (ADS)

    Pope, Katherine S.; Dose, Volker; Da Silva, David; Brown, Patrick H.; DeJong, Theodore M.

    2015-06-01

    Warming winters due to climate change may critically affect temperate tree species. Insufficiently cold winters are thought to result in fewer viable flower buds and the subsequent development of fewer fruits or nuts, decreasing the yield of an orchard or fecundity of a species. The best existing approximation for a threshold of sufficient cold accumulation, the "chilling requirement" of a species or variety, has been quantified by manipulating or modeling the conditions that result in dormant bud breaking. However, the physiological processes that affect budbreak are not the same as those that determine yield. This study sought to test whether budbreak-based chilling thresholds can reasonably approximate the thresholds that affect yield, particularly regarding the potential impacts of climate change on temperate tree crop yields. County-wide yield records for almond ( Prunus dulcis), pistachio ( Pistacia vera), and walnut ( Juglans regia) in the Central Valley of California were compared with 50 years of weather records. Bayesian nonparametric function estimation was used to model yield potentials at varying amounts of chill accumulation. In almonds, average yields occurred when chill accumulation was close to the budbreak-based chilling requirement. However, in the other two crops, pistachios and walnuts, the best previous estimate of the budbreak-based chilling requirements was 19-32 % higher than the chilling accumulations associated with average or above average yields. This research indicates that physiological processes beyond requirements for budbreak should be considered when estimating chill accumulation thresholds of yield decline and potential impacts of climate change.

  2. Rested and stressed farmed Atlantic cod (Gadus morhua) chilled in ice or slurry and effects on quality.

    PubMed

    Digre, Hanne; Erikson, Ulf; Aursand, Ida G; Gallart-Jornet, Lorena; Misimi, Ekrem; Rustad, Turid

    2011-01-01

    The main objectives of this study were to investigate (1) whether rested harvest of farmed cod was better maintained by chilling with slurry rather than by traditional ice storage, (2) whether chilling with slurry would be a feasible chilling method to assure low core temperatures (≤0 °C) at packing of gutted fish, and (3) the effects of superchilling compared with traditional ice on selected quality parameters of cod during storage. In the experiment, seawater slurry at -2.0 ± 0.3 °C was used. Anesthetized (AQUI-S™), percussion stunned, and stressed cod chilled in slurry were compared. Cod stored on ice were used as reference group. The fish were evaluated at the day of slaughter, and after 7 and 14 d of storage according to handling stress (initial muscle pH, muscle twitches, rigor mortis), core temperatures, quality index method, microbial counts, weight changes, salt and water content, water distribution, pH, adenosine triphosphate-degradation products, K-value, water-holding capacity, fillet color, and texture. Chilling cod in slurry was more rapid than chilling in ice. Prechilling (1 d) of cod in slurry before subsequent ice storage resulted in lower quality 7 d postmortem compared with both ice and continuous slurry storage. The potential advantages of superchilling became more prominent after 14 d with lower microbiological activity, better maintenance of freshness (lower total quality index scores and lower K-values) compared with fish stored on ice. A drawback with slurry-stored fish was that cloudy eyes developed earlier, in addition to weight gain and salt uptake compared to ice-stored fish. Practical Application: Chilling is an essential operation in any fish-processing plant. This manuscript addresses different applications of slurry ice in the processing and storage of Atlantic cod. Cod quality was assessed after 7 and 14 d of iced and superchilled storage.

  3. Significant reduction in the incidence of C5 palsy after cervical laminoplasty using chilled irrigation water.

    PubMed

    Takenaka, S; Hosono, N; Mukai, Y; Tateishi, K; Fuji, T

    2016-01-01

    The aim of this study was to determine whether chilled irrigation saline decreases the incidence of clinical upper limb palsy (ULP; a reduction of one grade or more on manual muscle testing; MMT), based on the idea that ULP results from thermal damage to the nerve roots by heat generated by friction during bone drilling. Irrigation saline for drilling was used at room temperature (RT, 25.6°C) in open-door laminoplasty in 400 patients (RT group) and chilled to a mean temperature of 12.1°C during operations for 400 patients (low-temperature (LT) group). We assessed deltoid, biceps, and triceps brachii muscle strength by MMT. ULP occurring within two days post-operatively was categorised as early-onset palsy. The incidence of ULP (4.0% vs 9.5%, p = 0.003), especially early-onset palsy (1.0% vs 5.5%, p < 0.001), was significantly lower for the LT group than for the RT group. Multivariate analysis indicated that RT irrigation saline use, concomitant foraminotomy, and opened side were significant predictors for ULP. Using chilled irrigation saline during bone drilling significantly decreased the ULP incidence, particularly the early-onset type, and shortened the recovery period for ULP. Chilled irrigation saline can thus be recommended as a simple method for preventing ULP. Chilled irrigation during laminoplasty reduces C5 palsy. ©2016 The British Editorial Society of Bone & Joint Surgery.

  4. The effects of chilling stress after anthesis on the physicochemical properties of rice (Oryza sativa L) starch.

    PubMed

    Zhu, Dawei; Wei, Haiyan; Guo, Baowei; Dai, Qigen; Wei, Cunxu; Gao, Hui; Hu, Yajie; Cui, Peiyuan; Li, Min; Huo, Zhongyang; Xu, Ke; Zhang, Hongcheng

    2017-12-15

    This study investigates the effect of chilling stress, over a period of three days after anthesis, on the physicochemical properties of starches derived from six rice cultivars. Chilling stress significantly affected the grain characteristics and physicochemical properties of rice starches, except for those of two varieties, NJ 9108 and ZD 18. In the other four rice cultivars subjected to chilling stress, the content of medium, and large sized granules showed a decrease, and an increase, respectively. Amylose content increased as a result of chilling stress, thereby resulting in starch with a lower swelling power, water solubility, and higher retrogradation enthalpy and gelatinization temperature. Chilling stress led to deterioration of cooked rice quality as determined by the pasting properties of starch. This study indicated that among the cultivars studied, the two rice varieties most resistant to chilling stress after rice anthesis were NJ 9108 and ZD 18. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Pulsed-plasma gas-discharge inactivation of microbial pathogens in chilled poultry wash water.

    PubMed

    Rowan, N J; Espie, S; Harrower, J; Anderson, J G; Marsili, L; MacGregor, S J

    2007-12-01

    A pulsed-plasma gas-discharge (PPGD) system was developed for the novel decontamination of chilled poultry wash water. Treatment of poultry wash water in the plasma generation chamber for up to 24 s at 4 degrees C reduced Escherichia coli NCTC 9001, Campylobacter jejuni ATCC 33560, Campylobacter coli ATCC 33559, Listeria monocytogenes NCTC 9863, Salmonella enterica serovar Enteritidis ATCC 4931, and S. enterica serovar Typhimurium ATCC 14028 populations to non-detectable levels (< or = 8 log CFU/ml). Although similar PPGD treatments at 4 degrees C also produced significant reductions (> or = 3 log CFU/ml) in recalcitrant B. cereus NCTC 11145 endospore numbers within 30 s, the level of endospore reduction was dependent on the nature of the sparged gas used in the plasma treatments. Scanning electron microscopy revealed that significant damage occurred at the cellular level in PPGD-treated test organisms. This electrotechnology delivers energy in intense ultrashort bursts, generating products such as ozone, UV light, acoustic and shock waves, and pulsed electric fields that have multiple bactericidal properties. This technology offers an exciting complementary or alternative approach for treating raw poultry wash water and for preventing cross-contamination in processing environments.

  6. Effects of chilling rate and spray-chilling on weight loss and tenderness in beef strip loin steaks.

    PubMed

    Prado, C S; de Felício, P E

    2010-10-01

    We evaluated the effects of chilling rate and the use of a spray-chilling system on the weight loss by evaporation on carcasses. We also evaluated the effects on meat purge in vacuum package, cooking losses, and on parameters related to the tenderness of strip loin steaks (M. longissimus lumborum). Forty non-castrated males of approximately 12 months old, finished in feed-lot were harvested in 16 Montana cattle (a composite breed), and 24 SimmentalxNellore crossbred cattle. After bleeding, the bodies were electrically stimulated and assigned to one of the four treatments: conventional air-chilling (CAC), conventional spray-chilling (CSC), slow air-chilling (SAC), and slow spray-chilling (SSC). Strip loin steaks (M. longissimus lumborum) of approximately 2.5 cm thick were removed, vacuum packed and aged for 7, 14, 30 or 60 days. Samples were analyzed for sarcomere length, myofibrillar fragmentation index, Warner-Bratzler shear force, and weight losses by purge and cooking. Spraying was efficient in reducing weight loss by evaporation (P<0.05). Effects of treatments and aging period on purge losses were observed, where samples from sprayed carcasses or aged cuts showed higher losses. Cooking losses were not affected either by spraying or aging. The slow chilling, with or without spraying, was more efficient in producing strip loin steaks with lower average shear force and longer sarcomere. The myofibrillar fragmentation index increased with aging time, but was not affected by carcasses spraying. Copyright (c) 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  7. Phosphatidylglycerol and Chilling Sensitivity in Plants

    PubMed Central

    Roughan, P. Grattan

    1985-01-01

    The hypothesis that molecular species of thylakoid phosphatidylglycerol containing two saturated fatty acids (disaturated phosphatidylglycerol) confer chilling sensitivity upon plants was tested by analyzing the fatty acid composition of phosphatidylglycerols isolated from leaves of a range of plants expected to have different sensitivities to chilling temperatures. `Saturated' fatty acids (palmitate plus stearate plus hexadeca-trans-3-enoate) as a proportion of total phosphatidylglycerol fatty acids varied from 51 to 80 mole per cent in the plants analyzed but appeared to be rigidly fixed for a given plant species, being unaffected by leaf maturity or by environment. Hexadeca-trans-3-enoate occurred only at the sn-2 position, whereas C-18 fatty acids occurred only at the sn-1 position of thylakoid phosphatidylglycerol. Therefore, the proportion of disaturated molecular species could be predicted accurately from the total fatty acids of phosphatidylglycerol. Disaturated molecular species accounted for <25% of the total phosphatidylglycerol from leaves of chilling-resistant plants and for 50 to 60% of the phosphatidylglycerol in leaves from some of the most chilling-sensitive plants. However, not all chilling-sensitive plants contained high proportions of disaturated phosphatidylglycerol; solanaceous and other 16:3-plants and C4 grasses may be important exceptions. Nonetheless, proportions of disaturated phosphatidylglycerol increased concomitantly with increasing chilling sensitivity of plants within a genus. PMID:16664127

  8. Application of ultrasound in chicken breast during chilling by immersion promotes a fast and uniform cooling.

    PubMed

    Flores, Diego Rafael Martins; Brasil, Carla Cristina Bauermann; Campagnol, Paulo Cezar Bastianello; Jacob-Lopes, Eduardo; Zepka, Leila Queiroz; Wagner, Roger; Menezes, Cristiano Ragagnin; Barin, Juliano Smanioto; Flores, Erico Marlon Moraes; Cichoski, Alexandre José

    2018-07-01

    The initial objective of the study was to evaluate different operation modes (sweep and normal) and frequencies (25 and 130 kHz) of ultrasound in pre-chilling of breast chicken cylinders (BCC) immersed in water at 10 °C during 10 min. The second objective was to study the effect of the immersion time (5, 10, 15, 20, and 30 min) using the best operation mode and frequency obtained in the pre-chilling of the BCC in water at 10 °C. Pre-chilling was evaluated in both stages by infrared thermography, and the percentages of water absorption were determined in the second stage. The application of US at 130 kHz and normal operation mode provided a reduction of temperature on the surface of BBC higher (≈19.6%) than untreated samples. Also, compared to control, the US-treated samples in these conditions presented a more uniform cooling rate (≈22.3%) and higher water absorption (≈113%). Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Diurnal variation of wind-chill at Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Balafoutis, Ch. J.

    1989-12-01

    The diurnal variations of wind-chill at Thessaloniki, Greece, are considered using hourly data from January 1960 to December 1977. This is the first attempt in Greece to describe bioclimatic conditions using wind-chill data. The hourly values of wind-chill were calculated by Siple-Passel's formula which still appears to be most widely used. The values of wind-chill are discussed in terms of Terjung's scale. Thessaloniki does not experience “frost-bite” conditions during the coldest months but does experience “warm” conditions during the summer period. A comparison of hourly and daily mean values show that the means do not indicate the real range of wind-chill during the day.

  10. At $2.15 a Gallon, Cellulosic Ethanol Could Be Cost Competitive -

    Science.gov Websites

    Continuum Magazine | NREL At $2.15 a Gallon, Cellulosic Ethanol Could Be Cost Competitive In cellulose microfibrils. Photo by Dennis Schroeder, NREL At $2.15 a Gallon, Cellulosic Ethanol Could Be Cost ethanol-ethanol from non-food plant sources-in a way that is cost competitive with other transportation

  11. 27 CFR 31.36 - Sales of 20 wine gallons (75.7 liters) or more.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Sales of 20 wine gallons... to This Part Dealers Classified § 31.36 Sales of 20 wine gallons (75.7 liters) or more. Any person who sells or offers for sale distilled spirits, wines, or beer, in quantities of 20 wine gallons (75.7...

  12. Field Evaluation of Miles-Per-Gallon Meters

    DOT National Transportation Integrated Search

    1977-11-01

    One hundred forty fleet automobiles based in Los Angeles were used to determine the influence of miles-per-gallon meters on fuel economy. Seventy cars were instrumented with the meters, and 70 were used without meters for control purposes. Fuel use a...

  13. Protection of ultrastructure in chilling-stressed banana leaves by salicylic acid*

    PubMed Central

    Kang, Guo-zhang; Wang, Zheng-xun; Xia, Kuai-fei; Sun, Gu-chou

    2007-01-01

    Objective: Chilling tolerance of salicylic acid (SA) in banana seedlings (Musa acuminata cv., Williams 8818) was investigated by changes in ultrastructure in this study. Methods: Light and electron microscope observation. Results: Pretreatment with 0.5 mmol/L SA under normal growth conditions (30/22 °C) by foliar spray and root irrigation resulted in many changes in ultrastructure of banana cells, such as cells separation from palisade parenchymas, the appearance of crevices in cell walls, the swelling of grana and stromal thylakoids, and a reduction in the number of starch granules. These results implied that SA treatment at 30/22 °C could be a type of stress. During 3 d of exposure to 7 °C chilling stress under low light, however, cell ultrastructure of SA-pretreated banana seedlings showed less deterioration than those of control seedlings (distilled water-pretreated). Conclusion: SA could provide some protection for cell structure of chilling-stressed banana seedling. PMID:17444604

  14. Involvement of Polyamines in the Chilling Tolerance of Cucumber Cultivars

    PubMed Central

    Shen, Wenyun; Nada, Kazuyoshi; Tachibana, Shoji

    2000-01-01

    The possible involvement of polyamines (PAs) in the chilling tolerance of cucumber (Cucumis sativus L. cv Jinchun No. 3 and cv Suyo) was investigated. Plants with the first expanded leaves were exposed to 3°C or 15°C in the dark for 24 h (chilling), and then transferred to 28°C/22°C under a 12-h photoperiod for another 24 h (rewarming). Chilling-tolerant cv Jinchun No. 3 showed a marked increase of free spermidine (Spd) in leaves, once during chilling and again during rewarming. Putrescine increased significantly during rewarming, but the increase of spermine was slight. Any of these PAs did not increase in chilling-sensitive cv Suyo during either period. PA-biosynthetic enzyme activities appear to mediate these differences between cultivars. Pretreatment of Spd to cv Suyo prevented chill-induced increases in the contents of hydrogen peroxide in leaves and activities of NADPH oxidases and NADPH-dependent superoxide generation in microsomes and alleviated chilling injury. Pretreatment of methylglyoxal-bis-(guanylhydrazone), a PA biosynthesis inhibitor, to chilled cv Jinchun No. 3 prevented Spd increase and enhanced microsomal NADPH oxidase activity and chilling injury. The results suggest that Spd plays important roles in chilling tolerance of cucumber, probably through prevention of chill-induced activation of NADPH oxidases in microsomes. PMID:10982456

  15. Comparison of tissue deterioration of ripening banana fruit (Musa spp., AAA group, Cavendish subgroup) under chilling and non-chilling temperatures.

    PubMed

    Ramírez-Sánchez, Maricruz; Huber, Donald J; Vallejos, Carlos E

    2018-03-08

    In fleshy fruits, induced programmed cell death (PCD) has been observed in heat-treated tomato, and in ethylene-treated and low-temperature exposure in immature cucumber. No other fleshy fruit has been evaluated for chilling-injury-induced PCD, especially mature fruit with full ripening capacity. The purpose of this research was to identify and evaluate the presence of PCD processes during the development of low-temperature-induced physiopathy of banana fruit. Exposure of fruit to 5 °C for 4 days induced degradative processes similar to those occurring during ripening and overripening of non-chilled fruit. Nuclease from banana peel showed activity in both DNA substrates and RNA substrates. No exclusive low-temperature-induced proteases and nucleases were observed. DNA of chilled peel showed earlier signs of degradation and higher levels of DNA tailing during overripening. This study shows that exposure to low temperatures did not induce a pattern of degradative processes that differed from that occurring during ripening and overripening of non-chilled fruit. DNA showed earlier signs of degradation and higher levels of DNA tailing. Nuclease activity analysis showed bifunctionality in both chilled and non-chilled tissue and no chilling-exclusive protease and nuclease. Fleshy fruit might use their available resources on degradative processes and adjust them depending on environmental conditions. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  16. Solar heating and cooling system installed at Leavenworth, Kansas

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A solar heating and cooling is described which is designed to furnish 90 percent of the overall heating load, 70 percent of the cooling load and 100 percent of the domestic hot water load. The building has two floors with a total of 12,000 square feet gross area. The system has 120 flat-plate liquid solar panels with a net area of 2,200 square feet. Five 3 ton Arkla solar assisted absorption units provide the cooling, in conjunction with a 3,000 gallon chilled water storage tank. Two 3,000 gallon storage tanks are provided with one designated for summer use, whereas both tanks are utilized during winter.

  17. 21 CFR 890.5940 - Chilling unit.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Chilling unit. 890.5940 Section 890.5940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5940 Chilling unit. (a...

  18. 21 CFR 890.5940 - Chilling unit.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Chilling unit. 890.5940 Section 890.5940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5940 Chilling unit. (a...

  19. 21 CFR 890.5940 - Chilling unit.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Chilling unit. 890.5940 Section 890.5940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5940 Chilling unit. (a...

  20. 21 CFR 890.5940 - Chilling unit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Chilling unit. 890.5940 Section 890.5940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5940 Chilling unit. (a...

  1. 21 CFR 890.5940 - Chilling unit.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Chilling unit. 890.5940 Section 890.5940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5940 Chilling unit. (a...

  2. Evaluation of a multifiltration water reclamation subsystem to reclaim domestic clothes wash water

    NASA Technical Reports Server (NTRS)

    Hall, J. B., Jr.

    1973-01-01

    An evaluation has been performed of a multifiltration water reclamation subsystem to determine its capability to recover water from domestic clothes wash water. A total of 32.89 kg (72.5 lb) of clothes were washed during eight wash cycles which used 1.4 lb of detergent, 145 gallons of hot water and 133.9 gallons of cold water. Water recovered at a weighted average process rate of 3.81 gallons per hour met the majority of the 23 requirements established for potable water by the U.S. Public Health Service. Average power consumed during this evaluation was approximately 71 watt-hours per gallon of water recovered. Filter replacement, which was required primarily for the control of micro-organisms in the recovered water averaged 4.86 filters per 100 gallons of wash water processed. The subsystem removed approximately 98 percent and virtually 100 percent of the phosphates and surfactants, respectively, from the wash water.

  3. Municipal, industrial, and irrigation water use in Washington, 1975

    USGS Publications Warehouse

    Dion, N.P.; Lum, W.E.

    1977-01-01

    An assessment of water use in 1975 in the 39 counties and 62 Water Resources Inventory Areas of Washington, indicated that 2.49 trillion gallons of water was used for municipal, industrial, and irrigation purposes. That amount represents a 10-percent increase over a similar water-use assessment in 1965, but a slight decrease from that of 1970. Total municipal water use, which includes municipally supplied industrial water, was 283 billion gallons. Industry used 442 billion gallons, of which 121 billion gallons was from municipal systems and 321 billion gallons was for self-suppled systems. Of the 604 billion gallons of water used for municipal and industrial supplies 145 billion gallons was ground water, 444 billion gallons was fresh surface water, and 14.8 billion gallons was saline surface water. A compilation of statewide industrial use as categorized by SIC (Lumber and Wood Products), SIC 28 (Chemicals and Allied Products), and SIC 20 (Food and Kindred Products)--accounted for about 65 percent of the total water used in industrial processes , In 1975, 5.79 million acre-feet of irrigation water (1,890 billion gallons) as applied to 1.52 million acres. This water was 95 percent surface water and 5 percent ground water. About 97 percent of the irrigation water was supplied in eastern Washington, to about 94 percent of the irrigated acreage in the State. (Woodard-USGS)

  4. Effect of dry-air chilling on sensory descriptive profiles of cooked broiler breast meat deboned four hours after the initiation of chilling

    USDA-ARS?s Scientific Manuscript database

    Air chilled chicken products are gaining popularity in the USA. It has been claimed that air chilling (AC) results in improved tenderness and flavor of broiler meat compared with immersion chilling (IC). However, there is a lack of published sensory study results to support the claims. The objecti...

  5. Estimated water use in Puerto Rico, 2000

    USGS Publications Warehouse

    Molina-Rivera, Wanda L.

    2005-01-01

    Water-use data were compiled for the 78 municipios of the Commonwealth of Puerto Rico for 2000. Five offstream categories were considered: public-supply water withdrawals, domestic self-supplied water use, industrial self-supplied withdrawals, crop irrigation water use, and thermoelectric power fresh water use. Two additional categories also were considered: power generation instream use and public wastewater treatment return-flows. Fresh water withdrawals for offstream use from surface- and ground-water sources in Puerto Rico were estimated at 617 million gallons per day. The largest amount of fresh water withdrawn was by public-supply water facilities and was estimated at 540 million gallons per day. Fresh surface- and ground-water withdrawals by domestic self-supplied users was estimated at 2 million gallons per day and the industrial self-supplied withdrawals were estimated at 9.5 million gallons per day. Withdrawals for crop irrigation purposes were estimated at 64 million gallons per day, or approximately 10 percent of all offstream fresh water withdrawals. Saline instream surface-water withdrawals for cooling purposes by thermoelectric power facilities was estimated at 2,191 million gallons per day, and instream fresh water withdrawals by hydroelectric facilities at 171 million gallons per day. Total discharge from public wastewater treatment facilities was estimated at 211 million gallons per day.

  6. Sweetgum Dormancy Release: Effects of Chilling, Photoperiod, and Genotype

    Treesearch

    Robert E. Farmer

    1968-01-01

    In L., 1200 to 1600 hours of chilling (3 D C) resulted in rapid resumption of growth under greenhouse forcing conditions. Long photoperiods were effective substitutes for chilling. Plants from southern Alabama (Lat. 31°) had a lower chilling requirement than those from western Tennessee (Lat. 36°). Growth rate of plants under...

  7. Estimation of water withdrawal and distribution, water use, and wastewater collection and return flow in Cumberland, Rhode Island, 1988

    USGS Publications Warehouse

    Horn, M.A.; Craft, P.A.; Bratton, Lisa

    1994-01-01

    Water-use data collected in Rhode Island by different State agencies or maintained by different public suppliers and wastewater- treatment facilities need to be integrated if these data are to be used in making water- resource management decisions. Water-use data for the town of Cumberland, a small area in northeastern Rhode Island, were compiled and integrated to provide an example of how the procedure could be applied. Integration and reliability assessment of water-use data could be facilitated if public suppliers, wastewater- treatment facilities, and State agencies used a number of standardized procedures for data collection and computer storage. The total surface water and ground water withdrawn in the town of Cumberland during 1988 is estimated to be 15.39 million gallons per day, of which 11.20 million gallons per day was exported to other towns. Water use in Cumberland included 2.51 million gallons per day for domestic use, 0.68 million gallons per day for industrial use, 0.27 million gallons per day for commercial use, and 0.73 million gallons per day for other use, most of which were unmetered use. Disposal of waste- water in Cumberland included 2.03 million gallons per day returned to the hydrologic system and 1.73 million gallons per day exported from Cumberland for wastewater treatment. Consumptive use during 1988 is estimated to be 0.43 million gallons per day.

  8. A study on the kinetic behavior of Listeria monocytogenes in ice cream stored under static and dynamic chilling and freezing conditions.

    PubMed

    Gougouli, M; Angelidis, A S; Koutsoumanis, K

    2008-02-01

    The kinetic behavior of Listeria monocytogenes in 2 commercial ice cream products (A and B) that were inoculated and stored under static chilling (4 to 16 degrees C), static freezing (-5 to -33 degrees C), dynamic chilling, and dynamic chilling-freezing conditions was studied, simulating conditions of the aging process and of normal or abuse conditions during distribution and storage. The ice cream products A and B had different compositions but similar pH (6.50 and 6.67, respectively) and water activity (0.957 and 0.965, respectively) values. For both chilling and freezing conditions, the kinetic behavior of the pathogen was similar in the 2 products, indicating that the pH and water activity, together with temperature, were the main factors controlling growth. Under chilling conditions, L. monocytogenes grew well at all temperatures tested. Under freezing conditions, no significant changes in the population of the pathogen were observed throughout a 90-d storage period for either of the inoculum levels tested (10(3) and 10(6) cfu/g). Growth data from chilled storage conditions were fitted to a mathematical model, and the calculated maximum specific growth rate was modeled as a function of temperature by using a square root model. The model was further validated under dynamic chilling and dynamic chilling-freezing conditions by using 4 different storage temperature scenarios. Under dynamic chilling conditions, the model accurately predicted the growth of the pathogen in both products, with 99.5% of the predictions lying within the +/- 20% relative error zone. The results from the chilling-freezing storage experiments showed that the pathogen was able to initiate growth within a very short time after a temperature upshift from freezing to chilling temperatures. This indicates that the freezing conditions did not cause a severe stress in L. monocytogenes cells capable of leading to a significant "additional" lag phase during the subsequent growth of the pathogen at

  9. Identification of chilling and heat requirements of cherry trees--a statistical approach.

    PubMed

    Luedeling, Eike; Kunz, Achim; Blanke, Michael M

    2013-09-01

    Most trees from temperate climates require the accumulation of winter chill and subsequent heat during their dormant phase to resume growth and initiate flowering in the following spring. Global warming could reduce chill and hence hamper the cultivation of high-chill species such as cherries. Yet determining chilling and heat requirements requires large-scale controlled-forcing experiments, and estimates are thus often unavailable. Where long-term phenology datasets exist, partial least squares (PLS) regression can be used as an alternative, to determine climatic requirements statistically. Bloom dates of cherry cv. 'Schneiders späte Knorpelkirsche' trees in Klein-Altendorf, Germany, from 24 growing seasons were correlated with 11-day running means of daily mean temperature. Based on the output of the PLS regression, five candidate chilling periods ranging in length from 17 to 102 days, and one forcing phase of 66 days were delineated. Among three common chill models used to quantify chill, the Dynamic Model showed the lowest variation in chill, indicating that it may be more accurate than the Utah and Chilling Hours Models. Based on the longest candidate chilling phase with the earliest starting date, cv. 'Schneiders späte Knorpelkirsche' cherries at Bonn exhibited a chilling requirement of 68.6 ± 5.7 chill portions (or 1,375 ± 178 chilling hours or 1,410 ± 238 Utah chill units) and a heat requirement of 3,473 ± 1,236 growing degree hours. Closer investigation of the distinct chilling phases detected by PLS regression could contribute to our understanding of dormancy processes and thus help fruit and nut growers identify suitable tree cultivars for a future in which static climatic conditions can no longer be assumed. All procedures used in this study were bundled in an R package ('chillR') and are provided as Supplementary materials. The procedure was also applied to leaf emergence dates of walnut (cv. 'Payne') at Davis, California.

  10. Identification of chilling and heat requirements of cherry trees—a statistical approach

    NASA Astrophysics Data System (ADS)

    Luedeling, Eike; Kunz, Achim; Blanke, Michael M.

    2013-09-01

    Most trees from temperate climates require the accumulation of winter chill and subsequent heat during their dormant phase to resume growth and initiate flowering in the following spring. Global warming could reduce chill and hence hamper the cultivation of high-chill species such as cherries. Yet determining chilling and heat requirements requires large-scale controlled-forcing experiments, and estimates are thus often unavailable. Where long-term phenology datasets exist, partial least squares (PLS) regression can be used as an alternative, to determine climatic requirements statistically. Bloom dates of cherry cv. `Schneiders späte Knorpelkirsche' trees in Klein-Altendorf, Germany, from 24 growing seasons were correlated with 11-day running means of daily mean temperature. Based on the output of the PLS regression, five candidate chilling periods ranging in length from 17 to 102 days, and one forcing phase of 66 days were delineated. Among three common chill models used to quantify chill, the Dynamic Model showed the lowest variation in chill, indicating that it may be more accurate than the Utah and Chilling Hours Models. Based on the longest candidate chilling phase with the earliest starting date, cv. `Schneiders späte Knorpelkirsche' cherries at Bonn exhibited a chilling requirement of 68.6 ± 5.7 chill portions (or 1,375 ± 178 chilling hours or 1,410 ± 238 Utah chill units) and a heat requirement of 3,473 ± 1,236 growing degree hours. Closer investigation of the distinct chilling phases detected by PLS regression could contribute to our understanding of dormancy processes and thus help fruit and nut growers identify suitable tree cultivars for a future in which static climatic conditions can no longer be assumed. All procedures used in this study were bundled in an R package (`chillR') and are provided as Supplementary materials. The procedure was also applied to leaf emergence dates of walnut (cv. `Payne') at Davis, California.

  11. Save water, save money

    USGS Publications Warehouse

    ,; Fairfax County, VA

    1977-01-01

    The United States uses huge quantities of water. In 1976, for example, it was estimated that for each person in the U.S., about 2,000 gallons of water were used daily in homes, offices, farms, and factories. This means that roughly 420 billion gallons of water were pumped, piped, or diverted each day—about 15 percent more than in 1970. By the year 2000, our daily water needs will probably exceed 800 billion gallons.

  12. Water requirements of the petroleum refining industry

    USGS Publications Warehouse

    Otts, Louis Ethelbert

    1964-01-01

    About 3,500 million gallons of water was withdrawn daily in 1955 for use by petroleum refineries in the United States. This was about 3 percent of the estimated daily withdrawal of industrial water in the United States in 1955. An average of 468 gallons of water was required to refine a barrel of crude oil, and the median was 95 gallons of water per barrel of crude charge; withdrawals ranged from 6.5 to 3,240 gallons per barrel. Ninety-one percent of the water requirements of the petroleum refineries surveyed was for cooling. One-third of the refineries reused their cooling water from 10 to more than 50 times. Only 17 refineries used once-through cooling systems. Refineries with recirculating cooling systems circulated about twice as much cooling water but needed about 25 times less makeup; however, they consumed about 24 times more water per barrel of charge than refineries using once-through cooling systems. The average noncracking refinery used about 375 gallons of water per barrel of crude, which is less than the 471-gallon average of refineries with cracking facilities. Refineries are composed of various processing units, and the water requirements of such units varied ; median makeup needs ranged from about 125 gallons per barrel for polymerization and alkylation units to 15.5 gallons per barrel for distillation units. Refinery-owned sources of water supplied 95 percent of the makeup-water requirements. Surface-water sources provided 86 percent of the makeup-water demand. Less than 1 percent of the makeup water was obtained from reprocessed municipal sewage.

  13. Birch seeds will germinate under a water-light treatment without pre-chilling

    Treesearch

    George Yelenosky

    1961-01-01

    The seed of yellow and paper birches, like that of many other species, often exhibits delayed germination, which apparently is due to embryo dormancy. Stratification is usually recommended for overcoming this dormancy before the seed is sown or before it is tested for germination. This involves a chilling treatment for 1 to 2 1/2 months, which is best done under...

  14. 40 CFR 80.271 - How can a small refiner obtain an adjustment of its 2004-2007 per-gallon cap standard?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... adjustment of its 2004-2007 per-gallon cap standard? 80.271 Section 80.271 Protection of Environment...-2007 per-gallon cap standard? (a) EPA may in its discretion adjust the small refiner per-gallon cap... that the per-gallon cap creates; (2) The refiner's proposed adjusted per-gallon cap standard and the...

  15. Chilling and heat requirements for flowering in temperate fruit trees

    NASA Astrophysics Data System (ADS)

    Guo, Liang; Dai, Junhu; Ranjitkar, Sailesh; Yu, Haiying; Xu, Jianchu; Luedeling, Eike

    2014-08-01

    Climate change has affected the rates of chilling and heat accumulation, which are vital for flowering and production, in temperate fruit trees, but few studies have been conducted in the cold-winter climates of East Asia. To evaluate tree responses to variation in chill and heat accumulation rates, partial least squares regression was used to correlate first flowering dates of chestnut ( Castanea mollissima Blume) and jujube ( Zizyphus jujube Mill.) in Beijing, China, with daily chill and heat accumulation between 1963 and 2008. The Dynamic Model and the Growing Degree Hour Model were used to convert daily records of minimum and maximum temperature into horticulturally meaningful metrics. Regression analyses identified the chilling and forcing periods for chestnut and jujube. The forcing periods started when half the chilling requirements were fulfilled. Over the past 50 years, heat accumulation during tree dormancy increased significantly, while chill accumulation remained relatively stable for both species. Heat accumulation was the main driver of bloom timing, with effects of variation in chill accumulation negligible in Beijing's cold-winter climate. It does not seem likely that reductions in chill will have a major effect on the studied species in Beijing in the near future. Such problems are much more likely for trees grown in locations that are substantially warmer than their native habitats, such as temperate species in the subtropics and tropics.

  16. Chilling and heat requirements for flowering in temperate fruit trees.

    PubMed

    Guo, Liang; Dai, Junhu; Ranjitkar, Sailesh; Yu, Haiying; Xu, Jianchu; Luedeling, Eike

    2014-08-01

    Climate change has affected the rates of chilling and heat accumulation, which are vital for flowering and production, in temperate fruit trees, but few studies have been conducted in the cold-winter climates of East Asia. To evaluate tree responses to variation in chill and heat accumulation rates, partial least squares regression was used to correlate first flowering dates of chestnut (Castanea mollissima Blume) and jujube (Zizyphus jujube Mill.) in Beijing, China, with daily chill and heat accumulation between 1963 and 2008. The Dynamic Model and the Growing Degree Hour Model were used to convert daily records of minimum and maximum temperature into horticulturally meaningful metrics. Regression analyses identified the chilling and forcing periods for chestnut and jujube. The forcing periods started when half the chilling requirements were fulfilled. Over the past 50 years, heat accumulation during tree dormancy increased significantly, while chill accumulation remained relatively stable for both species. Heat accumulation was the main driver of bloom timing, with effects of variation in chill accumulation negligible in Beijing’s cold-winter climate. It does not seem likely that reductions in chill will have a major effect on the studied species in Beijing in the near future. Such problems are much more likely for trees grown in locations that are substantially warmer than their native habitats, such as temperate species in the subtropics and tropics.

  17. Stimulus-triggered enhancement of chilling tolerance in zebrafish embryos

    PubMed Central

    Szabó, Katalin; Budai, Csilla; Losonczi, Eszter; Bernáth, Gergely; Csenki-Bakos, Zsolt; Urbányi, Béla; Pribenszky, Csaba; Horváth, Ákos; Cserepes, Judit

    2017-01-01

    Background Cryopreservation of zebrafish embryos is still an unsolved problem despite market demand and massive efforts to preserve genetic variation among numerous existing lines. Chilled storage of embryos might be a step towards developing successful cryopreservation, but no methods to date have worked. Methods In the present study, we applied a novel strategy to improve the chilling tolerance of zebrafish embryos by introducing a preconditioning hydrostatic pressure treatment to the embryos. In our experiments, 26-somites and Prim-5 stage zebrafish embryos were chilled at 0°C for 24 hours after preconditioning. Embryo survival rate, ability to reach maturation and fertilizing capacity were tested. Results Our results indicate that applied preconditioning technology made it possible for the chilled embryos to develop normally until maturity, and to produce healthy offspring as normal, thus passing on their genetic material successfully. Treated embryos had a significantly higher survival and better developmental rate, moreover the treated group had a higher ratio of normal morphology during continued development. While all controls from chilled embryos died by 30 day-post-fertilization, the treated group reached maturity (~90–120 days) and were able to reproduce, resulting in offspring in expected quantity and quality. Conclusions Based on our results, we conclude that the preconditioning technology represents a significant improvement in zebrafish embryo chilling tolerance, thus enabling a long-time survival. Furthermore, as embryonic development is arrested during chilled storage this technology also provides a solution to synchronize or delay the development. PMID:28166301

  18. 77 FR 10772 - Fresh and Chilled Atlantic Salmon From Norway

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ... and Chilled Atlantic Salmon From Norway Determination On the basis of the record \\1\\ developed in the... countervailing duty order and antidumping duty order on fresh and chilled Atlantic salmon from Norway would not... and Chilled Atlantic Salmon from Norway: Investigation Nos. 701-TA-302 and 731-TA-454 (Third Review...

  19. Water use in Ohio, 1975

    USGS Publications Warehouse

    Hathaway, R. Michael; Eberle, Michael

    1981-01-01

    The estimated water use in Ohio for all purposes in 1975 was 16 ,431 million gallons per day. Of this total, 15,321 were taken from surface water while the remaining 1,110 represent ground-water withdrawals. Totals by category are as follows (in million gallons per day): Thermoelectric power generation, 12 ,404; self-supplied industrial use, 2,362: public water supplies , 1,423; rural domestic and livestock, 201; and irrigation, 40. Per capita water use was calculated to be 1,528 gallons per day for an Ohio population of 10,751,000 in 1975. Jefferson County led all Ohio counties in total water use with 3,447 million gallons per day. This was nearly three times the usage of second-ranking Gallia County where withdrawals were 1,242 million gallons per day. The heavy water use in both of these Ohio River counties is due to large withdrawals for thermoelectic power generation. Cuyahoga, Lorain, and Lake Counties, all in the Cleveland metropolitan area, rank third, fourth, and fifth in the State with respective totals of 1,061, 1,047, and 1,030 million gallons per day. Water use is more diverse in this area, with public supplies, industrial use, and thermoelectric power all making significant impacts. (USGS)

  20. Aquifer thermal-energy-storage costs with a seasonal-chill source

    NASA Astrophysics Data System (ADS)

    Brown, D. R.

    1983-01-01

    The cost of energy supplied by an aquifer thermal energy storage (ATES) ystem from a seasonal chill source was investigated. Costs were estimated for point demand and residential development ATES systems using the computer code AQUASTOR. AQUASTOR was developed at PNL specifically for the economic analysis of ATES systems. In this analysis the cost effect of varying a wide range of technical and economic parameters was examined. Those parameters exhibiting a substantial influence on the costs of ATES delivered chill were: system size; well flow rate; transmission distance; source temperature; well depth; and cost of capital. The effects of each parameter are discussed. Two primary constraints of ATES chill systems are the extremely low energy density of the storage fluid and the prohibitive costs of lengthly pipelines for delivering chill to residential users. This economic analysis concludes that ATES-delivered chill will not be competitive for residential cooling applications. The otherwise marginal attractiveness of ATES chill systems vanishes under the extremely low load factors characteristic of residential cooling systems. (LCL)

  1. Estimated water use in Puerto Rico, 1995

    USGS Publications Warehouse

    Molina-Rivera, Wanda L.

    1998-01-01

    Water-use data during calendar year 1995 was compiled for the 78 municipios of the Commonwealth of Puerto Rico. Eight offstream water-use categories were considered during the study: public supply, wastewater treatment discharges, domestic, industrial, mining, thermoelectric power, livestock, and irrigation. Three instream water-use categories were considered: hydroelectric power, saline water used at thermoelectric power plants, and reservoir evaporation. Freshwater withdrawals for offstream use from surface- and ground-water sources in Puerto Rico were estimated to be 566 million gallons per day. The largest amount of freshwater withdrawn was 431 million gallons per day for public supply. Total discharge from public wastewater treatment facilities was reported as 185 million gallons per day. Fresh surface- and ground-water withdrawals for domestic and industrial self-supplied facilities were estimated to be about 19 million gallons per day. Mining activities, which in Puerto Rico are mostly limited to the production of sand and gravel, withdrew about 4.2 million gallons per day of freshwater. Livestock activities used 6.3 million gallons per day from surface- and ground-water sources to meet the water needs of the 12.1 million animals counted in the 1992 Census of Agriculture in Puerto Rico. Self-supplied ground-water withdrawals for thermoelectric facilities were estimated to be 2.2 million gallons per day. Freshwater withdrawals for irrigation purposes were estimated to be 103 million gallons per day, or approximately 18 percent of all offstream freshwater withdrawals. Instream freshwater withdrawals by hydroelectric facilities were 349 million gallons per day. Reservoir evaporation is considered to be a consumptive use associated with the storage of water. The evaporation from 15 reservoirs in Puerto Rico was estimated to average about 23,900 acre-feet from a total reservoir surface area of 6,900 acres. The largest amount of withdrawals was 2,260 million

  2. EFFECT OF DRY AIR CHILLING ON WARNER-BRATZLER SHEAR FORCE AND WATER-HOLDING CAPACITY OF BROILER MEAT DEBONED FOUR HOURS POSTMORTEM

    USDA-ARS?s Scientific Manuscript database

    TECHNICAL ABSTRACT Advantages of air chilling (AC) methods over immersion chilling (IC) methods in quality retention and improvement of deboned chicken breast meat depends on experimental conditions, such as deboning time. The objective of this study was to evaluate the effect of a dry-AC method on ...

  3. Water Consumption in Large Buildings Summary, 2012 CBECS

    EIA Publications

    2017-01-01

    Using water consumption data from the Commercial Buildings Energy Consumption Survey (CBECS), EIA estimates that the 46,000 large commercial buildings (greater than 200,000 square feet) used about 359 billion gallons of water (980 million gallons per day) in 2012. On average, these buildings used 7.9 million gallons per building, 20 gallons per square foot, and 18,400 gallons per worker in 2012. The types of buildings that are the most intensive water users are inpatient healthcare buildings, public order and safety buildings (which include prisons) and lodging buildings (which include hotels). For the second time in its history, EIA has collected water usage data through the CBECS.

  4. Preharvest temperature affects chilling injury in dessert bananas during storage.

    PubMed

    Bugaud, Christophe; Joannès-Dumec, Charlène; Louisor, Jacques; Tixier, Philippe; Salmon, Frédéric

    2016-05-01

    The effect of temperature on chilling injury during fruit growth was studied in a new banana hybrid CIRAD925 in which seasonal variability in chilling susceptibility was observed when fruits were stored at 13 °C. The relationship between the response to chilling (presence/absence) and the temperature during banana fruit growth was examined with a logistic regression model. An explanatory variable XN , P was defined as the mean temperature during a period, expressed in weeks, which began N week(s) after flowering and lasted P week(s). The model was calibrated with 143 bunches with a green life of 30 ± 5 days and validated with 156 bunches grown in six plots under different growing conditions. Chilling injury was best predicted by the mean temperature during the period beginning 1 week after flowering and lasting 5 weeks (X1,5 ). Above a mean temperature of 24.1 °C in the period concerned, banana fruits had a 95% probability of chilling injury at 13 °C. Below a temperature of 23.4 °C, banana fruits only had a 5% probability of chilling injury. The results provide a tool to predict chilling susceptibility in banana fruit whatever the thermal conditions in tropical regions. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  5. Climate Change Affects Winter Chill for Temperate Fruit and Nut Trees

    PubMed Central

    Luedeling, Eike; Girvetz, Evan H.; Semenov, Mikhail A.; Brown, Patrick H.

    2011-01-01

    Background Temperate fruit and nut trees require adequate winter chill to produce economically viable yields. Global warming has the potential to reduce available winter chill and greatly impact crop yields. Methodology/Principal Findings We estimated winter chill for two past (1975 and 2000) and 18 future scenarios (mid and end 21st century; 3 Global Climate Models [GCMs]; 3 greenhouse gas emissions [GHG] scenarios). For 4,293 weather stations around the world and GCM projections, Safe Winter Chill (SWC), the amount of winter chill that is exceeded in 90% of all years, was estimated for all scenarios using the “Dynamic Model” and interpolated globally. We found that SWC ranged between 0 and about 170 Chill Portions (CP) for all climate scenarios, but that the global distribution varied across scenarios. Warm regions are likely to experience severe reductions in available winter chill, potentially threatening production there. In contrast, SWC in most temperate growing regions is likely to remain relatively unchanged, and cold regions may even see an increase in SWC. Climate change impacts on SWC differed quantitatively among GCMs and GHG scenarios, with the highest GHG leading to losses up to 40 CP in warm regions, compared to 20 CP for the lowest GHG. Conclusions/Significance The extent of projected changes in winter chill in many major growing regions of fruits and nuts indicates that growers of these commodities will likely experience problems in the future. Mitigation of climate change through reductions in greenhouse gas emissions can help reduce the impacts, however, adaption to changes will have to occur. To better prepare for likely impacts of climate change, efforts should be undertaken to breed tree cultivars for lower chilling requirements, to develop tools to cope with insufficient winter chill, and to better understand the temperature responses of tree crops. PMID:21629649

  6. Climate change affects winter chill for temperate fruit and nut trees.

    PubMed

    Luedeling, Eike; Girvetz, Evan H; Semenov, Mikhail A; Brown, Patrick H

    2011-01-01

    Temperate fruit and nut trees require adequate winter chill to produce economically viable yields. Global warming has the potential to reduce available winter chill and greatly impact crop yields. We estimated winter chill for two past (1975 and 2000) and 18 future scenarios (mid and end 21st century; 3 Global Climate Models [GCMs]; 3 greenhouse gas emissions [GHG] scenarios). For 4,293 weather stations around the world and GCM projections, Safe Winter Chill (SWC), the amount of winter chill that is exceeded in 90% of all years, was estimated for all scenarios using the "Dynamic Model" and interpolated globally. We found that SWC ranged between 0 and about 170 Chill Portions (CP) for all climate scenarios, but that the global distribution varied across scenarios. Warm regions are likely to experience severe reductions in available winter chill, potentially threatening production there. In contrast, SWC in most temperate growing regions is likely to remain relatively unchanged, and cold regions may even see an increase in SWC. Climate change impacts on SWC differed quantitatively among GCMs and GHG scenarios, with the highest GHG leading to losses up to 40 CP in warm regions, compared to 20 CP for the lowest GHG. The extent of projected changes in winter chill in many major growing regions of fruits and nuts indicates that growers of these commodities will likely experience problems in the future. Mitigation of climate change through reductions in greenhouse gas emissions can help reduce the impacts, however, adaption to changes will have to occur. To better prepare for likely impacts of climate change, efforts should be undertaken to breed tree cultivars for lower chilling requirements, to develop tools to cope with insufficient winter chill, and to better understand the temperature responses of tree crops.

  7. Impact of future warming on winter chilling in Australia.

    PubMed

    Darbyshire, Rebecca; Webb, Leanne; Goodwin, Ian; Barlow, E W R

    2013-05-01

    Increases in temperature as a result of anthropogenically generated greenhouse gas (GHG) emissions are likely to impact key aspects of horticultural production. The potential effect of higher temperatures on fruit and nut trees' ability to break winter dormancy, which requires exposure to winter chilling temperatures, was considered. Three chill models (the 0-7.2°C, Modified Utah, and Dynamic models) were used to investigate changes in chill accumulation at 13 sites across Australia according to localised temperature change related to 1, 2 and 3°C increases in global average temperatures. This methodology avoids reliance on outcomes of future GHG emission pathways, which vary and are likely to change. Regional impacts and rates of decline in chilling differ among the chill models, with the 0-7.2°C model indicating the greatest reduction and the Dynamic model the slowest rate of decline. Elevated and high latitude eastern Australian sites were the least affected while the three more maritime, less elevated Western Australian locations were shown to bear the greatest impact from future warming.

  8. Source, use, and disposition of water in Florida, 1980

    USGS Publications Warehouse

    Leach, S.D.

    1983-01-01

    An average of 21,206 million gallons of water was withdrawn for use in Florida each day for the combined use for public supplies , rural domestic and livestock, industrial self-supplied, irrigation, and thermoelectric power generation. This amount, broken down into 7,309 millions gallons per day of freshwater and 13,897 million gallons per day of saline water, indicates an increase of more than 40 percent for all uses during the 10-year period 1970-80. The largest user of freshwater in Florida was for irrigation--2,997 million gallons per day which also is responsible for the greatest consumption, 1,530 million gallons on the average each day or about half the water applied. The remaining use of freshwater amounted to 1,859 million gallons per day for thermoelectric power generation (which also used about 13.7 billion gallons per day of saline water); 1,361 million gallons per day of public supply; 797 million gallons per day for industrial use other than thermoelectric power generation; and 310 million gallons per day, on the average, for rural domestic and livestock use. (USGS)

  9. Investigation of transient chill down phenomena in tubes using liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Shukla, A. K.; Sridharan, Arunkumar; Atrey, M. D.

    2017-12-01

    Chill down of cryogenic transfer lines is a crucial part of cryogenic propulsion as chill down ensures transfer of single phase fluid to the storage tanks of cryogenic engines. It also ensures single phase liquid flow at the start of the engine. Chill down time depends on several parameters such as length of the pipe, pipe diameter, orientation, mass flux etc. To understand the effect of these parameters, experiments are carried out in a set up designed and fabricated at Indian Institute of Technology Bombay using tubes of two different diameters. Experiments are conducted at different inlet pressures and mass flow rate values to understand their effect. Two different pipe sizes are taken to study the effect of variation in diameter on chill down time and quantity of cryogen required. Different orientations are taken to understand their effect on the chill down time, heat transfer coefficient and critical heat flux for the same inlet pressure and mass flux. Pipe inner wall temperature, heat transfer coefficient for different boiling regimes and critical heat flux are calculated based on measured outer surface temperature history for each case. A one dimensional energy conservation equation is solved for transient chill down process considering constant mass flux and inlet pressure to predict the chill down time. Temperature variation during chill down obtained from the numerical simulations are compared with the measured temperature history.

  10. Effects of chilling on protein synthesis in tomato suspension cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matadial, B.; Pauls, K.P.

    The effect of chilling on cell growth, cell viability, protein content and protein composition in suspension cultures of L. esculentum and L. hirsutum was investigated. Cell growth for both species was arrested at 2{degrees}C but when cultures were transferred to 25{degree}C cell growth resumed. There was no difference in viability between control and chilled cultures of L. esculentum, however, L. hirsutum control cultures exhibited larger amounts of Fluorescein Diacetate induced fluorescence than chilled cultures. {sup 35}S-methionine incorporation into proteins was 2.5-2 times higher in L. hirsutum than in L. esculentum. Quantitative and qualitative differences, in {sup 35}S-methionine labelled proteins, betweenmore » chilled and control cultures were observed by SDS-PAGE and fluorography. Protein content in chilled cultures decreased over time but then increased when cultures were transferred to 25{degrees}C.« less

  11. Aesthetic Chills: Knowledge-Acquisition, Meaning-Making, and Aesthetic Emotions

    PubMed Central

    Schoeller, Felix; Perlovsky, Leonid

    2016-01-01

    This article addresses the relation between aesthetic emotions, knowledge-acquisition, and meaning-making. We briefly review theoretical foundations and present experimental data related to aesthetic chills. These results suggest that aesthetic chills are inhibited by exposing the subject to an incoherent prime prior to the chill-eliciting stimulation and that a meaningful prime makes the aesthetic experience more pleasurable than a neutral or an incoherent one. Aesthetic chills induced by narrative structures seem to be related to the pinnacle of the story, to have a significant calming effect and subjects describe a strong empathy for the characters. We discuss the relation between meaning-making and aesthetic emotions at the psychological, physiological, narratological, and mathematical levels and propose a series of hypotheses to be tested in future research. PMID:27540366

  12. Chilling Out With Colds

    MedlinePlus

    ... and use the time to read, listen to music, or watch a movie. In other words, chill out and you might prevent a cold! Reviewed by: Patricia ... Policy Permissions Guidelines Privacy Policy & Terms of Use Notice ...

  13. Tympanic temperature versus temporal temperature in patients with pyrexia and chills

    PubMed Central

    Yang, Wen-Chieh; Kuo, Huang-Tsung; Lin, Ching-Hsiao; Wu, Kang-Hsi; Chang, Yu-Jun; Chen, Chun-Yu; Wu, Han-Ping

    2016-01-01

    Abstract Accurate body temperature (BT) measurement is critical for immediate and correct estimation of core BT; measurement of changes in BT can provide physicians the initial information for selecting appropriate diagnostic approach and may prevent unnecessary diagnostic investigation. This study aimed to assess differences in tympanic and temporal temperatures among patients with fever in different conditions, especially in those with and without chills. This prospective study included patients from the emergency department between 2011 and 2012. All temperature measurements were obtained using tympanic thermometers and infrared skin thermometers. Differences in tympanic and temporal temperatures were analyzed according to 6 age groups, 5 ambient temperature groups, and 6 tympanic and temporal temperature subgroups. General linear model analysis and receiver operating characteristic curve analysis were used to estimate the differences in mean tympanic and temporal temperatures. Of the 710 patients enrolled, 246 had tympanic temperature more than 38.0°C, including 46 with chills (18.7%). Fourteen patients (3.0%) had chills and tympanic temperature less than 38°C. In the tympanic temperature subgroup of 39.0 to less than 39.5°C, approximately one-third of the patients had chills (32.3%). In the tympanic temperature subgroup of 38.0 to less than 39.0°C, the tympanic temperature was 0.4°C higher than the temporal temperature in patients without chills and 0.9°C higher in patients with chills. In the tympanic temperature subgroup of 39.0°C or more, tympanic temperature was 0.7°C higher than temporal temperature in patients without chills and 0.8°C higher in patients with chills. Temporal thermometer is more reliable in the age group of less than 1 year and 18 to less than 65 years. When the patients show tympanic temperature range of 38.0 to less than 39.0°C, 0.4°C should be added for patients without chills and 0.9°C for patients with chills to obtain

  14. Music chills: The eye pupil as a mirror to music's soul.

    PubMed

    Laeng, Bruno; Eidet, Lise Mette; Sulutvedt, Unni; Panksepp, Jaak

    2016-08-01

    This study evaluated whether music-induced aesthetic "chill" responses, which typically correspond to peak emotional experiences, can be objectively monitored by degree of pupillary dilation. Participants listened to self-chosen songs versus control songs chosen by other participants. The experiment included an active condition where participants made key presses to indicate when experiencing chills and a passive condition (without key presses). Chills were reported more frequently for self-selected songs than control songs. Pupil diameter was concurrently measured by an eye-tracker while participants listened to each of the songs. Pupil size was larger within specific time-windows around the chill events, as monitored by key responses, than in comparison to pupil size observed during 'passive' song listening. In addition, there was a clear relationship between pupil diameter within the chills-related time-windows during both active and passive conditions, thus ruling out the possibility that chills-related pupil dilations were an artifact of making a manual response. These findings strongly suggest that music chills can be visible in the moment-to-moment changes in the size of pupillary responses and that a neuromodulatory role of the central norepinephrine system is thereby implicated in this phenomenon. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Windward Cooling: An Overlooked Factor in the Calculation of Wind Chill.

    NASA Astrophysics Data System (ADS)

    Osczevski, Randall J.

    2000-12-01

    Wind chill equivalent temperatures calculated from a recent vertical cylinder model of wind chill are several degrees colder than those calculated from a facial cooling model. The latter was based on experiments with a heated model of a face in a wind tunnel. Wind chill has sometimes been modeled as the overall heat transfer from the surface of a cylinder in cross flow, but such models average the cooling over the whole surface and thus minimize the effect of local cooling on the upwind side, particularly at low wind speeds. In this paper, a vertical cylinder model of wind chill has been modified so that just the cooling of its windward side is considered. Wind chill equivalent temperatures calculated with this new model compare favorably with those calculated by the facial cooling model.

  16. An evaluation of the wind chill factor: its development and applicability.

    PubMed

    Bluestein, M

    1998-04-01

    The wind chill factor has become a standard meteorologic term in cold climates. Meteorologic charts provide wind chill temperatures meant to represent the hypothetical air temperature that would, under conditions of no wind, effect the same heat loss from unclothed human skin as does the actual combination of air temperature and wind velocity. As this wind chill factor has social and economic significance, an investigation was conducted on the development of this factor and its applicability based on modern heat transfer principles. The currently used wind chill factor was found to be based on a primitive study conducted by the U.S. Antarctic Service over 50 years ago. The resultant equation for the wind chill temperature assumes an unrealistic constant skin temperature and utilizes heat transfer coefficients that differ markedly from those obtained from equations of modern convective heat transfer methods. The combined effect of these two factors is to overestimate the effect of a given wind velocity and to predict a wind chill temperature that is too low.

  17. Chilling and cooking rate effects on some myofibrillar determinants of tenderness of beef.

    PubMed

    King, D A; Dikeman, M E; Wheeler, T L; Kastner, C L; Koohmaraie, M

    2003-06-01

    Our objectives were to examine the effects of prerigor excision and rapid chilling vs. conventional carcass chilling of two muscles on proteolysis and tenderness during the postmortem storage, as well as the effects of fast and slow rates of cooking on myofibrillar characteristics and tenderness. The longissimus thoracis (LT) and triceps brachii (TB), long head muscles were removed 45 min after exsanguination from the left side of 12 carcasses and chilled in an ice bath to induce cold shortening (excised, rapidly chilled). At 24 h postmortem, the corresponding muscles were removed from the right side (conventionally chilled). All muscles were cut into 2.54-cm-thick steaks and assigned to one of two postmortem times (1 or 14 d), and to raw and cooking treatments. Steaks were cooked at 260 degrees C (FAST) or 93 degrees C (SLOW) in a forced-air convection oven to an internal temperature of 70 degrees C. Cooking loss, cooking time, and Warner-Bratzler shear force (WBSF) were measured on cooked steaks. Sarcomere length (SL) and the extent of proteolysis of desmin were measured on raw and cooked steaks. As expected, the excised, rapidly chilled muscles had a much more rapid (P < 0.05) temperature decline than those that were conventionally chilled. The excised, rapidly chilled treatment resulted in shorter (P < 0.05) SL, and SL was shorter (P < 0.05) in LT than in TB steaks. Raw steaks had longer (P < 0.05) SL than cooked steaks, regardless of chilling treatment. The FAST cooking resulted in shorter (P < 0.05) SL than SLOW cooking in conventionally chilled steaks, but cooking rate had no effect (P > 0.05) on SL of rapidly chilled steaks. Generally, TB steaks required longer (P < 0.05) cooking times and had higher (P < 0.05) cooking losses than LT steaks, and FAST-cooked steaks had greater (P < 0.05) cooking losses than SLOW-cooked steaks. Rapidly chilled steaks had less (P < 0.05) degradation of desmin than conventionally chilled steaks (31 vs. 41%). Aging for 14 d

  18. Exogenous application of plant growth regulators (PGRs) induces chilling tolerance in short-duration hybrid maize.

    PubMed

    Waqas, Muhammad Ahmed; Khan, Imran; Akhter, Muhammad Javaid; Noor, Mehmood Ali; Ashraf, Umair

    2017-04-01

    Chilling stress hampers the optimal performance of maize under field conditions precipitously by inducing oxidative stress. To confer the damaging effects of chilling stress, the present study aimed to investigate the effects of some natural and synthetic plant growth regulators, i.e., salicylic acid (SA), thiourea (TU), sorghum water extract (SWE), and moringa leaf extract (MLE) on chilling stress tolerance in autumn maize hybrid. Foliar application of growth regulators at low concentrations was carried out at six leaf (V6) and tasseling stages. An increase in crop growth rate (CGR), leaf area index (LAI), leaf area duration (LAD), plant height (PH), grain yield (GY), and total dry matter accumulation (TDM) was observed in exogenously applied plants as compared to control. In addition, improved physio-biochemical, phenological, and grain nutritional quality attributes were noticed in foliar-treated maize plots as compared to non-treated ones. SA-treated plants reduced 20% electrolyte leakage in cell membrane against control. MLE and SA were proved best in improving total phenolic, relative water (19-23%), and chlorophyll contents among other applications. A similar trend was found for photosynthetic and transpiration rates, whereas MLE and SWE were found better in improving CGR, LAI, LAD, TDM, PH, GY, grains per cob, 1000 grain weight, and biological yield among all treatments including control. TU and MLE have significantly reduced the duration in phenological events of crop at the reproductive stage. MLE, TU, and SA also improved the grain protein, oil, and starch contents as compared to control. Enhanced crop water productivity was also observed in MLE-treated plants. Economic analysis suggested that MLE and SA applications were more economical in inducing chilling stress tolerance under field conditions. Although eliciting behavior of all growth regulators improved morpho-physiological attributes against suboptimal temperature stress conditions, MLE and SA

  19. Repeated quick hot-and-chilling treatments for the inactivation of Escherichia coli O157:H7 in mung bean and radish seeds.

    PubMed

    Bari, Md Latiful; Sugiyama, Jun; Kawamoto, Shinnichi

    2009-01-01

    The majority of the seed sprout-related outbreaks have been associated with Escherichia coli O157:H7. Therefore, it is necessary to find an effective method to inactivate these organisms on the seeds prior to sprouting. This study was conducted to assess the effectiveness of repeated quick hot-and-chilling treatments with various chemicals to inactivate E. coli O157:H7 populations inoculated onto mung bean and radish seeds intended for sprout production and to determine the effect of these treatments on seed germination. The treatment time was 20 sec for quick hot and 20 sec for quick chilling in one repeat. Likewise up to five repeats were done throughout the experiments. The chemicals used for this study were electrolyzed acidic (EO) water, phytic acid (0.05%), oxalic acid (3%), surfcera(R), and alpha-torino water(R), and distilled water was used as control. The quick hot treatment was done with 75 degrees C, 70 degrees C, and 60 degrees C, and the chilling temperature was 0 degrees C. The treated seeds were then assessed for the efficacy of this treatment in reducing populations of the pathogens and the effects of repeated quick hot-and-chilling treatments on germination yield. It was found that repeating treatment at 75 degrees C for two or three repeats with phytic acid and oxalic acid could reduce 4.38-log colony-forming unit (CFU)/g of E. coli O157:H7 in mung bean seeds. EO water and distilled water were found equally effective at 75 degrees C for four or five repeats to inactivate E. coli O157:H7 in mung bean seeds. However, alpha-torino water(R) and surfcera(R) were not found effective in comparison to other sanitizers used in this experiment. Irrespective of sanitizer used, the germination yield of the mung bean seed was not affected significantly. On the other hand, distilled water, EO water, and alpha-torino water(R) at 75 degrees C for five repeats were found effective in reducing 5.80-log CFU/g of E. coli O157:H7 in radish seeds; however, the

  20. Incidence of chilling injury in fresh-cut 'Kent' mangoes

    USDA-ARS?s Scientific Manuscript database

    The preferred storage temperature for fresh-cut fruits in terms of visual quality retention is around 5 °C, which is considered to be a chilling temperature for chilling sensitive tropical fruits like mango (Mangifera indica L.). Changes in visual and compositional quality factors, aroma volatile pr...

  1. Water Supply at Los Alamos during 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. N. Maes; S. G. McLin; W. D. Purtymun

    1998-12-01

    Production of potable municipal water supplies during 1997 totaled about 1,285.9 million gallons from wells in the Guaje, Pajarito, and Otowi well fields. There was no water used from the spring gallery in Water Canyon or from Guaje Reservoir during 1997. About 2.4 million gallons of water from Los Alamos Reservoir was used to irrigate public parks and recreational lands. The total water usage in 1997 was about 1,288.3 million gallons, or about 135 gallons per day per person living in Los Alamos County. Groundwater pumpage was down about 82.2 million gallons in 1997 compared with the pumpage in 1996.more » Four new replacement wells were drilled and cased in Guaje Canyon between October 1997 and March 1998. These wells are currently being developed and aquifer tests are being performed. A special report summarizing the geological, geophysical, and well construction logs will be issued in the near future for these new wells.« less

  2. National water quality assessment of the Georgia-Florida Coastal Plain study unit; water withdrawals and treated wastewater discharges, 1990

    USGS Publications Warehouse

    Marella, R.L.; Fanning, J.L.

    1996-01-01

    The Georgia-Florida Coastal Plain study unit covers nearly 62,600 square miles along the southeastern United States coast in Georgia and Florida. In 1990, the estimated population of the study unit was 9.3 million, and included all or part of the cities of Atlanta, Jacksonville, Orlando, Tampa, and St. Petersburg. Estimated freshwater withdrawn in the study unit in 1990 was nearly 5,075 million gallons per day. Ground-water accounted for more than 57 percent of the water withdrawn during 1990 and the Floridan aquifer system provided nearly 91 percent of the total ground-water withdrawn. Surface-water accounted for nearly 43 percent of the water withdrawn in the study unit in 1990 with large amounts of withdrawals from the Altamaha River, Hillsborough River, the Ocmulgee River, the Oconee River, the St. Johns River, and the Suwannee River. Water withdrawn for public supply in the Georgia-Florida Coastal Plain study unit in 1990 totaled 1,139 million gallons per day, of which 83 percent was ground water and 17 percent was surface water. Self-supplied domestic withdrawals in the Georgia-Florida Coastal Plain study unit in 1990 totaled nearly 230 million gallons per day. Ground water supplied over 80 percent of the study units population for drining water purposes; nearly 5.8 million people were served by public supply and 1.8 million people were served by self-supplied systems. Water withdrawn for self-supplied domestic use in Georgia and Florida is derived almost exclusively from ground water, primarily because this source can provide the quantity and quality of water needed for drinking purposes. Nearly 1.7 million people served by public supply utilized surface water for their drinking water needs. Water withdrawn for self-supplied commercial-industrial uses in the study unit in 1990 totaled 862 million gallons per day, of which 93 percent was ground water and 7 percent was surface water. Water withdrawn for agriculture purposes in the study unit in 1990 totaled 1

  3. 7 CFR 160.92 - Meaning of word “gallon.”

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) NAVAL STORES REGULATIONS AND STANDARDS FOR NAVAL STORES Labeling, Advertising and Packing § 160.92 Meaning of word “gallon.” The word...

  4. Water requirements of the iron and steel industry

    USGS Publications Warehouse

    Walling, Faulkner B.; Otts, Louis Ethelbert

    1967-01-01

    Twenty-nine steel plants surveyed during 1957 and 1958 withdrew from various sources about 1,400 billion gallons of water annually and produced 40.8 million tons of ingot steel. This is equivalent to about 34,000 gallons of water per ton of steel. Fifteen iron ore mines and fifteen ore concentration plants together withdrew annually about 89,000 million gallons to produce 15 million tons of iron ore concentrate, or 5,900 gallons per ton of concentrate. About 97 percent of the water used in the steel plants came from surface sources, 2.2 percent was reclaimed sewage, and 1.2 percent was ground water. Steel plants supplied about 96 percent of their own water requirements, although only three plants used self-supplied water exclusively. Water used by the iron ore mines and concentration plants was also predominantly self supplied from surface source. Water use in the iron and steel industry varied widely and depended on the availability of water, age and condition of plants and equipment, kinds of processes, and plant operating procedures. Gross water use in integrated steel plants ranged from 11,200 to 110,000 gallons per ton of steel ingots, and in steel processing plants it ranged from 4,180 to 26,700 gallons per ton. Water reuse also varied widely from 0 to 18 times in integrated steel plants and from 0 to 44 times in steel processing plants. Availability of water seemed to be the principal factor in determining the rate of reuse. Of the units within steel plants, a typical (median) blast furnace required 20,500 gallons of water per ton of pig iron. At the 1956-60 average rate of pig iron consumption, this amounts to about 13,000 gallons per ton of steel ingots or about 40 percent of that required by a typical integrated steel plant 33,200 gallons per ton. Different processes of iron ore concentration are devised specifically for the various kinds of ore. These processes result in a wide range of water use from 124 to 11,300 gallons of water per ton of iron ore

  5. This photocopy of an engineering drawing shows the BakerPerkins 150gallon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    This photocopy of an engineering drawing shows the Baker-Perkins 150-gallon mixer installation in the building. Austin, Field & Fry, Architects Engineers, 22311 West Third Street, Los Angeles 57, California: Edwards Test Station Complex, Jet Propulsion Laboratory, California Institute of Technology, Edwards Air Force Base, Edwards, California: "150 Gallon Mixer System Bldg. E-34, Plans, Sections & Details," drawing no. E34/6-0, 10 July 1963. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California - Jet Propulsion Laboratory Edwards Facility, Mixer, Edwards Air Force Base, Boron, Kern County, CA

  6. The Relationship between the Expression of Ethylene-Related Genes and Papaya Fruit Ripening Disorder Caused by Chilling Injury

    PubMed Central

    Zou, Yuan; Zhang, Lin; Rao, Shen; Zhu, Xiaoyang; Ye, Lanlan; Chen, Weixin; Li, Xueping

    2014-01-01

    Papaya (Carica papaya L.) is sensitive to low temperature and easy to be subjected to chilling injury, which causes fruit ripening disorder. This study aimed to investigate the relationship between the expression of genes related to ethylene and fruit ripening disorder caused by chilling injury. Papaya fruits were firstly stored at 7°C and 12°C for 25 and 30 days, respectively, then treated with exogenous ethylene and followed by ripening at 25°C for 5 days. Chilling injury symptoms such as pulp water soaking were observed in fruit stored at 7°C on 20 days, whereas the coloration and softening were completely blocked after 25 days, Large differences in the changes in the expression levels of twenty two genes involved in ethylene were seen during 7°C-storage with chilling injury. Those genes with altered expression could be divided into three groups: the group of genes that were up-regulated, including ACS1/2/3, EIN2, EIN3s/EIL1, CTR1/2/3, and ERF1/3/4; the group of genes that were down-regulated, including ACO3, ETR1, CTR4, EBF2, and ERF2; and the group of genes that were un-regulated, including ACO1/2, ERS, and EBF1. The results also showed that pulp firmness had a significantly positive correlation with the expression of ACS2, ACO1, CTR1/4, EIN3a/b, and EBF1/2 in fruit without chilling injury. This positive correlation was changed to negative one in fruit after storage at 7°C for 25 days with chilling injury. The coloring index displayed significantly negative correlations with the expression levels of ACS2, ACO1/2, CTR4, EIN3a/b, ERF3 in fruit without chilling injury, but these correlations were changed into the positive ones in fruit after storage at 7°C for 25 days with chilling injury. All together, these results indicate that these genes may play important roles in the abnormal softening and coloration with chilling injury in papaya. PMID:25542021

  7. Should Workers Avoid Consumption of Chilled Fluids in a Hot and Humid Climate?

    PubMed

    Brearley, Matt B

    2017-12-01

    Despite provision of drinking water as the most common method of occupational heat stress prevention, there remains confusion in hydration messaging to workers. During work site interactions in a hot and humid climate, workers commonly report being informed to consume tepid fluids to accelerate rehydration. When questioned on the evidence supporting such advice, workers typically cite that fluid absorption is delayed by ingestion of chilled beverages. Presumably, delayed absorption would be a product of fluid delivery from the gut to the intestines, otherwise known as gastric emptying. Regulation of gastric emptying is multifactorial, with gastric volume and beverage energy density the primary factors. If gastric emptying is temperature dependent, the impact of cooling is modest in both magnitude and duration (≤ 5 minutes) due to the warming of fluids upon ingestion, particularly where workers have elevated core temperature. Given that chilled beverages are most preferred by workers, and result in greater consumption than warm fluids during and following physical activity, the resultant increased consumption of chilled fluids would promote gastric emptying through superior gastric volume. Hence, advising workers to avoid cool/cold fluids during rehydration appears to be a misinterpretation of the research. More appropriate messaging to workers would include the thermal benefits of cool/cold fluid consumption in hot and humid conditions, thereby promoting autonomy to trial chilled beverages and determine personal preference. In doing so, temperature-based palatability would be maximized and increase the likelihood of workers maintaining or restoring hydration status during and after their work shift.

  8. Tradeoffs between chilling and forcing in satisfying dormancy requirements for Pacific Northwest tree species

    PubMed Central

    Harrington, Constance A.; Gould, Peter J.

    2015-01-01

    Many temperate and boreal tree species have a chilling requirement, that is, they need to experience cold temperatures during fall and winter to burst bud normally in the spring. Results from trials with 11 Pacific Northwest tree species are consistent with the concept that plants can accumulate both chilling and forcing units simultaneously during the dormant season and they exhibit a tradeoff between amount of forcing and chilling. That is, the parallel model of chilling and forcing was effective in predicting budburst and well chilled plants require less forcing for bud burst than plants which have received less chilling. Genotypes differed in the shape of the possibility line which describes the quantitative tradeoff between chilling and forcing units. Plants which have an obligate chilling requirement (Douglas-fir, western hemlock, western larch, pines, and true firs) and received no or very low levels of chilling did not burst bud normally even with long photoperiods. Pacific madrone and western redcedar benefited from chilling in terms of requiring less forcing to promote bud burst but many plants burst bud normally without chilling. Equations predicting budburst were developed for each species in our trials for a portion of western North America under current climatic conditions and for 2080. Mean winter temperature was predicted to increase 3.2–5.5°C and this change resulted in earlier predicted budburst for Douglas-fir throughout much of our study area (up to 74 days earlier) but later budburst in some southern portions of its current range (up to 48 days later) as insufficient chilling is predicted to occur. Other species all had earlier predicted dates of budburst by 2080 than currently. Recent warming trends have resulted in earlier budburst for some woody plant species; however, the substantial winter warming predicted by some climate models will reduce future chilling in some locations such that budburst will not consistently occur earlier. PMID

  9. The responses of antioxidant system in bitter melon, sponge gourd, and winter squash under flooding and chilling stresses

    NASA Astrophysics Data System (ADS)

    Do, Tuong Ha; Nguyen, Hoang Chinh; Lin, Kuan-Hung

    2018-04-01

    The objective of this paper was to review the responses of antioxidant system and physiological parameters of bitter melon (BM), sponge gourd (SG), and winter squash (WS) under waterlogged and low temperature conditions. The BM and SG plants were subjected to 0-72 h flooding treatments, and BM and WS plants were exposed to chilling at 12/7 °C (day/night) for 0-72 h. Different genotypes responded differently to environmental stress according to their various antioxidant system and physiological parameters. Increased ascorbate peroxidase (APX) and superoxide dismutase (SOD) activities provided SG and WS plants with increased waterlogging and chilling stress tolerance, respectively, compared to BM plants. The APX gene from SG and the SOD gene from WS were then cloned, and the regulation of APX and SOD gene expressions under flooding and chilling stress, respectively, were also measured. Increased expression of APX and SOD genes was accompanied by the increased activity of the enzyme involved in detoxifying reactive oxygen species (ROS) in response to those stresses. Both APX and SOD activities can be used for selecting BM lines with the best tolerances to water logging and chilling stresses.

  10. Reassessment of Ground-Water Recharge and Simulated Ground-Water Availability for the Hawi Area of North Kohala, Hawaii

    USGS Publications Warehouse

    Oki, Delwyn S.

    2002-01-01

    An estimate of ground-water availability in the Hawi area of north Kohala, Hawaii, is needed to determine whether ground-water resources are adequate to meet future demand within the area and other areas to the south. For the Hawi area, estimated average annual recharge from infiltration of rainfall, fog drip, and irrigation is 37.5 million gallons per day from a daily water budget. Low and high annual recharge estimates for the Hawi area that incorporate estimated uncertainty are 19.9 and 55.4 million gallons per day, respectively. The recharge estimates from this study are lower than the recharge of 68.4 million gallons per day previously estimated from a monthly water budget. Three ground-water models, using the low, intermediate, and high recharge estimates (19.9, 37.5, and 55.4 million gallons per day, respectively), were developed for the Hawi area to simulate ground-water levels and discharges for the 1990?s. To assess potential ground-water availability, the numerical ground-water flow models were used to simulate the response of the freshwater-lens system to withdrawals at rates in excess of the average 1990?s withdrawal rates. Because of uncertainty in the recharge estimate, estimates of ground-water availability also are uncertain. Results from numerical simulations indicate that for appropriate well sites, depths, and withdrawal rates (1) for the low recharge estimate (19.9 million gallons per day) it may be possible to develop an additional 10 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 160 feet near the withdrawal sites, (2) for the intermediate recharge estimate (37.5 million gallons per day) it may be possible to develop an additional 15 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 190 feet near the withdrawal sites, and (3) for the high recharge estimate (55.4 million gallons per day) it may be possible to develop at

  11. Water withdrawal and use in Maryland, 1986

    USGS Publications Warehouse

    Wheeler, J.C.

    1990-01-01

    During 1986, about 1,460 million gallons per day of freshwater was withdrawn from the surface-, and groundwater resources of Maryland. In addition, more than 6,240 million gallons per day of saline surface water was withdrawn and used primarily for cooling purposes in the generation of electricity. Most freshwater withdrawals (84%) were from surface water sources and were withdrawn and used in the Potomac drainage basin, whereas most groundwater was withdrawn and used in the Upper Chesapeake drainage basin. The Potomac Group aquifers provided the most groundwater (56 million gallons per day). Ten water use categories comprise the major demands on the surface and groundwater resources of the State: public supply, domestic, commercial, industrial, mining, thermoelectric power generation, hydroelectric power generation, agricultural (non-irrigation), irrigation, and aquaculture. Public-supply systems withdrew the most water in the State (801 million gallon/day) for use by residents, commercial establishments, and industries. Baltimore City had the largest public-supply use in 1986 (about 151 million gallons/day). (USGS)

  12. Role of Rbp1 in the acquired chill-light tolerance of cyanobacteria.

    PubMed

    Tan, Xiaoming; Zhu, Tao; Shen, Si; Yin, Chuntao; Gao, Hong; Xu, Xudong

    2011-06-01

    Synechocystis sp. strain PCC 6803 cultured at 30°C losses viability quickly under chill (5°C)-light stress but becomes highly tolerant to the stress after conditioning at 15°C (Y. Yang, C. Yin, W. Li, and X. Xu, J. Bacteriol. 190:1554-1560, 2008). Hypothetically, certain factors induced during preconditioning are involved in acquisition of chill-light tolerance. In this study, Rbp1 (RNA-binding protein 1) rather than Rbp2 was found to be accumulated during preconditioning, and the accumulation of Rbp1 was correlated with the increase of chill-light tolerance. Inactivation of its encoding gene rbp1 led to a great reduction in the acquired chill-light tolerance, while ectopic expression of rbp1 enabled the cyanobacterium to survive the chill-light stress without preconditioning. Microarray analyses suggested that the Rbp1-dependent chill-light tolerance may not be based on its influence on mRNA abundance of certain genes. Similarly to that in Synechocystis, the Rbp1 homologue(s) can be accumulated in Microcystis cells collected from a subtropic lake in low-temperature seasons. Rbp1 is the first factor shown to be both accumulated early during preconditioning and directly involved in development of chill-light tolerance in Synechocystis. Its accumulation may greatly enhance the overwintering capability in certain groups of cyanobacteria.

  13. Ground-Water Occurrence and Contribution to Streamflow, Northeast Maui, Hawaii

    USGS Publications Warehouse

    Gingerich, Stephen B.

    1999-01-01

    The study area lies on the northern flank of the East Maui Volcano (Haleakala) and covers about 129 square miles between the drainage basins of Maliko Gulch to the west and Makapipi Stream to the east. About 989 million gallons per day of rainfall and 176 million gallons per day of fog drip reaches the study area and about 529 million gallons per day enters the ground-water system as recharge. Average annual ground-water withdrawal from wells totals only about 3 million gallons per day; proposed (as of 1998) additional withdrawals total about 18 million gallons per day. Additionally, tunnels and ditches of an extensive irrigation network directly intercept at least 10 million gallons per day of ground water. The total amount of average annual streamflow in gaged stream subbasins upstream of 1,300 feet altitude is about 255 million gallons per day and the total amount of average annual base flow is about 62 million gallons per day. Six major surface-water diversion systems in the study area have diverted an average of 163 million gallons per day of streamflow (including nearly all base flow of diverted streams) for irrigation and domestic supply in central Maui during 1925-97. Fresh ground water is found in two main forms. West of Keanae Valley, ground-water flow appears to be dominated by a variably saturated system. A saturated zone in the uppermost rock unit, the Kula Volcanics, is separated from a freshwater lens near sea level by an unsaturated zone in the underlying Honomanu Basalt. East of Keanae Valley, the ground-water system appears to be fully saturated above sea level to altitudes greater than 2,000 feet. The total average annual streamflow of gaged streams west of Keanae Valley is about 140 million gallons per day at 1,200 feet to 1,300 feet altitude. It is not possible to estimate the total average annual streamflow at the coast. All of the base flow measured in the study area west of Keanae Valley represents ground-water discharge from the high

  14. Vented Chill / No-Vent Fill of Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Rhys, Noah O.; Foster, Lee W.; Martin, Adam K.; Stephens, Jonathan R.

    2016-01-01

    Architectures for extended duration missions often include an on-orbit replenishment of the space vehicle's cryogenic liquid propellants. Such a replenishment could be accomplished via a tank-to-tank transfer from a dedicated tanker or a more permanent propellant depot storage tank. Minimizing the propellant loss associated with transfer line and receiver propellant tank thermal conditioning is essential for mass savings. A new methodology for conducting tank-to-tank transfer while minimizing such losses has been demonstrated. Charge-Hold-Vent is the traditional methodology for conducting a tank-to-tank propellant transfer. A small amount of cryogenic liquid is introduced to chill the transfer line and propellant tank. As the propellant absorbs heat and undergoes a phase change, the tank internal pressure increases. The tank is then vented to relieve pressure prior to another charge of cryogenic liquid being introduced. This cycle is repeated until the transfer lines and tank are sufficiently chilled and the replenishment of the propellant tank is complete. This method suffers inefficiencies due to multiple chill and vent cycles within the transfer lines and associated feed system components. Additionally, this system requires precise measuring of cryogenic fluid delivery for each transfer, multiple valve cycling events, and other complexities associated with cycled operations. To minimize propellant loss and greatly simplify on-orbit operations, an alternate methodology has been designed and demonstrated. The Vented Chill / No Vent Fill method is a simpler, constant flow approach in which the propellant tank and transfer lines are only chilled once. The receiver tank is continuously vented as cryogenic liquid chills the transfer lines, tank mass and ullage space. Once chilled sufficiently, the receiver tank valve is closed and the tank is completely filled. Interestingly, the vent valve can be closed prior to receiver tank components reaching liquid saturation

  15. Estimated Domestic, Irrigation, and Industrial Water Use in Washington, 2000

    USGS Publications Warehouse

    Lane, R.C.

    2004-01-01

    Since 1950, the U.S. Geological Survey has published a series of Circulars and other reports on the estimated use of water in the United States at 5-year intervals. This report presents State, regional, and county estimates of the amount of water used for domestic, irrigation, and industrial purposes in the State of Washington during the year 2000. Domestic water use was estimated to be 674 million gallons per day and the per-capita rate, 114 gallons per day. Crop-irrigation water use was estimated to be 3,005 million gallons per day and the application rate, 2.2 acre-feet per acre per year, or feet per year. Golf-course irrigation water use was estimated to be 23.6 million gallons per day and the application rate, 1.4 feet per year. Industrial water use was estimated to be 681 million gallons per day. Historically, these core categories account for about 92 percent of the estimated offstream water used in Washington.

  16. Ground water in carbonate rocks and regolith in the Fairview area, Tennessee

    USGS Publications Warehouse

    Burchett, C.R.; Zurawski, Ann; Sparkes, A.K.; Hollyday, E.F.

    1983-01-01

    Fourteen test wells drilled in the Fairview area, Tennessee, produce from 3 to 100 gallons per minute and have an average yield of 32 gallons per minute, measured while blowing water from the wells with compressed air. In comparison, the average yield of supply wells reported by drillers is 13 gallons per minute. Specific capacities for three of the test wells ranged from 0.3 to 0.6 gallons per minute per foot of drawdown after 8 hours of pumping at 20 to 47 gallons per minute. Two test wells had specific capacities of 1.1 and 0.4 gallons per foot of drawdown after 72 hours of pumping at 55 and 43 gallons per minute. The mineral content of ground water increases greatly below a gypsum horizon approximately 100 feet below the top of the Fort Payne Formation. Ground water above the gypsum horizon, however, meets the standards for finished drinking water. (USGS)

  17. Growth of Salmonella on chilled meat.

    PubMed Central

    Mackey, B. M.; Roberts, T. A.; Mansfield, J.; Farkas, G.

    1980-01-01

    Growth rates of a mixture of Salmonella serotypes inoculated on beef from a commercial abattoir were measured at chill temperatures. The minimum recorded mean generation times were 8.1 h at 10 degrees C; 5.2 h at 12.5 degrees C and 2.9 h at 15 degrees C. Growth did not occur at 7-8 degrees C. From these data the maximum extent of growth of Salmonella during storage of meat for different times at chill temperatures was calculated. Criteria for deciding safe handling temperatures for meat are discussed. Maintaining an internal temperature below 10 degrees C during the boning operation would be sufficient to safeguard public health requirements. PMID:7052227

  18. Performance of swine chilled during artificial rearing.

    PubMed

    Stanton, H C; Mueller, R L

    1977-07-01

    There were more deaths among neonatal swine artificially reared for 21 days in individual cages at 27.9 C than among pigs reared under similar conditions at thermoneutrality (34.6 C). Furthermore, these deaths occurred at a younger age in the chilled animals. Chilled swine gained less body weight than did warm pigs for the first 15 days of life, although the survivors of the 27.9 C environment weighed the same as warm survivors at 22 days of age. Plasma glucose, liver, and skeletal muscle glycogen concentrations were significantly lower in neonatal swine exposed to 27.9 C from 1 to 4 days of age. Plasma nonesterified fatty acids, glycerol, cholesterol, and triglyceride concentrations were not altered by chilling. However, these lipid variables were significantly higher in 4-day-old nursig pigs than in animals reared artificially for the same period on artificial food. Adrenal gland weights and adrenal medullary catecholamine-synthetic enzyme activities were not altered by exposure to 27.9 C in pigs 1 to 4 days of age.

  19. Chilling response of plants: importance of galactolipase, free fatty acids and free radicals.

    PubMed

    Kaniuga, Z

    2008-03-01

    The chilling response of plants is complex and based on the interplay of two important metabolic processes--lipolytic degradation of membrane lipids and a set of oxidative reactions leading to lipid peroxidation and membrane damage evoked in chilling-sensitive (CS) plants subjected to low temperature and light. The effects of chilling of detached leaves and intact plants differ and are often neglected during experiments. In closely-related species, the activity of several constitutive enzymes (i.e. superoxide dismutase, ascorbate peroxidase and glutathione reductase) appears to be higher in chilling-tolerant (CT) than in CS species; while in several native, closely-related CS species, lipid acyl hydrolase (galactolipase) activity is higher than in CT species. Moreover, in chilling-insensitive (CI) plants, galactolipase activity is very low and is neither activated by detachment of leaves nor under stress conditions in growing plants. Dark and low-temperature treatments of detached leaves of CS species and post-chilling recovery of growing plants in the light activate galactolipase, which is responsible for the release of free fatty acids (FFA), the main substrates of peroxidation by lipoxygenase and free radicals. In several CS species, increased galactolipase activity is an important factor contributing to chilling susceptibility. Thus, it seems likely that enhancement of chilling tolerance may be achieved by genetically suppressing galactolipase in order to reduce both the degradation of chloroplast lipids and the level of released FFA, and thereby avoiding the deleterious action of their peroxidation products on plant tissues.

  20. Water use trends and demand projections in the Northwest Florida Water Management District

    USGS Publications Warehouse

    Marella, R.L.; Mokray, M.F.; Hallock-Solomon, Michael

    1998-01-01

    The Northwest Florida Water Management District is located in the western panhandle of Florida and encompasses about 11,200 square miles. In 1995, the District had an estimated population of 1.13 million, an increase of about 47 percent from the 1975 population of 0.77 million. Over 50 percent of the resident population lives within 10 miles of the coast. In addition, hundreds of thousands of visitors come to the coastal areas of the panhandle during the summer months for recreation or vacation purposes. Water withdrawn to meet demands for public supply, domestic self-supplied, commercial-industrial, agricultural irrigation, and recreational irrigation purposes in the District increased 18 percent (52 million gallons per day) between 1970 and 1995. The greatest increases were for public supply and domestic self-supplied (99 percent increase) and for agricultural irrigation (60 percent increase) between 1970 and 1995. In 1995, approximately 70 percent of the water withdrawn was from ground-water sources, with the majority of this from the Floridan aquifer system. The increasing water demands have affected water levels in the Floridan aquifer system, especially along the coastal areas. The Northwest Florida Water Management District is mandated under the Florida Statutes (Chapter 373) to protect and manage the water resources in this area of the State. The mandate requires that current and future water demands be met, while water resources and water-dependent natural systems are sustained. For this project, curve fitting and extrapolation were used to project most of the variables (population, population served by public supply, and water use) to the years 2000, 2005, 2010, 2015, and 2020. This mathematical method involves fitting a curve to historical population or water-use data and then extending this curve to arrive at future values. The population within the region is projected to reach 1,596,888 by the year 2020, an increase of 41 percent between 1995 and 2020

  1. Solar heating and cooling system for an office building at Reedy Creek Utilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-08-01

    This final report describes in detail the solar energy system installed in a new two-story office building at the Reedy Creek Utilities Company, which provides utility service to Walt Disney World at Lake Buena Vista, Florida. The solar components were partly funded by the Department of Energy under Contract EX-76-C-01-2401, and the technical management was by NASA/George C. Marshall Space Flight Center. The solar energy system application is 100 percent heating, 80 percent cooling, and 100 percent hot water. The collector is a modular cylindrical concentrator type with an area of 3.840 square feet. The storage medium is water withmore » a capacity of 10,000 gallons hot and 10,000 gallons chilled. Design, construction, operation, cost, maintenance, and performance are described in depth. Detailed drawings are included.« less

  2. Increasing chilling reduces heat requirement for floral budbreak in peach

    USDA-ARS?s Scientific Manuscript database

    Response to chilling temperatures is a critical factor in the suitability of peach [Prunus persica (L.) Batsch] cultivars to moderate climates such as in the southeastern United States. Time of bloom depends on the innate chilling requirement of the cultivar as well as the timing and quantity of co...

  3. 9 CFR 381.66 - Temperatures and chilling and freezing procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Temperatures and chilling and freezing procedures. 381.66 Section 381.66 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT... Procedures § 381.66 Temperatures and chilling and freezing procedures. (a) General. Temperatures and...

  4. Annual water resources review, White Sands Missile Range, New Mexico, 1980

    USGS Publications Warehouse

    Cruz, R.R.

    1981-01-01

    Ground-water data were collected in 1980 at White Sands Missile Range in south-central New Mexico. The total water pumped at White Sands Missile Range in 1980 was 725,053,000 gallons, which was 32.5 million gallons more than in 1979. The Post Headquarters well field, which produces more than 98 percent of the water used at White Sands Missile Range, pumped 712,909,000 gallons, which was 31.1 million gallons more in 1980 than in 1979. Data were collected for specific Range areas north of the Post Headquarters area that might have potential for future water-supply development. (USGS)

  5. Effects of chilling and ABA on (/sup 3/H)gibberellin A/sub 4/ metabolism in somatic embryos of grape (Vitis vinifera L. x V. rupestris Scheele)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearce, D.; Pharis, R.P.; Rajasekaran, K.

    1987-06-01

    Previous work has indicated that changes in gibberellin (GA) metabolism may be involved in chilling-induced release from dormancy in somatic embryos of grape (Vitis vinifera L. x V. rupestris Scheele). The authors have chilled somatic embryos of grape for 2, 4, or 8 weeks, then incubated them with (/sup 3/H)GA/sub 4/ (of high specific activity, 4.81 x 10/sup 19/ becquerel per millimole) for 48 hours at 26/sup 0/C. Chilling had little effect on the total amount of free (/sup 3/H)GA-like metabolites formed during incubation at 26/sup 0/C, but did change the relative proportions of individual metabolites. The amount of highlymore » water-soluble (/sup 3/H) metabolites formed at 26/sup 0/C decreased in embryos chilled for 4 or 8 weeks. The concentration of endogeneous GA precursors (e.g., GA/sub 12/ aldehyde-, kaurene, and kaurenoic acid-like substances) increased in embryos chilled for 4 or 8 weeks. Treatment with abscisic acid (ABA) (known to inhibit germination in grape embryos) concurrent with (/sup 3/H)GA/sub 4/ treatment at 26/sup 0/C, reduced the uptake of (/sup 3/H) GA/sub 4/ but had little effect on the qualitative spectrum of metabolites. However, in the embryos chilled for 8 weeks and then treated with ABA for 48 hours at 26/sup 0/C, there was a higher concentration of GA precursors than in untreated control embryos. Chilled embryos thus have an enhanced potential for an increase in free GAs through synthesis from increased amounts of GA precursors, or through a reduced ability to form highly water-soluble GA metabolites (i.e., GA conjugates or polyhydroxylated free GAs).« less

  6. Chilled storage of foods - principles

    USDA-ARS?s Scientific Manuscript database

    Chilled storage is the most common method for preserving perishable foods. The consumers’ increasing demand for convenient, minimally processed foods has caused food manufacturers to increase production of refrigerated foods worldwide. This book chapter reviews the development of using low tempera...

  7. Long-term red meat preservation using chilled and frozen storage combinations: A review.

    PubMed

    Coombs, Cassius E O; Holman, Benjamin W B; Friend, Michael A; Hopkins, David L

    2017-03-01

    This paper reviews current literature relating to the effects of chilled and frozen storage on the quality characteristics of red meat (lamb and beef). These characteristics include tenderness (shear force), juiciness (fluid losses), flavour (lipid oxidation), colour and microbial loading. Research suggests that chilled storage of red meat can improve certain properties, such as shear force and species-specific flavour, to threshold levels before the effects on flavour and colour become deleterious, and key microbial species proliferate to spoilage levels. For frozen red meat, the negative effects upon quality traits are prevented when stored for shorter durations, although chilled storage conditions prior to freezing and retail display post-thawing can both positively and negatively affect these traits. Here, we review the effects of different chilled, frozen and combined chilled and frozen storage practices (particularly the chilled-then-frozen combination) on meat quality and spoilage traits, in order to contribute to superior management of these traits during product distribution. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  8. Warming and Chilling: Assessing Aspects of Changing Plant Ecology with Continental-scale Phenology

    NASA Astrophysics Data System (ADS)

    Schwartz, M. D.; Hanes, J. M.

    2009-12-01

    Many recent ecological studies have concentrated on the direct impacts of climate warming, such as modifications to seasonal plant and animal life cycle events (phenology). There are many examples, with most indicating earlier onset of spring plant growth and delayed onset of autumn senescence. However, the implication of continued warming for plant species’ chilling requirements has received comparatively less attention. Temperate zone woody plants often require a certain level of cool season "chilling" (accumulated time at temperatures below a specific threshold) to break dormancy and prepare to respond to springtime warming. Thus, the potential impacts of insufficient chilling must be included in a comprehensive assessment of plant species' responses to climate warming. Vegetation phenological data, when collected for specific plant species at continental-scale, can be used to extract information relating to the combined impacts of reduced chilling and warming on plant species physiology. In a recent study, we demonstrated that common lilac first leaf and first bloom phenology (collected from multiple locations in the western United States and matched with air temperature records) can estimate the species' chilling requirement (in this case 1748 chilling hours, below a base temperature of 7.2°C) and highlight the changing impact of warming on the plant's phenological response in light of that requirement. Specifically, when chilling is above the requirement, lilac first leaf dates advance at a rate of -5.0 days per 100 hour chilling accumulation reduction, and lilac first bloom dates advance at a rate of -4.2 days per 100 hour chilling accumulation reduction. In contrast, when chilling is below the requirement, the lilac event dates advance at a much reduced rate of -1.6 days per 100 hour reduction for first leaf date and -2.2 days per 100 hour reduction for first bloom date. Overall, these encouraging results for common lilac suggest that similar continental

  9. Some Interesting Facts about Water and Water Conservation

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2015-12-01

    The total amount of water in the world today is still the same as it was hundreds of thousands of years ago. Almost 97% of the water that is on this earth is undrinkable. About two percent of world's water is locked in polar ice caps and glaciers. Only one percent of world's water is available for human consumption. Agriculture, livestock farming, irrigation, manufacturing, factories, businesses, commercial establishments, offices, communities and household all have to share this 1% of water that is available. Although we call it drinking water, humans actually drink only about 1% of water that is actually supplied to the household by the utility companies. Inside a leak-proof average American household, about 70% of the water is used in the bathroom and about 20% is utilized in kitchen and laundry. The U.S. daily average consumption of water is about 200 gallons per person. Desalinated water may typically cost about 2,000 - 3000 an acre foot. This is approximately a penny a gallon. An acre-foot or 325,851 gallons is roughly the amount of water a family of five uses in a year. 1.2 trillion gallons of industrial waste, untreated sewage and storm water are dumped into U.S. waters each year. Faster depletion of water supplies is partly due to hotter summers, which mean thirstier people, livestock, plants, trees and shrubs. In addition, hotter summers mean more evaporation from lakes, rivers, reservoirs and irrigated farmland. The median household in the U.S. spends about one of its income on water and sewerage. The human body is about 75% water. Although government agencies have taken necessary steps, water pollution levels continue to rise rapidly. It is becoming more and more difficult to clean up polluted water bodies. Water conservation and preventing water pollution is the responsibility of very human being. References: http://www.nrdc.org/water/http://www.epa.gov/greeningepa/water/http://www.waterboards.ca.gov/water_issues/programs/conservation_portal/

  10. 9 CFR 381.66 - Temperatures and chilling and freezing procedures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Temperatures and chilling and freezing... Procedures § 381.66 Temperatures and chilling and freezing procedures. (a) General. Temperatures and... temperature is reduced to 40 °F. or less, as provided in paragraph (b)(2) of this section unless such poultry...

  11. 9 CFR 381.66 - Temperatures and chilling and freezing procedures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Temperatures and chilling and freezing... Procedures § 381.66 Temperatures and chilling and freezing procedures. (a) General. Temperatures and... temperature is reduced to 40 °F. or less, as provided in paragraph (b)(2) of this section unless such poultry...

  12. 9 CFR 381.66 - Temperatures and chilling and freezing procedures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Temperatures and chilling and freezing... Procedures § 381.66 Temperatures and chilling and freezing procedures. (a) General. Temperatures and... temperature is reduced to 40 °F. or less, as provided in paragraph (b)(2) of this section unless such poultry...

  13. Tomato flavor changes at chilling and non-chilling temperatures as influenced by controlled atmospheres

    USDA-ARS?s Scientific Manuscript database

    Postharvest temperatures recommended as safe to avoid chilling injury (CI) based on lack of visible symptoms suppress tomato aroma development. We investigated how temperatures at or above the putative CI threshold of 12.5°C affected aroma of pink ‘Tasti Lee’ tomatoes and if controlled atmosphere (C...

  14. Chilling and chipping influence plant growth and reproduction of star-of-Bethlehem (Ornithogalum umbellatum)

    USDA-ARS?s Scientific Manuscript database

    Greenhouse studies were conducted on two southern Illinois star-of-Bethlehem biotypes to determine the influence of chilling and bulb chipping on plant growth and reproduction. Chilling was not required for leaf emergence of dormant bulbs, but an increase to 10 weeks of chilling proportionally delay...

  15. Analyses of rail chill effect

    DOT National Transportation Integrated Search

    1998-06-01

    The principles of heat transfer are applied to analyze the so-called "rail chill" effect, which refers to hear loss by conduction from a hot rail vehicle wheel through the contact area into a cold rail, the wheel having been heated by friction brakin...

  16. Climatic changes lead to declining winter chill for fruit and nut trees in California during 1950-2099.

    PubMed

    Luedeling, Eike; Zhang, Minghua; Girvetz, Evan H

    2009-07-16

    Winter chill is one of the defining characteristics of a location's suitability for the production of many tree crops. We mapped and investigated observed historic and projected future changes in winter chill in California, quantified with two different chilling models (Chilling Hours, Dynamic Model). Based on hourly and daily temperature records, winter chill was modeled for two past temperature scenarios (1950 and 2000), and 18 future scenarios (average conditions during 2041-2060 and 2080-2099 under each of the B1, A1B and A2 IPCC greenhouse gas emissions scenarios, for the CSIRO-MK3, HadCM3 and MIROC climate models). For each scenario, 100 replications of the yearly temperature record were produced, using a stochastic weather generator. We then introduced and mapped a novel climatic statistic, "safe winter chill", the 10% quantile of the resulting chilling distributions. This metric can be interpreted as the amount of chilling that growers can safely expect under each scenario. Winter chill declined substantially for all emissions scenarios, with the area of safe winter chill for many tree species or cultivars decreasing 50-75% by mid-21st century, and 90-100% by late century. Both chilling models consistently projected climatic conditions by the middle to end of the 21st century that will no longer support some of the main tree crops currently grown in California, with the Chilling Hours Model projecting greater changes than the Dynamic Model. The tree crop industry in California will likely need to develop agricultural adaptation measures (e.g. low-chill varieties and dormancy-breaking chemicals) to cope with these projected changes. For some crops, production might no longer be possible.

  17. Ground water for public water supply at Windigo, Isle Royale National Park, Michigan

    USGS Publications Warehouse

    Grannemann, N.G.; Twenter, F.R.

    1982-01-01

    Three test holes drilled at Windigo in Isle Royale National Park in 1981 indicate that the ophitic basaltic lava flows underlying the area contain little water and cannot be considered a source for public water supply. The holes were 135, 175, and 71 feet deep. One hole yielded about 1 gallon of water perminute; the other two yielded less. Glacial deposits seem to offer the best opportunity for developing a ground-water supply of 5 to 10 gallons per minute.

  18. Comparative transcriptome profiling of chilling stress responsiveness in grafted watermelon seedlings.

    PubMed

    Xu, Jinhua; Zhang, Man; Liu, Guang; Yang, Xingping; Hou, Xilin

    2016-12-01

    Rootstock grafting may improve the resistance of watermelon plants to low temperatures. However, information regarding the molecular responses of rootstock grafted plants to chilling stress is limited. To elucidate the molecular mechanisms of chilling tolerance in grafted plants, the transcriptomic responses of grafted watermelon under chilling stress were analyzed using RNA-seq analysis. Sequencing data were used for digital gene expression (DGE) analysis to characterize the transcriptomic responses in grafted watermelon seedlings. A total of 702 differentially-expressed genes (DEGs) were found in rootstock grafted (RG) watermelon relative to self-grafted (SG) watermelon; among these genes, 522 genes were up-regulated and 180 were down-regulated. Additionally, 164 and 953 genes were found to specifically expressed in RG and SG seedlings under chilling stress, respectively. Functional annotations revealed that up-regulated DEGs are involved in protein processing, plant-pathogen interaction and the spliceosome, whereas down-regulated DEGs are associated with photosynthesis. Moreover, 13 DEGs were randomly selected for quantitative real time PCR (qRT-PCR) analysis. The expression profiles of these 13 DEGs were consistent with those detected by the DGE analysis, supporting the reliability of the DGE data. This work provides additional insight into the molecular basis of grafted watermelon responses to chilling stress. Copyright © 2016. Published by Elsevier Masson SAS.

  19. 40 CFR 63.11116 - Requirements for facilities with monthly throughput of less than 10,000 gallons of gasoline.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... monthly throughput of less than 10,000 gallons of gasoline. 63.11116 Section 63.11116 Protection of... Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities Emission Limitations and... gallons of gasoline. (a) You must not allow gasoline to be handled in a manner that would result in vapor...

  20. 40 CFR 63.11116 - Requirements for facilities with monthly throughput of less than 10,000 gallons of gasoline.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... monthly throughput of less than 10,000 gallons of gasoline. 63.11116 Section 63.11116 Protection of... Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities Emission Limitations and... gallons of gasoline. (a) You must not allow gasoline to be handled in a manner that would result in vapor...

  1. 40 CFR 63.11116 - Requirements for facilities with monthly throughput of less than 10,000 gallons of gasoline.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... monthly throughput of less than 10,000 gallons of gasoline. 63.11116 Section 63.11116 Protection of... Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities Emission Limitations and... gallons of gasoline. (a) You must not allow gasoline to be handled in a manner that would result in vapor...

  2. 40 CFR 63.11116 - Requirements for facilities with monthly throughput of less than 10,000 gallons of gasoline.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... monthly throughput of less than 10,000 gallons of gasoline. 63.11116 Section 63.11116 Protection of... Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities Emission Limitations and... gallons of gasoline. (a) You must not allow gasoline to be handled in a manner that would result in vapor...

  3. The roles of call wall invertase inhibitor in regulating chilling tolerance in tomato.

    PubMed

    Xu, Xiao-Xia; Hu, Qin; Yang, Wan-Nian; Jin, Ye

    2017-11-09

    Hexoses are important metabolic signals that respond to abiotic and biotic stresses. Cold stress adversely affects plant growth and development, limiting productivity. The mechanism by which sugars regulate plant cold tolerance remains elusive. We examined the function of INVINH1, a cell wall invertase inhibitor, in tomato chilling tolerance. Cold stress suppressed the transcription of INVINH1 and increased that of cell wall invertase genes, Lin6 and Lin8 in tomato seedlings. Silencing INVINH1 expression in tomato increased cell wall invertase activity and enhanced chilling tolerance. Conversely, transgenic tomatoes over-expressing INVINH1 showed reduced cell wall invertase activity and were more sensitive to cold stress. Chilling stress increased glucose and fructose levels, and the hexoses content increased or decreased by silencing or overexpression INVINH1. Glucose applied in vitro masked the differences in chilling tolerance of tomato caused by the different expressions of INVINH1. The repression of INVINH1 or glucose applied in vitro regulated the expression of C-repeat binding factors (CBFs) genes. Transcript levels of NCED1, which encodes 9-cisepoxycarotenoid dioxygenase (NCED), a key enzyme in the biosynthesis of abscisic acid, were suppressed by INVINH1 after exposure to chilling stress. Meanwhile, application of ABA protected plant from chilling damage caused by the different expression of INVINH1. In tomato, INVINH1 plays an important role in chilling tolerance by adjusting the content of glucose and expression of CBFs.

  4. Two types of peak emotional responses to music: The psychophysiology of chills and tears

    PubMed Central

    Mori, Kazuma; Iwanaga, Makoto

    2017-01-01

    People sometimes experience a strong emotional response to artworks. Previous studies have demonstrated that the peak emotional experience of chills (goose bumps or shivers) when listening to music involves psychophysiological arousal and a rewarding effect. However, many aspects of peak emotion are still not understood. The current research takes a new perspective of peak emotional response of tears (weeping, lump in the throat). A psychophysiological experiment showed that self-reported chills increased electrodermal activity and subjective arousal whereas tears produced slow respiration during heartbeat acceleration, although both chills and tears induced pleasure and deep breathing. A song that induced chills was perceived as being both happy and sad whereas a song that induced tears was perceived as sad. A tear-eliciting song was perceived as calmer than a chill-eliciting song. These results show that tears involve pleasure from sadness and that they are psychophysiologically calming; thus, psychophysiological responses permit the distinction between chills and tears. Because tears may have a cathartic effect, the functional significance of chills and tears seems to be different. We believe that the distinction of two types of peak emotions is theoretically relevant and further study of tears would contribute to more understanding of human peak emotional response. PMID:28387335

  5. Estimated Water Use in 1990, Island of Kauai, Hawaii

    USGS Publications Warehouse

    Shade, Patricia J.

    1995-01-01

    The estimated total quantity of freshwater withdrawn on the island of Kauai, Hawaii, in 1990 was 370.84 million gallons per day of which 46.29 million gallons per day (12 percent) was from ground-water sources, and 324.55 million gallons per day (88 percent) was from surface-water sources. An additional estimated 40.94 million gallons per day of saline water was withdrawn for thermoelectric power generation. Agricultural irrigation was the principal use, accounting for 66 percent of the total freshwater withdrawals. Irrigation accounted for about 40 percent of the fresh ground-water withdrawals, followed by public supply, thermoelectric power generation, self-supplied domestic, self-supplied commercial, and self-supplied industrial withdrawals. Agricultural irrigation accounted for 69 percent of the total fresh surface-water withdrawals, followed by hydroelectric power generation, self-supplied industrial, public-supply and self-supplied livestock withdrawals. A comparison of water-use data for 1980 and 1990 shows total freshwater uses decreased during 1990 by slightly more than 100 million gallons per day because of decreased withdrawals for sugarcane irrigation and processing. During this time, increased domestic, commercial, and thermoelectric power usage reflects increases in the resident population and in tourism on the island.

  6. Design and implementation of an improved chilled water glycol system for GeMS: CANOPUS thermal enclosures

    NASA Astrophysics Data System (ADS)

    Gausachs, Gaston; Bec, Matthieu; Galvez, Ramon; Cavedoni, Chas; Vergara, Vicente; Diaz, Herman; Fernandez, German

    2010-07-01

    CANOPUS is the facility instrument for the Gemini Multi Conjugate Adaptive Optics System (GeMS) wherein all the adaptive optics mechanisms and associated electronic are tightly packed. At an early stage in the pre-commissioning phase Gemini undertook the redesign and implementation of its chilled Ethylene Glycol Water (EGW) cooling system to remove the heat generated by the electronic hardware. The electronic boards associated with the Deformable Mirrors (DM) represent the highest density heat yielding components in CANOPUS and they are also quite sensitive to overheating. The limited size of the two electronic thermal enclosures (TE) requires the use of highly efficient heat exchangers (HX) coupled with powerful yet compact DC fans. A systematic approach to comply with all the various design requirements brought about a thorough and robust solution that, in addition to the core elements (HXs and fan), makes use of features such as high performance vacuum insulated panels, vibration mitigation elements and several environment sensors. This paper describes the design and implementation of the solution in the lab prior to delivering CANOPUS for commissioning.

  7. Design and implementation of an improved chilled water glycol system for NICI array electronics thermal enclosure

    NASA Astrophysics Data System (ADS)

    Gausachs, Gaston

    2008-07-01

    The Near Infrared Chronographic Imager (NICI) being commissioned at Gemini was upgraded with a more powerful Chilled Water Glycol System to address early overheating problems. The previous system was replaced with a completely new design favoring improved airflow and increased heat transfer capabilities. The research leading to this upgrade showed a significant lack of cooling power of the original design. The solution was a combination of commercial heat exchanger and fans and a custom built enclosure. As a prime infrared telescope facility, Gemini is very much interested in maintaining the least amount of heat dissipated to the ambient air. The results obtained through the implementation of this solution will be helpful in understanding the state of other existing electronics enclosures as well as those for new instruments to come. With the advent of electronic intensive AO systems, future electronics enclosures must take full advantage of improved cooling. This paper describes the design and implementation phases of the project. The results under maximum operating capacity proved to be within the expected theoretical values and were deemed successful.

  8. The effects of different chilling methods on meat quality and calpain activity of pork muscle longissimus dorsi.

    PubMed

    Xu, Yang; Huang, Ji-Chao; Huang, Ming; Xu, Bao-Cai; Zhou, Guang-Hong

    2012-01-01

    The objective of this study was to investigate the effects of conventional chilling (0 to 4 °C), rapid chilling (RC, -20 °C for 30 min, followed by 0 to 4 °C), and short-duration chilling (0 to 4 °C for 30 min, followed by 25 °C) on meat quality and calpain activity of pork muscle longissimus dorsi (LD). The muscle quality characteristics pH, color, cooking loss, pressing loss and tenderness, and calpain activities were measured 0-, 3-, 12-, and 24-h postmortem. Results show that the RC resulted in a faster temperature decline of the muscle, and prevented the meat pH and Commission Internationale de l'Eclairage L* value from declining during postmortem aging. RC also reduced meat cooking loss and pressing loss compared with the other two chilling methods. However, the chilling methods did not significantly affect meat shear force. During the first 24-h postmortem, there was not a noticeable change in the activity of m-calpain. But μ-calpain activity decreased regardless of chilling method. In the rapidly chilled carcasses, μ-calpain activity remained the same 3- and 12-h postmortem. However, in the short-duration chilled and conventionally chilled carcasses, the activity was visibly reduced. At 24-h postmortem, no clear zones on the gel were observed in all three treatments. Conventional and RC methods are commonly used for pork in commercial practice nowadays. Compared with conventional chilling, the effect of RC on quality parameters of pork varies. In recent years, short-duration chilling (SC) is widely used in many Chinese pig slaughtering facilities. However, few researchers have studied the effect of SD on pork quality. Therefore, the present study investigated the effect of different chilling methods on functionalities or quality of chilled pork meat. © 2011 Institute of Food Technologists®

  9. Hydrogeology and water resources of Block Island, Rhode Island

    USGS Publications Warehouse

    Veeger, A.I.; Johnston, H.E.

    1994-01-01

    Ground water is present on Block Island as a lens of freshwater that overlies saltwater. Yields of 2 to 5 gallons per minute are obtainable throughout the island, and yields of 25 gallons per minute are possible at many wells. Annual water use during 1990 is estimated to have been 53 million gallons, of which approximately 17 million gallons was delivered from a water company at Sands Pond. Demand by water company customers from May through October averages 74,000 gallons per day. The sustainable yield of Sands Pond during the drought years estimated to be only 45,000 gallons per day. Withdrawal of the remaining 29,000 gallons per day from Fresh Pond, proposed as an alternative source, would produce an estimated water-level decline of less than 1 foot. Block Island consists of a Pleistocene moraine deposit that includes meltwater deposits, till, sediment-flow deposits, and glacially transported blocks of Cretaceous strata and pre-Late Wisconsinan glacial deposits. The water table is a subdued reflection of the land-surface topography and flow is generally from the central, topographic highs toward the coast. Layers of low hydraulic- conductivity material impede vertical flow, creating steep vertical gradients. No evidence of widespread ground-water contamination was found during this study. Nitrate concentrations were below Federal Maximum Contaminant Levels at each of the 83 sites sampled. No evidence of dissolved organic constituents was found in groundwater at the 10 sites sampled, and ground-water samples collected near the landfill showed no evidence of contamination from landfill leachate. Dissolved-iron concentrations exceeded the Federal Secondary Maximum Contaminant Level in groundwater at 26 of 76 wells sampled. High iron concentrations were found predominantly in the eastern and northern parts of the island and are attributed to the presence of iron-bearing minerals and organic matter in the aquifer.

  10. Insights on the development, kinetics, and variation of photoinhibition using chlorophyll fluorescence imaging of a chilled, variegated leaf.

    PubMed

    Hogewoning, Sander W; Harbinson, Jeremy

    2007-01-01

    The effect of chilling on photosystem II (PSII) efficiency was studied in the variegated leaves of Calathea makoyana, in order to gain insight into the causes of chilling-induced photoinhibition. Additionally, a relationship was revealed between (chilling) stress and variation in photosynthesis. Chilling treatments (5 degrees C and 10 degrees C) were performed for different durations (1-7 d) under a moderate irradiance (120 micromol m-2 s-1). The individual leaves were divided into a shaded zone and two illuminated, chilled zones. The leaf tip and sometimes the leaf base were not chilled. Measurements of the dark-adapted Fv/Fm were made on the different leaf zones at the end of the chilling treatment, and then for several days thereafter to monitor recovery. Chilling up to 7 d in the dark did not affect PSII efficiency and visual appearance, whereas chilling in the light caused severe photoinhibition, sometimes followed by leaf necrosis. Photoinhibition increased with the duration of the chilling period, whereas, remarkably, chilling temperature had no effect. In the unchilled leaf tip, photoinhibition also occurred, whereas in the unchilled leaf base it did not. Whatever the leaf zone, photoinhibition became permanent if the mean value dropped below 0.4, although chlorosis and necrosis were associated solely with chilled illuminated tissue. Starch accumulated in the unchilled leaf tip, in contrast to the adjacent chilled irradiated zone. This suggests that photoinhibition was due to a secondary effect in the unchilled leaf tip (sink limitation), whereas it was a direct effect of chilling and irradiance in the chilled illuminated zones. The PSII efficiency and its coefficient of variation showed a unique negative linearity across all leaf zones and different tissue types. The slope of this curve was steeper for chilled leaves than it was for healthy, non-stressed leaves, suggesting that the coefficient of variation may be an important tool for assessing stress in

  11. Water use in Kentucky, 1990

    USGS Publications Warehouse

    Sholar, C.J.; Wood, P.A.

    1995-01-01

    Water-use information for 1990 was collected and reported, by county, for eight major categories of use. Seven of the categories were offstream uses, which included public supply, commercial, domestic, industrial, mining, thermoelectric, and agricultural uses. The agricultural category was subdivided into irrigation and livestock water use. Instream water- use data also were collected for hydroelectric-power generation. Estimated average water use in Kentucky exceeded 4,300 million gallons per day during 1990 for all offstream uses. About 94 percent of this amount was from surface-water sources, and about 6 percent was from ground-water sources. Per capita use for all offstream uses was almost 1,200 gallons per day. Estimated average consumptive use was 309 million gallons per day. Estimated average instream water use for hydroelectric-power generation was 83,000 million gallons per day. Ninety-seven percent of the offstream water withdrawals during 1990 were withdrawn for thermoelectric, public supply, and industrial use. Cooling water used in the production of thermoelectric power accounted for about 80 percent of the total offstream water use during 1990. Water withdrawn for public supplies was second largest at almost 10 percent of the total, and industrial water withdrawals were about 7 percent of the total. Thermoelectric, domestic, and livestock uses accounted for almost 90 percent of the consumptive use during 1990. The thermoelectric category accounted for almost two-thirds of the total consumptive use in the State for all uses.

  12. Chilling requirements for hatching of a New Zealand isolate of Nematodirus filicollis.

    PubMed

    Oliver, A-M B; Pomroy, W E; Ganesh, S; Leathwick, D M

    2016-08-15

    The eggs of some species of the parasitic nematode Nematodirus require a period of chilling before they can hatch; N. filicollis is one such species. This study investigated this requirement for chilling in a New Zealand strain of this species. Eggs of N. filicollis were extracted from lamb's faeces and incubated at 20°C to allow development to the third stage larvae within the egg. These eggs were then placed into tissue culture plates and incubated at: 2.7°C (±0.99), 3.6°C (±0.90), 4.7°C (±0.35), 6.4°C (±0.37), 8.0°C (±1.54) or 9.9°C (±0.14) for up to 224 days. At 14day intervals until day 84, then every 28 days, one plate was removed from each temperature and placed at 13.1°C (±0.44) for 14 days. Eggs were then assessed for hatching. From this data, chill units were calculated by subtracting the culture temperature from a constant threshold of 11°C and multiplying by the number of days for which the sample was cultured; then the Gompertz model fitted. Even though hatching overall was low, a greater proportion of eggs hatched with chill accumulation. Maximum hatching of eggs required 800-1000 chill units. Consequently in the field, more than one season of chilling would be required before hatching. As such a generation time could take more than one year to complete. This is different to the hatching dynamics of N. spathiger, the other main species found in New Zealand sheep, which does not display this requirement for chilling and hatches immediately once the third stage larvae are developed. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Offshore submarine storage facility for highly chilled liquified gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, S.F.

    1982-12-28

    Improvements in an offshore platform and submarine storage facility for highly chilled liquified gas, such as liquified natural gas, are disclosed. The improved facility includes an elongated, vertically oriented submerged anchoring frame to which one or more insulated storage tanks are moveably mounted so they can be positioned at a selected depth in the water. The double piston tank is constructed with improved seals to transfer ambient water pressure of the selected depth to the cryogenic liquified gas without intermixture. This transferred pressure at the depth selected aids in maintaining the liquified state of the stored liquified gas. Structural improvementsmore » to the tank facilitating ballasting, locking the double piston cylinders together and further facilitating surface access to the tank for inspection, repairs and removal, and structural improvements to the platform are disclosed.« less

  14. Effect of ageing time on suckling lamb meat quality resulting from different carcass chilling regimes.

    PubMed

    Vieira, C; Fernández, A M

    2014-02-01

    The effect of ageing on suckling lamb carcasses subjected to three chilling treatments was studied: Conventional (2 °C for 24h), ultra-fast (-20 °C for 3.5h then 2 °C until 24h post mortem) and slow chilling (12 °C for 7h then 2 °C until 24h post mortem) treatments. Meat quality measurements were carried out in carcasses at 24h post mortem and also after 5 days of ageing. Carcass chilling losses were not affected by a chilling regime. Aged meat showed higher cooking losses than non-aged meat (p<0.05). Sarcomere length of ultra-fast t was shorter (p<0.05) than conventional and conventional was shorter than slow chilling treatment (p<0.05), at 24h and after 5 days of ageing. Conventional and ultra-fast chilling treatments resulted in higher shear force values at 24h post mortem (p<0.05) compared to slow treatment. All treatments improved sensory scores with ageing (p<0.05), but ultra-fast chilling treatment did not attain higher values as the other two treatments. © 2013.

  15. Ion and water balance in Gryllus crickets during the first twelve hours of cold exposure.

    PubMed

    Des Marteaux, Lauren E; Sinclair, Brent J

    2016-06-01

    Insects lose ion and water balance during chilling, but the mechanisms underlying this phenomenon are based on patterns of ion and water balance observed in the later stages of cold exposure (12 or more hours). Here we quantified the distribution of ions and water in the hemolymph, muscle, and gut in adult Gryllus field crickets during the first 12h of cold exposure to test mechanistic hypotheses about why homeostasis is lost in the cold, and how chill-tolerant insects might maintain homeostasis to lower temperatures. Unlike in later chill coma, hemolymph [Na(+)] and Na(+) content in the first few hours of chilling actually increased. Patterns of Na(+) balance suggest that Na(+) migrates from the tissues to the gut lumen via the hemolymph. Imbalance of [K(+)] progressed gradually over 12h and could not explain chill coma onset (a finding consistent with recent studies), nor did it predict survival or injury following 48h of chilling. Gryllus veletis avoided shifts in muscle and hemolymph ion content better than Gryllus pennsylvanicus (which is less chill-tolerant), however neither species defended water, [Na(+)], or [K(+)] balance during the first 12h of chilling. Gryllus veletis better maintained balance of Na(+) content and may therefore have greater tissue resistance to ion leak during cold exposure, which could partially explain faster chill coma recovery for that species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Domestic wash-water reclamation using an aerospace-developed water recovery subsystem

    NASA Technical Reports Server (NTRS)

    Hall, J. B., Jr.

    1973-01-01

    A prototype aerospace distillation water recovery subsystem was tested to determine its capability to recover potable water from domestic wash water. A total of 0.0994 cu m (26.25 gallons) of domestic wash water was processed over a 7-day period at an average process rate of 0.0146 cu m per day (3.85 gallons per day). The subsystem produced water that met all United States Public Health Standards for drinking water with the exception of two standards which could not be analyzed at the required sensitivity levels. Average energy consumption for this evaluation to maintain both the recovery process and microbial control in the recovered water was approximately 3366 kilowatt-hours per cubic meter (12.74 kilowatt-hours per gallon) of water recovered. This condition represents a worst case energy consumption since no attempt was made to recover heat energy in the subsystem. An ultraviolet radiation cell installed in the effluent line of the subsystem was effective in controlling coliform micro-organisms within acceptable levels for drinking water. The subsystem recovered virtually 100 percent of the available water in the waste-water process. In addition, the subsystem removed 99.6 percent and 98.3 percent of the surfactants and phosphate, respectively, from the wash water.

  17. Insights into the Molecular Events That Regulate Heat-Induced Chilling Tolerance in Citrus Fruits.

    PubMed

    Lafuente, María T; Establés-Ortíz, Beatriz; González-Candelas, Luis

    2017-01-01

    Low non-freezing temperature may cause chilling injury (CI), which is responsible for external quality deterioration in many chilling-sensitive horticultural crops. Exposure of chilling-sensitive citrus cultivars to non-lethal high-temperature conditioning may increase their chilling tolerance. Very little information is available about the molecular events involved in such tolerance. In this work, the molecular events associated with the low temperature tolerance induced by heating Fortune mandarin, which is very sensitive to chilling, for 3 days at 37°C prior to cold storage is presented. A transcriptomic analysis reveals that heat-conditioning has an important impact favoring the repression of genes in cold-stored fruit, and that long-term heat-induced chilling tolerance is an active process that requires activation of transcription factors involved in transcription initiation and of the WRKY family. The analysis also shows that chilling favors degradation processes, which affect lipids and proteins, and that the protective effect of the heat-conditioning treatment is more likely to be related to the repression of the genes involved in lipid degradation than to the modification of fatty acids unsaturation, which affects membrane permeability. Another major factor associated with the beneficial effect of the heat treatment on reducing CI is the regulation of stress-related proteins. Many of the genes that encoded such proteins are involved in secondary metabolism and in oxidative stress-related processes.

  18. Chill-inducing music enhances altruism in humans.

    PubMed

    Fukui, Hajime; Toyoshima, Kumiko

    2014-01-01

    Music is a universal feature of human cultures, and it has both fascinated and troubled many researchers. In this paper we show through the dictator game (DG) that an individual's listening to preferred "chill-inducing" music may promote altruistic behavior that extends beyond the bounds of kin selection or reciprocal altruism. Participants were 22 undergraduate and postgraduate students who were divided into two groups, the in-group and the out-group, and they acted as dictators. The dictators listened to their own preferred "chill-inducing" music, to music they disliked, or to silence, and then played the DG. In this hypothetical experiment, the dictators were given real money (which they did not keep) and were asked to distribute it to the recipients, who were presented as stylized images of men and women displayed on a computer screen. The dictators played the DG both before and after listening to the music. Both male and female dictators gave more money after listening to their preferred music and less after listening to the music they disliked, whereas silence had no effect on the allocated amounts. The group to which the recipient belonged did not influence these trends. The results suggest that listening to preferred "chill-inducing" music promotes altruistic behavior.

  19. Chill-inducing music enhances altruism in humans

    PubMed Central

    Fukui, Hajime; Toyoshima, Kumiko

    2014-01-01

    Music is a universal feature of human cultures, and it has both fascinated and troubled many researchers. In this paper we show through the dictator game (DG) that an individual’s listening to preferred “chill-inducing” music may promote altruistic behavior that extends beyond the bounds of kin selection or reciprocal altruism. Participants were 22 undergraduate and postgraduate students who were divided into two groups, the in-group and the out-group, and they acted as dictators. The dictators listened to their own preferred “chill-inducing” music, to music they disliked, or to silence, and then played the DG. In this hypothetical experiment, the dictators were given real money (which they did not keep) and were asked to distribute it to the recipients, who were presented as stylized images of men and women displayed on a computer screen. The dictators played the DG both before and after listening to the music. Both male and female dictators gave more money after listening to their preferred music and less after listening to the music they disliked, whereas silence had no effect on the allocated amounts. The group to which the recipient belonged did not influence these trends. The results suggest that listening to preferred “chill-inducing” music promotes altruistic behavior. PMID:25389411

  20. Beneficial Reuse of Produced and Flowback Water

    EPA Pesticide Factsheets

    Water reuse and recycling is a significant issue in the development of oil and gas shale plays in the United StatesDrilling operations – 60,000 to 650,000 gallons per wellHydraulic fracturing operations – 3 million to 5 million gallons per wellDefinition of produced water and flowback waterInteractions of water quality constituents as they relate to water reuse and recyclingTesting criteria in the laboratory and field operations

  1. Dual roles for hepatic lectin receptors in the clearance of chilled platelets.

    PubMed

    Rumjantseva, Viktoria; Grewal, Prabhjit K; Wandall, Hans H; Josefsson, Emma C; Sørensen, Anne Louise; Larson, Göran; Marth, Jamey D; Hartwig, John H; Hoffmeister, Karin M

    2009-11-01

    Rapid chilling causes glycoprotein-Ib (GPIb) receptors to cluster on blood platelets. Hepatic macrophage beta(2) integrin binding to beta-N-acetylglucosamine (beta-GlcNAc) residues in the clusters leads to rapid clearance of acutely chilled platelets after transfusion. Although capping the beta-GlcNAc moieties by galactosylation prevents clearance of short-term-cooled platelets, this strategy is ineffective after prolonged refrigeration. We report here that prolonged refrigeration increased the density and concentration of exposed galactose residues on platelets such that hepatocytes, through Ashwell-Morell receptor binding, become increasingly involved in platelet removal. Macrophages rapidly removed a large fraction of transfused platelets independent of their storage conditions. With prolonged platelet chilling, hepatocyte-dependent clearance further diminishes platelet recovery and survival after transfusion. Inhibition of chilled platelet clearance by both beta(2) integrin and Ashwell-Morell receptors may afford a potentially simple method for storing platelets in the cold.

  2. Summary of geology and ground-water resources of Passaic County, New Jersey

    USGS Publications Warehouse

    Carswell, L.D.; Rooney, J.G.

    1976-01-01

    Ground water in Passaic County occurs in intergranular openings of unconsolidated stratified deposits of Quaternary age and in joints and fractures in consolidated rocks of Precambrian, Paleozoic, and Triassic age.The Brunswick Formation of Triassic age is the most important aquifer in the southeastern one-third of Passaic County. Reported yields of public supply and industrial wells range from 50 to 510 gallons per minute (3 to 32 litres per second) and the median yield is 130 gallons per minute (8 litres per second). Most of these wells are 200 to 400 feet (61 to 122 metres) deep. The median yield of all public supply and industrial wells over 300 feet (91 metres) deep and 8 inches (203 millimetres) or larger in diameter is 230 gallons per minute (15 litres per second). Crystalline rocks of Precambrian age are the major source of ground water for domestic use in the northwestern two-thirds of Passaic County. Reported well yields range from 1 to 200 gallons per minute (.06 to 13 litres per second). The median reported yield of domestic wells is 5 gallons per minute (.31 litres per second) and that of public supply wells is 30 gallons per minute (2 litres per second).Other consolidated rocks--rocks of Paleozoic age and the Watchung Basalt of Traissic age--are utilized primarily for domestic water supplies in Passaic County. Reported yields of wells tapping the Paleozoic rocks range from less than 1 to 35 gallons per minute (.06 to 2 litres per second) and the median yield is 10 gallons per minute (.63 litres per second). Reported yields of domestic wells tapping the Watchung Basalt range from less than 1 to 40 gallons per minute (.06 to 3 litres per second) and the median yield is 12 gallons per minute (.76 litres per second). However, reported yields of nine industrial and commercial wells range from 50 to 180 gallons per minute (3 to 11 litres per second).Unconsolidated stratified deposits of Quaternary age are locally an important source of ground water for

  3. The capacity to maintain ion and water homeostasis underlies interspecific variation in Drosophila cold tolerance

    PubMed Central

    MacMillan, Heath A.; Andersen, Jonas L.; Davies, Shireen A.; Overgaard, Johannes

    2015-01-01

    Many insects, including Drosophila, succumb to the physiological effects of chilling at temperatures well above those causing freezing. Low temperature causes a loss of extracellular ion and water homeostasis in such insects, and chill injuries accumulate. Using an integrative and comparative approach, we examined the role of ion and water balance in insect chilling susceptibility/ tolerance. The Malpighian tubules (MT), of chill susceptible Drosophila species lost [Na+] and [K+] selectivity at low temperatures, which contributed to a loss of Na+ and water balance and a deleterious increase in extracellular [K+]. By contrast, the tubules of chill tolerant Drosophila species maintained their MT ion selectivity, maintained stable extracellular ion concentrations, and thereby avoided injury. The most tolerant species were able to modulate ion balance while in a cold-induced coma and this ongoing physiological acclimation process allowed some individuals of the tolerant species to recover from chill coma during low temperature exposure. Accordingly, differences in the ability to maintain homeostatic control of water and ion balance at low temperature may explain large parts of the wide intra- and interspecific variation in insect chilling tolerance. PMID:26678786

  4. Mathematical modelling of growth of Listeria  monocytogenes in raw chilled pork.

    PubMed

    Ye, K; Wang, K; Liu, M; Liu, J; Zhu, L; Zhou, G

    2017-04-01

    The aim of this study was to analyse the growth kinetics of Listeria monocytogenes in naturally contaminated chilled pork. A cocktail of 26 meat-borne L. monocytogenes was inoculated to raw or sterile chilled pork to observe its growth at 4, 10, 16, 22 and 28°C respectively. The growth data were fitted by the Baranyi model and Ratkowsky square-root model. Results showed that the Baranyi model and Ratkowsky square-root model could describe the growth characteristics of L. monocytogenes at different temperatures reasonably well in raw chilled pork (1·0 ≤ Bf ≤ Af ≤ 1·1). Compared with the growth of L. monocytogenes in sterile chilled pork, the background microflora had no impact on the growth parameters of L. monocytogenes, except for the lag phase at low temperature storage. The microbial predictive models developed in this study can be used to predict the growth of L. monocytogenes during natural spoilage, and construct quantitative risk assessments in chilled pork. This study simulated the actual growth of Listeria monocytogenes in chilled pork to the maximum extent, and described its growth characteristics of L. monocytogenes during natural spoilage. This study showed that the background microflora had no impact on the growth parameters of L. monocytogenes, except for the lag phase at low temperature storage. The models developed in this study can be used to predict the growth of L. monocytogenes during refrigerated storage. © 2017 The Society for Applied Microbiology.

  5. Ground water in the vicinity of Capulin, New Mexico

    USGS Publications Warehouse

    Hart, D.L.; Smith, Christian

    1979-01-01

    The alluvial deposits within a closed basin near Capulin, New Mexico, are estimated to have 189,000 acre-feet of water in storage. These deposits have an estimated average transmissivity of 400 feet squared per day and represent the major source of ground water. Well yields range from a few gallons per minute to as much as 900 gallons per minute, with average potential yields ranging from about 100 to 200 gallons per minute in areas of greatest saturated thickness. Additional large quantities of water are available for short-term supplies from the saturated basaltic cinders west and northwest of the town of Capulin. Wells completed in the cinders reportedly have produced as much as 2,000 gallons per minute. The chemical quality of water in the alluvium and cinder aquifers appears to be chemically satisfactory for municipal use. The ground water in storage is sufficient to supplement Raton, New Mexico 's water needs to the year 2030 at the water demand rate projected by the Bureau of Reclamation. (Woodard-USGS)

  6. Changes in visual quality, physiological and biochemical parameters assessed during the postharvest storage at chilling or non-chilling temperatures of three sweet basil (Ocimum basilicum L.) cultivars.

    PubMed

    Fratianni, Florinda; Cefola, Maria; Pace, Bernardo; Cozzolino, Rosaria; De Giulio, Beatrice; Cozzolino, Autilia; d'Acierno, Antonio; Coppola, Raffaele; Logrieco, Antonio Francesco; Nazzaro, Filomena

    2017-08-15

    Leaves of three different sweet basil (Ocimum basilicum L.) cultivars (Italico a foglia larga, Cammeo, and Italiano classico) packed in macro-perforated polyethylene bags were stored at chilling (4°C) or non-chilling temperature (12°C) for 9days. During storage, visual quality, physiological (respiration rate, ethylene production, ammonium content) and chemical (antioxidant activity, total polyphenols and polyphenol profile) parameters were measured. Detached leaves stored at chilling temperature showed visual symptoms related to chilling injury, while ethylene production and ammonium content resulted associated to cultivar sensibility to damage at low temperature. Storage at 4°C caused a depletion in polyphenols content and antioxidant capability, which was preserved at 12°C. Regarding the polyphenols profile, stressful storage conditions did not enhance the phenolic metabolism. However, leaves stored at 12°C did not loss a significant amount of metabolites respect to fresh leaves, suggesting the possibility to extend the storability after the expiration date, for a possible recovery of bioactive compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Improved tolerance to transplanting injury and chilling stress in rice seedlings treated with orysastrobin.

    PubMed

    Takahashi, Naoto; Sunohara, Yukari; Fujiwara, Masami; Matsumoto, Hiroshi

    2017-04-01

    In addition to their fungicidal activity, strobilurin-type fungicides are reported to show enhancing effects on crop growth and yield. Previous studies suggested that the fungicide has a mitigating effect on abiotic stresses. However, there are few reports about growth enhancement through abiotic stress alleviation by strobilurin-type fungicides, but the mechanism of action of the growth enhancement is still not clear. The present study revealed that orysastrobin enhanced rice seedling growth after root cutting injury and chilling stress. We also found that orysastrobin decreased the transpiration rate and increased ascorbate peroxidase and glutathione reductase activities. This stress alleviation was eliminated by the application of naproxen, a putative abscisic acid biosynthesis inhibitor. These results suggested that orysastrobin improved tolerance against transplanting injury and chilling stress in rice seedlings by inducing water-retaining activity through the suppression of transpiration, and also by inducing reactive oxygen scavenging activity thus inhibiting reactive oxygen species accumulation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. 75 FR 32370 - Final Results of Antidumping Duty Changed Circumstances Review: Fresh and Chilled Atlantic Salmon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... Duty Changed Circumstances Review: Fresh and Chilled Atlantic Salmon from Norway AGENCY: Import... Duty Changed Circumstances Review: Fresh and Chilled Atlantic Salmon from Norway SUMMARY: On August 5... antidumping order on fresh and chilled Atlantic Salmon from Norway and preliminarily determined that Nordic...

  9. Fractographic and three body abrasion behaviour of Al-Garnet-C hybrid chill cast composites

    NASA Astrophysics Data System (ADS)

    Bandekar, Nityanand; Prasad, M. G. Anantha

    2017-08-01

    Fractographic and tribological behaviour of hybrid composite of aluminum alloy LM13 matrix with garnet and carbon was investigated. Conventional stir casting technique was used to fabricate the composites with chill cast technique. Various chill materials like Copper, Steel, Iron and Silicon carbide were used to improve the directional solidification. The garnet being added ranges from 3 to 12 wt-% in steps of 3wt-% and constant 3wt-% of carbon. The experiment evaluates the mechanical, fractographic and three body abrasion behaviour of the hybrid composites for various parameters of load, garnet and chills. Microstructural characterization of the composite samples revealed a uniform distribution of reinforcements with minimum clustering. SEM was used for examine worn surfaces. The addition of garnet and carbon reinforcement decreases the wear rate of hybrid composites. Fracture behaviour showed the changes from ductile mode to brittle mode of failure. Further, directional chilling with copper chill improves the wear resistance of the composites.

  10. Suppression Subtractive Hybridization Analysis of Genes Regulated by Application of Exogenous Abscisic Acid in Pepper Plant (Capsicum annuum L.) Leaves under Chilling Stress

    PubMed Central

    Gong, Zhen-Hui; Yin, Yan-Xu; Li, Da-Wei

    2013-01-01

    Low temperature is one of the major factors limiting pepper (Capsicum annuum L.) production during winter and early spring in non-tropical regions. Application of exogenous abscisic acid (ABA) effectively alleviates the symptoms of chilling injury, such as wilting and formation of necrotic lesions on pepper leaves; however, the underlying molecular mechanism is not understood. The aim of this study was to identify genes that are differentially up- or downregulated in ABA-pretreated hot pepper seedlings incubated at 6°C for 48 h, using a suppression subtractive hybridization (SSH) method. A total of 235 high-quality ESTs were isolated, clustered and assembled into a collection of 73 unigenes including 18 contigs and 55 singletons. A total of 37 unigenes (50.68%) showed similarities to genes with known functions in the non-redundant database; the other 36 unigenes (49.32%) showed low similarities or unknown functions. Gene ontology analysis revealed that the 37 unigenes could be classified into nine functional categories. The expression profiles of 18 selected genes were analyzed using quantitative RT-PCR; the expression levels of 10 of these genes were at least two-fold higher in the ABA-pretreated seedlings under chilling stress than water-pretreated (control) plants under chilling stress. In contrast, the other eight genes were downregulated in ABA-pretreated seedlings under chilling stress, with expression levels that were one-third or less of the levels observed in control seedlings under chilling stress. These results suggest that ABA can positively and negatively regulate genes in pepper plants under chilling stress. PMID:23825555

  11. Suppression Subtractive Hybridization Analysis of Genes Regulated by Application of Exogenous Abscisic Acid in Pepper Plant (Capsicum annuum L.) Leaves under Chilling Stress.

    PubMed

    Guo, Wei-Li; Chen, Ru-Gang; Gong, Zhen-Hui; Yin, Yan-Xu; Li, Da-Wei

    2013-01-01

    Low temperature is one of the major factors limiting pepper (Capsicum annuum L.) production during winter and early spring in non-tropical regions. Application of exogenous abscisic acid (ABA) effectively alleviates the symptoms of chilling injury, such as wilting and formation of necrotic lesions on pepper leaves; however, the underlying molecular mechanism is not understood. The aim of this study was to identify genes that are differentially up- or downregulated in ABA-pretreated hot pepper seedlings incubated at 6°C for 48 h, using a suppression subtractive hybridization (SSH) method. A total of 235 high-quality ESTs were isolated, clustered and assembled into a collection of 73 unigenes including 18 contigs and 55 singletons. A total of 37 unigenes (50.68%) showed similarities to genes with known functions in the non-redundant database; the other 36 unigenes (49.32%) showed low similarities or unknown functions. Gene ontology analysis revealed that the 37 unigenes could be classified into nine functional categories. The expression profiles of 18 selected genes were analyzed using quantitative RT-PCR; the expression levels of 10 of these genes were at least two-fold higher in the ABA-pretreated seedlings under chilling stress than water-pretreated (control) plants under chilling stress. In contrast, the other eight genes were downregulated in ABA-pretreated seedlings under chilling stress, with expression levels that were one-third or less of the levels observed in control seedlings under chilling stress. These results suggest that ABA can positively and negatively regulate genes in pepper plants under chilling stress.

  12. Cold-batter mincing of hot-boned and crust-freezing air-chilled turkey breast improved meat turnover time and product quality.

    PubMed

    Medellin-Lopez, M; Sansawat, T; Strasburg, G; Marks, B P; Kang, I

    2014-03-01

    The purpose of this research was to evaluate the combined effects of turkey hot-boning and cold-batter mincing technology on acceleration of meat turnover and meat quality improvement. For each of 3 replications, 15 turkeys were slaughtered and eviscerated. Three of the eviscerated carcasses were randomly assigned to water-immersion chilling for chill-boning (CB) and the remaining were immediately hot-boned (HB), half of which were used without chilling whereas the remaining were subjected to crust-freezing air chilling (CFAC) in an air-freezing room (1.0 m/s, -12°C) with/without 1/4; sectioning (HB-1/4;CFAC, HB-CFAC). As a result, CB and HB breasts were minced using 1 of 5 treatments: (1) CB and traditional mincing (CB-T), (2) HB and mincing with no chilling (HB-NC), (3) HB and mincing with CO2 (HB-CO2), (4) HB and mincing after CFAC (HB-CFAC), and (5) HB and mincing after quarter sectioning and CFAC (HB-1/4;CFAC). Traditional water-immersion chilling took an average of 5.5 h to reduce the breast temperature to 4°C, whereas HB-CFAC and HB-1/4;CFAC took 1.5 and 1 h, respectively. The breast of HB-CFAC and HB-1/4;CFAC showed significantly higher pH (6.0-6.1), higher fragmentation index (196-198), and lower R-value (1.0-1.1; P < 0.05) than those of the CB controls. No significant differences (P > 0.05) in sarcomere length were seen between CB-T and HB-CFAC filets regardless of quarter sectioning. When muscle was minced, the batter pH (5.9) of CB-T was significantly lower (P < 0.05) than those (6.1-6.3) of HB-NC, HB-CO2, and HB-1/4;CFAC, with the intermediate pH (6.0) seen for the HB-CFAC. When meat batters were cooked, higher cooking yield (90 - 91%; P < 0.05) was found in HB-CFAC, HB-1/4;CFAC, and HB-CO2, followed by HB-NC (90%) and finally CB-T (86%). Stress values (47-51 kPa) of HB-CFAC gels were significantly higher (P < 0.05) than those of CB-T (30 kPa) and HB-NC (36 kPa). A similar trend was found in strain values.

  13. Effects of chilled-then-frozen storage (up to 52weeks) on lamb M. longissimus lumborum quality and safety parameters.

    PubMed

    Coombs, Cassius E O; Holman, Benjamin W B; Collins, Damian; Friend, Michael A; Hopkins, David L

    2017-12-01

    This study evaluated the effect of chilled followed by frozen storage on lamb quality and safety parameters. Experimental (n=360) M. longissimus lumborum (LL) were randomly sampled from the boning room of a commercial Australian abattoir, at 24 h post-mortem, and assigned to five chilled storage periods (0, 2, 4, 6 and 8 weeks) and six subsequent frozen storage periods (0, 4, 8, 12, 24 and 52 weeks). Upon completion of each storage treatment combination, corresponding LL were sub-sectioned and analysed for colour stability (0, 1, 2 and 3 days), shear force, fluid losses (purge, thaw and cooking losses), intramuscular fat content, sarcomere length, water activity and microbial load (lactic acid bacteria, Enterobacteriaceae sp., Brochothrix thermosphacta, Clostridium perfringens and Escherichia coli). LL stored chilled for 2-4 weeks prior to freezing presented superior results for shear force, display colour and low levels of spoilage microbes, correlating with good eating quality and safety following more than one year of frozen storage. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  14. Changes in microbial communities and quality attributes of white muscle and dark muscle from common carp (Cyprinus carpio) during chilled and freeze-chilled storage.

    PubMed

    Li, Qian; Zhang, Longteng; Luo, Yongkang

    2018-08-01

    This study investigated sensory scores, quality attributes and microbial communities in white muscle and dark muscle of common carp (Cyprinus carpio) during chilled (4 °C) and freeze-chilled (-20 °C for 4 weeks prior to 4 °C) storage. Compared to the samples at the end of storage, fresh samples and frozen-thawed samples on day 0 showed greater bacterial diversity and more differences in microbiota. Initially, Aeromonas was the prevalent genus in fresh white muscle and dark muscle. As time progressed, Aeromonas followed by Pseudomonas predominated in white muscle, while Aeromonas, Pseudomonas, and Lactococcus dominated in dark muscle. Paenibacillus was identified as the largest population in frozen-thawed samples of both muscle types, but Pseudomonas increased dramatically to become dominant in the two spoiled samples. Volatile organic compounds (VOCs) of carp muscle consisted mainly of aldehydes and alcohols, and the percentage of ketones in both muscle types increased considerably after storage. Moreover, dark muscle showed more kinds of VOCs, and a slower rate of quality deterioration than white muscle. Based on sensory assessment, the shelf-life of white muscle and dark muscle of common carp for chilled storage was 8 days and 10 days, respectively, as well as 8 days together for freeze-chilled storage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Efficacy of chlorine dioxide against Listeria monocytogenes in brine chilling solutions.

    PubMed

    Valderrama, W B; Mills, E W; Cutter, C N

    2009-11-01

    Chilled brine solutions are used by the food industry to rapidly cool ready-to-eat meat products after cooking and before packaging. Chlorine dioxide (ClO(2)) was investigated as an antimicrobial additive to eliminate Listeria monocytogenes. Several experiments were performed using brine solutions made of sodium chloride (NaCl) and calcium chloride (CaCl(2)) inoculated with L. monocytogenes and/or treated with 3 ppm of ClO(2). First, 10 and 20% CaCl(2) and NaCl solutions (pH 7.0) were inoculated with a five-strain cocktail of L. monocytogenes to obtain approximately 7 log CFU/ml and incubated 8 h at 0 degrees C. The results demonstrated that L. monocytogenes survived in 10% CaCl(2), 10 and 20% NaCl, and pure water. L. monocytogenes levels were reduced approximately 1.2 log CFU/ml in 20% CaCl(2). Second, inoculated ( approximately 7 log CFU/ml) brine solutions (10 and 20% NaCl and 10% CaCl(2)) treated with 3 ppm of ClO(2) resulted in a approximately 4-log reduction of the pathogen within 90 s. The same was not observed in a solution of 20% CaCl(2); further investigation demonstrated that high levels of divalent cations interfere with the disinfectant. Spent brine solutions from hot dog and ham chilling were treated with ClO(2) at concentrations of 3 or 30 ppm. At these concentrations, ClO(2) did not reduce L. monocytogenes. Removal of divalent cations and organic material in brine solutions prior to disinfection with ClO(2) should be investigated to improve the efficacy of the compound against L. monocytogenes. The information from this study may be useful to processing establishments and researchers who are investigating antimicrobials in chilling brine solutions.

  16. Physiological girdling of pine trees via phloem chilling: proof of concept

    Treesearch

    Kurt Johnsen; Chris Maier; Felipe Sanchez; Peter Anderson; John Butnor; Richard Waring; Sune Linder

    2007-01-01

    Quantifying below-ground carbon (C) allocation is particularly difficult as methods usually disturb the root– mycorrhizal–soil continuum. We reduced C allocation below ground of loblolly pine trees by: (1) physically girdling trees and (2) physiologically girdling pine trees by chilling the phloem. Chilling reduced cambium temperatures by approximately 18 °C. Both...

  17. Chilling and Drought Stresses in Crop Plants: Implications, Cross Talk, and Potential Management Opportunities

    PubMed Central

    Hussain, Hafiz A.; Hussain, Saddam; Khaliq, Abdul; Ashraf, Umair; Anjum, Shakeel A.; Men, Shengnan; Wang, Longchang

    2018-01-01

    Plants face a combination of different abiotic stresses under field conditions which are lethal to plant growth and production. Simultaneous occurrence of chilling and drought stresses in plants due to the drastic and rapid global climate changes, can alter the morphological, physiological and molecular responses. Both these stresses adversely affect the plant growth and yields due to physical damages, physiological and biochemical disruptions, and molecular changes. In general, the co-occurrence of chilling and drought combination is even worse for crop production rather than an individual stress condition. Plants attain various common and different physiological and molecular protective approaches for tolerance under chilling and drought stresses. Nevertheless, plant responses to a combination of chilling and drought stresses are unique from those to individual stress. In the present review, we summarized the recent evidence on plant responses to chilling and drought stresses on shared as well as unique basis and tried to find a common thread potentially underlying these responses. We addressed the possible cross talk between plant responses to these stresses and discussed the potential management strategies for regulating the mechanisms of plant tolerance to drought and/or chilling stresses. To date, various novel approaches have been tested in minimizing the negative effects of combine stresses. Despite of the main improvements there is still a big room for improvement in combination of drought and chilling tolerance. Thus, future researches particularly using biotechnological and molecular approaches should be carried out to develop genetically engineered plants with enhanced tolerance against these stress factors. PMID:29692787

  18. The microbiology of beef carcasses and primals during chilling and commercial storage.

    PubMed

    Reid, Rachael; Fanning, Séamus; Whyte, Paul; Kerry, Joe; Lindqvist, Roland; Yu, Zhongyi; Bolton, Declan

    2017-02-01

    The primary objective of this study was to characterise (microbiology and physical parameters) beef carcasses and primals during chilled storage. A minor aim was to compare observed growth of key spoilage bacteria on carcasses with that predicted by ComBase and the Food Safety Spoilage Predictor (FSSP). Total viable count (TVC), total Enterobacteriacae count (TEC), Pseudomonas spp., lactic acid bacteria (LAB), Brochothrix thermosphacta and Clostridium spp. were monitored on beef carcasses (n = 30) and primals (n = 105) during chilled storage using EC Decision 2001/471/EC and ISO sampling/laboratory procedures. The surface and/or core temperature, pH and water activity (a w ) were also recorded. Clostridium (1.89 log 10  cfu/cm 2 ) and Pseudomonas spp. (2.12 log 10  cfu/cm 2 ) were initially the most prevalent bacteria on carcasses and primals, respectively. The shortest mean generation time (G) was observed on carcasses with Br. thermosphacta (20.3 h) and on primals with LAB (G = 68.8 h) and Clostridium spp. (G = 67 h). Over the course of the experiment the surface temperature decreased from 37 °C to 0 °C, pH from 7.07 to 5.65 and a w from 0.97 to 0.93 The observed Pseudomonas spp. and Br. thermosphacta growth was more or less within the range of predictions of Combase. In contrast, the FSSP completely overestimated the growth of LAB. This study contributes to the very limited microbiological data on beef carcasses and primals during chilling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Diversity of low chill peaches from Asia, Brasil, Europe and the USA

    USDA-ARS?s Scientific Manuscript database

    One hundred fifty-five peach (Prunus persica) cultivars, from Asia, Brazil, Europe, and the USA, were examined using eleven SSRs to study the genetic relationships among low chill as compared to high chill peach germplasm. Data was analyzed by NTSYSpc to form a similarity matrix using Nei and Li’s ...

  20. Effects of miles per gallon feedback on fuel efficiency in gas-powered cars.

    DOT National Transportation Integrated Search

    2009-10-01

    This study tested the impact of continuous miles per gallon (MPG) feedback on driving : behavior and fuel efficiency in gas-powered cars. We compared an experimental condition, : where drivers received real-time MPG feedback and a tip sheet, to a con...

  1. Improvement of turkey breast meat quality and cooked gel functionality using hot-boning, quarter sectioning, crust-freeze-air-chilling and cold-batter-mincing technologies.

    PubMed

    Lee, H C; Erasmus, M A; Swanson, J C; Hong, H G; Kang, I

    2016-01-01

    The effect of rapid carcass chilling on breast meat quality was evaluated using commercial (COMM) and random-bred (RB) turkeys. Immediately after slaughter, 48 turkeys from COMM or RB line were randomly subjected to one of four chilling methods: 1) water-immersion chilling (WIC) of the carcasses at 0°C ice slurry, 2) WIC after temperature abuse (TA) of the carcasses at 40°C for 30 min (TA-WIC), 3) hot-boning, quarter sectioning, and crust-freeze-air-chilling (HB-(1)/4CFAC) of breast fillets at -12°C, and 4) HB-(1)/4CFAC of fillets after TA of carcasses (TA-HB-(1)/4CFAC). The TA increased carcass and fillet temperatures by ∼1.3 and ∼4.1°C, respectively, regardless of turkey line, whereas HB-(1)/4CFAC of fillets required 28 and 33% of carcass chilling time for COMM and RB, respectively. During chilling, COMM breast pH rapidly reduced from 6.04 to 5.82, resulting in a significantly lower pH than RB after chilling (P < 0.05), whereas COMM R-value sharply increased from 1.17 to 1.43, causing no difference from RB (P > 0.05). Significantly higher L* value and cooking yield (P < 0.05) were seen in the samples of TA and WIC than those of no TA and HB-(1)/4CFAC, respectively, with no difference observed between COMM and RB fillets (P > 0.05). Higher values of hardness, gumminess, and chewiness were found for RB, no TA, and HB-(1)/4CFAC gels than COMM, TA, and WIC, respectively. These results generally indicated that protein quality and textural properties of turkey fillets were improved, regardless of strains or temperature abuse, using HB-(1)/4CFAC technology. © 2015 Poultry Science Association Inc.

  2. Expression of three sHSP genes involved in heat pretreatment-induced chilling tolerance in banana fruit.

    PubMed

    He, Li-hong; Chen, Jian-ye; Kuang, Jian-fei; Lu, Wang-jin

    2012-07-01

    Banana fruit is highly susceptible to chilling injury. In previous research it was shown that heat pretreatment of banana fruit at 38 °C for 3 days before storage at a chilling temperature of 8 °C for 12 days prevented increases in visible chilling injury index, electrolyte leakage and malondialdehyde content and also decreases in lightness and chroma, indicating that heat pretreatment could effectively alleviate chilling injury of banana fruit. However, little is known about the role of small heat shock proteins (sHSPs) in postharvest chilling tolerance of banana fruit. In the present study, three cytosolic sHSP expression profiles in peel and pulp tissues of banana fruit during heat pretreatment and subsequent chilled storage (8 °C) were investigated in relation to heat pretreatment-induced chilling tolerance. Three full-length cDNAs of cytosolic sHSP genes, including two class I sHSP (CI sHSP) and one class II sHSP (CII sHSP) cDNAs, named Ma-CI sHSP1, Ma-CI sHSP2 and Ma-CII sHSP3 respectively, were isolated and characterised from harvested banana fruit. Accumulation of Ma-CI sHSP1 mRNA transcripts in peel and pulp tissues and Ma-CII sHSP3 mRNA transcripts in peel tissue increased during heat pretreatment. Expression of all three Ma-sHSP genes in peel and pulp tissues was induced during subsequent chilled storage. Furthermore, Ma-CI sHSP1 and Ma-CII sHSP3 mRNA transcripts in pulp tissue and Ma-CI sHSP2 mRNA transcripts in peel and pulp tissues were obviously enhanced by heat pretreatment at days 6 and 9 of subsequent chilled storage. These results suggested that heat pretreatment enhanced the expression of Ma-sHSPs, which might be involved in heat pretreatment-induced chilling tolerance of banana fruit. Copyright © 2012 Society of Chemical Industry.

  3. Summary of surface-water quality, ground-water quality, and water withdrawals for the Spirit Lake Reservation, North Dakota

    USGS Publications Warehouse

    Vining, Kevin C.; Cates, Steven W.

    2006-01-01

    Available surface-water quality, ground-water quality, and water-withdrawal data for the Spirit Lake Reservation were summarized. The data were collected intermittently from 1948 through 2004 and were compiled from U.S. Geological Survey databases, North Dakota State Water Commission databases, and Spirit Lake Nation tribal agencies. Although the quality of surface water on the reservation generally is satisfactory, no surface-water sources are used for consumable water supplies. Ground water on the reservation is of sufficient quality for most uses. The Tokio and Warwick aquifers have better overall water quality than the Spiritwood aquifer. Water from the Spiritwood aquifer is used mostly for irrigation. The Warwick aquifer provides most of the consumable water for the reservation and for the city of Devils Lake. Annual water withdrawals from the Warwick aquifer by the Spirit Lake Nation ranged from 71 million gallons to 122 million gallons during 2000-04.

  4. Increasing the availability and consumption of drinking water in middle schools: a pilot study.

    PubMed

    Patel, Anisha I; Bogart, Laura M; Elliott, Marc N; Lamb, Sheila; Uyeda, Kimberly E; Hawes-Dawson, Jennifer; Klein, David J; Schuster, Mark A

    2011-05-01

    Although several studies suggest that drinking water may help prevent obesity, no US studies have examined the effect of school drinking water provision and promotion on student beverage intake. We assessed the acceptability, feasibility, and outcomes of a school-based intervention to improve drinking water consumption among adolescents. The 5-week program, conducted in a Los Angeles middle school in 2008, consisted of providing cold, filtered drinking water in cafeterias; distributing reusable water bottles to students and staff; conducting school promotional activities; and providing education. Self-reported consumption of water, nondiet soda, sports drinks, and 100% fruit juice was assessed by conducting surveys among students (n = 876), preintervention and at 1 week and 2 months postintervention, from the intervention school and the comparison school. Daily water (in gallons) distributed in the cafeteria during the intervention was recorded. After adjusting for sociodemographic characteristics and baseline intake of water at school, the odds of drinking water at school were higher for students at the intervention school than students at the comparison school. Students from the intervention school had higher adjusted odds of drinking water from fountains and from reusable water bottles at school than students from the comparison school. Intervention effects for other beverages were not significant. Provision of filtered, chilled drinking water in school cafeterias coupled with promotion and education is associated with increased consumption of drinking water at school. A randomized controlled trial is necessary to assess the intervention's influence on students' consumption of water and sugar-sweetened beverages, as well as obesity-related outcomes.

  5. Water Use in Oklahoma 1950-2005

    USGS Publications Warehouse

    Tortorelli, Robert L.

    2009-01-01

    Comprehensive planning for water resources development and use in Oklahoma requires a historical perspective on water resources. The U.S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, summarized the 1950-2005 water-use information for Oklahoma. This report presents 1950-2005 estimates of freshwater withdrawal for water use in Oklahoma by source and category in 5-year intervals. Withdrawal source was either surface water or groundwater. Withdrawal categories include: public supply, irrigation, livestock and aquaculture, thermoelectric-power generation (cooling water), domestic and commercial, and industrial and mining. Withdrawal data were aggregated and tabulated by county, major river basin, and principal aquifer. The purpose of this report is to summarize water-use data in Oklahoma through: (1) presentation of detailed information on freshwater withdrawals by source, county, major river basin, and principal aquifer for 2005; (2) comparison of water use by source, category, major river basin, and principal aquifer at 5-year intervals from 1990-2005; and (3) comparison of water use on a statewide basis by source and category at 5-year intervals from 1950-2005. Total withdrawals from surface-water and groundwater sources during 2005 were 1,559 million gallons per day-989 million gallons a day or 63 percent from surface-water sources and 570 million gallons per day or 37 percent from groundwater sources. The three largest water use categories were: public supply, 646 million gallons per day or 41 percent of total withdrawals; irrigation, 495 million gallons per day or 32 percent of total withdrawals; and livestock and aquaculture, 181 million gallons per day or 12 percent of total withdrawals. All other categories were 237 million gallons per day or 15 percent of total withdrawals. The influence of public supply on the total withdrawals can be seen in the eastern two-thirds of Oklahoma; whereas, the influence of irrigation on total

  6. Water requirements of the styrene, butadiene and synthetic-rubber industries

    USGS Publications Warehouse

    Durfor, Charles N.

    1963-01-01

    About 710 million gallons of makeup water is withdrawn daily by the styrene, butadiene, styrene-butadiene rubber (SBR), and specialty-rubber industries; 88 percent of this water is used only for once-through cooling. About 429 million gallons of water daily (mgd) is withdrawn by the butadiene industry; 158 ragd is withdrawn by the styrene industry; 94 mgd is used to make special-purpose synthetic rubber; and 29 mgd is used in the direct manufacture of SBR. The amount of makeup water withdrawn to produce SBR ranges from 11,400 to 418,000 gallons per long ton of finished rubber. The amount of makeup water withdrawn depends upon the type of rubber, the processes used to make SBR and its intermediates (styrene and butadiene), and the availability of water at the styrene, butadiene, and SBR plants. The amount of makeup water used to make styrene ranged from 2.19 to 123 gallons per pound; to make butadiene, ranged from 5.38 to 22.0 gallons per pound; and in the direct manufacture of SBR, ranged from 0.883 to 10.2 gallons per pound of finished rubber. The amount of makeup water withdrawn for use in the manufacture of special-purpose synthetic rubber ranged from 8.45 to 104 gallons per pound. About 64 percent of the makeup water was obtained from salty water sources. These waters, which were used only in once-through cooling, contained as much as 35,000 ppm of dissolved solids. About 26 percent of the makeup water was obtained from fresh-water streams and lakes, and most of the other makeup waters were obtained from ground water. Less than 1 percent of the makeup water was obtained from reprocessed municipal sewage. Most makeup water from fresh-water streams, lakes, and wells contained less than 1,000 ppm of dissolved solids, and most makeup water used in the manufacture of SBR contained less than 500 ppm of dissolved solids. The maximum hardness of the untreated fresh makeup waters; used in the manufacture of SBR was less than 500 ppm. About 97 percent of the makeup water

  7. Where Did the Water Go? Boyle's Law and Pressurized Diaphragm Water Tanks

    NASA Astrophysics Data System (ADS)

    Brimhall, James; Naga, Sundar

    2007-03-01

    Many homes use pressurized diaphragm tanks for storage of water pumped from an underground well. These tanks are very carefully constructed to have separate internal chambers for the storage of water and for the air that provides the pressure. One might expect that the amount of water available for use from, for example, a 50-gallon tank would be close to 50 gallons. However, only a surprisingly small percentage of the total tank volume is available to provide water that can be drawn from the tank before the pump must cycle back on. Boyle's law ( PV is constant) provides mathematical insight into the workings of this type of tank, including predictions of the quantities of available water resulting from different initial conditions of the water tank system.

  8. Nondestructive detection of chilling injury in cucumber fruit using hyperspectral imaging with feature selection and supervised classification

    USDA-ARS?s Scientific Manuscript database

    Chilling injury, as a physiological disorder in cucumbers, occurs after the fruit has been subjected to low temperatures. It is thus desirable to detect chilling injury at early stages and/or remove chilling injured cucumbers during sorting and grading. This research was aimed to apply hyperspectral...

  9. Historical trends in chill hour accumulation and peach bud response to hydrogen cyanamide

    USDA-ARS?s Scientific Manuscript database

    Long held records for (low) chill hour accumulation have recently been broken several times in the southeastern US peach (Prunus persica) production areas. Long term historical average chill hour accumulation through February 15th in middle Georgia has dropped significantly over the last 15 years. T...

  10. Water resources data of the Seward area, Alaska

    USGS Publications Warehouse

    Dearborn, Larry L.; Anderson, Gary S.; Zenone, Chester

    1979-01-01

    Seward, Alaska, obtains a water supply of about 2 million gallons per day primarily from Marathon Springs and the Fort Raymond well field. The springs have supplied up to 800 gallons per minute, and the city 's deep wells currently have a combined capacity of about 3,000 gallons per minute. Freshwater is abundant in the area; future public supplies could be derived from both shallow and deep ground water and from stream impoundment with diversion. High deep-aquifer transmissivity at the Fort Raymond well field indicates that additional wells could be developed there. Water quality is generally not a problem for public consumption. A flood potential exists along several streams having broad alluvial fans. (Woodard-USGS)

  11. Mechanical properties of aluminium fused SiO2 particulate composites cast using metallic and non-metallic chills

    NASA Astrophysics Data System (ADS)

    Harshith, H. S.; Hemanth, Joel

    2018-04-01

    This research work aims at developing and mechanical characterization of aluminium (LM13) based metal matrix composite reinforced with varying percentage of fused SiO2 (3%,6%,9%,12%). The mechanical properties are completely dependent on the microstructural parameters of the system. Also the microstructure further depends on the cooling rates during solidification process. Various Chills like Silicon carbide, Mild steel, Copper were used during the casting process to increase the rate of solidification, which enhances the mechanical properties of the composite. The chill casted specimens were subjected to tensile and hardness tests followed by microstructure studies. A casting produced using mild steel chill exhibited higher young's modulus and was found to be maximum at 9% reinforcement. Finer microstructure and better UTS were seen for specimen's casted using copper chills, whereas silicon carbide and mild steel chills gave rise to very coarse structure with reduced UTS values compared to copper chills.

  12. Biogenic amine concentrations and evolution in "chilled" Canadian pork for the Japanese market.

    PubMed

    Ngapo, Tania M; Vachon, Lise

    2017-10-15

    The aim of this study was to evaluate concentrations and evolution of biogenic amines in Canadian pork destined for the Japanese market. At 48h post-mortem, export quality loins were aged at -1.7°C for 13, 28, 43 or 58d (chilled) or 4.0°C for 5d (fresh). Increasing concentrations of putrescine, spermine and spermidine were observed with chilled ageing period and were greater in chilled export (43d at -1.7°C) than domestic market (5d at 4.0°C) pork equivalents. Cadaverine was detected, but was not influenced by ageing conditions, and tyramine was only detected in some samples after 43days at -1.7°C. Individual biogenic amines were not correlated with their precursor amino acids. Biogenic amines in Canadian pork for the chilled export Japanese market were not in sufficiently high concentrations to pose a risk of intoxication. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  13. Chilling Affects Phytohormone and Post-Embryonic Development Pathways during Bud Break and Fruit Set in Apple (Malus domestica Borkh.)

    PubMed Central

    Kumar, Gulshan; Gupta, Khushboo; Pathania, Shivalika; Swarnkar, Mohit Kumar; Rattan, Usha Kumari; Singh, Gagandeep; Sharma, Ram Kumar; Singh, Anil Kumar

    2017-01-01

    The availability of sufficient chilling during bud dormancy plays an important role in the subsequent yield and quality of apple fruit, whereas, insufficient chilling availability negatively impacts the apple production. The transcriptome profiling during bud dormancy release and initial fruit set under low and high chill conditions was performed using RNA-seq. The comparative high number of differentially expressed genes during bud break and fruit set under high chill condition indicates that chilling availability was associated with transcriptional reorganization. The comparative analysis reveals the differential expression of genes involved in phytohormone metabolism, particularly for Abscisic acid, gibberellic acid, ethylene, auxin and cytokinin. The expression of Dormancy Associated MADS-box, Flowering Locus C-like, Flowering Locus T-like and Terminal Flower 1-like genes was found to be modulated under differential chilling. The co-expression network analysis indentified two high chill specific modules that were found to be enriched for “post-embryonic development” GO terms. The network analysis also identified hub genes including Early flowering 7, RAF10, ZEP4 and F-box, which may be involved in regulating chilling-mediated dormancy release and fruit set. The results of transcriptome and co-expression network analysis indicate that chilling availability majorly regulates phytohormone-related pathways and post-embryonic development during bud break. PMID:28198417

  14. Redox Signaling and CBF-Responsive Pathway Are Involved in Salicylic Acid-Improved Photosynthesis and Growth under Chilling Stress in Watermelon

    PubMed Central

    Cheng, Fei; Lu, Junyang; Gao, Min; Shi, Kai; Kong, Qiusheng; Huang, Yuan; Bie, Zhilong

    2016-01-01

    Salicylic acid (SA) plays an important role in plant response to abiotic stresses. This study investigated the potential role of SA in alleviating the adverse effects of chilling stress on photosynthesis and growth in watermelon (Citrullus lanatus). Chilling stress induced the simultaneous accumulation of free and conjugated SA in watermelon plants, and the chilling-induced SA production was attributed to the phenylalanine ammonia-lyase pathway. Applying SA at moderate concentrations induced chilling tolerance, whereas inhibition of SA biosynthesis by L-α-aminooxy-β-phenylpropionic acid (AOPP) increased the photooxidation of PS II under chilling stress in watermelon, resulting in reduced photosynthesis and growth. Chilling induced a transient increase in the ratios of reduced to oxidized glutathione and reduced ascorbate to dehydroascorbate. Then, the expression of antioxidant genes was upregulated, and the activities of antioxidant enzymes were enhanced. Furthermore, SA-induced chilling tolerance was associated with cellular glutathione and ascorbate homeostasis, which served as redox signals to regulate antioxidant metabolism under chilling stress. AOPP treatment stimulated the chilling-induced expression of cold-responsive genes, particularly via C-repeat binding factors CBF3 and CBF4. These results confirm the synergistic role of SA signaling and the CBF-dependent responsive pathway during chilling stress in watermelon. PMID:27777580

  15. 76 FR 38698 - Fresh and Chilled Atlantic Salmon From Norway; Scheduling of Full Five-Year Reviews Concerning...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... and Chilled Atlantic Salmon From Norway; Scheduling of Full Five-Year Reviews Concerning the Countervailing Duty Order and Antidumping Duty Order on Fresh and Chilled Atlantic Salmon From Norway AGENCY... the antidumping duty order on fresh and chilled Atlantic salmon from Norway would be likely to lead to...

  16. Guns on Campus: A Chilling Effect

    ERIC Educational Resources Information Center

    Mash, Kenneth M.

    2013-01-01

    The author of this article observes that, while much has been written on the overall topic of safety with regard to allowing guns on college campuses, little has been said about how allowing the possession of deadly weapons can create a "chilling effect" on academic discussions. This article considers how some universities have…

  17. Effect of urbanization on the water resources of Warminster Township, Bucks County, Pennsylvania

    USGS Publications Warehouse

    Sloto, R.A.; Davis, D.K.

    1982-01-01

    Rapid suburban development occurred in Warminster Township and the surrounding area after World War II, resulting in a large population dependent on ground water. In 1980, approximately 2.7 billion gallons of ground water was pumped by public water suppliers and government facilities. Pumping wells can cause drawdown as far as 2,500 feet undip, downdip, or along strike even if the wells do not penetrate the same strata. Pumping wells have lowered base flow; a stream-gain-and-loss study showed that water lost from Little Neshaminy Creek was about 60 percent of the water pumped from wells near the stream. Net ground-water infiltration to sewers was about 830 million gallons in 1979, a wet year, and about 250 million gallons in 1980, a dry year. Estimated water budgets for 1979 and 1980 indicate evapotranspiration can range from 20 to 26 inches per year (1.0 to 1.2 million gallons per day per square mile) and recharge can range from 8 to 18 inches per year (0.4 to 0.9 million gallons per day per square mile). In a year with average precipitation (45 inches or 2.1 million gallons per day per square mile), evapotranspiration is about 24 inches (1.1 million gallons per day per square mile). Ground-water development in the area influenced by pumping is at its practical limit for years of average recharge, but as much as 1.1 million gallons per day of additional water may be obtained by drilling and pumping wells in areas of Warminster Township not affected by pumping. The concentration of most dissolved constituents increased in water from seven wells, sampled at the onset of urbanization in 1953 and 1956 and again in 1979. Ground-water contamination by volatile organic compounds, especially trichloroethylene and tetrachloroethylene, has made water from some wells unsuitable for public supply. The concentration of lead in 26 samples of ground water ranged from 0 to 55 micrograms per liter, with a median of 17 micrograms per liter; this is above the reported national

  18. Effect of cooled and chlorinated chiller water on Campylobacter and coliform counts on broiler carcasses during chilling at a middle-size poultry processing plant.

    PubMed

    Kameyama, Mitsuhiro; Chuma, Takehisa; Nishimoto, Tadahiro; Oniki, Hiroyuki; Yanagitani, Yasuo; Kanetou, Ryouichi; Gotou, Kouichi; Shahada, Francis; Iwata, Hiroyuki; Okamoto, Karoku

    2012-01-01

    To evaluate the effect of cooled and chlorinated chill water for Campylobacter and coliforms at a middle-size processing plant which was considered to be difficult for eliminate pathogenic bacteria on carcasses, following three conditions were examined; keeping temperature at < 20, < 10 and < 10°C, and chlorine concentration at < 50, < 50 and 50 to 70 ppm during processing in experiment 1, 2 and 3 respectively. Fifteen prechill and 15 postchill carcasses were examined in each experiment. In lower temperature of experiment 2, decreasing rate (%) of coliforms was significantly higher (P<0.01) than that in experiment 1. In higher chlorination of experiment 3, no Campylobacter was detected from all postchill carcasses.

  19. Simulated Ground-Water Withdrawals by Cabot WaterWorks from the Mississippi River Valley Alluvial Aquifer, Lonoke County, Arkansas

    USGS Publications Warehouse

    Czarnecki, John B.

    2007-01-01

    Cabot WaterWorks, located in Lonoke County, Arkansas, plans to increase ground-water withdrawals from the Mississippi River Valley alluvial aquifer from a 2004 rate of approximately 2.24 million gallons per day to between 4.8 and 8 million gallons per day by the end of 2049. The effects of increased pumping from several wells were simulated using a digital model of ground-water flow. The proposed additional withdrawals by Cabot WaterWorks were specified in three 1-square-mile model cells with increased pumping beginning in 2007. Increased pumping was specified at various combined rates for a period of 44 years. In addition, augmented pumping from wells owned by Grand Prairie Water Users Association, located about 2 miles from the nearest Cabot WaterWorks wells, was added to the model beginning in 2007 and continuing through to the end of 2049 in 10 of the 16 scenarios analyzed. Eight of the scenarios included reductions in pumping rates in model cells corresponding to either the Grand Prairie Water Users Association wells or to wells contained within the Grand Prairie Area Demonstration Project. Drawdown at the end of 44 years of pumping at 4.8 million gallons per day from the Cabot WaterWorks wells ranged from 15 to 25 feet in the three model cells; pumping at 8 million gallons per day resulted in water-level drawdown ranging from about 15 to 40 feet. Water levels in those cells showed no indication of leveling out at the end of the simulation period, indicating non-steady-state conditions after 44 years of pumping. From one to four new dry cells occurred in each of the scenarios by the end of 2049 when compared to a baseline scenario in which pumping was maintained at 2004 rates, even in scenarios with reduced pumping in the Grand Prairie Area Demonstration Project; however, reduced pumping produced cells that were no longer dry when compared to the baseline scenario at the end of 2049. Saturated thickness at the end of 2049 in the three Cabot WaterWorks wells

  20. Impact of exogenous GABA treatments on endogenous GABA metabolism in anthurium cut flowers in response to postharvest chilling temperature.

    PubMed

    Aghdam, Morteza Soleimani; Naderi, Roohangiz; Jannatizadeh, Abbasali; Babalar, Mesbah; Sarcheshmeh, Mohammad Ali Askari; Faradonbe, Mojtaba Zamani

    2016-09-01

    Anthurium flowers are susceptible to chilling injury, and the optimum storage temperature is 12.5-20 °C. The γ-aminobutyric acid (GABA) shunt pathway may alleviate chilling stress in horticultural commodities by providing energy (ATP), reducing molecules (NADH), and minimizing accumulation of reactive oxygen species (ROS). In this experiment, the impact of a preharvest spray treatment with 1 mM GABA and postharvest treatment of 5 mM GABA stem-end dipping on GABA shunt pathway activity of anthurium cut flowers (cv. Sirion) in response to cold storage (4 °C for 21 days) was investigated. GABA treatments resulted in lower glutamate decarboxylase (GAD) and higher GABA transaminase (GABA-T) activities in flowers during cold storage, which was associated with lower GABA content and coincided with higher ATP content. GABA treatments also enhanced accumulation of endogenous glycine betaine (GB) in flowers during cold storage, as well as higher spathe relative water content (RWC). These findings suggest that GABA treatments may alleviate chilling injury of anthurium cut flowers by enhancing GABA shunt pathway activity leading to provide sufficient ATP and promoting endogenous GB accumulation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Side-by-Side Testing of Water Heating Systems: Results from the 2013–2014 Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colon, Carlos

    2017-07-01

    The Florida Solar Energy Center (FSEC) completed a fourth year-long evaluation on residential hot water heating systems in a laboratory environment (east central Florida, hot-humid climate). The evaluation studied the performance of five hot water systems (HWS) plus a reference baseline system for each fuel, (i.e., electric and natural gas). Electric HWS consisted of two residential electric heat pump water heaters (HPWHs, 60 and 80 gallons), a solar thermal system using a polymer absorber (glazed) collector with 80-gallon storage and a duplicate 50-gallon standard electric water heater with added cap and wrap insulation. Baseline performance data were collected from amore » standard 50-gallon electric water heater of minimum code efficiency to compare energy savings. Similarly, a standard 40-gallon upright vented natural gas water heater served as baseline for the natural gas fuel category. The latter, having a larger jacket diameter [18 in., with an energy factor (EF) of 0.62] with increased insulation, replaced a former baseline (17 in. diameter, EF = 0.59) that served during three previous testing rotations (2009–2013). A high-efficiency, condensing natural gas hybrid water heater with 27-gallon buffered tank was also tested and compared against the gas baseline. All systems underwent testing simultaneously side-by-side under the criteria specified elsewhere in this report.« less

  2. Side-by-Side Testing of Water Heating Systems: Results from the 2013–2014 Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colon, Carlos

    The Florida Solar Energy Center (FSEC) completed a fourth year-long evaluation on residential hot water heating systems in a laboratory environment (east central Florida, hot-humid climate). The evaluation studied the performance of five hot water systems (HWS) plus a reference baseline system for each fuel, (i.e., electric and natural gas). Electric HWS consisted of two residential electric heat pump water heaters (HPWHs, 60 and 80 gallons), a solar thermal system using a polymer absorber (glazed) collector with 80-gallon storage and a duplicate 50-gallon standard electric water heater with added cap and wrap insulation. Baseline performance data were collected from amore » standard 50-gallon electric water heater of minimum code efficiency to compare energy savings. Similarly, a standard 40-gallon upright vented natural gas water heater served as baseline for the natural gas fuel category. The latter, having a larger jacket diameter [18 in., with an energy factor (EF) of 0.62] with increased insulation, replaced a former baseline (17 in. diameter, EF = 0.59) that served during three previous testing rotations (2009–2013). A high-efficiency, condensing natural gas hybrid water heater with 27-gallon buffered tank was also tested and compared against the gas baseline. All systems underwent testing simultaneously side-by-side under the criteria specified elsewhere in this report.« less

  3. Tomato expressing Arabidopsis glutaredoxin gene AtGRXS17 confers tolerance to chilling stress via modulating cold responsive components

    USDA-ARS?s Scientific Manuscript database

    Chilling stress is a production constraint of tomato, a tropical origin, chilling-sensitive horticultural crop. The development of chilling tolerant tomato thus has significant potential to impact tomato production. Glutaredoxins (GRXs) are ubiquitous oxidoreductases, which utilize the reducing powe...

  4. National water summary 1983: Hydrologic events and issues

    USGS Publications Warehouse

    ,

    1984-01-01

    The United States as a Nation possesses abundant water resources and has developed and used those resources extensively. The national renewable supply of water is about 1,400 billion gallons per day (for the conterminous 48 States). Approximately 380 billion gallons per day of freshwater is withdrawn for use by the Nation's homes, farms, and industries, and about 280 billion gallons per day is returned to streams. Although a large percentage of the Nation's waste is carried in this return flow, the quality of water in streams has improved in many respects as a result of the pollution-control pro- grams of recent years. However, much remains to be learned about water quality particularly the extent of contamination by synthetic organic chemicals and heavy metals, and the effects of these contaminants on human health.

  5. Preliminary economic analysis of aquifer winter-chill storage at the John F. Kennedy airport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, E.C.; Thomas, J.F.

    A conceptual design was formulated in conjuction with a cost analysis to determine the feasibility of retrofitting the present John F. Kennedy (JFK) airport air-conditioning system with an aquifer cold water storage system. It appears technically feasible to chill and store aquifer water at the airport site during the winter months for later air-conditioning use. However, the economic analysis shows that although a significant energy savings is realized, the money saved from reduced energy costs would not be enough to recover the necessary capital investment over a 20-year period. JFK airport may be a poor economic choice for an aquifermore » cold water storage demonstration site due to site specific problems, and other sites may provide economic incentive.« less

  6. Developing citizen science projects: Cut twigs for 'chilling' pupils

    NASA Astrophysics Data System (ADS)

    Menzel, Annette; Matiu, Michael; Laube, Julia

    2017-04-01

    Citizen science projects mainly involve two aims, science and education. Depending on the setting, either the data delivery part for answering questions raised by scientists or the educating part e.g. on scientific practices, crosscutting concepts, application of core science contents or awareness for environmental problems prevails. In this respect, spring phenology is a grateful topic because it addresses both aspects nearly symmetrically. In science, it remains unresolved which factors besides spring warming also trigger spring bud development, namely chilling / photoperiod / humidity / nutrient availability. The appearance of fresh leaves in spring has been fascinating for humans; it is linked to cultural heritage, festivals and has always attracted nature lovers, from young children to senior citizens. In our study, we set up a twig experiment to study the chilling effect on bud burst of Corylus avellana L. which was conducted by trained citizen scientists at their home. We asked the scientific question if the effects of chilling can be analysed by the twig method, and how sampling and experimental setting should be designed. Furthermore we tested if the twig method is feasible for citizen scientist projects, and report minimum requirements, successes and drawbacks.

  7. Ground water in the carbonate rocks of the Franklin area, Tennessee

    USGS Publications Warehouse

    Zurawski, Ann; Burchett, C.R.

    1980-01-01

    A study of ground water in the Franklin area, Tennessee, was undertaken to fill a growing need for information on ground-water occurrence in the carbonate rocks of central Tennessee. Fifteen drilling sites were selected that had one or more of the following characteristics: medium- to thick-bedded limestones within 200 feet of land surface, structural lows, significant streamflow gains and losses, elongated sinkholes, straight stream reaches, linear features or other surface indications of solution cavities at depth. The 15 test wells produced from less than 1 to about 600 gallons per minute and had an average yield of 68 gallons per minute, measured while pumping the wells with compressed air. The average driller-reported yield for the area is five gallons per minute. Specific capacities for the four highest yielding wells ranged from 0.6 to 357 gallons per minute per foot of drawdown after 8 hours of pumping at rates ranging from 70 to 225 gallons per minute. Additional drilling at two sites revealed extensive solution openings. At one site, drawdown in five observation wells did not exceed 8.5 feet during 48 hours of pumping at an average rate of 502 gallons per minute. Raw water in the test wells meets most drinking-water standards and is of rather uniform quality from well to well and throughout the year. (USGS)

  8. A retrospective study of artificial insemination of 251 mares using chilled and fixed time frozen-thawed semen.

    PubMed

    Crowe, C A M; Ravenhill, P J; Hepburn, R J; Shepherd, C H

    2008-09-01

    Historically, artificial insemination (AI) using frozen semen has been perceived to have poorer success rates and be more labour intensive than using chilled semen. A retrospective study was therefore conducted to compare the conception rate achieved by AI between chilled and frozen semen, using fixed time insemination protocols over 2 breeding seasons. Artificial insemination using chilled semen produces a higher conception rate than that achieved with frozen semen. Mares (n = 251) were inseminated with either chilled (n = 112) or frozen (n = 139) semen in the 2006 and 2007 northern hemisphere breeding season. Per rectum ultrasonography of the mare's reproductive tract determined the timing of insemination, and deslorelin acetate was used to induce ovulation. Chilled semen insemination was performed using a single preovulatory dose delivered into the uterine body. Frozen semen was administered as 2 doses (pre- and post ovulation) using a deep uterine insemination technique. Pregnancy was detected ultrasonographically at 15 days post insemination. Conception rates were compared using a Chi-squared test. Insemination with frozen semen produced a significantly (P = 0.022) higher seasonal conception rate (82.0%) than that achieved with chilled semen (69.6%). Insemination with frozen semen can achieve conception rates equal to those with chilled semen, enabling the mare owner a greater selection of stallions.

  9. Effectiveness of Miles-Per-Gallon Meters as a Means to Conserve Gasoline in Automobiles

    DOT National Transportation Integrated Search

    1976-10-01

    This report is an assessment of fuel flow instruments reading directly in miles per gallon (mpg). It describes currently available mpg meters, their installation, utility, and safety and presents an analysis of potential cost savings. It discusses me...

  10. The Depths of Hydraulic Fracturing and Accompanying Water Use Across the United States.

    PubMed

    Jackson, Robert B; Lowry, Ella R; Pickle, Amy; Kang, Mary; DiGiulio, Dominic; Zhao, Kaiguang

    2015-08-04

    Reports highlight the safety of hydraulic fracturing for drinking water if it occurs "many hundreds of meters to kilometers underground". To our knowledge, however, no comprehensive analysis of hydraulic fracturing depths exists. Based on fracturing depths and water use for ∼44,000 wells reported between 2010 and 2013, the average fracturing depth across the United States was 8300 ft (∼2500 m). Many wells (6900; 16%) were fractured less than a mile from the surface, and 2600 wells (6%) were fractured above 3000 ft (900 m), particularly in Texas (850 wells), California (720), Arkansas (310), and Wyoming (300). Average water use per well nationally was 2,400,000 gallons (9,200,000 L), led by Arkansas (5,200,000 gallons), Louisiana (5,100,000 gallons), West Virginia (5,000,000 gallons), and Pennsylvania (4,500,000 gallons). Two thousand wells (∼5%) shallower than one mile and 350 wells (∼1%) shallower than 3000 ft were hydraulically fractured with >1 million gallons of water, particularly in Arkansas, New Mexico, Texas, Pennsylvania, and California. Because hydraulic fractures can propagate 2000 ft upward, shallow wells may warrant special safeguards, including a mandatory registry of locations, full chemical disclosure, and, where horizontal drilling is used, predrilling water testing to a radius 1000 ft beyond the greatest lateral extent.

  11. Water Use in Wetland Kalo Cultivation in Hawai`i

    USGS Publications Warehouse

    Gingerich, Stephen B.; Yeung, Chiu W.; Ibarra, Tracy-Joy N.; Engott, John A.

    2007-01-01

    Ten cultivation areas (8 windward, 2 leeward) were selected for a kalo water-use study, primarily on the basis of the diversity of environmental and agricultural conditions under which wetland kalo is grown and landowner permission and availability. Flow and water-temperature data were collected at the lo`i complex level and at the individual lo`i level. To ensure that flow and temperature data collected at different lo`i reflect similar irrigation conditions (continuous flooding of the mature crop), only lo`i with crops near the harvesting stage were selected for water-temperature data collection. The water need for kalo cultivation varies depending on the crop stage. In this study, data were collected during the dry season (June-October), when water requirements for cooling kalo approach upper limits. Flow measurements generally were made during the warmest part of the day, and temperature measurements were made every 15 minutes at each site for about a two-month period. Flow and temperature data were collected from kalo cultivation areas on four islands - Kaua`i, O`ahu, Maui, and Hawai`i. The average inflow value for the 19 lo`i complexes measured in this study is 260,000 gallons per acre per day, and the median inflow value is 150,000 gallons per acre per day. The average inflow value for the 17 windward sites is 270,000 gallons per acre per day, and the median inflow value is 150,000 gallons per acre per day. The average inflow value for the two leeward sites is 150,000 gallons per acre per day. The average inflow value measured for six individual lo`i is 350,000 gallons per acre per day, and the median inflow value is 270,000 gallons per acre per day. The average inflow value for the five windward lo`i is 370,000 gallons per acre per day, and the median inflow value is 320,000 gallons per acre per day. The inflow value for the one leeward lo`i is 210,000 gallons per acre per day. These inflow values are consistent with previously reported values for inflow

  12. Summary appraisals of the Nation's ground-water resources; Mid-Atlantic region

    USGS Publications Warehouse

    Sinnott, Allen; Cushing, Elliot Morse

    1978-01-01

    About 949 billion gallons of fresh ground water was withdrawn in 1970. This quantity represents about 9 percent of the total freshwater use of 10,220 billion gallons. Available ground-water reserves indicate that a considerable part of the additional supplies needed for the anticipated increase in economic activity in the region could be developed from ground water.

  13. Exogenous abscisic acid increases antioxidant enzymes and related gene expression in pepper (Capsicum annuum) leaves subjected to chilling stress.

    PubMed

    Guo, W L; Chen, R G; Gong, Z H; Yin, Y X; Ahmed, S S; He, Y M

    2012-11-28

    To elucidate how physiological and biochemical mechanisms of chilling stress are regulated by abscisic acid (ABA) pretreatment, pepper variety (cv. 'P70') seedlings were pretreated with 0.57 mM ABA for 72 h and then subjected to chilling stress at 10°/6°C (day/night). Chilling stress caused severe necrotic lesions on the leaves and increased malondialdehyde and H(2)O(2) levels. Activities of monodehydroascorbate reductase (DHAR), dehydroascorbate reductase, glutathione reductase, guaiacol peroxidase, ascorbate peroxidase, ascorbate, and glutathione increased due to chilling stress during the 72 h, while superoxide dismutase and catalase activities decreased during 24 h, suggesting that chilling stress activates the AsA-GSH cycle under catalase deactivation in pepper leaves. ABA pretreatment induced significant increases in the above-mentioned enzyme activities and progressive decreases in ascorbate and glutathione levels. On the other hand, ABA-pretreated seedlings under chilling stress increased superoxide dismutase and guaiacol peroxidase activities and lowered concentrations of other antioxidants compared with untreated chilling-stressed plants. These seedlings showed concomitant decreases in foliage damage symptoms, and levels of malondialdehyde and H(2)O(2). Induction of Mn-SOD and POD was observed in chilling-stressed plants treated with ABA. The expression of DHAR1 and DHAR2 was altered by chilling stress, but it was higher in the presence than in the absence of ABA at 24 h. Overall, the results indicate that exogenous application of ABA increases tolerance of plants to chilling-induced oxidative damage, mainly by enhancing superoxide dismutase and guaiacol peroxidase activities and related gene expression.

  14. Effects of lactic acid and commercial chilling processes on survival of Salmonella, Yersinia enterocolitica, and Campylobacter coli in pork variety meats.

    PubMed

    King, Amanda M; Miller, Rhonda K; Castillo, Alejandro; Griffin, Davey B; Hardin, Margaret D

    2012-09-01

    Current industry chilling practices with and without the application of 2% L-lactic acid were compared for their effectiveness at reducing levels of Salmonella, Yersinia enterocolitica, and Campylobacter coli on pork variety meats. Pork variety meats (livers, intestines, hearts, and stomachs) were inoculated individually with one of the three pathogens and subjected to five different treatment combinations that included one or more of the following: water wash (25°C), lactic acid spray (2%, 40 to 50°C), chilling (4°C), and freezing (-15°C). Samples were analyzed before treatment, after each treatment step, and after 2, 4, and 6 months of frozen storage. Results showed that when a lactic acid spray was used in combination with water spray, immediate reductions were approximately 0.5 log CFU per sample of Salmonella, 0.8 log CFU per sample of Y. enterocolitica, and 1.1 log CFU per sample of C. coli. Chilling, both alone and in combination with spray treatments, had little effect on pathogens, while freezing resulted in additional 0.5-log CFU per sample reductions in levels of Salmonella and Y. enterocolitica, and an additional 1.0-log CFU per sample reduction in levels of C. coli. While reductions of at least 1 log CFU per sample were observed on variety meats treated with only a water wash and subsequently frozen, samples treated with lactic acid had greater additional reductions than those treated with only a water spray throughout frozen storage. The results of this study suggest that the use of lactic acid as a decontamination intervention, when used in combination with good manufacturing practices during processing, causes significant reductions in levels of Salmonella, Y. enterocolitica, and C. coli on pork variety meats.

  15. Decision-relevant evaluation of climate models: A case study of chill hours in California

    NASA Astrophysics Data System (ADS)

    Jagannathan, K. A.; Jones, A. D.; Kerr, A. C.

    2017-12-01

    The past decade has seen a proliferation of different climate datasets with over 60 climate models currently in use. Comparative evaluation and validation of models can assist practitioners chose the most appropriate models for adaptation planning. However, such assessments are usually conducted for `climate metrics' such as seasonal temperature, while sectoral decisions are often based on `decision-relevant outcome metrics' such as growing degree days or chill hours. Since climate models predict different metrics with varying skill, the goal of this research is to conduct a bottom-up evaluation of model skill for `outcome-based' metrics. Using chill hours (number of hours in winter months where temperature is lesser than 45 deg F) in Fresno, CA as a case, we assess how well different GCMs predict the historical mean and slope of chill hours, and whether and to what extent projections differ based on model selection. We then compare our results with other climate-based evaluations of the region, to identify similarities and differences. For the model skill evaluation, historically observed chill hours were compared with simulations from 27 GCMs (and multiple ensembles). Model skill scores were generated based on a statistical hypothesis test of the comparative assessment. Future projections from RCP 8.5 runs were evaluated, and a simple bias correction was also conducted. Our analysis indicates that model skill in predicting chill hour slope is dependent on its skill in predicting mean chill hours, which results from the non-linear nature of the chill metric. However, there was no clear relationship between the models that performed well for the chill hour metric and those that performed well in other temperature-based evaluations (such winter minimum temperature or diurnal temperature range). Further, contrary to conclusions from other studies, we also found that the multi-model mean or large ensemble mean results may not always be most appropriate for this

  16. Limited energy study. Thermal storage at Central Chilled Water Plant, Fort Leonard Wood, Missouri. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-05-31

    The Scope of Work called for the study of the economic feasibility of providing a cold thermal storage system at the central chiller plant serving the Fort Leonard Wood 600 Area in order to reduce electrical demand charges. In the Entry Interview, Mr. Doug Cage requested that the analysis include the potential for expansion of such a system to serve the 700 and 800 Areas as well. It was agreed that this would be done if the analysis indicated that a cold thermal storage system would be economically feasible for Area 600. The 600 Area study area is comprised ofmore » two different build types, mess halls and barracks. The mess halls are all essentially identical with the exception that site orientation varies by building. The same is true for the barracks buildings. A baseline case was calculated under the basis that the future chilled water plant for the area under analysis would be served by a centrifugal chiller. This was done because there is no existing baseline condition against which thermal storage systems may be compared. The existing chiller serves Area 600 plus a portion of Area 700. In addition, its age is such that it is reasonable to expect that it will be replaced in the near future.« less

  17. Effects of bacteriophage on the quality and shelf life of Paralichthys olivaceus during chilled storage.

    PubMed

    Li, Meng; Lin, Hong; Khan, Muhammad Naseem; Wang, Jingxue; Kong, Linghong

    2014-06-01

    The microbiological spoilage of fishery foods is mainly due to specific spoilage organisms (SSOs), with Shewanella putrefaciens being the SSO of most chilled marine fish. Bacteriophages have shown excellent capability to control micro-organisms. The aim of this study was to determine a specific bacteriophage to prevent spoilage by reducing SSO (S. putrefaciens) levels in the marine fish Paralichthys olivaceus (olive flounder) under chilled storage. Chilled flounder fillets were inoculated with S. putrefaciens and treated with different concentrations of bacteriophage Spp001 ranging from 10(4) to 10(8) plaque-forming units (pfu) mL(-1) . Bacterial growth (including total viable count and SSO) of the bacteriophage-treated groups was significantly inhibited compared with that of the negative control group (P < 0.05). Sensory evaluation and biochemical parameters revealed that the bacteriophage could extend the shelf life of chilled flounder fillets (from <4 to 14 days) with good esthetic quality, even at low temperature (4 °C). Furthermore, bacteriophage concentrations of 10(6) and 10(8) pfu mL(-1) were more effective than the chemical preservative potassium sorbate (5 g L(-1) ). The bacteriophage Spp001 offered effective biocontrol of S. putrefaciens under chilled conditions, retaining the quality characteristics of spiked fish fillets, and thus could be a potential candidate for use in chilled fish fillet biopreservation. © 2013 Society of Chemical Industry.

  18. Water resources of Langlade County, Wisconsin

    USGS Publications Warehouse

    Batten, W.G.

    1987-01-01

    An average of about 4.7 million gallons of water was pumped daily in Langlade County in 1983. Irrigation and fish rearing are the major ground-water uses in the county. An average of about 4.2 million gallons per day was pumped for irrigation during the months of June, July, and August. Results of this study show that present irrigation pumpage rates have little effect on groundwater levels in the Antigo Flats area.

  19. Low-temperature conditioning induces chilling tolerance in stored mango fruit.

    PubMed

    Zhang, Zhengke; Zhu, Qinggang; Hu, Meijiao; Gao, Zhaoyin; An, Feng; Li, Min; Jiang, Yueming

    2017-03-15

    In this study, mango fruit were pre-treated with low-temperature conditioning (LTC) at 12°C for 24h, followed by refrigeration at 5°C for 25days before removal to ambient temperature (25°C) to investigate the effects and possible mechanisms of LTC on chilling injury (CI). The results showed that LTC effectively suppressed the development of CI in mango fruit, accelerated softening, and increased the soluble solids and proline content. Furthermore, LTC reduced electrolyte leakage, and levels of malondialdehyde, O 2 - and H 2 O 2 , maintaining membrane integrity. To reveal the molecular regulation of LTC on chilling tolerance in mango fruit, a C-repeat/dehydration-responsive element binding factor (CBF) gene, MiCBF1, was identified and its expression in response to LTC was examined using RT-qPCR. LTC resulted in a higher MiCBF1 expression. These findings suggest that LTC enhances chilling tolerance in mango fruit by inducing a series of physiological and molecular responses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Ground-water withdrawals from the Coastal Plain of New Jersey, 1956-1980

    USGS Publications Warehouse

    Vowinkel, E.F.

    1984-01-01

    Withdrawals and site data for wells with a pump capacity of 100 ,000 gallons per day or greater in the Coastal Plain of New Jersey are stored in computer files for 1956-80. The data are aggregated by computer into tables, graphs and maps to show the distribution of ground-water withdrawals. Withdrawals are reported by type of use and aquifer for each county in the Coastal Plain. Public-supply wells withdraw the largest quantity of ground water in the Coastal Plain, followed by industrial and agricultural wells. In 1980 public-supply withdrawals were about 280 million gallons per day; the maximum monthly rate was about 355 million gallons per day in July, and the lowest was about 215 million gallons per day in February. Average industrial withdrawals were about 65 million gallons per day. Ground-water withdrawals used for agriculture vary significantly during the year. In 1980, about 75 percent of the agricultural withdrawals occurred from June through September. Several aquifers are used as sources of water supply in the Coastal Plain. Five regional aquifers are the major sources of water for public-supply, industrial, or agricultural use. In decreasing order of withdrawals in 1980, in million gallons per day, they are: The Potomac-Raritan-Magothy aquifer system, 243; Kirkwood-Cohansey aquifer system, 70; Atlantic City 800-foot sand, 21; Englishtown aquifer, 12; and the Wenonah-Mount Laurel aquifer system, 5. (USGS)

  1. 27 CFR 27.58 - Containers of 1 gallon (3.785 liters) or less.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Containers of 1 gallon (3.785 liters) or less. 27.58 Section 27.58 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL IMPORTATION OF DISTILLED SPIRITS, WINES, AND...

  2. 27 CFR 27.58 - Containers of 1 gallon (3.785 liters) or less.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Containers of 1 gallon (3.785 liters) or less. 27.58 Section 27.58 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL IMPORTATION OF DISTILLED SPIRITS, WINES, AND...

  3. RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance

    PubMed Central

    Gong, Zhizhong; Lee, Hojoung; Xiong, Liming; Jagendorf, André; Stevenson, Becky; Zhu, Jian-Kang

    2002-01-01

    Susceptibility to chilling injury prevents the cultivation of many important crops and limits the extended storage of horticultural commodities. Although freezing tolerance is acquired through cold-induced gene expression changes mediated in part by the CBF family of transcriptional activators, whether plant chilling resistance or sensitivity involves the CBF genes is not known. We report here that an Arabidopsis thaliana mutant impaired in the cold-regulated expression of CBF genes and their downstream target genes is sensitive to chilling stress. Expression of CBF3 under a strong constitutive promoter restores chilling resistance to the mutant plants. The mutated gene was cloned and found to encode a nuclear localized RNA helicase. Our results identify a regulator of CBF genes, and demonstrate the importance of gene regulation and the CBF transcriptional activators in plant chilling resistance. PMID:12165572

  4. Dormancy release and flowering time in Ziziphus jujuba Mill., a "direct flowering" fruit tree, has a facultative requirement for chilling.

    PubMed

    Meir, Michal; Ransbotyn, Vanessa; Raveh, Eran; Barak, Simon; Tel-Zur, Noemi; Zaccai, Michele

    2016-03-15

    In deciduous fruit trees, the effect of chilling on flowering has mostly been investigated in the "indirect flowering" group, characterized by a period of rest between flower bud formation and blooming. In the present study, we explored the effects of chilling and chilling deprivation on the flowering of Ziziphus jujuba, a temperate deciduous fruit tree belonging to the "direct flowering" group, in which flower bud differentiation, blooming and fruit development occur after dormancy release, during a single growing season. Dormancy release, vegetative growth and flowering time in Z. jujuba cv. Ben-Li were assessed following several treatments of chilling. Chilling treatments quantitatively decreased the timing of vegetative bud dormancy release, thereby accelerating flowering, but had no effect on the time from dormancy release to flowering. Trees grown at a constant temperature of 25°C, without chilling, broke dormancy and flowered, indicating the facultative character of chilling in this species. We measured the expression of Z. jujuba LFY and AP1 homologues (ZjLFY and ZjAP1). Chilling decreased ZjLFY expression in dormant vegetative buds but had no effect on ZjAP1expression, which reached peak expression before dormancy release and at anthesis. In conclusion, chilling is not obligatory for dormancy release of Z. jujuba cv. Ben-Li vegetative buds. However, the exposure to chilling during dormancy does accelerate vegetative bud dormancy release and flowering. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Tomato chilling injury threshold defined by the volatile profiles of pink harvested tomato fruit

    USDA-ARS?s Scientific Manuscript database

    Fresh tomato fruit show visible symptoms of chilling injury (CI) when stored at temperatures lower than the reported chilling threshold of 12.5°C. However, their sensitivity has been reported to decrease as they ripen. Volatile profiles change during ripening and are affected by physiological change...

  6. The clearance mechanism of chilled blood platelets.

    PubMed

    Hoffmeister, Karin M; Felbinger, Thomas W; Falet, Hervé; Denis, Cécile V; Bergmeier, Wolfgang; Mayadas, Tanya N; von Andrian, Ulrich H; Wagner, Denisa D; Stossel, Thomas P; Hartwig, John H

    2003-01-10

    Platelet transfusion is a very common lifesaving medical procedure. Not widely known is the fact that platelets, unlike other blood cells, rapidly leave the circulation if refrigerated prior to transfusion. This peculiarity requires blood services to store platelets at room temperature, limiting platelet supplies for clinical needs. Here, we describe the mechanism of this clearance system, a longstanding mystery. Chilling platelets clusters their von Willebrand (vWf) receptors, eliciting recognition of mouse and human platelets by hepatic macrophage complement type 3 (CR3) receptors. CR3-expressing but not CR3-deficient mice exposed to cold rapidly decrease platelet counts. Cooling primes platelets for activation. We propose that platelets are thermosensors, primed at peripheral sites where most injuries occurred throughout evolution. Clearance prevents pathologic thrombosis by primed platelets. Chilled platelets bind vWf and function normally in vitro and ex vivo after transfusion into CR3-deficient mice. Therefore, GPIb modification might permit cold platelet storage.

  7. 27 CFR 27.58 - Containers of 1 gallon (3.785 liters) or less.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Containers of 1 gallon (3.785 liters) or less. 27.58 Section 27.58 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO.... 15, 1975] Editorial Note: For Federal Register citations affecting § 27.58, see the List of CFR...

  8. 27 CFR 27.58 - Containers of 1 gallon (3.785 liters) or less.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Containers of 1 gallon (3.785 liters) or less. 27.58 Section 27.58 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO.... 15, 1975] Editorial Note: For Federal Register citations affecting § 27.58, see the List of CFR...

  9. 27 CFR 27.58 - Containers of 1 gallon (3.785 liters) or less.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Containers of 1 gallon (3.785 liters) or less. 27.58 Section 27.58 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO.... 15, 1975] Editorial Note: For Federal Register citations affecting § 27.58, see the List of CFR...

  10. Field Performance of Heat Pump Water Heaters in the Northeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, Carl; Puttagunta, Srikanth

    2016-02-05

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumptionmore » for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publically available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring(TM), A.O. Smith Voltex(R), and Stiebel Eltron Accelera(R) 300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).« less

  11. Identification of dehydrin-like proteins responsive to chilling in floral buds of blueberry (Vaccinium, section Cyanococcus).

    PubMed

    Muthalif, M M; Rowland, L J

    1994-04-01

    The level of three major polypeptides of 65, 60, and 14 kD increased in response to chilling unit accumulation in floral buds of a woody perennial, blueberry (Vaccinium, section Cynaococcus). The level of the polypeptides increased most dramatically within 300 h of chilling and decreased to the prechilling level with the initiation of budbreak. Cold-hardiness levels were assessed for dormant buds of Vaccinium corymbosum and Vaccinium ashei after different chilling treatments until the resumption of growth. These levels coincided with the level of the chilling-responsive polypeptides. Like some other previously described cold-induced proteins in annual plants, the level of the chilling-induced polypeptides also increased in leaves in response to cold treatment; the chilling-induced polypeptides were heat stable, resisting aggregation after incubation at 95 degrees C for 15 min. By fractionating bud proteins first by isoelectric point (pI) and then by molecular mass, the pI values of the 65- and 60-kD polypeptides were found to be 7.5 to 8.0 and the pI value of the 14-kD polypeptide was judged to be 8.5. Purification of the 65- and 60-kD polypeptides, followed by digestion with endoproteinase Lys-C and sequencing of selected fragments, revealed similarities in amino acid composition between the 65- and 60-kD polypeptides and dehydrins. Indeed, antiserum to the lysine-rich consensus sequence EKKGIMDKIKEKLPG of dehydrin proteins cross-reacted to all three of the major chilling-responsive polypeptides of blueberry, identifying these as dehydrins or dehydrin-like proteins.

  12. Identification of dehydrin-like proteins responsive to chilling in floral buds of blueberry (Vaccinium, section Cyanococcus).

    PubMed Central

    Muthalif, M M; Rowland, L J

    1994-01-01

    The level of three major polypeptides of 65, 60, and 14 kD increased in response to chilling unit accumulation in floral buds of a woody perennial, blueberry (Vaccinium, section Cynaococcus). The level of the polypeptides increased most dramatically within 300 h of chilling and decreased to the prechilling level with the initiation of budbreak. Cold-hardiness levels were assessed for dormant buds of Vaccinium corymbosum and Vaccinium ashei after different chilling treatments until the resumption of growth. These levels coincided with the level of the chilling-responsive polypeptides. Like some other previously described cold-induced proteins in annual plants, the level of the chilling-induced polypeptides also increased in leaves in response to cold treatment; the chilling-induced polypeptides were heat stable, resisting aggregation after incubation at 95 degrees C for 15 min. By fractionating bud proteins first by isoelectric point (pI) and then by molecular mass, the pI values of the 65- and 60-kD polypeptides were found to be 7.5 to 8.0 and the pI value of the 14-kD polypeptide was judged to be 8.5. Purification of the 65- and 60-kD polypeptides, followed by digestion with endoproteinase Lys-C and sequencing of selected fragments, revealed similarities in amino acid composition between the 65- and 60-kD polypeptides and dehydrins. Indeed, antiserum to the lysine-rich consensus sequence EKKGIMDKIKEKLPG of dehydrin proteins cross-reacted to all three of the major chilling-responsive polypeptides of blueberry, identifying these as dehydrins or dehydrin-like proteins. PMID:8016270

  13. Ground-water data for San Nicolas Island, California, 1989-90

    USGS Publications Warehouse

    Duell, Lowell F. W.; Kaehler, Charles A.

    1991-01-01

    In an effort to gain geohydrologic knowledge and to increase the availability of ground water to the U.S. Navy on San Nicolas Island, nine test wells were drilled by the U.S. Geological Survey in 1989 and one production well was drilled by the U.S. Navy in 1990. One of the nine test wells was dry, five produced less than 10 gallons of water per day, two produced between 20 and 30 gallons per day, and one produced 400 gallons per day. The production well produced about 900 gallons per day. Water samples were collected from eight wells during 1989-90 and analyzed for concentrations of major dissolved inorganic ions and nutrients. Five of the sampled wells were constructed in 1989, one was constructed in 1990, and two were constructed prior to 1989. Data from the study are presented in tables and graphs. Included are geophysical, lithologic, and well-construction data and results obtained from well-pumping tests and from the chemical analysis of water from selected wells.

  14. Salmonella recovery following air chilling for matched neck-skin and whole carcass sampling methodologies

    USDA-ARS?s Scientific Manuscript database

    The prevalence and serogroups of Salmonella recovered following air chilling were determined for both enriched neck skin and matching enriched whole carcass samples. Commercially processed and eviscerated carcasses were air chilled to 4C before removing the neck skin (8.3 g) and stomaching in 83 mL...

  15. How does music arouse "chills"? Investigating strong emotions, combining psychological, physiological, and psychoacoustical methods.

    PubMed

    Grewe, Oliver; Nagel, Frederik; Kopiez, Reinhard; Altenmüller, Eckart

    2005-12-01

    Music can arouse ecstatic "chill" experiences defined as "goose pimples" and as "shivers down the spine." We recorded chills both via subjects' self-reports and physiological reactions, finding that they do not occur in a reflex-like manner, but as a result of attentive, experienced, and conscious musical enjoyment.

  16. Criticality Safety Controls for 55-Gallon Drums with a Mass Limit of 200 grams Pu-239

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, P

    The following 200-gram Pu drum criticality safety controls are applicable to RHWM drum storage operations: (1) Mass (Fissile/Pu) - each 55-gallon drum or its equivalent shall be limited to 200 gram Pu or Pu equivalent; (2) Moderation - Hydrogen materials with a hydrogen density greater than that (0.133 g H/cc) of polyethylene and paraffin are not allowed and hydrogen materials with a hydrogen density no greater than that of polyethylene and paraffin are allowed with unlimited amounts; (3) Interaction - a spacing of 30-inches (76 cm) is required between arrays and 200-gram Pu drums shall be placed in arrays formore » 200-gram Pu drums only (no mingling of 200-gram Pu drums with other drums not meeting the drum controls associated with the 200-gram limit); (4) Reflection - no beryllium and carbon/graphite (other than the 50-gram waiver amount) is allowed, (note that Nat-U exceeding the waiver amount is allowed when its U-235 content is included in the fissile mass limit of 200 grams); and (5) Geometry - drum geometry, only 55-gallon drum or its equivalent shall be used and array geometry, 55-gallon drums are allowed for 2-high stacking. Steel waste boxes may be stacked 3-high if constraint.« less

  17. Development of a Safety Monitoring and Assurance System for chilled food products.

    PubMed

    Koutsoumanis, K; Taoukis, P S; Nychas, G J E

    2005-04-15

    The principles of a novel chill chain management policy, coded Safety Monitoring and Assurance System (SMAS) for the optimisation of the distribution of chilled food products within the chill chain are developed. In this system, a new approach based on actual risk evaluation at important points of the chill chain is used in order to promote products to the next stage of distribution. This evaluation based on product's time-temperature history, variation in product's characteristics (e.g. a(w), pH, etc.), and the use of predictive models for the growth of food pathogens, allows to give priority to products in such a way that risk at consumption time is minimized. The effectiveness of SMAS was evaluated against the First In First Out (FIFO) approach, the current method for food distribution, in a case study on the risk of listeriosis of cooked ham using the Monte Carlo simulation technique. Furthermore, the two approaches were compared for their effect on the quality of the products in terms of remaining shelf life at the time of consumption. The results showed that following the SMAS approach the risk of listerisosis is significantly lower while the spoiled products at the time of consumption are significantly reduced compared to FIFO approach.

  18. Detection of pathogenic Escherichia coli and microbiological quality of chilled shrimp sold in street markets.

    PubMed

    Barbosa, L J; Ribeiro, L F; Lavezzo, L F; Barbosa, M M C; Rossi, G A M; do Amaral, L A

    2016-05-01

    Foodborne illnesses caused by Escherichia coli are one of the most important gastrointestinal diseases and therefore represent a public health risk. The presence of E. coli in water or in products such as shrimp indicates faecal contamination. However, indicator micro-organisms can be used to evaluate the microbiological quality of food sold in markets. This study focused on detecting isolates of E. coli containing the genes stx1A, stx2A, eae, LTI, STa, STb, aggR and pCVD432 in chilled shrimp sold in street markets in the municipality of São Paulo, Brazil, and to assess the microbiological quality of this product. Enteropathogenic and enterotoxigenic E. coli pathotypes were detected on the surface of two chilled shrimp samples. Salmonella spp. was not isolated. In addition, contamination of surface and muscle of the shrimp samples was found to be correlated. The detection of EPEC and ETEC pathotypes in chilled shrimp sold in street markets in Brazil provides useful epidemiological information for public health authorities to improve food safety and public health. Shrimps are crustaceans commonly produced and consumed in Brazil. Specimens of Farfantepenaeus brasiliensis and Litopenaeus schmitti sold in street markets were examined by PCR to detect the presence of Escherichia coli pathotypes (enteropathogenic, enterotoxigenic, enterohemorrhagic and enteroinvasive). EPEC and ETEC strains were detected in whole shrimp. These findings provide useful information for public health authorities to improve the food safety and health of the Brazilian population. © 2016 The Society for Applied Microbiology.

  19. Optimum Temperature for Storage of Fruit and Vegetables with Reference to Chilling Injury

    NASA Astrophysics Data System (ADS)

    Murata, Takao

    Cold storage is an important technique for preserving fresh fruit and vegetables. Deterioration due to ripening, senescence and microbiological disease can be retarded by storage at optimum temperature being slightly above the freezing point of tissues of fruit and vegetables. However, some fruit and vegetables having their origins in tropical or subtropical regions of the world are subject to chilling injury during transportation, storage and wholesale distribution at low temperature above freezing point, because they are usually sensitive to low temperature in the range of 15&digC to 0°C. This review will focus on the recent informations regarding chilling injury of fruit and vegetables, and summarize the optimum temperature for transportation and storage of fruit and vegetables in relation to chilling injury.

  20. Availability of ground water in the lower Pawcatuck River basin, Rhode Island

    USGS Publications Warehouse

    Gonthier, Joseph B.; Johnston, Herbert E.; Malmberg, Glenn T.

    1974-01-01

    The lower Pawcatuck River basin in southwestern Rhode Island is an area of about 169 square miles underlain by crystalline bedrock over which lies a relatively thin mantle of glacial till and stratified drift. Stratified drift, consisting dominantly of sand and gravel, occurs in irregularly shaped linear deposits that are generally less than a mile wide and less than 125 feet thick; these deposits are found along the Pawcatuck River, its tributaries, and abandoned preglacial channels. Deposits of stratified sand and gravel constitute the principal aquifer in the lower Pawcatuck basin and the only one capable of sustaining yields of 100 gallons per minute or more to individual wells. Water available for development in this aquifer consists of water in storage--potential ground-water runoff to streams--plus infiltration that can be induced from streams. Minimum annual ground-water runoff from the sand and gravel aquifer is calculated to be at least 1.17 cubic feet per second per square mile, or 0.76 million gallons per day per square mile. Potential recharge by induced infiltration is estimated to range from about 250 to 600 gallons per day per linear foot of streambed for the principal streams. In most areas, induced infiltration from streams constitutes the major source of water potentially available for development by wells. Because subsurface hydraulic connection in the sand and gravel aquifer is poor in several places, the deposits are conveniently divisible into several ground-water reservoirs. The potential yield from five of the most promising ground-water reservoirs is evaluated by means of mathematical models. Results indicate that continuous withdrawals ranging from 1.3 to 10.3 million gallons per day, and totaling 31 million gallons per day, are obtainable from these reservoirs. Larger yields may be recovered by different well placement, spacing, construction and development, pumping practice, and so forth. Withdrawals at the rates indicated will reduce

  1. Microstructural Evolution in Intensively Melt Sheared Direct Chill Cast Al-Alloys

    NASA Astrophysics Data System (ADS)

    Jones, S.; Rao, A. K. Prasada; Patel, J. B.; Scamans, G. M.; Fan, Z.

    The work presented here introduces the novel melt conditioned direct chill casting (MC-DC) technology, where intensive melt shearing is applied to the conventional direct-chill casting process. MC-DC casting can successfully produce high quality Al-alloy billets. The results obtained from 80 mm diameter billets cast at speed of 200 mm/min show that MC-DC casting of Al-alloys, substantially refines the microstructure and reduces macro-segregation. In this paper, we present the preliminary results and discuss microstructural evolution during MC-DC casting of Al-alloys.

  2. Ground-water resources and geology of Waukesha County, Wisconsin

    USGS Publications Warehouse

    Gonthier, Joseph B.

    1975-01-01

    Good-quality water is available from the sand-and-gravel, Niagara, and sandstone aquifers in Waukesha County, Wis. As much as 15 gallons per minute (0.95 litres per second) can be obtained from wells almost everywhere in the county. Several hundred gallons per minute are available from aquifers in the glacial drift that fill bedrock valleys to thicknesses of 300 feet (91 metres) or more. Estimated well yields from much of the surficial outwash in western Waukesha County exceed 500 gallons per minute (31 litres per second). Estimated well yields from most of the Niagara aquifer, a dolomite as much as 325 feet (99 metres) thick in the eastern two-thirds of the county, exceed 50 gallons per minute (3.2 litres per second). The sandstone aquifer underlies the entire county and ranges in thickness from about 400 feet (120 metres) in the northwest corner to about 2,400 feet (730 metres) in the southeast corner. This aquifer yields more than 1,000 gallons per minute (63 litres per second) to wells over most of the county and is the principal source for municipal and subdivision water. Ground water in Waukesha County is of good quality and is suitable for most uses. Most of the water is a calcium magnesium bicarbonate type, is very hard [more than 180 mg/l (milligrams per litre) hardness], and requires softening for some uses. The ground water locally contains iron and manganese concentrations that exceed the limits (0.3 and 0.05 mg/l, respectively) recommended by the U.S. Public Health Service (1962, p. 7). Water high in sulfate and dissolved solids (saline water) is present locally in the Niagara and sandstone aquifers. Water from one well contained excessive nitrate (more than 45 mg/l). With one exception, wells sampled at irregular intervals indicated no significant changes in their chemical characteristics with time. About 24.3 million gallons per day (1.06 cubic metres per second) of ground water was pumped in the county in 1970. Sixty-two percent was withdrawn from

  3. Water requirements of the copper industry

    USGS Publications Warehouse

    Mussey, Orville Durey

    1961-01-01

    The copper industry in 1955 used about 330 million gallons of water per day in the mining and manufacturing of primary copper. This amount is about 0.3 percent of the total estimated withdrawals of industrial water in the United States in 1955. These facts were determined by a survey, in 1956, of the amount and chemical quality of the water used by the copper industry. A large part of this water was used in Arizona, Nevada, New Mexico, and Utah, where about five-sixths of the domestic copper is mined. Much of the remaining water use was near New York City where most of the electrolytic refineries are located, and the rest of the water was used in widely scattered places. A little more than 100,000 gallons of water per ton of copper was used in the production of copper from domestic ores. Of this amount about 70,000 gallons per ton was used in mining and concentrating the ore, and about 30,000 gallons per ton was used to reduce the concentrate to refined copper. In areas where water was scarce or expensive, the unit water use was a little more than half the average. About 60 mgd (million gallons per day) or 18 percent of the water was used consumptively, and nearly all of the consumptive use occurred in the water-short areas of the West. Of the water used in mining and manufacturing primary copper 75 percent was surface water and 25 percent was ground water, 89 percent of this water was self-supplied by the copper companies and 11 percent came from public supplies. Much of the water used in producing primary copper was of comparatively poor quality; about 46 percent was saline containing 1,000 ppm (parts per million) or more of dissolved solids and 54 percent was fresh. Water that is used for concentration of copper ores by flotation or even any water that comes in contact with the ore at any time before it reaches the flotation plant must be free of petroleum products because they interfere with the flotation process. The water used in mining and ore concentration

  4. Nitric Oxide Mediates 5-Aminolevulinic Acid-Induced Antioxidant Defense in Leaves of Elymus nutans Griseb. Exposed to Chilling Stress

    PubMed Central

    Fu, Juanjuan; Chu, Xitong; Sun, Yongfang; Miao, Yanjun; Xu, Yuefei; Hu, Tianming

    2015-01-01

    Nitric oxide (NO) and 5-aminolevulinic acid (ALA) are both extremely important signalling molecules employed by plants to control many aspects of physiology. In the present study, the role of NO in ALA-induced antioxidant defense in leaves of two sources of Elymus nutans Griseb. (Damxung, DX and Zhengdao, ZD) was investigated. Chilling stress enhanced electrolyte leakage, accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide radical in two E. nutans, which were substantially alleviated by exogenous ALA and NO application. Pretreatment with NO scavenger PTIO or NOS inhibitor L-NNA alone and in combination with ALA induced enhancements in electrolyte leakage and the accumulation of MDA, H2O2 and superoxide radical in leaves of DX and ZD exposed to chilling stress, indicating that the inhibition of NO biosynthesis reduced the chilling resistance of E. nutans and the ALA-enhanced chilling resistance. Further analyses showed that ALA and NO enhanced antioxidant defense and activated plasma membrane (PM) H+-ATPase and decreased the accumulation of ROS induced by chilling stress. A pronounced increase in nitric oxide synthase (NOS) activity and NO release by exogenous ALA treatment was found in chilling-resistant DX plants exposed to chilling stress, while only a little increase was observed in chilling-sensitive ZD. Furthermore, inhibition of NO accumulation by PTIO or L-NNA blocked the protective effect of exogenous ALA, while both exogenous NO treatment and inhibition of endogenous NO accumulation did not induce ALA production. These results suggested that NO might be a downstream signal mediating ALA-induced chilling resistance in E. nutans. PMID:26151364

  5. Nitric oxide induced by polyamines involves antioxidant systems against chilling stress in tomato (Lycopersicon esculentum Mill.) seedling.

    PubMed

    Diao, Qian-Nan; Song, Yong-Jun; Shi, Dong-Mei; Qi, Hong-Yan

    Polyamines (PAs) and nitric oxide (NO) are vital signals in modulating plant response to abiotic stress. However, to our knowledge, studies on the relationship between NO and PAs in response to cold stress in tomato are limited. Accordingly, in this study, we investigated the effects of putrescine (Put) and spermidine (Spd) on NO generation and the function of Spd-induced NO in the tolerance of tomato seedling under chilling stress. Spd increased NO release via the nitric oxide synthase (NOS)-like and nitrate reductase (NR) enzymatic pathways in the seedlings, whereas Put had no such effect. Moreover, H 2 O 2 might act as an upstream signal to stimulate NO production. Both exogenous NO donor (sodium nitroprusside (SNP)) and Spd enhanced chilling tolerance in tomato, thereby protecting the photosynthetic system from damage. Compared to chilling treatment alone, Spd enhanced the gene expressions of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), and their enzyme activities in tomato leaves. However, a scavenger or inhibitor of NO abolished Spd-induced chilling tolerance and blocked the increased expression and activity due to Spd of these antioxidant enzymes in tomato leaves under chilling stress. The results showed that NO induced by Spd plays a crucial role in tomato's response to chilling stress.

  6. Nitric oxide induced by polyamines involves antioxidant systems against chilling stress in tomato (Lycopersicon esculentum Mill.) seedling*#

    PubMed Central

    Diao, Qian-Nan; Song, Yong-Jun; Shi, Dong-Mei; Qi, Hong-Yan

    2016-01-01

    Polyamines (PAs) and nitric oxide (NO) are vital signals in modulating plant response to abiotic stress. However, to our knowledge, studies on the relationship between NO and PAs in response to cold stress in tomato are limited. Accordingly, in this study, we investigated the effects of putrescine (Put) and spermidine (Spd) on NO generation and the function of Spd-induced NO in the tolerance of tomato seedling under chilling stress. Spd increased NO release via the nitric oxide synthase (NOS)-like and nitrate reductase (NR) enzymatic pathways in the seedlings, whereas Put had no such effect. Moreover, H2O2 might act as an upstream signal to stimulate NO production. Both exogenous NO donor (sodium nitroprusside (SNP)) and Spd enhanced chilling tolerance in tomato, thereby protecting the photosynthetic system from damage. Compared to chilling treatment alone, Spd enhanced the gene expressions of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), and their enzyme activities in tomato leaves. However, a scavenger or inhibitor of NO abolished Spd-induced chilling tolerance and blocked the increased expression and activity due to Spd of these antioxidant enzymes in tomato leaves under chilling stress. The results showed that NO induced by Spd plays a crucial role in tomato’s response to chilling stress. PMID:27921397

  7. Sensor & Model Enabled Water Quality & Security Assessment System for Situational Awareness of Water Distribution Networks

    DTIC Science & Technology

    2010-06-01

    Scenario – 12 gallons of readily available toxic substance – pump ($150 rental) – wrench to open a fire hydrant ($10)  One (1) terrorist, or...6 Gallons Water General Comments Aflatoxin 7.6 Potent Carcinogen Aldicarb 1.1 Cycloheximide 2.1 LSD 0.2 Highly Toxic , Psychoactive Mercuric Chloride...Chlorfenvinphos, Formetanate Hydrochloride, Acrolein, Chloropicrin, Sodium chloroacetate, Thyoglycolate medium, Crotoxyphos, Glyphosate , Jimsonweed, Methanol

  8. Source, use, and disposition of water in Florida, 1975

    USGS Publications Warehouse

    Leach, Stanley D.

    1978-01-01

    On the average, 18,420 million gallons of water was withdrawn for use in Florida each day in 1975--an increase of 3,107 million gallons per day (Mgal/d) rate since 1970. The 1975 daily total was made up of 11,502 million gallons of saline water and 6,918 million gallons of freshwater. The saline water supply, largely surface water, was pumped from tidal estuaries. Only 95.3 Mgal/d--less than 1 percent--was obtained from wells. The freshwater supply was almost equally divided between surface water (52 percent) and ground water (48 percent). Virtually all the saline water was used for thermoelectric power generation. Only 63 Mgal/d of saline water was used for all other industrial purposes. The largest user of the freshwater was for irrigation--2,868 Mgal/d. The remaining use of freshwater amounted to 1,698 Mgal/d for thermoelectric power generation; 1 ,146 Mgal/d for public supply; 940 Mgal/d for industrial use other than thermoelectric power generation; and 266 Mgal/d for rural domestic and livestock use. Irrigation, the largest user of freshwater, also is responsible for the greatest consumption, 1,332 Mgal/d or about half the water applied. Included in the quantity of water consumed by irrigation is that part of the conveyance loss made up of evapotranspiration--estimated at 109 Mgal/d. The remainder of the conveyance loss is returned to the ground water reservoir for reuse by seepage from the canals. (Woodard-USGS)

  9. Public-supply water use in Kansas, 1990-2012

    USGS Publications Warehouse

    Kenny, Joan F.

    2014-01-01

    This fact sheet describes water-use data collection and quantities of surface water and groundwater diverted for public supply in Kansas for the years 1990 through 2012. Data used in this fact sheet are from the Kansas Department of Agriculture’s Division of Water Resources and the Kansas Water Office. Water used for public supply represents about 10 percent of all reported water withdrawals in Kansas. Between 1990 and 2012, annual withdrawals for public supply ranged from a low of 121 billion gallons in 1993 to a high of 159 billion gallons in 2012. Differences in annual withdrawals were associated primarily with climatic fluctuations. Six suppliers distributed about one-half of the total water withdrawn for public supply, and nearly three-quarters of the surface water. Surface water represented between 52 and 61 percent of total annual withdrawals for public supply. The proportion of surface water obtained through contracts from Federal reservoirs increased from less than 5 percent in the 1990s to 8 percent in 2011 and 2012. More than 99 percent of the reported water withdrawn for public supply in Kansas in 2012 was metered, which was an increase from 92 percent in 1990. State population increased steadily from 2.5 million people in 1990 to 2.9 million in 2012. Recent estimates indicate that about 95 percent of the total population was served by public water supply; the remainder obtained water from other sources such as private wells. Average per capita water use as calculated for State conservation planning purposes varied by region of the State. The smallest regional average water use for the years 1990–2012 was 98 gallons per person per day in easternmost Kansas, and the largest regional average water use was 274 gallons per person per day in westernmost Kansas.

  10. Tradeoffs between chilling and forcing in satisfying dormancy requirements for Pacific Northwest tree species

    Treesearch

    Constance A. Harrington; Peter J. Gould

    2015-01-01

    Many temperate and boreal tree species have a chilling requirement, that is, they need to experience cold temperatures during fall and winter to burst bud normally in the spring. Results from trials with 11 Pacific Northwest tree species are consistent with the concept that plants can accumulate both chilling and forcing units simultaneously during the dormant season...

  11. Chills in Different Sensory Domains: Frisson Elicited by Acoustical, Visual, Tactile and Gustatory Stimuli

    ERIC Educational Resources Information Center

    Grewe, Oliver; Katzur, Bjorn; Kopiez, Reinhard; Altenmuller, Eckart

    2011-01-01

    "Chills" (frisson manifested as goose bumps or shivers) have been used in an increasing number of studies as indicators of emotions in response to music (e.g., Craig, 2005; Guhn, Hamm, & Zentner, 2007; McCrae, 2007; Panksepp, 1995; Sloboda, 1991). In this study we present evidence that chills can be induced through aural, visual, tactile, and…

  12. An investigation of the effect of rapid slurry chilling on blown pack spoilage of vacuum-packaged beef primals.

    PubMed

    Reid, R; Fanning, S; Whyte, P; Kerry, J; Bolton, D

    2017-02-01

    The aim of this study was to investigate if rapid slurry chilling would retard or prevent blown pack spoilage (BPS) of vacuum-packaged beef primals. Beef primals were inoculated with Clostridium estertheticum subspp. estertheticum (DSMZ 8809), C. estertheticum subspp. laramenise (DSMZ 14864) and C. gasigenes (DSMZ 12272), and vacuum-packaged with and without heat shrinkage (90°C for 3 s). These packs were then subjected to immediate chilling in an ice slurry or using conventional blast chilling systems and stored at 2°C for up to 100 days. The onset and progress of BPS was monitored using the following scale; 0-no gas bubbles in drip; 1-gas bubbles in drip; 2-loss of vacuum; 3-'blown'; 4-presence of sufficient gas inside the packs to produce pack distension and 5-tightly stretched, 'overblown' packs/packs leaking. Rapid slurry chilling (as compared to conventional chilling) did not significantly affect (P > 0.05) the time to the onset or progress of BPS. It was therefore concluded that rapid chilling of vacuum-packaged beef primals, using an ice slurry system, may not be used as a control intervention to prevent or retard blown pack spoilage. This study adds to our growing understanding of blown pack spoilage of vacuum-packaged beef primals and suggests that rapid chilling of vacuum-packaged beef primals is not a control option for the beef industry. The results suggest that neither eliminating the heat shrinkage step nor rapid chilling of vacuum-packaged beef retard the time to blown pack spoilage. © 2016 The Society for Applied Microbiology.

  13. Intercellular Distribution of Glutathione Synthesis in Maize Leaves and Its Response to Short-Term Chilling1

    PubMed Central

    Gómez, Leonardo D.; Vanacker, Hélène; Buchner, Peter; Noctor, Graham; Foyer, Christine H.

    2004-01-01

    To investigate the intercellular control of glutathione synthesis and its influence on leaf redox state in response to short-term chilling, genes encoding γ-glutamylcysteine synthetase (γ-ECS) and glutathione synthetase (GSH-S) were cloned from maize (Zea mays) and specific antibodies produced. These tools were used to provide the first information on the intercellular distribution of γ-ECS and GSH-S transcript and protein in maize leaves, in both optimal conditions and chilling stress. A 2-d exposure to low growth temperatures (chill) had no effect on leaf phenotype, whereas return to optimal temperatures (recovery) caused extensive leaf bleaching. The chill did not affect total leaf GSH-S transcripts but strongly induced γ-ECS mRNA, an effect reversed during recovery. The chilling-induced increase in γ-ECS transcripts was not accompanied by enhanced total leaf γ-ECS protein or extractable activity. In situ hybridization and immunolocalization of leaf sections showed that γ-ECS and GSH-S transcripts and proteins were found in both the bundle sheath (BS) and the mesophyll cells under optimal conditions. Chilling increased γ-ECS transcript and protein in the BS but not in the mesophyll cells. Increased BS γ-ECS was correlated with a 2-fold increase in both leaf Cys and γ-glutamylcysteine, but leaf total glutathione significantly increased only in the recovery period, when the reduced glutathione to glutathione disulfide ratio decreased 3-fold. Thus, while there was a specific increase in the potential contribution of the BS cells to glutathione synthesis during chilling, it did not result in enhanced leaf glutathione accumulation at low temperatures. Return to optimal temperatures allowed glutathione to increase, particularly glutathione disulfide, and this was associated with leaf chlorosis. PMID:15047902

  14. Bud burst timing in Picea abies seedlings as affected by temperature during dormancy induction and mild spells during chilling.

    PubMed

    Granhus, Aksel; Fløistad, Inger Sundheim; Søgaard, Gunnhild

    2009-04-01

    In trees adapted to cold climates, conditions during autumn and winter may influence the subsequent timing of bud burst and hence tree survival during early spring frosts. We tested the effects of two temperatures during dormancy induction and mild spells (MS) during chilling on the timing of bud burst in three Picea abies (L.) Karst. provenances (58-66 degrees N). One-year-old seedlings were induced to become dormant at temperatures of 12 or 21 degrees C applied during 9 weeks of short days (12-h photoperiod). The seedlings were then moved to cold storage and given either continuous chilling at 0.7 degrees C (control), or chilling interrupted by one 14-day MS at either 8 or 12 degrees C. Interruptions with MS were staggered throughout the 175-day chilling period, resulting in 10 MS differing in date of onset. Subsets of seedlings were moved to forcing conditions (12-h photoperiod, 12 degrees C) throughout the chilling period, to assess dormancy status at different timings of the MS treatment. Finally, after 175 days of chilling, timing of bud burst was assessed in a 24-h photoperiod at 12 degrees C (control and MS-treated seedlings). The MS treatment did not significantly affect days to bud burst when given early (after 7-35 chilling days). When MS was given after 49 chilling days or later, the seedlings burst bud earlier than the controls, and the difference increased with increasing length of the chilling period given before the MS. The 12 degrees C MS treatment was more effective than the 8 degrees C MS treatment, and the difference remained constant after the seedlings had received 66 or more chilling days before the MS treatment was applied. In all provenances, a constant temperature of 21 degrees C during dormancy induction resulted in more dormant seedlings (delayed bud burst) than a constant temperature of 12 degrees C, but this did not delay the response to the MS treatment.

  15. Can chilling tolerance of C 4 photosynthesis in Miscanthus be transferred to sugarcane?

    DOE PAGES

    Glowacka, Katarzyna; Ahmed, Aasifuddin; Sharma, Shailendra; ...

    2015-07-29

    Our goal is to investigate whether chilling tolerance of C 4 photosynthesis in Miscanthus can be transferred to sugarcane by hybridization. Net leaf CO 2 uptake (A sat) and we measured the maximum operating efficiency of photosystem II (Ф PSII) in warm conditions (25 °C/20 °C), and then during and following a chilling treatment of 10 °C/5 °C for 11 day in controlled environment chambers.

  16. Water use in Ohio, 1980

    USGS Publications Warehouse

    Eberle, Michael; McClure, J.A.

    1984-01-01

    An estimated 13,389 million gallons of water per day were used in Ohio in 1980, in four major categories of water use. Of this total, 12,645 Mgal/d (million gallons per day) were taken from surface-water sources whereas 744 Mgal/d was ground water. Totals for each category (in Mgal/d) were: thermoelectric power generation, 10,417; self-supplied manufacturing, 1,399; public water supplies, 1,432; and rural domestic and livestock, 141. Additional miscellaneous uses (irrigation, rural commercial, and non-manufacturing industrial) probably totaled about 300 Mgal/d. The five counties that led the state in total water use were: Jefferson, 2,620 Mgal/d; Lucas, 1,150 Mgal/d; Gallia, 1.086 Mgal/d; Cuyahoga, 1,085 Mgal/d; and Lorain, 991 Mgal/d. These counties, in the same order, were the top five surface-water users. (USGS)

  17. Pre-rigor temperature control of Chinese yellow cattle carcasses to 12-18 °C during chilling improves beef tenderness.

    PubMed

    Liu, Yuqing; Mao, Yanwei; Zhang, Yimin; Liang, Rongrong; Wang, Renhuan; Zhu, Lixian; Meng, Xianyong; Luo, Xin

    2015-02-01

    This study evaluates the effects of pre-rigor temperature control on quality traits of Chinese yellow cattle M. longissimus lumborum (LL). One stepwise chilling (SC) treatment was used on one half-carcass, involved a fast chilling (-11 ± 1 °C;0.5 m/s) for 2h, then the refrigeration was stopped to hold a core temperature of 12-18 °C until 10h postmortem, followed by a 1 ± 1 °C chilling (0.5 m/s) to 48h postmortem. The other half-carcass was conventional chilled at 1 ± 1 °C (0.5 m/s) until 48h as control chilling (CC). Quality attributes were evaluated at 1, 7 and 14 days. The SC treatment resulted in decreased WBSF and increased myofibril fragmentation index compared with control. SC-treated LL at 7d postmortem had a lower WBSF than those of CC-treated at 14d. This pre-rigor temperature controlled chilling is a realistic alternative for the beef industry in China to ensure adequate tenderness and shorten aging time.

  18. Quality and safety of fish curry processed by sous vide cook chilled and hot filled technology process during refrigerated storage.

    PubMed

    Shakila, R Jeya; Raj, B Edwin; Felix, N

    2012-06-01

    Fish curry, a traditional Indian dish was prepared from farmed fish Cobia (Rachycentron canadum), packaged by two different cook-chill processes namely, sous vide cook chilled and hot filled technology and held at 2 °C. Biochemical composition revealed that fish curry contained 5% protein and 6% fat. Omega-3 fatty acids, eicosapentaenoic acid (EPA) retained 55.44% while docosahexaenoic acid (DHA) retained 29% during cook-chilling process. The major fatty acids in fish curry were C18:2, C12:0, C16:0 and C18:1. Shelf-life of sous vide cook chilled and hot filled technology processed fish curry were 8 and 12 weeks, respectively. Total bacterial counts were detected after 4 weeks and 12 weeks in sous vide cook chilled and hot filled technology processes, respectively. Total staphylococci were detected in sous vide cook chilled and hot filled technology processed cobia fish curry after 4 and 12 weeks, respectively. Total bacilli, anaerobic sulfite reducing clostridia, Salmonella, and lactic acid bacteria were absent. Hot filled technology process was more efficient and could be applied for chilled fish curry preservation for 12 weeks without any safety problems.

  19. Hydrogeology and ground-water resources of Ngatik Island, Sapwuahfik Atoll, State of Pohnpei, Federated States of Micronesia

    USGS Publications Warehouse

    Anthony, S.S.

    1996-01-01

    The lens of fresh ground water on Ngatik Island contains about 509 million gallons of potable water. Recharge to the freshwater lens is estimated to be 990,000 gallons per day on the basis of an estimated mean annual rainfall of 160 inches. The long-term average sustainable yield is estimated to be about 280,000 gallons per day. The estimated demand for water is about 30,000 gallons per day. Shallow-vertical-tube-wells or horizontal-infiltration wells could be used to develop the freshwater lens. The effect of development on the lens can be determined by monitoring the chloride concentration of water from a network of shallow-water-table wells and deep driven wells. The ground-water resource on Ngatik can be used in conjunction with individual rainwater-catchment systems: rainwater can be used for drinking and cooking and ground water can be used for sanitary purposes. When rainwater- catchment systems fail during extended dry periods, ground water would be available to meet the total demand.

  20. Hydrogeology and ground-water resources of Pingelap Island, Pingelap Atoll, State of Pohnpei, Federated States of Micronesia

    USGS Publications Warehouse

    Anthony, S.S.

    1996-01-01

    The lens of fresh ground water on Pingelap Island, Pingelap Atoll contains about 384 million gallons of potable water. Recharge to the freshwater lens is estimated to be 230,000 gallons per day on the basis of an average annual rainfall of 160 inches. The long-term average sustainable yield is estimated to be about 69,000 gallons per day. The estimated demand for water is about 50,000 gallons per day. Shallow-vertical-tube wells or horizontal-infiltration wells could be used to develop the freshwater lens. The effect of development on the lens can be determined by monitoring the chloride concentration of water from a network of shallow-water-table wells and deep driven wells. The ground-water resource on Pingelap can be used in conjunction with individual rainwater-catchment systems: rainwater can be used for drinking and cooking, and ground water can be used for sanitary uses. When rainwater-catchment systems fail during extended dry periods, ground water would be available to meet the total demand.

  1. Hydrogeology and ground-water resources of Kahlap Island, Mwoakilloa Atoll, State of Pohnpei, Federated States of Micronesia

    USGS Publications Warehouse

    Anthony, S.S.

    1996-01-01

    The lens of fresh ground water on Kahlap Island contains about 21.3 million gallons of potable water. Recharge to the freshwater lens is estimated to be 125,000 gallons per day on the basis of a mean annual rainfall of 120 inches. The long-term average sustainable yield is estimated to be about 17,300 gallons per day. The estimated demand for water is about 13,500 gallons per day. Shallow-vertical-tube wells or horizontal- infiltration wells could be used to develop the freshwater lens. The effect of development on the lens can be determined by monitoring the chloride concentration of water from a network of shallow- water-table and deep driven wells. The ground- water resource on Kahlap can be used in conjunc- tion with individual rainwater-catchment systems: rainwater can be used for drinking and cooking, and ground water can be used for sanitary uses. When rainwater-catchment systems fail during extended dry periods, ground water would be available to meet the total demand.

  2. Regulation of respiration and the oxygen diffusion barrier in soybean protect symbiotic nitrogen fixation from chilling-induced inhibition and shoots from premature senescence.

    PubMed

    van Heerden, Philippus D R; Kiddle, Guy; Pellny, Till K; Mokwala, Phatlane W; Jordaan, Anine; Strauss, Abram J; de Beer, Misha; Schlüter, Urte; Kunert, Karl J; Foyer, Christine H

    2008-09-01

    Symbiotic nitrogen fixation is sensitive to dark chilling (7 degrees C-15 degrees C)-induced inhibition in soybean (Glycine max). To characterize the mechanisms that cause the stress-induced loss of nodule function, we examined nodule structure, carbon-nitrogen interactions, and respiration in two soybean genotypes that differ in chilling sensitivity: PAN809 (PAN), which is chilling sensitive, and Highveld Top (HT), which is more chilling resistant. Nodule numbers were unaffected by dark chilling, as was the abundance of the nitrogenase and leghemoglobin proteins. However, dark chilling decreased nodule respiration rates, nitrogenase activities, and NifH and NifK mRNAs and increased nodule starch, sucrose, and glucose in both genotypes. Ureide and fructose contents decreased only in PAN nodules. While the chilling-induced decreases in nodule respiration persisted in PAN even after return to optimal temperatures, respiration started to recover in HT by the end of the chilling period. The area of the intercellular spaces in the nodule cortex and infected zone was greatly decreased in HT after three nights of chilling, an acclimatory response that was absent from PAN. These data show that HT nodules are able to regulate both respiration and the area of the intercellular spaces during chilling and in this way control the oxygen diffusion barrier, which is a key component of the nodule stress response. We conclude that chilling-induced loss of symbiotic nitrogen fixation in PAN is caused by the inhibition of respiration coupled to the failure to regulate the oxygen diffusion barrier effectively. The resultant limitations on nitrogen availability contribute to the greater chilling-induced inhibition of photosynthesis in PAN than in HT.

  3. Oxidative Stress Associated with Chilling Injury in Immature Fruit: Postharvest Technological and Biotechnological Solutions.

    PubMed

    Valenzuela, Juan Luis; Manzano, Susana; Palma, Francisco; Carvajal, Fátima; Garrido, Dolores; Jamilena, Manuel

    2017-07-08

    Immature, vegetable-like fruits are produced by crops of great economic importance, including cucumbers, zucchini, eggplants and bell peppers, among others. Because of their high respiration rates, associated with high rates of dehydration and metabolism, and their susceptibility to chilling injury (CI), vegetable fruits are highly perishable commodities, requiring particular storage conditions to avoid postharvest losses. This review focuses on the oxidative stress that affects the postharvest quality of vegetable fruits under chilling storage. We define the physiological and biochemical factors that are associated with the oxidative stress and the development of CI symptoms in these commodities, and discuss the different physical, chemical and biotechnological approaches that have been proposed to reduce oxidative stress while enhancing the chilling tolerance of vegetable fruits.

  4. Oxidative Stress Associated with Chilling Injury in Immature Fruit: Postharvest Technological and Biotechnological Solutions

    PubMed Central

    Valenzuela, Juan Luis; Manzano, Susana; Palma, Francisco; Carvajal, Fátima; Jamilena, Manuel

    2017-01-01

    Immature, vegetable-like fruits are produced by crops of great economic importance, including cucumbers, zucchini, eggplants and bell peppers, among others. Because of their high respiration rates, associated with high rates of dehydration and metabolism, and their susceptibility to chilling injury (CI), vegetable fruits are highly perishable commodities, requiring particular storage conditions to avoid postharvest losses. This review focuses on the oxidative stress that affects the postharvest quality of vegetable fruits under chilling storage. We define the physiological and biochemical factors that are associated with the oxidative stress and the development of CI symptoms in these commodities, and discuss the different physical, chemical and biotechnological approaches that have been proposed to reduce oxidative stress while enhancing the chilling tolerance of vegetable fruits. PMID:28698472

  5. Impact of eliminating the carcass chilling step in the production of pre-cooked chicken breast meat

    USDA-ARS?s Scientific Manuscript database

    Pre-cooked chicken meat provides convenience to consumers and is growing in popularity globally. Poultry meat destined for pre-cooked meat products typically undergoes chilling on the carcass skeletal frame and deboning before cooking. However, compared to immersion chilling with antimicrobial, cook...

  6. Relevance of calpain and calpastatin activity for texture in super-chilled and ice-stored Atlantic salmon (Salmo salar L.) fillets.

    PubMed

    Gaarder, M Ø; Bahuaud, D; Veiseth-Kent, E; Mørkøre, T; Thomassen, M S

    2012-05-01

    The aim of the present experiment was to measure the protease activities in ice-stored and super-chilled Atlantic salmon (Salmo salar) fillets, and the effect on texture. Pre-rigour fillets of Atlantic salmon were either super-chilled to a core temperature of -1.5°C or directly chilled on ice prior to 144h of ice storage. A significantly higher calpain activity was detected in the super-chilled fillets at 6h post-treatment compared to the ice-stored fillets and followed by a significant decrease below its initial level, while the calpastatin activity was significantly lower for the super-chilled fillets at all time points. The cathepsin B+L and B activities increased significantly with time post-treatment; however, no significant differences were observed at any time points between the two treatments. For the ice stored fillets, the cathepsin L activity decreased significantly from 6 to 24h post-treatment and thereafter increased significantly to 144h post-treatment. There was also a significantly lower cathepsin L activity in the super-chilled fillets at 0h post-treatment. No significant difference in breaking force was detected; however, a significant difference in maximum compression (Fmax) was detected at 24h post-treatment with lower Fmax in the super-chilled fillets. This experiment showed that super-chilling had a significant effect on the protease activities and the ATP degradation in salmon fillets. The observed difference in Fmax may be a result of these observed differences, and may indicate a softening of the super-chilled salmon muscle at 24h post-treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Changes in Isozyme Profiles of Catalase, Peroxidase, and Glutathione Reductase during Acclimation to Chilling in Mesocotyls of Maize Seedlings.

    PubMed Central

    Anderson, M. D.; Prasad, T. K.; Stewart, C. R.

    1995-01-01

    The response of antioxidants to acclimation and chilling in various tissues of dark-grown maize (Zea mays L.) seedlings was examined in relation to chilling tolerance and protection from chilling-induced oxidative stress. Chilling caused an accumulation of H2O2 in both the coleoptile + leaf and the mesocotyl (but not roots), and acclimation prevented this accumulation. None of the antioxidant enzymes were significantly affected by acclimation or chilling in the coleoptile + leaf or root. However, elevated levels of glutathione in acclimated seedlings may contribute to an enhanced ability to scavenge H2O2 in the coleoptile + leaf. In the mesocotyl (visibly most susceptible to chilling), catalase3 was elevated in acclimated seedlings and may represent the first line of defense from mitochondria-generated H2O2. Nine of the most prominent peroxidase isozymes were induced by acclimation, two of which were located in the cell wall, suggesting a role in lignification. Lignin content was elevated in mesocotyls of acclimated seedlings, likely improving the mechanical strength of the mesocotyl. One cytosolic glutathione reductase isozyme was greatly decreased in acclimated seedlings, whereas two others were elevated, possibly resulting in improved effectiveness of the enzyme at low temperature. When taken together, these responses to acclimation illustrate the potential ways in which chilling tolerance may be improved in preemergent maize seedlings. PMID:12228666

  8. Convective and radiative components of wind chill in sheep: Estimation from meteorological records

    NASA Astrophysics Data System (ADS)

    Brown, D.; Mount, L. E.

    1987-06-01

    Wind chill is defined as the excess of sensible heat loss over what would occur at zero wind speed with other conditions unchanged. Wind chill can be broken down into a part that is determined by air temperature and a radiative part that comprises wind-dependent effects on additional long-wave radiative exchange and on solar radiation (by reducing solar warming). Radiative exchange and gain from solar radiation are affected by changes that are produced by wind in both surface and fleece insulations. Coefficients are derived for (a) converting the components of sensible heat exchange (air-temperature-dependent including both convective and associated long-wave radiative, additional long-wave radiative and solar) into the components of the total heat loss that are associated with wind and (b) for calculating equivalent air temperature changes. The coefficients contain terms only in wind speed, wetting of the fleece and fleece depth; these determine the external insulation. Calculation from standard meteorological records, using Plymouth and Aberdeen in 1973 as examples, indicate that in April September 1973 at Plymouth reduction in effective solar warming constituted 28% of the 24-h total wind chill, and 7% in the other months of the year combined; at Aberdeen the corresponding percentages were 25% and 6%. Mean hour-of-day estimates for the months of April and October showed that at midday reduction in solar warming due to wind rose to the order of half the air-temperature-dependent component of wind chill, with a much smaller effect in January. For about six hours at midday in July reduction in solar warming due to wind was similar in magnitude to the air-temperature-dependent component. It is concluded that realistic estimates of wind chill cannot be obtained unless the effect of solar radiation is taken into account. Failure to include solar radiation results not only in omitting solar warming but also in omitting the effects of wind in reducing that warming. The

  9. Annual water-resources review, White Sands Missile Range, New Mexico

    USGS Publications Warehouse

    Cruz, R.R.

    1982-01-01

    Ground-water data were collected in 1981 at White Sands Missile Range in south-central New Mexico. The total amount of water pumped at White Sands Missile Range was approximately 59 million gallons less than in 1980; however the five supply wells in the Range areas adjacent to the Post Headquarters area produced approximately 16.2 million gallons more in 1981 than in 1980. Depth-to-water measurements in the Post Headquarters supply wells continued to show seasonal declines. (USGS)

  10. Biochemical, sensory and microbiological attributes of bream (Megalobrama amblycephala) during partial freezing and chilled storage.

    PubMed

    Song, Yongling; Luo, Yongkang; You, Juan; Shen, Huixing; Hu, Sumei

    2012-01-15

    Bream is one of the main farmed freshwater fish species in China. This study aimed to examine the nucleotide degradation of bream during partial freezing and chilled storage and to assess the possible usefulness of nucleotide ratios (K, Ki, H, P, Fr and G values) as freshness indices in comparison with sensory assessment and total viable counts. Total viable counts were 5.74 and 4.66 log(colony-forming units g(-1)) on the day of sensory rejection under chilled storage and partial freezing storage respectively. The inosine 5-monophosphate decrease and inosine increase were faster in chilled storage than in partial freezing storage. Hypoxanthine levels increased continuously with time under both storage regimes. Among the nucleotide ratios, the K, Ki, P, G and Fr values were superior to the H value and provided useful freshness indicators for both storage conditions. Bream in chilled storage were sensorially acceptable only up to 10 days, compared with 33 days for bream in partial freezing storage. Partial freezing delayed the nucleotide degradation of bream. Copyright © 2011 Society of Chemical Industry.

  11. Transcriptome Dynamics in Mango Fruit Peel Reveals Mechanisms of Chilling Stress

    PubMed Central

    Sivankalyani, Velu; Sela, Noa; Feygenberg, Oleg; Zemach, Hanita; Maurer, Dalia; Alkan, Noam

    2016-01-01

    Cold storage is considered the most effective method for prolonging fresh produce storage. However, subtropical fruit is sensitive to cold. Symptoms of chilling injury (CI) in mango include red and black spots that start from discolored lenticels and develop into pitting. The response of ‘Keitt’ mango fruit to chilling stress was monitored by transcriptomic, physiological, and microscopic analyses. Transcriptomic changes in the mango fruit peel were evaluated during optimal (12°C) and suboptimal (5°C) cold storage. Two days of chilling stress upregulated genes involved in the plant stress response, including those encoding transmembrane receptors, calcium-mediated signal transduction, NADPH oxidase, MAP kinases, and WRKYs, which can lead to cell death. Indeed, cell death was observed around the discolored lenticels after 19 days of cold storage at 5°C. Localized cell death and cuticular opening in the lumen of discolored lenticels were correlated with increased general decay during shelf-life storage, possibly due to fungal penetration. We also observed increased phenolics accumulation around the discolored lenticels, which was correlated with the biosynthesis of phenylpropanoids that were probably transported from the resin ducts. Increased lipid peroxidation was observed during CI by both the biochemical malondialdehyde method and a new non-destructive luminescent technology, correlated to upregulation of the α-linolenic acid oxidation pathway. Genes involved in sugar metabolism were also induced, possibly to maintain osmotic balance. This analysis provides an in-depth characterization of mango fruit response to chilling stress and could lead to the development of new tools, treatments and strategies to prolong cold storage of subtropical fruit. PMID:27812364

  12. α-Tocopherol Is Essential for Acquired Chill-Light Tolerance in the Cyanobacterium Synechocystis sp. Strain PCC 6803▿ †

    PubMed Central

    Yang, Yang; Yin, Chuntao; Li, Weizhi; Xu, Xudong

    2008-01-01

    Unlike Escherichia coli, the cyanobacterium Synechocystis sp. strain PCC 6803 is insensitive to chill (5°C) in the dark but rapidly losses viability when exposed to chill in the light (100 μmol photons m−2 s−1). Preconditioning at a low temperature (15°C) greatly enhances the chill-light tolerance of Synechocystis sp. strain PCC 6803. This phenomenon is called acquired chill-light tolerance (ACLT). Preconditioned wild-type cells maintained a substantially higher level of α-tocopherol after exposure to chill-light stress. Mutants unable to synthesize α-tocopherol, such as slr1736, slr1737, slr0089, and slr0090 mutants, almost completely lost ACLT. When exposed to chill without light, these mutants showed no or a slight difference from the wild type. When complemented, the slr0089 mutant regained its ACLT. Copper-regulated expression of slr0090 from PpetE controlled the level of α-tocopherol and ACLT. We conclude that α-tocopherol is essential for ACLT of Synechocystis sp. strain PCC 6803. The role of α-tocopherol in ACLT may be based largely on a nonantioxidant activity that is not possessed by other tocopherols or pathway intermediates. PMID:18165303

  13. Estimated water use and availability in the South Coastal Drainage Basin, southern Rhode Island, 1995-99

    USGS Publications Warehouse

    Wild, Emily C.; Nimiroski, Mark T.

    2005-01-01

    The South Coastal Drainage Basin includes approximately 59.14 square miles in southern Rhode Island. The basin was divided into three subbasins to assess the water use and availability: the Saugatucket, Point Judith Pond, and the Southwestern Coastal Drainage subbasins. Because there is limited information on the ground-water system in this basin, the water use and availability evaluations for these subbasins were derived from delineated surface-water drainage areas. An assessment was completed to estimate water withdrawals, use, and return flow over a 5-year study period from 1995 through 1999 in the basin. During the study period, one major water supplier in the basin withdrew an average of 0.389 million gallons per day from the sand and gravel deposits. Most of the potable water is imported (about 2.152 million gallons per day) from the adjacent Pawcatuck Basin to the northwest. The estimated water withdrawals from the minor water suppliers, which are all in Charlestown, during the study period were 0.064 million gallons per day. The self-supplied domestic, industrial, commercial, and agricultural withdrawals from the basin were 0.574 million gallons per day. Water use in the basin was 2.874 million gallons per day. The average return flow in the basin was 1.190 million gallons per day, which was entirely from self-disposed water users. In this basin, wastewater from service collection areas was exported (about 1.139 million gallons per day) to the Narragansett Bay Drainage Basin for treatment and discharge. During times of little to no recharge, in the form of precipitation, the surface- and ground-water system flows are from storage primarily in the stratified sand and gravel deposits, although there is flow moving through the till deposits at a slower rate. The ground water discharging to the streams, during times of little to no precipitation, is referred to as base flow. The PART program, a computerized hydrograph-separation application, was used at the

  14. Effects of aluminum and copper chill on mechanical properties and microstructures of Cu-Zn-Al alloys with sand casting

    NASA Astrophysics Data System (ADS)

    Ardhyananta, Hosta; Wibisono, Alvian Toto; Ramadhani, Mavindra; Widyastuti, Farid, Muhammad; Gumilang, Muhammad Shena

    2018-04-01

    Cu-Zn-Al alloy is one type of brass, which has high strength and high corrosion resistant. It has been applied on ship propellers and marine equipment. In this research, the addition of aluminum (Al) with variation of 1, 2, 3, 4% aluminum to know the effect on mechanical properties and micro structure at casting process using a copper chill and without copper chill. This alloy is melted using furnace in 1100°C without holding. Then, the molten metal is poured into the mold with copper chill and without copper chill. The speciment of Cu-Zn-Al alloy were chracterized by using Optical Emission Spectroscopy (OES), Metallography Test, X-Ray Diffraction (XRD), Hardness Test of Rockwell B and Charpy Impact Test. The result is the addition of aluminum and the use of copper chill on the molds can reduce the grain size, increases the value of hardness and impact.

  15. Internal development of vegetative buds of Norway spruce trees in relation to accumulated chilling and forcing temperatures.

    PubMed

    Viherä-Aarnio, Anneli; Sutinen, Sirkka; Partanen, Jouni; Häkkinen, Risto

    2014-05-01

    The timing of budburst of temperate trees is known to be controlled by complicated interactions of temperature and photoperiod. To improve the phenological models of budburst, better knowledge of the internal bud development preceding budburst in relation to environmental cues is needed. We studied the effect of accumulated chilling and forcing temperatures on the internal development of vegetative buds preceding budburst in Norway spruce [Picea abies (L.) Karst.]. Branches from 17-year-old trees of southern Finnish origin were transferred eight times at 1- to 2-week intervals from October to December 2007 from the field at Punkaharju (61°48'N, 29°20'E) to the greenhouse with forcing conditions (day length 12 h, +20 °C). After seven different durations of forcing, the developmental phase and primordial shoot growth of the buds were analysed at the stereomicroscopic level. Air temperature was recorded hourly throughout the study period. The accumulated chilling unit sum had a significant effect on the temperature sum that was required to attain a certain developmental phase; a higher amount of chilling required a lower amount of forcing. The variation in the rate of development of different buds within each sample branch in relation to the chilling unit and forcing temperature sum was low. Regarding primordial shoot growth, there was also an inverse relation between accumulated chilling and forcing, i.e., a higher accumulated chilling unit sum before forcing required a lower temperature sum to initiate primordial shoot growth and resulted in a stronger effect of accumulated forcing. A second-order regression model with an interaction of chilling and forcing explained the variation of primordial shoot growth with high precision (R(2) = 0.88). However, further studies are required to determine the final parameter values to be used in phenological modelling. © The Author 2014. Published by Oxford University Press. All rights reserved.

  16. Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation

    PubMed Central

    Zhang, Bo; Tieman, Denise M.; Jiao, Chen; Xu, Yimin; Chen, Kunsong; Fei, Zhangjun; Giovannoni, James J.; Klee, Harry J.

    2016-01-01

    Commercial tomatoes are widely perceived by consumers as lacking flavor. A major part of that problem is a postharvest handling system that chills fruit. Low-temperature storage is widely used to slow ripening and reduce decay. However, chilling results in loss of flavor. Flavor-associated volatiles are sensitive to temperatures below 12 °C, and their loss greatly reduces flavor quality. Here, we provide a comprehensive view of the effects of chilling on flavor and volatiles associated with consumer liking. Reduced levels of specific volatiles are associated with significant reductions in transcripts encoding key volatile synthesis enzymes. Although expression of some genes critical to volatile synthesis recovers after a return to 20 °C, some genes do not. RNAs encoding transcription factors essential for ripening, including RIPENING INHIBITOR (RIN), NONRIPENING, and COLORLESS NONRIPENING are reduced in response to chilling and may be responsible for reduced transcript levels in many downstream genes during chilling. Those reductions are accompanied by major changes in the methylation status of promoters, including RIN. Methylation changes are transient and may contribute to the fidelity of gene expression required to provide maximal beneficial environmental response with minimal tangential influence on broader fruit developmental biology. PMID:27791156

  17. The fate of Salmonella Typhimurium and Escherichia coli O157 on hot boned versus conventionally chilled beef.

    PubMed

    Reid, Rachael; Fanning, Séamus; Whyte, Paul; Kerry, Joe; Bolton, Declan

    2017-04-01

    This study investigated the fate of Salmonella Typhimurium and Escherichia coli O157 on hot boned versus conventionally chilled beef. Beef samples were individually inoculated with S. Typhimurium ATCC 14028, S. Typhimurium 844, E. coli O157 EDL 933 or E. coli T13. Half the samples were subject to the same time-temperature chilling profile used for conventionally chilling beef carcasses while the other half was subject to hot boned conditions. The surface pH (5.5) and a w (0.95 to 0.97) were stable. S. Typhimurium and E. coli O157 counts, which decreased by up to 1.0 and 1.5log 10 cfucm -2 , respectively, were statistically similar (P>0.05), regardless of the chilling regime applied, with the exception of E. coli O157 EDL 933, where the counts on hot boned beef were significantly (P<0.05) higher. It was concluded that any decrease in pathogenic bacteria during beef chilling may be significantly (P<0.05) less for hot boned beef depending on the bacterial strain. Hot boning may therefore result in an increased risk to the consumer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation.

    PubMed

    Zhang, Bo; Tieman, Denise M; Jiao, Chen; Xu, Yimin; Chen, Kunsong; Fei, Zhangjun; Giovannoni, James J; Klee, Harry J

    2016-11-01

    Commercial tomatoes are widely perceived by consumers as lacking flavor. A major part of that problem is a postharvest handling system that chills fruit. Low-temperature storage is widely used to slow ripening and reduce decay. However, chilling results in loss of flavor. Flavor-associated volatiles are sensitive to temperatures below 12 °C, and their loss greatly reduces flavor quality. Here, we provide a comprehensive view of the effects of chilling on flavor and volatiles associated with consumer liking. Reduced levels of specific volatiles are associated with significant reductions in transcripts encoding key volatile synthesis enzymes. Although expression of some genes critical to volatile synthesis recovers after a return to 20 °C, some genes do not. RNAs encoding transcription factors essential for ripening, including RIPENING INHIBITOR (RIN), NONRIPENING, and COLORLESS NONRIPENING are reduced in response to chilling and may be responsible for reduced transcript levels in many downstream genes during chilling. Those reductions are accompanied by major changes in the methylation status of promoters, including RIN Methylation changes are transient and may contribute to the fidelity of gene expression required to provide maximal beneficial environmental response with minimal tangential influence on broader fruit developmental biology.

  19. Geohydrology, water quality, and simulation of ground-water flow in the vicinity of a former waste-oil refinery near Westville, Indiana, 1997-2000

    USGS Publications Warehouse

    Duwelius, Richard F.; Yeskis, Douglas J.; Wilson, John T.; Robinson, Bret A.

    2002-01-01

    A three-dimensional, four layer groundwater- flow model was constructed and calibrated to match ground-water levels and streamflow measured during December 1997. The model was used to simulate possible mechanisms of contaminant release, the effect of increased pumpage from water-supply wells, and pumping at the leading edge of the plume as a possible means of remediation. Based on simulation of threewaste-oil lagoons, a vertical hydraulic conductivity of 0.2 feet per day was required to move contaminants into the bottom layer of the model at a constant leakage rate of about 98 gallons per minute. Simulations of a disposal well in layer 3 of the model indicated an injection rate of 50 gallons per minute was necessary to spread contaminants vertically in the aquifer. Simulated pumping rates of about 300 and 1,000 gallons per minute were required for watersupply wells at the Town of Westville and the Westville Correctional Facility to draw water from the plume of 1,4-dioxane. Simulated pumping from hypothetical wells at the leading edge of the plume indicated that three wells, each pumping 25 gallons per minute from model layer 3, would capture the plume of 1,4-dioxane.

  20. A Simple Algorithm for Predicting Bacteremia Using Food Consumption and Shaking Chills: A Prospective Observational Study.

    PubMed

    Komatsu, Takayuki; Takahashi, Erika; Mishima, Kentaro; Toyoda, Takeo; Saitoh, Fumihiro; Yasuda, Akari; Matsuoka, Joe; Sugita, Manabu; Branch, Joel; Aoki, Makoto; Tierney, Lawrence; Inoue, Kenji

    2017-07-01

    Predicting the presence of true bacteremia based on clinical examination is unreliable. We aimed to construct a simple algorithm for predicting true bacteremia by using food consumption and shaking chills. A prospective multicenter observational study. Three hospital centers in a large Japanese city. In total, 1,943 hospitalized patients aged 14 to 96 years who underwent blood culture acquisitions between April 2013 and August 2014 were enrolled. Patients with anorexia-inducing conditions were excluded. We assessed the patients' oral food intake based on the meal immediately prior to the blood culture with definition as "normal food consumption" when >80% of a meal was consumed and "poor food consumption" when <80% was consumed. We also concurrently evaluated for a history of shaking chills. We calculated the statistical characteristics of food consumption and shaking chills for the presence of true bacteremia, and subsequently built the algorithm by using recursive partitioning analysis. Among 1,943 patients, 223 cases were true bacteremia. Among patients with normal food consumption, without shaking chills, the incidence of true bacteremia was 2.4% (13/552). Among patients with poor food consumption and shaking chills, the incidence of true bacteremia was 47.7% (51/107). The presence of poor food consumption had a sensitivity of 93.7% (95% confidence interval [CI], 89.4%-97.9%) for true bacteremia, and the absence of poor food consumption (ie, normal food consumption) had a negative likelihood ratio (LR) of 0.18 (95% CI, 0.17-0.19) for excluding true bacteremia, respectively. Conversely, the presence of the shaking chills had a specificity of 95.1% (95% CI, 90.7%-99.4%) and a positive LR of 4.78 (95% CI, 4.56-5.00) for true bacteremia. A 2-item screening checklist for food consumption and shaking chills had excellent statistical properties as a brief screening instrument for predicting true bacteremia. © 2017 Society of Hospital Medicine

  1. Water Use and Management in the Bakken Shale Oil Play in North Dakota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horner, R. M.; Harto, C. B.; Jackson, R. B.

    2016-03-15

    Oil and natural gas development in the Bakken shale play of North Dakota has grown substantially since 2008. This study provides a comprehensive overview and analysis of water quantity and management impacts from this development by (1) estimating water demand for hydraulic fracturing in the Bakken from 2008 to 2012; (2) compiling volume estimates for maintenance water, or brine dilution water; (3) calculating water intensities normalized by the amount of oil produced, or estimated ultimate recovery (EUR); (4) estimating domestic water demand associated with the large oil services population; (5) analyzing the change in wastewater volumes from 2005 to 2012;more » and (6) examining existing water sources used to meet demand. Water use for hydraulic fracturing in the North Dakota Bakken grew 5-fold from 770 million gallons in 2008 to 4.3 billion gallons in 2012. First-year wastewater volumes grew in parallel, from an annual average of 1 135 000 gallons per well in 2008 to 2 905 000 gallons in 2012, exceeding the mean volume of water used in hydraulic fracturing and surpassing typical 4-year wastewater totals for the Barnett, Denver, and Marcellus basins. Surprisingly, domestic water demand from the temporary oilfield services population in the region may be comparable to the regional water demand from hydraulic fracturing activities. Existing groundwater resources are inadequate to meet the demand for hydraulic fracturing, but there appear to be adequate surface water resources, provided that access is available.« less

  2. Water Use and Management in the Bakken Shale Oil Play in North Dakota.

    PubMed

    Horner, R M; Harto, C B; Jackson, R B; Lowry, E R; Brandt, A R; Yeskoo, T W; Murphy, D J; Clark, C E

    2016-03-15

    Oil and natural gas development in the Bakken shale play of North Dakota has grown substantially since 2008. This study provides a comprehensive overview and analysis of water quantity and management impacts from this development by (1) estimating water demand for hydraulic fracturing in the Bakken from 2008 to 2012; (2) compiling volume estimates for maintenance water, or brine dilution water; (3) calculating water intensities normalized by the amount of oil produced, or estimated ultimate recovery (EUR); (4) estimating domestic water demand associated with the large oil services population; (5) analyzing the change in wastewater volumes from 2005 to 2012; and (6) examining existing water sources used to meet demand. Water use for hydraulic fracturing in the North Dakota Bakken grew 5-fold from 770 million gallons in 2008 to 4.3 billion gallons in 2012. First-year wastewater volumes grew in parallel, from an annual average of 1,135,000 gallons per well in 2008 to 2,905,000 gallons in 2012, exceeding the mean volume of water used in hydraulic fracturing and surpassing typical 4-year wastewater totals for the Barnett, Denver, and Marcellus basins. Surprisingly, domestic water demand from the temporary oilfield services population in the region may be comparable to the regional water demand from hydraulic fracturing activities. Existing groundwater resources are inadequate to meet the demand for hydraulic fracturing, but there appear to be adequate surface water resources, provided that access is available.

  3. Identification of Differentially Expressed Genes in Chilling-Induced Potato (Solanum tuberosum L.); a Data Analysis Study.

    PubMed

    Koc, I; Vatansever, R; Ozyigit, I I; Filiz, E

    2015-10-01

    Cold stress, as chilling (<20 °C) or freezing (<0 °C), is one of the frequently exposed stresses in cultivated plants like potato. Under cold stress, plants differentially modulate their gene expression to develop a cold tolerance/acclimation. In the present study, we aimed to identify the overall gene expression profile of chilling-stressed (+4 °C) potato at four time points (4, 8, 12, and 48 h), with a particular emphasis on the genes related with transcription factors (TFs), phytohormones, lipid metabolism, signaling pathway, and photosynthesis. A total of 3504 differentially expressed genes (DEGs) were identified at four time points of chilling-induced potato, of which 1397 were found to be up-regulated while 2107 were down-regulated. Heatmap showed that genes were mainly up-regulated at 4-, 8-, and 12-h time points; however, at 48-h time point, they inclined to down-regulate. Seventy five up-regulated TF genes were identified from 37 different families/groups, including mainly from bHLH, WRKY, CCAAT-binding, HAP3, and bZIP families. Protein kinases and calcium were major signaling molecules in cold-induced signaling pathway. A collaborated regulation of phytohormones was observed in chilling-stressed potato. Lipid metabolisms were regulated in a way, highly probably, to change membrane composition to avoid cold damage and render in signaling. A down-regulated gene expression profile was observed in photosynthesis pathway, probably resulting from chilling-induced reduced enzyme activity or light-triggered ROSs damage. The findings of this study will be a valuable theoretical knowledge in terms of understanding the chilling-induced tolerance mechanisms in cultivated potato plants as well as in other Solanum species.

  4. Ground water in the Piedmont upland of central Maryland

    USGS Publications Warehouse

    Richardson, Claire A.

    1982-01-01

    This report, describing ground-water occurrence in a 130-square-mile area of the central Maryland Piedmont, was originally designed for use by the U.S. Environmental Protection Agency in replying to a request for designation of the aquifers to be the sole or principal source of ground water. However, the information contained in the report is pertinent to other crystalline-rock areas as well. The study area is underlain chiefly by crystalline rocks and partly by unaltered sandstones and siltstones. The ground water is derived from local precipitation and generally occurs under water-table conditions. Its movement is restricted by the lack of interconnected openings, and most ground water occurs within 300 feet of the land surface. Hydrographs indicate no long-term change in ground-water storage. A few wells yield more than 100 gallons per minute, but about 70 percent of 286 inventoried wells yield 10 gallons per minute or less; most specific capacities are less than 1.0 gallon per minute per foot. The ground-water quality is generally satisfactory without treatment, and there are no known widespread pollution problems. Estimated daily figures on ground-water use are as follows: 780,000 gallons for domestic purposes; 55,000, for commercial purposes; and 160,000, for public supply. Although part of the area is served by an existing surface-water supply and could be served by possible extension of it and of other public-supply water mains, much of the rural population is dependent on the ground water available from private wells tapping the single aquifer that underlies any given location. Neither the ground-water conditions nor this dependence on individual wells is unique to the study area, but, rather, applies to the entire Piedmont province.

  5. Ground-water resources of the south metropolitan Atlanta region, Georgia

    USGS Publications Warehouse

    Clarke, John S.; Peck, Michael F.

    1991-01-01

    Ground-water resources of the nine county south metropolitan Atlanta region were evaluated in response to an increased demand for water supplies and concern that existing surface water supplies may not be able to meet future supply demands. Previous investigations have suggested that crystalline rock in the study area has low permeability and can not sustain well yields suitable for public supply. However, the reported yield for 406 wells drilled into crystalIine rock units in this area ranged from less than 1 to about 700 gallons per minute, and averaged 43 gallons per minute. The reported flow from 13 springs ranged from 0.5 to 679 gallons per minute. The yield of 43 wells and flow from five springs was reported to exceed 100 gallons per minute. Most of the high-yielding wells and springs were near contact zones between rocks of contrasting lithologic and weathering properties. The high-yielding wells and springs are located in a variety of topographic settings: hillsides, upland draws, and hilltops were most prevalent.The study area, which includes Henry, Fayette, Coweta, Spalding, Lamar, Pike, Meriwether, Upson and Talbot Counties, is within the Piedmont physiographic province except for the southernmost part of Talbot County, which is in the Coastal Plain physiographic province. In the Piedmont, ground-water storage occurs in joints, fractures and other secondary openings in the bedrock, and in pore spaces in the regolith. The most favorable geologic settings for siting highyielding wells are along contact zones between rocks of contrasting lithology and permeability, major zones of fracturing such as the Towaliga and Auchumpkee fault zones, and other numerous shear and microbreccia zones.Although most wells in the study area are from 101 to 300 feet deep, the highest average yields were obtained from wells 51 to 100 feet deep, and 301 to 500 feet deep. Of the wells inventoried, the average diameter of well casing was largest for wells located on hills and

  6. Superchilling of muscle foods: Potential alternative for chilling and freezing.

    PubMed

    Banerjee, Rituparna; Maheswarappa, Naveena Basappa

    2017-12-05

    Superchilling is an attractive technique for preservation of muscle foods which freezes part of the water and insulate the food products from temperature fluctuations thereby enhancing the shelf-life during storage, transportation and retailing. Superchilling process synergistically improves the product shelf-life when used in combination with vacuum or modified atmospheric packaging. The shelf-life of muscle foods was reported to be increased by 1.5 to 4.0 times relative to traditional chilling technique. Advantages of superchilling and its ability to maintain the freshness of muscle foods over freezing has been discussed and its potential for Industrial application is highlighted. Present review also unravel the mechanistic bases for ice-crystal formation during superchilling and measures to ameliorate the drip loss. The future challenges especially automation in superchilling process for large scale Industrial application is presented.

  7. Technical Proposal for Loading 3000 Gallon Crude Oil Samples from Field Terminal to Sandia Pressurized Tanker to Support US DOE/DOT Crude Oil Characterization Research Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lord, David L.; Allen, Raymond

    Sandia National Laboratories is seeking access to crude oil samples for a research project evaluating crude oil combustion properties in large-scale tests at Sandia National Laboratories in Albuquerque, NM. Samples must be collected from a source location and transported to Albuquerque in a tanker that complies with all applicable regulations for transportation of crude oil over public roadways. Moreover, the samples must not gain or lose any components, to include dissolved gases, from the point of loading through the time of combustion at the Sandia testing facility. In order to achieve this, Sandia designed and is currently procuring a custommore » tanker that utilizes water displacement in order to achieve these performance requirements. The water displacement procedure is modeled after the GPA 2174 standard “Obtaining Liquid Hydrocarbons Samples for Analysis by Gas Chromatography” (GPA 2014) that is used routinely by crude oil analytical laboratories for capturing and testing condensates and “live” crude oils, though it is practiced at the liter scale in most applications. The Sandia testing requires 3,000 gallons of crude. As such, the water displacement method will be upscaled and implemented in a custom tanker. This report describes the loading process for acquiring a ~3,000 gallon crude oil sample from commercial process piping containing single phase liquid crude oil at nominally 50-100 psig. This document contains a general description of the process (Section 2), detailed loading procedure (Section 3) and associated oil testing protocols (Section 4).« less

  8. Imagining Citizenship as Friendship in "The Big Chill"

    ERIC Educational Resources Information Center

    Kaplan, Michael

    2005-01-01

    This essay stages a theoretically driven critique of Lawrence Kasdan's film "The Big Chill" as a productive example of a constitutive contradiction animating the liberal political imaginary. In particular, it argues that liberalism relies irreducibly on an under-examined conception of friendship to supply its model of citizenship as a distinctive,…

  9. 9 CFR 441.10 - Retained water.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... be permitted to retain water resulting from post-evisceration processing unless the establishment... that retain water from post-evisceration processing and that are sold, transported, offered for sale or... the establishment. Any post-evisceration washing or chilling processes that affect water retention...

  10. 9 CFR 441.10 - Retained water.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... be permitted to retain water resulting from post-evisceration processing unless the establishment... that retain water from post-evisceration processing and that are sold, transported, offered for sale or... the establishment. Any post-evisceration washing or chilling processes that affect water retention...

  11. 9 CFR 441.10 - Retained water.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... be permitted to retain water resulting from post-evisceration processing unless the establishment... that retain water from post-evisceration processing and that are sold, transported, offered for sale or... the establishment. Any post-evisceration washing or chilling processes that affect water retention...

  12. 9 CFR 441.10 - Retained water.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... be permitted to retain water resulting from post-evisceration processing unless the establishment... that retain water from post-evisceration processing and that are sold, transported, offered for sale or... the establishment. Any post-evisceration washing or chilling processes that affect water retention...

  13. Regional Variation in Residential Heat Pump Water Heater Performance in the U.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maguire, Jeff; Burch, Jay; Merrigan, Tim

    2014-01-01

    Residential heat pump water heaters (HPWHs) have recently re-emerged on the U.S. market, and they have the potential to provide homeowners significant cost and energy savings. However, actual in use performance of a HPWH will vary significantly with climate, installation location, HVAC equipment, and hot water use. To determine the actual energy consumption of a HPWH in different U.S. regions, annual simulations of both 50 and 80 gallon HPWHs as well as a standard electric water heater were performed for over 900 locations across the United States. The simulations included a benchmark home to take into account interactions between themore » space conditioning equipment and the HPWH and a realistic hot water draw profile. It was found that the HPWH will always save some source energy when compared to a standard electric resistance water heater, although savings varies widely with location. In addition to looking at source energy savings, the breakeven cost (the net installed cost a HPWH would have to have to be a cost neutral replacement for a standard water heater) was also examined. The highest breakeven costs were seen in cases with high energy savings, such as the southeastern U.S., or high energy costs, such as New England and California. While the breakeven cost is higher for 80 gallon units than 50 gallon units, the higher net installed costs of an 80 gallon unit lead to the 50 gallon HPWHs being more likely to be cost effective.« less

  14. Ground-water resources of the Houston district, Texas

    USGS Publications Warehouse

    White, Walter N.; Rose, N.A.; Guyton, William F.

    1944-01-01

    This report covers the current phase of an investigation of the supply of ground water available for the Houston district and adjacent region, Texas,- that has been in progress during the past 10 years. The field operations included routine inventories of pumpage, measurements of water levels in observation wells and collection of other hydrologic data, pumping tests on 21 city-owned wells to determine coefficients of permeability and storage, and the drilling of 13 deep test wells in unexplored parts of the district. Considerable attention has been given to studies of the location of areas or beds of sand that contain salt water. The ground water occurs in beds of sand, sandstone, and gravel of Miocene, Pliocene, and Pleistocene age. These formations crop out in belts that dip southeastward from their outcrop areas and are encountered by wells at progressively greater depths toward the southeast. The beds throughout the section are lithologically similar, and there is little agreement among geologists as to their correlation. -In this investigation, however, the sediments, penetrated by the wells are separated into six zones, chiefly on the basis of electrical logs. Most of the water occurs in zone 3, which ranges in thickness from 800 to 1,200 feet. Large quantities of ground water are pumped in three areas in the Houston district, as follows: The Houston tromping area, which includes Houston and the areas immediately adjacent; the Pasadena pumping area, which includes the industrial section extending along the ship channel from the Houston city limits eastward to Deer Park; and the Katy pumping area, an irregular-shaped area of several hundred square miles, which is roughly centered around the town of Katy, 30 miles west of Houston. In 1930 the total combined withdrawal of ground water in the Houston and Pasadena pumping areas averaged about 50 million gallons a day. It declined somewhat during 1932 and 1933 and then gradually increased, until in 1935 the total

  15. Water resources of Jackson and Independence Counties, Arkansas; Contributions to the Hydrology of the United States

    USGS Publications Warehouse

    Albin, Donald R.; Hines, Marion S.; Stephens, John W.

    1967-01-01

    The present (1965) water use in Jackson and Independence Counties is about 55.6 million gallons per day, and quantities sufficient for any foreseeable use are available. Supplies for the large-scale uses--municipal, industrial, and irrigation--can best be obtained from wells in the Coastal Plain and from streams in the highlands. Wells in the Coastal Plain will yield 1,000-2,000 gallons of water per minute when screened at depths from 100 to 150 feet in alluvial sand and gravel of Quaternary age. The water will require treatment for the removal of iron and the reduction of hardness to be suitable for municipal and industrial uses. Wells in the highlands generally yield less than 50 gallons per minute of water that is of good quality, though hard. The dependable flow of .the White River at Newport is about 4.2 billion gallons per day. The dependable 'base flows of the small streams tributary to the White River in the Salem Plateau and Springfield Plateau sections range from 0.25 to 5 million gallons per day, and the dependable flow of Polk Bayou at Batesville is about 21 million gallons per day. These streams can be utilized for water supply with little or no artificial storage required. Streams in the Boston Mountains section and in the Arkansas Valley section recede to very low flow or to no flow during extended dry periods, but dependable, supplies can be obtained from these streams 'by construction of storage facilities Water from all the highland streams is af excellent chemical quality except that it generally is hard.

  16. NASA Green Flight Challenge: Conceptual Design Approaches and Technologies to Enable 200 Passenger Miles per Gallon

    NASA Technical Reports Server (NTRS)

    Wells, Douglas P.

    2011-01-01

    The Green Flight Challenge is one of the National Aeronautics and Space Administration s Centennial Challenges designed to push technology and make passenger aircraft more efficient. Airliners currently average around 50 passenger-miles per gallon and this competition will push teams to greater than 200 passenger-miles per gallon. The aircraft must also fly at least 100 miles per hour for 200 miles. The total prize money for this competition is $1.65 Million. The Green Flight Challenge will be run by the Comparative Aircraft Flight Efficiency (CAFE) Foundation September 25 October 1, 2011 at Charles M. Schulz Sonoma County Airport in California. Thirteen custom aircraft were developed with electric, bio-diesel, and other bio-fuel engines. The aircraft are using various technologies to improve aerodynamic, propulsion, and structural efficiency. This paper will explore the feasibility of the rule set, competitor vehicles, design approaches, and technologies used.

  17. Artesian water in Somervell County, Texas

    USGS Publications Warehouse

    Fiedler, Albert George

    1934-01-01

    the 'basal sands' on the higher lands west and north of Somervell County. These permeable beds dip eastward and southeastward beneath the county and are covered by the less permeable beds of the overlying Glen Rose formation. As the water that reaches the zone of saturation percolates down the dip of the beds it is confined under artesian pressure, and wells that penetrate these beds at lower altitudes yield water by natural flow. Originally the artesian pressure was sufficient to raise the water in tightly cased wells in the northwestern part of Somervell County to a maximum altitude of about 750 feet above sea level, but at Glen Rose the original artesian head was probably not more than 710 feet. From the information avail- able it would appear that the original head of the water in the upper aquifers was not nearly as great as that of the lower aquifer. The head has declined generally throughout the county. At Glen Rose in June 1930 the artesian head of the water from the deepest aquifer of the Trinity reservoir was about 639 feet above sea level, and the head of the water from the upper aquifers was about 15 feet less. The decline in head still continues, but at a very much slower rate than formerly. With the decline in head the size of the area of artesian flow has decreased, though in recent years the shrinkage has been comparatively little. The draft from the artesian reservoir in Somervell County during the summer is estimated at about 1,000,000 gallons a day, distributed as follows: Domestic use, 150,000 gallons; stock use, 60,000 gallons; recreation pools, 250,000 gallons; irrigation, 180,000 gallons; and waste, not including underground leakage, 360,000 gallons. In winter the daily draft is probably about 370,000 gallons less than in summer. The 360,000 gallons a day permitted to flow from wells without being used for any beneficial purposes is an unnecessary drain upon the artesian reservoir. The head of many of the flowing wells in Glen R

  18. Cold Stress Tolerance in Psychrotolerant Soil Bacteria and Their Conferred Chilling Resistance in Tomato (Solanum lycopersicum Mill.) under Low Temperatures

    PubMed Central

    Subramanian, Parthiban; Kim, Kiyoon; Krishnamoorthy, Ramasamy; Mageswari, Anbazhagan; Selvakumar, Gopal; Sa, Tongmin

    2016-01-01

    The present work aimed to study the culturable diversity of psychrotolerant bacteria persistent in soil under overwintering conditions, evaluate their ability to sustain plant growth and alleviate chilling stress in tomato. Psychrotolerant bacteria were isolated from agricultural field soil samples colleced during winter and then used to study chilling stress alleviation in tomato plants (Solanum lycopersicum cv Mill). Selective isolation after enrichment at 5°C yielded 40 bacterial isolates. Phylogenetic studies indicated their distribution in genera Arthrobacter, Flavimonas, Flavobacterium, Massilia, Pedobacter and Pseudomonas. Strains OS211, OB146, OB155 and OS261 consistently improved germination and plant growth when a chilling stress of 15°C was imposed and therefore were selected for pot experiments. Tomato plants treated with the selected four isolates exhibited significant tolerance to chilling as observed through reduction in membrane damage and activation of antioxidant enzymes along with proline synthesis in the leaves when exposed to chilling temperature conditions (15°C). Psychrotolerant physiology of the isolated bacteria combined with their ability to improve germination, plant growth and induce antioxidant capacity in tomato plants can be employed to protect plants against chilling stress. PMID:27580055

  19. Effect of fecal contamination and cross-contamination on numbers of coliform, Escherichia coli, Campylobacter, and Salmonella on immersion-chilled broiler carcasses.

    PubMed

    Smith, D P; Cason, J A; Berrang, M E

    2005-07-01

    The effect of prechill fecal contamination on numbers of bacteria on immersion-chilled carcasses was tested in each of three replicate trials. For each trial, 16 eviscerated broiler carcasses were split into 32 halves and assigned to one of two groups. Cecal contents (0.1 g inoculated with Campylobacter and nalidixic acid-resistant Salmonella) were applied to each of eight halves in one group (direct contamination) that were placed into one paddle chiller (contaminated), whereas the other paired halves were placed into another chiller (control). From the second group of eight split birds, one of each paired half was placed in the contaminated chiller (to determine cross-contamination) and the other half was placed in the control chiller. Postchill carcass halves were sampled by a 1-min rinse in sterile water, which was collected and cultured. Bacterial counts were reported as log CFU per milliliter of rinsate. There were no significant statistical differences (paired t test, P < 0.05) from direct contamination for coliforms (mean 3.0 log CFU) and Escherichia coli (mean 2.7 log CFU), although Campylobacter numbers significantly increased from control values because of direct contamination (1.5 versus 2.1 log CFU), and the incidence increased from 79 to 100%. There was no significant effect of cross-contamination on coliform (mean 2.9 log CFU) or E. coli (mean 2.6 log CFU) numbers. Nevertheless, Campylobacter levels were significantly higher after exposure to cross-contamination (1.6 versus 2.0 log CFU), and the incidence of this bacterium increased from 75 to 100%. Salmonella-positive halves increased from 0 to 42% postchill because of direct contamination and from 0 to 25% as a result of cross-contamination after chilling. Water samples and surface swabs taken postchill from the contaminated chiller were higher for Campylobacter than those taken from the control chiller. Immersion chilling equilibrated bacterial numbers between contaminated and control halves

  20. Evaluation of water resources in the Reedsport area, Oregon

    USGS Publications Warehouse

    Rinella, Joseph F.; Frank, F.J.; Leonard, A.R.

    1980-01-01

    The water supply for the Reedsport area is obtained from Clear Lake, a 310-acre coastal lake that contains 16, 600 acre-feet of water at full-pool. The lake receives about 6,000 acre-feet of water annually from runoff and direct precipitation, and it loses about 600 acre-feet by evaporation. The 2,100 acre-feet diverted annually for public supply is about two-thirds of the ' usable storage capacity ' of the lake volume above the water-supply outlet pipe. Clear Lake is classified as a warm monomictic lake; that is, it is thermally stratified except during winter. The water of Clear Lake is of the sodium chloride type and is low in dissolved solids and nutrients. The water is considered to be of good quality for public supply, on the basis of biological and chemical constituents analyzed, which include trace elements pesticides, and organic material. The only ground-water source with potential to supply the needs of the Reedsport area is the dune sand-marine aquifer between U.S. Highway 101 and the coast. That aquifer consists largely of medium- to fine-grained sand with a variable saturated thickness of at least 90 feet. The aquifer is estimated to contain at least 12 billion gallons of water and to receive annual recharge from precipitation equivalent to 10 million gallons per day. Wells in the most productive part of the aquifer could be expected to yield a few hundred gallons per minute. The only identified water-quality problem is excessive iron reported in water from some wells. Either Clear Lake or the major aquifer could supply the Reedsport area 's aticipated year 2000 need of about 2.4 million gallons per day. 

  1. Water-resources investigations in Dinosaur National Monument, Utah-Colorado, fiscal year 1970

    USGS Publications Warehouse

    Sumsion, C.T.

    1971-01-01

    Water-resources data were acquired during fiscal year 1970 by the U.S. Geological Survey at Dinosaur National Monument, Utah-Colorado, for the U.S. National Park Service as part of a continuing project. The data provide a basis for planning the development, management, and use of the available water resources to provide adequate water supplies. Thirty-one springs, 19 in relatively inaccessible areas, were evaluated as sources of water supplies. Seven potential well sites were evaluated for drilling depths in specific aquifers. A well drilled in Echo Park near the confluence of the Green and Yampa Rivers was tested. The pumping test showed the well to yield 130 gallons per minute with a drawdown of 1.96 feet; specific capacity of the well at 130 gallons per minute is 66 gallons per minute per foot. Water samples for chemical analysis were - collected from nine springs and one well; all except that from Disappointment Spring, were of good chemical quality.

  2. Availability and quality of ground water, southern Ute Indian Reservation, southwestern Colorado

    USGS Publications Warehouse

    Brogden, Robert E.; Hutchinson, E. Carter; Hillier, Donald E.

    1979-01-01

    Population growth and the potential development of subsurface mineral resources have increased the need for information on the availability and quality of ground water on the Southern Ute Indian Reservation. The U.S. Geological Survey, in cooperation with the Southern Ute Tribal Council, the Four Corners Regional Planning Commission, and the U.S. Bureau of Indian Affairs, conducted a study during 1974-76 to assess the ground-water resources of the reservation. Water occurs in aquifers in the Dakota Sandstone, Mancos Shale, Mesaverde Group, Lewis Shale, Pictured Cliffs Sandstone, Fruitland Formation, Kirtland Shale, Animas and San Jose Formations, and terrace and flood-plain deposits. Well yields from sandstone and shale aquifers are small, generally in the range from 1 to 10 gallons per minute with maximum reported yields of 75 gallons per minute. Well yields from terrace deposits generally range from 5 to 10 gallons per minute with maximum yields of 50 gallons per minute. Well yields from flood-plain deposits are as much as 25 gallons per minute but average 10 gallons per minute. Water quality in aquifers depends in part on rock type. Water from sandstone, terrace, and flood-plain aquifers is predominantly a calcium bicarbonate type, whereas water from shale aquifers is predominantly a sodium bicarbonate type. Water from rocks containing interbeds of coal or carbonaceous shales may be either a calcium or sodium sulfate type. Dissolved-solids concentrations of ground water ranged from 115 to 7,130 milligrams per liter. Water from bedrock aquifers is the most mineralized, while water from terrace and flood-plain aquifers is the least mineralized. In many water samples collected from bedrock, terrace, and flood-plain aquifers, the concentrations of arsenic, chloride, dissolved solids, fluoride, iron, manganese, nitrate, selenium, and sulfate exceeded U.S. Public Health Service (1962) recommended limits for drinking water. Selenium in the ground water in excess of U

  3. Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation

    USDA-ARS?s Scientific Manuscript database

    Commercial tomatoes are widely perceived by consumers as lacking flavor. A major part of that problem is a postharvest handling system that chills fruit. Low-temperature storage is widely used to slow ripening and reduce decay. However, chilling results in loss of flavor. Flavor-associated volatiles...

  4. Regional Variation in Residential Heat Pump Water Heater Performance in the U.S.: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maguire, J.; Burch, J.; Merrigan, T.

    2014-01-01

    Residential heat pump water heaters (HPWHs) have recently reemerged on the U.S. market. These units have the potential to provide homeowners significant cost and energy savings. However, actual in use performance of a HPWH will vary significantly with climate, installation location, HVAC equipment, and hot water use. To determine what actual in use energy consumption of a HPWH may be in different regions of the U.S., annual simulations of both 50 and 80 gallon HPWHs as well as a standard electric water heater were performed for over 900 locations across the U.S. The simulations included a benchmark home to takemore » into account interactions between the space conditioning equipment and the HPWH and a realistic hot water draw profile. It was found that the HPWH will always save some source energy when compared to a standard electric resistance water heater, although savings varies widely with location. In addition to looking at source energy savings, the breakeven cost (the net installed cost a HPWH would have to have to be a cost neutral replacement for a standard water heater) was also examined. The highest breakeven costs were seen in cases with high energy savings, such as the southeastern U.S., or high energy costs, such as New England and California. While the breakeven cost is higher for 80 gallon units than 50 gallon units, the higher net installed costs of an 80 gallon unit lead to the 50 gallon HPWHs being more likely to be cost effective.« less

  5. Water for the growing needs of Harrison County, Mississippi

    USGS Publications Warehouse

    Newcome, Roy; Shattles, Donald E.; Humphreys, Carney P.

    1968-01-01

    The potential for water-supply development in Harrison County is almost unlimited. During an average year, more than 350 billion gallons of water flow into the Gulf of Mexico from the streams of the county. With storage reservoirs these streams have a potential sustained supply of hundreds of millions of. gallons per day. Recreation uses and flood-control benefits could also be considered in reservoir design. Upstream from the zones of salt-water penetration, mineral content is low and fairly constant. Water in the streams generally has high color and low pH ; treatment would be required for most municipal and industrial uses. Impoundment in reservoirs normally would have little effect on the quality of the surface water. However, impoundment would trap most of the suspended-sediment load of the streams. Flooding along the major streams of Harrison County is a minor hazard at present (1966), but with further industrial development and urbanization, flooding in these now rural areas could become serious. Intense rainfall from thunderstorms and hurricanes causes serious local flooding in the populous areas near the coast. Tidal flooding, a result of tropical storms, is an ever-present hazard in areas near the coast. The ground-water reservoir, which at present provides all fresh-water supplies, is capable of supporting many times the 25 million gallons per day withdrawal through existing wells. Fresh water occurs to depths as great as 2,500 feet in sand aquifers of Pliocene and Miocene age. Many of the aquifers have high transmissibility; most of those tested have transmissibility in the range, of 50,000-100,000 gallons per day per foot. Although few wells produce more than 1,000 gallons per minute, several of the aquifers can yield two to three times that amount to wells designed for the higher production. Artesian water levels along the coast are declining at a rate of 1 foot per year on the average; however, water levels are still above or only slightly below the

  6. Effects of Proposed Additional Ground-Water Withdrawals from the Mississippi River Valley Alluvial Aquifer on Water Levels in Lonoke County, Arkansas

    USGS Publications Warehouse

    Czarnecki, John B.

    2006-01-01

    The Grand Prairie Water Users Association, located in Lonoke County, Arkansas, plans to increase ground-water withdrawals from the Mississippi River Valley alluvial aquifer from their current (2005) rate of about 400 gallons per minute to 1,400 gallons per minute (2,016,000 gallons per day). The effect of pumping from a proposed well was simulated using a digital model of ground-water flow. The proposed additional withdrawals were added to an existing pumping cell specified in the model, with increased pumping beginning in 2005, and specified to pump at a total combined rate of 2,016,000 gallons per day for a period of 46 years. In addition, pumping from wells owned by Cabot Water Works, located about 2 miles from the proposed pumping, was added to the model beginning in 2001 and continuing through to the end of 2049. Simulated pumping causes a cone of depression to occur in the alluvial aquifer with a maximum decline in water level of about 8.5 feet in 46 years in the model cell of the proposed well compared to 1998 withdrawals. However, three new dry model cells occur south of the withdrawal well after 46 years. This total water-level decline takes into account the cumulative effect of all wells pumping in the vicinity, although the specified pumping rate from all other model cells in 2005 is less than for actual conditions in 2005. After 46 years with the additional pumping, the water-level altitude in the pumped model cell was about 177.4 feet, which is 41.7 feet higher than 135.7 feet, the altitude corresponding to half of the original saturated thickness of the alluvial aquifer (a metric used to determine if the aquifer should be designated as a Critical Ground-Water Area (Arkansas Natural Resources Commission, 2006)).

  7. Geohydrology and simulated ground-water flow, Plymouth-Carver Aquifer, southeastern Massachusetts

    USGS Publications Warehouse

    Hansen, Bruce P.; Lapham, Wayne W.

    1992-01-01

    The Plymouth-Carver aquifer underlies an area of 140 square miles and is the second largest aquifer in areal extent in Massachusetts. It is composed primarily of saturated glacial sand and gravel. The water-table and bedrock surface were mapped and used to determine saturated thickness of the aquifer, which ranged from less than 20 feet to greater than 200 feet. Ground water is present mainly under unconfined conditions, except in a few local areas such as beneath Plymouth Harbor. Recharge to the aquifer is derived almost entirely from precipitation and averages about 1.15 million gallons per day per square mile. Water discharges from the aquifer by pumping, evapotranspiration, direct evaporation from the water table, and seepage to streams, ponds, wetlands, bogs, and the ocean. In 1985, water use was about 59.6 million gallons per day, of which 82 percent was used for cranberry production. The Plymouth-Carver aquifer was simulated by a three-dimensional, finite difference ground-water-flow model. Most model boundaries represent the natural hydrologic boundaries of the aquifer. The model simulates aquifer recharge, withdrawals by pumped wells, leakage through streambeds, and discharge to the ocean. The model was calibrated for steady-state and transient conditions. Model results were compared with measured values of hydraulic head and ground-water discharge. Results of simulations indicate that the modeled ground-water system closely simulates actual aquifer conditions. Four hypothetical ground-water development alternatives were simulated to demonstrate the use of the model and to examine the effects on the ground-water system. Simulation of a 2-year period of no recharge and average pumping rates that occurred from 1980-85 resulted in water-level declines exceeding 5 feet throughout most of the aquifer and a decrease of 54 percent in average ground-water discharge to streams. In a second simulation, four wells in the northern part of the area were pumped at 10

  8. Model Predictive Control of HVAC Systems: Implementation and Testing at the University of California, Merced

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haves, Phillip; Hencey, Brandon; Borrell, Francesco

    2010-06-29

    A Model Predictive Control algorithm was developed for the UC Merced campus chilled water plant. Model predictive control (MPC) is an advanced control technology that has proven successful in the chemical process industry and other industries. The main goal of the research was to demonstrate the practical and commercial viability of MPC for optimization of building energy systems. The control algorithms were developed and implemented in MATLAB, allowing for rapid development, performance, and robustness assessment. The UC Merced chilled water plant includes three water-cooled chillers and a two million gallon chilled water storage tank. The tank is charged during themore » night to minimize on-peak electricity consumption and take advantage of the lower ambient wet bulb temperature. The control algorithms determined the optimal chilled water plant operation including chilled water supply (CHWS) temperature set-point, condenser water supply (CWS) temperature set-point and the charging start and stop times to minimize a cost function that includes energy consumption and peak electrical demand over a 3-day prediction horizon. A detailed model of the chilled water plant and simplified models of the buildings served by the plant were developed using the equation-based modeling language Modelica. Steady state models of the chillers, cooling towers and pumps were developed, based on manufacturers performance data, and calibrated using measured data collected and archived by the control system. A detailed dynamic model of the chilled water storage tank was also developed and calibrated. Simple, semi-empirical models were developed to predict the temperature and flow rate of the chilled water returning to the plant from the buildings. These models were then combined and simplified for use in a model predictive control algorithm that determines the optimal chiller start and stop times and set-points for the condenser water temperature and the chilled water supply

  9. The Role of Left Hemispheric Structures for Emotional Processing as a Monitor of Bodily Reaction and Felt Chill - a Case-Control Functional Imaging Study.

    PubMed

    Grunkina, Viktoria; Holtz, Katharina; Klepzig, Kai; Neubert, Jörg; Horn, Ulrike; Domin, Martin; Hamm, Alfons O; Lotze, Martin

    2016-01-01

    Background: The particular function of the left anterior human insula on emotional arousal has been illustrated with several case studies. Only after left hemispheric insula lesions, patients lose their pleasure in habits such as listening to joyful music. In functional magnetic resonance imaging studies (fMRI) activation in the left anterior insula has been associated with both processing of emotional valence and arousal. Tight interactions with different areas of the prefrontal cortex are involved in bodily response monitoring and cognitive appraisal of a given stimulus. Therefore, a large left hemispheric lesion including the left insula should impair the bodily response of chill experience (objective chill response) but leave the cognitive aspects of chill processing (subjective chill response) unaffected. Methods: We investigated a patient (MC) with a complete left hemispheric media cerebral artery stroke, testing fMRI representation of pleasant (music) and unpleasant (harsh sounds) chill response. Results: Although chill response to both pleasant and unpleasant rated sounds was confirmed verbally at passages also rated as chilling by healthy participants, skin conductance response was almost absent in MC. For a healthy control (HC) objective and subjective chill response was positively associated. Bilateral prefrontal fMRI-response to chill stimuli was sustained in MC whereas insula activation restricted to the right hemisphere. Diffusion imaging together with lesion maps revealed that left lateral tracts were completely damaged but medial prefrontal structures were intact. Conclusion: With this case study we demonstrate how bodily response and cognitive appraisal are differentially participating in the internal monitor of chill response.

  10. Water resources of the Blackstone River basin, Massachusetts

    USGS Publications Warehouse

    Izbicki, John A.

    2000-01-01

    By 2020, demand for water in the Blackstone River Basin is expected to be 52 million gallons per day, one-third greater than the demand of 39 million gallons per day in 1980. Most of this increase is expected to be supplied by increased withdrawals of ground water from stratified-drift aquifers in the eastern and northern parts of the basin. Increased withdrawals from stratified-drift aquifers along the Blackstone River and in the western part of the basin also are expected.The eastern and northern parts of the Blackstone River Basin contain numerous small, discontinuous aquifers which, as a group, comprise the largest ground-water resource of the study area. Fifteen aquifers, ranging in areal extent from 0.57 to 4.3 square miles, were identified. These aquifers have maximum saturated thicknesses ranging from less than 10 feet to 105 feet and maximum transmissivities ranging from less than 1,000 to more than 20,000 feet squared per day. Yields of nine study aquifers were estimated by use of digital ground-water-flow models. Yields depend on the hydraulic properties of the aquifer and the amount of streamflow available for depletion by wells. If streamflow is maintained at 98-percent duration, long-term yields from the aquifers that would be expected to be equaled or exceeded 50 percent of the time range from 0.22 to 11 million gallons per day, and long-term yields equaled or exceeded 95 percent of the time range from 0.06 to 1.0 million gallons per day. If streamflow is maintained at 99.5-percent duration, long-term yields equaled or exceeded 50 percent of the time range from 0.22 to 11 million gallons per day, long-term yields equaled or exceeded 95 percent of the time range from 0.04 to 1.4 million gallons per day, and longterm yields equaled or exceeded 98 percent of the time range from 0.02 to 0.39 million gallons per day. Maintaining streamflow at 98-percent duration is a more restrictive criterion than maintaining streamflow at 99.5-percent duration. The

  11. Where Did the Water Go?: Boyle's Law and Pressurized Diaphragm Water Tanks

    ERIC Educational Resources Information Center

    Brimhall, James; Naga, Sundar

    2007-01-01

    Many homes use pressurized diaphragm tanks for storage of water pumped from an underground well. These tanks are very carefully constructed to have separate internal chambers for the storage of water and for the air that provides the pressure. One might expect that the amount of water available for use from, for example, a 50-gallon tank would be…

  12. Regulation of Respiration and the Oxygen Diffusion Barrier in Soybean Protect Symbiotic Nitrogen Fixation from Chilling-Induced Inhibition and Shoots from Premature Senescence1[W][OA

    PubMed Central

    van Heerden, Philippus D.R.; Kiddle, Guy; Pellny, Till K.; Mokwala, Phatlane W.; Jordaan, Anine; Strauss, Abram J.; de Beer, Misha; Schlüter, Urte; Kunert, Karl J.; Foyer, Christine H.

    2008-01-01

    Symbiotic nitrogen fixation is sensitive to dark chilling (7°C–15°C)-induced inhibition in soybean (Glycine max). To characterize the mechanisms that cause the stress-induced loss of nodule function, we examined nodule structure, carbon-nitrogen interactions, and respiration in two soybean genotypes that differ in chilling sensitivity: PAN809 (PAN), which is chilling sensitive, and Highveld Top (HT), which is more chilling resistant. Nodule numbers were unaffected by dark chilling, as was the abundance of the nitrogenase and leghemoglobin proteins. However, dark chilling decreased nodule respiration rates, nitrogenase activities, and NifH and NifK mRNAs and increased nodule starch, sucrose, and glucose in both genotypes. Ureide and fructose contents decreased only in PAN nodules. While the chilling-induced decreases in nodule respiration persisted in PAN even after return to optimal temperatures, respiration started to recover in HT by the end of the chilling period. The area of the intercellular spaces in the nodule cortex and infected zone was greatly decreased in HT after three nights of chilling, an acclimatory response that was absent from PAN. These data show that HT nodules are able to regulate both respiration and the area of the intercellular spaces during chilling and in this way control the oxygen diffusion barrier, which is a key component of the nodule stress response. We conclude that chilling-induced loss of symbiotic nitrogen fixation in PAN is caused by the inhibition of respiration coupled to the failure to regulate the oxygen diffusion barrier effectively. The resultant limitations on nitrogen availability contribute to the greater chilling-induced inhibition of photosynthesis in PAN than in HT. PMID:18667725

  13. RNA Expression and Post-Transcriptional Editing Analyses of Cucumber Plastids Reveals Genetic Differences Associated with Chilling Tolerance

    USDA-ARS?s Scientific Manuscript database

    Tolerance to chilling injury in cucumber (Cucumis sativus L.) is associated with three plastomic single nucleotide polymorphisms (ptSNPs) at bp positions 4,813, 56,561, and 126,349 that are co-inherited. An understanding of the genetic expression of these ptSNPs as a response to chilling is critical...

  14. Water Treatment Technology - Wells.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on wells provides instructional materials for five competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: dug, driven, and chilled wells, aquifer types, deep well…

  15. Adaptation to altitude affects the senescence response to chilling in the perennial plant Arabis alpina

    PubMed Central

    Wingler, Astrid; Juvany, Marta; Cuthbert, Caroline; Munné-Bosch, Sergi

    2015-01-01

    In annual plants with determinate growth, sugar accumulation signals high carbon availability once growth has ceased, resulting in senescence-dependent nutrient recycling to the seeds. However, this senescence-inducing effect of sugars is abolished at cold temperature, where sugar accumulation is important for protection. Here, natural variation was exploited to analyse the effect of chilling on interactions between leaf senescence, sugars, and phytohormones in Arabis alpina, a perennial plant with indeterminate growth. Eight accessions of A. alpina originating from between 2090 and 3090 m above sea level in the French Alps were used to identify heritable adaptations in senescence, stress response, sugars, and phytohormones to altitude. Accessions from high altitudes showed an enhanced capacity for sucrose accumulation and a diminished loss of chlorophyll in response to chilling. At warm temperature, sucrose content was negatively correlated with chlorophyll content, and sucrose treatment induced leaf senescence. Chilling resulted in lower indole-3-acetic acid, but higher zeatin and jasmonic acid contents. Interactions between sugar and phytohormones included a positive correlation between sucrose and jasmonic acid contents that may be involved in promoting the stress-dependent decline in chlorophyll. These findings reveal regulatory interactions that underlie adaptation in the senescence and stress response to chilling. PMID:25371506

  16. Marginal costs of water savings from cooling system retrofits: a case study for Texas power plants

    NASA Astrophysics Data System (ADS)

    Loew, Aviva; Jaramillo, Paulina; Zhai, Haibo

    2016-10-01

    The water demands of power plant cooling systems may strain water supply and make power generation vulnerable to water scarcity. Cooling systems range in their rates of water use, capital investment, and annual costs. Using Texas as a case study, we examined the cost of retrofitting existing coal and natural gas combined-cycle (NGCC) power plants with alternative cooling systems, either wet recirculating towers or air-cooled condensers for dry cooling. We applied a power plant assessment tool to model existing power plants in terms of their key plant attributes and site-specific meteorological conditions and then estimated operation characteristics of retrofitted plants and retrofit costs. We determined the anticipated annual reductions in water withdrawals and the cost-per-gallon of water saved by retrofits in both deterministic and probabilistic forms. The results demonstrate that replacing once-through cooling at coal-fired power plants with wet recirculating towers has the lowest cost per reduced water withdrawals, on average. The average marginal cost of water withdrawal savings for dry-cooling retrofits at coal-fired plants is approximately 0.68 cents per gallon, while the marginal recirculating retrofit cost is 0.008 cents per gallon. For NGCC plants, the average marginal costs of water withdrawal savings for dry-cooling and recirculating towers are 1.78 and 0.037 cents per gallon, respectively.

  17. Solar heating and hot water system installed at Shoney's Restaurant, North Little Rock, Arkansas

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A solar heating system designed to supply a major portion of the space and water heating requirements for a restaurant is described. The restaurant has a floor space of approximately 4,650 square feet and requires approximate 1500 gallons of hot water daily. The solar energy system consists of 1,428 square feet of Chamberlain flat plate liquid collector subsystem, and a 1500 gallon storage subsystem circulating hot water producing 321 x 10 to the 6th power Btu/Yr (specified) building heating and hot water heating.

  18. Solar heating and hot water system installed at Shoney's Restaurant, North Little Rock, Arkansas

    NASA Astrophysics Data System (ADS)

    1980-08-01

    A solar heating system designed to supply a major portion of the space and water heating requirements for a restaurant is described. The restaurant has a floor space of approximately 4,650 square feet and requires approximate 1500 gallons of hot water daily. The solar energy system consists of 1,428 square feet of Chamberlain flat plate liquid collector subsystem, and a 1500 gallon storage subsystem circulating hot water producing 321 x 10 to the 6th power Btu/Yr (specified) building heating and hot water heating.

  19. Characterization of four Paenibacillus species isolated from pasteurized, chilled ready-to-eat meals.

    PubMed

    Helmond, Mariette; Nierop Groot, Masja N; van Bokhorst-van de Veen, Hermien

    2017-07-03

    Food spoilage is often caused by microorganisms. The predominant spoilage microorganisms of pasteurized, chilled ready-to-eat (RTE) mixed rice-vegetable meals stored at 7°C were isolated and determined as Paenibacillus species. These sporeforming psychrotrophic bacteria are well adapted to grow in the starch-rich environment of pasteurized and chilled meals. Growth of the Paenibacillus isolates appeared to be delayed by decreased (<7°C) temperature or chilled temperature (7°C) combined with decreased pH (<5), increased sodium chloride (>5.5%, corresponding with an a w <0.934), or decreased a w (<0.931; using sucrose). To gain insight in the effect of the pasteurization processing of the meal on spore inactivation, heat-inactivation kinetics were determined and D-values were calculated. According to these kinetics, pasteurization up to 90°C, necessary for inactivation of vegetative spoilage microorganisms and pathogens, does not significantly contribute to the inactivation of Paenibacillus spores in the meals. Furthermore, outgrowth of pasteurized spores was determined in the mixed rice-vegetable meal at several temperatures; P. terrae FBR-61 and P. pabuli FBR-75 isolates did not substantially increase in numbers during storage at 2°C, but had a significant increase within a month of storage at 4°C or within several days at 22°C. Overall, this work shows the importance of Paenibacillus species as spoilage microorganisms of pasteurized, chilled RTE meals and that the meals' matrix, processing conditions, and storage temperature are important hurdles to control microbial meal spoilage. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The water intensity of the plugged-in automotive economy.

    PubMed

    King, Carey W; Webber, Michael E

    2008-06-15

    Converting light-duty vehicles from full gasoline power to electric power, by using either hybrid electric vehicles or fully electric power vehicles, is likely to increase demand for water resources. In the United States in 2005, drivers of 234 million cars, lighttrucks, and SUVs drove approximately 2.7 trillion miles and consumed over 380 million gallons of gasoline per day. We compare figures from literature and government surveys to calculate the water usage, consumption, and withdrawal, in the United States during petroleum refining and electricity generation. In displacing gasoline miles with electric miles, approximately 2-3 [corrected] times more water is consumed (0.24 [corrected] versus 0.07--0.14 gallons/mile) and over 12 [corrected] times more water is withdrawn (7.8 [corrected] versus 0.6 gallons/mile) primarily due to increased water cooling of thermoelectric power plants to accommodate increased electricity generation. Overall, we conclude that the impact on water resources from a widespread shift to grid-based transportation would be substantial enough to warrant consideration for relevant public policy decision-making. That is not to say that the negative impacts on water resources make such a shift undesirable, but rather this increase in water usage presents a significant potential impact on regional water resources and should be considered when planning for a plugged-in automotive economy.

  1. Estimated use of water in the United States - 1950

    USGS Publications Warehouse

    MacKichan, Kenneth Allen

    1951-01-01

    An estimated 170,000 million gallons of water was withdrawn from the ground, lakes, or streams each day on the average during 1950 and used on the farms and in the homes, factories, and business establishments of the United States. An additional 1,100,000 million gallons per day was used to generate hydro-power. Water power is the largest user of water; however, irrigation and industry also are large users of both ground and surface water. More surface water was used for industrial purposes than for irrigation, whereas more ground water was used for irrigation than for industrial purposes (fig. 1). The total withdrawal of surface water was considerably in excess of ground-water withdrawal, as shown by figure 1. Large quantities of water were used also for purposes requiring no diversion, such as navigation, waste disposal, recreation, and support of wildlife.

  2. Ground water in the Piedmont Upland of central Maryland

    USGS Publications Warehouse

    Richardson, Claire A.

    1980-01-01

    Aquifers in a 130-square-mile area of the central Maryland and Piedmont, are shown to be the sole or principal source of water. The study area is underlain chiefly by crystalline rocks and partly by unaltered sandstones and siltstones. The groundwater is derived from local precipitation and generally occurs under water-table conditions. Its movement is restricted by the lack of interconnected openings, and most groundwater occurs within 300 feet of the land surface. Hydrographs indicate no long-term change in groundwater storage. A few wells yield more than 100 gallons per minute, but about 70% of 286 inventoried wells yield 10 gallons per minute or less; most specific capacities are less than 1.0 gallon per minute per foot. The groundwater quality is generally satisfactory without treatment and there are no known widespread pollution problems. Estimated daily figures on groundwater use are as follows; 780,000 gallons for domestic purposes; 55,000 for commercial purposes; and 160,000 for public supply. Although part of the area is served by an existing surface-water supply and could be served by possible extension of those and other public-supply water mains, much of the rural population is dependent on the groundwater available from private wells tapping the single aquifer that underlies any given location. Neither the groundwater conditions nor this dependence on individual wells is unique to the study area, but, rather, applies to the entire Piedmont province. (USGS)

  3. Solar water-heating performance evaluation-San Diego, California

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Report describes energy saved by replacing domestic, conventional natural gas heater with solar-energy subsystem in single-family residence near San Diego, California. Energy savings for 6 month test period averaged 1.089 million Btu. Collector array covered 65 square feet and supplied hot water to both 66-gallon solar storage tank and 40-gallon tank for domestic use. Natural gas supplied house's auxiliary energy.

  4. Effect of high pressure treatment on microbiological quality of Indian white prawn (Fenneropenaeus indicus) during chilled storage.

    PubMed

    Ginson, J; Panda, Satyen Kumar; Bindu, J; Kamalakanth, C K; Srinivasa Gopal, T K

    2015-04-01

    High pressure treatment of 250 MPa for 6 min at 25 °C was applied to headless Indian white prawn (Fenneropenaeus indicus) to evaluate changes in microbiological characteristics of the species during chilled storage. Changes in load of mesophilic bacteria, psychrotrophic bacteria, proteolytic bacteria, Enterobacteriaceae, Pseudomonas spp., H2S producing bacteria, lactic acid bacteria, Brochothrix thermosphacta and yeast & mold were estimated in pressurized and un-pressurized samples during chilled storage. All microbes were reduced significantly after high pressure treatment and there was significant difference in microbial quality of control and high pressure treated samples in the entire duration of chilled storage (p < 0.05). There was delay in the growth of Enterobacteriaceae and H2S producing bacteria up to 6th and 9th day of storage, respectively in high pressure treated samples. In high pressure treated sample, no lag phase (λ) was observed for psychrotrophic bacteria, H2S producing bacteria, B. thermosphacta, Pseudomonas spp. and lactic acid bacteria; however, other bacteria showed a reduced lag phase during chilled storage. Kinetic parameter such as specific growth rate (μmax) in high pressure treated samples was significantly reduced in most of the bacterial groups except for psychrotrophic bacteria, Enterobacteriaceae and lactic acid bacteria. Mesophilic bacterial count of control samples crossed the marginal limit of acceptability on 12th day and unacceptable limit on 18th day of storage, whereas high pressure treated samples never breached the acceptability limit during entire duration of chilled storage. The present study indicated that application of high pressure processing can be used to improve microbial quality of Indian white prawn and extend the chilled storage life. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Chilling-Mediated DNA Methylation Changes during Dormancy and Its Release Reveal the Importance of Epigenetic Regulation during Winter Dormancy in Apple (Malus x domestica Borkh.).

    PubMed

    Kumar, Gulshan; Rattan, Usha Kumari; Singh, Anil Kumar

    2016-01-01

    Winter dormancy is a well known mechanism adopted by temperate plants, to mitigate the chilling temperature of winters. However, acquisition of sufficient chilling during winter dormancy ensures the normal phenological traits in subsequent growing period. Thus, low temperature appears to play crucial roles in growth and development of temperate plants. Apple, being an important temperate fruit crop, also requires sufficient chilling to release winter dormancy and normal phenological traits, which are often associated with yield and quality of fruits. DNA cytosine methylation is one of the important epigenetic modifications which remarkably affect the gene expression during various developmental and adaptive processes. In present study, methylation sensitive amplified polymorphism was employed to assess the changes in cytosine methylation during dormancy, active growth and fruit set in apple, under differential chilling conditions. Under high chill conditions, total methylation was decreased from 27.2% in dormant bud to 21.0% in fruit set stage, while no significant reduction was found under low chill conditions. Moreover, the demethylation was found to be decreased, while methylation increased from dormant bud to fruit set stage under low chill as compared to high chill conditions. In addition, RNA-Seq analysis showed high expression of DNA methyltransferases and histone methyltransferases during dormancy and fruit set, and low expression of DNA glcosylases during active growth under low chill conditions, which was in accordance with changes in methylation patterns. The RNA-Seq data of 47 genes associated with MSAP fragments involved in cellular metabolism, stress response, antioxidant system and transcriptional regulation showed correlation between methylation and their expression. Similarly, bisulfite sequencing and qRT-PCR analysis of selected genes also showed correlation between gene body methylation and gene expression. Moreover, significant association

  6. Chilling-Mediated DNA Methylation Changes during Dormancy and Its Release Reveal the Importance of Epigenetic Regulation during Winter Dormancy in Apple (Malus x domestica Borkh.)

    PubMed Central

    Kumar, Gulshan; Rattan, Usha Kumari; Singh, Anil Kumar

    2016-01-01

    Winter dormancy is a well known mechanism adopted by temperate plants, to mitigate the chilling temperature of winters. However, acquisition of sufficient chilling during winter dormancy ensures the normal phenological traits in subsequent growing period. Thus, low temperature appears to play crucial roles in growth and development of temperate plants. Apple, being an important temperate fruit crop, also requires sufficient chilling to release winter dormancy and normal phenological traits, which are often associated with yield and quality of fruits. DNA cytosine methylation is one of the important epigenetic modifications which remarkably affect the gene expression during various developmental and adaptive processes. In present study, methylation sensitive amplified polymorphism was employed to assess the changes in cytosine methylation during dormancy, active growth and fruit set in apple, under differential chilling conditions. Under high chill conditions, total methylation was decreased from 27.2% in dormant bud to 21.0% in fruit set stage, while no significant reduction was found under low chill conditions. Moreover, the demethylation was found to be decreased, while methylation increased from dormant bud to fruit set stage under low chill as compared to high chill conditions. In addition, RNA-Seq analysis showed high expression of DNA methyltransferases and histone methyltransferases during dormancy and fruit set, and low expression of DNA glcosylases during active growth under low chill conditions, which was in accordance with changes in methylation patterns. The RNA-Seq data of 47 genes associated with MSAP fragments involved in cellular metabolism, stress response, antioxidant system and transcriptional regulation showed correlation between methylation and their expression. Similarly, bisulfite sequencing and qRT-PCR analysis of selected genes also showed correlation between gene body methylation and gene expression. Moreover, significant association

  7. Effect of 1-methylcyclopropene and modified atmosphere packaging on chilling injury, and antioxidative defensive mechanism of sweet pepper

    USDA-ARS?s Scientific Manuscript database

    Sweet peppers (Capsicum annuum L.) are chilling sensitive vegetable, and develop injury when stored at temperatures less than 7 C. This study was conducted to investigate the effect of 1-methylcyclopropene (1-MCP) (650 ppb) and modified atmosphere packaging (MAP) on chilling injuries of sweet pepper...

  8. Sensory, physical and chemical characteristics of cooked ham manufactured from rapidly chilled and earlier deboned M. semimembranosus.

    PubMed

    Tomović, Vladimir M; Jokanović, Marija R; Petrović, Ljiljana S; Tomović, Mila S; Tasić, Tatjana A; Ikonić, Predrag M; Sumić, Zdravko M; Sojić, Branislav V; Skaljac, Snežana B; Sošo, Milena M

    2013-01-01

    Effects of rapid chilling of carcasses (at -31°C in the first 3h of chilling, and then at 2-4°C) and earlier deboning (8h post-mortem), compared to rapid (till 24h post-mortem) and conventional chilling (at 2-4°C, till 24h post-mortem), on quality characteristics of pork M. semimebranosus and cooked ham were investigated. Quality measurements included pH value, colour (CIEL a b values) and total aerobic count of M. semimebranosus, as well as sensory (colour, juiciness, texture, and flavour), physical (pH value, colour - CIEL a b values and texture - Warner-Bratzler shear and penetration forces) and chemical (protein, total fat, and moisture content) characteristics of cooked ham. The cooked ham was manufactured from pieces of M. semimebranosus with ultimate lightness (CIEL value) lower than 50. Rapid chilling and earlier deboning significantly increased quantity of M. semimebranosus desirable for cooked ham manufacturing. Earlier start of pork fabrication did not affect important quality characteristics of cooked ham. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Coupling of Physiological and Proteomic Analysis to Understand the Ethylene- and Chilling-Induced Kiwifruit Ripening Syndrome

    PubMed Central

    Minas, Ioannis S.; Tanou, Georgia; Karagiannis, Evangelos; Belghazi, Maya; Molassiotis, Athanassios

    2016-01-01

    Kiwifruit [Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson, cv. “Hayward”] is classified as climacteric fruit and the initiation of endogenous ethylene production following harvest is induced by exogenous ethylene or chilling exposure. To understand the biological basis of this “dilemma,” kiwifruit ripening responses were characterized at 20°C following treatments with exogenous ethylene (100 μL L−1, 20°C, 24 h) or/and chilling temperature (0°C, 10 days). All treatments elicited kiwifruit ripening and induced softening and endogenous ethylene biosynthesis, as determined by 1-aminocyclopropane-1-carboxylic acid (ACC) content and ACC synthase (ACS) and ACC oxidase (ACO) enzyme activities after 10 days of ripening at 20°C. Comparative proteomic analysis using two-dimensional gel electrophoresis (2DE-PAGE) and nanoscale liquid chromatography coupled to tandem mass spectrometry (nanoLC-MS/MS) revealed 81 kiwifruit proteins associated with ripening. Thirty-one kiwifruit proteins were identified as commonly regulated by the three treatments accompanied by dynamic changes of 10 proteins specific to exogenous ethylene, 2 to chilling treatment, and 12 to their combination. Ethylene and/or chilling-responsive proteins were mainly involved in disease/defense, energy, protein destination/storage, and cell structure/cell wall. Interactions between the identified proteins were demonstrated by bioinformatics analysis, allowing a more complete insight into biological pathways and molecular functions affected by ripening. The present approach provides a quantitative basis for understanding the ethylene- and chilling-induced kiwifruit ripening and climacteric fruit ripening in general. PMID:26913040

  10. WATER CONTAMINATION IN FALLOUT AREAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robeck, G.G.; Woodward, R.L.; Muschler, W.K.

    1958-05-01

    An evaluation of the potential radiological hazard to Air Force personnel from drinking water contaminated with fission products is presented. Ground water supplies should be safe from fall-out contamination and only surface supplies may need special treatment. Even in untreated water, the radioactivity in surface supplies is not likely to reduce significantly the military effectiveness of personnel using it except where the general level of contamination is greater than 1000 r/hr at H + 1. Dust samples were collected at the Priscilla shot of Operation Plumbbob 24 June 1957. In each of the samples, material containing approximately 10% of themore » activity was soluble; however, strontium was preferentially dissolved by a factor of 5. For the first 10 days after fall-out, a supply of one gallon of water per person per day will suffice for drinking and culinary purposes, Ion-exchange, which is over 99% efficient, is the most practical and economical method of supplying decontaminated water, For immediate demand, small mixed-bed demineralizers, which are easily installed and maintained, are recommended; for long term demand, pressure cation-exchange beds operated on the sodium cycle are recommended. A shelter accommodating 100 people would require a small mixed-bed demineralizer with an initial cost of and an operating cost of per day. A pressure cation-exchange bed could be installed for 500 which would have an operating cost of 15 cents per 1,000 gallons. This could supply an average daily water requirement of 50,000 gallons. (auth)« less

  11. Developmental stages of cultivated strawberry flowers in relation to chilling sensitivity

    PubMed Central

    Ariza, Maria Teresa; Soria, Carmen; Martínez-Ferri, Elsa

    2015-01-01

    Environmental factors affecting flower development may limit the yields of fruiting crops worldwide. In temperate regions, chilling temperatures during flower development can compromise fruit production, but their negative effects vary depending on the differing susceptibilities of each developmental stage. The cultivated strawberry (Fragaria× ananassa Duch.) is widely grown worldwide but financial returns are influenced by sudden shifts to chilling temperatures occurring during the cropping cycle. Despite this important limitation, knowledge of F.× ananassa flower development is lacking, in contrast to the diploid wild-type strawberry (F. vesca). In this study we describe steps in floral development of cultivated strawberry and define their vulnerability to chilling temperatures. To achieve this, flower buds from strawberry plants of cv. ‘Camarosa’ were labelled and monitored from bud initiation until anthesis. Description of morphological and functional changes during flower development was based on histological sections and scanning electron microscopy. To determine the impact of low temperatures at different developmental stages, plants carrying buds of different sizes were chilled at 2 °C for 24 h. Several parameters related to male and female gametophyte development were later evaluated in flowers as they approached anthesis. Fragaria× ananassa flower development was divided into 16 stages according to landmark events. These stages were similar to those documented for F. vesca but three new additional intermediate stages were described. Timing of developmental processes was achieved by correlating developmental staging with specific bud sizes and days before anthesis. Time to reach anthesis from early bud stages was 17–18 days. During this period, we detected four critical periods vulnerable to low temperatures. These were mostly related to male gametophyte development but also to injury to female organs at late developmental stages. These results

  12. Cold induced changes in the water balance affect immunocytolocalization pattern of one of the aquaporins in the vascular system in the leaves of maize (Zea mays L.).

    PubMed

    Bilska-Kos, Anna; Szczepanik, Jarosław; Sowiński, Paweł

    2016-10-20

    Chilling stress is known to affect the water balance in plants, which often manifests itself in the decrease of the water potential in different organs. Relationships between chilling, assimilate transport and water balance are far from being understood. Although aquaporins play a key role in regulating water balance in plants, especially under stress conditions, the role of individual aquaporins in stress response remains unclear. In this report we show the specific localization within plasma membranes of one of the aquaporins (PIP2;3) in the leaves of two maize inbred lines differing in their chilling-sensitivity. This form of aquaporin has been also observed in thick-walled sieve elements - an additional type of sieve tubes of unclear function found only in monocotyledons. Moderate chilling (about 15°C) caused significant reduction of labelling in these cells accompanied by a steep decrease in the water potential in leaves of chilling-sensitive maize line. Our results suggest that both PIP2;3 and thick-walled sieve tubes may be an unknown element of the mechanism of the response of maize to cold stress. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Dual roles for hepatic lectin receptors in the clearance of chilled platelets

    PubMed Central

    Rumjantseva, Viktoria; Grewal, Prabhjit K.; Wandall, Hans H.; Josefsson, Emma C.; Sørensen, Anne Louise; Larson, Göran; Marth, Jamey D.; Hartwig, John H.; Hoffmeister, Karin M.

    2015-01-01

    Chilling rapidly (<4 h) clusters Glycoprotein - (GP)Ib receptors on blood platelets, and ß2-integrins of hepatic macrophages bind ßGlcNAc residues in the clusters leading to rapid clearance of acutely chilled platelets following transfusion. Although capping the ßGlcNAc moieties by galactosylation prevents clearance, this strategy is ineffective after prolonged (>24 h) refrigeration. We report here that prolonged refrigeration increases the density/concentration of exposed galactose residues such that hepatocytes become increasingly involved in the removal of platelets using their Ashwell-Morell receptors. Macrophages always rapidly remove a large fraction of transfused platelets (~40%). With platelet cooling, hepatocyte-dependent clearance further diminishes their recoveries following transfusion. PMID:19783995

  14. Solar process water heat for the IRIS images custom color photo lab

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar facility located at a custom photo laboratory in Mill Valley, California is described. It was designed to provide 59 percent of the hot water requirements for developing photographic film and domestic hot water use. The design load is to provide 6 gallons of hot water per minute for 8 hours per working day at 100 F. It has 640 square feet of flat plate collectors and 360 gallons of hot water storage. The auxillary back up system is a conventional gas-fired water heater. Site and building description, subsystem description, as-built drawings, cost breakdown and analysis, performance analysis, lessons learned, and the operation and maintenance manual are presented.

  15. Variation in chilling tolerance for photosynthesis and leaf extension growth among genotypes related to the C-4 grass Miscanthus xgiganteus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glowacka, K; Adhikari, S; Peng, JH

    The goal of this study was to identify cold-tolerant genotypes within two species of Miscanthus related to the exceptionally chilling-tolerant C-4 biomass crop accession: M. xgiganteus 'Illinois' (Mxg) as well as in other Mxg genotypes. The ratio of leaf elongation at 10 degrees C/5 degrees C to that at 25 degrees C/25 degrees C was used to identify initially the 13 most promising Miscanthus genotypes out of 51 studied. Net leaf CO2 uptake (A(sat)) and the maximum operating efficiency of photosystem II (Phi(PSII)) were measured in warm conditions (25 degrees C/20 degrees C), and then during and following a chillingmore » treatment of 10 degrees C/5 degrees C for 11 d. Accessions of M. sacchariflorus (Msa) showed the smallest decline in leaf elongation on transfer to chilling conditions and did not differ significantly from Mxg, indicating greater chilling tolerance than diploid M. sinensis (Msi). Msa also showed the smallest reductions in A(sat) and Phi(PSII), and greater chilling-tolerant photosynthesis than Msi, and three other forms of Mxg, including new triploid accessions and a hexaploid Mxg 'Illinois'. Tetraploid Msa 'PF30153' collected in Gifu Prefecture in Honshu, Japan did not differ significantly from Mxg 'Illinois' in leaf elongation and photosynthesis at low temperature, but was significantly superior to all other forms of Mxg tested. The results suggested that the exceptional chilling tolerance of Mxg 'Illinois' cannot be explained simply by the hybrid vigour of this intraspecific allotriploid. Selection of chilling-tolerant accessions from both of Mxg's parental species, Msi and Msa, would be advisable for breeding new highly chilling-tolerant Mxg genotypes.« less

  16. The Big Chills

    NASA Astrophysics Data System (ADS)

    Bond, G. C.; Dwyer, G. S.; Bauch, H. A.

    2002-12-01

    At the end of the last glacial, the Earth's climate system abruptly shifted into the Younger Dryas, a 1500-year long cold snap known in the popular media as the Big Chill. Following an abrupt warming ending the Younger Dryas about 11,600 years ago, the climate system has remained in an interglacial state, thought to have been relatively stable and devoid, with possibly one or two exceptions, of abrupt climate change. A growing amount of evidence suggests that this benign view of interglacial climate is incorrect. High resolution records of North Atlantic ice rafted sediment, now regarded as evidence of extreme multiyear sea ice drift, reveal abrupt shifts on centennial and millennial time scales. These have been traced from the end of the Younger Dryas to the present, revealing evidence of significant climate variability through all of the last two millennia. Correlatives of these events have been found in drift ice records from the Arctic's Laptev Sea, in the isotopic composition of North Grip ice, and in dissolved K from the GISP2 ice core, attesting to their regional extent and imprint in proxies of very different origins. Measurements of Mg/Ca ratios in planktic foraminifera over the last two millennia in the eastern North Atlantic demonstrate that increases in drifting multiyear sea ice were accompanied by abrupt decreases in sea surface temperatures, especially during the Little Ice Age. Estimated rates of temperature change are on the order of two degrees centigrade, more than thirty percent of the regional glacial to interglacial change, within a few decades. When compared at the same resolution, these interglacial variations are as abrupt as the last glacial's Dansgaard-Oeschger cycles. The interglacial abrupt changes are especially striking because they occurred within the core of the warm North Atlantic Current. The changes may have been triggered by variations in solar irradiance, but if so their large magnitude and regional extent requires amplifying

  17. Water from the Coastal Plain aquifers in the Washington, D.C., metropolitan area

    USGS Publications Warehouse

    Papadopulos, S.S.; Bennett, R.R.; Mack, F.K.; Trescott, P.C.

    1974-01-01

    A brief study of the Atlantic Coastal Plain aquifers in the vicinity of the Washington, D.C., metropolitan area was made, using available data, to estimate the water-supply potential of these aquifers and to determine the possibility of developing an emergency water supply during droughts. Assuming that the data available are representative, the study indicates that the water-supply potential of these aquifers, within an assumed 30-mile radius of Washington, D.C., is about 170 million gallons per day. That is, these aquifers, which are now furnishing an estimated 60 million gallons per day, could be developed to supply an additional 110 million gallons per day on a continuous basis. This quantity might be even larger if a significant amount of water is derived from leakage through finer grained confining beds, but further studies would be necessary to determine the amount of leakage and the long-term effects of large-scale continuous use. Furthermore, under intermittent pumping conditions, an assumed emergency supply of 100 million gallons per day could probably be developed from well fields within a 30-mile radius of Washington. An exploration and testing program would be necessary to assess the reliability of these preliminary estimates.

  18. Public Water-Supply Systems and Associated Water Use in Tennessee, 2000

    USGS Publications Warehouse

    Webbers, Ank

    2003-01-01

    Public water-supply systems in Tennessee provide water to meet customer needs for domestic, industrial, and commercial users and municipal services. In 2000, more than 500 public water-supply systems distributed about 890 million gallons per day (Mgal/d) of surface water and ground water to a population of about 5 million in Tennessee. Surface-water sources provided 64 percent (about 569 Mgal/d) of the State?s water supplies, primarily in Middle and East Tennessee. Ground water produced from wells and springs in Middle and East Tennessee and from wells in West Tennessee provided 36 percent (about 321 Mgal/d) of the public water supplies. Springs in Middle and East Tennessee provided about 14 percent (about 42 Mgal/d) of ground-water supplies used in the State. Per capita water use for Tennessee in 2000 was about 136 gallons per day. An additional 146 public water-supply systems provided approximately 84 Mgal/d of water supplies that were purchased from other water systems. Water withdrawals by public water-supply systems in Tennessee have increased by over 250 percent; from 250 Mgal/d in 1955 to 890 Mgal/d in 2000. Although Tennessee public water-supply systems withdraw less ground water than surface water, ground-water withdrawal rates reported by these systems continue to increase. In addition, the number of public water-supply systems reporting ground-water withdrawals of 1 Mgal/d or more in West Tennessee is increasing.

  19. External tank chill effect on the space transportation system launch pad environment

    NASA Technical Reports Server (NTRS)

    Ahmad, R. A.; Boraas, S.

    1991-01-01

    The external tank (ET) of the STS contains liquid oxygen and liquid hydrogen as oxidizer and fuel for the SSMEs. Once the cryogen have been loaded into the ET, the temperature of the air surrounding the STS is chilled by the cold outer surface of the ET. This paper describes a two-dimensional flow and thermal analysis to determine this chill effect on the STS launch pad environment subsequent to the ET loading operation. The analysis was done assuming winter conditions and a northwest wind direction. An existing CFD code, PHOENICS '81, was used in the study. The results are presented as local and average values of the heat transfer coefficient, the Nusselt number, and the surface temperature around the redesigned solid rocket motors (RSRMs) and the ET. The temperature depression caused by the ET chilling of the air in the vicinity of the RSRMs was calculated to be 3 F below the ambient. This compares with the observed 1-2 F RSRM surface temperature depression based upon measurements made prior to the winter flight of STS-29. Since the surface temperature would be expected to be slightly higher than the local air temperature, the predicted temperature depression of the air appears to be substantiated.

  20. Effect of Soy Protein Hydrolysates Prepared by Subcritical Water Processing on the Physicochemical Properties of Pork Patty during Chilled Storage

    PubMed Central

    Min, Sang-Gi

    2015-01-01

    The present study was carried out to investigate the effects of soy protein hydrolysates (SPHs) addition on the quality characteristics of pork patties. The SPHs was prepared by subcritical water process (SWP) at 180℃ without holding time and mixed with the pork patty components at varying concentrations (0-3%), and the patties were stored at 4℃ for 14 d. As quality parameters, instrumental color, thiobarbituric acid-reactive substances (TBARS), pH, water holding capacity (WHC) and shear force were measured at the end of storage. Regardless of SPHs concentration, the addition of SPHs significantly manifested low L* and high a* values compared to those of untreated control (p<0.05). For b* value, addition of SPHs in the 0.5-1.5% was unaffected, while >2.0% of SPHs caused significantly lower b* than control (p<0.05). The color changes in pork patties with and without SPHs were also identified in visual appearance where the pork patties containing 0.5-2.0% showed bright red color which was comparable to brownish color of control and patties containing >2.5% SPHs. Lipid oxidation was delayed by the addition of 0.5-1.5% SPHs, while it was accelerated by the addition of 3% SPHs. The pH of patties increased with increasing concentration of SPHs, whereas there were no significant differences in WHC and shear force of patties. Consequently, the results indicated that the addition of 0.5-1.5% SPHs had a potential advantage in suppressing oxidative deterioration of fat-containing meat products during chilled storage. PMID:26761879

  1. Effect of Soy Protein Hydrolysates Prepared by Subcritical Water Processing on the Physicochemical Properties of Pork Patty during Chilled Storage.

    PubMed

    Lee, Yun-Kyung; Ko, Bo-Bae; Min, Sang-Gi; Hong, Geun-Pyo

    2015-01-01

    The present study was carried out to investigate the effects of soy protein hydrolysates (SPHs) addition on the quality characteristics of pork patties. The SPHs was prepared by subcritical water process (SWP) at 180℃ without holding time and mixed with the pork patty components at varying concentrations (0-3%), and the patties were stored at 4℃ for 14 d. As quality parameters, instrumental color, thiobarbituric acid-reactive substances (TBARS), pH, water holding capacity (WHC) and shear force were measured at the end of storage. Regardless of SPHs concentration, the addition of SPHs significantly manifested low L* and high a* values compared to those of untreated control (p<0.05). For b* value, addition of SPHs in the 0.5-1.5% was unaffected, while >2.0% of SPHs caused significantly lower b* than control (p<0.05). The color changes in pork patties with and without SPHs were also identified in visual appearance where the pork patties containing 0.5-2.0% showed bright red color which was comparable to brownish color of control and patties containing >2.5% SPHs. Lipid oxidation was delayed by the addition of 0.5-1.5% SPHs, while it was accelerated by the addition of 3% SPHs. The pH of patties increased with increasing concentration of SPHs, whereas there were no significant differences in WHC and shear force of patties. Consequently, the results indicated that the addition of 0.5-1.5% SPHs had a potential advantage in suppressing oxidative deterioration of fat-containing meat products during chilled storage.

  2. Water and Proppant Requirements and Water Production Associated with Undiscovered Petroleum in the Bakken and Three Forks Formations, North Dakota and Montana, USA

    NASA Astrophysics Data System (ADS)

    Haines, S. S.; Varela, B. A.; Thamke, J.; Hawkins, S. J.; Gianoutsos, N. J.; Tennyson, M. E.

    2017-12-01

    Water is used for several stages of oil and gas production, in particular for hydraulic fracturing that is typically used during production of petroleum from low-permeability shales and other rock types (referred to as "continuous" petroleum accumulations). Proppant, often sand, is also consumed during hydraulic fracturing. Water is then produced from the reservoir along with the oil and gas, representing either a disposal consideration or a possible source of water for further petroleum development or other purposes. The U.S. Geological Survey (USGS) has developed an approach for regional-scale estimation of these water and proppant quantities in order to provide an improved understanding of possible impacts and to help with planning and decision-making. Using the new methodology, the USGS has conducted a quantitative assessment of water and proppant requirements, and water production volumes, associated with associated with possible future production of undiscovered petroleum resources in the Bakken and Three Forks Formations, Williston Basin, USA. This water and proppant assessment builds directly from the 2013 USGS petroleum assessment for the Bakken and Three Forks Formations. USGS petroleum assessments incorporate all available geologic and petroleum production information, and include the definition of assessment units (AUs) that specify the geographic regions and geologic formations for the assessment. The 2013 petroleum assessment included 5 continuous AUs for the Bakken Formation and one continuous AU for the Three Forks Formation. The assessment inputs are defined probabilistically, and a Monte Carlo approach provides outputs that include uncertainty bounds. We can summarize the assessment outputs with the mean values of the associated distributions. The mean estimated total volume of water for well drilling and cement for all six continuous AUs is 5.9 billion gallons, and the mean estimated volume of water for hydraulic fracturing for all AUs is 164

  3. Solar hot-water system

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Design data brochure describes domestic solar water system that uses direct-feed system designed to produce 80 gallons of 140 F hot water per day to meet needs of single family dwelling. Brochure also reviews annual movements of sun relative to earth and explains geographic considerations in collector orientation and sizing.

  4. Annual water-resources review, White Sands Missile Range, New Mexico, 1984

    USGS Publications Warehouse

    Cruz, R.R.

    1985-01-01

    Hydrologic data were collected at White Sands Missile Range in 1984. The total groundwater withdrawal in 1984 was 685,275,000 gallons. The Post Headquarters well field produced 650,821,000 gallons in 1984. Six new wells were drilled at White Sands Missile Range in 1984. Nineteen water samples were collected for major chemical-constituent, trace-element, or radiochemical analysis in 1984. Depth-to-water measurements in the Post Headquarters supply wells showed seasonal fluctuations as well as continued long-term declines. (USGS)

  5. 76 FR 45513 - Fresh and Chilled Atlantic Salmon From Norway: Preliminary Results of Full Third Sunset Review of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... Salmon From Norway: Preliminary Results of Full Third Sunset Review of Antidumping Duty Order AGENCY...) order on fresh and chilled Atlantic salmon from Norway pursuant to section 751(c) of the Tariff Act of..., the Department initiated the third sunset review of the AD order on fresh and chilled Atlantic salmon...

  6. 76 FR 10233 - Schedule of Water Charges

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-24

    ..., operation, maintenance, replacement, reserves and associated administrative costs.'' Id., par. A.2.b. The...'s Beltzville and Blue Marsh reservoirs. The rates established in 1978--$60 per million gallons for... reference, Water resources, Water reservoirs, Water supply, Watersheds. For the reasons set forth in the...

  7. Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence

    PubMed Central

    Ismail, Abdelbagi M.; Hall, Anthony E.; Close, Timothy J.

    1999-01-01

    Dehydrins (DHNs, LEA D-11) are plant proteins present during environmental stresses associated with dehydration or low temperatures and during seed maturation. Functions of DHNs have not yet been defined. Earlier, we hypothesized that a ≈35-kDa DHN and membrane properties that reduce electrolyte leakage from seeds confer chilling tolerance during seedling emergence of cowpea (Vigna unguiculata L. Walp.) in an additive and independent manner. Evidence for this hypothesis was not rigorous because it was based on correlations of presence/absence of the DHN and slow electrolyte leakage with chilling tolerance in closely related cowpea lines that have some other genetic differences. Here, we provide more compelling genetic evidence for involvement of the DHN in chilling tolerance of cowpea. We developed near-isogenic lines by backcrossing. We isolated and determined the sequence of a cDNA corresponding to the ≈35-kDa DHN and used gene-specific oligonucleotides derived from it to test the genetic linkage between the DHN presence/absence trait and the DHN structural gene. We tested for association between the DHN presence/absence trait and both low-temperature seed emergence and electrolyte leakage. We show that allelic differences in the Dhn structural gene map to the same position as the DHN protein presence/absence trait and that the presence of the ≈35-kDa DHN is indeed associated with chilling tolerance during seedling emergence, independent of electrolyte leakage effects. Two types of allelic variation in the Dhn gene were identified in the protein-coding region, deletion of one Φ-segment from the DHN-negative lines and two single amino acid substitutions. PMID:10557361

  8. Spatial variability of chilling temperature in Turkey and its effect on human comfort

    NASA Astrophysics Data System (ADS)

    Toros, H.; Deniz, A.; Şaylan, L.; Şen, O.; Baloğlu, M.

    2005-03-01

    Air temperature, absolute humidity and wind speed are the most important meteorological parameters that affect human thermal comfort. Because of heat loss, the human body feels air temperatures different to actual temperatures. Wind speed is the most practical element for consideration in terms of human comfort. In winter, due to the strong wind speeds, the sensible temperature is generally colder than the air temperature. This uncomfortable condition can cause problems related to tourism, heating and cooling. In this study, the spatial and temporal distributions of cooling temperatures and Wind Chill Index (WCI) are analyzed for Turkey, and their effect on the human body is considered. In this paper, monthly cooling temperatures between October and March in the years 1929 to 1990 are calculated by using measured temperature and wind speed at 79 stations in Turkey. The influence of wind chill is especially observed in the regions of the Aegean, west and middle Black Sea and east and central Anatolia. The wind chill in these regions has an uncomfortable effect on the human body. Usually, the WCI value is higher in western, northern and central Anatolia than in other regions.

  9. Effect of immersion chilling of broiler chicken carcasses in monochloramine on lipid oxidation and halogenated residual compound formation.

    PubMed

    Axtell, Stephen P; Russell, Scott M; Berman, Elliot

    2006-04-01

    This study was conducted to evaluate the effect of immersion chilling of broiler chicken carcasses in tap water (TAP) or TAP containing 50 ppm of monochloramine (MON) with respect to chloroform formation, total chlorine content, 2-thiobarbituric acid (TBA) values, and fatty acid profiles. Ten broiler chicken carcasses were chilled in TAP or MON for 6 h. After exposure, the carcasses were removed and cut in half along the median plane into right and left halves. After roasting the left halves, samples of the breast, thigh, and skin (with fat) were collected, subjected to fatty acid profiling, and assayed for chloroform, total chlorine, and TBA. The uncooked right halves of each carcass were stored at 4 degrees C for 10 days and then roasted. After roasting these right halves, samples of breast, thigh, and skin (with fat) were collected from each carcass half, subjected to fatty acid profiling, and assayed for chloroform, total chlorine, and TBA. There were no statistical differences between TAP- and MON-treated fresh or stored products with regard to chloroform levels, total chlorine content, TBA values, or fatty acid profiles.

  10. 76 FR 70411 - Fresh and Chilled Atlantic Salmon From Norway: Final Results of Full Third Sunset Review of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... Salmon From Norway: Final Results of Full Third Sunset Review of Countervailing Duty Order AGENCY: Import... fresh and chilled Atlantic salmon from Norway pursuant to section 751(c) of the Tariff Act of 1930, as... on fresh and chilled Atlantic salmon from Norway pursuant to section 751(c) of the Act. See Sunset...

  11. 76 FR 70409 - Fresh and Chilled Atlantic Salmon From Norway: Final Results of Full Third Sunset Review of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... Salmon From Norway: Final Results of Full Third Sunset Review of Antidumping Duty Order AGENCY: Import... and chilled Atlantic salmon from Norway pursuant to section 751(c) of the Tariff Act of 1930, as... Department initiated the third sunset review of the AD order on fresh and chilled Atlantic salmon from Norway...

  12. 76 FR 37786 - Fresh and Chilled Atlantic Salmon From Norway: Preliminary Results of Full Third Sunset Review of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Salmon From Norway: Preliminary Results of Full Third Sunset Review of Countervailing Duty Order AGENCY... (CVD) order on fresh and chilled Atlantic salmon from Norway pursuant to section 751(c) of the Tariff... the CVD order on fresh and chilled Atlantic salmon from Norway pursuant to section 751(c) of the Act...

  13. NASA Tests Upgraded Water System for Stennis Space Center's B-2 Test Stand

    NASA Image and Video Library

    2017-12-04

    On December 4, Stennis Space Center conducted a water flow test on the B-2 test stand to check the water system’s upgraded modifications in preparation for Space Launch System’s Core Stage testing. During a test, rocket engine fire and exhaust is redirected out of the stand by a large flame trench. For this test, the water deluge system, with the capability of flowing 335,000 gallons of water per minute, directed more than 240,000 gallons of water per minute through more than 32,000 5/32-inch holes in the B2 stand flame deflector, cooling the exhaust and protecting the trench from damage.

  14. Contrasting effect of dark-chilling on chloroplast structure and arrangement of chlorophyll-protein complexes in pea and tomato: plants with a different susceptibility to non-freezing temperature.

    PubMed

    Garstka, Maciej; Venema, Jan Henk; Rumak, Izabela; Gieczewska, Katarzyna; Rosiak, Malgorzata; Koziol-Lipinska, Joanna; Kierdaszuk, Borys; Vredenberg, Wim J; Mostowska, Agnieszka

    2007-10-01

    The effect of dark-chilling and subsequent photoactivation on chloroplast structure and arrangements of chlorophyll-protein complexes in thylakoid membranes was studied in chilling-tolerant (CT) pea and in chilling-sensitive (CS) tomato. Dark-chilling did not influence chlorophyll content and Chl a/b ratio in thylakoids of both species. A decline of Chl a fluorescence intensity and an increase of the ratio of fluorescence intensities of PSI and PSII at 120 K was observed after dark-chilling in thylakoids isolated from tomato, but not from pea leaves. Chilling of pea leaves induced an increase of the relative contribution of LHCII and PSII fluorescence. A substantial decrease of the LHCII/PSII fluorescence accompanied by an increase of that from LHCI/PSI was observed in thylakoids from chilled tomato leaves; both were attenuated by photoactivation. Chlorophyll fluorescence of bright grana discs in chloroplasts from dark-chilled leaves, detected by confocal laser scanning microscopy, was more condensed in pea but significantly dispersed in tomato, compared with control samples. The chloroplast images from transmission-electron microscopy revealed that dark-chilling induced an increase of the degree of grana stacking only in pea chloroplasts. Analyses of O-J-D-I-P fluorescence induction curves in leaves of CS tomato before and after recovery from chilling indicate changes in electron transport rates at acceptor- and donor side of PS II and an increase in antenna size. In CT pea leaves these effects were absent, except for a small but irreversible effect on PSII activity and antenna size. Thus, the differences in chloroplast structure between CS and CT plants, induced by dark-chilling are a consequence of different thylakoid supercomplexes rearrangements.

  15. Design data brochure: Solar hot water system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A design calculation is detailed for a single-family residence housing a family of four in a nonspecific geographical area. The solar water heater system is designed to provide 80 gallons of 140 F hot water per day.

  16. Water resources of Randolph and Lawrence Counties, Arkansas

    USGS Publications Warehouse

    Lamonds, A.G.; Hines, Marion S.; Plebuch, Raymond O.

    1969-01-01

    Water is used at an average rate of almost 27 million gallons per day in Randolph and Lawrence Counties, and quantities sufficient for any foreseeable use are available. Supplies for the large uses--municipal, industrial, and irrigation--can best be obtained from wells in .he Coastal Plain part of the counties and from streams in the Interior Highlands part. The counties have abundant supplies of hard but otherwise good-quality surface water, particularly in the Interior Highlands and along the western boundary of the Coastal Plain. Minimum recorded flows of four streams (Black, Current, Eleven Point, and Spring Rivers) exceeded 200 cubic feet per second, or 129 million gallons per day. Five other streams have flows in excess of 13 cubic feet per second 95 percent of the time. Water supplies can be obtained without storage from the larger streams in the area. Many of the smaller streams in the Interior Highlands also have large water-supply potential because of the excellent impoundment possibilities. Most of the water used in the .two counties is obtained from ground-water reservoirs in the Coastal Plain. Wells that tap alluvial deposits of Quaternary age commonly yield 1,000 gallons per minute. However, the water often is unsuitable for many uses unless treated to remove hardness, iron, and manganese. Water possibly may be obtained in the southeastern part of the area from the Wilcox Group of Tertiary age and the Nacatoch Sand of Cretaceous age, but these formations have not been explored in the report area. Wells in the Interior Highlands generally are less than 200 feet deep and yield 10 gallons per minute, or less. It may be possible to obtain greater amounts of ground water from two unexplored formations, the Roubidox and the Gunter Sandstone Member of the Van Buren Formation, in the Interior Highlands. Ground water in the Interior Highlands is very hard and is more susceptible to local bacterial contamination than is ground water in the Coastal Plain

  17. Chilling Stress Upregulates α-Linolenic Acid-Oxidation Pathway and Induces Volatiles of C6 and C9 Aldehydes in Mango Fruit.

    PubMed

    Sivankalyani, Velu; Maoz, Itay; Feygenberg, Oleg; Maurer, Dalia; Alkan, Noam

    2017-01-25

    Mango-fruit storage period and shelf life are prolonged by cold storage. However, chilling temperature induces physiological and molecular changes, compromising fruit quality. In our previous transcriptomic study of mango fruit, cold storage at suboptimal temperature (5 °C) activated the α-linolenic acid metabolic pathway. To evaluate changes in fruit quality during chilling, we analyzed mango "Keitt" fruit peel volatiles. GC-MS analysis revealed significant modulations in fruit volatiles during storage at suboptimal temperature. Fewer changes were seen in response to the time of storage. The mango volatiles related to aroma, such as δ-3-carene, (Z)-β-ocimene, and terpinolene, were downregulated during the storage at suboptimal temperature. In contrast, C 6 and C 9 aldehydes and alcohols-α-linolenic acid derivatives 1-hexanal, (Z)-3-hexenal, (Z)-3-hexenol, (E)-2-hexenal, and nonanal-were elevated during suboptimal-temperature storage, before chilling-injury symptoms appeared. Detection of those molecules before chilling symptoms could lead to a new agro-technology to avoid chilling injuries and maintain fruit quality during cold storage at the lowest possible temperature.

  18. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120 gallons...

  19. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120 gallons...

  20. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120 gallons...

  1. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120 gallons...

  2. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120 gallons...

  3. Changes in SBPase activity influence photosynthetic capacity, growth, and tolerance to chilling stress in transgenic tomato plants

    PubMed Central

    Ding, Fei; Wang, Meiling; Zhang, Shuoxin; Ai, Xizhen

    2016-01-01

    Sedoheptulose-1, 7-bisphosphatase (SBPase) is an important enzyme involved in photosynthetic carbon fixation in the Calvin cycle. Here, we report the impact of changes in SBPase activity on photosynthesis, growth and development, and chilling tolerance in SBPase antisense and sense transgenic tomato (Solanum lycopersicum) plants. In transgenic plants with increased SBPase activity, photosynthetic rates were increased and in parallel an increase in sucrose and starch accumulation was evident. Total biomass and leaf area were increased in SBPase sense plants, while they were reduced in SBPase antisense plants compared with equivalent wild-type tomato plants. Under chilling stress, when compared with plants with decreased SBPase activity, tomato plants with increased SBPase activity were found to be more chilling tolerant as indicated by reduced electrolyte leakage, increased photosynthetic capacity, and elevated RuBP regeneration rate and quantum efficiency of photosystem II. Collectively, our data suggest that higher level of SBPase activity gives an advantage to photosynthesis, growth and chilling tolerance in tomato plants. This work also provides a case study that an individual enzyme in the Calvin cycle may serve as a useful target for genetic engineering to improve production and stress tolerance in crops. PMID:27586456

  4. Water conservation benefits of urban heat mitigation.

    PubMed

    Vahmani, Pouya; Jones, Andrew D

    2017-10-20

    Many cities globally are seeking strategies to counter the consequences of both a hotter and drier climate. While urban heat mitigation strategies have been shown to have beneficial effects on health, energy consumption, and greenhouse gas emissions, their implications for water conservation have not been widely examined. Here we use a suite of satellite-supported regional climate simulations in California to show that broad implementation of cool roofs, a heat mitigation strategy, not only results in significant cooling, but can also meaningfully decrease outdoor water consumption by reducing evaporative and irrigation water demands. Irrigation water consumption across the major metropolitan areas is reduced by up to 9% and irrigation water savings per capita range from 1.8 to 15.4 gallons per day across 18 counties examined. Total water savings are found to be the highest in Los Angeles county, reaching about 83 million gallons per day. Cool roofs are a valuable solution for addressing the adaptation and mitigation challenges faced by multiple sectors in California.

  5. Technical/commercial feasibility study of the production of fuel-grade ethanol from corn: 100-million-gallon-per-year production facility in Myrtle Grove, Louisiana. Volume 1: Executive summary

    NASA Astrophysics Data System (ADS)

    1982-05-01

    An executive summary is given of a detailed feasibility study for a 100 million gallon per year power alcohol plant using corn as feedstock. The proposed plant will ultimately have the capability to produce 100 million gallons per year of anhydrous alcohol from an estimated 40 million bushels of corn and will be designed so as to allow construction in modules of 25 million gallons each. Alcohol produced at this plant is intended essentially for use as a gasoline octane booster, a motor fuel in gasoline/alcohol blends and as a chemical feedstock. In addition, the plant will produce a number of by-products, each of which has existing commercial markets; namely, 236,400 tons of CO2, 237,600 tons of protein meal mixture (40.2% protein), or 124,000 tons of gluten meal (41% protein), 20,000 tons of yeast, 68,400 tons of corn bran, 89,600 tons of corn germ cake and 4,584,000 gallons of corn oil (food grade).

  6. Estimated water use, by county, in North Carolina, 1990

    USGS Publications Warehouse

    Terziotti, Silvia; Schrader, Tony P.; Treece, M.W.

    1994-01-01

    Data on water use in North Carolina were compiled for 1990 as part of a cooperative agreement between the U.S. Geological Survey and the Division of Water Resources of the North Carolina Department of Environment, Health, and Natural Resources. Data were compiled from a number of Federal, State, and private sources for the offstream water-use categories of public supply, domestic, commercial, industrial, mining, livestock, irrigation, and thermoelectric-power generation. Data also were collected for instream use from hydroelectric facilities. Total estimated offstream water use in the State for 1990 was about 8,940 million gallons per day. About 95 percent of the water withdrawn was from surface-water sources. Thermoelectric-power generation accounted for about 81 percent of all withdrawals. Data for instream water use for hydroelectric-power generation also were compiled. This instream water use totaled about 66,900 million gallons per day. eAch water-use category is summarized in this report by county and source of water supply.

  7. Ground-water appraisal of the Fishkill-Beacon area, Dutchess County, New York

    USGS Publications Warehouse

    Snavely, Deborah S.

    1980-01-01

    The most productive aquifers in the Fishkill-Beacon area, Dutchess County, N.Y., are the sand and gravel beds in the northeast corner of the area and along the valleys of Fishkill and Clove Creeks. The average yield of these aquifers to wells is 190 gal/min (gallons per minute). The most productive bedrock aquifer is limestone, which yields an average of about 150 gal/min. Shale and granite each yield an average of less than 35 gal/min. About 4 billion gallons of available ground water is estimated to be in storage in the sand and gravel aquifers in the area. The area withdraws an average of 3.3 Mgal/d (million gallons per day) of water in June, July, and August and 2 Mgal/d during the remainder of the year. (USGS)

  8. Chilling-induced physiological, anatomical and biochemical responses in the leaves of Miscanthus × giganteus and maize (Zea mays L.).

    PubMed

    Bilska-Kos, Anna; Panek, Piotr; Szulc-Głaz, Anna; Ochodzki, Piotr; Cisło, Aneta; Zebrowski, Jacek

    2018-06-08

    Miscanthus × giganteus and Zea mays, closely-related C 4 grasses, originated from warm climates react differently to low temperature. To investigate the response to cold (12-14 °C) in these species, the photosynthetic and anatomical parameters as well as biochemical properties of the cell wall were studied. The research was performed using M. giganteus (MG) and two Z. mays lines differentiated for chilling-sensitivity: chilling-tolerant (Zm-T) and chilling-sensitive (Zm-S). The chilled plants of Zm-S line demonstrated strong inhibition of net CO 2 assimilation and a clear decrease in F' v /F' m , F v /F m and ɸ PSII, while in MG and Zm-T plants these parameters were almost unchanged. The anatomical studies revealed that MG plants had thinner leaves, epidermis and mesophyll cell layer as well as thicker cell walls in the comparison to both maize lines. Cold led to an increase in leaf thickness and mesophyll cell layer thickness in the Zm-T maize line, while the opposite response was observed in Zm-S. In turn, in chilled plants of MG and Zm-T lines, some anatomical parameters associated with bundle sheath cells were higher. In addition, Zm-S line showed the strong increase in the cell wall thickness at cold for mesophyll and bundle sheath cells. Chilling-treatment induced the changes in the cell wall biochemistry of tested species, mainly in the content of glucuronoarabinoxylan, uronic acid, β-glucan and phenolic compounds. This work presents a new approach in searching of mechanism(s) of tolerance/sensitivity to low temperature in two thermophilic plants: Miscanthus and maize. Copyright © 2018 Elsevier GmbH. All rights reserved.

  9. Effects of nutrient and water restriction on thermal tolerance: A test of mechanisms and hypotheses.

    PubMed

    Mitchell, Katherine A; Boardman, Leigh; Clusella-Trullas, Susana; Terblanche, John S

    2017-10-01

    Nutritional deprivation or desiccation can influence thermal tolerance by impacting the insects' ability to evaporatively cool, maintain cell membrane integrity and conduct protective or repair processes. Recovery from chilling is also linked to the re-establishment of iono- and osmo-regulatory homeostasis. Here, using Mediterranean fruit fly (Ceratitis capitata, Diptera: Tephritidae), we manipulated water and nutrient availability to test the mechanistic expectation that changes in whole organism lipid and water content can elicit variation in cold or heat tolerance (scored as chill coma recovery time and heat knockdown time). We measured body condition (body water and lipid content) as well as heat shock protein 70 gene (hsp70) and protein (HSP70) levels. A significant reduction in body water content with water restriction did not translate into differences in chill coma recovery. When nutrient restriction was coupled with water deprivation, this resulted in a significant reduction (-54%) of heat knockdown time in females but male flies were unaffected. There was no evidence for an hsp70 or HSP70 response under any of the stress treatments and therefore no correlation with heat or cold tolerance. Heat hardening decreased all hsp levels. Therefore, although body water and total body lipid content differed between the treatment groups, the contribution of these factors to thermal tolerance was inconsistent with mechanistic expectations in heat knockdown time and insignificant for chill coma recovery. These results therefore highlight that the effects of resource restriction on thermal limits in insects are mechanistically more complex than previous models of stress resistance have suggested. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Chilling and heat requirements for leaf unfolding in European beech and sessile oak populations at the southern limit of their distribution range.

    PubMed

    Dantec, Cécile F; Vitasse, Yann; Bonhomme, Marc; Louvet, Jean-Marc; Kremer, Antoine; Delzon, Sylvain

    2014-11-01

    With global warming, an advance in spring leaf phenology has been reported worldwide. However, it is difficult to forecast phenology for a given species, due to a lack of knowledge about chilling requirements. We quantified chilling and heat requirements for leaf unfolding in two European tree species and investigated their relative contributions to phenological variations between and within populations. We used an extensive database containing information about the leaf phenology of 14 oak and 10 beech populations monitored over elevation gradients since 2005. In parallel, we studied the various bud dormancy phases, in controlled conditions, by regularly sampling low- and high-elevation populations during fall and winter. Oak was 2.3 times more sensitive to temperature for leaf unfolding over the elevation gradient and had a lower chilling requirement for dormancy release than beech. We found that chilling is currently insufficient for the full release of dormancy, for both species, at the lowest elevations in the area studied. Genetic variation in leaf unfolding timing between and within oak populations was probably due to differences in heat requirement rather than differences in chilling requirement. Our results demonstrate the importance of chilling for leaf unfolding in forest trees and indicate that the advance in leaf unfolding phenology with increasing temperature will probably be less pronounced than forecasted. This highlights the urgent need to determine experimentally the interactions between chilling and heat requirements in forest tree species, to improve our understanding and modeling of changes in phenological timing under global warming.

  11. Water availability and flood hazards in the John Day Fossil Beds National Monument, Oregon

    USGS Publications Warehouse

    Frank, Frank J.; Oster, E.A.

    1979-01-01

    The rock formations of the John Day Fossil Beds National Monument area are aquifers that can be expected to yield less than 10 gallons of water per minute to wells. The most permeable of the geologic units is the alluvium that occurs at low elevations along the John Day River and most of the smaller streams. Wells in the alluvial deposits can be expected to yield adequate water supplies for recreational areas; also, wells completed in the underlying bedrock at depths ranging from 50 to 200 feet could yield as much as 10 gallons per minute. Pumping tests on two unused wells indicated yields of 8 gallons per minute and 2 gallons per minute. Nine of the ten springs measured in and near the monument area in late August of 1978 were flowing 0.2 to 30 gallons per minute. Only the Cant Ranch spring and the Johnny Kirk Spring near the Sheep Rock unit had flows exceeding 6 gallons per minute. Chemical analyses of selected constituents of the ground water indicated generally low concentrations of dissolved minerals. Although cloudbursts in the Painted Hills unit could generate a flood wave on the valley floors, flood danger can be reduced by locating recreational sites on high ground. The campground in Indian Canyon of the Clarno unit is vulnerable to cloudburst flooding. About 80 percent of the proposed campground on the John Day River in the Sheep Rock unit is above the estimated level of 1-percent chance flood (100-year flood) of the river. The 1-percent chance flood would extend about 120 feet from the riverbank into the upstream end of the campground. (USGS).

  12. Localization, characterization and candidate gene discovery for genes controlling dormancy, chilling requirement, bloom time, and heat requirement in Prunus species.

    USDA-ARS?s Scientific Manuscript database

    Perennial fruiting trees require sustained exposure to low, near freezing, temperatures before vigorous floral and vegetative bud break is possible after the resumption of warm temperatures in the spring. The depth of dormancy, duration of chilling required (the chilling requirement, CR) blooming da...

  13. Estimated water use, by county, in North Carolina, 1995

    USGS Publications Warehouse

    Walters, D.A.

    1997-01-01

    Data on water use in North Carolina were compiled for 1995 as part of a cooperative agreement between the U.S. Geological Survey and the Division of Water Resources of the North Carolina Department of Environment and Natural Resources. Data were compiled from a number of Federal, State, and private sources for the offstream water-use categories of public supply, domestic, commercial, industrial, mining, livestock, irrigation, and thermoelectric-power generation. Data also were collected for instream use from hydroelectric facilities. Total withdrawals (fresh and saline) during 1995 were an estimated 9,286 million gallons per day for the offstream water-use categories. About 94 percent of the water withdrawn was from surface water. Thermoelectric-power generation accounted for 80 percent of all withdrawals. Instream water use for hydroelectric-power generation totaled about 56,400 million gallons per day. Each water-use category is summarized in this report by county and source of water supply.

  14. 9 CFR 381.66 - Temperatures and chilling and freezing procedures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Temperatures and chilling and freezing procedures. 381.66 Section 381.66 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND...

  15. Ground-water supplies of the Ypsilanti area, Michigan

    USGS Publications Warehouse

    McGuinness, Charles L.; Poindexter, O.F.; Otton, E.G.

    1949-01-01

    . The average daily pumpage during periods of maximum production at the bomber plant has been 4.5 to 4.75 million gallons. On June 30, 1945, production of bombers was suspended, and the plant went on a. maintenance basis.The water supply of the bomber-plant well field is replenished by recharge from precipitation and from the Huron River. The evidence shows that recharge from the river is one of the principal sources of water and gives assurance both of the adequacy of the present supply and of the availability of additional water if needed. The safe yield of the three existing wells is estimated to be not less than 6 million gallons per day.The Ypsilanti public water supply is obtained from three tubular wells drilled in 1943, which replaced a number of suction-pumped tubular wells and one large dug well. All the wells penetrate sand and gravel in the bend of the Huron River in the southeastern part of Ypsilanti. The water is treated in a modern treatment plant completed in 1939. The average daily pumpage in million gallons was about 1.68 in 1942, 1.70 in 1943, and 1.66 in 1944. Considerable water was furnished to the Willow Run bomber plant from the Ypsilanti public-supply system during the period from August 1941 through March 1943.The available information indicates that the water pumped from the Ypsilanti well field is replenished by ground-water flow from adjacent stretches of the Huron Valley and from the upland areas outside the valley, from precipitation on the valley in the vicinity of the well field, and possibly from the Huron River. It is believed that sufficient water can be obtained from the well field to meet the expected demand for a considerable time. The safe yield of the present wells is estimated to be not less than 3 million gallons per day, and detailed pumping tests might show that still larger supplies could be safely developed.The water supply of the Willow Run Townsite is obtained from four wells in two well fields about 2 miles apart, one

  16. Ground-water resources of the North Beach Peninsula, Pacific County, Washington

    USGS Publications Warehouse

    Tracy, James V.

    1977-01-01

    The anticipated water demand of 425 million gallons per year for the North Brach Peninsula, Pacific County, Wash., can be met by properly developing the ground-water supplies of the area 's water-table aquifer. Of the approximately 77 inches of annual precipitation on the peninsula, an estimated 23 inches is lost to evapotranspiration, and approximately 36 inches is discharged by the water-table aquifer into the ocean and bay. The remaining water either runs off the surface or is leaked to a deeper aquifer that ultimately discharges to the ocean. At least 12 inches of the water that discharges naturally through the aquifer is available for additional development. This quantity of water is approximately equivalent to 860,000 gallons per day. Wells spaced at least 1,000 feet apart along the major axis of the peninsula and pumped at average rates of no more than 80 gallons per minute could ensure that water-level declines do not exceed 6 feet near the wells and 1 foot at the shoreline, thereby preventing seawater intrusion. Lowering of the water table may be beneficial in reducing waterlogging problems, but care must be taken not to lower the levels near cranberry bogs, which require a shallow water table. Treatment of the otherwise good quality water for iron may be required, as about 75 percent of the well water sampled from the aquifer had iron concentrations in excess of limits recommended by the U.S. Environmental Protection Agency. (Woodard-USGS)

  17. Effect of morphological changes in feather follicles of chicken carcasses after defeathering and chilling on the degree of skin contamination by Campylobacter species

    PubMed Central

    LATT, Khin Maung; URATA, Ayaka; SHINKI, Taisuke; SASAKI, Satomi; TANIGUCHI, Takako; MISAWA, Naoaki

    2017-01-01

    Campylobacter jejuni and C. coli are the leading causes of enteric infections in many developed countries. Healthy chickens are considered to act as reservoirs of campylobacters, as the organisms colonize the intestinal tract. Once infected birds enter a processing plant, contamination of chicken carcasses with campylobacters occurs over the entire skin during defeathering and evisceration due to leakage of crop and/or intestinal contents. Although the role of feather follicles in the contamination of chicken carcasses by campylobacters during processing is still debatable, it has been considered that the microorganisms would be entrapped and retained in the follicles due to the morphological changes resulting from defeathering and chilling. In the present study, we observed the morphology of feather follicles in chicken carcasses after defeathering and chilling. A total of 3,133 feather follicles were examined for morphological changes before and after chilling. Shortly after defeathering, most (91.5%) of the follicles were closed, whereas after chilling they were either closed (85.5%) or open (6%), although a small proportion of enlarged follicles became smaller or closed (2.6%). Moreover, 5.9% of the follicles that were slightly open became further enlarged after chilling. Furthermore, the proportion of enlarged feather follicles that became closed after chilling showed no discernible relationship with the degree of campylobacter contamination in different areas of the carcass skin, suggesting that campylobacters may not be confined to feather follicles as a result of the morphological changes attributable to defeathering and chilling. PMID:29151444

  18. Effect of morphological changes in feather follicles of chicken carcasses after defeathering and chilling on the degree of skin contamination by Campylobacter species.

    PubMed

    Latt, Khin Maung; Urata, Ayaka; Shinki, Taisuke; Sasaki, Satomi; Taniguchi, Takako; Misawa, Naoaki

    2018-01-01

    Campylobacter jejuni and C. coli are the leading causes of enteric infections in many developed countries. Healthy chickens are considered to act as reservoirs of campylobacters, as the organisms colonize the intestinal tract. Once infected birds enter a processing plant, contamination of chicken carcasses with campylobacters occurs over the entire skin during defeathering and evisceration due to leakage of crop and/or intestinal contents. Although the role of feather follicles in the contamination of chicken carcasses by campylobacters during processing is still debatable, it has been considered that the microorganisms would be entrapped and retained in the follicles due to the morphological changes resulting from defeathering and chilling. In the present study, we observed the morphology of feather follicles in chicken carcasses after defeathering and chilling. A total of 3,133 feather follicles were examined for morphological changes before and after chilling. Shortly after defeathering, most (91.5%) of the follicles were closed, whereas after chilling they were either closed (85.5%) or open (6%), although a small proportion of enlarged follicles became smaller or closed (2.6%). Moreover, 5.9% of the follicles that were slightly open became further enlarged after chilling. Furthermore, the proportion of enlarged feather follicles that became closed after chilling showed no discernible relationship with the degree of campylobacter contamination in different areas of the carcass skin, suggesting that campylobacters may not be confined to feather follicles as a result of the morphological changes attributable to defeathering and chilling.

  19. Water Conservation Checklist for the Home. Save Water, Save Energy, Save Money. Program Aid No. 1192.

    ERIC Educational Resources Information Center

    Pifer, Glenda; And Others

    Few people realize that the average person uses about 60 gallons of water each day. Water shortages are already occurring on a regional scale; someday they may become a national problem. Accordingly, this checklist is designed to help house and apartment dwellers determine how efficiently they use water and identify additional ways to save it.…

  20. Ground water hydrology of the Elizabethtown area, Kentucky

    USGS Publications Warehouse

    Mull, D.S.; Lyverse, M.A.

    1984-01-01

    The principal aquifer in a 52 square mile karst area in north central Kentucky is the St. Louis Limestone of Mississippian age. Unconsolidated residuum and surficial deposits of slumped material may store water and recharge the underlying limestone aquifer. Precipitation averages 49 inches annually; 6 inches recharges ground-water reservoirs. The shallow ground-water velocity ranged from 0.30 to 1.40 feet per second. Flow net analysis indicates that about 2 million gallons of water per day flows through a 1.8 mile wide section of the aquifer. A water-level contour map indicates that the hydraulic gradient averages 40 feet per mile and that the water levels near the city supply wells have not lowered in 10 years. The effects of three faults on the ground-water flow system is shown as ponding on the upthrown side of the faults. Caliper logs suggest that shallow ground-water flow occurs in sheet-like openings within 100 feet of land surface. The openings range in height from 1 inch or less to 6 feet. A test well penetrated 5 zones of horizontal openings. The specific capacity ranged from 11.5 to 12.1 gallons per minute per foot of drawdown after 12 and 72 hours of pumping at 280 to 510 gallons per minute. Water in 28 wells and springs meets most drinking water standards and generally is a very hard calcium bicarbonate type. Heavily pumped industrial and public-supply wells tend to yield water with high values of specific conductance and sulfate. Coliform bacteria varied widely in rural wells and the city springs. Seven wells had no coliform bacteria. (USGS)

  1. Global Expression Profiling of Low Temperature Induced Genes in the Chilling Tolerant Japonica Rice Jumli Marshi

    PubMed Central

    Chawade, Aakash; Lindlöf, Angelica; Olsson, Björn; Olsson, Olof

    2013-01-01

    Low temperature is a key factor that limits growth and productivity of many important agronomical crops worldwide. Rice (Oryza sativa L.) is negatively affected already at temperatures below +10°C and is therefore denoted as chilling sensitive. However, chilling tolerant rice cultivars exist and can be commercially cultivated at altitudes up to 3,050 meters with temperatures reaching as low as +4°C. In this work, the global transcriptional response to cold stress (+4°C) was studied in the Nepalese highland variety Jumli Marshi (spp. japonica) and 4,636 genes were identified as significantly differentially expressed within 24 hours of cold stress. Comparison with previously published microarray data from one chilling tolerant and two sensitive rice cultivars identified 182 genes differentially expressed (DE) upon cold stress in all four rice cultivars and 511 genes DE only in the chilling tolerant rice. Promoter analysis of the 182 genes suggests a complex cross-talk between ABRE and CBF regulons. Promoter analysis of the 511 genes identified over-represented ABRE motifs but not DRE motifs, suggesting a role for ABA signaling in cold tolerance. Moreover, 2,101 genes were DE in Jumli Marshi alone. By chromosomal localization analysis, 473 of these cold responsive genes were located within 13 different QTLs previously identified as cold associated. PMID:24349120

  2. Effect of long term chilled (up to 5weeks) then frozen (up to 12months) storage at two different sub-zero holding temperatures on beef: 1. Meat quality and microbial loads.

    PubMed

    Holman, Benjamin W B; Coombs, Cassius E O; Morris, Stephen; Kerr, Matthew J; Hopkins, David L

    2017-11-01

    Beef loins (LL) stored under different chilled-then-frozen storage combinations (up to 5 and 52weeks, respectively) and two frozen holding temperatures were evaluated for microbial load and meat quality parameters. We found holding temperature effects to be negligible, which suggest -12°C could deliver comparable quality LL to -18°C across these same storage periods. Meat quality parameters varied significantly, but when compared to existing consumer thresholds these may not be perceptible, colour being the exception which proved unacceptable, earlier into retail display when either chilled and subsequent frozen storage periods were increased. There was insufficient detection of key spoilage microbes to allow for statistical analysis, potentially due to the hygienic and commercially representative LL source, although variation in water activity, glycogen content, pH and other moisture parameters conducive to microbial proliferation were influenced by chilled-then-frozen storage. These outcomes could be applied to defining storage thresholds that assure beef quality within export networks, leveraging market access, and improving product management. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  3. Public water supplies in Gloucester County, New Jersey

    USGS Publications Warehouse

    Hardt, William F.

    1963-01-01

    Gloucester County is in the southwestern part of New Jersey, below Camden, and is a part of the Lower Delaware River Valley. This area is attracting new industry and has shown a population increase of about 47 percent from 1950 to 1960, mostly urban. With the economic growth of the county, the availability and quality of water become increasingly important.The county is in the Coastal Plain of New Jersey. It is underlain by unconsolidated sands and clays of Quaternary, Tertiary, and Cretaceous age. The Raritan and Magothy Formations constitute the most important aquifers and yield more than 95 percent of the water pumped by the public water systems in the county. These formations are capable of yielding 1,400 gpm (gallons per minute) or more to large diameter wells. High yielding wells generally can be drilled anywhere in the county, although the formations are deeper toward the Atlantic Ocean. The Cohansey Sand, second most important aquifer, yields up to 800 gpm or more from large diameter wells. This aquifer is present only in the sparsely populated southeastern half of the county. The Wenonah Formation and Mount Laurel Sand are capable of yielding 100 to 200 gpm in certain areas.The overall chemical quality of the naturally occurring ground water is good. The water generally meets the U.S. Public Health Service's (1962) suggested limit for dissolved solids; however, in some areas, the water carries objectionable amounts of iron and nitrate in solution and has a low pH. Contamination of ground water by salt-water encroachment or by pollution from industrial activity or organic waste in densely populated areas should be prevented. The quality rather than the quantity of water may be the important factor in future ground-water developments.The 21 public water systems in Gloucester County pumped about 1.3 billion gallons of water during 1948 and some 2.7 billion gallons during 1959. This is slightly more than a hundred percent increase in pumpage in 12 year s. The

  4. Effects of -1.5°C Super-chilling on quality of Atlantic salmon (Salmo salar) pre-rigor Fillets: Cathepsin activity, muscle histology, texture and liquid leakage.

    PubMed

    Bahuaud, D; Mørkøre, T; Langsrud, Ø; Sinnes, K; Veiseth, E; Ofstad, R; Thomassen, M S

    2008-11-15

    The aim of this study was to evaluate the impact of super-chilling on the quality of Atlantic salmon (Salmo salar) pre-rigor fillets. The fillets were kept for 45min in a super-chilling tunnel at -25°C with an air speed in the tunnel at 2.5m/s, to reach a fillet core temperature of -1.5°C, prior to ice storage in a cold room for 4 weeks. Super-chilling seemed to form intra- and extracellular ice crystals in the upper layer of the fillets and prevent myofibre contraction. Lysosome breakages followed by release of cathepsin B and L during storage and myofibre-myofibre detachments were accelerated in the super-chilled fillets. Super-chilling resulted in higher liquid leakage and increased myofibre breakages in the fillets, while texture values of fillets measured instrumentally were not affected by super-chilling one week after treatment. Optimisation of the super-chilling technique is needed to avoid the formation of ice crystals, which may cause irreversible destruction of the myofibres, in order to obtain high quality products. Copyright © 2008 Elsevier Ltd. All rights reserved.

  5. Enumeration of Escherichia coli in swab samples from pre- and post-chilled pork and lamb carcasses using 3M™ Petrifilm™ Select E. coli and Simplate® Coliforms/E. coli.

    PubMed

    Hauge, Sigrun J; Østensvik, Øyvin; Monshaugen, Marte; Røtterud, Ole-Johan; Nesbakken, Truls; Alvseike, Ole

    2017-08-01

    The aim of the study was to compare two analytical methods; 3M Petrifilm™ Select E. coli and SimPlate® Coliforms &E. coli, for detection and enumeration of E. coli using swab samples from naturally contaminated pork and lamb carcasses that were collected before and after chilling. Blast chilling was used for pork carcasses. Swab samples (n=180) were collected from 60 warm and 60 chilled pork carcasses, and 30 warm and 30 chilled lamb carcasses, and analysed in parallel. The concordance correlation coefficient between Petrifilm and SimPlate was 0.89 for pork and 0.81 for lamb carcasses. However, the correlation was higher for warm carcasses (0.90) than chilled carcasses (0.72). For chilled lamb carcasses, the correlation was only 0.50, and SimPlate gave slightly higher results than Petrifilm (P=0.09). Slower chilling gave slightly lesser agreement between methods than for blast chilling, however, both Petrifilm and SimPlate methodologies are suitable and recommended for use in small laboratories in abattoirs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effect of methyl salicylate and methyl jasmonate pre-treatment on the volatile profile in tomato fruit subjected to chilling temperature

    USDA-ARS?s Scientific Manuscript database

    Tomato fruits exposed to chilling temperatures suffer aroma loss prior to visual chilling injury (CI) symptoms. Methyl salicylate (MeSA) and methyl jasmonate (MeJA) treatments were reported to alleviate the development of visual CI, however, it is unknown if the treatments alleviate internal CI in t...

  7. Public water-supply systems and associated water use in Tennessee, 2005

    USGS Publications Warehouse

    Robinson, John A.; Brooks, Jaala M.

    2010-01-01

    Public water-supply systems in Tennessee provide water to for domestic, industrial, and commercial uses, and municipal services. In 2005, more than 569 public water-supply systems distributed about 920 million gallons per day (Mgal/d) of non-purchased surface water and groundwater to a population of nearly 6 million in Tennessee. Surface-water sources provided 64 percent (about 591 Mgal/d) of the State's water supplies. Groundwater produced from wells and springs in Middle and East Tennessee and from wells in West Tennessee provided 36 percent (about 329 Mgal/d) of the public water supplies. Gross per capita water use for Tennessee in 2005 was about 171 gallons per day. Water withdrawals by public water-supply systems in Tennessee have increased from 250 Mgal/d in 1955 to 920 Mgal/d in 2005. Tennessee public water-supply systems withdraw less groundwater than surface water, and surface-water use has increased at a faster rate than groundwater use. However, 34 systems reported increased groundwater withdrawals during 2000–2005, and 15 of these 34 systems reported increases of 1 Mgal/d or more. The county with the largest surface-water withdrawal rate (130 Mgal/d) was Davidson County. Each of Tennessee's 95 counties was served by at least one public water-supply system in 2005. The largest groundwater withdrawal rate (about 167 Mgal/d) by a single public water-supply system was reported by Memphis Light, Gas and Water, which served 654,267 people in Shelby County in 2005.

  8. SSC_NASA Tests Upgraded Water System for the B-2 Test Stand - Highlights with Music

    NASA Image and Video Library

    2017-12-04

    On December 4, Stennis Space Center conducted a water flow test on the B-2 test stand to check the water system’s upgraded modifications in preparation for Space Launch System’s Core Stage testing. During a test, rocket engine fire and exhaust is redirected out of the stand by a large flame trench. For this test, the water deluge system, with the capability of flowing 335,000 gallons of water per minute, directed more than 240,000 gallons of water per minute through more than 32,000 5/32-inch holes in the B2 stand flame deflector, cooling the exhaust and protecting the trench from damage.

  9. Recovery of maize (Zea mays L.) inbreds and hybrids from chilling stress of various duration: photosynthesis and antioxidant enzymes.

    PubMed

    Holá, Dana; Kocová, Marie; Rothová, Olga; Wilhelmová, Nad'a; Benesová, Monika

    2007-07-01

    The differences between two maize (Zea mays L.) inbred lines and their F1 hybrids in their response to chilling periods of various duration (1, 2, 3 or 4 weeks) and subsequent return to optimum temperatures were analysed by the measurement of the photosystem (PS) 1 and 2 activity, the photosynthetic pigments' content and the activity of antioxidant enzymes. The PS2 activity and the chlorophyll content decreased in plants subjected to 3 or 4 weeks of chilling, but not in those subjected to 1 or 2 weeks of chilling. This decrease was more pronounced in inbreds compared to their hybrids. The activity of superoxide dismutase did not much change with the increasing length of chilling period in the inbreds but decreased in the hybrids, the glutathione reductase activity increased in both types of genotypes but more in the inbred lines, while for ascorbate peroxidase and catalase the changes in parents-hybrids relationship did not show any specific trend. The PS1 activity and the carotenoids' content was not much affected.

  10. Rapid-Chill Cryogenic Coaxial Direct-Acting Solenoid Valve

    NASA Technical Reports Server (NTRS)

    Richard, James; Castor, Jim; Sheller, Richard

    2006-01-01

    A commercially available cryogenic direct- acting solenoid valve has been modified to incorporate a rapid-chill feature. The net effect of the modifications is to divert some of the cryogenic liquid to the task of cooling the remainder of the cryogenic liquid that flows to the outlet. Among the modifications are the addition of several holes and a gallery into a valve-seat retainer and the addition of a narrow vent passage from the gallery to the atmosphere.

  11. Identification of reference genes for RT-qPCR analysis in peach genotypes with contrasting chilling requirements.

    PubMed

    Marini, N; Bevilacqua, C B; Büttow, M V; Raseira, M C B; Bonow, S

    2017-05-25

    Selecting and validating reference genes are the first steps in studying gene expression by reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). The present study aimed to evaluate the stability of five reference genes for the purpose of normalization when studying gene expression in various cultivars of Prunus persica with different chilling requirements. Flower bud tissues of nine peach genotypes from Embrapa's peach breeding program with different chilling requirements were used, and five candidate reference genes based on the RT-qPCR that were useful for studying the relative quantitative gene expression and stability were evaluated using geNorm, NormFinder, and bestKeeper software packages. The results indicated that among the genes tested, the most stable genes to be used as reference genes are Act and UBQ10. This study is the first survey of the stability of reference genes in peaches under chilling stress and provides guidelines for more accurate RT-qPCR results.

  12. Laser-based trace gas detection of ethane as a result of photo-oxidative damage in chilled cucumber leaves (invited)

    NASA Astrophysics Data System (ADS)

    Santosa, I. E.; Laarhoven, L. J. J.; Harbinson, J.; Driscoll, S.; Harren, F. J. M.

    2003-01-01

    At low temperatures, high light intensity induces strong photooxidative lipid peroxidation in chilling sensitive cucumber leaves. A sensitive laser-based photoacoustic detector was employed to monitor on-line the evolution of ethane, one of the end products of lipid peroxidation. The Δv=2 CO laser operated in the 2.62-4.06 μm infrared wavelength region with a maximum intracavity power of 11 W. In combination with an intracavity placed photoacoustic cell the laser was able to detect ethane down to 0.5 part per billion. Cucumber leaf disks chilled in the light produce ethane; the rate of ethane production depends on the applied temperature, light intensity, and period of chilling.

  13. Reconnaissance of ground-water resources in the vicinity of Gunnison and Crested Butte, West-central Colorado

    USGS Publications Warehouse

    Giles, T.F.

    1980-01-01

    Hydrologic data was collected in the Gunnison-Crested Butte area , Colo., to determine the availability and chemical quality of groundwater. Parts of the area have undergone rapid population growth in recent years due to an increase of winter sports activities. This rapid growth has resulted in a demand for additional domestic, recreational, and municipal water supplies. Maximum yields of 100 gallons per minute are available from wells completed in the alluvial aquifers while as much as 60 gallons per minute may be obtained from wells completed in the Dakota and Entrada Sandstones. Yields from other aquifers generally are less than 25 gallons per minute. Calcium magnesium bicarbonate water is the predominant water type in the study area. Dissolved solids concentrations ranged from 30 to 829 milligrams per liter and hardness ranged from 18 to 400 milligrams per liter. (USGS)

  14. Ground-water resources of the Caguas-Juncos Valley, Puerto Rico

    USGS Publications Warehouse

    Puig, J.C.; Rodriguez, J.M.

    1993-01-01

    ?The Caguas-Juncos valley, which occupies an area of 35 square miles in east-central Puerto Rico, is underlain by the largely unconfined alluvial aquifer. Withdrawals from this aquifer for public water supply and for agricultural, industrial, and domestic water uses totalled about 3.0 million gallons per day in 1988. Some wells in the valley yield as much as 310 gallons per minute from the alluvial deposits along Rio Gurabo near Gurabo and near Juncos. Wells used at dairy farms in the area commonly yield about 30 gallons per minute. The potentiometric surface of the alluvial aquifer varies seasonally and generally is highest near the end of December and lowest in April. Transmissivity of the alluvial aquifer, estimated from specific capacity and slug test data, ranges from 65 to 4,800 feet squared per day. The estimated specific yield of the water-table is about 10 to 15 percent. The amount of water stored in the aquifer is estimated to be about 122,000 acre-feet. Analyses of ground-water samples revealed the presence of two distinct problems-- high natural concentrations of iron and manganese, and localized areas of human- related contamination scattered throughout the valley. The ground water is a calcium-bicarbonate type and typically has dissolved solids concentrations of less than 500 milligrams per liter.

  15. The Chilling Optimum of Idaho and Arizona Ponderosa Pine Buds

    Treesearch

    David L. Wenny; Daniel J. Swanson; R. Kasten Dumroese

    2002-01-01

    Ponderosa pine (Pinus ponderosa) seedlings from Idaho (var. ponderosa) and Arizona (var. scopulorum) grown in a container nursery received optimum chilling [2,010 hr (84 days) of temperatures below 5°C]. While seedlings were in the greenhouse, days required for 50% of the population to break bud were similar for both seed sources...

  16. 40 CFR 63.11117 - Requirements for facilities with monthly throughput of 10,000 gallons of gasoline or more.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... monthly throughput of 10,000 gallons of gasoline or more. 63.11117 Section 63.11117 Protection of... Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities Emission Limitations and... gasoline or more. (a) You must comply with the requirements in section § 63.11116(a). (b) Except as...

  17. 40 CFR 63.11117 - Requirements for facilities with monthly throughput of 10,000 gallons of gasoline or more.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... monthly throughput of 10,000 gallons of gasoline or more. 63.11117 Section 63.11117 Protection of... Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities Emission Limitations and... gasoline or more. (a) You must comply with the requirements in section § 63.11116(a). (b) Except as...

  18. 40 CFR 63.11117 - Requirements for facilities with monthly throughput of 10,000 gallons of gasoline or more.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... monthly throughput of 10,000 gallons of gasoline or more. 63.11117 Section 63.11117 Protection of... Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities Emission Limitations and... gasoline or more. (a) You must comply with the requirements in section § 63.11116(a). (b) Except as...

  19. 40 CFR 63.11117 - Requirements for facilities with monthly throughput of 10,000 gallons of gasoline or more.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... monthly throughput of 10,000 gallons of gasoline or more. 63.11117 Section 63.11117 Protection of... Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities Emission Limitations and... gasoline or more. (a) You must comply with the requirements in section § 63.11116(a). (b) Except as...

  20. Simulation of streamflow and the effects of brush management on water yields in the Double Mountain Fork Brazos River watershed, western Texas 1994–2013

    USGS Publications Warehouse

    Harwell, Glenn R.; Stengel, Victoria G.; Bumgarner, Johnathan R.

    2016-04-20

    The calibrated watershed model was used to perform brush-management simulations. The National Land Cover Database 2006, which was the land-cover data used to develop the watershed model, was modified to simulate shrubland replacement with grassland in each of the 35 model subbasins. After replacement of shrubland with grassland in areas with land slope less than 20 percent and excluding riparian areas, the modeled 20-year (1994 through 2013) water yields to Lake Alan Henry increased by 114,000 acre-feet or about 5,700 acre-feet per year. In terms of the increase in water yield per acre of shrubland replaced with grassland, the average annual increase in water yield was 17,300 gallons per acre. Within the modeled subbasins, the increase in average annual water yield ranged from 5,850 to 34,400 gallons per acre of shrubland replaced with grassland. Subbasins downstream from the Justiceburg gage had a higher average annual increase in water yield (21,700 gallons per acre) than subbasins upstream from the streamflow-gaging station (16,800 gallons per acre).

  1. Exogenous melatonin improves corn (Zea mays L.) embryo proteome in seeds subjected to chilling stress.

    PubMed

    Kołodziejczyk, Izabela; Dzitko, Katarzyna; Szewczyk, Rafał; Posmyk, Małgorzata M

    2016-04-01

    Melatonin (MEL; N-acetyl-5-methoxytryptamine) plays an important role in plant stress defense. Various plant species rich in this indoleamine have shown a higher capacity for stress tolerance. Moreover, it has great potential for plant biostimulation, is biodegradable and non-toxic for the environment. All this indicates that our concept of seed enrichment with exogenous MEL is justified. This work concerns the effects of corn (Zea mays L.) seed pre-sowing treatments supplemented with MEL. Non-treated seeds (nt), and those hydroprimed with water (H) or with MEL solutions 50 and 500 μM (HMel50, HMel500) were compared. Positive effects of seed priming are particularly apparent during germination under suboptimal conditions. The impact of MEL applied by priming on seed protein profiles during imbibition/germination at low temperature has not been investigated to date. In order to identify changes in the corn seed proteome after applying hydropriming techniques, purified protein extracts of chilling stressed seed embryos (14 days, 5°C) were separated by two-dimensional electrophoresis. Then proteome maps were graphically and statistically compared and selected protein spots were qualitatively analyzed using mass spectrometry techniques and identified. This study aimed to analyze the priming-induced changes in maize embryo proteome and at identifying priming-associated and MEL-associated proteins in maize seeds subjected to chilling. We attempt to explain how MEL expands plant capacity for stress tolerance. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Water resources of Teton County, Wyoming, exclusive of Yellowstone National Park

    USGS Publications Warehouse

    Nolan, B.T.; Miller, K.A.

    1995-01-01

    Surface- and ground-water data were collected and analyzed to describe the water resources of that part of Teton County, Wyoming located south of Yellowstone National Park. Wells and springs inventoried in the Teton County study area most commonly were completed in or issued from Quaternary unconsolidated deposits and Tertiary, Mesozoic, and Paleozoic rocks. The largest measured, reported, or estimated discharges were from Quaternary uncon- solidated deposits (3,000 gallons per minute), the Bacon Ridge Sandstone of Cretaceous age (800 gallons per minute), and the Madison Limestone of Mississippian age (800 gallons per minute). Dissolved-solids concentrations in water samples from Quaternary unconsolidated deposits and Tertiary, Mesozoic, and Paleozoic rocks ranged from 80 to 1,060 milligrams per liter. A time-domain electromagnetic survey of Jackson Hole indicated that the depth of Quaternary unconsolidated deposits ranged from about 380 feet in the northern part of Antelope Flats to about 2,400 feet near the Potholes area in Grand Teton National Park. A streamflow gain-and-loss study indicated that the ground-water discharge to the Snake River between gaging stations near Moran and south of the Flat Creek confluence, near Jackson, was 395 cubic feet per second. Water level contours generated from 137 water-level measurements and 118 stream altitudes indicated that water in Quaternary unconsolidated deposits flows southwest in the general direction of the Snake River.

  3. Interaction of Polyamines, Abscisic Acid, Nitric Oxide, and Hydrogen Peroxide under Chilling Stress in Tomato (Lycopersicon esculentum Mill.) Seedlings.

    PubMed

    Diao, Qiannan; Song, Yongjun; Shi, Dongmei; Qi, Hongyan

    2017-01-01

    Polyamines (PAs) play a vital role in the responses of higher plants to abiotic stresses. However, only a limited number of studies have examined the interplay between PAs and signal molecules. The aim of this study was to elucidate the cross-talk among PAs, abscisic acid (ABA), nitric oxide (NO), and hydrogen peroxide (H 2 O 2 ) under chilling stress conditions using tomato seedlings [( Lycopersicon esculentum Mill.) cv. Moneymaker]. The study showed that during chilling stress (4°C; 0, 12, and 24 h), the application of spermidine (Spd) and spermine (Spm) elevated NO and H 2 O 2 levels, enhanced nitrite reductase (NR), nitric oxide synthase (NOS)-like, and polyamine oxidase activities, and upregulated LeNR relative expression, but did not influence LeNOS1 expression. In contrast, putrescine (Put) treatment had no obvious impact. During the recovery period (25/15°C, 10 h), the above-mentioned parameters induced by the application of PAs were restored to their control levels. Seedlings pretreated with sodium nitroprusside (SNP, an NO donor) showed elevated Put and Spd levels throughout the treatment period, consistent with increased expression in leaves of genes encoding arginine decarboxylase ( LeADC. LeADC1 ), ornithine decarboxylase ( LeODC ), and Spd synthase ( LeSPDS ) expressions in tomato leaves throughout the treatment period. Under chilling stress, the Put content increased first, followed by a rise in the Spd content. Exogenously applied SNP did not increase the expression of genes encoding S -adenosylmethionine decarboxylase ( LeSAMDC ) and Spm synthase ( LeSPMS ), consistent with the observation that Spm levels remained constant under chilling stress and during the recovery period. In contrast, exogenous Put significantly increased the ABA content and the 9- cis -epoxycarotenoid dioxygenase ( LeNCED1 ) transcript level. Treatment with ABA could alleviate the electrolyte leakage (EL) induced by D-Arg (an inhibitor of Put). Taken together, it is

  4. Interaction of Polyamines, Abscisic Acid, Nitric Oxide, and Hydrogen Peroxide under Chilling Stress in Tomato (Lycopersicon esculentum Mill.) Seedlings

    PubMed Central

    Diao, Qiannan; Song, Yongjun; Shi, Dongmei; Qi, Hongyan

    2017-01-01

    Polyamines (PAs) play a vital role in the responses of higher plants to abiotic stresses. However, only a limited number of studies have examined the interplay between PAs and signal molecules. The aim of this study was to elucidate the cross-talk among PAs, abscisic acid (ABA), nitric oxide (NO), and hydrogen peroxide (H2O2) under chilling stress conditions using tomato seedlings [(Lycopersicon esculentum Mill.) cv. Moneymaker]. The study showed that during chilling stress (4°C; 0, 12, and 24 h), the application of spermidine (Spd) and spermine (Spm) elevated NO and H2O2 levels, enhanced nitrite reductase (NR), nitric oxide synthase (NOS)-like, and polyamine oxidase activities, and upregulated LeNR relative expression, but did not influence LeNOS1 expression. In contrast, putrescine (Put) treatment had no obvious impact. During the recovery period (25/15°C, 10 h), the above-mentioned parameters induced by the application of PAs were restored to their control levels. Seedlings pretreated with sodium nitroprusside (SNP, an NO donor) showed elevated Put and Spd levels throughout the treatment period, consistent with increased expression in leaves of genes encoding arginine decarboxylase (LeADC. LeADC1), ornithine decarboxylase (LeODC), and Spd synthase (LeSPDS) expressions in tomato leaves throughout the treatment period. Under chilling stress, the Put content increased first, followed by a rise in the Spd content. Exogenously applied SNP did not increase the expression of genes encoding S-adenosylmethionine decarboxylase (LeSAMDC) and Spm synthase (LeSPMS), consistent with the observation that Spm levels remained constant under chilling stress and during the recovery period. In contrast, exogenous Put significantly increased the ABA content and the 9-cis-epoxycarotenoid dioxygenase (LeNCED1) transcript level. Treatment with ABA could alleviate the electrolyte leakage (EL) induced by D-Arg (an inhibitor of Put). Taken together, it is concluded that, under chilling

  5. Ground Water and Surface Water in the Haiku Area, East Maui, Hawaii

    USGS Publications Warehouse

    Gingerich, Stephen B.

    1999-01-01

    The Haiku study area lies on the gently sloping eastern flank of the East Maui Volcano (Haleakala) between the drainage basins of Maliko Gulch to the west and Kakipi Gulch to the east. The study area lies on the northwest rift zone of East Maui Volcano, a geologic feature 3 to 5 miles wide marked by surface expressions such as cinder, spatter, and pumice cones. The study area contains two geologic units, the main shield-building stage Honomanu Basalt and the Kula Volcanics. The hydraulic conductivity of the Honomanu Basalt was estimated to be between 1,000 and 3,600 feet per day on the basis of aquifer tests and 3,300 feet per day on the basis of the regional recharge rate and observed ground-water heads. The hydraulic conductivity of the Kula Volcanics is expected to be several orders of magnitude lower. An estimated 191 million gallons per day of rainfall and 22 million gallons per day of fog drip reach the study area and about 98 million gallons per day enters the ground-water system as recharge. Nearly all of the ground water currently withdrawn in the study area is from well 5520-01 in Maliko Gulch, where historic withdrawal rates have averaged about 2.8 million gallons per day. An additional 18 million gallons per day of ground-water withdrawal is proposed. Flow in Waiohiwi Gulch, a tributary to Maliko Gulch, is perennial between about 2,000 ft and 4,000 ft altitude. At lower altitudes in Maliko Gulch, flow is perennial at only a few spots downstream of springs and near the coast. The Kuiaha and Kaupakulua Gulch systems are usually dry from sea level to an altitude of 350 feet and gain water from about 350 feet to about 900 feet altitude. The two main branches of the Kaupakulua Gulch system alternately gain and lose water as high as 2,400 feet altitude. Kakipi Gulch has perennial flow over much of its length but is often dry near the coast below 400 feet altitude. Fresh ground water occurs in two main forms: (1) as perched high-level water held up by

  6. Transcriptomic changes in Cucurbita pepo fruit after cold storage: differential response between two cultivars contrasting in chilling sensitivity.

    PubMed

    Carvajal, F; Rosales, R; Palma, F; Manzano, S; Cañizares, J; Jamilena, M; Garrido, D

    2018-02-07

    Zucchini fruit is susceptible to chilling injury (CI), but the response to low storage temperature is cultivar dependent. Previous reports about the response of zucchini fruit to chilling storage have been focused on the physiology and biochemistry of this process, with little information about the molecular mechanisms underlying it. In this work, we present a comprehensive analysis of transcriptomic changes that take place after cold storage in zucchini fruit of two commercial cultivars with contrasting response to chilling stress. RNA-Seq analysis was conducted in exocarp of fruit at harvest and after 14 days of storage at 4 and 20 °C. Differential expressed genes (DEGs) were obtained comparing fruit stored at 4 °C with their control at 20 °C, and then specific and common up and down-regulated DEGs of each cultivar were identified. Functional analysis of these DEGs identified similarities between the response of zucchini fruit to low temperature and other stresses, with an important number of GO terms related to biotic and abiotic stresses overrepresented in both cultivars. This study also revealed several molecular mechanisms that could be related to chilling tolerance, since they were up-regulated in cv. Natura (CI tolerant) or down-regulated in cv. Sinatra (CI sensitive). These mechanisms were mainly those related to carbohydrate and energy metabolism, transcription, signal transduction, and protein transport and degradation. Among DEGs belonging to these pathways, we selected candidate genes that could regulate or promote chilling tolerance in zucchini fruit including the transcription factors MYB76-like, ZAT10-like, DELLA protein GAIP, and AP2/ERF domain-containing protein. This study provides a broader understanding of the important mechanisms and processes related to coping with low temperature stress in zucchini fruit and allowed the identification of some candidate genes that may be involved in the acquisition of chilling tolerance in this crop

  7. Role of Melatonin in Cell-Wall Disassembly and Chilling Tolerance in Cold-Stored Peach Fruit.

    PubMed

    Cao, Shifeng; Bian, Kun; Shi, Liyu; Chung, Hsiao-Hang; Chen, Wei; Yang, Zhenfeng

    2018-06-06

    Melatonin reportedly increases chilling tolerance in postharvest peach fruit during cold storage, but information on its effects on cell-wall disassembly in chilling-injured peaches is limited. In this study, we investigated the role of cell-wall depolymerization in chilling-tolerance induction in melatonin-treated peaches. Treatment with 100 μM melatonin alleviated chilling symptoms (mealiness) characterized by a decrease in fruit firmness and increase in juice extractability in treated peaches during storage. The loss of neutral sugars, such as arabinose and galactose, in both the 1,2-cyclohexylenedinitrilotetraacetic acid (CDTA)- and Na 2 CO 3 -soluble fractions was observed at 7 days in treated peaches, but the contents increased after 28 days of storage. Atomic-force-microscopy (AFM) analysis revealed that the polysaccharide widths in the CDTA- and Na 2 CO 3 -soluble fractions in the treated fruit were mainly distributed in a shorter range, as compared with those in the control fruit. In addition, the expression profiles of a series of cell-wall-related genes showed that melatonin treatment maintained the balance between transcripts of PpPME and PpPG, which accompany the up-regulation of several other genes involved in cell-wall disassembly. Taken together, our results suggested that the reduced mealiness by melatonin was probably associated with its positive regulation of numerous cell-wall-modifying enzymes and proteins; thus, the depolymerization of the cell-wall polysaccharides in the peaches treated with melatonin was maintained, and the treated fruit could soften gradually during cold storage.

  8. Differential transcriptome profiling of chilling stress response between shoots and rhizomes of Oryza longistaminata using RNA sequencing

    PubMed Central

    Wang, Yinxiao; Wang, Wensheng; Zhao, Xiuqin; Zhang, Shilai; Zhang, Jing; Hu, Fengyi; Li, Zhikang

    2017-01-01

    Rice (Oryza sativa) is very sensitive to chilling stress at seedling and reproductive stages, whereas wild rice, O. longistaminata, tolerates non-freezing cold temperatures and has overwintering ability. Elucidating the molecular mechanisms of chilling tolerance (CT) in O. longistaminata should thus provide a basis for rice CT improvement through molecular breeding. In this study, high-throughput RNA sequencing was performed to profile global transcriptome alterations and crucial genes involved in response to long-term low temperature in O. longistaminata shoots and rhizomes subjected to 7 days of chilling stress. A total of 605 and 403 genes were respectively identified as up- and down-regulated in O. longistaminata under 7 days of chilling stress, with 354 and 371 differentially expressed genes (DEGs) found exclusively in shoots and rhizomes, respectively. GO enrichment and KEGG pathway analyses revealed that multiple transcriptional regulatory pathways were enriched in commonly induced genes in both tissues; in contrast, only the photosynthesis pathway was prevalent in genes uniquely induced in shoots, whereas several key metabolic pathways and the programmed cell death process were enriched in genes induced only in rhizomes. Further analysis of these tissue-specific DEGs showed that the CBF/DREB1 regulon and other transcription factors (TFs), including AP2/EREBPs, MYBs, and WRKYs, were synergistically involved in transcriptional regulation of chilling stress response in shoots. Different sets of TFs, such as OsERF922, OsNAC9, OsWRKY25, and WRKY74, and eight genes encoding antioxidant enzymes were exclusively activated in rhizomes under long-term low-temperature treatment. Furthermore, several cis-regulatory elements, including the ICE1-binding site, the GATA element for phytochrome regulation, and the W-box for WRKY binding, were highly abundant in both tissues, confirming the involvement of multiple regulatory genes and complex networks in the transcriptional

  9. Differential transcriptome profiling of chilling stress response between shoots and rhizomes of Oryza longistaminata using RNA sequencing.

    PubMed

    Zhang, Ting; Huang, Liyu; Wang, Yinxiao; Wang, Wensheng; Zhao, Xiuqin; Zhang, Shilai; Zhang, Jing; Hu, Fengyi; Fu, Binying; Li, Zhikang

    2017-01-01

    Rice (Oryza sativa) is very sensitive to chilling stress at seedling and reproductive stages, whereas wild rice, O. longistaminata, tolerates non-freezing cold temperatures and has overwintering ability. Elucidating the molecular mechanisms of chilling tolerance (CT) in O. longistaminata should thus provide a basis for rice CT improvement through molecular breeding. In this study, high-throughput RNA sequencing was performed to profile global transcriptome alterations and crucial genes involved in response to long-term low temperature in O. longistaminata shoots and rhizomes subjected to 7 days of chilling stress. A total of 605 and 403 genes were respectively identified as up- and down-regulated in O. longistaminata under 7 days of chilling stress, with 354 and 371 differentially expressed genes (DEGs) found exclusively in shoots and rhizomes, respectively. GO enrichment and KEGG pathway analyses revealed that multiple transcriptional regulatory pathways were enriched in commonly induced genes in both tissues; in contrast, only the photosynthesis pathway was prevalent in genes uniquely induced in shoots, whereas several key metabolic pathways and the programmed cell death process were enriched in genes induced only in rhizomes. Further analysis of these tissue-specific DEGs showed that the CBF/DREB1 regulon and other transcription factors (TFs), including AP2/EREBPs, MYBs, and WRKYs, were synergistically involved in transcriptional regulation of chilling stress response in shoots. Different sets of TFs, such as OsERF922, OsNAC9, OsWRKY25, and WRKY74, and eight genes encoding antioxidant enzymes were exclusively activated in rhizomes under long-term low-temperature treatment. Furthermore, several cis-regulatory elements, including the ICE1-binding site, the GATA element for phytochrome regulation, and the W-box for WRKY binding, were highly abundant in both tissues, confirming the involvement of multiple regulatory genes and complex networks in the transcriptional

  10. 40 CFR 63.11118 - Requirements for facilities with monthly throughput of 100,000 gallons of gasoline or more.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... monthly throughput of 100,000 gallons of gasoline or more. 63.11118 Section 63.11118 Protection of... Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities Emission Limitations and... gasoline or more. (a) You must comply with the requirements in §§ 63.11116(a) and 63.11117(b). (b) Except...

  11. 40 CFR 63.11118 - Requirements for facilities with monthly throughput of 100,000 gallons of gasoline or more.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... monthly throughput of 100,000 gallons of gasoline or more. 63.11118 Section 63.11118 Protection of... Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities Emission Limitations and... gasoline or more. (a) You must comply with the requirements in §§ 63.11116(a) and 63.11117(b). (b) Except...

  12. 40 CFR 63.11118 - Requirements for facilities with monthly throughput of 100,000 gallons of gasoline or more.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... monthly throughput of 100,000 gallons of gasoline or more. 63.11118 Section 63.11118 Protection of... Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities Emission Limitations and... gasoline or more. (a) You must comply with the requirements in §§ 63.11116(a) and 63.11117(b). (b) Except...

  13. 40 CFR 63.11118 - Requirements for facilities with monthly throughput of 100,000 gallons of gasoline or more.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... monthly throughput of 100,000 gallons of gasoline or more. 63.11118 Section 63.11118 Protection of... Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities Emission Limitations and... gasoline or more. (a) You must comply with the requirements in §§ 63.11116(a) and 63.11117(b). (b) Except...

  14. Immunodetection of nucleolar proteins and ultrastructure of nucleoli of soybean root meristematic cells treated with chilling stress and after recovery.

    PubMed

    Stepiński, Dariusz

    2009-03-01

    The nucleolar proteins, fibrillarin and nucleophosmin, have been identified immunofluorescently in the root meristematic cells of soybean seedlings under varying experimental conditions: at 25 degrees C (control), chilling at 10 degrees C for 3 h and 4 days and recovery from the chilling stress at 25 degrees C. In each experimental variant, the immunofluorescence signals were present solely at the nucleolar territories. Fluorescent staining for both proteins was mainly in the shape of circular domains that are assumed to correspond to the dense fibrillar component of the nucleoli. The fewest fluorescent domains were observed in the nucleoli of chilled plants, and the highest number was observed in the plants recovered after chilling. This difference in the number of circular domains in the nucleoli of each variant may indicate various levels of these proteins in each variant. Both the number of circular domains and the level of these nucleolar proteins changed with changes in the transcriptional activity of the nucleoli, with the more metabolically active cell having higher numbers of active areas in the nucleolus and higher levels of nucleolar proteins, and conversely. Electron microscopic studies revealed differences in the ultrastructure of the nucleoli in all experimental variants and confirmed that the number of fibrillar centres surrounded by dense fibrillar component was the lowest in the nucleoli of chilled plants, and the highest in the nucleoli of recovered seedlings.

  15. Water resources of part of Canyonlands National Park, southeastern Utah

    USGS Publications Warehouse

    Sumsion, C.T.; Bloke, E.L.

    1972-01-01

    Canyonlands National Park is in about the center of the Canyon Lands section of the Colorado Plateaus physiographic province in southeastern Utah. The part of the park discussed embraces an area of about 400 square miles comprising isolated mesas, precipitous canyons, and dissected broad benches near the confluence of the Green and Colorado Rivers, the only perennial streams in the area. The climate is arid to semiarid; normal annual precipitation ranges from less than 8 to about 10 inches. Potential evapotranspiration is about 41 inches annually.Geology of the park is characterized by nearly horizontal strata that dip gently northward. Exposed rock formations and deposits range in age from Middle Pennsylvanian to Holocene. Owing to the elevated and deeply dissected topography, only parts of the Cedar Mesa and White Rim Sandstone Members of the Cutler Formation of Permian age have potential for development of wells. Strata above and below them support only small springs, are dry, or contain brine.In the northwest part of the park, the Green River at Taylor Canyon is a potential source of surface water for public supplies for the Island In The Sky area and a small part of the northwest White Rim area. It will require filtration and treatment before use. In the same area, two unused wells in Taylor Canyon will supply enough water for present requirements from the White Rim Sandstone Member of the Cutler Formation, about 140 gallons per minute combined, but yield mineralized water that will require treatment before use. Springs yielding good water at the Island In The Sky and White Rim are mostly intermittent and too small for public-water supply. Most of the White Rim area is dry, having no usable ground water. In The Needles area, wells provide water of good quality from the Cedar Mesa Sandstone Member of the Cutler Formation. Springs yielding good water in the same area are available for supplementary supplies. West of The Needles, The Grabens area is without

  16. Effect of Population Growths on Water Resources in Dubai Emirate, United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Al-Nuaimi, Hind S.; Murad, Ahmed A.

    The Emirate of Dubai is situated to the north of the United Arab Emirates on the Arabian Gulf. Due to its political stability and strong economy, people are continuing to immigrate to Dubai and this will enhance the stress on water resources. Therefore, demands for water will increase significantly in Dubai. The scarcity of water resources in Dubai is evident. The total production of water in the Dubai has increased to 61,478 million gallons in 2004. About 58,808 million gallons has been produced from the desalination plants in 2004. The production of freshwater from the main aquifers is about 2763 and 2655 million gallons for the years 2003 and 2004, respectively. The reduction of groundwater in 2004 may be ascribed to the low amount of rainfall and to the decreasing capacity of the aquifers. Treated wastewater is another source for water whose quantity was increased from 72 m3 to about 107 m3 in 2000 and 2004, respectively. The increase in water production in Dubai to meet the demand corresponds to population growth and this might be attributed to the political stability and strong economy. Moreover, major problems related to the water resources have appeared and affected the availability of freshwater in Dubai. These problems include: lowering water level and groundwater deterioration. This paper is aimed to assess the impacts of population growth on water resources in Dubai.

  17. Water Use in Arkansas, 2005

    USGS Publications Warehouse

    Holland, Terrance W.

    2007-01-01

    The water-use program in Arkansas is a cooperative effort between the Arkansas Natural Resources Commission and the U.S. Geological Survey to inventory water use. During 2005, the amount of water withdrawn from ground- and surface-water sources in Arkansas was estimated to be 11,455 million gallons per day (Mgal/d). Of this amount, about 7,510 Mgal/d (66 percent) was from ground-water and about 3,946 Mgal/d (34 percent) was from surface-water sources. Approximately 93 percent of the population (2.6 million people) in Arkansas was served by public supply systems during 2005. These systems withdrew approximately 404 Mgal/d. Most of the water, 66 percent, was from surface-water sources. The statewide average for per-capita residential use from public supply systems was 157 gallons per day and increased about 35 percent between 1965 and 2005. The largest use of water was for irrigation (8,265 Mgal/d), which accounted for 92 percent (6,942 Mgal/d) of the ground water withdrawn in Arkansas and 72 percent of the total withdrawals (both ground water and surface water). The next largest use category is thermoelectric generation (1,997 Mgal/d), followed by public supply (404 Mgal/d) and duck (hunting) clubs (269 Mgal/d). The withdrawal categories of domestic, commercial, industrial, mining, livestock, and aquaculture each withdrew less than 260 Mgal/d.

  18. Modeling and Test Data Analysis of a Tank Rapid Chill and Fill System for the Advanced Shuttle Upper Stage (ASUS) Concept

    NASA Technical Reports Server (NTRS)

    Flachbart, Robin; Hedayat, Ali; Holt, Kimberly A.; Cruit, Wendy (Technical Monitor)

    2001-01-01

    The Advanced Shuttle Upper Stage (ASUS) concept addresses safety concerns associated .with cryogenic stages by launching empty, and filling on ascent. The ASUS employs a rapid chill and fill concept. A spray bar is used to completely chill the tank before fill, allowing the vent valve to be closed during the fill process. The first tests of this concept, using a flight size (not flight weight) tank. were conducted at Marshall Space Flight Center (MSFC) during the summer of 2000. The objectives of the testing were to: 1) demonstrate that a flight size tank could be filled in roughly 5 minutes to accommodate the shuttle ascent window, and 2) demonstrate a no-vent fill of the tank. A total of 12 tests were conducted. Models of the test facility fill and vent systems, as well as the tank, were constructed. The objective of achieving tank fill in 5 minutes was met during the test series. However, liquid began to accumulate in the tank before it was chilled. Since the tank was not chilled until the end of each test, vent valve closure during fill was not possible. Even though the chill and fill process did not occur as expected, reasonable model correlation with the test data was achieved.

  19. Water requirements of the carbon-black industry

    USGS Publications Warehouse

    Conklin, Howard L.

    1956-01-01

    Carbon blacks include an important group of industrial carbons used chiefly as a reinforcing agent in rubber tires. In 1953 more than 1,610 million pounds of carbon black was produced, of which approximately 1,134 million pounds was consumed by the rubber industry. The carbon-black industry uses small quantities of water as compared to some industries; however, the water requirements of the industry are important because of the dependence of the rubber-tire industry on carbon black.Two methods are used in the manufacture of carbon black - contact and furnace. The only process use of water in the contact method is that used in pelleting. Water is used also in the plant washhouse and for cleaning, and sometimes the company camp may be supplied by the plant. A survey made during the last quarter of 1953 showed that the average values of unit water use at contact plants for process use, all plant uses, and all uses including company camps are 0.08, 0.14, and 0.98 gallon of water per pound of carbon black respectively.In addition to use in wet pelleting, large quantities of water are required in continuous and cyclic furnace methods to reduce the temperature of the gases of decomposition in order to separate and collect the entrained carbon black. The 22 furnace plants in operation in 1953 used a total of 12.4 million gallons per day for process use. Four furnace plants generate electric power for plant use; condenser-cooling water for one such plant may nearly equal the requirements of the entire industry for process use. The average values of unit water use at furnace plants for process use, all plant uses and all uses including company camps but excluding power generation are 3.26, 3.34, and 3.45 gallons of water per pound of carbon black respectively.Carbon-black plants in remote, sparsely settled areas often must maintain company camps for employees. Twenty-one of twenty-seven contact plants surveyed in 1953 had company camps. These camps used large quantities of

  20. Water conservation benefits of urban heat mitigation

    DOE PAGES

    Vahmani, Pouya; Jones, Andrew D.

    2017-10-20

    Many cities globally are seeking strategies to counter the consequences of both a hotter and drier climate. While urban heat mitigation strategies have been shown to have beneficial effects on health, energy consumption, and greenhouse gas emissions, their implications for water conservation have not been widely examined. Here we use a suite of satellite-supported regional climate simulations in California to show that broad implementation of cool roofs, a heat mitigation strategy, not only results in significant cooling, but can also meaningfully decrease outdoor water consumption by reducing evaporative and irrigation water demands. Irrigation water consumption across the major metropolitan areasmore » is reduced by up to 9% and irrigation water savings per capita range from 1.8 to 15.4 gallons per day across 18 counties examined. Total water savings are found to be the highest in Los Angeles county, reaching about 83 million gallons per day. Cool roofs are a valuable solution for addressing the adaptation and mitigation challenges faced by multiple sectors in California.« less

  1. Water conservation benefits of urban heat mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vahmani, Pouya; Jones, Andrew D.

    Many cities globally are seeking strategies to counter the consequences of both a hotter and drier climate. While urban heat mitigation strategies have been shown to have beneficial effects on health, energy consumption, and greenhouse gas emissions, their implications for water conservation have not been widely examined. Here we use a suite of satellite-supported regional climate simulations in California to show that broad implementation of cool roofs, a heat mitigation strategy, not only results in significant cooling, but can also meaningfully decrease outdoor water consumption by reducing evaporative and irrigation water demands. Irrigation water consumption across the major metropolitan areasmore » is reduced by up to 9% and irrigation water savings per capita range from 1.8 to 15.4 gallons per day across 18 counties examined. Total water savings are found to be the highest in Los Angeles county, reaching about 83 million gallons per day. Cool roofs are a valuable solution for addressing the adaptation and mitigation challenges faced by multiple sectors in California.« less

  2. EPA Research Highlights: EPA Studies Aging Water Infrastructure

    EPA Science Inventory

    The nation's extensive water infrastructure has the capacity to treat, store, and transport trillions of gallons of water and wastewater per day through millions of miles of pipelines. However, some infrastructure components are more than 100 years old, and as the infrastructure ...

  3. 76 FR 63211 - Energy Efficiency Program: Test Procedures for Residential Water Heaters, Direct Heating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ..., sections 1.7 and 1.12. The definition for ``Storage-type Water Heater of More than 2 Gallons (7.6 Liters) and Less than 20 Gallons (76 Liters)'' is currently reserved. Id. at section 1.12.5. DOE is... another. In addition, these studies suggest that the existing draw pattern in the simulated use test may...

  4. 40 CFR 63.11118 - Requirements for facilities with monthly throughput of 100,000 gallons of gasoline or more.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Management Practices § 63.11118 Requirements for facilities with monthly throughput of 100,000 gallons of...)(1) or paragraph (b)(2) of this section. (1) Each management practice in Table 1 to this subpart that...) Operates using management practices at least as stringent as those in Table 1 to this subpart. (ii) Your...

  5. Water resources in the Blackstone River basin, Massachusetts

    USGS Publications Warehouse

    Walker, Eugene H.; Krejmas, Bruce E.

    1983-01-01

    The Blackstone River heads in brooks 6 miles northwest of Worcester and drains about 330 square miles of central Massachusetts before crossing into Rhode Island at Woonsocket. The primary source of the Worcester water supply is reservoirs, but for the remaining 23 communities in the basin, the primary source is wells. Bedrock consists of granitic and metamorphic rocks. Till mantles the uplands and extends beneath stratified drift in the valleys. Stratified glacial drift, consisting of clay, silt, and fine sand deposited in lakes and coarse-textured sand and gravel deposited by streams, is found in lowlands and valleys. The bedrock aquifer is capable of sustaining rural domestic supplies throughout the Blackstone River basin. Bedrock wells yield an average of 10 gallons per minute, but some wells, especially those in lowlands where bedrock probably contains more fractures and receives more recharge than in the upland areas, yield as much as 100 gallons per minute. Glacial sand and gravel is the principal aquifer. It is capable of sustaining municipal supplies. Average daily pumpage from this aquifer in the Blackstone River basin was 10.4 million gallons per day in 1978. The median yield of large-diameter wells in the aquifer is 325 gallons per minute. The range of yields from these wells is 45 to 3,300 gallons per minute. The median specific capacity is about 30 gallons per minute per foot of drawdown.

  6. The WaterHub at Emory University: Campus Resiliency through Decentralized Reuse.

    PubMed

    Allison, Daniel; Lohan, Eric; Baldwin, Tim

    2018-02-01

      In the spring of 2015, Emory University in Atlanta, GA, commissioned an innovative campuswide water reclamation and reuse system known as the WaterHub®. Treating up to 400,000 gallons each day, the system can recycle the equivalent of two-thirds of the University's wastewater production and reduce the campus water footprint by up to 40 percent.One of the first district-scale water reuse systems in North America, the WaterHub mines wastewater from the campus sewer system and repurposes it for beneficial reuse on campus. In its first year of operation, the facility has treated more than 80 million gallons of campus wastewater and is expected to save millions of dollars in utility costs for the University over the next 20 years. The system represents a new age in commercial-scale water management in which onsite, urban water reclamation facilities may be a new norm.

  7. Transcriptome, carbohydrate, and phytohormone analysis of Petunia hybrida reveals a complex disturbance of plant functional integrity under mild chilling stress

    PubMed Central

    Bauerfeind, Martin Andreas; Winkelmann, Traud; Franken, Philipp; Druege, Uwe

    2015-01-01

    Cultivation of chilling-tolerant ornamental crops at lower temperature could reduce the energy demands of heated greenhouses. To provide a better understanding of how sub-optimal temperatures (12°C vs. 16°C) affect growth of the sensitive Petunia hybrida cultivar ‘SweetSunshine Williams’, the transcriptome, carbohydrate metabolism, and phytohormone homeostasis were monitored in aerial plant parts over 4 weeks by use of a microarray, enzymatic assays and GC-MS/MS. The data revealed three consecutive phases of chilling response. The first days were marked by a strong accumulation of sugars, particularly in source leaves, preferential up-regulation of genes in the same tissue and down-regulation of several genes in the shoot apex, especially those involved in the abiotic stress response. The midterm phase featured a partial normalization of carbohydrate levels and gene expression. After 3 weeks of chilling exposure, a new stabilized balance was established. Reduced hexose levels in the shoot apex, reduced ratios of sugar levels between the apex and source leaves and a higher apical sucrose/hexose ratio, associated with decreased activity and expression of cell wall invertase, indicate that prolonged chilling induced sugar accumulation in source leaves at the expense of reduced sugar transport to and reduced sucrose utilization in the shoot. This was associated with reduced levels of indole-3-acetic acid and abscisic acid in the apex and high numbers of differentially, particularly up-regulated genes, especially in the source leaves, including those regulating histones, ethylene action, transcription factors, and a jasmonate-ZIM-domain protein. Transcripts of one Jumonji C domain containing protein and one expansin accumulated in source leaves throughout the chilling period. The results reveal a dynamic and complex disturbance of plant function in response to mild chilling, opening new perspectives for the comparative analysis of differently tolerant cultivars

  8. Transcriptome, carbohydrate, and phytohormone analysis of Petunia hybrida reveals a complex disturbance of plant functional integrity under mild chilling stress.

    PubMed

    Bauerfeind, Martin Andreas; Winkelmann, Traud; Franken, Philipp; Druege, Uwe

    2015-01-01

    Cultivation of chilling-tolerant ornamental crops at lower temperature could reduce the energy demands of heated greenhouses. To provide a better understanding of how sub-optimal temperatures (12°C vs. 16°C) affect growth of the sensitive Petunia hybrida cultivar 'SweetSunshine Williams', the transcriptome, carbohydrate metabolism, and phytohormone homeostasis were monitored in aerial plant parts over 4 weeks by use of a microarray, enzymatic assays and GC-MS/MS. The data revealed three consecutive phases of chilling response. The first days were marked by a strong accumulation of sugars, particularly in source leaves, preferential up-regulation of genes in the same tissue and down-regulation of several genes in the shoot apex, especially those involved in the abiotic stress response. The midterm phase featured a partial normalization of carbohydrate levels and gene expression. After 3 weeks of chilling exposure, a new stabilized balance was established. Reduced hexose levels in the shoot apex, reduced ratios of sugar levels between the apex and source leaves and a higher apical sucrose/hexose ratio, associated with decreased activity and expression of cell wall invertase, indicate that prolonged chilling induced sugar accumulation in source leaves at the expense of reduced sugar transport to and reduced sucrose utilization in the shoot. This was associated with reduced levels of indole-3-acetic acid and abscisic acid in the apex and high numbers of differentially, particularly up-regulated genes, especially in the source leaves, including those regulating histones, ethylene action, transcription factors, and a jasmonate-ZIM-domain protein. Transcripts of one Jumonji C domain containing protein and one expansin accumulated in source leaves throughout the chilling period. The results reveal a dynamic and complex disturbance of plant function in response to mild chilling, opening new perspectives for the comparative analysis of differently tolerant cultivars.

  9. Water resources of Oley Township, Berks County, Pennsylvania

    USGS Publications Warehouse

    Paulachok, G.N.; Wood, C.R.

    1988-01-01

    Oley Township covers an area of 24 square miles, about half of which is underlain by highly permeable carbonate rocks. Nondomestic wells in these rocks typically have yields of 200 gallons per minute, and some wells yield more than 1,000 gallons per minute. Ground-water yield for Oley Township is about 0.5 million gallons per day per square mile. Thus, about 12 million gallons per day could be pumped from wells on a sustained basis. However, pumping this amount would adversely affect streamflow. A series of discharge measurements on Manatawny Creek in January 1983 showed that the creek was gaining approximately 12 cubic feet per second where it crosses the more- permeable carbonate rocks. Thus, the streams are directly connected to these aquifers. The northern and western parts of the township are mostly underlain by shale, quartzite, granite, gneiss, and carbonate rocks of low permeability, and some wells do not yield enough water for domestic supplies. A water-table map shows that two active quarries in low-permeability rocks have had little effect on the hydrologic system. Specific yields are about 4.5 percent for the carbonate rocks; 5 percent for quartzite, granite, and gneiss; 1 percent for the noncarbonate sedimentary rocks; and 1.5 percent for the Jacksonburg Limestone, which consists of argillaceous limestone. In 1982--a year of average precipitation--the ground-water contribution to total streamflow ranged from 56 to 88 percent. Basins with the highest percentage of carbonate rock contribute the largest amount of ground water to streamflow. Evapotranspiration averaged about 26 inches in 1982. Water loss was 32 inches in the Limekiln Creek basin; this suggests that about 6 inches of precipitation bypassed the Limekiln Creek gaging station as ground-water underflow. The most serious water-quality problems are excessive nitrate concentrations and bacterial contamination. Water from 3 of 19 wells in carbonate rocks had nitrate concentrations in excess of the

  10. Simulation of Reclaimed-Water Injection and Pumping Scenarios and Particle-Tracking Analysis near Mount Pleasant, South Carolina

    USGS Publications Warehouse

    Petkewich, Matthew D.; Campbell, Bruce G.

    2009-01-01

    The effect of injecting reclaimed water into the Middendorf aquifer beneath Mount Pleasant, South Carolina, was simulated using a groundwater-flow model of the Coastal Plain Physiographic Province of South Carolina and parts of Georgia and North Carolina. Reclaimed water, also known as recycled water, is wastewater or stormwater that has been treated to an appropriate level so that the water can be reused. The scenarios were simulated to evaluate potential changes in groundwater flow and groundwater-level conditions caused by injecting reclaimed water into the Middendorf aquifer. Simulations included a Base Case and two injection scenarios. Maximum pumping rates were simulated as 6.65, 8.50, and 10.5 million gallons per day for the Base Case, Scenario 1, and Scenario 2, respectively. The Base Case simulation represents a non-injection estimate of the year 2050 groundwater levels for comparison purposes for the two injection scenarios. For Scenarios 1 and 2, the simulated injection of reclaimed water at 3 million gallons per day begins in 2012 and continues through 2050. The flow paths and time of travel for the injected reclaimed water were simulated using particle-tracking analysis. The simulations indicated a general decline of groundwater altitudes in the Middendorf aquifer in the Mount Pleasant, South Carolina, area between 2004 and 2050 for the Base Case and two injection scenarios. For the Base Case, groundwater altitudes generally declined about 90 feet from the 2004 groundwater levels. For Scenarios 1 and 2, although groundwater altitudes initially increased in the Mount Pleasant area because of the simulated injection, these higher groundwater levels declined as Mount Pleasant Waterworks pumping increased over time. When compared to the Base Case simulation, 2050 groundwater altitudes for Scenario 1 are between 15 feet lower to 23 feet higher for production wells, between 41 and 77 feet higher for the injection wells, and between 9 and 23 feet higher for

  11. Water contamination in fallout areas. Project No. 7806

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robeck, G.G.; Woodward, R.L.; Muschler, W.K.

    1958-05-01

    An evaluation of the potential radiological hazard to Air Force personnel from drinking water contaminated with fission products is presented. Ground water supplies should be safe from fallout contamination and only surface supplies may need special treatment. Even in untreated water, the radioactivity in surface supplies is not likely to reduce significantly the military effectiveness of personnel using it except where the general level of contamination is greater than 1000 r/hr at H + 1. Dust samples were collected at the Priscilla shot of Operation Plumbbob 24 June 1957. In each of the samples, material containing approximately 10% of themore » activity was soluble; however, strontium was preferentially dissolved by a factor of 5. For the first 10 days after fallout, a supply of one gallon of water per person per day will suffice for drinking and culinary purposes. Ion-exchange, which is over 99% efficient, is the most practical and economical method of supplying decontaminated water. For immediate demand, small mixed-bed demineralizers, which are easily installed and maintained, are recommended; for long term demand, pressure cation-exchange beds operated on the sodium cycle are recommended. A shelter accommodating 100 people would require a small mixed-bed demineralizer with an initial cost of $81 and an operating cost of $9 per day. A pressure cation-exchange bed could be installed for $7,500 which would have an operating cost of 15 cents per 1,000 gallons. This could supply an average daily water requirement of 50,000 gallons.« less

  12. Glycerolipidome responses to freezing- and chilling-induced injuries: examples in Arabidopsis and rice.

    PubMed

    Zheng, Guowei; Li, Lixia; Li, Weiqi

    2016-03-22

    Glycerolipids are the principal constituent of cellular membranes; remodelling of glycerolipids plays important roles in temperature adaptation in plants. Temperate plants can endure freezing stress, but even chilling at above-zero temperatures can induce death in tropical species. However, little is known about the differences in glycerolipid response to low temperatures between chilling-sensitive and freezing-tolerant plants. Using ESI-MS/MS-based lipidomic analysis, we compared the glycerolipidome of chilling (4 and 10 °C)-treated rice with that of freezing (-6 and -12 °C)-treated Arabidopsis, both immediately after these low-temperature treatments and after a subsequent recovery culture period. Arabidopsis is a 16:3 plant that harbours both eukaryotic and prokaryotic-type lipid synthesis pathways, while rice is an 18:3 plant that harbours only the eukaryotic lipid synthesis pathway. Arabidopsis contains higher levels of galactolipids than rice and has a higher double bond index (DBI). Arabidopsis contains lower levels of high melting point phosphatidylglycerol (PG) molecules and has a lower average acyl chain length (ACL). Marked phospholipid degradation occurred during the recovery culture period of non-lethal chilling treated rice, but did not occur in non-lethal freezing treated Arabidopsis. Glycerolipids with larger head groups were synthesized more in Arabidopsis than in rice at sub-lethal low-temperatures. Levels of phosphatidic acid (PA) and phosphatidylinositol (PI) rose in both plants after low-temperature treatment. The DBI and ACL of total lipids did not change during low-temperature treatment. A higher DBI and a lower ACL could make the membranes of Arabidopsis more fluid at low temperatures. The ability to synthesize glycerolipids containing a larger head group may correlate with low-temperature tolerance. The low-temperature-induced increase of PA may play a dual role in plant responses to low temperatures: as a lipid signal that initiates

  13. The involvement of mitochondrial phosphate transporter in accelerating bud dormancy release during chilling treatment of tree peony (Paeonia suffruticosa).

    PubMed

    Huang, Xin; Zhu, Wei; Dai, Silan; Gai, Shupeng; Zheng, Guosheng; Zheng, Chengchao

    2008-09-01

    A cDNA clone was isolated from tree peony (Paeonia suffruticosa) subtractive cDNA library of burst buds and characterized with regard to its sequence, expression in response to chilling treatment during the release of bud dormancy, and its function in transgenic Arabidopsis thaliana. The clone, designated as PsMPT, contains 1,615 nucleotides with an open reading frame of 1,119 nucleotides, and the deduced amino acid sequence shows high homology with mitochondrial phosphate transporters (MPTs) from various organisms. The mRNA accumulation of PsMPT in tree peony was strongly induced by chilling treatment during the release of bud dormancy. When the treated plants were transferred to normal growth conditions, the level of PsMPT transcripts induced by sufficient chilling could be maintained high, whereas that induced by insufficient chilling decreased sharply. The transgenic Arabidopsis plants that overexpress PsMPT showed rapid growth and earlier flowering than wild-type plants. ATP contents in the transgenic plants were much higher than that in wild-type plants through various developmental stages. Together, these results suggest that the product of PsMPT is a MPT and might play an important role during the release of bud dormancy in tree peony.

  14. Technical/commercial feasibility study of the production of fuel-grade ethanol from corn: 100-million-gallon-per-year production facility in Myrtle Grove, Louisiana. Volume one. Executive summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-05-31

    This Executive Summary is Volume I of 7 volumes of a detailed feasibility study for a 100 million gallon/year Power Alcohol plant using corn as feedstock to be constructed in the vicinity of Belle Chaise, Louisiana, adjacent to an existing grain elevator complex. The proposed plant will ultimately have the capability to produce 100 million gallons/year of anhydrous alcohol from an estimated 40 million bushels of corn and will be designed so as to allow construction in modules of 25 million gallons each. Alcohol produced at this plant is intended essentially for use as a gasoline octane booster, a motormore » fuel in gasoline/alcohol blends and as a chemical feedstock. In addition, the plant will produce a number of by-products, each of which has existing commercial markets; namely, 236,400 tons of CO/sub 2/ 237,600 tons of Protein Meal Mixture (40.2% Protein) or 124,000 tons of Gluten Meal (41% Protein), 20,000 tons of yeast, 68,400 tons of Corn Bran, 89,600 tons of Corn Germ Cake and 4,584,000 gallons of Corn Oil (food grade).« less

  15. Report: EPA’s Voluntary WaterSense Program Demonstrated Success

    EPA Pesticide Factsheets

    Report #17-P-0352, August 1, 2017. The EPA estimated that consumers saved over 1.5 trillion gallons of water through use of WaterSense-labeled products. Consumers saved an estimated $1,100 for every federal dollar spent on the program.

  16. Rash, fever, and chills after intravenous fluorescein angiography.

    PubMed

    Johnson, R N; McDonald, H R; Schatz, H

    1998-12-01

    To report a previously unreported complication associated with intravenous injection of fluorescein dye. Case report. A 75-year-old man developed a unique complication after intravenous injection of fluorescein dye for angiography. Two hours after receiving an intravenous injection of fluorescein for angiography, the patient developed a fever, rash, and chills. Admission to a hospital and careful systemic evaluation determined that this reaction was a noninfectious allergic response to intravenous fluorescein dye injection. A delayed allergic response to intravenous fluorescein dye injection can occur.

  17. Water use and availability in the West Narragansett Bay area, coastal Rhode Island, 1995-99

    USGS Publications Warehouse

    Nimiroski, Mark T.; Wild, Emily C.

    2006-01-01

    During the 1999 drought in Rhode Island, belowaverage precipitation caused a drop in ground-water levels and streamflow was below long-term averages. The low water levels prompted the U. S. Geological Survey and the Rhode Island Water Resources Board to conduct a series of cooperative water-use studies. The purpose of these studies is to collect and analyze water-use and water-availability data in each drainage area in the State of Rhode Island. The West Narragansett Bay study area, which covers 118 square miles in part or all of 14 towns in coastal Rhode Island, is one of nine areas investigated as part of this effort. The study area includes the western part of Narragansett Bay and Conanicut Island, which is the town of Jamestown. The area was divided into six subbasins for the assessment of water-use data. In the calculation of hydrologic budget and water availability, the Hunt, Annaquatucket, and Pettaquamscutt River Basins were combined into one subbasin because they are hydraulically connected. Eleven major water suppliers served customers in the study area, and they supplied an average of 19.301 million gallons per day during 1995–99. The withdrawals from the only minor supplier, which was in the town of East Greenwich in the Hunt River Basin, averaged 0.002 million gallons per day. The remaining withdrawals were estimated as 1.186 million gallons per day from self-supplied domestic, commercial, industrial, and agricultural users. Return flows from self-disposed water (individual sewage-disposal systems) and permitted discharges accounted for 5.623 million gallons per day. Most publicly disposed water (13.711 million gallons per day) was collected by the Rhode Island Economic Development Corporation, and by the East Greenwich, Fields Point, Jamestown, Narragansett, and Scarborough wastewater-treatment facilities. This wastewater was disposed in Narragansett Bay outside of the study area. The PART program, a computerized hydrograph-separation application

  18. Small-Scale Experiments.10-gallon drum experiment summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, David M.

    2015-02-05

    A series of sub-scale (10-gallon) drum experiments were conducted to characterize the reactivity, heat generation, and gas generation of mixtures of chemicals believed to be present in the drum (68660) known to have breached in association with the radiation release event at the Waste Isolation Pilot Plant (WIPP) on February 14, 2014, at a scale expected to be large enough to replicate the environment in that drum but small enough to be practical, safe, and cost effective. These tests were not intended to replicate all the properties of drum 68660 or the event that led to its breach, or tomore » validate a particular hypothesis of the release event. They were intended to observe, in a controlled environment and with suitable diagnostics, the behavior of simple mixtures of chemicals in order to determine if they could support reactivity that could result in ignition or if some other ingredient or event would be necessary. There is a significant amount of uncertainty into the exact composition of the barrel; a limited sub-set of known components was identified, reviewed with Technical Assessment Team (TAT) members, and used in these tests. This set of experiments was intended to provide a framework to postulate realistic, data-supported hypotheses for processes that occur in a “68660-like” configuration, not definitively prove what actually occurred in 68660.« less

  19. The Fatty Acid Composition of Phosphatidylglycerol and Sulfoquinovosyldiacylglycerol of Higher Plants in Relation to Chilling Sensitivity

    PubMed Central

    Kenrick, Janette R.; Bishop, David G.

    1986-01-01

    The fatty acid composition of phosphatidylglycerol and sulfoquinovosyldiacylglycerol has been measured in the leaves of 27 species of higher plants from six families whose members differed in their degrees of chilling sensitivity. The content of high melting point fatty acids (represented by the sum of hexadecanoic, trans-3-hexadecenoic and octadecanoic acids) in phosphatidylglycerols varied little between members of the same plant family and was not obviously related to the relative chilling sensitivity of members of that family. The saturated fatty acid content (hexadecanoic + octadecanoic acids) of sulfoquinovosyldiacylglycerols also appeared to be characteristic of a plant family, although some exceptions were found. In one case, (Carica papaya) the content of saturated fatty acids in sulfoquinovosyldiacylglycerol was sufficiently high to suggest that this lipid could undergo phase separations above 0°C. It is concluded that the content of high melting point fatty acids in leaf phosphatidylglycerol is not a direct indication of the chilling sensitivity of a plant, but rather may be a reflection of the genetic origin of that plant. PMID:16664962

  20. Simulation of ground-water flow and areas contributing recharge to extraction wells at the Drake Chemical Superfund Site, City of Lock Haven and Castanea Township, Clinton County, Pennsylvania

    USGS Publications Warehouse

    Schreffler, Curtis L.

    2006-01-01

    Extensive remediation of the Drake Chemical Superfund Site has been ongoing since 1983. Contaminated soils were excavated and incinerated on site between 1996 and 1999. After 1999, remedial efforts focused on contaminated ground water. A ground-water remediation system was started in November 2000. The source area of the contaminated ground water was assumed to be the zone 1 area on the Drake Chemical site. The remedial system was designed to capture ground water migrating from zone 1. Also, the remediation system was designed to pump and treat the water in an anoxic environment and re-infiltrate the treated water underground through an infiltration gallery that is hydrologically downgradient of the extraction wells. A numerical ground-water flow model of the surrounding region was constructed to simulate the areas contributing recharge to remedial extraction wells installed on the Drake Chemical site. The three-dimensional numerical flow model was calibrated using the parameter-estimation process in MODFLOW-2000. The model included three layers that represented three poorly sorted alluvial sediment units that were characterized from geologic well and boring logs. Steady-state ground-water flow was simulated to estimate the areas contributing recharge to three extraction wells for three different pumping scenarios--all wells pumping at 2 gallons per minute, at approximately 5 gallons per minute, and at 8 gallons per minute. Simulation results showed the contributing areas to the three extraction wells encompassed 92 percent of zone 1 at a pumping rate of approximately 5 gallons per minute. The contributing areas did not include a very small area in the southwestern part of zone 1 when the three extraction wells were pumped at approximately 5 gallons per minute. Pumping from a fourth extraction well in that area was discontinued early in the operation of the remediation system because the ground water in that area met performance standards. The areas contributing

  1. Transcriptional responses indicate maintenance of photosynthetic proteins as key to the exceptional chilling tolerance of C4 photosynthesis in Miscanthus × giganteus

    PubMed Central

    Spence, Ashley K.; Boddu, Jay; Wang, Dafu; James, Brandon; Swaminathan, Kankshita; Moose, Stephen P.; Long, Stephen P.

    2014-01-01

    Miscanthus × giganteus is exceptional among C4 plants in its ability to acclimate to chilling (≤14 °C) and maintain a high photosynthetic capacity, in sharp contrast to maize, leading to very high productivity even in cool temperate climates. To identify the mechanisms that underlie this acclimation, RNA was isolated from M × giganteus leaves in chilling and nonchilling conditions and hybridized to microarrays developed for its close relative Zea mays. Among 21 000 array probes that yielded robust signals, 723 showed significant expression change under chilling. Approximately half of these were for annotated genes. Thirty genes associated with chloroplast membrane function were all upregulated. Increases in transcripts for the lhcb5 (chlorophyll a/b-binding protein CP26), ndhF (NADH dehydrogenase F, chloroplast), atpA (ATP synthase alpha subunit), psbA (D1), petA (cytochrome f), and lhcb4 (chlorophyll a/b-binding protein CP29), relative to housekeeping genes in M. × giganteus, were confirmed by quantitative reverse-transcription PCR. In contrast, psbo1, lhcb5, psbA, and lhcb4 were all significantly decreased in Z. mays after 14 days of chilling. Western blot analysis of the D1 protein and LHCII type II chlorophyll a/b-binding protein also showed significant increases in M. × giganteus during chilling and significant decreases in Z. mays. Compared to other C4 species, M. × giganteus grown in chilling conditions appears to counteract the loss of photosynthetic proteins and proteins protecting photosystem II typically observed in other species by increasing mRNA levels for their synthesis. PMID:24958895

  2. Studying Wind Chill Index as a Climatic Index Effective on the Health of Athletes and Tourists Interested in Winter Sports

    PubMed Central

    Roshan, Gholamreza; Mirkatouli, Gafar; Shakoor, Ali; Mohammad-Nejad, Vahid

    2010-01-01

    Purpose Estimating wind chill index as one of the indexes effective in body comfort, specifically for athletes and tourists interested in winter sports. Methods Meteorology data including temperature and the percentage of relative humidity of 6 synoptic stations of Chaharmahal-Bakhtiyrai province, Iran from 1990 to 2007 were extracted from Iranian Meteorology Site. In order to calculate the values of wind chill, the innovative formula of NOAA Meteorology Services Center [T (WC)= 35.74+0.6215T-35.75V+0.4275TV] was used. Results After analyzing wind in all stations, it became evident that the great percentage of wind calm related to fall, and spring had the most wind distortions. In studying the mean temperature during this studying period, Koohrang station with mean of 9.8°C was identified as the coldest station and Lordegan with a mean of 17°C represented the warmest station of the region observed. According to degrees derived from wind chill index, Koohrang station in January with a mean of −28.75 was known as the coldest and roughest station. Conclusion Among the studied stations, Koohrang had the most intensive degrees of wind chill occurrence and Lordegan had the calmest conditions. Therefore, athletes and tourists should use warmer clothes and covers in cold seasons in Koohrang in comparison with other studied regions, in order to protect themselves from the negative effects of sudden cold and occurrence of intense wind chills. PMID:22375198

  3. The influence of chilling requirement on the southern distribution limit of exotic Russian olive (Elaeagnus angustifolia) in western North America

    USGS Publications Warehouse

    Guilbault, Kimberly R.; Brown, C.S.; Friedman, J.M.; Shafroth, P.B.

    2012-01-01

    Russian olive (Elaeagnus angustifolia L.), a Eurasian tree now abundant along rivers in western North America, has an apparent southern distribution limit running through southern California, Arizona, New Mexico and Texas. We used field observations to precisely define this limit in relation to temperature variables. We then investigated whether lack of cold temperatures south of the limit may prevent the accumulation of sufficient chilling, inhibiting dormancy loss of seeds and buds. We found that Russian olive occurrence was more strongly associated with low winter temperatures than with high summer temperatures, and results of controlled seed germination and vegetative bud-break experiments suggest that the chilling requirements for germination and bud-break are partly responsible for the southern range limit. Both seed germination proportion and germination time decreased under conditions simulating those south of the range limit. Similarly, percentage bud break decreased when chilling dropped below values typical of the range limit. In 17–65% of the years from 1980 to 2000, the chilling accumulated at a site near the range limit (El Paso, TX) would lead to a 10% or more decrease in bud-break. The potential decline in growth could have large fitness consequences for Russian olive. If climate change exhibits a warming trend, our results suggest the chilling requirement for bud-break of Russian olive trees will not be met in some years and its southern range limit may retreat northward.

  4. Water for a rapidly growing urban community, Oakland County, Michigan

    USGS Publications Warehouse

    Twenter, F.R.; Knutilla, R.L.

    1972-01-01

    Oakland County, an area of 899 square miles, is in southeastern Michigan. The southern part of the county is overlapped by the suburbs of the city of Detroit. In 1970, about 850,000 people were living in the county and using about 100 million gallons of water a day. More than 80 percent of the water used for large industrial and municipal supplies came from Detroit's water system. The average annual rate of streamflow from the county is about 370 million gallons per day (575 cubic feet per second). Median annual 7-day low flows range from 0 to 0.25 cfs per square mile. Low flows can be augmented by more than 60,000 acre-feet of water captured during high streamflow by construction of small reservoirs at 21 inventoried sites. Glacial deposits and the Marshall Sandstone are the prime sources of ground water. Most wells that penetrate the full thickness of glacial deposits in the northwestern part of the county will yield at least 50 gpm (gallons per minute), and many will yield more than 400 gpm. The Marshall Sandstone, which occurs only in the Holly area, is capable of yielding more than 1,000 gpm. The chemical quality of both surface and ground water is relatively good throughout the county. Only in the southern part of the county is the dissolved solids above the acceptable standard of 500 milligrams per liter.

  5. Water-use data by category, county, and water management district in Florida, 1950-90

    USGS Publications Warehouse

    Marella, R.L.

    1995-01-01

    The population for Florida in 1990 was estimated at 12.94 million, an increase of nearly 10.17 million (370 percent) from the population of 2.77 million in 1950. Consequently, water use (fresh and saline) in Florida increased nearly 510 percent (15,175 million gallons per day) between 1950 and 1990. The resident population of the State is projected to surpass 20 million by the year 2020. Through the cooperation of the Florida Department of Environ- mental Protection and the U.S. Geologial Survey, water-use data for the period between 1950 and 1990 has been consolidated into one publication. This report aggregates and summarizes the quantities of water withdrawn annually for all water-use categories (public supply, self-supplied domestic, self-supplied commercial-industrial, agriculture, and thermoelectric power generation), by counties, and water management districts in Florida from 1950 through 1990. Total water withdrawn in Florida increased from 2,923 million gallons per day in 1950 to 17,898 million gallons per day in 1990. Surface- water withdrawals during 1950 totaled 2,333 million gallons per day but were not differentiated between fresh and saline, therefore, comparisons between fresh and saline water were made beginning with 1955 data. Freshwater withdrawals increased 245 percent between 1955 and 1990. Saline water withdrawals increased more than 1,500 percent between 1955 and 1990. In 1955, more than 47 percent of the fresh- water used was withdrawn from ground-water sources and 53 percent was withdrawn from surface-water sources. In 1990, nearly 62 percent of the fresh- water withdrawn was from ground-water sources, while 38 percent was withdrawn from surface-water sources. The steady increase in ground-water withdrawals since the 1950's primarily is a result of the ability to drill and pump water more economically from large, deep wells and the reliability of both the quality and quantity of water from these wells. Water withdrawn for public supply in

  6. Cold-batter mincing of hot-boned and crust-frozen air-chilled turkey breast allows for reduced sodium content in protein gels.

    PubMed

    Lee, H C; Medellin-Lopez, M; Singh, P; Sansawat, T; Chin, K B; Kang, I

    2014-09-01

    The purpose of this research was to evaluate sodium reduction in the protein gels that were prepared with turkey breasts after hot boning (HB), quarter (¼) sectioning, crust-frozen air-chilling (CFAC), and cold temperature mincing. For each of 4 replications, 36 turkeys were slaughtered and eviscerated. One-half of the carcasses were randomly assigned to water immersion chilling for chill boning (CB), whereas the remaining carcasses were immediately HB and quarter-sectioned/crust-frozen air-chilled (HB-¼CFAC) in a freezing room (-12°C, 1.0 m/s). After deboning, CB fillets were conventionally minced, whereas HB-¼CFAC fillets were cold minced up to 27 min with 1 or 2% salt. From the beginning of mincing, the batter temperatures of HB-¼CFAC were lower (P < 0.05) than those of CB batters up to 12 and 21 min for 2 and 1% salts, respectively. Upon mincing, the batter pH of the HB-¼CFAC (P < 0.05) rapidly decreased and was not different (P > 0.05) from the pH of CB batters, except for the 1% salt HB-¼CFAC batter after 15 min of mincing. The pattern of pH was not changed when the batters were stored overnight. The protein of 2% salt HB-¼CFAC fillets was more extractable (P < 0.05) than that of CB fillets at 9, 12, 18, and 24 min. Similarly, the protein of 1% salt HB-¼CFAC fillets was more extractable (P < 0.05) than that of CB fillets from 12 min. Stress values of 2% salt HB-¼CFAC gels were higher (P < 0.05) than those of 1 and 2% salt CB gels, with intermediate values for 1% salt HB-¼CFAC gels. In the scanning electron microscope image, prerigor batter appears to have more open space, less protein aggregation, and more protein-coated fat particles than those of postrigor batters. Based on these results, the combination of HB-¼CFAC and cold-batter-mincing technologies appear to improve protein functionality and sodium reduction capacity. © 2014 Poultry Science Association Inc.

  7. Inter-comparison of Precipitation Estimation Derived from GPM Dual-frequency Radar and CSU-CHILL Radar

    NASA Astrophysics Data System (ADS)

    Chen, S.; Chen, H.; Hu, J.; Zhang, A.; Min, C.

    2017-12-01

    It is more than 3 years since the launch of Global Precipitation Measurement (GPM) core satellite on February 27 2014. This satellite carries two core sensors, i.e. dual-frequency precipitation radar (DPR) and microwave imager (GMI). These two sensors are of the state-of- the-art sensors that observe the precipitation over the globe. The DPR level-2 product provides both precipitation rates and phases. The precipitation phase information can help advance global hydrological cycle modeling, particularly crucial for high-altitude and high latitude regions where solid precipitation is the dominated source of water. However, people are still in short of the reliability and accuracy of DPR level-2 product. Assess the performance and uncertainty of precipitation retrievals derived from the core sensor dual-frequency precipitation radar (DPR) on board the satellite is needed for the precipitation algorithm developers and the end users in hydrology, weather, meteorology, and hydro-related communities. In this study, the precipitation estimation derived from DPR is compared with that derived from CSU-CHILL National Weather Radar from March 2014 to October 2017. The CSU-CHILL radar is located in Greeley, CO, and is an advanced, transportable dual-polarized dual-wavelength (S- and X-band) weather radar. The system and random errors of DPR in measuring precipitation will be analyzed as a function of the precipitation rate and precipitation type (liquid and solid). This study is expected to offer insights into performance of the most advanced sensor and thus provide useful feedback to the algorithm developers as well as the GPM data end users.

  8. Exogenous Melatonin Mitigates Photoinhibition by Accelerating Non-photochemical Quenching in Tomato Seedlings Exposed to Moderate Light during Chilling

    PubMed Central

    Ding, Fei; Wang, Meiling; Liu, Bin; Zhang, Shuoxin

    2017-01-01

    Melatonin plays an important role in tolerance to multiple stresses in plants. Recent studies have shown that melatonin relieves photoinhibition in plants under cold stress; however, the mechanisms are not fully understood. Non-photochemical quenching (NPQ) is a key process thermally dissipating excess light energy that plants employ as a protective mechanism to prevent the over reduction of photosystem II. Here, we report the effects of exogenous melatonin on NPQ and mitigation of photoinhibition in tomato seedlings exposed to moderate light during chilling. In response to moderate light during chilling, the maximum quantum yield (Fv/Fm) and the effective photochemical efficiency (F′v/F′m) of PSII were both substantially reduced, showing severe photoinhibition in tomato seedlings, whereas exogenous application of melatonin effectively alleviated the photoinhibition. Further experiment showed that melatonin accelerated the induction of NPQ in response to moderate light and maintained higher level of NPQ upon longer exposure to light during chilling. Consistent with the increased NPQ was the elevated de-epoxidation state of xanthophyll pigments in melatonin-pretreated seedlings exposed to light during chilling. Enzyme activity assay showed that violaxanthin de-epoxidase (VDE), which catalyzes the de-epoxidation reaction in the xanthophyll cycle, was activated by light and the activity was further enhanced by application of melatonin. Further analysis revealed that melatonin induced the expression of VDE gene in tomato seedlings under moderate light and chilling conditions. Ascorbic acid is an essential cofactor of VDE and the level of it was found to be increased in melatonin-pretreated seedlings. Feeding tomato seedlings with dithiothreitol, an inhibitor of VDE, blocked the effects of melatonin on the de-epoxidation state of xanthophyll pigments and the induction of NPQ. Collectively, these results suggest that exogenous melatonin mitigates photoinhibition by

  9. Exogenous Melatonin Mitigates Photoinhibition by Accelerating Non-photochemical Quenching in Tomato Seedlings Exposed to Moderate Light during Chilling.

    PubMed

    Ding, Fei; Wang, Meiling; Liu, Bin; Zhang, Shuoxin

    2017-01-01

    Melatonin plays an important role in tolerance to multiple stresses in plants. Recent studies have shown that melatonin relieves photoinhibition in plants under cold stress; however, the mechanisms are not fully understood. Non-photochemical quenching (NPQ) is a key process thermally dissipating excess light energy that plants employ as a protective mechanism to prevent the over reduction of photosystem II. Here, we report the effects of exogenous melatonin on NPQ and mitigation of photoinhibition in tomato seedlings exposed to moderate light during chilling. In response to moderate light during chilling, the maximum quantum yield (Fv/Fm) and the effective photochemical efficiency (F'v/F'm) of PSII were both substantially reduced, showing severe photoinhibition in tomato seedlings, whereas exogenous application of melatonin effectively alleviated the photoinhibition. Further experiment showed that melatonin accelerated the induction of NPQ in response to moderate light and maintained higher level of NPQ upon longer exposure to light during chilling. Consistent with the increased NPQ was the elevated de-epoxidation state of xanthophyll pigments in melatonin-pretreated seedlings exposed to light during chilling. Enzyme activity assay showed that violaxanthin de-epoxidase (VDE), which catalyzes the de-epoxidation reaction in the xanthophyll cycle, was activated by light and the activity was further enhanced by application of melatonin. Further analysis revealed that melatonin induced the expression of VDE gene in tomato seedlings under moderate light and chilling conditions. Ascorbic acid is an essential cofactor of VDE and the level of it was found to be increased in melatonin-pretreated seedlings. Feeding tomato seedlings with dithiothreitol, an inhibitor of VDE, blocked the effects of melatonin on the de-epoxidation state of xanthophyll pigments and the induction of NPQ. Collectively, these results suggest that exogenous melatonin mitigates photoinhibition by

  10. Inhibition of flowering 'Arbequina' olives from chilling at lower temperatures

    USDA-ARS?s Scientific Manuscript database

    The effect of four nighttime chilling temperatures on the induction of flowering in ‘Arbequina’ olives was investigated. Daytime temperature was kept at 17.5 ± 0.8°C (8 hrs) while nighttime temperatures (8 hrs ) were maintained at 7.8 ± 0.5, 4.4 ± 0.5, 2.2 ± 0.5, or -1.2 ± 0.6°C; transition from da...

  11. Ground-water resources of Liberty County, Texas, with a section on Stream runoff

    USGS Publications Warehouse

    Alexander, Walter H.; Breeding, S. D.

    1950-01-01

    Liberty County is in the Gulf Coastal Plain of southeastern Texas in the second tier of counties back from the Gulf. The geologic formations discussed in this report in upward sequence consist of the Oakville sandstone of Miocene age and the Lagarto clay of Miocene (?) age, the Willis sand of Pliocene (?) age, and the Lissie formation and Beaumont clay of Pleistocene age. The rocks of these formations crop out in belts roughly parallel to the Gulf shore and dip southeastward. As one travels across San Jacinto and Liberty Counties from northwest to southeast the belts of outcrop are traversed in the above order, beginning with the 0akville sandstone and Lagarto clay. The land surface slopes southeastward toward the Gulf at a rate less than the dip of the rocks; consequently artesian conditions exist in all parts of the county. The valley of the Trinity River is well known for its flowing weds, which range from 100 to 808 feet in depth. Most of the ground water used in the county is obtained from wells ranging in depth from 350 to about 1,000 feet and is drawn from the Lissie formation. Wells yielding 1,000 to 3,500 gallons a minute and ranging from 740 to 1,030 feet in depth have been developed for rice irrigation in the North Dayton area, in the southwestern part of the county. These wells draw water mostly from sands in the Lissie formation, but most of them are also screened in overlying thinner sands in the Beaumont clay. The municipal water supplies of Liberty, Cleveland, Dayton, and Diasetta are obtained from wells ranging from 350 to 833 feet in depth with reported yields of 300 to 350 gallons a minute. Most of the wells in the rural areas are less than 50 feet in depth and furnish small supplies of water for domestic use and for stock. Such supplies can be obtained almost anywhere in the county from shallow wells in the Lissie and Beaumont formations or in alluvial deposits. The average daily withdrawal of ground water for irrigation, public supply, and

  12. Experimental research and numerical simulation on cryogenic line chill-down process

    NASA Astrophysics Data System (ADS)

    Jin, Lingxue; Cho, Hyokjin; Lee, Cheonkyu; Jeong, Sangkwon

    2018-01-01

    The empirical heat transfer correlations are suggested for the fast cool down process of the cryogenic transfer line from room temperature to cryogenic temperature. The correlations include the heat transfer coefficient (HTC) correlations for single-phase gas convection and film boiling regimes, minimum heat flux (MHF) temperature, critical heat flux (CHF) temperature and CHF. The correlations are obtained from the experimental measurements. The experiments are conducted on a 12.7 mm outer diameter (OD), 1.25 mm wall thickness and 7 m long stainless steel horizontal pipe with liquid nitrogen (LN2). The effect of the lengthwise position is verified by measuring the temperature profiles in near the inlet and the outlet of the transfer line. The newly suggested heat transfer correlations are applied to the one-dimensional homogeneous transient model to simulate the cryogenic line chill-down process, and the chill-down time and the cryogen consumption are well predicted in the mass flux range from 26.0 kg/m2 s to 73.6 kg/m2 s through the correlations.

  13. Estimated water and nutrient inflows and outflows, Lake Cochituate, eastern Massachusetts, 1977-79

    USGS Publications Warehouse

    Gay, F.B.

    1984-01-01

    Streamflow was the major source of water and nutrients (nitrogen and phosphorus) to Lake Cochituate, followed by ground water, and then precipitation during April 1978 through March 1979. Compared to all sources during that period, streams contributed 7,217 million gallons (a little over 82 percent) of water, 63 ,000 pounds (between 50 and 60 percent) of nitrogen, and 3,000 pounds (94 percent) of phosphorus. A little over 60 percent of all the water that entered Lake Cochituate flowed from Fisk Pond. This single source transported about 38,000 pounds of nitrogen and 2,000 pounds of phosphorus. Ground-water inflow to Lake Cochituate occurs along its shoreline except at the north end of Lake Cochituate 's North Pond where natural seepage from the lake is occurring and at locations on the lake 's Middle and South Ponds where municipal wells induce infiltration of lake water amounting to 1,228 million gallons for that period. Discharge of ground water to the lake was estimated to range from 462 to 816 million gallons and transported from 31,000 to 55,000 pounds of nitrogen and from 46 to 82 pounds of phosphorus. Bulk precipitation was estimated to contribute about the same volume of water to the lake as ground water but double its phosphorus load. However, the load of nitrogen, 8000 pounds, from bulk precipitation was the smallest of any source. (USGS)

  14. Development of ground-water supplies at Mississippi test facility, Hancock County, Mississippi

    USGS Publications Warehouse

    Newcome, Roy

    1967-01-01

    Potable and industrial water supplies at the National Aeronautics and Space Administration's Mississippi Test Facility in Hancock County, Miss., are obtained from large-capacity wells that tap southward-dipping water-bearing sands of Miocene and Pliocene age. The fresh-water-bearing section is 2,000-3,000 feet thick in the area, and individual aquifers are as thick as 450 feet. Aquifer thickness is not constant over large areas, however; and 100 feet is a more common thickness. Three wells installed for potable water supply are 1,434-1,524 feet deep and have produced 1,100-2,500 gpm (gallons per minute) by natural flow. Artesian pressure is sufficient to provide a static head as high as 90 feet above land surface. Planned use rate for two of the wells is about 600 gpm each and for the third, 1,250 gpm. Water for cooling Saturn rocket test-stand deflectors is obtained from three wells 1,873, 1,695, and 672 feet deep. The production rates of these wells are 3,100, 4,500, and 5,000 gpm, respectively; the wells are capable of supplying 7.5 million gallons in a 10-hour period (18 million gallons per day). Artesian head for the aquifers tapped by these wells ranges from 104 feet above land surface for the deepest aquifer to 15 feet for the shallowest. Aquifer transmissibilities determined in pumping tests range from 81,000 to 200,000 gallons per day per foot. Specific capacities of the wells range from a 15 to 47 gpm per foot of drawdown. Water from the supply wells is soft and of good quality. Dissolved solids range from 236 to 315 parts per million. The water is a sodium bicarbonate type, with high pH. The concentration of iron is less than 0.3 part per million. Water temperatures range from 79?F in the shallowest supply well to 100?F in the deepest.

  15. Estimated water use in Puerto Rico, 2010

    USGS Publications Warehouse

    Molina-Rivera, Wanda L.

    2014-01-01

    Water-use data were aggregated for the 78 municipios of the Commonwealth of Puerto Rico for 2010. Five major offstream categories were considered: public-supply water withdrawals and deliveries, domestic and industrial self-supplied water use, crop-irrigation water use, and thermoelectric-power freshwater use. One instream water-use category also was compiled: power-generation instream water use (thermoelectric saline withdrawals and hydroelectric power). Freshwater withdrawals for offstream use from surface-water [606 million gallons per day (Mgal/d)] and groundwater (118 Mgal/d) sources in Puerto Rico were estimated at 724 million gallons per day. The largest amount of freshwater withdrawn was by public-supply water facilities estimated at 677 Mgal/d. Public-supply domestic water use was estimated at 206 Mgal/d. Fresh groundwater withdrawals by domestic self-supplied users were estimated at 2.41 Mgal/d. Industrial self-supplied withdrawals were estimated at 4.30 Mgal/d. Withdrawals for crop irrigation purposes were estimated at 38.2 Mgal/d, or approximately 5 percent of all offstream freshwater withdrawals. Instream freshwater withdrawals by hydroelectric facilities were estimated at 556 Mgal/d and saline instream surface-water withdrawals for cooling purposes by thermoelectric-power facilities was estimated at 2,262 Mgal/d.

  16. Steam versus hot-water scalding in reducing bacterial loads on the skin of commercially processed poultry.

    PubMed

    Patrick, T E; Goodwin, T L; Collins, J A; Wyche, R C; Love, B E

    1972-04-01

    A comparison of two types of scalders was conducted to determine their effectiveness in reducing bacterial contamination of poultry carcasses. A conventional hot-water scalder and a prototype model of a steam scalder were tested under commercial conditions. Total plate counts from steam-scalded birds were significantly lower than the counts of water-scalded birds immediately after scalding and again after picking. No differences in the two methods could be found after chilling. Coliform counts from steam-scalded birds were significantly lower than the counts from water-scalded birds immediately after scalding. No significant differences in coliform counts were detected when the two scald methods were compared after defeathering and chilling.

  17. Water Filter

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A compact, lightweight electrolytic water sterilizer available through Ambassador Marketing, generates silver ions in concentrations of 50 to 100 parts per billion in water flow system. The silver ions serve as an effective bactericide/deodorizer. Tap water passes through filtering element of silver that has been chemically plated onto activated carbon. The silver inhibits bacterial growth and the activated carbon removes objectionable tastes and odors caused by addition of chlorine and other chemicals in municipal water supply. The three models available are a kitchen unit, a "Tourister" unit for portable use while traveling and a refrigerator unit that attaches to the ice cube water line. A filter will treat 5,000 to 10,000 gallons of water.

  18. Water tight.

    PubMed

    Postel, S

    1993-01-01

    Many cities worldwide have gone beyond the limits of their water supply. Growing urban populations increase their demand for water, thereby straining local water supplies and requiring engineers to seek our even more distant water sources. It is costly to build and maintain reservoirs, canals, pumping stations, pipes, sewers, and treatment plants. Water supply activities require much energy and chemicals, thereby contributing to environmental pollution. Many cities are beginning to manage the water supply rather than trying to keep up with demand. Pumping ground water for Mexico City's 18 million residents (500,000 people added/year) surpasses natural replenishment by 50% to 80%, resulting in falling water tables and compressed aquifers. Mexico City now ambitiously promotes replacement of conventional toilets with 1.6 gallon toilets (by late 1991, this had saved almost 7.4 billion gallons of water/year). Continued high rural-urban migration and high birth rates could negate any savings, however. Waterloo, Ontario, has also used conservation efforts to manage water demand. These efforts include retrofit kits to make plumbing fixtures more efficient, efficiency standards for plumbing fixtures, and reduction of water use outdoors. San Jose, California, has distributed water savings devices to about 220,000 households with a 90% cooperation rate. Boston, Massachusetts, not only promoted water saving devices but also repaired leaks and had an information campaign. Increasing water rates to actually reflect true costs also leads to water conservation, but not all cities in developing countries use water meters. All households in Edmonton, Alberta, are metered and its water use is 1/2 of that of Calgary, where only some households are metered. Tucson, Arizona, reduced per capita water use 16% by raising water rates and curbing water use on hot days. Bogor, Indonesia, reduced water use almost 30% by increasing water rates. In the US, more and more states are mandating use

  19. Water requirements of the rayon- and acetate-fiber industry

    USGS Publications Warehouse

    Mussey, Orville Durey

    1957-01-01

    Water is required for several purposes in the manufacture of rayon and acetate fiber. These water requirements, as indicated by a survey of the water used by the plants operating in 1953, are both quantitative and qualitative. About 300 mgd (million gallons per day) of water was used in 1953 in the preparation of purified wood cellulose and cotton linters, the basic material from which the rayon and acetate fiber is made. An additional 620 mgd was used in the process of converting the cellulose to rayon and acetate fiber. The total, 920 mgd, is about 1 percent of the total estimated withdrawals of industrial water in the United States in 1953. The rayon- and acetate-fiber plants are scattered through eastern United States and generally are located in small towns or rural areas where there are abundant supplies of clean, soft water. Water use at a typical rayon-fiber plant was about 9 mgd, and at a typical acetate-fiber plant about 38 mgd. About 110 gallons of water was used to produce a pound of rayon fiber 32 gallons per pound was process water and the remainder was used largely for cooling in connection with power production and air conditioning. For the manufacture of a pound of acetate fiber about 170 gallons of water was used. However, the field survey on which this report is based indicated a wide range in the amount of water used per pound of product. For example, in the manufacture of viscose rayon, the maximum unit water use was 8 times the minimum unit water use. Water use in summer was about 22 percent greater than average annual use. About 8 mgd of water was consumed by evaporation in the manufacture of rayon and acetate fiber. More than 90 percent of the water used by the rayon and acetate industry was withdrawn from surface-water sources, about 8 percent from ground water, and less than 2 percent from municipal water supplies. All available analyses of the untreated waters used by the rayon and acetate industry were collected and studied. The

  20. Solar Space and Water Heating for Hospital --Charlottesville, Virginia

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Solar heating system described in an 86-page report consists of 88 single-glazed selectively-coated baseplate collector modules, hot-water coils in air ducts, domestic-hot-water preheat tank, 3,000 Gallon (11,350-1) concrete urethane-insulated storage tank and other components.

  1. Public water-supply systems and water use in Tennessee, 1988

    USGS Publications Warehouse

    Hutson, Susan S.; Morris, A. Jannine

    1992-01-01

    This report summarizes the results of a study conducted by the U.S. Geological Survey, in cooperation with the Tennessee Department of Environment and Conservation (TDEC), Division of Water Supply in 1988. Data gathered during an inventory by the TDEC were collated to determine water use, supply sources, population served, and design and storage capacities of the systems. The inventory was limited to systems that were active on June 30, 1988. Results of a survey of the systems conducted by the Tennessee Department of Health and Environment during 1988 were a primary source of data for this report. Data from computer and manual files maintained by the Tennessee Department of Health and Environment and the U.S. Geological Survey also were used. The Division of Water Supply, TDEC, surveyed 541 public water-supply systems. These systems served 81 percent of the population of the State, or 3.95 million people. The gross per capita use statewide for public-supplied water was 179 gallons per day. Total water withdrawals for public supply increased about 39 percent from 510 million gallons per day (Mgal/d) in 1980, to 708 Mgalld in 1988. During the same period, the population increased about 7 percent. Surface-water withdrawals accounted for 63 percent (446 Mgal/d) of the total water withdrawn in the State. All of these withdrawals occurred in the Tennessee (56 percent or 249 Mgal/d) and the Ohio (44 percent or 197 Mgalld) hydrologic regions. Ground water supplied 262 Mgal/d or 37 percent of the total water withdrawn by public-supply systems statewide. Of that amount, 79 percent, or 208 Mgalld, was used in western Tennessee.

  2. Ground-water hydrology of James City County, Virginia

    USGS Publications Warehouse

    Harsh, John F.

    1980-01-01

    Urbanization and increase in water demand prompted a 2-year study of groundwater availability and quality in the county of James City. The coastal-plain sediments, parts of which underlie the county, are the largest source of groundwater in Virginia. Four aquifers form the complex aquifer system. Hydraulic characteristics vary from aquifer to aquifer and from place to place. The Cretaceous aquifer furnishes nearly all the water for industrial and municipal needs. Movement of water in the Cretaceous aquifer is toward cones of depression formed by pumping centers at Williamsburg and Dow Badische Co. All aquifers contain water that generally meets State standards for drinking water. Water in the Cretaceous aquifer is of the sodium chloride bicarbonate type. As depth of aquifer increases, the concentrations of dissolved solids and chloride also increase. Saline water (more than 250 milligrams per liter) occupies the deeper parts of the confined aquifers. The amount of water stored in the coastal sediments is estimated to be 650-1300 billion gallons. An increase in pumpage to accomodate the expected daily demand of 9.8 million gallons per day in year 2000 is feasible provided pumpage is distributed over the county. (USGS)

  3. Effect of different concentrations of egg yolk and virgin coconut oil in Tris-based extenders on chilled and frozen-thawed bull semen.

    PubMed

    Tarig, A A; Wahid, H; Rosnina, Y; Yimer, N; Goh, Y M; Baiee, F H; Khumran, A M; Salman, H; Ebrahimi, M

    2017-07-01

    The aim of this study was to evaluate the effects of 8% virgin coconut oil (VCO) combined with different percentages of egg yolk in Tris extender on the quality of chilled and frozen-thawed bull semen. A total of 24 ejaculates from four bulls were collected using an electroejaculator. Semen samples were diluted with 8% VCO in Tris extender which contained different concentrations 0% (control), 4%, 8%, 12%, 16% and 20% egg yolk. The diluted semen samples were divided into two fractions: one was chilled and stored at 4°C until evaluation after 24, 72, and 144h; the second fraction was processed by chilling for 3h at 4°C to equilibrate, then packaged in 0.25ml straws and frozen and stored in liquid nitrogen at -196°C until evaluation after 7 and 14 days. Both chilled and frozen semen samples were then thawed at 37°C and assessed for general motility using computer-assisted semen analysis (CASA), viability, acrosome integrity, and morphology (eosin-nigrosin), membrane integrity (hypo-osmotic swelling test) and lipid peroxidation (thiobarbituric acid-reactive substances (TBARS)). The results indicate treatments with 8%, 12%, 16% and 20% egg yolk with 8% VCO had greater sperm quality (P<0.05) as compared with the control. The treatment with 20% egg yolk had the greatest sperm quality (P<0.05) among the treated groups for both chilled and frozen-thawed semen. In conclusion, the use of 8% VCO combined with 20% egg yolk in a Tris-based extender enhanced the values for chilled and frozen-thawed quality variables of bull sperm. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Ground-water, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona: 1998

    USGS Publications Warehouse

    Truini, Margot; Baum, Bradley M.; Littin, Gregory R.; Shingoitewa-Honanie, Gayl

    2000-01-01

    per second at Laguna Creek, 0.32 to 0.44 cubic feet per second at Dinnebito Wash, and 0.13 to 0.36 cubic feet per second at Polacca Wash. Discharge was measured at four springs. Discharge from Moenkopi School Spring decreased by about 1.1 gallons per minute from the measurement in 1997. Discharge from an unnamed spring near Dennehotso decreased by 4.6 gallons per minute from the measurement made in 1997. Discharge increased slightly at Burro Spring and decreased by about 1 gallon per minute at Pasture Canyon Spring. Regionally, long-term water-chemistry data for wells and springs have remained stable.

  5. Solar-Powered Water Distillation

    NASA Technical Reports Server (NTRS)

    Menninger, F. J.; Elder, R. J.

    1985-01-01

    Solar-powered still produces pure water at rate of 6,000 gallons per year. Still fully automatic and gravity-fed. Only outside electric power is timer clock and solenoid-operated valve. Still saves $5,000 yearly in energy costs and pays for itself in 3 1/2 years.

  6. Proteomic evaluation of myofibrillar carbonylation in chilled fish mince and its inhibition by catechin.

    PubMed

    Pazos, Manuel; Maestre, Rodrigo; Gallardo, José M; Medina, Isabel

    2013-01-01

    The present study investigates the susceptibility of individual myofibrillar proteins from mackerel (Scomber scombrus) mince to undergo carbonylation reactions during chilled storage, and the antioxidant capacity of (+)-catechin to prevent oxidative processes of proteins. The carbonylation of each particular protein was quantified by combining the labelling of protein carbonyls by fluorescein-5-thiosemicarbazide (FTSC) with 1-D or 2-D gel electrophoresis. Alpha skeletal actin, glycogen phosphorylase, unnamed protein product (UNP) similar to enolase, pyruvate kinase, isoforms of creatine kinase, aldolase A and an isoform of glyceraldehyde 3-phosphate dehydrogenase (G3PDH) showed elevated oxidation in chilled non-supplemented mince. Myosin heavy chain (MHC) was not carbonylated in chilled muscle, but an extensive MHC degradation was observed in those samples. The supplementation of catechin reduced protein oxidation and lipid oxidation in a concentration-dependent manner: control>25>100≈200ppm. Therefore, the highest catechin concentrations (100 and 200ppm) exhibited the strongest antioxidant activity. Catechin (200ppm) reduced significantly carbonylation of protein spots identified as glycogen phosphorylase, pyruvate kinase muscle isozyme, isoforms of creatine kinase. Conversely, catechin was ineffective to inhibit the oxidation of actin and UNP similar to enolase. These results draw attention to the inefficiency of catechin to prevent actin oxidation, in contrast to the extremely high efficiency of catechin in inhibiting oxidation of lipids and other proteins. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Estimated use of water in Nebraska, 1985

    USGS Publications Warehouse

    Steele, Eugene K.

    1988-01-01

    per day (6,234,450 acre-feet)-of this total water use in the state in 1985, and surface water accounted for 28.9 percent, or 2,363.65 million gallons per day (2,537,550 acre-feet). Estimated irrigation water use of 8,144,170 acre-feet during 1985 was 42.4 percent of the total water use in the state; excluding power production, it was 92.8 percent of total water use.

  8. Annual water-resources review, White Sands Missile Range, New Mexico, 1983

    USGS Publications Warehouse

    Cruz, R.R.

    1984-01-01

    Ground-water data were collected at White Sands Missile Range in 1983. The total amount of water pumped from White Sands Missile Range supply wells in 1983 was 713,557,500 gallons. The Post Headquarters well field accounted for 686,499,200 gallons of the total. Seasonal water-level fluctuations in the supply wells ranged from a 3.00-foot rise in Stallion Range Well-2 (SRC-2) to a 51.00 foot decline in Post headquarters supply well 11 (SW-11). All of the test wells and observation wells up to 2 miles east of the Post Headquarters well field showed a decline for the period 1973-1983. Only one test well and one borehole west of the Post Headquarters well field showed a decline in water level; the other five showed a rise in water level for the period 1973-1983. (USGS)

  9. Estimated use of water in the United States, 1965

    USGS Publications Warehouse

    Murray, Charles Richard

    1968-01-01

    Estimates of water use in the United States for 1965 indicate that an average of about 310 bgd (billion gallons per day) were withdrawn for public-supply, rural domestic and livestock, irrigation, and industrial (including thermoelectric power)uses--that is, about 1,600 gallons per capita per day. This represents an increase of 15 percent over the withdrawal of 270 bgd reported for 1960. Fresh water withdrawals for thermoelectric power generation increased nearly 25 percent during the 5 years, and saline water withdrawals increased 33 percent. An additional 2,300 bgd was used for hydroelectric power generation (waterpower), which also represented a 15-percent increase in 5 years. The quantity of water consumed-that is, water made unavailable for further possible withdrawal because of evaporation, incorporation in manufactured products, and other causes - was estimated to average 78 bgd for 1965, an increase of about 28 percent since 1960.Estimates made of the quantities of water withdrawn from surface and ground-water sources indicate withdrawals of 61 bgd of ground water, of which nearly 0.5 bgd was saline, and 250 bgd of surface water, of which 44 bgd was saline. The estimated amount of saline water used by industry increased 36 percent from 1960 to 1965. In addition to surface and ground water sources, reclaimed sewage supplied two-thirds of a billion gallons per day, mainly to irrigation and industry.The average annual streamflow in the United States is approximately 1,200 bgd, about four times the amount withdrawn for all purposes (except hydroelectric power) in 1965, and more than 15 times the estimated quantity of water consumed. However, comparisons of supply and demand in many river basins show that repeated use of the water is made, and at times in some basins all the available supply is consumed.In addition to tabulations of water-use data by States and by the water-use regions previously used, water-use tables are also given for the regions recently

  10. Effect of residual oxygen on colour stability during chill storage of sliced, pasteurised ham packaged in modified atmosphere.

    PubMed

    Møller, J K; Jensen, J S; Olsen, M B; Skibsted, L H; Bertelsen, G

    2000-04-01

    The critical level of residual oxygen to avoid light induced oxidative discoloration during chill storage of sliced, pasteurised ham packaged in modified atmosphere (20% carbon dioxide balanced with nitrogen in a 1:3 product to headspace volume ratio) was found to lie between 0.1 and 0.5% oxygen. In 0.5% oxygen light induced discoloration was significant, as detected by the tristimulus colorimetry redness parameter, when compared to the same product stored in the dark, while at 0.1 and 0.02% oxygen the colour was stable both in the dark and when exposed to light for up to 27 days in chill storage. Lipid oxidation, determined as 2-thiobarbituric acid-reactive substances, and total plate counts showed no difference between discoloured and colour stable products, although a trained panel in a triangle test could differentiate between the taste of ham from packages with 0.02 and 0.5% oxygen after 27 days of chill storage.

  11. Water resources inventory of Connecticut Part 7: upper Connecticut River basin

    USGS Publications Warehouse

    Ryder, Robert B.; Thomas, Mendall P.; Weiss, Lawrence A.

    1981-01-01

    The 508 square miles of the upper Connecticut River basin in north-central Connecticut include the basins of four major tributaries: the Scantic, Park, and Hockanum Rivers, and the Farmington River downstream from Tariffville. Precipitation over this area averaged 44 inches per year during 1931-60. In this period, an additional 3,800 billion gallons of water per year entered the basin in the main stem of the Connecticut River at the Massachusetts state line, about 230 billion gallons per year in the Farmington River at Tariffville, and about 10 billion gallons per year in the Seantic River at the Massachusetts state line. Some water was also imported from outside the basin by water-supply systems. About half the precipitation, 22.2 inches, was lost from the basin by evapotranspiration; the remainder flowed out of the study area in the Connecticut River at Portland. Variations in streamflow at 41 long-term continuous-record gaging stations are summarized in standardized graphs and tables that can be used to estimate streamflow characteristics at other sites. For example, mean-flow and two low-flow characteristics: (1) the 7-day annual minimum flow for 2-year and (2) 10-year recurrence intervals, have been determined for many partial-record stations throughout the basin. Of the 30 principal lakes, ponds, and reservoirs, two have usable storage capacities of more than 1 billion gallons. The maximum safe draft rate (regulated flow) of the largest of these, Shenipsit Lake at Rockville, is 6.5 million gallons per day for the 2-year and 30-year recurrence intervals (median and lowest annual flow). Floods have occurred within each month of the year but in different years. The greatest known flood on the Connecticut River was in March 1936; it had a peak flow of 130,000 cubic feet per second at Hartford. Since then, major floods have been reduced by flood-control measures. The major aquifers underlying the basin are composed of unconsolidated materials (stratified drift and

  12. Super chilling enhances preservation of the freshness of salted egg yolk during long-term storage.

    PubMed

    Yanagisawa, T; Watanuki, C; Ariizumi, M; Shigematsu, Y; Kobayashi, H; Hasegawa, M; Watanabe, K

    2009-03-01

    Pasteurized egg yolk with 10% (w/w) salt was stored at 5, -5, -15, -20, and -30 degrees C for 1 to 6 mo, respectively. Changes in generation of volatiles of the stored samples (5 and -5 degrees C for 6 mo) were analyzed by SPME-GC-MS. Emulsifying properties of egg yolk stored at -5, -15, -20, and -30 degrees C for 1 mo, respectively, were also evaluated by measurement of emulsion particle diameters in model emulsions prepared with the yolk samples. In addition, structural changes in low-density lipoprotein (LDL) in the egg yolks dependent on storage conditions for 6 mo were evaluated by (31)P-NMR. Volatile compounds such as hexanal, 2-methylbutanal, and 3-methylbutanal increased in egg yolk during storage at 5 degrees C; however, volatile compounds hardly increased in any samples stored at -5 degrees C (super chilling). The mean emulsion particle diameter in super chilled egg yolk was significantly smaller than that in egg yolk stored at the other lower temperatures. In addition, the results of (31)P-NMR evaluation suggested that prevention of structural changes of LDL resulted in maintenance of emulsifying properties of egg yolk. Thus, these results indicate that super chilling is an effective means of preserving salted egg yolk during long-term storage.

  13. Ground-Water Availability from the Hawi Aquifer in the Kohala Area, Hawaii

    USGS Publications Warehouse

    Underwood, Mark R.; Meyer, William; Souza, William R.

    1995-01-01

    A ground-water study consisting of test-well drilling, aquifer tests, and numerical simulation was done to investigate ground-water availability in the basal part of the Hawi aquifer between the western drainage divide of Pololu Valley and Upolu Point in Kohala, Hawaii. The test-well drilling provided information on geology, water levels, water quality, vertical extent of the freshwater, and the thickness of the freshwater-saltwater transition zone in that aquifer. A total of 12 test wells were drilled at eight locations. Aquifer tests were done at five locations to estimate the hydraulic conductivity of the aquifer. Using information on the distribution of recharge, vertical extent of freshwater, hydraulic conductivity, and geometry of the basal aquifer, a numerical model was used to simulate the movement of water into, through, and out of the basal aquifer, and the effect of additional pumping on the water levels in the aquifer. Results of the modeling indicate that ground-water withdrawal of 20 million gallons per day above the existing withdrawal of 0.6 million gallons per day from the basal aquifer is hydrologically feasible, but that spacing, depth, and pumping rates of individual wells are important. If pumping is concentrated, the likelihood of saltwater intrusion is increased. The additional withdrawal of 20 million gallons per day would result in a reduction of ground-water discharge to the ocean by an amount equal to pumpage. Although model-calculated declines in water-level outside the area of pumping are small, pumping could cause some reduction of streamflow near the mouth of Pololu Stream.

  14. Water resources of Windward Oahu, Hawaii

    USGS Publications Warehouse

    Takasaki, K.J.; Hirashima, George Tokusuke; Lubke, E.R.

    1969-01-01

    Windward Oahu lies in a large cavity--an erosional remnant of the Koolau volcanic dome at its greatest stage of growth. Outcrops include volcanic rocks associated with caldera collapse and the main fissure zone which is marked by a dike complex that extends along the main axis of the dome. The fissure zone intersects and underlies the Koolau Range north of Waiahole Valley. South of Waiahole Valley, the crest of the Koolau Range is in the marginal dike zone, an area of scattered dikes. The crest of the range forms the western boundary of windward Oahu. Dikes, mostly vertical and parallel or subparallel to the fissure zone, control movement and discharge of ground water because they are less permeable than the rocks they intrude. Dikes impound or partly impound ground water by preventing or retarding its movement toward discharge points. The top of this water, called high-level water in Hawaii, is at an altitude of about 1,000 feet in the north end of windward Oahu and 400 feet near the south end in Waimanalo Valley. It underlies most of the area and extends near or to the surface in poorly permeable rocks in low-lying areas. Permeability is high in less weathered mountain areas and is highest farthest away from the dike complex. Ground-water storage fluctuates to some degree owing to limited changes in the level of the ground-water reservoir--maximum storage is about 60,000 million gallons. The fluctuations control the rate at which ground water discharges. Even at its lowest recorded level, the reservoir contains a major part of the storage capacity because most of the area is perennially saturated to or near the surface. Tunnels have reduced storage by about 26,000 million gallons--only a fraction of the total storage--by breaching dike controls. Much of the reduction in storage can be restored if the .breached dike controls are replaced by flow-regulating bulkheads. Perennial streams intersect high-level water and collectively form its principal discharge. The

  15. Numerical investigations on the effect of slenderness ratio of matrix elements in cryogenic chill down process

    NASA Astrophysics Data System (ADS)

    Reby Roy, K. E.; Mohammed, Jesna; Abhiroop, V. M.; Thekkethil, S. R.

    2017-02-01

    Cryogenic fluids have many applications in space, medicine, preservation etc. The chill-down of cryogenic fluid transfer line is a complicated phenomenon occurring in most of the cryogenic systems. The cryogenic fluid transfer line, which is initially at room temperature, has to be cooled to the temperature of the cryogen as fast as possible. When the cryogenic fluid at liquid state passes along the line, transient heat transfer between the cryogen and the transfer line causes voracious evaporation of the liquid. This paper makes a contribution to the two-phase flow along a rectangular flow passage consisting of an array of elliptically shaped matrix elements. A simplified 2D model is considered and the problem is solved using ANSYS FLUENT. The present analysis aims to study the influence of the slenderness ratio of matrix elements on the heat transfer rate and chill down time. For a comparative study, matrix elements of slenderness ratios 5 and 10 are considered. Liquid nitrogen at 74K flows through the matrix. The material of the transfer line is assumed to be aluminium which is initially at room temperature. The influence of Reynolds numbers from 800 to 3000 on chill-down is also investigated.

  16. A preliminary report on the artesian water supply of Memphis, Tennessee

    USGS Publications Warehouse

    Wells, F.G.

    1932-01-01

    Memphis is located in the part of the Gulf Coastal Plain known as the Mississippi embayment. It is underlain by unconsolidated sand and clay formations of Tertiary and Cretaceous age. The Wilcox group, of Tertiary age, and the Ripley formation, of Cretaceous age, are excellent aquifers, and all the water consumed in Memphis is derived from them. The maximum pumpage from the Wilcox group was reached about 1920; in that year an estimated average of 37,575,000 gallons a day was pumped. In 1928 the average daily pumpage from the Wilcox group was about 33,984,000 gallons, and in addition to this the Memphis Artesian Water Department pumped an average of 4,616,000 gallons a day from the Ripley formation. The static level at Memphis varies with the pumpage and the stage of the Mississippi River. The original static level was about 235 feet above mean sea level. In 1928 the average static level at the Auction Avenue plant was 202 feet above mean sea level, which was about 33 feet lower than the original level. The yield is therefore about a million gallons a day for each foot of drawdown. The drawdown is not excessive, and additional pumpage can be developed without undue lowering of head. The water from both the Wilcox group and the Ripley formation is fairly soft and has a moderately low content of dissolved mineral matter. The iron content is sufficiently high to be objectionable, but the iron is easily removed by aeration followed by either settling or filtration for removal of sediment.

  17. Motel solar-hot-water system with nonpressurized storage--Jacksonville, Florida

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Modular roof-mounted copper-plated arrays collect solar energy; heated water drains from them into 1,000 gallon nonpressurized storage tank which supplies energy to existing pressurized motel hot water lines. System provides 65 percent of hot water demand. Report described systems parts and operation, maintenance, and performance and provides warranty information.

  18. Water requirements of the aluminum industry

    USGS Publications Warehouse

    Conklin, Howard L.

    1956-01-01

    Aluminum is unique among metals in the way it is obtained from its ore. The first step is to produce alumina, a white powder that bears no resemblance to the bauxite from which it is derived or to the metallic aluminum to which it is reduced by electrolytic action in a second step. Each step requires a complete plant facility, and the plants may be adjacent or separated by as much as the width of the North American continent. Field investigations sf every alumina plant and reduction works in the United States were undertaken to determine the industry's water use. Detailed studies were made of process and plant layout so that a water balance could be made for each plant to determine not only the gross water intake but also an approximation of the consumptive use of water. Water requirements of alumina plants range from 0.28 to 1.10 gallons per pound of alumina; the average for the industry is 0.66 gallon. Water requirements of reduction works vary considerably more, ranging from 1.24 to 36.33 gallons per pound of aluminum, and average 14.62 gallons. All alumina plants in the United States derive alumina from bauxite by the Bayer process or by the Combination process, a modification of the Bayer process. Although the chemical process for obtaining alumina from bauxite is essentially the same at all plants, different procedures are employed to cool the sodium aluminate solution before it enters the precipitating tanks and to concentrate it by evaporation of some of the water in the solution. Where this evaporation takes place in a cooling tower, water in the solution is lost to the atmosphere as water vapor and so is used consumptively. In other plants, the quantity of solution in the system is controlled by evaporation in a multiple-effect evaporator where practically all vapor distilled out of the solution is condensed to water that may be reused. The latter method is used in all recently constructed alumina plants, and some older plants are replacing cooling towers

  19. Effects of irrigation pumping on the ground-water system in Newton and Jasper Counties, Indiana

    USGS Publications Warehouse

    Bergeron, Marcel P.

    1981-01-01

    Flow in the ground-water system in Newton and Jasper Counties, Indiana, was simulated in a quasi-three-dimensional model in a study of irrigation use of ground water in the two counties. The ground-water system consists of three aquifers: (1) a surficial coarse sand aquifer known as the Kankakee aquifer, (2) a limestone and dolomite bedrock aquifer, and (3) a sand and gravel bedrock valley aquifer. Irrigation pumping, derived primarily from the bedrock, was estimated to be 34.8 million gallons per day during peak irrigation in 1977. Acreage irrigated with ground water is estimated to be 6,200 acres. A series of model experiments was used to estimate the effects of irrigation pumping on ground-water levels and streamflow. Model analysis indicates that a major factor controlling drawdown due to pumping in the bedrock aquifer are the variations in thickness and in vertical hydraulic conductivity in a semiconfining unit overlying the bedrock. Streamflow was not significantly reduced by hypothetical withdrawals of 12.6 million gallons per day from the bedrock aquifer and 10.3 million gallons per day in the Kankakee aquifer. Simulation of water-level recovery after irrigation pumping indicated that a 5-year period of alternating between increasing pumping and recovery will not cause serious problems of residual drawdown or ground-water mining. 

  20. Geology and water resources of Winnebago County, Wisconsin

    USGS Publications Warehouse

    Olcott, Perry C.

    1966-01-01

    Sources or water in Winnebago County include surface water from the Fox and Wolf Rivers and their associated lakes, and ground water from sandstone, dolomite, and sand and gravel deposits. Surface water is hard and generally requires treatment, but is then suitable for municipal and most industrial uses. Pollution is only a local problem in the lakes and rivers, but algae are present in most of the lakes. Ground water in Winnebago County is hard to very hard, and dissolved iron is a problem in a large area of the county. A saline-water zone borders the eastern edge of the county and underlies the areas of concentrated pumpage at Neenah-Menasha and Oshkosh. A thick, southeastward-dipping sandstone aquifer, yielding as much as 1,000 gallons per minute to municipal and industrial wells, underlies Winnebago County. A dolomite aquifer in the eastern and southern part of the county yields as much as 50 gallons per minute to wells. Sand and gravel layers and lenses in preglacial bedrock channels, in northwestern Winnebago County and in the upper Fox River valley, yield as much as 50 gallons per minute to wells. Present water problems in the county include algae and local pollution in the Lake Winnebago Pool, iron in water from the sandstone aquifer, and saline ground Water in the eastern part of the county. Potential problems include rapid decline of water levels because of interference between closely spaced wells, migration of saline ground water toward areas of pumping, surface-water pollution from inadequate sewage and industrial-waste process plants, and ground-water pollution in dolomite formations. Development of the water resources of the county should follow a comprehensive plan which takes into consideration all aspects of water use. Dispersal of wells, especially extending toward the west from the heavily pumped Neenah-Menasha and Oshkosh areas, is recommended to reduce water-level declines and to avoid saline water. Supplemental use of ground water is

  1. The Synergistic Priming Effect of Exogenous Salicylic Acid and H2O2 on Chilling Tolerance Enhancement during Maize (Zea mays L.) Seed Germination

    PubMed Central

    Li, Zhan; Xu, Jungui; Gao, Yue; Wang, Chun; Guo, Genyuan; Luo, Ying; Huang, Yutao; Hu, Weimin; Sheteiwy, Mohamed S.; Guan, Yajing; Hu, Jin

    2017-01-01

    Chilling stress is an important constraint for maize seedling establishment in the field. To examine the role of salicylic acid (SA) and hydrogen peroxide (H2O2) in response to chilling stress, we investigated the effects of seed priming with SA, H2O2, and SA+H2O2 combination on maize resistance under chilling stress (13°C). Priming with SA, H2O2, and especially SA+H2O2 shortened seed germination time and enhanced seed vigor and seedling growth as compared with hydropriming and non-priming treatments under low temperature. Meanwhile, SA+H2O2 priming notably increased the endogenous H2O2 and SA content, antioxidant enzymes activities and their corresponding genes ZmPAL, ZmSOD4, ZmAPX2, ZmCAT2, and ZmGR expression levels. The α-amylase activity was enhanced to mobilize starch to supply metabolites such as soluble sugar and energy for seed germination under chilling stress. In addition, the SA+H2O2 combination positively up-regulated expressions of gibberellic acid (GA) biosynthesis genes ZmGA20ox1 and ZmGA3ox2, and down-regulated GA catabolism gene ZmGA2ox1 expression; while it promoted GA signaling transduction genes expressions of ZmGID1 and ZmGID2 and decreased the level of seed germination inhibitor gene ZmRGL2. The abscisic acid (ABA) catabolism gene ZmCYP707A2 and the expressions of ZmCPK11 and ZmSnRK2.1 encoding response receptors in ABA signaling pathway were all up-regulated. These results strongly suggested that priming with SA and H2O2 synergistically promoted hormones metabolism and signal transduction, and enhanced energy supply and antioxidant enzymes activities under chilling stress, which were closely relevant with chilling injury alleviation and chilling-tolerance improvement in maize seed. Highlights:Seed germination and seedling growth were significantly improved under chilling stress by priming with SA+H2O2 combination, which was closely relevant with the change of reactive oxygen species, metabolites and energy supply, hormones metabolism and

  2. Geology and ground water in north-central Santa Cruz County, California

    USGS Publications Warehouse

    Johnson, Michael J.

    1980-01-01

    North-central Santa Cruz County is underlain mainly by folded sedimentary rocks of Tertiary and Cretaceous age that have been highly fractured by movements in the San Andreas fault system. Ground water is stored in fractures within shale and mudstone formations and in intergranular pore spaces within fine- to very fine-grained sandstone and siltstone formations. Fewer than 10% of the wells yield more than 15 gallons of water per minute. The water in most wells is moderately hard to very hard, is generally of a sodium bicarbonate or calcium bicarbonate type, and commonly has excessive concentrations of iron or manganese. Of the many geologic units in the study area, only the Purisima Formation of Pliocene age has the potential to sustain well yields greater than 100 gallons per minute. (USGS)

  3. Effects of Aesthetic Chills on a Cardiac Signature of Emotionality.

    PubMed

    Sumpf, Maria; Jentschke, Sebastian; Koelsch, Stefan

    2015-01-01

    Previous studies have shown that a cardiac signature of emotionality (referred to as EK, which can be computed from the standard 12 lead electrocardiogram, ECG), predicts inter-individual differences in the tendency to experience and express positive emotion. Here, we investigated whether EK values can be transiently modulated during stimulation with participant-selected music pieces and film scenes that elicit strongly positive emotion. The phenomenon of aesthetic chills, as indicated by measurable piloerection on the forearm, was used to accurately locate moments of peak emotional responses during stimulation. From 58 healthy participants, continuous EK values, heart rate, and respiratory frequency were recorded during stimulation with film scenes and music pieces, and were related to the aesthetic chills. EK values, as well as heart rate, increased significantly during moments of peak positive emotion accompanied by piloerection. These results are the first to provide evidence for an influence of momentary psychological state on a cardiac signature of emotional personality (as reflected in EK values). The possibility to modulate ECG amplitude signatures via stimulation with emotionally significant music pieces and film scenes opens up new perspectives for the use of emotional peak experiences in the therapy of disorders characterized by flattened emotionality, such as depression or schizoid personality disorder.

  4. Effects of Aesthetic Chills on a Cardiac Signature of Emotionality

    PubMed Central

    Sumpf, Maria; Jentschke, Sebastian; Koelsch, Stefan

    2015-01-01

    Background Previous studies have shown that a cardiac signature of emotionality (referred to as EK, which can be computed from the standard 12 lead electrocardiogram, ECG), predicts inter-individual differences in the tendency to experience and express positive emotion. Here, we investigated whether EK values can be transiently modulated during stimulation with participant-selected music pieces and film scenes that elicit strongly positive emotion. Methodology/Principal Findings The phenomenon of aesthetic chills, as indicated by measurable piloerection on the forearm, was used to accurately locate moments of peak emotional responses during stimulation. From 58 healthy participants, continuous EK values, heart rate, and respiratory frequency were recorded during stimulation with film scenes and music pieces, and were related to the aesthetic chills. EK values, as well as heart rate, increased significantly during moments of peak positive emotion accompanied by piloerection. Conclusions/Significance These results are the first to provide evidence for an influence of momentary psychological state on a cardiac signature of emotional personality (as reflected in EK values). The possibility to modulate ECG amplitude signatures via stimulation with emotionally significant music pieces and film scenes opens up new perspectives for the use of emotional peak experiences in the therapy of disorders characterized by flattened emotionality, such as depression or schizoid personality disorder. PMID:26083383

  5. Chilling Stress—The Key Predisposing Factor for Causing Alternaria alternata Infection and Leading to Cotton (Gossypium hirsutum L.) Leaf Senescence

    PubMed Central

    Zhao, Jingqing; Li, Sha; Jiang, Tengfei; Liu, Zhi; Zhang, Wenwei; Jian, Guiliang; Qi, Fangjun

    2012-01-01

    Leaf senescence plays a vital role in nutrient recycling and overall capacity to assimilate carbon dioxide. Cotton premature leaf senescence, often accompanied with unexpected short-term low temperature, has been occurring with an increasing frequency in many cotton-growing areas and causes serious reduction in yield and quality of cotton. The key factors for causing and promoting cotton premature leaf senescence are still unclear. In this case, the relationship between the pre-chilling stress and Alternaria alternata infection for causing cotton leaf senescence was investigated under precisely controlled laboratory conditions with four to five leaves stage cotton plants. The results showed short-term chilling stress could cause a certain degree of physiological impairment to cotton leaves, which could be recovered to normal levels in 2–4 days when the chilling stresses were removed. When these chilling stress injured leaves were further inoculated with A. alternata, the pronounced appearance and development of leaf spot disease, and eventually the pronounced symptoms of leaf senescence, occurred on these cotton leaves. The onset of cotton leaf senescence at this condition was also reflected in various physiological indexes such as irreversible increase in malondialdehyde (MDA) content and electrolyte leakage, irreversible decrease in soluble protein content and chlorophyll content, and irreversible damage in leaves' photosynthesis ability. The presented results demonstrated that chilling stress acted as the key predisposing factor for causing A. alternata infection and leading to cotton leaf senescence. It could be expected that the understanding of the key factors causing and promoting cotton leaf senescence would be helpful for taking appropriate management steps to prevent cotton premature leaf senescence. PMID:22558354

  6. New icing media for quality enhancement of chilled hake (Merluccius merluccius) using a jumbo squid (Dosidicus gigas) skin extract.

    PubMed

    Ezquerra-Brauer, Josafat Marina; Miranda, José M; Chan-Higuera, Jesús Enrique; Barros-Velázquez, Jorge; Aubourg, Santiago P

    2017-08-01

    An advanced strategy for chilled fish preservation, based on the inclusion in ice of an extract of jumbo squid (Dosidicus gigas) skin (JSS), is proposed. Aqueous solutions including acetic acid-ethanol extracts of JSS were tested at two different concentrations as icing media, with the effects on the quality evolution of chilled hake (Merluccius merluccius) being monitored. A significant inhibition (P < 0.05) of microbial activity (aerobes, psychrotrophs, Enterobacteriaceae, proteolytic bacteria; pH, trimethylamine) was obtained in hake corresponding to the icing batch including the highest JSS concentration. Additionally, fish specimens from such icing conditions showed an inhibitory effect (P < 0.05) on lipid hydrolysis development, while no effect (P > 0.05) was depicted for lipid oxidation. Sensory analysis (skin and mucus development; eyes; gills; texture; external odour; raw and cooked flesh odour; flesh taste) indicated a shelf life extension of chilled hake stored in ice including the highest JSS concentration. A profitable use of JSS, an industrial by-product during jumbo squid commercialisation, has been developed in the present work, which leads to a remarkable microbial inhibition and a significant shelf life extension of chilled hake. In agreement with previous research, ommochrome pigments (i.e. lipophilic-type compounds) would be considered responsible for this preservative effect. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. The use of phenological data to calculate chilling units in Olea europaea L. in relation to the onset of reproduction

    NASA Astrophysics Data System (ADS)

    Orlandi, F.; Fornaciari, M.; Romano, B.

    2002-02-01

    The aim of this study was to develop a practical method to evaluate the effective relationship between the amount of winter chilling and the response expressed as the spring reproductive re-starting dates in the olive ( Olea europaea L.). Two olive cultivars growing in a special olive orchard in Umbria (central Italy) were studied over a 3-year period (1998-2000): the cultivar Ascolana, typical of central Italy, and the cultivar Giarraffa, typical of southern Italy. The spring reproductive re-starts were assessed using data from detailed phenological observations made on 60 trees of each cultivar in an effort to establish the exact date of reproductive bud swelling. The chilling phenomenon was evaluated by using 341 functions derived from a formula developed by researchers at Utah State University to calculate chilling units. The mathematical functions are defined, and show the very close relationship between the amount of winter chilling and the spring reproductive response in the two cultivars in the orchard studied. The results can be used to define the relationship between local climate and plant development, and the mathematical approach can be used to draw maps that can show the suitability of different cultivars on the basis of local climatic conditions.

  8. Steam Versus Hot-Water Scalding in Reducing Bacterial Loads on the Skin of Commercially Processed Poultry

    PubMed Central

    Patrick, Thomas E.; Goodwin, T. L.; Collins, J. A.; Wyche, R. C.; Love, B. E.

    1972-01-01

    A comparison of two types of scalders was conducted to determine their effectiveness in reducing bacterial contamination of poultry carcasses. A conventional hot-water scalder and a prototype model of a steam scalder were tested under commercial conditions. Total plate counts from steam-scalded birds were significantly lower than the counts of water-scalded birds immediately after scalding and again after picking. No differences in the two methods could be found after chilling. Coliform counts from steam-scalded birds were significantly lower than the counts from water-scalded birds immediately after scalding. No significant differences in coliform counts were detected when the two scald methods were compared after defeathering and chilling. PMID:4553146

  9. Effect of different concentrations of soybean lecithin and virgin coconut oil in Tris-based extender on the quality of chilled and frozen-thawed bull semen

    PubMed Central

    Tarig, A. A.; Wahid, H.; Rosnina, Y.; Yimer, N.; Goh, Y. M.; Baiee, F. H.; Khumran, A. M.; Salman, H.; Assi, M. A.; Ebrahimi, M.

    2017-01-01

    Aim: The objective of this study was to evaluate the effects of different concentrations of soybean lecithin (SL) and virgin coconut oil (VCO) in Tris-based extender on chilled and frozen-thawed bull semen quality parameters. Materials and Methods: A total of 24 ejaculates were collected from four bulls via an electroejaculator. Semen samples were diluted with 2% VCO in Tris-based extender which consists of various concentrations of SL (1, 1.25, 1.5, and 1.75%). A 20% egg yolk in Tris used as a positive control (C+). The diluted semen samples were divided into two fractions; one for chilling which were stored at 4°C for 24, 72, and 144 h before evaluated for semen quality parameters. The second fraction used for freezing was chilled for 3 h at 4°C, packed into 0.25 mL straws and then cryopreserved in liquid nitrogen. The samples were then evaluated after 7 and 14 days. Chilled and frozen semen samples were thawed at 37°C and assessed for general motility using computer-assisted semen analysis, viability, acrosome integrity and morphology (eosin-nigrosin stain), membrane integrity, and lipid peroxidation using thiobarbituric acid reaction test. Results: The results showed that all the quality parameters assessed were significantly (p<0.05) improved at 1.5% SL concentration in chilled semen. Treatment groups of 1, 1.25, 1.5, and 1.75% SL were higher in quality parameters than the control group (C+) in chilled semen. However, all the quality parameters in frozen-thawed semen were significantly higher in the C+ than the treated groups. Conclusion: In conclusion, supplementation of 1.5% SL in 2% VCO Tris-based extender enhanced the chilled bull semen. However, there was no marked improvement in the frozen-thawed quality parameters after treatment. PMID:28717321

  10. Effect of different concentrations of soybean lecithin and virgin coconut oil in Tris-based extender on the quality of chilled and frozen-thawed bull semen.

    PubMed

    Tarig, A A; Wahid, H; Rosnina, Y; Yimer, N; Goh, Y M; Baiee, F H; Khumran, A M; Salman, H; Assi, M A; Ebrahimi, M

    2017-06-01

    The objective of this study was to evaluate the effects of different concentrations of soybean lecithin (SL) and virgin coconut oil (VCO) in Tris-based extender on chilled and frozen-thawed bull semen quality parameters. A total of 24 ejaculates were collected from four bulls via an electroejaculator. Semen samples were diluted with 2% VCO in Tris-based extender which consists of various concentrations of SL (1, 1.25, 1.5, and 1.75%). A 20% egg yolk in Tris used as a positive control (C+). The diluted semen samples were divided into two fractions; one for chilling which were stored at 4°C for 24, 72, and 144 h before evaluated for semen quality parameters. The second fraction used for freezing was chilled for 3 h at 4°C, packed into 0.25 mL straws and then cryopreserved in liquid nitrogen. The samples were then evaluated after 7 and 14 days. Chilled and frozen semen samples were thawed at 37°C and assessed for general motility using computer-assisted semen analysis, viability, acrosome integrity and morphology (eosin-nigrosin stain), membrane integrity, and lipid peroxidation using thiobarbituric acid reaction test. The results showed that all the quality parameters assessed were significantly (p<0.05) improved at 1.5% SL concentration in chilled semen. Treatment groups of 1, 1.25, 1.5, and 1.75% SL were higher in quality parameters than the control group (C+) in chilled semen. However, all the quality parameters in frozen-thawed semen were significantly higher in the C+ than the treated groups. In conclusion, supplementation of 1.5% SL in 2% VCO Tris-based extender enhanced the chilled bull semen. However, there was no marked improvement in the frozen-thawed quality parameters after treatment.

  11. A novel aspartic acid protease gene from pineapple fruit (Ananas comosus): cloning, characterization and relation to postharvest chilling stress resistance.

    PubMed

    Raimbault, Astrid-Kim; Zuily-Fodil, Yasmine; Soler, Alain; Cruz de Carvalho, Maria H

    2013-11-15

    A full-length cDNA encoding a putative aspartic acid protease (AcAP1) was isolated for the first time from the flesh of pineapple (Ananas comosus) fruit. The deduced sequence of AcAP1 showed all the common features of a typical plant aspartic protease phytepsin precursor. Analysis of AcAP1 gene expression under postharvest chilling treatment in two pineapple varieties differing in their resistance to blackheart development revealed opposite trends. The resistant variety showed an up-regulation of AcAP1 precursor gene expression whereas the susceptible showed a down-regulation in response to postharvest chilling treatment. The same trend was observed regarding specific AP enzyme activity in both varieties. Taken together our results support the involvement of AcAP1 in postharvest chilling stress resistance in pineapple fruits. Copyright © 2013 Elsevier GmbH. All rights reserved.

  12. Solar heating and hot water system installed at Southeast of Saline, Unified School District 306, Mentor, Kansas

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar system, installed in a new building, was designed to provide 52 percent of the estimated annual space heating load and 84 percent of the estimated annual potable hot water requirement. The liquid flat plate collectors are ground-mounted and cover a total area of 5125 square feet. The system will provide supplemental heat for the school's closed-loop water-to-air heat pump system and domestic hot water. The storage medium is water inside steel tanks with a capacity of 11,828 gallons for space heating and 1,600 gallons for domestic hot water. The solar heating facility is described and drawings are presented of the completed system which was declared operational in September 1978, and has functioned successfully since.

  13. Simulation of effects of ground-water development on water-levels in glacial-drift aquifers in the Brooten-Belgrade area, west-central Minnesota

    USGS Publications Warehouse

    Delin, G.N.

    1991-01-01

    The model was used to simulate the steady-state effects of below-normal precipitation (drought) and hypothetical increases in ground-water development. Model results indicate that reduced recharge and increased pumping during a hypothetical 3-year extended drought would lower regional water levels from 2 to 5 feet in each aquifer and as much as 20 feet in the lowermost aquifer zone; ground-water discharge to the East Branch Chippewa and North Fork Crow Rivers would be reduced by 38 percent. The addition of 10 to 20 hypothetical wells in confined aquifers, pumping 123 to 246 million gallons per year, would result in regional water-level declines of 0.1 to 0.5 feet. Simulated water-level declines in wells completed in the lower part of the system would be as much as 5.0 feet as a result of pumping 246 million gallons per year from 20 hypothetical wells. Water-level declines in overlying and underlying aquifers would range from 0.4 to 2.8 feet. Ground-water discharge to the East Branch Chippewa and North Fork Crow Rivers would be unaffected by the pumpage.

  14. Residential Water Conservation in a Noncrisis Setting: Results of a New Jersey Experiment

    NASA Astrophysics Data System (ADS)

    Palmini, Dennis J.; Shelton, Theodore B.

    1982-08-01

    East Brunswick Township, New Jersey, conducted a water conservation program in 1980 by distributing to 564 households free packets of water-saving devices purchased with municipal funds. The program was not a response to a current water supply crisis, and appeals for cooperation were based on the private economic benefits of water conservation. Statistical procedures were developed to measure the proportions of households installing each of the devices distributed, water savings and program costs. Two-thirds of the households receiving the packets installed at least one device. Average annual water savings per home receiving a packet were estimated at 5010 gallons (18.96 kl). Amortized over ten years at a 10% discount rate, the program cost was approximately 35 cents per 1000 gallons of water saved (9.2 cents per kl). The East Brunswick results compare well to the results obtained from similar conservation programs in a pair of California communities during the 1976-1977 drought.

  15. Clean Water for Remote Locations

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Marshall Space Flight Center engineers are working on creating the Regenerative Environmental Control and Life Support System, a complex system of devices intended to sustain the astronauts living on the ISS and, in the future, sustain those who are blasting off to the Moon or Mars. The devices make use of the available resources, by turning wastewater from respiration, sweat, and urine into drinkable water. One of the devices that Marshall has been working on is the Water Recovery System (WRS). Marshall has teamed with long-time NASA contractor, Hamilton Sundstrand Space Systems International, Inc., of Windsor Locks, Connecticut. Hamilton Sundstrand, the original designer of the life support devices for the space suits, developed the Water Processor Assembly (WPA). It, along with the Urine Processor Assembly (UPA) developed by Marshall, combines to make up the total system, which is about the size of two refrigerators, and will support up to a six-member crew. The system is currently undergoing final testing and verification. "The Water Processor Assembly can produce up to about 28 gallons of potable recycled water each day," said Bob Bagdigian, Marshall Regenerative Environmental Control and Life Support System project manager. After the new systems are installed, annual delivered water to the ISS should decrease by approximately 15,960 pounds, or about 1,600 gallons.

  16. Water resources of Hot Springs County, Wyoming

    USGS Publications Warehouse

    Plafcan, Maria; Ogle, Kathy Muller

    1994-01-01

    The wells and springs inventoried in Hot Springs County most commonly had been completed in or issued from the Quaternary alluvium, Quaternary terrace deposits, Fort Union and Mesaverde Formations, Cody Shale, and the Frontier and Chugwater Formations. The largest discharges measured were from the Quaternary terrace deposits (400 gallons per minute) and the Phosphoria Formation (1,000 gallons per minute). Discharges from all other geologic units varied, but most wells and springs yielded 50 gallons per minute or less.Water-quality samples collected from springs that issued from the Absaroka Volcanic Supergroup, the Bighorn Dolomite, and the Flathead Sandstone had the lowest dissolved-solids concentrations, which ranged from 58 to 265 milligrams per liter, and the least variable water types. Water from the volcanic rocks was a sodium bicarbonate type; whereas, water from the Flathead Sandstone was a calcium bicarbonate type. Water types for all the other aquifers varied from sampling site to sampling site; however, water samples from the Fort Union Formation and the Cody Shale were consistently of the sodium sulfate type. The effect of oil- and gas-development at Hamilton Dome on thermal spring discharges at Hot Springs State Park near Thermopolis was studied. The estimated drawdown from 1918, when the Hamilton Dome oil field was discovered, to 1988 was made using drill-stem data from previous studies. Drawdown at Big Spring in the Park was estimated to be less than 3 feet on the basis of recent oil- and water-production data, previous modeling studies, and the estimated water-level drawdown of 330 feet in wells at the Hamilton Dome oil field.Streams originating in the Plains region of the county, such as Middle Fork Owl Creek, are ephemeral or intermittent; whereas, streams originating in the mountains, such as Gooseberry Creek, are perennial. Average annual runoff across the county ranges from 0.26 inches at a representative streamflow-gaging station near Worland

  17. Impact of dry chilling on the genetic diversity of Escherichia coli on beef carcasses and on the survival of E. coli and E. coli O157.

    PubMed

    Visvalingam, Jeyachchandran; Liu, Yang; Yang, Xianqin

    2017-03-06

    The objective of this study was to examine the effect of dry chilling on the genetic diversity of naturally occurring Escherichia coli on beef carcasses, and to examine whether two populations of E. coli recovered from carcasses during chilling and E. coli O157 differed in their response to desiccation. Isolates of E. coli were obtained from beef carcasses during a 67h dry chilling process and were genotyped using multiple-locus variable-number tandem-repeat analysis (MLVA). Ten E. coli genotypes found only at 0h (group A) and found more than once (group B), as well as five strains of E. coli O157 (group C) were inoculated on stainless steel coupons and their survival was examined after exposure to 75 and 100% relative humidity (RH) at 0 or 35°C for 67h. A total of 450 E. coli isolates were obtained, with 254, 49, 49, 51, 23, 20, and 4 from 0, 1, 2, 4, 6, 8 and 24h of chilling, respectively. No E. coli were recovered at 67h. MLVA of the isolates revealed 173 distinct genotypes. Genetic diversity of E. coli isolates, defined as ratio of the number of isolates to the number of genotypes, remained between 2.3 and 1.3 during the 24h of chilling. All strains inoculated on stainless steel coupons and exposed to 75% RH at 35°C were completely inactivated, irrespective of their groups. Inactivation of E. coli of the three groups was not significantly (P>0.05) different by exposure to 75% RH at 0°C. The findings indicate that the genetic diversity of E. coli on beef carcasses was not affected by dry chilling. In addition, inactivation of E. coli genotypes and E. coli O157 by desiccation on stainless steel simulating dry chilling conditions did not differ significantly (P>0.05). Thus, dry chilling may be used as an effective antimicrobial intervention for beef carcasses. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  18. Contribution of polyamines metabolism and GABA shunt to chilling tolerance induced by nitric oxide in cold-stored banana fruit.

    PubMed

    Wang, Yansheng; Luo, Zisheng; Mao, Linchun; Ying, Tiejin

    2016-04-15

    Effect of exogenous nitric oxide (NO) on polyamines (PAs) catabolism, γ-aminobutyric acid (GABA) shunt, proline accumulation and chilling injury of banana fruit under cold storage was investigated. Banana fruit treated with NO sustained lower chilling injury index than the control. Notably elevated nitric oxide synthetase activity and endogenous NO level were observed in NO-treated banana fruit. PAs contents in treated fruit were significantly higher than control fruit, due to the elevated activities of arginine decarboxylase and ornithine decarboxylase. NO treatment increased the activities of diamine oxidase, polyamine oxidase and glutamate decarboxylase, while reduced GABA transaminase activity to lower levels compared with control fruit, which resulted the accumulation of GABA. Besides, NO treatment upregulated proline content and significantly enhanced the ornithine aminotransferase activity. These results indicated that the chilling tolerance induced by NO treatment might be ascribed to the enhanced catabolism of PAs, GABA and proline. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Chicago's water market: Dynamics of demand, prices and scarcity rents

    USGS Publications Warehouse

    Ipe, V.C.; Bhagwat, S.B.

    2002-01-01

    Chicago and its suburbs are experiencing an increasing demand for water from a growing population and economy and may experience water scarcity in the near future. The Chicago metropolitan area has nearly depleted its groundwater resources to a point where interstate conflicts with Wisconsin could accompany an increased reliance on those sources. Further, the withdrawals from Lake Michigan is limited by the Supreme Court decree. The growing demand and indications of possible scarcity suggest a need to reexamine the pricing policies and the dynamics of demand. The study analyses the demand for water and develops estimates of scarcity rents for water in Chicago. The price and income elasticities computed at the means are -0.002 and 0.0002 respectively. The estimated scarcity rents ranges from $0.98 to $1.17 per thousand gallons. The results indicate that the current prices do not fully account for the scarcity rents and suggest a current rate with in the range $1.53 to $1.72 per thousand gallons.

  20. Favoring the birth of female puppies after artificial insemination using chilled semen diluted with powdered coconut water (ACP-106c).

    PubMed

    Uchoa, Daniel Couto; da Silva, Ticiana Franco Pereira; Cardoso, Janaína de Fátima Saraiva; Mota Filho, Antônio Cavalcante; Jucá, Ricardo Parente; Silva, Alexandre Rodrigues; da Silva, Lúcia Daniel Machado

    2012-06-01

    The objective was to determine the effect of powdered coconut water extender (ACP-106c) on the proportion of female puppies born. Twenty French Bulldog bitches were subjected to natural mating (NM) and, during the subsequent two estrus periods, were bred by intravaginal artificial insemination (AI), using chilled semen (from the same males) diluted in Tris-egg yolk (AI-Tris) or ACP-106c (AI-ACP-106c). Fresh semen was cooled to 5 °C and maintained at that temperature for 6 h, rewarmed (37 °C for 30 s), and used for AI. Pregnancy and whelping rates following NM were both 100% and were both 90.0% following AI with either extender. Litter size (mean ± SD) was 5.4 ±1.1, 4.7 ± 2.0, and 5.1 ± 2.0 (P > 0.05) for NM, AI-Tris, and AI-ACP-106c, respectively. Furthermore, for these groups, the number of female vs. male puppies born were 2.6 ± 0.6 vs. 2.8 ± 1.0, 2.2 ± 1.0 vs. 2.5 ± 1.1, and 3.4 ± 1.6 vs. 1.8 ± 1.2 (P < 0.05 for AI-ACP-106c only). In conclusion, our hypothesis was supported; AI of semen in ACP-106c extender resulted in a significantly higher proportion of female puppies. Furthermore, this extender yielded acceptable litter size and rates of pregnancy and whelping. Copyright © 2012 Elsevier Inc. All rights reserved.