NASA Technical Reports Server (NTRS)
Vanco, M. R.; Wintucky, W. T.; Niedwiecki, R. W.
1986-01-01
The objectives of the joint NASA/Army SECT studies were to identify high payoff technologies for year 2000 small gas turbine engine applications and to provide a technology plan for guiding future research and technology efforts applicable to rotorcraft, commuter and general aviation aircraft and cruise missiles. Competitive contracts were awarded to Allison, AVCO Lycoming, Garrett, Teledyne CAE and Williams International. This paper presents an overview of the contractors' study efforts for the commuter, rotorcraft, cruise missile, and auxiliary power (APU) applications with engines in the 250 to 1,000 horsepower size range. Reference aircraft, missions and engines were selected. Advanced engine configurations and cycles with projected year 2000 component technologies were evaluated and compared with a reference engine selected by the contractor. For typical commuter and rotorcraft applications, fuel savings of 22 percent to 42 percent can be attained. For $1/gallon and $2/gallon fuel, reductions in direct operating cost range from 6 percent to 16 percent and from 11 percent to 17 percent respectively. For subsonic strategic cruise missile applications, fuel savings of 38 percent to 54 percent can be achieved which allows 35 percent to 60 percent increase in mission range and life cycle cost reductions of 40 percent to 56 percent. High payoff technologies have been identified for all applications.
This photocopy of an engineering drawing shows the BakerPerkins 150gallon ...
This photocopy of an engineering drawing shows the Baker-Perkins 150-gallon mixer installation in the building. Austin, Field & Fry, Architects Engineers, 22311 West Third Street, Los Angeles 57, California: Edwards Test Station Complex, Jet Propulsion Laboratory, California Institute of Technology, Edwards Air Force Base, Edwards, California: "150 Gallon Mixer System Bldg. E-34, Plans, Sections & Details," drawing no. E34/6-0, 10 July 1963. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California - Jet Propulsion Laboratory Edwards Facility, Mixer, Edwards Air Force Base, Boron, Kern County, CA
Source, use, and disposition of water in Florida, 1980
Leach, S.D.
1983-01-01
An average of 21,206 million gallons of water was withdrawn for use in Florida each day for the combined use for public supplies , rural domestic and livestock, industrial self-supplied, irrigation, and thermoelectric power generation. This amount, broken down into 7,309 millions gallons per day of freshwater and 13,897 million gallons per day of saline water, indicates an increase of more than 40 percent for all uses during the 10-year period 1970-80. The largest user of freshwater in Florida was for irrigation--2,997 million gallons per day which also is responsible for the greatest consumption, 1,530 million gallons on the average each day or about half the water applied. The remaining use of freshwater amounted to 1,859 million gallons per day for thermoelectric power generation (which also used about 13.7 billion gallons per day of saline water); 1,361 million gallons per day of public supply; 797 million gallons per day for industrial use other than thermoelectric power generation; and 310 million gallons per day, on the average, for rural domestic and livestock use. (USGS)
Alternative Fuels Data Center: Iowa Transportation Data for Alternative
Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of (bbl/day) 0 Renewable Power Plants 41 Renewable Power Plant Capacity (nameplate, MW) 3,807 Source /gallon $2.60/GGE $2.96/gallon $2.66/GGE Source: Average prices per gasoline gallon equivalent (GGE) for
Cayuga County Regional Digester: Vision Becomes Reality. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamyar V. Zadeh; Jim Young
2013-03-12
With an average herd size of 113 mature cows, Cayuga County is home to 280 dairy farms and 31,500 dairy milking cows producing approximately 855 million gallons of milk per year. The Cayuga Dairy industry is a major contributor to the countys economy, employing nearly 1200 people, while generating $140,000,000 of revenue from sale of milk alone. At the same time, the Cayuga County dairy industry also produces 5.7 million gallons of manure daily: (a) Nearly 34% of this manure is produced on smaller farms. (b) Digesters are expensive pieces of equipment and require attention and care. ( c) Themore » on-farm digester systems have fairly long payback (>10 years) even for larger CAFO farms (>1000 milking cows). In 2005, Cayuga County Soil and Water Conservation District (The District), a Public Agency under Cayuga County, decided to undertake a centralized community digester project. The primary goal of the project was to develop an economically sustainable model, under the auspices of The District to address manure management issues facing the smaller dairies, improve the water quality and improve the quality of life for Cayuga County residents. It is believed that the District has accomplished this goal by completing construction of Cayuga County Regional Digester on a parcel of land behind the Cayuga County Natural Resource Center located at 7413 County House Road in the Town of Sennett in Cayuga County, New York. The digester facility consists of the following major components. 1. Transfer Station: This an indoor truck bay, where 35,000 gallons of manure from three local farms, 8,500 gallons of liquid organic food-processor waste, and 1,200 gallons of brown grease are unloaded from tanker trucks and the digested slurry is loaded onto the tanker trucks for delivery back to the participating farms. 2. Anaerobic Digester: The project utilizes a hydraulic mix anaerobic digester, a unique design that has no internal moving parts for mixing. The digester, which operates at mesophilic temperatures, is designed to process the daily feedstock and produce 220,000 SCF2 of biogas per day. The digester also produces 44,000 gallons of digested slurry per day. 3. Biogas Conditioning System: The plant employs a biological biogas conditioning system to remove the H2S and moisture contents of the biogas and prepare it to be used by the plant generation system. 4. Combined Heat and Power System (CHP): This is a 633kW high efficiency biogas-fired GE-Jenbacher model JMS-312 GS-NL reciprocating engine cogeneration system. The heat recovery system incorporated into the package is designed to capture the waste heat from the engine exhaust, the jacket cooling water and the engine oil circuit. 5. Electrical Substation and Power Distribution Systems: An electrical distribution system has been constructed on-site that aggregates the electrical service of the different county buildings on the District campus into a county owned electric distribution system that is interconnected with the CHP and the local electric grid. The electrical system is designed, in accordance with the utility guidelines, to allow grid-parallel operation of CHP and provide for import and export of electric power. 6. Thermal Energy Distribution System: The heat recovery system has been integrated into a high temperature water distribution system that distributes the heat to the thermal circuits for the anaerobic digester facility. Additional piping has also been installed to transfer the remaining thermal energy to other county buildings on the campus. On a daily basis, the plant will co-process 35,000 gallons of manure from local dairy farms, 8,500 gallons of food-processor waste and 1,200 gallons of brown grease to produce 200,000 ft3/d of biogas and 44,000 gallons of pathogen-free nutrient-rich digested slurry for agricultural use by farms and in the local area.The biogas fueled CHP produces 5,157,000 kWh of electricity and 19,506 dekatherms of thermal energy per year. Electrical power generated by the cogeneration system powers all the buildings on the Cayuga County campus and any surplus power is exported to the grid under a power purchase agreement. Heat recovered from the cogeneration system will be used to maintain the temperature of the process equipment and the excess will be transported to the Cayuga County Public Safety Building to offset purchase of fossil fuel to fuel the boilers. The majority of plant operations are unmanned and automated. However, the plant will have a small staff of well-trained personnel to coordinate the feedstock deliveries and shipments, supervise the day-to-day operation, monitor the systems and perform maintenance, maintain a safe and reliable operation and to respond to emergencies.« less
Estimated water use in the Southwest Florida Water Management District and adjacent areas, 1980
Duerr, A.D.; Trommer, J.T.
1981-01-01
Water-use data for 1980 are summarized in this report for 16 counties in the Southwest Florida Water Management District. Data include total use of ground water and surface water for each of five water-use categories. The 1980 withdrawals for each category were as follows: 290 million gallons per day for public supply, 63 million gallons per day for rural, 325 million gallons per day for industry, 416 million gallons per day for irrigation, and 6,605 million gallons per day for thermoelectric power generation. Withdrawals totaled 7,699 million gallons per day and included 983 million gallons per day of ground water and 6,716 million gallons per day of surface water. Excluding thermoelectric power generation, all water withdrawn was freshwater except 38 million gallons per day of saline ground water withdrawn for industrial use in Hillsborough County. (USGS)
An overview of the Small Engine Component Technology (SECT) studies
NASA Technical Reports Server (NTRS)
Vanco, M. R.; Wintucky, W. T.; Niedzwiecki, R. W.
1986-01-01
The objectives of the joint NASA/Army SECT Studies were to identify high payoff technologies for year 2000 small gas turbine engine applications and to provide a technology plan for guiding future research and technology efforts applicable to rotorcraft, commuter and general aviation aircraft and cruise missiles. Competitive contracts were awarded to Allison, AVCO Lycoming, Garrett, Teledyne CAE and Williams International. This paper presents an overview of the contractors' study efforts for the commuter, rotorcraft, cruise missile, and auxiliary power (APU) applications with engines in the 250 to 1,000 horsepower size range. Reference aircraft, missions and engines were selected. Advanced engine configurations and cycles with projected year 2000 component technologies were evaluated and compared with a reference engine selected by the contractor. For typical commuter and rotorcraft applications, fuel savings of 22 percent to 42 percent can be attained. For $1/gallon and $2/gallon fuel, reductions in direct operating cost range from 6 percent to 16 percent and from 11 percent to 17 percent respectively. For subsonic strategic cruise missile applications, fuel savings of 38 percent to 54 percent can be achieved which allows 35 percent to 60 percent increase in mission range and life cycle cost reductions of 40 percent to 56 percent. High payoff technologies have been identified for all applications.
Alternative Fuels Data Center: South Carolina Transportation Data for
Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of (bbl/day) 0 Renewable Power Plants 31 Renewable Power Plant Capacity (nameplate, MW) 3,396 Source /gallon $2.66/GGE Source: Average prices per gasoline gallon equivalent (GGE) for the Lower Atlantic PADD
Alternative Fuels Data Center: Mississippi Transportation Data for
with other local stakeholders. Gasoline Diesel Natural Gas Transportation Fuel Consumption Source Renewable Power Plants 0 Renewable Power Plant Capacity (nameplate, MW) 0 Source: BioFuels Atlas from the $2.19/GGE $2.50/gallon $2.50/GGE Diesel $2.61/gallon $2.35/GGE $2.96/gallon $2.66/GGE Source: Average
Estimated water use in Puerto Rico, 2000
Molina-Rivera, Wanda L.
2005-01-01
Water-use data were compiled for the 78 municipios of the Commonwealth of Puerto Rico for 2000. Five offstream categories were considered: public-supply water withdrawals, domestic self-supplied water use, industrial self-supplied withdrawals, crop irrigation water use, and thermoelectric power fresh water use. Two additional categories also were considered: power generation instream use and public wastewater treatment return-flows. Fresh water withdrawals for offstream use from surface- and ground-water sources in Puerto Rico were estimated at 617 million gallons per day. The largest amount of fresh water withdrawn was by public-supply water facilities and was estimated at 540 million gallons per day. Fresh surface- and ground-water withdrawals by domestic self-supplied users was estimated at 2 million gallons per day and the industrial self-supplied withdrawals were estimated at 9.5 million gallons per day. Withdrawals for crop irrigation purposes were estimated at 64 million gallons per day, or approximately 10 percent of all offstream fresh water withdrawals. Saline instream surface-water withdrawals for cooling purposes by thermoelectric power facilities was estimated at 2,191 million gallons per day, and instream fresh water withdrawals by hydroelectric facilities at 171 million gallons per day. Total discharge from public wastewater treatment facilities was estimated at 211 million gallons per day.
Exhaust emissions of low level blend alcohol fuels from two-stroke and four-stroke marine engines
NASA Astrophysics Data System (ADS)
Sevik, James M., Jr.
The U.S. Renewable Fuel Standard mandates that by 2022, 36 billion gallons of renewable fuels must be produced on a yearly basis. Ethanol production is capped at 15 billion gallons, meaning 21 billion gallons must come from different alternative fuel sources. A viable alternative to reach the remainder of this mandate is iso-butanol. Unlike ethanol, iso-butanol does not phase separate when mixed with water, meaning it can be transported using traditional pipeline methods. Iso-butanol also has a lower oxygen content by mass, meaning it can displace more petroleum while maintaining the same oxygen concentration in the fuel blend. This research focused on studying the effects of low level alcohol fuels on marine engine emissions to assess the possibility of using iso-butanol as a replacement for ethanol. Three marine engines were used in this study, representing a wide range of what is currently in service in the United States. Two four-stroke engine and one two-stroke engine powered boats were tested in the tributaries of the Chesapeake Bay, near Annapolis, Maryland over the course of two rounds of weeklong testing in May and September. The engines were tested using a standard test cycle and emissions were sampled using constant volume sampling techniques. Specific emissions for two-stroke and four-stroke engines were compared to the baseline indolene tests. Because of the nature of the field testing, limited engine parameters were recorded. Therefore, the engine parameters analyzed aside from emissions were the operating relative air-to-fuel ratio and engine speed. Emissions trends from the baseline test to each alcohol fuel for the four-stroke engines were consistent, when analyzing a single round of testing. The same trends were not consistent when comparing separate rounds because of uncontrolled weather conditions and because the four-stroke engines operate without fuel control feedback during full load conditions. Emissions trends from the baseline test to each alcohol fuel for the two-stroke engine were consistent for all rounds of testing. This is due to the fact the engine operates open-loop, and does not provide fueling compensation when fuel composition changes. Changes in emissions with respect to the baseline for iso-butanol were consistent with changes for ethanol. It was determined iso-butanol would make a viable replacement for ethanol.
Estimated water use in Puerto Rico, 1995
Molina-Rivera, Wanda L.
1998-01-01
Water-use data during calendar year 1995 was compiled for the 78 municipios of the Commonwealth of Puerto Rico. Eight offstream water-use categories were considered during the study: public supply, wastewater treatment discharges, domestic, industrial, mining, thermoelectric power, livestock, and irrigation. Three instream water-use categories were considered: hydroelectric power, saline water used at thermoelectric power plants, and reservoir evaporation. Freshwater withdrawals for offstream use from surface- and ground-water sources in Puerto Rico were estimated to be 566 million gallons per day. The largest amount of freshwater withdrawn was 431 million gallons per day for public supply. Total discharge from public wastewater treatment facilities was reported as 185 million gallons per day. Fresh surface- and ground-water withdrawals for domestic and industrial self-supplied facilities were estimated to be about 19 million gallons per day. Mining activities, which in Puerto Rico are mostly limited to the production of sand and gravel, withdrew about 4.2 million gallons per day of freshwater. Livestock activities used 6.3 million gallons per day from surface- and ground-water sources to meet the water needs of the 12.1 million animals counted in the 1992 Census of Agriculture in Puerto Rico. Self-supplied ground-water withdrawals for thermoelectric facilities were estimated to be 2.2 million gallons per day. Freshwater withdrawals for irrigation purposes were estimated to be 103 million gallons per day, or approximately 18 percent of all offstream freshwater withdrawals. Instream freshwater withdrawals by hydroelectric facilities were 349 million gallons per day. Reservoir evaporation is considered to be a consumptive use associated with the storage of water. The evaporation from 15 reservoirs in Puerto Rico was estimated to average about 23,900 acre-feet from a total reservoir surface area of 6,900 acres. The largest amount of withdrawals was 2,260 million gallons per day of saline water (instream use) for thermoelectric power.
Estimated withdrawals and use of freshwater in New Hampshire, 1990
Medalie, Laura; Horn, M.A.
1994-01-01
Estimated freshwater withdrawals during 1990 in New Hampshire totaled about 422 million gallons per day from ground-water and surface-water sources. The largest withdrawals were for thermoelectric-power generation (60 percent), public supply (23 percent), and industrial use (9 percent). Most withdrawals, 358 million gallons per day, were made from surface- water sources, as compared to 63.7 million gallons per day from ground-water sources. The largest with- drawals were in the Merrimack river basin (322 million gallons per day). An additional 46,000 million gallons per day was used instream for hydroelectric-power generation, primarily in the Upper Androscoggin and Upper Connecticut River subbasins. Other information describing water-use patterns is shown in tables, bar graphs, pie charts, maps, and accompanying text. The data are aggregated by river basin (hydrologic cataloging unit), and all values are reported in million gallons per day.
Hydrogen Fuel Cell Automobiles
NASA Astrophysics Data System (ADS)
Feldman, Bernard J.
2005-11-01
With gasoline now more than 2.00 a gallon, alternate automobile technologies will be discussed with greater interest and developed with more urgency. For our government, the hydrogen fuel cell-powered automobile is at the top of the list of future technologies. This paper presents a simple description of the principles behind this technology and a brief discussion of the pros and cons. It is also an extension on my previous paper on the physics of the automobile engine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-02-05
This decision document presents the selected removal action for the Million Gallon Hill source area of the Installation Restoration Program (IRP) site ST009, otherwise known as the West Unit at Galena Airport, Alaska. The information from the RI Report is summarized, along with an analysis of potential removal action alternatives in the Engineering Evaluation/Cost Analysis (EE/CA).
Hathaway, R. Michael; Eberle, Michael
1981-01-01
The estimated water use in Ohio for all purposes in 1975 was 16 ,431 million gallons per day. Of this total, 15,321 were taken from surface water while the remaining 1,110 represent ground-water withdrawals. Totals by category are as follows (in million gallons per day): Thermoelectric power generation, 12 ,404; self-supplied industrial use, 2,362: public water supplies , 1,423; rural domestic and livestock, 201; and irrigation, 40. Per capita water use was calculated to be 1,528 gallons per day for an Ohio population of 10,751,000 in 1975. Jefferson County led all Ohio counties in total water use with 3,447 million gallons per day. This was nearly three times the usage of second-ranking Gallia County where withdrawals were 1,242 million gallons per day. The heavy water use in both of these Ohio River counties is due to large withdrawals for thermoelectic power generation. Cuyahoga, Lorain, and Lake Counties, all in the Cleveland metropolitan area, rank third, fourth, and fifth in the State with respective totals of 1,061, 1,047, and 1,030 million gallons per day. Water use is more diverse in this area, with public supplies, industrial use, and thermoelectric power all making significant impacts. (USGS)
Estimated Water Use in 1990, Island of Kauai, Hawaii
Shade, Patricia J.
1995-01-01
The estimated total quantity of freshwater withdrawn on the island of Kauai, Hawaii, in 1990 was 370.84 million gallons per day of which 46.29 million gallons per day (12 percent) was from ground-water sources, and 324.55 million gallons per day (88 percent) was from surface-water sources. An additional estimated 40.94 million gallons per day of saline water was withdrawn for thermoelectric power generation. Agricultural irrigation was the principal use, accounting for 66 percent of the total freshwater withdrawals. Irrigation accounted for about 40 percent of the fresh ground-water withdrawals, followed by public supply, thermoelectric power generation, self-supplied domestic, self-supplied commercial, and self-supplied industrial withdrawals. Agricultural irrigation accounted for 69 percent of the total fresh surface-water withdrawals, followed by hydroelectric power generation, self-supplied industrial, public-supply and self-supplied livestock withdrawals. A comparison of water-use data for 1980 and 1990 shows total freshwater uses decreased during 1990 by slightly more than 100 million gallons per day because of decreased withdrawals for sugarcane irrigation and processing. During this time, increased domestic, commercial, and thermoelectric power usage reflects increases in the resident population and in tourism on the island.
Effects of miles per gallon feedback on fuel efficiency in gas-powered cars.
DOT National Transportation Integrated Search
2009-10-01
This study tested the impact of continuous miles per gallon (MPG) feedback on driving : behavior and fuel efficiency in gas-powered cars. We compared an experimental condition, : where drivers received real-time MPG feedback and a tip sheet, to a con...
2011-07-25
Stennis Space Center employees marked another construction milestone July 25 with installation of the 85,000-gallon liquid hydrogen tank atop the A-3 Test Stand. The 300-foot-tall stand is being built to test next-generation rocket engines that could carry humans into deep space once more. The liquid hydrogen tank and a 35,000-gallon liquid oxygen tank installed atop the steel structure earlier in June will provide fuel propellants for testing the engines.
NASA Technical Reports Server (NTRS)
Peoples, J. A.
1975-01-01
Results are reported which were obtained from a mathematical model of a generalized piston steam engine configuration employing the uniflow principal. The model accounted for the effects of clearance volume, compression work, and release volume. A simple solution is presented which characterizes optimum performance of the steam engine, based on miles per gallon. Development of the mathematical model is presented. The relationship between efficiency and miles per gallon is developed. An approach to steam car analysis and design is presented which has purpose rather than lucky hopefulness. A practical engine design is proposed which correlates to the definition of the type engine used. This engine integrates several system components into the engine structure. All conclusions relate to the classical Rankine Cycle.
Alternative Fuels Data Center: Maine Transportation Data for Alternative
connect with other local stakeholders. Gasoline Diesel Natural Gas Transportation Fuel Consumption Source Renewable Power Plants 58 Renewable Power Plant Capacity (nameplate, MW) 984 Source: BioFuels Atlas from the $2.96/gallon $2.66/GGE Source: Average prices per gasoline gallon equivalent (GGE) for the New England
Alternative Fuels Data Center: West Virginia Transportation Data for
Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon (bbl/day) 20,000 Renewable Power Plants 13 Renewable Power Plant Capacity (nameplate, MW) 751 Source Source: Average prices per gasoline gallon equivalent (GGE) for the Lower Atlantic PADD from the
Water withdrawal and use in Maryland, 1986
Wheeler, J.C.
1990-01-01
During 1986, about 1,460 million gallons per day of freshwater was withdrawn from the surface-, and groundwater resources of Maryland. In addition, more than 6,240 million gallons per day of saline surface water was withdrawn and used primarily for cooling purposes in the generation of electricity. Most freshwater withdrawals (84%) were from surface water sources and were withdrawn and used in the Potomac drainage basin, whereas most groundwater was withdrawn and used in the Upper Chesapeake drainage basin. The Potomac Group aquifers provided the most groundwater (56 million gallons per day). Ten water use categories comprise the major demands on the surface and groundwater resources of the State: public supply, domestic, commercial, industrial, mining, thermoelectric power generation, hydroelectric power generation, agricultural (non-irrigation), irrigation, and aquaculture. Public-supply systems withdrew the most water in the State (801 million gallon/day) for use by residents, commercial establishments, and industries. Baltimore City had the largest public-supply use in 1986 (about 151 million gallons/day). (USGS)
Marginal costs of water savings from cooling system retrofits: a case study for Texas power plants
NASA Astrophysics Data System (ADS)
Loew, Aviva; Jaramillo, Paulina; Zhai, Haibo
2016-10-01
The water demands of power plant cooling systems may strain water supply and make power generation vulnerable to water scarcity. Cooling systems range in their rates of water use, capital investment, and annual costs. Using Texas as a case study, we examined the cost of retrofitting existing coal and natural gas combined-cycle (NGCC) power plants with alternative cooling systems, either wet recirculating towers or air-cooled condensers for dry cooling. We applied a power plant assessment tool to model existing power plants in terms of their key plant attributes and site-specific meteorological conditions and then estimated operation characteristics of retrofitted plants and retrofit costs. We determined the anticipated annual reductions in water withdrawals and the cost-per-gallon of water saved by retrofits in both deterministic and probabilistic forms. The results demonstrate that replacing once-through cooling at coal-fired power plants with wet recirculating towers has the lowest cost per reduced water withdrawals, on average. The average marginal cost of water withdrawal savings for dry-cooling retrofits at coal-fired plants is approximately 0.68 cents per gallon, while the marginal recirculating retrofit cost is 0.008 cents per gallon. For NGCC plants, the average marginal costs of water withdrawal savings for dry-cooling and recirculating towers are 1.78 and 0.037 cents per gallon, respectively.
Alternative Fuels Data Center: Arkansas Transportation Data for Alternative
Diesel Natural Gas Electricity Transportation Fuel Consumption Source: State Energy Data System based on Renewable Power Plant Capacity (nameplate, MW) 1,349 Source: BioFuels Atlas from the National Renewable $2.50/gallon $2.50/GGE Diesel $2.61/gallon $2.35/GGE $2.96/gallon $2.66/GGE Source: Average prices per
Defense Acquisition Programs: Status of Selected Systems
1989-12-01
Separation Fyout Events I Chute Deployment a r Broach Events Torpedo Search/Attack Tp WtEr . Guidance Limits Torl Water Entry * Engine Start Floatup * Chute...100 general purpose AN/UK-4450 special purpose Power 138 kilowatts Tomahawk ____________________Weight 32 tons Cooling Water 150 gallons/minute Req I...operated outsid(’ V’s. waters . V - (’ lin , t" {I li’,X;I%. 1 il , 77,1 h’Iod 12 t~lwpc( w ’ %.% ith 119 tli d i a ’ .’]H I cf 41 ll i.( lff;il( I;k
Locomotive Emission and Engine Idle Reduction Technology Demonstration Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
John R. Archer
2005-03-14
In response to a United States Department of Energy (DOE) solicitation, the Maryland Energy Administration (MEA), in partnership with CSX Transportation, Inc. (CSXT), submitted a proposal to DOE to support the demonstration of Auxiliary Power Unit (APU) technology on fifty-six CSXT locomotives. The project purpose was to demonstrate the idle fuel savings, the Nitrous Oxide (NOX) emissions reduction and the noise reduction capabilities of the APU. Fifty-six CSXT Baltimore Division locomotives were equipped with APUs, Engine Run Managers (ERM) and communications equipment to permit GPS tracking and data collection from the locomotives. Throughout the report there is mention of themore » percent time spent in the State of Maryland. The fifty-six locomotives spent most of their time inside the borders of Maryland and some spent all their time inside the state borders. Usually when a locomotive traveled beyond the Maryland State border it was into an adjoining state. They were divided into four groups according to assignment: (1) Power Unit/Switcher Mate units, (2) Remote Control units, (3) SD50 Pusher units and (4) Other units. The primary data of interest were idle data plus the status of the locomotive--stationary or moving. Also collected were main engine off, idling or working. Idle data were collected by county location, by locomotive status (stationary or moving) and type of idle (Idle 1, main engine idling, APU off; Idle 2, main engine off, APU on; Idle 3, main engine off, APU off; Idle 4, main engine idle, APU on). Desirable main engine idle states are main engine off and APU off or main engine off and APU on. Measuring the time the main engine spends in these desirable states versus the total time it could spend in an engine idling state allows the calculation of Percent Idle Management Effectiveness (%IME). IME is the result of the operation of the APU plus the implementation of CSXT's Warm Weather Shutdown Policy. It is difficult to separate the two. The units demonstrated an IME of 64% at stationary idle for the test period. The data collected during calendar year 2004 demonstrated that 707,600 gallons of fuel were saved and 285 tons of NOX were not emitted as a result of idle management in stationary idle, which translates to 12,636 gallons and 5.1 tons of NOx per unit respectively. The noise reduction capabilities of the APU demonstrated that at 150 feet from the locomotive the loaded APU with the main engine shut down generated noise that was only marginally above ambient noise level.« less
Estimated withdrawals and use of freshwater in Vermont, 1990
Horn, M.A.; Medalie, Laura
1996-01-01
Estimated freshwater withdrawals during 1990 in Vermont totaled about 632 million gallons per day. The largest withdrawals were for thermoelectric- power generation (82 percent), industrial use (7 percent), and public supply (6 percent). Most withdrawals, 587 million gallons per day, were made from surface-water sources as compared to 44.9 million gallons per day from ground-water sources. The largest withdrawals were in the Upper Connecticut-Mascomo River Basin (525 million gallons per day). About 17,700 million gallons per day were used instream for hydroelectric-poser generation, the largest of which were in the Upper Connecticut-Mascoma and Otter River Basins. Other information describing water-use patters is shown in tables, bar graphs, pie charts, maps, and accompanying text. The data are aggregated by river basin (hydrologic cataloging unit), and all amounts are reports in million gallons per day.
NASA Technical Reports Server (NTRS)
Lundin, Bruce T; Povolny, John H; Chelko, Louis J
1949-01-01
Data obtained from an extensive investigation of the cooling characteristics of four multicylinder, liquid-cooled engines have been analyzed and a correlation of both the cylinder-head temperatures and the coolant heat rejections with the primary engine and coolant variables was obtained. The method of correlation was previously developed by the NACA from an analysis of the cooling processes involved in a liquid-cooled-engine cylinder and is based on the theory of nonboiling, forced-convection heat transfer. The data correlated included engine power outputs from 275 to 1860 brake horsepower; coolant flows from 50 to 320 gallons per minute; coolants varying in composition from 100 percent water to 97 percent ethylene glycol and 3 percent water; and ranges of engine speed, manifold pressure, carburetor-air temperature, fuel-air ratio, exhaust-gas pressure, ignition timing, and coolant temperature. The effect on engine cooling of scale formation on the coolant passages of the engine and of boiling of the coolant under various operating conditions is also discussed.
Small Engine Component Technology (SECT) study. Program report
NASA Technical Reports Server (NTRS)
Almodovar, E.; Exley, T.; Kaehler, H.; Schneider, W.
1986-01-01
The study was conducted to identify high payoff technologies for year 2000 small gas turbine applications and to provide a technology plan for guiding future research and technology efforts. A regenerative cycle turboprop engine was selected for a 19 passenger commuter aircraft application. A series of engines incorporating eight levels of advanced technologies were studied and their impact on aircraft performance was evaluated. The study indicated a potential reduction in fuel burn of 38.3 percent. At $1.00 per gallon fuel price, a potential DOC benefit of 12.5 percent would be achieved. At $2.00 per gallon, the potential DOC benefit would increase to 17.0 percent. Four advanced technologies are recommended and appropriate research and technology programs were established to reach the year 2000 goals.
Alternative Fuels Data Center: Delaware Transportation Data for Alternative
local stakeholders. Gasoline Diesel Natural Gas Transportation Fuel Consumption Source: State Energy Plants 1 Renewable Power Plant Capacity (nameplate, MW) 2 Source: BioFuels Atlas from the National /gallon $2.66/GGE Source: Average prices per gasoline gallon equivalent (GGE) for the Central Atlantic
2014-09-04
They included two Force Projection Technology (FPT) diesel driven pumping assemblies of 350 and 600 gallons per minute (GPM), and the Advanced...Army Tank Automotive Research Development and Engineering Center (TARDEC). They included two Force Projection Technology (FPT) diesel driven...research programs. The first two systems identified were Force Projection Technology (FPT) diesel -driven pumping assemblies of 350 and 600 gallons per
Engine diagnostics program: CF6-50 engine performance deterioration
NASA Technical Reports Server (NTRS)
Wulf, R. H.
1980-01-01
Cockpit cruise recordings and test cell data in conjunction with hardware inspection results from airline overhaul shops were analyzed to define the extent and magnitude of performance deterioration of the General Electric CF6-50 high bypass turbofan engine. The magnitude of short term deterioration was isolated from the long term, and the individual damage mechanisms that were the cause for the majority of the performance deterioration was identified. It was determined that the long term engine performance deterioration characteristics were different for the 3 aircraft types currently powered by the CF6-50 engine, but these differences were due to operational considerations (flight length and takeoff derate) and not to differences associated with the aircraft type. Unrestored losses, that is, performance deterioration which remains after engine refurbishment, represents over 70 percent of the total performance deterioration at engine shop visit. Superficial damage, such as, increased surface roughness, leading edge shape changes on airfoils, and increases in the average clearances between rotating and stationary components is the major contributor to these losses. Seventy one percent of the unrestored losses are cost effective to restore, and if implemented could reduce fuel consumed by CF6-50 engines by 26 million gallons in 1980.
Evaluation of a multifiltration water reclamation subsystem to reclaim domestic clothes wash water
NASA Technical Reports Server (NTRS)
Hall, J. B., Jr.
1973-01-01
An evaluation has been performed of a multifiltration water reclamation subsystem to determine its capability to recover water from domestic clothes wash water. A total of 32.89 kg (72.5 lb) of clothes were washed during eight wash cycles which used 1.4 lb of detergent, 145 gallons of hot water and 133.9 gallons of cold water. Water recovered at a weighted average process rate of 3.81 gallons per hour met the majority of the 23 requirements established for potable water by the U.S. Public Health Service. Average power consumed during this evaluation was approximately 71 watt-hours per gallon of water recovered. Filter replacement, which was required primarily for the control of micro-organisms in the recovered water averaged 4.86 filters per 100 gallons of wash water processed. The subsystem removed approximately 98 percent and virtually 100 percent of the phosphates and surfactants, respectively, from the wash water.
Alternative Fuels Data Center: Montana Transportation Data for Alternative
. Gasoline Diesel Natural Gas Transportation Fuel Consumption Source: State Energy Data System based on beta Renewable Power Plant Capacity (nameplate, MW) 2,955 Source: BioFuels Atlas from the National Renewable /gallon $2.66/GGE Source: Average prices per gasoline gallon equivalent (GGE) for the Rocky Mountain PADD
NASA Technical Reports Server (NTRS)
2001-01-01
Through Small Business Innovation Research (SBIR) funding from NASA's Glenn Research Center, Moller International created a new coating for rotary engines, which significantly improves the fuel consumption of a vehicle while reducing emissions. The new coatings are offered in the new Rotapower(R) engine, which is produced and distributed by Moller subsidiary, Freedom Motors, Inc. The coating allows the Rotapower engine to function smoother than other models, reducing wear and protecting the engine. The Rotapower engine has the ability to operate on a variety of fuels, including gasoline, natural gas, diesel, alcohol, and kerosene. A small and lightweight engine, it is projected to replace many of today's bulkier versions. The 10 horsepower model fits in the palm of one's hand, while the 160 horsepower model fits into a 5-gallon bucket. The clean running Rotapower engine is environmentally appealing, because it eliminates over 98 percent of the total emissions given off by traditional piston engines. Fewer pollutants are spewed into the air, making it especially attractive in areas where air pollution is a major problem. Due to the clean-burning nature of the engine, it meets the stringent standards set by the California Air Resources Board. The engine also has numerous commercial benefits in several types of recreational, industrial, and transportation applications, including personal watercraft, snowmobiles, portable generators. and pumps.
33 CFR 207.20 - Cape Cod Canal, Mass.; use, administration, and navigation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 110 U.S. gallons in one tank) plus Class A explosives (commercial or military) as listed in 49 CFR 173.53 (commercial) and 46 CFR 146.29-100 (military), liquified natural gas and liquified petroleum gas... Engineer, U.S. Army Engineer Division, New England, Corps of Engineers, Waltham, Massachusetts, or the...
33 CFR 207.20 - Cape Cod Canal, Mass.; use, administration, and navigation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 110 U.S. gallons in one tank) plus Class A explosives (commercial or military) as listed in 49 CFR 173.53 (commercial) and 46 CFR 146.29-100 (military), liquified natural gas and liquified petroleum gas... Engineer, U.S. Army Engineer Division, New England, Corps of Engineers, Waltham, Massachusetts, or the...
33 CFR 207.20 - Cape Cod Canal, Mass.; use, administration, and navigation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 110 U.S. gallons in one tank) plus Class A explosives (commercial or military) as listed in 49 CFR 173.53 (commercial) and 46 CFR 146.29-100 (military), liquified natural gas and liquified petroleum gas... Engineer, U.S. Army Engineer Division, New England, Corps of Engineers, Waltham, Massachusetts, or the...
33 CFR 207.20 - Cape Cod Canal, Mass.; use, administration, and navigation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 110 U.S. gallons in one tank) plus Class A explosives (commercial or military) as listed in 49 CFR 173.53 (commercial) and 46 CFR 146.29-100 (military), liquified natural gas and liquified petroleum gas... Engineer, U.S. Army Engineer Division, New England, Corps of Engineers, Waltham, Massachusetts, or the...
33 CFR 207.20 - Cape Cod Canal, Mass.; use, administration, and navigation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 110 U.S. gallons in one tank) plus Class A explosives (commercial or military) as listed in 49 CFR 173.53 (commercial) and 46 CFR 146.29-100 (military), liquified natural gas and liquified petroleum gas... Engineer, U.S. Army Engineer Division, New England, Corps of Engineers, Waltham, Massachusetts, or the...
Sholar, C.J.; Wood, P.A.
1995-01-01
Water-use information for 1990 was collected and reported, by county, for eight major categories of use. Seven of the categories were offstream uses, which included public supply, commercial, domestic, industrial, mining, thermoelectric, and agricultural uses. The agricultural category was subdivided into irrigation and livestock water use. Instream water- use data also were collected for hydroelectric-power generation. Estimated average water use in Kentucky exceeded 4,300 million gallons per day during 1990 for all offstream uses. About 94 percent of this amount was from surface-water sources, and about 6 percent was from ground-water sources. Per capita use for all offstream uses was almost 1,200 gallons per day. Estimated average consumptive use was 309 million gallons per day. Estimated average instream water use for hydroelectric-power generation was 83,000 million gallons per day. Ninety-seven percent of the offstream water withdrawals during 1990 were withdrawn for thermoelectric, public supply, and industrial use. Cooling water used in the production of thermoelectric power accounted for about 80 percent of the total offstream water use during 1990. Water withdrawn for public supplies was second largest at almost 10 percent of the total, and industrial water withdrawals were about 7 percent of the total. Thermoelectric, domestic, and livestock uses accounted for almost 90 percent of the consumptive use during 1990. The thermoelectric category accounted for almost two-thirds of the total consumptive use in the State for all uses.
2015-03-26
Stennis Space Center employees install a 96-inch valve during a recent upgrade of the high-pressure industrial water system that serves the site’s large rocket engine test stands. The upgraded system has a capacity to flow 335,000 gallons of water a minute, which is a critical element for testing. At Stennis, engines are anchored in place on large test stands and fired just as they are during an actual space flight. The fire and exhaust from the test is redirected out of the stand by a large flame trench. A water deluge system directs thousands of gallons of water needed to cool the exhaust. Water also must be available for fire suppression in the event of a mishap. The new system supports RS-25 engine testing on the A-1 Test Stand, as well as testing of the core stage of NASA’s new Space Launch System on the B-2 Test Stand at Stennis.
United States Government Support of Pickens’ Energy Plan
2009-02-18
miles per gallon of gasoline.94 The natural gas powered Honda Civic NGV costs $25,090 and gets 28 miles per gasoline gallon equivalent ( GGE ) of natural...natural gas is $1 per GGE , it will take 7.6 years to recoup the higher cost of the NGV. Assuming $5 gasoline and $1 natural gas, it takes 5.7 years to
40 CFR Appendix III to Part 600 - Sample Fuel Economy Label Calculation
Code of Federal Regulations, 2011 CFR
2011-07-01
... miles per gallon. Note that the car line of the test vehicle using a given engine makes no difference... engine. These four car lines are: Ajax Boredom III Dodo Castor (Station Wagon) A. A car line is defined... different car line than the normal Castor car line made up of sedans, coupes, etc. B. The engine considered...
40 CFR Appendix III to Part 600 - Sample Fuel Economy Label Calculation
Code of Federal Regulations, 2014 CFR
2014-07-01
... miles per gallon. Note that the car line of the test vehicle using a given engine makes no difference... engine. These four car lines are: Ajax Boredom III Dodo Castor (Station Wagon) A. A car line is defined... different car line than the normal Castor car line made up of sedans, coupes, etc. B. The engine considered...
40 CFR Appendix III to Part 600 - Sample Fuel Economy Label Calculation
Code of Federal Regulations, 2013 CFR
2013-07-01
... miles per gallon. Note that the car line of the test vehicle using a given engine makes no difference... engine. These four car lines are: Ajax Boredom III Dodo Castor (Station Wagon) A. A car line is defined... different car line than the normal Castor car line made up of sedans, coupes, etc. B. The engine considered...
40 CFR Appendix III to Part 600 - Sample Fuel Economy Label Calculation
Code of Federal Regulations, 2012 CFR
2012-07-01
... miles per gallon. Note that the car line of the test vehicle using a given engine makes no difference... engine. These four car lines are: Ajax Boredom III Dodo Castor (Station Wagon) A. A car line is defined... different car line than the normal Castor car line made up of sedans, coupes, etc. B. The engine considered...
Source, use, and disposition of water in Florida, 1975
Leach, Stanley D.
1978-01-01
On the average, 18,420 million gallons of water was withdrawn for use in Florida each day in 1975--an increase of 3,107 million gallons per day (Mgal/d) rate since 1970. The 1975 daily total was made up of 11,502 million gallons of saline water and 6,918 million gallons of freshwater. The saline water supply, largely surface water, was pumped from tidal estuaries. Only 95.3 Mgal/d--less than 1 percent--was obtained from wells. The freshwater supply was almost equally divided between surface water (52 percent) and ground water (48 percent). Virtually all the saline water was used for thermoelectric power generation. Only 63 Mgal/d of saline water was used for all other industrial purposes. The largest user of the freshwater was for irrigation--2,868 Mgal/d. The remaining use of freshwater amounted to 1,698 Mgal/d for thermoelectric power generation; 1 ,146 Mgal/d for public supply; 940 Mgal/d for industrial use other than thermoelectric power generation; and 266 Mgal/d for rural domestic and livestock use. Irrigation, the largest user of freshwater, also is responsible for the greatest consumption, 1,332 Mgal/d or about half the water applied. Included in the quantity of water consumed by irrigation is that part of the conveyance loss made up of evapotranspiration--estimated at 109 Mgal/d. The remainder of the conveyance loss is returned to the ground water reservoir for reuse by seepage from the canals. (Woodard-USGS)
The water intensity of the plugged-in automotive economy.
King, Carey W; Webber, Michael E
2008-06-15
Converting light-duty vehicles from full gasoline power to electric power, by using either hybrid electric vehicles or fully electric power vehicles, is likely to increase demand for water resources. In the United States in 2005, drivers of 234 million cars, lighttrucks, and SUVs drove approximately 2.7 trillion miles and consumed over 380 million gallons of gasoline per day. We compare figures from literature and government surveys to calculate the water usage, consumption, and withdrawal, in the United States during petroleum refining and electricity generation. In displacing gasoline miles with electric miles, approximately 2-3 [corrected] times more water is consumed (0.24 [corrected] versus 0.07--0.14 gallons/mile) and over 12 [corrected] times more water is withdrawn (7.8 [corrected] versus 0.6 gallons/mile) primarily due to increased water cooling of thermoelectric power plants to accommodate increased electricity generation. Overall, we conclude that the impact on water resources from a widespread shift to grid-based transportation would be substantial enough to warrant consideration for relevant public policy decision-making. That is not to say that the negative impacts on water resources make such a shift undesirable, but rather this increase in water usage presents a significant potential impact on regional water resources and should be considered when planning for a plugged-in automotive economy.
NASA Technical Reports Server (NTRS)
1982-01-01
Liquid methane is beginning to become an energy alternative to expensive oil as a power source for automotive vehicles. Methane is the principal component of natural gas, costs less than half as much as gasoline, and its emissions are a lot cleaner than from gasoline or diesel engines. Beech Aircraft Corporation's Boulder Division has designed and is producing a system for converting cars and trucks to liquid methane operation. Liquid methane (LM) is a cryogenic fuel which must be stored at a temperature of 260 degrees below zero Fahrenheit. The LM system includes an 18 gallon fuel tank in the trunk and simple "under the hood" carburetor conversion equipment. Optional twin-fuel system allows operator to use either LM or gasoline fuel. Boulder Division has started deliveries for 25 vehicle conversions and is furnishing a liquid methane refueling station. Beech is providing instruction for Northwest Natural Gas, for conversion of methane to liquid state.
NASA Astrophysics Data System (ADS)
1982-05-01
An executive summary is given of a detailed feasibility study for a 100 million gallon per year power alcohol plant using corn as feedstock. The proposed plant will ultimately have the capability to produce 100 million gallons per year of anhydrous alcohol from an estimated 40 million bushels of corn and will be designed so as to allow construction in modules of 25 million gallons each. Alcohol produced at this plant is intended essentially for use as a gasoline octane booster, a motor fuel in gasoline/alcohol blends and as a chemical feedstock. In addition, the plant will produce a number of by-products, each of which has existing commercial markets; namely, 236,400 tons of CO2, 237,600 tons of protein meal mixture (40.2% protein), or 124,000 tons of gluten meal (41% protein), 20,000 tons of yeast, 68,400 tons of corn bran, 89,600 tons of corn germ cake and 4,584,000 gallons of corn oil (food grade).
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.67 Fuel system. (a) With... range with the fuel initially saturated with water at 80 °F (27 °C) and having 0.025 fluid ounces per gallon (0.20 milliliters per liter) of free water added and cooled to the most critical condition for...
Solar-Powered Water Distillation
NASA Technical Reports Server (NTRS)
Menninger, F. J.; Elder, R. J.
1985-01-01
Solar-powered still produces pure water at rate of 6,000 gallons per year. Still fully automatic and gravity-fed. Only outside electric power is timer clock and solenoid-operated valve. Still saves $5,000 yearly in energy costs and pays for itself in 3 1/2 years.
1981-01-01
The Space Shuttle main propulsion system includes three major elements. One of those elements is the External Tank (ET). The ET holds over one-half million gallons of liquid oxygen and liquid hydrogen that fuel the main engines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-03-01
The construction and operation of a 14,980,000 gallon per year fuel ethanol from grain refinery in the Imperial Valley of California is proposed. The Imperial Valley Ethanol Refinery (refinery) will use hot geothermal fluid from geothermal resources at the East Mesa area as the source of process energy. In order to evaluate the economic viability of the proposed Project, exhaustive engineering, cost analysis, and financial studies have been undertaken. This report presents the results of feasibility studies undertaken in geothermal resource, engineering, marketing financing, management, environment, and permits and approvals. The conclusion of these studies is that the Project ismore » economically viable. US Alcohol Fuels is proceeding with its plans to construct and operate the Refinery.« less
40 CFR 86.307-82 - Fuel specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.307-82..., research, minimum D2699 100 96 PB (organic), grams/U.S. gallon 1 1.4 0.00-0.05 Distillation Range: IBP, °F...
40 CFR 86.307-82 - Fuel specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.307-82..., research, minimum D2699 100 96 PB (organic), grams/U.S. gallon 1 1.4 0.00-0.05 Distillation Range: IBP, °F...
40 CFR 86.307-82 - Fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.307-82..., research, minimum D2699 100 96 PB (organic), grams/U.S. gallon 1 1.4 0.00-0.05 Distillation Range: IBP, °F...
40 CFR 86.307-82 - Fuel specifications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.307-82..., research, minimum D2699 100 96 PB (organic), grams/U.S. gallon 1 1.4 0.00-0.05 Distillation Range: IBP, °F...
NASA Technical Reports Server (NTRS)
Wells, Douglas P.
2011-01-01
The Green Flight Challenge is one of the National Aeronautics and Space Administration s Centennial Challenges designed to push technology and make passenger aircraft more efficient. Airliners currently average around 50 passenger-miles per gallon and this competition will push teams to greater than 200 passenger-miles per gallon. The aircraft must also fly at least 100 miles per hour for 200 miles. The total prize money for this competition is $1.65 Million. The Green Flight Challenge will be run by the Comparative Aircraft Flight Efficiency (CAFE) Foundation September 25 October 1, 2011 at Charles M. Schulz Sonoma County Airport in California. Thirteen custom aircraft were developed with electric, bio-diesel, and other bio-fuel engines. The aircraft are using various technologies to improve aerodynamic, propulsion, and structural efficiency. This paper will explore the feasibility of the rule set, competitor vehicles, design approaches, and technologies used.
Sustainability of algae derived biodiesel: a mass balance approach.
Pfromm, Peter H; Amanor-Boadu, Vincent; Nelson, Richard
2011-01-01
A rigorous chemical engineering mass balance/unit operations approach is applied here to bio-diesel from algae mass culture. An equivalent of 50,000,000 gallons per year (0.006002 m3/s) of petroleum-based Number 2 fuel oil (US, diesel for compression-ignition engines, about 0.1% of annual US consumption) from oleaginous algae is the target. Methyl algaeate and ethyl algaeate diesel can according to this analysis conceptually be produced largely in a technologically sustainable way albeit at a lower available diesel yield. About 11 square miles of algae ponds would be needed with optimistic assumptions of 50 g biomass yield per day and m2 pond area. CO2 to foster algae growth should be supplied from a sustainable source such as a biomass-based ethanol production. Reliance on fossil-based CO2 from power plants or fertilizer production renders algae diesel non-sustainable in the long term. Copyright © 2010 Elsevier Ltd. All rights reserved.
2010-09-01
fuel could (if the algae ponds and coal fired power plants are adjacent) be as low as $ 2- 3 / gallon, excluding capital investment and SO2...PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Challenges for DoD Fuel from Algae for 50% addiBve (2.4 B gal / yr...21 Need high solar flux, abundance of water, CO2 and nutrients (N, P, etc.) Massive need for wetlands and ponds 2500 gallons “oil” / acre / year
Water use trends and demand projections in the Northwest Florida Water Management District
Marella, R.L.; Mokray, M.F.; Hallock-Solomon, Michael
1998-01-01
The Northwest Florida Water Management District is located in the western panhandle of Florida and encompasses about 11,200 square miles. In 1995, the District had an estimated population of 1.13 million, an increase of about 47 percent from the 1975 population of 0.77 million. Over 50 percent of the resident population lives within 10 miles of the coast. In addition, hundreds of thousands of visitors come to the coastal areas of the panhandle during the summer months for recreation or vacation purposes. Water withdrawn to meet demands for public supply, domestic self-supplied, commercial-industrial, agricultural irrigation, and recreational irrigation purposes in the District increased 18 percent (52 million gallons per day) between 1970 and 1995. The greatest increases were for public supply and domestic self-supplied (99 percent increase) and for agricultural irrigation (60 percent increase) between 1970 and 1995. In 1995, approximately 70 percent of the water withdrawn was from ground-water sources, with the majority of this from the Floridan aquifer system. The increasing water demands have affected water levels in the Floridan aquifer system, especially along the coastal areas. The Northwest Florida Water Management District is mandated under the Florida Statutes (Chapter 373) to protect and manage the water resources in this area of the State. The mandate requires that current and future water demands be met, while water resources and water-dependent natural systems are sustained. For this project, curve fitting and extrapolation were used to project most of the variables (population, population served by public supply, and water use) to the years 2000, 2005, 2010, 2015, and 2020. This mathematical method involves fitting a curve to historical population or water-use data and then extending this curve to arrive at future values. The population within the region is projected to reach 1,596,888 by the year 2020, an increase of 41 percent between 1995 and 2020. Most of the population in this region will continue to reside in the urban areas of Pensacola and Tallahassee, and along the coastal areas. The population served by public water supply is projected to reach 1,353,836 by the year 2020, an increase of nearly 46 percent between 1995 and 2020. Total water demand for the Northwest Florida Water Management District is projected to reach 940.2 million gallons per day in 2000, 1,003.1 million gallons per day in 2010, and 1,059.1 million gallons per day in 2020. Excluding water withdrawn for power generation from these totals, water demands will increase 34 percent between 1995 and 2020, and 58 percent between 1970 and 2020. Specifically, public supply demands are projected to increase 74.1 million gallons per day (53 percent) and domestic self-supplied and small public supply systems demands are projected to increase 9.1 million gallons per day (28 percent) between 1995 and 2020. Commercial- industrial self-supplied demands are projected to increase about 16.9 million gallons per day (13 percent) between 1995 and 2020. Agricultural and recreational irrigation demands combined are projected to increase 16.8 million gallons per day (48 percent) between 1995 and 2020. Water demands for power generation are projected to increase about 53.9 million gallons per day (10 percent) between 1995 and 2020. Although power generation water use shows a projected increase during this time, plant capacities are not expected to change dramatically.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1989-01-01
Work to develop and demonstrate the technology of structural ceramics for automotive engines and similar applications is described. Long-range technology is being sought to produce gas turbine engines for automobiles with reduced fuel consumption and reduced environmental impact. The Advanced Turbine Technology Application Project (ATTAP) test bed engine is designed such that, when installed in a 3,000 pound inertia weight automobile, it will provide low emissions, 42 miles per gallon fuel economy on diesel fuel, multifuel capability, costs competitive with current spark ignition engines, and noise and safety characteristics that meet Federal standards.
Analytical description of the modern steam automobile
NASA Technical Reports Server (NTRS)
Peoples, J. A.
1974-01-01
The sensitivity of operating conditions upon performance of the modern steam automobile is discussed. The word modern has been used in the title to indicate that emphasis is upon miles per gallon rather than theoretical thermal efficiency. This has been accomplished by combining classical power analysis with the ideal Pressure-Volume diagram. Several parameters are derived which characterize performance capability of the modern steam car. The report illustrates that performance is dictated by the characteristics of the working medium, and the supply temperature. Performance is nearly independent of pressures above 800 psia. Analysis techniques were developed specifically for reciprocating steam engines suitable for automotive application. Specific performance charts have been constructed on the basis of water as a working medium. The conclusions and data interpretation are therefore limited within this scope.
124. ARAI Reservoir (ARA727), later named water storage tank. Shows ...
124. ARA-I Reservoir (ARA-727), later named water storage tank. Shows plan of 100,000-gallon tank, elevation, image of "danger radiation hazard" sign, and other details. Norman Engineering Company 961-area/SF-727-S-1. Date: January 1959. Ineel index code no. 068-0727-60-613-102779. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-05-31
This Executive Summary is Volume I of 7 volumes of a detailed feasibility study for a 100 million gallon/year Power Alcohol plant using corn as feedstock to be constructed in the vicinity of Belle Chaise, Louisiana, adjacent to an existing grain elevator complex. The proposed plant will ultimately have the capability to produce 100 million gallons/year of anhydrous alcohol from an estimated 40 million bushels of corn and will be designed so as to allow construction in modules of 25 million gallons each. Alcohol produced at this plant is intended essentially for use as a gasoline octane booster, a motormore » fuel in gasoline/alcohol blends and as a chemical feedstock. In addition, the plant will produce a number of by-products, each of which has existing commercial markets; namely, 236,400 tons of CO/sub 2/ 237,600 tons of Protein Meal Mixture (40.2% Protein) or 124,000 tons of Gluten Meal (41% Protein), 20,000 tons of yeast, 68,400 tons of Corn Bran, 89,600 tons of Corn Germ Cake and 4,584,000 gallons of Corn Oil (food grade).« less
Improved components for engine fuel savings
NASA Technical Reports Server (NTRS)
Antl, R. J.; Mcaulay, J. E.
1980-01-01
NASA programs for developing fuel saving technology include the Engine Component Improvement Project for short term improvements in existing air engines. The Performance Improvement section is to define component technologies for improving fuel efficiency for CF6, JT9D and JT8D turbofan engines. Sixteen concepts were developed and nine were tested while four are already in use by airlines. If all sixteen concepts are successfully introduced the gain will be fuel savings of more than 6 billion gallons over the lifetime of the engines. The improvements include modifications in fans, mounts, exhaust nozzles, turbine clearance and turbine blades.
Estimated water use, by county, in North Carolina, 1995
Walters, D.A.
1997-01-01
Data on water use in North Carolina were compiled for 1995 as part of a cooperative agreement between the U.S. Geological Survey and the Division of Water Resources of the North Carolina Department of Environment and Natural Resources. Data were compiled from a number of Federal, State, and private sources for the offstream water-use categories of public supply, domestic, commercial, industrial, mining, livestock, irrigation, and thermoelectric-power generation. Data also were collected for instream use from hydroelectric facilities. Total withdrawals (fresh and saline) during 1995 were an estimated 9,286 million gallons per day for the offstream water-use categories. About 94 percent of the water withdrawn was from surface water. Thermoelectric-power generation accounted for 80 percent of all withdrawals. Instream water use for hydroelectric-power generation totaled about 56,400 million gallons per day. Each water-use category is summarized in this report by county and source of water supply.
Marella, R.L.; Fanning, J.L.
1996-01-01
The Georgia-Florida Coastal Plain study unit covers nearly 62,600 square miles along the southeastern United States coast in Georgia and Florida. In 1990, the estimated population of the study unit was 9.3 million, and included all or part of the cities of Atlanta, Jacksonville, Orlando, Tampa, and St. Petersburg. Estimated freshwater withdrawn in the study unit in 1990 was nearly 5,075 million gallons per day. Ground-water accounted for more than 57 percent of the water withdrawn during 1990 and the Floridan aquifer system provided nearly 91 percent of the total ground-water withdrawn. Surface-water accounted for nearly 43 percent of the water withdrawn in the study unit in 1990 with large amounts of withdrawals from the Altamaha River, Hillsborough River, the Ocmulgee River, the Oconee River, the St. Johns River, and the Suwannee River. Water withdrawn for public supply in the Georgia-Florida Coastal Plain study unit in 1990 totaled 1,139 million gallons per day, of which 83 percent was ground water and 17 percent was surface water. Self-supplied domestic withdrawals in the Georgia-Florida Coastal Plain study unit in 1990 totaled nearly 230 million gallons per day. Ground water supplied over 80 percent of the study units population for drining water purposes; nearly 5.8 million people were served by public supply and 1.8 million people were served by self-supplied systems. Water withdrawn for self-supplied domestic use in Georgia and Florida is derived almost exclusively from ground water, primarily because this source can provide the quantity and quality of water needed for drinking purposes. Nearly 1.7 million people served by public supply utilized surface water for their drinking water needs. Water withdrawn for self-supplied commercial-industrial uses in the study unit in 1990 totaled 862 million gallons per day, of which 93 percent was ground water and 7 percent was surface water. Water withdrawn for agriculture purposes in the study unit in 1990 totaled 1,293 million gallons per day, of which 69 percent was ground water and 31 percent was surface water. An estimated 1.254 millon acres were irrigated within the study unit during 1990. Water withdrawn for thermoelectric power generation in the study unit in 1990 totaled 1,552 million gallons per day, of which 99 percent was surface water and 1 percent was ground water. An additional 6,919 million gallons per day of saline surface water were withdrawn for thermoelectric power generation in 1990, solely for cooling purposes. Treated wastewater discharged within the Georgia-Florida Coastal Plain study unit totaled nearly 1,187 million gallons per day in 1990. Of the total water discharged, 58 percent was discharged directly into surface water and the remaining 42 percent was discharged to ground water (through drain fields, injection wells, percolation ponds or spray fields). Domestic wastewater facilities discharged in the study unit totaled nearly 789 million gallons per day, industrial wastewater facilities discharged 213 million gallons per day, and releases from septic tanks was estimated at 185 million gallons per day. More than 1.3 million septic tanks were estimated in use within the study unit in 1990.
1967-07-28
This photograph depicts a view of the test firing of all five F-1 engines for the Saturn V S-IC test stage at the Marshall Space Flight Center. The S-IC stage is the first stage, or booster, of a 364-foot long rocket that ultimately took astronauts to the Moon. Operating at maximum power, all five of the engines produced 7,500,000 pounds of thrust. The S-IC Static Test Stand was designed and constructed with the strength of hundreds of tons of steel and cement, planted down to bedrock 40 feet below ground level, and was required to hold down the brute force of the 7,500,000-pound thrust. The structure was topped by a crane with a 135-foot boom. With the boom in the up position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. When the Saturn V S-IC first stage was placed upright in the stand , the five F-1 engine nozzles pointed downward on a 1,900-ton, water-cooled deflector. To prevent melting damage, water was sprayed through small holes in the deflector at the rate 320,000 gallons per minutes
1965-05-01
This photograph depicts a view of the test firing of all five F-1 engines for the Saturn V S-IC test stage at the Marshall Space Flight Center. The S-IC stage is the first stage, or booster, of a 364-foot long rocket that ultimately took astronauts to the Moon. Operating at maximum power, all five of the engines produced 7,500,000 pounds of thrust. The S-IC Static Test Stand was designed and constructed with the strength of hundreds of tons of steel and cement, planted down to bedrock 40 feet below ground level, and was required to hold down the brute force of the 7,500,000-pound thrust. The structure was topped by a crane with a 135-foot boom. With the boom in the up position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. When the Saturn V S-IC first stage was placed upright in the stand , the five F-1 engine nozzles pointed downward on a 1,900-ton, water-cooled deflector. To prevent melting damage, water was sprayed through small holes in the deflector at the rate 320,000 gallons per minutes.
Liquid hydrogen sphere project
2011-06-22
A 107,000-gallon liquid hydrogen sphere no longer needed at Stennis Space Center is barged through the facility locks June 21. The rocket engine test facility has teamed with the Mississippi Department of Marine Resource to place the sphere in offshore waters as an artificial reef.
Solar heating and hot water system installed at Shoney's Restaurant, North Little Rock, Arkansas
NASA Technical Reports Server (NTRS)
1980-01-01
A solar heating system designed to supply a major portion of the space and water heating requirements for a restaurant is described. The restaurant has a floor space of approximately 4,650 square feet and requires approximate 1500 gallons of hot water daily. The solar energy system consists of 1,428 square feet of Chamberlain flat plate liquid collector subsystem, and a 1500 gallon storage subsystem circulating hot water producing 321 x 10 to the 6th power Btu/Yr (specified) building heating and hot water heating.
Solar heating and hot water system installed at Shoney's Restaurant, North Little Rock, Arkansas
NASA Astrophysics Data System (ADS)
1980-08-01
A solar heating system designed to supply a major portion of the space and water heating requirements for a restaurant is described. The restaurant has a floor space of approximately 4,650 square feet and requires approximate 1500 gallons of hot water daily. The solar energy system consists of 1,428 square feet of Chamberlain flat plate liquid collector subsystem, and a 1500 gallon storage subsystem circulating hot water producing 321 x 10 to the 6th power Btu/Yr (specified) building heating and hot water heating.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-31
... October 2015, the District will assume the responsibility for operation and maintenance of the Olmsted... Olmsted power plant and its continued operation. Principal components of the proposed project include... gallon equalization reservoir into the power plant configuration with potential impacts to the existing...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-11
... ethanol plant in Spiritwood, North Dakota, with a nameplate production capacity of 65 million gallons of... factor for the power plant when it is just generating electricity and not diverting steam to the Dakota... from the turbine, and applying the power plant's ``power only'' emissions factor to that value. The...
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF TRANSPORTATION MEDIUM- AND HEAVY-DUTY VEHICLE FUEL EFFICIENCY PROGRAM § 535.4 Definitions. The... fuel cell. Fuel efficiency means the amount of work performed for each gallon of fuel consumed. Good... engine or powertrain that includes energy storage features other than a conventional battery system or...
SSC_NASA Tests Upgraded Water System for the B-2 Test Stand - Highlights with Music
2017-12-04
On December 4, Stennis Space Center conducted a water flow test on the B-2 test stand to check the water system’s upgraded modifications in preparation for Space Launch System’s Core Stage testing. During a test, rocket engine fire and exhaust is redirected out of the stand by a large flame trench. For this test, the water deluge system, with the capability of flowing 335,000 gallons of water per minute, directed more than 240,000 gallons of water per minute through more than 32,000 5/32-inch holes in the B2 stand flame deflector, cooling the exhaust and protecting the trench from damage.
NASA Tests Upgraded Water System for Stennis Space Center's B-2 Test Stand
2017-12-04
On December 4, Stennis Space Center conducted a water flow test on the B-2 test stand to check the water system’s upgraded modifications in preparation for Space Launch System’s Core Stage testing. During a test, rocket engine fire and exhaust is redirected out of the stand by a large flame trench. For this test, the water deluge system, with the capability of flowing 335,000 gallons of water per minute, directed more than 240,000 gallons of water per minute through more than 32,000 5/32-inch holes in the B2 stand flame deflector, cooling the exhaust and protecting the trench from damage.
1976-01-01
This is a cutaway illustration of the Space Shuttle external tank (ET) with callouts. The giant cylinder, higher than a 15-story building, with a length of 154-feet (47-meters) and a diameter of 27.5-feet (8.4-meters), is the largest single piece of the Space Shuttle. During launch, the ET also acts as a backbone for the orbiter and solid rocket boosters. Separate pressurized tank sections within the external tank hold the liquid hydrogen fuel and liquid oxygen oxidizer for the Shuttle's three main engines. During launch, the ET feeds the fuel under pressure through 17-inch (43.2-centimeter) ducts that branch off into smaller lines that feed directly into the main engines. The main engines consume 64,000 gallons (242,260 liters) of fuel each minute. Machined from aluminum alloys, the Space Shuttle's external tank is currently the only part of the launch vehicle that is not reused. After its 526,000-gallons (1,991,071 liters) of propellants are consumed during the first 8.5-minutes of flight, it is jettisoned from the orbiter and breaks up in the upper atmosphere, its pieces falling into remote ocean waters. The Marshall Space Flight Center was responsible for developing the ET.
Analysis Of Technology Options To Reduce The Fuel Consumption Of Idling Trucks
DOT National Transportation Integrated Search
2000-06-01
Long-haul trucks idling overnight consume more than 838 million gallons (20 million barrels) of fuel annually. Idling also emits pollutants. Truck drivers idle their engines primarily to (1) heat or cool the cab and/or sleeper, (2) keep the fuel warm...
Estimated water use, by county, in North Carolina, 1990
Terziotti, Silvia; Schrader, Tony P.; Treece, M.W.
1994-01-01
Data on water use in North Carolina were compiled for 1990 as part of a cooperative agreement between the U.S. Geological Survey and the Division of Water Resources of the North Carolina Department of Environment, Health, and Natural Resources. Data were compiled from a number of Federal, State, and private sources for the offstream water-use categories of public supply, domestic, commercial, industrial, mining, livestock, irrigation, and thermoelectric-power generation. Data also were collected for instream use from hydroelectric facilities. Total estimated offstream water use in the State for 1990 was about 8,940 million gallons per day. About 95 percent of the water withdrawn was from surface-water sources. Thermoelectric-power generation accounted for about 81 percent of all withdrawals. Data for instream water use for hydroelectric-power generation also were compiled. This instream water use totaled about 66,900 million gallons per day. eAch water-use category is summarized in this report by county and source of water supply.
Oil Bypass Filter Technology Evaluation - Third Quarterly Report, April--June 2003
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurence R. Zirker; James E. Francfort
2003-08-01
This Third Quarterly report details the ongoing fleet evaluation of an oil bypass filter technology by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy’s FreedomCAR & Vehicle Technologies Program. Eight full-size, four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass filter systems from the PuraDYN Corporation. The reported engine lubricating oil-filtering capability (down to 0.1 microns) and additive package of the bypass filter system is intended to extend oil-drain intervals. To validate the extended oil-drain intervals, an oil-analysis regime monitors the presence of necessary additives inmore » the oil, detects undesirable contaminants and engine wear metals, and evaluates the fitness of the oil for continued service. The eight buses have accumulated 185,000 miles to date without any oil changes. The preliminary economic analysis suggests that the per bus payback point for the oil bypass filter technology should be between 108,000 miles when 74 gallons of oil use is avoided and 168,000 miles when 118 gallons of oil use is avoided. As discussed in the report, the variation in the payback point is dependant on the assumed cost of oil. In anticipation of also evaluating oil bypass systems on six Chevrolet Tahoe sport utility vehicles, the oil is being sampled on the six Tahoes to develop an oil characterization history for each engine.« less
14 CFR 25.1337 - Powerplant instruments.
Code of Federal Regulations, 2013 CFR
2013-01-01
... supplying reciprocating engines, at a point downstream of any fuel pump except fuel injection pumps. In... hazard. (b) Fuel quantity indicator. There must be means to indicate to the flight crewmembers, the quantity, in gallons or equivalent units, of usable fuel in each tank during flight. In addition— (1) Each...
14 CFR 25.1337 - Powerplant instruments.
Code of Federal Regulations, 2011 CFR
2011-01-01
... supplying reciprocating engines, at a point downstream of any fuel pump except fuel injection pumps. In... hazard. (b) Fuel quantity indicator. There must be means to indicate to the flight crewmembers, the quantity, in gallons or equivalent units, of usable fuel in each tank during flight. In addition— (1) Each...
14 CFR 25.1337 - Powerplant instruments.
Code of Federal Regulations, 2012 CFR
2012-01-01
... supplying reciprocating engines, at a point downstream of any fuel pump except fuel injection pumps. In... hazard. (b) Fuel quantity indicator. There must be means to indicate to the flight crewmembers, the quantity, in gallons or equivalent units, of usable fuel in each tank during flight. In addition— (1) Each...
14 CFR 25.1337 - Powerplant instruments.
Code of Federal Regulations, 2010 CFR
2010-01-01
... supplying reciprocating engines, at a point downstream of any fuel pump except fuel injection pumps. In... hazard. (b) Fuel quantity indicator. There must be means to indicate to the flight crewmembers, the quantity, in gallons or equivalent units, of usable fuel in each tank during flight. In addition— (1) Each...
14 CFR 25.1337 - Powerplant instruments.
Code of Federal Regulations, 2014 CFR
2014-01-01
... supplying reciprocating engines, at a point downstream of any fuel pump except fuel injection pumps. In... hazard. (b) Fuel quantity indicator. There must be means to indicate to the flight crewmembers, the quantity, in gallons or equivalent units, of usable fuel in each tank during flight. In addition— (1) Each...
2011-06-08
Construction of the A-3 Test Stand at Stennis Space Center continued June 8 with installation of a 35,000-gallon liquid oxygen tank atop the steel structure. The stand is being built to test next-generation rocket engines that will carry humans into deep space once more. The LOX tank and a liquid hydrogen tank to be installed atop the stand later will provide propellants for testing the engines. The A-3 Test Stand is scheduled for completion and activation in 2013.
CF6-6D engine performance deterioration
NASA Technical Reports Server (NTRS)
Wulf, R. H.; Kramer, W. H.; Pass, J. E.; Smith, J. J.
1980-01-01
Cruise cockpit recordings and test cell performance data in conjunction with hardware inspection data from airline overhaul shops were analyzed to define the extent and magnitude of performance deterioration of the General Electric CF6-6D model engine. These studies successfully isolated short-term deterioration from the longer term, and defined areas where a significant reduction in aircraft energy requirements for the 1980's can be realized. Unrestored losses which remain after engine refurbishment represent over 70% of the loss at engine shop visit. Sixty-three percent of the unrestored losses are cost-effective to restore which could reduce fuel consumed by CF6-6D engines in 1980 by 10.9 million gallons.
2000-09-12
KENNEDY SPACE CENTER, Fla. -- A long view of Launch Complex 39 is caught by the early morning sun. Left of center is Launch Pad 39A with Space Shuttle Discovery. At its left is the 300,000-gallon water tank that is part of the sound suppression system. Hoses from the tank can be seen coiling under the pad, next to the opening of the flame trench, part of the flame detector system. In the foreground is a retention pond; another is at right center. At far right, the ball-shaped structure is a 850,000-gallon storage tank for the cryogenic liquid oxygen, one of the propellants of the orbiter’s main engines. On the horizon can be seen the 525-foot tall Vehicle Assembly Building
Additive Manufacturing Thermal Performance Testing of Single Channel GRCop-84 SLM Components
NASA Technical Reports Server (NTRS)
Garcia, Chance P.; Cross, Matthew
2014-01-01
The surface finish found on components manufactured by sinter laser manufacturing (SLM) is rougher (0.013 - 0.0006 inches) than parts made using traditional fabrication methods. Internal features and passages built into SLM components do not readily allow for roughness reduction processes. Alternatively, engineering literature suggests that the roughness of a surface can enhance thermal performance within a pressure drop regime. To further investigate the thermal performance of SLM fabricated pieces, several GRCop-84 SLM single channel components were tested using a thermal conduction rig at MSFC. A 20 kW power source running at 25% duty cycle and 25% power level applied heat to each component while varying water flow rates between 2.1 - 6.2 gallons/min (GPM) at a supply pressure of 550 to 700 psi. Each test was allowed to reach quasi-steady state conditions where pressure, temperature, and thermal imaging data were recorded. Presented in this work are the heat transfer responses compared to a traditional machined OHFC Copper test section. An analytical thermal model was constructed to anchor theoretical models with the empirical data.
2010-10-01
An 80,000-gallon liquid hydrogen tank is placed at the A-3 Test Stand construction site on Sept. 24, 2010. The tank will provide propellant for tests of next-generation rocket engines at the stand. It will be placed upright on top of the stand, helping to increase the overall height to 300 feet. Once completed, the A-3 Test Stand will enable operators to test rocket engines at simulated altitudes of up to 100,000 feet. The A-3 stand is the first large rocket engine test structure to be built at Stennis Space Center since the 1960s.
2010-09-24
A 35,000-gallon liquid oxygen tank is placed at the A-3 Test Stand construction site on Sept. 24, 2010. The tank will provide propellant for tests of next-generation rocket engines at the stand. It will be placed upright on top of the stand, helping to increase the overall height to 300 feet. Once completed, the A-3 Test Stand will enable operators to test rocket engines at simulated altitudes of up to 100,000 feet. The A-3 stand is the first large rocket engine test structure to be built at Stennis Space Center since the 1960s.
Estimated use of water in the United States - 1950
MacKichan, Kenneth Allen
1951-01-01
An estimated 170,000 million gallons of water was withdrawn from the ground, lakes, or streams each day on the average during 1950 and used on the farms and in the homes, factories, and business establishments of the United States. An additional 1,100,000 million gallons per day was used to generate hydro-power. Water power is the largest user of water; however, irrigation and industry also are large users of both ground and surface water. More surface water was used for industrial purposes than for irrigation, whereas more ground water was used for irrigation than for industrial purposes (fig. 1). The total withdrawal of surface water was considerably in excess of ground-water withdrawal, as shown by figure 1. Large quantities of water were used also for purposes requiring no diversion, such as navigation, waste disposal, recreation, and support of wildlife.
Moving, Moving, Moving- A Giant Rocket Fuel Tank
2016-10-07
Technicians moved a giant fuel tank from the Vertical Assembly Center where the tank recently completed friction stir welding to an adjacent work area at NASA's Michoud Assembly Facility in New Orleans. More than 1.7 miles of welds have been completed for core stage hardware at Michoud. This liquid hydrogen fuel tank is the largest piece of the core stage that will provide the fuel for the first flight of NASA's new rocket, the Space Launch System, with the Orion spacecraft in 2018. The tank is more than 130 feet long, and together with the liquid oxygen tank holds 733,000 gallons of propellant to feed the vehicle's four RS-25 engines to produce a total of 2 million pounds of thrust. SLS will have the power and capacity to carry humans to Mars. For more information on the core stage: http://www.nasa.gov/exploration/syste... Video Credit: NASA/MAF/Eric Bordelon
Engineers conduct key water test for A-3 stand
NASA Technical Reports Server (NTRS)
2009-01-01
Water cascades from the A-2 Test Stand at Stennis Space Center as engineers challenge the limits of the high-pressure water system as part of the preparation process for the A-3 Test Stand under construction. Jeff Henderson, test director for Stennis' A Complex, led a series of tests Nov. 16-20, flowing water simultaneously on the A-1 and A-2 stands, followed by the A-1 and B-1 stands, to determine if the high-pressure industrial water facility pumps and the existing pipe system can support the needs of the A-3 stand. The stand is being built to test rocket engines that will carry astronauts beyond low-Earth orbit and will need about 300,000 gallons of water per minute when operating, but the Stennis system never had been tested to that level. The recent tests were successful in showing the water facility pumps can operate at that capacity - reaching 318,000 gallons per minute in one instance. However, officials continue to analyze data to determine if the system can provide the necessary pressure at that capacity and if the delivery system piping is adequate. 'We just think if there's a problem, it's better to identify and address it now rather than when A-3 is finished and it has to be dealt with,' Henderson said.
1983-07-01
This photograph was taken during the final assembly phase of the Space Shuttle light weight external tanks (LWT) 5, 6, and 7 at the Michoud Assembly Facility in New Orleans, Louisiana. The giant cylinder, higher than a 15-story building, with a length of 154-feet (47-meters) and a diameter of 27.5-feet (8.4-meters), is the largest single piece of the Space Shuttle. During launch, the external tank (ET) acts as a backbone for the orbiter and solid rocket boosters. In separate, internal pressurized tank sections, the ET holds the liquid hydrogen fuel and liquid oxygen oxidizer for the Shuttle's three main engines. During launch, the ET feeds the fuel under pressure through 17-inch (43.2-centimeter) ducts which branch off into smaller lines that feed directly into the main engines. Some 64,000 gallons (242,260 liters) of fuel are consumed by the main engines each minute. Machined from aluminum alloys, the Space Shuttle's ET is the only part of the launch vehicle that currently is not reused. After its 526,000 gallons (1,991,071 liters) of propellants are consumed during the first 8.5 minutes of flight, it is jettisoned from the orbiter and breaks up in the upper atmosphere, its pieces falling into remote ocean waters. The Marshall Space Flight Center was responsible for developing the ET
1989-03-01
This STS-29 mission onboard photo depicts the External Tank (ET) falling toward the ocean after separation from the Shuttle orbiter Discovery. The giant cylinder, higher than a 15-story building, with a length of 154-feet (47-meters) and a diameter of 27,5-feet (8.4-meters), is the largest single piece of the Space Shuttle. During launch, the ET also acts as a backbone for the orbiter and solid rocket boosters. In separate, internal pressurized tank sections, the ET holds the liquid hydrogen fuel and liquid oxygen oxidizer for the Shuttle's three main engines. During launch, the ET feeds the fuel under pressure through 17-inch (43.2-centimeter) ducts which branch off into smaller lines that feed directly into the main engines. Some 64,000 gallons (242,260 liters) of fuel are consumed by the main engines each minute. Machined from aluminum alloys, the Space Shuttle's ET is the only part of the launch vehicle that currently is not reused. After its 526,000 gallons (1,991,071 liters) of propellants are consumed during the first 8.5 minutes of flight, it is jettisoned from the orbiter and breaks up in the upper atmosphere, its pieces falling into remote ocean waters. The Marshall Space Flight Center was responsible for developing the ET.
1978-01-01
around 100 miles. With two Lockheed external 165-gallon tanks (and a full rocket load ) it was only 225 miles. Lieutenants Edward R. Johnston and...start. 12 While waiting for acceptable engines, North American had to bear the expense of storing unequipped F-82 airframes.13 The situation grew so bad...secure a suitable airframe for the GE TG-180 axial flow gas turbine engine, that the Air Technical Service Command of the Army Air Forces was
Manufacturing vegetable oil based biodiesel: An engineering management perspective
USDA-ARS?s Scientific Manuscript database
According to the USDA, 6.45 million tons of cottonseed was produced in 2007. Each ton will yield approximately 44 to 46 gallons unrefined oil. Cottonseed oil bio-diesel could have the potential to create a more competitive oil market for oil mills. The proposed cost model is based on an existing cot...
14 CFR 23.971 - Fuel tank sump.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ground and flight attitudes, of 0.25 percent of the tank capacity, or 1/16 gallon, whichever is greater... to its sump with the airplane in the normal ground attitude. (c) Each reciprocating engine fuel... normal flight attitude, water will drain from all parts of the tank except the sump to the sediment bowl...
Estimated water use in Puerto Rico, 2010
Molina-Rivera, Wanda L.
2014-01-01
Water-use data were aggregated for the 78 municipios of the Commonwealth of Puerto Rico for 2010. Five major offstream categories were considered: public-supply water withdrawals and deliveries, domestic and industrial self-supplied water use, crop-irrigation water use, and thermoelectric-power freshwater use. One instream water-use category also was compiled: power-generation instream water use (thermoelectric saline withdrawals and hydroelectric power). Freshwater withdrawals for offstream use from surface-water [606 million gallons per day (Mgal/d)] and groundwater (118 Mgal/d) sources in Puerto Rico were estimated at 724 million gallons per day. The largest amount of freshwater withdrawn was by public-supply water facilities estimated at 677 Mgal/d. Public-supply domestic water use was estimated at 206 Mgal/d. Fresh groundwater withdrawals by domestic self-supplied users were estimated at 2.41 Mgal/d. Industrial self-supplied withdrawals were estimated at 4.30 Mgal/d. Withdrawals for crop irrigation purposes were estimated at 38.2 Mgal/d, or approximately 5 percent of all offstream freshwater withdrawals. Instream freshwater withdrawals by hydroelectric facilities were estimated at 556 Mgal/d and saline instream surface-water withdrawals for cooling purposes by thermoelectric-power facilities was estimated at 2,262 Mgal/d.
Estimated water use and general hydrologic conditions for Oregon, 1985 and 1990
Broad, T.M.; Collins, C.A.
1996-01-01
Water-use information is vital to planners, engineers, and hydrologists in water resources. This report is a compilation of water-use information for Oregon for calendar years 1985 and 1990. The report presents water-use data by geographic region for several categories of use, including public supply, domestic, commercial, industrial, mining, thermoelectric power, hydroelectric power, live-stock, irrigation, reservoir evaporation, and wastewater treatment. Hydroelectric power is the only instream use discussed; all other uses are considered offstream. The Appendix presents 1985 and 1990 data by region and by drainage basin for the previously mentioned categories of use. The Cascade Range divides Oregon into two distinct climatic zones. The area west of the Cascade Range has an average annual precipitation that ranges from 40 to 200 inches, and precipitation in the area east of the Cascade Range ranges from 10 to 20 inches. The differences in precipitation and geology have an effect on the sources, uses, and amounts of water withdrawn. Most of the large public-supply systems west of the Cascade Range rely on surface water, whereas many of the large public-supply systems east of the Cascade Range use on wells or springs. Irrigators west of the Cascade Range rely primarily on nearby surface- water sources; however, irrigators east of the Cascade Range use primarily surface water that commonly is delivered from distant sources through irrigation ditches. A variety of methods was used to estimate water-use information. Most withdrawals for public-water suppliers were metered; however, irrigation withdrawals usually were estimated by using information on crops, climate, application efficiencies, and conveyance losses. The accuracy of the estimated total withdrawal values for public supply was estimated to be within 4 percent of the values that would be obtained if all public-supply withdrawals were metered. Total withdrawals for irrigation were estimated to be within 40 percent of metered irrigation withdrawals. The estimates-of-error are presented to show the relative, rather than absolute, accuracy of the data for each water-use category. A total of 8,400 million gallons of water per day was withdrawn in Oregon during 1990, about 1,900 million gallons per day more than the 6,500 million gallons per day withdrawn in 1985. Whereas actual water use increased in 1990, the major differences between 1985 and 1990 were attributed to the inclusion of offstream fish hatcheries, the use of different crop coefficients to estimate irrigation, and the availability of more detailed information in the 1990 estimates. Surface-water withdrawals accounted for 92 percent of the total withdrawals in 1990; irrigation was the largest category of water use, accounting for 82 percent of the total withdrawals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, D.J.
1989-12-31
Aero Precision Engineering Corp. is a small screw machine shop which produces precision parts for industry located in St. Paul Park, MN. The project focused on identifying satisfactory water-based substitutes for trichloroethylene (TCE) used both as a vapor degreaser and as a cold solvent in a small covered container. At the time of the project, the company used about 500 gallons of trichloroethylene with approximately 165 gallons shipped off site as waste annually. The solvent was used primarily to remove cutting oil and metal chips from production parts. In identifying a standard for evaluating alterantives to the solvent for cleaning,more » it was noted that parts cleaned in the cold bucket were definitely not as clean as those cleaned in the vapor degreaser.« less
NASA Technical Reports Server (NTRS)
Crow, Steven
1996-01-01
Flying cars have nearly mythical appeal to nonpilots, a group that includes almost the whole human race. The appeal resides in the perceived utility of flying cars, vehicles that offer portal-to-portal transportation, yet break the bonds of road and traffic and travel freely through the sky at the drivers will. Part of the appeal is an assumption that flying cars can be as easy to fly as to drive. Flying cars have been part of the dream of aviation since the dawn of powered flight. Glenn Curtiss built, displayed, and maybe even flew a flying car in 1917, the Curtiss Autoplane. Many roadable airplanes were built in the 1930's, like the Waterman Arrowbile and the Fulton Airphibian. Two flying cars came close to production in the early 1950's. Ted Hall built a series of flying cars culminating in the Convaircar, sponsored by Consolidated Vultee, General Motors, and Hertz. Molt Taylor built and certified his Aerocar, and Ford came close to producing them. Three Aerocars are still flyable, two in museums in Seattle and Oshkosh, and the third owned and flown by Ed Sweeny. Flying cars do have problems, which so far have prevented commercial success. An obvious problem is complexity of the vehicle, the infrastructure, or both. Another is the difficulty of matching low power for normal driving with high power in flight. An automobile uses only about 20 hp at traffic speeds, while a personal airplane needs about 160 hp at speeds typical of flight. Many automobile engines can deliver 160 hp, but not for very long. A more subtle issue involves the drag of automobiles and airplanes. A good personal airplane can fly 30 miles per gallon of fuel at 200 mph. A good sports car would need 660 hp at the same speed and would travel only 3 miles per gallon. The difference is drag area, about 4.5 sq ft for the automobile and 1.4 sq ft for the airplane. A flying car better have the drag area of the airplane, not the car!
Credit WCT. Photographic copy of photograph, oxidizer and fuel tank ...
Credit WCT. Photographic copy of photograph, oxidizer and fuel tank assembly for engine tests being raised by crane for permanent installation in Test Stand "D" tower. Each tank held 170 gallons of propellants. (JPL negative 384-2029-B, 7 August 1959) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
Modeling and simulation of large scale stirred tank
NASA Astrophysics Data System (ADS)
Neuville, John R.
The purpose of this dissertation is to provide a written record of the evaluation performed on the DWPF mixing process by the construction of numerical models that resemble the geometry of this process. There were seven numerical models constructed to evaluate the DWPF mixing process and four pilot plants. The models were developed with Fluent software and the results from these models were used to evaluate the structure of the flow field and the power demand of the agitator. The results from the numerical models were compared with empirical data collected from these pilot plants that had been operated at an earlier date. Mixing is commonly used in a variety ways throughout industry to blend miscible liquids, disperse gas through liquid, form emulsions, promote heat transfer and, suspend solid particles. The DOE Sites at Hanford in Richland Washington, West Valley in New York, and Savannah River Site in Aiken South Carolina have developed a process that immobilizes highly radioactive liquid waste. The radioactive liquid waste at DWPF is an opaque sludge that is mixed in a stirred tank with glass frit particles and water to form slurry of specified proportions. The DWPF mixing process is composed of a flat bottom cylindrical mixing vessel with a centrally located helical coil, and agitator. The helical coil is used to heat and cool the contents of the tank and can improve flow circulation. The agitator shaft has two impellers; a radial blade and a hydrofoil blade. The hydrofoil is used to circulate the mixture between the top region and bottom region of the tank. The radial blade sweeps the bottom of the tank and pushes the fluid in the outward radial direction. The full scale vessel contains about 9500 gallons of slurry with flow behavior characterized as a Bingham Plastic. Particles in the mixture have an abrasive characteristic that cause excessive erosion to internal vessel components at higher impeller speeds. The desire for this mixing process is to ensure the agitation of the vessel is adequate to produce a homogenous mixture but not so high that it produces excessive erosion to internal components. The main findings reported by this study were: (1) Careful consideration of the fluid yield stress characteristic is required to make predictions of fluid flow behavior. Laminar Models can predict flow patterns and stagnant regions in the tank until full movement of the flow field occurs. Power Curves and flow patterns were developed for the full scale mixing model to show the differences in expected performance of the mixing process for a broad range of fluids that exhibit Herschel--Bulkley and Bingham Plastic flow behavior. (2) The impeller power demand is independent of the flow model selection for turbulent flow fields in the region of the impeller. The laminar models slightly over predicted the agitator impeller power demand produced by turbulent models. (3) The CFD results show that the power number produced by the mixing system is independent of size. The 40 gallon model produced the same power number results as the 9300 gallon model for the same process conditions. (4) CFD Results show that the Scale-Up of fluid motion in a 40 gallon tank should compare with fluid motion at full scale, 9300 gallons by maintaining constant impeller Tip Speed.
Water Use in Oklahoma 1950-2005
Tortorelli, Robert L.
2009-01-01
Comprehensive planning for water resources development and use in Oklahoma requires a historical perspective on water resources. The U.S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, summarized the 1950-2005 water-use information for Oklahoma. This report presents 1950-2005 estimates of freshwater withdrawal for water use in Oklahoma by source and category in 5-year intervals. Withdrawal source was either surface water or groundwater. Withdrawal categories include: public supply, irrigation, livestock and aquaculture, thermoelectric-power generation (cooling water), domestic and commercial, and industrial and mining. Withdrawal data were aggregated and tabulated by county, major river basin, and principal aquifer. The purpose of this report is to summarize water-use data in Oklahoma through: (1) presentation of detailed information on freshwater withdrawals by source, county, major river basin, and principal aquifer for 2005; (2) comparison of water use by source, category, major river basin, and principal aquifer at 5-year intervals from 1990-2005; and (3) comparison of water use on a statewide basis by source and category at 5-year intervals from 1950-2005. Total withdrawals from surface-water and groundwater sources during 2005 were 1,559 million gallons per day-989 million gallons a day or 63 percent from surface-water sources and 570 million gallons per day or 37 percent from groundwater sources. The three largest water use categories were: public supply, 646 million gallons per day or 41 percent of total withdrawals; irrigation, 495 million gallons per day or 32 percent of total withdrawals; and livestock and aquaculture, 181 million gallons per day or 12 percent of total withdrawals. All other categories were 237 million gallons per day or 15 percent of total withdrawals. The influence of public supply on the total withdrawals can be seen in the eastern two-thirds of Oklahoma; whereas, the influence of irrigation on total withdrawals can be seen in the western third of Oklahoma. Surface-water sources were dominant in the eastern half of Oklahoma and groundwater sources were dominant in the western half of Oklahoma. Public supply withdrawals increased steadily from 1990-2000 and then decreased slightly in 2005, mainly because of a decrease in surface-water withdrawals. Irrigation withdrawals increased from 1990-1995 and then decreased steadily to 2005. Total livestock and aquaculture withdrawals steadily increased from 1990-2005. The largest increase in the other categories was for thermoelectric power generation that has steadily increased and almost doubled from 1990-2005. Surface-water sources have been increasing in importance from 1950-2005, in part because of the increasing percentage of surface-water for public supply as the total population of Oklahoma and population served by surface-water sources increased. Groundwater sources have been generally decreasing in importance as a percentage of total withdrawals in recent years. However, the magnitude of groundwater withdrawals was greatly dependent on irrigation withdrawals and specifically irrigated acreage in the panhandle.
An analysis of strategic price setting in retail gasoline markets
NASA Astrophysics Data System (ADS)
Jaureguiberry, Florencia
This dissertation studies price-setting behavior in the retail gasoline industry. The main questions addressed are: How important is a retail station's brand and proximity to competitors when retail stations set price? How do retailers adjust their pricing when they cater to consumers who are less aware of competing options or have less discretion over where they purchase gasoline? These questions are explored in two separate analyses using a unique datasets containing retail pricing behavior of stations in California and in 24 different metropolitan areas. The evidence suggests that brand and location generate local market power for gasoline stations. After controlling for market and station characteristics, the analysis finds a spread of 11 cents per gallon between the highest and the lowest priced retail gasoline brands. The analysis also indicates that when the nearest competitor is located over 2 miles away as opposed to next door, consumers will pay an additional 1 cent per gallon of gasoline. In order to quantify the significance of local market power, data for stations located near major airport rental car locations are utilized. The presumption here is that rental car users are less aware or less sensitive to fueling options near the rental car return location and are to some extent "captured consumers". Retailers located near rental car locations have incentives to adjust their pricing strategies to exploit this. The analysis of pricing near rental car locations indicates that retailers charge prices that are 4 cent per gallon higher than other stations in the same metropolitan area. This analysis is of interest to regulators who are concerned with issues of consolidation, market power, and pricing in the retail gasoline industry. This dissertation concludes with a discussion of the policy implications of the empirical analysis.
1965-04-16
This photograph depicts a dramatic view of the first test firing of all five F-1 engines for the Saturn V S-IC stage at the Marshall Space Flight Center. The testing lasted a full duration of 6.5 seconds. It also marked the first test performed in the new S-IC static test stand and the first test using the new control blockhouse. The S-IC stage is the first stage, or booster, of a 364-foot long rocket that ultimately took astronauts to the Moon. Operating at maximum power, all five of the engines produced 7,500,000 pounds of thrust. Required to hold down the brute force of a 7,500,000-pound thrust, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and cement, planted down to bedrock 40 feet below ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the up position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. When the Saturn V S-IC first stage was placed upright in the stand , the five F-1 engine nozzles pointed downward on a 1,900 ton, water-cooled deflector. To prevent melting damage, water was sprayed through small holes in the deflector at the rate 320,000 gallons per minute.
Community Anaerobic Digester: Powered by Students and Driving Practical Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richmond Hall, Joan; O'Leary, Mary
The Vermont Tech Community Anaerobic Digester (VTCAD) was conceived and funded by a partnership of educational, agricultural, waste management and environmental groups to create a living laboratory demonstrating the value of recycling nutrients, renewable energy and agricultural co-products from organic wastes. VTCAD was constructed on the Randolph Center, Vermont campus of Vermont Tech, a public college offering engineering technology, agricultural, renewable energy education and workforce training. With funding from the U.S. Department of Energy (DOE), the Vermont State Colleges and others, construction was completed in early 2014 and the facility has been operational since April 2014. At full power, VTCADmore » uses 16,000 gallons of manure and organic residuals to produce 8,880 kilowatt hours (kWh) of electricity per day, ‘waste’ heat that will be used to heat four campus buildings, bedding material for the college dairy herds and recycled nutrients used as crop fertilizer. VTCAD uses a mixture of manure from co-managed farms and organic residuals collected from the community. Feedstock materials include brewery residuals, the glycerol by-product of biodiesel production from waste cooking oil, grease trap waste, and waste paper and, soon, locally collected pre- and post-consumer food residuals.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... adjustment of its 2004-2007 per-gallon cap standard? 80.271 Section 80.271 Protection of Environment...-2007 per-gallon cap standard? (a) EPA may in its discretion adjust the small refiner per-gallon cap... that the per-gallon cap creates; (2) The refiner's proposed adjusted per-gallon cap standard and the...
NASA Technical Reports Server (NTRS)
Golladay, Richard L.; Gendler, Stanley L.
1947-01-01
An investigation has been conducted in the Cleveland altitude wind tunnel to determine the operational characteristics of the I-40 jet-propulsion engine over a range of pressure altitudes from 10,000 to 50,000 feet and ram-pressure ratios from 1.00 to 1.76. Engine operational data were obtained with the engine in the standard configuration and with various modifications of the fuel system, the electrical system, and the combustion chambers. The effects of altitude and airspeed on operating speed range, starting, windmilli.ng, acceleration, speed regulation, cooling, and vibration of the standard and modified engines were determined, and damage to parts was noted. Maximum engine speed was obtainable at all altitudes and airspeeds wi th each fuel-control system investigated. The minimum idling speed was raised by increases in altitude and airspeed. The lowest minimum stable speeds were obtained with the standard configuration using 40-gallon nozzles with individual metering plugs. The engine was started normally at altitudes as high as 20,000 feet with all of the fuel systems and ignition combinations except one. Ignition at 70,000 feet was difficult and, although successful ignition occurred, acceleration was slow and usually characterized by excessive tail-pipe temperature. During windmilling investigations of the engine equipped with the standard fuel system, the engine could not be started at ram-pressure ratios of 1.1 to 1.7 at altitudes of 10,000, 20,000 and 30,000 feet. When equipped with the production barometric and Monarch 40-gallon nozzles, the engine accelerated in 12 seconds from an engine speed of 6000 rpm to 11,000 rpm at 20,000 feet and an average tail-pipe temperature of 11000 F. At the same altitude and temperature, all the engine configurations had approximately the same rate of acceleration. The Woodward governor produced the safest accelerations, inasmuch as it could be adjusted to automatically prevent acceleration blow out. The engine speed was held constant by the Woodward governor and the Edwards regulator during simulated dives and climbs at constant throttle position. The bearing cooling system was satisfactory at all altitudes and airspeeds. The engines operated without serious failure, although the exhaust cone, the tail pipe, and the airplane fuselage were damaged during altitude starts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Splitter, Derek A; Szybist, James P
2013-01-01
The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in midlevel alcohol gasoline blends with 24% vol/vol isobutanol gasoline (IB24) and 30% vol/vol ethanol gasoline (E30). A single-cylinder research engine was used with an 11.85:1 compression ratio, hydraulically actuated valves, laboratory intake air, and was capable of external exhaust gas recirculation (EGR). Experiments were conducted with all fuels to full-load conditions with = 1, using both 0% and 15% external cooled EGR. Higher octane number biofuel blends exhibited increased stoichiometric torque capability at this compression ratio, where the unique properties of ethanolmore » enabled a doubling of the stoichiometric torque capability with E30 as compared to 87 AKI, up to 20 bar IMEPg (indicated mean effective pressure gross) at = 1. EGR provided thermodynamic advantages and was a key enabler for increasing engine efficiency for all fuel types. However, with E30, EGR was less useful for knock mitigation than gasoline or IB24. Torque densities with E30 with 15% EGR at = 1 operation were similar or better than a modern EURO IV calibration turbo-diesel engine. The results of the present study suggest that it could be possible to implement a 40% downsize + downspeed configuration (1.2 L engine) into a representative midsize sedan. For example, for a midsize sedan at a 65 miles/h cruise, an estimated fuel consumption of 43.9 miles per gallon (MPG) (engine out 102 g-CO2/km) could be achieved with similar reserve power to a 2.0 L engine with 87AKI (38.6 MPG, engine out 135 g-CO2/km). Data suggest that, with midlevel alcohol gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol gasoline blends and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.« less
Estimated freshwater withdrawals in Washington, 2010
Lane, Ron C.; Welch, Wendy B.
2015-03-18
The amount of public- and self-supplied water used for domestic, irrigation, livestock, aquaculture, industrial, mining, and thermoelectric power was estimated for state, county, and eastern and western regions of Washington during calendar year 2010. Withdrawals of freshwater for offstream uses were estimated to be about 4,885 million gallons per day. The total estimated freshwater withdrawals for 2010 was approximately 15 percent less than the 2005 estimate because of decreases in irrigation and thermoelectric power withdrawals.
Fukushima Nuclear Crisis Recovery: A Modular Water Treatment System Deployed in Seven Weeks - 12489
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denton, Mark S.; Mertz, Joshua L.; Bostick, William D.
2012-07-01
On March 11, 2011, the magnitude 9.0 Great East Japan earthquake, Tohoku, hit off the Fukushima coast of Japan. This was one of the most powerful earthquakes in recorded history and the most powerful one known to have hit Japan. The ensuing tsunami devastated a huge area resulting in some 25,000 persons confirmed dead or missing. The perfect storm was complete when the tsunami then found the four reactor, Fukushima-Daiichi Nuclear Station directly in its destructive path. While recovery systems admirably survived the powerful earthquake, the seawater from the tsunami knocked the emergency cooling systems out and did extensive damagemore » to the plant and site. Subsequent hydrogen generation caused explosions which extended this damage to a new level and further flooded the buildings with highly contaminated water. Some 2 million people were evacuated from a fifty mile radius of the area and evaluation and cleanup began. Teams were assembled in Tokyo the first week of April to lay out potential plans for the immediate treatment of some 63 million gallons (a number which later exceeded 110 million gallons) of highly contaminated water to avoid overflow from the buildings as well as supply the desperately needed clean cooling water for the reactors. A system had to be deployed with a very brief cold shake down and hot startup before the rainy season started in early June. Joined by team members Toshiba (oil removal system), AREVA (chemical precipitation system) and Hitachi-GE (RO system), Kurion (cesium removal system following the oil separator) proposed, designed, fabricated, delivered and started up a one of a kind treatment skid and over 100 metric tons of specially engineered and modified Ion Specific Media (ISM) customized for this very challenging seawater/oil application, all in seven weeks. After a very short cold shake down, the system went into operation on June 17, 2011 on actual waste waters far exceeding 1 million Bq/mL in cesium and many other isotopes. One must remember that, in addition to attempting to do isotope removal in the competition of seawater (as high as 18,000 ppm sodium due to concentration), some 350,000 gallons of turbine oil was dispersed into the flooded buildings as well. The proposed system consisted of a 4 guard vessel skid for the oil and debris, 4 skids containing 16 cesium towers in a lead-lag layout with removable vessels (sent to an interim storage facility), and a 4 polishing vessel skid for iodine removal and trace cesium levels. At a flow rate of at least 220 gallons per minute, the system has routinely removed over 99% of the cesium, the main component of the activity, since going on line. To date, some 50% of the original activity has been removed and stabilized and cold shutdown of the plant was announced on December 10, 2011. In March and April alone, 10 cubic feet of Engineered Herschelite was shipped to Seabrook Nuclear Power Plant, NPP, to support the April 1, 2011 outage cleanup; 400 cubic feet was shipped to Oak Ridge National Laboratory (ORNL) for strontium (Sr-90) ground water remediation; and 6000 cubic feet (100 metric tons, MT, or 220,400 pounds) was readied for the Fukushima Nuclear Power Station with an additional 100 MT on standby for replacement vessels. This experience and accelerated media production in the U.S. bore direct application to what was to soon be used in Fukushima. How such a sophisticated and totally unique system and huge amount of media could be deployable in such a challenging and changing matrix, and in only seven weeks, is outlined in this paper as well as the system and operation itself. As demonstrated herein, all ten major steps leading up to the readiness and acceptance of a modular emergency technology recovery system were met and in a very short period of time, thus utilizing three decades of experience to produce and deliver such a system literally in seven weeks: - EPRI - U.S. Testing and Experience Leading to Introduction to EPRI - Japan and Subsequently TEPCO Emergency Meetings - Three Mile Island (TMI) Media and Vitrification Experience by PNNL - Commercial Nuclear Power Plant Media Experience (including long term Cs removal) - DOE Low Active Waste (LAW) and High Level Waste (HLW) in High Salt and pH Conditions Media and Vitrification Experience - National Laboratory (e.g. Oak Ridge National Laboratory, ORNL) Ground Water Media Experience - Gulf Oil Spill Media Experience in Seawater - All Media Had to be Fully Tested at High Rad Levels in Seawater and Oil Before Arriving in Japan - Final Waste Form and Disposal Experience (e.g., vitrification) - 100 Metric Tons (6000 cubic feet or 220,400 pounds) of Media had to be Immediately Available with the same amount in production as replacement media. [To date, for 2011, 400 MT of media have been prepared for Japan alone.] - Remote Operation, Modular Water Treatment Equipment Design and Fabrication in both Commercial NPP and DOE Canyon Operations. (authors)« less
Cost analysis of ground-water supplies in the North Atlantic region, 1970
Cederstrom, Dagfin John
1973-01-01
The cost of municipal and industrial ground water (or, more specifically, large supplies of ground water) at the wellhead in the North Atlantic Region in 1970 generally ranged from 1.5 to 5 cents per thousand gallons. Water from crystalline rocks and shale is relatively expensive. Water from sandstone is less so. Costs of water from sands and gravels in glaciated areas and from Coastal Plain sediments range from moderate to very low. In carbonate rocks costs range from low to fairly high. The cost of ground water at the wellhead is low in areas of productive aquifers, but owing to the cost of connecting pipe, costs increase significantly in multiple-well fields. In the North Atlantic Region, development of small to moderate supplies of ground water may offer favorable cost alternatives to planners, but large supplies of ground water for delivery to one point cannot generally be developed inexpensively. Well fields in the less productive aquifers may be limited by costs to 1 or 2 million gallons a day, but in the more favorable aquifers development of several tens of millions of gallons a day may be practicable and inexpensive. Cost evaluations presented cannot be applied to any one specific well or specific site because yields of wells in any one place will depend on the local geologic and hydrologic conditions; however, with such cost adjustments as may be necessary, the methodology presented should have wide applicability. Data given show the cost of water at the wellhead based on the average yield of several wells. The cost of water delivered by a well field includes costs of connecting pipe and of wells that have the yields and spacings specified. Cost of transport of water from the well field to point of consumption and possible cost of treatment are not evaluated. In the methodology employed, costs of drilling and testing, pumping equipment, engineering for the well field, amortization at 5% percent interest, maintenance, and cost of power are considered. The report includes an analysis of test drilling costs leading to a production well field. The discussion shows that test drilling is a relatively low cost item and that more than a minimum of test holes in a previously unexplored area is, above all, simple insurance in keeping down costs and may easily result in final lower costs for the system. Use of the jet drill for testing is considered short sighted and may result in higher total costs and possibly failure to discover good aquifers. Economic development of ground water supplies will depend on obtaining qualified hydrologic and engineering advice, on carrying out adequate test drilling, and on utilizing high-quality (at times, more costly) material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knutson, Chad; Dastgheib, Seyed A.; Yang, Yaning
2012-07-01
Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO 2 enhanced oil recovery (CO 2-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that producedmore » water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO 2-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter ($15 to $60 per 1000 gallons), with treatment costs accounting for 13-23% of the overall cost. Results from this project suggest that produced water is a potential large source of cooling water, but treatment and transportation costs for this water are large.« less
Alternative Fuels Data Center: Utah Transportation Data for Alternative
Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon Source: BioFuels Atlas from the National Renewable Energy Laboratory Case Studies Video thumbnail for /gallon $2.42/GGE $2.50/gallon $2.50/GGE Diesel $2.82/gallon $2.54/GGE $2.96/gallon $2.66/GGE Source
New perspectives for advanced automobile diesel engines
NASA Technical Reports Server (NTRS)
Tozzi, L.; Sekar, R.; Kamo, R.; Wood, J. C.
1983-01-01
Computer simulation results are presented for advanced automobile diesel engine performance. Four critical factors for performance enhancement were identified: (1) part load preheating and exhaust gas energy recovery, (2) fast heat release combustion process, (3) reduction in friction, and (4) air handling system efficiency. Four different technology levels were considered in the analysis. Simulation results are compared in terms of brake specific fuel consumption and vehicle fuel economy in km/liter (miles per gallon). Major critical performance sensitivity areas are: (1) combustion process, (2) expander and compressor efficiency, and (3) part load preheating and compound system. When compared to the state of the art direct injection, cooled, automobile diesel engine, the advanced adiabatic compound engine concept showed the unique potential of doubling the fuel economy. Other important performance criteria such as acceleration, emissions, reliability, durability and multifuel capability are comparable to or better than current passenger car diesel engines.
Alternative Fuels Data Center: Nevada Transportation Data for Alternative
. Gasoline Diesel Natural Gas Electricity Transportation Fuel Consumption Source: State Energy Data System Renewable Power Plant Capacity (nameplate, MW) 1,684 Source: BioFuels Atlas from the National Renewable Source: Average prices per gasoline gallon equivalent (GGE) for the West Coast PADD from the Alternative
10 CFR 51.53 - Postconstruction environmental reports.
Code of Federal Regulations, 2013 CFR
2013-01-01
... more than 100 gallons (total onsite) of ground water per minute, an assessment of the impact of the... report is not required to include discussion of need for power or the economic costs and economic benefits of the proposed action or of alternatives to the proposed action except insofar as such costs and...
10 CFR 51.53 - Postconstruction environmental reports.
Code of Federal Regulations, 2012 CFR
2012-01-01
... more than 100 gallons (total onsite) of ground water per minute, an assessment of the impact of the... report is not required to include discussion of need for power or the economic costs and economic benefits of the proposed action or of alternatives to the proposed action except insofar as such costs and...
municipal recreation center is heated and cooled by solar energy
NASA Technical Reports Server (NTRS)
1981-01-01
Major fraction of energy requirements for community building is ksupplied by Sun. The 238 flat plate solar collectors are roof mounted on single story structure enclosing gymnasium, locker area, and health care clinic; heat exchanger transfers collected energy to 6,000 gallon storage tank. Final report chronicles project from inception to completion, documenting performance, costs, operating modes, and data acquisition system. Appendix contains manufacturers' product literature and engineering drawings.
Estimated use of water in the United States, 1965
Murray, Charles Richard
1968-01-01
Estimates of water use in the United States for 1965 indicate that an average of about 310 bgd (billion gallons per day) were withdrawn for public-supply, rural domestic and livestock, irrigation, and industrial (including thermoelectric power)uses--that is, about 1,600 gallons per capita per day. This represents an increase of 15 percent over the withdrawal of 270 bgd reported for 1960. Fresh water withdrawals for thermoelectric power generation increased nearly 25 percent during the 5 years, and saline water withdrawals increased 33 percent. An additional 2,300 bgd was used for hydroelectric power generation (waterpower), which also represented a 15-percent increase in 5 years. The quantity of water consumed-that is, water made unavailable for further possible withdrawal because of evaporation, incorporation in manufactured products, and other causes - was estimated to average 78 bgd for 1965, an increase of about 28 percent since 1960.Estimates made of the quantities of water withdrawn from surface and ground-water sources indicate withdrawals of 61 bgd of ground water, of which nearly 0.5 bgd was saline, and 250 bgd of surface water, of which 44 bgd was saline. The estimated amount of saline water used by industry increased 36 percent from 1960 to 1965. In addition to surface and ground water sources, reclaimed sewage supplied two-thirds of a billion gallons per day, mainly to irrigation and industry.The average annual streamflow in the United States is approximately 1,200 bgd, about four times the amount withdrawn for all purposes (except hydroelectric power) in 1965, and more than 15 times the estimated quantity of water consumed. However, comparisons of supply and demand in many river basins show that repeated use of the water is made, and at times in some basins all the available supply is consumed.In addition to tabulations of water-use data by States and by the water-use regions previously used, water-use tables are also given for the regions recently defined by the Water Resources Council for its national assessment.
RP-1 delivered to E-1 Test Stand
2010-03-30
NASA John C. Stennis Space Center employee Dustan Ladner (left) assists tanker driver David Velasco in transferring RP-1 fuel to a 20,000-gallon underground tank at the E-1 Test Stand during a March 30 delivery. The rocket propellant will be used for testing Aerojet AJ26 rocket engines beginning this summer. Stennis is testing the engines for Orbital Sciences Corporation, which has partnered with NASA to provide eight supply missions to the International Space Station through 2015. The partnership is part of NASA's Commercial Orbital Transportation Services initiative to work closer with companies to provide commercial space transport once the space shuttle is retired later this year.
2016-08-03
Engineers complete a test of the Ground Operations Demo Unit for liquid hydrogen at NASA's Kennedy Space Center in Florida. The system includes a 33,000 gallon liquid hydrogen storage tank with an internal cold heat exchanger supplied from a cryogenic refrigerator. The primary goal of the testing is to achieve a liquid hydrogen zero boil-off capability. The system was designed, installed and tested by a team of civil servants and contractors from the center's Cryogenic Test Laboratory, with support from engineers at NASA's Glenn Research Center in Cleveland and Stennis Space Center in Mississippi. It may be applicable for use by the Ground Systems Development and Operations Program at Launch Pad 39B.
Frey, H Christopher; Kuo, Po-Yao; Villa, Charles
2009-09-01
Idling long-haul freight tucks may consume nearly one billion gallons of diesel fuel per year in the U.S. There is a need for real-world data by which to quantify avoided fuel use and emissions attributable to idle reduction techniques of auxiliary power units (APUs) and shore-power (SP). Field data were obtained from 20 APU-equipped and SP-compatible trucks observed during 2.8 million miles of travel in 42 states. Base engine fuel use and emission rates varied depending on ambient temperature. APU and SP energy use and emission rates varied depending on electrical load. APUs reduced idling fuel use and CO2 emissions for single and team drivers by 22 and 5% annually, respectively. SP offers greater reductions in energy use of 48% for single drivers, as well as in emissions, except for SO2. APUs were cost-effective for single drivers with a large number of APU usage hours per year, but not for team drivers or for single drivers with low APU utilization rates. The findings support more accurate assessments of avoided fuel use and emissions, and recommendations to encourage greater APU utilization by single drivers and to further develop infrastructure for SP.
49 CFR 538.8 - Gallon Equivalents for Gaseous Fuels.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 6 2011-10-01 2011-10-01 false Gallon Equivalents for Gaseous Fuels. 538.8... TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION MANUFACTURING INCENTIVES FOR ALTERNATIVE FUEL VEHICLES § 538.8 Gallon Equivalents for Gaseous Fuels. The gallon equivalent of gaseous fuels, for purposes...
49 CFR 538.8 - Gallon Equivalents for Gaseous Fuels.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 6 2010-10-01 2010-10-01 false Gallon Equivalents for Gaseous Fuels. 538.8... TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION MANUFACTURING INCENTIVES FOR ALTERNATIVE FUEL VEHICLES § 538.8 Gallon Equivalents for Gaseous Fuels. The gallon equivalent of gaseous fuels, for purposes...
Methanol production from Eucalyptus wood chips. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fishkind, H.H.
This feasibility study includes all phases of methanol production from seedling to delivery of finished methanol. The study examines: production of 55 million, high quality, Eucalyptus seedlings through tissue culture; establishment of a Eucalyptus energy plantation on approximately 70,000 acres; engineering for a 100 million gallon-per-day methanol production facility; potential environmental impacts of the whole project; safety and health aspects of producing and using methanol; and development of site specific cost estimates.
Code of Federal Regulations, 2011 CFR
2011-10-01
... PROTECTION EQUIPMENT Additional Equipment § 181.610 Fire bucket. A vessel not required to have a power driven fire pump by § 181.300 must have at least three 9.5 liter (21/2 gallon) buckets, with an attached... 46 Shipping 7 2011-10-01 2011-10-01 false Fire bucket. 181.610 Section 181.610 Shipping COAST...
Code of Federal Regulations, 2012 CFR
2012-10-01
... PROTECTION EQUIPMENT Additional Equipment § 181.610 Fire bucket. A vessel not required to have a power driven fire pump by § 181.300 must have at least three 9.5 liter (21/2 gallon) buckets, with an attached... 46 Shipping 7 2012-10-01 2012-10-01 false Fire bucket. 181.610 Section 181.610 Shipping COAST...
Code of Federal Regulations, 2014 CFR
2014-10-01
... PROTECTION EQUIPMENT Additional Equipment § 181.610 Fire bucket. A vessel not required to have a power driven fire pump by § 181.300 must have at least three 9.5 liter (21/2 gallon) buckets, with an attached... 46 Shipping 7 2014-10-01 2014-10-01 false Fire bucket. 181.610 Section 181.610 Shipping COAST...
Code of Federal Regulations, 2013 CFR
2013-10-01
... PROTECTION EQUIPMENT Additional Equipment § 181.610 Fire bucket. A vessel not required to have a power driven fire pump by § 181.300 must have at least three 9.5 liter (21/2 gallon) buckets, with an attached... 46 Shipping 7 2013-10-01 2013-10-01 false Fire bucket. 181.610 Section 181.610 Shipping COAST...
Municipal, industrial, and irrigation water use in Washington, 1975
Dion, N.P.; Lum, W.E.
1977-01-01
An assessment of water use in 1975 in the 39 counties and 62 Water Resources Inventory Areas of Washington, indicated that 2.49 trillion gallons of water was used for municipal, industrial, and irrigation purposes. That amount represents a 10-percent increase over a similar water-use assessment in 1965, but a slight decrease from that of 1970. Total municipal water use, which includes municipally supplied industrial water, was 283 billion gallons. Industry used 442 billion gallons, of which 121 billion gallons was from municipal systems and 321 billion gallons was for self-suppled systems. Of the 604 billion gallons of water used for municipal and industrial supplies 145 billion gallons was ground water, 444 billion gallons was fresh surface water, and 14.8 billion gallons was saline surface water. A compilation of statewide industrial use as categorized by SIC (Lumber and Wood Products), SIC 28 (Chemicals and Allied Products), and SIC 20 (Food and Kindred Products)--accounted for about 65 percent of the total water used in industrial processes , In 1975, 5.79 million acre-feet of irrigation water (1,890 billion gallons) as applied to 1.52 million acres. This water was 95 percent surface water and 5 percent ground water. About 97 percent of the irrigation water was supplied in eastern Washington, to about 94 percent of the irrigated acreage in the State. (Woodard-USGS)
Eberle, Michael; McClure, J.A.
1984-01-01
An estimated 13,389 million gallons of water per day were used in Ohio in 1980, in four major categories of water use. Of this total, 12,645 Mgal/d (million gallons per day) were taken from surface-water sources whereas 744 Mgal/d was ground water. Totals for each category (in Mgal/d) were: thermoelectric power generation, 10,417; self-supplied manufacturing, 1,399; public water supplies, 1,432; and rural domestic and livestock, 141. Additional miscellaneous uses (irrigation, rural commercial, and non-manufacturing industrial) probably totaled about 300 Mgal/d. The five counties that led the state in total water use were: Jefferson, 2,620 Mgal/d; Lucas, 1,150 Mgal/d; Gallia, 1.086 Mgal/d; Cuyahoga, 1,085 Mgal/d; and Lorain, 991 Mgal/d. These counties, in the same order, were the top five surface-water users. (USGS)
COMMUNITY-SCALE BIODIESEL: AN AFFORDABLE, RENEWABLE RESOURCE
Between October 2004 and mid-April 2005, we collected 800 gallons of waste vegetable oil. At any given time, 200 hundred gallons are settling in our filtration tanks. Of the 600 gallons of filtered oil produced to date, 400 gallons were consumed as straight vegetable oil in on...
77 FR 72433 - Buy America Waiver Notification
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-05
... Submersible pumps (3 @ 3,000 gallons/minute), (1 Low Flow Submersible pump @ 1,000 gallons/minute), (1 Low Flow Sump Pump @ 20 gallons/minute) for rehabilitation of a pump station in the State of Illinois... appropriate to use non-domestic Main Submersible pumps (3 @ 3,000 gallons/minute), (1 Low Flow Submersible...
Ground water in carbonate rocks and regolith in the Fairview area, Tennessee
Burchett, C.R.; Zurawski, Ann; Sparkes, A.K.; Hollyday, E.F.
1983-01-01
Fourteen test wells drilled in the Fairview area, Tennessee, produce from 3 to 100 gallons per minute and have an average yield of 32 gallons per minute, measured while blowing water from the wells with compressed air. In comparison, the average yield of supply wells reported by drillers is 13 gallons per minute. Specific capacities for three of the test wells ranged from 0.3 to 0.6 gallons per minute per foot of drawdown after 8 hours of pumping at 20 to 47 gallons per minute. Two test wells had specific capacities of 1.1 and 0.4 gallons per foot of drawdown after 72 hours of pumping at 55 and 43 gallons per minute. The mineral content of ground water increases greatly below a gypsum horizon approximately 100 feet below the top of the Fort Payne Formation. Ground water above the gypsum horizon, however, meets the standards for finished drinking water. (USGS)
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- For the fourth time in Space Shuttle Program history, 350,000 gallons of water are released on a Mobile Launcher Platform (MLP) at Launch Pad 39A during a water sound suppression test. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- For the fourth time in Space Shuttle Program history, 350,000 gallons of water are released on a Mobile Launcher Platform (MLP) at Launch Pad 39A during a water sound suppression test. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- For the fourth time in Space Shuttle Program history, 350,000 gallons of water are released on a Mobile Launcher Platform (MLP) at Launch Pad 39A during a water sound suppression test. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
2004-05-07
KENNEDY SPACE CENTER, FLA. -- For the fourth time in Space Shuttle Program history, 350,000 gallons of water are released on a Mobile Launcher Platform (MLP) at Launch Pad 39A during a water sound suppression test. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
2004-05-07
KENNEDY SPACE CENTER, FLA. -- For the fourth time in Space Shuttle Program history, 350,000 gallons of water are released on a Mobile Launcher Platform (MLP) at Launch Pad 39A during a water sound suppression test. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
2004-05-07
KENNEDY SPACE CENTER, FLA. -- For the fourth time in Space Shuttle Program history, 350,000 gallons of water are released on a Mobile Launcher Platform (MLP) at Launch Pad 39A during a water sound suppression test. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
2004-05-07
KENNEDY SPACE CENTER, FLA. -- For the fourth time in Space Shuttle Program history, 350,000 gallons of water are released on a Mobile Launcher Platform (MLP) at Launch Pad 39A during a water sound suppression test. This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
7 CFR 160.92 - Meaning of word “gallon.”
Code of Federal Regulations, 2013 CFR
2013-01-01
... “gallon,” when used on or impressed into any container of spirits of turpentine, or when used in an invoice referring to spirits of turpentine in containers of 10 gallons content or less, shall mean a United States standard gallon of 231 cubic inches of turpentine, regardless of any other definitive terms...
7 CFR 160.92 - Meaning of word “gallon.”
Code of Federal Regulations, 2014 CFR
2014-01-01
... “gallon,” when used on or impressed into any container of spirits of turpentine, or when used in an invoice referring to spirits of turpentine in containers of 10 gallons content or less, shall mean a United States standard gallon of 231 cubic inches of turpentine, regardless of any other definitive terms...
7 CFR 160.92 - Meaning of word “gallon.”
Code of Federal Regulations, 2011 CFR
2011-01-01
... “gallon,” when used on or impressed into any container of spirits of turpentine, or when used in an invoice referring to spirits of turpentine in containers of 10 gallons content or less, shall mean a United States standard gallon of 231 cubic inches of turpentine, regardless of any other definitive terms...
7 CFR 160.92 - Meaning of word “gallon.”
Code of Federal Regulations, 2012 CFR
2012-01-01
... “gallon,” when used on or impressed into any container of spirits of turpentine, or when used in an invoice referring to spirits of turpentine in containers of 10 gallons content or less, shall mean a United States standard gallon of 231 cubic inches of turpentine, regardless of any other definitive terms...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2008-10-01
The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Maine. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Maine to be $1.3 billion, annual CO2 reductions are estimated at 2.8 million tons, and annual water savings are 1,387 million gallons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2008-10-01
The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Wisconsin. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Wisconsin to be $1.1 billion, annual CO2 reductions are estimated at 3.2 million tons, and annual water savings are 1,476 million gallons.
Wastewater and Hazardous Waste Survey, Homestead AFB Florida.
1988-03-01
tank into the sanitary sewer. 16. Bilge waste from the Water Survival School is currently placed in 55-gallon drums and stored on site. At the time...plant. W0’I; • ,. =% . Fiue5. AGE Accumulation Site , 30 7. A disposal contract for waste bilge water is needed for the Water Survival School. Currently...eliminate all pesticide wastes from S this shop. 16. The Water Survival School can possibly eliminate bilge water waste by having Civil Engineering
26 CFR 48.4041-7 - Dual use of taxable liquid fuel.
Code of Federal Regulations, 2010 CFR
2010-04-01
... or boat. For example, tax applies to diesel fuel sold to operate the mixing unit on a concrete mixer truck if the mixing unit is operated by means of a power take-off from the motor of the vehicle... a preliminary determination of the number of gallons of fuel used to propel the vehicle. In order to...
Advanced Vehicle and Power Initiative
2010-07-29
optimize vehicle operation, and capture vehicle kinetic energy during braking ( regenerative energy). As much as two-thirds of this imported oil comes... categories . Figure 4 provides a visual representation of many of the HEV and BEV options available on the 2010 GSA Schedule. Figure 4 - GSA...gallon • Renewable energy generated 24 • Vehicle miles driven by vehicle category • Implementation costs – Infrastructure modifications required
146. View of oil filter room in basement (Room B1) ...
146. View of oil filter room in basement (Room B-1) where oil used in lubrication in generator room is cleaned and recycled. The two tanks in the foreground each have capacities of 2,100 gallons. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA
18 CFR 401.35 - Classification of projects for review under Section 3.8 of the Compact.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Classification of... less than a daily average rate of 100,000 gallons except when the imported water is wastewater; (18... water during any 30-day period; and (18) Any other project that the Executive Director may specially...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-16
... design intake volume of 680,000 gpm [gallons per minute] (42,840 L/s), with a combined condenser flow... licensee in 2007 and the cooling tower design was subsequently modified to meet PM emission thresholds by reducing the flow rate through the tower. The predicted emissions from the modified design are 91.2 tons PM...
Advanced Gas Turbine (AGT) powertrain system development for automotive applications
NASA Technical Reports Server (NTRS)
1982-01-01
A gas turbine powertrain for automobiles with reduced fuel consumption and reduced environmental impact is investigated. The automotive gas turbine, when installed in an automobile (3000 pounds inertia weight), provides a CFDC fuel economy of 42.8 miles per gallon based on EPA test procedures and diesel No. 2 fuel. The AGT powered vehicle substantially gives the same overall vehicle driveability and performance as a comparable production vehicle powered by a conventional spark ignition powertrain system. The emissions are less than federal standards, and a variety of fuels can be used.
1962-11-16
The Saturn I (SA-3) flight lifted off from Kennedy Space Center launch Complex 34, November 16, 1962. The third launch of Saturn launch vehicles, developed at the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun, incorporated a Saturn I, Block I engine. The typical height of a Block I vehicle was approximately 163 feet. and had only one live stage. It consisted of eight tanks, each 70 inches in diameter, clustered around a central tank, 105 inches in diameter. Four of the external tanks were fuel tanks for the RP-1 (kerosene) fuel. The other four, spaced alternately with the fuel tanks, were liquid oxygen tanks as was the large center tank. All fuel tanks and liquid oxygen tanks drained at the same rates respectively. The thrust for the stage came from eight H-1 engines, each producing a thrust of 165,000 pounds, for a total thrust of over 1,300,000 pounds. The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis and canted outward slightly, while the remaining four engines were located outboard in a larger square pattern offset 40 degrees from the inner pattern. Unlike the inner engines, each outer engine was gimbaled. That is, each could be swung through an arc. They were gimbaled as a means of steering the rocket, by letting the instrumentation of the rocket correct any deviations of its powered trajectory. The block I required engine gimabling as the only method of guiding and stabilizing the rocket through the lower atmosphere. The upper stages of the Block I rocket reflected the three-stage configuration of the Saturn I vehicle. During the SA-3 flight, the upper stage ejected 113,560 liters (30,000 gallons) of ballast water in the upper atmosphere for "Project Highwater" physics experiment. The water was released at an altitude of 65 miles, where within only 5 seconds, it expanded into a massive ice cloud 4.6 miles in diameter. Release of this vast quantity of water in a near-space environment marked the first purely scientific large-scale experiment.
1963-03-28
The Saturn I (SA-4) flight lifted off from Kennedy Space Center launch Complex 34, March 28, 1963. The fourth launch of Saturn launch vehicles developed at the Marshall Space Flight Center (MSFC), under the direction of Dr. Wernher von Braun, incorporated a Saturn I, Block I engine. The typical height of a Block I vehicle was approximately 163 feet and had only one live stage. It consisted of eight tanks, each 70 inches in diameter, clustered around a central tank, 105 inches in diameter. Four of the external tanks were fuel tanks for the RP-1 (kerosene) fuel. The other four, spaced alternately with the fuel tanks, were liquid oxygen tanks as was the large center tank. All fuel tanks and liquid oxygen tanks drained at the same rates respectively. The thrust for the stage came from eight H-1 engines, each producing a thrust of 165,000 pounds, for a total thrust of over 1,300,000 pounds. The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis and canted outward slightly, while the remaining four engines were located outboard in a larger square pattern offset 40 degrees from the inner pattern. Unlike the inner engines, each outer engine was gimbaled. That is, each could be swung through an arc. They were gimbaled as a means of steering the rocket, by letting the instrumentation of the rocket correct any deviations of its powered trajectory. The block I required engine gimabling as the only method of guiding and stabilizing the rocket through the lower atmosphere. The upper stages of the Block I rocket reflected the three-stage configuration of the Saturn I vehicle. Like SA-3, the SA-4 flight’s upper stage ejected 113,560 liters (30,000 gallons) of ballast water in the upper atmosphere for "Project Highwater" physics experiment. Release of this vast quantity of water in a near-space environment marked the second purely scientific large-scale experiment. The SA-4 was the last Block I rocket launch.
1963-03-28
The Saturn I (SA-4) flight lifted off from Kennedy Space Center launch Complex 34, March 28, 1963. The fourth launch of Saturn launch vehicles, developed at the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun, incorporated a Saturn I, Block I engine. The typical height of a Block I vehicle was approximately 163 feet and had only one live stage. It consisted of eight tanks, each 70 inches in diameter, clustered around a central tank, 105 inches in diameter. Four of the external tanks were fuel tanks for the RP-1 (kerosene) fuel. The other four, spaced alternately with the fuel tanks, were liquid oxygen tanks as was the large center tank. All fuel tanks and liquid oxygen tanks drained at the same rates respectively. The thrust for the stage came from eight H-1 engines, each producing a thrust of 165,000 pounds, for a total thrust of over 1,300,000 pounds. The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis and canted outward slightly, while the remaining four engines were located outboard in a larger square pattern offset 40 degrees from the inner pattern. Unlike the inner engines, each outer engine was gimbaled. That is, each could be swung through an arc. They were gimbaled as a means of steering the rocket, by letting the instrumentation of the rocket correct any deviations of its powered trajectory. The block I required engine gimabling as the only method of guiding and stabilizing the rocket through the lower atmosphere. The upper stages of the Block I rocket reflected the three-stage configuration of the Saturn I vehicle. Like SA-3, the SA-4 flight’s upper stage ejected 113,560 liters (30,000 gallons) of ballast water in the upper atmosphere for "Project Highwater" physics experiment. Release of this vast quantity of water in a near-space environment marked the second purely scientific large-scale experiment. The SA-4 was the last Block I rocket launch.
Code of Federal Regulations, 2010 CFR
2010-04-01
... or warehouseman; and (j) Gauge data: (1) Package identification, tank number, volumetric or weight... whiskey; (4) Proof gallons per filled package; and (5) Total proof gallons of spirits or wine gallons of...
27 CFR 31.36 - Sales of 20 wine gallons (75.7 liters) or more.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Sales of 20 wine gallons... to This Part Dealers Classified § 31.36 Sales of 20 wine gallons (75.7 liters) or more. Any person who sells or offers for sale distilled spirits, wines, or beer, in quantities of 20 wine gallons (75.7...
Code of Federal Regulations, 2011 CFR
2011-07-01
... fuel producers and importers who produce or import less than 10,000 gallons of renewable fuel per year... than 10,000 gallons of renewable fuel each year, and importers who import less than 10,000 gallons of... provisions for renewable fuel producers and importers who produce or import less than 10,000 gallons of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... fuel producers and importers who produce or import less than 10,000 gallons of renewable fuel per year... than 10,000 gallons of renewable fuel each year, and importers who import less than 10,000 gallons of... provisions for renewable fuel producers and importers who produce or import less than 10,000 gallons of...
Code of Federal Regulations, 2013 CFR
2013-04-01
... plant number of the producer or warehouseman; and (j) The following gauge data— (1) Package... whiskey; (4) Proof gallons per filled package; and (5) Total proof gallons of spirits or wine gallons of...
Code of Federal Regulations, 2014 CFR
2014-04-01
... plant number of the producer or warehouseman; and (j) The following gauge data— (1) Package... whiskey; (4) Proof gallons per filled package; and (5) Total proof gallons of spirits or wine gallons of...
Code of Federal Regulations, 2011 CFR
2011-04-01
... plant number of the producer or warehouseman; and (j) The following gauge data— (1) Package... whiskey; (4) Proof gallons per filled package; and (5) Total proof gallons of spirits or wine gallons of...
Code of Federal Regulations, 2012 CFR
2012-04-01
... plant number of the producer or warehouseman; and (j) The following gauge data— (1) Package... whiskey; (4) Proof gallons per filled package; and (5) Total proof gallons of spirits or wine gallons of...
Liquefied Natural Gas (LNG) Measurement LNG is measured in motor fuel gallon equivalents. One gallon of LNG is the equivalent of one gallon of motor fuel. (Reference House Bill 26, 2017, and Ohio
Horn, M.A.; Craft, P.A.; Bratton, Lisa
1994-01-01
Water-use data collected in Rhode Island by different State agencies or maintained by different public suppliers and wastewater- treatment facilities need to be integrated if these data are to be used in making water- resource management decisions. Water-use data for the town of Cumberland, a small area in northeastern Rhode Island, were compiled and integrated to provide an example of how the procedure could be applied. Integration and reliability assessment of water-use data could be facilitated if public suppliers, wastewater- treatment facilities, and State agencies used a number of standardized procedures for data collection and computer storage. The total surface water and ground water withdrawn in the town of Cumberland during 1988 is estimated to be 15.39 million gallons per day, of which 11.20 million gallons per day was exported to other towns. Water use in Cumberland included 2.51 million gallons per day for domestic use, 0.68 million gallons per day for industrial use, 0.27 million gallons per day for commercial use, and 0.73 million gallons per day for other use, most of which were unmetered use. Disposal of waste- water in Cumberland included 2.03 million gallons per day returned to the hydrologic system and 1.73 million gallons per day exported from Cumberland for wastewater treatment. Consumptive use during 1988 is estimated to be 0.43 million gallons per day.
Total energy food plant 21 million gallon ethanol facility
NASA Astrophysics Data System (ADS)
1981-10-01
The Phase I Engineering study includes the following: process description, waste water treatment plant, material summary, energy chart, capital cost estimate, equipment list, personnel requirements, drawings list, specifications list, and project schedule. The economic and financial feasibility of the technical process, and environmental, health, safety, and socio-economic assessments for the project are reported. The costs for extending the following utilities to the property line of the selected site are presented: potable water, sewer system, electricity, roads for truck traffic, and rail service.
Demonstration of Regenerable, Large-Scale Ion Exchange System Using WBA Resin in Rialto, CA
2012-12-01
requirements. The system also has the flexibility to manually modify system parameters such as flow rates, pH set points, time cycles, etc. The system... flexibility to produce soda ash solutions that vary in concentration from 1 to 10% dry soda ash. The packaged soda ash system was engineered and...The dry soda ash was conveyed to a storage hopper (39.5 ft3) using a flexible screw conveyer. Soda ash solutions were prepared in a 100 gallon
NASA Astrophysics Data System (ADS)
Fakhriza, Z.; Rahayu, M.; Iqbal, M.
2017-12-01
In the production activity of Bottled Drinking Water (AMDK) in CV Barokah Abadi there is a gallon washing station. At the work station it involves three stages of activity such as washing and rinsing the outside of the gallon, spraying the inside of the gallon and rubbing the inside of the gallon which is done in a separate place. Distribution of Nordic Body Map (NBM) questionnaires showing employee complaints data at gallon washing stations where workers complained of pain in the right upper arm, right forearm and right wrist respectively 88% and workers also complained of pain in the waist and The right hand respectively by 81%. Ergonomic gallon washer is one way to minimize the risk of MSDs. The design begins with an ergonomic evaluation of the existing conditions and the concept of the initial design of the gallon washer. The evaluation is utilized for consideration of design improvements with the utilization of Ergonomic Function Deployment (EFD) in order for the product concept to conform to the ECSHE principle (Effective, Comfortable, Safe, Healthy and Efficient). The tool improvement design can minimize the risk of MSDs seen from the worker’s posture while using an ergonomic washer.
Water Consumption in Large Buildings Summary, 2012 CBECS
2017-01-01
Using water consumption data from the Commercial Buildings Energy Consumption Survey (CBECS), EIA estimates that the 46,000 large commercial buildings (greater than 200,000 square feet) used about 359 billion gallons of water (980 million gallons per day) in 2012. On average, these buildings used 7.9 million gallons per building, 20 gallons per square foot, and 18,400 gallons per worker in 2012. The types of buildings that are the most intensive water users are inpatient healthcare buildings, public order and safety buildings (which include prisons) and lodging buildings (which include hotels). For the second time in its history, EIA has collected water usage data through the CBECS.
well approximately 3 million gallons of jet fuel and 6 million gallons of diesel ship fuel to the USS replenishments-at-sea, delivering 740 pallets of food equipment, as well approximately 3 million gallons of jet
Balachandran, Anoop T; Gandia, Kristine; Jacobs, Kevin A; Streiner, David L; Eltoukhy, Moataz; Signorile, Joseph F
2017-11-01
Power training has been shown to be more effective than conventional resistance training for improving physical function in older adults; however, most trials have used pneumatic machines during training. Considering that the general public typically has access to plate-loaded machines, the effectiveness and safety of power training using plate-loaded machines compared to pneumatic machines is an important consideration. The purpose of this investigation was to compare the effects of high-velocity training using pneumatic machines (Pn) versus standard plate-loaded machines (PL). Independently-living older adults, 60years or older were randomized into two groups: pneumatic machine (Pn, n=19) and plate-loaded machine (PL, n=17). After 12weeks of high-velocity training twice per week, groups were analyzed using an intention-to-treat approach. Primary outcomes were lower body power measured using a linear transducer and upper body power using medicine ball throw. Secondary outcomes included lower and upper body muscle muscle strength, the Physical Performance Battery (PPB), gallon jug test, the timed up-and-go test, and self-reported function using the Patient Reported Outcomes Measurement Information System (PROMIS) and an online video questionnaire. Outcome assessors were blinded to group membership. Lower body power significantly improved in both groups (Pn: 19%, PL: 31%), with no significant difference between the groups (Cohen's d=0.4, 95% CI (-1.1, 0.3)). Upper body power significantly improved only in the PL group, but showed no significant difference between the groups (Pn: 3%, PL: 6%). For balance, there was a significant difference between the groups favoring the Pn group (d=0.7, 95% CI (0.1, 1.4)); however, there were no statistically significant differences between groups for PPB, gallon jug transfer, muscle muscle strength, timed up-and-go or self-reported function. No serious adverse events were reported in either of the groups. Pneumatic and plate-loaded machines were effective in improving lower body power and physical function in older adults. The results suggest that power training can be safely and effectively performed by older adults using either pneumatic or plate-loaded machines. Copyright © 2017 Elsevier Inc. All rights reserved.
gallon equivalent of natural gas at the time fuel is dispensed or delivered into the tank of a motor vehicle. A gasoline gallon equivalent is equal to 5.66 lbs. of CNG and a diesel gallon equivalent is equal
Ground-Water Occurrence and Contribution to Streamflow, Northeast Maui, Hawaii
Gingerich, Stephen B.
1999-01-01
The study area lies on the northern flank of the East Maui Volcano (Haleakala) and covers about 129 square miles between the drainage basins of Maliko Gulch to the west and Makapipi Stream to the east. About 989 million gallons per day of rainfall and 176 million gallons per day of fog drip reaches the study area and about 529 million gallons per day enters the ground-water system as recharge. Average annual ground-water withdrawal from wells totals only about 3 million gallons per day; proposed (as of 1998) additional withdrawals total about 18 million gallons per day. Additionally, tunnels and ditches of an extensive irrigation network directly intercept at least 10 million gallons per day of ground water. The total amount of average annual streamflow in gaged stream subbasins upstream of 1,300 feet altitude is about 255 million gallons per day and the total amount of average annual base flow is about 62 million gallons per day. Six major surface-water diversion systems in the study area have diverted an average of 163 million gallons per day of streamflow (including nearly all base flow of diverted streams) for irrigation and domestic supply in central Maui during 1925-97. Fresh ground water is found in two main forms. West of Keanae Valley, ground-water flow appears to be dominated by a variably saturated system. A saturated zone in the uppermost rock unit, the Kula Volcanics, is separated from a freshwater lens near sea level by an unsaturated zone in the underlying Honomanu Basalt. East of Keanae Valley, the ground-water system appears to be fully saturated above sea level to altitudes greater than 2,000 feet. The total average annual streamflow of gaged streams west of Keanae Valley is about 140 million gallons per day at 1,200 feet to 1,300 feet altitude. It is not possible to estimate the total average annual streamflow at the coast. All of the base flow measured in the study area west of Keanae Valley represents ground-water discharge from the high-elevation saturated zone. Total average daily ground-water discharge from the high-elevation saturated zone upstream of 1,200 feet altitude is greater than 38 million gallons per day, all of which is eventually removed from the streams by surface-water diversion systems. Perennial streamflow has been measured at altitudes greater than 3,000 feet in several of the streams. Discharge from the high-elevation saturated zone is persistent even during periods of little rainfall. The total average annual streamflow of the gaged streams east of Keanae Valley is about 109 million gallons per day at about 1,300 feet altitude. It is not possible to estimate the total average annual streamflow at the coast nor at higher altitudes. All of the base flow measured east of Keanae Valley represents ground-water discharge from the vertically extensive freshwater-lens system. Total average daily ground-water discharge to gaged streams upstream of 1,200 feet altitude is about 27 million gallons per day. About 19 million gallons per day of ground water discharges through the Kula and Hana Volcanics between about 500 feet and 1,300 feet altitude in the gaged stream sub-basins. About 13 million gallons per day of this discharge is in Hanawi Stream. The total ground-water discharge above 500 feet altitude in this part of the study area is greater than 56 million gallons per day.
What oil changers in America are doing with their used oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arner, R.; O'Hare, M.
Each year, the US generates 1.378 billion gallons of used oil, with just 57% of this oil accounted for by recycling. The most significant types of used oil disposition come from the very small generator or the so called do-it-yourselfer (DIY). The DIY is an individual who removes used oil from a motor vehicle, utility engine, or piece of farm equipment that he or she owns and operates. Numerous retailers have shown that accepting DIY used oil translates into good public relations and business. First Recovery/Valvoline conducted a recent study of its 2,000 auto parts stores that collect used oil.more » Sixty-five percent of their customers who returned used oil made a special trip for its return and 44% of them purchased something at the store (average of $13 per customer) when they returned their used oil. The cost of accepting used oil was $85 per month for the 185-gallon indoor collection system including oil pickup. This public service stimulated an additional $429 per month in new revenue for the retailer.« less
NASA Astrophysics Data System (ADS)
Winney, Peter E.
1989-07-01
A standard 660MW turbo-alternator, operated by the CEGB, runs at an energy conversion efficiency of about 38%. In addition to the 660MW electrical power, 600MW of waste thermal power is generated which has to be dissipated via water cooled heat exchangers. A typical 2000MW station has a requirement of about 1.3 billion gallons of cooling water per day. This is more than the daily throughput of most of our rivers and so inland stations are equipped with cooling towers to dump heat from the coolant.
Trends in auto emissions and gasoline composition.
Sawyer, R F
1993-01-01
The invention of the spark-ignited internal combustion engine provided a market for a petroleum middle distillate, gasoline, about 100 years ago. The internal combustion engine and gasoline have co-evolved until motor vehicles now annually consume about 110 billion gallons of gasoline in the United States. Continuing air pollution problems and resulting regulatory pressures are driving the need for further automotive emissions reductions. Engine and emissions control technology provided most earlier reductions. Changing the composition of gasoline will play a major role in the next round of reductions. The engineering and regulatory definition of a reformulated gasoline is proceeding rapidly, largely as the result of an auto and oil industry cooperative data generation program. It is likely that this new, reformulated gasoline will be introduced in high-ozone regions of the United States in the mid-1990s. Alternative clean fuels, primarily methane, methanol, and liquid petroleum gas, will become more widely used during this same period, probably first in fleet operations. PMID:7517353
Estimated use of water in the Tennessee River watershed in 2000 and projections of water use to 2030
Hutson, Susan S.; Koroa, M. Carolyn; Murphree, C. Michael
2003-01-01
Estimates indicate that after increases in water withdrawals from 1965 to 1980 in the Tennessee River watershed, withdrawals declined from 1980 to 1985 and remained steady from 1985 to 1995. Water withdrawals in the Tennessee River watershed during 2000 averaged about 12,211 million gallons per day (Mgal/d) of freshwater for offstream uses?22 percent more than the 1995 estimate. The 2000 estimate is nearly the same as the estimate for 1980, the highest year of record, with 12,260 Mgal/d. The reuse potential of water from the Tennessee River is high because most of the water withdrawn for offstream use is returned to the river system. Besides water quality, reuse potential reflects the quantity of water available for subsequent uses and is gaged by consumptive use, which is the difference between water withdrawals and return flow. For the Tennessee River watershed, return flow was estimated to be 11,562 Mgal/d, or 95 percent of the water withdrawn during 2000. Total consumptive use accounts for the remaining 5 percent, or 649 Mgal/d. Estimates of water withdrawals by source indicate that during 2000, withdrawals from surface water accounted for 98 percent of the total withdrawals, or 11,996 Mgal/d, 23 percent more than during 1995. Total ground-water withdrawals during 2000 were 215 Mgal/d, or 17 percent less than during 1995. During 2000, thermoelectric power withdrawals were estimated to be 10,276 Mgal/d; industrial, 1,205 Mgal/d; public supply, 662 Mgal/d; and irrigation, 68.9 Mgal/d. Return flows were estimated to be: thermoelectric power, 10,244 Mgal/d; industrial, 942 Mgal/d; and public supply, 377 Mgal/d. Consumptive use was estimated to be: thermoelectric power, 32.2 Mgal/d; industrial, 263 Mgal/d; public supply, 285 Mgal/d; and irrigation, 68.9 Mgal/d. Each category of use affects the reuse potential of the return flows differently. The consumptive use in the river is comparatively small because most of the water withdrawn from the Tennessee River watershed is used for once-through cooling for the thermoelectric power and industrial sectors. Average per capita use for all offstream uses was 2,710 gallons per day per person in 2000, compared to the record high of 3,200 in 1975 and 1980. The intensity of use for the Tennessee River watershed as measured as a function of area was 298,489 gallons per day per square mile in 2000. In 2030, water withdrawals are projected to increase by about 15 percent to 13,990 Mgal/d. By category, water withdrawals are projected to increase as follows: thermoelectric power, 11 percent or 1,152 Mgal/d; industry, 31 percent or 368 Mgal/d; public supply, 35 percent or 232 Mgal/d; and irrigation, 37 percent or 25.2 Mgal/d. Total consumptive use is projected to increase about 51 percent or 334 Mgal/d to 980 Mgal/d. Per capita use in 2030 is calculated to be about 2,370 gallons per day, about 26 percent less than in 1980. Water transfers to the Tennessee-Tombigbee waterway for navigation lockages were estimated as 200 Mgal/d for 2000 and 800 Mgal/d for 2030. Water transfers for hydropower commitments through Barkley Canal averaged 3,361 Mgal/d for 2000 and are estimated to be an average of 4,524 Mgal/d in 2030.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, C.K.; Pandit, D.R.; Kwon, S.G.
The paper describes the hydraulic design and hydraulic transient analysis of the re-circulating water cooling system of the combined cyclo Sipco power cogeneration plant in Thailand. The power plant of 450 MW total capacity is proposed to be built in two stages. Stage one will produce 300 MW of power and will consist of two gas turbine generators (GTG) and one steam turbine generator (STG). Stage two will produce 150 MW of power and will consist of one GTG and one STG. The cooling system will consist of one GTG and one STG. The cooling system will consist of coolingmore » towers, a combined collecting basin and pump intake sump, pumps and motors, and separate conveyance systems and condensers for the generator units in the two stages. In a re-circulating water cooling system, cold water is pumped from the pump intake sump to the condensers through the conveyance system and hot water from the condensers is carried through the returning pipeline system to the cooling towers, whence the water after cooling is drained into the sump at the base of the towers. Total cooling water requirement for the system in stage one is estimated to be 112,000 gallons per minute (GPM), and that in stage two, 56,000 GPM. The sump is designed using the computer program HEC-2, developed by the US Army Corps of Engineers (COE) and the pump intake basin, following the recommendations of the Hydraulic Institute. The pumps were sized by computing the head loss in the system, and, the steady state and transient performances (during pump start-up and shut-down procedures and due to possible power or mechanical failure of one or all pumps) of the system were analyzed by mathematically modeling the system using the computer program WHAMO (Water Hammer nd Mass Oscillations), also developed by the COE.« less
Interstate Electrification Improvement Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puckette, Margaret; Kim, Jeff
The Interstate Electrification Improvement Project, publicly known as the Shorepower Truck Electrification Project (STEP), started in May 2011 and ended in March 2015. The project grant was awarded by the Department of Energy’s Vehicles Technology Office in the amount of $22.2 million. It had three overarching missions: 1. Reduce the idling of Class 8 tractors when parked at truck stops, to reduce diesel fuel consumption and thus U.S. dependence on foreign petroleum; 2. Stimulate job creation and economic activity as part of the American Reinvestment and Recovery Act of 2009; 3. Reduce greenhouse gas emissions (GHG) from diesel combustion andmore » the carbon footprint of the truck transportation industry. The project design was straightforward. First, build fifty Truck Stop Electrification (TSE) facilities in truck stop parking lots across the country so trucks could plug-in to 110V, 220V, or 480VAC, and shut down the engine instead of idling. These facilities were strategically located at fifty truck stops along major U.S. Interstates with heavy truck traffic. Approximately 1,350 connection points were installed, including 150 high-voltage electric standby Transport Refrigeration Unit (eTRU) plugs--eTRUs are capable of plugging in to shore power1 to cool the refrigerated trailer for loads such as produce, meats and ice cream. Second, the project provided financial incentives on idle reduction equipment to 5,000 trucks in the form of rebates, to install equipment compatible with shore power. This equipment enables drivers to shut down the main engine when parked, to heat or cool their cab, charge batteries, or use other household appliances without idling—a common practice that uses approximately 1 gallon of diesel per hour. The rebate recipients were intended to be the first fleets to plug into Shorepower to save diesel fuel and ensure there is significant population of shore power capable trucks. This two part project was designed to complement each other by providing: 1) the infrastructure to plug into and 2) the on-board equipment capable of plugging into the infrastructure. This project generated the largest dataset to date on shore power TSE utilization and use patterns, providing: insight into driver behavior and acceptance; evidence of cost savings; experience with system operations and management; and data for guiding future development of shore power, whether as a private enterprise or a publicly-subsidized service for meeting air quality goals.« less
Drought Resilience of Water Supplies for Shale Gas Extraction and Related Power Generation in Texas
NASA Astrophysics Data System (ADS)
Reedy, R. C.; Scanlon, B. R.; Nicot, J. P.; Uhlman, K.
2014-12-01
There is considerable concern about water availability to support energy production in Texas, particularly considering that many of the shale plays are in semiarid areas of Texas and the state experienced the most extreme drought on record in 2011. The Eagle Ford shale play provides an excellent case study. Hydraulic fracturing water use for shale gas extraction in the play totaled ~ 12 billion gallons (bgal) in 2012, representing ~7 - 10% of total water use in the 16 county play area. The dominant source of water is groundwater which is not highly vulnerable to drought from a recharge perspective because water is primarily stored in the confined portion of aquifers that were recharged thousands of years ago. Water supply drought vulnerability results primarily from increased water use for irrigation. Irrigation water use in the Eagle Ford play was 30 billion gallons higher in the 2011 drought year relative to 2010. Recent trends toward increased use of brackish groundwater for shale gas extraction in the Eagle Ford also reduce pressure on fresh water resources. Evaluating the impacts of natural gas development on water resources should consider the use of natural gas in power generation, which now represents 50% of power generation in Texas. Water consumed in extracting the natural gas required for power generation is equivalent to ~7% of the water consumed in cooling these power plants in the state. However, natural gas production from shale plays can be overall beneficial in terms of water resources in the state because natural gas combined cycle power generation decreases water consumption by ~60% relative to traditional coal, nuclear, and natural gas plants that use steam turbine generation. This reduced water consumption enhances drought resilience of power generation in the state. In addition, natural gas combined cycle plants provide peaking capacity that complements increasing renewable wind generation which has no cooling water requirement. However, water savings related to power generation is not collocated with water used for shale gas extraction. Analysis of drought impacts on water energy interdependence should consider both water for energy extraction and power generation to assess net impacts.
27 CFR 21.56 - Formula No. 29.
Code of Federal Regulations, 2010 CFR
2010-04-01
... gallon of 100 percent acetaldehyde or 5 gallons of an alcohol solution of acetaldehyde containing not... pounds if solid, or 1 gallon if liquid, of any chemical. When material other than acetaldehyde or ethyl.... 572.Ethylene gas. 573.Xanthates. 575.Drugs and medicinal chemicals. 579.Other chemicals. 580.Synthetic...
27 CFR 21.56 - Formula No. 29.
Code of Federal Regulations, 2011 CFR
2011-04-01
... gallon of 100 percent acetaldehyde or 5 gallons of an alcohol solution of acetaldehyde containing not... pounds if solid, or 1 gallon if liquid, of any chemical. When material other than acetaldehyde or ethyl.... 572.Ethylene gas. 573.Xanthates. 575.Drugs and medicinal chemicals. 579.Other chemicals. 580.Synthetic...
Code of Federal Regulations, 2014 CFR
2014-07-01
... volume of ethanol, in gallons. T = Actual temperature of the batch, in °F. (ii) For biodiesel (mono alkyl... = Standardized volume of biodiesel at 60 °F, in gallons. Va,b = Actual volume of biodiesel, in gallons. T...
Code of Federal Regulations, 2011 CFR
2011-07-01
... volume of ethanol, in gallons. T = Actual temperature of the batch, in °F. (ii) For biodiesel (mono alkyl... = Standardized volume of biodiesel at 60 °F, in gallons. Va,b = Actual volume of biodiesel, in gallons. T...
Code of Federal Regulations, 2012 CFR
2012-07-01
... volume of ethanol, in gallons. T = Actual temperature of the batch, in °F. (ii) For biodiesel (mono alkyl... = Standardized volume of biodiesel at 60 °F, in gallons. Va,b = Actual volume of biodiesel, in gallons. T...
Hydrogeology of Wood County, Wisconsin
Batten, W.G.
1989-01-01
The average rate of ground·water pumpage in Wood County in 1985 was 9.7 million gallons per day. Of this rate, about 6 million gallons per day is pumped from municipal-supply wells in seven communities.An additional 1.08 million gallons per day is pumped for agricultural irrigation.
Kuniansky, Eve L.; Rodriguez, Jose M.
2010-01-01
Since 1990, about 75 acres of black mangroves have died in the Jobos Bay National Estuarine Research Reserve near Salinas, Puerto Rico. Although many factors can contribute to the mortality of mangroves, changes in irrigation practices, rainfall, and water use resulted in as much as 25 feet of drawdown in the potentiometric surface of the aquifer in the vicinity of the reserve between 1986 and 2002. To clarify the issue, the U.S. Geological Survey, in cooperation with the Puerto Rico Department of Natural and Environmental Resources, conducted a study to ascertain how aquifer development and changes in irrigation practices have affected groundwater levels and groundwater flow to the Mar Negro area of the reserve. Changes in groundwater flow to the mangrove swamp and bay from 1986 to 2004 were estimated in this study by developing and calibrating a numerical groundwater flow model. The transient simulations indicate that prior to 1994, high irrigation return flows more than offset the effect of reduced groundwater withdrawals. In this case, the simulated discharge to the coast in the modeled area was 19 million gallons per day. From 1994 through 2004, furrow irrigation was completely replaced by micro-drip irrigation, thus eliminating return flows and the simulated average coastal discharge was 7 million gallons per day, a reduction of 63 percent. The simulated average groundwater discharge to the coastal mangrove swamps in the reserve from 1986 to 1993 was 2 million gallons per day, compared to an average simulated discharge of 0.2 million gallons per day from 1994 to 2004. The average annual rainfall for each of these periods was 38 inches. The groundwater discharge to the coastal mangrove swamps in the Jobos Bay National Estuarine Research Reserve was estimated at about 0.5 million gallons per day for 2003-2004 because of higher than average annual rainfall during these 2 years. The groundwater flow model was used to test five alternatives for increasing groundwater discharge to the coastal mangrove swamps to approximately 1.4 million gallons per day: (1) artificially recharging the aquifer with injection wells or (2) by increasing irrigation return flow by going back to furrow irrigation; (3) termination of groundwater withdrawals near the mangroves; (4) reduction of groundwater withdrawals at irrigation wells by 50 percent; and (5) a combination of alternatives 2 and 4 increasing irrigation return flows and decreasing irrigation withdrawals. Each alternative assumed average climatic conditions and groundwater withdrawals at 2004 rates. Alternative 1 required 1.5 million gallons per day of injected water. Alternative 2 required flooding 958 acres with a rate of 1.84 million gallons per day if no crops are grown. Alternative 3 required the termination of 2.44 million gallons per day of withdrawals to achieve 1.34 million gallons per day of discharge to the mangroves. Alternative 4 did not achieve the objective with only 0.80 million gallons per day simulated discharge to the mangroves, while requiring a 1.26 million gallon per day reduction in groundwater withdrawals. Alternative 5 required flooding fields with additional 1.13 million gallons of day and the same reduction in groundwater withdrawals, but did achieve the objective of about 1.4 million gallons per day discharge to the mangroves. Alternative 1, incorporating injection wells near the reserve required the least amount of water to raise groundwater levels and maintain discharge of 1.4 million gallons per day through the mangroves.
NASA Technical Reports Server (NTRS)
1976-01-01
A million gallon-a-day sewage treatment plant in Huntington Beach, CA converts solid sewage to activated carbon which then treats incoming waste water. The plant is scaled up 100 times from a mobile unit NASA installed a year ago; another 100-fold scale-up will be required if technique is employed for widespread urban sewage treatment. This unique sewage-plant employed a serendipitous outgrowth of a need to manufacture activated carbon for rocket engine insulation. The process already exceeds new Environmental Protection Agency Standards Capital costs by 25% compared with conventional secondary treatment plants.
Summary of geology and ground-water resources of Passaic County, New Jersey
Carswell, L.D.; Rooney, J.G.
1976-01-01
Ground water in Passaic County occurs in intergranular openings of unconsolidated stratified deposits of Quaternary age and in joints and fractures in consolidated rocks of Precambrian, Paleozoic, and Triassic age.The Brunswick Formation of Triassic age is the most important aquifer in the southeastern one-third of Passaic County. Reported yields of public supply and industrial wells range from 50 to 510 gallons per minute (3 to 32 litres per second) and the median yield is 130 gallons per minute (8 litres per second). Most of these wells are 200 to 400 feet (61 to 122 metres) deep. The median yield of all public supply and industrial wells over 300 feet (91 metres) deep and 8 inches (203 millimetres) or larger in diameter is 230 gallons per minute (15 litres per second). Crystalline rocks of Precambrian age are the major source of ground water for domestic use in the northwestern two-thirds of Passaic County. Reported well yields range from 1 to 200 gallons per minute (.06 to 13 litres per second). The median reported yield of domestic wells is 5 gallons per minute (.31 litres per second) and that of public supply wells is 30 gallons per minute (2 litres per second).Other consolidated rocks--rocks of Paleozoic age and the Watchung Basalt of Traissic age--are utilized primarily for domestic water supplies in Passaic County. Reported yields of wells tapping the Paleozoic rocks range from less than 1 to 35 gallons per minute (.06 to 2 litres per second) and the median yield is 10 gallons per minute (.63 litres per second). Reported yields of domestic wells tapping the Watchung Basalt range from less than 1 to 40 gallons per minute (.06 to 3 litres per second) and the median yield is 12 gallons per minute (.76 litres per second). However, reported yields of nine industrial and commercial wells range from 50 to 180 gallons per minute (3 to 11 litres per second).Unconsolidated stratified deposits of Quaternary age are locally an important source of ground water for public supply and industrial use in parts of Passaic County. These deposits have not been extensively explored but are potentially an important source of ground water for future development. Reported yields of wells tapping the stratified deposits range from 4 to 920 gallons per minute (.25 to 58 litres per second). The median reported yield of domestic wells is 16 gallons per minute (1 litre per second) and that of public supply and industrial wells is 130 gallons per minute (8 litres per second. Depths of wells depend upon the thickness of the deposits. Reported depths range from 22 to 170 feet (7 to 52 metres).The quality of ground water in Passaic County varies from one aquifer to another. Water from the Precambrian rocks is soft to moderately hard (34 to 104 milligrams per litre) and is low in dissolved solids (66 to 159 milligrams per litre). Water from the Brunswick Formation is moderately hard to very hard (89 to 540 milligrams per litre). The dissolved solids content ranges from 129 to 563 milligrams per litre). The occurrence of more highly mineralized water at depth in the Brunswick Formation is indicated by an analysis, made in 1885, of 16,000 milligrams per litre of dissolved solids at a depth of 2,050 feet (625 metres) in a well in Paterson. Water from two wells tapping the Quaternary deposits is moderately hard (65 and 83 milligrams per litre) and has dissolved solids contents of 122 and 133 milligrams per litre).Water use from both surface and ground-water supplies in Passaic County averaged about 106 million gallons per day (4.6 cubic metres per second) in 1965. Ground water probably accounts for 5 to 10 percent of this total. Ground-water pumpage by the major public supply companies in the county has increased from 2.1 million gallons per day (.09 cubic metres per second) in 1951 to 4.39 million gallons per day (.19 cubic metres per second) in 1968. About 80 percent of the 4.39 million gallons per day (.19 cubic metres per second) was from wells tapping the Brunswick Formation in the southern part of the county.
Marshall Tests 3D-Printed, Methane-Powered Turbopump
2016-04-21
This video shows a test with at 3-D printed turbopump made with 45 percent fewer parts than traditionally manufactured rocket fuel pumps. The pump’s turbine spins at more than 36,000 revolutions per minute. As the turbopump moves 600 gallons of liquid methane per minute, frost forms on the outside because the fuel is super-cooled to -255 degrees Fahrenheit. Methane burns out the flame pipe at the end of the test area.
Estimated use of water in Nebraska, 1985
Steele, Eugene K.
1988-01-01
per day (6,234,450 acre-feet)-of this total water use in the state in 1985, and surface water accounted for 28.9 percent, or 2,363.65 million gallons per day (2,537,550 acre-feet). Estimated irrigation water use of 8,144,170 acre-feet during 1985 was 42.4 percent of the total water use in the state; excluding power production, it was 92.8 percent of total water use.
Water requirements of the petroleum refining industry
Otts, Louis Ethelbert
1964-01-01
About 3,500 million gallons of water was withdrawn daily in 1955 for use by petroleum refineries in the United States. This was about 3 percent of the estimated daily withdrawal of industrial water in the United States in 1955. An average of 468 gallons of water was required to refine a barrel of crude oil, and the median was 95 gallons of water per barrel of crude charge; withdrawals ranged from 6.5 to 3,240 gallons per barrel. Ninety-one percent of the water requirements of the petroleum refineries surveyed was for cooling. One-third of the refineries reused their cooling water from 10 to more than 50 times. Only 17 refineries used once-through cooling systems. Refineries with recirculating cooling systems circulated about twice as much cooling water but needed about 25 times less makeup; however, they consumed about 24 times more water per barrel of charge than refineries using once-through cooling systems. The average noncracking refinery used about 375 gallons of water per barrel of crude, which is less than the 471-gallon average of refineries with cracking facilities. Refineries are composed of various processing units, and the water requirements of such units varied ; median makeup needs ranged from about 125 gallons per barrel for polymerization and alkylation units to 15.5 gallons per barrel for distillation units. Refinery-owned sources of water supplied 95 percent of the makeup-water requirements. Surface-water sources provided 86 percent of the makeup-water demand. Less than 1 percent of the makeup water was obtained from reprocessed municipal sewage.
Implementing the 40 Gallon Challenge to Increase Water Conservation
ERIC Educational Resources Information Center
Sheffield, Mary Carol; Bauske, Ellen; Pugliese, Paul; Kolich, Heather; Boellstorff, Diane
2016-01-01
The 40 Gallon Challenge is an easy-to-use, comprehensive indoor and outdoor water conservation educational tool. It can be used nationwide and easily incorporated into existing educational programs. Promotional materials and pledge cards are available on the 40 Gallon Challenge website and can be modified by educators. The website displays data…
Modeling Fuel Efficiency: MPG or GPHM?
ERIC Educational Resources Information Center
Bartkovich, Kevin G.
2013-01-01
The standard for measuring fuel efficiency in the U.S. has been miles per gallon (mpg). However, the Environmental Protection Agency's (EPA) switch in rating fuel efficiency from miles per gallon to gallons per hundred miles with the 2013 model-year cars leads to interesting and relevant mathematics with real-world connections. By modeling…
format to determine RINs for each physical gallon of renewable fuel produced in or imported into the -character number assigned to each physical gallon of renewable fuel produced or imported. Obligated parties Transaction System (EMTS). The RIN is attached to the physical gallon of renewable fuel as it is transferred
2016-08-03
Inside a control building at NASA's Kennedy Space Center in Florida, Adam Swinger, cryogenic research engineer in the Exploration Research and Technology Directorate, communicates with team members during a test of the Ground Operations Demo Unit for liquid hydrogen. The system includes a 33,000 gallon liquid hydrogen storage tank with an internal cold heat exchanger supplied from a cryogenic refrigerator. The primary goal of the testing is to achieve a liquid hydrogen zero boil-off capability. The system was designed, installed and tested by a team of civil servants and contractors from the center's Cryogenic Test Laboratory, with support from engineers at NASA's Glenn Research Center in Cleveland and Stennis Space Center in Mississippi. It may be applicable for use by the Ground Systems Development and Operations Program at Launch Pad 39B.
NASA Technical Reports Server (NTRS)
Meyer, Carl L.
1946-01-01
Tests show that at inlet-air temperatures of 250 deg F and 100 deg F the knock-limited performance of the base fuel of blends, leaded with 4 ml TEL per gallon and containing 20 percent spiropentane, was reduced at fuel/air ratios below 0.085. The 20 percent methylenecyclobutane reduced the knock-limited power of the base fuel at fuel/air ratios below 0.112. Di-tert-butyl ether, methyl-tert-butyl ether, and triptane increased the knock-limited power of the base fuel at all fuel/air ratios and at both temperatures.
At $2.15 a Gallon, Cellulosic Ethanol Could Be Cost Competitive -
Continuum Magazine | NREL At $2.15 a Gallon, Cellulosic Ethanol Could Be Cost Competitive In cellulose microfibrils. Photo by Dennis Schroeder, NREL At $2.15 a Gallon, Cellulosic Ethanol Could Be Cost ethanol-ethanol from non-food plant sources-in a way that is cost competitive with other transportation
Code of Federal Regulations, 2012 CFR
2012-07-01
... monthly throughput of less than 10,000 gallons of gasoline. 63.11116 Section 63.11116 Protection of... Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities Emission Limitations and... gallons of gasoline. (a) You must not allow gasoline to be handled in a manner that would result in vapor...
Cost Effectiveness of Premium Versus Regular Gasoline in MCPS Buses.
ERIC Educational Resources Information Center
Baacke, Clifford M.; Frankel, Steven M.
The primary question posed in this study is whether premium or regular gasoline is more cost effective for the Montgomery County Public School (MCPS) bus fleet, as a whole, when miles-per-gallon, cost-per-gallon, and repair costs associated with mileage are considered. On average, both miles-per-gallon, and repair costs-per-mile favor premium…
Code of Federal Regulations, 2013 CFR
2013-07-01
... monthly throughput of less than 10,000 gallons of gasoline. 63.11116 Section 63.11116 Protection of... Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities Emission Limitations and... gallons of gasoline. (a) You must not allow gasoline to be handled in a manner that would result in vapor...
Code of Federal Regulations, 2011 CFR
2011-07-01
... monthly throughput of less than 10,000 gallons of gasoline. 63.11116 Section 63.11116 Protection of... Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities Emission Limitations and... gallons of gasoline. (a) You must not allow gasoline to be handled in a manner that would result in vapor...
Code of Federal Regulations, 2010 CFR
2010-07-01
... monthly throughput of less than 10,000 gallons of gasoline. 63.11116 Section 63.11116 Protection of... Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities Emission Limitations and... gallons of gasoline. (a) You must not allow gasoline to be handled in a manner that would result in vapor...
21 CFR 520.2240a - Sulfaethoxypyridazine drinking water.
Code of Federal Regulations, 2014 CFR
2014-04-01
...—(i) Amount. 1.9 to 3.8 grams per gallon (0.05 percent to 0.1 percent). (ii) Indications for use... cholerasuis infection. (iii) Limitations. Administer 3.8 grams per gallon for first day followed by 1.9 grams... veterinarian. (2) Cattle—(i) Amount. 2.5 grams per gallon (0.066 percent). (ii) Indications for use. Treatment...
21 CFR 520.2240a - Sulfaethoxypyridazine drinking water.
Code of Federal Regulations, 2012 CFR
2012-04-01
...—(i) Amount. 1.9 to 3.8 grams per gallon (0.05 percent to 0.1 percent). (ii) Indications for use... cholerasuis infection. (iii) Limitations. Administer 3.8 grams per gallon for first day followed by 1.9 grams... veterinarian. (2) Cattle—(i) Amount. 2.5 grams per gallon (0.066 percent). (ii) Indications for use. Treatment...
75 FR 21244 - Procurement List; Proposed Additions and Deletions
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-23
...-NIB-0554--TriBase Multi-Purpose Cleaner, 55 gallon drum, 1 DR. NSN: 7930-00-NIB-0555--BioRenewable Glass Cleaner, 2-liter, 4/BX. NSN: 7930-00-NIB-0556--BioRenewable Glass Cleaner, 55 gallon drum, 1 DR... Disinfectant Cleaner, 55 gallon drum, 1 DR. NSN: 7930-00-NIB-0559--BioRenewable Industrial Cleaner, 2 liter, 4...
ICPP tank farm closure study. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M.
1998-02-01
The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituentsmore » are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study.« less
Elliott, Peggy E.; Moreo, Michael T.
2011-01-01
From 1951 to 2008, groundwater withdrawals totaled more than 25,000 million gallons from wells on and directly adjacent to the Nevada National Security Site. Total annual groundwater withdrawals ranged from about 30 million gallons in 1951 to as much as 1,100 million gallons in 1989. Annual withdrawals from individual wells ranged from 0 million gallons to more than 325 million gallons. Monthly withdrawal data for the wells were compiled in a Microsoft(copyright) Excel 2003 spreadsheet. Groundwater withdrawal data are a compilation of measured and estimated withdrawals obtained from published and unpublished reports, U.S. Geological Survey files, and/or data reported by other agencies. The withdrawal data were collected from 42 wells completed in 33 boreholes. A history of each well is presented in terms of its well construction, borehole lithology, withdrawals, and water levels.
Energy Dependence: The $1.4 Trillion Addiction Threatening National Security
2010-02-01
particularly when driving range is not a crucial consideration. 34 This comparison is a metric referred to as the gallon of gasoline equivalent ( GGE ...Currently, retail hydrogen costs between $2.10 and $9.10 GGE . As HFCVs penetrate the market, projected retail cost estimates for hydrogen fuel...range from $1.75 to $4.25 per GGE .35 The HFCV provides size, power, and range capability comparable to the ICE. It also “achieves two times the
Estimated use of water in the United States in 1975
Murray, Charles Richard; Reeves, E. Bodette
1977-01-01
Estimates of water use in the United States in 1975 indicate that an average of about 420 bgd (billion gallons per day) about 1,900 gallons per capita per day was withdrawn for the four principal off-channel uses which are (1) publicsupply (for domestic, commercial, and industrial uses), (2) rural (domestic and livestock), (3) irrigation, and (4) self-supplied industrial (including thermoelectric power). In 1975, withdrawals for these uses exceeded by 11.7 percent the 370 bgd estimated for 1970. Increases in the various categories of off-channel water use since 1970 were: approximately 12.8 percent for self-supplied industry (mainly in electric-utility thermoelectric plants), 7.9 percent for public supplies, 10.3 percent for rural supplies, and 10.9 percent for irrigation. Industrial water withdrawals included 70 bgd of saline water, a 30 percent increase in 5 years. The fifth principal withdrawal use, hydroelectric power (an in-channel use), amounted to 3,300 bgd, a 5-year increase of 20.7 percent. In computing total withdrawals, recycling within a plant (reuse) is not counted, but withdrawal of the same water by a downstream user (cumulative withdrawals) is counted. The quantity of freshwater consumed that is, water made unavailable for further possible withdrawal because of evaporation, incorporation in crops and manufactured products, and other causes was estimated to average 96 bgd for 1975, an increase of about 10 percent since 1970.
Alternative Fuels Data Center: Nebraska Transportation Data for Alternative
Diesel Natural Gas Transportation Fuel Consumption Source: State Energy Data System based on beta data Capacity (nameplate, MW) 546 Source: BioFuels Atlas from the National Renewable Energy Laboratory Videos $2.50/gallon $2.50/GGE Diesel $2.89/gallon $2.60/GGE $2.96/gallon $2.66/GGE Source: Average prices per
Liquefied Natural Gas (LNG) Tax LNG is taxed at a rate of $0.14 per gallon when used as a motor 1.5536 gallons of LNG to equal one volumetric gross gallon of gasoline. LNG is defined as natural gas for use as a motor fuel, which has been cooled to approximately -260 degrees Fahrenheit and is in a liquid
Annual water resources review, White Sands Missile Range, New Mexico, 1980
Cruz, R.R.
1981-01-01
Ground-water data were collected in 1980 at White Sands Missile Range in south-central New Mexico. The total water pumped at White Sands Missile Range in 1980 was 725,053,000 gallons, which was 32.5 million gallons more than in 1979. The Post Headquarters well field, which produces more than 98 percent of the water used at White Sands Missile Range, pumped 712,909,000 gallons, which was 31.1 million gallons more in 1980 than in 1979. Data were collected for specific Range areas north of the Post Headquarters area that might have potential for future water-supply development. (USGS)
2004-05-07
KENNEDY SPACE CENTER, FLA. -- For the fourth time in Space Shuttle Program history, 350,000 gallons of water are released on a Mobile Launcher Platform (MLP) at Launch Pad 39A during a water sound suppression test. Because of the unusual event, media and workers watch from nearby vantage points on the Fixed Service Structure (left). This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released for launch just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
2004-05-07
KENNEDY SPACE CENTER, FLA. -- For the fourth time in Space Shuttle Program history, 350,000 gallons of water are being released on a Mobile Launcher Platform (MLP) at Launch Pad 39A during a water sound suppression test. Because of the unusual event, media and workers watch from nearby vantage points on the Fixed Service Structure (left). This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
2004-05-07
KENNEDY SPACE CENTER, FLA. -- For the fourth time in Space Shuttle Program history, 350,000 gallons of water are being released on a Mobile Launcher Platform (MLP) at Launch Pad 39A during a water sound suppression test. Because of the unusual event, media and workers watch from nearby vantage points on the Fixed Service Structure (left). This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
2004-05-07
KENNEDY SPACE CENTER, FLA. -- For the fourth time in Space Shuttle Program history, 350,000 gallons of water are being released on a Mobile Launcher Platform (MLP) at Launch Pad 39A during a water sound suppression test. Because of the unusual event, media and workers watch from nearby vantage points on the Fixed Service Structure (left). This test is being conducted following the replacement of the six main system valves, which had been in place since the beginning of the Shuttle Program and had reached the end of their service life. Also, the hydraulic portion of the valve actuators has been redesigned and simplified to reduce maintenance costs. The sound suppression water system is installed on the launch pads to protect the orbiter and its payloads from damage by acoustical energy reflected from the MLP during launch. The system includes an elevated water tank with a capacity of 300,000 gallons. The tank is 290 feet high and stands on the northeast side of the Pad. The water is released just before the ignition of the orbiter's three main engines and twin solid rocket boosters, and flows through parallel 7-foot-diameter pipes to the Pad area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larry Zirker; James Francfort
2004-02-01
This Oil Bypass Filter Technology Evaluation quarterly report (October-December 2003) details the ongoing fleet evaluation of an oil bypass filter technology by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program. Eight four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass filter systems from the puraDYN Corporation. The bypass filters are reported to have engine oil filtering capability of <1 micron and a built-in additive package to facilitate extended oil-drain intervals. To date, the eight buses have accumulated 324,091 test miles. Thismore » represents an avoidance of 27 oil changes, which equate to 952 quarts (238 gallons) of new oil not conserved and therefore, 952 quarts of waste oil not generated. To validate the extended oil-drain intervals, an oil-analysis regime is used to evaluate the fitness of the oil for continued service by monitoring the presence of necessary additives, undesirable contaminants, and engine-wear metals. The test fleet has been expanded to include six Chevrolet Tahoe sport utility vehicles with gasoline engines.« less
40 CFR 80.1427 - How are RINs used to demonstrate compliance?
Code of Federal Regulations, 2010 CFR
2010-07-01
... gallons, pursuant to § 80.1407 or § 80.1430. (ii) Biomass-based diesel. Use the equation in this paragraph... biomass-based diesel RVO, were generated in year i, and are being applied towards the RVOBBD,i, in gallons. (ΣRINNUM)BBD,i-1 = Sum of all owned gallon-RINs that are valid for use in complying with the biomass-based...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickenheim, B.; Hansen, E.; Leishear, R.
A 10-inch READCO mixer is used for mixing the premix (45 (wt%) fly ash, 45 wt% slag, and 10 wt% portland cement) with salt solution in the Saltstone Production Facility (SPF). The Saltstone grout free falls into the grout hopper which feeds the suction line leading to the Watson SPX 100 duplex hose pump. The Watson SPX 100 pumps the grout through approximately 1500 feet of piping prior to being discharged into the Saltstone Disposal Facility (SDF) vaults. The existing grout hopper has been identified by the Saltstone Enhanced Low Activity Waste Disposal (ELAWD) project for re-design. The current nominalmore » working volume of this hopper is 12 gallons and does not permit handling an inadvertent addition of excess dry feeds. Saltstone Engineering has proposed a new hopper tank that will have a nominal working volume of 300 gallons and is agitated with a mechanical agitator. The larger volume hopper is designed to handle variability in the output of the READCO mixer and process upsets without entering set back during processing. The objectives of this task involve scaling the proposed hopper design and testing the scaled hopper for the following processing issues: (1) The effect of agitation on radar measurement. Formation of a vortex may affect the ability to accurately measure the tank level. The agitator was run at varying speeds and with varying grout viscosities to determine what parameters cause vortex formation and whether measurement accuracy is affected. (2) A dry feeds over addition. Engineering Calculating X-ESR-Z-00017 1 showed that an additional 300 pounds of dry premix added to a 300 gallon working volume would lower the water to premix ratio (W/P) from the nominal 0.60 to 0.53 based on a Salt Waste Processing Facility (SWPF) salt simulant. A grout with a W/P of 0.53 represents the upper bound of grout rheology that could be processed at the facility. A scaled amount of dry feeds will be added into the hopper to verify that this is a recoverable situation. (3) The necessity of baffles in the hopper. The preference of the facility is not to have baffles in the hopper; however, if the initial testing indicates inadequate agitation or difficulties with the radar measurement, baffles will be tested.« less
Autonomous Cryogenics Loading Operations Simulation Software: Knowledgebase Autonomous Test Engineer
NASA Technical Reports Server (NTRS)
Wehner, Walter S., Jr.
2013-01-01
Working on the ACLO (Autonomous Cryogenics Loading Operations) project I have had the opportunity to add functionality to the physics simulation software known as KATE (Knowledgebase Autonomous Test Engineer), create a new application allowing WYSIWYG (what-you-see-is-what-you-get) creation of KATE schematic files and begin a preliminary design and implementation of a new subsystem that will provide vision services on the IHM (Integrated Health Management) bus. The functionality I added to KATE over the past few months includes a dynamic visual representation of the fluid height in a pipe based on number of gallons of fluid in the pipe and implementing the IHM bus connection within KATE. I also fixed a broken feature in the system called the Browser Display, implemented many bug fixes and made changes to the GUI (Graphical User Interface).
Estimated Domestic, Irrigation, and Industrial Water Use in Washington, 2000
Lane, R.C.
2004-01-01
Since 1950, the U.S. Geological Survey has published a series of Circulars and other reports on the estimated use of water in the United States at 5-year intervals. This report presents State, regional, and county estimates of the amount of water used for domestic, irrigation, and industrial purposes in the State of Washington during the year 2000. Domestic water use was estimated to be 674 million gallons per day and the per-capita rate, 114 gallons per day. Crop-irrigation water use was estimated to be 3,005 million gallons per day and the application rate, 2.2 acre-feet per acre per year, or feet per year. Golf-course irrigation water use was estimated to be 23.6 million gallons per day and the application rate, 1.4 feet per year. Industrial water use was estimated to be 681 million gallons per day. Historically, these core categories account for about 92 percent of the estimated offstream water used in Washington.
Water Supply at Los Alamos during 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. N. Maes; S. G. McLin; W. D. Purtymun
1998-12-01
Production of potable municipal water supplies during 1997 totaled about 1,285.9 million gallons from wells in the Guaje, Pajarito, and Otowi well fields. There was no water used from the spring gallery in Water Canyon or from Guaje Reservoir during 1997. About 2.4 million gallons of water from Los Alamos Reservoir was used to irrigate public parks and recreational lands. The total water usage in 1997 was about 1,288.3 million gallons, or about 135 gallons per day per person living in Los Alamos County. Groundwater pumpage was down about 82.2 million gallons in 1997 compared with the pumpage in 1996.more » Four new replacement wells were drilled and cased in Guaje Canyon between October 1997 and March 1998. These wells are currently being developed and aquifer tests are being performed. A special report summarizing the geological, geophysical, and well construction logs will be issued in the near future for these new wells.« less
,; Fairfax County, VA
1977-01-01
The United States uses huge quantities of water. In 1976, for example, it was estimated that for each person in the U.S., about 2,000 gallons of water were used daily in homes, offices, farms, and factories. This means that roughly 420 billion gallons of water were pumped, piped, or diverted each day—about 15 percent more than in 1970. By the year 2000, our daily water needs will probably exceed 800 billion gallons.
Water and industry in the United States
,
1977-01-01
Man's economic and social progress depends on a plentiful and readily available supply of water. From his earliest days, man has found water to be an essential ingredient in improving his environment and the quality of life. Increased production of goods and continued introduction of new products have been accompanied by a phenomenal increase in water use. Industry, including hydroelectric power, now uses about 3 trillion gallons a day, or about seven times the average daily discharge of the Mississippi River.
The Depths of Hydraulic Fracturing and Accompanying Water Use Across the United States.
Jackson, Robert B; Lowry, Ella R; Pickle, Amy; Kang, Mary; DiGiulio, Dominic; Zhao, Kaiguang
2015-08-04
Reports highlight the safety of hydraulic fracturing for drinking water if it occurs "many hundreds of meters to kilometers underground". To our knowledge, however, no comprehensive analysis of hydraulic fracturing depths exists. Based on fracturing depths and water use for ∼44,000 wells reported between 2010 and 2013, the average fracturing depth across the United States was 8300 ft (∼2500 m). Many wells (6900; 16%) were fractured less than a mile from the surface, and 2600 wells (6%) were fractured above 3000 ft (900 m), particularly in Texas (850 wells), California (720), Arkansas (310), and Wyoming (300). Average water use per well nationally was 2,400,000 gallons (9,200,000 L), led by Arkansas (5,200,000 gallons), Louisiana (5,100,000 gallons), West Virginia (5,000,000 gallons), and Pennsylvania (4,500,000 gallons). Two thousand wells (∼5%) shallower than one mile and 350 wells (∼1%) shallower than 3000 ft were hydraulically fractured with >1 million gallons of water, particularly in Arkansas, New Mexico, Texas, Pennsylvania, and California. Because hydraulic fractures can propagate 2000 ft upward, shallow wells may warrant special safeguards, including a mandatory registry of locations, full chemical disclosure, and, where horizontal drilling is used, predrilling water testing to a radius 1000 ft beyond the greatest lateral extent.
Potentiometric Surface of the Patuxent Aquifer in Southern Maryland, September 2009
Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.
2010-01-01
This report presents a map showing the potentiometric surface of the Patuxent aquifer in the Patuxent Formation of Early Cretaceous age in Southern Maryland during September 2009. The map is based on water-level measurements in 42 wells. The highest measured water level was 169 feet above sea level in the outcrop area of the aquifer in northern Prince George's County. From this area, the potentiometric surface declined south towards well fields at Glen Burnie, Bryans Road, the Morgantown power plant, and the Chalk Point power plant. The measured groundwater levels were 78 feet below sea level at Glen Burnie, 56 feet below sea level at Bryans Road, 29 feet below sea level at the Morgantown power plant, and 28 feet below sea level at the Chalk Point power plant. The map also shows well yield in gallons per day for 2008 at wells or well fields.
Water requirements of the iron and steel industry
Walling, Faulkner B.; Otts, Louis Ethelbert
1967-01-01
Twenty-nine steel plants surveyed during 1957 and 1958 withdrew from various sources about 1,400 billion gallons of water annually and produced 40.8 million tons of ingot steel. This is equivalent to about 34,000 gallons of water per ton of steel. Fifteen iron ore mines and fifteen ore concentration plants together withdrew annually about 89,000 million gallons to produce 15 million tons of iron ore concentrate, or 5,900 gallons per ton of concentrate. About 97 percent of the water used in the steel plants came from surface sources, 2.2 percent was reclaimed sewage, and 1.2 percent was ground water. Steel plants supplied about 96 percent of their own water requirements, although only three plants used self-supplied water exclusively. Water used by the iron ore mines and concentration plants was also predominantly self supplied from surface source. Water use in the iron and steel industry varied widely and depended on the availability of water, age and condition of plants and equipment, kinds of processes, and plant operating procedures. Gross water use in integrated steel plants ranged from 11,200 to 110,000 gallons per ton of steel ingots, and in steel processing plants it ranged from 4,180 to 26,700 gallons per ton. Water reuse also varied widely from 0 to 18 times in integrated steel plants and from 0 to 44 times in steel processing plants. Availability of water seemed to be the principal factor in determining the rate of reuse. Of the units within steel plants, a typical (median) blast furnace required 20,500 gallons of water per ton of pig iron. At the 1956-60 average rate of pig iron consumption, this amounts to about 13,000 gallons per ton of steel ingots or about 40 percent of that required by a typical integrated steel plant 33,200 gallons per ton. Different processes of iron ore concentration are devised specifically for the various kinds of ore. These processes result in a wide range of water use from 124 to 11,300 gallons of water per ton of iron ore concentrate. Water use in concentration plants is related to the physical state of the ore. The data in this report indicate that grain size of the ore is the most important factor; the very fine grained taconite and jasper required the greatest amount of water. Reuse was not widely practiced in the iron ore industry.Consumption of water by integrated steel plants ranged from 0 to 2,010 gallons per ton of ingot steel and by steel processing plants from 120 to 3,420 gallons per ton. Consumption by a typical integrated steel plant was 681 gallons per ton of ingot steel, about 1.8 percent of the intake and about 1 percent of the gross water use. Consumption by a typical steel processing plant was 646 gallons per ton, 18 percent of the intake, and 3.2 percent of the gross water use. The quality of available water was found not to be a critical factor in choosing the location of steel plants, although changes in equipment and in operating procedures are necessary when poor-quality water is used. The use of saline water having a concentration of dissolved solids as much as 10,400 ppm (parts per million) was reported. This very saline water was used for cooling furnaces and for quenching slag. In operations such as rolling steel in which the water comes into contact with the steel being processed, better quality water is used, although water containing as much as 3,410 ppm dissolved solids has been used for this purpose. Treatment of water for use in the iron and steel industry was not widely practiced. Disinfection and treatment for scale and corrosion control were the most frequently used treatment methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pingen; Lin, Qinghua; Prikhodko, Vitaly Y.
Lean-burn gasoline engines have demonstrated 10–20% engine efficiency gain over stoichiometric engines and are widely considered as a promising technology for meeting the 54.5 miles-per-gallon (mpg) Corporate Average Fuel Economy standard by 2025. Nevertheless, NOx emissions control for lean-burn gasoline for meeting the stringent EPA Tier 3 emission standards has been one of the main challenges towards the commercialization of highly-efficient lean-burn gasoline engines in the United States. Passive selective catalytic reduction (SCR) systems, which consist of a three-way catalyst and SCR, have demonstrated great potentials of effectively reducing NOx emissions for lean gasoline engines but may cause significant fuelmore » penalty due to ammonia generation via rich engine combustion. The purpose of this study is to develop a model-predictive control (MPC) scheme for a lean-burn gasoline engine coupled with a passive SCR system to minimize the fuel penalty associated with passive SCR operation while satisfying stringent NOx and NH3 emissions requirements. Simulation results demonstrate that the MPC-based control can reduce the fuel penalty by 47.7% in a simulated US06 cycle and 32.0% in a simulated UDDS cycle, compared to the baseline control, while achieving over 96% deNOx efficiency and less than 15 ppm tailpipe ammonia slip. The proposed MPC control can potentially enable high engine efficiency gain for highly-efficient lean-burn gasoline engine while meeting the stringent EPA Tier 3 emission standards.« less
Chemical Agent Monitor (CAM) Follow-On Operational Test and Evaluation Simulant Test Strategy
1990-06-01
the CAM’s follow-on test and evaluation. 5 Blank CONTENTS Page 1. INTRODUCTION .................................................... 9 1.1 Purpose...SIMULANT TEST STRATEGY 1. INTRODUCTION 1.1 Purpose. The purpose of this report is to provide methyl salicylate (MS) and dipropylene glycol monomethyl...Syringe Hamilton, 50 pL 10 Hamilton Dispenser Model# PB 600 2 Syringe Needle 26 jauge 20 MS ** 30 gallons DPGME ** 40 gallons Ethanol ** 10 gallons * Item
Brown, William M.; Kockelman, William J.; Ziony, Joseph I.
1986-01-01
Hydrologic data were collected at White Sands Missile Range, NM, in 1985. The total groundwater withdrawal in 1985 was 676,433 ,800 gallons. The 11 supply wells in the Post Headquarters well field produced 642,056,000 gallons, or about 95 percent of the total. The six Range area supply wells produced 34,377,800 gallons. The total groundwater withdrawal was 8,841,200 gallons less in 1985 than 1984. Water samples from six Post Headquarters supply wells were collected for major chemical analysis. Water samples from 19 other wells were collected for pH and specific-conductance analysis. Depth-to-water measurements in the Post Headquarters supply wells showed seasonal fluctuations as well as continued long-term declines. (USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Locke Bogart, S.; Schultz, Ken; Brown, Lloyd
2006-07-01
It is demonstrable that synthetic fuels (jet/diesel/gasoline {approx_equal} (CH{sub 2}){sub n}) can be produced from carbon, water, and nuclear energy. What remains to be shown is that all system processes are scalable, integrable, and economical. Sources of carbon include but are not limited to CO{sub 2} from the atmosphere or seawater, CO{sub 2} from fossil-fired power plants, and elemental carbon from coal or biomass. For mobile defense (Navy) applications, the ubiquitous atmosphere is our chosen carbon source. For larger-scale sites such as Naval Advance Bases, the atmosphere may still be the choice should other sources not be readily available. However, at many locations suitable for defense and, potentially, commercial syn-fuel production, far higher concentrations of carbon may be available. The rationale for this study was manifold: fuel system security from terrorism and possible oil embargoes; rising demand and, eventually, peaking supply of conventional petroleum; and escalating costs and prices of fuels. For these reasons, the initial parts of the study were directed at Syn-fuel production for mobile Naval platforms and shore sites such as Rokkasho, Japan (as an exemplar). Nuclear reactors would provide the energy for H{sub 2} from water-splitting, Membrane Gas Absorption (MGA) would extract CO{sub 2} from the atmosphere, the Reverse Water-Gas Reaction (RWGR) would convert the CO{sub 2} to CO, and the resultant H{sub 2} and CO feeds would be converted to (CH{sub 2})n by the Fischer-Tropsch reaction. Many of these processes exist at commercial scale. Some, particularly MGA and RWGR, have been demonstrated at the bench-scale, requiring up-scaling. Likewise, the demonstration of an integrated system at some scale is yet to be done. For ship-based production, it has been shown that the system should be viable and, under reasonable assumptions, both scalable and economical for defense fuels. For the assumptions in the study, fuel cost estimates range from {approx}more » $2.55 to $$4.75 per gallon with a nominal cost of {approx} $$3.65 per gallon. For large installations and advanced nuclear power and hydrogen production systems (high temperature reactors and thermo-chemical hydrogen production), then fuel production might be produced at near-commercial fuel prices. For the H2-MHR and plausible assumptions and estimates of CO{sub 2} extraction and fuel synthesis capital and operating costs, such fuels might have nominal and low production costs ranging from {approx} $2.40 to $$1.70 per gallon, respectively, for a Public Sector Fixed Charge Rate of 5%. Next, it was shown that for CO{sub 2} provided from a fossil-fired power plant, a CO{sub 2} 'disposal' fee of $$30/tonne and a Fixed Charge Rate of 10%, then syn-fuel might be produced at {approx} $3.00 and $2.45 (nominal cost values) and $1.90 and $$1.85 (low cost values) per gallon by LWRs and H2-MHRs, respectively. Last, it was shown that nuclear-produced H{sub 2} and O{sub 2} could convert coal to liquid fuels at very low cost. For a Fixed Charge Rate of 10% and nominal plant costs, fuel costs ranged from {approx} $$1.60 (LWR) per gallon to {approx} $$1.30 (H2-MHR) for an assumed CO{sub 2} avoidance credit of $$30/Tonne. Our studies have shown that the addition of nuclear-produced hydrogen and oxygen to the coal syn-fuel process can greatly reduce CO{sub 2} production and, for modest CO{sub 2} credit, can further reduce the cost of the syn-fuel. Capturing CO{sub 2} from stack gas or even the air will further reduce the amount of CO{sub 2} that must be dealt with. This last case is independent of the price of fossil fuels and liquid fuel production costs and prices will have been capped. Of possibly even greater importance, the carbon fuel cycle will have been closed, thus minimizing or eliminating concerns with Global Climate Change. (authors)« less
United States Metric Board. A Study of Metric Measurement and Legislation. Volume 2.
1979-09-10
milk to be sold by the gill. Although the rod and gill are well-established customary units, their use in the referenced contexts would not adequately...5) hundred GALLONS or more used for holding milk , vinegar, molasses, liquid #22 ..... SEC. BODY .......................................... 35-14-127...34-105. solids per GALLON. When ice milk is packaged in containers of greater than one-half GALLON capacity, it shall not contain color or any of the
Hydrogen Fuel Cell: Research Progress and Near-Term Opportunities
2009-04-27
deployment) from $5.00 to $3.00 per gallon gasoline equivalent ( gge )* – a 40% reduction.[2] Christy Cooper US Department of Energy Hydrogen Program...renewable-based technologies (assuming widespread deployment) from $5.15 to $4.80 per gge (e.g., electroly- sis and distributed reforming† of bio...to gaso- line. The amount of fuel with the energy content of one gallon of gaso- line is referred to as a gallon gasoline equivalent, or gge
Assessing Public Preferences for Forest Biomass Based Energy in the Southern United States
NASA Astrophysics Data System (ADS)
Susaeta, Andres; Alavalapati, Janaki; Lal, Pankaj; Matta, Jagannadha R.; Mercer, Evan
2010-04-01
This article investigated public preferences for forest biomass based liquid biofuels, particularly ethanol blends of 10% ( E10) and 85% ( E85). We conducted a choice experiment study in three southern states in the United States: Arkansas, Florida, and Virginia. Reducing atmospheric CO2, decreasing risk of wildfires and pest outbreaks, and enhancing biodiversity were presented to respondents as attributes of using biofuels. Results indicated that individuals had a positive extra willingness to pay (WTP) for both ethanol blends. The extra WTP was greater for higher blends that offered larger environment benefits. The WTPs for E10 were 0.56 gallon-1, 0.58 gallon-1, and 0.48 gallon-1, and for E85 they were 0.82 gallon-1, 1.17 gallon-1, and 1.06 gallon-1 in Arkansas, Florida, and Virginia, respectively. Although differences in WTP for E10 were statistically insignificant among the three states, significant differences were found in the WTP for E85 between AR and FL and between AR and VA. Preferences for the environmental attributes appeared to be heterogeneous, as respondents’ were willing to pay a premium for E10 in all three states to facilitate the reduction of CO2 and the improvement of biodiversity but were not willing to pay more for E85 in order to enhance biodiversity.
Side-by-Side Testing of Water Heating Systems: Results from the 2013–2014 Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colon, Carlos
2017-07-01
The Florida Solar Energy Center (FSEC) completed a fourth year-long evaluation on residential hot water heating systems in a laboratory environment (east central Florida, hot-humid climate). The evaluation studied the performance of five hot water systems (HWS) plus a reference baseline system for each fuel, (i.e., electric and natural gas). Electric HWS consisted of two residential electric heat pump water heaters (HPWHs, 60 and 80 gallons), a solar thermal system using a polymer absorber (glazed) collector with 80-gallon storage and a duplicate 50-gallon standard electric water heater with added cap and wrap insulation. Baseline performance data were collected from amore » standard 50-gallon electric water heater of minimum code efficiency to compare energy savings. Similarly, a standard 40-gallon upright vented natural gas water heater served as baseline for the natural gas fuel category. The latter, having a larger jacket diameter [18 in., with an energy factor (EF) of 0.62] with increased insulation, replaced a former baseline (17 in. diameter, EF = 0.59) that served during three previous testing rotations (2009–2013). A high-efficiency, condensing natural gas hybrid water heater with 27-gallon buffered tank was also tested and compared against the gas baseline. All systems underwent testing simultaneously side-by-side under the criteria specified elsewhere in this report.« less
Side-by-Side Testing of Water Heating Systems: Results from the 2013–2014 Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colon, Carlos
The Florida Solar Energy Center (FSEC) completed a fourth year-long evaluation on residential hot water heating systems in a laboratory environment (east central Florida, hot-humid climate). The evaluation studied the performance of five hot water systems (HWS) plus a reference baseline system for each fuel, (i.e., electric and natural gas). Electric HWS consisted of two residential electric heat pump water heaters (HPWHs, 60 and 80 gallons), a solar thermal system using a polymer absorber (glazed) collector with 80-gallon storage and a duplicate 50-gallon standard electric water heater with added cap and wrap insulation. Baseline performance data were collected from amore » standard 50-gallon electric water heater of minimum code efficiency to compare energy savings. Similarly, a standard 40-gallon upright vented natural gas water heater served as baseline for the natural gas fuel category. The latter, having a larger jacket diameter [18 in., with an energy factor (EF) of 0.62] with increased insulation, replaced a former baseline (17 in. diameter, EF = 0.59) that served during three previous testing rotations (2009–2013). A high-efficiency, condensing natural gas hybrid water heater with 27-gallon buffered tank was also tested and compared against the gas baseline. All systems underwent testing simultaneously side-by-side under the criteria specified elsewhere in this report.« less
Ground water in the carbonate rocks of the Franklin area, Tennessee
Zurawski, Ann; Burchett, C.R.
1980-01-01
A study of ground water in the Franklin area, Tennessee, was undertaken to fill a growing need for information on ground-water occurrence in the carbonate rocks of central Tennessee. Fifteen drilling sites were selected that had one or more of the following characteristics: medium- to thick-bedded limestones within 200 feet of land surface, structural lows, significant streamflow gains and losses, elongated sinkholes, straight stream reaches, linear features or other surface indications of solution cavities at depth. The 15 test wells produced from less than 1 to about 600 gallons per minute and had an average yield of 68 gallons per minute, measured while pumping the wells with compressed air. The average driller-reported yield for the area is five gallons per minute. Specific capacities for the four highest yielding wells ranged from 0.6 to 357 gallons per minute per foot of drawdown after 8 hours of pumping at rates ranging from 70 to 225 gallons per minute. Additional drilling at two sites revealed extensive solution openings. At one site, drawdown in five observation wells did not exceed 8.5 feet during 48 hours of pumping at an average rate of 502 gallons per minute. Raw water in the test wells meets most drinking-water standards and is of rather uniform quality from well to well and throughout the year. (USGS)
Ground-water withdrawals from the Coastal Plain of New Jersey, 1956-1980
Vowinkel, E.F.
1984-01-01
Withdrawals and site data for wells with a pump capacity of 100 ,000 gallons per day or greater in the Coastal Plain of New Jersey are stored in computer files for 1956-80. The data are aggregated by computer into tables, graphs and maps to show the distribution of ground-water withdrawals. Withdrawals are reported by type of use and aquifer for each county in the Coastal Plain. Public-supply wells withdraw the largest quantity of ground water in the Coastal Plain, followed by industrial and agricultural wells. In 1980 public-supply withdrawals were about 280 million gallons per day; the maximum monthly rate was about 355 million gallons per day in July, and the lowest was about 215 million gallons per day in February. Average industrial withdrawals were about 65 million gallons per day. Ground-water withdrawals used for agriculture vary significantly during the year. In 1980, about 75 percent of the agricultural withdrawals occurred from June through September. Several aquifers are used as sources of water supply in the Coastal Plain. Five regional aquifers are the major sources of water for public-supply, industrial, or agricultural use. In decreasing order of withdrawals in 1980, in million gallons per day, they are: The Potomac-Raritan-Magothy aquifer system, 243; Kirkwood-Cohansey aquifer system, 70; Atlantic City 800-foot sand, 21; Englishtown aquifer, 12; and the Wenonah-Mount Laurel aquifer system, 5. (USGS)
Water resources in the Blackstone River basin, Massachusetts
Walker, Eugene H.; Krejmas, Bruce E.
1983-01-01
The Blackstone River heads in brooks 6 miles northwest of Worcester and drains about 330 square miles of central Massachusetts before crossing into Rhode Island at Woonsocket. The primary source of the Worcester water supply is reservoirs, but for the remaining 23 communities in the basin, the primary source is wells. Bedrock consists of granitic and metamorphic rocks. Till mantles the uplands and extends beneath stratified drift in the valleys. Stratified glacial drift, consisting of clay, silt, and fine sand deposited in lakes and coarse-textured sand and gravel deposited by streams, is found in lowlands and valleys. The bedrock aquifer is capable of sustaining rural domestic supplies throughout the Blackstone River basin. Bedrock wells yield an average of 10 gallons per minute, but some wells, especially those in lowlands where bedrock probably contains more fractures and receives more recharge than in the upland areas, yield as much as 100 gallons per minute. Glacial sand and gravel is the principal aquifer. It is capable of sustaining municipal supplies. Average daily pumpage from this aquifer in the Blackstone River basin was 10.4 million gallons per day in 1978. The median yield of large-diameter wells in the aquifer is 325 gallons per minute. The range of yields from these wells is 45 to 3,300 gallons per minute. The median specific capacity is about 30 gallons per minute per foot of drawdown.
Study of the costs and benefits of composite materials in advanced turbofan engines
NASA Technical Reports Server (NTRS)
Steinhagen, C. A.; Stotler, C. L.; Neitzel, R. E.
1974-01-01
Composite component designs were developed for a number of applicable engine parts and functions. The cost and weight of each detail component was determined and its effect on the total engine cost to the aircraft manufacturer was ascertained. The economic benefits of engine or nacelle composite or eutectic turbine alloy substitutions was then calculated. Two time periods of engine certification were considered for this investigation, namely 1979 and 1985. Two methods of applying composites to these engines were employed. The first method just considered replacing an existing metal part with a composite part with no other change to the engine. The other method involved major engine redesign so that more efficient composite designs could be employed. Utilization of polymeric composites wherever payoffs were available indicated that a total improvement in Direct Operating Cost (DOC) of 2.82 to 4.64 percent, depending on the engine considered, could be attained. In addition, the percent fuel saving ranged from 1.91 to 3.53 percent. The advantages of using advanced materials in the turbine are more difficult to quantify but could go as high as an improvement in DOC of 2.33 percent and a fuel savings of 2.62 percent. Typically, based on a fleet of one hundred aircraft, a percent savings in DOC represents a savings of four million dollars per year and a percent of fuel savings equals 23,000 cu m (7,000,000 gallons) per year.
Estimated water use in Ohio, 1990 - Public supply data
Veley, R.J.
1993-01-01
Our Nation's social and economic development has depended on and will continue to depend on the availability of usable water. In 1950, the U.S. Geological Survey (USGS) began publishing water-use data on a national level every 5 years to assist in the wise management of our Nation's water resources. The USGS currently collects water-use data for the following categories: public supply, domestic, commercial, industrial, thermoelectric power, mining, livestock, animal specialties, irrigation, hydroelectric power, sewage treatment, and reservoir evaporation.In 1977, Congress authorized the National Water-Use Information Program. The program encourages the USGS and a State-level agency in each of the 50 States to cooperate in the collection and dissemination of water-use data. In Ohio, the USGS and the Ohio Department of Natural Resources, Division of Water (ODNR-DW), are cooperators in this effort. In 1990, ODNR-DW implemented the Water Withdrawal Facility Registration Program for Ohio, which requires those water consumers who have the capacity to withdraw 100,000 gallons of water daily to register with the ODNR-DW. Consumers whose daily capacity is less than 100,000 gallons are not required to register. The information collected from the registrants is maintained in computerized data bases at the ODNR-DW and the Ohio District Office of the USGS. This Fact Sheet, which summarizes Ohio's 1990 public-supply water-use data, is one of a series that supplements, by category, the national USGS publication on water use in 1990.
Estimated water use in Ohio, 1990 -- Mining data
Veley, R.J.
1993-01-01
Our Nation's social and economic development has depended on and will continue to depend on the availability of usable water. In 1950, the U.S. Geological Survey (USGS) began publishing water-use data on a national level every 5 years to assist in the management of our Nation's water resources. The USGS currently collects and (or) estimates water-use data for the following categories: public supply, domestic, commercial, industrial, thermoelectric power, mining, livestock, animal specialties, irrigation, hydroelectric power (instream use), sewage treatment, and reservoir evaporation. In 1977, Congress authorized the National Water-Use Information Program. The program encourages the USGS and a State-level agency in each of the 50 States to cooperate in the collection and dissemination of water-use data. In Ohio, the USGS and the Ohio Department of Natural Resources, Division of Water (ODNR-DW), are cooperators in this effort. In 1990, ODNR-DW implemented the Water Withdrawal Facility Registration Program for Ohio, which requires those water consumers who have the capacity to withdraw 100,000 gallons of water daily to register with the ODNR-DW. Consumers whose daily capacity is less than 100,000 gallons are not required to register. The information collected from the registrants is maintained in computerized data bases at the ODNR-DW and the Ohio District Office of the USGS. This Fact Sheet, which summarizes Ohio's 1990 mining water-use data, is one of a series that supplements, by category, the national USGS publication on water use.
The Badger Company conceptual design of a 50 MGD desalination plant. Special report No. 10
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1965-08-01
The objective of this study is to produce a design which advances the technology of seawater conversion and to present the results in a form which can be used by any qualified individual or firm as the basis for an architectural-engineering design. Ground rules furnished by OSW specified that only the desalination section of a dual-purpose power-water plant be considered and that it be designed for a 30-year life. Process and structural design ideas are to be presented in terms of the complete plant concept. The complex is to be located on a typical California coastal site with capital andmore » operating costs based on December, 1964, values. The Badger study considers the Multi-Stage Flash (MSF) process, achieving a minimum overall pressure drop by an uninterrupted flow path of brine and product water through the evaporator flashing area. A performance ratio of 20 pounds of product water per pound of steam yields a calculated water cost of $0.323 per thousand gallons. The specified 30-year write-off at low interest rates allows comparatively high capital expenditures favoring titanium tubing for brine service which contributes to low maintenance and operating costs. (GRA)« less
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Maximum engine power, displacement... Maximum engine power, displacement, power density, and maximum in-use engine speed. This section describes how to determine the maximum engine power, displacement, and power density of an engine for the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Maximum engine power, displacement... Maximum engine power, displacement, power density, and maximum in-use engine speed. This section describes how to determine the maximum engine power, displacement, and power density of an engine for the...
Oki, Delwyn S.
2002-01-01
An estimate of ground-water availability in the Hawi area of north Kohala, Hawaii, is needed to determine whether ground-water resources are adequate to meet future demand within the area and other areas to the south. For the Hawi area, estimated average annual recharge from infiltration of rainfall, fog drip, and irrigation is 37.5 million gallons per day from a daily water budget. Low and high annual recharge estimates for the Hawi area that incorporate estimated uncertainty are 19.9 and 55.4 million gallons per day, respectively. The recharge estimates from this study are lower than the recharge of 68.4 million gallons per day previously estimated from a monthly water budget. Three ground-water models, using the low, intermediate, and high recharge estimates (19.9, 37.5, and 55.4 million gallons per day, respectively), were developed for the Hawi area to simulate ground-water levels and discharges for the 1990?s. To assess potential ground-water availability, the numerical ground-water flow models were used to simulate the response of the freshwater-lens system to withdrawals at rates in excess of the average 1990?s withdrawal rates. Because of uncertainty in the recharge estimate, estimates of ground-water availability also are uncertain. Results from numerical simulations indicate that for appropriate well sites, depths, and withdrawal rates (1) for the low recharge estimate (19.9 million gallons per day) it may be possible to develop an additional 10 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 160 feet near the withdrawal sites, (2) for the intermediate recharge estimate (37.5 million gallons per day) it may be possible to develop an additional 15 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 190 feet near the withdrawal sites, and (3) for the high recharge estimate (55.4 million gallons per day) it may be possible to develop at least an additional 20 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 200 feet near the withdrawal sites. Other well-field configurations than the ones considered potentially could be used to develop more fresh ground water than indicated by the scenarios tested in this study. Depth, spacing, and withdrawal rates of individual wells are important considerations in determining ground-water availability. The regional models developed for this study cannot predict whether local saltwater intrusion problems may occur at individual withdrawal sites. Results of this study underscore the importance of collecting new information to better constrain the recharge estimates.
Water requirements of the carbon-black industry
Conklin, Howard L.
1956-01-01
Carbon blacks include an important group of industrial carbons used chiefly as a reinforcing agent in rubber tires. In 1953 more than 1,610 million pounds of carbon black was produced, of which approximately 1,134 million pounds was consumed by the rubber industry. The carbon-black industry uses small quantities of water as compared to some industries; however, the water requirements of the industry are important because of the dependence of the rubber-tire industry on carbon black.Two methods are used in the manufacture of carbon black - contact and furnace. The only process use of water in the contact method is that used in pelleting. Water is used also in the plant washhouse and for cleaning, and sometimes the company camp may be supplied by the plant. A survey made during the last quarter of 1953 showed that the average values of unit water use at contact plants for process use, all plant uses, and all uses including company camps are 0.08, 0.14, and 0.98 gallon of water per pound of carbon black respectively.In addition to use in wet pelleting, large quantities of water are required in continuous and cyclic furnace methods to reduce the temperature of the gases of decomposition in order to separate and collect the entrained carbon black. The 22 furnace plants in operation in 1953 used a total of 12.4 million gallons per day for process use. Four furnace plants generate electric power for plant use; condenser-cooling water for one such plant may nearly equal the requirements of the entire industry for process use. The average values of unit water use at furnace plants for process use, all plant uses and all uses including company camps but excluding power generation are 3.26, 3.34, and 3.45 gallons of water per pound of carbon black respectively.Carbon-black plants in remote, sparsely settled areas often must maintain company camps for employees. Twenty-one of twenty-seven contact plants surveyed in 1953 had company camps. These camps used large quantities of water: 0.84 gallon per pound of carbon black as compared to 0.14 gallon per pound used in the plants.Furnace plants can generally be located near a labor supply and, therefore, do not require company camps. Ten of the twenty-two furnace plants surveyed in 1953 had company camps.Because water used for pelleting and gas quenching is evaporated, leaving the dissolved minerals in the product as objectionable impurities, particular attention was paid to the quality of water available for use at the plants visited during the 1953 survey. Reports of chemical analyses of water samples were obtained at 23 plants. A study of these reports does not develop a pattern of the limits of tolerance of dissolved solids in water used in process or of the need for water treatment based on geographical location of the plant. However these analyses show that water used for quenching contains less dissolved solids than water used by the industry for any other purpose.Based on trends in the industry it is expected that the quantity of water used by the carbon-black industry will increase more rapidly than will the quantity of carbon black produced because of the increasing percentage produced in furnace plants, and that selection of sites for modern furnace plants will be influenced more by quantity and quality of the available water supply than was the case in selecting sites for contact plants for which low-cost natural gas was the primary consideration.
General Aviation Activity and Avionics Survey. Calendar Year 1989
1989-01-01
gasoline, 76 million gallons were 100 octane gasoline, 237 million gallons were 100 octane low lead gasoline, and 11 million gallons were automobile ...0 CQI vH 0z Cl0) c 0 0 p. 0l 2: HRM -0 0 P4 E-4 E-4E- HD a. E-0H4 4 AH H H OH) ID IDIDa) Q a4 ) cn H l OH~ a) L) UI H 0~~~ H- 44 O 0 wwHwC. 4 H U la
NASA Technical Reports Server (NTRS)
Swanger, Adam M.; Notardonato, William U.; Jumper, Kevin M.
2015-01-01
The Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2) has been developed at NASA Kennedy Space Center in Florida. GODU-LH2 has three main objectives: zero-loss storage and transfer, liquefaction, and densification of liquid hydrogen. A cryogenic refrigerator has been integrated into an existing, previously certified, 33,000 gallon vacuum-jacketed storage vessel built by Minnesota Valley Engineering in 1991 for the Titan program. The dewar has an inner diameter of 9.5 and a length of 71.5; original design temperature and pressure ranges are -423 F to 100 F and 0 to 95 psig respectively. During densification operations the liquid temperature will be decreased below the normal boiling point by the refrigerator, and consequently the pressure inside the inner vessel will be sub-atmospheric. These new operational conditions rendered the original certification invalid, so an effort was undertaken to recertify the tank to the new pressure and temperature requirements (-12.7 to 95 psig and -433 F to 100 F respectively) per ASME Boiler and Pressure Vessel Code, Section VIII, Division 1. This paper will discuss the unique design, analysis and implementation issues encountered during the vessel recertification process.
Clean Water for Remote Locations
NASA Technical Reports Server (NTRS)
2006-01-01
Marshall Space Flight Center engineers are working on creating the Regenerative Environmental Control and Life Support System, a complex system of devices intended to sustain the astronauts living on the ISS and, in the future, sustain those who are blasting off to the Moon or Mars. The devices make use of the available resources, by turning wastewater from respiration, sweat, and urine into drinkable water. One of the devices that Marshall has been working on is the Water Recovery System (WRS). Marshall has teamed with long-time NASA contractor, Hamilton Sundstrand Space Systems International, Inc., of Windsor Locks, Connecticut. Hamilton Sundstrand, the original designer of the life support devices for the space suits, developed the Water Processor Assembly (WPA). It, along with the Urine Processor Assembly (UPA) developed by Marshall, combines to make up the total system, which is about the size of two refrigerators, and will support up to a six-member crew. The system is currently undergoing final testing and verification. "The Water Processor Assembly can produce up to about 28 gallons of potable recycled water each day," said Bob Bagdigian, Marshall Regenerative Environmental Control and Life Support System project manager. After the new systems are installed, annual delivered water to the ISS should decrease by approximately 15,960 pounds, or about 1,600 gallons.
2013-01-11
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, two space shuttle external fuel tank transporters are being prepared for transfer to the Wings of Dreams Aviation Museum at Keystone Heights Airport between Gainesville and Jacksonville, Fla. At the Wings of Dreams Aviation Museum a mock-up shuttle external fuel tank will be displayed. During space shuttle launches, the external tanks contained over 500,000 gallons of liquid hydrogen and liquid oxygen propellant for the shuttle orbiters' three main engines. The effort is part of Transition and Retirement of the space shuttle. For more information, visit http://www.nasa.gov/transition Photo credit: NASA/ Jim Grossmann
2013-01-11
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, two space shuttle external fuel tank transporters are being prepared for transfer to the Wings of Dreams Aviation Museum at Keystone Heights Airport between Gainesville and Jacksonville, Fla. At the Wings of Dreams Aviation Museum a mock-up shuttle external fuel tank will be displayed. During space shuttle launches, the external tanks contained over 500,000 gallons of liquid hydrogen and liquid oxygen propellant for the shuttle orbiters' three main engines. The effort is part of Transition and Retirement of the space shuttle. For more information, visit http://www.nasa.gov/transition Photo credit: NASA/ Jim Grossmann
2013-01-11
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, two space shuttle external fuel tank transporters are being prepared for transfer to the Wings of Dreams Aviation Museum at Keystone Heights Airport between Gainesville and Jacksonville, Fla. At the Wings of Dreams Aviation Museum a mock-up shuttle external fuel tank will be displayed. During space shuttle launches, the external tanks contained over 500,000 gallons of liquid hydrogen and liquid oxygen propellant for the shuttle orbiters' three main engines. The effort is part of Transition and Retirement of the space shuttle. For more information, visit http://www.nasa.gov/transition Photo credit: NASA/ Jim Grossmann
2013-01-11
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, two space shuttle external fuel tank transporters are being prepared for transfer to the Wings of Dreams Aviation Museum at Keystone Heights Airport between Gainesville and Jacksonville, Fla. At the Wings of Dreams Aviation Museum a mock-up shuttle external fuel tank will be displayed. During space shuttle launches, the external tanks contained over 500,000 gallons of liquid hydrogen and liquid oxygen propellant for the shuttle orbiters' three main engines. The effort is part of Transition and Retirement of the space shuttle. For more information, visit http://www.nasa.gov/transition Photo credit: NASA/ Jim Grossmann
Engine Performance and Knock Rating of Fuels for High-output Aircraft Engines
NASA Technical Reports Server (NTRS)
Rothbrock, A M; Biermann, Arnold E
1938-01-01
Data are presented to show the effects of inlet-air pressure, inlet-air temperature, and compression ratio on the maximum permissible performance obtained on a single-cylinder test engine with aircraft-engine fuels varying from a fuel of 87 octane number to one 100 octane number plus 1 ml of tetraethyl lead per gallon. The data were obtained on a 5-inch by 5.75-inch liquid-cooled engine operating at 2,500 r.p.m. The compression ratio was varied from 6.50 to 8.75. The inlet-air temperature was varied from 120 to 280 F. and the inlet-air pressure from 30 inches of mercury absolute to the highest permissible. The limiting factors for the increase in compression ratio and in inlet-air pressure was the occurrence of either audible or incipient knock. The data are correlated to show that, for any one fuel,there is a definite relationship between the limiting conditions of inlet-air temperature and density at any compression ratio. This relationship is dependent on the combustion-gas temperature and density relationship that causes knock. The report presents a suggested method of rating aircraft-engine fuels based on this relationship. It is concluded that aircraft-engine fuels cannot be satisfactorily rated by any single factor, such as octane number, highest useful compression ratio, or allowable boost pressure. The fuels should be rated by a curve that expresses the limitations of the fuel over a variety of engine conditions.
natural gas (LNG) and propane used as motor fuel in diesel gallon equivalents (DGEs). For taxation compressed natural gas (CNG) used as motor fuel in gasoline gallon equivalents (GGEs). CNG must be reported
Code of Federal Regulations, 2012 CFR
2012-04-01
... methyl isobutyl ketone; 1 gallon of mixed isomers of nitropropane; or 1 gallon of methyl n- butyl ketone.... 551.Acetaldehyde. 552.Other aldehydes. 561.Ethyl ether. 562.Other ethers. 571.Ethylene dibromide. 572...
Code of Federal Regulations, 2010 CFR
2010-04-01
... methyl isobutyl ketone; 1 gallon of mixed isomers of nitropropane; or 1 gallon of methyl n- butyl ketone.... 551.Acetaldehyde. 552.Other aldehydes. 561.Ethyl ether. 562.Other ethers. 571.Ethylene dibromide. 572...
Code of Federal Regulations, 2011 CFR
2011-04-01
... methyl isobutyl ketone; 1 gallon of mixed isomers of nitropropane; or 1 gallon of methyl n- butyl ketone.... 551.Acetaldehyde. 552.Other aldehydes. 561.Ethyl ether. 562.Other ethers. 571.Ethylene dibromide. 572...
Code of Federal Regulations, 2013 CFR
2013-04-01
... methyl isobutyl ketone; 1 gallon of mixed isomers of nitropropane; or 1 gallon of methyl n- butyl ketone.... 551.Acetaldehyde. 552.Other aldehydes. 561.Ethyl ether. 562.Other ethers. 571.Ethylene dibromide. 572...
Code of Federal Regulations, 2014 CFR
2014-04-01
... methyl isobutyl ketone; 1 gallon of mixed isomers of nitropropane; or 1 gallon of methyl n- butyl ketone.... 551.Acetaldehyde. 552.Other aldehydes. 561.Ethyl ether. 562.Other ethers. 571.Ethylene dibromide. 572...
Demonstration of a 200-Kilowatt Biomass Fueled Power Plant
1994-01-01
300 people. Throughout the world there exists tremendous quantities of biomass waste, such as wood waste, rice husks , sugar bagasse, and coconut ...0.07 to 0.10 gallon (0.27 to 0.38 liter) of oil per kilowatt-hour generated. Even at subsidized prices of $1.00/gal ($0.26/liter), the fuel cost alone...for generating electricity amounts to $0.07 to $0.10/kW-hr generated. In many locations where diesel oil prices are $2.00 to $4.00/gal ($0.53 to $1.06
Design and Testing of an Erosion Resistant Ultrasonic De-Icing System for Rotorcraft Blades
2013-08-01
need for pneumatic slip rings , and the potential of holes located on the blade to clog. The 11-gallon tank adds significant weight and only protects...icing were the need of heavy pneumatic slip rings , and the need for a coating able to protect against both rain and sand erosion. 14 1.1.4.6...feet in diameter at an RPM of 1000 (see Figure 49). Four slip rings carry 48 signal channels and 24 power channels from the rotating frame of the
Solar domestic hot water system installed at Texas City, Texas
NASA Technical Reports Server (NTRS)
1980-01-01
This is the final technical report of the solar energy system located at LaQuinta Motor Inn, Texas City, Texas. The system was designed to supply 63 percent of the total hot water load for a new 98 unit motor inn. The solar energy system consists of a 2100 square feet Raypack liquid flat plate collector subsystem and a 2500 gallon storage subsystem circulating hot water producing 3.67 x 10 to the 8th power Btu/year. Abstracts from the site files, specification references, drawings, installation, operation, and maintenance instructions are included.
40 CFR 1054.140 - What is my engine's maximum engine power and displacement?
Code of Federal Regulations, 2010 CFR
2010-07-01
... power and displacement? 1054.140 Section 1054.140 Protection of Environment ENVIRONMENTAL PROTECTION... engine power and displacement? This section describes how to quantify your engine's maximum engine power and displacement for the purposes of this part. (a) An engine configuration's maximum engine power is...
40 CFR 1054.140 - What is my engine's maximum engine power and displacement?
Code of Federal Regulations, 2011 CFR
2011-07-01
... power and displacement? 1054.140 Section 1054.140 Protection of Environment ENVIRONMENTAL PROTECTION... engine power and displacement? This section describes how to quantify your engine's maximum engine power and displacement for the purposes of this part. (a) An engine configuration's maximum engine power is...
40 CFR 1054.140 - What is my engine's maximum engine power and displacement?
Code of Federal Regulations, 2012 CFR
2012-07-01
... power and displacement? 1054.140 Section 1054.140 Protection of Environment ENVIRONMENTAL PROTECTION... engine power and displacement? This section describes how to quantify your engine's maximum engine power and displacement for the purposes of this part. (a) An engine configuration's maximum engine power is...
40 CFR 1054.140 - What is my engine's maximum engine power and displacement?
Code of Federal Regulations, 2014 CFR
2014-07-01
... power and displacement? 1054.140 Section 1054.140 Protection of Environment ENVIRONMENTAL PROTECTION... engine power and displacement? This section describes how to quantify your engine's maximum engine power and displacement for the purposes of this part. (a) An engine configuration's maximum engine power is...
40 CFR 1054.140 - What is my engine's maximum engine power and displacement?
Code of Federal Regulations, 2013 CFR
2013-07-01
... power and displacement? 1054.140 Section 1054.140 Protection of Environment ENVIRONMENTAL PROTECTION... engine power and displacement? This section describes how to quantify your engine's maximum engine power and displacement for the purposes of this part. (a) An engine configuration's maximum engine power is...
motor fuel tax on a gallon equivalent basis. Alternative fuels include natural gas, propane, hydrogen , and hythane. A gallon equivalent is defined as 5.660 pounds (lbs.) of compressed natural gas, 6.06 lbs
Conference on Weights and Measures has established equivalent measures. Until the DOL standardizes measurements, a gasoline gallon equivalent is equal to 5.66 pounds (lbs.) of CNG and a diesel gallon equivalent
per gasoline gallon equivalent (GGE). The liquefied natural gas (LNG) tax rate is $0.243 per diesel gallon equivalent (DGE). For taxation purposes, one GGE is equal to 5.75 pounds (lbs.) of propane and
Toilets Specification and Certification
Recent advancements have allowed toilets to use 1.28 gallons per flush or less while still providing equal or superior performance. This is 20 percent less water than the current federal standard of 1.6 gallons per flush.
NASA Technical Reports Server (NTRS)
Yung, C. S.; Lansing, F. L.
1983-01-01
A 37.85 cu m (10,000 gallons) per year (nominal) passive solar powered water distillation system was installed and is operational in the Venus Deep Space Station. The system replaced an old, electrically powered water distiller. The distilled water produced with its high electrical resistivity is used to cool the sensitive microwave equipment. A detailed thermal model was developed to simulate the performance of the distiller and study its sensitivity under varying environment and load conditions. The quasi-steady state portion of the model is presented together with the formulas for heat and mass transfer coefficients used. Initial results indicated that a daily water evaporation efficiency of 30% can be achieved. A comparison made between a full day performance simulation and the actual field measurements gave good agreement between theory and experiment, which verified the model.
Water Use in Wetland Kalo Cultivation in Hawai`i
Gingerich, Stephen B.; Yeung, Chiu W.; Ibarra, Tracy-Joy N.; Engott, John A.
2007-01-01
Ten cultivation areas (8 windward, 2 leeward) were selected for a kalo water-use study, primarily on the basis of the diversity of environmental and agricultural conditions under which wetland kalo is grown and landowner permission and availability. Flow and water-temperature data were collected at the lo`i complex level and at the individual lo`i level. To ensure that flow and temperature data collected at different lo`i reflect similar irrigation conditions (continuous flooding of the mature crop), only lo`i with crops near the harvesting stage were selected for water-temperature data collection. The water need for kalo cultivation varies depending on the crop stage. In this study, data were collected during the dry season (June-October), when water requirements for cooling kalo approach upper limits. Flow measurements generally were made during the warmest part of the day, and temperature measurements were made every 15 minutes at each site for about a two-month period. Flow and temperature data were collected from kalo cultivation areas on four islands - Kaua`i, O`ahu, Maui, and Hawai`i. The average inflow value for the 19 lo`i complexes measured in this study is 260,000 gallons per acre per day, and the median inflow value is 150,000 gallons per acre per day. The average inflow value for the 17 windward sites is 270,000 gallons per acre per day, and the median inflow value is 150,000 gallons per acre per day. The average inflow value for the two leeward sites is 150,000 gallons per acre per day. The average inflow value measured for six individual lo`i is 350,000 gallons per acre per day, and the median inflow value is 270,000 gallons per acre per day. The average inflow value for the five windward lo`i is 370,000 gallons per acre per day, and the median inflow value is 320,000 gallons per acre per day. The inflow value for the one leeward lo`i is 210,000 gallons per acre per day. These inflow values are consistent with previously reported values for inflow and are significantly higher than values generally estimated for water consumption during kalo cultivation. These measurements of inflow are important for future considerations of water-use requirements for successful kalo cultivation. Of the 17 lo`i complexes where water inflow temperature was measured, only 3 had inflow temperatures that rose above 27 ?C, the threshold temperature above which wetland kalo is more susceptible to fungi and associated rotting diseases. The coldest mean inflow temperature was 20.0 ?C and the warmest inflow temperature was 24.9 ?C. All 15 of the sites where outflow temperatures were measured had some temperatures greater than 27 ?C. Outflow temperatures exceeded 27 ?C between 2.5 percent and about 40 percent of the time. Mean outflow temperatures ranged from 23.0 ?C to 26.7 ?C.
Hydrogeology and water resources of Block Island, Rhode Island
Veeger, A.I.; Johnston, H.E.
1994-01-01
Ground water is present on Block Island as a lens of freshwater that overlies saltwater. Yields of 2 to 5 gallons per minute are obtainable throughout the island, and yields of 25 gallons per minute are possible at many wells. Annual water use during 1990 is estimated to have been 53 million gallons, of which approximately 17 million gallons was delivered from a water company at Sands Pond. Demand by water company customers from May through October averages 74,000 gallons per day. The sustainable yield of Sands Pond during the drought years estimated to be only 45,000 gallons per day. Withdrawal of the remaining 29,000 gallons per day from Fresh Pond, proposed as an alternative source, would produce an estimated water-level decline of less than 1 foot. Block Island consists of a Pleistocene moraine deposit that includes meltwater deposits, till, sediment-flow deposits, and glacially transported blocks of Cretaceous strata and pre-Late Wisconsinan glacial deposits. The water table is a subdued reflection of the land-surface topography and flow is generally from the central, topographic highs toward the coast. Layers of low hydraulic- conductivity material impede vertical flow, creating steep vertical gradients. No evidence of widespread ground-water contamination was found during this study. Nitrate concentrations were below Federal Maximum Contaminant Levels at each of the 83 sites sampled. No evidence of dissolved organic constituents was found in groundwater at the 10 sites sampled, and ground-water samples collected near the landfill showed no evidence of contamination from landfill leachate. Dissolved-iron concentrations exceeded the Federal Secondary Maximum Contaminant Level in groundwater at 26 of 76 wells sampled. High iron concentrations were found predominantly in the eastern and northern parts of the island and are attributed to the presence of iron-bearing minerals and organic matter in the aquifer.
: CNG: $0.08 per gasoline gallon equivalent (GGE) until September 30, 2023; $0.13 per GGE from October 1 diesel gallon equivalent (DGE) until September 30, 2023; $0.13 per DGE from October 1, 2023, until
vehicle at 3,000 pounds (lbs.) per square inch and metered on a gasoline gallon equivalent (GGE ); liquefied natural gas (LNG) must be metered on a diesel gallon equivalent (DGE). One GGE of CNG is equal to
Department of Revenue (Department) uses a CNG gallon equivalent factor of 5.66 pounds (lbs.) and a liquefied gas gallon equivalent factor of 6.06 lbs. Liquefied gas is all combustible gas that exists in the
Tax Compressed natural gas (CNG) used as a vehicle fuel is taxed on a gasoline gallon equivalent ) used as a vehicle fuel is taxed on a diesel gallon equivalent (DGE) basis as follows: $0.05 per DGE
40 CFR 91.115 - Certification procedure-determining engine power and engine families.
Code of Federal Regulations, 2010 CFR
2010-07-01
... engine power and engine families. 91.115 Section 91.115 Protection of Environment ENVIRONMENTAL... ENGINES Emission Standards and Certification Provisions § 91.115 Certification procedure—determining engine power and engine families. (a) Engine power must be calculated using SAE J1228. This procedure has...
$0.145 per gasoline gallon equivalent (GGE) until June 30, 2018; this rate will increase to $0.165 on July 1, 2018. Liquefied natural gas (LNG) is taxed at a rate of $0.145 per diesel gallon equivalent
motor fuel tax of $0.05 per gasoline gallon equivalent (GGE) until January 1, 2020. Beginning January 1 also subject to a state motor fuel tax rate of $0.05 per diesel gallon equivalent (DGE) until January 1
4. VIEW SOUTHWEST OF 15MILLION GALLON UNDERGROUND CLEARWELL (foreground), HEAD ...
4. VIEW SOUTHWEST OF 15-MILLION GALLON UNDERGROUND CLEARWELL (foreground), HEAD HOUSE (left), OLD PUMP STATION (center), AND EAST FILTER BUILDING (background) - Dalecarlia Water Treatment Plant, 5900 MacArthur Boulevard, Northwest, Washington, District of Columbia, DC
Effect of urbanization on the water resources of Warminster Township, Bucks County, Pennsylvania
Sloto, R.A.; Davis, D.K.
1982-01-01
Rapid suburban development occurred in Warminster Township and the surrounding area after World War II, resulting in a large population dependent on ground water. In 1980, approximately 2.7 billion gallons of ground water was pumped by public water suppliers and government facilities. Pumping wells can cause drawdown as far as 2,500 feet undip, downdip, or along strike even if the wells do not penetrate the same strata. Pumping wells have lowered base flow; a stream-gain-and-loss study showed that water lost from Little Neshaminy Creek was about 60 percent of the water pumped from wells near the stream. Net ground-water infiltration to sewers was about 830 million gallons in 1979, a wet year, and about 250 million gallons in 1980, a dry year. Estimated water budgets for 1979 and 1980 indicate evapotranspiration can range from 20 to 26 inches per year (1.0 to 1.2 million gallons per day per square mile) and recharge can range from 8 to 18 inches per year (0.4 to 0.9 million gallons per day per square mile). In a year with average precipitation (45 inches or 2.1 million gallons per day per square mile), evapotranspiration is about 24 inches (1.1 million gallons per day per square mile). Ground-water development in the area influenced by pumping is at its practical limit for years of average recharge, but as much as 1.1 million gallons per day of additional water may be obtained by drilling and pumping wells in areas of Warminster Township not affected by pumping. The concentration of most dissolved constituents increased in water from seven wells, sampled at the onset of urbanization in 1953 and 1956 and again in 1979. Ground-water contamination by volatile organic compounds, especially trichloroethylene and tetrachloroethylene, has made water from some wells unsuitable for public supply. The concentration of lead in 26 samples of ground water ranged from 0 to 55 micrograms per liter, with a median of 17 micrograms per liter; this is above the reported national median and the median in nearby Chester County. High concentrations of sulfate and dissolved solids in ground water are probably caused by restricted gournd-water circulation and may be reduced by long-term pumping, which flushes the aquifer. Effluent from sewage treatment plants has degraded the quality of low streamflow.
fuel excise tax of $0.31 per gasoline gallon equivalent, measured at 5.66 pounds (lbs.) or 126.67 cubic . Liquefied natural gas is subject to the excise tax of $0.325 per diesel gallon equivalent, measured at 6.06
rate of $0.32 per gasoline gallon equivalent, measured at 5.66 lbs. or 126.67 cubic feet at a base also subject to the excise tax rate of $0.349 per diesel gallon equivalent, measured at 6.06 lbs
Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse
additional revenue to the state of $0.05 per gasoline gallon equivalent. Clean Energy expanded the Hauppauge started at $2.33 per diesel gallon equivalent (DGE) through 2008 and increase each year to conclude at
Tax An excise tax rate of 9% of the average wholesale price on a per gallon basis applies to all . Additionally, a highway motor fuel tax of $0.02 per gallon applies to all special fuels. For taxation purposes
49 CFR 173.188 - White or yellow phosphorus.
Code of Federal Regulations, 2012 CFR
2012-10-01
... pound) of phosphorus with screw-top closures; or (2) Steel drums (1A1) not over 250 L (66 gallons... solid and shipped in packagings as follows: (1) Steel drums (1A2) not over 115 L (30 gallons) capacity...
Field Evaluation of Miles-Per-Gallon Meters
DOT National Transportation Integrated Search
1977-11-01
One hundred forty fleet automobiles based in Los Angeles were used to determine the influence of miles-per-gallon meters on fuel economy. Seventy cars were instrumented with the meters, and 70 were used without meters for control purposes. Fuel use a...
Advanced Gas Turbine (AGT) powertrain system development for automotive applications
NASA Technical Reports Server (NTRS)
1981-01-01
An automotive gas turbine powertrain system which, when installed in a 1985 production vehicle (3000 pounds inertia weight), is being developed with a CFDC fuel economy of 42.8 miles per gallon based on Environmental Protection Agency (EPA) test procedures and diesel No. 2 fuel. The AGT-powered vehicle shall give substantially the same overall vehicle driveability and performance as a comparable 1985 production vehicle powered by a conventional spark ignition powertrain system (baseline system). Gaseous emissions and particulate levels less than: NOx = 0.4 gm/mile, HC = 0.41 gm/mile, and CO = 3.4 gm/mile, and a total particulate of 0.2 gm/mile, using the same fuel as used for fuel economy measurements is expected, along with the ability to use a variety of alternate fuels.
Young, Richard Arden
1972-01-01
The Nuclear Rocket Development Station, in Jackass Flats, occupies about 123 square miles in the southwestern part of the U.S. Atomic Energy Commission's Nevada Test Site. Jackass Flats, an intermontane valley bordered by highlands on all sides except for a drainage outlet in the southwestern corner, has an average annual rainfall of 4 inches. Jackass Flats is underlain by alluvium, colluvium, and volcanic rocks of Cenozoic age and, at greater depth, by sedimentary rocks of Paleozoic age. The alluvium and the colluvium lie above the saturated zone throughout nearly all of Jackass Flats. The Paleozoic sedimentary rocks contain limestone and dolomite units that are excellent water producers elsewhere ; however, these units are too deep in Jackass Flats to be economic sources of water. The only important water-producing unit known in the vicinity of the Nuclear Rocket Development Station is a welded-tuff aquifer, the Topopah Spring Member of the Paintbrush Tuff, which receives no significant recharge. This member contains about 500 feet of highly fractured rock underlying an area 11 miles long and 3 miles wide in western Jackass Flats. Permeability of the aquifer is derived mostly from joints and fractures; however, some permeability may be derived from gas bubbles in the upper part of the unit. Transmissivity, obtained from pumping tests, ranges from 68,000 to 488,000 gallons per day per foot. Volume of the saturated part of the aquifer is about 3.5 cubic miles, and the average specific yield probably ranges from 1 to 5 percent. The volume of ground water in storage is probably within the range of 37-187 billion gallons. This large amount of water should be sufficient to supply the needs of the Nuclear Rocket Development Station for many years. Water at the Nuclear Rocket Development Station is used for public supply, construction, test-cell coolant, exhaust cooling, and thermal shielding during nuclear reactor and engine testing, and washdown. Present (1967) average consumption of water is 520,000 gallons per day--all supplied by one well. This supply well and a standby well have a production capability of 1.6 million gallons per day--adequate for present needs. Water in the welded-tuff aquifer is of the sodium bicarbonate type. Dissolved-solids content of the water in Jackass Flats is in the general range 230 milligrams per liter in the western part to 890 milligrams per liter in the eastern part.
Winglets Save Billions of Dollars in Fuel Costs
NASA Technical Reports Server (NTRS)
2010-01-01
The upturned ends now featured on many airplane wings are saving airlines billions of dollars in fuel costs. Called winglets, the drag-reducing technology was advanced through the research of Langley Research Center engineer Richard Whitcomb and through flight tests conducted at Dryden Flight Research Center. Seattle-based Aviation Partners Boeing -- a partnership between Aviation Partners Inc., of Seattle, and The Boeing Company, of Chicago -- manufactures Blended Winglets, a unique design featured on Boeing aircraft around the world. These winglets have saved more than 2 billion gallons of jet fuel to date, representing a cost savings of more than $4 billion and a reduction of almost 21.5 million tons in carbon dioxide emissions.
Results of Tests on Radiators for Aircraft Engines
NASA Technical Reports Server (NTRS)
Dickinson, H C; James, W S; Kleinschmidt, R V
1920-01-01
Part 1 is to present the results of tests on 56 types of core in a form convenient for use in the study of the performance of and possible improvements in existing designs. Working rules are given by which the data contained in the report may be used, and the most obvious conclusions as to the behavior of cores are summarized. Part 2 presents the results of tests made to determine the pressure necessary to produce water flows up to 50 gallons per minute through an 8-inch square section of radiator core. These data are of special value in evaluating the hydraulic head against which the circulating pump is required to operate.
Environmental Releases in the Fuel Ethanol Industry
Corn ethanol is the largest produced alternate biofuel in the United States. More than 13 billion gallons of ethanol were produced in 2010. The projected corn ethanol production is 15 billion gallons by 2015. With increased production of ethanol, the environmental releases from e...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-15
... of gallons of raw sewage discharges from the City's largest CSO (CSO 008), three-and-one-half years... million gallons, capture raw sewage discharges from another CSO earlier than originally anticipated, allow...
Federal gas tax : household expenditures from 1965 to 1995
DOT National Transportation Integrated Search
1997-08-01
While federal motor fuel taxes increased in current dollars from 4 cents per gallon in 1965 to 18.4 cents per gallon in 1995, the impact on household expenditures, in constant dollars, has actually shown a decline. This report traces household expend...
Water availability and flood hazards in the John Day Fossil Beds National Monument, Oregon
Frank, Frank J.; Oster, E.A.
1979-01-01
The rock formations of the John Day Fossil Beds National Monument area are aquifers that can be expected to yield less than 10 gallons of water per minute to wells. The most permeable of the geologic units is the alluvium that occurs at low elevations along the John Day River and most of the smaller streams. Wells in the alluvial deposits can be expected to yield adequate water supplies for recreational areas; also, wells completed in the underlying bedrock at depths ranging from 50 to 200 feet could yield as much as 10 gallons per minute. Pumping tests on two unused wells indicated yields of 8 gallons per minute and 2 gallons per minute. Nine of the ten springs measured in and near the monument area in late August of 1978 were flowing 0.2 to 30 gallons per minute. Only the Cant Ranch spring and the Johnny Kirk Spring near the Sheep Rock unit had flows exceeding 6 gallons per minute. Chemical analyses of selected constituents of the ground water indicated generally low concentrations of dissolved minerals. Although cloudbursts in the Painted Hills unit could generate a flood wave on the valley floors, flood danger can be reduced by locating recreational sites on high ground. The campground in Indian Canyon of the Clarno unit is vulnerable to cloudburst flooding. About 80 percent of the proposed campground on the John Day River in the Sheep Rock unit is above the estimated level of 1-percent chance flood (100-year flood) of the river. The 1-percent chance flood would extend about 120 feet from the riverbank into the upstream end of the campground. (USGS).
Albin, Donald R.; Hines, Marion S.; Stephens, John W.
1967-01-01
The present (1965) water use in Jackson and Independence Counties is about 55.6 million gallons per day, and quantities sufficient for any foreseeable use are available. Supplies for the large-scale uses--municipal, industrial, and irrigation--can best be obtained from wells in the Coastal Plain and from streams in the highlands. Wells in the Coastal Plain will yield 1,000-2,000 gallons of water per minute when screened at depths from 100 to 150 feet in alluvial sand and gravel of Quaternary age. The water will require treatment for the removal of iron and the reduction of hardness to be suitable for municipal and industrial uses. Wells in the highlands generally yield less than 50 gallons per minute of water that is of good quality, though hard. The dependable flow of .the White River at Newport is about 4.2 billion gallons per day. The dependable 'base flows of the small streams tributary to the White River in the Salem Plateau and Springfield Plateau sections range from 0.25 to 5 million gallons per day, and the dependable flow of Polk Bayou at Batesville is about 21 million gallons per day. These streams can be utilized for water supply with little or no artificial storage required. Streams in the Boston Mountains section and in the Arkansas Valley section recede to very low flow or to no flow during extended dry periods, but dependable, supplies can be obtained from these streams 'by construction of storage facilities Water from all the highland streams is af excellent chemical quality except that it generally is hard.
Oil Bypass Filter Technology Evaluation, Fourth Quarterly Report, July--September 2003
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. Francfort; Larry Zirker
2003-11-01
This fourth Oil Bypass Filter Technology Evaluation report details the ongoing fleet evaluation of an oil bypass filter technology by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy’s FreedomCAR & Vehicle Technologies Program. Eight four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass filter systems from the puraDYN Corporation. The bypass filters are reported to have engine oil filtering capability of <1 micron and a built-in additive package to facilitate extended oil-drain intervals. To date, the eight buses have accumulated 259,398 test miles. This represents anmore » avoidance of 21 oil changes, which equates to 740 quarts (185 gallons) of oil not used or disposed of. To validate the extended oil-drain intervals, an oil-analysis regime evaluates the fitness of the oil for continued service by monitoring the presence of necessary additives, undesirable contaminants, and engine-wear metals. For bus 73450, higher values of iron have been reported, but the wear rate ratio (parts per million of iron per thousand miles driven) has remained consistent. In anticipation of also evaluating oil bypass systems on six Chevrolet Tahoe sport utility vehicles, the oil is being sampled on each of the Tahoes to develop a characterization history or baseline for each engine.« less
Reviving the carbohydrate economy via multi-product lignocellulose biorefineries.
Zhang, Y-H Percival
2008-05-01
Before the industrial revolution, the global economy was largely based on living carbon from plants. Now the economy is mainly dependent on fossil fuels (dead carbon). Biomass is the only sustainable bioresource that can provide sufficient transportation fuels and renewable materials at the same time. Cellulosic ethanol production from less costly and most abundant lignocellulose is confronted with three main obstacles: (1) high processing costs (dollars /gallon of ethanol), (2) huge capital investment (dollars approximately 4-10/gallon of annual ethanol production capacity), and (3) a narrow margin between feedstock and product prices. Both lignocellulose fractionation technology and effective co-utilization of acetic acid, lignin and hemicellulose will be vital to the realization of profitable lignocellulose biorefineries, since co-product revenues would increase the margin up to 6.2-fold, where all purified lignocellulose co-components have higher selling prices (> approximately 1.0/kg) than ethanol ( approximately 0.5/kg of ethanol). Isolation of large amounts of lignocellulose components through lignocellulose fractionation would stimulate R&D in lignin and hemicellulose applications, as well as promote new markets for lignin- and hemicellulose-derivative products. Lignocellulose resource would be sufficient to replace significant fractionations (e.g., 30%) of transportation fuels through liquid biofuels, internal combustion engines in the short term, and would provide 100% transportation fuels by sugar-hydrogen-fuel cell systems in the long term.
7 CFR 160.92 - Meaning of word “gallon.”
Code of Federal Regulations, 2010 CFR
2010-01-01
... Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) NAVAL STORES REGULATIONS AND STANDARDS FOR NAVAL STORES Labeling, Advertising and Packing § 160.92 Meaning of word “gallon.” The word...
Effectiveness of Miles-Per-Gallon Meters as a Means to Conserve Gasoline in Automobiles
DOT National Transportation Integrated Search
1976-10-01
This report is an assessment of fuel flow instruments reading directly in miles per gallon (mpg). It describes currently available mpg meters, their installation, utility, and safety and presents an analysis of potential cost savings. It discusses me...
27 CFR 30.62 - Table 2, showing wine gallons and proof gallons by weight.
Code of Federal Regulations, 2012 CFR
2012-04-01
... from this table. The left-hand column contains the weights. The true percent of proof is shown on the.... 201, Pub. L. 85-859, 72 Stat. 1358, as amended, 1362, as amended (26 U.S.C. 5204, 5211)) ...
27 CFR 30.62 - Table 2, showing wine gallons and proof gallons by weight.
Code of Federal Regulations, 2011 CFR
2011-04-01
... from this table. The left-hand column contains the weights. The true percent of proof is shown on the.... 201, Pub. L. 85-859, 72 Stat. 1358, as amended, 1362, as amended (26 U.S.C. 5204, 5211)) ...
27 CFR 30.62 - Table 2, showing wine gallons and proof gallons by weight.
Code of Federal Regulations, 2014 CFR
2014-04-01
... from this table. The left-hand column contains the weights. The true percent of proof is shown on the.... 201, Pub. L. 85-859, 72 Stat. 1358, as amended, 1362, as amended (26 U.S.C. 5204, 5211)) ...
27 CFR 30.62 - Table 2, showing wine gallons and proof gallons by weight.
Code of Federal Regulations, 2013 CFR
2013-04-01
... from this table. The left-hand column contains the weights. The true percent of proof is shown on the.... 201, Pub. L. 85-859, 72 Stat. 1358, as amended, 1362, as amended (26 U.S.C. 5204, 5211)) ...
Ground water in the vicinity of Capulin, New Mexico
Hart, D.L.; Smith, Christian
1979-01-01
The alluvial deposits within a closed basin near Capulin, New Mexico, are estimated to have 189,000 acre-feet of water in storage. These deposits have an estimated average transmissivity of 400 feet squared per day and represent the major source of ground water. Well yields range from a few gallons per minute to as much as 900 gallons per minute, with average potential yields ranging from about 100 to 200 gallons per minute in areas of greatest saturated thickness. Additional large quantities of water are available for short-term supplies from the saturated basaltic cinders west and northwest of the town of Capulin. Wells completed in the cinders reportedly have produced as much as 2,000 gallons per minute. The chemical quality of water in the alluvium and cinder aquifers appears to be chemically satisfactory for municipal use. The ground water in storage is sufficient to supplement Raton, New Mexico 's water needs to the year 2030 at the water demand rate projected by the Bureau of Reclamation. (Woodard-USGS)
Ground-water data for San Nicolas Island, California, 1989-90
Duell, Lowell F. W.; Kaehler, Charles A.
1991-01-01
In an effort to gain geohydrologic knowledge and to increase the availability of ground water to the U.S. Navy on San Nicolas Island, nine test wells were drilled by the U.S. Geological Survey in 1989 and one production well was drilled by the U.S. Navy in 1990. One of the nine test wells was dry, five produced less than 10 gallons of water per day, two produced between 20 and 30 gallons per day, and one produced 400 gallons per day. The production well produced about 900 gallons per day. Water samples were collected from eight wells during 1989-90 and analyzed for concentrations of major dissolved inorganic ions and nutrients. Five of the sampled wells were constructed in 1989, one was constructed in 1990, and two were constructed prior to 1989. Data from the study are presented in tables and graphs. Included are geophysical, lithologic, and well-construction data and results obtained from well-pumping tests and from the chemical analysis of water from selected wells.
Sources of emergency water supplies in Santa Clara County, California
Akers, J.P.
1977-01-01
Water distribution systems in Santa Clara County, Calif., may be damaged and rendered inoperable by a large earthquake or other disaster. In such an event, individual agencies may have to implement emergency measures to supply water for drinking, firefighting, decontamination, or other purposes. In Santa Clara County, 128 wells have been identified as potential water-supply sources in emergencies. The criteria used to select the wells are: yield of at least 3 liters per second (50 gallons per minute), good water quality, ready accessibility, and available emergency power. Purification methods of small water supplies are described. (Woodard-USGS)
Wild, Emily C.; Nimiroski, Mark T.
2005-01-01
The South Coastal Drainage Basin includes approximately 59.14 square miles in southern Rhode Island. The basin was divided into three subbasins to assess the water use and availability: the Saugatucket, Point Judith Pond, and the Southwestern Coastal Drainage subbasins. Because there is limited information on the ground-water system in this basin, the water use and availability evaluations for these subbasins were derived from delineated surface-water drainage areas. An assessment was completed to estimate water withdrawals, use, and return flow over a 5-year study period from 1995 through 1999 in the basin. During the study period, one major water supplier in the basin withdrew an average of 0.389 million gallons per day from the sand and gravel deposits. Most of the potable water is imported (about 2.152 million gallons per day) from the adjacent Pawcatuck Basin to the northwest. The estimated water withdrawals from the minor water suppliers, which are all in Charlestown, during the study period were 0.064 million gallons per day. The self-supplied domestic, industrial, commercial, and agricultural withdrawals from the basin were 0.574 million gallons per day. Water use in the basin was 2.874 million gallons per day. The average return flow in the basin was 1.190 million gallons per day, which was entirely from self-disposed water users. In this basin, wastewater from service collection areas was exported (about 1.139 million gallons per day) to the Narragansett Bay Drainage Basin for treatment and discharge. During times of little to no recharge, in the form of precipitation, the surface- and ground-water system flows are from storage primarily in the stratified sand and gravel deposits, although there is flow moving through the till deposits at a slower rate. The ground water discharging to the streams, during times of little to no precipitation, is referred to as base flow. The PART program, a computerized hydrograph-separation application, was used at the selected index stream-gaging station to determine water availability based on the 75th, 50th, and 25th percentiles of the total base flow, the base flow minus the 7-day, 10-year flow criteria, and the base flow minus the Aquatic Base Flow criteria at the index station. The base flow calculated at the selected index station was subdivided into two rates on the basis of the percent contributions from sandand-gravel and till deposits. There has been no long-term collection of surface-water data in this study area and therefore an index stream-gaging station in the Pawcatuck Basin was used for the South Coastal Drainage Basin. The Pawcatuck River at Wood River Junction was chosen as the index station for the South Coastal Drainage Basin because the station is representative of the basin on the basis of the percentage of sand and gravel deposits and the average extent of thickness of the sand and gravel deposits. The baseflow contributions from sand and gravel deposits at the index station were computed for June, July, August, and September, and applied to the percentage of surficial deposits at the index station. The base-flow contributions were converted to a per unit area at the station for the till, and for the sand and gravel deposits and applied to the South Coastal Drainage Basin to determine the water availability. The results from the index station, the Pawcatuck River at Wood River Junction streamgaging station, were lowest for the summer in September. To determine water availability in the South Coastal Drainage Basin, the per unit area of the estimated base flows from sand and gravel deposits and till deposits at the index station was applied to the subbasin areas, and the resultant flows were lowest in September. The base flow at the 75th percentile in the basin was 56.95 million gallons per day in June; 32.78 million gallons per day in July; 30.22 million gallons per day in August; and 23.94 million gallons per day in September. The base flow at the 50th percentile in the basin was 44.59 million gallons per day in June; 25.31 million gallons per day in July; 20.75 million gallons per day in August; and 17.01 million gallons per day in September. The base flow at the 25th percentile in the basin was 35.52 million gallons per day in June; 20.40 million gallons per day in July; 14.94 million gallons per day in August; and 12.00 million gallons per day in September. There are some limitations in the application of this method along the coast, because saltwater intrusion can change the amount of fresh ground-water discharge to the coastal saltwater ecosystem. A ground-water system analysis evaluating these variances would provide additional information to assess the water availability along the coast. Because water withdrawals and use are greater during the summer than other times of the year, water availability in June, July, August, and September was assessed and compared to water withdrawals in the basin. The ratios were calculated by dividing the water withdrawals by the water-availability flow scenarios at the 75th, 50th, and 25th percentiles for the basin, which are based on total water available from base-flow contributions from till and sand and gravel deposits in the basin. The closer the ratio is to one, the closer the withdrawals are to the estimated water available, and the net water available decreases. For the study period, the withdrawals in July were higher than the other summer months. The ratios in the basin for the base-flow scenario, with no low-flow criteria removed, ranged from 0.029 to 0.046 in June; 0.059 to 0.094 in July; 0.050 to 0.100 in August; and 0.040 to 0.079 in September. A long-term hydrologic budget (60 years) was calculated for the South Coastal Drainage Basin to identify and assess the basin and subbasin inflow and outflows. This coastal basin is different than other study areas because all three of the subbasins drain into salt water, Point Judith Point, Long Island Sound, and Rhode Island Sound towards the Atlantic Ocean, or internally within the subbasin to the salt ponds. The hydrologic budgets, therefore, were compiled by subbasin. The basin hydrologic budget is the sum of the three subbasin budgets. Unlike a river subbasin drainage system, however, the estimated streamflows out of the subbasins were also considered outflows from the basin. The water withdrawals and return flows used in the budget were from 1995 through 1999. For the hydrologic budget, it was assumed that inflow equals outflow, where the estimated inflows were from precipitation and wastewater-return flow, and the estimated outflows were from evapotranspiration, streamflow, and water withdrawals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skladany, G.J.
Successful biological treatment of ground waters, leachates, or industrial process waters requires the combined action of basic microbiological processes with sound process engineering designs. Such a treatment system is then able to both efficiently and cost-effectively remediate the contaminants present. In this case study, laboratory treatability studies were initially used to demonstrate that toluic acids present in an industrial landfill leachate were amenable to biological treatment. A continuous flow submerged fixed-film bioreactor was then chosen as the optimal equipment design for use at the site. The system was designed to treat a leachate flow of 800 to 2,000 gallons permore » day (gpd) containing total isomeric toluic acid concentrations of 300 to 400 parts per million (ppm). The treatment equipment has been in continuous operation since July 1987. During this period, the total influent isomertic toluic acid concentration has decreased to approximately 45 ppm, and specific effluent toluic acid concentrations have remained below the 0.5 ppm detection limit.« less
MODELING OF ION-EXCHANGE FOR CESIUM REMOVAL FROM DISSOLVED SALTCAKE IN SRS TANKS 1-3, 37 AND 41
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, F
2007-08-15
This report presents an evaluation of the expected performance of engineered Crystalline Silicotitanate (CST) and spherical Resorcinol-Formaldehyde (RF) ion exchange resin for the removal of cesium from dissolved saltcake in SRS Tanks 1-3, 37 and 41. The application presented in this report reflects the expected behavior of engineered CST IE-911 and spherical RF resin manufactured at the intermediate-scale (approximately 100 gallon batch size; batch 5E-370/641). It is generally believed that scale-up to production-scale in RF resin manufacturing will result in similarly behaving resin batches whose chemical selectivity is unaffected while total capacity per gram of resin may vary. As such,more » the predictions provided within this report should provide reasonable estimates of production-scale column performance. Two versions of the RF cesium isotherm were used. The older version provides a conservative estimate of the resin capacity while the newer version more accurately fits the most recent experimental data.« less
Code of Federal Regulations, 2014 CFR
2014-01-01
... energy use in kilowatt hours per year (kWh/yr) and the water consumption in gallons per cycle. (3..., the number of cycles required to reach calibration), and the water inlet temperature used for testing... gallons required for each regeneration of the water softening system, the number of regeneration cycles...
Code of Federal Regulations, 2013 CFR
2013-01-01
... energy use in kilowatt hours per year (kWh/yr) and the water consumption in gallons per cycle. (3..., the number of cycles required to reach calibration), and the water inlet temperature used for testing... gallons required for each regeneration of the water softening system, the number of regeneration cycles...
Equity evaluation of sustainable mileage-based user fee scenarios.
DOT National Transportation Integrated Search
2013-10-01
The Texas state gas tax has been 20 cents per gallon since 1991, and the federal gas tax has been : 18.4 cents per gallon since 1993. The gas tax is not only stagnant, but depreciating in value due to : inflation. This is forcing some transportation ...
Impact of alcohol fuel production on agricultural markets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardiner, W.H.
1986-01-01
Production of alcohol from biomass feedstocks, such as corn, was given Federal and State support which resulted in alcohol production rising from 20 million gallons in 1979 to 430 million gallons in 1984. This study estimates the impacts of alcohol production from corn on selected agricultural markets. The tool of analysis was a three region (United States, the European Community and the rest of the world) econometric model of the markets for corn, soybeans, soybean meal, soybean oil, wheat and corn byproduct feeds. Three alternative growth paths for alcohol production (totalling 1.1, 2.0, and 3.0 billion gallons) were analyzed withmore » the model in the context of three different trade environments. The results of this analysis indicate that alcohol production of 1.1 billion gallons by 1980 would have caused moderate adjustments to commodity markets while 3.0 billion gallons would have caused major adjustments. Corn prices rose sharply with increased alcohol production as did wheat prices but to a somewhat lesser extent. The substitution of corn for soybeans on the supply side was not sufficient to offset the demand depressing effects of corn byproduct feeds on soybean meal which translated into slightly lower soybean prices. A quota limiting imports of corn gluten feed into the EC to three million tons annually would cause reductions in export earnings for corn millers.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-24
... Company and Sorenson Engineering; Birch Power Company and Sorenson Leasing L.L.C.; Notice of Application..., 2010, Birch Power Company and Sorenson Engineering (transferors) and Birch Power Company and Sorenson.... Applicant Contact: For both: Mr. Ted S. Sorenson, President, Birch Power Company, Sorenson Engineering, and...
14 CFR 25.363 - Side load on engine and auxiliary power unit mounts.
Code of Federal Regulations, 2011 CFR
2011-01-01
... § 25.363 Side load on engine and auxiliary power unit mounts. (a) Each engine and auxiliary power unit... the side load on the engine and auxiliary power unit mount, at least equal to the maximum load factor... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Side load on engine and auxiliary power...
14 CFR 25.363 - Side load on engine and auxiliary power unit mounts.
Code of Federal Regulations, 2010 CFR
2010-01-01
... § 25.363 Side load on engine and auxiliary power unit mounts. (a) Each engine and auxiliary power unit... the side load on the engine and auxiliary power unit mount, at least equal to the maximum load factor... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Side load on engine and auxiliary power...
14 CFR 25.363 - Side load on engine and auxiliary power unit mounts.
Code of Federal Regulations, 2013 CFR
2013-01-01
... § 25.363 Side load on engine and auxiliary power unit mounts. (a) Each engine and auxiliary power unit... the side load on the engine and auxiliary power unit mount, at least equal to the maximum load factor... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Side load on engine and auxiliary power...
14 CFR 25.363 - Side load on engine and auxiliary power unit mounts.
Code of Federal Regulations, 2014 CFR
2014-01-01
... § 25.363 Side load on engine and auxiliary power unit mounts. (a) Each engine and auxiliary power unit... the side load on the engine and auxiliary power unit mount, at least equal to the maximum load factor... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Side load on engine and auxiliary power...
14 CFR 25.363 - Side load on engine and auxiliary power unit mounts.
Code of Federal Regulations, 2012 CFR
2012-01-01
... § 25.363 Side load on engine and auxiliary power unit mounts. (a) Each engine and auxiliary power unit... the side load on the engine and auxiliary power unit mount, at least equal to the maximum load factor... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Side load on engine and auxiliary power...
27 CFR 21.63 - Formula No. 36.
Code of Federal Regulations, 2010 CFR
2010-04-01
... gallons of ammonia, aqueous, 27 to 30 percent by weight; 3 gallons of strong ammonia solution, N.F.: 17.5... N.F. 450.Cleaning solutions (including household detergents). (2) As a raw material: 530.Ethylamines. 540.Dyes and intermediates. 579.Other chemicals. (3) Miscellaneous uses: 812.Product development and...
27 CFR 21.63 - Formula No. 36.
Code of Federal Regulations, 2011 CFR
2011-04-01
... gallons of ammonia, aqueous, 27 to 30 percent by weight; 3 gallons of strong ammonia solution, N.F.: 17.5... N.F. 450.Cleaning solutions (including household detergents). (2) As a raw material: 530.Ethylamines. 540.Dyes and intermediates. 579.Other chemicals. (3) Miscellaneous uses: 812.Product development and...
46 CFR 34.50-5 - Classification-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Classification-TB/ALL. 34.50-5 Section 34.50-5 Shipping... Semiportable Extinguishers § 34.50-5 Classification—TB/ALL. (a) Portable and semiportable extinguishers shall...-5(c) Classification type (Size) Soda-acid and water (Gallons) Foam (Gallons) Carbon dioxide (Pounds...
Bioenergy grass feedstock production in the southern Coastal Plain
USDA-ARS?s Scientific Manuscript database
The Renewable Fuels Standard within the Energy Independence and Security Act of 2007 (EISA)(Pub L.) requires that by the year 2022, 36 billion gallons of biofuels be added to gasoline and that 21 billion gallons would come from non-cornstarch products such as sugar or cellulosic feedstock. The Sout...
46 CFR 34.50-5 - Classification-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Classification-TB/ALL. 34.50-5 Section 34.50-5 Shipping... Semiportable Extinguishers § 34.50-5 Classification—TB/ALL. (a) Portable and semiportable extinguishers shall...-5(c) Classification type (Size) Soda-acid and water (Gallons) Foam (Gallons) Carbon dioxide (Pounds...
27 CFR 21.39 - Formula No. 6-B.
Code of Federal Regulations, 2010 CFR
2010-04-01
... chemicals. (2) Miscellaneous uses: 812.Product development and pilot plant uses (own use only). ... and Authorized Uses § 21.39 Formula No. 6-B. (a) Formula. To every 100 gallons of alcohol add: One-half gallon of pyridine bases. (b) Authorized uses. (1) As a raw material: 523.Miscellaneous ethyl...
27 CFR 21.39 - Formula No. 6-B.
Code of Federal Regulations, 2011 CFR
2011-04-01
... chemicals. (2) Miscellaneous uses: 812.Product development and pilot plant uses (own use only). ... and Authorized Uses § 21.39 Formula No. 6-B. (a) Formula. To every 100 gallons of alcohol add: One-half gallon of pyridine bases. (b) Authorized uses. (1) As a raw material: 523.Miscellaneous ethyl...
27 CFR 30.44 - Weighing containers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Weighing containers. 30.44... Weighing containers. (a) Weighing containers of more than 10 wine gallons. The weight of containers having.... (b) Weighing containers of 10 wine gallons or less. The weight for containers of a capacity of 10...
40 CFR 80.1130 - Requirements for exporters of renewable fuels.
Code of Federal Regulations, 2010 CFR
2010-07-01
... gallons of renewable fuel. k = A discrete volume of renewable fuel. VOLk = The standardized volume of discrete volume k of exported renewable fuel, in gallons, calculated in accordance with § 80.1126(d)(7). EVk = The equivalence value associated with discrete volume k. = Sum involving all volumes of...
ONE MILLION GALLON WATER TANK, PUMP HEADER PIPE (AT LEFT), ...
ONE MILLION GALLON WATER TANK, PUMP HEADER PIPE (AT LEFT), HEADER BYPASS PIPE (AT RIGHT), AND PUMPHOUSE FOUNDATIONS. Looking northeast - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Flame Deflector Water System, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
21 CFR 520.441 - Chlortetracycline powder.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Council (NAS/NRC) and found effective: (i) Chickens—(A) Amount. 200 to 400 milligrams per gallon. (1... slaughter animals for food within 24 hours of treatment; do not use in laying chickens. (B) Amount. 400 to... 24 hours of treatment; do not use in laying chickens. (C) Amount. One thousand milligrams per gallon...
21 CFR 520.441 - Chlortetracycline powder.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Council (NAS/NRC) and found effective: (i) Chickens—(A) Amount. 200 to 400 milligrams per gallon. (1... slaughter animals for food within 24 hours of treatment; do not use in laying chickens. (B) Amount. 400 to... 24 hours of treatment; do not use in laying chickens. (C) Amount. One thousand milligrams per gallon...
21 CFR 520.441 - Chlortetracycline powder.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Council (NAS/NRC) and found effective: (i) Chickens—(A) Amount. 200 to 400 milligrams per gallon. (1... slaughter animals for food within 24 hours of treatment; do not use in laying chickens. (B) Amount. 400 to... 24 hours of treatment; do not use in laying chickens. (C) Amount. One thousand milligrams per gallon...
46 CFR 34.50-5 - Classification-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Classification-TB/ALL. 34.50-5 Section 34.50-5 Shipping... Semiportable Extinguishers § 34.50-5 Classification—TB/ALL. (a) Portable and semiportable extinguishers shall...-5(c) Classification type (Size) Soda-acid and water (Gallons) Foam (Gallons) Carbon dioxide (Pounds...
Equity evaluation of vehicle miles traveled fees in Texas.
DOT National Transportation Integrated Search
2012-03-01
The Texas state gas tax has been 20.0 cents per gallon since 1991, and the federal gas tax has been 18.4 : cents per gallon since 1993. The gas tax is not only stagnant, but depreciating in value due to inflation. : One proposed alternative to the ga...
46 CFR 108.463 - Foam rate: Protein.
Code of Federal Regulations, 2012 CFR
2012-10-01
... least 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot) of area... rate at each outlet must be at least 4.07 liters per minute for each square meter (.1 gallon per minute for each square foot) of liquid surface in the tank. ...
46 CFR 108.463 - Foam rate: Protein.
Code of Federal Regulations, 2010 CFR
2010-10-01
... least 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot) of area... rate at each outlet must be at least 4.07 liters per minute for each square meter (.1 gallon per minute for each square foot) of liquid surface in the tank. ...
46 CFR 108.463 - Foam rate: Protein.
Code of Federal Regulations, 2011 CFR
2011-10-01
... least 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot) of area... rate at each outlet must be at least 4.07 liters per minute for each square meter (.1 gallon per minute for each square foot) of liquid surface in the tank. ...
46 CFR 108.463 - Foam rate: Protein.
Code of Federal Regulations, 2013 CFR
2013-10-01
... least 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot) of area... rate at each outlet must be at least 4.07 liters per minute for each square meter (.1 gallon per minute for each square foot) of liquid surface in the tank. ...
46 CFR 108.463 - Foam rate: Protein.
Code of Federal Regulations, 2014 CFR
2014-10-01
... least 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot) of area... rate at each outlet must be at least 4.07 liters per minute for each square meter (.1 gallon per minute for each square foot) of liquid surface in the tank. ...
40 CFR 282.89 - Rhode Island State-Administered Program.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Program. 282.89 Section 282.89 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID... less than or equal to 1,100 gallons containing motor fuels for non-consumptive use. (B) Rhode Island... or equal to 1,100 gallons containing motor fuels for non-commercial use and for tanks containing...
40 CFR 282.89 - Rhode Island State-Administered Program.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Program. 282.89 Section 282.89 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID... less than or equal to 1,100 gallons containing motor fuels for non-consumptive use. (B) Rhode Island... or equal to 1,100 gallons containing motor fuels for non-commercial use and for tanks containing...
40 CFR 282.89 - Rhode Island State-Administered Program.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Program. 282.89 Section 282.89 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID... less than or equal to 1,100 gallons containing motor fuels for non-consumptive use. (B) Rhode Island... or equal to 1,100 gallons containing motor fuels for non-commercial use and for tanks containing...
14 CFR 135.379 - Large transport category airplanes: Turbine engine powered: Takeoff limitations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... engine powered: Takeoff limitations. 135.379 Section 135.379 Aeronautics and Space FEDERAL AVIATION... category airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine... existing at take- off. (b) No person operating a turbine engine powered large transport category airplane...
14 CFR 135.379 - Large transport category airplanes: Turbine engine powered: Takeoff limitations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... engine powered: Takeoff limitations. 135.379 Section 135.379 Aeronautics and Space FEDERAL AVIATION... category airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine... existing at take- off. (b) No person operating a turbine engine powered large transport category airplane...
LARGO hot water system thermal performance test report
NASA Technical Reports Server (NTRS)
1978-01-01
The thermal performance tests and results on the LARGO Solar Hot Water System under natural environmental conditions is presented. Some objectives of these evaluations are to determine the amount of energy collected, the amount of energy delivered to the household as contributed by solar power supplied to operate the system and auxiliary power to maintain tank temperature at proper level, overall system efficiency and to determine temperature distribution within the tank. The Solar Hot Water system is termed a Dump-type because of the draining system for freeze protection. The solar collector is a single glazed flat plate. An 82-gallon domestic water heater is provided as the energy storage vessel. Water is circulated through the collector and water heater by a 5.3 GPM capacity pump, and control of the pump motor is achieved by a differential temperature controller.
NASA Technical Reports Server (NTRS)
Yost, J. H.
1976-01-01
The research and technology demonstration requirements to achieve emergency-power capability for a civil helicopter are documented. The goal for emergency power is the ability to hover with one engine inoperative, transition to minimum-power forward flight, and continue to a safe landing where emergency power may or may not be required. The best method to obtain emergency power is to augment the basic engine power by increasing the engine's speed and turbine-inlet temperature, combined with water-alcohol injection at the engine inlet. Other methods, including turbine boost power and flywheel energy, offer potential for obtaining emergency power for minimum time durations. Costs and schedules are estimated for a research and development program to bring emergency power through a hardware-demonstration test. Interaction of engine emergency-power capability with other helicopter systems is examined.
40 CFR 1039.140 - What is my engine's maximum engine power?
Code of Federal Regulations, 2014 CFR
2014-07-01
...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES... 1065, based on the manufacturer's design and production specifications for the engine. This information... power values for an engine are based on maximum engine power. For example, the group of engines with...
40 CFR 1039.140 - What is my engine's maximum engine power?
Code of Federal Regulations, 2011 CFR
2011-07-01
...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES... 1065, based on the manufacturer's design and production specifications for the engine. This information... power values for an engine are based on maximum engine power. For example, the group of engines with...
40 CFR 1039.140 - What is my engine's maximum engine power?
Code of Federal Regulations, 2010 CFR
2010-07-01
...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES... 1065, based on the manufacturer's design and production specifications for the engine. This information... power values for an engine are based on maximum engine power. For example, the group of engines with...
40 CFR 1039.140 - What is my engine's maximum engine power?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES... 1065, based on the manufacturer's design and production specifications for the engine. This information... power values for an engine are based on maximum engine power. For example, the group of engines with...
Marella, R.L.; Fanning, J.L.; Mooty, W.S.
1993-01-01
The Apalachicola-Chattahoochee-Flint River basin covers approximately 19,800 square miles in parts of Alabama, Florida, and Georgia. Most of the basin lies within Georgia as does most of the population. Most of the water withdrawn in the basin in 1990 was withdrawn in Georgia (82 percent). Withdrawals in Florida and Alabama each accounted for 9 percent of the total withdrawal in the basin. Water with- drawn in the basin for 1990 totaled 2,098 million gallons per day, of which approximately 17 percent (351 million gallons per day) was consumed. Of the total water used, nearly 86 percent was withdrawn from surface-water sources, and the remaining 14 percent was withdrawn from ground-water sources. Nearly 63 percent of the surface water used in the basin during 1990 was for thermoelectric power generation; other surface water uses included public supply (24 percent), self-supplied commercial- industrial use (12 percent), and agricultural use (4 percent). Nearly 58 percent of the ground water used in the basin for 1990 was used for agricultural irrigation; other ground-water uses included public supply (21 percent), self-supplied domestic use (11 percent), self-supplied commercial-industrial use (9 percent), and thermoelectric power generation (less than 1 percent). The Chattahoochee River supplied most of the surface water used in the basin (64 percent) and the Floridan aquifer system supplied most of the ground water used (44 percent) in 1990. During 1990, 39,815 Mgal/d of water was used to produce 35,843 gigawatthours of electricity. Of that total, 1.076 Mgal/d was used to produced 33,460 gigawwatthours of electricity at 8 fossil fuel facilities and 38,740 Mgal/d was used to produce 2,384 gigawatthours of electricity at 14 hydroelectric facilities.
Free-piston Stirling technology for space power
NASA Technical Reports Server (NTRS)
Slaby, Jack G.
1989-01-01
An overview is presented of the NASA Lewis Research Center free-piston Stirling engine activities directed toward space power. This work is being carried out under NASA's new Civil Space Technology Initiative (CSTI). The overall goal of CSTI's High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space missions. The Stirling cycle offers an attractive power conversion concept for space power needs. Discussed here is the completion of the Space Power Demonstrator Engine (SPDE) testing-culminating in the generation of 25 kW of engine power from a dynamically-balanced opposed-piston Stirling engine at a temperature ratio of 2.0. Engine efficiency was approximately 22 percent. The SPDE recently has been divided into two separate single-cylinder engines, called Space Power Research Engine (SPRE), that now serve as test beds for the evaluation of key technology disciplines. These disciplines include hydrodynamic gas bearings, high-efficiency linear alternators, space qualified heat pipe heat exchangers, oscillating flow code validation, and engine loss understanding.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplanes: Reciprocating engine-powered: En... OPERATIONS Airplane Performance Operating Limitations § 121.181 Airplanes: Reciprocating engine-powered: En... person operating a reciprocating engine powered airplane may take off that airplane at a weight, allowing...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Reciprocating engine-powered: En... OPERATIONS Airplane Performance Operating Limitations § 121.181 Airplanes: Reciprocating engine-powered: En... person operating a reciprocating engine powered airplane may take off that airplane at a weight, allowing...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Reciprocating engine-powered: En... OPERATIONS Airplane Performance Operating Limitations § 121.181 Airplanes: Reciprocating engine-powered: En... person operating a reciprocating engine powered airplane may take off that airplane at a weight, allowing...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplanes: Reciprocating engine-powered: En... OPERATIONS Airplane Performance Operating Limitations § 121.181 Airplanes: Reciprocating engine-powered: En... person operating a reciprocating engine powered airplane may take off that airplane at a weight, allowing...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Reciprocating engine-powered: En... OPERATIONS Airplane Performance Operating Limitations § 121.181 Airplanes: Reciprocating engine-powered: En... person operating a reciprocating engine powered airplane may take off that airplane at a weight, allowing...
Water resources data of the Seward area, Alaska
Dearborn, Larry L.; Anderson, Gary S.; Zenone, Chester
1979-01-01
Seward, Alaska, obtains a water supply of about 2 million gallons per day primarily from Marathon Springs and the Fort Raymond well field. The springs have supplied up to 800 gallons per minute, and the city 's deep wells currently have a combined capacity of about 3,000 gallons per minute. Freshwater is abundant in the area; future public supplies could be derived from both shallow and deep ground water and from stream impoundment with diversion. High deep-aquifer transmissivity at the Fort Raymond well field indicates that additional wells could be developed there. Water quality is generally not a problem for public consumption. A flood potential exists along several streams having broad alluvial fans. (Woodard-USGS)
14 CFR 125.377 - Fuel supply: Turbine-engine-powered airplanes other than turbopropeller.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRCRAFT Flight Release Rules § 125.377 Fuel supply: Turbine-engine-powered airplanes other than... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Fuel supply: Turbine-engine-powered... or take off a turbine-engine powered airplane (other than a turbopropeller-powered airplane) unless...
14 CFR 125.377 - Fuel supply: Turbine-engine-powered airplanes other than turbopropeller.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRCRAFT Flight Release Rules § 125.377 Fuel supply: Turbine-engine-powered airplanes other than... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fuel supply: Turbine-engine-powered... or take off a turbine-engine powered airplane (other than a turbopropeller-powered airplane) unless...
9 CFR 71.10 - Permitted disinfectants.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., premises, and cages and other equipment are as follows: (1) “Cresylic disinfectant” in the proportion of at... the proportion of at least 6 fluid ounces to 1 gallon of water. (3) Chlorinated lime (U.S.P. strength, 30 percent available chlorine) in the proportion of 1 pound to 3 gallons of water. (4) Sodium...
9 CFR 71.10 - Permitted disinfectants.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., premises, and cages and other equipment are as follows: (1) “Cresylic disinfectant” in the proportion of at... the proportion of at least 6 fluid ounces to 1 gallon of water. (3) Chlorinated lime (U.S.P. strength, 30 percent available chlorine) in the proportion of 1 pound to 3 gallons of water. (4) Sodium...
9 CFR 71.10 - Permitted disinfectants.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., premises, and cages and other equipment are as follows: (1) “Cresylic disinfectant” in the proportion of at... the proportion of at least 6 fluid ounces to 1 gallon of water. (3) Chlorinated lime (U.S.P. strength, 30 percent available chlorine) in the proportion of 1 pound to 3 gallons of water. (4) Sodium...
9 CFR 71.10 - Permitted disinfectants.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., premises, and cages and other equipment are as follows: (1) “Cresylic disinfectant” in the proportion of at... the proportion of at least 6 fluid ounces to 1 gallon of water. (3) Chlorinated lime (U.S.P. strength, 30 percent available chlorine) in the proportion of 1 pound to 3 gallons of water. (4) Sodium...
9 CFR 71.10 - Permitted disinfectants.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., premises, and cages and other equipment are as follows: (1) “Cresylic disinfectant” in the proportion of at... the proportion of at least 6 fluid ounces to 1 gallon of water. (3) Chlorinated lime (U.S.P. strength, 30 percent available chlorine) in the proportion of 1 pound to 3 gallons of water. (4) Sodium...
Code of Federal Regulations, 2014 CFR
2014-01-01
... faucets, the maximum water use in gallons per cycle (gal/cycle) rounded to the nearest 0.01 gallon; and for all faucet types, the flow water pressure in pounds per square inch (psi). [76 FR 12451, Mar. 7... 10 Energy 3 2014-01-01 2014-01-01 false Faucets. 429.28 Section 429.28 Energy DEPARTMENT OF ENERGY...
27 CFR 30.62 - Table 2, showing wine gallons and proof gallons by weight.
Code of Federal Regulations, 2010 CFR
2010-04-01
... spirituous liquor containing dissolved solids where the weight, apparent proof (hydrometer indication... table, from the weight of the liquid and the uncorrected reading of the hydrometer stem. An application... spirits having an uncorrected hydrometer reading of 113.0°. The full capacity of the package, 51.5 wine...
40 CFR 35.2140 - User charge system.
Code of Federal Regulations, 2010 CFR
2010-07-01
...,000 gallons per day of domestic sanitary wastes to the treatment works), in proportion to the use of... class which discharges more than 25,000 gallons per day of sanitary waste pays its share of the costs of... flow not directly attributable to users (i.e., infiltration/inflow) be distributed among all users...
40 CFR 35.2140 - User charge system.
Code of Federal Regulations, 2011 CFR
2011-07-01
...,000 gallons per day of domestic sanitary wastes to the treatment works), in proportion to the use of... class which discharges more than 25,000 gallons per day of sanitary waste pays its share of the costs of... flow not directly attributable to users (i.e., infiltration/inflow) be distributed among all users...
49 CFR 535.6 - Measurement and calculation procedures.
Code of Federal Regulations, 2013 CFR
2013-10-01
...-ignition vehicles. CO2 emissions test group result (grams per mile)/10,180 grams per gallon of diesel fuel... vehicles. CO2 emissions test group result (grams per mile)/8,887 grams per gallon of gasoline fuel) × (102... regulatory subcategories of vocational vehicles and tractors. (2) Determine the CO2 emissions and fuel...
27 CFR 21.42 - Formula No. 17.
Code of Federal Regulations, 2010 CFR
2010-04-01
... chemicals. (3) Miscellaneous uses: 812.Product development and pilot plant uses (own use only). ... and Authorized Uses § 21.42 Formula No. 17. (a) Formula. To every 100 gallons of alcohol add: Five-hundredths (0.05) gallon (6.4 fluid ounces) of bone oil (Dipple's oil). (b) Authorized uses. (1) As a solvent...
27 CFR 21.42 - Formula No. 17.
Code of Federal Regulations, 2011 CFR
2011-04-01
... chemicals. (3) Miscellaneous uses: 812.Product development and pilot plant uses (own use only). ... and Authorized Uses § 21.42 Formula No. 17. (a) Formula. To every 100 gallons of alcohol add: Five-hundredths (0.05) gallon (6.4 fluid ounces) of bone oil (Dipple's oil). (b) Authorized uses. (1) As a solvent...
Alternative Fuels Data Center: Hawaii Transportation Data for Alternative
Diesel Natural Gas Transportation Fuel Consumption Source: State Energy Data System based on beta data Plant Capacity (nameplate, MW) 145 Source: BioFuels Atlas from the National Renewable Energy Laboratory $2.96/gallon $2.66/GGE Source: Average prices per gasoline gallon equivalent (GGE) for the West Coast
Alternative Fuels Data Center: Oklahoma Transportation Data for Alternative
Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon ) 2,573 Source: BioFuels Atlas from the National Renewable Energy Laboratory Case Studies Video thumbnail Source: Average prices per gasoline gallon equivalent (GGE) for the Midwest PADD from the Alternative
40 CFR 280.43 - Methods of release detection for tanks.
Code of Federal Regulations, 2010 CFR
2010-07-01
... plus 130 gallons on a monthly basis in the following manner: (1) Inventory volume measurements for... reconciled with delivery receipts by measurement of the tank inventory volume before and after delivery; (4... inches for every 5 gallons of product withdrawn; and (6) The measurement of any water level in the bottom...
46 CFR 147.45 - Flammable and combustible liquids.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... (b) No flammable or combustible liquids may be stowed in any accommodation, control, or service space... in any machinery space. The flammable liquids must be in containers of 3.8 liters (one gallon) or... space. (e) An aggregate of more than 7.6 liters (two gallons) of flammable or combustible liquids stowed...
46 CFR 147.45 - Flammable and combustible liquids.
Code of Federal Regulations, 2012 CFR
2012-10-01
.... (b) No flammable or combustible liquids may be stowed in any accommodation, control, or service space... in any machinery space. The flammable liquids must be in containers of 3.8 liters (one gallon) or... space. (e) An aggregate of more than 7.6 liters (two gallons) of flammable or combustible liquids stowed...
46 CFR 147.45 - Flammable and combustible liquids.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... (b) No flammable or combustible liquids may be stowed in any accommodation, control, or service space... in any machinery space. The flammable liquids must be in containers of 3.8 liters (one gallon) or... space. (e) An aggregate of more than 7.6 liters (two gallons) of flammable or combustible liquids stowed...
46 CFR 147.45 - Flammable and combustible liquids.
Code of Federal Regulations, 2013 CFR
2013-10-01
.... (b) No flammable or combustible liquids may be stowed in any accommodation, control, or service space... in any machinery space. The flammable liquids must be in containers of 3.8 liters (one gallon) or... space. (e) An aggregate of more than 7.6 liters (two gallons) of flammable or combustible liquids stowed...
46 CFR 147.45 - Flammable and combustible liquids.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... (b) No flammable or combustible liquids may be stowed in any accommodation, control, or service space... in any machinery space. The flammable liquids must be in containers of 3.8 liters (one gallon) or... space. (e) An aggregate of more than 7.6 liters (two gallons) of flammable or combustible liquids stowed...
29 CFR 1910.111 - Storage and handling of anhydrous ammonia.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 1,200 gallons water capacity. (viii) Filling density. the percent ratio of the weight of the gas in... ammonia. (xi) Capacity. Total volume of the container in standard U.S. gallons. (xii) DOT specifications... allowable water level to which the container may be filled for test purposes. (vii) With the density of the...
29 CFR 1910.111 - Storage and handling of anhydrous ammonia.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 1,200 gallons water capacity. (viii) Filling density. the percent ratio of the weight of the gas in... ammonia. (xi) Capacity. Total volume of the container in standard U.S. gallons. (xii) DOT specifications... allowable water level to which the container may be filled for test purposes. (vii) With the density of the...
29 CFR 1910.111 - Storage and handling of anhydrous ammonia.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 1,200 gallons water capacity. (viii) Filling density. the percent ratio of the weight of the gas in... ammonia. (xi) Capacity. Total volume of the container in standard U.S. gallons. (xii) DOT specifications... allowable water level to which the container may be filled for test purposes. (vii) With the density of the...
Development of sustainable corn stover harvest strategies for cellulosic ethanol
USDA-ARS?s Scientific Manuscript database
The U.S. EPA identified corn (Zea mays L.) stover as “the most economical agricultural feedstock…to meet the 16 billion gallon cellulosic biofuel requirement.” They estimated that 7.8 billion gallons of ethanol would come from 82 million tons of corn stover by 2022. POET-DSM Advanced Biofuels is con...
Photograph of drawing building 523 and 100,000gallon water tank above ...
Photograph of drawing building 523 and 100,000-gallon water tank above it, dated 1979. Drawing in collection of Caretaker Site Office, Philadelphia Naval Business Center. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Building No. 523, Delaware Avenue between East Fourth Street & Webster Avenue, League Island, Philadelphia, Philadelphia County, PA
21 CFR 520.823 - Erythromycin phosphate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... chickens—(i) Amount. 0.500 gram per gallon. (ii) Indications for use. As an aid in the control of chronic... for 5 days; do not use in replacement pullets over 16 weeks of age; do not use in chickens producing... before slaughter. (2) Replacement chickens and chicken breeders—(i) Amount. 0.500 gram per gallon. (ii...
40 CFR 80.1407 - How are the Renewable Volume Obligations calculated?
Code of Federal Regulations, 2010 CFR
2010-07-01
... cellulosic biofuel, in gallons. (2) Biomass-based diesel. RVOBBD,i = (RFStdBBD,i * (GVi + DVi)) + DBBD,i-1 Where: RVOBBD,i = The Renewable Volume Obligation for biomass-based diesel for an obligated party for calendar year i, in gallons. RFStdBBD,i = The standard for biomass-based diesel for calendar year i...
14 CFR 139.317 - Aircraft rescue and firefighting: Equipment and agents.
Code of Federal Regulations, 2011 CFR
2011-01-01
... pounds of potassium-based dry chemical and water with a commensurate quantity of AFFF to total 100 gallons for simultaneous dry chemical and AFFF application. (b) Index B. Either of the following: (1) One... gallons of water and the commensurate quantity of AFFF for foam production. (2) Two vehicles— (i) One...
14 CFR 139.317 - Aircraft rescue and firefighting: Equipment and agents.
Code of Federal Regulations, 2012 CFR
2012-01-01
... pounds of potassium-based dry chemical and water with a commensurate quantity of AFFF to total 100 gallons for simultaneous dry chemical and AFFF application. (b) Index B. Either of the following: (1) One... gallons of water and the commensurate quantity of AFFF for foam production. (2) Two vehicles— (i) One...
14 CFR 139.317 - Aircraft rescue and firefighting: Equipment and agents.
Code of Federal Regulations, 2010 CFR
2010-01-01
... pounds of potassium-based dry chemical and water with a commensurate quantity of AFFF to total 100 gallons for simultaneous dry chemical and AFFF application. (b) Index B. Either of the following: (1) One... gallons of water and the commensurate quantity of AFFF for foam production. (2) Two vehicles— (i) One...
14 CFR 139.317 - Aircraft rescue and firefighting: Equipment and agents.
Code of Federal Regulations, 2014 CFR
2014-01-01
... pounds of potassium-based dry chemical and water with a commensurate quantity of AFFF to total 100 gallons for simultaneous dry chemical and AFFF application. (b) Index B. Either of the following: (1) One... gallons of water and the commensurate quantity of AFFF for foam production. (2) Two vehicles— (i) One...
14 CFR 139.317 - Aircraft rescue and firefighting: Equipment and agents.
Code of Federal Regulations, 2013 CFR
2013-01-01
... pounds of potassium-based dry chemical and water with a commensurate quantity of AFFF to total 100 gallons for simultaneous dry chemical and AFFF application. (b) Index B. Either of the following: (1) One... gallons of water and the commensurate quantity of AFFF for foam production. (2) Two vehicles— (i) One...
40 CFR 80.161 - Detergent additive certification program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements. For a detergent additive package to be certified as eligible for use by detergent blenders in...: (i) The compositional data required under § 79.21(a) of this chapter shall include the information... chapter shall be reported to EPA in units of gallons of detergent additive package per 1000 gallons of...
27 CFR 19.773 - Daily record of wholesale liquor dealer and taxpaid storeroom operations.
Code of Federal Regulations, 2010 CFR
2010-04-01
... the receipt and disposition of distilled spirits and wines shall contain all data necessary... distilled spirits involved (proof and proof gallons if in packages, wine gallons or liters and proof if in bottles); (6) The package identification or serial numbers of packages involved; (7) The name of the...
40 CFR 80.161 - Detergent additive certification program.
Code of Federal Regulations, 2011 CFR
2011-07-01
... requirements. For a detergent additive package to be certified as eligible for use by detergent blenders in...: (i) The compositional data required under § 79.21(a) of this chapter shall include the information... chapter shall be reported to EPA in units of gallons of detergent additive package per 1000 gallons of...
40 CFR 80.161 - Detergent additive certification program.
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirements. For a detergent additive package to be certified as eligible for use by detergent blenders in...: (i) The compositional data required under § 79.21(a) of this chapter shall include the information... chapter shall be reported to EPA in units of gallons of detergent additive package per 1000 gallons of...
Code of Federal Regulations, 2011 CFR
2011-10-01
... TRANSPORTATION OIL TRANSPORTATION OIL SPILL PREVENTION AND RESPONSE PLANS § 130.2 Scope. (a) The requirements of this part apply to— (1) Any liquid petroleum oil in a packaging having a capacity of 3,500 gallons or more; and (2) Any liquid petroleum or non-petroleum oil in a quantity greater than 42,000 gallons per...
Code of Federal Regulations, 2013 CFR
2013-10-01
... TRANSPORTATION OIL TRANSPORTATION OIL SPILL PREVENTION AND RESPONSE PLANS § 130.2 Scope. (a) The requirements of this part apply to— (1) Any liquid petroleum oil in a packaging having a capacity of 3,500 gallons or more; and (2) Any liquid petroleum or non-petroleum oil in a quantity greater than 42,000 gallons per...
Code of Federal Regulations, 2014 CFR
2014-10-01
... TRANSPORTATION OIL TRANSPORTATION OIL SPILL PREVENTION AND RESPONSE PLANS § 130.2 Scope. (a) The requirements of this part apply to— (1) Any liquid petroleum oil in a packaging having a capacity of 3,500 gallons or more; and (2) Any liquid petroleum or non-petroleum oil in a quantity greater than 42,000 gallons per...
Code of Federal Regulations, 2010 CFR
2010-10-01
... TRANSPORTATION OIL TRANSPORTATION OIL SPILL PREVENTION AND RESPONSE PLANS § 130.2 Scope. (a) The requirements of this part apply to— (1) Any liquid petroleum oil in a packaging having a capacity of 3,500 gallons or more; and (2) Any liquid petroleum or non-petroleum oil in a quantity greater than 42,000 gallons per...
Code of Federal Regulations, 2012 CFR
2012-10-01
... TRANSPORTATION OIL TRANSPORTATION OIL SPILL PREVENTION AND RESPONSE PLANS § 130.2 Scope. (a) The requirements of this part apply to— (1) Any liquid petroleum oil in a packaging having a capacity of 3,500 gallons or more; and (2) Any liquid petroleum or non-petroleum oil in a quantity greater than 42,000 gallons per...
Anthony, S.S.
1996-01-01
The lens of fresh ground water on Ngatik Island contains about 509 million gallons of potable water. Recharge to the freshwater lens is estimated to be 990,000 gallons per day on the basis of an estimated mean annual rainfall of 160 inches. The long-term average sustainable yield is estimated to be about 280,000 gallons per day. The estimated demand for water is about 30,000 gallons per day. Shallow-vertical-tube-wells or horizontal-infiltration wells could be used to develop the freshwater lens. The effect of development on the lens can be determined by monitoring the chloride concentration of water from a network of shallow-water-table wells and deep driven wells. The ground-water resource on Ngatik can be used in conjunction with individual rainwater-catchment systems: rainwater can be used for drinking and cooking and ground water can be used for sanitary purposes. When rainwater- catchment systems fail during extended dry periods, ground water would be available to meet the total demand.
Anthony, S.S.
1996-01-01
The lens of fresh ground water on Pingelap Island, Pingelap Atoll contains about 384 million gallons of potable water. Recharge to the freshwater lens is estimated to be 230,000 gallons per day on the basis of an average annual rainfall of 160 inches. The long-term average sustainable yield is estimated to be about 69,000 gallons per day. The estimated demand for water is about 50,000 gallons per day. Shallow-vertical-tube wells or horizontal-infiltration wells could be used to develop the freshwater lens. The effect of development on the lens can be determined by monitoring the chloride concentration of water from a network of shallow-water-table wells and deep driven wells. The ground-water resource on Pingelap can be used in conjunction with individual rainwater-catchment systems: rainwater can be used for drinking and cooking, and ground water can be used for sanitary uses. When rainwater-catchment systems fail during extended dry periods, ground water would be available to meet the total demand.
Anthony, S.S.
1996-01-01
The lens of fresh ground water on Kahlap Island contains about 21.3 million gallons of potable water. Recharge to the freshwater lens is estimated to be 125,000 gallons per day on the basis of a mean annual rainfall of 120 inches. The long-term average sustainable yield is estimated to be about 17,300 gallons per day. The estimated demand for water is about 13,500 gallons per day. Shallow-vertical-tube wells or horizontal- infiltration wells could be used to develop the freshwater lens. The effect of development on the lens can be determined by monitoring the chloride concentration of water from a network of shallow- water-table and deep driven wells. The ground- water resource on Kahlap can be used in conjunc- tion with individual rainwater-catchment systems: rainwater can be used for drinking and cooking, and ground water can be used for sanitary uses. When rainwater-catchment systems fail during extended dry periods, ground water would be available to meet the total demand.
Speed And Power Control Of An Engine By Modulation Of The Load Torque
Ziph, Benjamin; Strodtman, Scott; Rose, Thomas K
1999-01-26
A system and method of speed and power control for an engine in which speed and power of the engine is controlled by modulation of the load torque. The load torque is manipulated in order to cause engine speed, and hence power to be changed. To accomplish such control, the load torque undergoes a temporary excursion in the opposite direction of the desired speed and power change. The engine and the driven equipment will accelerate or decelerate accordingly as the load torque is decreased or increased, relative to the essentially fixed or constant engine torque. As the engine accelerates or decelerates, its power increases or decreases in proportion.
2016-08-03
Technicians with Praxair pressurize the hydrogen trailer before offloading liquid hydrogen during a test of the Ground Operations Demo Unit for liquid hydrogen at NASA's Kennedy Space Center in Florida. The system includes a 33,000 gallon liquid hydrogen storage tank with an internal cold heat exchanger supplied from a cryogenic refrigerator. The primary goal of the testing is to achieve a liquid hydrogen zero boil-off capability. The system was designed, installed and tested by a team of civil servants and contractors from the center's Cryogenic Test Laboratory, with support from engineers at NASA's Glenn Research Center in Cleveland and Stennis Space Center in Mississippi. It may be applicable for use by the Ground Systems Development and Operations Program at Launch Pad 39B.
1967-11-01
This is a view of the the first test flight of the Saturn V vehicle (SA-501) at the Kennedy Space Center (KSC) launch complex 39A. The thrust chambers of the first stage's five engines extend into the 45-foot-square hole in the mobile launcher platform. Until liftoff, the flames impinged downward onto a flame deflector that diverted the blast lengthwise in the flame trench. Here, a flame deflector, coated with a black ceramic, is in place below the opening, while a yellow (uncoated) spare deflector rests on its track in the background. It took a tremendous flow of water (28,000 gallons per minute) to cool the flame deflector and trench. The Apollo 4 was launched on November 9, 1967 from KSC.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Limitations § 135.383 Large transport category airplanes: Turbine engine powered: En route limitations: Two...). No person may operate a turbine engine powered large transport category airplane along an intended..., 1958, but before August 30, 1959 (SR422A). No person may operate a turbine engine powered large...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Limitations § 135.383 Large transport category airplanes: Turbine engine powered: En route limitations: Two...). No person may operate a turbine engine powered large transport category airplane along an intended..., 1958, but before August 30, 1959 (SR422A). No person may operate a turbine engine powered large...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-07
...EPA is proposing a regulation that would strengthen the controls on discharges from certain steam electric power plants by revising technology-based effluent limitations guidelines and standards for the steam electric power generating point source category. Steam electric power plants alone contribute 50-60 percent of all toxic pollutants discharged to surface waters by all industrial categories currently regulated in the United States under the Clean Water Act. Furthermore, power plant discharges to surface waters are expected to increase as pollutants are increasingly captured by air pollution controls and transferred to wastewater discharges. This proposal, if implemented, would reduce the amount of toxic metals and other pollutants discharged to surface waters from power plants. EPA is considering several regulatory options in this rulemaking and has identified four preferred alternatives for regulation of discharges from existing sources. These four preferred alternatives differ with respect to the scope of requirements that would be applicable to existing discharges of pollutants found in two wastestreams generated at power plants. EPA estimates that the preferred options for this proposed rule would annually reduce pollutant discharges by 0.47 billion to 2.62 billion pounds, reduce water use by 50 billion to 103 billion gallons, cost $185 million to $954 million, and would be economically achievable.
Wilson, Clyde A.; White, R.R.; Roybal, R.G.; Gonzales, J.L.
1978-01-01
During the spring and summer of 1976, two municipal-supply wells (designated as well 21 and well 22 - 2,000 feet apart) were drilled at the Post Headquarters area of White Sands Missile Range, New Mexico. The design specifications for both wells called for 24-inch diameter surface casing cemented in place to a depth of about 430 feet, with 16-inch liner and slotted casing from the surface to a depth of about 700 feet. Each well was pumped continuously for 32 hours in a step-drawdown test. This test consisted of four steps, with discharge rates varying from about 500 to 1,150 gallons per minute. The drawdown test for well 21 gave an estimated transmissivity of 17,300 gallons per day per foot, and a final specific capacity of slightly less than 11 gallons per minute per foot of drawdown. The step-drawdown test and later drawdown and recovery test on well 22 gave an average transmissivity of 32,600 gallons per day per foot, and a final specific capacity of about 15 gallons per minute per foot of drawdown. The data collected indicated that the aquifer in the vicinity of well 22 is more permeable than the aquifer around well 21. Both wells furnish a satisfactory quantity of excellent-quality water. The dissolved-solids content of water from wells 21 and 22 is 232 and 301 mg/liter respectively. (Woodard-USGS)
Regional Variation in Residential Heat Pump Water Heater Performance in the U.S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maguire, Jeff; Burch, Jay; Merrigan, Tim
2014-01-01
Residential heat pump water heaters (HPWHs) have recently re-emerged on the U.S. market, and they have the potential to provide homeowners significant cost and energy savings. However, actual in use performance of a HPWH will vary significantly with climate, installation location, HVAC equipment, and hot water use. To determine the actual energy consumption of a HPWH in different U.S. regions, annual simulations of both 50 and 80 gallon HPWHs as well as a standard electric water heater were performed for over 900 locations across the United States. The simulations included a benchmark home to take into account interactions between themore » space conditioning equipment and the HPWH and a realistic hot water draw profile. It was found that the HPWH will always save some source energy when compared to a standard electric resistance water heater, although savings varies widely with location. In addition to looking at source energy savings, the breakeven cost (the net installed cost a HPWH would have to have to be a cost neutral replacement for a standard water heater) was also examined. The highest breakeven costs were seen in cases with high energy savings, such as the southeastern U.S., or high energy costs, such as New England and California. While the breakeven cost is higher for 80 gallon units than 50 gallon units, the higher net installed costs of an 80 gallon unit lead to the 50 gallon HPWHs being more likely to be cost effective.« less
Donor profiles: demographic factors and their influence on the donor career.
Veldhuizen, I J T; Doggen, C J M; Atsma, F; De Kort, W L A M
2009-08-01
Studying the contribution of demographic factors to the donor career provides important knowledge to be used for donor management. The aim of this study is to gain insight into donor characteristics, more specifically into the demographic profile of active vs. resigned donors, and multi-gallon vs. occasional donors. The study population consisted of all registered Dutch whole-blood donors between 1 January 2004 and 1 January 2005 (N = 370 470). The effect of several blood donor characteristics and demographic variables on (i) resigning donating and (ii) being a multi-gallon donor were assessed. Blood donor characteristics were extracted from the blood bank information system and included age, sex, blood group, number of donations and invitations. Demographic characteristics were constituted by population data on urbanization level, socio-economic status (income, housing value), and ethnicity. Men clearly resigned less often than women (odds ratio (OR) 0.73, 95% confidence interval (CI) 0.72-0.75). Being older than 24 years, having a high income, a high-priced house, living in less urbanized areas or areas with relatively few ethnically diverse people also reduced the stopping risk. With respect to multi-gallon donorship, men were five times more often multi-gallon donor than women (OR 5.27, 95% CI 5.15-5.39) irrespective of the number of donation invitations. Furthermore, multi-gallon donors appeared to live in urbanized areas and have a higher income than occasional donors. Our results show that different donor profiles can be distinguished. Differences between active and resigned donors include age, the number of donations, sex, socio-economic-status, ethnicity, and urbanization level. The factors highly associated with being a multi-gallon donor are sex, age, socio-economic status, and to a lesser extent urbanization level. Donor profiles do provide the blood bank with knowledge on their donor population, which may be used as valuable information for donor recruitment and retention policies.
Schreffler, Curtis L.
2006-01-01
Extensive remediation of the Drake Chemical Superfund Site has been ongoing since 1983. Contaminated soils were excavated and incinerated on site between 1996 and 1999. After 1999, remedial efforts focused on contaminated ground water. A ground-water remediation system was started in November 2000. The source area of the contaminated ground water was assumed to be the zone 1 area on the Drake Chemical site. The remedial system was designed to capture ground water migrating from zone 1. Also, the remediation system was designed to pump and treat the water in an anoxic environment and re-infiltrate the treated water underground through an infiltration gallery that is hydrologically downgradient of the extraction wells. A numerical ground-water flow model of the surrounding region was constructed to simulate the areas contributing recharge to remedial extraction wells installed on the Drake Chemical site. The three-dimensional numerical flow model was calibrated using the parameter-estimation process in MODFLOW-2000. The model included three layers that represented three poorly sorted alluvial sediment units that were characterized from geologic well and boring logs. Steady-state ground-water flow was simulated to estimate the areas contributing recharge to three extraction wells for three different pumping scenarios--all wells pumping at 2 gallons per minute, at approximately 5 gallons per minute, and at 8 gallons per minute. Simulation results showed the contributing areas to the three extraction wells encompassed 92 percent of zone 1 at a pumping rate of approximately 5 gallons per minute. The contributing areas did not include a very small area in the southwestern part of zone 1 when the three extraction wells were pumped at approximately 5 gallons per minute. Pumping from a fourth extraction well in that area was discontinued early in the operation of the remediation system because the ground water in that area met performance standards. The areas contributing recharge to the three extraction wells did encompass zone 1 at a pumping rate of 8 gallons per minute. At pumping rates of 2 gallons per minute, the contributing areas for the three extraction wells did not encompass zone 1.
Availability of ground water in the lower Pawcatuck River basin, Rhode Island
Gonthier, Joseph B.; Johnston, Herbert E.; Malmberg, Glenn T.
1974-01-01
The lower Pawcatuck River basin in southwestern Rhode Island is an area of about 169 square miles underlain by crystalline bedrock over which lies a relatively thin mantle of glacial till and stratified drift. Stratified drift, consisting dominantly of sand and gravel, occurs in irregularly shaped linear deposits that are generally less than a mile wide and less than 125 feet thick; these deposits are found along the Pawcatuck River, its tributaries, and abandoned preglacial channels. Deposits of stratified sand and gravel constitute the principal aquifer in the lower Pawcatuck basin and the only one capable of sustaining yields of 100 gallons per minute or more to individual wells. Water available for development in this aquifer consists of water in storage--potential ground-water runoff to streams--plus infiltration that can be induced from streams. Minimum annual ground-water runoff from the sand and gravel aquifer is calculated to be at least 1.17 cubic feet per second per square mile, or 0.76 million gallons per day per square mile. Potential recharge by induced infiltration is estimated to range from about 250 to 600 gallons per day per linear foot of streambed for the principal streams. In most areas, induced infiltration from streams constitutes the major source of water potentially available for development by wells. Because subsurface hydraulic connection in the sand and gravel aquifer is poor in several places, the deposits are conveniently divisible into several ground-water reservoirs. The potential yield from five of the most promising ground-water reservoirs is evaluated by means of mathematical models. Results indicate that continuous withdrawals ranging from 1.3 to 10.3 million gallons per day, and totaling 31 million gallons per day, are obtainable from these reservoirs. Larger yields may be recovered by different well placement, spacing, construction and development, pumping practice, and so forth. Withdrawals at the rates indicated will reduce streamflow downstream from pumping centers but generally will not result in streams going dry, provided the water is returned to the basin. Export of water from the basin will require careful consideration of the effects of such withdrawals on low streamflow. Export from the Pawcatuck basin of 27 million gallons per day, estimated to be available from ground-water reservoirs in the upper Pawcatuck basin, in addition to 37.5 million gallons per day available in the lower Pawcatuck basin, will markedly reduce low streamflow. The 90-percent duration flow of the Pawcatuck River at Westerly would be reduced from 75 million gallons per day to perhaps as little as 21 million gallons per day. The chemical quality of water from both the sand and gravel aquifer and associated streams is suitable for most purposes. The water is soft, slightly acidic, and typically has a dissolved-solids content of less than 75 milligrams per liter. Some treatment may be required locally for removal of iron and manganese to meet recommended standards of the U.S. Public Health Service for drinking water.
Design of Intelligent Hydraulic Excavator Control System Based on PID Method
NASA Astrophysics Data System (ADS)
Zhang, Jun; Jiao, Shengjie; Liao, Xiaoming; Yin, Penglong; Wang, Yulin; Si, Kuimao; Zhang, Yi; Gu, Hairong
Most of the domestic designed hydraulic excavators adopt the constant power design method and set 85%~90% of engine power as the hydraulic system adoption power, it causes high energy loss due to mismatching of power between the engine and the pump. While the variation of the rotational speed of engine could sense the power shift of the load, it provides a new method to adjust the power matching between engine and pump through engine speed. Based on negative flux hydraulic system, an intelligent hydraulic excavator control system was designed based on rotational speed sensing method to improve energy efficiency. The control system was consisted of engine control module, pump power adjusted module, engine idle module and system fault diagnosis module. Special PLC with CAN bus was used to acquired the sensors and adjusts the pump absorption power according to load variation. Four energy saving control strategies with constant power method were employed to improve the fuel utilization. Three power modes (H, S and L mode) were designed to meet different working status; Auto idle function was employed to save energy through two work status detected pressure switches, 1300rpm was setting as the idle speed according to the engine consumption fuel curve. Transient overload function was designed for deep digging within short time without spending extra fuel. An increasing PID method was employed to realize power matching between engine and pump, the rotational speed's variation was taken as the PID algorithm's input; the current of proportional valve of variable displacement pump was the PID's output. The result indicated that the auto idle could decrease fuel consumption by 33.33% compared to work in maximum speed of H mode, the PID control method could take full use of maximum engine power at each power mode and keep the engine speed at stable range. Application of rotational speed sensing method provides a reliable method to improve the excavator's energy efficiency and realize power match between pump and engine.
14 CFR 121.329 - Supplemental oxygen for sustenance: Turbine engine powered airplanes.
Code of Federal Regulations, 2011 CFR
2011-01-01
... engine powered airplanes. 121.329 Section 121.329 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Equipment Requirements § 121.329 Supplemental oxygen for sustenance: Turbine engine powered airplanes. (a) General. When operating a turbine engine powered airplane, each certificate holder shall equip the...
14 CFR 121.329 - Supplemental oxygen for sustenance: Turbine engine powered airplanes.
Code of Federal Regulations, 2010 CFR
2010-01-01
... engine powered airplanes. 121.329 Section 121.329 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Equipment Requirements § 121.329 Supplemental oxygen for sustenance: Turbine engine powered airplanes. (a) General. When operating a turbine engine powered airplane, each certificate holder shall equip the...
49 CFR 173.323 - Ethylene oxide.
Code of Federal Regulations, 2011 CFR
2011-10-01
... (5 gallons) capacity. Cylinders must be seamless or welded steel (not brazed) with a nominal capacity... Pamphlet C-14 or other equivalent method. (3) In 1A1 steel drums of no more than 231 L (61 gallons) and... must be protected with a steel jacket at least 2.54 mm (0.100 inch) thick, or as required by the...
49 CFR 173.323 - Ethylene oxide.
Code of Federal Regulations, 2013 CFR
2013-10-01
... (5 gallons) capacity. Cylinders must be seamless or welded steel (not brazed) with a nominal capacity... Pamphlet C-14 or other equivalent method. (3) In 1A1 steel drums of no more than 231 L (61 gallons) and... must be protected with a steel jacket at least 2.54 mm (0.100 inch) thick, or as required by the...
49 CFR 173.323 - Ethylene oxide.
Code of Federal Regulations, 2014 CFR
2014-10-01
... (5 gallons) capacity. Cylinders must be seamless or welded steel (not brazed) with a nominal capacity... Pamphlet C-14 or other equivalent method. (3) In 1A1 steel drums of no more than 231 L (61 gallons) and... must be protected with a steel jacket at least 2.54 mm (0.100 inch) thick, or as required by the...
49 CFR 173.323 - Ethylene oxide.
Code of Federal Regulations, 2012 CFR
2012-10-01
... (5 gallons) capacity. Cylinders must be seamless or welded steel (not brazed) with a nominal capacity... Pamphlet C-14 or other equivalent method. (3) In 1A1 steel drums of no more than 231 L (61 gallons) and... must be protected with a steel jacket at least 2.54 mm (0.100 inch) thick, or as required by the...
49 CFR 173.12 - Exceptions for shipment of waste materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... impracticable, an equivalent (except for closure) open head drum may be used for the hazardous waste. (b) Lab....101 Hazardous Materials Table may be used in place of specific chemical names, when two or more... exceeding 4 L (1 gallon) rated capacity, or metal or plastic, not exceeding 20 L (5.3 gallons) rated...
27 CFR 24.278 - Tax credit for certain small domestic producers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Removal, Return and Receipt of Wine... produces not more than 250,000 gallons of wine during the calendar year may take a credit against any tax... in accordance with paragraph (d) of this section, on the first 100,000 gallons of wine (other than...
27 CFR 21.54 - Formula No. 27-B.
Code of Federal Regulations, 2012 CFR
2012-04-01
... gallon of lavender oil, N.F., and 100 pounds of green soap, U.S.P. Note. The requirements of this formula may be met by adding 1 gallon of lavender oil, N.F., and 66.5 pounds of U.S.P. quality soap... other biocides. (2) Miscellaneous uses: 812.Product development and pilot plant uses (own use only). ...
27 CFR 21.54 - Formula No. 27-B.
Code of Federal Regulations, 2011 CFR
2011-04-01
... gallon of lavender oil, N.F., and 100 pounds of green soap, U.S.P. Note. The requirements of this formula may be met by adding 1 gallon of lavender oil, N.F., and 66.5 pounds of U.S.P. quality soap... other biocides. (2) Miscellaneous uses: 812.Product development and pilot plant uses (own use only). ...
Code of Federal Regulations, 2013 CFR
2013-07-01
... monthly throughput of 10,000 gallons of gasoline or more. 63.11117 Section 63.11117 Protection of... Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities Emission Limitations and... gasoline or more. (a) You must comply with the requirements in section § 63.11116(a). (b) Except as...
Code of Federal Regulations, 2010 CFR
2010-07-01
... monthly throughput of 10,000 gallons of gasoline or more. 63.11117 Section 63.11117 Protection of... Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities Emission Limitations and... gasoline or more. (a) You must comply with the requirements in section § 63.11116(a). (b) Except as...
Code of Federal Regulations, 2011 CFR
2011-07-01
... monthly throughput of 10,000 gallons of gasoline or more. 63.11117 Section 63.11117 Protection of... Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities Emission Limitations and... gasoline or more. (a) You must comply with the requirements in section § 63.11116(a). (b) Except as...
Code of Federal Regulations, 2012 CFR
2012-07-01
... monthly throughput of 10,000 gallons of gasoline or more. 63.11117 Section 63.11117 Protection of... Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities Emission Limitations and... gasoline or more. (a) You must comply with the requirements in section § 63.11116(a). (b) Except as...
Alternative Fuels Data Center: District of Columbia Transportation Data for
Electricity Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to (nameplate, MW) 0 Source: BioFuels Atlas from the National Renewable Energy Laboratory Videos Text Version /GGE $2.96/gallon $2.66/GGE Source: Average prices per gasoline gallon equivalent (GGE) for the Central
46 CFR 169.567 - Portable extinguishers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Minimum size Coast Guard classification Living space and open boats 1 per 1000 cu. ft. of space Halon 1211 of 1301 21/2 pounds Foam 11/4 gallons Carbon dioxide 4 pounds B-I. Dry chemical 2 pounds Propulsion machinery space with fixed CO2 or halon system 1 Foam 11/4 gallons Carbon dioxide 4 pounds B-I. Dry chemical...
46 CFR 169.567 - Portable extinguishers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Minimum size Coast Guard classification Living space and open boats 1 per 1000 cu. ft. of space Halon 1211 of 1301 21/2 pounds Foam 11/4 gallons Carbon dioxide 4 pounds B-I. Dry chemical 2 pounds Propulsion machinery space with fixed CO2 or halon system 1 Foam 11/4 gallons Carbon dioxide 4 pounds B-I. Dry chemical...
46 CFR 169.567 - Portable extinguishers.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Minimum size Coast Guard classification Living space and open boats 1 per 1000 cu. ft. of space Halon 1211 of 1301 21/2 pounds Foam 11/4 gallons Carbon dioxide 4 pounds B-I. Dry chemical 2 pounds Propulsion machinery space with fixed CO2 or halon system 1 Foam 11/4 gallons Carbon dioxide 4 pounds B-I. Dry chemical...
46 CFR 169.567 - Portable extinguishers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Minimum size Coast Guard classification Living space and open boats 1 per 1000 cu. ft. of space Halon 1211 of 1301 21/2 pounds Foam 11/4 gallons Carbon dioxide 4 pounds B-I. Dry chemical 2 pounds Propulsion machinery space with fixed CO2 or halon system 1 Foam 11/4 gallons Carbon dioxide 4 pounds B-I. Dry chemical...
27 CFR 27.58 - Containers of 1 gallon (3.785 liters) or less.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Containers of 1 gallon (3.785 liters) or less. 27.58 Section 27.58 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL IMPORTATION OF DISTILLED SPIRITS, WINES, AND...
27 CFR 27.58 - Containers of 1 gallon (3.785 liters) or less.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Containers of 1 gallon (3.785 liters) or less. 27.58 Section 27.58 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO.... 15, 1975] Editorial Note: For Federal Register citations affecting § 27.58, see the List of CFR...
27 CFR 27.58 - Containers of 1 gallon (3.785 liters) or less.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Containers of 1 gallon (3.785 liters) or less. 27.58 Section 27.58 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO.... 15, 1975] Editorial Note: For Federal Register citations affecting § 27.58, see the List of CFR...
27 CFR 27.58 - Containers of 1 gallon (3.785 liters) or less.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Containers of 1 gallon (3.785 liters) or less. 27.58 Section 27.58 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO.... 15, 1975] Editorial Note: For Federal Register citations affecting § 27.58, see the List of CFR...
27 CFR 27.58 - Containers of 1 gallon (3.785 liters) or less.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Containers of 1 gallon (3.785 liters) or less. 27.58 Section 27.58 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL IMPORTATION OF DISTILLED SPIRITS, WINES, AND...
2009-09-25
Construction of the A-3 Test Stand approaches another milestone with delivery and installation of water, isopropyl alcohol (IPA) and liquid oxygen (LOX) tanks. The three LOX tanks shown on the left and the two IPA tanks shown on the right are all 35,000 gallons each. The four water tanks in the center are 39,000 gallons each.
75 FR 34703 - Procurement List; Additions and Deletions
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-18
... gallon drum, 1 DR NSN: 7930-00-NIB-0555--BioRenewable Glass Cleaner, 2-liter, 4/BX NSN: 7930-00-NIB-0556--BioRenewable Glass Cleaner, 55 gallon drum, 1 DR NSN: 7930-00-NIB-0557--Neutral Disinfectant Cleaner...-NIB-0559--BioRenewable Industrial Cleaner, 2 liter, 4/ BX NSN: 7930-00-NIB-0560--BioRenewable...
46 CFR 108.489 - Helicopter fueling facilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the rate of 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot... for each square meter (.1 gallon per minute for each square foot) of area covered for five minutes. (3....87 square meters (300 square feet). (b) If the fire protection system required by § 108.487 of this...
46 CFR 108.489 - Helicopter fueling facilities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... the rate of 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot... for each square meter (.1 gallon per minute for each square foot) of area covered for five minutes. (3....87 square meters (300 square feet). (b) If the fire protection system required by § 108.487 of this...
46 CFR 108.487 - Helicopter deck fueling operations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... designed with foam at— (i) If protein foam is used, 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot) of area covered for five minutes; (ii) If aqueous film forming foam is used, 4.07 liters per minute for each square meter (.1 gallons per minute for each square foot...
46 CFR 108.489 - Helicopter fueling facilities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... the rate of 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot... for each square meter (.1 gallon per minute for each square foot) of area covered for five minutes. (3....87 square meters (300 square feet). (b) If the fire protection system required by § 108.487 of this...
46 CFR 108.487 - Helicopter deck fueling operations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... designed with foam at— (i) If protein foam is used, 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot) of area covered for five minutes; (ii) If aqueous film forming foam is used, 4.07 liters per minute for each square meter (.1 gallons per minute for each square foot...
46 CFR 108.487 - Helicopter deck fueling operations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... designed with foam at— (i) If protein foam is used, 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot) of area covered for five minutes; (ii) If aqueous film forming foam is used, 4.07 liters per minute for each square meter (.1 gallons per minute for each square foot...
46 CFR 108.487 - Helicopter deck fueling operations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... designed with foam at— (i) If protein foam is used, 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot) of area covered for five minutes; (ii) If aqueous film forming foam is used, 4.07 liters per minute for each square meter (.1 gallons per minute for each square foot...
46 CFR 108.487 - Helicopter deck fueling operations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... designed with foam at— (i) If protein foam is used, 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot) of area covered for five minutes; (ii) If aqueous film forming foam is used, 4.07 liters per minute for each square meter (.1 gallons per minute for each square foot...
46 CFR 108.489 - Helicopter fueling facilities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... the rate of 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot... for each square meter (.1 gallon per minute for each square foot) of area covered for five minutes. (3....87 square meters (300 square feet). (b) If the fire protection system required by § 108.487 of this...
46 CFR 108.489 - Helicopter fueling facilities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the rate of 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot... for each square meter (.1 gallon per minute for each square foot) of area covered for five minutes. (3....87 square meters (300 square feet). (b) If the fire protection system required by § 108.487 of this...
21 CFR 520.1242e - Levamisole hydrochloride effervescent tablets.
Code of Federal Regulations, 2010 CFR
2010-04-01
... water from pigs before treatment is not necessary. Add one tablet for each 21/2 gallons of water; mix thoroughly. Allow 1 gallon of medicated water for each 100 pounds body weight of pigs to be treated. No other source of water should be offered. After pigs have consumed medicated water, resume use of regular water...
21 CFR 520.1242e - Levamisole hydrochloride effervescent tablets.
Code of Federal Regulations, 2014 CFR
2014-04-01
... water from pigs before treatment is not necessary. Add one tablet for each 21/2 gallons of water; mix thoroughly. Allow 1 gallon of medicated water for each 100 pounds body weight of pigs to be treated. No other source of water should be offered. After pigs have consumed medicated water, resume use of regular water...
21 CFR 520.1242e - Levamisole hydrochloride effervescent tablets.
Code of Federal Regulations, 2012 CFR
2012-04-01
... water from pigs before treatment is not necessary. Add one tablet for each 21/2 gallons of water; mix thoroughly. Allow 1 gallon of medicated water for each 100 pounds body weight of pigs to be treated. No other source of water should be offered. After pigs have consumed medicated water, resume use of regular water...
21 CFR 520.1242e - Levamisole hydrochloride effervescent tablets.
Code of Federal Regulations, 2011 CFR
2011-04-01
... water from pigs before treatment is not necessary. Add one tablet for each 21/2 gallons of water; mix thoroughly. Allow 1 gallon of medicated water for each 100 pounds body weight of pigs to be treated. No other source of water should be offered. After pigs have consumed medicated water, resume use of regular water...
21 CFR 520.1242e - Levamisole hydrochloride effervescent tablets.
Code of Federal Regulations, 2013 CFR
2013-04-01
... water from pigs before treatment is not necessary. Add one tablet for each 21/2 gallons of water; mix thoroughly. Allow 1 gallon of medicated water for each 100 pounds body weight of pigs to be treated. No other source of water should be offered. After pigs have consumed medicated water, resume use of regular water...
Design, construction, operation and costs of a modern small-scale fuel-alcohol plant
NASA Astrophysics Data System (ADS)
Leeper, S. A.; Dawley, L. J.; Wolfram, J. H.; Berglund, G. R.; Richardson, J. G.; McAtee, R. E.
1982-01-01
The design used for the small-scale fuel alcohol plant (SSFAP) is discussed. By incorporating a microprocessor into the plant design, most plant operations were automated and labor requirements were reduced. Continuous processing made energy conservation possible, thus reducing energy requirements. A low-temperature, continuous plug-flow cooker design made high yields possible. Ethanol was consistently produced at the SSFAP from corn at a yield of 2.6 gallons (anhydrous) per bushel and an energy requirement of 30,000 to 35,000 Btu/gallon (190-proof). In addition, barley, grain dust, and potato waste were converted at the SSFAP. The capacity of the SSFAP is 180,000 gallons per year (300 days operation). Competitively priced ethanol is produced at this capacity.
JPL Activated Carbon Treatment System (ACTS) for sewage
NASA Technical Reports Server (NTRS)
1976-01-01
An Activated Carbon Treatment System (ACTS) was developed for sewage treatment and is being applied to a one-million gallon per day sewage treatment pilot plant in Orange County California. Activities reported include pyrolysis and activation of carbon-sewage sludge, and activated carbon treatment of sewage to meet ocean discharge standards. The ACTS Sewage treatment operations include carbon-sewage treatment, primary and secondary clarifiers, gravity (multi-media) filter, filter press dewatering, flash drying of carbon-sewage filter cake, and sludge pyrolysis and activation. Tests were conducted on a laboratory scale, 10,000 gallon per day demonstration plant and pilot test equipment. Preliminary economic studies are favorable to the ACTS process relative to activated sludge treatment for a 175,000,000 gallon per day sewage treatment plant.
Code of Federal Regulations, 2011 CFR
2011-01-01
....387 Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate... alternate airport for a turbine engine powered large transport category airplane unless (based on the... operators may select an airport as an alternate airport for a turbine engine powered large transport...
14 CFR 121.195 - Airplanes: Turbine engine powered: Landing limitations: Destination airports.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Turbine engine powered: Landing... Performance Operating Limitations § 121.195 Airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered airplane may take off that airplane at...
Code of Federal Regulations, 2010 CFR
2010-01-01
....1037 Large transport category airplanes: Turbine engine powered; Limitations; Destination and alternate airports. (a) No program manager or any other person may permit a turbine engine powered large transport... and terrain. (c) A program manager or other person flying a turbine engine powered large transport...
14 CFR 121.195 - Airplanes: Turbine engine powered: Landing limitations: Destination airports.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Turbine engine powered: Landing... Performance Operating Limitations § 121.195 Airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered airplane may take off that airplane at...
Code of Federal Regulations, 2010 CFR
2010-01-01
....387 Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate... alternate airport for a turbine engine powered large transport category airplane unless (based on the... operators may select an airport as an alternate airport for a turbine engine powered large transport...
Code of Federal Regulations, 2011 CFR
2011-01-01
....385 Large transport category airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered large transport category airplane may take off... this section, no person operating a turbine engine powered large transport category airplane may take...
Code of Federal Regulations, 2011 CFR
2011-01-01
....1037 Large transport category airplanes: Turbine engine powered; Limitations; Destination and alternate airports. (a) No program manager or any other person may permit a turbine engine powered large transport... and terrain. (c) A program manager or other person flying a turbine engine powered large transport...
Code of Federal Regulations, 2010 CFR
2010-01-01
....385 Large transport category airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered large transport category airplane may take off... this section, no person operating a turbine engine powered large transport category airplane may take...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Limitations § 135.371 Large transport category airplanes: Reciprocating engine powered: En route limitations... reciprocating engine powered large transport category airplane may take off that airplane at a weight, allowing..., under an approved procedure, operate a reciprocating engine powered large transport category airplane at...
Advanced 35 W Free-Piston Stirling Engine for Space Power Applications
NASA Astrophysics Data System (ADS)
Wood, J. Gary; Lane, Neill
2003-01-01
This paper presents the projected performance and overall design characteristics of a high efficiency, low mass 35 W free-piston Stirling engine design. Overall (engine plus linear alternator) thermodynamic performance greater than 50% of Carnot, with a specific power close to 100 W/kg appears to be a reasonable goal at this small power level. Supporting test data and analysis results from exiting engines are presented. Design implications of high specific power in relatively low power engines is presented and discussed.
Geometric Heat Engines Featuring Power that Grows with Efficiency.
Raz, O; Subaşı, Y; Pugatch, R
2016-04-22
Thermodynamics places a limit on the efficiency of heat engines, but not on their output power or on how the power and efficiency change with the engine's cycle time. In this Letter, we develop a geometrical description of the power and efficiency as a function of the cycle time, applicable to an important class of heat engine models. This geometrical description is used to design engine protocols that attain both the maximal power and maximal efficiency at the fast driving limit. Furthermore, using this method, we also prove that no protocol can exactly attain the Carnot efficiency at nonzero power.
Code of Federal Regulations, 2011 CFR
2011-01-01
... and for first aid; turbine engine powered airplanes with pressurized cabins. 121.333 Section 121.333... for emergency descent and for first aid; turbine engine powered airplanes with pressurized cabins. (a) General. When operating a turbine engine powered airplane with a pressurized cabin, the certificate holder...
14 CFR 121.189 - Airplanes: Turbine engine powered: Takeoff limitations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Turbine engine powered: Takeoff... Limitations § 121.189 Airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine powered airplane may take off that airplane at a weight greater than that listed in the...
14 CFR 121.197 - Airplanes: Turbine engine powered: Landing limitations: Alternate airports.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Turbine engine powered: Landing... Performance Operating Limitations § 121.197 Airplanes: Turbine engine powered: Landing limitations: Alternate... turbine engine powered airplane unless (based on the assumptions in § 121.195 (b)) that airplane at the...
14 CFR 121.189 - Airplanes: Turbine engine powered: Takeoff limitations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Turbine engine powered: Takeoff... Limitations § 121.189 Airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine powered airplane may take off that airplane at a weight greater than that listed in the...
14 CFR 121.197 - Airplanes: Turbine engine powered: Landing limitations: Alternate airports.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Turbine engine powered: Landing... Performance Operating Limitations § 121.197 Airplanes: Turbine engine powered: Landing limitations: Alternate... turbine engine powered airplane unless (based on the assumptions in § 121.195 (b)) that airplane at the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... and for first aid; turbine engine powered airplanes with pressurized cabins. 121.333 Section 121.333... for emergency descent and for first aid; turbine engine powered airplanes with pressurized cabins. (a) General. When operating a turbine engine powered airplane with a pressurized cabin, the certificate holder...
Estimated use of water in South Dakota, 2000
Amundson, Franklin D.
2002-01-01
During 2000, the total amount of water withdrawn from ground- and surface-water sources in South Dakota was about 528 Mgal/d (million gallons per day). Of this amount, about 222 Mgal/d, or 42 percent of the total, was from ground water. Surface-water withdrawals were about 306 Mgal/d, or 58 percent of the total. Total withdrawals for six categories of offstream use in South Dakota during 2000 were compiled. The withdrawals include: 93.3 Mgal/d for public supply, 9.53 Mgal/d for self-supplied domestic, 5.12 Mgal/d for industrial, 372.7 Mgal/d for irrigation, 5.24 Mgal/d for thermoelectric power, and 42.0 Mgal/d for livestock. Water use for hydroelectric power was the only instream use compiled in this report. About 57,794 Mgal/d was used by the hydroelectric powerplants to generate about 6,151 gigawatt-hours of electricity during 2000.
2014-08-18
THE INTERIOR OF THE MARSHALL SPACE FLIGHT CENTER’S NEWLY OPENED BUILDING 4220, PRIMARILY HOME TO THE SPACE LAUNCH SYSTEM PROGRAM, REFLECTS A BLEND OF AESTHETICS, PRACTICALITY AND HIGH EFFICIENCY. THE COST-CONSCIOUS NEW FACILITY IS ENVIRONMENTALLY FRIENDLY ON ALL FRONTS, FEATURING STATE-OF-THE-ART GREEN TECHNOLOGIES AND ENERGY-CONSERVATION SYSTEMS THROUGHOUT THE BUILDING. THE ENTIRE STRUCTURE IS SPECIALLY INSULATED, WITH MUCH OF THE EXTERIOR COVERED IN LOW-EMISSIVITY GLASS THAT DEFLECTS HEAT TO REDUCE COOLING COSTS WITHIN. ROOFTOP SOLAR-POWER UNITS ABSORB ENERGY TO AUGMENT ELECTRICAL POWER, AND A 10,000-GALLON CISTERN COLLECTS STORMWATER TO IRRIGATE THE SURROUNDING GREENERY. EVEN THE FACILITY'S NEW PARKING LOT HAS A GREEN ELEMENT: RATHER THAN GUTTERS, IT INCLUDES A "BIOSWALE," A NATURAL, SOIL-AND-VEGETATION-BASED MEANS OF CAPTURING AND FILTERING STORMWATER RUNOFF, WHICH IS DIRECTED INTO A NEARBY COLLECTING POND. ONCE CERTIFICATION IS COMPLETE, BUILDING 4220 WILL BECOME THE SEVENTH LEED CERTIFIED MARSHALL STRUCTURE ON CAMPUS
Energy Efficiency Upgrades for the Clinic and the Tannery and Wind Energy for Power to the Tannery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kakoona, Jane; Fredenberg, Connie
2017-05-08
Under this grant agreement, the Native Village of Shishmaref (Shishmaref) will complete weatherization retrofits to two community buildings, the Clinic and the Tannery, based on recent energy audits. Located 5 miles from the mainland, 126 miles north of Nome and 100 miles south of Kotzebue, Shishmaref sits on Sarichef Island in the Chukchi Sea. As such, Shishmaref experiences a transitional climate between the frozen Arctic and the continental Interior. Summers can be foggy, with average temperatures ranging from 47 to 54 °F (Fahrenheit); winter temperatures average -12 to 2 °F. With heating fuel costs of almost $7/gallon, the goal ofmore » this project is to reduce energy costs at the Clinic and the Tannery by at least 30 to 50% through energy efficiency and weatherization measures and through the installation of a residential-size wind turbine to supplement power for the Tannery building.« less
2014-08-18
THE INTERIOR OF THE MARSHALL SPACE FLIGHT CENTER’S NEWLY OPENED BUILDING 4220, PRIMARILY HOME TO THE SPACE LAUNCH SYSTEM PROGRAM, REFLECTS A BLEND OF AESTHETICS, PRACTICALITY AND HIGH EFFICIENCY. THE COST-CONSCIOUS NEW FACILITY IS ENVIRONMENTALLY FRIENDLY ON ALL FRONTS, FEATURING STATE-OF-THE-ART GREEN TECHNOLOGIES AND ENERGY-CONSERVATION SYSTEMS THROUGHOUT THE BUILDING. THE ENTIRE STRUCTURE IS SPECIALLY INSULATED, WITH MUCH OF THE EXTERIOR COVERED IN LOW-EMISSIVITY GLASS THAT DEFLECTS HEAT TO REDUCE COOLING COSTS WITHIN. ROOFTOP SOLAR-POWER UNITS ABSORB ENERGY TO AUGMENT ELECTRICAL POWER, AND A 10,000-GALLON CISTERN COLLECTS STORMWATER TO IRRIGATE THE SURROUNDING GREENERY. EVEN THE FACILITY'S NEW PARKING LOT HAS A GREEN ELEMENT: RATHER THAN GUTTERS, IT INCLUDES A "BIOSWALE," A NATURAL, SOIL-AND-VEGETATION-BASED MEANS OF CAPTURING AND FILTERING STORMWATER RUNOFF, WHICH IS DIRECTED INTO A NEARBY COLLECTING POND. ONCE CERTIFICATION IS COMPLETE, BUILDING 4220 WILL BECOME THE SEVENTH LEED CERTIFIED MARSHALL STRUCTURE ON CAMPUS
40 CFR 1051.140 - What is my vehicle's maximum engine power and displacement?
Code of Federal Regulations, 2012 CFR
2012-07-01
... power and displacement? 1051.140 Section 1051.140 Protection of Environment ENVIRONMENTAL PROTECTION... displacement? This section describes how to quantify your vehicle's maximum engine power and displacement for... available engine torque with engine speed. (b) An engine configuration's displacement is the intended swept...
40 CFR 1051.140 - What is my vehicle's maximum engine power and displacement?
Code of Federal Regulations, 2013 CFR
2013-07-01
... power and displacement? 1051.140 Section 1051.140 Protection of Environment ENVIRONMENTAL PROTECTION... displacement? This section describes how to quantify your vehicle's maximum engine power and displacement for... available engine torque with engine speed. (b) An engine configuration's displacement is the intended swept...
40 CFR 1051.140 - What is my vehicle's maximum engine power and displacement?
Code of Federal Regulations, 2010 CFR
2010-07-01
... power and displacement? 1051.140 Section 1051.140 Protection of Environment ENVIRONMENTAL PROTECTION... displacement? This section describes how to quantify your vehicle's maximum engine power and displacement for... available engine torque with engine speed. (b) An engine configuration's displacement is the intended swept...