Sample records for galur mutan kedelai

  1. Genetic Transformation of Streptococcus mutans

    PubMed Central

    Perry, Dennis; Kuramitsu, Howard K.

    1981-01-01

    Three strains of Streptococcus mutans belonging to serotypes a, c, and f were transformed to streptomycin resistance by deoxyribonucleic acids derived from homologous and heterologous streptomycin-resistant strains of S. mutans and Streptococcus sanguis strain Challis. Homologous transformation of S. mutans was less efficient than heterologous transformation by deoxyribonucleic acids from other strains of S. mutans. PMID:7251168

  2. A Streptococcus mutans immunogen that reacts equally with S. mutans antibody of all serotypes.

    PubMed

    Everhart, D L; Miglietta, L M; Maresca, V A; Kelly-Hatfield, P

    1984-01-01

    We have studied a possible immunogen from S. mutans that has the capability of producing antibody to S. mutans which reacts equally well with all serotypes. This immunogen, a ribosomal preparation, is immunogenic in mice, is antigenic with rabbit anti-S. mutans, and is antigenic with the human antibody that also reacts with S. mutans. The human antibody is of the IgG class and S-IgA class.

  3. Horizontal transmission of streptococcus mutans in schoolchildren

    PubMed Central

    Castillo, Ana M.; Liébana, Maria J.; Castillo, Francisca; Martín-Platero, Antonio; Liébana, José

    2012-01-01

    Objetive: The aim of this study was to analyze possible horizontal transmission patterns of S. mutans among 6-7-yr-old schoolchildren from the same class, identifying genotypes and their diversity and relationship with caries disease status. Study Design: Caries indexes and saliva mutans streptococci and lactobacilli counts were recorded in 42 schoolchildren. Mutans streptococci colonies were identified by means of biochemical tests and all S. mutans strains were genotyped by arbitrarily primed polymerase chain reaction. A child was considered free of S. mutans when it could not be isolated in 3 samples at 1-week intervals. Results: S. mutans was isolated in 30 schoolchildren: 20 having one genotype and 10 two genotypes. Higher mutans streptococci and caries index values were found in those with two genotypes. Five genotypes were isolated in more than 1 schoolchild and one of these was isolated in 3 schoolchildren. Our results suggest that horizontal transmission may take place. Conclusion: Schoolchildren aged 6-7 yrs may be the source of mutual transmission of S. mutans. Key words:Streptococcus mutans, Horizontal transmission, AP-PCR, genotyping PMID:22143733

  4. Virulence Factors of Streptococcus mutans.

    DTIC Science & Technology

    1986-08-01

    763512/715242 Final Report U VIRULENCE FACTORS OF STREPTOCOCCUS MUTANS U Samuel Rosen Department of Oral Biology For the Period April 1, 1983 - June 30...00 FINAL REPORT VIRULENCE FACTORS OF STREPTOCOCCUS MUTANS Sam Rosen, Irving Shklair, E. X. Beck and F. M. Beck Ohio State University Columbus,Oh and...206-212. Johnson CP, Gorss S, Hillman JD (1978). Cariogenic properties of LDH deficient mutants of streptococcus mutans . J Dent Res 57, Special Issue

  5. Effect of mixed mutans streptococci colonization on caries development.

    PubMed

    Seki, M; Yamashita, Y; Shibata, Y; Torigoe, H; Tsuda, H; Maeno, M

    2006-02-01

    To evaluate the clinical importance of mixed mutans streptococci colonization in predicting caries in preschool children. Caries prevalence was examined twice, with a 6-month interval, in 410 preschool children aged 3-4 years at baseline. A commercial strip method was used to evaluate the mutans streptococci score in plaque collected from eight selected interdental spaces and in saliva. Mutans streptococci typing polymerase chain reaction (PCR) assays (Streptococcus sobrinus and Streptococcus mutans, including serotypes c, e, and f) were performed using colonies on the strips as template. Twenty variables were examined in a univariate analysis to predict caries development: questionnaire variables, results of clinical examination, mutans streptococci scores, and PCR detection of S. sobrinus and S. mutans (including serotypes c, e, and f). Sixteen variables showed statistically significant associations (P < 0.04) in the univariate analysis. However, when entered into a logistic regression, only five variables remained significant (P < 0.05): caries experience at baseline; mixed colonization of S. sobrinus and S. mutans including S. mutans serotypes; high plaque mutans streptococci score; habitual use of sweet drinks; and nonuse of fluoride toothpaste. 'Mixed mutans streptococci colonization' is a novel measure correlated with caries development in their primary dentition.

  6. Functional amyloid formation by Streptococcus mutans

    PubMed Central

    Oli, M. W.; Otoo, H. N.; Crowley, P. J.; Heim, K. P.; Nascimento, M. M.; Ramsook, C. B.; Lipke, P. N.

    2012-01-01

    Dental caries is a common infectious disease associated with acidogenic and aciduric bacteria, including Streptococcus mutans. Organisms that cause cavities form recalcitrant biofilms, generate acids from dietary sugars and tolerate acid end products. It has recently been recognized that micro-organisms can produce functional amyloids that are integral to biofilm development. We now show that the S. mutans cell-surface-localized adhesin P1 (antigen I/II, PAc) is an amyloid-forming protein. This conclusion is based on the defining properties of amyloids, including binding by the amyloidophilic dyes Congo red (CR) and Thioflavin T (ThT), visualization of amyloid fibres by transmission electron microscopy and the green birefringent properties of CR-stained protein aggregates when viewed under cross-polarized light. We provide evidence that amyloid is present in human dental plaque and is produced by both laboratory strains and clinical isolates of S. mutans. We provide further evidence that amyloid formation is not limited to P1, since bacterial colonies without this adhesin demonstrate residual green birefringence. However, S. mutans lacking sortase, the transpeptidase enzyme that mediates the covalent linkage of its substrates to the cell-wall peptidoglycan, including P1 and five other proteins, is not birefringent when stained with CR and does not form biofilms. Biofilm formation is inhibited when S. mutans is cultured in the presence of known inhibitors of amyloid fibrillization, including CR, Thioflavin S and epigallocatechin-3-gallate, which also inhibited ThT uptake by S. mutans extracellular proteins. Taken together, these results indicate that S. mutans is an amyloid-forming organism and suggest that amyloidogenesis contributes to biofilm formation by this oral microbe. PMID:23082034

  7. Efflux inhibitor suppresses Streptococcus mutans virulence properties.

    PubMed

    Zeng, Huihui; Liu, Jia; Ling, Junqi

    2017-04-01

    It is well established that efflux pumps play important roles in bacterial pathogenicity and efflux inhibitors (EIs) have been proved to be effective in suppressing bacterial virulence properties. However, little is known regarding the EI of Streptococcus mutans, a well-known caries-inducing bacterium. In this study, we identified the EI of S. mutans through ethidium bromide efflux assay and investigated how EI affected S. mutans virulence regarding the cariogenicity and stress response. Results indicated that reserpine, the identified EI, suppressed acid tolerance, mutacin production and transformation efficiency of S. mutans, and modified biofilm architecture and extracellular polysaccharide distribution. Suppressed glycosyltransferase activity was also noted after reserpine exposure. The data from quantitative real-time-PCR demonstrated that reserpine significantly altered the expression profile of quorum-sensing and virulence-associated genes. These findings suggest that reserpine represents a promising adjunct anticariogenic agent in that it suppresses virulence properties of S. mutans. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Streptococcus mutans clonal variation revealed by multilocus sequence typing.

    PubMed

    Nakano, Kazuhiko; Lapirattanakul, Jinthana; Nomura, Ryota; Nemoto, Hirotoshi; Alaluusua, Satu; Grönroos, Lisa; Vaara, Martti; Hamada, Shigeyuki; Ooshima, Takashi; Nakagawa, Ichiro

    2007-08-01

    Streptococcus mutans is the major pathogen of dental caries, a biofilm-dependent infectious disease, and occasionally causes infective endocarditis. S. mutans strains have been classified into four serotypes (c, e, f, and k). However, little is known about the S. mutans population, including the clonal relationships among strains of S. mutans, in relation to the particular clones that cause systemic diseases. To address this issue, we have developed a multilocus sequence typing (MLST) scheme for S. mutans. Eight housekeeping gene fragments were sequenced from each of 102 S. mutans isolates collected from the four serotypes in Japan and Finland. Between 14 and 23 alleles per locus were identified, allowing us theoretically to distinguish more than 1.2 x 10(10) sequence types. We identified 92 sequence types in these 102 isolates, indicating that S. mutans contains a diverse population. Whereas serotype c strains were widely distributed in the dendrogram, serotype e, f, and k strains were differentiated into clonal complexes. Therefore, we conclude that the ancestral strain of S. mutans was serotype c. No geographic specificity was identified. However, the distribution of the collagen-binding protein gene (cnm) and direct evidence of mother-to-child transmission were clearly evident. In conclusion, the superior discriminatory capacity of this MLST scheme for S. mutans may have important practical implications.

  9. Prevention of Streptococcus mutans colonization by salivary IgA antibodies.

    PubMed

    Gregory, R L; Michalek, S M; Filler, S J; Mestecky, J; McGhee, J R

    1985-01-01

    The levels of salivary and serum IgA, IgG, and IgM antibodies to the seven serotypes (a-g) of Streptococcus mutans were established in 12 laboratory volunteers using a sensitive enzyme-linked immunosorbent assay. Salivary IgA antibody levels to the serotype c organism were significantly lower (P less than 0.005) than antibody levels to the other six serotypes of S. mutans. Similar results were found with a purified S. mutans serotype c carbohydrate. Serum IgG and IgM antibody titers to the serotype c whole cells were significantly higher (P less than 0.05) than to four other S. mutans serotypes (a, e-g). The abilities of S. mutans serotypes c and d to colonize molar tooth surfaces were examined in eight volunteers. S. mutans serotype d was cleared from the tooth surfaces within 24 hr of challenge, whereas S. mutans serotype c was detected in six of the eight volunteers after 2 weeks and in three of eight after 3 weeks. These results provide additional evidence for the role of salivary IgA antibodies in regulating S. mutans infection and suggest that the low levels of salivary IgA antibodies to S. mutans serotype c may contribute to the predominance of this serotype in the U.S. population.

  10. HIV Infection Affects Streptococcus mutans Levels, but Not Genotypes

    PubMed Central

    Liu, G.; Saxena, D.; Chen, Z.; Norman, R.G.; Phelan, J.A.; Laverty, M.; Fisch, G.S.; Corby, P.M.; Abrams, W.; Malamud, D.; Li, Y.

    2012-01-01

    We report a clinical study that examines whether HIV infection affects Streptococcus mutans colonization in the oral cavity. Whole stimulated saliva samples were collected from 46 HIV-seropositive individuals and 69 HIV-seronegative control individuals. The level of S. mutans colonization was determined by conventional culture methods. The genotype of S. mutans was compared between 10 HIV-positive individuals before and after highly active antiretroviral therapy (HAART) and 10 non-HIV-infected control individuals. The results were analyzed against viral load, CD4+ and CD8+ T-cell counts, salivary flow rate, and caries status. We observed that S. mutans levels were higher in HIV-infected individuals than in the non-HIV-infected control individuals (p = 0.013). No significant differences in S. mutans genotypes were found between the two groups over the six-month study period, even after HAART. There was a bivariate linear relationship between S. mutans levels and CD8+ counts (r = 0.412; p = 0.007), but not between S. mutans levels and either CD4+ counts or viral load. Furthermore, compared with non-HIV-infected control individuals, HIV-infected individuals experienced lower salivary secretion (p = 0.009) and a positive trend toward more decayed tooth surfaces (p = 0.027). These findings suggest that HIV infection can have a significant effect on the level of S. mutans, but not genotypes. PMID:22821240

  11. Cariogenicity features of Streptococcus mutans in presence of rubusoside.

    PubMed

    Chu, Jinpu; Zhang, Tieting; He, Kexin

    2016-05-11

    One promising way of reducing caries is by using sucrose substitutes in food. rubusoside is a prototype sweet substance isolated from the leaves of the plant Rubrus suavissimus S. Lee. (Rosaceae), and is rated sweeter than sucrose. The purpose of this study was to investigate the effects of rubusoside on Streptococcus mutans growth, acidogenicity, and adherence to glass in vitro. The effects of rubusoside on the growth and glass surface adhering of Streptococcus mutans were investigated by measuring the optical density of the culture at 540 nm with a spectrophotometer. Rubusoside influence on Streptococcus mutans acidogenicity was determined by measuring the pH of the culture. Sucrose, glucose, maltose, fructose and xylitol were designed to compare with rubusoside. S. mutans growth in the rubusoside-treated group was significantly lower than that in the sucrose, glucose, maltose and fructose groups (p < 0.05) except for xylitol group (p > 0.05). Sucrose-treated S. mutans exhibited the highest adherence to glass, and rubusoside-treated S. mutans exhibited the lowest. S. mutans adherence to a glass surface and acidogenicity with sucrose were significantly reduced by rubusoside. Rubusoside may have some potential as a non-cariogenic, non-caloric sweetener.

  12. Transmission of Streptococcus mutans in a group of Turkish families.

    PubMed

    Ersin, N K; Kocabas, E H; Alpoz, A R; Uzel, A

    2004-12-01

    To investigate the transmission of Streptococcus mutans in a group of Turkish families using AP-polymerase chain reaction (PCR) detection. Eight mothers who had high S. mutans levels in unstimulated saliva and 8 children aged between 2 and 3 years participated in the study. Plaque samples from each child were collected with the tips of sterile toothpicks for S. mutans counts. Although not part of the original study design, S. mutans samples were also obtained from the unstimulated saliva of the three fathers who shared the same households. Three typical isolates of S. mutans were isolated from TYCSB agar of each subject and identified by sugar fermentation tests. S. mutans ATCC 10449 was used as the reference strain. AP-PCR was conducted with OPA-05 primer. All of the mothers and fathers shared the similar genotypes within their children. The fathers also harbored similar genotypes to their spouses. The mothers or the fathers could be the source for the transmission of S. mutans to their children.

  13. Streptococcus mutans competence-stimulating peptide inhibits Candida albicans hypha formation.

    PubMed

    Jarosz, Lucja M; Deng, Dong Mei; van der Mei, Henny C; Crielaard, Wim; Krom, Bastiaan P

    2009-11-01

    The oral cavity is colonized by microorganisms growing in biofilms in which interspecies interactions take place. Streptococcus mutans grows in biofilms on enamel surfaces and is considered one of the main etiological agents of human dental caries. Candida albicans is also commonly found in the human oral cavity, where it interacts with S. mutans. C. albicans is a polymorphic fungus, and the yeast-to-hypha transition is involved in virulence and biofilm formation. The aim of this study was to investigate interkingdom communication between C. albicans and S. mutans based on the production of secreted molecules. S. mutans UA159 inhibited C. albicans germ tube (GT) formation in cocultures even when physically separated from C. albicans. Only S. mutans spent medium collected in the early exponential phase (4-h-old cultures) inhibited the GT formation of C. albicans. During this phase, S. mutans UA159 produces a quorum-sensing molecule, competence-stimulating peptide (CSP). The role of CSP in inhibiting GT formation was confirmed by using synthetic CSP and a comC deletion strain of S. mutans UA159, which lacks the ability to produce CSP. Other S. mutans strains and other Streptococcus spp. also inhibited GT formation but to different extents, possibly reflecting differences in CSP amino acid sequences among Streptococcus spp. or differences in CSP accumulation in the media. In conclusion, CSP, an S. mutans quorum-sensing molecule secreted during the early stages of growth, inhibits the C. albicans morphological switch.

  14. Lactobacillus plantarum lipoteichoic acid inhibits biofilm formation of Streptococcus mutans

    PubMed Central

    Ahn, Ki Bum; Baik, Jung Eun; Park, Ok-Jin; Yun, Cheol-Heui

    2018-01-01

    Dental caries is a biofilm-dependent oral disease and Streptococcus mutans is the known primary etiologic agent of dental caries that initiates biofilm formation on tooth surfaces. Although some Lactobacillus strains inhibit biofilm formation of oral pathogenic bacteria, the molecular mechanisms by which lactobacilli inhibit bacterial biofilm formation are not clearly understood. In this study, we demonstrated that Lactobacillus plantarum lipoteichoic acid (Lp.LTA) inhibited the biofilm formation of S. mutans on polystyrene plates, hydroxyapatite discs, and dentin slices without affecting the bacterial growth. Lp.LTA interferes with sucrose decomposition of S. mutans required for the production of exopolysaccharide, which is a main component of biofilm. Lp.LTA also attenuated the biding of fluorescein isothiocyanate-conjugated dextran to S. mutans, which is known to have a high affinity to exopolysaccharide on S. mutans. Dealanylated Lp.LTA did not inhibit biofilm formation of S. mutans implying that D-alanine moieties in the Lp.LTA structure were crucial for inhibition. Collectively, these results suggest that Lp.LTA attenuates S. mutans biofilm formation and could be used to develop effective anticaries agents. PMID:29420616

  15. Clotrimazole and econazole inhibit Streptococcus mutans biofilm and virulence in vitro.

    PubMed

    Qiu, Wei; Ren, Biao; Dai, Huanqin; Zhang, Lixin; Zhang, Qiong; Zhou, Xuedong; Li, Yuqing

    2017-01-01

    The aim of this study was to determine the inhibitory effect of eight antifungal drugs on S. mutans growth, biofilm formation and virulence factors. The actions of antifungal drugs on S. mutans were determined by recovery plates and survival kinetic curves. Biofilms were observed by scanning electron microscopy and the viable cells were recovered on BHI plates, meanwhile biofilms were stained by BacLight live/dead kit to investigate the biofilm viability. Bacteria/extracellular polysaccharides staining assays were performed to determine the EPS production of S. mutans biofilms. Acidogenicity and acidurity of S. mutans were determined using pH drop and acid tolerance assays, and the expression of ldh gene was evaluated using qPCR. We found that clotrimazole (CTR) and econazole (ECO) showed antibacterial activities on S. mutans UA159 and S. mutans clinical isolates at 12.5 and 25mg/L, respectively. CTR and ECO could also inhibit S. mutans biofilm formation and reduce the viability of preformed biofilm. CTR and ECO affected the live/dead ratio and the EPS/bacteria ratio of S. mutans biofilms. CTR and ECO also inhibited the pH drop, lactate acid production, and acid tolerance. The abilities of CTR and ECO to inhibit S. mutans ldh expression were also confirmed. We found that two antifungal azoles, CTR and ECO, had the abilities to inhibit the growth and biofilm formation of S. mutans and more importantly, they could also inhibit the virulence factors of S. mutans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Acidogenicity of dual-species biofilms of bifidobacteria and Streptococcus mutans.

    PubMed

    de Matos, Bruno Mello; Brighenti, Fernanda Lourenção; Do, Thuy; Beighton, David; Koga-Ito, Cristiane Yumi

    2017-06-01

    The aim of this study was to evaluate the acidogenicity of dual-species biofilms of bifidobacteria and Streptococcus mutans. The following strains were tested: Bifidobacterium dentium DSM20436, Parascardovia denticolens DSM10105, and Scardovia inopinata DSM10107. Streptococcus mutans UA159 and Lactobacillus acidophilus ATCC4356 were used as control. Bifidobacteria were studied planktonically as they were not able to form monospecies biofilm, they were grown in biofilms associated with S. mutans. Endogenous polysaccharide reserves of cultures at log phase were depleted. Standardized suspensions of the microorganisms were incubated in growth media supplemented with 10 mM glucose, lactose, raffinose, glucose, or xylitol. S. mutans biofilms were grown on glass cover slips for 24 h to which bifidobacteria were added. After 24 h, the dual-species biofilms were exposed to the same carbon sources, and after 3 h, the pH of spent culture media and concentrations of organic acids were measured. Statistical analyses were carried out using ANOVA and Tukey's test (α = 0.05). A higher pH drop was observed when S. mutans was associated with P. denticolens or S. inopinata, in either planktonic or biofilm cultures, than with S. mutans alone. Bifidobacteria showed a higher pH drop in the presence of raffinose than S. mutans or L. acidophilus. Dual-species biofilms of bifidobacteria and S. mutans produced more acid and greater pH drops than biofilms of S. mutans alone. New insights on the complex process of caries pathogenicity contribute to the establishment of preventive and therapeutic measures, in particular in specific cases, such as in early childhood caries.

  17. Inhibitory effect of Lactobacillus salivarius on Streptococcus mutans biofilm formation.

    PubMed

    Wu, C-C; Lin, C-T; Wu, C-Y; Peng, W-S; Lee, M-J; Tsai, Y-C

    2015-02-01

    Dental caries arises from an imbalance of metabolic activities in dental biofilms developed primarily by Streptococcus mutans. This study was conducted to isolate potential oral probiotics with antagonistic activities against S. mutans biofilm formation from Lactobacillus salivarius, frequently found in human saliva. We analysed 64 L. salivarius strains and found that two, K35 and K43, significantly inhibited S. mutans biofilm formation with inhibitory activities more pronounced than those of Lactobacillus rhamnosus GG (LGG), a prototypical probiotic that shows anti-caries activity. Scanning electron microscopy showed that co-culture of S. mutans with K35 or K43 resulted in significantly reduced amounts of attached bacteria and network-like structures, typically comprising exopolysaccharides. Spot assay for S. mutans indicated that K35 and K43 strains possessed a stronger bactericidal activity against S. mutans than LGG. Moreover, quantitative real-time polymerase chain reaction showed that the expression of genes encoding glucosyltransferases, gtfB, gtfC, and gtfD was reduced when S. mutans were co-cultured with K35 or K43. However, LGG activated the expression of gtfB and gtfC, but did not influence the expression of gtfD in the co-culture. A transwell-based biofilm assay indicated that these lactobacilli inhibited S. mutans biofilm formation in a contact-independent manner. In conclusion, we identified two L. salivarius strains with inhibitory activities on the growth and expression of S. mutans virulence genes to reduce its biofilm formation. This is not a general characteristic of the species, so presents a potential strategy for in vivo alteration of plaque biofilm and caries. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Essential oil of Curcuma longa inhibits Streptococcus mutans biofilm formation.

    PubMed

    Lee, Kwang-Hee; Kim, Beom-Su; Keum, Ki-Suk; Yu, Hyeon-Hee; Kim, Young-Hoi; Chang, Byoung-Soo; Ra, Ji-Young; Moon, Hae-Dalma; Seo, Bo-Ra; Choi, Na-Young; You, Yong-Ouk

    2011-01-01

    Curcuma longa (C. longa) has been used as a spice in foods and as an antimicrobial in Oriental medicine. In this study, we evaluated the inhibitory effects of an essential oil isolated from C. longa on the cariogenic properties of Streptococcus mutans (S. mutans), which is an important bacterium in dental plaque and dental caries formation. First, the inhibitory effects of C. longa essential oil on the growth and acid production of S. mutans were tested. Next, the effect of C. longa essential oil on adhesion to saliva-coated hydroxyapatite beads (S-HAs) was investigated. C. longa essential oil inhibited the growth and acid production of S. mutans at concentrations from 0.5 to 4 mg/mL. The essential oil also exhibited significant inhibition of S. mutans adherence to S-HAs at concentrations higher than 0.5 mg/mL. S. mutans biofilm formation was determined by scanning electron microscopy (SEM) and safranin staining. The essential oil of C. longa inhibited the formation of S. mutans biofilms at concentrations higher than 0.5 mg/mL. The components of C. longa essential oil were then analyzed by GC and GC-MS, and the major components were α-turmerone (35.59%), germacrone (19.02%), α-zingiberene (8.74%), αr-turmerone (6.31%), trans-β-elemenone (5.65%), curlone (5.45%), and β-sesquiphellandrene (4.73%). These results suggest that C. longa may inhibit the cariogenic properties of S. mutans. © 2011 Institute of Food Technologists®

  19. Typing of mutans streptococci by arbitrarily primed polymerase chain reaction.

    PubMed

    Saarela, M; Hannula, J; Mättö, J; Asikainen, S; Alaluusua, S

    1996-01-01

    The discriminative power of the arbitrarily primed polymerase chain reaction (AP-PCR) in differentiating between Streptococcus mutans and Strep. sobrinus species, serotypes and clones was investigated. Mutans streptococcal isolates (12(7)) obtained from 65 individuals (1-10 isolates per individual) were AP-PCR typed separately with two random primers, OPA-05 and OPA-13. Bacterial cell lysates were used as a template in PCR reactions, which made AP-PCR easy and fast to perform. Eighty-one isolates from 19 individuals were also ribotyped to compare the discriminative ability of ribotyping and AP-PCR techniques. AP-PCR performed with the two primers differentiated between Strep. mutans and Strep. sobrinus isolates, but neither primer detected serotype-specific amplification products. OPA-05 distinguished two main AP-PCR patterns among Strep. mutans isolates and one main pattern among Strep. sobrinus isolates, whereas OPA-13 found one main AP-PCR pattern among Strep. mutans isolates and two main patterns among Strep. sobrinus isolates. Ribotyping and AP-PCR revealed 40 and 33 different types among 81 selected isolates, respectively. Both techniques detected intra-individual heterogeneity in 16 out of 19 participants. The results indicate that AP-PCR has good discriminative ability in differentiating between mutans streptococcal clones and that the technique is suitable for epidemiological studies on mutans streptococci.

  20. Streptococcus mutans levels and caries prevalence in low-income schoolchildren.

    PubMed

    Seibert, Wilda; Farmer-Dixon, Cherae; Bolden, Theodore; Stewart, James H

    2002-01-01

    Previous studies have shown that persons having high Streptococcus mutans levels in the saliva are "at risk" for dental caries. Most investigators agree, that if high levels of S. mutans were identified early in the life of at-risk children, dental decay could be reduced or eliminated through intervention. The purpose of this study is to show an association between S. mutans levels and caries prevalence in a sample of elementary school children. The study group consisted of 242 school children, ages 5-13 years. The subjects were divided into two age groups, 5-8 years and 9-13 years. Approximately 59 percent were African Americans. The sample of 242 children were equally females and males, 50 percent in each group. The Dentocult SM Test was used to make S. mutans determinations. The df-t index was used to determine the number of decayed and filled teeth of children ages 5-8 years; the DMF-T Index estimated the number of decayed, missing or filled teeth of children ages 9-13 years. Dental caries were found in 58 percent of the children (mean = 2.67, and range of 1-11). Approximately 47 percent of the children with caries had high S. mutans levels (100K-1M). Females had higher S. mutans levels than males in the 9-13 age group, p < .05. Analysis of Variance Test indicated that S. mutans levels for older females (ages 9-13) were significantly higher than those observed in males the same age (p < .01). This trend was not observed in younger children, ages 5-8 years. In addition, no significant difference or interaction was noted by sex for S. mutans levels and decayed or filled teeth (df-t) for younger children. We conclude that high levels of Streptococcus mutans are related to increased number of decayed teeth and conversely, low Streptococcus mutans levels are related to fewer dental caries. This study was supported in part by Colgate-Palmolive Company and the National Dental Association Foundation, Inc.

  1. Genetic studies on reference strains of mutans streptococci.

    PubMed

    Ota, Fusao; Yamato, Masayuki; Hayashi, Mie; Ota, Masayuki; Koga, Tetsuro; Sherin, Ahmed; Mukai, Chiharu; Sakai, Kentaro; Yamamoto, Shigeru

    2002-01-01

    Twenty four reference strains (serotype a-h) belonging to the mutans group of streptococci were compared for DNA fragment patterns of rDNA after treatment with Hind III. It was shown that Streptococcus cricetus (serotype a), S. rattus (serotype b), and S. downei (serotype h) reveals comparatively homogeneous patterns while S. mutans (serotype c, e and f) exhibits differences between the different serotypes as well as within single serotypes. S. sobrinus had an intermediary diversity. These data support the previous findings that S. mutans is heterogeneous at the serological, biochemical and genetical level.

  2. Increased Atherogenesis during Streptococcus mutans Infection in ApoE-null Mice

    PubMed Central

    Kesavalu, L.; Lucas, A.R.; Verma, R.K.; Liu, L.; Dai, E.; Sampson, E.; Progulske-Fox, A.

    2012-01-01

    Streptococcus mutans, a dental caries pathogen, also causes endocarditis and is detected in atheroscelerotic plaque. We investigated the potential for an invasive strain of S. mutans, OMZ175, to accelerate plaque growth in apolipoprotein E deficient (ApoEnull) mice without and with balloon angioplasty (BA) injury, a model of restenosis. ApoEnull mice were divided into 4 groups (N = 10), 2 with and 2 without BA. One each of the BA and non-BA groups was infected with S. mutans (Sm). S. mutans DNA, plaque area, inflammatory cell invasion, and Toll-like receptor (TLR) expression were measured at 6-20 weeks post-infection. S. mutans genomic DNA was detected in the aorta, liver, spleen, and heart. Plaque growth was significantly increased in infected mice with BA (Sm+BA) vs. those in the non-infected groups (p < 0.03). Plaque size was increased after infection without BA (Sm), but did not reach significance. Aortic specimens from both S. mutans and Sm+BA groups displayed increased numbers of macrophages, and TLR4 expression was increased in BA mice. In conclusion, S. mutans infection accelerated plaque growth, macrophage invasion, and TLR4 expression after angioplasty. S. mutans may also be associated with atherosclerotic plaque growth in non-injured arteries. PMID:22262633

  3. Serological and genetic examination of some nontypical Streptococcus mutans strains.

    PubMed

    Coykendall, A L; Bratthall, D; O'Connor, K; Dvarskas, R A

    1976-09-01

    Thirty-four strains of Streptococcus mutans whose antigenic or genetic positions were unclear or unknown with respect to the serological scheme of Bratthall (1970) and Perch et al. (1974), or the genetic (deoxyribonucleic acid base sequence homology) scheme of Coykendall were analyzed to clarify their relationship to previously well-characterized strains. Strain OMZ175 of the "new" serotype f was genetically homologous with strains of S. mutans subsp. mutans. Strains of the "new" serotype g were homologous with serotype d strains (S. mutans subsp. sobrinus). Strains isolated from wild rats constituted a new genetic group but carried the c antigen. Thus, strains within a "genospecies" (subspecies) of S. mutans may not always carry a unique or characteristic antigen. We suggest that the existence of multiple serotypes within subspecies represents antigenic variation and adaptations to hosts.

  4. A new selective medium for Streptococcus mutans and the distribution of S. mutans and S. sobrinus and their serotypes in dental plaque.

    PubMed

    Hirasawa, M; Takada, K

    2003-01-01

    A new selective medium (MS-MUT) was developed for the isolation of Streptococcus mutans from clinical specimens. The average growth recovery of S. mutans on MS-MUT medium was 72.4% of that on MS medium. Growth of Streptococcus sobrinus was significantly inhibited on the medium with an average recovery of 0.034%. In 103 subjects, S. MUTANS was detected at 58.3, 75.0 and 95.7% in the dental plaque of caries-free (CF), caries-inactive (CI) and caries-active (CA) subjects, respectively. S. sobrinus was detected in 8.3, 13.6 and 38.3% of CF, CI and CA subjects, respectively. S. sobrinus alone was detected in only 4.3% of CA subjects. The subjects in whom neither S. mutans nor S. sobrinus were detected were 41.6% in CF and 25.0% in CI. The most predominant serotype was C with a 67% detection rate. S. sobrinus, serotypes D or G were usually found together with S. mutans. Copyright 2003 S. Karger AG, Basel

  5. Influence of S. mutans on base-metal dental casting alloy toxicity.

    PubMed

    McGinley, E L; Dowling, A H; Moran, G P; Fleming, G J P

    2013-01-01

    We have highlighted that exposure of base-metal dental casting alloys to the acidogenic bacterium Streptococcus mutans significantly increases cellular toxicity following exposure to immortalized human TR146 oral keratinocytes. With Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), S. mutans-treated nickel-based (Ni-based) and cobalt-chromium-based (Co-Cr-based) dental casting alloys were shown to leach elevated levels of metal ions compared with untreated dental casting alloys. We targeted several biological parameters: cell morphology, viable cell counts, cell metabolic activity, cell toxicity, and inflammatory cytokine expression. S. mutans-treated dental casting alloys disrupted cell morphology, elicited significantly decreased viable cell counts (p < 0.0001) and cell metabolic activity (p < 0.0001), and significantly increased cell toxicity (p < 0.0001) and inflammatory cytokine expression (p < 0.0001). S. mutans-treated Ni-based dental casting alloys induced elevated levels of cellular toxicity compared with S. mutans-treated Co-Cr-based dental casting alloys. While our findings indicated that the exacerbated release of metal ions from S. mutans-treated base-metal dental casting alloys was the likely result of the pH reduction during S. mutans growth, the exact nature of mechanisms leading to accelerated dissolution of alloy-discs is not yet fully understood. Given the predominance of S. mutans oral carriage and the exacerbated cytotoxicity observed in TR146 cells following exposure to S. mutans-treated base-metal dental casting alloys, the implications for the long-term stability of base-metal dental restorations in the oral cavity are a cause for concern.

  6. Corrosion of dental alloys in artificial saliva with Streptococcus mutans.

    PubMed

    Lu, Chunhui; Zheng, Yuanli; Zhong, Qun

    2017-01-01

    A comparative study of the corrosion resistance of CoCr and NiCr alloys in artificial saliva (AS) containing tryptic soy broth (Solution 1) and Streptococcus mutans (S. mutans) species (Solution 2) was performed by electrochemical methods, including open circuit potential measurements, impedance spectroscopy, and potentiodynamic polarization. The adherence of S. mutans to the NiCr and CoCr alloy surfaces immersed in Solution 2 for 24 h was verified by scanning electron microscopy, while the results of electrochemical impedance spectroscopy confirmed the importance of biofilm formation for the corrosion process. The R(QR) equivalent circuit was successfully used to fit the data obtained for the AS mixture without S. mutans, while the R(Q(R(QR))) circuit was found to be more suitable for describing the biofilm properties after treatment with the AS containing S. mutans species. In addition, a negative shift of the open circuit potential with immersion time was observed for all samples regardless of the solution type. Both alloys exhibited higher charge transfer resistance after treatment with Solution 2, and lower corrosion current densities were detected for all samples in the presence of S. mutans. The obtained results suggest that the biofilm formation observed after 24 h of exposure to S. mutans bacteria might enhance the corrosion resistance of the studied samples by creating physical barriers that prevented oxygen interactions with the metal surfaces.

  7. Corrosion of dental alloys in artificial saliva with Streptococcus mutans

    PubMed Central

    Lu, Chunhui; Zheng, Yuanli; Zhong, Qun

    2017-01-01

    A comparative study of the corrosion resistance of CoCr and NiCr alloys in artificial saliva (AS) containing tryptic soy broth (Solution 1) and Streptococcus mutans (S. mutans) species (Solution 2) was performed by electrochemical methods, including open circuit potential measurements, impedance spectroscopy, and potentiodynamic polarization. The adherence of S. mutans to the NiCr and CoCr alloy surfaces immersed in Solution 2 for 24 h was verified by scanning electron microscopy, while the results of electrochemical impedance spectroscopy confirmed the importance of biofilm formation for the corrosion process. The R(QR) equivalent circuit was successfully used to fit the data obtained for the AS mixture without S. mutans, while the R(Q(R(QR))) circuit was found to be more suitable for describing the biofilm properties after treatment with the AS containing S. mutans species. In addition, a negative shift of the open circuit potential with immersion time was observed for all samples regardless of the solution type. Both alloys exhibited higher charge transfer resistance after treatment with Solution 2, and lower corrosion current densities were detected for all samples in the presence of S. mutans. The obtained results suggest that the biofilm formation observed after 24 h of exposure to S. mutans bacteria might enhance the corrosion resistance of the studied samples by creating physical barriers that prevented oxygen interactions with the metal surfaces. PMID:28350880

  8. Relationship between Cnm-positive Streptococcus mutans and cerebral microbleeds in humans.

    PubMed

    Miyatani, F; Kuriyama, N; Watanabe, I; Nomura, R; Nakano, K; Matsui, D; Ozaki, E; Koyama, T; Nishigaki, M; Yamamoto, T; Mizuno, T; Tamura, A; Akazawa, K; Takada, A; Takeda, K; Yamada, K; Nakagawa, M; Ihara, M; Kanamura, N; Friedland, R P; Watanabe, Y

    2015-10-01

    Cerebral hemorrhage has been shown to occur in animals experimentally infected with Streptococcus mutans carrying the collagen-binding Cnm gene. However, the relationship between cerebral microbleeds and oral hygiene, with a focus on Cnm gene-positive S. mutans infection, remains unclear. One hundred and thirty-nine subjects participated. The presence or absence of Cnm-positive S. mutans and its collagen-binding activity were investigated using saliva samples, and relationship with cerebral microbleeds detected on MRI investigated, including clinical information and oral parameters. Fifty-one subjects were identified as Cnm-positive S. mutans carriers (36.7%), with cerebral microbleeds being detected in 43 (30.9%). A significantly larger number of subjects carried Cnm-positive S. mutans in the cerebral microbleeds (+) group. S. mutans with Cnm collagen-binding ability was detected in 39 (28.1%) of all subjects, and the adjusted odds ratio for cerebral microbleeds in the Cnm-positive group was 14.4. Regarding the presence of cerebral microbleeds, no significant differences were noted in the number of remaining teeth, dental caries, or in classic arteriosclerosis risk factors. The occurrence of cerebral microbleeds was higher in subjects carrying Cnm-positive S. mutans, indicating that the presence of Cnm-positive S. mutans increases cerebral microbleeds, and is an independent risk for the development of cerebrovascular disorders. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Interactions between oral bacteria: inhibition of Streptococcus mutans bacteriocin production by Streptococcus gordonii.

    PubMed

    Wang, Bing-Yan; Kuramitsu, Howard K

    2005-01-01

    Streptococcus mutans has been recognized as an important etiological agent in human dental caries. Some strains of S. mutans also produce bacteriocins. In this study, we sought to demonstrate that bacteriocin production by S. mutans strains GS5 and BM71 was mediated by quorum sensing, which is dependent on a competence-stimulating peptide (CSP) signaling system encoded by the com genes. We also demonstrated that interactions with some other oral streptococci interfered with S. mutans bacteriocin production both in broth and in biofilms. The inhibition of S. mutans bacteriocin production by oral bacteria was stronger in biofilms than in broth. Using transposon Tn916 mutagenesis, we identified a gene (sgc; named for Streptococcus gordonii challisin) responsible for the inhibition of S. mutans bacteriocin production by S. gordonii Challis. Interruption of the sgc gene in S. gordonii Challis resulted in attenuated inhibition of S. mutans bacteriocin production. The supernatant fluids from the sgc mutant did not inactivate the exogenous S. mutans CSP as did those from the parent strain Challis. S. gordonii Challis did not inactivate bacteriocin produced by S. mutans GS5. Because S. mutans uses quorum sensing to regulate virulence, strategies designed to interfere with these signaling systems may have broad applicability for biological control of this caries-causing organism.

  10. Isolation of a Novel Phage with Activity against Streptococcus mutans Biofilms

    PubMed Central

    Dalmasso, Marion; de Haas, Eric; Neve, Horst; Strain, Ronan; Cousin, Fabien J.; Stockdale, Stephen R.; Ross, R. Paul; Hill, Colin

    2015-01-01

    Streptococcus mutans is one of the principal agents of caries formation mainly, because of its ability to form biofilms at the tooth surface. Bacteriophages (phages) are promising antimicrobial agents that could be used to prevent or treat caries formation by S. mutans. The aim of this study was to isolate new S. mutans phages and to characterize their antimicrobial properties. A new phage, ɸAPCM01, was isolated from a human saliva sample. Its genome was closely related to the only two other available S. mutans phage genomes, M102 and M102AD. ɸAPCM01 inhibited the growth of S. mutans strain DPC6143 within hours in broth and in artificial saliva at multiplicity of infections as low as 2.5x10-5. In the presence of phage ɸAPCM01 the metabolic activity of a S. mutans biofilm was reduced after 24 h of contact and did not increased again after 48 h, and the live cells in the biofilm decreased by at least 5 log cfu/ml. Despite its narrow host range, this newly isolated S. mutans phage exhibits promising antimicrobial properties. PMID:26398909

  11. Nutritionally Variant Streptococci Interfere with Streptococcus mutans Adhesion Properties and Biofilm Formation.

    PubMed

    Angius, Fabrizio; Madeddu, Maria Antonietta; Pompei, Raffaello

    2015-04-01

    The bacterial species Streptococcus mutans is known as the main cause of dental caries in humans. Therefore, much effort has focused on preventing oral colonization by this strain or clearing it from oral tissues. The oral cavity is colonized by several bacterial species that constitute the commensal oral flora, but none of these is able to interfere with the cariogenic properties of S. mutans. This paper describes the interfering ability of some nutritionally variant streptococcal strains (NVS) with S. mutans adhesion to glass surfaces and also to hydroxylapatite. In mixed cultures, NVS induce a complete inhibition of S. mutans microcolony formation on cover glass slides. NVS can also block the adherence of radiolabeled S. mutans to hydroxylapatite in the presence of both saliva and sucrose. The analysis of the action mechanism of NVS demonstrated that NVS are more hydrophobic than S. mutans and adhere tightly to hard surfaces. In addition, a cell-free culture filtrate of NVS was also able to interfere with S. mutans adhesion to hydroxylapatite. Since NVS are known to secrete some important bacteriolytic enzymes, we conclude that NVS can be a natural antagonist to the cariogenic properties of S. mutans.

  12. Isolation and serotyping of Streptococcus mutans from teeth and feces of children.

    PubMed

    Hamada, S; Masuda, N; Kotani, S

    1980-04-01

    Streptococcus mutans were detected in the feces from 10 of 29 caries-active patients, aged 4 to 9 years. The percentage of S. mutans to the total counts of facultatively anaerobic streptococci on mitis salivarius agar (Difco Laboratories) varied from 0 to 72.5%. S. mutans were then isolated from dental plaque of sound teeth and carious dentin of the 10 subjects known to harbor S. mutans in the feces. The frequency distribution of various serotypes of these dental and fecal isolates of S. mutans was compared by the immunodiffusion technique. Of the total 1,047 isolates (290 isolates from feces, 289 from dental plaque, and 468 from carious dentin), type c isolates were most prevalent (ca. 66%). Serotype d, e, f, and g isolates were also found but in far lower frequencies. Plural serotypes of S. mutans were occasionally found in dental and fecal samples of a single subject. For two subjects, relatively rare serotypes of S. mutans in the population examined, serotype e, f, or g, were predominantly found in their fecal and dental samples and those of their siblings and mother, suggesting an intrafamilial transmission of S. mutans.

  13. Enhanced adhesion of Streptococcus mutans to hydroxyapatite after exposure to saliva.

    PubMed

    Spengler, Christian; Thewes, Nicolas; Nolle, Friederike; Faidt, Thomas; Umanskaya, Natalia; Hannig, Matthias; Bischoff, Markus; Jacobs, Karin

    2017-07-01

    Streptococcus mutans cells form robust biofilms on human teeth and are strongly related to caries incidents. Hence, understanding the adhesion of S. mutans in the human oral cavity is of major interest for preventive dentistry. In this study, we report on atomic force microscopy-based single-cell force spectroscopy measurements of S. mutans cells to hydroxyapatite surfaces. We observe for almost all measurements a significant difference in adhesion strength for S. mutans as well as for Staphylococcus carnosus cells. However, the increase in adhesion strength after saliva exposure is much higher for S. mutans cells compared to S. carnosus cells. Our results demonstrate that S. mutans cells are well adapted to their natural environment, the oral cavity. This ability promotes the biofilm-forming capability of that species and hence the production of caries-provoking acids. In consequence, understanding the fundamentals of this mechanism may pave a way towards more effective caries-reducing techniques. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Effect of Fluoride Varnish on Streptococcus mutans Count in Saliva of Caries Free Children Using Dentocult SM Strip Mutans Test: A Randomized Controlled Triple Blind Study.

    PubMed

    A, Deepti; Jeevarathan, J; Muthu, Ms; Prabhu V, Rathna; Chamundeswari

    2008-09-01

    The aim of this study was to estimate the count of Streptococcus mutans in saliva of caries free children using Dentocult SM strip mutans and to evaluate the effect of fluoride varnish on the Streptococcus mutans count in saliva of these caries free children. Thirty caries free children were selected for the study based on the information obtained from a questionnaire prepared. They were randomly assigned into the control group and the study group consisting of ten and twenty children respectively. Samples of saliva were collected using the saliva strips from the Dentocult SM kit and after incubation the presence of the Streptococcus mutans was evaluated using the manufacturers' chart. The study group was subjected to Fluor Protector fluoride varnish application after 24 hours following which the samples were collected again. The average Streptococcus mutans count in primary dentition of caries free children was in the range of 10(4) to 10(5) colony forming units/ml. The average Streptococcus mutans count in primary dentition of caries free children after Fluor Protector fluoride varnish application was below 10(4) colony forming units/ml. Fluor Protector fluoride varnish application showed a statistically significant reduction in the Streptococcus mutans count in saliva of the caries free children in the study group.

  15. [Antibacterial effect of self-etching adhesive systems on Streptococcus mutans].

    PubMed

    Zhang, Lu; Yuan, Chong-yang; Tian, Fu-cong; Wang, Xiao-yan; Gao, Xue-jun

    2016-02-18

    To investigate the antibacterial effect of different self-etching adhesive systems against Streptococcus mutans (S. mutans). Six reagents Clearfil(TM) SE Bond primer (SP), Clearfil(TM) SE Bond adhesive (SA),Clearfil(TM) Protect Bond primer (PP), which contained antibacterial monomer methacryloyloxydodecylpyridinium bromide (MDPB), ClearfilTM Protect Bond adhesive (PA), positive control chlorhexidine acetate [CHX, 1% (mass fraction)], and negative control phosphate buffer solution (PBS) were selected. They were mixed with S. mutans for 30 s respectively, then colony-forming units (CFU) were counted after incubated for 48 h on brain heart infusion (BHI) agar medium. The 6 reagents were applied to the sterile paper discs, and distributed onto the BHI agar medium with S. mutans and incubated for 24 h, then the inhibition zones were observed. CHX, PBS, PP, and SP were added on the dentin with artificial caries induced by S. mutans and kept for 30 s, then confocal laser scanning microscope (CLSM) was used to observe the live and dead bacteria after staining. The ratio of live to dead bacteria was calculated. PP+PA and SP+SA were applied on the dentin according to the manual and light cured. S. mutans were incubated on the samples for 2 h, ultrasonically treated and incubated on BHI agar medium for 48 h, then CFU was counted. The data were analyzed by non-parametric analysis and one-way ANOVA. Compared with PBS, the PP, SP, PA, SA and CHX showed the antibacterial effect on free S. mutans (P<0.05); SP and PP showed stronger antibacterial effect than PA, SA and CHX (P<0.05). CHX, SP and PP presented inhibition zones, while PBS, SA and PA did not. Compared with PBS, the CHX, SP and PP could lower the ratio of the live to dead bacteria significantly (P<0.05). Cured self-etching adhesive systems did not show any antibacterial effect on the free S. mutans. The primer of self-etching adhesives Clearfil(TM) SE Bond and Clearfil(TM) Protect Bond showed significant antibacterial

  16. Effects of Lectins on initial attachment of cariogenic Streptococcus mutans.

    PubMed

    Ito, Takashi; Yoshida, Yasuhiro; Shiota, Yasuyoshi; Ito, Yuki; Yamamoto, Tadashi; Takashiba, Shogo

    2018-02-01

    Oral bacteria initiate biofilm formation by attaching to tooth surfaces via an interaction of a lectin-like bacterial protein with carbohydrate chains on the pellicle. This study aimed to find naturally derived lectins that inhibit the initial attachment of a cariogenic bacterial species, Streptococcus mutans (S. mutans), to carbohydrate chains in saliva in vitro. Seventy kinds of lectins were screened for candidate motifs that inhibit the attachment of S. mutans ATCC 25175 to a saliva-coated culture plate. The inhibitory effect of the lectins on attachment of the S. mutans to the plates was quantified by crystal violet staining, and the biofilm was observed under a scanning electron microscope (SEM). Surface plasmon resonance (SPR) analysis was performed to examine the binding of S. mutans to carbohydrate chains and the binding of candidate lectins to carbohydrate chains, respectively. Moreover, binding assay between the biotinylated-lectins and the saliva components was conducted to measure the lectin binding. Lectins recognizing a salivary carbohydrate chain, Galβ1-3GalNAc, inhibited the binding of S. mutans to the plate. In particular, Agaricus bisporus agglutinin (ABA) markedly inhibited the binding. This inhibition was confirmed by SEM observation. SPR analysis indicated that S. mutans strongly binds to Galβ1-3GalNAc, and ABA binds to Galβ1-3GalNAc. Finally, the biotinylated Galβ1-3GalNAc-binding lectins including ABA demonstrated marked binding to the saliva components. These results suggest that ABA lectin inhibited the attachment of S. mutans to Galβ1-3GalNAc in saliva and ABA can be useful as a potent inhibitor for initial attachment of oral bacteria and biofilm formation.

  17. D-Tagatose inhibits the growth and biofilm formation of Streptococcus mutans

    PubMed Central

    Hasibul, Khaleque; Nakayama-Imaohji, Haruyuki; Hashimoto, Masahito; Yamasaki, Hisashi; Ogawa, Takaaki; Waki, Junpei; Tada, Ayano; Yoneda, Saori; Tokuda, Masaaki; Miyake, Minoru; Kuwahara, Tomomi

    2018-01-01

    Dental caries is an important global health concern and Streptococcus mutans has been established as a major cariogenic bacterial species. Reports indicate that a rare sugar, D-tagatose, is not easily catabolized by pathogenic bacteria. In the present study, the inhibitory effects of D-tagatose on the growth and biofilm formation of S. mutans GS-5 were examined. Monitoring S. mutans growth over a 24 h period revealed that D-tagatose prolonged the lag phase without interfering with the final cell yield. This growth retardation was also observed in the presence of 1% sucrose, although it was abolished by the addition of D-fructose. S. mutans biofilm formation was significantly inhibited by growth in sucrose media supplemented with 1 and 4% D-tagatose compared with that in a culture containing sucrose alone, while S. mutans formed granular biofilms in the presence of this rare sugar. The inhibitory effect of D-tagatose on S. mutans biofilm formation was significantly more evident than that of xylitol. Growth in sucrose media supplemented with D-tagatose significantly decreased the expression of glucosyltransferase, exo-β-fructosidase and D-fructose-specific phosphotransferase genes but not the expression of fructosyltransferase compared with the culture containing sucrose only. The activity of cell-associated glucosyltransferase in S. mutans was inhibited by 4% D-tagatose. These results indicate that D-tagatose reduces water-insoluble glucan production from sucrose by inhibiting glucosyltransferase activities, which limits access to the free D-fructose released during this process and retards the growth of S. mutans. Therefore, foods and oral care products containing D-tagatose are anticipated to reduce the risk of caries by inhibiting S. mutans biofilm formation. PMID:29115611

  18. Direct detection of Streptococcus mutans in human dental plaque by polymerase chain reaction.

    PubMed

    Igarashi, T; Yamamoto, A; Goto, N

    1996-10-01

    Streptococcus mutans is an etiological agent in human dental caries. A method for the detection of S. mutans directly from human dental plaque by polymerase chain reaction has been developed. Oligonucleotide primers specific for a portion of the dextranase gene (dexA) of S. mutans Ingbritt (serotype c) were designed to amplify a 1272-bp DNA fragment by polymerase chain reaction. The present method specifically detected S. mutans (serotypes c, e and f), but none of the other mutans streptococci: S. cricetus (serotype a), S. rattus (serotype b), S. sobrinus (serotypes d and g), and S. downei (serotype h), other gram-positive bacteria (16 strains of 12 species of cocci and 18 strains of 12 species of bacilli) nor gram-negative bacteria (1 strain of 1 species of cocci and 20 strains of 18 species of bacilli). The method was capable of detecting 1 pg of the chromosomal DNA purified from S. mutans Ingbritt and as few as 12 colony-forming units of S. mutans cells. The S. mutans cells in human dental plaque were also directly detected. Seventy clinical isolates of S. mutans isolated from the dental plaque of 8 patients were all positive by the polymerase chain reaction. These results suggest that the dexA polymerase chain reaction is suitable for the specific detection and identification of S. mutans.

  19. Streptococcus mutans Can Modulate Biofilm Formation and Attenuate the Virulence of Candida albicans

    PubMed Central

    Barbosa, Júnia Oliveira; Rossoni, Rodnei Dennis; Vilela, Simone Furgeri Godinho; de Alvarenga, Janaína Araújo; Velloso, Marisol dos Santos; Prata, Márcia Cristina de Azevedo; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos

    2016-01-01

    Streptococcus mutans and Candida albicans are found together in the oral biofilms on dental surfaces, but little is known about the ecological interactions between these species. Here, we studied the effects of S. mutans UA159 on the growth and pathogencity of C. albicans. Initially, the effects of S. mutans on the biofilm formation and morphogenesis of C. albicans were tested in vitro. Next, we investigate the influence of S. mutans on pathogenicity of C. albicans using in vivo host models, in which the experimental candidiasis was induced in G. mellonella larvae and analyzed by survival curves, C. albicans count in hemolymph, and quantification of hyphae in the host tissues. In all the tests, we evaluated the direct effects of S. mutans cells, as well as the indirect effects of the subproducts secreted by this microorganism using a bacterial culture filtrate. The in vitro analysis showed that S. mutans cells favored biofilm formation by C. albicans. However, a reduction in biofilm viable cells and inhibition of hyphal growth was observed when C. albicans was in contact with the S. mutans culture filtrate. In the in vivo study, injection of S. mutans cells or S. mutans culture filtrate into G. mellonella larvae infected with C. albicans increased the survival of these animals. Furthermore, a reduction in hyphal formation was observed in larval tissues when C. albicans was associated with S. mutans culture filtrate. These findings suggest that S. mutans can secrete subproducts capable to inhibit the biofilm formation, morphogenesis and pathogenicity of C. albicans, attenuating the experimental candidiasis in G. mellonella model. PMID:26934196

  20. Reciprocal interaction between dental alloy biocorrosion and Streptococcus mutans virulent gene expression.

    PubMed

    Zhang, Songmei; Qiu, Jing; Ren, Yanfang; Yu, Weiqiang; Zhang, Fuqiang; Liu, Xiuxin

    2016-04-01

    Corrosion of dental alloys is a major concern in dental restorations. Streptococcus mutans reduces the pH in oral cavity and induces demineralization of the enamel as well as corrosion of restorative dental materials. The rough surfaces of dental alloys induced by corrosion enhance the subsequent accumulation of plaque. In this study, the corrosion process of nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) alloys in a nutrient-rich medium containing S. mutans was studied using inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray photoelectron spectroscopy (XPS) and electrochemical corrosion test. Our results showed that the release of Ni and Co ions increased, particularly after incubation for 3 days. The electrochemical corrosion results showed a significant decrease in the corrosion resistance (Rp) value after the alloys were immersed in the media containing S. mutans for 3 days. Correspondingly, XPS revealed a reduction in the relative dominance of Ni, Co, and Cr in the surface oxides after the alloys were immersed in the S. mutans culture. After removal of the biofilm, the pre-corroded alloys were re-incubated in S. mutans medium, and the expressions of genes associated with the adhesion and acidogenesis of S. mutans, including gtfBCD, gbpB, fif and ldh, were evaluated by detecting the mRNA levels using real-time reverse transcription polymerase chain reaction (RT-PCR). We found that the gtfBCD, gbpB, ftf and Idh expression of S. mutans were noticeably increased after incubation with pre-corroded alloys for 24 h. This study demonstrated that S. mutans enhanced the corrosion behavior of the dental alloys, on the other hand, the presence of corroded alloy surfaces up-regulated the virulent gene expression in S. mutans. Compared with smooth surfaces, the rough corroded surfaces of dental alloys accelerated the bacteria-adhesion and corrosion process by changing the virulence gene expression of S. mutans.

  1. Effects of local immunization with glucosyltransferase fractions from Streptococcus mutans on dental caries in hamsters caused by homologous and heterologous serotypes of Streptococcus mutans.

    PubMed

    Smith, D J; Taubman, M A; Ebersole, J L

    1978-09-01

    Seven serotypes of Streptococcus mutans have been identified. The biochemical, genetic, and serological characteristics of these serotypes have indicated that certain serotypes are quite similar, whereas others are quite distinct. The effect of local immunization with glucosyltransferase (GTF) enzymes from serotypes a, c, or g on infection and disease caused by homologous or heterologous cariogenic S. mutans is reported. Organisms with either similar (a and g) or different (c and g) biochemical and serological characteristics were selected for heterologous challenge. NIH white hamsters were injected four times at weekly intervals with GTF prepared by 6 M guanidine-hydrochloride elution from water-insoluble glucan of serotypes a, c, or g, which resulted in enzyme (homologous) inhibitory activity in sera and salivas. After infection of GTF-immunized and sham-immunized groups of hamsters with cariogenic S. mutans of the same serotype as the injected antigen (homologous infection) or with S. mutans of a different serotype from the injected antigen (heterologous infection), the numbers of streptomycin-labeled S. mutans, caries, and lesions were determined. Immunization with GTF preparations from each of the three serotypes resulted in statistically significant reductions in the extent of infection and disease and number of lesions caused by infections with homologous cariogenic S. mutans. Statistically significant reductions in these three parameters were also observed in groups immunized with enzyme from serotype a (strain E49) and challenged with cariogenic serotype g (strain 6715) organisms; or immunized with enzyme from serotype c (strain Ingbritt) and challenged with cariogenic serotype g (strain 6715) organisms; or immunized with enzyme from serotype g (strain 6715) and challenged with cariogenic serotype c (strain Ingbritt) organisms. These studies suggest that soluble antigen preparations containing GTF from one serotype may elicit a protective immune response

  2. [A novel TaqMan® MGB probe for specifically detecting Streptococcus mutans].

    PubMed

    Zheng, Hui; Lin, Jiu-Xiang; DU, Ning; Chen, Feng

    2013-10-18

    To design a new TaqMan® MGB probe for improving the specificity of Streptococcus mutans's detection. We extracted six DNA samples from different streptococcal strains for PCR reaction. Conventional nested PCR and TaqMan® MGB real-time PCR were applied independently. The first round of nested PCR was carried out with the bacterial universal primers, while a second PCR was conducted by using primers specific for the 16S rRNA gene of Streptococcus mutans. The TaqMan® MGB probe for Streptococcus mutans was designed from sequence analyses, and the primers were the same as nested PCR. Streptococcus mutans DNA with 2.5 mg/L was sequentially diluted at 5-fold intervals to 0.16 μg/L. Standard DNA samples were used to generate standard curves by TaqMan® MGB real-time PCR. In the nested PCR, the primers specific for Streptococcus mutans also detected Streptococcus gordonii with visible band of 282 bp, giving false-positive results. In the TaqMan® MGB real-time PCR reaction, only Streptococcus mutans was detected. The detection limitation of TaqMan® MGB real-time PCR for Streptococcus mutans 16S rRNA gene was 20 μg/L. We designed a new TaqMan® MGB probe, and successfully set up a PCR based method for detecting oral Streptococcus mutans. TaqMan® MGB real-time PCR is a both specific and sensitive bacterial detection method.

  3. Antimicrobial effects of herbal extracts on Streptococcus mutans and normal oral streptococci.

    PubMed

    Lee, Sung-Hoon

    2013-08-01

    Streptococcus mutans is associated with dental caries. A cariogenic biofilm, in particular, has been studied extensively for its role in the formation of dental caries. Herbal extracts such as Cudrania tricuspidata, Sophora flavescens, Ginkgo biloba, and Betula Schmidtii have been used as a folk remedy for treating diseases. The purpose of this study was to evaluate and compare the antibacterial activity of herbal extracts against normal oral streptococci, planktonic and biofilm of S. mutans. Streptococcus gordonii, Streptococcus oralis, Streptococcus salivarius, Streptococcus sanguinis, and S. mutans were cultivated with brain heart infusion broth and susceptibility assay for the herbal extracts was performed according to the protocol of Clinical and Laboratory Standard Institute. Also, S. mutans biofilm was formed on a polystyrene 12-well plate and 8-well chamber glass slip using BHI broth containing 2% sucrose and 1% mannose after conditioning the plate and the glass slip with unstimulated saliva. The biofilm was treated with the herbal extracts in various concentrations and inoculated on Mitis-Salivarius bacitracin agar plate for enumeration of viable S. mutans by counting colony forming units. Planktonic S. mutans showed susceptibility to all of the extracts and S. mutans biofilm exhibited the highest level of sensitivity for the extracts of S. flavescens. The normal oral streptococci exhibited a weak susceptibility in comparison to S. mutans. S. oralis, however, was resistant to all of the extracts. In conclusion, the extract of S. flavescens may be a potential candidate for prevention and management of dental caries.

  4. Streptococcus mutans in a Wild, Sucrose-Eating Rat Population

    PubMed Central

    Coykendall, Alan L.; Specht, Patricia A.; Samol, Harry H.

    1974-01-01

    Streptococcus mutans, an organism implicated in dental caries and not previously found outside of man and certain laboratory animals, was isolated from the mouths of wild rats which ate sugar cane. The strains isolated fermented mannitol and sorbitol, and failed to grow in 6.5% NaCl or at 45 C. They formed in vitro plaques on nichrome wires when grown in sucrose broth. They also stored intracellular polysaccharide which could be catabolized by washed, resting cells. Deoxyribonucleic acid-deoxyribonucleic acid reassociations revealed two genetic types. One type shared extensive deoxyribonucleic acid base sequences with S. mutans strains HS6 and OMZ61, two members of a genetic type found in man and laboratory hamsters. The other type seemed unrelated to any S. mutans genetic type previously encountered. It is concluded that the ecological triad of tooth-sucrose-S. mutans is not a phenomenon unique to man and experimental animals. Images PMID:4601769

  5. Human Leucocyte Antigen Profile and Transmission of Mutans Streptococci in Mother-Child Pairs.

    PubMed

    Wallengren, Marie L; Hedström, Kristin; Zbroszczyk, Katarzyna; Hamberg, Kristina

    2015-01-01

    To investigate possible association between the transmission of mutans streptococci and sharing the immune system component Human Leucocyte Antigen (HLA) class II in mother-child pairs. Plaque samples from 43 mother-child pairs were cultivated and screened for mutans streptococci. In 14 pairs where both mother and child harboured the bacteria, the strains were genotyped by Random Amplified Polymorphic DNA and samples were run on PAGE gels. Analysis of genetic identity between mother and child strains was performed with help of software and Dice similarity index. The distribution of HLA of serogroup DR4 (HLA DR4) was studied in relation to maternal transmission and mutans streptococci colonisation in children. The study hypothesis was that in pairs where both mother and child were HLA DR4 positive, transmission of mutans streptococci was more likely. No correlation between the presence of HLA DR4 in mother and child and maternal transmission of mutans streptococci was established. However, the results showed no linkage between mutans streptococci colonisation and HLA DR 4. Of 15 children with mutans streptococci, 12 were HLA DR4 positive. The result suggests that presence of HLA DR4 could be a predisposing factor for colonisation with mutans streptococci in children.

  6. Clonality and serotypes of Streptococcus mutans among children by multilocus sequence typing

    PubMed Central

    Momeni, Stephanie S.; Whiddon, Jennifer; Cheon, Kyounga; Moser, Stephen A.; Childers, Noel K.

    2015-01-01

    Studies using multilocus sequence typing (MLST) have demonstrated that Streptococcus mutans isolates are genetically diverse. Our laboratory previously demonstrated clonality of S. mutans using MLST but could not discount the possibility of sampling bias. In this study, the clonality of randomly selected S. mutans plaque isolates from African American children was examined using MLST. Serotype and presence of collagen-binding proteins (CBP) cnm/cbm were also assessed. One hundred S. mutans isolates were randomly selected for MLST analysis. Sequence analysis was performed and phylogenetic trees were generated using START2 and MEGA. Thirty-four sequence types (ST) were identified of which 27 were unique to this population. Seventy-five percent of the isolates clustered into 16 clonal groups. Serotypes observed were c (n=84), e (n=3), and k (n=11). The prevalence of S. mutans isolates serotype k was notably high at 17.5%. All isolates were cnm/cbm negative. The clonality of S. mutans demonstrated in this study illustrates the importance of localized populations studies and are consistent with transmission. The prevalence of serotype k, a recently proposed systemic pathogen, observed in this study is higher than reported in most populations and is the first report of S. mutans serotype k in a US population. PMID:26443288

  7. Genotypic characterization of initial acquisition of Streptococcus mutans in American Indian children

    PubMed Central

    Lynch, David J.; Villhauer, Alissa L.; Warren, John J.; Marshall, Teresa A.; Dawson, Deborah V.; Blanchette, Derek R.; Phipps, Kathy R.; Starr, Delores E.; Drake, David R.

    2015-01-01

    Background Severe-early childhood caries (S-ECC) is one of the most common infectious diseases in children and is prevalent in lower socio-economic populations. American Indian children suffer from the highest levels of S-ECC in the United States. Members of the mutans streptococci, Streptococcus mutans, in particular, are key etiologic agents in the development of caries. Children typically acquire S. mutans from their mothers and early acquisition is often associated with higher levels of tooth decay. Methods We have conducted a 5-year birth cohort study with a Northern Plains Tribe to determine the temporality and fidelity of S. mutans transmission from mother to child in addition to the genotypic diversity of S. mutans in this community. Plaque samples were collected from 239 mother/child dyads at regular intervals from birth to 36 months and S. mutans were isolated and genotyped by arbitrarily primed-polymerase chain reaction (AP-PCR). Results Here we present preliminary findings from a subset of the cohort. The focus for this paper is on initial acquisition events in the children. We identified 17 unique genotypes in 711 S. mutans isolates in our subset of 40 children, 40 mothers and 14 primary caregivers. Twelve of these genotypes were identified in more than one individual. S. mutans colonization occurred by 16 months in 57.5% of the children and early colonization was associated with higher decayed, missing and filled surface (DMFS) scores (p=0.0007). Children colonized by S. mutans shared a common genotype with their mothers 47.8% of the time. While multiple genotypes were common in adults, only 10% of children harbored multiple genotypes. Conclusion These children acquire S. mutans at an earlier age than the originally described ‘window of infectivity’ and often, but not exclusively, from their mothers. Early acquisition is associated with both the caries status of the children and the mothers. PMID:25840611

  8. Polymers for binding of the gram-positive oral pathogen Streptococcus mutans

    PubMed Central

    Magennis, Eugene P.; Francini, Nora; Mastrotto, Francesca; Catania, Rosa; Redhead, Martin; Fernandez-Trillo, Francisco; Bradshaw, David; Churchley, David; Winzer, Klaus; Alexander, Cameron

    2017-01-01

    Streptococcus mutans is the most significant pathogenic bacterium implicated in the formation of dental caries and, both directly and indirectly, has been associated with severe conditions such as multiple sclerosis, cerebrovascular and peripheral artery disease. Polymers able to selectively bind S. mutans and/or inhibit its adhesion to oral tissue in a non-lethal manner would offer possibilities for addressing pathogenicity without selecting for populations resistant against bactericidal agents. In the present work two libraries of 2-(dimethylamino)ethyl methacrylate (pDMAEMA)-based polymers were synthesized with various proportions of either N,N,N-trimethylethanaminium cationic- or sulfobetaine zwitterionic groups. These copolymers where initially tested as potential macromolecular ligands for S. mutans NCTC 10449, whilst Escherichia coli MG1655 was used as Gram-negative control bacteria. pDMAEMA-derived materials with high proportions of zwitterionic repeating units were found to be selective for S. mutans, in both isolated and S. mutans–E. coli mixed bacterial cultures. Fully sulfobetainized pDMAEMA was subsequently found to bind/cluster preferentially Gram-positive S. mutans and S. aureus compared to Gram negative E. coli and V. harveyi. A key initial stage of S. mutans pathogenesis involves a lectin-mediated adhesion to the tooth surface, thus the range of potential macromolecular ligands was further expanded by investigating two glycopolymers bearing α-mannopyranoside and β-galactopyranoside pendant units. Results with these polymers indicated that preferential binding to either S. mutans or E. coli can be obtained by modulating the glycosylation pattern of the chosen multivalent ligands without incurring unacceptable cytotoxicity in a model gastrointestinal cell line. Overall, our results allowed to identify a structure–property relationship for the potential antimicrobial polymers investigated, and suggest that preferential binding to Gram-positive S

  9. Prenatal nutrition intervention to reduce mutans streptococci among low-income women.

    PubMed

    Reisine, Susan; Douglass, Joanna; Aseltine, Robert; Shanley, Ellen; Thompson, Colleen; Thibodeau, Edward

    2012-01-01

    The objective of this study is to assess the effectiveness of a prenatal nutrition intervention to reduce sugar intake and mutans streptococci (mutans) among low-income women. Pregnant women were recruited from the obstetrics service at a community health center in Connecticut. Inclusion criteria were ≥18 years of age; mutans levels >10, 000 colony forming units/ml as determined by Dentocult SM® kits (Orion Diagnostica Oy, Espoo, Finland); and >3 months pregnant. Women were randomized to receive education alone [education intervention (EI)] or education and a 1-hour nutrition group session at 9 months and 6 weeks postpartum [education and nutrition intervention (EIN)]. Mutans and questionnaire data were collected at baseline, 9 months, 6 weeks, and 3 months postpartum. One hundred twenty completed the baseline visit and 93 (77%) completed all four visits. Sugar intake was assessed by the Food Frequency Questionnaire and clinical information was abstracted from medical charts. Mean age was 26.3 years [standard deviation (SD)= 6], 73% were Hispanic, 29% had lived in the United States < 6 years; 48% completed high school; 27% were married; mean total sugar intake at baseline was 149g (SD = 85). Repeated measures analysis of variance showed that mutans levels declined significantly in both groups, but that the EI group had significantly lower mutans levels at the final assessment compared with EIN. Sugar intake also declined significantly, but there were no significant differences between groups. The study demonstrated the following: a) the feasibility of conducting the intervention at community health center sites among low-income pregnant women; b) the effectiveness of education to reduce mutans/sugar intake; and c) the need to improve the nutrition intervention to obtain additional gains in mutans reduction. © 2011 American Association of Public Health Dentistry.

  10. Comparative analysis of prophages in Streptococcus mutans genomes

    PubMed Central

    Fu, Tiwei; Fan, Xiangyu; Long, Quanxin; Deng, Wanyan; Song, Jinlin

    2017-01-01

    Prophages have been considered genetic units that have an intimate association with novel phenotypic properties of bacterial hosts, such as pathogenicity and genomic variation. Little is known about the genetic information of prophages in the genome of Streptococcus mutans, a major pathogen of human dental caries. In this study, we identified 35 prophage-like elements in S. mutans genomes and performed a comparative genomic analysis. Comparative genomic and phylogenetic analyses of prophage sequences revealed that the prophages could be classified into three main large clusters: Cluster A, Cluster B, and Cluster C. The S. mutans prophages in each cluster were compared. The genomic sequences of phismuN66-1, phismuNLML9-1, and phismu24-1 all shared similarities with the previously reported S. mutans phages M102, M102AD, and ϕAPCM01. The genomes were organized into seven major gene clusters according to the putative functions of the predicted open reading frames: packaging and structural modules, integrase, host lysis modules, DNA replication/recombination modules, transcriptional regulatory modules, other protein modules, and hypothetical protein modules. Moreover, an integrase gene was only identified in phismuNLML9-1 prophages. PMID:29158986

  11. Growth of Streptococcus mutans on various selective media.

    PubMed

    Emilson, C G; Bratthall, D

    1976-07-01

    The ability of Streptococcus mutans to grow on mitis-salivarius (MS) agar, MC agar, mitis-sucrose-bacitracin (MSB), BCY agar, and MM10 sucrose agar was studied. Batch cultures of S. mutans serotype a demonstrated no growth on MSB agar. Certain serotype d and g strains did not grow on MC agar. The yield for most strains of other serotypes on these selective media was lower compared with that on MS agar. The number of total colony-forming units on BCY and MM10 sucrose agar was similar to the blood agar results. Similar data were obtained when fermenter-grown strains, harvested in the middle or the end of the logarithmic growth phase, were used for inoculation of the various media. Enumeration of S. mutans from plaque samples plated on MC and MSB agar yielded about 75% of the counts obtained on MS or the nonselective medium. When the proportions of S. mutans were expressed as a percentage of the total cultivable flora, the selective media (MC and MSB agar) showed approximately 10% lower values than the MS, BCY, and MM10 sucrose agar.

  12. Expression of a Streptococcus mutans glucosyltransferase gene in Escherichia coli.

    PubMed

    Robeson, J P; Barletta, R G; Curtiss, R

    1983-01-01

    Chromosomal DNA from Streptococcus mutans strain UAB90 (serotype c) was cloned into Escherichia coli K-12. The clone bank was screened for any sucrose-hydrolyzing activity by selection for growth on raffinose in the presence of isopropyl-beta-D-thiogalactoside. A clone expressing an S. mutans glucosyltransferase was identified. The S. mutans DNA encoding this enzyme is a 1.73-kilobase fragment cloned into the HindIII site of plasmid pBR322. We designated the gene gtfA. The plasmid-encoded gtfA enzyme, a 55,000-molecular-weight protein, is synthesized at 40% the level of pBR322-encoded beta-lactamase in E. coli minicells. Using sucrose as substrate, the gtfA enzyme catalyzes the formation of fructose and a glucan with an apparent molecular weight of 1,500. We detected the gtfA protein in S. mutans cells with antibody raised against the cloned gtfA enzyme. Immunologically identical gtfA protein appears to be present in S. mutans cells of serotypes c, e, and f, and a cross-reacting protein was made by serotype b cells. Proteins from serotype a, g, and d S. mutans cells did not react with antibody to gtfA enzyme. The gtfA activity was present in the periplasmic space of E. coli clones, since 15% of the total gtfA activity was released by cold osmotic shock and the clones were able to grow on sucrose as sole carbon source.

  13. Characteristics of Streptococcus mutans genotypes and dental caries in children

    PubMed Central

    Cheon, Kyounga; Moser, Stephen A.; Wiener, Howard W.; Whiddon, Jennifer; Momeni, Stephanie S.; Ruby, John D.; Cutter, Gary R.; Childers, Noel K.

    2013-01-01

    This longitudinal cohort study evaluated the diversity, commonality, and stability of Streptococcus mutans genotypes associated with dental caries history. Sixty-seven 5 and 6 yr-old children, considered being at high caries risk, had plaque collected from baseline through 36 months for S. mutans isolation and genotyping with repetitive extragenic palindromic-PCR (4,392 total isolates). Decayed, missing, filled surfaces (dmfs/DMFS) for each child were recorded at baseline. At baseline, 18 distinct genotypes were found among 911 S. mutans isolates from 67 children (diversity) and 13 genotypes were shared by at least 2 children (commonality). The number of genotypes per individual was positively associated with the proportion of decayed surfaces (p-ds) at baseline. Twenty-four of the 39 children who were available at follow-up visits maintained a predominant genotype for the follow-up periods (stability) and was negatively associated with p-ds. The observed diversity, commonality, and stability of S. mutans genotypes represent a pattern of dental caries epidemiology in this high caries risk community, which suggest fewer decayed surfaces are significantly associated with lower diversity and stability of S. mutans genotypes. PMID:23659236

  14. Mutans streptococcal serotypes in children with gastroesophageal reflux disease.

    PubMed

    Hölttä, P; Aine, L; Mäki, M; Ruuska, T; Vuento, R; Ashorn, M; Alaluusua, S

    1997-01-01

    It has been suggested that vomiting acid gastric contents in bulimia might favor oral growth of Streptococcus sobrinus. We studied the colonization of Streptococcus sobrinus (serotypes g and d) and Streptococcus mutans (serotypes c, e and f) in sixteen children, ages five to fifteen years, who had suffered for four to eleven years from gastroesophageal reflux, another condition with recurrent acid regurgitation. Our aim was to find out if the prevalence of Streptococcus sobrinus would be higher also in this patient group. Mutants streptococci were detected in twelve out of sixteen (75 percent) study patients of the saliva samples cultured on MSB agar. For the Mutans streptococci positive children healthy controls were matched by salivary levels of mutans streptococci and age as closely as possible. From each child three to six isolates representing both Streptococcus mutans and Streptococcus sobrinus (n = 103) were serotyped by immunodiffusion method. The distribution of serotypes in the study/control group was: c: 7/10; e: 4/2; f: 0/1; g:3/2; d:0/0. One strain in the study group remained untypable. All patients infected with Streptococcus sobrinus were also infected with Streptococcus mutans. Our results indicate the great similarity in the distribution of ms serotypes in the gastroesophageal reflux children and their healthy controls. The data do not suggest that the acid regurgitation would have an influence on the prevalence of Streptococcus sobrinus.

  15. Aciduric Microbiota and Mutans Streptococci in Severe and Recurrent Severe Early Childhood Caries

    PubMed Central

    Hughes, Christopher V.; Dahlan, Mohammed; Papadopolou, Eleftheria; Kent, Ralph L.; Loo, Cheen Y.; Pradhan, Nooruddin S.; Lu, Shulin C.; Bravoco, Alexandra; Mathney, Jennifer M.J.; Tanner, Anne C.R.

    2011-01-01

    Purpose Severe early childhood caries (ECC) results from bacterial acid production in an acidic environment. The current study determined Streptococcus mutans, Streptococcus sobrinus and acid-tolerant counts in severe-ECC. Methods Children (2–6 years) with severe-ECC (n=77) or who were caries-free (n=40) were examined. Plaque samples from teeth and the tongue were cultured anaerobically on blood, acid and S. mutans selective agars. Severe-ECC children were monitored post-treatment for recurrent caries. Results Severe-ECC and caries-free children were balanced by household income and education level. Carious lesions were observed in 75% maxillary incisors and >80% molars in severe-ECC. At baseline, Streptococcus mutans, and Streptococcus sobrinus counts and proportions of S. mutans were higher in severe-ECC than caries-free children. Acid and blood counts were elevated only in anterior samples of severe-ECC children. Baseline counts of S. sobrinus, but not S. mutans, were higher in children with recurrent compared with no recurrent caries. S. mutans counts were lower post treatment than pre-treatment, particularly for children without caries recurrence. Other counts did not differ between before and after therapy. Conclusions We conclude that severe and recurrent ECC were better explained by mutans streptococci than the aciduric microbiota. S. mutans did not predict children with recurrent caries. PMID:22583872

  16. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms.

    PubMed

    Klein, Marlise I; Hwang, Geelsu; Santos, Paulo H S; Campanella, Osvaldo H; Koo, Hyun

    2015-01-01

    Biofilms are highly structured microbial communities that are enmeshed in a self-produced extracellular matrix. Within the complex oral microbiome, Streptococcus mutans is a major producer of extracellular polymeric substances including exopolysaccharides (EPS), eDNA, and lipoteichoic acid (LTA). EPS produced by S. mutans-derived exoenzymes promote local accumulation of microbes on the teeth, while forming a spatially heterogeneous and diffusion-limiting matrix that protects embedded bacteria. The EPS-rich matrix provides mechanical stability/cohesiveness and facilitates the creation of highly acidic microenvironments, which are critical for the pathogenesis of dental caries. In parallel, S. mutans also releases eDNA and LTA, which can contribute with matrix development. eDNA enhances EPS (glucan) synthesis locally, increasing the adhesion of S. mutans to saliva-coated apatitic surfaces and the assembly of highly cohesive biofilms. eDNA and other extracellular substances, acting in concert with EPS, may impact the functional properties of the matrix and the virulence of cariogenic biofilms. Enhanced understanding about the assembly principles of the matrix may lead to efficacious approaches to control biofilm-related diseases.

  17. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms

    PubMed Central

    Klein, Marlise I.; Hwang, Geelsu; Santos, Paulo H. S.; Campanella, Osvaldo H.; Koo, Hyun

    2015-01-01

    Biofilms are highly structured microbial communities that are enmeshed in a self-produced extracellular matrix. Within the complex oral microbiome, Streptococcus mutans is a major producer of extracellular polymeric substances including exopolysaccharides (EPS), eDNA, and lipoteichoic acid (LTA). EPS produced by S. mutans-derived exoenzymes promote local accumulation of microbes on the teeth, while forming a spatially heterogeneous and diffusion-limiting matrix that protects embedded bacteria. The EPS-rich matrix provides mechanical stability/cohesiveness and facilitates the creation of highly acidic microenvironments, which are critical for the pathogenesis of dental caries. In parallel, S. mutans also releases eDNA and LTA, which can contribute with matrix development. eDNA enhances EPS (glucan) synthesis locally, increasing the adhesion of S. mutans to saliva-coated apatitic surfaces and the assembly of highly cohesive biofilms. eDNA and other extracellular substances, acting in concert with EPS, may impact the functional properties of the matrix and the virulence of cariogenic biofilms. Enhanced understanding about the assembly principles of the matrix may lead to efficacious approaches to control biofilm-related diseases. PMID:25763359

  18. Kaffir lime leaves extract inhibits biofilm formation by Streptococcus mutans.

    PubMed

    Kooltheat, Nateelak; Kamuthachad, Ludthawun; Anthapanya, Methinee; Samakchan, Natthapon; Sranujit, Rungnapa Pankla; Potup, Pachuen; Ferrante, Antonio; Usuwanthim, Kanchana

    2016-04-01

    Although kaffir lime has been reported to exhibit antioxidant and antileukemic activity, little is known about the antimicrobial effect of kaffir lime extract. Because Streptococcus mutans has been known to cause biofilm formation, it has been considered the most important causative pathogen of dental caries. Thus, the effective control of its effects on the oral biofilm is the key to the prevention of dental caries. The aims of the present study were to investigate the effect of kaffir lime leaves extract on biofilm formation and its antibacterial activity on S. mutans. We examined the effect of kaffir lime leaves extract on growth and biofilm formation of S. mutans. For the investigation we used a kaffir lime extract with high phenolic content. The minimum inhibitory concentration of the extract was determined by broth microdilution assay. The inhibitory effect of the test substances on biofilm formation was also investigated by biofilm formation assay and qRT-PCR of biofilm formation-associated genes. Kaffir lime leaves extract inhibits the growth of S. mutans, corresponding to the activity of an antibiotic, ampicillin. Formation of biofilm by S. mutans was also inhibited by the extract. These results were confirmed by the down-regulation of genes associated with the biofilm formation. The findings highlight the ability of kaffir lime leaves extract to inhibit S. mutans activity, which may be beneficial in the prevention of biofilm formation on dental surface, reducing dental plaque and decreasing the chance of dental carries. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Probiotic lactobacilli interfere with Streptococcus mutans biofilm formation in vitro.

    PubMed

    Söderling, Eva M; Marttinen, Aino M; Haukioja, Anna L

    2011-02-01

    In clinical studies, probiotic bacteria have decreased the counts of salivary mutans streptococci (MS). We compared the effects of probiotic Lactobacillus strains on the biofilm formation of Streptococcus mutans. The bacterial strains used included four S. mutans strains (reference strains NCTC 10449 and Ingbritt and clinical isolates 2366 and 195) and probiotic strains Lactobacillus rhamnosus GG, L. plantarum 299v, and L. reuteri strains PTA 5289 and SD2112. The ability of MS to adhere and grow on a glass surface, reflecting biofilm formation, was studied in the presence of the lactobacilli (LB). The effect of LB culture supernatants on the viability of the MS was studied as well. All of the LB inhibited the biofilm formation of the clinical isolates of MS (P < 0.001). The biofilm formation of the reference strains of MS was also inhibited by the LB, but L. plantarum and L. reuteri PTA 5289 showed a weaker inhibition when compared to L. reuteri SD2112 and L. rhamnosus GG. Viable S. mutans cells could be detected in the biofilms and culture media only when the experiments were performed with the L. reuteri strains. The L. reuteri strains were less efficient in killing the MS also in the tests performed with the culture supernatants. The pHs of the supernatants of L. reuteri were higher compared to those of L. rhamnosus GG and L. plantarum; P < 0.001. In conclusion, our results demonstrated that four commonly used probiotics interfered with S. mutans biofilm formation in vitro, and that the antimicrobial activity against S. mutans was pH-dependent.

  20. [Construction of a low-pH-sensing system in Streptococcus mutans].

    PubMed

    Di, Kang; Yuqing, Li; Xuedong, Zhou

    2017-06-01

    To construct a low-pH-sensing system in Streptococcus mutans (S. mutans) and to visually detect the pH in situ. Promoter of ureaseⅠ(PureⅠ) and green fluorescence protein (gfp) DNA fragments were amplified by polymerase chain reaction (PCR) from the genome of Streptococcus salivarius 57.I and S. mutans containing the gfp fragment. The two amplified DNA fragments were ligated together and further integrated into pDL278 to construct the recombinant plasmid pDL278-pureⅠ-gfp. This recombinant plasmid was then transformed into S. mutans UA159 cells. Subsequently, the intensity of the optical density per unit area of the low-pH-sensing system was measured and compared under different pH conditions and different processing times. PureⅠ and gfp DNA fragments were amplified successfully with the correct molecule sizes (450 and 717 bp, respectively). The recombinant plasmid pDL278-pureⅠ-gfp was constructed and further verified by PCR and sequencing. The intensity of the optical density per unit area of the low-pH-sensing system increased with decreasing pH and increasing processing time. A low-pH-sensing system was constructed successfully in S. mutans. Our research verified that pureⅠ of Streptococcus salivarius can function well in S. mutans as an acid induced promoter, and provided a new method of detecting the pH of plaque biofilms in situ.

  1. Antimicrobial peptide GH12 suppresses cariogenic virulence factors of Streptococcus mutans

    PubMed Central

    Wang, Yufei; Wang, Xiuqing; Jiang, Wentao; Wang, Kun; Luo, Junyuan; Li, Wei; Zhou, Xuedong; Zhang, Linglin

    2018-01-01

    ABSTRACT Cariogenic virulence factors of Streptococcus mutans include acidogenicity, aciduricity, and extracellular polysaccharides (EPS) synthesis. The de novo designed antimicrobial peptide GH12 has shown bactericidal effects on S. mutans, but its interaction with virulence and regulatory systems of S. mutans remains to be elucidated. The objectives were to investigate the effects of GH12 on virulence factors of S. mutans, and further explore the function mechanisms at enzymatic and transcriptional levels. To avoid decrease in bacterial viability, we limited GH12 to subinhibitory levels. We evaluated effects of GH12 on acidogenicity of S. mutans by pH drop, lactic acid measurement and lactate dehydrogenase (LDH) assay, on aciduricity through survival rate at pH 5.0 and F1F0-ATPase assay, and on EPS synthesis using quantitative measurement, morphology observation, vertical distribution analyses and biomass calculation. Afterwards, we conducted quantitative real-time PCR to acquire the expression profile of related genes. GH12 at 1/2 MIC (4 mg/L) inhibited acid production, survival rate, EPS synthesis, and biofilm formation. The enzymatic activity of LDH and F1F0-ATPase was inhibited, and ldh, gtfBCD, vicR, liaR, and comDE genes were significantly downregulated. In conclusion, GH12 inhibited virulence factors of S. mutans, through reducing the activity of related enzymes, downregulating virulence genes, and inactivating specific regulatory systems. PMID:29503706

  2. Effects of simulated microgravity on Streptococcus mutans physiology and biofilm structure.

    PubMed

    Cheng, Xingqun; Xu, Xin; Chen, Jing; Zhou, Xuedong; Cheng, Lei; Li, Mingyun; Li, Jiyao; Wang, Renke; Jia, Wenxiang; Li, Yu-Qing

    2014-10-01

    Long-term spaceflights will eventually become an inevitable occurrence. Previous studies have indicated that oral infectious diseases, including dental caries, were more prevalent in astronauts due to the effect of microgravity. However, the impact of the space environment, especially the microgravity environment, on the virulence factors of Streptococcus mutans, a major caries-associated bacterium, is yet to be explored. In the present study, we investigated the impact of simulated microgravity on the physiology and biofilm structure of S. mutans. We also explored the dual-species interaction between S. mutans and Streptococcus sanguinis under a simulated microgravity condition. Results indicated that the simulated microgravity condition can enhance the acid tolerance ability, modify the biofilm architecture and extracellular polysaccharide distribution of S. mutans, and increase the proportion of S. mutans within a dual-species biofilm, probably through the regulation of various gene expressions. We hypothesize that the enhanced competitiveness of S. mutans under simulated microgravity may cause a multispecies micro-ecological imbalance, which would result in the initiation of dental caries. Our current findings are consistent with previous studies, which revealed a higher astronaut-associated incidence of caries. Further research is required to explore the detailed mechanisms. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  3. Antimicrobial Properties of Biofunctionalized Silver Nanoparticles on Clinical Isolates of Streptococcus mutans and Its Serotypes

    PubMed Central

    Martínez-Robles, Ángel Manuel; Loyola-Rodríguez, Juan Pablo; Zavala-Alonso, Norma Verónica; Martinez-Martinez, Rita Elizabeth; Ruiz, Facundo; Lara-Castro, René Homero; Donohué-Cornejo, Alejandro; Reyes-López, Simón Yobanny; Espinosa-Cristóbal, León Francisco

    2016-01-01

    (1) Background: Streptococcus mutans (S. mutans) is the principal pathogen involved in the formation of dental caries. Other systemic diseases have also been associated with specific S. mutans serotypes (c, e, f, and k). Silver nanoparticles (SNP) have been demonstrated to have good antibacterial effects against S. mutans; therefore, limited studies have evaluated the antimicrobial activity of biofunctionalized SNP on S. mutans serotypes. The purpose of this work was to prepare and characterize coated SNP using two different organic components and to evaluate the antimicrobial activity of SNP in clinical isolates of S. mutans strains and serotypes; (2) Methods: SNP with bovine serum albumin (BSA) or chitosan (CS) coatings were prepared and the physical, chemical and microbiological properties of SNP were evaluated; (3) Results: Both types of coated SNP showed antimicrobial activity against S. mutans bacteria and serotypes. Better inhibition was associated with smaller particles and BSA coatings; however, no significant differences were found between the different serotypes, indicating a similar sensitivity to the coated SNP; (4) Conclusion: This study concludes that BSA and CS coated SNP had good antimicrobial activity against S. mutans strains and the four serotypes, and this study suggest the widespread use of SNP as an antimicrobial agent for the inhibition of S. mutans bacteria. PMID:28335264

  4. Antimicrobial Properties of Biofunctionalized Silver Nanoparticles on Clinical Isolates of Streptococcus mutans and Its Serotypes.

    PubMed

    Martínez-Robles, Ángel Manuel; Loyola-Rodríguez, Juan Pablo; Zavala-Alonso, Norma Verónica; Martinez-Martinez, Rita Elizabeth; Ruiz, Facundo; Lara-Castro, René Homero; Donohué-Cornejo, Alejandro; Reyes-López, Simón Yobanny; Espinosa-Cristóbal, León Francisco

    2016-07-22

    (1) Background: Streptococcus mutans ( S. mutans ) is the principal pathogen involved in the formation of dental caries. Other systemic diseases have also been associated with specific S. mutans serotypes ( c , e , f , and k ). Silver nanoparticles (SNP) have been demonstrated to have good antibacterial effects against S. mutans ; therefore, limited studies have evaluated the antimicrobial activity of biofunctionalized SNP on S. mutans serotypes. The purpose of this work was to prepare and characterize coated SNP using two different organic components and to evaluate the antimicrobial activity of SNP in clinical isolates of S. mutans strains and serotypes; (2) Methods: SNP with bovine serum albumin (BSA) or chitosan (CS) coatings were prepared and the physical, chemical and microbiological properties of SNP were evaluated; (3) Results: Both types of coated SNP showed antimicrobial activity against S. mutans bacteria and serotypes. Better inhibition was associated with smaller particles and BSA coatings; however, no significant differences were found between the different serotypes, indicating a similar sensitivity to the coated SNP; (4) Conclusion: This study concludes that BSA and CS coated SNP had good antimicrobial activity against S. mutans strains and the four serotypes, and this study suggest the widespread use of SNP as an antimicrobial agent for the inhibition of S. mutans bacteria.

  5. Nicotine Enhances Interspecies Relationship between Streptococcus mutans and Candida albicans.

    PubMed

    Liu, Shiyu; Qiu, Wei; Zhang, Keke; Zhou, Xuedong; Ren, Biao; He, Jinzhi; Xu, Xin; Cheng, Lei; Li, Mingyun

    2017-01-01

    Streptococcus mutans and Candida albicans are common microorganisms in the human oral cavity. The synergistic relationship between these two species has been deeply explored in many studies. In the present study, the effect of alkaloid nicotine on the interspecies between S. mutans and C. albicans is explored. We developed a dual-species biofilm model and studied biofilm biomass, biofilm structure, synthesis of extracellular polysaccharides (EPS), and expression of glucosyltransferases (Gtfs). Biofilm formation and bacterial and fungal cell numbers in dual-species biofilms increased in the presence of nicotine. More C. albicans cells were present in the dual-species biofilms in the nicotine-treated groups as determined by scanning electron microscopy. The synthesis of EPS was increased by 1 mg/ml of nicotine as detected by confocal laser scanning microscopy. The result of qRT-PCR showed gtfs expression was upregulated when 1 mg/ml of nicotine was used. We speculate that nicotine promoted the growth of S. mutans , and more S. mutans cells attracted more C. albicans cells due to the interaction between two species. Since S. mutans and C. albicans are putative pathogens for dental caries, the enhancement of the synergistic relationship by nicotine may contribute to caries development in smokers.

  6. Antimicrobial activity of commercially available essential oils against Streptococcus mutans.

    PubMed

    Chaudhari, Lalit Kumar D; Jawale, Bhushan Arun; Sharma, Sheeba; Sharma, Hemant; Kumar, C D Mounesh; Kulkarni, Pooja Adwait

    2012-01-01

    Many essential oils have been advocated for use in complementary medicine for bacterial and fungal infections. However, few of the many claims of therapeutic efficacy have been validated adequately by either in vitro testing or in vivo clinical trials. To study the antibacterial activity of nine commercially available essential oils against Streptococcus mutans in vitro and to compare the antibacterial activity between each material. Nine pure essential oils; wintergreen oil, lime oil, cinnamon oil, spearmint oil, peppermint oil, lemongrass oil, cedarwood oil, clove oil and eucalyptus oil were selected for the study. Streptococcus mutans was inoculated at 37ºC and seeded on blood agar medium. Agar well diffusion assay was used to measure antibacterial activity. Zone of inhibition was measured around the filter paper in millimeters with vernier caliper. Cinnamon oil showed highest activity against Streptococcus mutans followed by lemongrass oil and cedarwood oil. Wintergreen oil, lime oil, peppermint oil and spearmint oil showed no antibacterial activity. Cinnamon oil, lemongrass oil, cedarwood oil, clove oil and eucalyptus oil exhibit antibacterial property against S. mutans. The use of these essential oils against S. mutans can be a viable alternative to other antibacterial agents as these are an effective module used in the control of both bacteria and yeasts responsible for oral infections.

  7. Recolonization of mutans steptococci on teeth with orthodontic appliances after antimicrobial therapy.

    PubMed

    Attin, R; Thon, C; Schlagenhauf, U; Werner, C; Wiegand, A; Hannig, C; Attin, T

    2005-10-01

    The aim of the present study was to compare the recolonization pattern of mutans streptococci on densely colonized teeth with and without fixed orthodontic appliances after treatment with a 40 per cent chlorhexidine (CHX) varnish (EC 40, Explore). Healthy subjects free of carious lesions requiring fixed orthodontic appliance treatment but with high bacterial mutans streptococci saliva counts were recruited (n = 10). For baseline registration, plaque from buccal sites was sampled and cultivated on Dentocult strips. Following professional tooth cleaning, CHX varnish was applied to all teeth for 8 minutes. Subsequently, orthodontic brackets and bands were inserted in either the upper or lower arch. Eight weeks after varnish application the degree of recolonization with mutans streptococci was reassessed on the buccal sites. Statistical analysis showed that recolonization with mutans streptococci was significantly higher (P < 0.05) on teeth with orthodontic appliances. The results indicate that the use of fixed orthodontic appliances creates artificial environments suitable for the proliferation of mutans streptococci after CHX varnish suppression.

  8. Streptococcus mutans genes that code for extracellular proteins in Escherichia coli K-12.

    PubMed

    Holt, R G; Abiko, Y; Saito, S; Smorawinska, M; Hansen, J B; Curtiss, R

    1982-10-01

    Chromosomal DNA from Streptococcus mutans 6715 (serotype g) was cloned into Escherichia coli K-12 by using the cosmid pJC74 cloning vector and a bacteriophage lambda in vitro packaging system. Rabbit antiserum against S. mutans extracellular proteins was used for immunological screening of the clone bank. Twenty-one clones produced weak to strong precipitin bands around the colonies, but only after the lambda c1857 prophage was induced by being heated to lyse the E. coli cells. None of the clones expressed enzyme activity for several known S. mutans extracellular enzymes. One of these clones contained a 45-kilobase recombinant plasmid designated pYA721. An 8.5-kilobase fragment of S. mutans DNA from pYA721 was isolated and recloned into the BamHI restriction site of the plasmid vector pACYC184 to construct pYA726. pYA726 contained all, or nearly all, of the gene for a surface protein antigen (the spaA protein) of S. mutans 6715. This was deduced from immunological studies in which extracts of cells harboring pYA726 reacted with antisera against both purified 6715 spaA protein (about 210,000 daltons) and the immunologically similar antigen I/II of serotype c strains of S. mutans. In addition, the S. mutans spaA protein was found to possess at least one antigenic determinant not present on the protein specified by pYA726. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of E. coli clone extracts revealed that pYA726 produced a polypeptide with a molecular mass of about 180,000 daltons which was predominantly found in the periplasmic space of E. coli cells. Antisera to the spaA protein of S. mutans reacted with extracellular protein from representative strains of S. mutans serotypes a, c, d, e, f, and g, but not b.

  9. Complete genome sequence of Streptococcus mutans GS-5, a serotype c strain.

    PubMed

    Biswas, Saswati; Biswas, Indranil

    2012-09-01

    Streptococcus mutans, a principal causative agent of dental caries, is considered to be the most cariogenic among all oral streptococci. Of the four S. mutans serotypes (c, e, f, and k), serotype c strains predominate in the oral cavity. Here, we present the complete genome sequence of S. mutans GS-5, a serotype c strain originally isolated from human carious lesions, which is extensively used as a laboratory strain worldwide.

  10. Inhibitory effect of resin composite containing S-PRG filler on Streptococcus mutans glucose metabolism.

    PubMed

    Kitagawa, Haruaki; Miki-Oka, Saeki; Mayanagi, Gen; Abiko, Yuki; Takahashi, Nobuhiro; Imazato, Satoshi

    2018-03-01

    Resin composites containing surface pre-reacted glass-ionomer (S-PRG) fillers have been reported to inhibit Streptococcus mutans growth on their surfaces, and their inhibitory effects were attributed to BO 3 3- and F - ions. The aim of this study was to evaluate S. mutans acid production through glucose metabolism on resin composite containing S-PRG fillers and assess inhibitory effects of BO 3 3- and F - on S. mutans metabolic activities. The pH change through S. mutans acid production on experimental resin composite was periodically measured after the addition of glucose. Inhibitory effects of BO 3 3- or F - solutions on S. mutans metabolism were evaluated by XTT assays and measurement of the acid production rate. The pH of experimental resin containing S-PRG fillers was significantly higher than that of control resin containing silica fillers (p < 0.05). OD 450 values by XTT assays and S. mutans acid production rates significantly decreased in the presence of BO 3 3- and F - compared with the absence of these ions (p < 0.05). pH reduction by S. mutans acid production was inhibited on resin composite containing S-PRG fillers. Moreover, S. mutans glucose metabolism and acid production were inhibited in the presence of low concentrations of BO 3 3- or F - . BO 3 3- or F - released from resin composite containing S-PRG fillers exhibits inhibitory effects on S. mutans metabolism at concentrations lower than those which inhibit bacterial growth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Saliva-promoted adhesion of Streptococcus mutans MT8148 associates with dental plaque and caries experience.

    PubMed

    Shimotoyodome, A; Kobayashi, H; Tokimitsu, I; Hase, T; Inoue, T; Matsukubo, T; Takaesu, Y

    2007-01-01

    Colonization of enamel surfaces by Streptococcus mutans is thought to be initiated by the attachment of bacteria to a saliva-derived conditioning film (acquired pellicle). However, the clinical relevance of the contribution of saliva-promoted S. mutans adhesion in biofilm formation has not yet been fully elucidated. The aim of this study was to correlate saliva-promoted S. mutans adhesion with biofilm formation in humans. We correlated all measurements of salivary factors and dental plaque formation in 70 healthy subjects. Dental plaque development after thorough professional teeth cleaning correlated positively with S. mutans adhesion onto saliva-coated hydroxyapatite pellets and the glycoprotein content of either parotid or whole saliva. Saliva-promoted S. mutans adhesion and glycoprotein content were also positively correlated with each other in parotid and whole saliva. By contrast, neither salivary mutans streptococci, Lactobacillus nor Candida correlated with biofilm formation. Parotid saliva-mediated S. mutans adhesion was significantly higher in 12 caries-experienced (CE) subjects than in 9 caries-inexperienced (CI) subjects. Salivary S. mutans adhesion was significantly less (p < 0.01) in the CI group than in the CE group. In conclusion, the present findings suggest the initial S. mutans adhesion, modulated by salivary protein adsorption onto the enamel surface, as a possible correlate of susceptibility to dental plaque and caries. Copyright 2007 S. Karger AG, Basel.

  12. Inactivation of glutamate racemase (MurI) eliminates virulence in Streptococcus mutans.

    PubMed

    Zhang, Jianying; Liu, Jia; Ling, Junqi; Tong, Zhongchun; Fu, Yun; Liang, Min

    2016-01-01

    Inhibition of enzymes required for bacterial cell wall synthesis is often lethal or leads to virulence defects. Glutamate racemase (MurI), an essential enzyme in peptidoglycan biosynthesis, has been an attractive target for therapeutic interventions. Streptococcus mutans, one of the many etiological factors of dental caries, possesses a series of virulence factors associated with cariogenicity. However, little is known regarding the mechanism by which MurI influences pathogenesis of S. mutans. In this work, a stable mutant of S. mutans deficient in glutamate racemase (S. mutans FW1718) was constructed to investigate the impact of murI inactivation on cariogenic virulence in S. mutans UA159. Microscopy revealed that the murI mutant exhibited an enlarged cell size, longer cell chains, diminished cell⬜cell aggregation, and altered cell surface ultrastructure compared with the wild-type. Characterization of this mutant revealed that murI deficiency weakened acidogenicity, aciduricity, and biofilm formation ability of S. mutans (P<0.05). Real-time quantitative polymerase chain reaction (qRT-PCR) analysis demonstrated that the deletion of murI reduced the expression of the acidogenesis-related gene ldh by 44-fold (P<0.0001). The expression levels of the gene coding for surface protein antigen P (spaP) and the acid-tolerance related gene (atpD) were down-regulated by 99% (P<0.0001). Expression of comE, comD, gtfB and gtfC, genes related to biofilm formation, were down-regulated 8-, 43-, 85- and 298-fold in the murI mutant compared with the wild-type (P<0.0001), respectively. Taken together, the current study provides the first evidence that MurI deficiency adversely affects S. mutans virulence properties, making MurI a potential target for controlling dental caries. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Chlorhexidine susceptibilities of mutans streptococcal serotypes and ribotypes.

    PubMed

    Grönroos, L; Mättö, J; Saarela, M; Luoma, A R; Luoma, H; Jousimies-Somer, H; Pyhälä, L; Asikainen, S; Alaluusua, S

    1995-04-01

    The susceptibilities of 379 clinical mutans streptococcal isolates to chlorhexidine (CHX) were tested by agar dilution according to the standards of the National Committee for Clinical Laboratory Standards. Isolates were obtained from saliva samples of 34 young mothers who had high or moderate salivary levels of mutans streptococci at baseline. Samples were collected on three occasions, before childbirth, when each child was 6 months old, and 1 year later. Of these isolates, 50% were inhibited at 1 microgram of CHX per ml, 90% were inhibited at 2.0 micrograms/ml, and all were inhibited at 4.0 micrograms/ml. The MICs for Streptococcus mutans isolates (serotypes c, e, and f) were lower than those for Streptococcus sobrinus isolates (serotypes d and g). In some subjects, the MICs for isolates of the same serotype were different. This phenomenon was studied by ribotyping isolates (n = 45) from selected subjects (n = 7). It was found that if there were intraindividual differences in the MICs for isolates of the same serotype, then the ribotypes of these isolates were different. In order to decrease the mutans streptococcal infection risk for children, 24 mothers (test group) brushed their teeth periodically with a gel that contained 0.3% CHX digluconate and 0.2% NaF, pH 5.8, between the second and third sampling occasions. The gel was used twice a day for the first 10 days of each month. Development of resistant strains during CHX-NaF gel use was not detected. The serotype distribution of isolates from the test group after 1 year of periodic CHX-NaF gel use did not differ from that at baseline. Periodic CHX-NaF gel brushing did not lead to lower salivary mutans streptococcal counts.

  14. Chlorhexidine susceptibilities of mutans streptococcal serotypes and ribotypes.

    PubMed Central

    Grönroos, L; Mättö, J; Saarela, M; Luoma, A R; Luoma, H; Jousimies-Somer, H; Pyhälä, L; Asikainen, S; Alaluusua, S

    1995-01-01

    The susceptibilities of 379 clinical mutans streptococcal isolates to chlorhexidine (CHX) were tested by agar dilution according to the standards of the National Committee for Clinical Laboratory Standards. Isolates were obtained from saliva samples of 34 young mothers who had high or moderate salivary levels of mutans streptococci at baseline. Samples were collected on three occasions, before childbirth, when each child was 6 months old, and 1 year later. Of these isolates, 50% were inhibited at 1 microgram of CHX per ml, 90% were inhibited at 2.0 micrograms/ml, and all were inhibited at 4.0 micrograms/ml. The MICs for Streptococcus mutans isolates (serotypes c, e, and f) were lower than those for Streptococcus sobrinus isolates (serotypes d and g). In some subjects, the MICs for isolates of the same serotype were different. This phenomenon was studied by ribotyping isolates (n = 45) from selected subjects (n = 7). It was found that if there were intraindividual differences in the MICs for isolates of the same serotype, then the ribotypes of these isolates were different. In order to decrease the mutans streptococcal infection risk for children, 24 mothers (test group) brushed their teeth periodically with a gel that contained 0.3% CHX digluconate and 0.2% NaF, pH 5.8, between the second and third sampling occasions. The gel was used twice a day for the first 10 days of each month. Development of resistant strains during CHX-NaF gel use was not detected. The serotype distribution of isolates from the test group after 1 year of periodic CHX-NaF gel use did not differ from that at baseline. Periodic CHX-NaF gel brushing did not lead to lower salivary mutans streptococcal counts. PMID:7785991

  15. Anti-Biofilm Activity of a Self-Aggregating Peptide against Streptococcus mutans

    PubMed Central

    Ansari, Juliana M.; Abraham, Nabil M.; Massaro, Jenna; Murphy, Kelsey; Smith-Carpenter, Jillian; Fikrig, Erol

    2017-01-01

    Streptococcus mutans is the primary agent of dental cavities, in large part due to its ability to adhere to teeth and create a molecular scaffold of glucan polysaccharides on the tooth surface. Disrupting the architecture of S. mutans biofilms could help undermine the establishment of biofilm communities that cause cavities and tooth decay. Here we present a synthetic peptide P1, derived from a tick antifreeze protein, which significantly reduces S. mutans biofilm formation. Incubating cells with this peptide decreased biofilm biomass by approximately 75% in both a crystal violet microplate assay and an in vitro tooth model using saliva-coated hydroxyapatite discs. Bacteria treated with peptide P1 formed irregular biofilms with disconnected aggregates of cells and exopolymeric matrix that readily detached from surfaces. Peptide P1 can bind directly to S. mutans cells but does not possess bactericidal activity. Anti-biofilm activity was correlated with peptide aggregation and β-sheet formation in solution, and alternative synthetic peptides of different lengths or charge distribution did not inhibit biofilms. This anti-biofilm peptide interferes with S. mutans biofilm formation and architecture, and may have future applications in preventing bacterial buildup on teeth. PMID:28392782

  16. Distribution of Streptococcus mutans biotypes in five human populations.

    PubMed

    Keene, H J; Shklair, I L; Mickel, G J; Wirthlin, M R

    1977-01-01

    The distribution of S mutans biotypes in five geographically separated human populations was investigated. Samples of dental plaque were obtained from recruits at the US Naval Training Center in Orlando, Fl (N=49) in San Diego, Calif (N=25), and in Great Lakes, Ill (N=194), and from a sample of Hawaiian school children (N=55) and Saudi Arabian Navy personnel (N-217). Cultural and biochemical methods were used for the isolation and identification of the five different biotypes of S mutans which correlate with Bratthall's serotypes a through e. Geographic differences in S mutans biotype distribution were most apparent when the Saudi Arabian sample was compared to the other four groups. Single and multiple biotypes were observed in each group. Multiple biotypes occurred most frequently in the Saudi Arabians. Biotypes a and b were rarely observed; c was the most common in each of the populations; and d and e were more prevalent in the Saudi Arabians than in the other groups. Because of the multifactorial nature of dental caries, caution should be exercised in the interpretation of population differences in caries experience that seem to be associated with differences in S mutans-type distribution.

  17. Collagen-binding proteins of Streptococcus mutans and related streptococci.

    PubMed

    Avilés-Reyes, A; Miller, J H; Lemos, J A; Abranches, J

    2017-04-01

    The ability of Streptococcus mutans to interact with collagen through the expression of collagen-binding proteins (CBPs) bestows this oral pathogen with an alternative to the sucrose-dependent mechanism of colonization classically attributed to caries development. Based on the abundance and distribution of collagen throughout the human body, stringent adherence to this molecule grants S. mutans with the opportunity to establish infection at different host sites. Surface proteins, such as SpaP, WapA, Cnm and Cbm, have been shown to bind collagen in vitro, and it has been suggested that these molecules play a role in colonization of oral and extra-oral tissues. However, robust collagen binding is not achieved by all strains of S. mutans, particularly those that lack Cnm or Cbm. These observations merit careful dissection of the contribution from these different CBPs towards tissue colonization and virulence. In this review, we will discuss the current understanding of mechanisms used by S. mutans and related streptococci to colonize collagenous tissues, and the possible contribution of CBPs to infections in different sites of the host. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Association Between Early Childhood Caries and Colonization with Streptococcus mutans Genotypes From Mothers.

    PubMed

    Childers, Noel K; Momeni, Stephanie S; Whiddon, Jennifer; Cheon, Kyounga; Cutter, Gary R; Wiener, Howard W; Ghazal, Tariq S; Ruby, John D; Moser, Stephen A

    2017-03-15

    The purpose of this study was to evaluate Streptococcus mutans genotypes (GT) between mother and child (M-C) in a high caries risk cohort to explore the association with early childhood caries (ECC). Sixty-nine infants (each approximately one year old) had periodic oral examinations (dmfs) and microbial samples collected from dental plaque, saliva, and other oral surfaces. Their mothers had an examination and plaque collected. S mutans isolates were genotyped using repetitive extragenic palindromic-PCR (rep-PCR). Statistical analyses were conducted for associations of S mutans in M-C dyads with caries outcomes. Twenty-seven S mutans genotypes (GT) from 3,414 isolates were identified. M-C were categorized as GT match (n equals 40) or no-match (n equals 29). When modeling the severity of ECC at 36 months (approximately four years old), the estimated dmfs in the match group was 2.61 times that of the no-match group (P=.014). Colonization of children with Streptococcus mutans genotypes that matched with mothers was shown to be highly associated with early childhood caries. Although the data suggest vertical transmission of S mutans in 40 of 69 children that shared GT with their mother, it is possible that other individuals transmitted the S mutans. Nonetheless, these findings support the importance of the mother's oral microbial status as a contributing influence to their children's oral health.

  19. Treatment of Streptococcus mutans bacteria by a plasma needle

    NASA Astrophysics Data System (ADS)

    Zhang, Xianhui; Huang, Jun; Liu, Xiaodi; Peng, Lei; Guo, Lihong; Lv, Guohua; Chen, Wei; Feng, Kecheng; Yang, Si-ze

    2009-03-01

    A dielectric barrier discharge plasma needle was realized at atmospheric pressure with a funnel-shaped nozzle. The preliminary characteristics of the plasma plume and its applications in the inactivation of Streptococcus mutans (S. mutans), the most important microorganism causing dental caries, were presented in this paper. The temperature of the plasma plume does not reach higher than 315 K when the power is below 28 W. Oxygen was injected downstream in the plasma afterglow region through the powered steel tube. Its effect was studied via optical-emission spectroscopy, both in air and in agar. Results show that addition of 26 SCCM O2 does not affect the plume length significantly (SCCM denotes cubic centimeter per minute at STP). The inactivation of S. mutans is primarily attributed to ultraviolet light emission, O, OH, and He radicals.

  20. Caries risk in children: determined by levels of mutans streptococci and Lactobaccilus.

    PubMed

    Aguilera Galaviz, Luis Alejandro; Premoli, Gloria; Gonzalez, Anajulia; Rodriguez, Rafael Aguilar

    2005-01-01

    Lactobacullus sp. and S. mutans are microorganisms with cariogenic capacity, however, their presence do not determine the presence of dental caries. We evaluated the relationship between the presence of Lactobacillus sp. and S. mutans and dental caries in a schoolchildren population. The relation PI-DMFT have a value of significance p = 0.001489. In dental caries risk evaluation, the S. mutans and Lactobacillus sp. detection in saliva is a good predictor and contributing to the caries development.

  1. Longitudinal survey of the distribution of various serotypes of Streptococcus mutans in infants.

    PubMed

    Masuda, N; Tsutsumi, N; Sobue, S; Hamada, S

    1979-10-01

    The establishment of various serotypes of Streptococcus mutans was studied serologically in plaque samples collected from label surfaces of upper primary incisors of 22 infants (starting age, 5 to 13 months) over a period fo 30 months. Clinical examinations were also performed. No clear-cut association between the initiation of dental caries and previous detection of S. mutans was noted. However, all 12 of the infants with caries had S. mutans isolated at some time during the course of this study. The most common serotype isolated at the initial establishment of S. mutans on the tooth surfaces was serotype c, whereas types d, e, and g became established in a few cases. During the test period, changes in the distribution of serotypes of S. mutans were observed in some cases. The initiation of carious lesions could be found in a few cases even when S. mutans comprised about 1% or less of the total streptococcal count of the specimen from the tooth surfaces. Serotype d/g strains tended to develop carious lesions on smooth surfaces, although serotype c was isolated from almost all individuals who developed caries.

  2. Photo Inactivation of Streptococcus mutans Biofilm by Violet-Blue light.

    PubMed

    Gomez, Grace F; Huang, Ruijie; MacPherson, Meoghan; Ferreira Zandona, Andrea G; Gregory, Richard L

    2016-09-01

    Among various preventive approaches, non-invasive phototherapy/photodynamic therapy is one of the methods used to control oral biofilm. Studies indicate that light at specific wavelengths has a potent antibacterial effect. The objective of this study was to determine the effectiveness of violet-blue light at 380-440 nm to inhibit biofilm formation of Streptococcus mutans or kill S. mutans. S. mutans UA159 biofilm cells were grown for 12-16 h in 96-well flat-bottom microtiter plates using tryptic soy broth (TSB) or TSB with 1 % sucrose (TSBS). Biofilm was irradiated with violet-blue light for 5 min. After exposure, plates were re-incubated at 37 °C for either 2 or 6 h to allow the bacteria to recover. A crystal violet biofilm assay was used to determine relative densities of the biofilm cells grown in TSB, but not in TSBS, exposed to violet-blue light. The results indicated a statistically significant (P < 0.05) decrease compared to the non-treated groups after the 2 or 6 h recovery period. Growth rates of planktonic and biofilm cells indicated a significant reduction in the growth rate of the violet-blue light-treated groups grown in TSB and TSBS. Biofilm viability assays confirmed a statistically significant difference between violet-blue light-treated and non-treated groups in TSB and TSBS. Visible violet-blue light of the electromagnetic spectrum has the ability to inhibit S. mutans growth and reduce the formation of S. mutans biofilm. This in vitro study demonstrated that violet-blue light has the capacity to inhibit S. mutans biofilm formation. Potential clinical applications of light therapy in the future remain bright in preventing the development and progression of dental caries.

  3. Anticariogenic activity of some tropical medicinal plants against Streptococcus mutans.

    PubMed

    Hwang, Jae-Kwan; Shim, Jae-Seok; Chung, Jae-Youn

    2004-09-01

    The methanol extracts of five tropical plants, Baeckea frutescens, Glycyrrhiza glabra, Kaempferia pandurata, Physalis angulata and Quercus infectoria, exhibited potent antibacterial activity against the cariogenic bacterium Streptococcus mutans. In particular, G. glabra, K. pandurata and P. angulata conferred fast killing bactericidal effect against S. mutans in 2 min at 50 microg/ml of extract concentration.

  4. Streptococcus mutans: Fructose Transport, Xylitol Resistance, and Virulence

    PubMed Central

    Tanzer, J.M.; Thompson, A.; Wen, Z.T.; Burne, R.A.

    2008-01-01

    Streptococcus mutans, the primary etiological agent of human dental caries, possesses at least two fructose phosphotransferase systems (PTSs), encoded by fruI and fruCD. fruI is also responsible for xylitol transport. We hypothesized that fructose and xylitol transport systems do not affect virulence. Thus, colonization and cariogenicity of fruI− and fruCD− single and double mutants, their WT (UA159), and xylitol resistance (Xr) of S. mutans were studied in rats fed a high-sucrose diet. A sucrose phosphorylase (gtfA−) mutant and a reference strain (NCTC-10449S) were additional controls. Recoveries of fruI mutant from the teeth were decreased, unlike those for the other strains. The fruCD mutation was associated with a slight loss of cariogenicity on enamel, whereas mutation of fruI was associated with a loss of cariogenicity in dentin. These results also suggest why xylitol inhibition of caries is paradoxically associated with spontaneous emergence of so-called Xr S. mutans in habitual human xylitol users. PMID:16567561

  5. The Collagen Binding Proteins of Streptococcus mutans and Related Streptococci

    PubMed Central

    Avilés-Reyes, Alejandro; Miller, James H.; Lemos, José A.; Abranches, Jacqueline

    2016-01-01

    Summary The ability of Streptococcus mutans to interact with collagen through the expression of collagen-binding proteins (CBPs) bestows this oral pathogen with an alternative to the sucrose-dependent mechanism of colonization classically attributed to caries development. Based on the abundance and distribution of collagen throughout the human body, stringent adherence to this molecule grants S. mutans with the opportunity to establish infection at different host sites. Surface proteins, such as SpaP, WapA, Cnm and Cbm, have been shown to bind collagen in vitro, and it has been suggested that these molecules play a role in colonization of oral and extra-oral tissues. However, robust collagen binding is not achieved by all strains of S. mutans, particularly those that lack Cnm or Cbm. These observations merit careful dissection of the contribution from these different CBPs towards tissue colonization and virulence. In this review, we will discuss the current understanding of mechanisms utilized by S. mutans and related streptococci to colonize collagenous tissues, and the possible contribution of CBPs to infections in different sites of the host. PMID:26991416

  6. Genetic variability of mutans streptococci revealed by wide whole-genome sequencing

    PubMed Central

    2013-01-01

    Background Mutans streptococci are a group of bacteria significantly contributing to tooth decay. Their genetic variability is however still not well understood. Results Genomes of 6 clinical S. mutans isolates of different origins, one isolate of S. sobrinus (DSM 20742) and one isolate of S. ratti (DSM 20564) were sequenced and comparatively analyzed. Genome alignment revealed a mosaic-like structure of genome arrangement. Genes related to pathogenicity are found to have high variations among the strains, whereas genes for oxidative stress resistance are well conserved, indicating the importance of this trait in the dental biofilm community. Analysis of genome-scale metabolic networks revealed significant differences in 42 pathways. A striking dissimilarity is the unique presence of two lactate oxidases in S. sobrinus DSM 20742, probably indicating an unusual capability of this strain in producing H2O2 and expanding its ecological niche. In addition, lactate oxidases may form with other enzymes a novel energetic pathway in S. sobrinus DSM 20742 that can remedy its deficiency in citrate utilization pathway. Using 67 S. mutans genomes currently available including the strains sequenced in this study, we estimates the theoretical core genome size of S. mutans, and performed modeling of S. mutans pan-genome by applying different fitting models. An “open” pan-genome was inferred. Conclusions The comparative genome analyses revealed diversities in the mutans streptococci group, especially with respect to the virulence related genes and metabolic pathways. The results are helpful for better understanding the evolution and adaptive mechanisms of these oral pathogen microorganisms and for combating them. PMID:23805886

  7. Propolis Extracted from the Stingless Bee Trigona sirindhornae Inhibited S. mutans Activity In Vitro.

    PubMed

    Utispan, Kusumawadee; Chitkul, Bordin; Monthanapisut, Paopanga; Meesuk, Ladda; Pugdee, Kamolparn; Koontongkaew, Sittichai

    The aim of this study was to determine the antimicrobial effects of propolis extracted from an endemic species of stingless bee, T. sirindhornae, on the cariogenic bacterium Streptococcus mutans. Dichloromethane extracts (DME) of propolis (DMEP) were prepared and analysed by reverse-phase high-performance liquid chromatography. The antibacterial growth and antibiofilm formation effects of DMEP on S. mutans were compared with those of apigenin, a commercial propolis product. The effects of DMEP and apigenin on glucosyltransferase (gtf) B expression in S. mutans were investigated using real-time polymerase chain reaction. Chlorhexidine (CHX) was used as a positive control in the experiments. Apigenin, pinocembrin, p-coumaric acid, and caffeic acid were not detected in the propolis extracts. DMEP and apigenin significantly inhibited S. mutans growth (IC50 = 43.5 and 17.36 mg/ml, respectively). DMEP and apigenin also exhibited antiadherence effects on S. mutans as shown by reduced biofilm formation. Furthermore, a significant inhibition in gtfB expression was observed in DMEP and apigenin treated S. mutans. Propolis produced by T. sirindhornae demonstrated antibacterial and antibiofilm effects, and reduced gtfB expression in S. mutans. The antibacterial activities of propolis observed were not due to apigenin, pinocembrin, p-coumaric acid, or caffeic acid.

  8. Alanine racemase is essential for the growth and interspecies competitiveness of Streptococcus mutans.

    PubMed

    Wei, Yuan; Qiu, Wei; Zhou, Xue-Dong; Zheng, Xin; Zhang, Ke-Ke; Wang, Shi-Da; Li, Yu-Qing; Cheng, Lei; Li, Ji-Yao; Xu, Xin; Li, Ming-Yun

    2016-12-16

    D-alanine (D-Ala) is an essential amino acid that has a key role in bacterial cell wall synthesis. Alanine racemase (Alr) is a unique enzyme that interconverts L-alanine and D-alanine in most bacteria, making this enzyme a potential target for antimicrobial drug development. Streptococcus mutans is a major causative factor of dental caries. The factors involved in the survival, virulence and interspecies interactions of S. mutans could be exploited as potential targets for caries control. The current study aimed to investigate the physiological role of Alr in S. mutans. We constructed alr mutant strain of S. mutans and evaluated its phenotypic traits and interspecies competitiveness compared with the wild-type strain. We found that alr deletion was lethal to S. mutans. A minimal supplement of D-Ala (150 μg·mL -1 ) was required for the optimal growth of the alr mutant. The depletion of D-alanine in the growth medium resulted in cell wall perforation and cell lysis in the alr mutant strain. We also determined the compromised competitiveness of the alr mutant strain relative to the wild-type S. mutans against other oral streptococci (S. sanguinis or S. gordonii), demonstrated using either conditioned medium assays or dual-species fluorescent in situ hybridization analysis. Given the importance and necessity of alr to the growth and competitiveness of S. mutans, Alr may represent a promising target to modulate the cariogenicity of oral biofilms and to benefit the management of dental caries.

  9. A novel Triclosan Methacrylate-based composite reduces the virulence of Streptococcus mutans biofilm

    PubMed Central

    2018-01-01

    The use of antimicrobial monomers, linked to the polymer chain of resin composites, is an interesting approach to circumvent the effects of bacteria on the dental and material surfaces. In addition, it can likely reduce the incidence of recurrent caries lesions. The aim of this study was to evaluate the effects of a novel Triclosan Methacrylate (TM) monomer, which was developed and incorporated into an experimental resin composite, on Streptococcus mutans (S. mutans) biofilms, focusing on the analyses of vicR, gtfD, gtfC, covR, and gbpB gene expression, cell viability and biofilm characteristics. The contact time between TM-composite and S. mutans down-regulated the gbpB and covR and up-regulated the gtfC gene expression, reduced cell viability and significantly decreased parameters of the structure and characteristics of S. mutans biofilm virulence. The presence of Triclosan Methacrylate monomer causes harmful effects at molecular and cellular levels in S. mutans, implying a reduction in the virulence of those microorganisms. PMID:29608622

  10. Treatment of Streptococcus mutans bacteria by a plasma needle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Xianhui; School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022; Fujian Key Lab of Plasma and Magnetic Resonance, Department of Aeronautics School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005

    2009-03-15

    A dielectric barrier discharge plasma needle was realized at atmospheric pressure with a funnel-shaped nozzle. The preliminary characteristics of the plasma plume and its applications in the inactivation of Streptococcus mutans (S. mutans), the most important microorganism causing dental caries, were presented in this paper. The temperature of the plasma plume does not reach higher than 315 K when the power is below 28 W. Oxygen was injected downstream in the plasma afterglow region through the powered steel tube. Its effect was studied via optical-emission spectroscopy, both in air and in agar. Results show that addition of 26 SCCM O{submore » 2} does not affect the plume length significantly (SCCM denotes cubic centimeter per minute at STP). The inactivation of S. mutans is primarily attributed to ultraviolet light emission, O, OH, and He radicals.« less

  11. Mucin can enhance growth, biofilm formation, and survival of Streptococcus mutans.

    PubMed

    Mothey, Deepa; Buttaro, Bettina A; Piggot, Patrick J

    2014-01-01

    Streptococcus mutans is a member of the dental plaque and is the primary causative agent of dental caries. It can survive extended periods of starvation, which may occur in different niches within the oral cavity. We have found that mucin compensated for the absence of amino acids to promote exponential growth and biofilm formation of S. mutans in minimal medium supplemented with glucose and sucrose, respectively. Mucin extended survival in conditions where there was no net growth provided the operon encoding the pyruvate dehydrogenase complex was intact. Mucin extended survival in conditions of amino acid sufficiency provided the tagatose pathway for galactose utilization was intact, suggesting that S. mutans can scavenge sufficient galactose from mucin to enhance survival, although not to serve as a primary carbon and energy source. The results suggest that mucin has a metabolic role in promoting survival of S. mutans. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  12. Infection of specific strains of Streptococcus mutans, oral bacteria, confers a risk of ulcerative colitis

    PubMed Central

    Kojima, Ayuchi; Nakano, Kazuhiko; Wada, Koichiro; Takahashi, Hirokazu; Katayama, Kazufumi; Yoneda, Masato; Higurashi, Takuma; Nomura, Ryota; Hokamura, Kazuya; Muranaka, Yoshinori; Matsuhashi, Nobuyuki; Umemura, Kazuo; Kamisaki, Yoshinori; Nakajima, Atsushi; Ooshima, Takashi

    2012-01-01

    Although oral bacteria-associated systemic diseases have been reported, association between Streptococcus mutans, pathogen of dental caries, and ulcerative colitis (UC) has not been reported. We investigated the effect of various S. mutans strains on dextran sodium sulfate (DSS)-induced mouse colitis. Administration of TW295, the specific strain of S. mutans, caused aggravation of colitis; the standard strain, MT8148 did not. Localization of TW295 in hepatocytes in liver was observed. Increased expression of interferon-γ in liver was also noted, indicating that the liver is target organ for the specific strain of S. mutans-mediated aggravation of colitis. The detection frequency of the specific strains in UC patients was significantly higher than in healthy subjects. Administration of the specific strains of S. mutans isolated from patients caused aggravation of colitis. Infection with highly-virulent specific types of S. mutans might be a potential risk factor in the aggravation of UC. PMID:22451861

  13. SMU.940 regulates dextran-dependent aggregation and biofilm formation in Streptococcus mutans.

    PubMed

    Senpuku, Hidenobu; Yonezawa, Hideo; Yoneda, Saori; Suzuki, Itaru; Nagasawa, Ryo; Narisawa, Naoki

    2018-02-01

    The oral bacterium Streptococcus mutans is the principal agent in the development of dental caries. Biofilm formation by S. mutans requires bacterial attachment, aggregation, and glucan formation on the tooth surface under sucrose supplementation conditions. Our previous microarray analysis of clinical strains identified 74 genes in S. mutans that were related to biofilm morphology; however, the roles of almost all of these genes in biofilm formation are poorly understood. We investigated the effects of 21 genes randomly selected from our previous study regarding S. mutans biofilm formation, regulation by the complement pathway, and responses to competence-stimulating peptide. Eight competence-stimulating peptide-dependent genes were identified, and their roles in biofilm formation and aggregation were examined by mutational analyses of the S. mutansUA159 strain. Of these eight genes, the inactivation of the putative hemolysin III family SMU.940 gene of S. mutansUA159 promoted rapid dextran-dependent aggregation and biofilm formation in tryptic soy broth without dextrose (TSB) with 0.25% glucose and slightly reduced biofilm formation in TSB with 0.25% sucrose. The SMU.940 mutant showed higher expression of GbpC and gbpC gene than wild-type. GbpC is known to be involved in the dextran-dependent aggregation of S. mutans. An SMU.940-gbpC double mutant strain was constructed in the SMU.940 mutant background. The gbpC mutation completely abolished the dextran-dependent aggregation of the SMU.940 mutant. In addition, the aggregation of the mutant was abrogated by dextranase. These findings suggest that SMU.940 controls GbpC expression, and contributes to the regulation of dextran-dependent aggregation and biofilm formation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Assessment of clonality and serotypes of Streptococcus mutans among children by multilocus sequence typing.

    PubMed

    Momeni, Stephanie S; Whiddon, Jennifer; Cheon, Kyounga; Moser, Stephen A; Childers, Noel K

    2015-12-01

    Studies using multilocus sequence typing (MLST) have demonstrated that Streptococcus mutans isolates are genetically diverse. Our laboratory previously demonstrated clonality of S. mutans using MLST but could not discount the possibility of sampling bias. In this study, the clonality of randomly selected S. mutans plaque isolates from African-American children was examined using MLST. Serotype and the presence of collagen-binding proteins (CBPs) encoded by cnm/cbm were also assessed. One-hundred S. mutans isolates were randomly selected for MLST analysis. Sequence analysis was performed and phylogenetic trees were generated using start2 and mega. Thirty-four sequence types were identified, of which 27 were unique to this population. Seventy-five per cent of the isolates clustered into 16 clonal groups. The serotypes observed were c (n = 84), e (n = 3), and k (n = 11). The prevalence of S. mutans isolates of serotype k was notably high, at 17.5%. All isolates were cnm/cbm negative. The clonality of S. mutans demonstrated in this study illustrates the importance of localized population studies and are consistent with transmission. The prevalence of serotype k, a recently proposed systemic pathogen, observed in this study, is higher than reported in most populations and is the first report of S. mutans serotype k in a United States population. © 2015 Eur J Oral Sci.

  15. Effects of sub-minimum inhibitory concentrations of antimicrobial agents on Streptococcus mutans biofilm formation.

    PubMed

    Dong, Liping; Tong, Zhongchun; Linghu, Dake; Lin, Yuan; Tao, Rui; Liu, Jun; Tian, Yu; Ni, Longxing

    2012-05-01

    Many studies have demonstrated that sub-minimum inhibitory concentrations (sub-MICs) of antimicrobial agents can inhibit bacterial biofilm formation. However, the mechanisms by which antimicrobial agents at sub-MICs inhibit biofilm formation remain unclear. At present, most studies are focused on Gram-negative bacteria; however, the effects of sub-MICs of antimicrobial agents on Gram-positive bacteria may be more complex. Streptococcus mutans is a major cariogenic bacterium. In this study, the S. mutans growth curve as well as the expression of genes related to S. mutans biofilm formation were evaluated following treatment with 0.5× MIC of chlorhexidine (CHX), tea polyphenols and sodium fluoride (NaF), which are common anticaries agents. The BioFlux system was employed to generate a biofilm under a controlled flow. Morphological changes of the S. mutans biofilm were observed and analysed using field emission scanning electron microscopy and confocal laser scanning microscopy. The results indicated that these three common anticaries agents could significantly upregulate expression of the genes related to S. mutans biofilm formation, and S. mutans exhibited a dense biofilm with an extensive extracellular matrix following treatment with sub-MICs of NaF and CHX. These findings suggest that sub-MICs of anticaries agents favour S. mutans biofilm formation, which might encourage dental caries progression. Copyright © 2012 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  16. Silver nanoparticles with antimicrobial activities against Streptococcus mutans and their cytotoxic effect.

    PubMed

    Pérez-Díaz, Mario Alberto; Boegli, Laura; James, Garth; Velasquillo, Cristina; Sánchez-Sánchez, Roberto; Martínez-Martínez, Rita-Elizabeth; Martínez-Castañón, Gabriel Alejandro; Martinez-Gutierrez, Fidel

    2015-10-01

    Microbial resistance represents a challenge for the scientific community to develop new bioactive compounds. The goal of this research was to evaluate the antimicrobial activity of silver nanoparticles (AgNPs) against a clinical isolate of Streptococcus mutans, antibiofilm activity against mature S. mutans biofilms and the compatibility with human fibroblasts. The antimicrobial activity of AgNPs against the planktonic clinical isolate was size and concentration dependent, with smaller AgNPs having a lower minimum inhibitory concentration. A reduction of 2.3 log in the number of colony-forming units of S. mutans was observed when biofilms grown in a CDC reactor were exposed to 100 ppm of AgNPs of 9.5±1.1 nm. However, AgNPs at high concentrations (>10 ppm) showed a cytotoxic effect upon human dermal fibroblasts. AgNPs effectively inhibited the growth of a planktonic S. mutans clinical isolate and killed established S. mutans biofilms, which suggests that AgNPs could be used for prevention and treatment of dental caries. Further research and development are necessary to translate this technology into therapeutic and preventive strategies. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. [The occurrence of Streptococcus mutans variants in man and laboratory animals].

    PubMed

    Gehring, F; Karle, E J; Patz, J; Felfe, W; Bradatsch, U

    1976-01-01

    Numerous S. mutans strains isolated from human dental plaque and from that of rats and hamsters were classified by a well-known biochemical differentiation system for the separation of the serotypes "a to e", and by seven different biotypes (I-VII). 182 S. mutans strains from human plaque were assigned to the following serotypes: "c" = 68%, "d" = 19%, and "b" and "e" = 4% each. Serotype "a" was not found at all and 10 strains could not be classified. Out of 60 S. mutans strains from the oral cavity of rats, 85% belonged to serotype "c", while in 25 strains from hamsters serotypes "e" and "d" predominated.

  18. Contribution of the Collagen-Binding Proteins of Streptococcus mutans to Bacterial Colonization of Inflamed Dental Pulp.

    PubMed

    Nomura, Ryota; Ogaya, Yuko; Nakano, Kazuhiko

    2016-01-01

    Streptococcus mutans is a major pathogen of dental caries. Collagen-binding proteins (CBPs) (approximately 120 kDa), termed Cnm and Cbm, are regarded as important cell surface antigens related to the adherence of S. mutans to collagenous tissue. Furthermore, CBP-positive S. mutans strains are associated with various systemic diseases involving bacteremia, such as infective endocarditis. Endodontic infection is considered to be an important cause of bacteremia, but little is known regarding the presence of S. mutans in dental pulp tissue. In the present study, the distribution and virulence of S. mutans in dental pulp tissues were investigated by focusing on CBPs. Adhesion and invasion properties of various S. mutans strains were analyzed using human dental pulp fibroblasts (HDPFs). CBP-positive strains had a significantly higher rate of adhesion to HDPFs compared with CBP-defective isogenic mutant strains (P<0.001). In addition, CBP-positive strains induced HDPF proliferation, which is a possible mechanism related to development of hyperplastic pulpitis. The distribution of S. mutans strains isolated from infected root canal specimens was then analyzed by PCR. We found that approximately 50% of the root canal specimens were positive for S. mutans. Approximately 20% of these strains were Cnm-positive, while no Cbm-positive strains were isolated. The Cnm-positive strains isolated from the specimens showed adhesion to HDPFs. Our results suggest that CBP-positive S. mutans strains exhibit high colonization in dental pulp. This could be a possible virulence factor for various systemic diseases.

  19. Recolonization of mutans Streptococci after application of chlorhexidine gel.

    PubMed

    Vale, Glauber Campos; Cury, Altair Antoninha Del Bel; Arthur, Rodrigo Alex; Cury, Jaime Aparecido; Tabchoury, Cínthia Pereira Machado

    2014-01-01

    Streptococcus mutans is specifically suppressed by intensive treatment with chlorhexidine gel, but the time for recolonization and the effect on other oral bacteria are not totally clear. In this study, recolonization of mutans streptococci was evaluated in nine healthy adult volunteers, who were highly colonized with this microorganism. Stimulated saliva was collected before (baseline) and at 1, 7, 14, 21 and 28 days after application of 1% chlorhexidine gel on volunteers' teeth for two consecutive days. On each day, the gel was applied using disposable trays for 3 x 5 min with intervals of 5 min between each application. Saliva was plated on blood agar to determine total microorganisms (TM); on mitis salivarius agar to determine total streptococci (TS) and on mitis salivarius agar plus bacitracin to determine mutans streptococci (MS). Chlorhexidine was capable of reducing the counts of MS and the proportion of MS with regard to total microorganisms (%MS/TM) (p<0.05), but these values did not differ statistically from baseline (p>0.05) after 14 days for MS and 21 days for %MS/TM. The counts of TM and TS and the proportion of MS to total streptococci did not differ statistically from baseline (p>0.05) after chlorhexidine treatment. The results suggest that the effect of chlorhexidine gel treatment on suppression of mutans streptococci is limited to less than a month in highly colonized individuals.

  20. Antibacterial activity of Baccharis dracunculifolia in planktonic cultures and biofilms of Streptococcus mutans.

    PubMed

    Pereira, Cristiane A; Costa, Anna Carolina B Pereira; Liporoni, Priscila Christiane S; Rego, Marcos A; Jorge, Antonio Olavo C

    2016-01-01

    Streptococcus mutans is an important cariogenic microorganism, and alternative methods for its elimination are required. Different concentrations of Baccharis dracunculifolia essential oil (EO) were tested to determine its minimal inhibitory concentration (MIC) in planktonic cultures, and this concentration was used in S. mutans biofilms. Additionally, we assessed the effect of a 0.12% chlorhexidine (CHX) and saline solution in S. mutans biofilms. The biofilms were grown in discs of composite resin for 48h and exposed to B. dracunculifolia, CHX or saline solution for 5min. The viability of the biofilms was determined by counting the colony-forming units per milliliter (CFU/ml) in agar, which was statistically significant (P<0.05). The MIC of the B. dracunculifolia EO to planktonic growth of S. mutans was 6%. In biofilms of S. mutans clinical isolates, B. dracunculifolia EO (6%) and CHX resulted in reductions of 53.3-91.1% and 79.1-96.6%, respectively. For the biofilm formed by the S. mutans reference strain, the reductions achieved with B. dracunculifolia EO and CHX were, respectively, 39.3% and 88.1%. It was concluded that B. dracunculifolia EO showed antibacterial activity and was able to control this oral microorganism, which otherwise causes dental caries. Copyright © 2015 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  1. Inhibitory effects of antiseptic mouthrinses on Streptococcus mutans, Streptococcus sanguinis and Lactobacillus acidophilus.

    PubMed

    Evans, A; Leishman, S J; Walsh, L J; Seow, W K

    2015-06-01

    Oral antiseptics are valuable in controlling oral infections caused by cariogenic bacteria. The aim of this study was to investigate the effects of mouthrinses and pure antiseptic compounds on Streptococcus mutans and non-mutans bacteria (Streptococcus sanguinis and Lactobacillus acidophilus). The agar diffusion assay was employed to determine bacterial growth inhibition. Commercial mouthrinses containing chlorhexidine gluconate (0.2%), cetylpyridinium chloride (0.05%) and sodium fluoride (0.05%) produced statistically similar growth inhibition of S. mutans, S. sanguinis and L. acidophilus (with zones of inhibition ranging from 7.56 ± 0.52 mm to 7.39 ± 0.53 mm, 17.44 ± 0.94 mm to 18.31 ± 0.62 mm and 8.61 ± 1.43 to 8.67 ± 1.43 mm respectively, p > 0.05). The chlorhexidine mouthwash produced the greatest mean growth inhibition of S. sanguinis and S. mutans compared to all other mouthrinses tested (p < 0.01). The minimum concentrations at which inhibition against S. mutans could be detected were chlorhexidine gluconate at 0.005% (wt/vol), cetylpyridinium chloride 0.01% (wt/ vol), povidone iodine 10% (wt/vol) and sodium hypochlorite 0.5% (vol/vol). Chlorhexidine (0.01%), cetylpyridinium chloride (0.01%), povidone iodine (10%) and sodium hypochlorite (0.5%) are effective at inhibiting the growth of S. mutans, S. sanguinis and L. acidophilus. © 2015 Australian Dental Association.

  2. The antibacterial effect of four mouthwashes against streptococcus mutans and escherichia coli.

    PubMed

    Ghapanchi, Janan; Lavaee, Fatemeh; Moattari, Afagh; Shakib, Mahmood

    2015-04-01

    To evaluate the antimicrobial properties of several mouthwash concentrations on oral Streptococcus mutans and Escherichia coli. The study was conducted at Shiraz Medicine School in 2011. Serial dilutions of Chlorohexidin, Oral B and Persica and Irsha (2,4,8,16,64,128) were prepared in Muller-Hinton media. Minimum inhibitory concentration was visually determined and defined as the lowest concentration of each oral washing which inhibited > 95% growth reduction compared to the growth control well. Chlorhexidine, Oral B and Irsha mouthwash inhibited Streptococcus mutans even with diluted concentrations. Also, Chlorhexidine and Oral B prohibited Escherichia coli with different potencies. But Persica had no antimicrobial activity against either Escherichia coli or Streptococcus mutans. Chlorhexidine, Irsha, and Oral B mouthwashes can be used for antimicrobial effects, especially on Streptococcus mutans. This chemical activity of mouthwashes is an adjuvant for mechanical removing of plaque. However, the antimicrobial effect of Persicaremains controversial.

  3. Antibiofilm Activities of a Novel Chimeolysin against Streptococcus mutans under Physiological and Cariogenic Conditions

    PubMed Central

    Yang, Hang; Bi, Yongli; Shang, Xiaoran; Wang, Mengyue; Linden, Sara B.; Li, Yunpeng

    2016-01-01

    Streptococcus mutans often survives as a biofilm on the tooth surface and contributes to the development of dental caries. We investigated the efficacy of ClyR, an engineered chimeolysin, against S. mutans biofilms under physiological and cariogenic conditions. Susceptibility tests showed that ClyR was active against all clinical S. mutans isolates tested as well as S. mutans biofilms that displayed resistance to penicillin. The S. mutans biofilms that formed on hydroxyapatite discs under physiological sugar conditions and cariogenic conditions were reduced ∼2 logs and 3 logs after treatment with 100 μg/ml ClyR, respectively. In comparison, only a 1-log reduction was observed in the chlorhexidine gluconate (ChX)-treated group, and no killing effect was observed in the NaF-treated group. A mouse dental colonization model showed that repeated use of ClyR for 3 weeks (5 μg/day) reduced the number of colonized S. mutans cells in the dental plaques significantly (P < 0.05) and had no harmful effects on the mice. Furthermore, toxicity was not noted at concentrations exceeding those used for the in vitro and in vivo studies, and ClyR-specific antibodies could not be detected in mouse saliva after repeated use of ClyR in the oral cavity. Our data collectively demonstrate that ClyR is active against S. mutans biofilms both in vitro and in vivo, thus representing a preventative or therapeutic agent for use against dental caries. PMID:27736755

  4. Effect of a propolis extract on Streptococcus mutans counts in vivo.

    PubMed

    Duailibe, Silvana Alves de Carvalho; Gonçalves, Azizedite Guedes; Ahid, Fernando Jorge Mendes

    2007-10-01

    To evaluate the antibacterial action of an extract of geopropolis produced by the bee Melipona compressipes fasciculata on the concentration of Streptococcus mutans colonizing the oral cavity of young patients. Forty-one young volunteers performed 21 mouth rinses divided into three rinses per day for 7 days, with no other changes in their oral hygiene and dietary habits. Saliva was collected at three time points: before the first rinse, and one hour and 7 days after the first rinse. A reduction in the concentration of S. mutans was observed in 49% of all samples collected after use of the extract, 26% showed no alterations, and an increasing in S. mutans was observed in 25%. Was performed with the Statistica for Windows 5.9 program using the Kruskal-Wallis test for analysis of variance and the Mann-Whitney U test, with the level of significance set at 5%. The propolis extract possesses in vivo antimicrobial activity against S. mutans present in the oral cavity and might be used as an alternative measure to prevent dental caries.

  5. A Nuclease from Streptococcus mutans Facilitates Biofilm Dispersal and Escape from Killing by Neutrophil Extracellular Traps

    PubMed Central

    Liu, Jia; Sun, Luping; Liu, Wei; Guo, Lihong; Liu, Zhaohui; Wei, Xi; Ling, Junqi

    2017-01-01

    Streptococcus mutans is the primary etiologic agent of dental caries and occasionally infective endocarditis, with the ability to form biofilms and disperse cells into distal sites to exacerbate and spread infection. In this study, we identified a nuclease (DeoC) as a S. mutans biofilm dispersal modulating factor through microarray analysis. In vitro assays revealed a dispersal defect of a deoC deletion mutant, and functional studies with purified protein were indicative of the biofilm dispersal activity of DeoC. Neutrophils are a key host response factor restraining bacterial spreading through the formation of neutrophil extracellular traps (NETs), which consist of a nuclear DNA backbone associated with antimicrobial peptides. Therefore, we hypothesized that the dispersed S. mutans might utilize DeoC to degrade NETs and escape killing by the immune system. It was found that S. mutans induced NET formation upon contact with neutrophils, while the presence of NETs in turn enhanced the deoC expression of S. mutans. Fluorescence microscopy inspection showed that deoC deletion resulted in a decreased NET degradation ability of S. mutans and enhanced susceptibility to neutrophil killing. Data obtained from this study assigned two important roles for DeoC in S. mutans: contributing to the spread of infection through mediating biofilm dispersal, and facilitating the escape of S. mutans from neutrophil killing through NET degradation. PMID:28401067

  6. A Nuclease from Streptococcus mutans Facilitates Biofilm Dispersal and Escape from Killing by Neutrophil Extracellular Traps.

    PubMed

    Liu, Jia; Sun, Luping; Liu, Wei; Guo, Lihong; Liu, Zhaohui; Wei, Xi; Ling, Junqi

    2017-01-01

    Streptococcus mutans is the primary etiologic agent of dental caries and occasionally infective endocarditis, with the ability to form biofilms and disperse cells into distal sites to exacerbate and spread infection. In this study, we identified a nuclease (DeoC) as a S. mutans biofilm dispersal modulating factor through microarray analysis. In vitro assays revealed a dispersal defect of a deoC deletion mutant, and functional studies with purified protein were indicative of the biofilm dispersal activity of DeoC. Neutrophils are a key host response factor restraining bacterial spreading through the formation of neutrophil extracellular traps (NETs), which consist of a nuclear DNA backbone associated with antimicrobial peptides. Therefore, we hypothesized that the dispersed S. mutans might utilize DeoC to degrade NETs and escape killing by the immune system. It was found that S. mutans induced NET formation upon contact with neutrophils, while the presence of NETs in turn enhanced the deoC expression of S. mutans . Fluorescence microscopy inspection showed that deoC deletion resulted in a decreased NET degradation ability of S. mutans and enhanced susceptibility to neutrophil killing. Data obtained from this study assigned two important roles for DeoC in S. mutans : contributing to the spread of infection through mediating biofilm dispersal, and facilitating the escape of S. mutans from neutrophil killing through NET degradation.

  7. Effect of citrus lemon oil on growth and adherence of Streptococcus mutans.

    PubMed

    Liu, Ying; Zhang, Xiangyu; Wang, Yuzhi; Chen, Feifei; Yu, Zhifen; Wang, Li; Chen, Shuanglu; Guo, Maoding

    2013-07-01

    In order to exploit novel anticaries agents, we investigated the effects of citrus lemon oil (CLO), a type of natural product, on growth and adherence of the primary oral cariogenic bacteria Streptococcus mutans (S. mutans). The growth inhibitory effect was explored with a micro-dilution assay. Adherence was analyzed by colony counts on the respective surfaces and the adherence inhibition rate (AIR). Real time-PCR was used to investigate the effects of CLO on transcription of glucosyltransferase (Gtf) encoding genes, gtfB, C and D. Neson-Somogyi method was used to measure the effects of CLO on Gtf activity. The minimum inhibitory concentration of CLO against S. mutans was 4.5 mg/ml. The CLO effectively reduced the adherence of S. mutans on glass surface (the AIR were from 98.3 to 100 %, P > 0.05) and saliva-coated enamel surface (the AIR were from 54.8 to 79.2 %, P < 0.05). CLO effectively reduced the activity of Gtf and the transcription of gtfs in a dose dependent manner (P < 0.05). In conclusion, CLO can effectively inhibit the growth and the adherence to glass and saliva-coated enamel surfaces of S. mutans. It can also inhibit the transcription of gtfs, as well as the Gtf enzyme activity.

  8. The effect of propolis honey candy on Streptococcus mutans prevalence in caries and caries-free subjects

    NASA Astrophysics Data System (ADS)

    Soekanto, Sri Angky; Bachtiar, Endang W.; Jiwanakusuma, Pramodanti; Gladea, Zahara; Sahlan, Muhamad

    2018-02-01

    This study was to evaluate the effect of Propolis Honey candy on Streptococcus mutans prevalence in caries and caries-free subject. The subject of this research was caries and caries-free subjects. The Streptococcus mutans colony was counted in saliva samples before and after a 7-day period of consuming Propolis Honey candy, Honey candy, and "X" candy. The Streptococcus mutans was proliferated in a TYS20B gelatin medium for 48 hours. The number of Streptococcus mutans colonies was expressed in CFU/ml. Compared with the pre-treatment group, the number of Streptococcus mutans colonies in the treatment group tends to show a statistically significant reduction (p<0.05). The amount of Streptococcus mutans after consuming Propolis honey candy were lower (5.8×106 CFU/ml) than before (2.4×1010 CFU/ml) in caries-free subject. In caries subject, the result of Propolis honey candy were also lower (2.2×107 CFU/ml) than before (5.8×109 CFU/ml). The study showed a decrease in the number of Streptococcus mutans colonies from caries and caries-free subjects after propolis honey candy consumption.

  9. Effects of Salts and Metal Oxides on Electrochemical and Optical Properties of Streptococcus mutans

    NASA Astrophysics Data System (ADS)

    Kawai, Tsuyoshi; Nagame, Seigo; Kambara, Masaki; Yoshino, Katsumi

    1994-10-01

    The effects of calcium salts and metal oxide powders on electrochemical, optical and biological properties of Streptococcus mutans have been studied as a novel method to determine the strain. Electrochemical signals of Streptococcus mutans show remarkable decrease in the presence of saturated calcium salts such as CaHPO4, Ca3(PO4)2, and Ca5(PO4)3OH depending on the strains of Streptococcus mutans: Ingbritt, NCTC-10449, or GS-5. The number of viable cells also decreases upon addition of these powders. The effects of metal oxides such as ZnO and BaTiO3 on the electrochemical characteristics and photoluminescence of Streptococcus mutans have also been studied.

  10. Interference of oral hygiene products with an adhesion-based assay of salivary mutans streptococci.

    PubMed

    Söderling, E; Ketola, T; Parviainen, T

    1991-04-01

    The effect of several oral hygiene products on an adhesion-based assay for salivary mutans streptococci (Dentocult-SM Strip Mutans) was studied in three women. The mutans streptococci levels were recorded for up to 24 h after a 1-min rinse with the product. The chlorhexidine (0.05%) and stanno-amine fluoride solutions (corresponding 0.025% F) interfered selectively with the adhesion-based assay. No such effect was observed for a polyvidoneiodine solution (10 micrograms/ml) or two toothpastes containing either sodium lauryl sulfate or amine fluorides. The results indicate that antimicrobial agents showing retention in the oral cavity may interfere for several hours after their use with adhesion-based assays of salivary mutans streptococci.

  11. Contribution of chloride channel permease to fluoride resistance in Streptococcus mutans.

    PubMed

    Murata, Takatoshi; Hanada, Nobuhiro

    2016-06-01

    Genes encoding fluoride transporters have been identified in bacterial and archaeal species. The genome sequence of the cariogenic Streptococcus mutans bacteria suggests the presence of a putative fluoride transporter, which is referred to as a chloride channel permease. Two homologues of this gene (GenBank locus tags SMU_1290c and SMU_1289c) reside in tandem in the genome of S. mutans The aim of this study was to determine whether the chloride channel permeases contribute to fluoride resistance. We constructed SMU_1290c- and SMU_1289c-knockout S. mutans UA159 strains. We also constructed a double-knockout strain lacking both genes. SMU_1290c or SMU_1289c was transformed into a fluoride transporter- disrupted Escherichia coli strain. All bacterial strains were cultured under appropriate conditions with or without sodium fluoride, and fluoride resistance was evaluated. All three gene-knockout S. mutans strains showed lower resistance to sodium fluoride than did the wild-type strain. No significant changes in resistance to other sodium halides were recognized between the wild-type and double-knockout strains. Both SMU_1290c and SMU_1289c transformation rescued fluoride transporter-disrupted E. coli cell from fluoride toxicity. We conclude that the chloride channel permeases contribute to fluoride resistance in S. mutans. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Serotype classification of Streptococcus mutans and its detection outside the oral cavity.

    PubMed

    Nakano, Kazuhiko; Ooshima, Takashi

    2009-09-01

    Streptococcus mutans, generally known as a major pathogen of dental caries, is also a possible causative agent of bacteremia and infective endocarditis. S. mutans is classified into serotypes c, e, f and k based on the chemical composition of serotype-specific polysaccharides, with approximately 70-80% of strains found in the oral cavity classified as serotype c, followed by e (approximately 20%), and f and k (less than 5% each). Serotype k was recently designated as a novel serotype and shown to possess unique features, the most prominent being a defect of the glucose side chain in serotype-specific rhamnose-glucose polymers, which is related to a higher incidence of detection in cardiovascular specimens, owing to phagocytosis resistance. Molecular analyses of cardiovascular specimens showed a high detection frequency for S. mutans DNA, among which the detection rate for serotype k was quite high. These findings suggest that serotype k S. mutans possibly has a high level of virulence for systemic diseases.

  13. Cariogenic properties of Streptococcus mutans clinical isolates with sortase defects.

    PubMed

    Lapirattanakul, Jinthana; Takashima, Yukiko; Tantivitayakul, Pornpen; Maudcheingka, Thaniya; Leelataweewud, Pattarawadee; Nakano, Kazuhiko; Matsumoto-Nakano, Michiyo

    2017-09-01

    In Streptococcus mutans, a Gram-positive pathogen of dental caries, several surface proteins are anchored by the activity of sortase enzyme. Although various reports have shown that constructed S. mutans mutants deficient of sortase as well as laboratory reference strains with a sortase gene mutation have low cariogenic potential, no known studies have investigated clinical isolates with sortase defects. Here, we examined the cariogenic properties of S. mutans clinical isolates with sortase defects as well as caries status in humans harboring such defective isolates. Sortase-defective clinical isolates were evaluated for biofilm formation, sucrose-dependent adhesion, stress-induced dextran-dependent aggregation, acid production, and acid tolerance. Additionally, caries indices of subjects possessing such defective isolates were determined. Our in vitro results indicated that biofilm with a lower quantity was formed by sortase-defective as compared to non-defective isolates. Moreover, impairments of sucrose-dependent adhesion and stress-induced dextran-dependent aggregation were found among the isolates with defects, whereas no alterations were seen in regard to acid production or tolerance. Furthermore, glucan-binding protein C, a surface protein anchored by sortase activity, was predominantly detected in culture supernatants of all sortase-defective S. mutans isolates. Although the sortase-defective isolates showed lower cariogenic potential because of a reduction in some cariogenic properties, deft/DMFT indices revealed that all subjects harboring those isolates had caries experience. Our findings suggest the impairment of cariogenic properties in S. mutans clinical isolates with sortase defects, though the detection of these defective isolates seemed not to imply low caries risk in the subjects harboring them. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Purification and certain properties of a bacteriocin from Streptococcus mutans.

    PubMed

    Ikeda, T; Iwanami, T; Hirasawa, M; Watanabe, C; McGhee, J R; Shiota, T

    1982-03-01

    An inhibition factor from Streptococcus mutans strain C3603 (serotype c) was purified and isolated, and its properties indicated that it was a bacteriocin. Bacteriocin C3603 is a basic protein with a pI value of 10 and a molecular weight of 4,800. The activity of this bacteriocin was not affected by pH over a range of 1.0 to 12.0 or by storage at 100 degrees C for 10 min at pH 2.0 to 7.0 or storage at 121 degrees C for 15 min at pH 4.0. Pronase; papain, phospholipase C, trypsin, and alpha-amylase had no effect on the activity of the bacteriocin, whereas alpha-chymotrypsin and pancreatin were partially active against it. Bacteriocin activity was greater against certain S. mutans strains of serotypes b, c, e, and f than against certain S. mutans strains of serotypes a, d, and g. Bacteriocin C3603 was also effective against selected strains of S. sanguis, S. salivarius, S. bovis, S. faecium, S. lactis, Lactobacillus casei, L. plantarum, L. fermentum, Bifidobacterium bifidum, Bifidobacterium longum, Propionibacterium acnes, and Bacteroides melaninogenicus, but it was not effective against certain strains of Escherichia coli, Klebsiella pneumoniae, Corynebacterium parvum, and Candida albicans. The inhibition of S. mutans strains BHT and PS-14 by bacteriocin C3603 was found to be due to the bacteriocidal activity of the bacteriocin. When water or a diet containing bacteriocin C3603 was consumed by gnotobiotic and specific pathogen-free rats infected with S. mutans PS-14, the caries score was found to be significantly reduced.

  15. A genome-wide study of two-component signal transduction systems in eight newly sequenced mutans streptococci strains

    PubMed Central

    2012-01-01

    Background Mutans streptococci are a group of gram-positive bacteria including the primary cariogenic dental pathogen Streptococcus mutans and closely related species. Two component systems (TCSs) composed of a signal sensing histidine kinase (HK) and a response regulator (RR) play key roles in pathogenicity, but have not been comparatively studied for these oral bacterial pathogens. Results HKs and RRs of 8 newly sequenced mutans streptococci strains, including S. sobrinus DSM20742, S. ratti DSM20564 and six S. mutans strains, were identified and compared to the TCSs of S. mutans UA159 and NN2025, two previously genome sequenced S. mutans strains. Ortholog analysis revealed 18 TCS clusters (HK-RR pairs), 2 orphan HKs and 2 orphan RRs, of which 8 TCS clusters were common to all 10 strains, 6 were absent in one or more strains, and the other 4 were exclusive to individual strains. Further classification of the predicted HKs and RRs revealed interesting aspects of their putative functions. While TCS complements were comparable within the six S. mutans strains, S. sobrinus DSM20742 lacked TCSs possibly involved in acid tolerance and fructan catabolism, and S. ratti DSM20564 possessed 3 unique TCSs but lacked the quorum-sensing related TCS (ComDE). Selected computational predictions were verified by PCR experiments. Conclusions Differences in the TCS repertoires of mutans streptococci strains, especially those of S. sobrinus and S. ratti in comparison to S. mutans, imply differences in their response mechanisms for survival in the dynamic oral environment. This genomic level study of TCSs should help in understanding the pathogenicity of these mutans streptococci strains. PMID:22475007

  16. Oxidative Stressors Modify the Response of Streptococcus mutans to Its Competence Signal Peptides

    PubMed Central

    De Furio, Matthew; Ahn, Sang Joon

    2017-01-01

    ABSTRACT The dental caries pathogen Streptococcus mutans is continually exposed to several types of stress in the oral biofilm environment. Oxidative stress generated by reactive oxygen species has a major impact on the establishment, persistence, and virulence of S. mutans. Here, we combined fluorescent reporter-promoter fusions with single-cell imaging to study the effects of reactive oxygen species on activation of genetic competence in S. mutans. Exposure to paraquat, which generates superoxide anion, produced a qualitatively different effect on activation of expression of the gene for the master competence regulator, ComX, than did treatment with hydrogen peroxide (H2O2), which can yield hydroxyl radical. Paraquat suppressed peptide-mediated induction of comX in a progressive and cumulative fashion, whereas the response to H2O2 displayed a strong threshold behavior. Low concentrations of H2O2 had little effect on induction of comX or the bacteriocin gene cipB, but expression of these genes declined sharply if extracellular H2O2 exceeded a threshold concentration. These effects were not due to decreased reporter gene fluorescence. Two different threshold concentrations were observed in the response to H2O2, depending on the gene promoter that was analyzed and the pathway by which the competence regulon was stimulated. The results show that paraquat and H2O2 affect the S. mutans competence signaling pathway differently, and that some portions of the competence signaling pathway are more sensitive to oxidative stress than others. IMPORTANCE Streptococcus mutans inhabits the oral biofilm, where it plays an important role in the development of dental caries. Environmental stresses such as oxidative stress influence the growth of S. mutans and its important virulence-associated behaviors, such as genetic competence. S. mutans competence development is a complex behavior that involves two different signaling peptides and can exhibit cell-to-cell heterogeneity

  17. Oxidative Stressors Modify the Response of Streptococcus mutans to Its Competence Signal Peptides.

    PubMed

    De Furio, Matthew; Ahn, Sang Joon; Burne, Robert A; Hagen, Stephen J

    2017-11-15

    The dental caries pathogen Streptococcus mutans is continually exposed to several types of stress in the oral biofilm environment. Oxidative stress generated by reactive oxygen species has a major impact on the establishment, persistence, and virulence of S. mutans Here, we combined fluorescent reporter-promoter fusions with single-cell imaging to study the effects of reactive oxygen species on activation of genetic competence in S. mutans Exposure to paraquat, which generates superoxide anion, produced a qualitatively different effect on activation of expression of the gene for the master competence regulator, ComX, than did treatment with hydrogen peroxide (H 2 O 2 ), which can yield hydroxyl radical. Paraquat suppressed peptide-mediated induction of comX in a progressive and cumulative fashion, whereas the response to H 2 O 2 displayed a strong threshold behavior. Low concentrations of H 2 O 2 had little effect on induction of comX or the bacteriocin gene cipB , but expression of these genes declined sharply if extracellular H 2 O 2 exceeded a threshold concentration. These effects were not due to decreased reporter gene fluorescence. Two different threshold concentrations were observed in the response to H 2 O 2 , depending on the gene promoter that was analyzed and the pathway by which the competence regulon was stimulated. The results show that paraquat and H 2 O 2 affect the S. mutans competence signaling pathway differently, and that some portions of the competence signaling pathway are more sensitive to oxidative stress than others. IMPORTANCE Streptococcus mutans inhabits the oral biofilm, where it plays an important role in the development of dental caries. Environmental stresses such as oxidative stress influence the growth of S. mutans and its important virulence-associated behaviors, such as genetic competence. S. mutans competence development is a complex behavior that involves two different signaling peptides and can exhibit cell

  18. Antibiofilm Activities of a Novel Chimeolysin against Streptococcus mutans under Physiological and Cariogenic Conditions.

    PubMed

    Yang, Hang; Bi, Yongli; Shang, Xiaoran; Wang, Mengyue; Linden, Sara B; Li, Yunpeng; Li, Yuhong; Nelson, Daniel C; Wei, Hongping

    2016-12-01

    Streptococcus mutans often survives as a biofilm on the tooth surface and contributes to the development of dental caries. We investigated the efficacy of ClyR, an engineered chimeolysin, against S. mutans biofilms under physiological and cariogenic conditions. Susceptibility tests showed that ClyR was active against all clinical S. mutans isolates tested as well as S. mutans biofilms that displayed resistance to penicillin. The S. mutans biofilms that formed on hydroxyapatite discs under physiological sugar conditions and cariogenic conditions were reduced ∼2 logs and 3 logs after treatment with 100 μg/ml ClyR, respectively. In comparison, only a 1-log reduction was observed in the chlorhexidine gluconate (ChX)-treated group, and no killing effect was observed in the NaF-treated group. A mouse dental colonization model showed that repeated use of ClyR for 3 weeks (5 μg/day) reduced the number of colonized S. mutans cells in the dental plaques significantly (P < 0.05) and had no harmful effects on the mice. Furthermore, toxicity was not noted at concentrations exceeding those used for the in vitro and in vivo studies, and ClyR-specific antibodies could not be detected in mouse saliva after repeated use of ClyR in the oral cavity. Our data collectively demonstrate that ClyR is active against S. mutans biofilms both in vitro and in vivo, thus representing a preventative or therapeutic agent for use against dental caries. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Genomewide Identification of Essential Genes and Fitness Determinants of Streptococcus mutans UA159

    PubMed Central

    Zeng, Lin; Culp, David J.

    2018-01-01

    ABSTRACT Transposon mutagenesis coupled with next-generation DNA sequencing (Tn-seq) is a powerful tool for discovering regions of the genome that are required for the survival of bacteria in different environments. We adapted this technique to the dental caries pathogen Streptococcus mutans UA159 and identified 11% of the genome as essential, with many genes encoding products required for replication, translation, lipid metabolism, and cell wall biogenesis. Comparison of the essential genome of S. mutans UA159 with those of selected other streptococci for which such information is available revealed several metabolic pathways and genes that are required in S. mutans, but not in some Streptococcus spp. We further identified genes that are essential for sustained growth in rich or defined medium, as well as for persistence in vivo in a rodent model of oral infection. Collectively, our results provide a novel and comprehensive view of the genes required for essential processes of S. mutans, many of which could represent potential targets for therapeutics. IMPORTANCE Tooth decay (dental caries) is a common cause of pain, impaired quality of life, and tooth loss in children and adults. It begins because of a compositional change in the microorganisms that colonize the tooth surface driven by repeated and sustained carbohydrate intake. Although several bacterial species are associated with tooth decay, Streptococcus mutans is the most common cause. Therefore, it is important to identify biological processes that contribute to the survival of S. mutans in the human mouth, with the aim of disrupting the processes with antimicrobial agents. We successfully applied Tn-seq to S. mutans, discovering genes that are required for survival, growth, and persistence, both in laboratory environments and in a mouse model of tooth decay. This work highlights new avenues for the control of an important human pathogen. PMID:29435491

  20. Microcapsules on Streptococcus mutans serotypes by electron microscopy.

    PubMed

    Grenier, E M; Gray, R H; Loesche, W J; Eveland, W C

    1977-02-01

    Extracellular microcapsules have been demonstrated on cells of most serotypes of Streptococcus mutans by electron microscopy, using bacterial strains of the various serotypes and peroxidase labeled or unlabeled immune serum. A correlation was noted between the amount of capsular substance on the strains of S mutans examined and degree of antigenicity as expressed by the indirect fluorescent antibody (FA) title. A serotype d strain was shown to lose both antigenicity as determined by the FA reaction and capsular material as seen by electron microscopy with repeated in vitro passage. When 10% unheated rabbit serum was added to the medium, antigenicity and capsular material were restored.

  1. Immunogenicity and prediction of epitopic region of antigen Ag I/II and glucosyltransferase from Streptococcus mutans.

    PubMed

    Cao, Xi-Xi; Fan, Jian; Chen, Jiang; Li, Yu-Hong; Fan, Ming-Wen

    2016-06-01

    The levels of Streptococcus (S.) mutans infections in saliva were evaluated and a comparison for specific antibody levels among children with different levels of S. mutans infection was made. The promising epitopic regions of antigen AgI/II (PAc) and glucosyltransferase (GTF) for potential vaccine targets related to S. mutans adherence were screened. A total of 94 children aged 3-4 years were randomly selected, including 53 caries-negative and 41 caries-positive children. The values of S. mutans and those of salivary total secretory immunoglobulin A (sIgA), anti-PAc and anti-Glucan binding domain (anti-GLU) were compared to determine the correlation among them. It was found the level of s-IgA against specific antigens did not increase with increasing severity of S. mutans infection, and the complete amino acid sequence of PAc and GTFB was analyzed using the DNAStar Protean system for developing specific anti-caries vaccines related to S. mutans adherence. A significantly positive correlation between the amount of S. mutans and children decayed, missing, and filled teeth index was observed. No significant difference was detected in specific sIgA against PAc or GLU between any two groups. No significant correlation was found between such specific sIgA and caries index. A total of 16 peptides from PAc as well as 13 peptides from GTFB were chosen for further investigation. S. mutans colonization contributed to early children caries as an important etiological factor. The level of sIgA against specific antigens did not increase with increasing severity of S. mutans infection in children. The epitopes of PAc and GTF have been screened to develop the peptide-based or protein-based anti-caries vaccines.

  2. Passive Immunization with Milk Produced from an Immunized Cow Prevents Oral Recolonization by Streptococcus mutans

    PubMed Central

    Shimazaki, Yoshihiro; Mitoma, Morihide; Oho, Takahiko; Nakano, Yoshio; Yamashita, Yoshihisa; Okano, Kaoru; Nakano, Yutaka; Fukuyama, Masataka; Fujihara, Noboru; Nada, Youichi; Koga, Toshihiko

    2001-01-01

    Cell surface protein antigen (PAc) and water-insoluble glucan-synthesizing enzyme (GTF-I) produced by cariogenic Streptococcus mutans are two major factors implicated in the colonization of the human oral cavity by this bacterium. We examined the effect of bovine milk, produced after immunization with a fusion protein of functional domains of these proteins, on the recolonization of S. mutans. To prepare immune milk, a pregnant Holstein cow was immunized with the fusion protein PAcA-GB, a fusion of the saliva-binding alanine-rich region (PAcA) of PAc and the glucan-binding (GB) domain of GTF-I. After eight adult subjects received cetylpyridinium chloride (CPC) treatment, one subgroup (n = 4) rinsed their mouths with immune milk and a control group (n = 4) rinsed with nonimmune milk. S. mutans levels in saliva and dental plaque decreased after CPC treatment in both groups. Mouth rinsing with immune milk significantly inhibited recolonization of S. mutans in saliva and plaque. On the other hand, the numbers of S. mutans cells in saliva and plaque in the control group increased immediately after the CPC treatment and surpassed the baseline level 42 and 28 days, respectively, after the CPC treatment. The ratios of S. mutans to total streptococci in saliva and plaque in the group that received immune milk were lower than those in the control group. These results suggest that milk produced from immunized cow may be useful for controlling S. mutans in the human oral cavity. PMID:11687453

  3. The usefulness of biotyping in the determination of selected pathogenicity determinants in Streptococcus mutans

    PubMed Central

    2014-01-01

    Background Streptococcus mutans is known to be a primary etiological factor of dental caries, a widespread and growing disease in Polish children. Recognition of novel features determining the pathogenicity of this pathogen may contribute to understanding the mechanisms of bacterial infections. The goal of the study was to determine the activity of prephenate dehydrogenase (PHD) and to illuminate the role of the enzyme in S. mutans pathogenicity. The strains were biotyped based on STREPTOtest 24 biochemical identification tests and the usefulness of biotyping in the determination of S. mutans pathogenicity determinants was examined. Results Out of ninety strains isolated from children with deciduous teeth fifty three were classified as S. mutans species. PDH activity was higher (21.69 U/mg on average) in the experimental group compared to the control group (5.74 U/mg on average) (P <0.001). Moreover, it was demonstrated that biotype I, established basing on the biochemical characterization of the strain, was predominant (58.5%) in oral cavity streptococcosis. Its dominance was determined by higher PDH activity compared to biotypes II and III (P = 0.0019). Conclusions The usefulness of biotyping in the determination of Streptococcus mutans pathogenicity determinants was demonstrated. The obtained results allow for better differentiation of S. mutans species and thus may contribute to recognition of pathogenic bacteria transmission mechanisms and facilitate treatment. PMID:25096795

  4. Quantitative analysis of changes in salivary mutans streptococci after orthodontic treatment.

    PubMed

    Jung, Woo-Sun; Kim, Ho; Park, So-Yoon; Cho, Eun-Jung; Ahn, Sug-Joon

    2014-05-01

    The purpose of this study was to analyze the initial changes in salivary mutans streptococci levels after orthodontic treatment with fixed appliances. Our subjects consisted of 58 adults. Whole saliva and simplified oral hygiene index values were obtained at 4 time points: at debonding (T1), 1 week after debonding (T2), 5 weeks after debonding (T3), and 13 weeks after debonding (T4). Repeated measures analysis of variance was used to determine the time-related differences in salivary bacterial levels and the simplified oral hygiene index values among the 4 time points after quantifying the salivary levels of Streptococcus mutans, Streptococcus sobrinus, and total bacteria with real-time polymerase chain reaction. Simplified oral hygiene index values and total bacteria significantly decreased, but salivary mutans streptococci levels significantly increased after orthodontic treatment. The amounts of total bacteria in saliva significantly decreased at T3 (T1, T2 > T3, T4), and the simplified oral hygiene index values decreased at T2 (T1 > T2, T3, T4). However, salivary S mutans and S sobrinus significantly increased at T3 and T4, respectively (T1, T2 < T3 < T4). Furthermore, the proportion of mutans streptococci to total bacteria significantly increased at T4 (T1, T2, T3 < T4). This study suggests that careful hygienic procedures are needed to reduce the risk for dental caries after orthodontic treatment, despite overall improved oral hygiene status. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  5. A Highly Arginolytic Streptococcus Species That Potently Antagonizes Streptococcus mutans

    PubMed Central

    Huang, Xuelian; Palmer, Sara R.; Ahn, Sang-Joon; Richards, Vincent P.; Williams, Matthew L.; Nascimento, Marcelle M.

    2016-01-01

    The ability of certain oral biofilm bacteria to moderate pH through arginine metabolism by the arginine deiminase system (ADS) is a deterrent to the development of dental caries. Here, we characterize a novel Streptococcus strain, designated strain A12, isolated from supragingival dental plaque of a caries-free individual. A12 not only expressed the ADS pathway at high levels under a variety of conditions but also effectively inhibited growth and two intercellular signaling pathways of the dental caries pathogen Streptococcus mutans. A12 produced copious amounts of H2O2 via the pyruvate oxidase enzyme that were sufficient to arrest the growth of S. mutans. A12 also produced a protease similar to challisin (Sgc) of Streptococcus gordonii that was able to block the competence-stimulating peptide (CSP)–ComDE signaling system, which is essential for bacteriocin production by S. mutans. Wild-type A12, but not an sgc mutant derivative, could protect the sensitive indicator strain Streptococcus sanguinis SK150 from killing by the bacteriocins of S. mutans. A12, but not S. gordonii, could also block the XIP (comX-inducing peptide) signaling pathway, which is the proximal regulator of genetic competence in S. mutans, but Sgc was not required for this activity. The complete genome sequence of A12 was determined, and phylogenomic analyses compared A12 to streptococcal reference genomes. A12 was most similar to Streptococcus australis and Streptococcus parasanguinis but sufficiently different that it may represent a new species. A12-like organisms may play crucial roles in the promotion of stable, health-associated oral biofilm communities by moderating plaque pH and interfering with the growth and virulence of caries pathogens. PMID:26826230

  6. A Highly Arginolytic Streptococcus Species That Potently Antagonizes Streptococcus mutans.

    PubMed

    Huang, Xuelian; Palmer, Sara R; Ahn, Sang-Joon; Richards, Vincent P; Williams, Matthew L; Nascimento, Marcelle M; Burne, Robert A

    2016-01-29

    The ability of certain oral biofilm bacteria to moderate pH through arginine metabolism by the arginine deiminase system (ADS) is a deterrent to the development of dental caries. Here, we characterize a novel Streptococcus strain, designated strain A12, isolated from supragingival dental plaque of a caries-free individual. A12 not only expressed the ADS pathway at high levels under a variety of conditions but also effectively inhibited growth and two intercellular signaling pathways of the dental caries pathogen Streptococcus mutans. A12 produced copious amounts of H2O2 via the pyruvate oxidase enzyme that were sufficient to arrest the growth of S. mutans. A12 also produced a protease similar to challisin (Sgc) of Streptococcus gordonii that was able to block the competence-stimulating peptide (CSP)-ComDE signaling system, which is essential for bacteriocin production by S. mutans. Wild-type A12, but not an sgc mutant derivative, could protect the sensitive indicator strain Streptococcus sanguinis SK150 from killing by the bacteriocins of S. mutans. A12, but not S. gordonii, could also block the XIP (comX-inducing peptide) signaling pathway, which is the proximal regulator of genetic competence in S. mutans, but Sgc was not required for this activity. The complete genome sequence of A12 was determined, and phylogenomic analyses compared A12 to streptococcal reference genomes. A12 was most similar to Streptococcus australis and Streptococcus parasanguinis but sufficiently different that it may represent a new species. A12-like organisms may play crucial roles in the promotion of stable, health-associated oral biofilm communities by moderating plaque pH and interfering with the growth and virulence of caries pathogens. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Streptococcus mutans Protein Synthesis during Mixed-Species Biofilm Development by High-Throughput Quantitative Proteomics

    PubMed Central

    Klein, Marlise I.; Xiao, Jin; Lu, Bingwen; Delahunty, Claire M.; Yates, John R.; Koo, Hyun

    2012-01-01

    Biofilms formed on tooth surfaces are comprised of mixed microbiota enmeshed in an extracellular matrix. Oral biofilms are constantly exposed to environmental changes, which influence the microbial composition, matrix formation and expression of virulence. Streptococcus mutans and sucrose are key modulators associated with the evolution of virulent-cariogenic biofilms. In this study, we used a high-throughput quantitative proteomics approach to examine how S. mutans produces relevant proteins that facilitate its establishment and optimal survival during mixed-species biofilms development induced by sucrose. Biofilms of S. mutans, alone or mixed with Actinomyces naeslundii and Streptococcus oralis, were initially formed onto saliva-coated hydroxyapatite surface under carbohydrate-limiting condition. Sucrose (1%, w/v) was then introduced to cause environmental changes, and to induce biofilm accumulation. Multidimensional protein identification technology (MudPIT) approach detected up to 60% of proteins encoded by S. mutans within biofilms. Specific proteins associated with exopolysaccharide matrix assembly, metabolic and stress adaptation processes were highly abundant as the biofilm transit from earlier to later developmental stages following sucrose introduction. Our results indicate that S. mutans within a mixed-species biofilm community increases the expression of specific genes associated with glucan synthesis and remodeling (gtfBC, dexA) and glucan-binding (gbpB) during this transition (P<0.05). Furthermore, S. mutans up-regulates specific adaptation mechanisms to cope with acidic environments (F1F0-ATPase system, fatty acid biosynthesis, branched chain amino acids metabolism), and molecular chaperones (GroEL). Interestingly, the protein levels and gene expression are in general augmented when S. mutans form mixed-species biofilms (vs. single-species biofilms) demonstrating fundamental differences in the matrix assembly, survival and biofilm maintenance in the

  8. Targeted Killing of Streptococcus mutans by a Pheromone-Guided “Smart” Antimicrobial Peptide

    PubMed Central

    Eckert, Randal ; He, Jian; Yarbrough, Daniel K.; Qi, Fengxia; Anderson, Maxwell H.; Shi, Wenyuan

    2006-01-01

    Within the repertoire of antibiotics available to a prescribing clinician, the majority affect a broad range of microorganisms, including the normal flora. The ecological disruption resulting from antibiotic treatment frequently results in secondary infections or other negative clinical consequences. To address this problem, our laboratory has recently developed a new class of pathogen-selective molecules, called specifically (or selectively) targeted antimicrobial peptides (STAMPs), based on the fusion of a species-specific targeting peptide domain with a wide-spectrum antimicrobial peptide domain. In the current study, we focused on achieving targeted killing of Streptococcus mutans, a cavity-causing bacterium that resides in a multispecies microbial community (dental plaque). In particular, we explored the possibility of utilizing a pheromone produced by S. mutans, namely, the competence stimulating peptide (CSP), as a STAMP targeting domain to mediate S. mutans-specific delivery of an antimicrobial peptide domain. We discovered that STAMPs constructed with peptides derived from CSP were potent against S. mutans grown in liquid or biofilm states but did not affect other oral streptococci tested. Further studies showed that an 8-amino-acid region within the CSP sequence is sufficient for targeted delivery of the antimicrobial peptide domain to S. mutans. The STAMPs presented here are capable of eliminating S. mutans from multispecies biofilms without affecting closely related noncariogenic oral streptococci, indicating the potential of these molecules to be developed into “probiotic” antibiotics which could selectively eliminate pathogens while preserving the protective benefits of a healthy normal flora. PMID:17060534

  9. Characterization of serological cross-reactivity between polysaccharide antigens of Streptococcus mutans serotypes c and d.

    PubMed

    Grossi, S; Prakobphol, A; Linzer, R; Campbell, L K; Knox, K W

    1983-03-01

    Immunological assays with antisera prepared against purified Streptococcus mutans serotype c polysaccharide demonstrated that a cross-reacting determinant on c polysaccharide reacted with the wall-associated rhamnose-glucose polysaccharide from S. mutans serotype d. Studies with 60 antisera prepared against chemostat cultures of S. mutans Ingbritt (c) demonstrated that the rhamnose-glucose polysaccharide cross-reactive determinant was consistently expressed on c antigen under a variety of growth conditions.

  10. Effects of xylitol on xylitol-sensitive versus xylitol-resistant Streptococcus mutans strains in a three-species in vitro biofilm.

    PubMed

    Marttinen, Aino M; Ruas-Madiedo, Patricia; Hidalgo-Cantabrana, Claudio; Saari, Markku A; Ihalin, Riikka A; Söderling, Eva M

    2012-09-01

    We studied the effects of xylitol on biofilms containing xylitol-resistant (Xr) and xylitol-sensitive (Xs) Streptococcus mutans, Actinomyces naeslundii and S. sanguinis. The biofilms were grown for 8 and 24 h on hydroxyapatite discs. The viable microorganisms were determined by plate culturing techniques and fluorescence in situ hybridization (FISH) was performed using a S. mutans-specific probe. Extracellular cell-bound polysaccharides (EPS) were determined by spectrofluorometry from single-species S. mutans biofilms. In the presence of 5 % xylitol, the counts of the Xs S. mutans decreased tenfold in the young (8 h) biofilm (p < 0.05) but no effect was seen in the mature (24 h) biofilm. No decrease was observed for the Xr strains, and FISH confirmed these results. No differences were detected in the EPS production of the Xs S. mutans grown with or without xylitol, nor between Xr and Xs S. mutans strains. Thus, it seems that xylitol did not affect the EPS synthesis of the S. mutans strains. Since the Xr S. mutans strains, not inhibited by xylitol, showed no xylitol-induced decrease in the biofilms, we conclude that growth inhibition could be responsible for the decrease of the counts of the Xs S. mutans strains in the clinically relevant young biofilms.

  11. Comparative recovery of Streptococcus mutans on ten isolation media.

    PubMed

    Little, W A; Korts, D C; Thomson, L A; Bowen, W H

    1977-06-01

    The ability of Streptococcus mutans (Bratthall serotypes a through e) to grow on 10 isolation media was examined. The number and morphology of the colonies were observed to vary on different media. The use of blood-sucrose media consistently produced the highest recoveries. Mitis salivarius agar (MS) and higher recovery values than modified medium 10 (MM10SB), Trypticase-yeast extract-cystine medium (TYC), or MS with 1% tellurite (MST). MST with 40% sucrose (MS40S), MST with 20% sucrose and 0.2 U of bacitracin per ml (MSB), and Carlsson medium with 1% sulfasoxazole (MC), media formulated for the selection of S. mutans, were the most inhibitory for all serotypes. The morphology of several S. mutans strains was atypical on MC and MS40S, making positive identification difficult. Absence of growth of serotype a strains on MSB and serotype d strains on MC were the two major differences observed among the serotypes. Results are discussed in terms of the difficulties in making quantitative determinations from cultural data.

  12. Cross-reactions of Streptococcus mutans due to cell wall teichoic acid.

    PubMed Central

    Chorpenning, F W; Cooper, H R; Rosen, S

    1975-01-01

    Antisera to the whole cells of Streptococcus mutans cross-reacted with antigen extracts from four other gram-positive species, as well as with those of three other oral streptococci. Similarly, antisera to these bacteria cross-reacted with extracts from S. mutans and with those from each other. Using a purified phenol extract of the walls of S. mutans, which was identified by chemical, immunochemical, and enzymatic analyses as glycerol teichoic acid, the cross-reactions were shown to be specific for a determinant of the teichoic acid backbone. Results were confirmed in immunodiffusion tests where clear bands of identify were shown. These observations point out the need for caution in sereological research empolying extracts of gram-positive bacteria and may be of interest in investigations of periodontal disease. Images PMID:809357

  13. Species identification of mutans streptococci by groESL gene sequence.

    PubMed

    Hung, Wei-Chung; Tsai, Jui-Chang; Hsueh, Po-Ren; Chia, Jean-San; Teng, Lee-Jene

    2005-09-01

    The near full-length sequences of the groESL genes were determined and analysed among eight reference strains (serotypes a to h) representing five species of mutans group streptococci. The groES sequences from these reference strains revealed that there are two lengths (285 and 288 bp) in the five species. The intergenic spacer between groES and groEL appears to be a unique marker for species, with a variable size (ranging from 111 to 310 bp) and sequence. Phylogenetic analysis of groES and groEL separated the eight serotypes into two major clusters. Strains of serotypes b, c, e and f were highly related and had groES gene sequences of the same length, 288 bp, while strains of serotypes a, d, g and h were also closely related and their groES gene sequence lengths were 285 bp. The groESL sequences in clinical isolates of three serotypes of S. mutans were analysed for intraspecies polymorphism. The results showed that the groESL sequences could provide information for differentiation among species, but were unable to distinguish serotypes of the same species. Based on the determined sequences, a PCR assay was developed that could differentiate members of the mutans streptococci by amplicon size and provide an alternative way for distinguishing mutans streptococci from other viridans streptococci.

  14. Association between salivary level of infection with Streptococcus mutans/Lactobacilli and caries-risk factors in mothers.

    PubMed

    Latifi-Xhemajli, B; Véronneau, J; Begzati, A; Bytyci, A; Kutllovci, T; Rexhepi, A

    2016-03-01

    Understanding factors in mothers associated with high and low salivary levels of Streptococcus mutans and Lactobacilli is an important strategy for early childhood caries prevention. Aim of the study was to identify the association between salivary levels of Streptococcus mutans/Lactobacillus and potential caries risk factors in mothers. Cross-sectional design used a voluntary sample of 300 mothers of young children. Close-ended questions and observations were used to identify mothers' potential caries risk factors. The presence of Streptococcus mutans and Lactobacilli was determined using the CRT bacteria test (Ivoclar Vivadent). All collected information was converted into frequency and proportion describing the prevalence factor in correlation with Streptococcus mutans and Lactobacilli cariogenic bacteria levels of infection. Results Sample participants showed a high caries risk based on socioeconomic, behavioural and clinical factors. also showed high levels (>105) of Streptococcus mutans and Lactobacilli infections among 28% of mothers. Three factors were significantly associated with Streptococcus mutans infection: level of education, past caries experiences, and observable dental plaque, whereas, a fourth factor, frequency of daily tooth brushing, was associated to Lactobacilli infection. This study showed that easily collectible informations such as maternal level of education, frequency of daily tooth brushing and past clinical factors tend to be associated with high level of Streptococcus mutans and Lactobacilli infections in caregivers.

  15. Effects of Cola-Flavored Beverages and Caffeine on Streptococcus mutans Biofilm Formation and Metabolic Activity.

    PubMed

    Dotsey, Roger P; Moser, Elizabeth A S; Eckert, George J; Gregory, Richard L

    To examine the effects of cola-flavored beverages and caffeine on growth and metabolism of Streptococcus mutans biofilm. This study was designed to determine if carbonated beverages or caffeine can increase S. mutans growth and biofilm formation and metabolic activity in vitro, potentially leading to increased S. mutans-associated cariogenicity in children that consume them. Six different cola-flavored products, plus pure caffeine, and pure high fructose corn syrup (HFCS), at different concentrations similar to those in the beverages were tested. A 16-hour culture of S. mutans was treated with different dilutions in bacteriological media. To test for the effect on biofilm formation, the biofilm was stained with crystal violet. The absorbance was determined to evaluate biofilm growth. Biofilm metabolic activity was measured based on biofilm having the ability to reduce XTT to a water-soluble orange compound. The inclusion of HFCS in the beverages, as well as pure HFCS, significantly enhanced bacterial biofilm formation and metabolic activity. Pure caffeine and the presence of caffeine in beverages did not significantly increase biofilm formation, but pure caffeine significantly increased metabolism, and Diet Coke had significantly greater metabolic activity than Caffeine-Free Diet Coke. HFCS increases both the biofilm formation and metabolism of S. mutans, and caffeine in some cases increases metabolism of S. mutans.

  16. RgpF Is Required for Maintenance of Stress Tolerance and Virulence in Streptococcus mutans.

    PubMed

    Kovacs, C J; Faustoferri, R C; Quivey, R G

    2017-12-15

    Bacterial cell wall dynamics have been implicated as important determinants of cellular physiology, stress tolerance, and virulence. In Streptococcus mutans , the cell wall is composed primarily of a rhamnose-glucose polysaccharide (RGP) linked to the peptidoglycan. Despite extensive studies describing its formation and composition, the potential roles for RGP in S. mutans biology have not been well investigated. The present study characterizes the impact of RGP disruption as a result of the deletion of rgpF , the gene encoding a rhamnosyltransferase involved in the construction of the core polyrhamnose backbone of RGP. The Δ rgpF mutant strain displayed an overall reduced fitness compared to the wild type, with heightened sensitivities to various stress-inducing culture conditions and an inability to tolerate acid challenge. The loss of rgpF caused a perturbation of membrane-associated functions known to be critical for aciduricity, a hallmark of S. mutans acid tolerance. The proton gradient across the membrane was disrupted, and the Δ rgpF mutant strain was unable to induce activity of the F 1 F o ATPase in cultures grown under low-pH conditions. Further, the virulence potential of S. mutans was also drastically reduced following the deletion of rgpF The Δ rgpF mutant strain produced significantly less robust biofilms, indicating an impairment in its ability to adhere to hydroxyapatite surfaces. Additionally, the Δ rgpF mutant lost competitive fitness against oral peroxigenic streptococci, and it displayed significantly attenuated virulence in an in vivo Galleria mellonella infection model. Collectively, these results highlight a critical function of the RGP in the maintenance of overall stress tolerance and virulence traits in S. mutans IMPORTANCE The cell wall of Streptococcus mutans , the bacterium most commonly associated with tooth decay, is abundant in rhamnose-glucose polysaccharides (RGP). While these structures are antigenically distinct to S. mutans

  17. RgpF Is Required for Maintenance of Stress Tolerance and Virulence in Streptococcus mutans

    PubMed Central

    Kovacs, C. J.; Faustoferri, R. C.

    2017-01-01

    ABSTRACT Bacterial cell wall dynamics have been implicated as important determinants of cellular physiology, stress tolerance, and virulence. In Streptococcus mutans, the cell wall is composed primarily of a rhamnose-glucose polysaccharide (RGP) linked to the peptidoglycan. Despite extensive studies describing its formation and composition, the potential roles for RGP in S. mutans biology have not been well investigated. The present study characterizes the impact of RGP disruption as a result of the deletion of rgpF, the gene encoding a rhamnosyltransferase involved in the construction of the core polyrhamnose backbone of RGP. The ΔrgpF mutant strain displayed an overall reduced fitness compared to the wild type, with heightened sensitivities to various stress-inducing culture conditions and an inability to tolerate acid challenge. The loss of rgpF caused a perturbation of membrane-associated functions known to be critical for aciduricity, a hallmark of S. mutans acid tolerance. The proton gradient across the membrane was disrupted, and the ΔrgpF mutant strain was unable to induce activity of the F1Fo ATPase in cultures grown under low-pH conditions. Further, the virulence potential of S. mutans was also drastically reduced following the deletion of rgpF. The ΔrgpF mutant strain produced significantly less robust biofilms, indicating an impairment in its ability to adhere to hydroxyapatite surfaces. Additionally, the ΔrgpF mutant lost competitive fitness against oral peroxigenic streptococci, and it displayed significantly attenuated virulence in an in vivo Galleria mellonella infection model. Collectively, these results highlight a critical function of the RGP in the maintenance of overall stress tolerance and virulence traits in S. mutans. IMPORTANCE The cell wall of Streptococcus mutans, the bacterium most commonly associated with tooth decay, is abundant in rhamnose-glucose polysaccharides (RGP). While these structures are antigenically distinct to S

  18. Genome-Wide Screens Reveal New Gene Products That Influence Genetic Competence in Streptococcus mutans

    PubMed Central

    O'Brien, Greg; Maricic, Natalie; Kesterson, Alexandria; Grace, Megan

    2017-01-01

    ABSTRACT A network of genes and at least two peptide signaling molecules tightly control when Streptococcus mutans becomes competent to take up DNA from its environment. Widespread changes in the expression of genes occur when S. mutans is presented with competence signal peptides in vitro, including the increased production of the alternative sigma factor, ComX, which activates late competence genes. Still, the way that gene products that are regulated by competence peptides influence DNA uptake and cellular physiology are not well understood. Here, we developed and employed comprehensive transposon mutagenesis of the S. mutans genome, with a screen to identify mutants that aberrantly expressed comX, coupled with transposon sequencing (Tn-seq) to gain a more thorough understanding of the factors modulating comX expression and progression to the competent state. The screens effectively identified genes known to affect competence, e.g., comR, comS, comD, comE, cipB, clpX, rcrR, and ciaH, but disclosed an additional 20 genes that were not previously competence associated. The competence phenotypes of mutants were characterized, including by fluorescence microscopy to determine at which stage the mutants were impaired for comX activation. Among the novel genes studied were those implicated in cell division, the sensing of cell envelope stress, cell envelope biogenesis, and RNA stability. Our results provide a platform for determining the specific chemical and physical cues that are required for genetic competence in S. mutans, while highlighting the effectiveness of using Tn-seq in S. mutans to discover and study novel biological processes. IMPORTANCE Streptococcus mutans acquires DNA from its environment by becoming genetically competent, a physiologic state triggered by cell-cell communication using secreted peptides. Competence is important for acquiring novel genetic traits and has a strong influence on the expression of virulence-associated traits of S. mutans

  19. Genome-wide screens reveal new gene products that influence genetic competence in Streptococcus mutans.

    PubMed

    Shields, Robert C; O'Brien, Greg; Maricic, Natalie; Kesterson, Alexandria; Grace, Megan; Hagen, Stephen J; Burne, Robert A

    2017-11-06

    A network of genes and at least two peptide signaling molecules tightly control when Streptococcus mutans becomes competent to take up DNA from its environment. Widespread changes in the expression of genes occur when S. mutans is presented with competence signal peptides in vitro , including increased production of the alternative sigma factor, ComX, which activates late competence genes. Still, the way that gene products that are regulated by competence peptides influence DNA uptake and cellular physiology are not well understood. Here, we developed and employed comprehensive transposon mutagenesis of the S. mutans genome with a screen to identify mutants that aberrantly expressed comX , coupled with transposon sequencing (Tn-seq) to gain a more thorough understanding of the factors modulating comX expression and progression to the competent state. The screens effectively identified genes known to affect competence, e.g. comR , comS , comD , comE , cipB , clpX , rcrR , ciaH , but disclosed an additional 20 genes that were not previously competence-associated. The competence phenotypes of mutants were characterized, including using fluorescence microscopy to determine at which stage the mutants were impaired for comX activation. Among the novel genes studied were those implicated in cell division, sensing of cell envelope stress, cell envelope biogenesis, and RNA stability. Our results provide a platform for determining the specific chemical and physical cues that are required for genetic competence in S. mutans , while highlighting the effectiveness of using Tn-seq in S. mutans to discover and study novel biological processes. IMPORTANCE Streptococcus mutans acquires DNA from its environment by becoming genetically competent, a physiologic state triggered by cell-cell communication using secreted peptides. Competence is important for acquiring novel genetic traits and has a strong influence on the expression of virulence-associated traits of S. mutans Here, we

  20. Short-term effect of mechanical plaque control on salivary mutans streptococci in preschool children.

    PubMed

    Liu, Min; Ge, Lihong; Zheng, Shuguo; Yuan, Chao; Zhang, Bo; Xu, Tao

    2014-01-01

    To determine the effect of mechanical tooth cleaning by toothbrush and dental floss on mutans streptococci in the saliva of preschool children. This blinded, randomised controlled clinical trial included 54 3-year-old preschool children with detectable mutans streptococci in saliva. The children were randomly divided into a test and a control group. Dental college students cleaned the teeth of test group participants with toothbrush and dental floss under the indication of a plaque disclosing agent once a day. The control group received no intervention. Dentocult SM Strip mutans (D-SM) strips were used to test the mutans streptococci in saliva. The D-SM test scores declined from 1.82 to 0.95 for the test group after the teeth were cleaned 10 times (P < 0.001) and the scores increased to 1.62 after tooth cleaning ceased for 2 weeks (P > 0.05 compared with baseline). The D-SM level of the control group did not change significantly. Meticulous and continuous plaque control with toothbrush and dental floss can decrease the mutans streptococci level in preschool children. However, the effect ceased as the intervention ceased.

  1. In vitro antibacterial effects of glass-ionomer cement containing ethanolic extract of propolis on Streptococcus mutans

    PubMed Central

    Topcuoglu, Nursen; Ozan, Fatih; Ozyurt, Mustafa; Kulekci, Guven

    2012-01-01

    Objective: The aim of this study was to evaluate the antibacterial property of glass-ionomer cement (GIC) containing propolis against Streptococcus mutans and its effect on the in vitro S. mutans biofilm formation. Methods: Ethanolic extract of propolis (EEP) was prepared at two concentrations as 25 and 50%. Three different experimental GIC disks were prepared using pure liquid and liquid solutions diluted with 25 and 50 percent of EEP concentrations. Minimum inhibitory concentration (MIC) of EEP on the growth of S. mutans ATCC 25175 was determined by using agar dilution method. Agar diffusion test and an in vitro S. mutans biofilm assay for GIC disks with and without EEP were performed. Results: MIC values of Turkish propolis for S. mutans ATCC 25175 was found as 25 μg/mL. Experimental GICs containing propolis exhibited inhibition zones and their dry biofilm weights were less than the pure GIC. The bacterial density was lower in the GIC containing 50% EEP. Conclusions: A distinct antibacterial and antibiofilm efficacy of propolis containing GIC on S. mutans has been observed. Although further research is needed to show clinical results, antibacterial GIC containing propolis would be a promising material for restoration. PMID:23077424

  2. Sensing of Streptococcus mutans by microscopic imaging ellipsometry

    NASA Astrophysics Data System (ADS)

    Khaleel, Mai Ibrahim; Chen, Yu-Da; Chien, Ching-Hang; Chang, Yia-Chung

    2017-05-01

    Microscopic imaging ellipsometry is an optical technique that uses an objective and sensing procedure to measure the ellipsometric parameters Ψ and Δ in the form of microscopic maps. This technique is well known for being noninvasive and label-free. Therefore, it can be used to detect and characterize biological species without any impact. Microscopic imaging ellipsometry was used to measure the optical response of dried Streptococcus mutans cells on a glass substrate. The ellipsometric Ψ and Δ maps were obtained with the Optrel Multiskop system for specular reflection in the visible range (λ=450 to 750 nm). The Ψ and Δ images at 500, 600, and 700 nm were analyzed using three different theoretical models with single-bounce, two-bounce, and multibounce light paths to obtain the optical constants and height distribution. The obtained images of the optical constants show different aspects when comparing the single-bounce analysis with the two-bounce or multibounce analysis in detecting S. mutans samples. Furthermore, the height distributions estimated by two-bounce and multibounce analyses of S. mutans samples were in agreement with the thickness values measured by AFM, which implies that the two-bounce and multibounce analyses can provide information complementary to that obtained by a single-bounce light path.

  3. Streptococcus mutans forms xylitol-resistant biofilm on excess adhesive flash in novel ex-vivo orthodontic bracket model.

    PubMed

    Ho, Cindy S F; Ming, Yue; Foong, Kelvin W C; Rosa, Vinicius; Thuyen, Truong; Seneviratne, Chaminda J

    2017-04-01

    During orthodontic bonding procedures, excess adhesive is invariably left on the tooth surface at the interface between the bracket and the enamel junction; it is called excess adhesive flash (EAF). We comparatively evaluated the biofilm formation of Streptococcus mutans on EAF produced by 2 adhesives and examined the therapeutic efficacy of xylitol on S mutans formed on EAF. First, we investigated the biofilm formation of S mutans on 3 orthodontic bracket types: stainless steel preadjusted edgewise, ceramic preadjusted edgewise, and stainless steel self-ligating. Subsequently, tooth-colored Transbond XT (3M Unitek, Monrovia, Calif) and green Grengloo (Ormco, Glendora, Calif) adhesives were used for bonding ceramic brackets to extracted teeth. S mutans biofilms on EAF produced by the adhesives were studied using the crystal violet assay and scanning electron microscopy. Surface roughness and surface energy of the EAF were examined. The therapeutic efficacies of different concentrations of xylitol were tested on S mutans biofilms. Significantly higher biofilms were formed on the ceramic preadjusted edgewise brackets (P = 0.003). Transbond XT had significantly higher S mutans biofilms compared with Grengloo surfaces (P = 0.007). There was no significant difference in surface roughness between Transbond XT and Grengloo surfaces (P >0.05). Surface energy of Transbond XT had a considerably smaller contact angle than did Grengloo, suggesting that Transbond XT is a more hydrophilic material. Xylitol at low concentrations had no significant effect on the reduction of S mutans biofilms on orthodontic adhesives (P = 0.016). Transbond XT orthodontic adhesive resulted in more S mutans biofilm compared with Grengloo adhesive on ceramic brackets. Surface energy seemed to play a more important role than surface roughness for the formation of S mutans biofilm on EAF. Xylitol does not appear to have a therapeutic effect on mature S mutans biofilm. Copyright © 2017 American

  4. Apolar Bioactive Fraction of Melipona scutellaris Geopropolis on Streptococcus mutans Biofilm

    PubMed Central

    da Cunha, Marcos Guilherme; Galvão, Lívia Câmara de Carvalho; de Alencar, Severino Matias; Rosalen, Pedro Luiz

    2013-01-01

    The aim of this study was to evaluate the influence of the bioactive nonpolar fraction of geopropolis on Streptococcus mutans biofilm. The ethanolic extract of Melipona scutellaris geopropolis was subjected to a liquid-liquid partition, thus obtaining the bioactive hexane fraction (HF) possessing antimicrobial activity. The effects of HF on S. mutans UA159 biofilms generated on saliva-coated hydroxyapatite discs were analyzed by inhibition of formation, killing assay, and glycolytic pH-drop assays. Furthermore, biofilms treated with vehicle control and HF were analyzed by scanning electron microscopy (SEM). HF at 250 μg/mL and 400 μg/mL caused 38% and 53% reduction in the biomass of biofilm, respectively, when compared to vehicle control (P < 0.05) subsequently observed at SEM images, and this reduction was noticed in the amounts of extracellular alkali-soluble glucans, intracellular iodophilic polysaccharides, and proteins. In addition, the S. mutans viability (killing assay) and acid production by glycolytic pH drop were not affected (P > 0.05). In conclusion, the bioactive HF of geopropolis was promising to control the S. mutans biofilm formation, without affecting the microbial population but interfering with its structure by reducing the biochemical content of biofilm matrix. PMID:23843868

  5. Apolar Bioactive Fraction of Melipona scutellaris Geopropolis on Streptococcus mutans Biofilm.

    PubMed

    da Cunha, Marcos Guilherme; Franchin, Marcelo; Galvão, Lívia Câmara de Carvalho; Bueno-Silva, Bruno; Ikegaki, Masaharu; de Alencar, Severino Matias; Rosalen, Pedro Luiz

    2013-01-01

    The aim of this study was to evaluate the influence of the bioactive nonpolar fraction of geopropolis on Streptococcus mutans biofilm. The ethanolic extract of Melipona scutellaris geopropolis was subjected to a liquid-liquid partition, thus obtaining the bioactive hexane fraction (HF) possessing antimicrobial activity. The effects of HF on S. mutans UA159 biofilms generated on saliva-coated hydroxyapatite discs were analyzed by inhibition of formation, killing assay, and glycolytic pH-drop assays. Furthermore, biofilms treated with vehicle control and HF were analyzed by scanning electron microscopy (SEM). HF at 250  μ g/mL and 400  μ g/mL caused 38% and 53% reduction in the biomass of biofilm, respectively, when compared to vehicle control (P < 0.05) subsequently observed at SEM images, and this reduction was noticed in the amounts of extracellular alkali-soluble glucans, intracellular iodophilic polysaccharides, and proteins. In addition, the S. mutans viability (killing assay) and acid production by glycolytic pH drop were not affected (P > 0.05). In conclusion, the bioactive HF of geopropolis was promising to control the S. mutans biofilm formation, without affecting the microbial population but interfering with its structure by reducing the biochemical content of biofilm matrix.

  6. The SloR Metalloregulator is Involved in the Streptococcus mutans Oxidative Stress Response

    PubMed Central

    Crepps, Sarah C.; Fields, Emily E.; Galan, Diego; Corbett, John P.; Von Hasseln, Elizabeth R.; Spatafora, Grace A.

    2015-01-01

    SUMMARY A 25kDa SloR metalloregulatory protein in Streptococcus mutans modulates the expression of multiple genes, including the sloABC operon that encodes essential Mn2+ transport and genes that promote cariogenesis. In this study, we report on SloC- and SloR-deficient strains of S. mutans (GMS284 and GMS584, respectively) that demonstrate compromised survivorship compared to their UA159 wildtype progenitor and their complemented strains (GMS285 and GMS585, respectively), when challenged with streptonigrin and/or in growth competition experiments. The results of streptonigrin assays revealed significantly larger zones of inhibition for GMS584 than for either UA159 or GMS585, indicating weakened S. mutans survivorship in the absence of SloR. Competition assays revealed a compromised ability for GMS284 and GMS584 to survive peroxide challenge compared with their SloC- and SloR-proficient counterparts. These findings are consistent with a role for SloC and SloR in S. mutans aerotolerance. We also predicted differential expression of oxidative stress tolerance genes in GMS584 versus UA159 and GMS585 when grown aerobically. The results of qRT-PCR experiments revealed S. mutans sod, tpx, and sloC expression that was up-regulated in GMS584 compared to UA159 and GMS585, indicating that the impact of oxidative stress on S. mutans is more severe in the absence of SloR than in its presence. The results of electrophoretic mobility shift assays indicate that SloR does not bind to the sod or tpx promoter regions directly, implicating intermediaries that may arbitrate the SloR response to oxidative stress. PMID:26577188

  7. Streptococcus mutans SpaP binds to RadD of Fusobacterium nucleatum ssp. polymorphum.

    PubMed

    Guo, Lihong; Shokeen, Bhumika; He, Xuesong; Shi, Wenyuan; Lux, Renate

    2017-10-01

    Adhesin-mediated bacterial interspecies interactions are important elements in oral biofilm formation. They often occur on a species-specific level, which could determine health or disease association of a biofilm community. Among the key players involved in these processes are the ubiquitous fusobacteria that have been recognized for their ability to interact with numerous different binding partners. Fusobacterial interactions with Streptococcus mutans, an important oral cariogenic pathogen, have previously been described but most studies focused on binding to non-mutans streptococci and specific cognate adhesin pairs remain to be identified. Here, we demonstrated differential binding of oral fusobacteria to S. mutans. Screening of existing mutant derivatives indicated SpaP as the major S. mutans adhesin specific for binding to Fusobacterium nucleatum ssp. polymorphum but none of the other oral fusobacteria tested. We inactivated RadD, a known adhesin of F. nucleatum ssp. nucleatum for interaction with a number of gram-positive species, in F. nucleatum ssp. polymorphum and used a Lactococcus lactis heterologous SpaP expression system to demonstrate SpaP interaction with RadD of F. nucleatum ssp. polymorphum. This is a novel function for SpaP, which has mainly been characterized as an adhesin for binding to host proteins including salivary glycoproteins. In conclusion, we describe an additional role for SpaP as adhesin in interspecies adherence with RadD-SpaP as the interacting adhesin pair for binding between S. mutans and F. nucleatum ssp. polymorphum. Furthermore, S. mutans attachment to oral fusobacteria appears to involve species- and subspecies-dependent adhesin interactions. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. New method for the isolation of Streptococcus mutans and its differentiation from other oral streptococci.

    PubMed

    Linke, H A

    1977-06-01

    A new, improved agar medium for the isolation of Streptococcus mutans, the etiological agent of dental caries, was developed. In contrast to mitis-salivarius agar, this medium not only recovers a greater number of S. mutans strains from most oral specimens but, because of its mannitol and sorbitol content, it also facilitates the differentiation of S. mutans from other oral streptococci, e.g., S. salivarius, S. mitis, and S. sanguis, which do not grow or produce scanty growth only after 10 days of incubation. The medium is easy to prepare because of its simple and unique composition, is characterized by the presence of an acid indicator, and can be utilized under aerobic and anaerobic conditions as well. The medium cannot be used to distinguish among the eight serotypes, a to g and SL-1, of S. mutans. Mannitol-utilizing bacteria such as streptococci (e.g., S. faecalis) and other microorganisms (e.g., Staphylococcus aureus) are able to grow on this medium and can be distinguished from S. mutans by their unique colony morphology.

  9. Amino Sugars Enhance the Competitiveness of Beneficial Commensals with Streptococcus mutans through Multiple Mechanisms

    PubMed Central

    Farivar, Tanaz; Burne, Robert A.

    2016-01-01

    ABSTRACT Biochemical and genetic aspects of the metabolism of the amino sugars N-acetylglucosamine (GlcNAc) and glucosamine (GlcN) by commensal oral streptococci and the effects of these sugars on interspecies competition with the dental caries pathogen Streptococcus mutans were explored. Multiple S. mutans wild-type isolates displayed long lag phases when transferred from glucose-containing medium to medium with GlcNAc as the primary carbohydrate source, but commensal streptococci did not. Competition in liquid coculture or dual-species biofilms between S. mutans and Streptococcus gordonii showed that S. gordonii was particularly dominant when the primary carbohydrate was GlcN or GlcNAc. Transcriptional and enzymatic assays showed that the catabolic pathway for GlcNAc was less highly induced in S. mutans than in S. gordonii. Exposure to H2O2, which is produced by S. gordonii and antagonizes the growth of S. mutans, led to reduced mRNA levels of nagA and nagB in S. mutans. When the gene for the transcriptional regulatory NagR was deleted in S. gordonii, the strain produced constitutively high levels of nagA (GlcNAc-6-P deacetylase), nagB (GlcN-6-P deaminase), and glmS (GlcN-6-P synthase) mRNA. Similar to NagR of S. mutans (NagRSm), the S. gordonii NagR protein (NagRSg) could bind to consensus binding sites (dre) in the nagA, nagB, and glmS promoter regions of S. gordonii. Notably, NagRSg binding was inhibited by GlcN-6-P, but G-6-P had no effect, unlike for NagRSm. This study expands the understanding of amino sugar metabolism and NagR-dependent gene regulation in streptococci and highlights the potential for therapeutic applications of amino sugars to prevent dental caries. IMPORTANCE Amino sugars are abundant in the biosphere, so the relative efficiency of particular bacteria in a given microbiota to metabolize these sources of carbon and nitrogen might have a profound impact on the ecology of the community. Our investigation reveals that several oral commensal

  10. Amino Sugars Enhance the Competitiveness of Beneficial Commensals with Streptococcus mutans through Multiple Mechanisms.

    PubMed

    Zeng, Lin; Farivar, Tanaz; Burne, Robert A

    2016-06-15

    Biochemical and genetic aspects of the metabolism of the amino sugars N-acetylglucosamine (GlcNAc) and glucosamine (GlcN) by commensal oral streptococci and the effects of these sugars on interspecies competition with the dental caries pathogen Streptococcus mutans were explored. Multiple S. mutans wild-type isolates displayed long lag phases when transferred from glucose-containing medium to medium with GlcNAc as the primary carbohydrate source, but commensal streptococci did not. Competition in liquid coculture or dual-species biofilms between S. mutans and Streptococcus gordonii showed that S. gordonii was particularly dominant when the primary carbohydrate was GlcN or GlcNAc. Transcriptional and enzymatic assays showed that the catabolic pathway for GlcNAc was less highly induced in S. mutans than in S. gordonii Exposure to H2O2, which is produced by S. gordonii and antagonizes the growth of S. mutans, led to reduced mRNA levels of nagA and nagB in S. mutans When the gene for the transcriptional regulatory NagR was deleted in S. gordonii, the strain produced constitutively high levels of nagA (GlcNAc-6-P deacetylase), nagB (GlcN-6-P deaminase), and glmS (GlcN-6-P synthase) mRNA. Similar to NagR of S. mutans (NagRSm), the S. gordonii NagR protein (NagRSg) could bind to consensus binding sites (dre) in the nagA, nagB, and glmS promoter regions of S. gordonii Notably, NagRSg binding was inhibited by GlcN-6-P, but G-6-P had no effect, unlike for NagRSm This study expands the understanding of amino sugar metabolism and NagR-dependent gene regulation in streptococci and highlights the potential for therapeutic applications of amino sugars to prevent dental caries. Amino sugars are abundant in the biosphere, so the relative efficiency of particular bacteria in a given microbiota to metabolize these sources of carbon and nitrogen might have a profound impact on the ecology of the community. Our investigation reveals that several oral commensal bacteria have a much

  11. Intracerebral hemorrhage and deep microbleeds associated with cnm-positive Streptococcus mutans; a hospital cohort study

    PubMed Central

    Tonomura, Shuichi; Ihara, Masafumi; Kawano, Tomohiro; Tanaka, Tomotaka; Okuno, Yoshinori; Saito, Satoshi; Friedland, Robert P.; Kuriyama, Nagato; Nomura, Ryota; Watanabe, Yoshiyuki; Nakano, Kazuhiko; Toyoda, Kazunori; Nagatsuka, Kazuyuki

    2016-01-01

    Oral infectious diseases are epidemiologically associated with stroke. We previously showed that oral Streptococcus mutans with the cnm gene encoding a collagen-binding Cnm protein induced intracerebral hemorrhage (ICH) experimentally and was also associated with cerebral microbleeds (CMBs) in our population-based cohort study. We therefore investigated the roles of cnm-positive Streptococcus mutans in this single hospital-based, observational study that enrolled 100 acute stroke subjects. The cnm gene in Streptococcus mutans isolated from saliva was screened using PCR techniques and its collagen-binding activities examined. CMBs were evaluated on T2* gradient-recalled echo MRI. One subject withdrew informed consent and 99 subjects (63 males) were analyzed, consisting of 67 subjects with ischemic stroke, 5 with transient ischemic attack, and 27 with ICH. Eleven cases showed Streptococcus mutans strains positive for cnm. The presence of cnm-positive Streptococcus mutans was significantly associated with ICH [OR vs. ischemic stroke, 4.5; 95% CI, 1.17–19.1] and increased number of deep CMBs [median (IQR), 3 (2–9) vs. 0 (0–1), p = 0.0002]. In subjects positive for Streptococcus mutans, collagen binding activity was positively correlated with the number of deep CMBs (R2 = 0.405; p < 0.0001). These results provide further evidence for the key role of oral health in stroke. PMID:26847666

  12. Intracerebral hemorrhage and deep microbleeds associated with cnm-positive Streptococcus mutans; a hospital cohort study.

    PubMed

    Tonomura, Shuichi; Ihara, Masafumi; Kawano, Tomohiro; Tanaka, Tomotaka; Okuno, Yoshinori; Saito, Satoshi; Friedland, Robert P; Kuriyama, Nagato; Nomura, Ryota; Watanabe, Yoshiyuki; Nakano, Kazuhiko; Toyoda, Kazunori; Nagatsuka, Kazuyuki

    2016-02-05

    Oral infectious diseases are epidemiologically associated with stroke. We previously showed that oral Streptococcus mutans with the cnm gene encoding a collagen-binding Cnm protein induced intracerebral hemorrhage (ICH) experimentally and was also associated with cerebral microbleeds (CMBs) in our population-based cohort study. We therefore investigated the roles of cnm-positive Streptococcus mutans in this single hospital-based, observational study that enrolled 100 acute stroke subjects. The cnm gene in Streptococcus mutans isolated from saliva was screened using PCR techniques and its collagen-binding activities examined. CMBs were evaluated on T2* gradient-recalled echo MRI. One subject withdrew informed consent and 99 subjects (63 males) were analyzed, consisting of 67 subjects with ischemic stroke, 5 with transient ischemic attack, and 27 with ICH. Eleven cases showed Streptococcus mutans strains positive for cnm. The presence of cnm-positive Streptococcus mutans was significantly associated with ICH [OR vs. ischemic stroke, 4.5; 95% CI, 1.17-19.1] and increased number of deep CMBs [median (IQR), 3 (2-9) vs. 0 (0-1), p = 0.0002]. In subjects positive for Streptococcus mutans, collagen binding activity was positively correlated with the number of deep CMBs (R(2) = 0.405; p < 0.0001). These results provide further evidence for the key role of oral health in stroke.

  13. Prevalence, distribution of serotypes, and cariogenic potential in hamsters of mutans streptococci from elderly individuals.

    PubMed

    Fitzgerald, D B; Fitzgerald, R J; Adams, B O; Morhart, R E

    1983-08-01

    The prevalence of mutans streptococci (Streptococcus mutans, Streptococcus cricetus, Streptococcus sobrinus, and Streptococcus rattus) was determined in the salivas of 169 elderly individuals ranging in age from 60 to 87 years. Approximately 40% of these individuals were edentulous and wore full upper and lower dentures. With the exception of a higher proportion of saliva counts below 1,000 CFU/ml in the full-denture wearers, the prevalence and the serotype and species distributions of the mutans streptococci were similar in the denture wearers and individuals with natural teeth only. The species and serotype distributions of mutans streptococci in this elderly population were also consistent with reported observations of other workers on younger, more caries-prone populations. A total of 87 representative isolates of the mutans streptococci were tested for cariogenic potential in a hamster model system. A considerable degree of variation in virulence between different strains was observed. However, these differences were not relatable to individual species or serotypes or to whether the organisms were isolated from denture wearers or naturally dentate subjects. The results of our studies indicate that elderly individuals with either natural or artificial dentitions may be a hitherto unrecognized reservoir of mutans streptococci having varying degrees of potential cariogenicity. Hence, in close family situations they could serve, along with parents and siblings, as vectors in the initial transmission of cariogenic microorganisms to young children.

  14. Comparing the cariogenic species Streptococcus sobrinus and S. mutans on whole genome level

    PubMed Central

    Conrads, Georg; de Soet, Johannes J.; Song, Lifu; Henne, Karsten; Sztajer, Helena; Wagner-Döbler, Irene; Zeng, An-Ping

    2014-01-01

    Background Two closely related species of mutans streptococci, namely Streptococcus mutans and Streptococcus sobrinus, are associated with dental caries in humans. Their acidogenic and aciduric capacity is directly associated with the cariogenic potential of these bacteria. To survive acidic and temporarily harsh conditions in the human oral cavity with hundreds of other microbial co-colonizers as competitors, both species have developed numerous mechanisms for adaptation. Objectives The recently published novel genome information for both species is used to elucidate genetic similarities but especially differences and to discuss the impact on cariogenicity of the corresponding phenotypic properties including adhesion, carbohydrate uptake and fermentation, acid tolerance, signaling by two component systems, competence, and oxidative stress resistance. Conclusions S. sobrinus can down-regulate the SpaA-mediated adherence to the pellicle. It has a smaller number of two-component signaling systems and bacteriocin-related genes than S. mutans, but all or even more immunity proteins. It lacks the central competence genes comC, comS, and comR. There are more genes coding for glucosyltransferases and a novel energy production pathway formed by lactate oxidase, which is not found in S. mutans. Both species show considerable differences in the regulation of fructan catabolism. However, both S. mutans and S. sobrinus share most of these traits and should therefore be considered as equally virulent with regard to dental caries. PMID:25475081

  15. Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans

    PubMed Central

    Sztajer, Helena; Szafranski, Szymon P; Tomasch, Jürgen; Reck, Michael; Nimtz, Manfred; Rohde, Manfred; Wagner-Döbler, Irene

    2014-01-01

    Polymicrobial biofilms are of large medical importance, but relatively little is known about the role of interspecies interactions for their physiology and virulence. Here, we studied two human pathogens co-occuring in the oral cavity, the opportunistic fungus Candida albicans and the caries-promoting bacterium Streptococcus mutans. Dual-species biofilms reached higher biomass and cell numbers than mono-species biofilms, and the production of extracellular polymeric substances (EPSs) by S. mutans was strongly suppressed, which was confirmed by scanning electron microscopy, gas chromatography–mass spectrometry and transcriptome analysis. To detect interkingdom communication, C. albicans was co-cultivated with a strain of S. mutans carrying a transcriptional fusion between a green fluorescent protein-encoding gene and the promoter for sigX, the alternative sigma factor of S. mutans, which is induced by quorum sensing signals. Strong induction of sigX was observed in dual-species biofilms, but not in single-species biofilms. Conditioned media from mixed biofilms but not from C. albicans or S. mutans cultivated alone activated sigX in the reporter strain. Deletion of comS encoding the synthesis of the sigX-inducing peptide precursor abolished this activity, whereas deletion of comC encoding the competence-stimulating peptide precursor had no effect. Transcriptome analysis of S. mutans confirmed induction of comS, sigX, bacteriocins and the downstream late competence genes, including fratricins, in dual-species biofilms. We show here for the first time the stimulation of the complete quorum sensing system of S. mutans by a species from another kingdom, namely the fungus C. albicans, resulting in fundamentally changed virulence properties of the caries pathogen. PMID:24824668

  16. Inhibiting effects of Streptococcus salivarius on competence-stimulating peptide-dependent biofilm formation by Streptococcus mutans.

    PubMed

    Tamura, S; Yonezawa, H; Motegi, M; Nakao, R; Yoneda, S; Watanabe, H; Yamazaki, T; Senpuku, H

    2009-04-01

    The effects of Streptococcus salivarius on the competence-stimulating peptide (CSP)-dependent biofilm formation by Streptococcus mutans were investigated. Biofilms were grown on 96-well microtiter plates coated with salivary components in tryptic soy broth without dextrose supplemented with 0.25% sucrose. Biofilm formations were stained using safranin and quantification of stained biofilms was performed by measuring absorbance at 492 nm. S. mutans formed substantial biofilms, whereas biofilms of S. salivarius were formed poorly in the medium conditions used. Furthermore, in combination cultures, S. salivarius strongly inhibited biofilm formation when cultured with S. mutans. This inhibition occurred in the early phase of biofilm formation and was dependent on inactivation of the CSP of S. mutans, which is associated with competence, biofilm formation, and antimicrobial activity of the bacterium, and is induced by expression of the comC gene. Comparisons between the S. mutans clinical strains FSC-3 and FSC-3DeltaglrA in separate dual-species cultures with S. salivarius indicated that the presence of the bacitracin transport ATP-binding protein gene glrA caused susceptibility to inhibition of S. mutans biofilm formation by S. salivarius, and was also associated with the regulation of CSP production by com gene-dependent quorum sensing systems. It is considered that regulation of CSP by glrA in S. mutans and CSP inactivation by S. salivarius are important functions for cell-to-cell communication between biofilm bacteria and oral streptococci such as S. salivarius. Our results provide useful information for understanding the ecosystem of oral streptococcal biofilms, as well as the competition between and coexistence of multiple species in the oral cavity.

  17. CcpA and CodY Coordinate Acetate Metabolism in Streptococcus mutans.

    PubMed

    Kim, Jeong Nam; Burne, Robert A

    2017-04-01

    In the dental caries pathogen Streptococcus mutans , phosphotransacetylase (Pta) and acetate kinase (Ack) convert pyruvate into acetate with the concomitant generation of ATP. The genes for this pathway are tightly regulated by multiple environmental and intracellular inputs, but the basis for differential expression of the genes for Pta and Ack in S. mutans had not been investigated. Here, we show that inactivation in S. mutans of ccpA or codY reduced the activity of the ackA promoter, whereas a ccpA mutant displayed elevated pta promoter activity. The interactions of CcpA with the promoter regions of both genes were observed using electrophoretic mobility shift and DNase protection assays. CodY bound to the ackA promoter region but only in the presence of branched-chain amino acids (BCAAs). DNase footprinting revealed that the upstream region of both genes contains two catabolite-responsive elements ( cre1 and cre2 ) that can be bound by CcpA. Notably, the cre2 site of ackA overlaps with a CodY-binding site. The CcpA- and CodY-binding sites in the promoter region of both genes were further defined by site-directed mutagenesis. Some differences between the reported consensus CodY binding site and the region protected by S. mutans CodY were noted. Transcription of the pta and ackA genes in the ccpA mutant strain was markedly different at low pH relative to transcription at neutral pH. Thus, CcpA and CodY are direct regulators of transcription of ackA and pta in S. mutans that optimize acetate metabolism in response to carbohydrate, amino acid availability, and environmental pH. IMPORTANCE The human dental caries pathogen Streptococcus mutans is remarkably adept at coping with extended periods of carbohydrate limitation during fasting periods. The phosphotransacetylase-acetate kinase (Pta-Ack) pathway in S. mutans modulates carbohydrate flux and fine-tunes the ability of the organisms to cope with stressors that are commonly encountered in the oral cavity. Here, we

  18. Branched-chain amino acid transport in Streptococcus mutans Ingbritt.

    PubMed

    Dashper, S G; Reynolds, E C

    1993-06-01

    Leucine transport in glucose-energized cells of Streptococcus mutans exhibited Michaelis-Menten-type kinetics at low extracellular concentrations, with a K1 of 15.3 microM and a Vmax of 6.1 nmol/mg dry weight/min. At high extracellular leucine concentrations, the transmembrane diffusion of leucine was not saturable, indicating that passive diffusion becomes a significant mechanism of leucine transmembrane movement under these conditions. The proton motive force (PMF) was measured in glucose-energized cells of S. mutans and was found to have a maximum value of 126 mV at an extracellular pH (pH0) of 5.0; this decreased to 45 mV at pH0 8.0. The intracellular accumulation of leucine was significantly correlated with the magnitude of the PMF. The addition of excess isoleucine or valine caused a marked decrease in the leucine transport rate. Maximal rates of leucine transport occurred at pH0 6.0, and the rate of leucine transport was independent of the growth medium. The results suggest that there is a PMF-driven, branched-chain amino acid carrier in S. mutans with a proton: substrate stoichiometry of 1.

  19. In vitro antibacterial activity of adhesive systems on Streptococcus mutans.

    PubMed

    Paradella, Thaís Cachuté; Koga-Ito, Cristiane Yumi; Jorge, Antonio Olavo Cardoso

    2009-04-01

    To evaluate the antibacterial activity of three adhesive systems -- Prime & Bond 2.1 (PB), Clearfil SE Bond (CS) and One Up Bond F (OU) -- on Streptococcus mutans in vitro. Adherence and agar disk-diffusion tests were performed. For the adherence testing, 40 human enamel specimens (4 mm2) were sterilized and the adhesive sytems were applied (n = 10). The control group did not receive the application of any adhesive system. Specimens were immersed in brain heart infusion broth (BHI) inoculated with S. mutans standardized suspension (10(6) cells/ml) for 48 h at 37 degrees C and 5% CO2. The number of S. mutans cells adhered to each specimen was evaluated by the plating method on BHI agar. For agar disk-diffusion testing, adhesive disks and disks soaked in distilled water (negative control) or 0.2% chlorexidine (positive control) were incubated with S. mutans for 48 h. The diameters of the zones of bacterial inhibition were measured. Adherence data were transformed in logarithms of base 10 (log10). Data were submitted to Kruskal-Wallis and Student-Neuman-Keuls tests at the 5% level of significance. The results of the adherence test showed that One Up Bond F (OU) and Clearfil SE Bond (CS) did not differ significantly from one another, but allowed significantly less adherence than Prime & Bond 2.1 (PB) and control [mean log10 (standard deviation) values: PB 6.10 (0.19); CS primer 4.55 (0.98); OU 4.65 (0.54); control group 6.34 (0.27)]. The disk-diffusion test showed no significant difference between OU (diameter in mm: 3.02 +/- 0.13) and CS (3.0 +/- 0.12), but both were significantly more effective in inhibiting bacterial growth than PB (1.0 +/- 0.10). The self-etching systems Clearfil SE Bond and One Up Bond F presented a greater inhibitory effect against S. mutans, also in terms of adherence, than did the conventional system, Prime & Bond 2.1.

  20. Evaluation of (GTG)5-PCR for rapid identification of Streptococcus mutans.

    PubMed

    Svec, Pavel; Nováková, Dana; Zácková, Lenka; Kukletová, Martina; Sedlácek, Ivo

    2008-11-01

    Repetitive sequence-based polymerase chain reaction (PCR) fingerprinting using the (GTG)(5) primer was applied for fast screening of bacterial strains isolated from dental plaque of early childhood caries (ECC)-affected children. A group of 29 Gram-positive bacteria was separated into a homogeneous cluster together with Streptococcus mutans reference strains and constituted an aberrant branch after the numerical analysis of (GTG)(5)-PCR fingerprints. Automated ribotyping with EcoRI restriction enzyme (RiboPrinter microbial characterization system) revealed high genetic heterogeneity among the tested group and proved to be a good tool for strain-typing purposes. Further characterization of the studied strains was achieved by extensive phenotyping and whole-cell protein fingerprinting and confirmed all the strains as S. mutans representatives. Obtained results showed rep-PCR fingerprinting with the (GTG)(5) primer to be a fast and reliable method for identification of S. mutans.

  1. CovR Regulates Streptococcus mutans Susceptibility To Complement Immunity and Survival in Blood

    PubMed Central

    Alves, Lívia A.; Nomura, Ryota; Mariano, Flávia S.; Harth-Chu, Erika N.; Stipp, Rafael N.; Nakano, Kazuhiko

    2016-01-01

    Streptococcus mutans, a major pathogen of dental caries, may promote systemic infections after accessing the bloodstream from oral niches. In this study, we investigate pathways of complement immunity against S. mutans and show that the orphan regulator CovR (CovRSm) modulates susceptibility to complement opsonization and survival in blood. S. mutans blood isolates showed reduced susceptibility to C3b deposition compared to oral isolates. Reduced expression of covRSm in blood strains was associated with increased transcription of CovRSm-repressed genes required for S. mutans interactions with glucans (gbpC, gbpB, and epsC), sucrose-derived exopolysaccharides (EPS). Consistently, blood strains showed an increased capacity to bind glucan in vitro. Deletion of covRSm in strain UA159 (UAcov) impaired C3b deposition and binding to serum IgG and C-reactive protein (CRP) as well as phagocytosis through C3b/iC3b receptors and killing by neutrophils. Opposite effects were observed in mutants of gbpC, epsC, or gtfBCD (required for glucan synthesis). C3b deposition on UA159 was abolished in C1q-depleted serum, implying that the classical pathway is essential for complement activation on S. mutans. Growth in sucrose-containing medium impaired the binding of C3b and IgG to UA159, UAcov, and blood isolates but had absent or reduced effects on C3b deposition in gtfBCD, gbpC, and epsC mutants. UAcov further showed increased ex vivo survival in human blood in an EPS-dependent way. Consistently, reduced survival was observed for the gbpC and epsC mutants. Finally, UAcov showed an increased ability to cause bacteremia in a rat model. These results reveal that CovRSm modulates systemic virulence by regulating functions affecting S. mutans susceptibility to complement opsonization. PMID:27572331

  2. Hydroxychalcone inhibitors of Streptococcus mutans glucosyl transferases and biofilms as potential anticaries agents.

    PubMed

    Nijampatnam, Bhavitavya; Casals, Luke; Zheng, Ruowen; Wu, Hui; Velu, Sadanandan E

    2016-08-01

    Streptococcus mutans has been implicated as the major etiological agent in the initiation and the development of dental caries due to its robust capacity to form tenacious biofilms. Ideal therapeutics for this disease will aim to selectively inhibit the biofilm formation process while preserving the natural bacterial flora of the mouth. Several studies have demonstrated the efficacies of flavonols on S. mutans biofilms and have suggested the mechanism of action through their effect on S. mutans glucosyltransferases (Gtfs). These enzymes metabolize sucrose into water insoluble and soluble glucans, which are an integral measure of the dental caries pathogenesis. Numerous studies have shown that flavonols and polyphenols can inhibit Gtf and biofilm formation at millimolar concentrations. We have screened a group of 14 hydroxychalcones, synthetic precursors of flavonols, in an S. mutans biofilm assay. Several of these compounds emerged to be biofilm inhibitors at low micro-molar concentrations. Chalcones that contained a 3-OH group on ring A exhibited selectivity for biofilm inhibition. Moreover, we synthesized 6 additional analogs of the lead compound and evaluated their potential activity and selectivity against S. mutans biofilms. The most active compound identified from these studies had an IC50 value of 44μM against biofilm and MIC50 value of 468μM against growth displaying >10-fold selectivity inhibition towards biofilm. The lead compound displayed a dose dependent inhibition of S. mutans Gtfs. The lead compound also did not affect the growth of two commensal species (Streptococcus sanguinis and Streptococcus gordonii) at least up to 200μM, indicating that it can selectively inhibit cariogenic biofilms, while leaving commensal and/or beneficial microbes intact. Thus non-toxic compounds have the potential utility in public oral health regimes. Copyright © 2016. Published by Elsevier Ltd.

  3. The SloR metalloregulator is involved in the Streptococcus mutans oxidative stress response.

    PubMed

    Crepps, S C; Fields, E E; Galan, D; Corbett, J P; Von Hasseln, E R; Spatafora, G A

    2016-12-01

    SloR, a 25-kDa metalloregulatory protein in Streptococcus mutans modulates the expression of multiple genes, including the sloABC operon that encodes essential Mn 2+ transport and genes that promote cariogenesis. In this study, we report on SloC- and SloR-deficient strains of S. mutans (GMS284 and GMS584, respectively) that demonstrate compromised survivorship compared with their UA159 wild-type progenitor and their complemented strains (GMS285 and GMS585, respectively), when challenged with streptonigrin and/or in growth competition experiments. The results of streptonigrin assays revealed significantly larger zones of inhibition for GMS584 than for either UA159 or GMS585, indicating weakened S. mutans survivorship in the absence of SloR. Competition assays revealed a compromised ability for GMS284 and GMS584 to survive peroxide challenge compared with their SloC- and SloR-proficient counterparts. These findings are consistent with a role for SloC and SloR in S. mutans aerotolerance. We also predicted differential expression of oxidative stress tolerance genes in GMS584 versus UA159 and GMS585 when grown aerobically. The results of quantitative RT-PCR experiments revealed S. mutans sod, tpx, and sloC expression that was upregulated in GMS584 compared with UA159 and GMS585, indicating that the impact of oxidative stress on S. mutans is more severe in the absence of SloR than in its presence. The results of electrophoretic mobility shift assays indicate that SloR does not bind to the sod or tpx promoter regions directly, implicating intermediaries that may arbitrate the SloR response to oxidative stress. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Role of the Streptococcus mutans CRISPR-Cas Systems in Immunity and Cell Physiology

    PubMed Central

    Serbanescu, M. A.; Cordova, M.; Krastel, K.; Flick, R.; Beloglazova, N.; Latos, A.; Yakunin, A. F.; Senadheera, D. B.

    2014-01-01

    CRISPR-Cas systems provide adaptive microbial immunity against invading viruses and plasmids. The cariogenic bacterium Streptococcus mutans UA159 has two CRISPR-Cas systems: CRISPR1 (type II-A) and CRISPR2 (type I-C) with several spacers from both CRISPR cassettes matching sequences of phage M102 or genomic sequences of other S. mutans. The deletion of the cas genes of CRISPR1 (ΔC1S), CRISPR2 (ΔC2E), or both CRISPR1+2 (ΔC1SC2E) or the removal of spacers 2 and 3 (ΔCR1SP13E) in S. mutans UA159 did not affect phage sensitivity when challenged with virulent phage M102. Using plasmid transformation experiments, we demonstrated that the CRISPR1-Cas system inhibits transformation of S. mutans by the plasmids matching the spacers 2 and 3. Functional analysis of the cas deletion mutants revealed that in addition to a role in plasmid targeting, both CRISPR systems also contribute to the regulation of bacterial physiology in S. mutans. Compared to wild-type cells, the ΔC1S strain displayed diminished growth under cell membrane and oxidative stress, enhanced growth under low pH, and had reduced survival under heat shock and DNA-damaging conditions, whereas the ΔC2E strain exhibited increased sensitivity to heat shock. Transcriptional analysis revealed that the two-component signal transduction system VicR/K differentially modulates expression of cas genes within CRISPR-Cas systems, suggesting that VicR/K might coordinate the expression of two CRISPR-Cas systems. Collectively, we provide in vivo evidence that the type II-A CRISPR-Cas system of S. mutans may be targeted to manipulate its stress response and to influence the host to control the uptake and dissemination of antibiotic resistance genes. PMID:25488301

  5. Triethylene Glycol Up-Regulates Virulence-Associated Genes and Proteins in Streptococcus mutans.

    PubMed

    Sadeghinejad, Lida; Cvitkovitch, Dennis G; Siqueira, Walter L; Santerre, J Paul; Finer, Yoav

    2016-01-01

    Triethylene glycol dimethacrylate (TEGDMA) is a diluent monomer used pervasively in dental composite resins. Through hydrolytic degradation of the composites in the oral cavity it yields a hydrophilic biodegradation product, triethylene glycol (TEG), which has been shown to promote the growth of Streptococcus mutans, a dominant cariogenic bacterium. Previously it was shown that TEG up-regulated gtfB, an important gene contributing to polysaccharide synthesis function in biofilms. However, molecular mechanisms related to TEG's effect on bacterial function remained poorly understood. In the present study, S. mutans UA159 was incubated with clinically relevant concentrations of TEG at pH 5.5 and 7.0. Quantitative real-time PCR, proteomics analysis, and glucosyltransferase enzyme (GTF) activity measurements were employed to identify the bacterial phenotypic response to TEG. A S. mutans vicK isogenic mutant (SMΔvicK1) and its associated complemented strain (SMΔvicK1C), an important regulatory gene for biofilm-associated genes, were used to determine if this signaling pathway was involved in modulation of the S. mutans virulence-associated genes. Extracted proteins from S. mutans biofilms grown in the presence and absence of TEG were subjected to mass spectrometry for protein identification, characterization and quantification. TEG up-regulated gtfB/C, gbpB, comC, comD and comE more significantly in biofilms at cariogenic pH (5.5) and defined concentrations. Differential response of the vicK knock-out (SMΔvicK1) and complemented strains (SMΔvicK1C) implicated this signalling pathway in TEG-modulated cellular responses. TEG resulted in increased GTF enzyme activity, responsible for synthesizing insoluble glucans involved in the formation of cariogenic biofilms. As well, TEG increased protein abundance related to biofilm formation, carbohydrate transport, acid tolerance, and stress-response. Proteomics data was consistent with gene expression findings for the selected

  6. Triethylene Glycol Up-Regulates Virulence-Associated Genes and Proteins in Streptococcus mutans

    PubMed Central

    Sadeghinejad, Lida; Cvitkovitch, Dennis G.; Siqueira, Walter L.; Santerre, J. Paul; Finer, Yoav

    2016-01-01

    Triethylene glycol dimethacrylate (TEGDMA) is a diluent monomer used pervasively in dental composite resins. Through hydrolytic degradation of the composites in the oral cavity it yields a hydrophilic biodegradation product, triethylene glycol (TEG), which has been shown to promote the growth of Streptococcus mutans, a dominant cariogenic bacterium. Previously it was shown that TEG up-regulated gtfB, an important gene contributing to polysaccharide synthesis function in biofilms. However, molecular mechanisms related to TEG’s effect on bacterial function remained poorly understood. In the present study, S. mutans UA159 was incubated with clinically relevant concentrations of TEG at pH 5.5 and 7.0. Quantitative real-time PCR, proteomics analysis, and glucosyltransferase enzyme (GTF) activity measurements were employed to identify the bacterial phenotypic response to TEG. A S. mutans vicK isogenic mutant (SMΔvicK1) and its associated complemented strain (SMΔvicK1C), an important regulatory gene for biofilm-associated genes, were used to determine if this signaling pathway was involved in modulation of the S. mutans virulence-associated genes. Extracted proteins from S. mutans biofilms grown in the presence and absence of TEG were subjected to mass spectrometry for protein identification, characterization and quantification. TEG up-regulated gtfB/C, gbpB, comC, comD and comE more significantly in biofilms at cariogenic pH (5.5) and defined concentrations. Differential response of the vicK knock-out (SMΔvicK1) and complemented strains (SMΔvicK1C) implicated this signalling pathway in TEG-modulated cellular responses. TEG resulted in increased GTF enzyme activity, responsible for synthesizing insoluble glucans involved in the formation of cariogenic biofilms. As well, TEG increased protein abundance related to biofilm formation, carbohydrate transport, acid tolerance, and stress-response. Proteomics data was consistent with gene expression findings for the

  7. Identification and functional analysis of an ammonium transporter in Streptococcus mutans.

    PubMed

    Ardin, Arifah Chieko; Fujita, Kazuyo; Nagayama, Kayoko; Takashima, Yukiko; Nomura, Ryota; Nakano, Kazuhiko; Ooshima, Takashi; Matsumoto-Nakano, Michiyo

    2014-01-01

    Streptococcus mutans, a Gram-positive bacterium, is considered to be a major etiologic agent of human dental caries and reported to form biofilms known as dental plaque on tooth surfaces. This organism is also known to possess a large number of transport proteins in the cell membrane for export and import of molecules. Nitrogen is an essential nutrient for Gram-positive bacteria, though alternative sources such as ammonium can also be utilized. In order to obtain nitrogen for macromolecular synthesis, nitrogen-containing compounds must be transported into the cell. However, the ammonium transporter in S. mutans remains to be characterized. The present study focused on characterizing the ammonium transporter gene of S. mutans and its operon, while related regulatory genes were also analyzed. The SMU.1658 gene corresponding to nrgA in S. mutans is homologous to the ammonium transporter gene in Bacillus subtilis and SMU.1657, located upstream of the nrgA gene and predicted to be glnB, is a member of the PII protein family. Using a nrgA-deficient mutant strain (NRGD), we examined bacterial growth in the presence of ammonium, calcium chloride, and manganese sulfate. Fluorescent efflux assays were also performed to reveal export molecules associated with the ammonium transporter. The growth rate of NRGD was lower, while its fluorescent intensity was much higher as compared to the parental strain. In addition, confocal laser scanning microscopy revealed that the structure of biofilms formed by NRGD was drastically different than that of the parental strain. Furthermore, transcriptional analysis showed that the nrgA gene was co-transcribed with the glnB gene. These results suggest that the nrgA gene in S. mutans is essential for export of molecules and biofilm formation.

  8. Identification and Functional Analysis of an Ammonium Transporter in Streptococcus mutans

    PubMed Central

    Ardin, Arifah Chieko; Fujita, Kazuyo; Nagayama, Kayoko; Takashima, Yukiko; Nomura, Ryota; Nakano, Kazuhiko; Ooshima, Takashi; Matsumoto-Nakano, Michiyo

    2014-01-01

    Streptococcus mutans, a Gram-positive bacterium, is considered to be a major etiologic agent of human dental caries and reported to form biofilms known as dental plaque on tooth surfaces. This organism is also known to possess a large number of transport proteins in the cell membrane for export and import of molecules. Nitrogen is an essential nutrient for Gram-positive bacteria, though alternative sources such as ammonium can also be utilized. In order to obtain nitrogen for macromolecular synthesis, nitrogen-containing compounds must be transported into the cell. However, the ammonium transporter in S. mutans remains to be characterized. The present study focused on characterizing the ammonium transporter gene of S. mutans and its operon, while related regulatory genes were also analyzed. The SMU.1658 gene corresponding to nrgA in S. mutans is homologous to the ammonium transporter gene in Bacillus subtilis and SMU.1657, located upstream of the nrgA gene and predicted to be glnB, is a member of the PII protein family. Using a nrgA-deficient mutant strain (NRGD), we examined bacterial growth in the presence of ammonium, calcium chloride, and manganese sulfate. Fluorescent efflux assays were also performed to reveal export molecules associated with the ammonium transporter. The growth rate of NRGD was lower, while its fluorescent intensity was much higher as compared to the parental strain. In addition, confocal laser scanning microscopy revealed that the structure of biofilms formed by NRGD was drastically different than that of the parental strain. Furthermore, transcriptional analysis showed that the nrgA gene was co-transcribed with the glnB gene. These results suggest that the nrgA gene in S. mutans is essential for export of molecules and biofilm formation. PMID:25229891

  9. Casein Phosphopeptide-Amorphous Calcium Phosphate Reduces Streptococcus mutans Biofilm Development on Glass Ionomer Cement and Disrupts Established Biofilms.

    PubMed

    Dashper, Stuart G; Catmull, Deanne V; Liu, Sze-Wei; Myroforidis, Helen; Zalizniak, Ilya; Palamara, Joseph E A; Huq, N Laila; Reynolds, Eric C

    2016-01-01

    Glass ionomer cements (GIC) are dental restorative materials that are suitable for modification to help prevent dental plaque (biofilm) formation. The aim of this study was to determine the effects of incorporating casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into a GIC on the colonisation and establishment of Streptococcus mutans biofilms and the effects of aqueous CPP-ACP on established S mutans biofilms. S. mutans biofilms were either established in flow cells before a single ten min exposure to 1% w/v CPP-ACP treatment or cultured in static wells or flow cells with either GIC or GIC containing 3% w/w CPP-ACP as the substratum. The biofilms were then visualised using confocal laser scanning microscopy after BacLight LIVE/DEAD staining. A significant decrease in biovolume and average thickness of S. mutans biofilms was observed in both static and flow cell assays when 3% CPP-ACP was incorporated into the GIC substratum. A single ten min treatment with aqueous 1% CPP-ACP resulted in a 58% decrease in biofilm biomass and thickness of established S. mutans biofilms grown in a flow cell. The treatment also significantly altered the structure of these biofilms compared with controls. The incorporation of 3% CPP-ACP into GIC significantly reduced S. mutans biofilm development indicating another potential anticariogenic mechanism of this material. Additionally aqueous CPP-ACP disrupted established S. mutans biofilms. The use of CPP-ACP containing GIC combined with regular CPP-ACP treatment may lower S. mutans challenge.

  10. Targeting of Streptococcus mutans Biofilms by a Novel Small Molecule Prevents Dental Caries and Preserves the Oral Microbiome.

    PubMed

    Garcia, S S; Blackledge, M S; Michalek, S; Su, L; Ptacek, T; Eipers, P; Morrow, C; Lefkowitz, E J; Melander, C; Wu, H

    2017-07-01

    Dental caries is a costly and prevalent disease characterized by the demineralization of the tooth's enamel. Disease outcome is influenced by host factors, dietary intake, cariogenic bacteria, and other microbes. The cariogenic bacterial species Streptococcus mutans metabolizes sucrose to initiate biofilm formation on the tooth surface and consequently produces lactic acid to degrade the tooth's enamel. Persistence of S. mutans biofilms in the oral cavity can lead to tooth decay. To date, no anticaries therapies that specifically target S. mutans biofilms but do not disturb the overall oral microbiome are available. We screened a library of 2-aminoimidazole antibiofilm compounds with a biofilm dispersion assay and identified a small molecule that specifically targets S. mutans biofilms. At 5 µM, the small molecule annotated 3F1 dispersed 50% of the established S. mutans biofilm but did not disperse biofilms formed by the commensal species Streptococcus sanguinis or Streptococcus gordonii. 3F1 dispersed S. mutans biofilms independently of biofilm-related factors such as antigen I/II and glucosyltransferases. 3F1 treatment effectively prevented dental caries by controlling S. mutans in a rat caries model without perturbing the oral microbiota. Our study demonstrates that selective targeting of S. mutans biofilms by 3F1 was able to effectively reduce dental caries in vivo without affecting the overall oral microbiota shaped by the intake of dietary sugars, suggesting that the pathogenic biofilm-specific treatment is a viable strategy for disease prevention.

  11. Detection of potentially cariogenic strains of Streptococcus mutans using the polymerase chain reaction.

    PubMed

    Aguilera Galaviz, Luis Alejandro; Aceves Medina, Ma del Carmen; Estrada García, Iris C

    2002-01-01

    Streptococcus mutans is a pathogen related to the occurrence of human dental caries. The determination of total amounts of mutans streptococci, as well as the proportion related to other oral bacteria, is of interest when assessing the risk of developing caries. In this context, it is better to use a sensitive, specific and non-time consuming method such as the polymerase chain reaction (PCR), than to use culture and biochemical identification methods. In this work we identified potentially cariogenic strains of S. mutans and assessed the relationship with the dmft, DMFT or dmft/DMFT index. Using DNA isolated from dental plaque, a 192 bp sequence was identified and amplified from the spaP gene and a 722 bp sequence from the dexA gene. The results suggest that it is important to evaluate the presence of cariogenic S. mutans strains in plaque content rather than the accumulation of plaque itself However, other factors like diet, hygiene, genetic background, the flow rate of saliva and the presence of specific antibodies, also play a key role in the development of caries.

  12. Binding of glucosyltransferase and glucan synthesis by Streptococcus mutans and other bacteria.

    PubMed

    Hamada, S; Tai, S; Slade, H D

    1978-07-01

    Lyophilized and heat-treated cells from the seven serotypes of Streptococcus mutans were examined for their ability to bind added insoluble-product glucosyl-transferase (GTase) and to synthesize cell-associated glucan from [(14)C]sucrose. Lyophilized cells of serotypes a and g did not synthesize any more additional glucan than did the controls after exposure to GTase. These cells, however, synthesized four- to eightfold-greater quantities of glucan than did the cells of the remaining serotypes. Lyophilized cells of serotypes b, c, d, e, and f synthesized two- to threefold-greater quantities of glucan after exposure to GTase than did the controls without added enzyme. Lyophilized cells of serotypes a and g synthesized 6- to 10-fold-greater quantities of glucan than did heat-treated cells of the same strain after binding of GTase. Lyophilized cells of the remaining serotypes synthesized only 1.6- to 3.3-fold-greater quantities of glucan than did the heat-treated cells. These results demonstrate that heat treatment to inactivate cell-associated GTase does not create additional GTase binding sites in S. mutans and that serotypes a and g are considerably more active in cell-associated glucan synthesis than cells of the other five serotypes. Ten species of gram-positive and gram-negative bacteria from five genera which do not produce in vitro plaque synthesized 10- to 100-fold-less glucan than did the S. mutans strains after exposure to GTase. Of these species, S. sanguis, Actinomyces viscosus, and A. naeslundii synthesized the largest quantities of glucan. Three mutant strains of S. mutans which possess a reduced ability for in vitro adherence but do agglutinate with glucan or dextran synthesized only one-third as much glucan after binding of GTase as the control. These results are discussed in relation to in vitro and in vivo plaque development and the agglutination of S. mutans. The results support earlier findings which indicate that the presence of bacterial species

  13. The well-coordinated linkage between acidogenicity and aciduricity via insoluble glucans on the surface of Streptococcus mutans

    PubMed Central

    Guo, Lihong; McLean, Jeffrey S.; Lux, Renate; He, Xuesong; Shi, Wenyuan

    2015-01-01

    Streptococcus mutans is considered the principal cariogenic bacterium for dental caries. Despite the recognition of their importance for cariogenesis, the possible coordination among S. mutans’ main virulence factors, including glucan production, acidogenicity and aciduricity, has been less well studied. In the present study, using S. mutans strains with surface-displayed pH-sensitive pHluorin, we revealed sucrose availability- and Gtf functionality-dependent proton accumulation on S. mutans surface. Consistent with this, using a pH-sensitive dye, we demonstrated that both in vivo cell-produced and in vitro enzymatically synthesized insoluble glucans displayed proton-concentrating ability. Global transcriptomics revealed proton accumulation triggers the up-regulation of genes encoding functions involved in acid tolerance response in a glucan-dependent manner. Our data suggested that this proton enrichment around S. mutans could pre-condition the bacterium for acid-stress. Consistent with this hypothesis, we found S. mutans strains defective in glucan production were more acid sensitive. Our study revealed for the first time that insoluble glucans is likely an essential factor linking acidogenicity with aciduricity. The coordination of these key virulence factors could provide new insights on how S. mutans may have become a major cariogenic pathogen. PMID:26657939

  14. Streptococcus oligofermentans Inhibits Streptococcus mutans in Biofilms at Both Neutral pH and Cariogenic Conditions.

    PubMed

    Bao, Xudong; de Soet, Johannes Jacob; Tong, Huichun; Gao, Xuejun; He, Libang; van Loveren, Cor; Deng, Dong Mei

    2015-01-01

    Homeostasis of oral microbiota can be maintained through microbial interactions. Previous studies showed that Streptococcus oligofermentans, a non-mutans streptococci frequently isolated from caries-free subjects, inhibited the cariogenic Streptococcus mutans by the production of hydrogen peroxide (HP). Since pH is a critical factor in caries formation, we aimed to study the influence of pH on the competition between S. oligofermentans and S. mutans in biofilms. To this end, S. mutans and S. oligofermentans were inoculated alone or mixed at 1:1 ratio in buffered biofilm medium in a 96-well active attachment model. The single- and dual-species biofilms were grown under either constantly neutral pH or pH-cycling conditions. The latter includes two cycles of 8 h neutral pH and 16 h pH 5.5, used to mimic cariogenic condition. The 48 h biofilms were analysed for the viable cell counts, lactate and HP production. The last two measurements were carried out after incubating the 48 h biofilms in buffers supplemented with 1% glucose (pH 7.0) for 4 h. The results showed that S. oligofermentans inhibited the growth of S. mutans in dual-species biofilms under both tested pH conditions. The lactic acid production of dual-species biofilms was significantly lower than that of single-species S. mutans biofilms. Moreover, dual-species and single-species S. oligofermentans biofilms grown under pH-cycling conditions (with a 16 h low pH period) produced a significantly higher amount of HP than those grown under constantly neutral pH. In conclusion, S. oligofermentans inhibited S. mutans in biofilms not only under neutral pH, but also under pH-cycling conditions, likely through HP production. S. oligofermentans may be a compelling probiotic candidate against caries.

  15. Anti-biofilm and bactericidal effects of magnolia bark-derived magnolol and honokiol on Streptococcus mutans.

    PubMed

    Sakaue, Yuuki; Domon, Hisanori; Oda, Masataka; Takenaka, Shoji; Kubo, Miwa; Fukuyama, Yoshiyasu; Okiji, Takashi; Terao, Yutaka

    2016-01-01

    Dental caries affects people of all ages and is a worldwide health concern. Streptococcus mutans is a major cariogenic bacterium because of its ability to form biofilm and induce an acidic environment. In this study, the antibacterial activities of magnolol and honokiol, the main constituents of the bark of magnolia plants, toward planktonic cell and biofilm of S. mutans were examined and compared with those of chlorhexidine. The minimal inhibitory concentrations of magnolol, honokiol and chlorhexidine for S. mutans were 10, 10 and 0.25 µg/mL, respectively. In addition, each agent showed bactericidal activity against S. mutans planktonic cells and inhibited biofilm formation in a dose- and time-dependent manner. Magnolol (50 µg/mL) had greater bactericidal activity against S. mutans biofilm than honokiol (50 µg/mL) and chlorhexidine (500 µg/mL) at 5 min after exposure, while all showed scant activity against biofilm at 30 s. Furthermore; chlorhexidine (0.5-500 µg/mL) exhibited high cellular toxicity for the gingival epithelial cell line Ca9-22 at 1 hr, whereas magnolol (50 µg/mL) and honokiol (50 µg/mL) did not. Thus; it was found that magnolol has antimicrobial activities against planktonic and biofilm cells of S. mutans. Magnolol may be a candidate for prevention and management of dental caries. © 2015 The Societies and John Wiley & Sons Australia, Ltd.

  16. Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans.

    PubMed

    Wasfi, Reham; Abd El-Rahman, Ola A; Zafer, Mai M; Ashour, Hossam M

    2018-03-01

    Streptococcus mutans contributes significantly to dental caries, which arises from homoeostasic imbalance between host and microbiota. We hypothesized that Lactobacillus sp. inhibits growth, biofilm formation and gene expression of Streptococcus mutans. Antibacterial (agar diffusion method) and antibiofilm (crystal violet assay) characteristics of probiotic Lactobacillus sp. against Streptococcus mutans (ATCC 25175) were evaluated. We investigated whether Lactobacillus casei (ATCC 393), Lactobacillus reuteri (ATCC 23272), Lactobacillus plantarum (ATCC 14917) or Lactobacillus salivarius (ATCC 11741) inhibit expression of Streptococcus mutans genes involved in biofilm formation, quorum sensing or stress survival using quantitative real-time polymerase chain reaction (qPCR). Growth changes (OD600) in the presence of pH-neutralized, catalase-treated or trypsin-treated Lactobacillus sp. supernatants were assessed to identify roles of organic acids, peroxides and bacteriocin. Susceptibility testing indicated antibacterial (pH-dependent) and antibiofilm activities of Lactobacillus sp. against Streptococcus mutans. Scanning electron microscopy revealed reduction in microcolony formation and exopolysaccharide structural changes. Of the oral normal flora, L. salivarius exhibited the highest antibiofilm and peroxide-dependent antimicrobial activities. All biofilm-forming cells treated with Lactobacillus sp. supernatants showed reduced expression of genes involved in exopolysaccharide production, acid tolerance and quorum sensing. Thus, Lactobacillus sp. can inhibit tooth decay by limiting growth and virulence properties of Streptococcus mutans. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  17. A comparative study of plaque mutans streptococci levels in children receiving glass ionomer cement and amalgam restorations.

    PubMed

    Ertuğrul, Fahinur; Eltem, Rengin; Eronat, Cemal

    2003-01-01

    The restorative materials amalgam (Standalloy F) and glass ionomer cements (Chelon Silver) were comparatively investigated to determine the number of mutans streptococci Saliva and plaque were collected from patients before and 40 days after the insertion of their restorations. Total bateria and mutans streptococci counts were found to be statistically significantly reduced when compared with the prerestoration counts in the saliva samples (P<0.001). Microbiological analysis of the dental plaque showed that the number of mutans streptococci in the glass ionomer cements was significantly lower than in the amalgam restorations (P<0.001). This study showed that silver glass ionomer cements inhibited the growth of mutans streptococci.

  18. Effect of Punica granatum on the virulence factors of cariogenic bacteria Streptococcus mutans.

    PubMed

    Gulube, Zandiswa; Patel, Mrudula

    2016-09-01

    Dental caries is caused by acids produced by biofilm-forming Streptococcus mutans from fermentable carbohydrates and bacterial byproducts. Control of these bacteria is important in the prevention of dental caries. This study investigated the effect of the fruit peel of Punica granatum on biofilm formation, acid and extracellular polysaccharides production (EPS) by S. mutans. Pomegranate fruit peels crude extracts were prepared. The Minimum bactericidal concentrations (MBC) were determined against S. mutans. At 3 sub-bactericidal concentrations, the effect on the acid production, biofilm formation and EPS production was determined. The results were analysed using Kruskal-Wallis and Wilcoxon Rank Sum Tests. The lowest MBC was 6.25 mg/mL. Punica granatum significantly inhibited acid production (p < 0.01). After 6 and 24 h, it significantly reduced biofilm-formation by 91% and 65% respectively (p < 0.01). The plant extract did not inhibit the production of soluble EPS in either the biofilm or the planktonic growth. However, it significantly reduced the insoluble EPS in the biofilm and the plantktonic (p = < 0.01) form of S. mutans. The crude extract of P. granatum killed cariogenic S. mutans at high concentrations. At sub-bactericidal concentrations, it reduced biofilm formation, acid and EPS production. This suggests that P. granatum extract has the potential to prevent dental caries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Probiotics reduce mutans streptococci counts in humans: a systematic review and meta-analysis.

    PubMed

    Laleman, Isabelle; Detailleur, Valentine; Slot, Dagmar Else; Slomka, Vera; Quirynen, Marc; Teughels, Wim

    2014-07-01

    Systematically review the available literature regarding the caries-preventive effect of probiotics. An electronic search was conducted in three databases (PubMed MEDLINE, ISI Web of Science and Cochrane Library) to identify all suitable studies. The outcomes had to be presented as the effect of probiotics on the incidence of caries or on the levels of mutans streptococci and/or Lactobacillus species. Human studies, written in English, with at least 15 participants, comparing a probiotic product with a placebo/no probiotic were included. Where possible, a meta-analysis was performed to obtain quantitative data. Since only two articles presented useful data on the caries incidence, we focused on the surrogate endpoints: mutans streptococci and/or Lactobacillus counts. The meta-analysis showed that when the probiotic and control group are compared after treatment, significantly more patients in the probiotic group had low mutans streptococci (<10(5) CFU/ml) counts and significantly less patients had high (>10(6) CFU/ml) counts. Regarding the Lactobacillus counts, comparing the probiotic and control group at the end of the probiotic use, no significant differences could be observed, neither in low (<10(4) CFU/ml) nor in high Lactobacillus (>10(6) CFU/ml) counts. Within the limitations of the available data, it may be concluded that probiotics decrease the mutans streptococci counts. This suggests that probiotics could have a positive effect in the prevention of caries. There is insufficient evidence that probiotics can prevent caries, but they can reduce the mutans streptococci counts.

  20. Self-ligating versus conventional metallic brackets on Streptococcus mutans retention: A systematic review.

    PubMed

    Longoni, Juliano N; Lopes, Beatriz M; Freires, Irlan A; Dutra, Kamile L; Franco, Ademir; Paranhos, Luiz R

    2017-01-01

    The present study aimed to review the literature systematically and assess comparatively whether self-ligating metallic brackets accumulate less Streptococcus mutans biofilm than conventional metallic brackets. The systematic search was performed following PRISMA guidelines and registration in PROSPERO. Seven electronic databases (Google Scholar, LILACS, Open Grey, PubMed, SciELO, ScienceDirect, and Scopus) were consulted until April 2016, with no restriction of language and time of publication. Only randomized clinical studies verifying S. mutans colonization in metallic brackets (self-ligating and conventional) were included. All steps were performed independently by two operators. The search resulted in 546 records obtained from the electronic databases. Additionally, 216 references obtained from the manual search of eligible articles were assessed. Finally, a total of 5 studies were included in the qualitative synthesis. In 1 study, the total bacterial count was not different among self-ligating and conventional brackets, whereas in 2 studies the amount was lower for self-ligating brackets. Regarding the specific count of S. mutans , 2 studies showed less accumulation in self-ligating than in conventional brackets. Based on the limited evidence, self-ligating metallic brackets accumulate less S. mutans than conventional ones. However, these findings must be interpreted in conjunction with particularities individual for each patient - such as hygiene and dietary habits, which are components of the multifactorial environment that enables S. Mutans to proliferate and keep retained in the oral cavity.

  1. Self-ligating versus conventional metallic brackets on Streptococcus mutans retention: A systematic review

    PubMed Central

    Longoni, Juliano N.; Lopes, Beatriz M.; Freires, Irlan A.; Dutra, Kamile L.; Franco, Ademir; Paranhos, Luiz R.

    2017-01-01

    Objective: The present study aimed to review the literature systematically and assess comparatively whether self-ligating metallic brackets accumulate less Streptococcus mutans biofilm than conventional metallic brackets. Material and methods: The systematic search was performed following PRISMA guidelines and registration in PROSPERO. Seven electronic databases (Google Scholar, LILACS, Open Grey, PubMed, SciELO, ScienceDirect, and Scopus) were consulted until April 2016, with no restriction of language and time of publication. Only randomized clinical studies verifying S. mutans colonization in metallic brackets (self-ligating and conventional) were included. All steps were performed independently by two operators. Results: The search resulted in 546 records obtained from the electronic databases. Additionally, 216 references obtained from the manual search of eligible articles were assessed. Finally, a total of 5 studies were included in the qualitative synthesis. In 1 study, the total bacterial count was not different among self-ligating and conventional brackets, whereas in 2 studies the amount was lower for self-ligating brackets. Regarding the specific count of S. mutans, 2 studies showed less accumulation in self-ligating than in conventional brackets. Conclusion: Based on the limited evidence, self-ligating metallic brackets accumulate less S. mutans than conventional ones. However, these findings must be interpreted in conjunction with particularities individual for each patient – such as hygiene and dietary habits, which are components of the multifactorial environment that enables S. Mutans to proliferate and keep retained in the oral cavity. PMID:29279684

  2. Effect of sonic vibration of an ultrasonic toothbrush on the removal of Streptococcus mutans biofilm from enamel surface.

    PubMed

    Hashizume, Lina Naomi; Dariva, Alessandra

    2015-12-01

    To evaluate in vitro the effect of sonic vibration of an ultrasonic toothbrush in the removal of Streptococcus mutans (S. mutans) biofilm from human enamel. S. mutans dental biofilm was formed in vitro on human enamel blocks coated by salivary pellicle. The blocks were incubated with a suspension of S. mutans at 37°C for 24 or 72 hours. The blocks were divided to one of three conditions according to the different toothbrush action modes: ultrasound plus sonic vibration (U+SV), ultrasound-only (U) and no ultrasound and no sonic vibration (control). Samples were exposed to each mode for 3 minutes with the toothbrush bristles placed 5 mm away from the enamel block surface. The samples were observed by scanning electron microscopy (SEM) and quantification of S. mutans was performed. U+SV showed lower bacterial counts compared to U and control on the 72 hour-biofilm (P < 0.05). The SEM analysis revealed that U+SV and U disrupted the S. mutans chains in the 24- and 72-hour biofilm.

  3. Genetic Diversity and Evidence for Transmission of Streptococcus mutans by DiversiLab rep-PCR

    PubMed Central

    Momeni, Stephanie S.; Whiddon, Jennifer; Cheon, Kyounga; Ghazal, Tariq; Moser, Stephen A.; Childers, Noel K.

    2016-01-01

    This two-part study investigated the genetic diversity and transmission of Streptococcus mutans using the DiversiLab repetitive extragenic palindromic PCR (rep-PCR) approach. For children with S. mutans and participating household members, analysis for evidence of unrelated child-to-child as well as intra-familial transmission was evaluated based on commonality of genotypes. A total of 169 index children and 425 household family members from Uniontown, Alabama were evaluated for genetic diversity using rep-PCR. Thirty-four unique rep-PCR genotypes were observed for 13,906 S. mutans isolates. For transmission, 117 child and household isolates were evaluated for shared genotype (by child and by genotype cases, multiple matches possible for each child). Overall, children had 1–9 genotypes and those with multiple genotypes were 2.3 times more likely to have caries experience (decayed, missing and filled teeth/surfaces>0). Only 28% of children shared all genotypes within the household, while 72% had at least 1 genotype not shared with anyone in the household. Children had genotype(s) not shared with any household members in 155 cases. In 158 cases children and household members shared a genotype in which 55% (87/158 cases) were shared with more than one family member. Children most frequently shared genotypes with their mothers (54%; 85/158), siblings (46%; 72/158) and cousins (23%; 37/158). A reference library for S. mutans for epidemiological surveillance using the DiversiLab rep-PCR approach is detailed. The genetic diversity of S. mutans in this population demonstrated frequent commonality of genotypes. Evidence for both child-to-child and intra-familial transmission of S. mutans was observed by rep-PCR. PMID:27432341

  4. Casein Phosphopeptide-Amorphous Calcium Phosphate Reduces Streptococcus mutans Biofilm Development on Glass Ionomer Cement and Disrupts Established Biofilms

    PubMed Central

    Liu, Sze-Wei; Myroforidis, Helen; Zalizniak, Ilya; Palamara, Joseph E. A.; Huq, N. Laila; Reynolds, Eric C.

    2016-01-01

    Glass ionomer cements (GIC) are dental restorative materials that are suitable for modification to help prevent dental plaque (biofilm) formation. The aim of this study was to determine the effects of incorporating casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into a GIC on the colonisation and establishment of Streptococcus mutans biofilms and the effects of aqueous CPP-ACP on established S mutans biofilms. S. mutans biofilms were either established in flow cells before a single ten min exposure to 1% w/v CPP-ACP treatment or cultured in static wells or flow cells with either GIC or GIC containing 3% w/w CPP-ACP as the substratum. The biofilms were then visualised using confocal laser scanning microscopy after BacLight LIVE/DEAD staining. A significant decrease in biovolume and average thickness of S. mutans biofilms was observed in both static and flow cell assays when 3% CPP-ACP was incorporated into the GIC substratum. A single ten min treatment with aqueous 1% CPP-ACP resulted in a 58% decrease in biofilm biomass and thickness of established S. mutans biofilms grown in a flow cell. The treatment also significantly altered the structure of these biofilms compared with controls. The incorporation of 3% CPP-ACP into GIC significantly reduced S. mutans biofilm development indicating another potential anticariogenic mechanism of this material. Additionally aqueous CPP-ACP disrupted established S. mutans biofilms. The use of CPP-ACP containing GIC combined with regular CPP-ACP treatment may lower S. mutans challenge. PMID:27589264

  5. RNA-Seq Reveals Enhanced Sugar Metabolism in Streptococcus mutans Co-cultured with Candida albicans within Mixed-Species Biofilms

    PubMed Central

    He, Jinzhi; Kim, Dongyeop; Zhou, Xuedong; Ahn, Sang-Joon; Burne, Robert A.; Richards, Vincent P.; Koo, Hyun

    2017-01-01

    Early childhood caries (ECC), which can lead to rampant tooth-decay that is painful and costly to treat, is one of the most prevalent infectious diseases affecting children worldwide. Previous studies support that interactions between Streptococcus mutans and Candida albicans are associated with the pathogenesis of ECC. The presence of Candida enhances S. mutans growth, fitness and accumulation within biofilms in vitro, although the molecular basis for these behaviors is undefined. Using an established co-cultivation biofilm model and RNA-Seq, we investigated how C. albicans influences the transcriptome of S. mutans. The presence of C. albicans dramatically altered gene expression in S. mutans in the dual-species biofilm, resulting in 393 genes differentially expressed, compared to mono-species biofilms of S. mutans. By Gene Ontology analysis, the majority of up-regulated genes were related to carbohydrate transport and metabolic/catabolic processes. KEGG pathway impact analysis showed elevated pyruvate and galactose metabolism, suggesting that co-cultivation with C. albicans influences carbohydrate utilization by S. mutans. Analysis of metabolites confirmed the increases in carbohydrate metabolism, with elevated amounts of formate in the culture medium of co-cultured biofilms. Moreover, co-cultivation with C. albicans altered transcription of S. mutans signal transduction (comC and ciaRH) genes associated with fitness and virulence. Interestingly, the expression of genes for mutacins (bacteriocins) and CRISPR were down-regulated. Collectively, the data provide a comprehensive insight into S. mutans transcriptomic changes induced by C. albicans, and offer novel insights into how bacterial–fungal interactions may enhance the severity of dental caries. PMID:28642749

  6. Inhibition of Streptococcus mutans biofilm formation on composite resins containing ursolic acid

    PubMed Central

    Kim, Soohyeon; Song, Minju; Roh, Byoung-Duck; Park, Sung-Ho

    2013-01-01

    Objectives To evaluate the inhibitory effect of ursolic acid (UA)-containing composites on Streptococcus mutans (S. mutans) biofilm. Materials and Methods Composite resins with five different concentrations (0.04, 0.1, 0.2, 0.5, and 1.0 wt%) of UA (U6753, Sigma Aldrich) were prepared, and their flexural strengths were measured according to ISO 4049. To evaluate the effect of carbohydrate source on biofilm formation, either glucose or sucrose was used as a nutrient source, and to investigate the effect of saliva treatment, the specimen were treated with either unstimulated whole saliva or phosphate-buffered saline (PBS). For biofilm assay, composite disks were transferred to S. mutans suspension and incubated for 24 hr. Afterwards, the specimens were rinsed with PBS and sonicated. The colony forming units (CFU) of the disrupted biofilm cultures were enumerated. For growth inhibition test, the composites were placed on a polystyrene well cluster, and S. mutans suspension was inoculated. The optical density at 600 nm (OD600) was recorded by Infinite F200 pro apparatus (TECAN). One-way ANOVA and two-way ANOVA followed by Bonferroni correction were used for the data analyses. Results The flexural strength values did not show significant difference at any concentration (p > 0.01). In biofilm assay, the CFU score decreased as the concentration of UA increased. The influence of saliva pretreatment was conflicting. The sucrose groups exhibited higher CFU score than glucose group (p < 0.05). In bacterial growth inhibition test, all experimental groups containing UA resulted in complete inhibition. Conclusions Within the limitations of the experiments, UA included in the composite showed inhibitory effect on S. mutans biofilm formation and growth. PMID:23741708

  7. Preferred hexoses influence long-term memory and induction of lactose catabolism by Streptococcus mutans.

    PubMed

    Zeng, Lin; Chen, Lulu; Burne, Robert A

    2018-05-11

    Bacteria prioritize sugar metabolism via carbohydrate catabolite repression, which regulates global gene expression to optimize the catabolism of preferred substrates. Here, we report an unusual long-term memory effect in certain Streptococcus mutans strains that alters adaptation to growth on lactose after prior exposure to glucose or fructose. In strain GS-5, cells that were first cultured on fructose then transferred to lactose displayed an exceptionally long lag (>11 h) and slower growth, compared to cells first cultured on glucose or cellobiose, which displayed a reduction in lag phase by as much as 10 h. Mutants lacking the cellobiose-PTS or phospho-β-glucosidase lost the accelerated growth on lactose associated with prior culturing on glucose. The memory effects of glucose or fructose on lactose catabolism were not as profound in strain UA159, but the lag phase was considerably shorter in mutants lacking the glucose-PTS EII Man Interestingly, when S. mutans was cultivated on lactose, significant quantities of free glucose accumulated in the medium, with higher levels found in the cultures of strains lacking EII Man , glucokinase, or both. Free glucose was also detected in cultures that were utilizing cellobiose or trehalose, albeit at lower levels. Such release of hexoses by S. mutans is likely of biological significance as it was found that cells required small amounts of glucose or other preferred carbohydrates to initiate efficient growth on lactose. These findings suggest that S. mutans modulates the induction of lactose utilization based on its prior exposure to glucose or fructose, which can be liberated from common disaccharides. IMPORTANCE. Understanding the molecular mechanisms employed by oral bacteria to control sugar metabolism is key to developing novel therapies for management of dental caries and other oral diseases. Lactose is a naturally occurring disaccharide that is abundant in dairy products and commonly ingested by humans. However, for

  8. Effects of 7-Epiclusianone on Streptococcus mutans and Caries Development in Rats

    PubMed Central

    Branco-de-Almeida, Luciana Salles; Murata, Ramiro Mendonça; Franco, Eliane Melo; dos Santos, Marcelo Henrique; de Alencar, Severino Matias; Koo, Hyun; Rosalen, Pedro Luiz

    2011-01-01

    The aim of this study was to evaluate the effects of 7-epiclusianone (7-epi) on specific virulence attributes of Streptococcus mutans in vitro and on development of dental caries in vivo. 7-Epi was obtained and purified from fruits of Rheedia brasiliensis. We investigated its influence on surface-adsorbed glucosyltransferase (Gtf) B activity, acid production, and viability of S. mutans in biofilms, as well as on caries development using a rodent model. 7-Epi (100 μg/mL) significantly reduced the activity of surface-adsorbed GtfB (up to 48.0 ± 1.8 of inhibition at 100 μg/mL) and glycolytic pH-drop by S. mutans in biofilms (125 and 250 μg/mL) (vs. vehicle control, p < 0.05). In contrast, the test compound did not significantly affect the bacterial viability when compared to vehicle control (15% ethanol, p > 0.05). Wistar rats treated topically with 7-epi (twice daily, 60-s exposure) showed significantly smaller number of and less severe smooth- and sulcal-surface carious lesions (p < 0.05), without reducing the S. mutans viable population from the animals’ dental biofilms. In conclusion, the natural compound 7-epiclusianone may be a potentially novel pharmacological agent to prevent and control dental caries disease. PMID:20665370

  9. The Collagen Binding Protein Cnm Contributes to Oral Colonization and Cariogenicity of Streptococcus mutans OMZ175

    PubMed Central

    Miller, James H.; Avilés-Reyes, Alejandro; Scott-Anne, Kathy; Gregoire, Stacy; Watson, Gene E.; Sampson, Edith; Progulske-Fox, Ann; Koo, Hyun; Bowen, William H.; Lemos, José A.

    2015-01-01

    Streptococcus mutans is the etiological agent of dental caries and one of the many bacterial species implicated in infective endocarditis. The expression of the collagen-binding protein Cnm by S. mutans has been associated with extraoral infections, but its relevance for dental caries has only been theorized to date. Due to the collagenous composition of dentinal and root tissues, we hypothesized that Cnm may facilitate the colonization of these surfaces, thereby enhancing the pathogenic potential of S. mutans in advancing carious lesions. As shown for extraoral endothelial cell lines, Cnm mediates the invasion of oral keratinocytes and fibroblasts by S. mutans. In this study, we show that in the Cnm+ native strain, OMZ175, Cnm mediates stringent adhesion to dentinal and root tissues as well as collagen-coated surfaces and promotes both cariogenicity and carriage in vivo. In vitro, ex vivo, and in vivo experiments revealed that while Cnm is not universally required for S. mutans cariogenicity, it contributes to (i) the invasion of the oral epithelium, (ii) enhanced binding on collagenous surfaces, (iii) implantation of oral biofilms, and (IV) the severity of caries due to a native Cnm+ isolate. Taken together, our findings reveal that Cnm is a colonization factor that contributes to the pathogenicity of certain S. mutans strains in their native habitat, the oral cavity. PMID:25733523

  10. Pleiotropic Regulation of Virulence Genes in Streptococcus mutans by the Conserved Small Protein SprV.

    PubMed

    Shankar, Manoharan; Hossain, Mohammad S; Biswas, Indranil

    2017-04-15

    Streptococcus mutans , an oral pathogen associated with dental caries, colonizes tooth surfaces as polymicrobial biofilms known as dental plaque. S. mutans expresses several virulence factors that allow the organism to tolerate environmental fluctuations and compete with other microorganisms. We recently identified a small hypothetical protein (90 amino acids) essential for the normal growth of the bacterium. Inactivation of the gene, SMU.2137, encoding this protein caused a significant growth defect and loss of various virulence-associated functions. An S. mutans strain lacking this gene was more sensitive to acid, temperature, osmotic, oxidative, and DNA damage-inducing stresses. In addition, we observed an altered protein profile and defects in biofilm formation, bacteriocin production, and natural competence development, possibly due to the fitness defect associated with SMU.2137 deletion. Transcriptome sequencing revealed that nearly 20% of the S. mutans genes were differentially expressed upon SMU.2137 deletion, thereby suggesting a pleiotropic effect. Therefore, we have renamed this hitherto uncharacterized gene as sprV ( s treptococcal p leiotropic r egulator of v irulence). The transcript levels of several relevant genes in the sprV mutant corroborated the phenotypes observed upon sprV deletion. Owing to its highly conserved nature, inactivation of the sprV ortholog in Streptococcus gordonii also resulted in poor growth and defective UV tolerance and competence development as in the case of S. mutans Our experiments suggest that SprV is functionally distinct from its homologs identified by structure and sequence homology. Nonetheless, our current work is aimed at understanding the importance of SprV in the S. mutans biology. IMPORTANCE Streptococcus mutans employs several virulence factors and stress resistance mechanisms to colonize tooth surfaces and cause dental caries. Bacterial pathogenesis is generally controlled by regulators of fitness that are

  11. Pleiotropic Regulation of Virulence Genes in Streptococcus mutans by the Conserved Small Protein SprV

    PubMed Central

    Shankar, Manoharan; Hossain, Mohammad S.

    2017-01-01

    ABSTRACT Streptococcus mutans, an oral pathogen associated with dental caries, colonizes tooth surfaces as polymicrobial biofilms known as dental plaque. S. mutans expresses several virulence factors that allow the organism to tolerate environmental fluctuations and compete with other microorganisms. We recently identified a small hypothetical protein (90 amino acids) essential for the normal growth of the bacterium. Inactivation of the gene, SMU.2137, encoding this protein caused a significant growth defect and loss of various virulence-associated functions. An S. mutans strain lacking this gene was more sensitive to acid, temperature, osmotic, oxidative, and DNA damage-inducing stresses. In addition, we observed an altered protein profile and defects in biofilm formation, bacteriocin production, and natural competence development, possibly due to the fitness defect associated with SMU.2137 deletion. Transcriptome sequencing revealed that nearly 20% of the S. mutans genes were differentially expressed upon SMU.2137 deletion, thereby suggesting a pleiotropic effect. Therefore, we have renamed this hitherto uncharacterized gene as sprV (streptococcal pleiotropic regulator of virulence). The transcript levels of several relevant genes in the sprV mutant corroborated the phenotypes observed upon sprV deletion. Owing to its highly conserved nature, inactivation of the sprV ortholog in Streptococcus gordonii also resulted in poor growth and defective UV tolerance and competence development as in the case of S. mutans. Our experiments suggest that SprV is functionally distinct from its homologs identified by structure and sequence homology. Nonetheless, our current work is aimed at understanding the importance of SprV in the S. mutans biology. IMPORTANCE Streptococcus mutans employs several virulence factors and stress resistance mechanisms to colonize tooth surfaces and cause dental caries. Bacterial pathogenesis is generally controlled by regulators of fitness that are

  12. Clinical Efficacy of a Specifically Targeted Antimicrobial Peptide Mouth Rinse: Targeted Elimination of Streptococcus mutans and Prevention of Demineralization

    PubMed Central

    Sullivan, R.; Santarpia, P.; Lavender, S.; Gittins, E.; Liu, Z.; Anderson, M.H.; He, J.; Shi, W.; Eckert, R.

    2011-01-01

    Background/Aims Streptococcus mutans, the major etiological agent of dental caries, has a measurable impact on domestic and global health care costs. Though persistent in the oral cavity despite conventional oral hygiene, S. mutans can be excluded from intact oral biofilms through competitive exclusion by other microorganisms. This suggests that therapies capable of selectively eliminating S. mutans while limiting the damage to the normal oral flora might be effective long-term interventions to fight cariogenesis. To meet this challenge, we designed C16G2, a novel synthetic specifically targeted antimicrobial peptide with specificity for S. mutans. C16G2 consists of a S. mutans-selective ‘targeting region’ comprised of a fragment from S. mutans competence stimulation peptide (CSP) conjoined to a ‘killing region’ consisting of a broad-spectrum antimicrobial peptide (G2). In vitro studies have indicated that C16G2 has robust efficacy and selectivity for S. mutans, and not other oral bacteria, and affects targeted bacteria within seconds of contact. Methods In the present study, we evaluated C16G2 for clinical utility in vitro, followed by a pilot efficacy study to examine the impact of a 0.04% (w/v) C16G2 rinse in an intra-oral remineralization/demineralization model. Results and Conclusions C16G2 rinse usage was associated with reductions in plaque and salivary S. mutans, lactic acid production, and enamel demineralization. The impact on total plaque bacteria was minimal. These results suggest that C16G2 is effective against S. mutans in vivo and should be evaluated further in the clinic. PMID:21860239

  13. Susceptibility of Porphyromonas gingivalis and Streptococcus mutans to Antibacterial Effect from Mammea americana

    PubMed Central

    Herrera Herrera, Alejandra; Franco Ospina, Luis; Fang, Luis; Díaz Caballero, Antonio

    2014-01-01

    The development of periodontal disease and dental caries is influenced by several factors, such as microorganisms of bacterial biofilm or commensal bacteria in the mouth. These microorganisms trigger inflammatory and immune responses in the host. Currently, medicinal plants are treatment options for these oral diseases. Mammea americana extracts have reported antimicrobial effects against several microorganisms. Nevertheless, this effect is unknown against oral bacteria. Therefore, the aim of this study was to evaluate the antibacterial effect of M. americana extract against Porphyromonas gingivalis and Streptococcus mutans. For this, an experimental study was conducted. Ethanolic extract was obtained from seeds of M. americana (one oil phase and one ethanolic phase). The strains of Porphyromonas gingivalis ATCC 33277 and Streptococcus mutans ATCC 25175 were exposed to this extract to evaluate its antibacterial effect. Antibacterial activity was observed with the two phases of M. americana extract on P. gingivalis and S. mutans with lower MICs (minimum inhibitory concentration). Also, bactericidal and bacteriostatic activity was detected against S. mutans, depending on the concentration of the extract, while on M. americana extract presented only bacteriostatic activity against P. gingivalis. These findings provide important and promising information allowing for further exploration in the future. PMID:24864137

  14. Effective immunity to dental caries: dose-dependent studies of secretory immunity by oral administration of Streptococcus mutans to rats.

    PubMed

    Michalek, S M; McGhee, J R; Babb, J L

    1978-01-01

    Rats (COBS/CD) provided Formalin-killed Streptococcus mutans 6715, C211 in their drinking water (10(8) to 10(9) equivalent colony-forming units [CFU] per ml) had high levels of specific antibodies in saliva, colostrum, and milk. Rats provided a lower concentration of S. mutans antigen (10(7) CFU per ml) in water had agglutinin titers in secretions that were similar to those in controls. Gnotobiotic rats provided S. mutans antigen in food (10(7) to 10(8) equivalent CFU per g of diet) manifested a secretory immune response as evidenced by the presence of specific immunoglobulin A antibodies in saliva, colostrum, and milk. Gnotobiotic rats provided a higher concentration of antigen (10(9) CFU per g) in food had levels of specific antibodies in their secretions that were similar to those in controls. No significant antibody activity to S. mutans was observed in sera of any group of animals. Furthermore, the presence of specific salivary immunoglobulin A antibodies in gnotobiotic rats correlated with a reduction in the level of plaque, numbers of viable S. mutans in plaque, and levels of S. mutans-induced dental caries. This paper discusses the importance of antigen dosage for induction of a secretory immune response that is protective against S. mutans-induced dental caries.

  15. Effect of different types of tea on Streptococcus mutans: an in vitro study.

    PubMed

    Subramaniam, Priya; Eswara, Uma; Maheshwar Reddy, K R

    2012-01-01

    If tea can be shown to have an inhibitory effect on the growth of Streptococcus mutans there can be a basis for using it as an agent for reducing caries. The aim of the study was to determine the effect of aqueous and organic extracts of three types of tea (green, oolong, and black tea) on the growth of S. mutans. In vitro study. Qualitative and quantitative phytochemical analysis of the three types of tea was done. Organic extracts of methanol and ethanol and aqueous extracts (50% and 100%) of tea were prepared. Fifty microliters of these extracts were inoculated into wells prepared on Mueller-Hinton agar plates that had been previously smeared with S. mutans. The agar plates were incubated at 37΀C for 24 hours. A similar procedure was followed using 0.2% chlorhexidine, which served as the positive control. Analysis of variance (ANOVA), post hoc Tukey test, Student's 't ' test (two-tailed, dependent), and Student's 't' test (two-tailed, independent) were used for analysis of the data. All the phytochemicals were found to be higher in oolong tea. Both aqueous and organic extracts of oolong tea showed greatest zones of inhibition, followed by green tea and black tea. Aqueous extracts of oolong and green tea showed greater zone of inhibition than chlorhexidine. All the three types of tea inhibited growth of S. mutans. The greatest inhibition was observed with aqueous extract of oolong tea. Oolong tea extracts (aqueous and organic) showed a greater inhibitory effect on the growth of S. mutans than the other tea extracts .

  16. Genetic Diversity and Evidence for Transmission of Streptococcus mutans by DiversiLab rep-PCR.

    PubMed

    Momeni, Stephanie S; Whiddon, Jennifer; Cheon, Kyounga; Ghazal, Tariq; Moser, Stephen A; Childers, Noel K

    2016-09-01

    This two-part study investigated the genetic diversity and transmission of Streptococcus mutans using the DiversiLab repetitive extragenic palindromic PCR (rep-PCR) approach. For children with S. mutans and participating household members, analysis for evidence of unrelated child-to-child as well as intra-familial transmission was evaluated based on commonality of genotypes. A total of 169 index children and 425 household family members from Uniontown, Alabama were evaluated for genetic diversity using rep-PCR. Thirty-four unique rep-PCR genotypes were observed for 13,906 S. mutans isolates. For transmission, 117 child and household isolates were evaluated for shared genotype (by child and by genotype cases, multiple matches possible for each child). Overall, children had 1-9 genotypes and those with multiple genotypes were 2.3 times more likely to have caries experience (decayed, missing and filled teeth/surfaces>0). Only 28% of children shared all genotypes within the household, while 72% had at least 1 genotype not shared with anyone in the household. Children had genotype(s) not shared with any household members in 157 cases. In 158 cases children and household members shared a genotype in which 55% (87/158 cases) were shared with more than one family member. Children most frequently shared genotypes with their mothers (54%; 85/158), siblings (46%; 72/158) and cousins (23%; 37/158). A reference library for S. mutans for epidemiological surveillance using the DiversiLab rep-PCR approach is detailed. The genetic diversity of S. mutans in this population demonstrated frequent commonality of genotypes. Evidence for both child-to-child and intra-familial transmission of S. mutans was observed by rep-PCR. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Characterization of an anti-glucosyltransferase serum specific for insoluble glucan synthesis by Streptococcus mutans.

    PubMed

    Linzer, R; Slade, H D

    1976-02-01

    An anti-glucosyltransferase serum, which synthesized 96% insoluble glucans, was prepared against a purified enzyme preparation from Streptococcus mutans strain HS6 (serotype a). This serum was examined for its effects on glucan synthesis by crude enzyme preparations from eight strains (four serotypes) of S. mutans and for the ability of these preparations to promote adherence of S. mutans to a smooth surface. Glucosyltransferase activity was assayed by measuring the incorporation of glucose from [14C]glucose-labeled sucrose into water-insoluble and water-soluble (ethanol-insoluble) glucans. Anti-glucosyltransferase serum inhibited insoluble glucan synthesis by crude enzyme preparations from cells of the four serotypes of S. mutans. Enzymes from strains of types a, b, and d were inhibited between 70 to 90%; enzymes from type c strains were inhibited from 45 to 60%. The adherence to a glass surface of heat-killed cells from these four serotypes was likewise inhibited. Soluble glucan synthesis was not inhibited by the serum, and in some cases its synthesis increased as insoluble glucan synthesis decreased.

  18. Immunological properties of the primer-independent glucosyltransferase of Streptococcus mutans serotypes d and g.

    PubMed

    Yamashita, Y; Shigeoka, T; Hanada, N; Takehara, T

    1988-05-01

    Streptococcus mutans serotype g secretes at least three kinds of glucosyltransferase with different enzymological and immunological properties. One of them is a primer-independent enzyme and seems to be the source of primer for the others, both of which are primer-dependent enzymes. Recently, we purified the primer-independent enzyme, the third glucosyltransferase in this group from S. mutans strain AHT-k serotype g. In the present study, we examined the specificity of the antiserum against the primer-independent glucosyltransferase using extracellular culture-conditioned fluids of many strains of the various serotypes of S. mutans. The antiserum cross-reacted with the extracellular culture fluids from strains of serotypes d and a, in addition to serotype g, but not with those of other serotypes, indicating that the primer-independent glucosyltransferase is secreted by the S. sobrinus and S. cricetus, but not by S. mutans and S. rattus. The antiserum did not completely inhibit the activity of the enzyme, even at more than twofold antibody excess, determined by indirect precipitation with immobilized staphylococcal protein A.

  19. Fatigue and fluoride corrosion on Streptococcus mutans adherence to titanium-based implant/component surfaces.

    PubMed

    Correa, Cassia Bellotto; Pires, Juliana Rico; Fernandes-Filho, Romeu Belon; Sartori, Rafael; Vaz, Luis Geraldo

    2009-07-01

    The influence of fatigue and the fluoride ion corrosion process on Streptococcus mutans adherence to commercially pure Titanium (Cp Ti) implant/component set surfaces were studied. Thirty Nobel implants and 30 Neodent implants were used. Each commercial brand was divided into three groups. Group A: control, Group B: sets submitted to fatigue (10(5) cycles, 15 Hz, 150 N), and Group C: sets submitted to fluoride (1500 ppm, pH 5.5) and fatigue, simulating a mean use of 5 years in the oral medium. Afterward, the sets were contaminated with standard strains of S. mutans (NTCC 1023) and analyzed by scanning electronic microscopy (SEM) and colony-forming unit counts (CFU/mL). By SEM, bacterial adherence was verified only in group C in both brands. By CFU/mL counts, S. mutans was statistically higher in both brands in group C than in groups A and B (p < 0.05, ANOVA). The process of corrosion by fluoride ions on Cp Ti implant/component sets allowed greater S. mutans adherence than in the absence of corrosion and with the fatigue process in isolation.

  20. Chamaecyparis obtusa Suppresses Virulence Genes in Streptococcus mutans

    PubMed Central

    Kim, Eun-Hee; Kang, Sun-Young; Park, Bog-Im; Kim, Young-Hoi; Lee, Young-Rae; Hoe, Jin-Hee; Choi, Na-Young; Ra, Ji-Young; An, So-Youn; You, Yong-Ouk

    2016-01-01

    Chamaecyparis obtusa (C. obtusa) is known to have antimicrobial effects and has been used as a medicinal plant and in forest bathing. This study aimed to evaluate the anticariogenic activity of essential oil of C. obtusa on Streptococcus mutans, which is one of the most important bacterial causes of dental caries and dental biofilm formation. Essential oil from C. obtusa was extracted, and its effect on bacterial growth, acid production, and biofilm formation was evaluated. C. obtusa essential oil exhibited concentration-dependent inhibition of bacterial growth over 0.025 mg/mL, with 99% inhibition at a concentration of 0.2 mg/mL. The bacterial biofilm formation and acid production were also significantly inhibited at the concentration greater than 0.025 mg/mL. The result of LIVE/DEAD® BacLight™ Bacterial Viability Kit showed a concentration-dependent bactericidal effect on S. mutans and almost all bacteria were dead over 0.8 mg/mL. Real-time PCR analysis showed that gene expression of some virulence factors such as brpA, gbpB, gtfC, and gtfD was also inhibited. In GC and GC-MS analysis, the major components were found to be α-terpinene (40.60%), bornyl acetate (12.45%), α-pinene (11.38%), β-pinene (7.22%), β-phellandrene (3.45%), and α-terpinolene (3.40%). These results show that C. obtusa essential oil has anticariogenic effect on S. mutans. PMID:27293453

  1. The copYAZ Operon Functions in Copper Efflux, Biofilm Formation, Genetic Transformation, and Stress Tolerance in Streptococcus mutans

    PubMed Central

    Singh, Kamna; Senadheera, Dilani B.; Lévesque, Céline M.

    2015-01-01

    ABSTRACT In bacteria, copper homeostasis is closely monitored to ensure proper cellular functions while avoiding cell damage. Most Gram-positive bacteria utilize the copYABZ operon for copper homeostasis, where copA and copB encode copper-transporting P-type ATPases, whereas copY and copZ regulate the expression of the cop operon. Streptococcus mutans is a biofilm-forming oral pathogen that harbors a putative copper-transporting copYAZ operon. Here, we characterized the role of copYAZ operon in the physiology of S. mutans and delineated the mechanisms of copper-induced toxicity in this bacterium. We observed that copper induced toxicity in S. mutans cells by generating oxidative stress and disrupting their membrane potential. Deletion of the copYAZ operon in S. mutans strain UA159 resulted in reduced cell viability under copper, acid, and oxidative stress relative to the viability of the wild type under these conditions. Furthermore, the ability of S. mutans to form biofilms and develop genetic competence was impaired under copper stress. Briefly, copper stress significantly reduced cell adherence and total biofilm biomass, concomitantly repressing the transcription of the gtfB, gtfC, gtfD, gbpB, and gbpC genes, whose products have roles in maintaining the structural and/or functional integrity of the S. mutans biofilm. Furthermore, supplementation with copper or loss of copYAZ resulted in significant reductions in transformability and in the transcription of competence-associated genes. Copper transport assays revealed that the ΔcopYAZ strain accrued significantly large amounts of intracellular copper compared with the amount of copper accumulation in the wild-type strain, thereby demonstrating a role for CopYAZ in the copper efflux of S. mutans. The complementation of the CopYAZ system restored copper expulsion, membrane potential, and stress tolerance in the copYAZ-null mutant. Taking these results collectively, we have established the function of the S. mutans

  2. Identification of ssDNA aptamers specific to clinical isolates of Streptococcus mutans strains with different cariogenicity.

    PubMed

    Cui, Wei; Liu, Jiaojiao; Su, Donghua; Hu, Danyang; Hou, Shuai; Hu, Tongnan; Yang, Jiyong; Luo, Yanping; Xi, Qing; Chu, Bingfeng; Wang, Chenglong

    2016-06-01

    Streptococcus mutans, a Gram-positive facultative anaerobic bacterium, is considered to be a major etiological factor for dental caries. In this study, plaques from dental enamel surfaces of caries-active and caries-free individuals were obtained and cultivated for S. mutans isolation. Morphology examination, biochemical characterization, and polymerase chain reaction were performed to identify S. mutans The cariogenicity of S. mutans strains isolated from clinical specimens was evaluated by testing the acidogenicity, aciduricity, extracellular polysaccharide production, and adhesion ability of the bacteria. Finally, subtractive SELEX (systematic evolution of ligands by exponential enrichment) technology targeting whole intact cells was used to screen for ssDNA aptamers specific to the strains with high cariogenicity. After nine rounds of subtractive SELEX, sufficient pool enrichment was achieved as shown by radioactive isotope analysis. The enriched pool was cloned and sequenced randomly, followed by MEME online and RNA structure software analysis of the sequences. Results from the flow cytometry indicated that aptamers H1, H16, H4, L1, L10, and H19 could discriminate highly cariogenic S. mutans strains from poorly cariogenic strains. Among these, Aptamer H19 had the strongest binding capacity with cariogenic S. mutans strains with a dissociation constant of 69.45 ± 38.53 nM. In conclusion, ssDNA aptamers specific to highly cariogenic clinical S. mutans strains were successfully obtained. These ssDNA aptamers might be used for the early diagnosis and treatment of dental caries. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Scanning electron microscopic study of Piper betle L. leaves extract effect against Streptococcus mutans ATCC 25175.

    PubMed

    Rahim, Zubaidah Haji Abdul; Thurairajah, Nalina

    2011-04-01

    Previous studies have shown that Piper betle L. leaves extract inhibits the adherence of Streptococcus mutans to glass surface, suggesting its potential role in controlling dental plaque development. In this study, the effect of the Piper betle L. extract towards S. mutans (with/without sucrose) using scanning electron microscopy (SEM) and on partially purified cell-associated glucosyltransferase activity were determined. S. mutans were allowed to adhere to glass beads suspended in 6 different Brain Heart Infusion broths [without sucrose; with sucrose; without sucrose containing the extract (2 mg mL(-1) and 4 mg mL(-1)); with sucrose containing the extract (2 mg mL(-1) and 4 mg mL(-1))]. Positive control was 0.12% chlorhexidine. The glass beads were later processed for SEM viewing. Cell surface area and appearance and, cell population of S. mutans adhering to the glass beads were determined upon viewing using the SEM. The glucosyltransferase activity (with/without extract) was also determined. One- and two-way ANOVA were used accordingly. It was found that sucrose increased adherence and cell surface area of S. mutans (p<0.001). S. mutans adhering to 100 µm² glass surfaces (with/without sucrose) exhibited reduced cell surface area, fluffy extracellular appearance and cell population in the presence of the Piper betle L. leaves extract. It was also found that the extract inhibited glucosyltransferase activity and its inhibition at 2.5 mg mL(-1) corresponded to that of 0.12% chlorhexidine. At 4 mg mL(-1) of the extract, the glucosyltransferase activity was undetectable and despite that, bacterial cells still demonstrated adherence capacity. The SEM analysis confirmed the inhibitory effects of the Piper betle L. leaves extract towards cell adherence, cell growth and extracellular polysaccharide formation of S. mutans visually. In bacterial cell adherence, other factors besides glucosyltransferase are involved.

  4. Hydrophilicity of dentin bonding systems influences in vitro Streptococcus mutans biofilm formation

    PubMed Central

    Brambilla, Eugenio; Ionescu, Andrei; Mazzoni, Annalisa; Cadenaro, Milena; Gagliani, Massimo; Ferraroni, Monica; Tay, Franklin; Pashley, David; Breschi, Lorenzo

    2014-01-01

    Objectives To evaluate in vitro Streptococcus mutans (S. mutans) biofilm formation on the surface of five light-curing experimental dental bonding systems (DBS) with increasing hydrophilicity. The null hypothesis tested was that resin chemical composition and hydrophilicity does not affect S. mutans biofilm formation. Methods Five light-curing versions of experimental resin blends with increasing hydrophilicity were investigated (R1, R2, R3, R4 and R5). R1 and R2 contained ethoxylated BisGMA/TEGDMA or BisGMA/TEGDMA, respectively, and were very hydrophobic, were representative of pit-and-fissure bonding agents. R3 was representative of a typical two-step etch- and-rinse adhesive, while R4 and R5 were very hydrophilic resins analogous to self-etching adhesives. Twenty-eight disks were prepared for each resin blend. After a 24 h-incubation at 37 °C, a multilayer monospecific biofilm of S. mutans was obtained on the surface of each disk. The adherent biomass was determined using the MTT assay and evaluated morphologically with confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Results R2 and R3 surfaces showed the highest biofilm formation while R1 and R4 showed a similar intermediate biofilm formation. R5 was more hydrophilic and acidic and was significantly less colonized than all the other resins. A significant quadratic relationship between biofilm formation and hydrophilicity of the resin blends was found. CLSM and SEM evaluation confirmed MTT assay results. Conclusions The null hypothesis was rejected since S. mutans biofilm formation was influenced by hydrophilicity, surface acidity and chemical composition of the experimental resins. Further studies using a bioreactor are needed to confirm the results and clarify the role of the single factors. PMID:24954666

  5. Reduction of Streptococcus mutans adherence and dental biofilm formation by surface treatment with phosphorylated polyethylene glycol.

    PubMed

    Shimotoyodome, Akira; Koudate, Takashi; Kobayashi, Hisataka; Nakamura, Junji; Tokimitsu, Ichiro; Hase, Tadashi; Inoue, Takashi; Matsukubo, Takashi; Takaesu, Yoshinori

    2007-10-01

    Initial attachment of the cariogenic Streptococcus mutans onto dental enamel is largely promoted by the adsorption of specific salivary proteins on enamel surface. Some phosphorylated salivary proteins were found to reduce S. mutans adhesion by competitively inhibiting the adsorption of S. mutans-binding salivary glycoproteins to hydroxyapatite (HA). The aim of this study was to develop antiadherence compounds for preventing dental biofilm development. We synthesized phosphorylated polyethylene glycol (PEG) derivatives and examined the possibility of surface pretreatment with them for preventing S. mutans adhesion in vitro and dental biofilm formation in vivo. Pretreatment of the HA surface with methacryloyloxydecyl phosphate (MDP)-PEG prior to saliva incubation hydrophilized the surface and thereby reduced salivary protein adsorption and saliva-promoted bacterial attachment to HA. However, when MDP-PEG was added to the saliva-pretreated HA (S-HA) surface, its inhibitory effect on bacterial binding was completely diminished. S. mutans adhesion onto S-HA was successfully reduced by treatment of the surface with pyrophosphate (PP), which desorbs salivary components from S-HA. Treatment of S-HA surfaces with MDP-PEG plus PP completely inhibited saliva-promoted S. mutans adhesion even when followed by additional saliva treatment. Finally, mouthwash with MDP-PEG plus PP prevented de novo biofilm development after thorough teeth cleaning in humans compared to either water or PP alone. We conclude that MDP-PEG plus PP has the potential for use as an antiadherence agent that prevents dental biofilm development.

  6. Comparison of antibacterial efficacy of coconut oil and chlorhexidine on Streptococcus mutans: An in vivo study.

    PubMed

    Peedikayil, Faizal C; Remy, Vimal; John, Seena; Chandru, T P; Sreenivasan, Prathima; Bijapur, Gufran Ahmed

    2016-01-01

    Streptococcus mutans is the most common organism causing dental caries. Various chemotherapeutic agents are available that help in treating the bacteria, with each having their own merits and demerits. Recent research has shown that coconut oil has anti-inflammatory and antimicrobial action. Therefore, the present was conducted to determine the antibacterial efficacy of coconut oil and to compare it with chlorhexidine. A total of fifty female children aged 8-12 years were included in the study. Twenty five children were randomly distributed to each group, i.e., the study group (coconut oil) and the control group (chlorhexidine). The participants were asked to routinely perform oil swishing with coconut oil and chlorhexidine and rinse every day in the morning after brushing for 2-3 minutes. S. mutans in saliva and plaque were determined using a chairside method, i.e., the Dentocult SM Strip Mutans test. Patients were instructed to continue oil swishing for 30 days. S. mutans . counts in plaque and saliva on day 1, day 15, and day 30 were recorded and the results were compared using Wilcoxon matched pairs signed ranks test. The results showed that there is a statistically significant decrease in S. mutans . count from coconut oil as well as chlorhexidine group from baseline to 30 days. The study also showed that in comparison of coconut oil and chlorhexidine there is no statistically significant change regarding the antibacterial efficacy. Coconut oil is as effective as chlorhexidine in the reduction of S. mutans .

  7. Biochemical and genetic characterization of serologically untypable Streptococcus mutans strains isolated from patients with bacteremia.

    PubMed

    Fujiwara, T; Nakano, K; Kawaguchi, M; Ooshima, T; Sobue, S; Kawabata, S; Nakagawa, I; Hamada, S

    2001-10-01

    Four out of 522 streptococcal isolates from the peripheral blood of patients with bacteremia exhibited typical properties of Streptococcus mutans in terms of sucrose-dependent adhesion, expression of glucosyltransferases, fermentation profiles of sugars, the presence of surface protein antigen, and DNA-DNA hybridization. Two strains were determined as serotype f and e by immunodiffusion, whereas the other two isolates did not react with the specific antiserum to S. mutans serotype c. e. or f of the eight different serotypes of mutans streptococci. The latter two untypable isolates, however, expressed a new antigenic determinant that was different from serotype c/e/f specificity as revealed by immunodiffusion. Analysis of the cell wall polysaccharides revealed very low contents of glucose in the untypable isolates. Furthermore, Southern blot analysis demonstrated that the untypable strains lacked at least one gene corresponding to a glucose-adding enzyme. These results indicate that the serologically untypable nature is due to the loss of glucosidic residue from the serotype-specific polysaccharide antigens of S. mutans.

  8. Effect of a Lactobacillus Salivarius Probiotic on a Double-Species Streptococcus Mutans and Candida Albicans Caries Biofilm.

    PubMed

    Krzyściak, Wirginia; Kościelniak, Dorota; Papież, Monika; Vyhouskaya, Palina; Zagórska-Świeży, Katarzyna; Kołodziej, Iwona; Bystrowska, Beata; Jurczak, Anna

    2017-11-14

    The aim of the study was to evaluate the anti-cariogenic effects of Lactobacillus salivarius by reducing pathogenic species and biofilm mass in a double-species biofilm model. Coexistence of S. mutans with C. albicans can cause dental caries progression or recurrence of the disease in the future. Fifty-nine children with diagnosed early childhood caries (ECC) were recruited onto the study. The condition of the children's dentition was defined according to the World Health Organization guidelines. The participants were divided into children with initial enamel demineralization and children showing dentin damage. The study was performed on the S. mutans and C. albicans clinical strains, isolated from dental plaque of patients with ECC. The effect of a probiotic containing Lactobacillus salivarius on the ability of S. mutans and C. albicans to produce a double-species biofilm was investigated in an in vitro model. The biomass of the formed/non-degraded biofilm was analyzed on the basis of its crystal violet staining. The number of colonies of S. mutans and C. albicans (CFU/mL, colony forming units/mL) forming the biofilm was determined. Microorganism morphology in the biofilm was evaluated using a scanning electron microscope (SEM). In vitro analysis demonstrated that the presence of S. mutans increased the number of C. albicans colonies (CFU/mL); the double-species biofilm mass and hyphal forms produced in it by the yeast. L. salivarius inhibited the cariogenic biofilm formation of C. albicans and S. mutans . Under the influence of the probiotic; the biofilm mass and the number of S. mutans ; C. albicans and S. mutans with C. albicans colonies in the biofilm was decreased. Moreover; it can be noted that after the addition of the probiotic; fungi did not form hyphae or germ tubes of pathogenic potential. These results suggest that L. salivarius can secrete intermediates capable of inhibiting the formation of cariogenic S. mutans and C. albicans biofilm; and may

  9. Influence of pH on inhibition of Streptococcus mutans by Streptococcus oligofermentans.

    PubMed

    Liu, Ying; Chu, Lei; Wu, Fei; Guo, Lili; Li, Mengci; Wang, Yinghui; Wu, Ligeng

    2014-02-01

    Streptococcus oligofermentans is a novel strain of oral streptococcus that can specifically inhibit the growth of Streptococcus mutans. The aims of this study were to assess the growth of S. oligofermentans and the ability of S. oligofermentans to inhibit growth of Streptococcus mutans at different pH values. Growth inhibition was investigated in vitro using an interspecies competition assay. The 4-aminoantipyine method was used to measure the initial production rate and the total yield of hydrogen peroxide in S. oligofermentans. S. oligofermentans grew best at pH 7.0 and showed the most pronounced inhibitory effect when it was inoculated earlier than S. mutans. In terms of the total yield and the initial production rate of hydrogen peroxide by S. oligofermentans, the effects of the different culture pH values were as follows: pH 7.0 > 6.5 > 6.0 > 7.5 > 5.5 = 8.0 (i.e. there was no significant difference between pH 5.5 and pH 8.0). Environmental pH and the sequence of inoculation significantly affected the ability of S. oligofermentans to inhibit the growth of S. mutans. The degree of inhibition may be attributed to the amount of hydrogen peroxide produced. © 2013 Eur J Oral Sci.

  10. Effect of γ-lactones and γ-lactams compounds on Streptococcus mutans biofilms

    PubMed Central

    Sordi, Mariane Beatriz; Moreira, Thaís Altoé; Montero, Juan Felipe Dumes; Barbosa, Luis Cláudio; Benfatti, César Augusto Magalhães; Magini, Ricardo de Souza; Pimenta, Andréa de Lima

    2018-01-01

    Abstract Considering oral diseases, antibiofilm compounds can decrease the accumulation of pathogenic species such as Streptococcus mutans at micro-areas of teeth, dental restorations or implant-supported prostheses. Objective To assess the effect of thirteen different novel lactam-based compounds on the inhibition of S. mutans biofilm formation. Material and methods We synthesized compounds based on γ-lactones analogues from rubrolides by a mucochloric acid process and converted them into their corresponding γ-hydroxy-γ-lactams by a reaction with isobutylamine and propylamine. Compounds concentrations ranging from 0.17 up to 87.5 μg mL-1 were tested against S. mutans. We diluted the exponential cultures in TSB and incubated them (37°C) in the presence of different γ-lactones or γ-lactams dilutions. Afterwards, we measured the planktonic growth by optical density at 630 nm and therefore assessed the biofilm density by the crystal violet staining method. Results Twelve compounds were active against biofilm formation, showing no effect on bacterial viability. Only one compound was inactive against both planktonic and biofilm growth. The highest biofilm inhibition (inhibition rate above 60%) was obtained for two compounds while three other compounds revealed an inhibition rate above 40%. Conclusions Twelve of the thirteen compounds revealed effective inhibition of S. mutans biofilm formation, with eight of them showing a specific antibiofilm effect. PMID:29489934

  11. Streptococcus mutans, Streptococcus sobrinus and Candida albicans in oral samples from caries-free and caries-active children.

    PubMed

    Fragkou, S; Balasouli, C; Tsuzukibashi, O; Argyropoulou, A; Menexes, G; Kotsanos, N; Kalfas, S

    2016-10-01

    This was to examine the occurrence of S. mutans, S. sobrinus and C. albicans in dental plaque and saliva from caries-free and caries-active Greek children. Saliva and dental plaque samples from 46 caries-free and 51 caries-active 3-to-13-year-old children were examined using selective media for the three microbes. Identification of isolated mutans streptococci (S. mutans and S. sobrinus) was performed with biochemical test and specific DNA probes. The salivary levels of mutans streptococci were additionally determined by a chair-side test (Dentocult ® SM strips). The isolation frequencies of S. mutans, S. sobrinus and C. albicans were 66, 11 and 18 %, respectively. Caries-active children harboured more frequently and at significantly higher numbers the specific microbes than caries-free children. A similar pattern was observed with the Dentocult ® SM strip scores. No correlation was found between the presence of these microbes and the age or gender of the children. Caries experience was statistically significantly related to the presence of all three microbes under study, both in dental plaque and saliva.

  12. Hydroxy decenoic acid down regulates gtfB and gtfC expression and prevents Streptococcus mutans adherence to the cell surfaces

    PubMed Central

    2012-01-01

    Background 10-Hydroxy-2-decenoic acid, an unsaturated fatty acid is the most active and unique component to the royal jelly that has antimicrobial properties. Streptococcus mutans is associated with pathogenesis of oral cavity, gingivoperiodontal diseases and bacteremia following dental manipulations. In the oral cavity, S. mutans colonize the soft tissues including tongue, palate, and buccal mucosa. When considering the role of supragingival dental plaque in caries, the proportion of acid producing bacteria (particularly S. mutans), has direct relevance to the pathogenicity of the plaque. The genes that encode glucosyltransferases (gtfs) especially gtfB and gtfC are important in S. mutans colonization and pathogenesis. This study investigated the hydroxy-decenoic acid (HDA) effects on gtfB and gtfC expression and S. mutans adherence to cells surfaces. Methods Streptococcus mutans was treated by different concentrations of HPLC purified HDA supplied by Iran Beekeeping and Veterinary Association. Real time RT-PCR and western blot assays were conducted to evaluate gtfB and gtfC genes transcription and translation before and after HDA treatment. The bacterial attachment to the cell surfaces was evaluated microscopically. Results 500 μg ml-1 of HDA inhibited gtfB and gtfC mRNA transcription and its expression. The same concentration of HDA decreased 60% the adherence of S. mutans to the surface of P19 cells. Conclusion Hydroxy-decenoic acid prevents gtfB and gtfC expression efficiently in the bactericide sub-concentrations and it could effectively reduce S. mutans adherence to the cell surfaces. In the future, therapeutic approaches to affecting S. mutans could be selective and it’s not necessary to put down the oral flora completely. PMID:22839724

  13. Hydroxy decenoic acid down regulates gtfB and gtfC expression and prevents Streptococcus mutans adherence to the cell surfaces.

    PubMed

    Yousefi, Behnam; Ghaderi, Shahrooz; Rezapoor-Lactooyi, Alireza; Amiri, Niusha; Verdi, Javad; Shoae-Hassani, Alireza

    2012-07-28

    10-Hydroxy-2-decenoic acid, an unsaturated fatty acid is the most active and unique component to the royal jelly that has antimicrobial properties. Streptococcus mutans is associated with pathogenesis of oral cavity, gingivoperiodontal diseases and bacteremia following dental manipulations. In the oral cavity, S. mutans colonize the soft tissues including tongue, palate, and buccal mucosa. When considering the role of supragingival dental plaque in caries, the proportion of acid producing bacteria (particularly S. mutans), has direct relevance to the pathogenicity of the plaque. The genes that encode glucosyltransferases (gtfs) especially gtfB and gtfC are important in S. mutans colonization and pathogenesis. This study investigated the hydroxy-decenoic acid (HDA) effects on gtfB and gtfC expression and S. mutans adherence to cells surfaces. Streptococcus mutans was treated by different concentrations of HPLC purified HDA supplied by Iran Beekeeping and Veterinary Association. Real time RT-PCR and western blot assays were conducted to evaluate gtfB and gtfC genes transcription and translation before and after HDA treatment. The bacterial attachment to the cell surfaces was evaluated microscopically. 500 μg ml-1 of HDA inhibited gtfB and gtfC mRNA transcription and its expression. The same concentration of HDA decreased 60% the adherence of S. mutans to the surface of P19 cells. Hydroxy-decenoic acid prevents gtfB and gtfC expression efficiently in the bactericide sub-concentrations and it could effectively reduce S. mutans adherence to the cell surfaces. In the future, therapeutic approaches to affecting S. mutans could be selective and it's not necessary to put down the oral flora completely.

  14. Genetic Heterogeneity in Streptococcus mutans1

    PubMed Central

    Coykendall, Alan L.

    1971-01-01

    The genetic homogeneity among eight cariogenic strains of Streptococcus mutans was assessed by deoxyribonucleic acid (DNA)-DNA reassociation experiments. DNA species were extracted from strains GS5, Ingbritt, 10449, FAl, BHT, E49, SLl, and KlR. Labeled DNA (14C-DNA) was extracted from strains 10449, FAl, and SLl. Denatured 14C-DNA fragments were allowed to reassociate, i.e., form hybrid duplexes, with denatured DNA immobilized on membrane filters incubated in 0.45 m NaCl-0.045 m sodium citrate at 67 or 75 C. At 67 C, 10449 14C-DNA reassociated extensively only with GS5 and Ingbritt DNA. FAl 14C-DNA hybridized extensively only with BHT DNA, and SLl 14C-DNA reassociated with KlR and E49 DNA. DNA which hybridized extensively at 67 C also reassociated to a high degree at 75 C. Thermal elution of 14C-FAl-BHT duplexes showed that the hybrid duplexes were thermostable. The results indicate that S. mutans is a genetically heterogeneous species. The strains studied can be divided into three (possibly four) genetic groups, and these groups closely parallel antigenic groups. PMID:5551636

  15. Streptococcus mutans Displays Altered Stress Responses While Enhancing Biofilm Formation by Lactobacillus casei in Mixed-Species Consortium

    PubMed Central

    Wen, Zezhang T.; Liao, Sumei; Bitoun, Jacob P.; De, Arpan; Jorgensen, Ashton; Feng, Shihai; Xu, Xiaoming; Chain, Patrick S. G.; Caufield, Page W.; Koo, Hyun; Li, Yihong

    2017-01-01

    Like Streptococcus mutans, lactobacilli are commonly isolated from carious sites, although their exact role in caries development remains unclear. This study used mixed-species models to analyze biofilm formation by major groups of oral lactobacilli, including L. casei, L. fermentum, L. rhamnosus, L. salivarius ssp. salivarius, and L. gasseri. The results showed that lactobacilli did not form good biofilms when grown alone, although differences existed between different species. When grown together with S. mutans, biofilm formation by L. gasseri and L. rhamnosus was increased by 2-log (P < 0.001), while biofilms by L. fermentum reduced by >1-log (P < 0.001). L. casei enhanced biofilm formation by ~2-log when grown with S. mutans wild-type, but no such effects were observed with S. mutans deficient of glucosyltransferase GtfB and adhesin P1. Both S. mutans and L. casei in dual-species enhanced resistance to acid killing with increases of survival rate by >1-log (P < 0.001), but drastically reduced the survival rates following exposure to hydrogen peroxide (P < 0.001), as compared to the respective mono-species cultures. When analyzed by RNA-seq, more than 134 genes were identified in S. mutans in dual-species with L. casei as either up- or down-regulated when compared to those grown alone. The up-regulated genes include those for superoxide dismutase, NADH oxidase, and members of the mutanobactin biosynthesis cluster. Among the down-regulated genes were those for GtfB and alternative sigma factor SigX. These results further suggest that interactions between S. mutans and oral lactobacilli are species-specific and may have significant impact on cariogenic potential of the community. PMID:29326887

  16. Effects of oral environment stabilization procedures on Streptococcus mutans counts in pregnant women.

    PubMed

    Volpato, Flavia Cristina; Jeremias, Fabiano; Spolidório, Denise Madalena Palomari; Silva, Silvio Rocha Corrêa da; Valsecki Junior, Aylton; Rosell, Fernanda Lopez

    2011-01-01

    The aim of this study was to determine the effect of oral environment stabilization (OES) on the counting of Streptococcus mutans in high-caries-risk pregnant women participants of a prevention program in a public teaching institution. The sample was composed of 30 pregnant women aged 18 to 43 years, who looked for treatment at the Preventive Dentistry Clinic of the Araraquara Dental School, UNESP. Saliva samples were collected before and after the OES procedures and were forwarded to the pathology for observation and quantification of S. mutans CFU. There was a decrease in the number of S. mutans CFU, which was significantly different (p<0.0001) between samples. Considering the age group, 70.0% were between 18 to 30 years old and 30.0% belonged to the 31-43-year-old age group. Data related to the pregnancy period showed that 73.4% were in the second trimester, 13.3% in the first and 13.3% in third trimester. OES showed to be an effective clinical procedure in diminishing the number of S. mutans CFU in the saliva of high-caries-risk pregnant women. This management is simple and effective, corresponding to the basic treatment needs of pregnant women that search dental care in this public service.

  17. Epidemiological survey of Streptococcus mutans among Japanese children. Identification and serological typing of the isolated strains.

    PubMed

    Hamada, S; Masuda, N; Ooshima, T; Sobue, S; Kotani, S

    1976-02-01

    An epidemiological investigation was carried out to identify and determine the serotypes of Streptococcus mutans from carious lesions of young Japanese children. For this purpose, a direct fluorescent antibody technique was mainly used. Fluorescein isothiocyanate-conjugated antibodies were prepared for the five known serotypes of S. mutans. Cross reactions and nonspecific reactions were eliminated by adsorption, counterstaining, or DEAE-cellulosecolumn chromatography. Agar-gel immunodiffusion was used to distinguish between serotypes a and d. The epidemiological survey suggested that serotype c strains were most prevalent in dental plaques of Japanese children. The d and e serotypes were rare and serotypes a and b were not detected. It was also noted that more than one serotype of S. mutans could be found in the same locus of a carious lesion and that there might be no relationship between the degree of caries and the causative serotype(s) of S. mutans.

  18. In vitro and in vivo anti-microbial activity evaluation of inactivated cells of Lactobacillus salivarius CECT 5713 against Streptococcus mutans.

    PubMed

    Sañudo, Ana I; Luque, Roberto; Díaz-Ropero, Mª Paz; Fonollá, Juristo; Bañuelos, Óscar

    2017-12-01

    Defining the etiology of dental caries is a complex problem. The microbiological approach has included Streptococcus mutans as one of the bacterial species involved in this disease. This research investigates the inhibitory effects of heat-inactivated Lactobacillus salivarius CECT 5713 against S. mutans using in vitro and in vivo assays. On the one hand, the effect of non-viable L. salivarius CECT 5713 on the in vitro adhesion of S. mutans to hydroxyapatite discs was evaluated. On the other hand, levels of Streptococcus mutans, amount of salivary flow and salivary pH before and after taking the rinse with the non-viable L. salivarius CECT 5713 in healthy volunteers were assessed (self-controlled open-label pilot study). The levels of S. mutans seemed to decrease in the in vitro and in vivo assays (p<0.05). The in vitro effect of non-viable L. salivarius was maintained until 36 months of storage. In addition, the reduction of S. mutans salivary concentration in the volunteers was statistically significant from the third day until two weeks of treatment. Heat-inactivated L. salivarius CECT 5713 prevents S. mutans adhesion to hydroxyapatite and could be used as a strategy to reduce the salivary concentration of this oral pathogen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. In silico analysis of the competition between Streptococcus sanguinis and Streptococcus mutans in the dental biofilm.

    PubMed

    Valdebenito, B; Tullume-Vergara, P O; González, W; Kreth, J; Giacaman, R A

    2018-04-01

    During dental caries, the dental biofilm modifies the composition of the hundreds of involved bacterial species. Changing environmental conditions influence competition. A pertinent model to exemplify the complex interplay of the microorganisms in the human dental biofilm is the competition between Streptococcus sanguinis and Streptococcus mutans. It has been reported that children and adults harbor greater numbers of S. sanguinis in the oral cavity, associated with caries-free teeth. Conversely, S. mutans is predominant in individuals with a high number of carious lesions. Competition between both microorganisms stems from the production of H 2 O 2 by S. sanguinis and mutacins, a type of bacteriocins, by S. mutans. There is limited evidence on how S. sanguinis survives its own H 2 O 2 levels, or if it has other mechanisms that might aid in the competition against S. mutans, nonetheless. We performed a genomic and metabolic pathway comparison, coupled with a comprehensive literature review, to better understand the competition between these two species. Results indicated that S. sanguinis can outcompete S. mutans by the production of an enzyme capable of metabolizing H 2 O 2 . S. mutans, however, lacks the enzyme and is susceptible to the peroxide from S. sanguinis. In addition, S. sanguinis can generate energy through gluconeogenesis and seems to have evolved different communication mechanisms, indicating that novel proteins may be responsible for intra-species communication. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Comparison of antibacterial efficacy of coconut oil and chlorhexidine on Streptococcus mutans: An in vivo study

    PubMed Central

    Peedikayil, Faizal C.; Remy, Vimal; John, Seena; Chandru, T. P.; Sreenivasan, Prathima; Bijapur, Gufran Ahmed

    2016-01-01

    Aims: Streptococcus mutans is the most common organism causing dental caries. Various chemotherapeutic agents are available that help in treating the bacteria, with each having their own merits and demerits. Recent research has shown that coconut oil has anti-inflammatory and antimicrobial action. Therefore, the present was conducted to determine the antibacterial efficacy of coconut oil and to compare it with chlorhexidine. Materials and Methods: A total of fifty female children aged 8–12 years were included in the study. Twenty five children were randomly distributed to each group, i.e., the study group (coconut oil) and the control group (chlorhexidine). The participants were asked to routinely perform oil swishing with coconut oil and chlorhexidine and rinse every day in the morning after brushing for 2–3 minutes. S. mutans in saliva and plaque were determined using a chairside method, i.e., the Dentocult SM Strip Mutans test. Patients were instructed to continue oil swishing for 30 days. S. mutans. counts in plaque and saliva on day 1, day 15, and day 30 were recorded and the results were compared using Wilcoxon matched pairs signed ranks test. Results: The results showed that there is a statistically significant decrease in S. mutans. count from coconut oil as well as chlorhexidine group from baseline to 30 days. The study also showed that in comparison of coconut oil and chlorhexidine there is no statistically significant change regarding the antibacterial efficacy. Conclusion: Coconut oil is as effective as chlorhexidine in the reduction of S. mutans. PMID:27891311

  1. Insights into the Virulence Traits of Streptococcus mutans in Dentine Carious Lesions of Children with Early Childhood Caries.

    PubMed

    Bezerra, Daniela S; Stipp, Rafael N; Neves, Beatriz G; Guedes, Sarah F F; Nascimento, Marcelle M; Rodrigues, Lidiany K A

    2016-01-01

    Streptococcus mutans is an oral bacterium considered to play a major role in the development of dental caries. This study aimed to investigate the prevalence of S. mutans in active and arrested dentine carious lesions of children with early childhood caries and to examine the expression profile of selected S. mutans genes associated with survival and virulence, within the same carious lesions. Dentine samples were collected from 29 active and 16 arrested carious lesions that were diagnosed in preschool children aged 2-5 years. Total RNA was extracted from the dentine samples, and reverse transcription quantitative real-time PCR analyses were performed for the quantification of S. mutans and for analyses of the expression of S. mutans genes associated with bacterial survival (atpD, nox, pdhA) and virulence (fabM and aguD). There was no statistically significant difference in the prevalence of S. mutans between active and arrested carious lesions. Expression of the tested genes was detected in both types of carious dentine. The pdhA (p = 0.04) and aguD (p = 0.05) genes were expressed at higher levels in arrested as compared to active lesions. Our findings revealed that S. mutans is part of the viable microbial community in active and arrested dentine carious lesions. The increase in expression of the pdhA and aguD genes in arrested lesions is likely due to the unfavourable environmental conditions for microbial growth, inherent to this type of lesions. © 2016 S. Karger AG, Basel.

  2. Serotype distribution of Streptococcus mutans a pathogen of dental caries in cardiovascular specimens from Japanese patients.

    PubMed

    Nakano, Kazuhiko; Nemoto, Hirotoshi; Nomura, Ryota; Homma, Hiromi; Yoshioka, Hideo; Shudo, Yasuhiro; Hata, Hiroki; Toda, Koichi; Taniguchi, Kazuhiro; Amano, Atsuo; Ooshima, Takashi

    2007-04-01

    The involvement of oral bacteria in the pathogenesis of cardiovascular disease has been studied, with Streptococcus mutans, a pathogen of dental caries, detected in cardiovascular lesions at a high frequency. However, no information is available regarding the properties of S. mutans detected in those lesions. Heart valve specimens were collected from 52 patients and atheromatous plaque specimens from 50 patients, all of whom underwent cardiovascular operations, and dental plaque specimens were taken from 41 of those subjects prior to surgery. Furthermore, saliva samples were taken from 73 sets of healthy mothers (n=73) and their healthy children (n=78). Bacterial DNA was extracted from all specimens, then analysed by PCR with S. mutans-specific and serotype-specific primer sets. The detection rates of S. mutans in the heart valve and atheromatous plaque specimens were 63 and 64 %, respectively. Non-c serotypes were identified with a significantly higher frequency in both cardiovascular and dental plaque samples from the subjects who underwent surgery as compared to serotype c, which was detected in 70-75 % of the samples from the healthy subjects. The serotype distribution in cardiovascular patients was significantly different from that in healthy subjects, suggesting that S. mutans serotype may be related to cardiovascular disease.

  3. In Vitro Effects of Sports and Energy Drinks on Streptococcus mutans Biofilm Formation and Metabolic Activity.

    PubMed

    Vinson, LaQuia A; Goodlett, Amy K; Huang, Ruijie; Eckert, George J; Gregory, Richard L

    2017-09-15

    Sports and energy drinks are being increasingly consumed and contain large amounts of sugars, which are known to increase Streptococcus mutans biofilm formation and metabolic activity. The purpose of this in vitro study was to investigate the effects of sports and energy drinks on S. mutans biofilm formation and metabolic activity. S. mutans UA159 was cultured with and without a dilution (1:3 ratio) of a variety of sports and energy drinks in bacterial media for 24 hours. The biofilm was washed, fixed, and stained. Biofilm growth was evaluated by reading absorbance of the crystal violet. Biofilm metabolic activity was measured by the biofilm-reducing XTT to a water-soluble orange compound. Gatorade Protein Recovery Shake and Starbucks Doubleshot Espresso Energy were found to significantly increase biofilm (30-fold and 22-fold, respectively) and metabolic activity (2-fold and 3-fold, respectively). However, most of the remaining drinks significantly inhibited biofilm growth and metabolic activity. Several sports and energy drinks, with sugars or sugar substitutes as their main ingredients inhibited S. mutans biofilm formation. Among the drinks evaluated, Gatorade Protein Recovery Chocolate Shake and Starbucks Doubleshot Energy appear to have cariogenic potential since they increased the biofilm formation and metabolic activity of S. mutans.

  4. Symbiotic Relationship between Streptococcus mutans and Candida albicans Synergizes Virulence of Plaque Biofilms In Vivo

    PubMed Central

    Falsetta, Megan L.; Klein, Marlise I.; Colonne, Punsiri M.; Scott-Anne, Kathleen; Gregoire, Stacy; Pai, Chia-Hua; Gonzalez-Begne, Mireya; Watson, Gene; Krysan, Damian J.; Bowen, William H.

    2014-01-01

    Streptococcus mutans is often cited as the main bacterial pathogen in dental caries, particularly in early-childhood caries (ECC). S. mutans may not act alone; Candida albicans cells are frequently detected along with heavy infection by S. mutans in plaque biofilms from ECC-affected children. It remains to be elucidated whether this association is involved in the enhancement of biofilm virulence. We showed that the ability of these organisms together to form biofilms is enhanced in vitro and in vivo. The presence of C. albicans augments the production of exopolysaccharides (EPS), such that cospecies biofilms accrue more biomass and harbor more viable S. mutans cells than single-species biofilms. The resulting 3-dimensional biofilm architecture displays sizeable S. mutans microcolonies surrounded by fungal cells, which are enmeshed in a dense EPS-rich matrix. Using a rodent model, we explored the implications of this cross-kingdom interaction for the pathogenesis of dental caries. Coinfected animals displayed higher levels of infection and microbial carriage within plaque biofilms than animals infected with either species alone. Furthermore, coinfection synergistically enhanced biofilm virulence, leading to aggressive onset of the disease with rampant carious lesions. Our in vitro data also revealed that glucosyltransferase-derived EPS is a key mediator of cospecies biofilm development and that coexistence with C. albicans induces the expression of virulence genes in S. mutans (e.g., gtfB, fabM). We also found that Candida-derived β1,3-glucans contribute to the EPS matrix structure, while fungal mannan and β-glucan provide sites for GtfB binding and activity. Altogether, we demonstrate a novel mutualistic bacterium-fungus relationship that occurs at a clinically relevant site to amplify the severity of a ubiquitous infectious disease. PMID:24566629

  5. Characterisation of monoclonal antibodies to common protein epitopes on the cell surface of Streptococcus mutans and Streptococcus sobrinus.

    PubMed

    Smith, R; Lehner, T

    1989-09-01

    Three monoclonal antibodies (MAb) were prepared against a cell surface antigen which cross-react between Streptococcus mutans (serotypes c, e and f) and Streptococcus sobrinus (serotypes d and g). Two of the MAb also recognise a determinant on the surface of Streptococcus cricetus (serotype a). The common antigen shared between S. mutans and S. sobrinus was demonstrated by Western blotting to be about 200 kD in size. This antigen is shared not only by the cell surfaces of serotypes a, c, d, e, f and g, but also by the major cell surface antigen of S. mutans of 185 kD and another of 150 kD. These MAb identify all but one mutans type of streptococci and can be utilised as analytical reagents.

  6. Effect of Probiotic Yogurt and Xylitol-Containing Chewing Gums on Salivary S Mutans Count.

    PubMed

    Ghasemi, Elnaz; Mazaheri, Romina; Tahmourespour, Arezoo

    In addition to improving gastrointestinal health and intestinal microflora, probiotic bacteria have been recently suggested to decrease cariogenic agents in the oral cavity. The aim of this study was to investigate the effects of probiotic yogurt and xylitol-containing chewing gums on reducing salivary Streptococcus mutans levels. This randomized clinical trial recruited 50 female students with over 10 5 colony forming units S. mutans per milliliter of their saliva. The participants were randomly allocated to two equal groups to receive either probiotic yogurt containing Lactobacillus acidophilus ATCC 4356 andBifidobacteriumbifidum ATCC 29521 (200 g daily) or xylitol-containing chewing gums (two gums three times daily after each meal; total xylitol content: 5.58 g daily) for three weeks. At baseline and one day, two weeks, and four weeks after the interventions, saliva samples were cultured on mitis-salivarius-bacitracin agar and salivary S. mutans counts were determined. Data were analyzed with independent t-tests, analysis of variance, and Fisher's least significant difference test. In both groups, S. mutans counts on the first day, second week, and fourth weeks after the intervention were significantly lower than baseline values (P < 0.05). The greatest level of reduction in both groups was observed in the second week after the intervention. Moreover, although the reduction was greater in probiotic yogurt consumers, the difference between the two groups was not statistically significant. Probiotic yogurt and xylitol-containing chewing gums seem to be as effective in reduction of salivary S. mutans levels. Their constant long-term consumption is thus recommended to prevent caries.

  7. Biology of Streptococcus mutans-Derived Glucosyltransferases: Role in Extracellular Matrix Formation of Cariogenic Biofilms

    PubMed Central

    Bowen, W.H.; Koo, H.

    2011-01-01

    The importance of Streptococcus mutans in the etiology and pathogenesis of dental caries is certainly controversial, in part because excessive attention is paid to the numbers of S. mutans and acid production while the matrix within dental plaque has been neglected. S. mutans does not always dominate within plaque; many organisms are equally acidogenic and aciduric. It is also recognized that glucosyltransferases from S. mutans (Gtfs) play critical roles in the development of virulent dental plaque. Gtfs adsorb to enamel synthesizing glucans in situ, providing sites for avid colonization by microorganisms and an insoluble matrix for plaque. Gtfs also adsorb to surfaces of other oral microorganisms converting them to glucan producers. S. mutans expresses 3 genetically distinct Gtfs; each appears to play a different but overlapping role in the formation of virulent plaque. GtfC is adsorbed to enamel within pellicle whereas GtfB binds avidly to bacteria promoting tight cell clustering, and enhancing cohesion of plaque. GtfD forms a soluble, readily metabolizable polysaccharide and acts as a primer for GtfB. The behavior of soluble Gtfs does not mirror that observed with surface-adsorbed enzymes. Furthermore, the structure of polysaccharide matrix changes over time as a result of the action of mutanases and dextranases within plaque. Gtfs at distinct loci offer chemotherapeutic targets to prevent caries. Nevertheless, agents that inhibit Gtfs in solution frequently have a reduced or no effect on adsorbed enzymes. Clearly, conformational changes and reactions of Gtfs on surfaces are complex and modulate the pathogenesis of dental caries in situ, deserving further investigation. PMID:21346355

  8. Detection of Streptococcus mutans Genomic DNA in Human DNA Samples Extracted from Saliva and Blood

    PubMed Central

    Vieira, Alexandre R.; Deeley, Kathleen B.; Callahan, Nicholas F.; Noel, Jacqueline B.; Anjomshoaa, Ida; Carricato, Wendy M.; Schulhof, Louise P.; DeSensi, Rebecca S.; Gandhi, Pooja; Resick, Judith M.; Brandon, Carla A.; Rozhon, Christopher; Patir, Asli; Yildirim, Mine; Poletta, Fernando A.; Mereb, Juan C.; Letra, Ariadne; Menezes, Renato; Wendell, Steven; Lopez-Camelo, Jorge S.; Castilla, Eduardo E.; Orioli, Iêda M.; Seymen, Figen; Weyant, Robert J.; Crout, Richard; McNeil, Daniel W.; Modesto, Adriana; Marazita, Mary L.

    2011-01-01

    Caries is a multifactorial disease, and studies aiming to unravel the factors modulating its etiology must consider all known predisposing factors. One major factor is bacterial colonization, and Streptococcus mutans is the main microorganism associated with the initiation of the disease. In our studies, we have access to DNA samples extracted from human saliva and blood. In this report, we tested a real-time PCR assay developed to detect copies of genomic DNA from Streptococcus mutans in 1,424 DNA samples from humans. Our results suggest that we can determine the presence of genomic DNA copies of Streptococcus mutans in both DNA samples from caries-free and caries-affected individuals. However, we were not able to detect the presence of genomic DNA copies of Streptococcus mutans in any DNA samples extracted from peripheral blood, which suggests the assay may not be sensitive enough for this goal. Values of the threshold cycle of the real-time PCR reaction correlate with higher levels of caries experience in children, but this correlation could not be detected for adults. PMID:21731912

  9. Atomic force microscopy study of the structure function relationships of the biofilm-forming bacterium Streptococcus mutans

    NASA Astrophysics Data System (ADS)

    Cross, Sarah E.; Kreth, Jens; Zhu, Lin; Qi, Fengxia; Pelling, Andrew E.; Shi, Wenyuan; Gimzewski, James K.

    2006-02-01

    Atomic force microscopy (AFM) has garnered much interest in recent years for its ability to probe the structure, function and cellular nanomechanics inherent to specific biological cells. In particular, we have used AFM to probe the important structure-function relationships of the bacterium Streptococcus mutans. S. mutans is the primary aetiological agent in human dental caries (tooth decay), and is of medical importance due to the virulence properties of these cells in biofilm initiation and formation, leading to increased tolerance to antibiotics. We have used AFM to characterize the unique surface structures of distinct mutants of S. mutans. These mutations are located in specific genes that encode surface proteins, thus using AFM we have resolved characteristic surface features for mutant strains compared to the wild type. Ultimately, our characterization of surface morphology has shown distinct differences in the local properties displayed by various S. mutans strains on the nanoscale, which is imperative for understanding the collective properties of these cells in biofilm formation.

  10. Scanning Electron Microscopic study of Piper betle L. leaves extract effect against Streptococcus mutans ATCC 25175

    PubMed Central

    RAHIM, Zubaidah Haji Abdul; THURAIRAJAH, Nalina

    2011-01-01

    Introduction Previous studies have shown that Piper betle L. leaves extract inhibits the adherence of Streptococcus mutans to glass surface, suggesting its potential role in controlling dental plaque development. Objectives: In this study, the effect of the Piper betle L. extract towards S. mutans (with/without sucrose) using scanning electron microscopy (SEM) and on partially purified cell-associated glucosyltransferase activity were determined. Material and Methods S. mutans were allowed to adhere to glass beads suspended in 6 different Brain Heart Infusion broths [without sucrose; with sucrose; without sucrose containing the extract (2 mg mL-1 and 4 mg mL-1); with sucrose containing the extract (2 mg mL-1 and 4 mg mL-1)]. Positive control was 0.12% chlorhexidine. The glass beads were later processed for SEM viewing. Cell surface area and appearance and, cell population of S. mutans adhering to the glass beads were determined upon viewing using the SEM. The glucosyltransferase activity (with/without extract) was also determined. One- and two-way ANOVA were used accordingly. Results It was found that sucrose increased adherence and cell surface area of S. mutans (p<0.001). S. mutans adhering to 100 µm2 glass surfaces (with/without sucrose) exhibited reduced cell surface area, fluffy extracellular appearance and cell population in the presence of the Piper betle L. leaves extract. It was also found that the extract inhibited glucosyltransferase activity and its inhibition at 2.5 mg mL-1 corresponded to that of 0.12% chlorhexidine. At 4 mg mL-1 of the extract, the glucosyltransferase activity was undetectable and despite that, bacterial cells still demonstrated adherence capacity. Conclusion The SEM analysis confirmed the inhibitory effects of the Piper betle L. leaves extract towards cell adherence, cell growth and extracellular polysaccharide formation of S. mutans visually. In bacterial cell adherence, other factors besides glucosyltransferase are involved. PMID

  11. Antibacterial effect of propolis derived from tribal region on Streptococcus mutans and Lactobacillus acidophilus: An in vitro study.

    PubMed

    Airen, Bhuvnesh; Sarkar, Priyanka Airen; Tomar, Urvashi; Bishen, Kundendu Arya

    2018-01-01

    The study aimed at investigating in vitro antimicrobial activity of ethanolic extract of propolis (EEP) and water extract of propolis against two main cariogenic oral pathogens: Streptococcus mutans and Lactobacillus acidophilus. Propolis was obtained from beehives in the Jhabua region of India. Ethanolic and water extracts were prepared at concentrations of 5% and 20% weight/volume (w/v). To support the results, a positive control (chlorhexidine 0.2%) and a negative control (distilled water) were used. S. mutans was cultured on brain-heart infusion agar and L. acidophilus was cultured on De Man, Rogosa, and Sharpe agar. The results showed that at concentrations of 5% and 20%, EEP was effective against S. mutans and L. acidophilus. However, at similar concentrations, water extract was effective only against L. acidophilus. The highest activity was shown by chlorhexidine (0.2%) with mean zones of inhibition of 13.9 mm and 15.1 mm against S. mutans and L. acidophilus, respectively. It can be concluded that the propolis extracted from tribal regions of Jhabua possesses antibacterial efficacy against S. mutans and L. acidophilus.

  12. In-situ, time-lapse study of extracellular polymeric substance discharge in Streptococcus mutans biofilm.

    PubMed

    Liu, Bernard Haochih; Yu, Li-Chieh

    2017-02-01

    Streptococcus mutans is one of the main pathogens that cause tooth decay. By metabolizing carbohydrates, S. mutans emits extracellular polymeric substance (EPS) that adheres to the tooth surface and forms layers of biofilm. Periodontal disease occurs due to the low pH environment created by S. mutans biofilm, and such an acidic environment gradually erodes tooth enamel. Since the existence of EPS is essential in the formation of biofilm, the in-situ investigation of its generation and distribution in real time is the key to the control and suppression of S. mutans biofilm. Prior studies of the biofilm formation process by fluorescence microscope, scanning electron microscope, or spectroscope have roughly divided the mechanism into three stages: (1) initial attachment; (2) microcolonies; and (3) maturation. However, these analytical methods are incapable to observe real-time changes in different locations of the extracellular matrix, and to analyze mechanical properties for single bacteria in micro and nanoscale. Since atomic force microscopy (AFM) operates by precise control of tip-sample interaction forces in liquid and in air, living microorganisms can be analyzed under near-physiological conditions. Thus, analytical techniques based on AFM constitute powerful tools for the study of biological samples, both qualitatively and quantitatively. In this study, we used AFM to quantitatively track the changes of multiple nanomechanical properties of S. mutans, including dissipation energy, adhesion force, deformation, and elastic modulus at different metabolic stages. The data revealed that the bacterial extracellular matrix has a gradient distribution in stickiness, in which different stickiness indicates the variation of EPS compositions, freshness, and metabolic stages. In-situ, time-lapse AFM images showed the local generation and distribution of EPS at different times, in which the highest adhesion distributed along sides of the S. mutans cells. Through time

  13. Lectin-Like Constituents of Foods Which React with Components of Serum, Saliva, and Streptococcus mutans

    PubMed Central

    Gibbons, R. J.; Dankers, I.

    1981-01-01

    Hot and cold aqueous extracts were prepared from 22 commonly ingested fruits, vegetables, and seeds. When tested by agar diffusion, extracts from 13 and 10 of the foods formed precipitin bands with samples of normal rabbit serum and human saliva, respectively; extracts from four of the foods also reacted with antigen extracts of strains of Streptococcus mutans. When added to rabbit antiserum, extracts from 18 of 21 foods tested inhibited reactivity with antigen extracts derived from S. mutans MT3. Extracts from 16 foods agglutinated whole S. mutans cells, whereas those from 10 foods agglutinated human erythrocytes of blood types A and B. The lectin-like activities of extracts which reacted with human saliva were studied further. Pretreatment of saliva-coated hydroxyapatite (S-HA) beads with extracts of bananas, coconuts, carrots, alfalfa, and sunflower seeds markedly reduced the subsequent adsorption of S. mutans MT3. Pretreatment of S-HA with banana extract also strongly inhibited adsorption of S. mutans H12 and S. sanguis C1, but it had little effect on attachment of Actinomyces naeslundii L13 or A. viscosus LY7. Absorption experiments indicated that the component(s) in banana extract responsible for inhibiting streptococcal adsorption to S-HA was identical to that which bound to human erythrocytes. The banana hemagglutinin exhibited highest activity between pH 7 and 8, and it was inhibited by high concentrations of glucosamine, galactosamine, and, to a lesser extent, mannosamine. Other sugars tested had no effect. The selective bacterial adsorption-inhibiting effect noted for banana extract was also observed in studies with purified lectins. Thus, pretreating S-HA with wheat germ agglutinin and concanavalin A inhibited adsorption of S. mutans MT3 cells, whereas peanut agglutinin, Ulex agglutinin, Dolichos agglutinin, and soybean agglutinin had little effect; none of these lectins affected attachment of A. viscosus LY7. Collectively, the observations suggest that

  14. Influence of fluoride on the bacterial composition of a dual-species biofilm composed of Streptococcus mutans and Streptococcus oralis.

    PubMed

    Jung, Ji-Eun; Cai, Jian-Na; Cho, Sung-Dae; Song, Kwang-Yeob; Jeon, Jae-Gyu

    2016-10-01

    Despite the widespread use of fluoride for the prevention of dental caries, few studies have demonstrated the effects of fluoride on the bacterial composition of dental biofilms. This study investigated whether fluoride affects the proportion of Streptococcus mutans and S. oralis in mono- and dual-species biofilm models, via microbiological, biochemical, and confocal fluorescence microscope studies. Fluoride did not affect the bacterial count and bio-volume of S. mutans and S. oralis in mono-species biofilms, except for the 24-h-old S. mutans biofilms. However, fluoride reduced the proportion and bio-volume of S. mutans but did not decrease those of S. oralis during both S. oralis and S. mutans dual-species biofilm formation, which may be related to the decrease in extracellular polysaccharide formation by fluoride. These results suggest that fluoride may prevent the shift in the microbial proportion to cariogenic bacteria in dental biofilms, subsequently inhibiting the cariogenic bacteria dominant biofilm formation.

  15. In-vitro evaluation and comparison of the anti-microbial potency of commercially available oral hygiene products against Streptococcus mutans.

    PubMed

    Sentila, R; Gandhimathi, A; Karthika, S; Suryalakshmi, R; Michael, A

    2011-06-01

    Dental caries is the destruction of enamel, dentin, or cementum of teeth due to bacterial activities, which if left untreated can cause considerable pain, discomfort, and treatment costs are very high. Of the oral bacteria, Streptococcus mutans is considered to be causative agent of dental caries in humans. This study aims at screening the antibacterial potential of available oral hygiene products against S. mutans, the primary etiological agent. A selective number of toothpaste and mouth rinse available in the nearby local market was subjected to the study. The experiments were designed in a way to determine which one of these products had the greatest anti-S.mutans activity. Antibiotic sensitivity tests against the pathogenic strains were also conducted. Pathogenic strains of S.mutans were isolated from clinical dental specimen and identified using MTCC standard strain No. 890. Of the 86.66% samples which showed positive for S.mutans growth, almost 96% conferred sensitivity to 0.08 mg/ml of penicillin. Among the toothpastes used, A showed the maximum inhibitory activity against S.mutans inhibiting its growth even at a very low concentration of 0.0156 g/ml. Similar results were seen in the case of the mouth rinses used for the study, which showed that N had the most effective activity against S.mutans even at 1:8 dilution. The oral hygiene products containing triclosan proved to be the most effective followed by those containing fluoride. Herbal products showed comparatively lesser activity in inhibiting the growth of S. mutans. Even though there are so many products available to curb the progression of dental caries in the population targeted, there is still an undoubted prevalence and incidence of caries among the general public. The need for a better alternative to help control dental caries is on the rise even today.

  16. Candida albicans, Staphylococcus aureus and Streptococcus mutans colonization in patients wearing dental prosthesis.

    PubMed

    Baena-Monroy, Tania; Moreno-Maldonado, Víctor; Franco-Martínez, Fernando; Aldape-Barrios, Beatriz; Quindós, Guillermo; Sánchez-Vargas, Luis Octavio

    2005-04-01

    Denture stomatitis is associated to Candida albicans, different bacteria and other co-factors such as an acid pH, a carbohydrate ingestion increase, different systemic illnesses and pharmacological treatments. The aim of this study was to determine Candida albicans, Staphylococcus aureus and Streptococcus mutans prevalence in the mucous membrane and prosthesis of patients with and without atrophic denture stomatitis and its relationship with other potential clinical co-factors. Saliva was collected from 105 patients (62 female and 43 male) wearing dental prosthesis in order to measure their pH. Oral samples of the mucous membrane and the internal surface of dental prosthesis were taken with sterile cotton to proceed with the microbiological study. The identification of the isolated microorganisms was performed using conventional microbiological methods. Diabetes and Hypertension were the most frequent systemic illnesses. High carbohydrate ingestion was observed in numerous patients. Atrophic denture stomatitis was reported in 50 patients and the pH average in saliva was of 5.2. The presence of C albicans, S. aureus and S. mutans in the mucous membrane and prosthesis was of 51.4%, 52.4% and 67.6%, respectively. C. albicans was isolated in 66.7% from the prosthesis, whereas S. aureus and S. mutans were isolated in 49.5% of those same prosthesis. C. albicans was isolated in 86% of the patients with atrophic denture stomatitis and S. aureus was isolated in a similar percentage (84% of patients). The isolation of S. mutans was less frequent, and it was observed in 16% of the oral samples of these patients. C. albicans, S. aureus and S. mutans frequently colonize the oral mucous of patients wearing dental prosthesis. This illness-bearing condition is more frequent in patients with denture stomatitis, even though dental prosthesis colonization is lower than in the oral mucous.

  17. Growth inhibition of oral mutans streptococci and candida by commercial probiotic lactobacilli - an in vitro study

    PubMed Central

    2010-01-01

    Background Probiotic bacteria are suggested to play a role in the maintenance of oral health. Such health promoting bacteria are added to different commercial probiotic products. The aim of the study was to investigate the ability of a selection of lactobacilli strains, used in commercially available probiotic products, to inhibit growth of oral mutans streptococci and C. albicans in vitro. Methods Eight probiotic lactobacilli strains were tested for growth inhibition on three reference strains and two clinical isolates of mutans streptococci as well as two reference strains and three clinical isolates of Candida albicans with an agar overlay method. Results At concentrations ranging from 109 to 105 CFU/ml, all lactobacilli strains inhibited the growth of the mutans streptococci completely with the exception of L. acidophilus La5 that executed only a slight inhibition of some strains at concentrations corresponding to 107 and 105 CFU/ml. At the lowest cell concentration (103 CFU/ml), only L. plantarum 299v and L. plantarum 931 displayed a total growth inhibition while a slight inhibition was seen for all five mutans streptococci strains by L. rhamnosus LB21, L. paracasei F19, L. reuteri PTA 5289 and L. reuteri ATCC 55730. All the tested lactobacilli strains reduced candida growth but the effect was generally weaker than for mutans streptococci. The two L. plantarum strains and L. reuteri ATCC 55730 displayed the strongest inhibition on Candida albicans. No significant differences were observed between the reference strains and the clinical isolates. Conclusion The selected probiotic strains showed a significant but somewhat varying ability to inhibit growth of oral mutans streptococci and Candida albicans in vitro. PMID:20598145

  18. Growth inhibition of oral mutans streptococci and candida by commercial probiotic lactobacilli--an in vitro study.

    PubMed

    Hasslöf, Pamela; Hedberg, Maria; Twetman, Svante; Stecksén-Blicks, Christina

    2010-07-02

    Probiotic bacteria are suggested to play a role in the maintenance of oral health. Such health promoting bacteria are added to different commercial probiotic products. The aim of the study was to investigate the ability of a selection of lactobacilli strains, used in commercially available probiotic products, to inhibit growth of oral mutans streptococci and C. albicans in vitro. Eight probiotic lactobacilli strains were tested for growth inhibition on three reference strains and two clinical isolates of mutans streptococci as well as two reference strains and three clinical isolates of Candida albicans with an agar overlay method. At concentrations ranging from 109 to 105 CFU/ml, all lactobacilli strains inhibited the growth of the mutans streptococci completely with the exception of L. acidophilus La5 that executed only a slight inhibition of some strains at concentrations corresponding to 107 and 105 CFU/ml. At the lowest cell concentration (103 CFU/ml), only L. plantarum 299v and L. plantarum 931 displayed a total growth inhibition while a slight inhibition was seen for all five mutans streptococci strains by L. rhamnosus LB21, L. paracasei F19, L. reuteri PTA 5289 and L. reuteri ATCC 55730. All the tested lactobacilli strains reduced candida growth but the effect was generally weaker than for mutans streptococci. The two L. plantarum strains and L. reuteri ATCC 55730 displayed the strongest inhibition on Candida albicans. No significant differences were observed between the reference strains and the clinical isolates. The selected probiotic strains showed a significant but somewhat varying ability to inhibit growth of oral mutans streptococci and Candida albicans in vitro.

  19. Inhibition of Streptococcus mutans biofilm formation, extracellular polysaccharide production, and virulence by an oxazole derivative.

    PubMed

    Chen, Lulu; Ren, Zhi; Zhou, Xuedong; Zeng, Jumei; Zou, Jing; Li, Yuqing

    2016-01-01

    Dental caries, a biofilm-related oral disease, is a result of disruption of the microbial ecological balance in the oral environment. Streptococcus mutans, which is one of the primary cariogenic bacteria, produces glucosyltransferases (Gtfs) that synthesize extracellular polysaccharides (EPSs). The EPSs, especially water-insoluble glucans, contribute to the formation of dental plaque, biofilm stability, and structural integrity, by allowing bacteria to adhere to tooth surfaces and supplying the bacteria with protection against noxious stimuli and other environmental attacks. The identification of novel alternatives that selectively inhibit cariogenic organisms without suppressing oral microbial residents is required. The goal of the current study is to investigate the influence of an oxazole derivative on S. mutans biofilm formation and the development of dental caries in rats, given that oxazole and its derivatives often exhibit extensive and pharmacologically important biological activities. Our data shows that one particular oxazole derivative, named 5H6, inhibited the formation of S. mutans biofilms and prevented synthesis of extracellular polysaccharides by antagonizing Gtfs in vitro, without affecting the growth of the bacteria. In addition, topical applications with the inhibitor resulted in diminished incidence and severity of both smooth and sulcal surface caries in vivo with a lower percentage of S. mutans in the animals' dental plaque compared to the control group (P < 0.05). Our results showed that this oxazole derivative has the capacity to inhibit biofilm formation and cariogenicity of S. mutans.

  20. Sugar Allocation to Metabolic Pathways is Tightly Regulated and Affects the Virulence of Streptococcus mutans

    PubMed Central

    Kawada-Matsuo, Miki; Oogai, Yuichi; Komatsuzawa, Hitoshi

    2016-01-01

    Bacteria take up and metabolize sugar as a carbohydrate source for survival. Most bacteria can utilize many sugars, including glucose, sucrose, and galactose, as well as amino sugars, such as glucosamine and N-acetylglucosamine. After entering the cytoplasm, the sugars are mainly allocated to the glycolysis pathway (energy production) and to various bacterial component biosynthesis pathways, including the cell wall, nucleic acids and amino acids. Sugars are also utilized to produce several virulence factors, such as capsule and lipoteichoic acid. Glutamine-fructose-6-phosphate aminotransferase (GlmS) and glucosamine-6-phosphate deaminase (NagB) have crucial roles in sugar distribution to the glycolysis pathway and to cell wall biosynthesis. In Streptococcus mutans, a cariogenic pathogen, the expression levels of glmS and nagB are coordinately regulated in response to the presence or absence of amino sugars. In addition, the disruption of this regulation affects the virulence of S. mutans. The expression of nagB and glmS is regulated by NagR in S. mutans, but the precise mechanism underlying glmS regulation is not clear. In Staphylococcus aureus and Bacillus subtilis, the mRNA of glmS has ribozyme activity and undergoes self-degradation at the mRNA level. However, there is no ribozyme activity region on glmS mRNA in S. mutans. In this review article, we summarize the sugar distribution, particularly the coordinated regulation of GlmS and NagB expression, and its relationship with the virulence of S. mutans. PMID:28036052

  1. Antibacterial effect of dental adhesive containing dimethylaminododecyl methacrylate on the development of Streptococcus mutans biofilm.

    PubMed

    Wang, Suping; Zhang, Keke; Zhou, Xuedong; Xu, Ning; Xu, Hockin H K; Weir, Michael D; Ge, Yang; Wang, Shida; Li, Mingyun; Li, Yuqing; Xu, Xin; Cheng, Lei

    2014-07-18

    Antibacterial bonding agents and composites containing dimethylaminododecyl methacrylate (DMADDM) have been recently developed. The objectives of this study were to investigate the antibacterial effect of novel adhesives containing different mass fractions of DMADDM on Streptococcus mutans (S. mutans) biofilm at different developmental stages. Different mass fractions of DMADDM were incorporated into adhesives and S. mutans biofilm at different developmetal stages were analyzed by MTT assays, lactic acid measurement, confocal laser scanning microscopy and scanning electron microscopy observations. Exopolysaccharides (EPS) staining was used to analyze the inhibitory effect of DMADDM on the biofilm extracellular matrix. Dentin microtensile strengths were also measured. Cured adhesives containing DMADDM could greatly reduce metabolic activity and lactic acid production during the development of S. mutans biofilms (p < 0.05). In earlier stages of biofilm development, there were no significant differences of inhibitory effects between the 2.5% DMADDM and 5% DMADDM group. However, after 72 h, the anti-biofilm effects of adhesives containing 5% DMADDM were significantly stronger than any other group. Incorporation of DMADDM into adhesive did not adversely affect dentin bond strength. In conclusion, adhesives containing DMADDM inhibited the growth, lactic acid production and EPS metabolism of S. mutans biofilm at different stages, with no adverse effect on its dentin adhesive bond strength. The bonding agents have the potential to control dental biofilms and combat tooth decay, and DMADDM is promising for use in a wide range of dental adhesive systems and restoratives.

  2. pH and effects on Streptococcus mutans growth of denture adhesives: an in vitro study.

    PubMed

    Chen, Fengying; Mao, Tiantian; Cheng, Xiangrong

    2014-06-01

    To evaluate the pH and effects on Streptococcus mutans growth of denture adhesives. There is little information regarding the pH of contemporary adhesives and their influences on S. mutans growth. The adhesives tested were Polident® cream, Protefix® cream and Protefix® powder. Samples of each adhesive were added to deionized water to produce solutions of 10.0, 5.0, 2.5 and 1.0% w/v (cream formulations) or 5.0, 2.5,1.0 and 0.5% (powder formulation). The pH values were measured immediately after preparation and at 1-, 2-, 3-, 6-, 12-, and 24-h intervals using a digital pH meter. Streptococcus mutans UA159 was inoculated in the Brain Heart Infusion medium with or without the adhesive extracts (control). Bacterial growth was observed by measuring absorption at 600 nm every 1 h for 12 h using a spectrophotometer. The tested adhesives generally remained relatively pH-stable over 24 h, ranging from 5.5 to 7.0. There were no statistically significant differences in S. mutans growth rates between the extract-treated and control cultures (p>0.5). Some adhesives produce a pH below the critical pH of hydroxyapatite and may not be suitable for patients with natural teeth. None of the tested adhesives significantly affect S. mutans growth. © 2012 The Gerodontology Society and John Wiley & Sons A/S.

  3. Excretion of extracellular lipids by Streptococcus mutans BHT and FA-1.

    PubMed Central

    Cabacungan, E; Pieringer, R A

    1980-01-01

    Streptococcus mutans BHT and FA-1, when grown to log phase on chemically defined medium containing [14C]glycerol, excreted 15% of the total biosynthesized 14C-lipid into the medium. When grown to early stationary phase, 28 to 33% of the 14C-lipid was found in the medium. The radioactive lipids of these varieties of S. mutans were identified as diacylglycerol, diglucosyl diacylglycerol (DGD), monoglucosyl diacylglycerol, diphosphatidylglycerol, phosphatidylglycerol (PG), and smaller amounts of two other lipids tentatively were identified as amino acyl-PG and glycerol phosphoryl-DGD. All lipids were found as extracellular and intracellular components from cells grown to either log or stationary phase. However, there were some shifts in the relative percentage of these lipids as the cells changed from log to stationary phase. For example, the intracellular lipid content of log-phase S. mutans BHT was composed of 49% PG and 19% DGD, but these percents shifted to 18% PG and 57% DGD when the cells were grown to stationary phase. However, the extracellular lipids of this organism contained 50 to 60% PG and 20% DGD in both log and stationary phases. PMID:7380539

  4. In silico identification of potential inhibitors targeting Streptococcus mutans sortase A

    PubMed Central

    Luo, Hao; Liang, Dan-Feng; Bao, Min-Yue; Sun, Rong; Li, Yuan-Yuan; Li, Jian-Zong; Wang, Xin; Lu, Kai-Min; Bao, Jin-Ku

    2017-01-01

    Dental caries is one of the most common chronic diseases and is caused by acid fermentation of bacteria adhered to the teeth. Streptococcus mutans (S. mutans) utilizes sortase A (SrtA) to anchor surface proteins to the cell wall and forms a biofilm to facilitate its adhesion to the tooth surface. Some plant natural products, especially several flavonoids, are effective inhibitors of SrtA. However, given the limited number of inhibitors and the development of drug resistance, the discovery of new inhibitors is urgent. Here, the high-throughput virtual screening approach was performed to identify new potential inhibitors of S. mutans SrtA. Two libraries were used for screening, and nine compounds that had the lowest scores were chosen for further molecular dynamics simulation, binding free energy analysis and absorption, distribution, metabolism, excretion and toxicity (ADMET) properties analysis. The results revealed that several similar compounds composed of benzofuran, thiadiazole and pyrrole, which exhibited good affinities and appropriate pharmacokinetic parameters, were potential inhibitors to impede the catalysis of SrtA. In addition, the carbonyl of these compounds can have a key role in the inhibition mechanism. These findings can provide a new strategy for microbial infection disease therapy. PMID:28358034

  5. Effect of antimicrobial photodynamic therapy on the counts of salivary Streptococcus mutans in children with severe early childhood caries.

    PubMed

    Fekrazad, Reza; Seraj, Bahman; Chiniforush, Nasim; Rokouei, Mehrak; Mousavi, Niloofar; Ghadimi, Sara

    2017-06-01

    Antimicrobial photodynamic therapy (aPDT) is a novel technique for reduction of pathogenic microorganisms in dentistry. The aim of this study was to evaluate the effects of aPDT on Streptococcus mutans reduction in children with severe early childhood caries. Twenty-two children with severe early childhood caries aged 3-6 years were treated with toluoidine blue O (TBO) for 1min and irradiated by a Light Emitting Diode (LED; FotoSan, CMS Dental, Denmark) with the exposure time of 150s. Saliva samples were collected at baseline, 1h and 7 days after treatment. S. mutans counts were determined using the Dentocult SM Strip mutans. The counts of S. mutans in saliva decreased significantly after 1h (P<0.001). However, the difference in reduction of S. mutans counts in saliva was not significant between the baseline and 7 days after treatment (P>0.05). aPDT seems to be efficient to reduce salivary S. mutans immediately after treatment in children with severe early childhood caries. However, further research is needed to evaluate different doses and frequency of irradiation in combination with restoring carious teeth to find more durable results. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effect of removable orthodontic appliances on oral colonisation by mutans streptococci in children.

    PubMed

    Batoni, G; Pardini, M; Giannotti, A; Ota, F; Giuca, M R; Gabriele, M; Campa, M; Senesi, S

    2001-12-01

    Little is known about the effect of removable orthodontic appliances on oral colonisation by mutans streptococci (MS). In the present study, the frequency of isolation and serotype distribution of MS were evaluated in two groups of children, one undergoing therapy with removable appliances and the other not subjected to any kind of orthodontic treatment, respectively. Streptococci isolated from dental plaque samples from both groups of children were identified as mutans streptococci on the basis of their morphological and biochemical properties and were then serotyped in an enzyme immuno-assay using monoclonal antibodies. The number of subjects harbouring MS in their dental plaque was statistically higher in the group of orthodontic children without caries experience (CF) in comparison with CF children of the control group (10/12, 83.3% vs. 15/44, 34%). No clear difference was observed in the distribution of the different MS serotypes between the experimental and control group: S. mutans c,f serotype was the most frequently isolated in both groups of children followed by S. mutans serotype e and S. sobrinus serotype g. Such results suggest that the use of removable appliances may lead to the creation of new retentive areas and surfaces, which favour the local adherence and growth of MS. The data obtained stress the importance of a careful monitoring of patients treated orthodontically for risk of caries development.

  7. Bactericidal effect of the photocatalystic reaction of titanium dioxide using visible wavelengths on Streptococcus mutans biofilm.

    PubMed

    Kim, Chan-Hee; Lee, Eun-Song; Kang, Si-Mook; de Josselin de Jong, Elbert; Kim, Baek-Il

    2017-06-01

    The aim of this study was to determine the effect of titanium dioxide (TiO 2 ) photocatalysis induced by the application of clinically acceptable visible light at 405nm on the growth of Streptococcus mutans biofilms. S. mutans biofilms were grown on a hydroxyapatite (HA) disk and deposited in a rutile-type TiO 2 solution at a concentration of 0.1mg/mL. TiO 2 photocatalysis was measured for exposure to visible light (405nm) and ultraviolet (UV) light (254nm) produced by light-emitting diodes for 10, 20, 30, and 40min. After two treatments, the number of colonies formed in the final S. mutans biofilm on the HA disk were measured to confirm their viability, and the morphological changes of S. mutans were evaluated using scanning electronic microscopy. The bactericidal effects of 254- and 405-nm light resulted in > 5-log and 4-log reductions, respectively (p<0.05), after 20min of treatment and a>7-log reduction after 40min of treatment in both treatment groups relative to the control group. It was confirmed that the antibacterial effect could be shown by causing the photocatalytic reaction of TiO 2 in S. mutans biofilm even at the wavelength of visible light (405nm) as at the wavelength of ultraviolet light (254nm). Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Dental caries induction in experimental animals by clinical strains of Streptococcus mutans isolated from Japanese children.

    PubMed

    Hamada, S; Ooshima, T; Torii, M; Imanishi, H; Masuda, N; Sobue, S; Kotani, S

    1978-01-01

    Oral implantation and the cariogenic activity of clinical strains of Streptococcus mutans which had been isolated from Japanese children and labeled with streptomycin-resistance were examined in specific pathogen-free Sprague-Dawley rats. All the seven strains tested were easily implanted and persisted during the experimental period. Extensive carious lesions were produced in rats inoculated with clinical strains of S. mutans belonging to serotypes c, d, e, and f, and maintained on caries-inducing diet no. 2000. Noninfected rats did not develop dental caries when fed diet no. 2000. Type d S. mutans preferentially induced smooth surface caries in the rats. Strains of other serotypes primarily developed caries of pit and fissure origin. Caries also developed in rats inoculated with reference S. mutans strains BHTR and FAIR (type b) that had been maintained in the laboratories for many years. However, the cariogenicity of the laboratory strains was found to have decreased markedly. All three S. sanguis strains could be implanted, but only one strain induced definite fissure caries. Two S. salivarius strains could not be implanted well in the rats and therefore they were not cariogenic. Four different species of lactobacilli also failed to induce dental caries in rats subjected to similar caries test regimen on diet no. 200. S. mutans strain MT6R (type c) also induce caries in golden hamsters and ICR mice, but of variable degrees.

  9. Class II glass ionomer/silver cermet restorations and their effect on interproximal growth of mutans streptococci.

    PubMed

    Berg, J H; Farrell, J E; Brown, L R

    1990-02-01

    The release of fluoride from glass ionomer materials is one of the most important features of this newly implemented material, and the remineralization effects of this phenomenon have been documented (Hicks and Silverstone 1986). This paper examines the effects of glass ionomer/silver cermet restorations on the plaque levels of interproximal mutans streptococci. Fifteen patients with Class II lesions in primary molars were selected for study. Interproximal plaque samples were obtained from each of the lesion sites and from one caries-free site approximal to a primary molar. One lesion was restored with composite resin to serve as a treated control to the glass ionomer/silver cermet (Ketac Silver, ESPE/Premier Sales Corp., Norristown, Pennsylvania) test site. A sound (unaltered) interproximal site served as the untreated control site. Plaque samples were collected before and at one week, one month, and three months post-treatment. Samples were serially diluted to enable colony counts of mutans streptococci. One week post-treatment counts showed that the glass ionomer/silver cermet restorations significantly reduced (P less than 0.05) the approximal plaque levels of mutans streptococci. Conversely, the untreated and treated control sites did not exhibit reductions in approximal plaque levels of mutans streptococci. These results indicate that glass ionomer restorations may be inhibitory to the growth of mutans streptococci in dental plaque approximal to this restorative material in the primary dentition.

  10. Inhibitory Effects of Chrysanthemum boreale Essential Oil on Biofilm Formation and Virulence Factor Expression of Streptococcus mutans

    PubMed Central

    Kim, Beom-Su; Park, Sun-Ju; Kim, Myung-Kon; Kim, Young-Hoi; Lee, Sang-Bong; Lee, Kwang-Hee; Lee, Young-Rae; Lee, Young-Eun; You, Yong-Ouk

    2015-01-01

    The aim of the study was to evaluate the antibacterial activity of essential oil extracted from Chrysanthemum boreale (C. boreale) on Streptococcus mutans (S. mutans). To investigate anticariogenic properties, and bacterial growth, acid production, biofilm formation, bacterial adherence of S. mutans were evaluated. Then gene expression of several virulence factors was also evaluated. C. boreale essential oil exhibited significant inhibition of bacterial growth, adherence capacity, and acid production of S. mutans at concentrations 0.1–0.5 mg/mL and 0.25–0.5 mg/mL, respectively. The safranin staining and scanning electron microscopy results showed that the biofilm formation was also inhibited. The result of live/dead staining showed the bactericidal effect. Furthermore, real-time PCR analysis showed that the gene expression of some virulence factors such as gtfB, gtfC, gtfD, gbpB, spaP, brpA, relA, and vicR of S. mutans was significantly decreased in a dose dependent manner. In GC and GC-MS analysis, seventy-two compounds were identified in the oil, representing 85.42% of the total oil. The major components were camphor (20.89%), β-caryophyllene (5.71%), α-thujone (5.46%), piperitone (5.27%), epi-sesquiphellandrene (5.16%), α-pinene (4.97%), 1,8-cineole (4.52%), β-pinene (4.45%), and camphene (4.19%). These results suggest that C. boreale essential oil may inhibit growth, adhesion, acid tolerance, and biofilm formation of S. mutans through the partial inhibition of several of these virulence factors. PMID:25763094

  11. Antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm growing Streptococcus mutans.

    PubMed

    Sun, Mengjun; Dong, Jiachen; Xia, Yiru; Shu, Rong

    2017-06-01

    The aim of this study was to evaluate the potential antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm modes of Streptococcus mutans (S. mutans). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The effects on planktonic growth and biofilm metabolic activity were evaluated by growth curve determination and MTT assay, respectively. Then, colony forming unit (CFU) counting, scanning electron microscopy (SEM) and real-time PCR were performed to further investigate the actions of DHA and EPA on exponential phase-S. mutans. Confocal laser scanning microscopy (CLSM) was used to detect the influences on mature biofilms. The MICs of DHA and EPA against S. mutans were 100 μM and 50 μM, respectively; the MBC of both compounds was 100 μM. In the presence of 12.5 μM-100 μM DHA or EPA, the planktonic growth and biofilm metabolic activity were reduced in varying degrees. For exponential-phase S. mutans, the viable counts, the bacterial membranes and the biofilm-associated gene expression were damaged by 100 μM DHA or EPA treatment. For 1-day-old biofilms, the thickness was decreased and the proportion of membrane-damaged bacteria was increased in the presence of 100 μM DHA or EPA. These results indicated that, DHA and EPA possessed antibacterial activities against planktonic and biofilm growing S. mutans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Comparison of SEM and VPSEM imaging techniques with respect to Streptococcus mutans biofilm topography.

    PubMed

    Weber, Kathryn; Delben, Juliana; Bromage, Timothy G; Duarte, Simone

    2014-01-01

    The study compared images of mature Streptococcus mutans biofilms captured at increasing magnification to determine which microscopy method is most acceptable for imaging the biofilm topography and the extracellular polymeric substance (EPS). In vitro S. mutans biofilms were imaged using (1) scanning electron microscopy (SEM), which requires a dehydration process; (2) SEM and ruthenium red (SEM-RR), which has been shown to support the EPS of biofilms during the SEM dehydration; and (3) variable pressure scanning electron microscopy (VPSEM), which does not require the intensive dehydration process of SEM. The dehydration process and high chamber vacuum of both SEM techniques devastated the biofilm EPS, removed supporting structures, and caused cracking on the biofilm surface. The VPSEM offered the most comprehensive representation of the S. mutans biofilm morphology. VPSEM provides similar contrast and focus as the SEM, but the procedure is far less time-consuming, and the use of hazardous chemicals associated with SEM dehydration protocol is avoided with the VPSEM. The inaccurate representations of the biofilm EPS in SEM experimentation is a possible source of inaccurate data and impediments in the study of S. mutans biofilms. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  13. Isolation and purification of total RNA from Streptococcus mutans in suspension cultures and biofilms.

    PubMed

    Cury, Jaime Aparecido; Seils, Jennifer; Koo, Hyun

    2008-01-01

    The presence of extracellular polysaccharides matrix makes extraction and purification of RNA from Streptococcus mutans within biofilms challenging. In this study, several approaches to purify RNA extracted from S. mutans in suspension cultures and biofilms were examined. The combination of sonication (3 pulses of 30 s at 7 W), suspension in NAES buffer (50 mM sodium acetate buffer, 10 mM EDTA and 1% SDS; pH 5.0) and homogenization-mechanical cells disruption in NAES- acid phenol:chloroform, yielded 9.04 mg (or 0.52 mg) of crude preparation of RNA per 100 mg of total cell (or biofilm) dry-weight. The crude RNA preparations were subjected to various DNAse I treatments. The combination of DNAse I in silica-gel based column followed by recombinant DNase I in solution provided the best genomic DNA removal, resulting in 4.35 mg (or 0.06 mg) of purified RNA per 100 mg of total cell (or biofilm) dry-weight. The cDNAs generated from the purified RNA sample were efficiently amplified using gtfB S. mutans-specific primers. The results showed a method that yields high-quality RNA from both planktonic cells and biofilms of S. mutans in sufficient quantity and quality for real-time RT-PCR analyses.

  14. Immunoelectrophoretic study of cell surface antigens from different Streptococcus mutans serotypes and Streptococcus sanguis.

    PubMed

    Ogier, J A; Klein, J P; Niddam, R; Frank, R M

    1985-06-01

    Antigens prepared from culture supernatants or whole cells of several cariogenic strains were examined by immunoelectrophoresis for their crossed antigenicity, with reference to Streptococcus mutans OMZ175, serotype f. Crossed immunoelectrophoresis revealed a crossreactivity between soluble extracellular and wall associated antigens of six strains of Streptococcus mutans and one strain of Streptococcus sanguis. Protease destroyed the immunoreactivity of crossreactive antigens. One of them was shown to be localized on the bacterial surface.

  15. Streptococcus mutans serotypes: some aspects of their identification, distribution, antigenic shifts, and relationship to caries.

    PubMed

    Bratthall, D; Köhler, B

    1976-04-01

    For an immunologic point of view, several facts are worth consideration. S mutans can be separated into at least seven serotypes. Five of the types are based on antigens that may be specific for S mutans. One type, e, is related to the Lancefield group E streptocci, and one type, f, may lack an antigen that shows serological specificity. Analyses of plaque samples from individuals with a high caries activity have, in most instances, shown the presence of c, d, and possibly the g types. This does not necessarily mean that they are per se more cariogenic than the other types, but if all the serotypes cannot be combatted simultaneously, the c, d, and g types are an obvious first choice. S mutans strains do have antigens other than those used for serological identification, and it is not known which antigens can evoke antibodies with the highest protective capacity in humans. The phenomenon of antigenic shifts may make it possible for the bacteria to elude antibodies. However, the number of possible changes may be restricted. If certain antigens are of importance for the cariogenicity of S mutans, a change in their structure might result in a less cariogenic flora.

  16. Streptococcus gordonii LuxS/autoinducer-2 quorum-sensing system modulates the dual-species biofilm formation with Streptococcus mutans.

    PubMed

    Wang, Xiao; Li, Xiaolan; Ling, Junqi

    2017-07-01

    Dental plaques are mixed-species biofilms that are related to the development of dental caries. Streptococcus mutans (S. mutans) is an important cariogenic bacterium that forms mixed-species biofilms with Streptococcus gordonii (S. gordonii), an early colonizer of the tooth surface. The LuxS/autoinducer-2(AI-2) quorum sensing system is involved in the regulation of mixed-species biofilms, and AI-2 is proposed as a universal signal for the interaction between bacterial species. In this work, a S. gordonii luxS deficient strain was constructed to investigate the effect of the S. gordonii luxS gene on dual-species biofilm formed by S. mutans and S. gordonii. In addition, AI-2 was synthesized in vitro by incubating recombinant LuxS and Pfs enzymes of S. gordonii together. The effect of AI-2 on S. mutans single-species biofilm formation and cariogenic virulence gene expression were also assessed. The results showed that luxS disruption in S. gordonii altered dual-species biofilm formation, architecture, and composition, as well as the susceptibility to chlorhexidine. And the in vitro synthesized AI-2 had a concentration-dependent effect on S. mutans biofilm formation and virulence gene expression. These findings indicate that LuxS/AI-2 quorum-sensing system of S. gordonii plays a role in regulating the dual-species biofilm formation with S. mutans. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Phosphoenolpyruvate-dependent sucrose phosphotransferase activity in five serotypes of Streptococcus mutans.

    PubMed

    Slee, A M; Tanzer, J M

    1979-11-01

    An inducible phosphoenolpyruvate-dependent sucrose phosphotransferase system has been demonstrated in decryptified cell suspensions of the various common serotypes of the cariogenic microorganism Streptococcus mutans.

  18. Serological diversity demonstrable by a set of monoclonal antibodies to eight serotypes of the mutans streptococci.

    PubMed

    Ota, F; Ota, M; Mahmud, Z H; Mohammad, A; Yamato, M; Kassu, A; Kato, Y; Tomotake, H; Batoni, G; Campa, M

    2006-01-01

    A set of monoclonal antibodies were prepared by the conventional cell fusion of myeloma cells (SP2/0-Ag14) with spleen cells from BALB/c mice immunised with whole cells of a strain of mutans streptococci. Their specificities were examined against 35 reference strains of mutans streptococci, 34 reference strains of other oral streptococci and 8 reference strains of other microorganisms often inhabiting the oral cavity. Specificity was examined by enzyme immunoassay using whole cells. A total of 52 strains, consisting of 19 strains isolated in Japan, 19 strains isolated in Italy and 14 strains isolated in England, were characterised by conventional physiological and biochemical tests and then serotyped by the use of 8 monoclonal antibodies with different specificities. They were also confirmed by guanine-plus-cytosine contents of their nucleic acid and DNA-DNA hybridisation test. The results indicated that all monoclonal antibodies are useful for identification of 8 serotypes of the mutans streptococci responsible for dental caries. They also suggest the existence of more serological varieties among mutans species.

  19. Transcriptional analysis of the bglP gene from Streptococcus mutans.

    PubMed

    Cote, Christopher K; Honeyman, Allen L

    2006-04-21

    An open reading frame encoding a putative antiterminator protein, LicT, was identified in the genomic sequence of Streptococcus mutans. A potential ribonucleic antitermination (RAT) site to which the LicT protein would potentially bind has been identified immediately adjacent to this open reading frame. The licT gene and RAT site are both located 5' to a beta-glucoside PTS regulon previously described in S. mutans that is responsible for esculin utilization in the presence of glucose. It was hypothesized that antitermination is the regulatory mechanism that is responsible for the control of the bglP gene expression, which encodes an esculin-specific PTS enzyme II. To localize the promoter activity associated with the bglP locus, a series of transcriptional lacZ gene fusions was formed on a reporter shuttle vector using various DNA fragments from the bglP promoter region. Subsequent beta-galactosidase assays in S. mutans localized the bglP promoter region and identified putative -35 and -10 promoter elements. Primer extension analysis identified the bglP transcriptional start site. In addition, a terminated bglP transcript formed by transcriptional termination was identified via transcript mapping experiments. The physical location of these genetic elements, the RAT site and the promoter regions, and the identification of a short terminated mRNA support the hypothesis that antitermination regulates the bglP transcript.

  20. Transcriptional analysis of the bglP gene from Streptococcus mutans

    PubMed Central

    Cote, Christopher K; Honeyman, Allen L

    2006-01-01

    Background An open reading frame encoding a putative antiterminator protein, LicT, was identified in the genomic sequence of Streptococcus mutans. A potential ribonucleic antitermination (RAT) site to which the LicT protein would potentially bind has been identified immediately adjacent to this open reading frame. The licT gene and RAT site are both located 5' to a beta-glucoside PTS regulon previously described in S. mutans that is responsible for esculin utilization in the presence of glucose. It was hypothesized that antitermination is the regulatory mechanism that is responsible for the control of the bglP gene expression, which encodes an esculin-specific PTS enzyme II. Results To localize the promoter activity associated with the bglP locus, a series of transcriptional lacZ gene fusions was formed on a reporter shuttle vector using various DNA fragments from the bglP promoter region. Subsequent beta-galactosidase assays in S. mutans localized the bglP promoter region and identified putative -35 and -10 promoter elements. Primer extension analysis identified the bglP transcriptional start site. In addition, a terminated bglP transcript formed by transcriptional termination was identified via transcript mapping experiments. Conclusion The physical location of these genetic elements, the RAT site and the promoter regions, and the identification of a short terminated mRNA support the hypothesis that antitermination regulates the bglP transcript. PMID:16630357

  1. Effect of Chocobar Ice Cream Containing Bifidobacterium on Salivary Streptococcus mutans and Lactobacilli: A Randomised Controlled Trial.

    PubMed

    Nagarajappa, Ramesh; Daryani, Hemasha; Sharda, Archana J; Asawa, Kailash; Batra, Mehak; Sanadhya, Sudhanshu; Ramesh, Gayathri

    2015-01-01

    To examine the effect of chocobar ice cream containing bifidobacteria on salivary mutans streptococci and lactobacilli. A double-blind, randomised controlled trial was conducted with 30 subjects (18 to 22 years of age) divided into 2 groups, test (chocobar ice cream with probiotics) and control (chocobar ice cream without probiotics). The subjects were instructed to eat the allotted chocobar ice cream once daily for 18 days. Saliva samples collected at intervals were cultured on Mitis Salivarius agar and Rogosa agar and examined for salivary mutans streptococci and lactobacilli, respectively. The Mann-Whitney U-test, Friedman and Wilcoxon signed-rank tests were used for statistical analysis. Postingestion in the test group, a statistically significant reduction (p < 0.05) of salivary mutans streptococci was recorded, but a non-significant trend was seen for lactobacilli. Significant differences were was also observed between follow-ups. Short-term daily ingestion of ice cream containing probiotic bifidobacteria may reduce salivary levels of mutans streptococci in young adults.

  2. [Count of salivary Streptococci mutans in pregnant women of the metropolitan region of Chile: cross-sectional study].

    PubMed

    Villagrán, E; Linossier, A; Donoso, E

    1999-02-01

    Salivary Streptococci mutans contamination is considered the main microbiological risk factor for the initiation of caries. To assess the oral health of pregnant women, counting Salivary Streptococci mutants. One hundred seventy four pregnant women, in the first, second and third trimester of pregnancy, aged 27 +/- 5 years old, consulting at a public primary health center, were studied. Puerperal women that had their delivery two months before, were studied as a control group. Salivary samples were obtained and Streptococci mutans colonies were counted using quantitative and semiquantitative methods. There was a good concordance between both counting methods. No differences in Streptococci mutans counts were observed among the three groups of pregnant women, but the latter as a group had higher counts than puerperal women. Women with more than 5 caries had also higher counts. Semiquantitative Streptococci mutans counts are easy, rapid and non invasive and have a good concordance with quantitative counts in saliva.

  3. Cariogenicity of a lactate dehydrogenase-deficient mutant of Streptococcus mutans serotype c in gnotobiotic rats.

    PubMed

    Fitzgerald, R J; Adams, B O; Sandham, H J; Abhyankar, S

    1989-03-01

    A lactate dehydrogenase-deficient (Ldh-) mutant of a human isolate of Streptococcus mutans serotype c was tested in a gnotobiotic rat caries model. Compared with the wild-type Ldh-positive (Ldh+) strains, it was significantly (alpha less than or equal to 0.005) less cariogenic in experiments with two different sublines of Sprague-Dawley rats. The Ldh- mutant strain 044 colonized the oral cavity of the test animals to the same extent as its parent strain 041, although its initial implantation was slightly but not significantly (P greater than or equal to 0.2) less. Multiple oral or fecal samples plated on 2,3,5-triphenyltetrazolium indicator medium revealed no evidence of back mutation from Ldh- to Ldh+ in vivo. Both Ldh+ strain 041 and Ldh- strain 044 demonstrated bacteriocinlike activity in vitro against a number of human strains of mutans streptococci representing serotype a (S. cricetus) and serotypes c and e (S. mutans). Serotypes b (S. rattus) and f (S. mutans) and strains of S. mitior, S. sanguis, and S. salivarius were not inhibited. Thus, Ldh mutant strain 044 possesses a number of desirable traits that suggest it should be investigated further as a possible effector strain for replacement therapy of dental caries. These traits include its stability and low cariogenicity in the sensitive gnotobiotic rat caries model, its bacteriocinlike activity against certain other cariogenic S. mutans (but not against more inocuous indigenous oral streptococci), and the fact that it is a member of the most prevalent human serotype of cariogenic streptococci.

  4. DNA-microarrays identification of Streptococcus mutans genes associated with biofilm thickness

    PubMed Central

    Shemesh, Moshe; Tam, Avshalom; Kott-Gutkowski, Miriam; Feldman, Mark; Steinberg, Doron

    2008-01-01

    Background A biofilm is a complex community of microorganisms that develop on surfaces in diverse environments. The thickness of the biofilm plays a crucial role in the physiology of the immobilized bacteria. The most cariogenic bacteria, mutans streptococci, are common inhabitants of a dental biofilm community. In this study, DNA-microarray analysis was used to identify differentially expressed genes associated with the thickness of S. mutans biofilms. Results Comparative transcriptome analyses indicated that expression of 29 genes was differentially altered in 400- vs. 100-microns depth and 39 genes in 200- vs. 100-microns biofilms. Only 10 S. mutans genes showed differential expression in both 400- vs. 100-microns and 200- vs. 100-microns biofilms. All of these genes were upregulated. As sucrose is a predominant factor in oral biofilm development, its influence was evaluated on selected genes expression in the various depths of biofilms. The presence of sucrose did not noticeably change the regulation of these genes in 400- vs. 100-microns and/or 200- vs. 100-microns biofilms tested by real-time RT-PCR. Furthermore, we analyzed the expression profile of selected biofilm thickness associated genes in the luxS- mutant strain. The expression of those genes was not radically changed in the mutant strain compared to wild-type bacteria in planktonic condition. Only slight downregulation was recorded in SMU.2146c, SMU.574, SMU.609, and SMU.987 genes expression in luxS- bacteria in biofilm vs. planktonic environments. Conclusion These findings reveal genes associated with the thickness of biofilms of S. mutans. Expression of these genes is apparently not regulated directly by luxS and is not necessarily influenced by the presence of sucrose in the growth media. PMID:19114020

  5. [Effects of Nd: YAG laser irradiation on the root surfaces and adhesion of Streptococcus mutans].

    PubMed

    Yuanhong, Li; Zhongcheng, Li; Mengqi, Luo; Daonan, Shen; Shu, Zhang; Shu, Meng

    2016-12-01

    This study aimed to evaluate the effects of treatment with different powers of Nd: YAG laser irradiation on root surfaces and Streptococcus mutans (S. mutans) adhesion. Extracted teeth because of severe periodontal disease were divided into the following four groups: control group, laser group 1, laser group 2, and laser group 3. After scaling and root planning, laser group 1, laser group 2, and laser group 3 were separately treated with Nd: YAG laser irradiation (4/6/8 W, 60 s); however, the control group did not receive the treatment. Scanning electron microscopy (SEM) was used to determine the morphology. S. mutans were cultured with root slices from each group. Colony forming unit per mL (CFU·mL⁻¹) was used to count and compare the amounts of bacteria adhesion among groups. SEM was used to observe the difference of bacteria adhesion to root surfaces between control group (scaling) and laser group 2 (6 W, 60 s), thereby indicating the different bacteria adhesions because of different treatments. Morphology alterations indicated that root surfaces in control group contain obvious smear layer, debris, and biofilm; whereas the root surfaces in laser group contain more cracks with less smear layer and debris. The bacteria counting indicated that S. mutans adhesion to laser group was weaker than that of control group (P<0.05). No statistical significance among the laser groups (P>0.05) was observed. Morphology alterations also verified that S. mutans adhesion to laser group 2 (6 W, 60 s) was weaker than that of control group (scaling). This study demonstrated that Nd: YAG laser irradiation treatment after scaling can reduce smear layer, debris, and biofilm on the root surfaces as compared with conventional scaling. The laser treatment reduces the adhesion of S. mutans as well. However, Nd: YAG laser irradiation can cause cracks on the root surfaces. In this experiment, the optimum laser power of 6 W can thoroughly remove the smear layer and debris, as well as

  6. Streptococcus mutans: a new Gram-positive paradigm?

    PubMed Central

    Quivey, Robert G.; Koo, Hyun; Abranches, Jacqueline

    2013-01-01

    Despite the enormous contributions of the bacterial paradigms Escherichia coli and Bacillus subtilis to basic and applied research, it is well known that no single organism can be a perfect representative of all other species. However, given that some bacteria are difficult, or virtually impossible, to cultivate in the laboratory, that some are recalcitrant to genetic and molecular manipulation, and that others can be extremely dangerous to manipulate, the use of model organisms will continue to play an important role in the development of basic research. In particular, model organisms are very useful for providing a better understanding of the biology of closely related species. Here, we discuss how the lifestyle, the availability of suitable in vitro and in vivo systems, and a thorough understanding of the genetics, biochemistry and physiology of the dental pathogen Streptococcus mutans have greatly advanced our understanding of important areas in the field of bacteriology such as interspecies biofilms, competence development and stress responses. In this article, we provide an argument that places S. mutans, an organism that evolved in close association with the human host, as a novel Gram-positive model organism. PMID:23393147

  7. Live and heat-killed Lactobacillus spp. interfere with Streptococcus mutans and Streptococcus oralis during biofilm development on titanium surface.

    PubMed

    Ciandrini, E; Campana, R; Baffone, W

    2017-06-01

    This research investigates the ability of live and heat-killed (HK) Lactic Acid Bacteria (LAB) to interfere with Streptococcus mutans ATCC 25175 and Streptococcus oralis ATCC 9811 during biofilm formation. Eight Lactobacillus spp. and two oral colonizers, pathogenic Streptococcus mutans and resident Streptococcus oralis, were characterized for their aggregation abilities, cell surface properties and biofilm formation ability on titanium surface. Then, the interference activity of selected live and HK Lactobacillus spp. during S. mutans and S. oralis biofilm development were performed. The cell-free culture supernatants (CFCS) anti-biofilm activity was also determined. LAB possess good abilities of auto-aggregation (from 14.19 to 28.97%) and of co-aggregation with S. oralis. The cell-surfaces characteristics were most pronounced in S. mutans and S. oralis, while the highest affinities to xylene and chloroform were observed in Lactobacillus rhamnosus ATCC 53103 (56.37%) and Lactobacillus paracasei B21060 (43.83%). S. mutans and S. oralis developed a biofilm on titanium surface, while LAB showed a limited or no ability to create biofilm. Live and HK L. rhamnosus ATCC 53103 and L. paracasei B21060 inhibited streptococci biofilm formation by competition and displacement mechanisms with no substantial differences. The CFCSs of both LAB strains, particularly the undiluted one of L. paracasei B21060, decreased S. mutans and S. oralis biofilm formation. This study evidenced the association of LAB aggregation abilities and cell-surface properties with the LAB-mediated inhibition of S. mutans and S. oralis biofilm formation. Lactobacilli showed different mechanisms of action and peculiar strain-specific characteristics, maintained also in the heat-killed LAB. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Generation of diversity in Streptococcus mutans genes demonstrated by MLST.

    PubMed

    Do, Thuy; Gilbert, Steven C; Clark, Douglas; Ali, Farida; Fatturi Parolo, Clarissa C; Maltz, Marisa; Russell, Roy R; Holbrook, Peter; Wade, William G; Beighton, David

    2010-02-05

    Streptococcus mutans, consisting of serotypes c, e, f and k, is an oral aciduric organism associated with the initiation and progression of dental caries. A total of 135 independent Streptococcus mutans strains from caries-free and caries-active subjects isolated from various geographical locations were examined in two versions of an MLST scheme consisting of either 6 housekeeping genes [accC (acetyl-CoA carboxylase biotin carboxylase subunit), gki (glucokinase), lepA (GTP-binding protein), recP (transketolase), sodA (superoxide dismutase), and tyrS (tyrosyl-tRNA synthetase)] or the housekeeping genes supplemented with 2 extracellular putative virulence genes [gtfB (glucosyltransferase B) and spaP (surface protein antigen I/II)] to increase sequence type diversity. The number of alleles found varied between 20 (lepA) and 37 (spaP). Overall, 121 sequence types (STs) were defined using the housekeeping genes alone and 122 with all genes. However pi, nucleotide diversity per site, was low for all loci being in the range 0.019-0.007. The virulence genes exhibited the greatest nucleotide diversity and the recombination/mutation ratio was 0.67 [95% confidence interval 0.3-1.15] compared to 8.3 [95% confidence interval 5.0-14.5] for the 6 concatenated housekeeping genes alone. The ML trees generated for individual MLST loci were significantly incongruent and not significantly different from random trees. Analysis using ClonalFrame indicated that the majority of isolates were singletons and no evidence for a clonal structure or evidence to support serotype c strains as the ancestral S. mutans strain was apparent. There was also no evidence of a geographical distribution of individual isolates or that particular isolate clusters were associated with caries. The overall low sequence diversity suggests that S. mutans is a newly emerged species which has not accumulated large numbers of mutations but those that have occurred have been shuffled as a consequence of intra

  9. Effects of missense mutations in sortase A gene on enzyme activity in Streptococcus mutans.

    PubMed

    Zhuang, P L; Yu, L X; Tao, Y; Zhou, Y; Zhi, Q H; Lin, H C

    2016-04-11

    Streptococcus mutans (S. mutans) is the major aetiological agent of dental caries, and the transpeptidase Sortase A (SrtA) plays a major role in cariogenicity. The T168G and G470A missense mutations in the srtA gene may be linked to caries susceptibility, as demonstrated in our previous studies. This study aimed to investigate the effects of these missense mutations of the srtA gene on SrtA enzyme activity in S. mutans. The point mutated recombinant S.mutans T168G and G470A sortases were expressed in expression plasmid pET32a. S. mutans UA159 sortase coding gene srtA was used as the template for point mutation. Enzymatic activity was assessed by quantifying increases in the fluorescence intensity generated when a substrate Dabcyl-QALPNTGEE-Edans was cleaved by SrtA. The kinetic constants were calculated based on the curve fit for the Michaelis-Menten equation. SrtA△N40(UA159) and the mutant enzymes, SrtA△N40(D56E) and SrtA△N40(R157H), were expressed and purified. A kinetic analysis showed that the affinity of SrtA△N40(D56E) and SrtA△N40(R157H) remained approximately equal to the affinity of SrtA△N40(UA159), as determined by the Michaelis constant (K m ). However, the catalytic rate constant (k cat ) and catalytic efficiency (k cat /K m ) of SrtA△N40(D56E) were reduced compared with those of SrtA△N40(R157H) and SrtA△N40(UA159), whereas the k cat and k cat /K m values of SrtA△N40(R157H) were slightly lower than those of SrtA△N40(UA159). The findings of this study indicate that the T168G missense mutation of the srtA gene results in a significant reduction in enzymatic activity compared with S. mutans UA159, suggesting that the T168G missense mutation of the srtA gene may be related to low cariogenicity.

  10. PlsX deletion impacts fatty acid synthesis and acid adaptation in Streptococcus mutans.

    PubMed

    Cross, Benjamin; Garcia, Ariana; Faustoferri, Roberta; Quivey, Robert G

    2016-04-01

    Streptococcus mutans, one of the primary causative agents of dental caries in humans, ferments dietary sugars in the mouth to produce organic acids. These acids lower local pH values, resulting in demineralization of the tooth enamel, leading to caries. To survive acidic environments, Strep. mutans employs several adaptive mechanisms, including a shift from saturated to unsaturated fatty acids in membrane phospholipids. PlsX is an acyl-ACP : phosphate transacylase that links the fatty acid synthase II (FASII) pathway to the phospholipid synthesis pathway, and is therefore central to the movement of unsaturated fatty acids into the membrane. Recently, we discovered that plsX is not essential in Strep. mutans. A plsX deletion mutant was not a fatty acid or phospholipid auxotroph. Gas chromatography of fatty acid methyl esters indicated that membrane fatty acid chain length in the plsX deletion strain differed from those detected in the parent strain, UA159. The deletion strain displayed a fatty acid shift similar to WT, but had a higher percentage of unsaturated fatty acids at low pH. The deletion strain survived significantly longer than the parent strain when cultures were subjected to an acid challenge of pH 2.5.The ΔplsX strain also exhibited elevated F-ATPase activity at pH 5.2, compared with the parent. These results indicate that the loss of plsX affects both the fatty acid synthesis pathway and the acid-adaptive response of Strep. mutans.

  11. Effect of monoclonal antibodies against lipoteichoic acid from the oral bacterium Streptococcus mutans on its adhesion and plaque-accumulation in vitro.

    PubMed

    Stashenko, P; Peros, W J; Gibbons, R J; Dearborn, S M

    1986-01-01

    Five monoclonal antibodies directed against Streptococcus mutans strain JBP lipoteichoic acid (LTA) were characterized. They were all similarly reactive with the immunizing LTA-containing extract, with intact Strep. mutans JBP cells and with LTA purified from Lactobacillus casei. Immobilized anti-LTA antibodies removes LTA from LTA-containing extracts. The binding of antibodies to LTA was inhibited by the aqueous extract but not by the organic extract of de-acylated LTA, indicating reactivity with the polyglycerol-phosphate portion of the molecule. Antibodies were reactive with all serotypes of Strep. mutans, as well as with strains of Streptococcus salivarius, Streptococcus sanguis and L. casei, but not with LTA-negative species Streptococcus mitis or Actinomyces viscosus. Anti-LTA antibodies at doses of 0.3 or 3.0 micrograms/ml, had no effect on the adherence of Strep. mutans JBP to experimental salivary pellicles formed on hydroxyapatite, but enhanced adherence 150-300 per cent at 30 micrograms/ml. There was no effect of anti-LTA antibodies in a chemostat model which measured sucrose-dependent plaque accumulation by Strep. mutans. The results argue against a major role for LTA in Strep. mutans adherence or plaque accumulation in vitro.

  12. Chlorophyll mediated photodynamic inactivation of blue laser on Streptococcus mutans

    NASA Astrophysics Data System (ADS)

    Astuti, Suryani Dyah; Zaidan, A.; Setiawati, Ernie Maduratna; Suhariningsih

    2016-03-01

    Photodynamic inactivation is an inactivation method in microbial pathogens that utilize light and photosensitizer. This study was conducted to investigate photodynamic inactivation effects of low intensity laser exposure with various dose energy on Streptococcus mutans bacteria. The photodynamic inactivation was achieved with the addition of chlorophyll as photosensitizers. To determine the survival percentage of Streptococcus mutans bacteria after laser exposure, the total plate count method was used. For this study, the wavelength of the laser is 405 nm and variables of energy doses are 1.44, 2.87, 4.31, 5.74, 7.18, and 8.61 in J/cm2. The results show that exposure to laser with energy dose of 7.18 J/cm2 has the best photodynamic inactivation with a decrease of 78% in Streptococcus

  13. Binding of /sup 18/F by cell membranes and cell walls of Streptococcus mutans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yotis, W.W.; Zeb, M.; McNulty, J.

    1983-07-01

    The binding of /sup 18/F to isolated cell membranes and cell walls of Streptococcus mutans GS-5 or other bacteria was assayed. The attachment of /sup 18/F to these cell envelopes proceeded slowly and reached equilibrium within 60 min. /sup 18/F binding was stimulated by Ca/sup 2 +/ (1 mM). The binding of /sup 18/F to cellular components was dependent upon the pH, as well as the amount of /sup 18/F and dose of the binder employed. The binding of /sup 18/F by cell walls prepared from fluoride-sensitive and fluoride-resistant cells of S. salivarius and S. mutans did not differ significantly.more » The pretreatment of cell walls or cell membranes for 60 min at 30 degrees C with 1 mg of RNase, DNase, or trypsin per ml did not influence the binding of /sup 18/F by the walls and membranes of S. mutans GS-5. However, prior exposure of cell membranes to sodium dodecyl sulfate caused a significant reduction in the number of /sup 18/F atoms bound by the membranes. In saturated assay systems, cell membranes of S. mutans GS-5 bound 10(15) to 10(16) atoms of /sup 18/F per mg (dry weight), whereas cell walls from S. mutans GS-5, FA-1, and HS-6 or Actinomyces viscosus T14V and T14AV bound 10(12) to 10(13) atoms of /sup 18/F per mg (dry weight). /sup 18/F in this quantity (10(12) to 10(13) atoms) cannot be detected with the fluoride electrode. The data provide, for the first time, a demonstration of /sup 18/F binding by cell membranes and walls of oral flora.« less

  14. Characterization of acid‑tolerance‑associated small RNAs in clinical isolates of Streptococcus mutans: Potential biomarkers for caries prevention.

    PubMed

    Zhu, Wenhui; Liu, Shanshan; Zhuang, Peilin; Liu, Jia; Wang, Yan; Lin, Huancai

    2017-12-01

    Streptococcus mutans is a cariogenic bacterium that contributes to dental caries due to its ability to produce lactic acid, which acidifies the local environment. The potential of S. mutans to respond to environmental stress and tolerate low pH is essential for its survival and predominance in caries lesions. Small noncoding RNAs (sRNAs) have been reported to be involved in bacterial stress and virulence. Few studies have investigated the sRNAs of S. mutans and the function of these sRNAs remains to be elucidated. In the present study, the association between sRNA133474 and acid tolerance, including potential underlying mechanisms, were investigated within clinical strains of S. mutans. From pediatric dental plaques, 20 strains of S. mutans were isolated. An acid killing assay was performed to analyze acid tolerance of S. mutans. Expression patterns of sRNA133474 were investigated during various growth phases under various acidic conditions via reverse transcription‑quantitative polymerase chain reaction. RNA predator and Kyoto Encyclopedia of Genes and Genomes analyses were performed to predict target mRNAs of sRNA133474 and to examine the involvement of putative pathways of target mRNAs, respectively. The results of the present study demonstrated that sRNA133474 activity was growth phase‑dependent, and two distinct expression patterns were identified in 10 clinical strains. At pH 5.5 and 7.5 the expression levels of sRNA133474 were significantly different, and high‑acid tolerant strains exhibited reduced expression levels of sRNA133474 compared with low‑acid tolerant strains. A correlation between sRNA133474 expression levels and acid tolerance was observed in 20 clinical isolates of S. mutans (r=‑0.6298, P<0.01). Finally, five target mRNAs (liaS, liaR, comE, covR and ciaR) involved in the two‑component system (TCS) were selected for further evaluation; the expression levels of three target mRNAs (liaR, ciaR and covR) were negatively

  15. [The electron microscopic observation of the effect of monoclonal antibody on the form and structure of mutans streptococci OMZ176].

    PubMed

    Wen, L; Yue, S

    1996-01-01

    The effect of monoclonal antibody on the form and structure of Mutans Streptococci OMZ176 was studied. The result showed that a great number of Mutans Streptococci OMZ176 was agglutianated after treating with monoclonal antibody prepared by a cell wall protein antigen (molecular weight 220 kd) of Mutans Streptococci OMZ176. Bacterial cells were swollen obviously. The gap between cell wall and cytoplasmic was widened. The electronic density of cell plasm was greatly decreased.

  16. Proteome Analysis Identifies the Dpr Protein of Streptococcus mutans as an Important Factor in the Presence of Early Streptococcal Colonizers of Tooth Surfaces

    PubMed Central

    Yoshida, Akihiro; Niki, Mamiko; Yamamoto, Yuji; Yasunaga, Ai; Ansai, Toshihiro

    2015-01-01

    Oral streptococci are primary colonizers of tooth surfaces and Streptococcus mutans is the principal causative agent of dental caries in humans. A number of proteins are involved in the formation of monospecies biofilms by S. mutans. This study analyzed the protein expression profiles of S. mutans biofilms formed in the presence or absence of S. gordonii, a pioneer colonizer of the tooth surface, by two-dimensional gel electrophoresis (2-DE). After identifying S. mutans proteins by Mass spectrometric analysis, their expression in the presence of S. gordonii was analyzed. S. mutans was inoculated with or without S. gordonii DL1. The two species were compartmentalized using 0.2-μl Anopore membranes. The biofilms on polystyrene plates were harvested, and the solubilized proteins were separated by 2-DE. When S. mutans biofilms were formed in the presence of S. gordonii, the peroxide resistance protein Dpr of the former showed 4.3-fold increased expression compared to biofilms that developed in the absence of the pioneer colonizer. In addition, we performed a competition assay using S. mutans antioxidant protein mutants together with S. gordonii and other initial colonizers. Growth of the dpr-knockout S. mutans mutant was significantly inhibited by S. gordonii, as well as by S. sanguinis. Furthermore, a cell viability assay revealed that the viability of the dpr-defective mutant was significantly attenuated compared to the wild-type strain when co-cultured with S. gordonii. Therefore, these results suggest that Dpr might be one of the essential proteins for S. mutans survival on teeth in the presence of early colonizing oral streptococci. PMID:25816242

  17. Enhancement of the killing effect of low-temperature plasma on Streptococcus mutans by combined treatment with gold nanoparticles.

    PubMed

    Park, Sang Rye; Lee, Hyun Wook; Hong, Jin Woo; Lee, Hae June; Kim, Ji Young; Choi, Byul Bo-Ra; Kim, Gyoo Cheon; Jeon, Young Chan

    2014-08-08

    Recently, non-thermal atmospheric pressure plasma sources have been used for biomedical applications such as sterilization, cancer treatment, blood coagulation, and wound healing. Gold nanoparticles (gNPs) have unique optical properties and are useful for biomedical applications. Although low-temperature plasma has been shown to be effective in killing oral bacteria on agar plates, its bactericidal effect is negligible on the tooth surface. Therefore, we used 30-nm gNPs to enhance the killing effect of low-temperature plasma on human teeth. We tested the sterilizing effect of low-temperature plasma on Streptococcus mutans (S. mutans) strains. The survival rate was assessed by bacterial viability stains and colony-forming unit counts. Low-temperature plasma treatment alone was effective in killing S. mutans on slide glasses, as shown by the 5-log decrease in viability. However, plasma treatment of bacteria spotted onto tooth surface exhibited a 3-log reduction in viability. After gNPs were added to S. mutans, plasma treatment caused a 5-log reduction in viability, while gNPs alone did not show any bactericidal effect. The morphological changes in S. mutans caused by plasma treatment were examined by transmission electron microscopy, which showed that plasma treatment only perforated the cell walls, while the combination treatment with plasma and gold nanoparticles caused significant cell rupture, causing loss of intracellular components from many cells. This study demonstrates that low-temperature plasma treatment is effective in killing S. mutans and that its killing effect is further enhanced when used in combination with gNPs.

  18. Role of DNA base excision repair in the mutability and virulence of Streptococcus mutans

    PubMed Central

    Gonzalez, Kaisha; Faustoferri, Roberta C.; Quivey, Robert G.

    2012-01-01

    Summary The oral pathogen, Streptococcus mutans, possesses inducible DNA repair defenses for protection against pH fluctuations and production of reactive oxygen metabolites such as hydrogen peroxide (H2O2), which are present in the oral cavity. DNA base excision repair (BER) has a critical role in genome maintenance by preventing the accumulation of mutations associated with environmental factors and normal products of cellular metabolism. In this study, we examined the consequences of compromising the DNA glycosylases (Fpg and MutY) and endonucleases (Smx and Smn) of the BER pathway and their relative role in adaptation and virulence. Enzymatic characterization of the BER system showed that it protects the organism against the effects of the highly mutagenic lesion, 7,8-dihydro-8-oxo-2’-deoxyguanine (8-oxo-dG). S. mutans strains lacking a functional Fpg, MutY, or Smn showed elevated spontaneous mutation frequencies; and, these mutator phenotypes correlated with the ability of the strains to survive killing by acid and oxidative agents. In addition, in the G. mellonella virulence model, strains of S. mutans deficient in Fpg, MutY and Smn showed increased virulence as compared to the parent strain. Our results suggest that, for S. mutans, mutator phenotypes, due to loss of BER enzymes, may confer an advantage to virulence of the organism. PMID:22651851

  19. Effect of fluoride on growth and acid production by Streptococcus mutans in dental plaque.

    PubMed Central

    van der Hoeven, J S; Franken, H C

    1984-01-01

    The aim of this study was to measure the effect of fluoride on the production of organic acids by Streptococcus mutans in dental plaque. The effect was studied in a simplified model of dental plaque with gnotobiotic rats monoinfected with S. mutans Ny341. Adaptation of S. mutans to fluoride was induced by feeding one group of the rats on fluoride-containing diet and drinking water. No difference was found in the accumulation of S. mutans on the teeth between the fluoride-adapted and the control groups. However, there was a significant difference in the amount of lactic acid in metabolically resting plaque between the groups, lactic acid being lower in the fluoride-adapted plaque. At 5 min after a rinse containing 10% sucrose, a high level of lactic acid was found in plaque from animals not exposed to fluoride. Rinses containing 4 or 20 mM fluoride before the sucrose rinse significantly inhibited the lactic acid production in the control group. In the plaque from rats on fluoridated diet and drinking water the sucrose-induced production of lactic acid was not inhibited by a 4 mM fluoride rinse. Moreover, the production of lactic acid in the fluoride-adapted plaque was prolonged. The results indicate that due to fluoride adaptation the inhibition of acid production is unlikely to be important for the caries-preventive action of fluoride. PMID:6746094

  20. Antimicrobial effects of root canal medicaments against Enterococcus faecalis and Streptococcus mutans.

    PubMed

    Atila-Pektaş, B; Yurdakul, P; Gülmez, D; Görduysus, O

    2013-05-01

    To compare the antimicrobial activities of Activ Point (Roeko, Langenau, Germany), Calcium Hydroxide Plus Point (Roeko, Langenau, Germany), calcium hydroxide, 1% chlorhexidine gel and bioactive glass (S53P4) against Enterococcus faecalis and Streptococcus mutans. One hundred and twenty extracted single-rooted human teeth were used. After removing the crowns, root canals were prepared by using the Protaper rotary system. Following autoclave sterilization, root canals were incubated at 37 °C with E. faecalis ATCC 29212 and S. mutans RSHM 676 for 1 week. The specimens, which were divided into five treatment groups for each microorganism according to the intracanal medicament used, were tested in 10 experimental runs. In each experimental run, 10 roots were included as treatment, one root as positive control and one root as sterility control. Sterile paper points were utilized to take samples from root canals after the incubation of teeth in thioglycollate medium at 37 °C for 1 week. Samples taken from teeth by sterile paper points were inoculated onto sheep blood agar, and following an overnight incubation, the colonies grown on sheep blood agar were counted and interpreted as colony-forming units. Results were tested statistically by using Kruskal-Wallis and Conover's nonparametric multiple comparison tests. CHX gel (P < 0.001 and P < 0.001), Activ Point (P = 0.003 and P = 0.002) and Ca(OH)₂ (P = 0.010 and P = 0.005) were significantly more effective against E. faecalis than that of Ca(OH)₂ Plus Point and bioactive glass, respectively. On the other hand, compared with Ca(OH)₂ , CHX gel (P < 0.001), and Activ Point (P < 0.001), bioactive glass (P = 0.014) produced significantly lower colony counts of S. mutans. When compared with the positive control, treatment with Ca(OH)₂ Plus Point (P = 0.085 and P = 0.066) did not produce significantly lower colony counts of E. faecalis and S. mutans, respectively. Compared with the medicaments having an antimicrobial

  1. Streptococcus mutans Adherence: Presumptive Evidence for Protein-Mediated Attachment Followed by Glucan-Dependent Cellular Accumulation

    PubMed Central

    Staat, Robert H.; Langley, Sharon D.; Doyle, R. J.

    1980-01-01

    Adherence of Streptococcus mutans to smooth surfaces has been attributed to the production of sucrose-derived d-glucans. However, several studies indicate that the bacterium will adhere in the absence of sucrose. The present data confirmed that S. mutans adherence to saliva-coated hydroxyapatite beads in the absence of sucrose is described by the Langmuir equation. The nature of the sucrose-independent adherence was studied with the Persea americana agglutinin as a selective adherence inhibitor. Pretreatment of the bacterium with P. americana agglutinin caused a 10-fold reduction in adherence, and the inhibition was not reversed with the addition of sucrose. Pretreatment of S. mutans with proteases also reduced adherence, regardless of the sucrose content, whereas periodate oxidation and glucanohydrolase treatment of the bacteria reduced sucrose-mediated adherence to the levels found for sucrose-independent adherence. The P. americana agglutinin, glucanohydrolase, and pepsin pretreatment of the cells did not eliminate sucrose-induced agglutination. Scanning electron microscopy showed that short streptococcal chains were bound to saliva-coated hydroxyapatite crystals in the sucrose-independent system, whereas the presence of sucrose caused larger bacterial clumps to be found. A two-reaction model of S. mutans adherence was developed from these data. It is proposed that one reaction is attachment to the tooth pellicle which is mediated by cell-surface proteins rather than glucans or teichoic acids. The other reaction is cellular accumulation mediated by sucrose-derived d-glucans and cell surface lectins. A series of sequential adherence experiments with P. americana agglutinin as a selective inhibitor provided presumptive evidence for the validity of our model of S. mutans adherence. Images Fig. 1 PMID:7380545

  2. Sublingual immunization with the phosphate-binding-protein (PstS) reduces oral colonization by Streptococcus mutans.

    PubMed

    Ferreira, E L; Batista, M T; Cavalcante, R C M; Pegos, V R; Passos, H M; Silva, D A; Balan, A; Ferreira, L C S; Ferreira, R C C

    2016-10-01

    Bacterial ATP-binding cassette (ABC) transporters play a crucial role in the physiology and pathogenicity of different bacterial species. Components of ABC transporters have also been tested as target antigens for the development of vaccines against different bacterial species, such as those belonging to the Streptococcus genus. Streptococcus mutans is the etiological agent of dental caries, and previous studies have demonstrated that deletion of the gene encoding PstS, the substrate-binding component of the phosphate uptake system (Pst), reduced the adherence of the bacteria to abiotic surfaces. In the current study, we generated a recombinant form of the S. mutans PstS protein (rPstS) with preserved structural features, and we evaluated the induction of antibody responses in mice after sublingual mucosal immunization with a formulation containing the recombinant protein and an adjuvant derived from the heat-labile toxin from enterotoxigenic Escherichia coli strains. Mice immunized with rPstS exhibited systemic and secreted antibody responses, measured by the number of immunoglobulin A-secreting cells in draining lymph nodes. Serum antibodies raised in mice immunized with rPstS interfered with the adhesion of bacteria to the oral cavity of naive mice challenged with S. mutans. Similarly, mice actively immunized with rPstS were partially protected from oral colonization after challenge with the S. mutans NG8 strain. Therefore, our results indicate that S. mutans PstS is a potential target antigen capable of inducing specific and protective antibody responses after sublingual administration. Overall, these observations raise interesting perspectives for the development of vaccines to prevent dental caries. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Trk2 Potassium Transport System in Streptococcus mutans and Its Role in Potassium Homeostasis, Biofilm Formation, and Stress Tolerance

    PubMed Central

    Binepal, Gursonika; Gill, Kamal; Crowley, Paula; Cordova, Martha; Brady, L. Jeannine; Senadheera, Dilani B.

    2016-01-01

    ABSTRACT Potassium (K+) is the most abundant cation in the fluids of dental biofilm. The biochemical and biophysical functions of K+ and a variety of K+ transport systems have been studied for most pathogenic bacteria but not for oral pathogens. In this study, we establish the modes of K+ acquisition in Streptococcus mutans and the importance of K+ homeostasis for its virulence attributes. The S. mutans genome harbors four putative K+ transport systems that included two Trk-like transporters (designated Trk1 and Trk2), one glutamate/K+ cotransporter (GlnQHMP), and a channel-like K+ transport system (Kch). Mutants lacking Trk2 had significantly impaired growth, acidogenicity, aciduricity, and biofilm formation. [K+] less than 5 mM eliminated biofilm formation in S. mutans. The functionality of the Trk2 system was confirmed by complementing an Escherichia coli TK2420 mutant strain, which resulted in significant K+ accumulation, improved growth, and survival under stress. Taken together, these results suggest that Trk2 is the main facet of the K+-dependent cellular response of S. mutans to environment stresses. IMPORTANCE Biofilm formation and stress tolerance are important virulence properties of caries-causing Streptococcus mutans. To limit these properties of this bacterium, it is imperative to understand its survival mechanisms. Potassium is the most abundant cation in dental plaque, the natural environment of S. mutans. K+ is known to function in stress tolerance, and bacteria have specialized mechanisms for its uptake. However, there are no reports to identify or characterize specific K+ transporters in S. mutans. We identified the most important system for K+ homeostasis and its role in the biofilm formation, stress tolerance, and growth. We also show the requirement of environmental K+ for the activity of biofilm-forming enzymes, which explains why such high levels of K+ would favor biofilm formation. PMID:26811321

  4. Combinatorial Effects of Aromatic 1,3-Disubstituted Ureas and Fluoride on In vitro Inhibition of Streptococcus mutans Biofilm Formation.

    PubMed

    Kaur, Gurmeet; Balamurugan, P; Uma Maheswari, C; Anitha, A; Princy, S Adline

    2016-01-01

    Dental caries occur as a result of disequilibrium between acid producing pathogenic bacteria and alkali generating commensal bacteria within a dental biofilm (dental plaque). Streptococcus mutans has been reported as a primary cariogenic pathogen associated with dental caries. Emergence of multidrug resistant as well as fluoride resistant strains of S. mutans due to over use of various antibiotics are a rising problem and prompted the researchers worldwide to search for alternative therapies. In this perspective, the present study was aimed to screen selective inhibitors against ComA, a bacteriocin associated ABC transporter, involved in the quorum sensing of S. mutans. In light of our present in silico findings, 1,3-disubstituted urea derivatives which had better affinity to ComA were chemically synthesized in the present study for in vitro evaluation of S. mutans biofilm inhibition. The results revealed that 1,3-disubstituted urea derivatives showed good biofilm inhibition. In addition, synthesized compounds exhibited potent synergy with a very low concentration of fluoride (31.25-62.5 ppm) in inhibiting the biofilm formation of S. mutans without affecting the bacterial growth. Further, the results were supported by confocal laser scanning microscopy. On the whole, from our experimental results we conclude that the combinatorial application of fluoride and disubstituted ureas has a potential synergistic effect which has a promising approach in combating multidrug resistant and fluoride resistant S. mutans in dental caries management.

  5. Protein antigen in serotype k Streptococcus mutans clinical isolates.

    PubMed

    Nakano, K; Nomura, R; Nemoto, H; Lapirattanakul, J; Taniguchi, N; Grönroos, L; Alaluusua, S; Ooshima, T

    2008-10-01

    Streptococcus mutans, a major pathogen of dental caries and infective endocarditis, is classified into serotypes c, e, f, and k, with serotype k strains recently reported to be frequently detected in persons with infective endocarditis. Thus, we hypothesized that common properties associated with infective endocarditis are present in those strains. Fifty-six oral S. mutans strains, including 11 serotype k strains, were analyzed. Western blotting analysis revealed expression of the 3 types of glucosyltransferases in all strains, while expression of the approximately 190-kDa cell-surface protein (PA) was absent in 12 strains, among which the prevalence of serotype k (7/12) was significantly high. Furthermore, cellular hydrophobicity and phagocytosis susceptibility were lower in the group of serotype k strains. These results indicate that the absence of PA expression, low cellular hydrophobicity, and phagocytosis susceptibility are common bacterial properties associated with serotype k strains, which may be associated with virulence for infective endocarditis.

  6. Role of tyrosol on Candida albicans, Candida glabrata and Streptococcus mutans biofilms developed on different surfaces.

    PubMed

    Monteiro, Douglas Roberto; Arias, Laís Salomão; Fernandes, Renan Aparecido; Straioto, Fabiana Gouveia; Barros Barbosa, Débora; Pessan, Juliano Pelim; Delbem, Alberto Carlos Botazzo

    2017-02-01

    To assess the effect of tyrosol on the production of hydrolytic enzymes (by Candida biofilm cells) and acid (by Streptococcus mutans biofilms), as well as to quantify single and mixed biofilms of these species formed on acrylic resin (AR) and hydroxyapatite (HA). Candida and S. mutans biofilms were formed on AR and HA in the presence of tyrosol during 48 hours. Next, acid proteinase, phospholipase and hemolytic activities of Candida biofilm cells were determined, while acid production by S. mutans biofilms was assessed by pH determination. The effect of tyrosol on mature biofilms (96 hours) was evaluated through quantification of total biomass, metabolic activity, number of colony-forming units and composition of biofilms' extracellular matrix. Data were analyzed by one- and two-way ANOVA, followed by Tukey's and Holm-Sidak's tests (α = 0.05). Treatments with tyrosol were not able to significantly reduce hydrolytic enzymes and acid production by Candida and S. mutans. Tyrosol only significantly reduced the metabolic activity of single biofilms of Candida species. Tyrosol on its own had a limited efficacy against single and mixed-species oral biofilms. Its use as an alternative antimicrobial for topical therapies still demands more investigation.

  7. Efficacy of Chlorhexidine, Xylitol, and Chlorhexidine + Xylitol against Dental Plaque, Gingivitis, and Salivary Streptococcus mutans Load: A Randomised Controlled Trial.

    PubMed

    Marya, Charu Mohan; Taneja, Pratibha; Nagpal, Ruchi; Marya, Vandana; Oberoi, Sukhvinder Singh; Arora, Dimple

    To compare the antiplaque, antigingivitis and antibacterial efficacy of chlorhexidine (CHX), XYL and a mouthwash combining CHX and XYL against Streptococcus mutans (S. mutans). A parallel design, randomised controlled trial was conducted among 75 dental students. Participants were randomised into CHX, CHX+XYL and XYL-only groups using the lottery method. Subjects were instructed to use 10 ml of the provided mouthwash for 15 s twice daily for 3 weeks. All the outcome measures, gingival index (GI), plaque index (PI) and number of salivary S. mutans CFU were recorded at baseline and 3 weeks post intervention. Nonparametric tests were used for inferential statistics. All outcome variables (GI, PI scores and log10 salivary S. mutans counts) decreased significantly from baseline compared to post intervention among all three groups. Intergroup comparison demonstrated that reduction in GI was not significantly different among the three groups. The decrease in PI scores was found to be significantly higher in the XYL group, while the decrease in the log10 salivary S. mutans count was significantly higher in the CHX+XYL group. The present study provided sufficient data to suggest that all the three mouthwashes are effective against plaque, gingivitis and S. mutans load in saliva. Further investigations should be carried out to confirm the results and develop strategies for using such products to prevent tooth decay.

  8. The effect of eugenol on the cariogenic properties of Streptococcus mutans and dental caries development in rats

    PubMed Central

    XU, JING-SHU; LI, YAO; CAO, XUE; CUI, YUN

    2013-01-01

    Eugenol has been widely used in medicine due to its antibacterial, anti-inflammatory, antioxidant, anticancer and analgesic properties. The present study was designed to investigate the effects of eugenol on the cariogenic properties of Streptococcus mutans and dental caries development in rats. Eugenol demonstrated significant inhibitory effects against acid production by S. mutans. The synthesis of water-insoluble glucans by glucosyltransferases was reduced by eugenol. Eugenol also markedly suppressed the adherence of S. mutans to saliva-coated hydroxyapatite beads. Furthermore, topical application of eugenol reduced the incidence and severity of carious lesions in rats. These results suggest that the natural compound eugenol may be a useful therapeutic agent for dental caries. PMID:23837051

  9. Investigating the candidacy of the serotype specific rhamnan polysaccharide based glycoconjugates to prevent disease caused by the dental pathogen Streptococcus mutans.

    PubMed

    St Michael, Frank; Yang, Qingling; Cairns, Chantelle; Vinogradov, Evgeny; Fleming, Perry; Hayes, Alexander C; Aubry, Annie; Cox, Andrew D

    2018-02-01

    Dental caries remains a major health issue and the Gram-positive bacterium Streptococcus mutans is considered as the major pathogen causing caries. More recently, S. mutans has been recognised as a cause of endocarditis, ulcerative colitis and fatty acid liver disease along with the likelihood of increased cerebral hemorrhage following a stroke if S. mutans is present systemically. We initiated this study to examine the vaccine candidacy of the serotype specific polysaccharides elaborated by S. mutans. We have confirmed the carbohydrate structures for the serotype specific rhamnan containing polysaccharides from serotypes c, f and k. We have prepared glycoconjugate vaccines using the rhamnan containing polymers from serotypes f and k and immunised mice and rabbits. We consistently obtained a robust immune response to the glycoconjugates with cross-reactivity consistent with the structural similarities of the polymers from the different serotypes. We developed an opsonophagocytic assay which illustrated the ability of the post-immune sera to facilitate opsonophagocytic killing of the homologous and heterologous serotypes at titers consistent with the structural homologies. We conclude that glycoconjugates of the rhamnan polymers of S. mutans are a potential vaccine candidate to target dental caries and other sequelae following the escape of S. mutans from the oral cavity.

  10. Natural Immunoreactivity of Secretory IgA to Indigenous Strains of Streptococcus mutans From Chinese Spousal Pairs

    PubMed Central

    Nie, Min; Chen, Dong; Gao, Zhenyan; Wu, Xinyu; Li, Tong

    2016-01-01

    Background Dental caries is a well-known biofilm-mediated disease initiated by Streptococcus mutans, which should infect and colonize in a milieu perfused with components of the mucosal immune system. Little is known, however, regarding the relationship between the natural secretory IgA activity and S. mutans of a variety of diverse genotypes. Objectives The current study aimed to use spousal pairs to investigate the natural immunoreactivity of salivary secretory IgA to different genotype strains of S. mutans. Patients and Methods Indigenous strains were characterized from nine spousal pairs using polymerase reaction chain (PCR) and arbitrarily primed polymerase chain reaction (AP-PCR) by genotype monitoring. Unstimulated submandibular/sublingual secretions were collected and the concentrations of secretory IgA were determined by the enzyme-linked immunosorbent assay (ELISA). Each saliva sample was examined by Western blot to analyze the immunoreactivity of naturally occurring salivary secretory IgA antibodies for his/her own indigenous strain, spouse’s strain and reference strains including S. mutans GS-5 and Ingbritt (C). Results The results showed that naturally induced salivary IgA antibodies against S. mutans were present in all subjects. Almost all subjects had the similar individual immunoblotting profiles to different genotype strains. Conclusions The current study indicated that the immunoreactivity of secretory IgA might have no direct correlation with the colonization of indigenous flora and rejection of exogenous strains in adults. The relationship of microbes, host and dental caries should be in the light of coevolved microecosystem as a whole, but not caused by one factor alone. PMID:27303613

  11. Relationship between Pyruvate Kinase Activity and Cariogenic Biofilm Formation in Streptococcus mutans Biotypes in Caries Patients

    PubMed Central

    Krzyściak, Wirginia; Papież, Monika; Jurczak, Anna; Kościelniak, Dorota; Vyhouskaya, Palina; Zagórska-Świeży, Katarzyna; Skalniak, Anna

    2017-01-01

    Streptococcus mutans (MS) and its biotype I are the strains most frequently found in dental plaque of young children. Our results indicate that in children pyruvate kinase (PK) activity increases significantly in dental plaque, and this corresponds with caries progression. The MS strains isolated in this study or their main glycolytic metabolism connected with PK enzymes might be useful risk factors for studying the pathogenesis and target points of novel therapies for dental caries. The relationship between PK activity, cariogenic biofilm formation and selected biotypes occurrence was studied. S. mutans dental plaque samples were collected from supragingival plaque of individual deciduous molars in 143 subjects. PK activity was measured at different time points during biofilm formation. Patients were divided into two groups: initial stage decay, and extensive decay. Non-parametric analysis of variance and analysis of covariance were used to determine the connections between S. mutans levels, PK activity and dental caries biotypes. A total of 143 strains were derived from subjects with caries. Biotyping data showed that 62, 23, 50, and 8 strains were classified as biotypes I, II, III, IV, respectively. PK activity in biotypes I, II, and IV was significantly higher in comparison to that in biotype III. The correlation between the level of S. mutans in dental plaque and PK activity was both statistically significant (p < 0.05) and positive. The greater the level of S. mutans in the biofilm (colony count and total biomass), the higher the PK activity; similarly, a low bacterial count correlated with low PK activity. PMID:28559883

  12. Comparison of Antibacterial Effects of ZnO and CuO Nanoparticles Coated Brackets against Streptococcus Mutans.

    PubMed

    Ramazanzadeh, Baratali; Jahanbin, Arezoo; Yaghoubi, Masoud; Shahtahmassbi, Nasser; Ghazvini, Kiarash; Shakeri, Mohammadtaghi; Shafaee, Hooman

    2015-09-01

    During the orthodontic treatment, microbial plaques may accumulate around the brackets and cause caries, especially in high-risk patients. Finding ways to eliminate this microbial plaque seems to be essential. The aim of this study was to compare the antibacterial effects of nano copper oxide (CuO) and nano zinc oxide (ZnO) coated brackets against Streptococcus mutans (S.mutans) in order to decrease the risk of caries around the orthodontic brackets during the treatment. Sixty brackets were coated with nanoparticles of ZnO (n=20), CuO (n=20) and CuO-ZnO (n=20). Twelve uncoated brackets constituted the control group. The brackets were bonded to the crowns of extracted premolars, sterilized and prepared for antimicrobial tests (S.mutans ATCC35668). The samples taken after 0, 2, 4, 6 and 24 hours were cultured on agar plates. Colonies were counted 24 hours after incubation. One-way ANOVA and Tukey tests were used for statistical analysis. In CuO and CuO-ZnO coated brackets, no colony growth was seen after two hours. Between 0-6 hours, the mean colony counts were not significantly different between the ZnO and the control group (p>0.05). During 6-24 hours, the growth of S.mutans was significantly reduced by ZnO nanoparticles in comparison with the control group (p< 0.001). However, these bacteria were not totally eliminated. CuO and ZnO-CuO nanoparticles coated brackets have better antimicrobial effect on S.mutans than ZnO coated brackets.

  13. d-Alanine metabolism is essential for growth and biofilm formation of Streptococcus mutans.

    PubMed

    Qiu, W; Zheng, X; Wei, Y; Zhou, X; Zhang, K; Wang, S; Cheng, L; Li, Y; Ren, B; Xu, X; Li, Y; Li, M

    2016-10-01

    Part of the d-alanine (d-Ala) metabolic pathway in bacteria involves the conversion of l-alanine to d-Ala by alanine racemase and the formation of d-alanyl-d-alanine by d-alanine-d-alanine ligase, the product of which is involved in cell wall peptidoglycan synthesis. At present, drugs that target the metabolic pathway of d-Ala are already in clinical use - e.g. d-cycloserine (DCS) is used as an antibiotic against Mycobacterium tuberculosis. Streptococcus mutans is the main cariogenic bacterium in the oral cavity. Its d-Ala metabolism-associated enzymes alanine racemase and d-alanine-d-alanine ligase are encoded by the genes smu.1834 and smu.599, respectively, which may be potential targets for inhibitors. In this study, the addition of DCS blocked the d-Ala metabolic pathway in S. mutans, leading to bacterial cell wall defects, significant inhibition of bacterial growth and biofilm formation, and reductions in extracellular polysaccharide production and bacterial adhesion. However, the exogenous addition of d-Ala could reverse the inhibitory effect of DCS. Through the means of drug regulation, our study demonstrated, for the first time, the importance of d-Ala metabolism in the survival and biofilm formation of S. mutans. If the growth of S. mutans can be specifically inhibited by designing drugs that target d-Ala metabolism, then this may serve as a potential new treatment for dental caries. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. spaP gene of Streptococcus mutans in dental plaque and its relationship with early childhood caries.

    PubMed

    Durán-Contreras, G L; Torre-Martínez, H H; de la Rosa, E I; Hernández, R M; de la Garza Ramos, M

    2011-12-01

    Streptococcus mutans and Streptococcus sobrinus are the main pathogens associated with the development of dental caries in humans. Recently, the real-time polymerase chain reaction (qPCR-TR) has been used for fast and exact quantification of these bacteria species. This molecular biology method has made the detection of these bacteria in saliva and dental plaque possible; additionally, it aids the development of illness risk prediction. The purpose of this prospective, analytic, transversal, observational and unicenter study was to quantify the spaP gene of the Streptococcus mutans and its correlation with caries in a group of children using isolated DNA from plaque samples processed through qPCR-TR, using specific oligonucleotides for this gene detection. The cariogenic potential of Streptococcus mutans in the dental plaque was analysed in a group of patients aged 12 to 46 months. A descriptive statistical analysis was performed. The Spearman's correlation coefficient was used to establish the correlation between caries (dmft) index (decayed/missing/filled primary teeth), spaP gene and age group. The Wilcoxon test was used to compare MSB cultivation technique and qPCR-TR. In the molecular trials, a close association between caries prevalence in childhood and the presence and high proportion of the spaP gene of S. mutans was found. The average caries prevalence was 3.71, and it increased as age range increased. The highest caries prevalence was observed in female patients and in the oldest age range studied (40 46 months) which contrasts with the 12-18 months age that had a caries (dmft) index of zero. The amplification using as initiator the gene spaP of the nucleic acids extracted from the S. mutans resulted positive in 91.3% of the cases. Every child with caries was positive for the spaP and only 8.75% were negative, this group included children without caries. In conclusion, there was a correlation with infant caries prevalence and S. mutans.

  15. Detection of serotype k Streptococcus mutans in Thai subjects.

    PubMed

    Lapirattanakul, J; Nakano, K; Nomura, R; Nemoto, H; Kojima, A; Senawongse, P; Srisatjaluk, R; Ooshima, T

    2009-10-01

    Streptococcus mutans, known to be a pathogen of dental caries as well as bacteremia and infective endocarditis, is classified into four serotypes, c, e, f and k, based on the structures of serotype-specific polysaccharides. Serotype k was recently designated using blood isolates from Japanese subjects and such strains are considered to be virulent in the bloodstream. The purpose of the present study was to analyse the serotype distribution of strains isolated from Thai subjects and determine whether serotype k strains were present. A total of 250 S. mutans strains were isolated from 50 Thai subjects, and serotypes of all strains were determined. Then, molecular and biological analyses were carried out for serotype k strains. Immunodiffusion and polymerase chain reaction analyses showed that serotype c was the most prevalent (70%), followed by serotypes e (22.8%), f (4.4%) and k (2.8%), which indicated that serotype k S. mutans strains occurred in Thai individuals at a similar rate to that previously reported for Japanese and Finnish populations. Molecular analyses of the seven serotype k strains showed extremely low expression of rgpE, which is related to glucose side-chain formation in serotype-specific rhamnose-glucose polymers, similar to previous reports for those other populations. In addition, analysis of the biological properties of the seven serotype k strains demonstrated low levels of sucrose-dependent adhesion, cellular hydrophobicity, dextran-binding activity and phagocytosis susceptibility by human polymorphonuclear leukocytes, which are characteristics similar to those of serotype k strains previously isolated in Japan. Our results indicate the possibility of a worldwide prevalence of serotype k strains with properties in common with those of previously reported strains.

  16. The Antibacterial Effect of Ethanol Extract of Polish Propolis on Mutans Streptococci and Lactobacilli Isolated from Saliva

    PubMed Central

    Dziedzic, Arkadiusz; Kubina, Robert; Wojtyczka, Robert D.; Kabała-Dzik, Agata; Tanasiewicz, Marta; Morawiec, Tadeusz

    2013-01-01

    Dental caries occurrence is caused by the colonization of oral microorganisms and accumulation of extracellular polysaccharides synthesized by Streptococcus mutans with the synergistic influence of Lactobacillus spp. bacteria. The aim of this study was to determine ex vivo the antibacterial properties of ethanol extract of propolis (EEP), collected in Poland, against the main cariogenic bacteria: salivary mutans streptococci and lactobacilli. The isolation of mutans streptococci group bacteria (MS) and Lactobacillus spp. (LB) from stimulated saliva was performed by in-office CRT bacteria dip slide test. The broth diffusion method and AlamarBlue assay were used to evaluate the antimicrobial activity of EEP, with the estimation of its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The biochemical composition of propolis components was assessed. The mean MIC and MBC values of EEP, in concentrations ranging from 25 mg/mL to 0.025 mg/mL, for the MS and LB were found to be 1.10 mg/mL versus 0.7 mg/mL and 9.01 mg/mL versus 5.91 mg/mL, respectively. The exposure to an extract of Polish propolis affected mutans streptococci and Lactobacillus spp. viability, exhibiting an antibacterial efficacy on mutans streptococci group bacteria and lactobacilli saliva residents, while lactobacilli were more susceptible to EEP. Antibacterial measures containing propolis could be the local agents acting against cariogenic bacteria. PMID:23606887

  17. Microfluidic study of environmental control of genetic competence in Streptococcus mutans

    NASA Astrophysics Data System (ADS)

    Son, Minjun; Ghoreishilangroudi, Seyedehdelaram; Ahn, Sang-Joon; Burne, Robert; Hagen, Stephen

    2015-03-01

    The bacterial pathogen Streptococcus mutans has the ability to enter a transient state of genetic competence in which it can integrate exogenous DNA. It regulates the competent state in response to several environmental inputs that include two quorum sensing peptides (CSP and XIP) as well as pH and other variables. However the interplay of these variables in regulating the competent state is poorly understood. We are using microfluidics to isolate and control environmental inputs and examine how the competence regulatory circuit responds at the single cell level. Our studies reveal that the pH of the growth environment plays a critical role in determining how cells respond to the quorum sensing signals: The response to both peptides is sharply tuned to a narrow window of near-neutral pH. Within this optimal pH range, a population responds unimodally to a XIP stimulus, and bimodally to CSP; outside this range the response to both signals is suppressed. Because a growing S. mutans culture acidifies its medium, our findings suggest that the passage of the pH through the sensitivity window transiently activates the competence circuit. In this way a sharply tuned environmental response gives S. mutans fine control over the duration of its competent state. This work is supported by the NIH under NIDCR awards R01 DE023339.

  18. Effect of Human Milk and its Components on Streptococcus Mutans Biofilm Formation.

    PubMed

    Allison, L M; Walker, L A; Sanders, B J; Yang, Z; Eckert, G; Gregory, R L

    2015-01-01

    This study investigated the effects of human breast milk and its components on the nutritional aspect of the caries process due to Streptococcus mutans UA159 biofilm formation. Human breast milk was collected from 11 mothers during 3-9 months postpartum. To test for the effect on biofilm formation, a 16-hour culture of S. mutans was treated with dilutions of human breast milk and several major components of human breast milk, lactose, lactoferrin, IgA, and bovine casein in sterile 96-well flat bottom microtiter plates for 24 hours. The biofilms were fixed, washed, stained with crystal violet, and extracted. Absorbance was measured to evaluate biofilm growth mass. Dilutions 1:10-1:2,560 of the human breast milk samples increased biofilm formation by 1.5-3.8 fold compared to the control. Lactoferrin decreased biofilm formation significantly in all dilutions (average milk concentration of 3 mg/ml). Lactose had no effect at average breast milk concentrations (60 mg/ml) except at its lowest concentration (15 mg/ml) where it was increased. IgA significantly decreased biofilm formation at its highest concentration of 2,400 μg/ml (average milk concentration 600 μg/ml). Casein caused significantly increased biofilm formation at all concentrations tested above the average milk content (2.3 mg/ml). The results of this study demonstrate an increase in S. mutans biofilm formation by human breast milk 3-9 months post partum. Among its major components, only casein significantly increased biofilm formation among the concentrations analyzed. Lactose had no effect except at 15 mg/ml. Lactoferrin and IgA significantly decreased S. mutans biofilm formation at their highest concentrations. This information expands the current knowledge regarding the nutritional influence of breastfeeding and validates the necessity to begin an oral hygiene regimen once the first tooth erupts.

  19. Effect of Infant Formula on Streptococcus Mutans Biofilm Formation.

    PubMed

    Hinds, Laura M; Moser, Elizabeth A S; Eckert, George; Gregory, Richard L

    This study investigated the effect that infant formula had on biofilm growth of Streptococcus mutans. Specifically, it compared biofilm growth in media containing lactose-based and sucrose-based formulas. It also analyzed biofilm formation with formulas of varying iron content. Biofilm growth was tested with the specific infant formula components sucrose, lactose, and ferric chloride. The study was designed to determine if these types of infant formulas and components affected S. mutans biofilm formation differently. A 24-hour culture of S. mutans was treated with various concentrations of infant formula diluted in bacteriological media. To test for biofilm formation, S. mutans was cultured with and without the infant formula and formula components. The biofilms were washed, fixed, and stained with crystal violet. The absorbance was measured to evaluate biofilm growth and total absorbance. Sucrose-based formulas provided significant increases in biofilm growth when compared to lactose-based formulas at two dilutions (1:5, 1:20). Similac Sensitive RS (sucrose-based) at most dilutions provided the most significant increase in biofilm growth when compared to the control. Sucrose tested as an individual component provided more of a significant increase on biofilm growth than lactose or iron when compared to the control. A low iron formula provided a significant increase in biofilm growth at one dilution (1:5) when compared to formula containing a normal iron content. There was no significant difference in biofilm growth when comparing high iron formula to normal iron formula or low iron formula. There was no significant difference when comparing Similac PM 60/40 (low iron formula) to Similac PM 60/40 with additional ferric chloride. The results of this study demonstrated that sucrose-based formula provided more of a significant increase in biofilm growth compared to lactose-based formula. Sucrose alone provided a significant increase of biofilm growth at more dilutions

  20. Anti-biofilm action of nitric oxide-releasing alkyl-modified poly(amidoamine) dendrimers against Streptococcus mutans.

    PubMed

    Backlund, Christopher J; Worley, Brittany V; Schoenfisch, Mark H

    2016-01-01

    The effect of nitric oxide (NO)-releasing dendrimer hydrophobicity on Streptococcus mutans killing and biofilm disruption was examined at pH 7.4 and 6.4, the latter relevant to dental caries. Generation 1 (G1) poly(amidoamine) (PAMAM) dendrimers were modified with alkyl epoxides to generate propyl-, butyl-, hexyl-, octyl-, and dodecyl-functionalized dendrimers. The resulting secondary amines were reacted with NO to form N-diazeniumdiolate NO donor-modified dendrimer scaffolds (total NO ∼1μmol/mg). The bactericidal action of the NO-releasing dendrimers against both planktonic and biofilm-based S. mutans proved greatest with increasing alkyl chain length and at lower pH. Improved bactericidal efficacy at pH 6.4 was attributed to increased scaffold surface charge that enhanced dendrimer-bacteria association and ensuing membrane damage. For shorter alkyl chain (i.e., propyl and butyl) dendrimer modifications, increased antibacterial action at pH 6.4 was due to faster NO-release kinetics from proton-labile N-diazeniumdiolate NO donors. Octyl- and dodecyl-modified PAMAM dendrimers proved most effective for eradicating S. mutans biofilms with NO release mitigating dendrimer scaffold cytotoxicity. We report the antibacterial and anti-biofilm efficacy of dual-action nitric oxide (NO)-releasing dendrimers against S. mutans, an etiological agent in dental caries. This work was undertaken to enhance the anti-biofilm action of these scaffolds by employing various alkyl chain modifications. Furthermore, we evaluated the ability of NO to eradicate cariogenic biofilms. We found that at the lower pH associated with dental caries (pH ∼6.4), NO has a more pronounced antibacterial effect for alkyl modifications less capable of biofilm penetration and membrane disruption. Of greatest significance, we introduce dendrimers as a new macromolecular antibacterial agent against the cariogenic bacteria S. mutans. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All

  1. Metabolic activity of Streptococcus mutans biofilms and gene expression during exposure to xylitol and sucrose.

    PubMed

    Decker, Eva-Maria; Klein, Christian; Schwindt, Dimitri; von Ohle, Christiane

    2014-12-01

    The objective of the study was to analyse Streptococcus mutans biofilms grown under different dietary conditions by using multifaceted methodological approaches to gain deeper insight into the cariogenic impact of carbohydrates. S. mutans biofilms were generated during a period of 24 h in the following media: Schaedler broth as a control medium containing endogenous glucose, Schaedler broth with an additional 5% sucrose, and Schaedler broth supplemented with 1% xylitol. The confocal laser scanning microscopy (CLSM)-based analyses of the microbial vitality, respiratory activity (5-cyano-2,3-ditolyl tetrazolium chloride, CTC) and production of extracellular polysaccharides (EPS) were performed separately in the inner, middle and outer biofilm layers. In addition to the microbiological sample testing, the glucose/sucrose consumption of the biofilm bacteria was quantified, and the expression of glucosyltransferases and other biofilm-associated genes was investigated. Xylitol exposure did not inhibit the viability of S. mutans biofilms, as monitored by the following experimental parameters: culture growth, vitality, CTC activity and EPS production. However, xylitol exposure caused a difference in gene expression compared to the control. GtfC was upregulated only in the presence of xylitol. Under xylitol exposure, gtfB was upregulated by a factor of 6, while under sucrose exposure, it was upregulated by a factor of three. Compared with glucose and xylitol, sucrose increased cell vitality in all biofilm layers. In all nutrient media, the intrinsic glucose was almost completely consumed by the cells of the S. mutans biofilm within 24 h. After 24 h of biofilm formation, the multiparametric measurements showed that xylitol in the presence of glucose caused predominantly genotypic differences but did not induce metabolic differences compared to the control. Thus, the availability of dietary carbohydrates in either a pure or combined form seems to affect the

  2. Metabolic activity of Streptococcus mutans biofilms and gene expression during exposure to xylitol and sucrose

    PubMed Central

    Decker, Eva-Maria; Klein, Christian; Schwindt, Dimitri; von Ohle, Christiane

    2014-01-01

    The objective of the study was to analyse Streptococcus mutans biofilms grown under different dietary conditions by using multifaceted methodological approaches to gain deeper insight into the cariogenic impact of carbohydrates. S. mutans biofilms were generated during a period of 24 h in the following media: Schaedler broth as a control medium containing endogenous glucose, Schaedler broth with an additional 5% sucrose, and Schaedler broth supplemented with 1% xylitol. The confocal laser scanning microscopy (CLSM)-based analyses of the microbial vitality, respiratory activity (5-cyano-2,3-ditolyl tetrazolium chloride, CTC) and production of extracellular polysaccharides (EPS) were performed separately in the inner, middle and outer biofilm layers. In addition to the microbiological sample testing, the glucose/sucrose consumption of the biofilm bacteria was quantified, and the expression of glucosyltransferases and other biofilm-associated genes was investigated. Xylitol exposure did not inhibit the viability of S. mutans biofilms, as monitored by the following experimental parameters: culture growth, vitality, CTC activity and EPS production. However, xylitol exposure caused a difference in gene expression compared to the control. GtfC was upregulated only in the presence of xylitol. Under xylitol exposure, gtfB was upregulated by a factor of 6, while under sucrose exposure, it was upregulated by a factor of three. Compared with glucose and xylitol, sucrose increased cell vitality in all biofilm layers. In all nutrient media, the intrinsic glucose was almost completely consumed by the cells of the S. mutans biofilm within 24 h. After 24 h of biofilm formation, the multiparametric measurements showed that xylitol in the presence of glucose caused predominantly genotypic differences but did not induce metabolic differences compared to the control. Thus, the availability of dietary carbohydrates in either a pure or combined form seems to affect the

  3. Mutacins and bacteriocins like genes in Streptococcus mutans isolated from participants with high, moderate, and low salivary count.

    PubMed

    Soto, Carolina; Padilla, Carlos; Lobos, Olga

    2017-02-01

    To detect S. mutans producers of mutacins and bacteriocins like substances (BLIS) from saliva of participants with low, moderate, and high salivary counts. 123 strains of S. mutans were obtained from participants with low, moderate, and high salivary counts (age 18 and 20 years old) and their antibacterial capacity analyzed. By using PCR amplification, the expression levels of mutacins and BLIS genes were studied (expressed in arbitrary units/ml) in all three levels. S. mutans strains from participants with low salivary counts show high production of mutacins (63%). In contrast, participants with moderate and high salivary counts depict relatively low levels of mutacins (22 and 15%, respectively). Moreover, participants with low salivary counts showed high expression levels of genes encoding mutacins, a result that correlates with the strong antimicrobial activity of the group. Participants with moderate and high salivary counts however depict low expression levels of mutacin related genes, and little antimicrobial activity. No BLIS were detected in any of the groups studied. S. mutans isolated from the saliva of participants with low bacterial counts have significant antibacterial capacity compared to that of participants with moderate and high salivary counts. The superior lethality of S. mutans in participants with low salivary counts is likely due to the augmented expression of mutacin- related genes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Heterologous expression of Streptococcus mutans Cnm in Lactococcus lactis promotes intracellular invasion, adhesion to human cardiac tissues and virulence.

    PubMed

    Freires, Irlan A; Avilés-Reyes, Alejandro; Kitten, Todd; Simpson-Haidaris, P J; Swartz, Michael; Knight, Peter A; Rosalen, Pedro L; Lemos, José A; Abranches, Jacqueline

    2017-01-02

    In S. mutans, the expression of the surface glycoprotein Cnm mediates binding to extracellular matrix proteins, endothelial cell invasion and virulence in the Galleria mellonella invertebrate model. To further characterize Cnm as a virulence factor, the cnm gene from S. mutans strain OMZ175 was expressed in the non-pathogenic Lactococcus lactis NZ9800 using a nisin-inducible system. Despite the absence of the machinery necessary for Cnm glycosylation, Western blot and immunofluorescence microscopy analyses demonstrated that Cnm was effectively expressed and translocated to the cell wall of L. lactis. Similar to S. mutans, expression of Cnm in L. lactis enabled robust binding to collagen and laminin, invasion of human coronary artery endothelial cells and increased virulence in G. mellonella. Using an ex vivo human heart tissue colonization model, we showed that Cnm-positive strains of either S. mutans or L. lactis outcompete their Cnm-negative counterparts for tissue colonization. Finally, Cnm expression facilitated L. lactis adhesion and colonization in a rabbit model of infective endocarditis. Collectively, our results provide unequivocal evidence that binding to extracellular matrices mediated by Cnm is an important virulence attribute of S. mutans and confirm the usefulness of the L. lactis heterologous system for further characterization of bacterial virulence factors.

  5. The significance of gtf genes in caries expression: a rapid identification of Streptococcus mutans from dental plaque of child patients.

    PubMed

    Mishra, Apurva; Pandey, Ramesh K; Manickam, Natesan

    2015-01-01

    Rapid phylogenetic and functional gene (gtfB) identification of S. mutans from the dental plaque derived from children. Dental plaque collected from fifteen patients of age group 7-12 underwent centrifugation followed by genomic DNA extraction for S. mutans. Genomic DNA was processed with S. mutans specific primers in suitable PCR condtions for phylogenetic and functional gene (gtfB) identification. The yield and results were confirmed by agarose gel electrophoresis. 1% agarose gel electrophoresis depicts the positive PCR amplification at 1,485 bp when compared with standard 1 kbp indicating the presence of S. mutans in the test sample. Another PCR reaction was set using gtfB primers specific for S. mutans for functional gene identification. 1.2% agarose gel electrophoresis was done and a positive amplication was observed at 192 bp when compared to 100 bp standards. With the advancement in molecular biology techniques, PCR based identification and quantification of the bacterial load can be done within hours using species-specific primers and DNA probes. Thus, this technique may reduce the laboratory time spend in conventional culture methods, reduces the possibility of colony identification errors and is more sensitive to culture techniques.

  6. In Vitro Effect of Zingiber officinale Extract on Growth of Streptococcus mutans and Streptococcus sanguinis.

    PubMed

    Azizi, Arash; Aghayan, Shabnam; Zaker, Saeed; Shakeri, Mahdieh; Entezari, Navid; Lawaf, Shirin

    2015-01-01

    Background and Objectives. Tooth decay is an infectious disease of microbial origin. Considering the increasing prevalence of antibiotic resistance due to their overuse and also their side effects, medicinal plants are now considered for use against bacterial infections. This study aimed to assess the effects of different concentrations of Zingiber officinale extract on proliferation of Streptococcus mutans and Streptococcus sanguinis in vitro. Materials and Methods. In this experimental study, serial dilutions of the extract were prepared in two sets of 10 test tubes for each bacterium (total of 20). Standard amounts of bacterial suspension were added; 100ƛ of each tube was cultured on prepared solid agar plates and incubated at 37°C for 24 hours. Serial dilutions of the extract were prepared in another 20 tubes and 100ƛ of each tube was added to blood agar culture medium while being prepared. The mixture was transferred to the plates. The bacteria were inoculated on plates and incubated as described. Results. The minimum inhibitory concentration (MIC) was 0.02 mg/mL for S. mutans and 0.3 mg/mL for S. sanguinis. The minimum bactericidal concentration (MBC) was 0.04 mg for S. mutans and 0.6 mg for S. sanguinis. Conclusion. Zingiber officinale extract has significant antibacterial activity against S. mutans and S. sanguinis cariogenic microorganisms.

  7. In Vitro Effect of Zingiber officinale Extract on Growth of Streptococcus mutans and Streptococcus sanguinis

    PubMed Central

    Azizi, Arash; Aghayan, Shabnam; Zaker, Saeed; Shakeri, Mahdieh; Entezari, Navid; Lawaf, Shirin

    2015-01-01

    Background and Objectives. Tooth decay is an infectious disease of microbial origin. Considering the increasing prevalence of antibiotic resistance due to their overuse and also their side effects, medicinal plants are now considered for use against bacterial infections. This study aimed to assess the effects of different concentrations of Zingiber officinale extract on proliferation of Streptococcus mutans and Streptococcus sanguinis in vitro. Materials and Methods. In this experimental study, serial dilutions of the extract were prepared in two sets of 10 test tubes for each bacterium (total of 20). Standard amounts of bacterial suspension were added; 100ƛ of each tube was cultured on prepared solid agar plates and incubated at 37°C for 24 hours. Serial dilutions of the extract were prepared in another 20 tubes and 100ƛ of each tube was added to blood agar culture medium while being prepared. The mixture was transferred to the plates. The bacteria were inoculated on plates and incubated as described. Results. The minimum inhibitory concentration (MIC) was 0.02 mg/mL for S. mutans and 0.3 mg/mL for S. sanguinis. The minimum bactericidal concentration (MBC) was 0.04 mg for S. mutans and 0.6 mg for S. sanguinis. Conclusion. Zingiber officinale extract has significant antibacterial activity against S. mutans and S. sanguinis cariogenic microorganisms. PMID:26347778

  8. A novel glucan-binding protein with lipase activity from the oral pathogen Streptococcus mutans.

    PubMed

    Shah, Deepan S H; Russell, Roy R B

    2004-06-01

    Streptococcus mutans produces extracellular glucosyltransferases (GTFs) that synthesize glucans from sucrose. These glucans are important in determining the permeability properties and adhesiveness of dental plaque. GTFs and the GbpA glucan-binding protein are characterized by a binding domain containing a series of 33-amino-acid repeats, called 'A' repeats. The S. mutans genome sequence was searched for ORFs containing 'A' repeats, and one novel gene, gbpD, which appears to be unique to the mutans group of streptococci, was identified. The GbpD sequence revealed the presence of three 'A' repeats, in the middle of the protein, and a novel glucan-binding assay showed that GbpD binds to dextran with a K(D) of 2-3 nM. Construction of truncated derivatives of GbpD confirmed that the 'A' repeat region was essential for binding. Furthermore, a gbpD knockout mutant was modified in the extent of aggregation induced by polymers derived from sucrose. The N-terminus of GbpD has a signal sequence, followed by a region with no homologues in the public databases, while the C-terminus has homology to the alpha/beta hydrolase family (including lipases and carboxylesterases). GbpD contains the two regions typical of these enzymes: a GxSxG active site 'lipase box' and an 'oxyanion hole'. GbpD released free fatty acids (FFAs) from a range of triglycerides in the presence of calcium, indicating a lipase activity. The glucan binding/lipase bifunctionality suggested the natural substrate for the enzyme may be a surface macromolecule consisting of carbohydrate linked to lipid. The gbpD mutant was less hydrophobic than wild-type and pure recombinant GbpD reduced the hydrophobicity of S. mutans and another plaque bacterium, Streptococcus sanguinis. GbpD bound to and released FFA from lipoteichoic acid (LTA) of S. sanguinis, but had no effect on LTA from S. mutans. These results raise the intriguing possibility that GbpD may be involved in direct interspecies competition within the plaque

  9. Dynamics of Streptococcus mutans Transcriptome in Response to Starch and Sucrose during Biofilm Development

    PubMed Central

    Klein, Marlise I.; DeBaz, Lena; Agidi, Senyo; Lee, Herbert; Xie, Gary; Lin, Amy H.-M.; Hamaker, Bruce R.; Lemos, José A.; Koo, Hyun

    2010-01-01

    The combination of sucrose and starch in the presence of surface-adsorbed salivary α-amylase and bacterial glucosyltransferases increase the formation of a structurally and metabolically distinctive biofilm by Streptococcus mutans. This host-pathogen-diet interaction may modulate the formation of pathogenic biofilms related to dental caries disease. We conducted a comprehensive study to further investigate the influence of the dietary carbohydrates on S. mutans-transcriptome at distinct stages of biofilm development using whole genomic profiling with a new computational tool (MDV) for data mining. S. mutans UA159 biofilms were formed on amylase-active saliva coated hydroxyapatite discs in the presence of various concentrations of sucrose alone (ranging from 0.25 to 5% w/v) or in combination with starch (0.5 to 1% w/v). Overall, the presence of sucrose and starch (suc+st) influenced the dynamics of S. mutans transcriptome (vs. sucrose alone), which may be associated with gradual digestion of starch by surface-adsorbed amylase. At 21 h of biofilm formation, most of the differentially expressed genes were related to sugar metabolism, such as upregulation of genes involved in maltose/maltotriose uptake and glycogen synthesis. In addition, the groEL/groES chaperones were induced in the suc+st-biofilm, indicating that presence of starch hydrolysates may cause environmental stress. In contrast, at 30 h of biofilm development, multiple genes associated with sugar uptake/transport (e.g. maltose), two-component systems, fermentation/glycolysis and iron transport were differentially expressed in suc+st-biofilms (vs. sucrose-biofilms). Interestingly, lytT (bacteria autolysis) was upregulated, which was correlated with presence of extracellular DNA in the matrix of suc+st-biofilms. Specific genes related to carbohydrate uptake and glycogen metabolism were detected in suc+st-biofilms in more than one time point, indicating an association between presence of starch hydrolysates

  10. Serotype diversity of Streptococcus mutans and caries activity in children in Argentina.

    PubMed

    Carletto-Körber, F P; González-Ittig, R E; Jimenez, M G; Cornejo, L S

    2015-09-01

    The purpose of this study was to analyse the serotype distribution of S. mutans and their association with caries activity in school children from Córdoba, Argentina. Clinical examination was performed in 133 children. The dmft+DMFT and Significant Caries (SiC) indices were calculated to identify individuals with high caries activity. After DNA extractions of S. mutans strains, serotypes were determined by PCR amplifications. The median caries activity of each serotype group was compared using a non-parametric Kruskall-Wallis test. We obtained S. mutans strains from stimulated saliva of 94 children. The mean dmft+DMFT was 4.14 and the mean SiC index was 8.65. Serotype c was the most frequent (53.2%), followed by e (31.9%), f (8.5%) and k (6.4%). The comparison between the SiC and Non-Sic groups showed significant differences in the frequency of serotypes c and k. The median caries activity was non-significant in the different serotypes. The difference between the serotype frequencies detected in Argentina compared to those of other countries could be related with contrasting dietary habits. The results obtained in the present study would increase the knowledge about the epidemiology of dental caries in children from Argentina.

  11. Quorum Sensing Regulation of Competence and Bacteriocins in Streptococcus pneumoniae and mutans

    PubMed Central

    Shanker, Erin; Federle, Michael J.

    2017-01-01

    The human pathogens Streptococcus pneumoniae and Streptococcus mutans have both evolved complex quorum sensing (QS) systems that regulate the production of bacteriocins and the entry into the competent state, a requirement for natural transformation. Natural transformation provides bacteria with a mechanism to repair damaged genes or as a source of new advantageous traits. In S. pneumoniae, the competence pathway is controlled by the two-component signal transduction pathway ComCDE, which directly regulates SigX, the alternative sigma factor required for the initiation into competence. Over the past two decades, effectors of cellular killing (i.e., fratricides) have been recognized as important targets of the pneumococcal competence QS pathway. Recently, direct interactions between the ComCDE and the paralogous BlpRH pathway, regulating bacteriocin production, were identified, further strengthening the interconnections between these two QS systems. Interestingly, a similar theme is being revealed in S. mutans, the primary etiological agent of dental caries. This review compares the relationship between the bacteriocin and the competence QS pathways in both S. pneumoniae and S. mutans, and hopes to provide clues to regulatory pathways across the genus Streptococcus as a potential tool to efficiently investigate putative competence pathways in nontransformable streptococci. PMID:28067778

  12. Correlation between unstimulated salivary flow, pH and streptococcus mutans, analysed with real time PCR, in caries-free and caries-active children.

    PubMed

    Abbate, G M; Borghi, D; Passi, A; Levrini, L

    2014-03-01

    Evaluate the correlations between unstimulated salivary flow, pH and level of S. mutans, analysed through real time PCR, in caries-free and caries-active children. Thirty healthy children were divided into 2 groups: test group (DMFT/dmft ≥ 3 and at least 1 active caries lesion) and control group (DMFT/dmft=0). Un-stimulated saliva was collected, pH was measured and S. mutans and total bacterial amount were evaluated with real-time PCR analysis. Unstimulated salivary flow in the test group was significantly lower (p = 0.0269) compared to group control. The level of S. mutans was higher in the test group (p = 0.176), and an inverse correlation was recorded between total bacterial amount and un-stimulated salivary flow (p = 0.063). In the control group a positive relationship was found between total bacterial amount and S. mutans (p = 0.045) and an inverse correlation between pH and S. mutans (p = 0.088). A t-test and a linear regression analysis were performed. A higher salivary flow and an increased salivary pH seem to represent protective factors against caries in children, while high levels of S. mutans are correlated with caries active lesions. Caries risk assessment should be performed considering all parameters involved in the development of the disease.

  13. Nanoscale characterization of effect of L-arginine on Streptococcus mutans biofilm adhesion by atomic force microscopy.

    PubMed

    Sharma, Shivani; Lavender, Stacey; Woo, JungReem; Guo, Lihong; Shi, Wenyuan; Kilpatrick-Liverman, LaTonya; Gimzewski, James K

    2014-07-01

    A major aetiological factor of dental caries is the pathology of the dental plaque biofilms. The amino acid L-arginine (Arg) is found naturally in saliva as a free molecule or as a part of salivary peptides and proteins. Plaque bacteria metabolize Arg to produce alkali and neutralize glycolytic acids, promoting a less cariogenous oral microbiome. Here, we explored an alternative and complementary mechanism of action of Arg using atomic force microscopy. The nanomechanical properties of Streptococcus mutans biofilm extracellular matrix were characterized under physiological buffer conditions. We report the effect of Arg on the adhesive behaviour and structural properties of extracellular polysaccharides in S. mutans biofilms. High-resolution imaging of biofilm surfaces can reveal additional structural information on bacterial cells embedded within the surrounding extracellular matrix. A dense extracellular matrix was observed in biofilms without Arg compared to those grown in the presence of Arg. S. mutans biofilms grown in the presence of Arg could influence the production and/or composition of extracellular membrane glucans and thereby affect their adhesion properties. Our results suggest that the presence of Arg in the oral cavity could influence the adhesion properties of S. mutans to the tooth surface. © 2014 The Authors.

  14. Assessment of the effect of probiotic curd consumption on salivary pH and streptococcus mutans counts.

    PubMed

    Sudhir, R; Praveen, P; Anantharaj, A; Venkataraghavan, Karthik

    2012-07-01

    Antimicrobial methods of controlling dental caries that include probiotic agents can play a valuable role in establishing caries control in children at moderate to high risk for developing dental caries. Several studies have demonstrated the beneficial effects of use of various Probiotic products including curd. The objective of this study was to compare the effect of short-term consumption of probiotic curd containing Lactobacillus acidophilus and normal curd on salivary Streptococcus Mutans counts, as well as salivary pH. Forty, caries-free, 10-12 years old children were selected and randomly allocated to two groups. Test Group consisted of 20 children who consumed 200ml of probiotic curd daily for 30 days. Control Group consisted of 20 children who were given 200ml of regular curd for 30 days. Salivary pH and salivary Streptococcus Mutans counts were recorded at baseline and after 30 days and statistically compared using the Student's t-test. Consumption of probiotic curd resulted in a statistically significant reduction in S. Mutans colony counts (P<0.001) as compared to regular curd. However, there was a slight reduction in pH (P>0.05) in both the groups. Short-term consumption of probiotic curds can reduce oral S. Mutans counts. However, this caused a slight reduction in salivary pH.

  15. Effects of antibacterial primers with quaternary ammonium and nano-silver on S. mutans impregnated in human dentin blocks

    PubMed Central

    Cheng, Lei; Zhang, Ke; Weir, Michael D.; Liu, Huaibing; Zhou, Xuedong; Xu, Hockin H. K.

    2013-01-01

    Objectives Recent studies developed antibacterial bonding agents and composites containing a quaternary ammonium dimethacrylate (QADM) and nanoparticles of silver (NAg). The objectives of this study were to investigate: (1) the effect of antibacterial primers containing QADM and NAg on the inhibition of Streptococcus mutans (S. mutans) impregnated into dentin blocks for the first time, and (2) the effect of QADM or NAg alone or in combination, and the effect of NAg mass fraction, on S. mutans viability in dentin. Methods Scotchbond Multi-Purpose (SBMP) bonding agent was used. QADM and NAg were incorporated into SBMP primer. Six primers were tested: SBMP primer control, control + 10% QADM (mass %), control + 0.05% NAg, control + 10% QADM + 0.05% NAg, control + 0.1% NAg, and control + 10% QADM + 0.1% NAg. S. mutans were impregnated into dentin blocks, then a primer was applied. The viable colony-forming units (CFU) were then measured by harvesting the bacteria in dentin using a sonication method. Results Control + 10% QADM + 0.1% NAg had bacteria inhibition zone 8-fold that of control (p < 0.05). The sonication method successfully harvested bacteria from dentin blocks. Control + 10% QADM + 0.1% NAg inhibited S. mutans in dentin blocks, reducing the viable CFU in dentin by three orders of magnitude, compared to control dentin without primer. Using QADM+NAg was more effective than QADM alone. Higher NAg content increased the potency. Dentin shear bond strength was similar for all groups (p > 0.1). Significance Antibacterial primer with QADM and NAg were shown to inhibit the S. mutans impregnated into dentin blocks for the first time. Bonding agent containing QADM and NAg is promising to eradicate bacteria in tooth cavity and inhibit caries. The QADM and NAg may have applicability to other adhesives, cements, sealants and composites. PMID:23422420

  16. Reduced salivary flow and colonization by mutans streptococci in children with Down syndrome

    PubMed Central

    Areias, Cristina; Sampaio-Maia, Benedita; de Lurdes Pereira, Maria; Azevedo, Álvaro; Melo, Paulo; Andrade, Casimiro; Scully, Crispian

    2012-01-01

    OBJECTIVES: Although individuals with Down syndrome have considerable oral disease, the prevalence of dental caries in this group is low. The present study aimed to compare known risk factors for dental caries development in children with Down syndrome and a matched population (siblings). In both populations, the number of acidogenic microorganisms, such as mutans streptococci, lactobacilli and Candida species, and the paraffin-stimulated pH, flow rate and IgA concentration in whole saliva were evaluated and compared. METHOD: Saliva was collected, and the caries index was evaluated in 45 sibling pairs aged between 6 and 18 years old. The salivary IgA concentration was determined by immunoturbidimetry. Salivary mutans streptococci, lactobacilli and Candida species were quantified on mitis salivarius agar containing bacitracin and 20% sucrose, rogosa agar supplemented with glacial acetic acid and sabouraud agar supplemented with chloramphenicol, respectively. RESULTS: Down syndrome children had a higher caries-free rate (p<0.05) and lower salivary mutans streptococci counts (p<0.03) compared to their siblings. Similar numbers of lactobacilli and Candida species were found in both groups. Salivary flow rates were 36% lower in Down syndrome children compared to their siblings (p<0.05). The salivary pH did not differ between Down syndrome children and controls. The Down syndrome children had an IgA secretion rate 29% lower than that of their siblings, but this difference was not statistically significant. CONCLUSIONS: In conclusion, the lower number of mutans streptococci in the saliva may be one of the factors contributing to the lower caries rate observed in Down syndrome children, despite evidence of hyposalivation. PMID:23018295

  17. Influence of heat inactivation of human serum on the opsonization of Streptococcus mutans.

    PubMed

    Moore, M A; Hakki, Z W; Gregory, R L; Gfell, L E; Kim-Park, W K; Kowolik, M J

    1997-12-15

    Phagocytosis of bacteria, such as Streptococcus mutans, is important to host defense. One mechanism by which phagocytosis can be enhanced is by antibody or complement-mediated opsonization of bacteria. Many studies utilize opsonization of bacteria to enhance a cellular response, but little information has been found examining methodology or validity of the opsonization process following the denaturization of the serum. Human serum was inactivated by heat in order to disrupt the classical and alternative pathways of the complement cascade. S. mutans isolated from human subjects were opsonized with heat-inactivated human serum before exposing them to viable neutrophils in vitro. Luminol-dependent chemiluminescence (CL) was used to measure neutrophil activation. Human serum used to opsonize the bacteria was denatured by incubation at 57 degrees C for intervals of 30 and 60 min to inactivate complement. The results from the opsonization data indicated that there was significantly increased CL with 60-min inactivation of the serum (34% increase in mean integration mV.min; p < or = 0.05) over the nonopsonized control. This indicated a successful opsonization of the bacteria. In addition, the data demonstrate that the inactivation of serum requires a minimum of 60 min at 57 degrees C to disrupt the complement cascade, while 30- and 15-min inactivations produced no significant increase in CL activity over the control. Standard sandwich ELISA assays, detecting complement binding to S. mutans, confirmed successful heat inactivation of serum showing a significant decrease (p < or = 0.001) in complement binding to S. mutans after 30 min, but could not explain the increased CL response after 60-min heat deactivation of the serum.

  18. The influence of Brazilian plant extracts on Streptococcus mutans biofilm.

    PubMed

    Barnabé, Michele; Saraceni, Cíntia Helena Coury; Dutra-Correa, Maristela; Suffredini, Ivana Barbosa

    2014-01-01

    Nineteen plant extracts obtained from plants from the Brazilian Amazon showed activity against planktonic Streptococcus mutans, an important bacterium involved in the first steps of biofilm formation and the subsequent initiation of several oral diseases. Our goal was to verify whether plant extracts that showed activity against planktonic S. mutans could prevent the organization of or even disrupt a single-species biofilm made by the same bacteria. Plant extracts were tested on a single-bacteria biofilm prepared using the Zürich method. Each plant extract was tested at a concentration 5 times higher than its minimum inhibitory concentration (MIC). Discs of hydroxyapatite were submersed overnight in brain-heart infusion broth enriched with saccharose 5%, which provided sufficient time for biofilm formation. The discs were then submersed in extract solutions for one minute, three times per day, for two subsequent days. The discs were then washed with saline three times, at ten seconds each, after each treatment. Supports were allowed to remain in the enriched medium for one additional night. At the end of the process, the bacteria were removed from the discs by vortexing and were counted. Only two of 19 plant extracts showed activity in the present assay: EB1779, obtained from Dioscorea altissima, and EB1673, obtained from Annona hypoglauca. Although the antibacterial activity of the plant extracts was first observed against planktonic S. mutans, influence over biofilm formation was not necessarily observed in the biofilm model. The present results motivate us to find new natural products to be used in dentistry.

  19. The influence of Brazilian plant extracts on Streptococcus mutans biofilm

    PubMed Central

    BARNABÉ, Michele; SARACENI, Cíntia Helena Coury; DUTRA-CORREA, Maristela; SUFFREDINI, Ivana Barbosa

    2014-01-01

    Nineteen plant extracts obtained from plants from the Brazilian Amazon showed activity against planktonic Streptococcus mutans, an important bacterium involved in the first steps of biofilm formation and the subsequent initiation of several oral diseases. Objective Our goal was to verify whether plant extracts that showed activity against planktonic S. mutans could prevent the organization of or even disrupt a single-species biofilm made by the same bacteria. Material and Methods Plant extracts were tested on a single-bacteria biofilm prepared using the Zürich method. Each plant extract was tested at a concentration 5 times higher than its minimum inhibitory concentration (MIC). Discs of hydroxyapatite were submersed overnight in brain-heart infusion broth enriched with saccharose 5%, which provided sufficient time for biofilm formation. The discs were then submersed in extract solutions for one minute, three times per day, for two subsequent days. The discs were then washed with saline three times, at ten seconds each, after each treatment. Supports were allowed to remain in the enriched medium for one additional night. At the end of the process, the bacteria were removed from the discs by vortexing and were counted. Results Only two of 19 plant extracts showed activity in the present assay: EB1779, obtained from Dioscorea altissima, and EB1673, obtained from Annona hypoglauca. Although the antibacterial activity of the plant extracts was first observed against planktonic S. mutans, influence over biofilm formation was not necessarily observed in the biofilm model. The present results motivate us to find new natural products to be used in dentistry. PMID:25466471

  20. Sucrose substitutes affect the cariogenic potential of Streptococcus mutans biofilms.

    PubMed

    Durso, S C; Vieira, L M; Cruz, J N S; Azevedo, C S; Rodrigues, P H; Simionato, M R L

    2014-01-01

    Streptococcus mutans is considered the primary etiologic agent of dental caries and contributes significantly to the virulence of dental plaque, especially in the presence of sucrose. To avoid the role of sucrose on the virulence factors of S. mutans, sugar substitutes are commonly consumed because they lead to lower or no production of acids and interfere with biofilm formation. This study aimed to investigate the contribution of sugar substitutes in the cariogenic potential of S. mutans biofilms. Thus, in the presence of sucrose, glucose, sucralose and sorbitol, the biofilm mass was quantified up to 96 h, the pH of the spent culture media was measured, the expression of biofilm-related genes was determined, and demineralization challenge experiments were conduct in enamel fragments. The presence of sugars or sugar substitutes profoundly affected the expression of spaP, gtfB, gtfC, gbpB, ftf, vicR and vicX in either biofilm or planktonic cells. The substitution of sucrose induced a down-regulation of most genes involved in sucrose-dependent colonization in biofilm cells. When the ratio between the expression of biofilm and planktonic cells was considered, most of those genes were down-regulated in biofilm cells in the presence of sugars and up-regulated in the presence of sugar substitutes. However, sucralose but not sorbitol fulfilled the purpose of reducing the cariogenic potential of the diet since it induced the biofilm formation with the lowest biomass, did not change the pH of the medium and led to the lowest lesion depth in the cariogenic challenge.

  1. The corrosion resistance of Wiron(®)88 in the presence of S. mutans and S. sobrinus bacteria.

    PubMed

    Proença, L; Barroso, H; Figueiredo, N; Lino, A R; Capelo, S; Fonseca, I T E

    2015-01-01

    The corrosion resistance of Wiron(®)88, a Ni-Cr-Mo alloy, was evaluated in liquid growth media in the absence and presence of the Streptococcus sobrinus and Streptococcus mutans strains. Open circuit potential measurements, cyclic voltammetry, linear sweep voltammetry, as well as electronic microscopy coupled to electron diffraction spectroscopy (SEM/EDS), were the main techniques used in this study. It was concluded that the presence of S. sobrinus and S. mutans have only a slight effect on the corrosion resistance of the Wiron(®)88 alloy, with the S. mutans being slightly more aggressive. For both strains the corrosion resistance R p is of the same order (kΩ cm(2)). After 24 h immersion the S. sobrinus lead to and R p of 11.02, while the S. mutans lead to of 5.59 kΩ cm(2). SEM/EDS studies on the Wiron(®)88 samples, with 24 days of immersion, at 37 °C, have confirmed bio-corrosion of the alloy occurring through the dissolution of Ni as Ni(2+) and formation of chromium and molybdenum oxides. The bacterial adhesion to the surface is not uniform.

  2. The serotype-specific glucose side chain of rhamnose-glucose polysaccharides is essential for adsorption of bacteriophage M102 to Streptococcus mutans.

    PubMed

    Shibata, Yukie; Yamashita, Yoshihisa; van der Ploeg, Jan R

    2009-05-01

    Bacteriophage M102 is a virulent siphophage that propagates in some serotype c Streptococcus mutans strains, but not in S. mutans of serotype e, f or k. The serotype of S. mutans is determined by the glucose side chain of rhamnose-glucose polysaccharide (RGP). Because the first step in the bacteriophage infection process is adsorption of the phage, it was investigated whether the serotype specificity of phage M102 was determined by adsorption. M102 adsorbed to all tested serotype c strains, but not to strains of different serotypes. Streptococcus mutans serotype c mutants defective in the synthesis of the glucose side chain of RGP failed to adsorb phage M102. These results suggest that the glucose side chain of RGP acts as a receptor for phage M102.

  3. Characterization of Recombinant, Ureolytic Streptococcus mutans Demonstrates an Inverse Relationship between Dental Plaque Ureolytic Capacity and Cariogenicity

    PubMed Central

    Clancy, K. Anne; Pearson, Sylvia; Bowen, William H.; Burne, Robert A.

    2000-01-01

    Dental caries results from prolonged plaque acidification that leads to the establishment of a cariogenic microflora and demineralization of the tooth. Urease enzymes of oral bacteria hydrolyze urea to ammonia, which can neutralize plaque acids. To begin to examine the relationship between plaque ureolytic activity and the incidence of dental caries, recombinant, ureolytic strains of Streptococcus mutans were constructed. Specifically, the ureABCEFGD operon from Streptococcus salivarius 57.I was integrated into the S. mutans chromosome in such a way that the operon was transcribed from a weak, cognate promoter in S. mutans ACUS4 or a stronger promoter in S. mutans ACUS6. Both strains expressed NiCl2-dependent urease activity, but the maximal urease levels in ACUS6 were threefold higher than those in ACUS4. In vitro pH drop experiments demonstrated that the ability of the recombinant S. mutans strains to moderate a decrease in pH during the simultaneous metabolism of glucose and urea increased proportionately with the level of urease activity expressed. Specific-pathogen-free rats that were infected with ACUS6 and fed a cariogenic diet with drinking water containing 25 mM urea and 50 μM NiCl2 had relatively high levels of oral urease activity, as well as dramatic decreases in the prevalence of smooth-surface caries and the severity of sulcal caries, relative to controls. Urease activity appears to influence plaque biochemistry and metabolism in a manner that reduces cariogenicity, suggesting that recombinant, ureolytic bacteria may be useful to promote dental health. PMID:10768953

  4. Characterization of the clustered regularly interspaced short palindromic repeats sites in Streptococcus mutans isolated from early childhood caries patients.

    PubMed

    Chen, Jing; Li, Tiancheng; Zhou, Xuedong; Cheng, Lei; Huo, Yuanyuan; Zou, Jing; Li, Yuqing

    2017-11-01

    The aim of this study was to analyze the characteristics of the clustered regularly interspaced short palindromic repeats (CRISPR) sites in 45 clinical Streptococcus mutans strains and their relationship to the clinical manifestations of early childhood caries (ECC). Forty-five S. mutans strains were isolated from the plaque samples taken from sixty-three children. CRISPR sites were sequenced and BLAST was used to compare these sites to those in the CRISPRTarget database. The association between the distribution of CRISPR sites and the manifestation of caries was analyzed by Chi-Square test. Further, biofilm formation (by crystal violet staining) and the synthesis of polysaccharide (by anthrone-sulfuric method) of all clinical isolated S. mutans strains with both CRISPR sites and no CRISPR site were comapared. Finally, acidogenicity and acidurity of two typical strains were determined using pH drop and acid tolerance assays. Biofilm formation and EPS synthesis by two typical strains were compared by 3D CLSM (Confocal Laser Scanning Microscope) assays and the expression of gtf genes were evaluated using qPCR. We found that most of the spacers in the clinical S. mutans strains were derived from Streptococcus phages APCM01 and M102. The number of CRISPR sites in these strains was associated with the clinical manifestations of ECC. Moreover, we found that the biofilm formation and EPS synthesis ability of the S. mutans strains with both CRISPR sites was significant improved. An association was found between the distribution of CRISPR sites and the clinical manifestations of caries. The CRISPR sites might contribute to the cariogenic potential of S. mutans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Application of Monoclonal Antibodies to Detect and Compare the Levels of Streptococcus mutans in Adolescents Undergoing Orthodontic Treatment with Those Not Undergoing Treatment.

    PubMed

    Kim, Jae Hwan; Kim, Mi Ah; Kim, Jae Gon

    2016-10-01

    The purpose of this study was to detect Streptococcus mutans by using monoclonal antibodies (mAbs) against S. mutans that cause dental caries and compare the levels of the bacterium between the saliva of adolescents undergoing orthodontic treatment (OT) and those not undergoing treatment (NT). Saliva samples, collected from 25 OT adolescents (with a mean age of 12.84 years) and 25 NT adolescents (mean age of 12.4 years), were analyzed by Dentocult-SM and enzyme-linked immunosorbent assay using mAbs against Ag I/II (ckAg I/II) and GTF B (ckGTF B), GTF C (ckGTF C), and GTF D (ckGTF D) of S. mutans. The DMFT index was slightly higher in the OT group (5.12 in OT and 4.96 in NT) and the level of S. mutans (≥10 5 CFU/mL) was higher in OT (72%) than in NT (56%). The detected levels of ckAg I/II, ckGTF B, ckGTF C, and ckGTF D were slightly higher in OT than in NT. The results of this study indicate that use of mAbs against S. mutans yields sensitive detection for the bacterium in saliva samples and shows that it has a reliable connection to the number of S. mutans and decayed, missing, filled teeth (DMFT), suggesting that the levels of S. mutans in saliva can be defined and compared by the application of the mAbs.

  6. Quantitative real-time polymerase chain reaction for Streptococcus mutans and Streptococcus sobrinus in dental plaque samples and its association with early childhood caries.

    PubMed

    Choi, Eun-Jung; Lee, Sung-Hoon; Kim, Young-Jae

    2009-03-01

    Streptococcus mutans and Streptococcus sobrinus are closely associated with the development of early childhood caries (ECC). Recently, quantitative real-time polymerase chain reaction (qRT-PCR) has been used for rapid and accurate quantification of these bacterial species. This study aims to detect quantitatively the levels of S. mutans and S. sobrinus in plaque samples by qRT-PCR, and to assess their association with the prevalence of ECC in Korean preschool children. One hundred and five children (71 months old or younger) were examined and classified into three groups (caries-free, ECC, severe ECC). Dental plaque samples were collected and qRT-PCR was conducted using oligonucleotide primers specific for glucosyltransferase gene (S. mutans-gtfB, S. sobrinus-gtfU) and universal primer. Pearson's correlation test was conducted to evaluate the relationship between the dmfs (decayed, missing, or filled surfaces primary teeth) scores and the microbiological findings. There was a significant difference between the levels of S. mutans and S. sobrinus in the plaque samples of the three groups (P < 0.05). The proportion of S. sobrinus to S. mutans showed strong correlation to the dmfs scores (r = 0.748, P < 0.05). The qRT-PCR results of this study showed that children with ECC had higher level of S. mutans and S. sobrinus in their dental plaque samples. The children with higher ratio of S. sobrinus to S. mutans in their dental plaque showed higher incidence of ECC.

  7. Genetic analysis of fructan-hyperproducing strains of Streptococcus mutans.

    PubMed Central

    Kiska, D L; Macrina, F L

    1994-01-01

    Fructan polymer, synthesized from sucrose by the extracellular fructosyltransferase of Streptococcus mutans, is thought to contribute to the progression of dental caries. It may serve as an extracellular storage polysaccharide facilitating survival and acid production. It may also have a role in adherence or accumulation of bacterial cells on the tooth surface. A number of clinical isolates of S. mutans which produce large, mucoid colonies on sucrose-containing agar as a result of increased production of fructan have been discovered. By using eight independent isolates, we sought to determine if such fructan-hyperproducing strains represented a genetically homogeneous group of organisms. Restriction fragment patterns of total cellular DNA were examined by using pulsed-field and conventional gel electrophoresis. Four genetic types which appeared to correlate with the serotype of the organism and the geographic site of isolation were evident. Southern blot analysis of several genetic loci for extracellular enzymes revealed some minor differences between the strains, but the basic genomic organizations of these loci were similar. To evaluate whether the excess fructan produced by these strains enhanced the virulence of these organisms in the oral cavity, it was of interest to create mutants deficient in fructosidase (FruA), the extracellular enzyme which degrades this polymer. The fruA gene was inactivated by allelic exchange in two fructan-hyperproducing strains as well as in S. mutans GS5, a strain which does not hyperproduce fructan. All of the fruA mutant strains were devoid of fructan hydrolase activity when levan was used as a substrate. However, the fructan-hyperproducing strains retained the ability to hydrolyze inulin, suggesting the presence of a second fructosidase with specificity for inulin in these strains. Images PMID:7911782

  8. Phenotypic Heterogeneity of Genomically-Diverse Isolates of Streptococcus mutans

    PubMed Central

    Palmer, Sara R.; Miller, James H.; Abranches, Jacqueline; Zeng, Lin; Lefebure, Tristan; Richards, Vincent P.; Lemos, José A.; Stanhope, Michael J.; Burne, Robert A.

    2013-01-01

    High coverage, whole genome shotgun (WGS) sequencing of 57 geographically- and genetically-diverse isolates of Streptococcus mutans from individuals of known dental caries status was recently completed. Of the 57 sequenced strains, fifteen isolates, were selected based primarily on differences in gene content and phenotypic characteristics known to affect virulence and compared with the reference strain UA159. A high degree of variability in these properties was observed between strains, with a broad spectrum of sensitivities to low pH, oxidative stress (air and paraquat) and exposure to competence stimulating peptide (CSP). Significant differences in autolytic behavior and in biofilm development in glucose or sucrose were also observed. Natural genetic competence varied among isolates, and this was correlated to the presence or absence of competence genes, comCDE and comX, and to bacteriocins. In general strains that lacked the ability to become competent possessed fewer genes for bacteriocins and immunity proteins or contained polymorphic variants of these genes. WGS sequence analysis of the pan-genome revealed, for the first time, components of a Type VII secretion system in several S. mutans strains, as well as two putative ORFs that encode possible collagen binding proteins located upstream of the cnm gene, which is associated with host cell invasiveness. The virulence of these particular strains was assessed in a wax-worm model. This is the first study to combine a comprehensive analysis of key virulence-related phenotypes with extensive genomic analysis of a pathogen that evolved closely with humans. Our analysis highlights the phenotypic diversity of S. mutans isolates and indicates that the species has evolved a variety of adaptive strategies to persist in the human oral cavity and, when conditions are favorable, to initiate disease. PMID:23613838

  9. Evaluation and Comparison of the Antibacterial Activity against Streptococcus mutans of Grape Seed Extract at Different Concentrations with Chlorhexidine Gluconate: An in vitro Study.

    PubMed

    Swadas, Milan; Dave, Bhavna; Vyas, Soham M; Shah, Nupur

    2016-01-01

    Streptococcus mutans has been implicated as primary microorganisms which cause dental caries in humans. There has been an increased interest in the therapeutic properties of some medicinal plants and natural compounds which have demonstrated antibacterial activities. Grape is one of the plants of this group which contains tannin and polyphenolic compound. To evaluate and compare antibacterial activity of grape seed extract at different concentrations with chlorhexidine gluconate against S. mutans. Grape seeds were extracted with ethanol/water ratio of 70:30 volume/volume. The extracts were filtered through Whatman No. 1 filter paper until it becomes colorless. Streptococcus mutans strains were taken. To check the antimicrobial properties of grape seed extract at different concentration and chlorhexidine gluconate, they were added to S. mutans strain and incubated for 48 hours than colony-forming units/mL were checked. Grape seed extract at higher concentration were found to be more potent against S. mutans. Chlorhexidine gluconate was found to have most potent antibacterial action compared to all different concentrations of grape seed extract. Grape seed extract as a natural antimicrobial compound has inhibitory effect against S. mutans. Swadas M, Dave B, Vyas SM, Shah N. Evaluation and Comparison of the Antibacterial Activity against Streptococcus mutans of Grape Seed Extract at Different Concentrations with Chlorhexidine Gluconate: An in vitro Study. Int J Clin Pediatr Dent 2016;9(3):181-185.

  10. Antimicrobial activity of hydroxyl radicals generated by hydrogen peroxide photolysis against Streptococcus mutans biofilm.

    PubMed

    Nakamura, Keisuke; Shirato, Midori; Kanno, Taro; Örtengren, Ulf; Lingström, Peter; Niwano, Yoshimi

    2016-10-01

    Prevention of dental caries with maximum conservation of intact tooth substance remains a challenge in dentistry. The present study aimed to evaluate the antimicrobial effect of H2O2 photolysis on Streptococcus mutans biofilm, which may be a novel antimicrobial chemotherapy for treating caries. S. mutans biofilm was grown on disk-shaped hydroxyapatite specimens. After 1-24 h of incubation, growth was assessed by confocal laser scanning microscopy and viable bacterial counting. Resistance to antibiotics (amoxicillin and erythromycin) was evaluated by comparing bactericidal effects on the biofilm with those on planktonic bacteria. To evaluate the effect of the antimicrobial technique, the biofilm was immersed in 3% H2O2 and was irradiated with an LED at 365 nm for 1 min. Viable bacterial counts in the biofilm were determined by colony counting. The thickness and surface coverage of S. mutans biofilm increased with time, whereas viable bacterial counts plateaued after 6 h. When 12- and 24-h-old biofilms were treated with the minimum concentration of antibiotics that killed viable planktonic bacteria with 3 log reduction, their viable counts were not significantly decreased, suggesting the biofilm acquired antibiotic resistance by increasing its thickness. By contrast, hydroxyl radicals generated by photolysis of 3% H2O2 effectively killed S. mutans in 24-h-old biofilm, with greater than 5 log reduction. The technique based on H2O2 photolysis is a potentially powerful adjunctive antimicrobial chemotherapy for caries treatment. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  11. Disinfection of S. mutans Bacteria Using a Plasma Needle at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Hansen, S.; Goree, J.; Liu, Bin; Drake, D.

    2007-11-01

    The plasma needle device produces a millimeter-size low-power glow discharge at atmospheric-pressure. It is intended for dental or medical applications. Radio-frequency high voltage is applied to a single needle electrode located inside a concentric gas-flow nozzle. A low-speed helium plasma jet flows out of the nozzle and mixes with ambient air. The jet is impinges on a surface that is to be treated, which in our test was a suspension of S. mutans bacteria that was plated onto the surface of agar nutrient in a Petri dish. S. mutans is the most important microorganism for causing dental caries. Imaging the sample after plasma treatment and incubation reveal the conditions where bacteria are killed, and the size of the treated spot.

  12. Comparing the efficacy of xylitol-containing and conventional chewing gums in reducing salivary counts of Streptococcus mutans: An in vivo study

    PubMed Central

    Haghgoo, Rosa; Afshari, Elahe; Ghanaat, Tahere; Aghazadeh, Samaneh

    2015-01-01

    Objective: Dental caries is among the most common chronic diseases in humans. Streptococcus mutans is generally responsible for most cases of dental caries. The present study sought to compare the effects of xylitol-containing and conventional chewing gums on salivary levels of S. mutans. Materials and Methods: This study adopted a crossover design. Two type of chewing gums (one containing 70% xylitol and approved by the Iranian Dental Association, and another containing sucrose) were purchased. The participants were 32 individuals aged 18–35 years whose oral hygiene was categorized as moderate or poor based on a caries risk assessment table. Salivary levels of S. mutans were measured at baseline, after the first and second phases of chewing gums, and after the washout period. The measurements were performed on blood agar and mitis salivarius-bacitracin agar (MSBA). Pairwise comparisons were then used to analyze the collected data. Results: Salivary levels of S. mutans in both groups were significantly higher during the two stages of chewing gum than in the washout period or baseline. Moreover, comparisons between the two types of gums suggested that chewing xylitol-containing gums led to greater reductions in S. mutans counts. This effect was more apparent in subjects with poor oral hygiene than in those with moderate oral hygiene. Conclusions: Xylitol-containing chewing gums are more effective than conventional gums in reducing salivary levels of S. mutans in individuals with poor–moderate oral hygiene. PMID:26942114

  13. In vitro comparison of antimicrobial activity of aqueous decoction of Coriandrum sativum, and Dentol Drop with chlorhexidine on Streptococcus mutans.

    PubMed

    Moradian, Hamid; Bazargani, Abdollah; Rafiee, Azade; Nazarialam, Ali

    2013-09-01

    Dental caries is still remained as a major health problem. This problem has created a new interest to search for new antimicrobial agents from various sources including medicinal plants. Since limited data is available so far regarding the antibacterial effect of Coriandrum sativum seed and Dentol Drop against Streptococcus mutans, this study aims to assess this activity. This experimental study was conducted in Shiraz University of Medical Sciences. In vitro comparison of antimicrobial activity of aqueous decoction of Coriandrum sativum seed and Dentol drop with chlorhexidine against Streptococcus mutans was evaluated using disk diffusion and broth microdilution assays. Positive and negative controls were considered. The data was statistically analyzed by applying Kruskal-Wallis and Tukey post-hoc test to compare the groups using SPSS software (version 17). Dentol drop showed a remarkable antibacterial activity, in comparison with chlorhexidine, against S. mutans in the disk diffusion (p value = 0.005), and broth microdilution assays (p value = 0.0001). Based on the results of this study, Coriandrum sativum seed did not posses any antibacterial property. Coriandrum sativum seed showed no anti-Streptococcus mutans activity. Dentol drop exhibited a remarkable antibacterial activity against S. mutans when tested in vitro. Dentol drop can be further studied as a preventive measure for dental caries.

  14. Crystallization and preliminary X-ray analysis of Streptococcus mutans dextran glucosidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saburi, Wataru; Hondoh, Hironori, E-mail: hondoh@abs.agr.hokudai.ac.jp; Unno, Hideaki

    2007-09-01

    Dextran glucosidase from S. mutans was crystallized using the hanging-drop vapour-diffusion method. The crystals diffracted to 2.2 Å resolution. Dextran glucosidase from Streptococcus mutans is an exo-hydrolase that acts on the nonreducing terminal α-1,6-glucosidic linkage of oligosaccharides and dextran with a high degree of transglucosylation. Based on amino-acid sequence similarity, this enzyme is classified into glycoside hydrolase family 13. Recombinant dextran glucosidase was purified and crystallized by the hanging-drop vapour-diffusion technique using polyethylene glycol 6000 as a precipitant. The crystals belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 72.72, b = 86.47, cmore » = 104.30 Å. A native data set was collected to 2.2 Å resolution from a single crystal.« less

  15. High-throughput sequencing identification and characterization of potentially adhesion-related small RNAs in Streptococcus mutans.

    PubMed

    Zhu, Wenhui; Liu, Shanshan; Liu, Jia; Zhou, Yan; Lin, Huancai

    2018-05-01

    Adherence capacity is one of the principal virulence factors of Streptococcus mutans, and adhesion virulence factors are controlled by small RNAs (sRNAs) at the post-transcriptional level in various bacteria. Here, we aimed to identify and decipher putative adhesion-related sRNAs in clinical strains of S. mutans. RNA deep-sequencing was performed to identify potential sRNAs under different adhesion conditions. The expression of sRNAs was analysed by quantitative real-time PCR (qRT-PCR), and bioinformatic methods were used to predict the functional characteristics of sRNAs. A total of 736 differentially expressed candidate sRNAs were predicted, and these included 352 sRNAs located on the antisense to mRNA (AM) and 384 sRNAs in intergenic regions (IGRs). The top 7 differentially expressed sRNAs were successfully validated by qRT-PCR in UA159, and 2 of these were further confirmed in 100 clinical isolates. Moreover, the sequences of two sRNAs were conserved in other Streptococcus species, indicating a conserved role in such closely related species. A good correlation between the expression of sRNAs and the adhesion of 100 clinical strains was observed, which, combined with GO and KEGG, provides a perspective for the comprehension of sRNA function annotation. This study revealed a multitude of novel putative adhesion-related sRNAs in S. mutans and contributed to a better understanding of information concerning the transcriptional regulation of adhesion in S. mutans.

  16. The determination of antibody to Streptococcus mutans serotypes in saliva for children ages 3 to 7 years.

    PubMed

    Everhart, D L; Rothenberg, K; Carter, W H; Klapper, B

    1978-04-01

    The saliva of 29 children ages 3 to 7 years was followed by indirect immunoflourescence to determine the antibody reacting with the 5 different serotypes of S mutans. Fluorescent antisera specific for alpha chain and gamma chain were used. Statistical analysis of the data demonstrated a significant negative correlation between antibody of immunoglobin class (IgA) to S mutans type b and the decayed, extracted and filled surfaces of deciduous teeth.

  17. Invasive Streptococcus mutans induces inflammatory cytokine production in human aortic endothelial cells via regulation of intracellular toll-like receptor 2 and nucleotide-binding oligomerization domain 2.

    PubMed

    Nagata, E; Oho, T

    2017-04-01

    Streptococcus mutans, the primary etiologic agent of dental caries, can gain access to the bloodstream and has been associated with cardiovascular disease. However, the roles of S. mutans in inflammation in cardiovascular disease remain unclear. The aim of this study was to examine cytokine production induced by S. mutans in human aortic endothelial cells (HAECs) and to evaluate the participation of toll-like receptors (TLRs) and cytoplasmic nucleotide-binding oligomerization domain (NOD) -like receptors in HAECs. Cytokine production by HAECs was determined using enzyme-linked immunosorbent assays, and the expression of TLRs and NOD-like receptors was evaluated by real-time polymerase chain reaction, flow cytometry and immunocytochemistry. The involvement of TLR2 and NOD2 in cytokine production by invaded HAECs was examined using RNA interference. The invasion efficiencies of S. mutans strains were evaluated by means of antibiotic protection assays. Five of six strains of S. mutans of various serotypes induced interleukin-6, interleukin-8 and monocyte chemoattractant protein-1 production by HAECs. All S. mutans strains upregulated TLR2 and NOD2 mRNA levels in HAECs. Streptococcus mutans Xc upregulated the intracellular TLR2 and NOD2 protein levels in HAECs. Silencing of the TLR2 and NOD2 genes in HAECs invaded by S. mutans Xc led to a reduction in interleukin-6, interleukin-8 and monocyte chemoattractant protein-1 production. Cytokine production induced by invasive S. mutans via intracellular TLR2 and NOD2 in HAECs may be associated with inflammation in cardiovascular disease. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Transcriptional Analysis of the bgIP Gene from Streptococcus mutans

    DTIC Science & Technology

    2006-04-21

    Lactobacillus plantarum . FEMS Microbiol Lett 2000, 186(2):269-273. 5. Le Coq D, Lindner C, Kruger S, Steinmetz M, Stulke J: New beta- glucoside (bgl) genes in...longisporum [3], Lactobacillus plantarium [4], Bacillus subtilis [5,6], and Streptococcus mutans [7]. All of these organisms rely on the phosphoe

  19. Analysis of sucrose-induced small RNAs in Streptococcus mutans in the presence of different sucrose concentrations.

    PubMed

    Liu, Shan Shan; Zhu, Wen Hui; Zhi, Qing Hui; Liu, Jia; Wang, Yan; Lin, Huan Cai

    2017-07-01

    Streptococcus mutans (S. mutans) is the major pathogen contributing to dental caries. Sucrose is an important carbohydrate source for S. mutans and is crucial for dental caries. Small RNAs (sRNAs) are key post-transcriptional regulators of stress adaptation and virulence in bacteria. Here, for the first time, we created three replicate RNA libraries exposed to either 1 or 5% sucrose. The expression levels of sRNAs and target genes (gtfB, gtfC, and spaP) related to virulence were assessed. In addition, some phenotypic traits were evaluated. We obtained 2125 sRNA candidates with at least 100 average reads in 1% sucrose or 5% sucrose. Of these candidates, 2 were upregulated and 20 were downregulated in 1% sucrose. Six of these 22 differentially expressed sRNAs were validated by qRT-PCR. The expression level of target gene gtfB was higher in 1% sucrose. The adherence ratio of S. mutans was higher in 1% sucrose than in 5% sucrose. The synthesis of water-insoluble glucans (WIGs) was significantly higher in 5% sucrose than in 1% sucrose. These data suggest that a series of sRNAs can be induced in response to sucrose, and that some sRNAs might be involved in the regulation of phenotypes, providing new insight into the prevention of caries.

  20. Analysis of loci required for determination of serotype antigenicity in Streptococcus mutans and its clinical utilization.

    PubMed

    Shibata, Yukie; Ozaki, Kazuhisa; Seki, Mitsuko; Kawato, Takayuki; Tanaka, Hideki; Nakano, Yoshio; Yamashita, Yoshihisa

    2003-09-01

    We recently identified the genes responsible for the serotype c-specific glucose side chain formation of rhamnose-glucose polysaccharide (RGP) in Streptococcus mutans. These genes were located downstream from the rgpA through rgpF locus that is involved in the synthesis of RGP. In the present study, the corresponding chromosomal regions were isolated from serotype e and f strains and characterized. The rgpA through rgpF homologs were well conserved among the three serotypes. By contrast, the regions downstream from the rgpF homolog differed considerably among the three serotypes. Replacement of these regions in the different serotype strains converted their serotypic phenotypes, suggesting that these regions participated in serotype-specific glucose side chain formation in each serotype strain. Based on the differences among the DNA sequences of these regions, a PCR method was developed to determine serotypes. S. mutans was isolated from 198 of 432 preschool children (3 to 4 years old). The serotypes of all but one S. mutans isolate were identified by serotyping PCR. Serotype c predominated (84.8%), serotype e was the next most common (13.3%), and serotype f occured rarely (1.9%) in Japanese preschool children. Caries experience in the group with a mixed infection by multiple serotypes of S. mutans was significantly higher than that in the group with a monoinfection by a single serotype.

  1. The effect of different concentrations of water soluble azadirachtin (neem metabolite) on Streptococcus mutans compared with chlorhexidine.

    PubMed

    Kankariya, Amit R; Patel, Alok R; Kunte, Sanket S

    2016-01-01

    Despite advances in the development of anticaries chemotherapy, the newer agents are unable to control the initiation of dental caries. Research and development of natural antibacterial agents that are safe for the host as well as specific for oral pathogens is awaited. Neem tree extracts have been used for thousands of years for maintaining overall well-being. Chewing neem sticks in the morning is the most common indigenous method of cleaning the mouth in rural population. This has generated the interest of the dentists for the use of neem for controlling dental diseases. This study aims to evaluate the quantitative and qualitative effect of different concentrations of water soluble azadirachtin (neem metabolite) on Streptococcus mutans (S. mutans) against chlorhexidine. Plaque was collected from 30 children aged 8-12 years reporting to the Department of Pediatric and Preventive Dentistry, Bharti Vidyapeeth Dental College, Pune and transported to the laboratory. After incubation of the plates the inhibitory zones were noted and the diameter of the zone of inhibition was measured and recorded to check the inhibition of growth of S. mutans. For testing the bacterial survival, the biofilms were prepared and colony forming units (CFU) was enumerated using a digital colony counter. Two-way analysis of variance (ANOVA) and Tukey's test. The results show that there was no statistically significant difference in the inhibition of S. mutans between 40% concentration of water soluble azadirachtin and chlorhexidine. This study concluded that 40% water soluble azadirachtin is as effective as 0.2% chlorhexidine mouthrinse in reducing the S. mutans count in dental plaque. Hence, a water soluble formulation of azadirachtin may provide the maximum benefit to mankind to prevent dental caries.

  2. Evaluation and Comparison of the Antibacterial Activity against Streptococcus mutans of Grape Seed Extract at Different Concentrations with Chlorhexidine Gluconate: An in vitro Study

    PubMed Central

    Dave, Bhavna; Vyas, Soham M; Shah, Nupur

    2016-01-01

    Introduction Streptococcus mutans has been implicated as primary microorganisms which cause dental caries in humans. There has been an increased interest in the therapeutic properties of some medicinal plants and natural compounds which have demonstrated antibacterial activities. Grape is one of the plants of this group which contains tannin and polyphenolic compound. Aim To evaluate and compare antibacterial activity of grape seed extract at different concentrations with chlorhexidine gluconate against S. mutans. Materials and methods Grape seeds were extracted with ethanol/water ratio of 70:30 volume/volume. The extracts were filtered through Whatman No. 1 filter paper until it becomes colorless. Streptococcus mutans strains were taken. To check the antimicrobial properties of grape seed extract at different concentration and chlorhexidine gluconate, they were added to S. mutans strain and incubated for 48 hours than colony-forming units/mL were checked. Results Grape seed extract at higher concentration were found to be more potent against S. mutans. Chlorhexidine gluconate was found to have most potent antibacterial action compared to all different concentrations of grape seed extract. Conclusion Grape seed extract as a natural antimicrobial compound has inhibitory effect against S. mutans. How to cite this article Swadas M, Dave B, Vyas SM, Shah N. Evaluation and Comparison of the Antibacterial Activity against Streptococcus mutans of Grape Seed Extract at Different Concentrations with Chlorhexidine Gluconate: An in vitro Study. Int J Clin Pediatr Dent 2016;9(3):181-185. PMID:27843246

  3. Transcriptional Profiling of the Oral Pathogen Streptococcus mutans in Response to Competence Signaling Peptide XIP.

    PubMed

    Wenderska, Iwona B; Latos, Andrew; Pruitt, Benjamin; Palmer, Sara; Spatafora, Grace; Senadheera, Dilani B; Cvitkovitch, Dennis G

    2017-01-01

    In the cariogenic Streptococcus mutans , competence development is regulated by the ComRS signaling system comprised of the ComR regulator and the ComS prepeptide to the competence signaling peptide XIP (ComX-inducing peptide). Aside from competence development, XIP signaling has been demonstrated to regulate cell lysis, and recently, the expression of bacteriocins, small antimicrobial peptides used by bacteria to inhibit closely related species. Our study further explores the effect of XIP signaling on the S. mutans transcriptome. RNA sequencing revealed that XIP induction resulted in a global change in gene expression that was consistent with a stress response. An increase in several membrane-bound regulators, including HdrRM and BrsRM, involved in bacteriocin production, and the VicRKX system, involved in acid tolerance and biofilm formation, was observed. Furthermore, global changes in gene expression corresponded to changes observed during the stringent response to amino acid starvation. Effects were also observed on genes involved in sugar transport and carbon catabolite repression and included the levQRST and levDEFG operons. Finally, our work identified a novel heat shock-responsive intergenic region, encoding a small RNA, with a potential role in competence shutoff. IMPORTANCE Genetic competence provides bacteria with an opportunity to increase genetic diversity or acquire novel traits conferring a survival advantage. In the cariogenic pathogen Streptococcus mutans , DNA transformation is regulated by the competence stimulating peptide XIP (ComX-inducing peptide). The present study utilizes high-throughput RNA sequencing (RNAseq) to provide a greater understanding of how global gene expression patterns change in response to XIP. Overall, our work demonstrates that in S. mutans , XIP signaling induces a response that resembles the stringent response to amino acid starvation. We further identify a novel heat shock-responsive intergenic region with a

  4. Streptococcus mutans adhesion on nickel titanium (NiTi) and copper-NiTi archwires: A comparative prospective clinical study.

    PubMed

    Abraham, Kirubaharan S; Jagdish, Nithya; Kailasam, Vignesh; Padmanabhan, Sridevi

    2017-05-01

    To compare the adhesion of Streptococcus mutans to nickel titanium (NiTi) and copper-NiTi (Cu-NiTi) archwires and to correlate the adhesion to surface characteristics (surface free energy and surface roughness) of these wires. A total of 16 patients undergoing orthodontic treatment with preadjusted edgewise appliances were included in the study. 0.016" and 0.016" × 0.022" NiTi and Cu-NiTi archwires in as-received condition and after 4 weeks of intraoral use were studied for S mutans adhesion using real-time polymerase chain reaction. Surface roughness and surface free energy were studied by three-dimensional surface profilometry and dynamic contact angle analysis, respectively. S mutans adhesion was more in Cu-NiTi archwires. These wires exhibited rougher surface and higher surface free energy when compared to NiTi archwires. S mutans adhesion, surface roughness, and surface free energy were greater in Cu-NiTi than NiTi archwires. Surface roughness and surface free energy increased after 4 weeks of intraoral exposure for all of the archwires studied. A predominantly negative correlation was seen between the cycle threshold value of adherent bacteria and surface characteristics.

  5. Establishment and localization of mixtures of Streptococcus mutans serotypes in the oral cavity of the rat.

    PubMed

    Huis in 't Veld, J H; Drost, J S; Havenaar, R

    1982-10-01

    The colonization of S. mutans serotypes on different tooth surfaces of the rat was investigated. Fissures appeared to be the main habitat. In the presence of a serotype c strain, S. mutans serotype d could only be established when sucrose-containing diets were supplied. However, the serotype c strain was always present in higher proportions. The production of a bacteriocin for which the serotype d strain was sensitive appeared to be responsible for the observed predominance of the serotype c strain.

  6. Effects of Two Fluoride Varnishes and One Fluoride/Chlorhexidine Varnish on Streptococcus mutans and Streptococcus sobrinus Biofilm Formation in Vitro

    PubMed Central

    Pinar Erdem, Arzu; Sepet, Elif; Kulekci, Güven; Trosola, Sule Can; Guven, Yegane

    2012-01-01

    Aims: The aim of this study was to evaluate and to compare the effect of two fluoride varnishes and one fluoride/chlorhexidine varnish on Streptococcus mutans and Streptococcus sobrinus biofilm formation, in vitro. Study design: Standard acrylic discs were prepared and divided into groups based on the varnish applied to the disc surface: Fluor Protector, Bifluoride 12, and Fluor Protector + Cervitec (1:1). Untreated discs served as controls. In the study groups, biofilms of S. mutans and S. sobrinus were formed over 24 h, 48 h, and 5 days. The fluoride concentrations in the monospecies biofilms and viable counts of S. mutans and S. sobrinus were investigated. Results: In all study groups, a statistically significant increase in the viable number of S. mutans and S. sobrinus cells was observed between 24 h and 5 days. In both monospecies biofilms, the greatest antibacterial efficacy was detected in the Fluor Protector and Fluor Protector + Cervitec groups at 24 h. For all groups, the amount of fluoride released was highest during the first 24 h, followed by a significant decrease over the next 4 days. A negative correlation was detected between fluoride concentration and antibacterial effect in those groups with biofilms containing both species. Despite the release of high levels of fluoride, the greatest number of viable S. mutans and S. sobrinus cells was detected in the Bifluoride 12 group. Statistics: The data were analyzed using GraphPad Prism software (ver. 3). Conclusions: The Fluor Protector + Cervitec varnish exerted prolonged antibacterial effects on S. mutans and S. sobrinus biofilms compared to the other varnishes tested. PMID:22253559

  7. Effect of silver-loaded PMMA on Streptococcus mutans in a drip flow reactor.

    PubMed

    Williams, Dustin L; Epperson, Richard Tyler; DeGrauw, Jeffery P; Nielsen, Mattias B; Taylor, Nicholas B; Jolley, Ryan D

    2017-09-01

    Orthodontic retention has been proposed as a life-long commitment for patients who desire to maintain straight teeth. However, the presence of foreign material increases risk of bacterial colonization and caries formation, of which Streptococcus mutans is a key contributor. Multiple studies have assessed the ability of silver to be added to base plate material and resist attachment of S. mutans. However, it does not appear that long-term washout in connection with biofilm growth under physiologically relevant conditions has been taken into consideration. In this study, silver was added to base plate material and exposed to short- or long-term washout periods. Materials were then assessed for their ability to resist biofilm formation of S. mutans using a drip flow reactor that modeled the human oral environment. Data indicated that silver was able to resist biofilm formation following short-term washout, but long-term washout periods resulted in a lack of ability to resist biofilm formation. These data will be important for future development of base plate materials to achieve long-term antimicrobial efficacy to reduce risk of caries formation and benefit patients in the long term. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2632-2639, 2017. © 2017 Wiley Periodicals, Inc.

  8. Salivary density of Streptococcus mutans and Streptococcus sobrinus and dental caries in children and adolescents with Down syndrome

    PubMed Central

    SCALIONI, Flávia; CARRADA, Camila; MACHADO, Fernanda; Karina, DEVITO; RIBEIRO, Luiz Cláudio; CESAR, Dionéia; RIBEIRO, Rosangela

    2017-01-01

    Abstract Streptococcus mutans and Streptococcus sobrinus are strongly associated with dental caries. However, the relationship between oral streptococci and dental caries in children with Down syndrome is not well characterized. Objective To assess and compare dental caries experience and salivary S. mutans, S. sobrinus, and streptococci counts between groups of Down syndrome and non-Down syndrome children and adolescents. Material and Methods This study included a sample of 30 Down syndrome children and adolescents (G-DS) and 30 age- and sex-matched non-Down syndrome subjects (G-ND). Dental caries experience was estimated by the number of decayed, missing, and filled teeth in the primary dentition and the permanent dentition. Unstimulated whole saliva samples were collected from all participants. The fluorescence in situ hybridization technique was used to identify the presence and counts of the bacteria. The statistical analysis included chi-square, Student’s t-test and Spearman’s correlation. Results The G-DS exhibited a significantly higher caries-free rate (p<0.001) and a lower S. mutans salivary density (p<0.001). No significant differences were found in the salivary densities of S. sobrinus or streptococci between the groups (p=0.09 and p=0.21, respectively). The salivary S. mutans or S. sobrinus densities were not associated with dental caries experience in neither group. Conclusion The reduced dental caries experience observed in this group of Down syndrome children and adolescents cannot be attributed to lower salivary S. mutans densities, as determined with the fluorescence in situ hybridization technique. PMID:28678943

  9. α-Mangostin Disrupts the Development of Streptococcus mutans Biofilms and Facilitates Its Mechanical Removal

    PubMed Central

    Nguyen, Phuong Thi Mai; Falsetta, Megan L.; Hwang, Geelsu; Gonzalez-Begne, Mireya; Koo, Hyun

    2014-01-01

    α-Mangostin (αMG) has been reported to be an effective antimicrobial agent against planktonic cells of Streptococcus mutans, a biofilm-forming and acid-producing cariogenic organism. However, its anti-biofilm activity remains to be determined. We examined whether αMG, a xanthone purified from Garcinia mangostana L grown in Vietnam, disrupts the development, acidogenicity, and/or the mechanical stability of S. mutans biofilms. Treatment regimens simulating those experienced clinically (twice-daily, 60 s exposure each) were used to assess the bioactivity of αMG using a saliva-coated hydroxyapatite (sHA) biofilm model. Topical applications of early-formed biofilms with αMG (150 µM) effectively reduced further biomass accumulation and disrupted the 3D architecture of S. mutans biofilms. Biofilms treated with αMG had lower amounts of extracellular insoluble and intracellular iodophilic polysaccharides (30–45%) than those treated with vehicle control (P<0.05), while the number of viable bacterial counts was unaffected. Furthermore, αMG treatments significantly compromised the mechanical stability of the biofilm, facilitating its removal from the sHA surface when subjected to a constant shear stress of 0.809 N/m2 (>3-fold biofilm detachment from sHA vs. vehicle-treated biofilms; P<0.05). Moreover, acid production by S. mutans biofilms was disrupted following αMG treatments (vs. vehicle-control, P<0.05). The activity of enzymes associated with glucan synthesis, acid production, and acid tolerance (glucosyltransferases B and C, phosphotransferase-PTS system, and F1F0-ATPase) were significantly inhibited by αMG. The expression of manL, encoding a key component of the mannose PTS, and gtfB were slightly repressed by αMG treatment (P<0.05), while the expression of atpD (encoding F-ATPase) and gtfC genes was unaffected. Hence, this study reveals that brief exposures to αMG can disrupt the development and structural integrity of S. mutans biofilms, at least in part

  10. [In vitro utilization of fructooligosaccharide by streptococci mutans].

    PubMed

    Linardi, M M; Rosa, O P; Buzalaf, M A; Torres, S A

    2001-01-01

    Neosugar is the trade name of a fructooligosaccharide (FOS) whose utilization by oral bacteria is not well known yet. The aim of the present study was to evaluate in vitro the effect of this product on the growth, fermentation and production of plaque by mutans streptococci: S. mutans, serotypes c, e and f, S. sobrinus, serotype d, S. downei, serotype h, S. cricetus, serotype a and S. rattus, serotype b. The evaluation of growth was carried out in Brain Heart Infusion (BHI) broths containing or not sucrose and FOS and in buffered broths having glucose or FOS as carbon sources, through optical density reading in spectrophotometer after 24 hours of incubation at 37 degrees C. Thereafter the reading of pH was made in the same media. The plaque produced on glass sticks in BHI broths containing 5% sucrose or FOS was weighed and carbohydrates and proteins were assayed. The possible cariogenicity of Neosugar was confirmed, since it sustained the same growth and intensity of fermentation of sucrose in BHI broth for all streptococci and permitted in vitro production of plaque by some of them. The amount of plaque as well as its content of proteins and carbohydrates were smaller than those produced with sucrose, although the difference was statistically significant only for carbohydrates.

  11. Antimicrobial effects of GL13K peptide coatings on S. mutans and L. casei

    NASA Astrophysics Data System (ADS)

    Schnitt, Rebecca Ann

    Background: Enamel breakdown around orthodontic brackets, so-called "white spot lesions", is the most common complication of orthodontic treatment. White spot lesions are caused by bacteria such as Streptococci and Lactobacilli, whose acidic byproducts cause demineralization of enamel crystals. Aims: The aim of this project was to develop an antimicrobial peptide coating for titanium alloy that is capable of killing acidogenic bacteria, specifically Streptococcus mutans and Lactobacillus casei. The long-term goal is to create an antimicrobial-coated orthodontic bracket with the ability to reduce or prevent the formation of white spot lesions in orthodontic patients thereby improving clinical outcomes. Methods: First, an alkaline etching method with NaOH was established to allow effective coating of titanium discs with GL13K, an antimicrobial peptide derived from human saliva. Coatings were verified by contact angle measures, and treated discs were characterized using scanning electron microscopy. Secondly, GL13K coatings were tested against hydrolytic, proteolytic and mechanical challenges to ensure robust coatings. Third, a series of qualitative and quantitative microbiology experiments were performed to determine the effects of GL13K--L and GL13K--D on S. mutans and L. casei, both in solution and coated on titanium. Results: GL13K-coated discs were stable after two weeks of challenges. GL13K--D was effective at killing S. mutans in vitro at low doses. GL13K--D also demonstrated a bactericidal effect on L. casei, however, in contrast to S. mutans, the effect on L. casei was not statistically significant. Conclusion: GL13K--D is a promising candidate for antimicrobial therapy with possible applications for prevention of white spot lesions in orthodontics.

  12. Recombineering in Streptococcus mutans Using Direct Repeat-Mediated Cloning-Independent Markerless Mutagenesis (DR-CIMM).

    PubMed

    Zhang, Shan; Zou, Zhengzhong; Kreth, Jens; Merritt, Justin

    2017-01-01

    Studies of the dental caries pathogen Streptococcus mutans have benefitted tremendously from its sophisticated genetic system. As part of our own efforts to further improve upon the S. mutans genetic toolbox, we previously reported the development of the first cloning-independent markerless mutagenesis (CIMM) system for S. mutans and illustrated how this approach could be adapted for use in many other organisms. The CIMM approach only requires overlap extension PCR (OE-PCR) protocols to assemble counterselectable allelic replacement mutagenesis constructs, and thus greatly increased the speed and efficiency with which markerless mutations could be introduced into S. mutans . Despite its utility, the system is still subject to a couple limitations. Firstly, CIMM requires negative selection with the conditionally toxic phenylalanine analog p -chlorophenylalanine (4-CP), which is efficient, but never perfect. Typically, 4-CP negative selection results in a small percentage of naturally resistant background colonies. Secondly, CIMM requires two transformation steps to create markerless mutants. This can be inherently problematic if the transformability of the strain is negatively impacted after the first transformation step, which is used to insert the counterselection cassette at the mutation site on the chromosome. In the current study, we develop a next-generation counterselection cassette that eliminates 4-CP background resistance and combine this with a new direct repeat-mediated cloning-independent markerless mutagenesis (DR-CIMM) system to specifically address the limitations of the prior approach. DR-CIMM is even faster and more efficient than CIMM for the creation of all types of deletions, insertions, and point mutations and is similarly adaptable for use in a wide range of genetically tractable bacteria.

  13. Crystallization and preliminary crystallographic analysis of d-alanine-d-alanine ligase from Streptococcus mutans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Yong-Zhi; Sheng, Yu; Li, Lan-Fen

    2007-09-01

    A potential target for antibiotic drug design, d-alanine-d-alanine ligase from S. mutans, was expressed in E. coli, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. d-Alanine-d-alanine ligase is encoded by the gene ddl (SMU-599) in Streptococcus mutans. This ligase plays a very important role in cell-wall biosynthesis and may be a potential target for drug design. To study the structure and function of this ligase, the gene ddl was amplified from S. mutans genomic DNA and cloned into the expression vector pET28a. The protein was expressed in soluble form in Escherichia coli strain BL21 (DE3). Homogeneous proteinmore » was obtained using a two-step procedure consisting of Ni{sup 2+}-chelating and size-exclusion chromatography. Purified protein was crystallized and the cube-shaped crystal diffracted to 2.4 Å. The crystal belongs to space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 79.50, c = 108.97 Å. There is one molecule per asymmetric unit.« less

  14. Antimicrobial and anti-adherence activity of various combinations of coffee-chicory solutions on Streptococcus mutans: An in-vitro study

    PubMed Central

    Sharma, Rama; Reddy, Vamsi Krishna L; Prashant, GM; Ojha, Vivek; Kumar, Naveen PG

    2014-01-01

    Context: Several studies have demonstrated the activity of natural plants on the dental biofilm and caries development. But few studies on the antimicrobial activity of coffee-based solutions were found in the literature. Further there was no study available to check the antimicrobial effect of coffee solutions with different percentages of chicory in it. Aims: To evaluate the antimicrobial activity of different combinations of coffee-chicory solutions and their anti-adherence effect on Streptococcus mutans to glass surface. Materials and Methods: Test solutions were prepared. For antimicrobial activity testing, tubes containing test solution and culture medium were inoculated with a suspension of S. mutans followed by plating on Brain Heart Infusion (BHI) agar. S. mutans adherence to glass in presence of the different test solutions was also tested. The number of adhered bacteria (CFU/mL) was determined by plating method. Statistical Analysis: Statistical significance was measured using one way ANOVA followed by Tukey's post hoc test. P value < 0.05 was considered statistically significant. Results: Pure chicory had shown significantly less bacterial count compared to all other groups. Groups IV and V had shown significant reduction in bacterial counts over the period of 4 hrs. Regarding anti-adherence effect, group I-IV had shown significantly less adherence of bacteria to glass surface. Conclusions: Chicory exerted antibacterial effect against S. mutans while coffee reduced significantly the adherence of S. mutans to the glass surface. PMID:25328299

  15. [The effect of fluoride on electrochemical corrosion of the dental pure titanium before and after adhesion of Streptococcus mutans].

    PubMed

    Geng, Li; Qiao, Guang-yan; Gu, Kai-ka

    2016-04-01

    To investigate the effect of fluoride on electrochemical corrosion of the dental pure titanium before and after adhesion of Streptococcus mutans. The dental pure titanium specimens were tested by electrochemical measurement system including electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curve (PD) methods in artificial saliva with 0 g/L and 1.0 g/L sodium fluoride before and after dipped into culture medium with Streptococcus mutans for 24 h. The corrosion parameters, including the polarization resistance (R(ct)), corrosion potential (E(corr)), pitting breakdown potential (E(b)), and the difference between E(corr) and E(b) representing the "pseudo-passivation" (ΔE) obtained from the electrochemical tests were used to evaluate the corrosion resistance of dental pure titanium. The data were statistically analyzed by 2×2 factorial statistical analysis to examine the effect of sodium fluoride and adhesion of Streptococcus mutans using SPSS 12.0 software package. The results showed that the corrosion parameters including R(ct), Ecorr, E(b), and ΔE of pure titanium had significant difference between before and after adhesion of Streptococcus mutans in the same solution(P<0.05), and in artificial saliva with 0 g/L and 1.0 g/L sodium fluoride(P<0.05). The dental pure titanium was prone to corrosion in artificial saliva with sodium fluoride. The corrosion resistance of pure titanium decreased distinctly after immersed in culture medium with Streptococcus mutans.

  16. Role of Glucosyltransferase B in Interactions of Candida albicans with Streptococcus mutans and with an Experimental Pellicle on Hydroxyapatite Surfaces ▿ †

    PubMed Central

    Gregoire, S.; Xiao, J.; Silva, B. B.; Gonzalez, I.; Agidi, P. S.; Klein, M. I.; Ambatipudi, K. S.; Rosalen, P. L.; Bauserman, R.; Waugh, R. E.; Koo, H.

    2011-01-01

    Candida albicans and mutans streptococci are frequently detected in dental plaque biofilms from toddlers afflicted with early childhood caries. Glucosyltransferases (Gtfs) secreted by Streptococcus mutans bind to saliva-coated apatite (sHA) and to bacterial surfaces, synthesizing exopolymers in situ, which promote cell clustering and adherence to tooth enamel. We investigated the potential role Gtfs may play in mediating the interactions between C. albicans SC5314 and S. mutans UA159, both with each other and with the sHA surface. GtfB adhered effectively to the C. albicans yeast cell surface in an enzymatically active form, as determined by scintillation spectroscopy and fluorescence imaging. The glucans formed on the yeast cell surface were more susceptible to dextranase than those synthesized in solution or on sHA and bacterial cell surfaces (P < 0.05), indicating an elevated α-1,6-linked glucose content. Fluorescence imaging revealed that larger numbers of S. mutans cells bound to C. albicans cells with glucans present on their surface than to yeast cells without surface glucans (uncoated). The glucans formed in situ also enhanced C. albicans interactions with sHA, as determined by a novel single-cell micromechanical method. Furthermore, the presence of glucan-coated yeast cells significantly increased the accumulation of S. mutans on the sHA surface (versus S. mutans incubated alone or mixed with uncoated C. albicans; P < 0.05). These data reveal a novel cross-kingdom interaction that is mediated by bacterial GtfB, which readily attaches to the yeast cell surface. Surface-bound GtfB promotes the formation of a glucan-rich matrix in situ and may enhance the accumulation of S. mutans on the tooth enamel surface, thereby modulating the development of virulent biofilms. PMID:21803906

  17. Prevalence of Streptococcus mutans serotypes, Actinomyces, and other bacteria in the plaque of children.

    PubMed

    Thomson, L A; Little, W A; Bowen, W H; Sierra, L I; Aguirrer, M; Gillespie, G

    1980-10-01

    Selected microbial components in dental plaque were determined for children in Biddeford, Maine and Colombia, South America. Using cultural methods, Streptococcus mutans was detected in 51.4% of the Colombian children and 63.3% of the Maine children. Serotype c was predominant in both populations. The greatest difference between the two groups occurred with serotypes d and g which were present in 25% of the Colombian children with S. mutans and were not detected in the Maine children. In the specimens examined with specific FA conjugates. Actinomyces was the predominant genus, present in all individuals and comprising an average of 52% of all cells.

  18. In vitro comparison of antimicrobial activity of aqueous decoction of Coriandrum sativum, and Dentol Drop with chlorhexidine on Streptococcus mutans

    PubMed Central

    Moradian, Hamid; Bazargani, Abdollah; Rafiee, Azade; Nazarialam, Ali

    2013-01-01

    Background and objectives Dental caries is still remained as a major health problem. This problem has created a new interest to search for new antimicrobial agents from various sources including medicinal plants. Since limited data is available so far regarding the antibacterial effect of Coriandrum sativum seed and Dentol Drop against Streptococcus mutans, this study aims to assess this activity. Materials and Methods This experimental study was conducted in Shiraz University of Medical Sciences. In vitro comparison of antimicrobial activity of aqueous decoction of Coriandrum sativum seed and Dentol drop with chlorhexidine against Streptococcus mutans was evaluated using disk diffusion and broth microdilution assays. Positive and negative controls were considered. The data was statistically analyzed by applying Kruskal-Wallis and Tukey post-hoc test to compare the groups using SPSS software (version 17). Results Dentol drop showed a remarkable antibacterial activity, in comparison with chlorhexidine, against S. mutans in the disk diffusion (p value = 0.005), and broth microdilution assays (p value = 0.0001). Based on the results of this study, Coriandrum sativum seed did not posses any antibacterial property. Conclusion Coriandrum sativum seed showed no anti-Streptococcus mutans activity. Dentol drop exhibited a remarkable antibacterial activity against S. mutans when tested in vitro. Dentol drop can be further studied as a preventive measure for dental caries. PMID:24475330

  19. Inhibition of Steptococcus mutans biofilm formation by extracts of Tenacibaculum sp. 20J, a bacterium with wide-spectrum quorum quenching activity.

    PubMed

    Muras, Andrea; Mayer, Celia; Romero, Manuel; Camino, Tamara; Ferrer, Maria D; Mira, Alex; Otero, Ana

    2018-01-01

    Background : Previous studies have suggested the quorum sensing signal AI-2 as a potential target to prevent the biofilm formation by Streptococcus mutans , a pathogen involved in tooth decay. Objective : To obtain inhibition of biofilm formation by S. mutans by extracts obtained from the marine bacterium Tenacibaculum sp. 20J interfering with the AI-2 quorum sensing system. Design : The AI-2 inhibitory activity was tested with the biosensors Vibrio harveyi BB170 and JMH597. S. mutans ATCC25175 biofilm formation was monitored using impedance real-time measurements with the xCELLigence system®, confocal laser microscopy, and the crystal violet quantification method. Results : The addition of the cell extract from Tenacibaculum sp. 20J reduced biofilm formation in S. mutans ATCC25175 by 40-50% compared to the control without significantly affecting growth. A decrease of almost 40% was also observed in S. oralis DSM20627 and S. dentisani 7747 biofilms. Conclusions : The ability of Tenacibaculum sp. 20J to interfere with AI-2 and inhibit biofilm formation in S. mutans was demonstrated. The results indicate that the inhibition of quorum sensing processes may constitute a suitable strategy for inhibiting dental plaque formation, although additional experiments using mixed biofilm models would be required.

  20. Inhibition of Steptococcus mutans biofilm formation by extracts of Tenacibaculum sp. 20J, a bacterium with wide-spectrum quorum quenching activity

    PubMed Central

    Muras, Andrea; Mayer, Celia; Romero, Manuel; Camino, Tamara; Ferrer, Maria D.; Mira, Alex; Otero, Ana

    2018-01-01

    ABSTRACT Background: Previous studies have suggested the quorum sensing signal AI-2 as a potential target to prevent the biofilm formation by Streptococcus mutans, a pathogen involved in tooth decay. Objective: To obtain inhibition of biofilm formation by S. mutans by extracts obtained from the marine bacterium Tenacibaculum sp. 20J interfering with the AI-2 quorum sensing system. Design: The AI-2 inhibitory activity was tested with the biosensors Vibrio harveyi BB170 and JMH597. S. mutans ATCC25175 biofilm formation was monitored using impedance real-time measurements with the xCELLigence system®, confocal laser microscopy, and the crystal violet quantification method. Results: The addition of the cell extract from Tenacibaculum sp. 20J reduced biofilm formation in S. mutans ATCC25175 by 40–50% compared to the control without significantly affecting growth. A decrease of almost 40% was also observed in S. oralis DSM20627 and S. dentisani 7747 biofilms. Conclusions: The ability of Tenacibaculum sp. 20J to interfere with AI-2 and inhibit biofilm formation in S. mutans was demonstrated. The results indicate that the inhibition of quorum sensing processes may constitute a suitable strategy for inhibiting dental plaque formation, although additional experiments using mixed biofilm models would be required. PMID:29410771

  1. Influence of sucrose and xylitol on an early Streptococcus mutans biofilm in a dental simulator.

    PubMed

    Salli, K M; Forssten, S D; Lahtinen, S J; Ouwehand, A C

    2016-10-01

    In vitro methods to study dental biofilms are useful in finding ways to support a healthy microbial balance in the oral cavity. The effects of sucrose, xylitol, and their combination on three strains of Streptococcus mutans and one strain of Streptococcus sobrinus were studied using a dental simulator. A simulator was used to mimic the oral cavity environment. It provided a continuous-flow system using artificial saliva (AS), constant temperature, mixing, and hydroxyapatite (HA) surface in which the influence of xylitol was studied. The quantities of planktonic and adhered bacteria were measured by real-time qPCR. Compared against the untreated AS, adding 1% sucrose increased the bacterial colonization of HA (p<0.0001) whereas 2% xylitol decreased it (p<0.05), with the exception of clinical S. mutans isolate 117. The combination of xylitol and sucrose decreased the bacterial quantities within the AS and the colonization on the HA by clinical S. mutans isolate 2366 was reduced (p<0.05). Increasing the concentration (2%-5%) of xylitol caused a reduction in bacterial counts even in the presence of sucrose. The continuous-culture biofilm model showed that within a young biofilm, sucrose significantly promotes whereas xylitol reduces bacterial colonization and proliferation. The results indicate that xylitol affects the ability of certain S. mutans strains to adhere to the HA. Clinical studies have also shown that xylitol consumption decreases caries incidence and reduces the amount of plaque. This study contributes to the understanding of the mechanism behind these clinical observations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Optimization of antibacterial activity by Gold-Thread (Coptidis Rhizoma Franch) against Streptococcus mutans using evolutionary operation-factorial design technique.

    PubMed

    Choi, Ung-Kyu; Kim, Mi-Hyang; Lee, Nan-Hee

    2007-11-01

    This study was conducted to find the optimum extraction condition of Gold-Thread for antibacterial activity against Streptococcus mutans using The evolutionary operation-factorial design technique. Higher antibacterial activity was achieved in a higher extraction temperature (R2 = -0.79) and in a longer extraction time (R2 = -0.71). Antibacterial activity was not affected by differentiation of the ethanol concentration in the extraction solvent (R2 = -0.12). The maximum antibacterial activity of clove against S. mutans determined by the EVOP-factorial technique was obtained at 80 degrees C extraction temperature, 26 h extraction time, and 50% ethanol concentration. The population of S. mutans decreased from 6.110 logCFU/ml in the initial set to 4.125 logCFU/ml in the third set.

  3. Withania somnifera attenuates acid production, acid tolerance and extra-cellular polysaccharide formation of Streptococcus mutans biofilms.

    PubMed

    Pandit, Santosh; Song, Kwang-Yeob; Jeon, Jae-Gyu

    2014-01-01

    Withania somnifera (Ashwagandha) is a plant of the Solanaceae family. It has been widely used as a remedy for a variety of ailments in India and Nepal. The plant has also been used as a controlling agent for dental diseases. The aim of the present study was to evaluate the activity of the methanol extract of W. somnifera against the physiological ability of cariogenic biofilms and to identify the components of the extract. To determine the activity of the extract, assays for sucrose-dependent bacterial adherence, glycolytic acid production, acid tolerance, and extracellular polysaccharide formation were performed using Streptococcus mutans biofilms. The viability change of S. mutans biofilms cells was also determined. A phytochemical analysis of the extract was performed using TLC and LC/MS/MS. The extract showed inhibitory effects on sucrose-dependent bacterial adherence (≥ 100 μg/ml), glycolytic acid production (≥ 300 μg/ml), acid tolerance (≥ 300 μg/ml), and extracellular polysaccharide formation (≥ 300 μg/ml) of S. mutans biofilms. However, the extract did not alter the viability of S. mutans biofilms cells in all concentrations tested. Based on the phytochemical analysis, the activity of the extract may be related to the presence of alkaloids, anthrones, coumarines, anthraquinones, terpenoids, flavonoids, and steroid lactones (withanolide A, withaferin A, withanolide B, withanoside IV, and 12-deoxy withastramonolide). These data indicate that W. somnifera may be a potential agent for restraining the physiological ability of cariogenic biofilms.

  4. Mechanism of killing of streptococcus mutans by light-activated drugs

    NASA Astrophysics Data System (ADS)

    Burns, Tracy; Wilson, Michael; Pearson, G. J.

    1996-01-01

    Recent studies have shown that cariogenic bacteria can be killed when exposed to low power laser light in the presence of a photosensitizing agent. The purpose of this study was to determine the mechanism by which the cariogenic bacterium Streptococcus mutans can be killed by toluidine blue O and helium neon laser light. To determine whether membrane damage occurred, suspensions of sensitized S. mutans were exposed to a 7.3 mW HeNe laser for 30 mins and samples removed every 5 mins. Survivors were enumerated by viable counting on tryptone soya agar plates and cell free filtrates were assayed for phosphate and (beta) -galactosidase. Lipid peroxidation was assessed by assaying for malondialdehyde, a by- product of lipid peroxidation. The role of oxygen and reactive oxygen species was studied by exposing sensitized bacteria to laser light (1) under different atmospheric conditions, (2) in the presence of deuterium oxide, and (3) in the presence of inhibitors of reactive oxygen species. Following exposure of sensitizede S. mutans to 13.2 J of HeNe laser light, 2.6 nmoles of phosphate and 228 nmoles of (beta) -galactosidase were detected in the cell free filtrates. Ten micrometers oles of malondialdehyde were also detected. When the sensitized bacteria were exposed to laser light under anaerobic conditions there was no significant decrease in the viable count compared to a 60% kill in the presence of oxygen. In the presence of D2O there was a 15-fold increase in the numbers of bacteria killed. O.1 M methionine and 0.5 M sodium azide each afforded 98% protection from lethal photosensitization. These results imply that lethal photosensitization results from membrane damage due to lipid peroxidation and that reactive oxygen species are mediators of this process.

  5. Zinc-ion implanted and deposited titanium surfaces reduce adhesion of Streptococccus mutans

    NASA Astrophysics Data System (ADS)

    Xu, Juan; Ding, Gang; Li, Jinlu; Yang, Shenhui; Fang, Bisong; Sun, Hongchen; Zhou, Yanmin

    2010-10-01

    While titanium (Ti) is a commonly used dental implant material with advantageous biocompatible and mechanical properties, native Ti surfaces do not have the ability to prevent bacterial colonization. The objective of this study was to evaluate the chemical composition and bacterial adhesive properties of zinc (Zn) ion implanted and deposited Ti surfaces (Zn-PIIID-Ti) as potential dental implant materials. Surfaces of pure Ti (cp-Ti) were modified with increasing concentrations of Zn using plasma immersion ion implantation and deposition (PIIID), and elemental surface compositions were characterized by X-ray photoelectron spectrometry (XPS). To evaluate bacterial responses, Streptococcus mutans were seeded onto the modifiedTi surfaces for 48 h and subsequently observed by scanning electron microscopy. Relative numbers of bacteria on each surface were assessed by collecting the adhered bacteria, reculturing and counting colony forming units after 48 h on bacterial grade plates. Ti, oxygen and carbon elements were detected on all surfaces by XPS. Increased Zn signals were detected on Zn-PIIID-Ti surfaces, correlating with an increase of Zn-deposition time. Substantial numbers of S. mutans adhered to cp-Ti samples, whereas bacterial adhesion on Zn-PIIID-Ti surfaces signficantly decreased as the Zn concentration increased ( p < 0.01). In conclusion, PIIID can successfully introduce Zn onto a Ti surface, forming a modified surface layer bearing Zn ions that consequently deter adhesion of S. mutans, a common bacterium in the oral environment.

  6. Antimicrobial action of chlorhexidine digluconate in self-ligating and conventional metal brackets infected with Streptococcus mutans biofilm

    PubMed Central

    Dias, Ana Paula; Paschoal, Marco Aurélio Benini; Diniz, Rafael Soares; Lage, Lucas Meneses; Gonçalves, Letícia Machado

    2018-01-01

    Objectives The objectives of this study were to assess the adherence of Streptococcus mutans biofilms grown over conventional ligature (CL) or self-ligating (SL) metal brackets and their bacterial viability after 0.12% chlorhexidine (CHX) digluconate treatment. Materials and methods The sample consisted of 48 metallic orthodontic brackets divided randomly into two groups: CL (n=24) and SL brackets (n=24). S. mutans biofilms were grown over the bracket surface (96 h) and treated with CHX (positive control) or 0.9% phosphate-buffered saline (PBS) (negative control) for 1 min each. Quantitative analysis was assessed by colony-forming units, and fluorescence microscopy was performed aiming to illustrate the outcomes. The tests were done in triplicate at three different times (n=9). Data were analyzed using ANOVA and Tukey test (P<0.05). Results There were significant differences in brackets’ biofilm formation, being CL largely colonized compared with SL, which was observed by colony-forming unit counting (P<0.05) and microcopy images. Significant reduction in the viability of S. mutans was found in both brackets treated with CHX compared to PBS (P<0.05). Conclusion The antimicrobial activities of CHX were similar for CL and SL brackets (P>0.05). In conclusion, a lower colonization was achieved in SL brackets and S. mutans biofilms were susceptible to CHX treatment to both studied brackets. PMID:29719422

  7. Antimicrobial action of chlorhexidine digluconate in self-ligating and conventional metal brackets infected with Streptococcus mutans biofilm.

    PubMed

    Dias, Ana Paula; Paschoal, Marco Aurélio Benini; Diniz, Rafael Soares; Lage, Lucas Meneses; Gonçalves, Letícia Machado

    2018-01-01

    The objectives of this study were to assess the adherence of Streptococcus mutans biofilms grown over conventional ligature (CL) or self-ligating (SL) metal brackets and their bacterial viability after 0.12% chlorhexidine (CHX) digluconate treatment. The sample consisted of 48 metallic orthodontic brackets divided randomly into two groups: CL (n=24) and SL brackets (n=24). S. mutans biofilms were grown over the bracket surface (96 h) and treated with CHX (positive control) or 0.9% phosphate-buffered saline (PBS) (negative control) for 1 min each. Quantitative analysis was assessed by colony-forming units, and fluorescence microscopy was performed aiming to illustrate the outcomes. The tests were done in triplicate at three different times (n=9). Data were analyzed using ANOVA and Tukey test ( P <0.05). There were significant differences in brackets' biofilm formation, being CL largely colonized compared with SL, which was observed by colony-forming unit counting ( P <0.05) and microcopy images. Significant reduction in the viability of S. mutans was found in both brackets treated with CHX compared to PBS ( P <0.05). The antimicrobial activities of CHX were similar for CL and SL brackets ( P >0.05). In conclusion, a lower colonization was achieved in SL brackets and S. mutans biofilms were susceptible to CHX treatment to both studied brackets.

  8. Identification of anti-biofilm components in Withania somnifera and their effect on virulence of Streptococcus mutans biofilms.

    PubMed

    Pandit, S; Cai, J N; Song, K Y; Jeon, J G

    2015-08-01

    The aim of this study was to identify components of the Withania somnifera that could show anti-virulence activity against Streptococcus mutans biofilms. The anti-acidogenic activity of fractions separated from W. somnifera was compared, and then the most active anti-acidogenic fraction was chemically characterized using gas chromatography-mass spectroscopy. The effect of the identified components on the acidogenicity, aciduricity and extracellular polymeric substances (EPS) formation of S. mutans UA159 biofilms was evaluated. The change in accumulation and acidogenicity of S. mutans UA159 biofilms by periodic treatments (10 min per treatment) with the identified components was also investigated. Of the fractions, n-hexane fraction showed the strongest anti-acidogenic activity and was mainly composed of palmitic, linoleic and oleic acids. Of the identified components, linoleic and oleic acids strongly affected the acid production rate, F-ATPase activity and EPS formation of the biofilms. Periodic treatment with linoleic and oleic acids during biofilm formation also inhibited the biofilm accumulation and acid production rate of the biofilms without killing the biofilm bacteria. These results suggest that linoleic and oleic acids may be effective agents for restraining virulence of S. mutans biofilms. Linoleic and oleic acids may be promising agents for controlling virulence of cariogenic biofilms and subsequent dental caries formation. © 2015 The Society for Applied Microbiology.

  9. Magnetic response in cultures of Streptococcus mutans ATCC-27607.

    PubMed

    Adamkiewicz, V W; Bassous, C; Morency, D; Lorrain, P; Lepage, J L

    1987-01-01

    Streptococcus mutans ATCC-27607 produces exopolysaccharides that adhere to glass. In the normal geomagnetic field about 50% more polysaccharide adhere preferentially to glass surfaces facing North as compared to South facing surfaces. Reversal of the direction of the magnetic field by 180 degrees produces a similar reversal in the direction of the preferential accumulation. Reduction of the field by 90% abolishes the preferential accumulation.

  10. Effect of Probiotic Curd on Salivary pH and Streptococcus mutans: A Double Blind Parallel Randomized Controlled Trial.

    PubMed

    Srivastava, Shivangi; Saha, Sabyasachi; Kumari, Minti; Mohd, Shafaat

    2016-02-01

    Dairy products like curd seem to be the most natural way to ingest probiotics which can reduce Streptococcus mutans level and also increase salivary pH thereby reducing the dental caries risk. To estimate the role of probiotic curd on salivary pH and Streptococcus mutans count, over a period of 7 days. This double blind parallel randomized clinical trial was conducted at the institution with 60 caries free volunteers belonging to the age group of 20-25 years who were randomly allocated into two groups. Test Group consisted of 30 subjects who consumed 100ml of probiotic curd daily for seven days while an equal numbered Control Group were given 100ml of regular curd for seven days. Saliva samples were assessed at baseline, after ½ hour 1 hour and 7 days of intervention period using pH meter and Mitis Salivarius Bacitracin agar to estimate salivary pH and S. mutans count. Data was statistically analysed using Paired and Unpaired t-test. The study revealed a reduction in salivary pH after ½ hour and 1 hour in both the groups. However after 7 days, normal curd showed a statistically significant (p< 0.05) reduction in salivary pH while probiotic curd showed a statistically significant (p< 0.05) increase in salivary pH. Similarly with regard to S. mutans colony counts probiotic curd showed statistically significant reduction (p< 0.05) as compared to normal curd. Short-term consumption of probiotic curds showed marked salivary pH elevation and reduction of salivary S. mutans counts and thus can be exploited for the prevention of enamel demineralization as a long-term remedy keeping in mind its cost effectiveness.

  11. Potential mechanisms for the effects of tea extracts on the attachment, biofilm formation and cell size of Streptococcus mutans.

    PubMed

    Wang, Yi; Lee, Sui M; Dykes, Gary A

    2013-01-01

    Tea can inhibit the attachment of Streptococcus mutans to surfaces and subsequent biofilm formation. Five commercial tea extracts were screened for their ability to inhibit attachment and biofilm formation by two strains of S. mutans on glass and hydroxyapatite surfaces. The mechanisms of these effects were investigated using scanning electron microscopy (SEM) and phytochemical screening. The results indicated that extracts of oolong tea most effectively inhibited attachment and extracts of pu-erh tea most effectively inhibited biofilm formation. SEM images showed that the S. mutans cells treated with extracts of oolong tea, or grown in medium containing extracts of pu-erh tea, were coated with tea components and were larger with more rounded shapes. The coatings on the cells consisted of flavonoids, tannins and indolic compounds. The ratio of tannins to simple phenolics in each of the coating samples was ∼3:1. This study suggests potential mechanisms by which tea components may inhibit the attachment and subsequent biofilm formation of S. mutans on tooth surfaces, such as modification of cell surface properties and blocking of the activity of proteins and the structures used by the bacteria to interact with surfaces.

  12. Salivary density of Streptococcus mutans and Streptococcus sobrinus and dental caries in children and adolescents with Down syndrome.

    PubMed

    Scalioni, Flávia; Carrada, Camila; Machado, Fernanda; Devito, Karina; Ribeiro, Luiz Cláudio; Cesar, Dionéia; Ribeiro, Rosangela

    2017-01-01

    To assess and compare dental caries experience and salivary S. mutans, S. sobrinus, and streptococci counts between groups of Down syndrome and non-Down syndrome children and adolescents. This study included a sample of 30 Down syndrome children and adolescents (G-DS) and 30 age- and sex-matched non-Down syndrome subjects (G-ND). Dental caries experience was estimated by the number of decayed, missing, and filled teeth in the primary dentition and the permanent dentition. Unstimulated whole saliva samples were collected from all participants. The fluorescence in situ hybridization technique was used to identify the presence and counts of the bacteria. The statistical analysis included chi-square, Student's t-test and Spearman's correlation. The G-DS exhibited a significantly higher caries-free rate (p<0.001) and a lower S. mutans salivary density (p<0.001). No significant differences were found in the salivary densities of S. sobrinus or streptococci between the groups (p=0.09 and p=0.21, respectively). The salivary S. mutans or S. sobrinus densities were not associated with dental caries experience in neither group. The reduced dental caries experience observed in this group of Down syndrome children and adolescents cannot be attributed to lower salivary S. mutans densities, as determined with the fluorescence in situ hybridization technique.

  13. Linear response of mutans streptococci to increasing frequency of xylitol chewing gum use: a randomized controlled trial [ISRCTN43479664

    PubMed Central

    Ly, Kiet A; Milgrom, Peter; Roberts, Marilyn C; Yamaguchi, David K; Rothen, Marilynn; Mueller, Greg

    2006-01-01

    Background Xylitol is a naturally occurring sugar substitute that has been shown to reduce the level of mutans streptococci in plaque and saliva and to reduce tooth decay. It has been suggested that the degree of reduction is dependent on both the amount and the frequency of xylitol consumption. For xylitol to be successfully and cost-effectively used in public health prevention strategies dosing and frequency guidelines should be established. This study determined the reduction in mutans streptococci levels in plaque and unstimulated saliva to increasing frequency of xylitol gum use at a fixed total daily dose of 10.32 g over five weeks. Methods Participants (n = 132) were randomized to either active groups (10.32 g xylitol/day) or a placebo control (9.828 g sorbitol and 0.7 g maltitol/day). All groups chewed 12 pieces of gum per day. The control group chewed 4 times/day and active groups chewed xylitol gum at a frequency of 2 times/day, 3 times/day, or 4 times/day. The 12 gum pieces were evenly divided into the frequency assigned to each group. Plaque and unstimulated saliva samples were taken at baseline and five-weeks and were cultured on modified Mitis Salivarius agar for mutans streptococci enumeration. Results There were no significant differences in mutans streptococci level among the groups at baseline. At five-weeks, mutans streptococci levels in plaque and unstimulated saliva showed a linear reduction with increasing frequency of xylitol chewing gum use at the constant daily dose. Although the difference observed for the group that chewed xylitol 2 times/day was consistent with the linear model, the difference was not significant. Conclusion There was a linear reduction in mutans streptococci levels in plaque and saliva with increasing frequency of xylitol gum use at a constant daily dose. Reduction at a consumption frequency of 2 times per day was small and consistent with the linear-response line but was not statistically significant. PMID:16556326

  14. Linear response of mutans streptococci to increasing frequency of xylitol chewing gum use: a randomized controlled trial [ISRCTN43479664].

    PubMed

    Ly, Kiet A; Milgrom, Peter; Roberts, Marilyn C; Yamaguchi, David K; Rothen, Marilynn; Mueller, Greg

    2006-03-24

    Xylitol is a naturally occurring sugar substitute that has been shown to reduce the level of mutans streptococci in plaque and saliva and to reduce tooth decay. It has been suggested that the degree of reduction is dependent on both the amount and the frequency of xylitol consumption. For xylitol to be successfully and cost-effectively used in public health prevention strategies dosing and frequency guidelines should be established. This study determined the reduction in mutans streptococci levels in plaque and unstimulated saliva to increasing frequency of xylitol gum use at a fixed total daily dose of 10.32 g over five weeks. Participants (n = 132) were randomized to either active groups (10.32 g xylitol/day) or a placebo control (9.828 g sorbitol and 0.7 g maltitol/day). All groups chewed 12 pieces of gum per day. The control group chewed 4 times/day and active groups chewed xylitol gum at a frequency of 2 times/day, 3 times/day, or 4 times/day. The 12 gum pieces were evenly divided into the frequency assigned to each group. Plaque and unstimulated saliva samples were taken at baseline and five-weeks and were cultured on modified Mitis Salivarius agar for mutans streptococci enumeration. There were no significant differences in mutans streptococci level among the groups at baseline. At five-weeks, mutans streptococci levels in plaque and unstimulated saliva showed a linear reduction with increasing frequency of xylitol chewing gum use at the constant daily dose. Although the difference observed for the group that chewed xylitol 2 times/day was consistent with the linear model, the difference was not significant. There was a linear reduction in mutans streptococci levels in plaque and saliva with increasing frequency of xylitol gum use at a constant daily dose. Reduction at a consumption frequency of 2 times per day was small and consistent with the linear-response line but was not statistically significant.

  15. Human Common Salivary Protein 1 (CSP-1) Promotes Binding of Streptococcus mutans to Experimental Salivary Pellicle and Glucans Formed on Hydroxyapatite Surface

    PubMed Central

    Ambatipudi, Kiran S.; Hagen, Fred K.; Delahunty, Claire M.; Han, Xuemei; Shafi, Rubina; Hryhorenko, Jennifer; Gregoire, Stacy; Marquis, Robert E.; Melvin, James E.; Koo, Hyun; Yates, John R.

    2010-01-01

    Summary The saliva proteome includes host defense factors and specific bacterial-binding proteins that modulate microbial growth and colonization of tooth surface in the oral cavity. A multidimensional mass spectrometry approach identified the major host-derived salivary proteins which interacted with Streptococcus mutans (strain UA159), the primary microorganism associated with the pathogenesis of dental caries. Two abundant host proteins were found to tightly bind to S. mutans cells, common salivary protein-1 (CSP-1) and deleted in malignant brain tumor 1 (DMBT1, also known as salivary agglutinin or gp340). In contrast to gp340, limited functional information is available on CSP-1. The sequence of CSP-1 shares 38.1% similarity with rat CSP-1. Recombinant CSP-1 (rCSP-1) protein did not cause aggregation of S. mutans cells and was devoid of any significant biocidal activity (2.5 to 10 μg/ml). However, S. mutans cells exposed to rCSP-1 (10 μg/ml) in saliva displayed enhanced adherence to experimental salivary pellicle and to glucans in the pellicle formed on hydroxyapatite surfaces. Thus, our data demonstrate that the host salivary protein CSP-1 binds to S. mutans cells and may influence the initial colonization of this pathogenic bacterium onto tooth surface. PMID:20858015

  16. Effects of combined exogenous dextranase and sodium fluoride on Streptococcus mutans 25175 monospecies biofilms.

    PubMed

    Yang, Ying-Ming; Jiang, Dan; Qiu, Yuan-Xin; Fan, Rong; Zhang, Ru; Ning, Mei-Zhi; Shao, Mei-Ying; Zhang, Chao-Liang; Hong, Xiao; Hu, Tao

    2013-10-01

    To investigate the effects of exogenous dextranase and sodium fluoride on a S. mutans monospecies biofilm. S. mutans 25175 was grown in tryptone soya broth medium, and biofilm was formed on glass slides with 1.0% sucrose. Exogenous dextranase and sodium fluoride were added alone or together. The biofilm morphology was analyzed by confocal laser scanning microscopy. The effects of the drug on the adhesion and exopolysaccharide production by the biofilms were evaluated by scintillation counting and the anthrone method, respectively. In this study, we found that the structure of initial biofilm and mature biofilm were partly altered by dextranase and high concentrations of sodium fluoride separately. However, dextranase combined with a low concentration of sodium fluoride could clearly destroy the typical tree-like structure of the biofilm, and led to less bacterial adhesion than when the dextranase or fluoride were used alone (P < 0.05). The amounts of soluble and insoluble exopolysaccharide were significantly reduced by combining dextranase with a low concentration of sodium fluoride, much more than when they were used alone (P < 0.05). These data indicate that dextranase and a low concentration of sodium fluoride may have synergistic effects against S. mutans biofilm and suggest the application of a low concentration of sodium fluoride in anticaries treatment.

  17. The photodynamic therapy on Streptococcus mutans biofilms using erythrosine and dental halogen curing unit

    PubMed Central

    Lee, Young-Ho; Park, Ho-Won; Lee, Ju-Hyun; Seo, Hyun-Woo; Lee, Si-Young

    2012-01-01

    The purpose of our study was to evaluate the effect of photodynamic therapy (PDT), using erythrosine as a photosensitizing agent and a dental halogen curing unit as a light source, on Streptococcus mutans in a biofilm phase. The S. mutans biofilms were formed in a 24-well cell culture cluster. Test groups consisted of biofilms divided into four groups: group 1: no photosensitizer or light irradiation treatment (control group); group 2: photosensitizer treatment alone; group 3: light irradiation alone; group 4: photosensitizer treatment and light irradiation. After treatments, the numbers of colony-forming unit (CFU) were counted and samples were examined by confocal laser scanning fluorescence microscopy (CLSM). Only group 4 (combined treatment) resulted in significant increases in cell death, with rates of 75% and 55% after 8 h of incubation, and 74% and 42% at 12 h, for biofilms formed in brain–heart infusion (BHI) broth supplemented with 0% or 0.1% sucrose, respectively. Therefore, PDT of S. mutans biofilms using a combination of erythrosine and a dental halogen curing unit, both widely used in dental clinics, resulted in a significant increase in cell death. The PDT effects are decreased in biofilms that form in the presence of sucrose. PMID:23222991

  18. Escape from the competence state in Streptococcus mutans is governed by the bacterial population density.

    PubMed

    Dufour, D; Villemin, C; Perry, J A; Lévesque, C M

    2016-12-01

    Horizontal gene transfer through natural DNA transformation is an important evolutionary mechanism among bacteria. Transformation requires that the bacteria are physiologically competent to take and incorporate free DNA directly from the environment. Although natural genetic transformation is a remarkable feature of many naturally competent bacteria, the process is energetically expensive for the cells. Consequently, a tight control of the competence state is necessary. The objective of the present work was to help decipher the molecular mechanisms regulating the escape from the competence state in Streptococcus mutans, the principal etiological agent responsible for tooth decay in humans. Our results showed that the cessation of competence in S. mutans was abrupt, and did not involve the accumulation of a competence inhibitor nor the depletion of a competence activator in the extracellular environment. The competence state was repressed at high cell population density via concomitant repression of sigX gene encoding the master regulator of the competence regulon. Co-culture experiments performed with oral and non-oral bacteria showed that S. mutans assesses its own population density and also the microbial density of its surroundings to regulate its competence escape. Interestingly, neither the intra-species and extra-species quorum-sensing systems nor the other 13 two-component regulatory systems identified in S. mutans were involved in the cell-density-dependent escape of the competence state. Altogether, our results suggest a complex mechanism regulating the competence shut-off involving cell-density-dependent repression of sigX through an as yet undefined system, and possibly SigX protein stability. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Comparison of extracellular protein profiles of seven serotypes of mutans streptococci grown under controlled conditions.

    PubMed

    Hardy, L N; Knox, K W; Brown, R A; Wicken, A J; Fitzgerald, R J

    1986-05-01

    Extracellular proteins produced by the four human commensal species of mutans streptococci were analysed. The organisms used were Streptococcus mutans, serotypes c, e and f, Streptococcus cricetus, serotype a, Streptococcus rattus, serotype b, and Streptococcus sobrinus, serotypes d and g. They were grown in continuous culture at different generation times and pH values in media containing either glucose or fructose to determine the extent of variation in extracellular protein production that could occur for an individual strain. The results for different organisms grown under the same conditions were then compared. The total amount of protein of molecular mass greater than or equal to 60 kDa varied considerably with the growth conditions and with the strain. Generally more protein was present at a higher pH, conditions under which the organisms also form more lipoteichoic acid. With respect to individual protein components SDS-PAGE proved better than isoelectric focusing for detecting phenotypic responses by a particular strain to environmental changes and differences between the different strains. Differences in the molecular masses of protein components were particularly pronounced in the regions designated P1 (185-200 kDa), P2 (130-155 kDa) and P3 (60-95 kDa). Every strain produced at least one component in the P1 region that cross-reacted with antiserum to the purified protein from S. mutans serotype c, a protein which is indistinguishable from antigens B and I/II. Two components in the P2 region were dominant in the case of S. cricetus and S. sobrinus strains and showed glucosyltransferase (GTF) activity. GTF activity was also detected in the P3 region, particularly with S. mutans strains.

  20. Variation of expression defects in cell surface 190-kDa protein antigen of Streptococcus mutans.

    PubMed

    Lapirattanakul, Jinthana; Nomura, Ryota; Matsumoto-Nakano, Michiyo; Srisatjaluk, Ratchapin; Ooshima, Takashi; Nakano, Kazuhiko

    2015-05-01

    Streptococcus mutans, which consists of four serotypes, c, e, f, and k, possesses a 190-kDa cell surface protein antigen (PA) for initial tooth adhesion. We used Western blot analysis to determine PA expression in 750 S. mutans isolates from 150 subjects and found a significantly higher prevalence of the isolates with PA expression defects in serotypes f and k compared to serotypes c and e. Moreover, the defect patterns could be classified into three types; no PA expression on whole bacterial cells and in their supernatant samples (Type N1), PA expression mainly seen in supernatant samples (Type N2), and only low expression of PA in the samples of whole bacterial cells (Type W). The underlying reasons for the defects were mutations in the gene encoding PA as well as in the transcriptional processing of this gene for Type N1, defects in the sortase gene for Type N2, and low mRNA expression of PA for Type W. Since cellular hydrophobicity and phagocytosis susceptibility of the PA-defective isolates were significantly lower than those of the normal expression isolates, the potential implication of such defective isolates in systemic diseases involving bacteremia other than dental caries was suggested. Additionally, multilocus sequence typing was utilized to characterize S. mutans clones that represented a proportion of isolates with PA defects of 65-100%. Therefore, we described the molecular basis for variation defects in PA expression of S. mutans. Furthermore, we also emphasized the strong association between PA expression defects and serotypes f and k as well as the clonal relationships among these isolates. Copyright © 2015 Elsevier GmbH. All rights reserved.

  1. Effect of Psidium cattleianum leaf extract on Streptococcus mutans viability, protein expression and acid production.

    PubMed

    Brighenti, F L; Luppens, S B I; Delbem, A C B; Deng, D M; Hoogenkamp, M A; Gaetti-Jardim, E; Dekker, H L; Crielaard, W; ten Cate, J M

    2008-01-01

    Plants naturally produce secondary metabolites that can be used as antimicrobials. The aim of this study was to assess the effects of Psidium cattleianum leaf extract on Streptococcus mutans. The extract (100%) was obtained by decoction of 100 g of leaves in 600 ml of deionized water. To assess killing, S. mutans biofilms were treated with water (negative control) or various extract dilutions [100, 50, 25% (v/v) in water] for 5 or 60 min. To evaluate the effect on protein expression, biofilms were exposed to water or 1.6% (v/v) extract for 120 min, proteins were extracted and submitted to 2-dimensional difference gel electrophoresis. Differentially expressed proteins were identified by mass spectrometry. The effect of 1.6% (v/v) extract on acid production was determined by pH measurements and compared to a water control. Viability was similar after 5 min of treatment with the 100% extract or 60 min with the 50% extract (about 0.03% survival). There were no differences in viability between the biofilms exposed to the 25 or 50% extract after 60 min of treatment (about 0.02% survival). Treatment with the 1.6% extract significantly changed protein expression. The abundance of 24 spots was decreased compared to water (p < 0.05). The extract significantly inhibited acid production (p < 0.05). It is concluded that P. cattleianum leaf extract kills S. mutans grown in biofilms when applied at high concentrations. At low concentrations it inhibits S. mutans acid production and reduces the expression of proteins involved in general metabolism, glycolysis and lactic acid production. (c) 2008 S. Karger AG, Basel

  2. Extracellular DNA and lipoteichoic acids interact with exopolysaccharides in the extracellular matrix of Streptococcus mutans biofilms

    PubMed Central

    Castillo Pedraza, Midian C.; Novais, Tatiana F.; Faustoferri, Roberta C.; Quivey, Robert G.; Terekhov, Anton; Hamaker, Bruce R.; Klein, Marlise I.

    2018-01-01

    Streptococcus mutans -derived exopolysaccharides are virulence determinants in the matrix of biofilms that cause caries. Extracellular DNA (eDNA) and lipoteichoic acid (LTA) are found in cariogenic biofilms, but their functions are unclear. Therefore, strains of S. mutans carrying single deletions that would modulate matrix components were used: eDNA – ΔlytS and ΔlytT; LTA – ΔdltA and ΔdltD; and insoluble exopolysaccharide – ΔgtfB. Single-species (parental strain S. mutans UA159 or individual mutant strains) and mixed-species (UA159 or mutant strain, Actinomyces naeslundii and Streptococcus gordonii) biofilms were evaluated. Distinct amounts of matrix components were detected, depending on the inactivated gene. eDNA was found to be cooperative with exopolysaccharide in early phases, while LTA played a larger role in the later phases of biofilm development. The architecture of mutant strains biofilms was distinct (vs UA159), demonstrating that eDNA and LTA influence exopolysaccharide distribution and microcolony organization. Thus, eDNA and LTA may shape exopolysaccharide structure, affecting strategies for controlling pathogenic biofilms. PMID:28946780

  3. Extracellular DNA and lipoteichoic acids interact with exopolysaccharides in the extracellular matrix of Streptococcus mutans biofilms.

    PubMed

    Castillo Pedraza, Midian C; Novais, Tatiana F; Faustoferri, Roberta C; Quivey, Robert G; Terekhov, Anton; Hamaker, Bruce R; Klein, Marlise I

    2017-10-01

    Streptococcus mutans-derived exopolysaccharides are virulence determinants in the matrix of biofilms that cause caries. Extracellular DNA (eDNA) and lipoteichoic acid (LTA) are found in cariogenic biofilms, but their functions are unclear. Therefore, strains of S. mutans carrying single deletions that would modulate matrix components were used: eDNA - ∆lytS and ∆lytT; LTA - ∆dltA and ∆dltD; and insoluble exopolysaccharide - ΔgtfB. Single-species (parental strain S. mutans UA159 or individual mutant strains) and mixed-species (UA159 or mutant strain, Actinomyces naeslundii and Streptococcus gordonii) biofilms were evaluated. Distinct amounts of matrix components were detected, depending on the inactivated gene. eDNA was found to be cooperative with exopolysaccharide in early phases, while LTA played a larger role in the later phases of biofilm development. The architecture of mutant strains biofilms was distinct (vs UA159), demonstrating that eDNA and LTA influence exopolysaccharide distribution and microcolony organization. Thus, eDNA and LTA may shape exopolysaccharide structure, affecting strategies for controlling pathogenic biofilms.

  4. Candida albicans mannans mediate Streptococcus mutans exoenzyme GtfB binding to modulate cross-kingdom biofilm development in vivo.

    PubMed

    Hwang, Geelsu; Liu, Yuan; Kim, Dongyeop; Li, Yong; Krysan, Damian J; Koo, Hyun

    2017-06-01

    Candida albicans is frequently detected with heavy infection by Streptococcus mutans in plaque-biofilms from children with early-childhood caries (ECC). This cross-kingdom biofilm contains an extensive matrix of extracellular α-glucans that is produced by an exoenzyme (GtfB) secreted by S. mutans. Here, we report that mannans located on the outer surface of C. albicans cell-wall mediates GtfB binding, enhancing glucan-matrix production and modulating bacterial-fungal association within biofilms formed in vivo. Using single-molecule atomic force microscopy, we determined that GtfB binds with remarkable affinity to mannans and to the C. albicans surface, forming a highly stable and strong bond (1-2 nN). However, GtfB binding properties to C. albicans was compromised in strains defective in O-mannan (pmt4ΔΔ) or N-mannan outer chain (och1ΔΔ). In particular, the binding strength of GtfB on och1ΔΔ strain was severely disrupted (>3-fold reduction vs. parental strain). In turn, the GtfB amount on the fungal surface was significantly reduced, and the ability of C. albicans mutant strains to develop mixed-species biofilms with S. mutans was impaired. This phenotype was independent of hyphae or established fungal-biofilm regulators (EFG1, BCR1). Notably, the mechanical stability of the defective biofilms was weakened, resulting in near complete biomass removal by shear forces. In addition, these in vitro findings were confirmed in vivo using a rodent biofilm model. Specifically, we observed that C. albicans och1ΔΔ was unable to form cross-kingdom biofilms on the tooth surface of rats co-infected with S. mutans. Likewise, co-infection with S. mutans defective in GtfB was also incapable of forming mixed-species biofilms. Taken together, the data support a mechanism whereby S. mutans-secreted GtfB binds to the mannan layer of C. albicans to promote extracellular matrix formation and their co-existence within biofilms. Enhanced understanding of GtfB-Candida interactions

  5. Efficacy of Neem Extract and Three Antimicrobial Agents Incorporated into Tissue Conditioner in Inhibiting the Growth of C. Albicans and S. Mutans

    PubMed Central

    Barua, Dikshita Ray; Varghese, Rana Kalappattil

    2017-01-01

    Introduction Denture stomatitis is an inflammatory condition which compromises the mucosal surface beneath dentures. The aetiology of denture stomatitis is usually multifactorial which varies from trauma from ill fitting denture to poor immune system. There are evidences that denture stomatitis is an outcome of multispecies biofilms that include Candida albicans and Streptococcus mutans. Tissue conditioners are found to be more susceptible to colonisation by micro-organisms. Aim The purpose of this study was to compare the efficacy of neem leaf extract and three other antimicrobial agents incorporated in a tissue conditioner against both Candida albicans and Streptococcus mutans. Materials and Methods Standard strain of Candida albicans and Streptococcus mutans were inoculated into Sabouraud Dextrose broth and Mitis-Salivarius-Bacitracin broth respectively incubated at 37°C. Tissue conditioner (Viscogel) mixed with two different concentrations of ketoconazole, nystatin and chlorhexidine diacetate (5%, 10% w/w) and neem leaf extract (7.5% w/w and 15% w/w) and control group (plain tissue conditioner) were placed into punch hole (6 mm diameter) agar plate inoculated with Candida albicans and Streptococcus mutans. A total of 216 samples were prepared for both Candida albicans and Streptococcus mutans. Mean Inhibition Diameter (MID) across each punch holes were measured in millimetres at 24 hours and seven days and data were statistically analysed using Kruskal Wallis test followed by Mann-Whitney U test. Results Both ketoconazole and nystatin (10% w/w) showed maximum inhibition of 32 mm and mean of 31.75 followed by 15% w/w neem leaf extract with an inhibition of 21 mm and mean of 20.67 after 24 hours against Candida albicans whereas chlorhexidine diacetate (10% w/w) showed mean of 25.67 followed by chlorhexidine diacetate (5% w/w) and neem extract (15% w/w) which showed mean of 24.17 and 23.67 respectively against Streptococcus mutans. Conclusion Neem leaf extract

  6. Deficiency of PdxR in Streptococcus mutans affects vitamin B6 metabolism, acid tolerance response and biofilm formation.

    PubMed

    Liao, S; Bitoun, J P; Nguyen, A H; Bozner, D; Yao, X; Wen, Z T

    2015-08-01

    Streptococcus mutans, a key etiological agent of the human dental caries, lives primarily on the tooth surface in tenacious biofilms. The SMU864 locus, designated pdxR, is predicted to encode a member of the novel MocR/GabR family proteins, which are featured with a winged helix DNA-binding N-terminal domain and a C-terminal domain highly homologous to the pyridoxal phosphate-dependent aspartate aminotransferases. A pdxR-deficient mutant, TW296, was constructed using allelic exchange. PdxR deficiency in S. mutans had little effect on cell morphology and growth when grown in brain heart infusion. However, when compared with its parent strain, UA159, the PdxR-deficient mutant displayed major defects in acid tolerance response and formed significantly fewer biofilms (P < 0.01). When analyzed by real-time polymerase chain reaction, PdxR deficiency was found to drastically reduce expression of an apparent operon encoding a pyridoxal kinase (SMU865) and a pyridoxal permease (SMU866) of the salvage pathway of vitamin B6 biosynthesis. In addition, PdxR deficiency also altered the expression of genes for ClpL protease, glucosyltransferase B and adhesin SpaP, which are known to play important roles in stress tolerance and biofilm formation. Consistently, PdxR-deficiency affected the growth of the deficient mutant when grown in defined medium with and without vitamin B6 . Further studies revealed that although S. mutans is known to require vitamin B6 to grow in defined medium, B6 vitamers, especially pyridoxal, were strongly inhibitory at millimolar concentrations, against S. mutans growth and biofilm formation. Our results suggest that PdxR in S. mutans plays an important role in regulation of vitamin B6 metabolism, acid tolerance response and biofilm formation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Inhibitory effects of Oenothera biennis (evening primrose) seed extract on Streptococcus mutans and S. mutans-induced dental caries in rats.

    PubMed

    Matsumoto-Nakano, M; Nagayama, K; Kitagori, H; Fujita, K; Inagaki, S; Takashima, Y; Tamesada, M; Kawabata, S; Ooshima, T

    2011-01-01

    Oenothera biennis (evening primrose) seed extract (OBSE) is known to contain polyphenols, which may possess antioxidant activities. Polyphenols extracted from several plants are reported to exhibit cariostatic activities by inhibiting mutans streptococcus growth and glucosyltransferase activities. The purpose of the present study was to examine the inhibitory effects of OBSE on the development of dental caries, both in vitro and in vivo. OBSE was investigated for its inhibitory effects on cellular aggregation, hydrophobicity, sucrose-dependent adherence and insoluble glucan synthesis. Furthermore, biofilm formation was examined in the presence of OBSE, using confocal microscopic imaging. An animal experiment was also performed to examine the in vivo effects. OBSE induced a strong aggregation of Streptococcus mutans MT8148 cells, while cell surface hydrophobicity was decreased by approximately 90% at a concentration of 0.25 mg/ml. The sucrose-dependent adherence of the MT8148 cells was also reduced by addition of OBSE, with a reduction rate of 73% seen at a concentration of 1.00 mg/ml. Additionally, confocal microscopic observations revealed the biofilm development phase to be remarkably changed in the presence of OBSE. Furthermore, insoluble glucan synthesis was significantly reduced when OBSE was present at concentrations greater than 0.03 mg/ml. In an animal experiment, the caries scores in rats given OBSE (0.05 mg/ml in drinking water) were significantly lower than those in rats given water without OBSE. Our results indicate that OBSE has inhibitory activity on dental caries. 2011 S. Karger AG, Basel.

  8. Effect of the Biofilm Age and Starvation on Acid Tolerance of Biofilm Formed by Streptococcus mutans Isolated from Caries-Active and Caries-Free Adults.

    PubMed

    Jiang, Shan; Chen, Shuai; Zhang, Chengfei; Zhao, Xingfu; Huang, Xiaojing; Cai, Zhiyu

    2017-03-30

    Streptococcus mutans ( S. mutans ) is considered a leading cause of dental caries. The capability of S. mutans to tolerate low pH is essential for its cariogenicity. Aciduricity of S. mutans is linked to its adaptation to environmental stress in oral cavity. This study aimed to investigate the effect of biofilm age and starvation condition on acid tolerance of biofilm formed by S. mutans clinical isolates. S. mutans clinical strains isolated from caries-active (SM593) and caries-free (SM18) adults and a reference strain (ATCC25175) were used for biofilm formation. (1) Both young and mature biofilms were formed and then exposed to pH 3.0 for 30 min with (acid-adapted group) or without (non-adapted group) pre-exposure to pH 5.5 for three hours. (2) The mature biofilms were cultured with phosphate-buffered saline (PBS) (starved group) or TPY (polypeptone-yeast extract) medium (non-starved group) at pH 7.0 for 24 h and then immersed in medium of pH 3.0 for 30 min. Biofilms were analyzed through viability staining and confocal laser scanning microscopy. In all three strains, mature, acid-adapted and starved biofilms showed significantly less destructive structure and more viable bacteria after acid shock than young, non-adapted and non-starved biofilms, respectively (all p < 0.05). Furthermore, in each condition, SM593 biofilm was denser, with a significantly larger number of viable bacteria than that of SM18 and ATCC25175 (all p < 0.05). Findings demonstrated that mature, acid-adapted and starvation might protect biofilms of all three S. mutans strains against acid shock. Additionally, SM593 exhibited greater aciduricity compared to SM18 and ATCC25175, which indicated that the colonization of high cariogenicity of clinical strains may lead to high caries risk in individuals.

  9. Oral colonization by Streptococcus mutans and caries development is reduced upon deletion of carbonic anhydrase VI expression in saliva.

    PubMed

    Culp, David J; Robinson, Bently; Parkkila, Seppo; Pan, Pei-Wen; Cash, Melanie N; Truong, Helen N; Hussey, Thomas W; Gullett, Sarah L

    2011-12-01

    Carbonic anhydrase VI (CA VI), encoded by type A transcripts of the gene Car6, is a secretory product of salivary glands and is found in the enamel pellicle. Because higher caries prevalence is associated with lower salivary concentrations of CA VI in humans, we tested whether CA VI protects enamel surfaces from caries induced by Streptococcus mutans, using Car6(-/-) mice, in which salivary CA VI expression is absent. We detected aberrant Car6 type A transcripts in Car6(-/-) mice, likely targets for nonsense-mediated mRNA decay. Expression of the intracellular stress-induced isoform of CA VI encoded by type B transcripts was restricted to parotid and submandibular glands of wild type mice. The salivary function of Car6(-/-) mice was normal as assessed by the histology and protein/glycoprotein profiles of glands, salivary flow rates and protein/glycoprotein compositions of saliva. Surprisingly, total smooth surface caries and sulcal caries in Car6(-/-) mice were more than 6-fold and 2-fold lower than in wild type mice after infection with S. mutans strain UA159. Recoveries of S. mutans and total microbiota from molars were also lower in Car6(-/-) mice. To explore possible mechanisms for increased caries susceptibility, we found no differences in S. mutans adherence to salivary pellicles, in vitro. Interestingly, higher levels of Lactobacillus murinus and an unidentified Streptococcus species were cultivated from the oral microbiota of Car6(-/-) mice. Collective results suggest salivary CA VI may promote caries by modulating the oral microbiota to favor S. mutans colonization and/or by the enzymatic production of acid within plaque. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Presence of Streptococcus mutans strains harbouring the cnm gene correlates with dental caries status and IgA nephropathy conditions

    PubMed Central

    Misaki, Taro; Naka, Shuhei; Hatakeyama, Rina; Fukunaga, Akiko; Nomura, Ryota; Isozaki, Taisuke; Nakano, Kazuhiko

    2016-01-01

    Streptococcus mutans is a major pathogen of human dental caries. Strains harbouring the cnm gene, which encodes Cnm, a collagen-binding protein, contribute to the development of several systemic diseases. In this study, we analysed S. mutans strains isolated from the oral cavity of immunoglobulin (Ig)A nephropathy (IgAN) patients to determine potential relationships between cnm and caries status as well as IgAN conditions. Saliva specimens were collected from 109 IgAN patients and the cnm status of isolated S. mutans strains was determined using PCR. In addition, the dental caries status (decayed, missing or filled teeth [DMFT] index) in patients who agreed to dental consultation (n = 49) was evaluated. The DMFT index and urinary protein levels in the cnm-positive group were significantly higher than those in the cnm-negative group (p < 0.05). Moreover, the urinary protein levels in the high DMFT (≥15) group were significantly higher than those in the low DMFT (<15) group (p < 0.05). Our results show that isolation of cnm-positive S. mutans strains from the oral cavity may be associated with urinary protein levels in IgAN patients, especially those with a high dental caries status. PMID:27811984

  11. Contribution of Streptococcus mutans Strains with Collagen-Binding Proteins in the Presence of Serum to the Pathogenesis of Infective Endocarditis

    PubMed Central

    Otsugu, Masatoshi; Matayoshi, Saaya; Teramoto, Noboru; Nakano, Kazuhiko

    2017-01-01

    ABSTRACT Streptococcus mutans, a major pathogen of dental caries, is considered one of the causative agents of infective endocarditis (IE). Recently, bacterial DNA encoding 120-kDa cell surface collagen-binding proteins (CBPs) has frequently been detected from S. mutans-positive IE patients. In addition, some of the CBP-positive S. mutans strains lacked a 190-kDa protein antigen (PA), whose absence strengthened the adhesion to and invasion of endothelial cells. The interaction between pathogenic bacteria and serum or plasma is considered an important virulence factor in developing systemic diseases; thus, we decided to analyze the pathogenesis of IE induced by S. mutans strains with different patterns of CBP and PA expression by focusing on the interaction with serum or plasma. CBP-positive (CBP+)/PA-negative (PA−) strains showed prominent aggregation in the presence of human serum or plasma, which was significantly greater than that with CBP+/PA-positive (PA+) and CBP-negative (CBP−)/PA+ strains. Aggregation of CBP+/PA− strains was also observed in the presence of a high concentration of type IV collagen, a major extracellular matrix protein in serum. In addition, aggregation of CBP+/PA− strains was drastically reduced when serum complement was inactivated. Furthermore, an ex vivo adherence model and an in vivo rat model of IE showed that extirpated heart valves infected with CBP+/PA− strains displayed prominent bacterial mass formation, which was not observed following infection with CBP+/PA+ and CBP−/PA+ strains. These results suggest that CBP+/PA− S. mutans strains utilize serum to contribute to their pathogenicity in IE. PMID:28947650

  12. Anticariogenic activity of the active fraction from Isertia laevis against S. mutans and S. sobrinus: comparison of two extraction methods.

    PubMed

    Téllez, Nohemí; Téllez, Mayra; Perdomo, Margarita; Alvarado, Andrea; Gamboa, Fredy

    2010-01-01

    Dental caries is considered a multi-factorial, infectious, chronic, localized, post-eruptive, transmissible disease that leads to the destruction of dental hard tissue. The recognition of Streptococcus mutans as the major bacterial species involved in dental caries has led to the implementation of prevention and control measures for eliminating or reducing it in oral cavity. The main goal of research on medicinal plants is the search for substances or compounds with antimicrobial activity. The aim of this study was to evaluate the antimicrobial activity of fractions obtained by two methods from Isertia laevis against S. mutans and S. sobrinus. The plant material was collected in Medina (Colombia), at an elevation of 550 meters above sea level. From the ethanol extract of leaves of I. laevis, fractions were obtained by two methods: extraction by column vacuum chromatography (CVC) and extraction by continuous liquid/liquid partitioning (CLLP). The evaluation of the antimicrobial activity of fractions against S. mutans and S. sobrinus was performed by well diffusion and bioautography assays. From the CVC technique, only the methanol and methanol-dichloromethane fractions showed activity against S. mutans and S. sobrinus, with a minimum inhibitory concentration of 2 mg/well. From the CLLP technique, only the dichloromethane fraction showed activity against both microorganisms, with a minimum inhibitory concentration of 1 mg/well. Compounds C1 and C2 were isolated from the three active fractions, and showed a minimum inhibitory concentration of 0.4 mg/well for S. mutans and S. sobrinus, with zones of inhibition measuring 6.5 and 6.2 mm, respectively. 1) the three active fractions of I. laevis showed activity against S. mutans and S. sobrinus, 2) compounds C1 and C2 were presen equally in the three active fractions showing activity against the two bacteria, 3) compounds C1 and C2 may be triterpenoid and/or steroidal saponin structures, and 4) the two extraction methods

  13. The antibacterial activity of chlorhexidine digluconate against Streptococcus mutans biofilms follows sigmoidal patterns.

    PubMed

    Lee, Dae-Woo; Jung, Ji-Eun; Yang, Yeon-Mi; Kim, Jae-Gon; Yi, Ho-Keun; Jeon, Jae-Gyu

    2016-10-01

    The aim of this study was to determine the pattern of the antibacterial activity of chlorhexidine digluconate (CHX) against mature Streptococcus mutans biofilms. Streptococcus mutans biofilms were formed on saliva-coated hydroxyapatite discs and then treated with 0-20% CHX, once, three times, or five times (1 min per treatment) during the period of mature biofilm formation (beyond 46 h). After the treatments, the colony-forming unit (CFU) counts of the treated biofilms were determined. The pH values of the spent culture medium were also determined to investigate the change in pH resulting from the antibacterial activity of CHX. The relationships between the concentration of CHX and the CFU counts and the concentration of CHX and culture medium pH, relative to the number of treatments performed, were evaluated using a sigmoidal curve-fitting procedure. The changes in CFU counts and culture medium pH followed sigmoidal curves and were dependent on the concentration of CHX (R 2 = 0.99). The sigmoidal curves were left-shifted with increasing number of treatments. Furthermore, the culture-medium pH of the treated biofilms increased as their CFU counts decreased. The lowest CHX concentration to increase culture-medium pH above the critical pH also decreased as the number of treatments increased. These results may provide fundamental information for selecting the appropriate CHX concentrations to treat S. mutans biofilms. © 2016 Eur J Oral Sci.

  14. Lactose metabolism by Streptococcus mutans: evidence for induction of the tagatose 6-phosphate pathway.

    PubMed Central

    Hamilton, I R; Lebtag, H

    1979-01-01

    Growth on lactose by strains of Streptococcus mutans resulted in the induction of the lactose-phosphoenolpyruvate-phosphotransferase system, phospho-beta-galactosidase, and the enzymes of the tagatose 6-phosphate pathway. PMID:230175

  15. Identification and characterization of an autolysin-encoding gene of Streptococcus mutans.

    PubMed

    Shibata, Yukie; Kawada, Miki; Nakano, Yoshio; Toyoshima, Kuniaki; Yamashita, Yoshihisa

    2005-06-01

    We identified a gene (atlA) encoding autolytic activity from Streptococcus mutans Xc. The AtlA protein predicted to be encoded by atlA is composed of 979 amino acids with a molecular weight of 107,279 and has a conserved beta-1,4-N-acetylmuramidase (lysozyme) domain in the C-terminal portion. Sodium dodecyl sulfate extracts of strain Xc showed two major bacteriolytic bands with molecular masses of 107 and 79 kDa, both of which were absent from a mutant with inactivated atlA. Western blot analysis revealed that the 79-kDa band was derived from the 107-kDa peptide by cleavage of its N-terminal portion. The inactivation of atlA resulted in a marked decrease in autolysis and the formation of very long chains of cells compared to the case for the parent strain. Although both the parent and mutant strains formed biofilms in the presence of sucrose, the biofilms formed by the mutant had a sponge-like architecture with large gaps and contained 30% less biomass than those formed by the parent strain. Furthermore, strain Xc formed glucose-dependent, loose biofilms in the absence of sucrose, but the mutant lost this ability. These results suggest that AtlA may play an important role in biofilm formation by S. mutans. The antibody produced against the C-terminal peptide containing the beta-1,4-N-acetylmuramidase domain drastically inhibited the autolytic activity of strain Xc. This inhibition was specific among the oral streptococci to S. mutans. These results indicate that the catalytic domain of AtlA is located at the C terminus, suggesting that further characterization of this domain may provide a means to control cariogenic dental plaque formation.

  16. Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm

    PubMed Central

    Hernandez-Delgadillo, Rene; Velasco-Arias, Donaji; Diaz, David; Arevalo-Niño, Katiushka; Garza-Enriquez, Marianela; De la Garza-Ramos, Myriam A; Cabral-Romero, Claudio

    2012-01-01

    Background and methods Despite continuous efforts, the increasing prevalence of resistance among pathogenic bacteria to common antibiotics has become one of the most significant concerns in modern medicine. Nanostructured materials are used in many fields, including biological sciences and medicine. While some bismuth derivatives has been used in medicine to treat vomiting, nausea, diarrhea, and stomach pain, the biocidal activity of zerovalent bismuth nanoparticles has not yet been studied. The objective of this investigation was to analyze the antimicrobial activity of bismuth nanoparticles against oral bacteria and their antibiofilm capabilities. Results Our results showed that stable colloidal bismuth nanoparticles had 69% antimicrobial activity against Streptococcus mutans growth and achieved complete inhibition of biofilm formation. These results are similar to those obtained with chlorhexidine, the most commonly used oral antiseptic agent. The minimal inhibitory concentration of bismuth nanoparticles that interfered with S. mutans growth was 0.5 mM. Conclusion These results suggest that zerovalent bismuth nanoparticles could be an interesting antimicrobial agent to be incorporated into an oral antiseptic preparation. PMID:22619547

  17. Genotypic analysis of strains of mutans streptococci by pulsed-field gel electrophoresis.

    PubMed

    Mineyama, R; Yoshino, S; Fukushima, K

    2004-01-01

    The species and serotypes of various strains of S. mutans and S. sobrinus were characterized by pulsed-field gel electrophoresis after the genomic DNA from the various strains had been digested with five restriction enzymes (EcoR I, Xba I, Hind III, Sfi I and BssH II) separately. Among these restriction enzymes, BssH II was very useful for the characterization of species and serotypes and, in particular, digestion discriminated between serotypes d and g. The restriction patterns obtained from the genomic DNA of isolates isolated from children's saliva were essentially identical to those from the genomic DNA of the standard laboratory strains. Patterns of BssH II digests of the genomic DNA of 10 isolates identified as S. sobrinus were characteristic of serotype g of the standard laboratory strains. Our results indicate that digestion with BssH II and subsequence analysis by pulsed-field gel electrophoresis should be useful for the characterization of species and serotypes and for epidemiological studies of mutans streptococci.

  18. Disinfection of Streptococcus mutans biofilm by a non-thermal atmospheric plasma brush

    NASA Astrophysics Data System (ADS)

    Hong, Qing; Dong, Xiaoqing; Chen, Meng; Xu, Yuanxi; Sun, Hongmin; Hong, Liang; Wang, Yong; Yu, Qingsong

    2016-07-01

    This study investigated the argon plasma treatment effect on disinfecting dental biofilm by using an atmospheric pressure plasma brush. Streptococcus mutans biofilms were developed for 3 days on the surfaces of hydroxyapatite (HA) discs, which were used to simulate human tooth enamel. After plasma treatment, cell viability in the S. mutans biofilms was characterized by using 3-(4,5-dimethylazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and confocal laser scanning microscopy (CLSM). Compared with the untreated control group, about 90% bacterial reduction in the biofilms was observed after 1 min plasma treatment. Scanning electron microscopy (SEM) examination indicated severe cell damages occurred on the top surface of the plasma treated biofilms. Confocal laser scanning microscopy (CLSM) showed that plasma treatment was effective as deep as 20 µm into the biofilms. When combined with antibiotic treatment using 0.2% chlorhexidine digluconate solution, the plasma treatment became more effective and over 96% bacterial reduction was observed with 1 min plasma treatment.

  19. Disinfection of Streptococcus mutans Biofilm by a Non-Thermal Atmospheric Plasma Brush

    NASA Astrophysics Data System (ADS)

    Hong, Qing; Dong, Xiaoqing; Chen, Meng; Xu, Yuanxi; Sun, Hongmin; Hong, Liang; Yu, Qingsong

    2015-09-01

    This study investigated the argon plasma treatment effect on disinfecting dental biofilm by using an atmospheric pressure plasma brush. S. mutans biofilms were developed for 3 days on the surfaces of hydroxyapatite discs, which were used to simulate human tooth enamel. After plasma treatment, cell viability in the S. mutans biofilms was characterized by using MTT assay and confocal laser scanning microscopy (CLSM). Compared with the untreated control group, about 90% and 95% bacterial reduction in the biofilms was observed after 1 and 5 min plasma treatment, respectively. Scanning electron microscopy examination indicated severe cell damages occurred on the top surface of the plasma treated biofilms. CLSM showed that plasma treatment was effective as deep as 20 μm into the biofilms. When combined with 0.2% chlorhexidine digluconate solution, the plasma treatment became more effective and over 96% bacterial reduction was observed with 1 min plasma treatment. These results indicate that plasma treatment is effective and promising in dental biofilm disinfection.

  20. Antimicrobial effect of sophoraflavanone G isolated from Sophora flavescens against mutans streptococci.

    PubMed

    Kim, Chun Sung; Park, Soon-Nang; Ahn, Sug-Joon; Seo, Young-Woo; Lee, Young-Ju; Lim, Yun Kyong; Freire, Marcelo Oliveira; Cho, Eugene; Kook, Joong-Ki

    2013-02-01

    In this study, the antibacterial properties of sophoraflavanone G isolated from the methanol extract of Sophora flavescens were tested against 16 strains of mutans streptococci to screen and determine the optimal concentration of anti-caries natural extract. The antimicrobial activity was evaluated by measuring minimum bactericidal concentration (MBC). The cell viability of normal human gingival fibroblast (NHGF) cells was tested using the methyl thiazolyl tetrazolium assay after exposure to sophoraflavanone G. The data showed that sophoraflavanone G had a remarkable antimicrobial effect on the bacteria tested with an MBC ranging from 0.5 μg/ml to 4 μg/ml. Sophoraflavanone G had no cytotoxic effect on NHGF cells at concentrations where it produced an antimicrobial effect. These findings demonstrate that sophoraflavanone G has strong antimicrobial activity against mutans streptococci and could be useful in the development of novel oral hygiene products, such as a gargle solution or dentifrice. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Quantitative detection of Streptococcus mutans in the dental plaque of Japanese preschool children by real-time PCR.

    PubMed

    Hata, S; Hata, H; Miyasawa-Hori, H; Kudo, A; Mayanagi, H

    2006-02-01

    To detect quantitatively the total bacteria and Streptococcus mutans in dental plaque by real-time PCR with prbac, Sm and GTF-B primers, and to compare their presence with the prevalence of dental caries in Japanese preschool children. Human dental plaque samples were collected from the labial surfaces of the upper primary central incisors of 107 children. The dental status was recorded as dft by WHO caries diagnostic criteria. Positive dt and dft scores by the Sm or GTF-B primer were significantly higher than negative scores (P < 0.01). The proportions of Strep. mutans to the total bacteria from sound, and sound and/or filled upper primary incisors were significantly lower than those from decayed or filled, and decayed incisors, respectively (P < 0.01). The ratios of Strep. mutans to total bacteria in plaque detected by real-time PCR with Sm and GTF-B primers were closely associated with the prevalence of dental caries in Japanese preschool children. These assays may be useful for the assessment of an individual's risk of dental caries.

  2. Influence of a Brazilian wild green propolis on the enamel mineral loss and Streptococcus mutans' count in dental biofilm.

    PubMed

    Cardoso, Julia Gabiroboertz; Iorio, Natalia Lopes Pontes; Rodrigues, Luís Fernando; Couri, Maria Luiza Barra; Farah, Adriana; Maia, Lucianne Cople; Antonio, Andréa Gonçalves

    2016-05-01

    This study investigated the anti-demineralizing and antibacterial effects of a propolis ethanolic extract (EEP) against Streptococcus mutans dental biofilm. Blocks of sound bovine enamel (n=24) were fixed on polystyrene plates. S. mutans inoculum (ATCC 25175) and culture media were added (48 h-37 °C) to form biofilm. Blocks with biofilm received daily treatment (30 μL/1 min), for 5 days, as following: G1 (EEP 33.3%); G2 (chlorhexidine digluconate 0.12%); G3 (ethanol 80%); and G4 (Milli-Q water). G5 and G6 were blocks without biofilm that received only EEP and Milli-Q water, respectively. Final surface hardness was evaluated and the percentage of hardness loss (%HL) was calculated. The EEP extract pH and total solids were determined. S. mutans count was expressed by log10 scale of Colony-Forming Units (CFU/mL). One way ANOVA was used to compare results which differed at a 95% significance level. G2 presented the lowest average %HL value (68.44% ± 12.98) (p=0.010), while G4 presented the highest (90.49% ± 5.38%HL) (p=0.007). G1 showed %HL (84.41% ± 2.77) similar to G3 (87.80% ± 6.89) (p=0.477). Groups G5 and G6 presented %HL=16.11% ± 7.92 and 20.55% ± 10.65; respectively (p=0.952). G1 and G4 differed as regards to S. mutans count: 7.26 ± 0.08 and 8.29 ± 0.17 CFU/mL, respectively (p=0.001). The lowest bacterial count was observed in chlorhexidine group (G2=6.79 ± 0.10 CFU/mL) (p=0.043). There was no difference between S. mutans count of G3 and G4 (p=0.435). The EEP showed pH 4.8 and total soluble solids content=25.9 Brix. The EEP seems to be a potent antibacterial substance against S. mutans dental biofilm, but presented no inhibitory action on the de-remineralization of caries process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Analysis of Small RNAs in Streptococcus mutans under Acid Stress-A New Insight for Caries Research.

    PubMed

    Liu, Shanshan; Tao, Ye; Yu, Lixia; Zhuang, Peilin; Zhi, Qinghui; Zhou, Yan; Lin, Huancai

    2016-09-14

    Streptococcus mutans (S. mutans) is the major clinical pathogen responsible for dental caries. Its acid tolerance has been identified as a significant virulence factor for its survival and cariogenicity in acidic conditions. Small RNAs (sRNAs) are recognized as key regulators of virulence and stress adaptation. Here, we constructed three libraries of sRNAs with small size exposed to acidic conditions for the first time, followed by verification using qRT-PCR. The levels of two sRNAs and target genes predicted to be bioinformatically related to acid tolerance were further evaluated under different acid stress conditions (pH 7.5, 6.5, 5.5, and 4.5) at three time points (0.5, 1, and 2 h). Meanwhile, bacterial growth characteristics and vitality were assessed. We obtained 1879 sRNAs with read counts of at least 100. One hundred and ten sRNAs were perfectly mapped to reported msRNAs in S. mutans. Ten out of 18 sRNAs were validated by qRT-PCR. The survival of bacteria declined as the acid was increased from pH 7.5 to 4.5 at each time point. The bacteria can proliferate under each pH except pH 4.5 with time. The levels of sRNAs gradually decreased from pH 7.5 to 5.5, and slightly increased in pH 4.5; however, the expression levels of target mRNAs were up-regulated in acidic conditions than in pH 7.5. These results indicate that some sRNAs are specially induced at acid stress conditions, involving acid adaptation, and provide a new insight into exploring the complex acid tolerance for S. mutans.

  4. Immunological relationships between glucosyltransferases from Streptococcus mutans serotypes.

    PubMed

    Kuramitsu, H; Ingersoll, L

    1976-09-01

    Partially purified glycosyltransferase enzymes for Streptococcus mutans GS-5 (serotype c) have been utilized to prepare antibodies directed against the soluble glucan-synthesizing activity, GTF-B, and the insoluble-soluble glucan synthetic activity, GTF-A. Anti-GTF-A inhibited insoluble glucan formation catalyzed by the extracellular enzymes from strains GS-5 and FA-1 (serotype b) to a much greater extent than that of strains HS-6 (serotype a) or OMZ-176 (serotype d). This antibody fraction also inhibited both the cell-associated glucosyltransferase activities as well as the sucrose-mediated adherence of cells to glass surfaces by strains GS-5 and FA-1 but not that of strains HS-6 and OMZ-176. Anti-GTF-B inhibited soluble glucan formation catalyzed by the extracellular enzymes of strains GS-5 but not that of strain HS-6, FA-1, or OMZ-176. However, this antibody fraction did not strongly inhibit either the cell-associated glycosyltransferase activity or cellular adherence of any of the four strains. These results with body antibody fractions were also correlated with the ability of the antibodies to agglutinate the cells and form precipitin bands after immunodiffusion with the extracellular enzymes. Antibody prepared against the homogeneous soluble glucan-synthesizing enzyme demonstrated similar effects to the anti-GTF-B fraction. These results are discussed in terms of the antigenic relationships existing between the glucosyltransferases from different serotypes of S. mutans.

  5. Glucan Binding Protein C of Streptococcus mutans Mediates both Sucrose-Independent and Sucrose-Dependent Adherence.

    PubMed

    Mieher, Joshua L; Larson, Matthew R; Schormann, Norbert; Purushotham, Sangeetha; Wu, Ren; Rajashankar, Kanagalaghatta R; Wu, Hui; Deivanayagam, Champion

    2018-07-01

    The high-resolution structure of glucan binding protein C (GbpC) at 1.14 Å, a sucrose-dependent virulence factor of the dental caries pathogen Streptococcus mutans , has been determined. GbpC shares not only structural similarities with the V regions of AgI/II and SspB but also functional adherence to salivary agglutinin (SAG) and its scavenger receptor cysteine-rich domains (SRCRs). This is not only a newly identified function for GbpC but also an additional fail-safe binding mechanism for S. mutans Despite the structural similarities with S. mutans antigen I/II (AgI/II) and SspB of Streptococcus gordonii , GbpC remains unique among these surface proteins in its propensity to adhere to dextran/glucans. The complex crystal structure of GbpC with dextrose (β-d-glucose; Protein Data Bank ligand BGC) highlights exclusive structural features that facilitate this interaction with dextran. Targeted deletion mutant studies on GbpC's divergent loop region in the vicinity of a highly conserved calcium binding site confirm its role in biofilm formation. Finally, we present a model for adherence to dextran. The structure of GbpC highlights how artfully microbes have engineered the lectin-like folds to broaden their functional adherence repertoire. Copyright © 2018 American Society for Microbiology.

  6. Analysis of the properties of dental cements after exposure to incubation media containing Streptococcus mutans.

    PubMed

    de Menezes, Fernando Carlos Hueb; Junior, Geraldo Thedei; de Oliveira, Wildomar Jose; Paulino, Tony de Paiva; de Moura, Marcelo Boaventura; da Silva, Igor Lima; de Moura, Marcos Boaventura

    2011-09-01

    Indirect restorations are increasingly used in dentistry, and the cementation interface is possibly the most critical region of the work. The objective of the present work was to evaluate the influence of exposure to a culture medium containing S. mutans on the hardness and solubility of four different cementing agents (zinc phosphate, glass ionomer, glass ionomer modified with resin and resin cement). Test specimens composed of these cements were exposed for 30 days in a culture medium containing S. mutans. After leaching, the test materials were assessed in terms of their solubility (loss of mass) and Knoop (KHN) microhardness. Changes in surface morphology were identified using scanning electron microscopy (SEM). The resin cement showed no significant solubility and its hardness increased following exposure and leaching, while the zinc phosphate cement was the most soluble and its hardness decreased after exposure to the culture medium. SEM analyses identified morphological alterations on the surfaces of the test materials that were compatible with the solubility results. It is concluded that resinous cements perform better than water-based cements when exposed to acidic conditions. The effects of acids from Streptococcus mutans can interfere with the efficiency and properties of some cements used for fixation of indirect restorations, exposed to the buccal environment.

  7. High-Velocity Microsprays Enhance Antimicrobial Activity in Streptococcus mutans Biofilms.

    PubMed

    Fabbri, S; Johnston, D A; Rmaile, A; Gottenbos, B; De Jager, M; Aspiras, M; Starke, E M; Ward, M T; Stoodley, P

    2016-12-01

    Streptococcus mutans in dental plaque biofilms play a role in caries development. The biofilm's complex structure enhances the resistance to antimicrobial agents by limiting the transport of active agents inside the biofilm. The authors assessed the ability of high-velocity water microsprays to enhance delivery of antimicrobials into 3-d-old S. mutans biofilms. Biofilms were exposed to a 90° or 30° impact, first using a 1-µm tracer bead solution (10 9 beads/mL) and, second, a 0.2% chlorhexidine (CHX) or 0.085% cetylpyridinium chloride (CPC) solution. For comparison, a 30-s diffusive transport and simulated mouthwash were also performed. Confocal microscopy was used to determine number and relative bead penetration depth into the biofilm. Assessment of antimicrobial penetration was determined by calculating the killing depth detected by live/dead viability staining. The authors first demonstrated that the microspray was able to deliver significantly more microbeads deeper in the biofilm compared with diffusion and mouthwashing exposures. Next, these experiments revealed that the microspray yielded better antimicrobial penetration evidenced by deeper killing inside the biofilm and a wider killing zone around the zone of clearance than diffusion alone. Interestingly the 30° impact in the distal position delivered approximately 16 times more microbeads and yielded approximately 20% more bacteria killing (for both CHX and CPC) than the 90° impact. These data suggest that high-velocity water microsprays can be used as an effective mechanism to deliver microparticles and antimicrobials inside S. mutans biofilms. High shear stresses generated at the biofilm-burst interface might have enhanced bead and antimicrobial delivery inside the remaining biofilm by combining forced advection into the biofilm matrix and physical restructuring of the biofilm itself. Further, the impact angle has potential to be optimized both for biofilm removal and active agents' delivery inside

  8. Oral colonization by Streptococcus mutans and caries development is reduced upon deletion of carbonic anhydrase VI expression in saliva

    PubMed Central

    Culp, David J.; Robinson, Bently; Parkkila, Seppo; Pan, Pei-wen; Cash, Melanie N.; Truong, Helen N.; Hussey, Thomas W.; Gullett, Sarah L.

    2011-01-01

    Carbonic anhydrase VI (CA VI), encoded by type A transcripts of the gene Car6, is a secretory product of salivary glands and is found in the enamel pellicle. Because higher caries prevalence is associated with lower salivary concentrations of CA VI in humans, we tested whether CA VI protects enamel surfaces from caries induced by Streptococcus mutans, using Car6−/− mice, in which salivary CA VI expression is absent. We detected aberrant Car6 type A transcripts in Car6−/− mice, likely targets for nonsense-mediated mRNA decay. Expression of the intracellular stress-induced isoform of CA VI encoded by type B transcripts was restricted to parotid and submandibular glands of wild type mice. The salivary function of Car6−/− mice was normal as assessed by the histology and protein/glycoprotein profiles of glands, salivary flow rates and protein/glycoprotein compositions of saliva. Surprisingly, total smooth surface caries and sulcal caries in Car6−/− mice were more than 6-fold and 2-fold lower than in wild type mice after infection with S. mutans strain UA159. Recoveries of S. mutans and total microbiota from molars were also lower in Car6−/− mice. To explore possible mechanisms for increased caries susceptibility, we found no differences in S. mutans adherence to salivary pellicles, in vitro. Interestingly, higher levels of Lactobacillus murinus and an unidentified Streptococcus species were cultivated from the oral microbiota of Car6−/− mice. Collective results suggest salivary CA VI may promote caries by modulating the oral microbiota to favor S. mutans colonization and/or by the enzymatic production of acid within plaque. PMID:21945428

  9. Effect of Lippia alba and Cymbopogon citratus essential oils on biofilms of Streptococcus mutans and cytotoxicity in CHO cells.

    PubMed

    Tofiño-Rivera, A; Ortega-Cuadros, M; Galvis-Pareja, D; Jiménez-Rios, H; Merini, L J; Martínez-Pabón, M C

    2016-12-24

    Caries is a public health problem, given that it prevails in 60 to 90% of the school-age global population. Multiple factors interact in its etiology, among them dental plaque is necessary to have lactic acid producing microorganisms like Streptococcus from he Mutans group. Existing prevention and treatment measures are not totally effective and generate adverse effects, which is why it is necessary to search for complementary strategies for their management. The study sought to evaluate the eradication capacity of Streptococcus mutans biofilms and the toxicity on eukaryotic cells of Lippia alba and Cymbopogon citratus essential oils. Essential oils were extracted from plant material through steam distillation and then its chemical composition was determined. The MBEC-high-throughput (MBEC-HTP) (Innovotech, Edmonton, Alberta, Canada) assay used to determine the eradication concentration of S. mutans ATCC 35668 strain biofilms. Cytotoxicity was evaluated on CHO cells through the MTT cell proliferation assay. The major components in both oils were Geraniol and Citral; in L. alba 18.9% and 15.9%, respectively, and in C. citratus 31.3% and 26.7%. The L. alba essential oils presented eradication activity against S. mutans biofilms of 95.8% in 0.01mg/dL concentration and C. citratus essential oils showed said eradication activity of 95.4% at 0.1, 0.01mg/dL concentrations and of 93.1% in the 0.001mg/dL concentration; none of the concentrations of both essential oils showed toxicity on CHO cells during 24h. The L. alba and C. citratus essential oils showed eradication activity against S. mutans biofilms and null cytotoxicity, evidencing the need to conduct further studies that can identify their active components and in order to guide a safe use in treating and preventing dental caries. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  10. Photodynamic antimicrobial chemotherapy on Streptococcus mutans using curcumin and toluidine blue activated by a novel LED device.

    PubMed

    Paschoal, Marco Aurelio; Lin, Meng; Santos-Pinto, Lourdes; Duarte, Simone

    2015-02-01

    Photodynamic antimicrobial chemotherapy (PACT) is an antimicrobial approach that uses photosensitizers (PS) in combination with light sources at specific wavelengths aiming the production of reactive oxygen species. The long illumination time necessary to active PS is a challenge in PACT. Thus, this study investigated the antimicrobial effect of a novel single source of light-emitting diode (LED) light that covers the entire spectrum of visible light beyond interchangeable probes at high power intensity. Blue and red LED probes were used into different exposure times to active different concentrations of curcumin (C) and toluidine blue (T) on planktonic suspensions of Streptococcus mutans UA 159 (S. mutans). S. mutans were standardized and submitted to (1) PACT treatment at three concentrations of C and T exposure at three radiant exposures of a blue LED (BL) (C+BL+) and a red LED (RL) (T+RL+), (2) C (C+BL-) or T alone (T+RL-), (3) both LED lights (C-BL+ and T-RL+), and (4) neither PS nor LED illumination (control group: C-BL- and T-RL-). Aliquots of the suspensions were diluted and cultured on blood agar plates. The number of colony-forming units was calculated after 48 h. The groups submitted to PACT presented a lethal photokilling rate to all PS concentrations at tested dosimetries. The comparison to control group when PS and LED lights used alone demonstrated no decrease in the number of viable bacterial counts. The novel LED device in combination with curcumin and toluidine blue promoted an effective photoinactivation of S. mutans suspensions at ultrashort light illumination times.

  11. [Crystal structure of SMU.2055 protein from Streptococcus mutans and its small molecule inhibitors design and selection].

    PubMed

    Xiaodan, Chen; Xiurong, Zhan; Xinyu, Wu; Chunyan, Zhao; Wanghong, Zhao

    2015-04-01

    The aim of this study is to analyze the three-dimensional crystal structure of SMU.2055 protein, a putative acetyltransferase from the major caries pathogen Streptococcus mutans (S. mutans). The design and selection of the structure-based small molecule inhibitors are also studied. The three-dimensional crystal structure of SMU.2055 protein was obtained by structural genomics research methods of gene cloning and expression, protein purification with Ni²⁺-chelating affinity chromatography, crystal screening, and X-ray diffraction data collection. An inhibitor virtual model matching with its target protein structure was set up using computer-aided drug design methods, virtual screening and fine docking, and Libdock and Autodock procedures. The crystal of SMU.2055 protein was obtained, and its three-dimensional crystal structure was analyzed. This crystal was diffracted to a resolution of 0.23 nm. It belongs to orthorhombic space group C222(1), with unit cell parameters of a = 9.20 nm, b = 9.46 nm, and c = 19.39 nm. The asymmetric unit contained four molecules, with a solvent content of 56.7%. Moreover, five small molecule compounds, whose structure matched with that of the target protein in high degree, were designed and selected. Protein crystallography research of S. mutans SMU.2055 helps to understand the structures and functions of proteins from S. mutans at the atomic level. These five compounds may be considered as effective inhibitors to SMU.2055. The virtual model of small molecule inhibitors we built will lay a foundation to the anticaries research based on the crystal structure of proteins.

  12. Contribution of Streptococcus mutans Strains with Collagen-Binding Proteins in the Presence of Serum to the Pathogenesis of Infective Endocarditis.

    PubMed

    Otsugu, Masatoshi; Nomura, Ryota; Matayoshi, Saaya; Teramoto, Noboru; Nakano, Kazuhiko

    2017-12-01

    Streptococcus mutans , a major pathogen of dental caries, is considered one of the causative agents of infective endocarditis (IE). Recently, bacterial DNA encoding 120-kDa cell surface collagen-binding proteins (CBPs) has frequently been detected from S. mutans -positive IE patients. In addition, some of the CBP-positive S. mutans strains lacked a 190-kDa protein antigen (PA), whose absence strengthened the adhesion to and invasion of endothelial cells. The interaction between pathogenic bacteria and serum or plasma is considered an important virulence factor in developing systemic diseases; thus, we decided to analyze the pathogenesis of IE induced by S. mutans strains with different patterns of CBP and PA expression by focusing on the interaction with serum or plasma. CBP-positive (CBP + )/PA-negative (PA - ) strains showed prominent aggregation in the presence of human serum or plasma, which was significantly greater than that with CBP + /PA-positive (PA + ) and CBP-negative (CBP - )/PA+ strains. Aggregation of CBP + /PA - strains was also observed in the presence of a high concentration of type IV collagen, a major extracellular matrix protein in serum. In addition, aggregation of CBP + /PA - strains was drastically reduced when serum complement was inactivated. Furthermore, an ex vivo adherence model and an in vivo rat model of IE showed that extirpated heart valves infected with CBP + /PA - strains displayed prominent bacterial mass formation, which was not observed following infection with CBP + /PA + and CBP - /PA + strains. These results suggest that CBP + /PA - S. mutans strains utilize serum to contribute to their pathogenicity in IE. Copyright © 2017 American Society for Microbiology.

  13. Adhesion and Early Colonization of S. Mutans on Lithium Disilicate Reinforced Glass-Ceramics, Monolithic Zirconia and Dual Cure Resin Cement.

    PubMed

    Viitaniemi, L; Abdulmajeed, A; Sulaiman, T; Söderling, E; Närhi, T

    2017-12-01

    Monolithic zirconia and glass ceramics are increasingly used in implant crowns. Limited data is available on bacterial adhesion and early biofilm formation on these materials. Four different materials were investigated: (1) Lithium disilicate glass-ceramics (LDS), (2) Fully stabilized zirconia (FSZ), (3) Partially stabilized zirconia (PSZ), and (4) Dual curing cement (DCC). The materials' surfaces were characterized with spinning disc confocal microscopy and by water contact angle and surface free energy (SFE) measurements. For the adhesion tests the materials were rolled in suspensions of Streptococcus mutans. Early biofilm formation was studied on the materials and allowing the biofilms to form for 24 h. S. mutans cell counts were determined by plate culturing. ANOVA and post-hoc Tukey's tests (p⟨0.05) were used for statistical evaluation. The LDS surfaces were clearly hydrophilic with the highest SFE value (p⟨0.001). For S. mutans adhesion, the ranking of the materials from lowest to highest was: LDS = FSZ ⟨ DCC ⟨ PSZ (p⟨0.05). No significant differences among the materials were noticed in biofilm formation. LDS has lower S.mutans adhesion than other materials examined in this study, but the difference was not reflected in early biofilm formation. Copyright© 2017 Dennis Barber Ltd.

  14. Antimicrobial effect of pleomeleangustifolia pheophytin A activation with diode laser to streptococcus mutans

    NASA Astrophysics Data System (ADS)

    Alfat Sunarko, Sinari; Ekasari, Wiwied; Dyah Astuti, Suryani

    2017-05-01

    The main purpose of this research is to identify potential of Pheophytin A. as photosensitizer a agent to inactivate Streptococcus muttans using laser diode of 405nm. Pheophytina is known as chlorophyll derivate that losses magnesium ion at the center of porphyrin ring structure. In this research, phrophytin was extracted from Suji leaf (Pleomeleangustifolia). To determine the antimicrobial effect of treatments on S. mutans, samples were divided into three groups as follows: (1) Groups A(treated with Pheophytin A. and laser 405 nm at varying energy density of 2.5; 5, 7.5; 10.0; 12.5; 15.0; 17.5 and 20.0 J/cm2), (2) Group C-(negative control, no treated), (3) Group C+ (treated only with pheophytin). The experiments were repeated at least three times for each group. The results were analyzed using analysis of variance and the Tukey test. A P value ≤0.05 was considered to indicate a statistically significant difference. The decrement of percentage of number of bacterial colonyes growth was defined as: | (Σ sample colony - Σ control colony)/ Σ control colony | x 100%. The result showed that the incubation of Pheophytin A. using irradiation from laser diode of 405nm have a significant effect towards the decrement in bacterial growth. The most decreased percentage colony of S. mutans occurred on the incubation of pheophytin a treatment and laser irradiation 405nm with density 20 J/cm2 is 61.9%. This showed that pheophytin a functions as a photosesitizer activator to inactivate S. mutans bacteria.

  15. The dlt genes play a role in antimicrobial tolerance of Streptococcus mutans biofilms.

    PubMed

    Nilsson, Martin; Rybtke, Morten; Givskov, Michael; Høiby, Niels; Twetman, Svante; Tolker-Nielsen, Tim

    2016-09-01

    Microbial biofilms are tolerant to antibiotic treatment and therefore cause problematic infections. Knowledge about the molecular mechanisms underlying biofilm-associated antimicrobial tolerance will aid the development of antibiofilm drugs. Screening of a Streptococcus mutans transposon mutant library for genes that are important for biofilm-associated antimicrobial tolerance provided evidence that the dlt genes play a role in the tolerance of S. mutans biofilms towards gentamicin. The minimum bactericidal concentration for biofilm cells (MBC-B) for a dltA transposon mutant was eight-fold lower than that of the wild-type. The minimum bactericidal concentration for planktonic cells (MBC-P) was only slightly reduced, indicating that the mechanism involved in the observed antimicrobial tolerance has a predominant role specifically in biofilms. Experiments with a knockout dltA mutant and complemented strain confirmed that the dlt genes in S. mutans play a role in biofilm-associated tolerance to gentamicin. Confocal laser scanning microscopy analyses of biofilms grown on glass slides showed that the dltA mutant produced roughly the same amount of biofilm as the wild-type, indicating that the reduced antimicrobial tolerance of the dltA mutant is not due to a defect in biofilm formation. The products of the dlt genes have been shown to mediate alanylation of teichoic acids, and in accordance the dltA mutant showed a more negatively charged surface than the wild-type, which likely is an important factor in the reduced tolerance of the dltA mutant biofilms towards the positively charged gentamicin. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  16. Effect of aqueous and alcoholic Stevia (Stevia rebaudiana) extracts against Streptococcus mutans and Lactobacillus acidophilus in comparison to chlorhexidine: An in vitro study

    PubMed Central

    Ajagannanavar, Sunil Lingaraj; Shamarao, Supreetha; Battur, Hemant; Tikare, Shreyas; Al-Kheraif, Abdulaziz Abdullah; Al Sayed, Mohammed Sayed Al Esawy

    2014-01-01

    Introduction: Stevia (S. rebaudiana) a herb which has medicinal value and was used in ancient times as a remedy for a great diversity of ailments and sweetener. Leaves of Stevia contain a high concentration of Stevioside and Rebaudioside which are supposed to be sweetening agents. Aim: To compare the efficacy of aqueous and alcoholic S. rebaudiana extract against Streptococcus mutans and Lactobacillus acidophilus in comparison to chlorhexidine. Materials and Methods: In the first part of the study, various concentrations of aqueous and ethanolic Stevia extract were prepared in the laboratory of Pharmacy College. It was then subjected to microbiological assay to determine its zone of inhibition using Agar disk diffusion test and minimum inhibitory concentration (MIC) using serial broth dilution method against Streptococcus mutans and Lactobacillus acidophilus. Chlorhexidine was used as a positive control. One way Analysis of Variance (ANOVA) test was used for multiple group comparisons followed by Tukey post hoc for group wise comparisons. Results: Minimum inhibitory concentration (MIC) of aqueous and ethnolic Stevia extract against Streptococcus mutans and Lactobacillus acidophilus were 25% and 12.5% respectively. Mean zone of inhibition of the aqueous and alcoholic Stevia extracts against Streptococcus mutans at 48 hours were 22.8 mm and 26.7 mm respectively. Mean zone of inhibition of the aqueous and alcoholic Stevia extracts against Lactobacillus acidophilus at 48 hours were 14.4 mm and 15.1 mm respectively. Mean zone of inhibition of the chlorhexidine against Streptococcus mutans and Lactobacillus acidophilus at 48 hours was 20.5 and 13.2 respectively. Conclusion: The inhibitory effect shown by alcoholic Stevia extract against Streptococcus mutans and Lactobacillus acidophilus was superior when compared with that of aqueous form and was inferior when compared with Chlorhexidine. PMID:25558451

  17. Functions of Two Types of NADH Oxidases in Energy Metabolism and Oxidative Stress of Streptococcus mutans

    PubMed Central

    Higuchi, Masako; Yamamoto, Yuji; Poole, Leslie B.; Shimada, Mamoru; Sato, Yutaka; Takahashi, Nobuhiro; Kamio, Yoshiyuki

    1999-01-01

    We have previously identified two distinct NADH oxidases corresponding to H2O2-forming oxidase (Nox-1) and H2O-forming oxidase (Nox-2) induced in Streptococcus mutans. Sequence analyses indicated a strong similarity between Nox-1 and AhpF, the flavoprotein component of Salmonella typhimurium alkyl hydroperoxide reductase; an open reading frame upstream of nox-1 also showed homology to AhpC, the direct peroxide-reducing component of S. typhimurium alkyl hydroperoxide reductase. To determine their physiological functions in S. mutans, we constructed knockout mutants of Nox-1, Nox-2, and/or the AhpC homologue; we verified that Nox-2 plays an important role in energy metabolism through the regeneration of NAD+ but Nox-1 contributes negligibly. The Nox-2 mutant exhibited greatly reduced aerobic growth on mannitol, whereas there was no significant effect of aerobiosis on the growth on mannitol of the other strains or growth on glucose of any of the strains. Although the Nox-2 mutants grew well on glucose aerobically, the end products of glucose fermentation by the Nox-2 mutant were substantially shifted to higher ratios of lactic acid to acetic acid compared with wild-type cells. The resistance to cumene hydroperoxide of Escherichia coli TA4315 (ahpCF-defective mutant) transformed with pAN119 containing both nox-1 and ahpC genes was not only restored but enhanced relative to that of E. coli K-12 (parent strain), indicating a clear function for Nox-1 as part of an alkyl hydroperoxide reductase system in vivo in combination with AhpC. Surprisingly, the Nox-1 and/or AhpC deficiency had no effect on the sensitivity of S. mutans to cumene hydroperoxide and H2O2, implying that the existence of some other antioxidant system(s) independent of Nox-1 in S. mutans compensates for the deficiency. PMID:10498705

  18. Knemidokoptes mutans (Acari: Knemidocoptidae) in a great-horned owl (Bubo virginianus).

    PubMed

    Schulz, T A; Stewart, J S; Fowler, M E

    1989-07-01

    A routine examination of a captive juvenile great-horned owl (Bubo virginianus) revealed bilateral proliferative papillary hyperkeratosis on the feet. Microscopic examination of skin scrapings produced numerous mites identified as Knemidokoptes mutans. This is the first record of this parasite in a great-horned owl. A single dose of ivermectin (200 micrograms/kg) was effective in treatment of this infection.

  19. Serotype specific polymerase chain reaction identifies a higher prevalence of streptococcus mutans serotype k and e in a random group of children with dental caries from the Southern region of India.

    PubMed

    Rao, Arun Prasad; Austin, Ravi David

    2014-07-01

    The development of dental caries has been associated with the oral prevalence of Streptococcus mutans. Four serotypes of S. mutans have been reported, namely serotype c, e, f, and k that are classified based on the composition and linkages of cell wall polysaccharides, response to physiological reactions, sero-specificity and 16s rRNA homology. Although the oral prevalence of S. mutans serotype c in Indian subjects with or without caries is known, the prevalence of the other three serotypes, e, f, and k are not known. Hence in this study, we have investigated the occurrence of the e, f, and k serotypes in children with or without caries within the age group of 6-12 years. Genomic DNA isolated from whole saliva of caries active (CA) and caries free (CF) groups were first screened for the presence of S. mutans by strain specific polymerase chain reaction (PCR). Those samples that tested positive for the presence of S. mutans were further analyzed by serotype specific PCR to identify the prevalence of the serotypes. Strain specific PCR indicated a higher prevalence of S. mutans in CA group (80%) relative to CF group (43%). Further analysis of the S. mutans positive samples in both groups indicated a higher prevalence of serotype k and e, followed by serotype f in CA group. The present data clearly establishes a novel S. mutans serotype prevalence hierarchy in children from this region, compared with those that have been reported elsewhere. Besides, the data are also clinically significant as the occurrence of serotype k has been associated with infective endocarditis.

  20. The effect of pomegranate mouthrinse on Streptococcus mutans count and salivary pH: An in vivo study.

    PubMed

    Umar, Dilshad; Dilshad, Bahija; Farhan, Mohammed; Ali, Arshiya; Baroudi, Kusai

    2016-01-01

    Herbal mouthwashes have been considered to be a more advantageous option to their chemical counterparts, for a long-time. The use of pomegranate fruit dates from ancient times and reports of its therapeutic abilities have echoed throughout the ages. To evaluate the effect on the salivary pH and the Streptococcus mutans count in healthy subjects before and after pomegranate mouthrinse. Fifty healthy patients were randomly divided into two groups of 25 subjects each. Group A was treated with 0.2% chlorhexidine mouthrinse; while Group B was treated with pomegranate peel extract (PPE) mouthrinse and the saliva samples were collected at three different intervals: Prerinse, after 10 min, and 60 min. The salivary pH was measured using a digital pH meter and the S. mutans count was determined by the commercial system Dentocult SM. The statistical analyses used in this study are Mann-Whitney U-test and t-test. PPE mouthrinse had an inhibitory effect on S. mutans count in adults. There was also an increase in the salivary pH after 10 min of the mouthrinse. PPE mouthrinse may be considered as a potential anticariogenic mouthrinse.

  1. In-vitro efficacy of different morphology zinc oxide nanopowders on Streptococcus sobrinus and Streptococcus mutans.

    PubMed

    Mohd Bakhori, Siti Khadijah; Mahmud, Shahrom; Ling, Chuo Ann; Sirelkhatim, Amna Hassan; Hasan, Habsah; Mohamad, Dasmawati; Masudi, Sam'an Malik; Seeni, Azman; Abd Rahman, Rosliza

    2017-09-01

    ZnO with two different morphologies were used to study the inhibition of Streptococcus sobrinus and Streptococcus mutans which are closely associated with tooth cavity. Rod-like shaped ZnO-A and plate-like shaped ZnO-B were produced using a zinc boiling furnace. The nanopowders were characterized using energy filtered transmission electron microscopy (EFTEM), X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, Raman spectroscopy and dynamic light scattering (DLS) to confirm the properties of the ZnO polycrystalline wurtzite structures. XRD results show that the calculated crystallite sizes of ZnO-A and ZnO-B were 36.6 and 39.4nm, respectively, whereas DLS revealed particle size distributions of 21.82nm (ZnO-A) and 52.21nm (ZnO-B). PL spectra showed ion vacancy defects related to green and red luminescence for both ZnO particles. These defects evolved during the generation of reactive oxygen species which contributed to the antibacterial activity. Antibacterial activity was investigated using microdilution technique towards S. sobrinus and S. mutans at different nanopowder concentrations. Results showed that ZnO-A exhibited higher inhibition on both bacteria compared with ZnO-B. Moreover, S. mutans was more sensitive compared with S. sobrinus because of its higher inhibition rate. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. In situ biosensing of the nanomechanical property and electrochemical spectroscopy of Streptococcus mutans-containing biofilms

    NASA Astrophysics Data System (ADS)

    Haochih Liu, Bernard; Li, Kun-Lin; Kang, Kai-Li; Huang, Wen-Ke; Liao, Jiunn-Der

    2013-07-01

    This work presents in situ biosensing approaches to study the nanomechanical and electrochemical behaviour of Streptococcus mutans biofilms under different cultivation conditions and microenvironments. The surface characteristics and sub-surface electrochemistry of the cell wall of S. mutans were measured by atomic force microscopy (AFM) based techniques to monitor the in situ biophysical status of biofilms under common anti-pathogenic procedures such as ultraviolet (UV) radiation and alcohol treatment. The AFM nanoindentation suggested a positive correlation between nanomechanical strength and the level of UV radiation of S. mutans; scanning impedance spectroscopy of dehydrated biofilms revealed reduced electrical resistance that is distinctive from that of living biofilms, which can be explained by the discharge of cytoplasm after alcohol treatment. Furthermore, the localized elastic moduli of four regions of the biofilm were studied: septum (Z-ring), cell wall, the interconnecting area between two cells and extracellular polymeric substance (EPS) area. The results indicated that cell walls exhibit the highest elastic modulus, followed by Z-ring, interconnect and EPS. Our approach provides an effective alternative for the characterization of the viability of living cells without the use of biochemical labelling tools such as fluorescence dyeing, and does not rely on surface binding or immobilization for detection. These AFM-based techniques can be very promising approaches when the conventional methods fall short.

  3. Development of resistance of mutans streptococci and Porphyromonas gingivalis to chlorhexidine digluconate and amine fluoride/stannous fluoride-containing mouthrinses, in vitro.

    PubMed

    Kulik, Eva M; Waltimo, Tuomas; Weiger, Roland; Schweizer, Irene; Lenkeit, Krystyna; Filipuzzi-Jenny, Elisabeth; Walter, Clemens

    2015-07-01

    The aim if this study was to determine the minimal inhibitory concentrations of chlorhexidine digluconate and an amine fluoride/stannous fluoride-containing mouthrinse against Porphyromonas gingivalis and mutans streptococci during an experimental long-term subinhibitory exposition. Five P. gingivalis strains and four mutans streptococci were subcultivated for 20-30 passages in subinhibitory concentrations of chlorhexidine digluconate or an amine fluoride/stannous fluoride-containing mouthrinse. Pre-passaging minimal inhibitory concentrations for chlorhexidine ranged from 0.5 to 2 mg/l for mutans streptococci and from 2 to 4 mg/l for the P. gingivalis isolates. For the amine fluoride/stannous fluoride-containing mouthrinse minimal inhibitory values from 0.125 to 0.25% for the mutans streptococci and from 0.063 to 0.125% for the P. gingivalis isolates were determined. Two- to fourfold increased minimal inhibitory concentrations against chlorhexidine were detected for two of the five P. gingivalis isolates, whereas no increase in minimal inhibitory concentrations was found for the mutans streptococci after repeated passaging through subinhibitory concentrations. Repeated exposure to subinhibitory concentrations of the amine fluoride/stannous fluoride-containing mouthrinse did not alter the minimally inhibitory concentrations of the bacterial isolates tested. Chlorhexidine and the amine fluoride/stannous fluoride-containing mouthrinse are effective inhibitory agents against the oral bacterial isolates tested. No general development of resistance against chlorhexidine or the amine fluoride/stannous fluoride-containing mouthrinse was detected. However, some strains showed potential to develop resistance against chlorhexidine after prolonged exposure. The use of chlorhexidine should be limited to short periods of time. The amine fluoride/stannous fluoride-containing mouthrinse appears to have the potential to be used on a long-term basis.

  4. Identification of amino acid residues in Streptococcus mutans glucosyltransferases influencing the structure of the glucan product.

    PubMed Central

    Shimamura, A; Nakano, Y J; Mukasa, H; Kuramitsu, H K

    1994-01-01

    The glucosyltransferases (GTFs) of mutans streptococci are important virulence factors in the sucrose-dependent colonization of tooth surfaces by these organisms. To investigate the structure-function relationship of the GTFs, an approach was initiated to identify amino acid residues of the GTFs which affect the incorporation of glucose residues into the glucan polymer. Conserved amino acid residues were identified in the GTF-S and GTF-I enzymes of the mutans streptococci and were selected for site-directed mutagenesis in the corresponding enzymes from Streptococcus mutans GS5. Conversion of six amino acid residues of the GTF-I enzyme to those present at the corresponding positions in GTF-S, either singly or in multiple combinations, resulted in enzymes synthesizing increased levels of soluble glucans. The enzyme containing six alterations synthesized 73% water-soluble glucan in the absence of acceptor dextran T10, while parental enzyme GTF-I synthesized no such glucan product. Conversely, when residue 589 of the GTF-S enzyme was converted from Thr to either Asp or Glu, the resulting enzyme synthesized primarily water-insoluble glucan in the absence of the acceptor. Therefore, this approach has identified several amino acid positions which influence the nature of the glucan product synthesized by GTFs. PMID:8050997

  5. In vitro lethal photosensitization of S. mutans using methylene blue and toluidine blue O as photosensitizers.

    PubMed

    Araújo, Patrícia V; Teixeira, Karina I R; Lanza, Lincoln D; Cortes, Maria E; Poletto, Luiz T A

    2009-01-01

    The purpose of this in vitro study was to evaluate the antimicrobial effect of photodynamic therapy on Streptococcus mutans (A TCC 25175) suspensions, using a red laser for one minute in combination with toluidine blue O (TBO) or methylene blue (MB). Both photosensitizers were used in three concentrations (25, 10 and 5 mg/L). The activity ofphotosensitizers and laser irradiation were tested separately on the bacteria, as well as the irradiation of this light source in the presence of the TBO or MB. These groups were compared to a control group, in which the microorganism did not receive any treatment. The activity of both TBO and MB or laser irradiation, alone, were not able to reduce the number of S. mutans. In the groups of lethal photosensitization, a bacterial reduction of 70% for TBO and 73% for MB was observed when these photosensitizers were used at 25 mg/L and a reduction of 48% was observed for MB at 5mg/L. In other concentrations there were no significant differences in comparison to the control group. Both the TBO and the MB at 25 mg/L associated with a red laser had an excellent potential for use in PDT in lethal sensitization of S. mutans.

  6. Effect of high-fructose corn syrup on the acidogenicity, adherence and biofilm formation of Streptococcus mutans.

    PubMed

    Ma, R; Sun, M; Wang, S; Kang, Q; Huang, L; Li, T; Xia, W-W

    2013-06-01

    Although high-fructose corn syrup (HFCS) as a kind of sugar has been widely used in manufactured foods recently, there is little information available regarding its cariogenicity. The aim of this study was to evaluate the cariogenic potential of HFCS. Streptococcus mutans UA159 was inoculated into HFCS media and cultivated. The pH of each culture was measured to assess acidogenicity. Spectrophotometric turbidity was measured to determine the percentage of adherence. Confocal laser scanning microscopy and SYTO-9 staining were employed to observe biofilm formation. Sucrose media was used as a positive control. The ΔpH in HFCS media was significantly larger than that in sucrose media and the pH in HFCS media decreased faster (p < 0.05). The percentage of adherence of S. mutans in HFCS media was significantly lower than that in sucrose media (p < 0.05). The biofilm formed in sucrose media was significantly thicker than that in HFCS media (p < 0.05). The results of this study suggest that the cariogenicity of S. mutans in the presence of HFCS may differ compared to its cariogenicity in the presence of sucrose. Further in vivo studies need to be undertaken to resolve this uncertainty. © 2013 Australian Dental Association.

  7. Interactions of the Metalloregulatory Protein SloR from Streptococcus mutans with Its Metal Ion Effectors and DNA Binding Site

    PubMed Central

    Corbett, John; Cornacchione, Louis; Daly, William; Galan, Diego; Wysota, Michael; Tivnan, Patrick; Collins, Justin; Nye, Dillon; Levitz, Talya; Breyer, Wendy A.; Glasfeld, Arthur

    2015-01-01

    ABSTRACT Streptococcus mutans is the causative agent of dental caries, a significant concern for human health, and therefore an attractive target for therapeutics development. Previous work in our laboratory has identified a homodimeric, manganese-dependent repressor protein, SloR, as an important regulator of cariogenesis and has used site-directed mutagenesis to map functions to specific regions of the protein. Here we extend those studies to better understand the structural interaction between SloR and its operator and its effector metal ions. The results of DNase I assays indicate that SloR protects a 42-bp region of DNA that overlaps the sloABC promoter on the S. mutans UA159 chromosome, while electrophoretic mobility shift and solution binding assays indicate that each of two SloR dimers binds to this region. Real-time semiquantitative reverse transcriptase PCR (real-time semi-qRT-PCR) experiments were used to determine the individual base pairs that contribute to SloR-DNA binding specificity. Solution studies indicate that Mn2+ is better than Zn2+ at specifically activating SloR to bind DNA, and yet the 2.8-Å resolved crystal structure of SloR bound to Zn2+ provides insight into the means by which selective activation by Mn2+ may be achieved and into how SloR may form specific interactions with its operator. Taken together, these experimental observations are significant because they can inform rational drug design aimed at alleviating and/or preventing S. mutans-induced caries formation. IMPORTANCE This report focuses on investigating the SloR protein as a regulator of essential metal ion transport and virulence gene expression in the oral pathogen Streptococcus mutans and on revealing the details of SloR binding to its metal ion effectors and binding to DNA that together facilitate this expression. We used molecular and biochemical approaches to characterize the interaction of SloR with Mn2+ and with its SloR recognition element to gain a clearer picture

  8. Gas flow dependence for plasma-needle disinfection of S. mutans bacteria

    NASA Astrophysics Data System (ADS)

    Goree, J.; Liu, Bin; Drake, David

    2006-08-01

    The role of gas flow and transport mechanisms are studied for a small low-power impinging jet of weakly-ionized helium at atmospheric pressure. This plasma needle produces a non-thermal glow discharge plasma that kills bacteria. A culture of Streptococcus mutans (S. mutans) was plated onto the surface of agar, and spots on this surface were then treated with plasma. Afterwards, the sample was incubated and then imaged. These images, which serve as a biological diagnostic for characterizing the plasma, show a distinctive spatial pattern for killing that depends on the gas flow rate. As the flow is increased, the killing pattern varies from a solid circle to a ring. Images of the glow reveal that the spatial distribution of energetic electrons corresponds to the observed killing pattern. This suggests that a bactericidal species is generated in the gas phase by energetic electrons less than a millimetre from the sample surface. Mixing of air into the helium plasma is required to generate the observed O and OH radicals in the flowing plasma. Hydrodynamic processes involved in this mixing are buoyancy, diffusion and turbulence.

  9. Inhibiting effects of fructanase on competence-stimulating peptide-dependent quorum sensing system in Streptococcus mutans.

    PubMed

    Suzuki, Yusuke; Nagasawa, Ryo; Senpuku, Hidenobu

    2017-09-01

    Streptococcus mutans produces glucosyltransferases encoded by the gtfB and gtfC genes, which synthesize insoluble glucan, and both insoluble and soluble glucans by conversion of sucrose, and are known as principal agents to provide strong biofilm formation and demineralization on tooth surfaces. S. mutans possess a Com-dependent quorum sensing (QS) system, which is important for survival in severe conditions. The QS system is stimulated by the interaction between ComD {Receptor to competence-stimulating peptide (CSP)} encoded by the comD and CSP encoded by the comC, and importantly associated with bacteriocin production and genetic competence. Previously, we found enzyme fructanase (FruA) as a new inhibitor for the glucan-dependent biofilm formation. In the present study, inhibiting effects by FruA on glucan-independent biofilm formation of S. mutans UA159, UA159.gtfB - , UA159.gtfC - , and UA159.gtfBC - were observed in sucrose and no sucrose sugars-supplemented conditions using the plate assay. The reduction of UA159.comC - and UA159.comD - biofilm formation were also observed as compared with UA159 in same conditions. These results suggested that inhibitions of glucan-independent and Com-dependent biofilm formation were involved in the inhibiting mechanism by FruA. To more thoroughly investigate effects by FruA on the QS system, we examined on CSP-stimulated and Com-dependent bacteriocin production and genetic transformation. FruA inhibited bacteriocin production in collaboration with CSP and genetic transformation in bacterial cell conditions treated with FruA. Our findings show that FruA has multiple effects that inhibit survival functions of S. mutans, including biofilm formation and CSP-dependent QS responses, indicating its potential use as an agent for prevention of dental caries. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  10. Correlation between dental caries experience and mutans streptococci counts using saliva and plaque as microbial risk indicators in 3-8 year old children. A cross Sectional study.

    PubMed

    Nanda, Jasmine; Sachdev, Vinod; Sandhu, Meera; Deep-Singh-Nanda, Kanwar

    2015-02-01

    Determination of the relative amounts of mutans streptococcus in both saliva and plaque and to study its correlation with dental caries in children. The study comprised of 60 children aged 3-8 years divided into 2 groups (30 children in each): Group A- Children with more than 4 carious teeth and Group B- Children without caries. Saliva and plaque was collected from children of both the groups with the help of Dentocult SM strip test kit (Orion Diagnostic). Following incubation, mutans streptococcus scores (from 0 to 3) in each individual was evaluated and compared between both the groups. On comparing the two groups, mean ± SD of saliva score and plaque score was 2.40 ± 0.675 and 2.40 ± 0.621 respectively in group A, whereas it was 0.60 ± 0.498 and 0.83 ± 0.531 in children of group B showing a significant correlation (p = < 0.001) between mutans streptococci scores in both saliva and plaque and dental caries experience. There is a direct and strong co-relation between the salivary and plaque mutans streptococcus counts and caries activity in children aged 3-8 years. Key words:Mutans streptococci, dentocult, dental caries.

  11. Serotype specific polymerase chain reaction identifies a higher prevalence of streptococcus mutans serotype k and e in a random group of children with dental caries from the Southern region of India

    PubMed Central

    Rao, Arun Prasad; Austin, Ravi David

    2014-01-01

    Background: The development of dental caries has been associated with the oral prevalence of Streptococcus mutans. Four serotypes of S. mutans have been reported, namely serotype c, e, f, and k that are classified based on the composition and linkages of cell wall polysaccharides, response to physiological reactions, sero-specificity and 16s rRNA homology. Although the oral prevalence of S. mutans serotype c in Indian subjects with or without caries is known, the prevalence of the other three serotypes, e, f, and k are not known. Hence in this study, we have investigated the occurrence of the e, f, and k serotypes in children with or without caries within the age group of 6-12 years. Materials and Methods: Genomic DNA isolated from whole saliva of caries active (CA) and caries free (CF) groups were first screened for the presence of S. mutans by strain specific polymerase chain reaction (PCR). Those samples that tested positive for the presence of S. mutans were further analyzed by serotype specific PCR to identify the prevalence of the serotypes. Results: Strain specific PCR indicated a higher prevalence of S. mutans in CA group (80%) relative to CF group (43%). Further analysis of the S. mutans positive samples in both groups indicated a higher prevalence of serotype k and e, followed by serotype f in CA group. Conclusion: The present data clearly establishes a novel S. mutans serotype prevalence hierarchy in children from this region, compared with those that have been reported elsewhere. Besides, the data are also clinically significant as the occurrence of serotype k has been associated with infective endocarditis. PMID:25191062

  12. Adhesion of mutans streptococci to self-ligating ceramic brackets: in vivo quantitative analysis with real-time polymerase chain reaction.

    PubMed

    Jung, Woo-Sun; Yang, Il-Hyung; Lim, Won Hee; Baek, Seung-Hak; Kim, Tae-Woo; Ahn, Sug-Joon

    2015-12-01

    To analyze in vivo mutans streptococci (MS) adhesion to self-ligating ceramic brackets [Clarity-SL (CSL) and Clippy-C (CC)] and the relationships between bacterial adhesion and oral hygiene indices. Four central incisor brackets from the maxilla and mandible were collected from 40 patients (20 patients per each bracket type) at debonding immediately after plaque and gingival indices were measured. Adhesions of Streptococcus mutans, S. sobrinus, and total bacteria were quantitatively determined using real-time polymerase chain reaction after genomic DNA was extracted. Factorial analysis of variance was used to analyze bacterial adhesion to the brackets with respect to the bracket type and jaw position. Correlation coefficients were calculated to determine the relationships of bacterial adhesion to oral hygiene indices. Adhesion of total bacteria and S. mutans to CSL was higher than that to CC (P < 0.001). Adhesion of total bacteria to the mandibular brackets was higher than that to the maxillary ones (P < 0.001), while adhesion of S. mutans to the maxillary brackets were higher than that in the mandibular ones (P < 0.001). In particular, the proportion of S. mutans to total bacteria in CSL was higher than CC (P < 0.05) in the maxillary anterior teeth (P < 0.001). There were no significant differences in adhesion of S. sobrinus between the brackets and jaw positions. Interestingly, no significant relationships were found between bacterial adhesions and oral hygiene indices. Complex bracket configurations may significantly influence bacterial adhesion to orthodontic brackets. Further in vivo study using bracket raw materials will help to define the relationships between bacteria adhesion and enamel demineralization. Because oral hygiene indices were not significantly correlated with adhesions of MS to self-ligating ceramic brackets, careful examinations around the brackets should be needed to prevent enamel demineralization, regardless of oral hygiene status. © The

  13. The Stress-Responsive dgk Gene from Streptococcus mutans Encodes a Putative Undecaprenol Kinase Activity

    PubMed Central

    Lis, Maciej; Kuramitsu, Howard K.

    2003-01-01

    We analyzed a previously constructed stress-sensitive Streptococcus mutans mutant Tn-1 strain resulting from disruption by transposon Tn916 of a gene encoding a protein exhibiting amino acid sequence similarity to the Escherichia coli diacylglycerol kinase. It was confirmed that the mutation led to significantly reduced lipid kinase activity, while expression of the intact gene on a plasmid restored both kinase activity and the wild-type phenotype. Further analysis revealed that the product of the dgk gene in S. mutans predominantly recognizes a lipid substrate other than diacylglycerol, most likely undecaprenol, as demonstrated by its efficient phosphorylation and the resistance of the product of the reaction to saponification. The physiological role of the product of the dgk gene as a putative undecaprenol kinase was further supported by a significantly higher sensitivity of the mutant to bacitracin compared with that of the parental strain. PMID:12654811

  14. Differences of the oral colonization by Streptococcus of the mutans group in children and adolescents with Down syndrome, mental retardation and normal controls.

    PubMed

    Linossier, Alfredo G; Valenzuela, Carlos Y; Toledo, Héctor

    2008-09-01

    to compare the concentration and serotype of Streptococcus mutans in saliva of Down syndrome (DS), mental retarded (MR) and healthy control (C) individuals of the Región Metropolitana Sur of Santiago of Chile. Hundred and seventy nine male and females children and adolescents, aged between 5 to 19 years, 59 DS, 60 MR and 60 C were studied. Saliva samples were cultured in TYCSB agar for quantification, biochemical and serological tests. ANOVA and Chi-square for homogeneity tests were applied. C, DS and MR presented Streptococcus mutans (serotypes c, e, f) and Streptococcus sobrinus (d, g, h), but only among DS and MR non-typifiable (No-tip) Streptococcus mutans were found. MR and DS showed higher bacteria concentration scores than C (P=0.001). Serotypes showed a significant heterogeneity of concentration scores: d, g, h showed the highest and No-tip the lowest one (P = 0.037). No-tip bacteria were absent in C and present in MR and DS; this result indicates different immune and ecological conditions among these human groups. The score of Streptococcus mutans in saliva was higher in DS and MR than in C.

  15. Effect of Herbal and Fluoride Mouth Rinses on Streptococcus mutans and Dental Caries among 12–15-Year-Old School Children: A Randomized Controlled Trial

    PubMed Central

    Shenoy Panchmal, Ganesh; Kumar, Vijaya; Jodalli, Praveen S.; Sonde, Laxminarayan

    2017-01-01

    To assess and compare the effect of herbal and fluoride mouth rinses on Streptococcus mutans count and glucan synthesis by Streptococcus mutans and dental caries, a parallel group placebo controlled randomized trial was conducted among 240 schoolchildren (12–15 years old). Participants were randomly divided and allocated into Group I (0.2% fluoride group), Group II (herbal group), and Group III (placebo group). All received 10 ml of respective mouth rinses every fortnight for a period of one year. Intergroup and intragroup comparison were done for Streptococcus mutans count and glucan synthesis by Streptococcus mutans and dental caries. Streptococcus mutans count showed a statistically significant difference between Group I and Group III (p = 0.035) and also between Group II and Group III (p = 0.039). Glucan concentration levels showed a statistically significant difference (p = 0.024) between Group II and Group III at 12th month. Mean DMF scores showed no statistical difference between the three groups (p = 0.139). No difference in the level of significance was seen in the intention-to-treat and per-protocol analysis. The present study showed that both herbal and fluoride mouth rinses, when used fortnightly, were equally effective and could be recommended for use in school-based health education program to control dental caries. Trial registration number is CTRI/2015/08/006070. PMID:28352285

  16. Beyond Streptococcus mutans: Dental Caries Onset Linked to Multiple Species by 16S rRNA Community Analysis

    PubMed Central

    Gross, Erin L.; Beall, Clifford J.; Kutsch, Stacey R.; Firestone, Noah D.; Leys, Eugene J.; Griffen, Ann L.

    2012-01-01

    Dental caries in very young children may be severe, result in serious infection, and require general anesthesia for treatment. Dental caries results from a shift within the biofilm community specific to the tooth surface, and acidogenic species are responsible for caries. Streptococcus mutans, the most common acid producer in caries, is not always present and occurs as part of a complex microbial community. Understanding the degree to which multiple acidogenic species provide functional redundancy and resilience to caries-associated communities will be important for developing biologic interventions. In addition, microbial community interactions in health and caries pathogenesis are not well understood. The purpose of this study was to investigate bacterial community profiles associated with the onset of caries in the primary dentition. In a combination cross-sectional and longitudinal design, bacterial community profiles at progressive stages of caries and over time were examined and compared to those of health. 16S rRNA gene sequencing was used for bacterial community analysis. Streptococcus mutans was the dominant species in many, but not all, subjects with caries. Elevated levels of S. salivarius, S. sobrinus, and S. parasanguinis were also associated with caries, especially in subjects with no or low levels of S. mutans, suggesting these species are alternative pathogens, and that multiple species may need to be targeted for interventions. Veillonella, which metabolizes lactate, was associated with caries and was highly correlated with total acid producing species. Among children without previous history of caries, Veillonella, but not S. mutans or other acid-producing species, predicted future caries. Bacterial community diversity was reduced in caries as compared to health, as many species appeared to occur at lower levels or be lost as caries advanced, including the Streptococcus mitis group, Neisseria, and Streptococcus sanguinis. This may have

  17. The t6A modification acts as a positive determinant for the anticodon nuclease PrrC, and is distinctively nonessential in Streptococcus mutans.

    PubMed

    Bacusmo, Jo Marie; Orsini, Silvia S; Hu, Jennifer; DeMott, Michael; Thiaville, Patrick C; Elfarash, Ameer; Paulines, Mellie June; Rojas-Benítez, Diego; Meineke, Birthe; Deutsch, Chris; Iwata-Reuyl, Dirk; Limbach, Patrick A; Dedon, Peter C; Rice, Kelly C; Shuman, Stewart; Crécy-Lagard, Valérie de

    2017-07-20

    Endoribonuclease toxins (ribotoxins) are produced by bacteria and fungi to respond to stress, eliminate non-self competitor species, or interdict virus infection. PrrC is a bacterial ribotoxin that targets and cleaves tRNA Lys UUU in the anticodon loop. In vitro studies suggested that the post-transcriptional modification threonylcarbamoyl adenosine (t 6 A) is required for PrrC activity but this prediction had never been validated in vivo. Here, by using t 6 A-deficient yeast derivatives, it is shown that t 6 A is a positive determinant for PrrC proteins from various bacterial species. Streptococcus mutans is one of the few bacteria where the t 6 A synthesis gene tsaE (brpB) is dispensable and its genome encodes a PrrC toxin. We had previously shown using an HPLC-based assay that the S. mutans tsaE mutant was devoid of t 6 A. However, we describe here a novel and a more sensitive hybridization-based t 6 A detection method (compared to HPLC) that showed t 6 A was still present in the S. mutans ΔtsaE, albeit at greatly reduced levels (93% reduced compared with WT). Moreover, mutants in 2 other S. mutans t 6 A synthesis genes (tsaB and tsaC) were shown to be totally devoid of the modification thus confirming its dispensability in this organism. Furthermore, analysis of t 6 A modification ratios and of t 6 A synthesis genes mRNA levels in S. mutans suggest they may be regulated by growth phase.

  18. The F-ATPase operon from the oral streptococci S. mutans and S. sanguis: How structure relates to function

    NASA Astrophysics Data System (ADS)

    Kuhnert, Wendi Lee

    1999-10-01

    The oral microbe, Streptococcus mutans is known to be a primary contributor to the most common infection in humans, dental caries. In the plaque environment, resident bacteria metabolize dietary sucrose which results in the production of organic acids and a decrease in plaque pH. The proton-translocating ATPase (F-ATPase) protects the bacteria from acidification by extruding protons, at the expense of ATP, to maintain an internal pH which is more neutral than the external environment. Examination of this enzyme will help us to gain insight regarding its contribution to the aciduricity characteristics of oral bacteria. In this work, our goal was to begin the molecular dissection of the mechanism by which streptococcal ATPases are regulated and function enzymatically. Sequence analysis of the F-ATPase from the non-pathogenic S. sanguis revealed that the structural genes are homologous to S. mutans as well as other sequenced F-ATPases. Cloned subunits were functionally similar as shown by complementing E. coli ATPase mutants. S. sanguis/E. coli hybrid enzymes hydrolyzed ATP, but proton conduction was uncoupled as demonstrated with inhibition studies. Transcriptional regulation of the F-ATPase operon from S. mutans was examined using chloramphenicol acetyltransferase gene fusions. Fusions containing 136 bp of DNA upstream of the promoter showed higher levels of expression as compared to those with only 16 bp. Similar to ATPase enzymatic activity, CAT expression also increased during growth at low pH. Analysis of RNA demonstrated that ATPase mRNA levels were higher at low pH, which supported the CAT activity data. Therefore, the F-ATPase from S. mutans was regulated, at least partially, by both the DNA located upstream of the promoter as well as by pH. Examination of structural models of the F-ATPase from the pathogenic oral organisms S. mutans and Lactobacillus casei and the non- pathogenic S. sanguis showed that the differences noted in the sequence of the catalytic

  19. Contribution of the Interaction of Streptococcus mutans Serotype k Strains with Fibrinogen to the Pathogenicity of Infective Endocarditis

    PubMed Central

    Nomura, Ryota; Otsugu, Masatoshi; Naka, Shuhei; Teramoto, Noboru; Kojima, Ayuchi; Muranaka, Yoshinori; Matsumoto-Nakano, Michiyo; Ooshima, Takashi

    2014-01-01

    Streptococcus mutans, a pathogen responsible for dental caries, is occasionally isolated from the blood of patients with bacteremia and infective endocarditis (IE). Our previous study demonstrated that serotype k-specific bacterial DNA is frequently detected in S. mutans-positive heart valve specimens extirpated from IE patients. However, the reason for this frequent detection remains unknown. In the present study, we analyzed the virulence of IE from S. mutans strains, focusing on the characterization of serotype k strains, most of which are positive for the 120-kDa cell surface collagen-binding protein Cbm and negative for the 190-kDa protein antigen (PA) known as SpaP, P1, antigen I/II, and other designations. Fibrinogen-binding assays were performed with 85 clinical strains classified by Cbm and PA expression levels. The Cbm+/PA− group strains had significantly higher fibrinogen-binding rates than the other groups. Analysis of platelet aggregation revealed that SA31, a Cbm+/PA− strain, induced an increased level of aggregation in the presence of fibrinogen, while negligible aggregation was induced by the Cbm-defective isogenic mutant SA31CBD. A rat IE model with an artificial impairment of the aortic valve created using a catheter showed that extirpated heart valves in the SA31 group displayed a prominent vegetation mass not seen in those in the SA31CBD group. These findings could explain why Cbm+/PA− strains are highly virulent and are related to the development of IE, and the findings could also explain the frequent detection of serotype k DNA in S. mutans-positive heart valve clinical specimens. PMID:25287921

  20. Contribution of the interaction of Streptococcus mutans serotype k strains with fibrinogen to the pathogenicity of infective endocarditis.

    PubMed

    Nomura, Ryota; Otsugu, Masatoshi; Naka, Shuhei; Teramoto, Noboru; Kojima, Ayuchi; Muranaka, Yoshinori; Matsumoto-Nakano, Michiyo; Ooshima, Takashi; Nakano, Kazuhiko

    2014-12-01

    Streptococcus mutans, a pathogen responsible for dental caries, is occasionally isolated from the blood of patients with bacteremia and infective endocarditis (IE). Our previous study demonstrated that serotype k-specific bacterial DNA is frequently detected in S. mutans-positive heart valve specimens extirpated from IE patients. However, the reason for this frequent detection remains unknown. In the present study, we analyzed the virulence of IE from S. mutans strains, focusing on the characterization of serotype k strains, most of which are positive for the 120-kDa cell surface collagen-binding protein Cbm and negative for the 190-kDa protein antigen (PA) known as SpaP, P1, antigen I/II, and other designations. Fibrinogen-binding assays were performed with 85 clinical strains classified by Cbm and PA expression levels. The Cbm(+)/PA(-) group strains had significantly higher fibrinogen-binding rates than the other groups. Analysis of platelet aggregation revealed that SA31, a Cbm(+)/PA(-) strain, induced an increased level of aggregation in the presence of fibrinogen, while negligible aggregation was induced by the Cbm-defective isogenic mutant SA31CBD. A rat IE model with an artificial impairment of the aortic valve created using a catheter showed that extirpated heart valves in the SA31 group displayed a prominent vegetation mass not seen in those in the SA31CBD group. These findings could explain why Cbm(+)/PA(-) strains are highly virulent and are related to the development of IE, and the findings could also explain the frequent detection of serotype k DNA in S. mutans-positive heart valve clinical specimens. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Effects of extracellular plaque components on the chlorhexidine sensitivity of strains of Streptococcus mutans and human dental plaque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolinsky, L.E.; Hume, W.R.

    An in vitro study was undertaken to determine the effects of sucrose-derived extracellular plaque components on the sensitivity of selected oral bacteria to chlorhexidine (CX). Cultures of Streptococcus mutans HS-6, OMZ-176, Ingbritt C, 6715-wt13, and pooled human plaque were grown in trypticase soy media with or without 1% sucrose. The sensitivity to CX of bacteria grown in each medium was determined by fixed-time exposure to CX and subsequent measurement of /sup 3/H-thymidine uptake. One-hour exposure to CX at concentrations of 10(-4) M (0.01% w/v) or greater substantially inhibited subsequent cellular division among all the S. mutans strains and human plaquemore » samples tested. An IC50 (the CX concentration which depressed /sup 3/H-thymidine incorporation to 50% of control level) of close to 10(-4) M was noted for S. mutans strains HS-6, OMZ-176, and 6715-wt13 when grown in the presence of sucrose. The same strains grown in cultures without added sucrose showed about a ten-fold greater sensitivity to CX (IC50 close to 10(-5) M). A three-fold difference was noted for S. mutans Ingbritt C. Only a slight increase in the IC50 was noted for the plaque samples cultured in sucrose-containing media, but their threshold for depression of /sup 3/H-thymidine uptake by CX was lower than that for the sucrose-free plaque samples. The study showed that extracellular products confer some protection against CX to the bacteria examined, and provided an explanation for the disparity between clinically-recommended concentrations for plaque suppression and data on in vitro susceptibility.« less

  2. Functional amyloids in Streptococcus mutans, their use as targets of biofilm inhibition and initial characterization of SMU_63c

    PubMed Central

    Besingi, Richard N; Wenderska, Iwona B; Senadheera, Dilani B; Cvitkovitch, Dennis G; Long, Joanna R; Wen, Zezhang T

    2017-01-01

    Amyloids have been identified as functional components of the extracellular matrix of bacterial biofilms. Streptococcus mutans is an established aetiologic agent of dental caries and a biofilm dweller. In addition to the previously identified amyloidogenic adhesin P1 (also known as AgI/II, PAc), we show that the naturally occurring antigen A derivative of S. mutans wall-associated protein A (WapA) and the secreted protein SMU_63c can also form amyloid fibrils. P1, WapA and SMU_63c were found to significantly influence biofilm development and architecture, and all three proteins were shown by immunogold electron microscopy to reside within the fibrillar extracellular matrix of the biofilms. We also showed that SMU_63c functions as a negative regulator of biofilm cell density and genetic competence. In addition, the naturally occurring C-terminal cleavage product of P1, C123 (also known as AgII), was shown to represent the amyloidogenic moiety of this protein. Thus, P1 and WapA both represent sortase substrates that are processed to amyloidogenic truncation derivatives. Our current results suggest a novel mechanism by which certain cell surface adhesins are processed and contribute to the amyloidogenic capability of S. mutans. We further demonstrate that the polyphenolic small molecules tannic acid and epigallocatechin-3-gallate, and the benzoquinone derivative AA-861, which all inhibit amyloid fibrillization of C123 and antigen A in vitro, also inhibit S. mutans biofilm formation via P1- and WapA-dependent mechanisms, indicating that these proteins serve as therapeutic targets of anti-amyloid compounds. PMID:28141493

  3. Relationship between the IgA antibody response against Streptococcus mutans GbpB and severity of dental caries in childhood.

    PubMed

    Colombo, Natália Helena; Pereira, Jesse Augusto; da Silva, Márjully Eduardo Rodrigues; Ribas, Laís Fernanda Fonseca; Parisotto, Thaís Manzano; Mattos-Graner, Renata de Oliveira; Smith, Daniel J; Duque, Cristiane

    2016-07-01

    Explore the associations between the severity of dental caries in childhood, mutans streptococci (MS) levels and IgA antibody response against Streptococcus mutans GbpB. Moreover, other caries-related etiological factors were also investigated. 36-60 month-old children were grouped into Caries-Free (CF, n=19), Early Childhood Caries (ECC, n=17) and Severe Early Childhood Caries (S-ECC, n=21). Data from socio-economic-cultural status, oral hygiene habits and dietary patterns were obtained from a questionnaire and a food-frequency diary filled out by parents. Saliva was collected from children for microbiological analysis and detection of salivary IgA antibody reactive with S. mutans GbpB in western blot. S-ECC children had reduced family income compared to those with ECC and CF. There was difference between CF and caries groups (ECC and S-ECC) in MS counts. Positive correlations between salivary IgA antibody response against GbpB and MS counts were found when the entire population was evaluated. When children with high MS counts were compared, S-ECC group showed significantly lower IgA antibody levels to GbpB compared to CF group. This finding was not observed for the ECC group. This study suggests that children with S-ECC have reduced salivary IgA immune responses to S. mutans GbpB, potentially compromising their ability to modify MS infection and its cariogenic potential. Furthermore, a reduced family income and high levels of MS were also associated with S-ECC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Distribution of Putative Virulence Genes in Streptococcus mutans Strains Does Not Correlate with Caries Experience▿†‖

    PubMed Central

    Argimón, Silvia; Caufield, Page W.

    2011-01-01

    Streptococcus mutans, a member of the human oral flora, is a widely recognized etiological agent of dental caries. The cariogenic potential of S. mutans is related to its ability to metabolize a wide variety of sugars, form a robust biofilm, produce copious amounts of lactic acid, and thrive in the acid environment that it generates. The remarkable genetic variability present within the species is reflected at the phenotypic level, notably in the differences in the cariogenic potential between strains. However, the genetic basis of these differences is yet to be elucidated. In this study, we surveyed by PCR and DNA hybridization the distribution of putative virulence genes, genomic islands, and insertion sequences across a collection of 33 strains isolated from either children with severe early childhood caries (S-ECC) or those who were caries free (CF). We found this genetically diverse group of isolates to be remarkably homogeneous with regard to the distribution of the putative virulence genes and genetic elements analyzed. Our findings point to the role of other factors in the pathogenesis of S-ECC, such as uncharacterized virulence genes, differences in gene expression and/or enzymatic activity, cooperation between S. mutans strains or with other members of the oral biota, and host factors. PMID:21209168

  5. Inhibitory Effects of Flavonoids from Spatholobus suberectus on Sortase A and Sortase A-Mediated Aggregation of Streptococcus mutans.

    PubMed

    Park, Wanki; Ahn, Chan-Hong; Cho, Hyunjoo; Kim, Chang-Kwon; Shin, Jongheon; Oh, Ki-Bong

    2017-08-28

    Seven flavonoids were isolated from Spatholobus suberectus via repetitive column chromatography and high-performance liquid chromatography. The chemical structures of these compounds were identified by spectroscopic analysis and comparison with values reported in the literature. Among the flavonoids tested, 7-hydroxy-6-methoxyflavanone ( 1 ) and formononetin ( 4 ) exhibited strong inhibitory activity against Streptococcus mutans SrtA, with IC 50 values of 46.1 and 41.8 µM, respectively, but did not affect cell viability. The onset and magnitude of inhibition of saliva-induced aggregation in S. mutans treated with compounds 1 and 4 were comparable to the behavior of a srtA -deletion mutant without treatment.

  6. Population structure of plasmid-containing strains of Streptococcus mutans, a member of the human indigenous biota.

    PubMed

    Caufield, Page W; Saxena, Deepak; Fitch, David; Li, Yihong

    2007-02-01

    There are suggestions that the phylogeny of Streptococcus mutans, a member of the human indigenous biota that is transmitted mostly mother to child, might parallel the evolutionary history of its human host. The relatedness and phylogeny of plasmid-containing strains of S. mutans were examined based on chromosomal DNA fingerprints (CDF), a hypervariable region (HVR) of a 5.6-kb plasmid, the rRNA gene intergenic spacer region (IGSR), serotypes, and the genotypes of mutacin I and II. Plasmid-containing strains were studied because their genetic diversity was twice as great as that of plasmid-free strains. The CDF of S. mutans from unrelated human hosts were unique, except those from Caucasians, which were essentially identical. The evolutionary history of the IGSR, with or without the serotype and mutacin characters, clearly delineated an Asian clade. Also, a continuous association with mutacin II could be reconstructed through an evolutionary lineage with the IGSR, but not for serotype e. DNA sequences from the HVR of the plasmid produced a well-resolved phylogeny that differed from the chromosomal phylogeny, indicating that the horizontal transfer of the plasmid may have occurred multiple times. The plasmid phylogeny was more congruent with serotype e than with mutacin II evolution, suggesting a possible functional correlation. Thus, the history of this three-tiered relationship between human, bacterium, and plasmid supported both coevolution and independent evolution.

  7. Influence of the Culture Medium in Dose-Response Effect of the Chlorhexidine on Streptococcus mutans Biofilms

    PubMed Central

    de Queiroz, Vanessa Salvadego; Ccahuana-Vásquez, Renzo Alberto; Tedesco, Alcides Fabiano; Lyra, Luzia; Cury, Jaime Aparecido; Schreiber, Angélica Zaninelli

    2016-01-01

    The aim of this study was to evaluate the influence of culture medium on dose-response effect of chlorhexidine (CHX) on Streptococcus mutans UA159 biofilm and validate the use of the cation-adjusted-Müller-Hinton broth (MH) for the evaluation of antibacterial activity. Ultrafiltered Tryptone-Yeast Extract Broth (UTYEB) was compared against MH and MH with blood supplementation (MHS). For each medium, six groups (n = 4) were assessed: two negative control groups (baseline 48 and 120 h) and four experimental groups (0.0001, 0.001, 0.012, and 0.12% CHX). S. mutans biofilm grew on glass slides of each media containing 1% sucrose. After 48 h of growth, biofilms of baseline 48 h were collected and the other groups were treated for 1 min, twice a day, for 3 days, with their respective treatments. The media were changed daily and pH was measured. After 120 h, biofilms were collected and dry weight and viable microorganisms were determined. Results showed CHX dose-response effect being observed in all media for all the variables. However, MH and MHS showed higher sensitivity than UTYEB (p < 0.05). We can conclude that the culture medium does influence dose-response effect of CHX on Streptococcus mutans biofilm and that MH can be used for antibacterial activity. PMID:27293967

  8. The two-component system VicRK regulates functions associated with Streptococcus mutans resistance to complement immunity.

    PubMed

    Alves, Livia A; Harth-Chu, Erika N; Palma, Thais H; Stipp, Rafael N; Mariano, Flávia S; Höfling, José F; Abranches, Jacqueline; Mattos-Graner, Renata O

    2017-10-01

    Streptococcus mutans, a dental caries pathogen, can promote systemic infections upon reaching the bloodstream. The two-component system (TCS) VicRK Sm of S. mutans regulates the synthesis of and interaction with sucrose-derived exopolysaccharides (EPS), processes associated with oral and systemic virulence. In this study, we investigated the mechanisms by which VicRK Sm affects S. mutans susceptibility to blood-mediated immunity. Compared with parent strain UA159, the vicK Sm isogenic mutant (UAvic) showed reduced susceptibility to deposition of C3b of complement, low binding to serum immunoglobulin G (IgG), and low frequency of C3b/IgG-mediated opsonophagocytosis by polymorphonuclear cells in a sucrose-independent way (P<.05). Reverse transcriptase quantitative polymerase chain reaction analysis comparing gene expression in UA159 and UAvic revealed that genes encoding putative peptidases of the complement (pepO and smu.399) were upregulated in UAvic in the presence of serum, although genes encoding murein hydrolases (SmaA and Smu.2146c) or metabolic/surface proteins involved in bacterial interactions with host components (enolase, GAPDH) were mostly affected in a serum-independent way. Among vicK Sm -downstream genes (smaA, smu.2146c, lysM, atlA, pepO, smu.399), only pepO and smu.399 were associated with UAvic phenotypes; deletion of both genes in UA159 significantly enhanced levels of C3b deposition and opsonophagocytosis (P<.05). Moreover, consistent with the fibronectin-binding function of PepO orthologues, UAvic showed increased binding to fibronectin. Reduced susceptibility to opsonophagocytosis was insufficient to enhance ex vivo persistence of UAvic in blood, which was associated with growth defects of this mutant under limited nutrient conditions. Our findings revealed that S. mutans employs mechanisms of complement evasion through peptidases, which are controlled by VicRK Sm. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Reduction of saliva-promoted adhesion of Streptococcus mutans MT8148 and dental biofilm development by tragacanth gum and yeast-derived phosphomannan.

    PubMed

    Shimotoyodome, A; Kobayashi, H; Nakamura, J; Tokimitsu, I; Hase, T; Inoue, T; Matsukubo, T; Takaesu, Y

    2006-01-01

    The aim of this study was to investigate materials which reduce saliva-promoted adhesion of Streptococcus mutans onto enamel surfaces, and their potential in preventing dental biofilm development. The effects of hydroxyapatite (HA) surface pretreatment with hydrophilic polysaccharides on saliva-promoted S. mutans adhesion in vitro and de novo dental biofilm deposition in vivo were examined. Saliva-promoted adhesion of S. mutans MT8148 was significantly reduced by pretreatment of the HA surface with tragacanth gum (TG) and yeast-derived phosphoglycans. Extracellular phosphomannan (PM) from Pichia capsulata NRRL Y-1842 and TG reduced biofilm development on lower incisors in plaque-susceptible rats when administered via drinking water at concentrations of 0.5% and 0.01%, respectively. The inhibitory effect of TG on de novo dental biofilm formation was also demonstrated when administered via mouthwash in humans. It is concluded that TG and yeast-derived PM have the potential for use as anti-adherent agents and are effective in reducing de novo dental biofilm formation.

  10. The whole is greater than the sum of its parts: dental plaque bacterial interactions can affect the virulence properties of cariogenic Streptococcus mutans.

    PubMed

    Kuramitsu, Howard K; Wang, Bing-Yan

    2011-06-01

    It has been well established that dental caries results from the accumulation of dental plaque on tooth surfaces. Several decades of in vitro and as well as clinical studies have identified Streptococcus mutans as an important etiological agent in carious lesion formation. In addition, a variety of approaches have suggested that interactions between the bacterial components of biofilms can influence the properties of such polymicrobial structures. Therefore, it is likely that the mere presence of S. mutans in dental plaque does not alone account for the cariogenic potential of such biofilms. Recent studies have indicated that several bacteria commonly found in dental plaque can influence either the viability and/or virulence properties of S. mutans. This review will summarize some of the more recent findings in this regard as well as their implications for the development of novel anti-caries strategies.

  11. The Branched-Chain Amino Acid Aminotransferase Encoded by ilvE Is Involved in Acid Tolerance in Streptococcus mutans

    PubMed Central

    Santiago, Brendaliz; MacGilvray, Matthew; Faustoferri, Roberta C.

    2012-01-01

    The ability of Streptococcus mutans to produce and tolerate organic acids from carbohydrate metabolism represents a major virulence factor responsible for the formation of carious lesions. Pyruvate is a key metabolic intermediate that, when rerouted to other metabolic pathways such as amino acid biosynthesis, results in the alleviation of acid stress by reducing acid end products and aiding in maintenance of intracellular pH. Amino acid biosynthetic genes such as ilvC and ilvE were identified as being upregulated in a proteome analysis of Streptococcus mutans under acid stress conditions (A. C. Len, D. W. Harty, and N. A. Jacques, Microbiology 150:1353–1366, 2004). In Lactococcus lactis and Staphylococcus carnosus, the ilvE gene product is involved with biosynthesis and degradation of branched-chain amino acids, as well as in the production of branched-chain fatty acids (B. Ganesan and B. C. Weimer, Appl. Environ. Microbiol. 70:638–641, 2004; S. M. Madsen et al., Appl. Environ. Microbiol. 68:4007–4014, 2002; and M. Yvon, S. Thirouin, L. Rijnen, D. Fromentier, and J. C. Gripon, Appl. Environ. Microbiol. 63:414–419, 1997). Here we constructed and characterized an ilvE deletion mutant of S. mutans UA159. Growth experiments revealed that the ilvE mutant strain has a lag in growth when nutritionally limited for branched-chain amino acids. We further demonstrated that the loss of ilvE causes a decrease in acid tolerance. The ilvE strain exhibits a defect in F1-Fo ATPase activity and has reduced catabolic activity for isoleucine and valine. Results from transcriptional studies showed that the ilvE promoter is upregulated during growth at low pH. Collectively, the results of this investigation show that amino acid metabolism is a component of the acid-adaptive repertoire of S. mutans. PMID:22328677

  12. Streptococcus mutans adhesion to titanium after brushing with fluoride and fluoride-free toothpaste simulating 10 years of use.

    PubMed

    Fais, Laiza M G; Carmello, Juliana C; Spolidorio, Denise M P; Adabo, Gelson L

    2013-01-01

    To assess the influence of fluoride on the adhesion of Streptococcus mutans to titanium using an experimental paradigm simulating 10 years of brushing. Commercially pure titanium (cpTi) and titanium alloy (Ti-6Al-4V) disks (6 mm in diameter and 4 mm thick) were mirror-polished and randomly assigned to one of the following six groups (n = 6): immersion (I) or brushing (B) in deionized water (groups IW [control] and BW), fluoride-free toothpaste (groups IT and BT), or fluoridated toothpaste (groups IFT and BFT). Specimens subjected to immersion were statically submerged into the solutions without brushing. For the brushed specimens, a linear brushing machine with a soft-bristled toothbrush was used. The experiments lasted a total of 244 hours. Before and after treatment, the specimens were analyzed under an atomic force microscope to determine the mean roughness (Ra) and the mean of the maximum peak-to-valley heights of the profile (Rtm). The disks were contaminated with standard strains of S mutans in well plates with brain-heart infusion broth. Adhesion was analyzed based on the numbers of colony-forming units (CFU/mL) of adhered viable cells using scanning electronic microscopy. Differences in CFU/mL between the groups were analyzed by one-way analysis of variance. Immersion did not affect either surface. As suggested by Ra and Rtm, BW, BT, and BFT induced changes on the surface of cpTi, whereas only BT and BTF induced changes on the surface of Ti-6Al-4V. No significant differences were observed regarding CFU/mL among the cpTi or Ti-6Al-4V groups. S mutans adhesion was similar for all surfaces. The changes in titanium induced by 10 years of simulated brushing with fluoride toothpaste did not increase the adhesion of S mutans.

  13. Effects of oxygen on biofilm formation and the AtlA autolysin of Streptococcus mutans.

    PubMed

    Ahn, Sang-Joon; Burne, Robert A

    2007-09-01

    The Streptococcus mutans atlA gene encodes an autolysin required for biofilm maturation and biogenesis of a normal cell surface. We found that the capacity to form biofilms by S. mutans, one of the principal causative agents of dental caries, was dramatically impaired by growth of the organism in an aerated environment and that cells exposed to oxygen displayed marked changes in surface protein profiles. Inactivation of the atlA gene alleviated repression of biofilm formation in the presence of oxygen. Also, the formation of long chains, a characteristic of AtlA-deficient strains, was less evident in cells grown with aeration. The SMu0629 gene is immediately upstream of atlA and encodes a product that contains a C-X-X-C motif, a characteristic of thiol-disulfide oxidoreductases. Inactivation of SMu0629 significantly reduced the levels of AtlA protein and led to resistance to autolysis. The SMu0629 mutant also displayed an enhanced capacity to form biofilms in the presence of oxygen compared to that of the parental strain. The expression of SMu0629 was shown to be under the control of the VicRK two-component system, which influences oxidative stress tolerance in S. mutans. Disruption of vicK also led to inhibition of processing of AtlA, and the mutant was hyperresistant to autolysis. When grown under aerobic conditions, the vicK mutant also showed significantly increased biofilm formation compared to strain UA159. This study illustrates the central role of AtlA and VicK in orchestrating growth on surfaces and envelope biogenesis in response to redox conditions.

  14. Correlation of Streptococcus mutans and Streptococcus sanguinis colonization and ex vivo hydrogen peroxide production in carious lesion-free and high caries adults.

    PubMed

    Giacaman, Rodrigo A; Torres, Sebastián; Gómez, Yenifer; Muñoz-Sandoval, Cecilia; Kreth, Jens

    2015-01-01

    This study was conducted to estimate oral colonization by Streptococcus mutans and Streptococcus sanguinis in adults with high and without any caries experience. Furthermore, differences in the amount of hydrogen peroxide (H2O2) produced by S. sanguinis isolated from both groups were assessed. Forty adults were divided into: (i) carious lesion-free, without any carious lesion, assessed by the International Caries Detection and Assessment System (ICDAS), or restoration, (CF) and (ii) high caries experience (HC). Saliva samples were collected and seeded on respective agar-plates for enumeration of total streptococci, S. mutans and S. sanguinis (CFU/mL) and compared between groups. Additionally, S. sanguinis colonies obtained from both groups were inoculated on Prussian blue agar for H2O2 detection. Production of H2O2 was quantified and compared between the two groups. S. sanguinis counts were significantly higher in CF than HC individuals (p<0.05). Conversely, S. mutans showed significantly higher levels in HC than CF subjects (p<0.001). S. sanguinis colonies from CF individuals produced significantly larger H2O2 halos compared with HC subjects. S. sanguinis predominates over S. mutans in saliva of adults without caries experience. In those people, S. sanguinis produces more H2O2ex vivo. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Roles of oral bacteria in cardiovascular diseases--from molecular mechanisms to clinical cases: Cell-surface structures of novel serotype k Streptococcus mutans strains and their correlation to virulence.

    PubMed

    Nakano, Kazuhiko; Nomura, Ryota; Matsumoto, Michiyo; Ooshima, Takashi

    2010-01-01

    Streptococcus mutans is generally known as a pathogen of dental caries, and it is also considered to cause bacteremia and infective endocarditis (IE). S. mutans was previously classified into 3 serotypes, c, e, and f, due to the different chemical compositions of the serotype-specific polysaccharides, which are composed of a rhamnose backbone and glucose side chains. We recently designated non-c/e/f serotype S. mutans strains as novel serotype k, which is characterized by a drastic reduction in the amount of the glucose side chain. A common biological feature of novel serotype-k strains is a lower level of cariogenicity due to alterations of several major cell surface protein antigens. As for virulence in blood, these strains survive in blood for a longer duration due to lower antigenicity, while the detection rate of all strains carrying the gene encoding collagen-binding adhesin has been shown to be high. Furthermore, molecular biological analyses of infected heart valve specimens obtained from IE patients revealed a high detection rate of serotype-k S. mutans. Together, these findings suggest that serotype-k S. mutans strains show low cariogenicity but high virulence in blood as compared to the other serotypes, due to alterations of several cell surface structures.

  16. Preliminary X-ray crystallographic analysis of SMU.573, a putative sugar kinase from Streptococcus mutans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yan-Feng; Li, Lan-Fen; Yang, Cheng

    2008-01-01

    SMU.573 from S. mutans was expressed in E. coli and crystallized. The crystals belong to space group I4 and 2.5 Å resolution diffraction data were collected at an in-house chromium radiation source. SMU.573 from Streptococcus mutans is a structurally and functionally uncharacterized protein that was selected for structural biology studies. Native and SeMet-labelled proteins were expressed with an N-His tag in Escherichia coli BL21 (DE3) and purified by Ni{sup 2+}-chelating and size-exclusion chromatography. Crystals of the SeMet-labelled protein were obtained by the hanging-drop vapour-diffusion method and a 2.5 Å resolution diffraction data set was collected using an in-house chromium radiationmore » source. The crystals belong to space group I4, with unit-cell parameters a = b = 96.53, c = 56.26 Å, α = β = γ = 90°.« less

  17. Cytotoxicity of novel fluoride solutions and their influence on mineral loss from enamel exposed to a Streptococcus mutans biofilm.

    PubMed

    Vieira, Thiago Isidro; Câmara, João Victor Frazão; Cardoso, Júlia Gabiroboertz; Alexandria, Adílis Kalina; Pintor, Andréa Vaz Braga; Villaça, Jaqueline Correia; Cabral, Lúcio Mendes; Romanos, Maria Teresa Villela; Fonseca-Gonçalves, Andrea; Valença, Ana Maria Gondim; Maia, Lucianne Cople

    2018-07-01

    This study evaluated the cytotoxicity, antimicrobial activity and in vitro influence of new fluoridated nanocomplexes on dental demineralization. The nanocomplexes hydroxypropyl-β-cyclodextrin with 1% titanium tetrafluoride (TiF 4 ) and γ-cyclodextrin with TiF 4 were compared to a positive control (TiF 4 ), a blank control (without treatment) and negative controls (hydroxypropyl-β-cyclodextrin, γ-cyclodextrin, deionized water), following 12- and 72-hour complexation periods. The cytotoxicity was assessed using the neutral red dye uptake assay at T1-15 min, T2-30 min and T3-24 h. A minimum bactericidal concentration (MBC) against Streptococcus mutans (ATCC 25175) was performed. Enamel blocks were exposed to an S. mutans biofilm, and the percentage of surface microhardness loss was obtained. Biocompatibility and microhardness data were analysed using ANOVA/Tukey tests (p < 0.05). At T1, the cell viability results of the nanocomplexes were similar to that of the blank control. At T2 and T3, the 72 h nanocomplexes demonstrated cell viability results similar to that of the blank, while the 12 h solutions showed results different from that of the blank (p < 0.05). All fluoridated nanocompounds inhibited S. mutans (MBC = 0.25%), while the MBC of TiF 4 alone was 0.13%. All fluoridated compounds presented a percentage of surface microhardness loss lower than that of deionized water (p < 0.05). The new fluoridated nanocomplexes did not induce critical cytotoxic effects during the experimental periods, whilst they did show bactericidal potential against S. mutans and inhibited enamel mineral loss. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Extracellular matrix influence in Streptococcus mutans gene expression in a cariogenic biofilm.

    PubMed

    Florez Salamanca, E J; Klein, M I

    2018-04-01

    Caries etiology is biofilm-diet-dependent. Biofilms are highly dynamic and structured microbial communities enmeshed in a three-dimensional extracellular matrix. The study evaluated the expression dynamics of Streptococcus mutans genes associated with exopolysaccharides (EPS) (gtfBCD, gbpB, dexA), lipoteichoic acids (LTA) (dltABCD, SMU_775c) and extracellular DNA (eDNA) (lytST, lrgAB, ccpA) during matrix development within a mixed-species biofilm of S. mutans, Actinomyces naeslundii and Streptococcus gordonii. Mixed-species biofilms using S. mutans strains UA159 or ΔgtfB formed on saliva-coated hydroxyapatite discs were submitted to a nutritional challenge (providing an abundance of sucrose and starch). Biofilms were removed at eight developmental stages for gene expression analysis by quantitative polymerase chain reaction. The pH of spent culture media remained acidic throughout the experimental periods, being lower after sucrose and starch exposure. All genes were expressed at all biofilm developmental phases. EPS- and LTA-associated genes had a similar expression profile for both biofilms, presenting lower levels of expression at 67, 91 and 115 hours and a peak of expression at 55 hours, but having distinct expression magnitudes, with lower values for ΔgtfB (eg, fold-difference of ~382 for gtfC and ~16 for dltB at 43 hours). The eDNA-associated genes presented different dynamics of expression between both strains. In UA159 biofilms lrgA and lrgB genes were highly expressed at 29 hours (which were ~13 and ~5.4 times vs ΔgtfB, respectively), whereas in ΔgtfB biofilms an inverse relationship between lytS and lrgA and lrgB expression was detected. Therefore, the deletion of gtfB influences dynamics and magnitude of expression of genes associated with matrix main components. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. The efficacy of chlorhexidine gel in reduction of Streptococcus mutans and Lactobacillus species in patients treated with radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epstein, J.B.; McBride, B.C.; Stevenson-Moore, P.

    Xerostomia may develop in patients with cancer who receive radiotherapy that includes the salivary glands in the field. These patients are at high risk of rampant dental caries. Streptococcus mutans and Lactobacillus species have been associated with dental caries. Quantitative counts of these organisms demonstrated high caries risk due to streptococci in 66% and due to lactobacilli in 100% of patients studied. Use of chlorhexidine rinse was shown to reduce S. mutans counts 1.1 logs and lactobacilli 1.1 logs. The use of chlorhexidine gel resulted in a reduction of S. mutans 1.2 logs and lactobacilli 2.2 logs. In the subjectsmore » using the rinse, caries risk due to streptococci was reduced to low levels in 44% and due to lactobacilli in only one subject, with reduction to moderate risk in one third and no change in risk in the remaining patients. The use of chlorhexidine gel was found to reduce the caries risk associated with streptococci to low levels in all patients, and the risk associated with lactobacilli to low and moderate risk in two thirds of patients.« less

  20. Singlet oxygen production by combining erythrosine and halogen light for photodynamic inactivation of Streptococcus mutans.

    PubMed

    Fracalossi, Camila; Nagata, Juliana Yuri; Pellosi, Diogo Silva; Terada, Raquel Sano Suga; Hioka, Noboru; Baesso, Mauro Luciano; Sato, Francielle; Rosalen, Pedro Luiz; Caetano, Wilker; Fujimaki, Mitsue

    2016-09-01

    Photodynamic inactivation of microorganisms is based on a photosensitizing substance which, in the presence of light and molecular oxygen, produces singlet oxygen, a toxic agent to microorganisms and tumor cells. This study aimed to evaluate singlet oxygen quantum yield of erythrosine solutions illuminated with a halogen light source in comparison to a LED array (control), and the photodynamic effect of erythrosine dye in association with the halogen light source on Streptococcus mutans. Singlet oxygen quantum yield of erythrosine solutions was quantified using uric acid as a chemical-probe in an aqueous solution. The in vitro effect of the photodynamic antimicrobial activity of erythrosine in association with the halogen photopolimerizing light on Streptococcus mutans (UA 159) was assessed during one minute. Bacterial cultures treated with erythrosine alone served as negative control. Singlet oxygen with 24% and 2.8% degradation of uric acid in one minute and a quantum yield of 0.59 and 0.63 was obtained for the erythrosine samples illuminated with the halogen light and the LED array, respectively. The bacterial cultures with erythrosine illuminated with the halogen light presented a decreased number of CFU mL(-1) in comparison with the negative control, with minimal inhibitory concentrations between 0.312 and 0.156mgmL(-1). The photodynamic response of erythrosine induced by the halogen light was capable of killing S. mutans. Clinical trials should be conducted to better ascertain the use of erythrosine in association with halogen light source for the treatment of dental caries. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Antigenic relatedness of glucosyltransferase enzymes from streptococcus mutans.

    PubMed

    Smith, D J; Taubman, M A

    1977-01-01

    The antigenic relationship of glucosyltransferases (GTF) produced by different serotypes of Streptococcus mutans was studied by using a functional inhibition assay. Rat, rabbit, or hamster immune fluids, directed to cell-associated or supernatant-derived GTF, were tested against ammonium sulfate-precipitated culture supernatants containing GTF from seven strains of S. mutans representing six different serotypes. An antigenic relationship was shown to exist among GTF from serotypes a, d, and g, since both rat and rabbit antisera directed to serotype a or g GTF inhibited GTF of serotypes d and g similarly and both antisera also inhibited serotype a GTF. Furthermore, serum inhibition patterns indicated that GTF of serotypes c and e, and possibly b, are antigenically related to each other, but are antigenically distinct from GTF of serotype a, d, or g. Serum antibody directed to antigens other than enzyme (e.g., serotype-specific antigen or teichoic acid) had little effect on the inhibition assay. Salivas from rats immunized with cell-associated or supernatant-derived GTF exhibited low but consistent inhibition of GTF activity, which generally corresponded to the serum patterns. The sera of two groups of hamsters immunized with GTF (serotype g), enriched either in water-insoluble or water-soluble glucan synthetic activity, gave patterns of inhibition quite similar to those seen with sera from more heterogenous cell-associated or crude supernatant-derived GTF preparations. Both groups of hamster sera also gave virtually identical patterns, suggesting that the two enzyme forms used as antigen share common antigenic determinants. The results from the three animal models suggest that among the cariogenic organisms tested, two (serotypes a, d, g and b, c, e), or perhaps three (serotypes a, d, g; b; and c, e), different subsets of GTF exist that have distinct antigenic determinants within a subset.

  2. The Effect of Carbon Source and Fluoride Concentrations in the "Streptococcus Mutans" Biofilm Formation

    ERIC Educational Resources Information Center

    Paulino, Tony P.; Andrade, Ricardo O.; Bruschi-Thedei, Giuliana C. M.; Thedei, Geraldo, Jr.; Ciancaglini, Pietro

    2004-01-01

    The main objective of this class experiment is to show the influence of carbon source and of different fluoride concentrations on the biofilm formation by the bacterium "Streptococcus mutans." The observation of different biofilm morphology as a function of carbon source and fluoride concentration allows an interesting discussion regarding the…

  3. The Effect of Essential Oils and Bioactive Fractions on Streptococcus mutans and Candida albicans Biofilms: A Confocal Analysis

    PubMed Central

    Freires, Irlan Almeida; Bueno-Silva, Bruno; Galvão, Lívia Câmara de Carvalho; Duarte, Marta Cristina Teixeira; Sartoratto, Adilson; Figueira, Glyn Mara; de Alencar, Severino Matias; Rosalen, Pedro Luiz

    2015-01-01

    The essential oils (EO) and bioactive fractions (BF) from Aloysia gratissima, Baccharis dracunculifolia, Coriandrum sativum, Cyperus articulatus, and Lippia sidoides were proven to have strong antimicrobial activity on planktonic microorganisms; however, little is known about their effects on the morphology or viability of oral biofilms. Previously, we determined the EO/fractions with the best antimicrobial activity against Streptococcus mutans and Candida spp. In this report, we used a confocal analysis to investigate the effect of these EO and BF on the morphology of S. mutans biofilms (thickness, biovolume, and architecture) and on the metabolic viability of C. albicans biofilms. The analysis of intact treated S. mutans biofilms showed no statistical difference for thickness in all groups compared to the control. However, a significant reduction in the biovolume of extracellular polysaccharides and bacteria was observed for A. gratissima and L. sidoides groups, indicating that these BF disrupt biofilm integrity and may have created porosity in the biofilm. This phenomenon could potentially result in a weakened structure and affect biofilm dynamics. Finally, C. sativum EO drastically affected C. albicans viability when compared to the control. These results highlight the promising antimicrobial activity of these plant species and support future translational research on the treatment of dental caries and oral candidiasis. PMID:25821503

  4. Effects of Carbohydrate Source on Genetic Competence in Streptococcus mutans.

    PubMed

    Moye, Zachary D; Son, Minjun; Rosa-Alberty, Ariana E; Zeng, Lin; Ahn, Sang-Joon; Hagen, Stephen J; Burne, Robert A

    2016-08-01

    The capacity to internalize and catabolize carbohydrates is essential for dental caries pathogens to persist and cause disease. The expression of many virulence-related attributes by Streptococcus mutans, an organism strongly associated with human dental caries, is influenced by the peptide signaling pathways that control genetic competence. Here, we demonstrate a relationship between the efficiency of competence signaling and carbohydrate source. A significant increase in the activity of the promoters for comX, comS, and comYA after exposure to competence-stimulating peptide (CSP) was observed in cells growing on fructose, maltose, sucrose, or trehalose as the primary carbohydrate source, compared to cells growing on glucose. However, only cells grown in the presence of trehalose or sucrose displayed a significant increase in transformation frequency. Notably, even low concentrations of these carbohydrates in the presence of excess glucose could enhance the expression of comX, encoding a sigma factor needed for competence, and the effects on competence were dependent on the cognate sugar:phosphotransferase permease for each carbohydrate. Using green fluorescent protein (GFP) reporter fusions, we observed that growth in fructose or trehalose resulted in a greater proportion of the population activating expression of comX and comS, encoding the precursor of comX-inducing peptide (XIP), after addition of CSP, than growth in glucose. Thus, the source of carbohydrate significantly impacts the stochastic behaviors that regulate subpopulation responses to CSP, which can induce competence in S. mutans The signaling pathways that regulate development of genetic competence in Streptococcus mutans are intimately intertwined with the pathogenic potential of the organism, impacting biofilm formation, stress tolerance, and expression of known virulence determinants. Induction of the gene for the master regulator of competence, ComX, by competence-stimulating peptide (CSP

  5. Effects of Carbohydrate Source on Genetic Competence in Streptococcus mutans

    PubMed Central

    Moye, Zachary D.; Son, Minjun; Rosa-Alberty, Ariana E.; Zeng, Lin; Ahn, Sang-Joon

    2016-01-01

    ABSTRACT The capacity to internalize and catabolize carbohydrates is essential for dental caries pathogens to persist and cause disease. The expression of many virulence-related attributes by Streptococcus mutans, an organism strongly associated with human dental caries, is influenced by the peptide signaling pathways that control genetic competence. Here, we demonstrate a relationship between the efficiency of competence signaling and carbohydrate source. A significant increase in the activity of the promoters for comX, comS, and comYA after exposure to competence-stimulating peptide (CSP) was observed in cells growing on fructose, maltose, sucrose, or trehalose as the primary carbohydrate source, compared to cells growing on glucose. However, only cells grown in the presence of trehalose or sucrose displayed a significant increase in transformation frequency. Notably, even low concentrations of these carbohydrates in the presence of excess glucose could enhance the expression of comX, encoding a sigma factor needed for competence, and the effects on competence were dependent on the cognate sugar:phosphotransferase permease for each carbohydrate. Using green fluorescent protein (GFP) reporter fusions, we observed that growth in fructose or trehalose resulted in a greater proportion of the population activating expression of comX and comS, encoding the precursor of comX-inducing peptide (XIP), after addition of CSP, than growth in glucose. Thus, the source of carbohydrate significantly impacts the stochastic behaviors that regulate subpopulation responses to CSP, which can induce competence in S. mutans. IMPORTANCE The signaling pathways that regulate development of genetic competence in Streptococcus mutans are intimately intertwined with the pathogenic potential of the organism, impacting biofilm formation, stress tolerance, and expression of known virulence determinants. Induction of the gene for the master regulator of competence, ComX, by competence

  6. Frequency and expression of mutacin biosynthesis genes in isolates of Streptococcus mutans with different mutacin-producing phenotypes.

    PubMed

    Kamiya, Regianne Umeko; Höfling, José Francisco; Gonçalves, Reginaldo Bruno

    2008-05-01

    The aim of this study was to analyse the frequency and expression of biosynthesis genes in 47 Streptococcus mutans isolates with different mutacin-producing phenotypes. Detection of the frequency and expression of genes encoding mutacin types I, II, III and IV were carried out by PCR and semi-quantitative RT-PCR, respectively, using primers specific for each type of biosynthesis gene. In addition, a further eight genes encoding putative bacteriocins, designated bsm 283, bsm 299, bsm 423, bsm 1889c, bsm 1892c, bsm 1896, bsm 1906c and bsm 1914, were also screened. There was a high phenotypic diversity; some Streptococcus mutans isolates presented broad antimicrobial spectra against other Streptococcus mutans clinical isolates, including bacteria resistant to common antibiotics, as well as Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis and Streptococcus pyogenes. The expression frequency of the bsm gene was higher than that of the previously characterized mutacins (I-IV). There was no positive correlation between the number of indicator strains inhibited (antimicrobial spectra) and the number of biosynthesis genes expressed (Spearman correlation test, r=-0.03, P>0.05). In conclusion, the high diversity of mutacin-producing phenotypes, associated with high frequency of expression of the biosynthesis genes screened, reveals a broad repertoire of genetic determinants encoding antimicrobial peptides that can act in different combinations.

  7. Salivary microbiota and caries occurrence in Mutans Streptococci-positive school children.

    PubMed

    ElSalhy, M; Söderling, E; Honkala, E; Fontana, M; Flannagan, S; Kokaras, A; Paster, B J; Varghese, A; Honkala, S

    2016-09-01

    To compare the composition of the salivary microbiota in caries-affected vs. caries-free mutans streptococci (MS)- positive children with mixed dentition. Twenty eight healthy, 11-12-year-old schoolchildren with high MS counts (>10⊃5 CFU/mL) were included in this study. The children were screened with the Dentocult SM Strip Mutans test (Orion Diagnostica, Espoo, Finland) and examined using the International Caries Detection and Assessment System (ICDAS). The microbial composition of the saliva was assessed using the Human Oral Microbe Identification Microarray (HOMIM). Microbial differences between caries-affected (n=18) and caries-free children (n=10) were compared by Mann-Whitney analysis. The microbiota of the caries-affected vs. caries-free children was rather similar. Abiotrophia defectiva and Actinomyces meyeri/A. odontolyticus were significantly higher in caries-affected than in caries-free children (p=0.006, 0.046, respectively). Shuttleworthia satelles was significantly higher in caries-free compared to caries-affected children (p=0.031). A. defectiva and A. meyeri/A. odontolyticus correlated positively with caries severity measured by ICDAS Caries Index (p = 0.494, 0.454, 0.400 respectively) while S. satelles was negatively correlated with caries severity (p= -0.489). Salivary A. defectiva and A. meyeri/A. odontolyticus and are associated with caries occurrence in MS-positive children with mixed dentition.

  8. Antiadherent activity of Schinus terebinthifolius and Croton urucurana extracts on in vitro biofilm formation of Candida albicans and Streptococcus mutans.

    PubMed

    Barbieri, Dicler S V; Tonial, Fabiana; Lopez, Patricia V A; Sales Maia, Beatriz H L N; Santos, Germana D; Ribas, Marina O; Glienke, Chirlei; Vicente, Vania A

    2014-09-01

    To evaluate the antiadherent property of crude, methanol and acetate methanol extract fractions from Schinus terebinthifolius and Croton urucurana in hydroalcoholic (HA) and dimethylsulfoxide (DMSO) solvents on in vitro biofilms formed by Streptococcus mutans and Candida albicans strains. The minimal concentration of adherence (MICA) was determined to evaluate the antiadherent potential of extracts on the in vitro biofilm formation. The extracts of plants were subjected to thin layer chromatography (TLC) in order to detect what class of compounds was responsible for the antiadherent activity. Data were estimated by analysis of variance (ANOVA) complemented by Tukey test level of significance set at 5%. Both plants demonstrated inhibition of S. mutans and C. albicans on in vitro biofilm formation. The biofilms of C. albicans were more efficiently inhibited by the S. terebinthifolius fraction of acetate-methanol and methanol in hydroalcoholic solvents (p<0.05). The S. mutans biofilms adherence was best inhibited by the S. terebinthifolius crude extract and its methanolic fraction, both in hydroalcoholic solvent (p<0.05). TLC of crude extracts and fractions of S. terebinthifolius detected the presence of several active compounds, including phenolic compounds, anthraquinones, terpenoids, and alkaloids. C. urucurana extracts confirmed activity for both microorganisms (p<0.05). However, higher concentrations were needed to achieve antiadherent activity, mainly to inhibit in vitro biofilm formation of C. albicans. The antiadherent potential of both plants on in vitro biofilms formed by C. albicans and S. mutans were confirmed, suggesting the importance of studies about these extracts for therapeutic prevention of oral diseases associated with oral biofilms. Copyright © 2014. Published by Elsevier Ltd.

  9. Role of aqueous extract of morinda citrifolia (Indian noni) ripe fruits in inhibiting dental caries-causing streptococcus mutans and streptococcus mitis.

    PubMed

    Kumarasamy, Barani; Manipal, Sunayana; Duraisamy, Prabu; Ahmed, Adil; Mohanaganesh, Sp; Jeevika, C

    2014-11-01

    Use of alternative medicine to control oral streptococci is a new topic worthy of further investigation. This study aimed to elucidate the dose-dependent anti-bacterial activity of crude aqueous extract of ripe Morinda citrifolia L. (Family: Rubiaceae) fruits against oral streptococci i.e. Streptococcus mutans and Streptococcus mitis, that cause dental caries in humans. Fresh ripe M. citrifolia fruits (750g) were ground in an electronic blender with sterile water (500ml). The crude aqueous extract was lyophilized to yield a brown colored powder. Various concentrations (1000-100μg/ ml) of the extract were tested for its antibacterial activity (Kirby and Bauer method) against whole cells of S. mutans and S. mitis. Minimum Inhibitory Concentration (MIC) was determined by micro-dilution method, using serially diluted (2 folds) fruit extract, according to the National Committee for Clinical Laboratory Standards (NCCLS). Crude aqueous extract (1000μg/ ml) of ripe M. citrifolia fruits effectively inhibited the growth of S. mutans (19±0.5 mm) and S. mitis (18.6±0.3 mm) compared to the streptomycin control (21.6±0.3 mm). The growth inhibition was clearly evident with "nil" bacteriostasis, even after 48 hours of incubation at 37°C. The MIC of the extract for S. mutans and S. mitis was 125 μg and 62.5 μg, respectively. Our results suggest that phytochemicals naturally synthesized by M. citrifolia have an inhibitory effect on oral streptococci. Furthermore, purification and molecular characterization of the "bioactive principle" would enable us to formulate a sustainable oral hygiene product.

  10. Mutation of the NADH Oxidase Gene (nox) Reveals an Overlap of the Oxygen- and Acid-Mediated Stress Responses in Streptococcus mutans

    PubMed Central

    Derr, Adam M.; Faustoferri, Roberta C.; Betzenhauser, Matthew J.; Gonzalez, Kaisha; Marquis, Robert E.

    2012-01-01

    NADH oxidase (Nox) is a flavin-containing enzyme used by Streptococcus mutans to reduce dissolved oxygen encountered during growth in the oral cavity. In this study, we characterized the role of the NADH oxidase in the oxidative and acid stress responses of S. mutans. A nox-defective mutant strain of S. mutans and its parental strain, the genomic type strain UA159, were exposed to various oxygen concentrations at pH values of 5 and 7 to better understand the adaptive mechanisms used by the organism to withstand environmental pressures. With the loss of nox, the activities of oxygen stress response enzymes such as superoxide dismutase and glutathione oxidoreductase were elevated compared to those in controls, resulting in a greater adaptation to oxygen stress. In contrast, the loss of nox led to a decreased ability to grow in a low-pH environment despite an increased resistance to severe acid challenge. Analysis of the membrane fatty acid composition revealed that for both the nox mutant and UA159 parent strain, growth in an oxygen-rich environment resulted in high proportions of unsaturated membrane fatty acids, independent of external pH. The data indicate that S. mutans membrane fatty acid composition is responsive to oxidative stress, as well as changes in environmental pH, as previously reported (E. M. Fozo and R. G. Quivey, Jr., Appl. Environ. Microbiol. 70:929–936, 2004). The heightened ability of the nox strain to survive acidic and oxidative environmental stress suggests a multifaceted response system that is partially dependent on oxygen metabolites. PMID:22179247

  11. DNA fingerprinting of isolates of Streptococcus mutans by pulsed-field gel electrophoresis.

    PubMed

    Mineyama, R; Yoshino, S; Maeda, N

    2007-01-01

    Forty isolates and five standard laboratory strains, representing serotypes c, e and f of Streptococcus mutans were analyzed by pulsed-field gel electrophoresis (PFGE) after digestion of the genomic DNA with BssH II. The digestion patterns of standard laboratory strains were characteristic of serotypes c, e and f. Serotypes c and f generated diagnostic DNA fragments of approximately 145 kbp and of approximately 130-175 kbp in length, respectively. Serotype e generated a ladder of at least 14 fragments of 15-155 kbp in length. The digestion patterns of isolates were essentially similar to those of the standard laboratory strains. The patterns of almost all isolates obtained from a single individual were identical, but patterns of a few different types were also observed among isolates obtained from two individuals. Digestion with BssH II revealed differences among isolates obtained from different individuals. We used differences in banding patterns among isolates to construct a dendrogram. The dendrogram included two major clusters, one that consisted of isolates of serotypes c and f, and an other that consisted of isolates of serotype e. Our results indicate that BssH II is a useful enzyme for distinguishing among isolates of S. mutans and that digestion patterns obtained by PFGE can be used for chromosomal DNA fingerprinting.

  12. Streptococcus mutans dextransucrase: stimulation by phospholipids from human sera and oral fluids.

    PubMed Central

    Schachtele, C F; Harlander, S K; Bracke, J W; Ostrum, L C; Maltais, J A; Billings, R J

    1978-01-01

    Serum, gingival crevicular fluid, and parotid, submandibular, and labial minor gland saliva from four individuals stimulated glucan formation from sucrose by the Streptococcus mutans strain 6715 dextransucrase (EC 2.4.1.5). At final dilutions of 1:10 all of the fluids stimulated crude enzyme preparations approximately 1.8-fold. The fluids stimulated the purified water-insoluble glucan-synthesizing form of the dextransucrase approximately 3.2-fold and the water-soluble glucan-producing form of the enzyme approximately 2.4-fold. The fluids all contained concentrations of stimulatory material that could be reduced to undetectable levels only after dilutions of greater than 1:1,000. The increased rates of glucan formation caused by the fluids and dextran were additive, indicating that stimulation by the fluids was primarily due to interactions with entities other than glucan primer molecules. In contrast, the elevated levels of glucan formation in the presence of the fluids was not further enhanced by the addition of lysophosphatidylcholine. Lysophosphatidylcholine purified from parotid and submandibular saliva by solvent extraction and thin-layer chromatography stimulated the dextransucrase as effectively as egg yolk lysophosphatidylcholine. Thus, phospholipids normally found in human oral fluids can enhance the activity of an enzyme believed to be directly associated with the cariogenic potential of S. mutans. PMID:365766

  13. Streptococcus mutans autolysin AtlA is a fibronectin-binding protein and contributes to bacterial survival in the bloodstream and virulence for infective endocarditis.

    PubMed

    Jung, Chiau-Jing; Zheng, Quan-Hau; Shieh, Ya-Hsiung; Lin, Chi-Shuan; Chia, Jean-San

    2009-11-01

    Streptococcus mutans, a commensal of the human oral cavity, can survive in the bloodstream and cause infective endocarditis (IE). However, the virulence factors associated with this manifestation of disease are not known. Here, we demonstrate that AtlA, an autolysin of S. mutans is a newly identified fibronectin (Fn) binding protein and contributes to bacterial resistance to phagocytosis and survival in the bloodstream. Interestingly, prior exposure to plasma at low concentrations was sufficient to enhance bacterial survival in the circulation. Calcium ions at physiological plasma concentrations induced maturation of AtlA from the 104-90 kDa isoform resulting in increased Fn binding and resistance to phagocytosis. An isogenic mutant strain defective in AtlA expression exhibited reduced survival and virulence when tested in a rat model of IE compared with the wild-type and complemented strains. The data presented suggest that plasma components utilized by S. mutans enhanced survival in the circulation and AtlA is a virulence factor associated with infective endocarditis.

  14. Preparation, crystallization and preliminary X-ray analysis of the methionine synthase (MetE) from Streptococcus mutans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Tian-Min; Zhang, Xiao-Yan; Li, Lan-Fen

    2006-10-01

    Methionine synthase (MetE) from S. mutans was expressed, purified and crystallized. Diffraction data have been collected to 2.2 Å resolution. The Streptococcus mutans metE gene encodes methionine synthase (MetE), which catalyzes the direct transfer of a methyl group from methyltetrahydrofolate to homocysteine in the last step of methionine synthesis. metE was cloned into pET28a and the gene product was expressed at high levels in the Escherichia coli strain BL21 (DE3). MetE was purified to homogeneity using Ni{sup 2+}-chelating chromatography followed by size-exclusion chromatography. Crystals of the protein were obtained by the hanging-drop vapour-diffusion method and diffracted to 2.2 Å resolution.more » The crystal belongs to space group P2{sub 1}, with unit-cell parameters a = 52.85, b = 99.48, c = 77.88 Å, β = 94.55°.« less

  15. Cloning, characterization and anion inhibition study of a β-class carbonic anhydrase from the caries producing pathogen Streptococcus mutans.

    PubMed

    Dedeoglu, Nurcan; De Luca, Viviana; Isik, Semra; Yildirim, Hatice; Kockar, Feray; Capasso, Clemente; Supuran, Claudiu T

    2015-07-01

    The oral pathogenic bacterium involved in human dental caries formation Streptococcus mutans, encodes for two carbonic anhydrase (CA, EC 4.2.1.1) one belonging to the α- and the other one to the β-class. This last enzyme (SmuCA) has been cloned, characterized and investigated for its inhibition profile with a major class of CA inhibitors, the inorganic anions. Here we show that SmuCA has a good catalytic activity for the CO2 hydration reaction, with kcat 4.2×10(5)s(-1) and kcat/Km of 5.8×10(7)M(-1)×s(-1), being inhibited by cyanate, carbonate, stannate, divannadate and diethyldithiocarbamate in the submillimolar range (KIs of 0.30-0.64mM) and more efficiently by sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid (KIs of 15-46μM). The anion inhibition profile of the S. mutans enzyme is very different from other α- and β-CAs investigated earlier. Identification of effective inhibitors of this new enzyme may lead to pharmacological tools useful for understanding the role of S. mutans CAs in dental caries formation, and eventually the development of pharmacological agents with a new mechanism of antibacterial action. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Inverse correlation between the proportion of salivary bacteria inhibiting Streptococcus mutans and the percentage of untreated carious teeth.

    PubMed

    Goyette, N; Parrot, M; Sutzescu, D; Leduc, M; Dufour, L; Trahan, L; Lavoie, M C

    1995-11-01

    To evaluate the role of inhibitory substances produced by bacteria in the oral cavity, we estimated, by a deferred test on Todd-Hewitt agar enriched with hemin and vitamin K, the proportion of bacteria that inhibited or stimulated the growth of Streptococcus mutans and Porphyromonas gingivalis, from the saliva of 109 patients (54 males and 55 females) attending our dental clinics. The patients, aged from 8 to 75 years old (mean: 31 +/- 18 years), were randomly selected whatever the reason for their visit. The results, evaluated with the Spearman rank test, indicated that there was no statistically significant (P > 0.05) correlation between the proportion of salivary bacteria inhibiting or stimulating P. gingivalis with the Community Periodontal Index of Treatment Needs (CPITN), the number of carious, missing and filled teeth, or with the decayed, missing and filled teeth index (DMFT). Also, no statistically significant correlation was observed between the proportion of salivary bacteria stimulating the growth of S. mutans and the above mentioned health indexes. However, a statistically significant (P < 0.005) negative correlation was found between the percentage of cultivated bacteria that inhibit S. mutans and the percentage of untreated carious teeth as well as with the CPITN. The results thus indicate a possible role for inhibitory substances produced by bacteria in the maintenance of oral health.

  17. Influence of time, toothpaste and saliva in the retention of Streptococcus mutans and Streptococcus sanguinis on different toothbrushes

    PubMed Central

    SCHMIDT, Julia Caroline; BUX, Miriam; FILIPUZZI-JENNY, Elisabeth; KULIK, Eva Maria; WALTIMO, Tuomas; WEIGER, Roland; WALTER, Clemens

    2014-01-01

    Objectives The intraoral transmission of cariogenic and periodontopathogenic species seems to be facilitated by contaminated toothbrushes and other oral hygiene devices. The aim of this investigation was to analyze the in vitro retention and survival rate of Streptococcus mutans and Streptococcus sanguinis on different toothbrushes. The impacts of human saliva and antimicrobial toothpaste on these parameters were further evaluated. Material and Methods Part I: Four toothbrushes (Colgate 360°, Curaprox CS5460 ultra soft, elmex InterX, Trisa Flexible Head3) were contaminated by S. mutans DSM 20523 or S. sanguinis DSM 20068 suspensions for three minutes. Bacteria were removed from the toothbrushes after either three minutes (T0) or 24 hours (T24) of dry storage and grown on Columbia blood agar plates for the quantification of colony-forming units (CFUs). Part II: The effects of saliva from a caries-active or a caries-inactive person and of toothpaste containing 0.12% chlorhexidine digluconate were also tested. Results Part I: After three minutes of dry storage, approximately one percent of the bacteria were still detectable on the toothbrushes. After 24 hours, S. sanguinis exhibited a more pronounced decrease in viable cell numbers compared with S. mutans but the differences were not significant (Kruskal-Wallis test, p>0.05). Part II: The addition of human saliva from a caries-active or caries-inactive person slightly increased the retention of both streptococcal species at T0. The use of toothpaste had no influence on the amount of viable streptococci at T0, but it reduced the microbial load after 24 hours of storage. There were only slight nonsignificant differences (p>0.05) between the four toothbrushes. Conclusions In vitro bacterial retention and survival of S. sanguinis and S. mutans on different toothbrushes occurred. Within the limitations of this study, the use of human saliva or an antimicrobial toothpaste did not lead to significant differences in the

  18. Development and characterization of p1025-loaded bioadhesive liquid-crystalline system for the prevention of Streptococcus mutans biofilms.

    PubMed

    Calixto, Giovana Maria Fioramonti; Duque, Cristiane; Aida, Kelly Limi; Dos Santos, Vanessa Rodrigues; Massunari, Loiane; Chorilli, Marlus

    2018-01-01

    Formation of a dental biofilm by Streptococcus mutans can cause dental caries, and remains a costly health problem worldwide. Recently, there has been a growing interest in the use of peptidic drugs, such as peptide p1025, analogous to the fragments 1025-1044 of S. mutans cellular adhesin, responsible for the adhesion and formation of dental biofilm. However, peptides have physicochemical characteristics that may affect their biological action, limiting their clinical performance. Therefore, drug-delivery systems, such as a bioadhesive liquid-crystalline system (LCS), may be attractive strategies for peptide delivery. Potentiation of the action of LCS can be achieved with the use of bioadhesive polymers to prolong their residence on the teeth. In line with this, three formulations - polyoxypropylene-(5)-polyoxyethylene-(20)-cetyl alcohol, oleic acid, and Carbopol C974P in different combinations (F1C, F2C, and F3C) were developed to observe the influence of water in the LCS, with the aim of achieving in situ gelling in the oral environment. These formulations were assessed by polarized light microscopy, small-angle X-ray scattering, rheological analysis, and in vitro bioadhesion analysis. Then, p1025 and a control (chlorhexidine) were incorporated into the aqueous phase of the formulation (F + p1025 and F + chlorhexidine), to determine their antibiofilm effect and toxicity on epithelial cells. Polarized light microscopy and small-angle X-ray scattering showed that F1C and F2C were LCS, whereas F3C was a microemulsion. F1C and F2C showed pseudoplastic behavior and F3C Newtonian behavior. F1C showed the highest elastic and bioadhesive characteristics compared to other formulations. Antibiofilm effects were observed for F + p1025 when applied in the surface-bound salivary phase. The p1025-loaded nanostructured LCS presented limited cytotoxicity and effectively reduced S. mutans biofilm formation, and could be a promising p1025-delivery strategy to prevent the formation

  19. Specific binding of a naturally occurring amyloidogenic fragment of Streptococcus mutans adhesin P1 to intact P1 on the cell surface characterized by solid state NMR spectroscopy

    PubMed Central

    Tang, Wenxing; Bhatt, Avni; Smith, Adam N.; Crowley, Paula J.; Brady, L. Jeannine; Long, Joanna R.

    2016-01-01

    The P1 adhesin (aka Antigen I/II or PAc) of the cariogenic bacterium Streptococcus mutans is a cell surface-localized protein involved in sucrose-independent adhesion and colonization of the tooth surface. The immunoreactive and adhesive properties of S. mutans suggest an unusual functional quaternary ultrastructure comprised of intact P1 covalently attached to the cell wall and interacting with non-covalently associated proteolytic fragments thereof, particularly the ~57-kDa C-terminal fragment C123 previously identified as Antigen II. S. mutans is capable of amyloid formation when grown in a biofilm and P1 is among its amyloidogenic proteins. The C123 fragment of P1 readily forms amyloid fibers in vitro suggesting it may play a role in the formation of functional amyloid during biofilm development. Using wild-type and P1-deficient strains of S. mutans, we demonstrate that solid state NMR (ssNMR) spectroscopy can be used to 1) globally characterize cell walls isolated from a Gram-positive bacterium and 2) characterize the specific binding of heterologously expressed, isotopically-enriched C123 to cell wall-anchored P1. Our results lay the groundwork for future high-resolution characterization of the C123/P1 ultrastructure and subsequent steps in biofilm formation via ssNMR spectroscopy, and they support an emerging model of S. mutans colonization whereby quaternary P1-C123 interactions confer adhesive properties important to binding to immobilized human salivary agglutinin. PMID:26837620

  20. Specific binding of a naturally occurring amyloidogenic fragment of Streptococcus mutans adhesin P1 to intact P1 on the cell surface characterized by solid state NMR spectroscopy.

    PubMed

    Tang, Wenxing; Bhatt, Avni; Smith, Adam N; Crowley, Paula J; Brady, L Jeannine; Long, Joanna R

    2016-02-01

    The P1 adhesin (aka Antigen I/II or PAc) of the cariogenic bacterium Streptococcus mutans is a cell surface-localized protein involved in sucrose-independent adhesion and colonization of the tooth surface. The immunoreactive and adhesive properties of S. mutans suggest an unusual functional quaternary ultrastructure comprised of intact P1 covalently attached to the cell wall and interacting with non-covalently associated proteolytic fragments thereof, particularly the ~57-kDa C-terminal fragment C123 previously identified as Antigen II. S. mutans is capable of amyloid formation when grown in a biofilm and P1 is among its amyloidogenic proteins. The C123 fragment of P1 readily forms amyloid fibers in vitro suggesting it may play a role in the formation of functional amyloid during biofilm development. Using wild-type and P1-deficient strains of S. mutans, we demonstrate that solid state NMR (ssNMR) spectroscopy can be used to (1) globally characterize cell walls isolated from a Gram-positive bacterium and (2) characterize the specific binding of heterologously expressed, isotopically-enriched C123 to cell wall-anchored P1. Our results lay the groundwork for future high-resolution characterization of the C123/P1 ultrastructure and subsequent steps in biofilm formation via ssNMR spectroscopy, and they support an emerging model of S. mutans colonization whereby quaternary P1-C123 interactions confer adhesive properties important to binding to immobilized human salivary agglutinin.

  1. Inactivation of the spxA1 or spxA2 gene of Streptococcus mutans decreases virulence in the rat caries model

    PubMed Central

    Galvão, Lívia C.C.; Rosalen, Pedro L.; Rivera-Ramos, Isamar; Franco, Gilson C.N.; Kajfasz, Jessica K; Abranches, Jacqueline; Bueno-Silva, Bruno; Koo, Hyun; Lemos, José A.

    2016-01-01

    SUMMARY In oral biofilms, the major environmental challenges encountered by Streptococcus mutans are acid and oxidative stresses. Previously, we showed that the transcriptional regulators SpxA1 and SpxA2 are involved in general stress survival of S. mutans with SpxA1 playing a primary role in activation of antioxidant and detoxification strategies whereas SpxA2 serves as a back up activator of oxidative stress genes. We have also found that spxA1 mutant strains (ΔspxA1 and ΔspxA1ΔspxA2) are outcompeted by peroxigenic oral streptococci in vitro and have impaired abilities to colonize the teeth of rats fed a highly cariogenic diet. Here, we show that the Spx proteins can also exert regulatory roles in the expression of additional virulence attributes of S. mutans. Competence activation is significantly impaired in Δspx strains and the production of mutacin IV and V is virtually abolished in ΔspxA1 strains. Unexpectedly, the ΔspxA2 strain showed increased production of glucans from sucrose, without affecting the total amount of bacteria within biofilms when compared to the parent strain. By using the rat caries model, we showed that the capacity of the ΔspxA1 and ΔspxA2 strains to cause caries on smooth tooth surfaces is significantly impaired. The ΔspxA2 strain also formed fewer lesions on sulcal surfaces. This report reveals that global regulation via Spx contributes to the cariogenic potential of S. mutans and highlights the essentiality of animal models in the characterization of bacterial traits implicated in virulence. PMID:27037617

  2. Role of Aqueous Extract of Morinda Citrifolia (Indian Noni) Ripe Fruits in Inhibiting Dental Caries-Causing Streptococcus Mutans and Streptococcus Mitis

    PubMed Central

    Kumarasamy, Barani; Manipal, Sunayana; Duraisamy, Prabu; Ahmed, Adil; Mohanaganesh, SP; Jeevika, C

    2014-01-01

    Objectives: Use of alternative medicine to control oral streptococci is a new topic worthy of further investigation. This study aimed to elucidate the dose-dependent anti-bacterial activity of crude aqueous extract of ripe Morinda citrifolia L. (Family: Rubiaceae) fruits against oral streptococci i.e. Streptococcus mutans and Streptococcus mitis, that cause dental caries in humans. Methods: Fresh ripe M. citrifolia fruits (750g) were ground in an electronic blender with sterile water (500ml). The crude aqueous extract was lyophilized to yield a brown colored powder. Various concentrations (1000-100μg/ ml) of the extract were tested for its antibacterial activity (Kirby and Bauer method) against whole cells of S. mutans and S. mitis. Minimum Inhibitory Concentration (MIC) was determined by micro-dilution method, using serially diluted (2 folds) fruit extract, according to the National Committee for Clinical Laboratory Standards (NCCLS). Results: Crude aqueous extract (1000μg/ ml) of ripe M. citrifolia fruits effectively inhibited the growth of S. mutans (19±0.5 mm) and S. mitis (18.6±0.3 mm) compared to the streptomycin control (21.6±0.3 mm). The growth inhibition was clearly evident with “nil” bacteriostasis, even after 48 hours of incubation at 37°C. The MIC of the extract for S. mutans and S. mitis was 125 μg and 62.5 μg, respectively. Conclusion: Our results suggest that phytochemicals naturally synthesized by M. citrifolia have an inhibitory effect on oral streptococci. Furthermore, purification and molecular characterization of the “bioactive principle” would enable us to formulate a sustainable oral hygiene product. PMID:25628701

  3. A terpenoid isolated from sarang semut (Myrmecodia pendans) bulb and its potential for the inhibition and eradication of Streptococcus mutans biofilm.

    PubMed

    Gartika, Meirina; Pramesti, Hening T; Kurnia, Dikdik; Satari, Mieke H

    2018-05-09

    Dental caries remains a serious problem due to its detrimental effects on individual health and quality of life. The bulbs of Myrmecodia pendans (Merr & Perry), native plants of Papua, have been used as natural remedies for tumours, gout, diarrhoea, and fever. In this study, one of the active compounds of M. pendans was isolated, and its biological activity against the formation of Streptococcus mutans ATCC 25175 biofilm was tested. M. pendans was extracted with ethyl acetate using a Soxhlet apparatus. The extract was then separated, and chromatographic purification provided the isolated compound. The structure of the active compound was then characterized using UV, IR, NMR, and MS spectrometry. The obtained compound was added to S. mutans biofilms to determine the MBIC and MBEC values. The compound isolated from M. pendans was determined to be a labdane diterpene derivative with the formula C 31 H 50 O 3 . The MBIC value of the terpenoid towards the S. mutans biofilms was 50 ppm, and the MBEC value for the 1 min induction time was 40%. The terpenoid extracted from M. pendans has the potential to be developed into an antibacterial agent particularly for preventing the formation of biofilms.

  4. Antimicrobial Traits of Tea- and Cranberry-Derived Polyphenols against Streptococcus mutans

    PubMed Central

    Yoo, S.; Murata, R.M.; Duarte, S.

    2011-01-01

    There are over 750 species of bacteria that inhabit the human oral cavity, but only a small fraction of those are attributed to causing plaque-related diseases such as caries. Streptococcus mutans is accepted as the main cariogenic agent and there is substantial knowledge regarding the specific virulence factors that render the organism a pathogen. There has been rising interest in alternative, target-specific treatment options as opposed to nonspecific mechanical plaque removal or application of broad-spectrum antibacterials that are currently in use. The impact of diet on oral health is undeniable, and this is directly observable in populations that consume high quantities of polyphenol-rich foods or beverages. Such populations have low caries incidence and better overall oral health. Camellia sinensis, the plant from which various forms of tea are derived, and Vaccinium macrocarpon (American cranberry fruit) have received notable attention both for their prevalence in the human diet as well as for their unique composition of polyphenols. The biologically active constituents of these plants have demonstrated potent enzyme-inhibitory properties without being bactericidal, a key quality that is important in developing therapies that will not cause microorganisms to develop resistance. The aim of this review is to consider studies that have investigated the feasibility of tea, cranberry, and other select plant derivatives as a potential basis for alternative therapeutic agents against Streptococcus mutans and to evaluate their current and future clinical relevance. PMID:21720161

  5. Inhibitory capacity of Rhus coriaria L. extract and its major component methyl gallate on Streptococcus mutans biofilm formation by optical profilometry: Potential applications for oral health.

    PubMed

    Kacergius, Tomas; Abu-Lafi, Saleh; Kirkliauskiene, Agne; Gabe, Vika; Adawi, Azmi; Rayan, Mahmoud; Qutob, Mutaz; Stukas, Rimantas; Utkus, Algirdas; Zeidan, Mouhammad; Rayan, Anwar

    2017-07-01

    Streptococcus mutans (S. mutans) bacterium is the most well recognized pathogen involved in pathogenesis of dental caries. Its virulence arises from its ability to produce a biofilm and acidogenicity, causing tooth decay. Discovery of natural products capable to inhibit biofilm formation is of high importance for developing health care products. To the best of our knowledge, in all previous scientific reports, a colorimetric assay was applied to test the effect of sumac and methyl gallate (MG) on S. mutans adherence. Quantitative assessment of the developed biofilm should be further performed by applying an optical profilometry assay, and by testing the effect on both surface roughness and thickness parameters of the biofilm. To the best of our knowledge, this is the first study to report the effect of sumac extract and its constituent MG on biofilm formation using an optical profilometry assay. Testing antibacterial activity of the sumac extract and its fractions revealed that MG is the most bioactive component against S. mutans bacteria. It reduced S. mutans biofilm biomass on the polystyrene surface by 68‑93%, whereas 1 mg/ml MG was able to decrease the biofilm roughness and thickness on the glass surface by 99%. MG also prevented a decrease in pH level by 97%. These bioactivities of MG occurred in a dose‑dependent manner and were significant vs. untreated bacteria. The findings are important for the development of novel pharmaceuticals and formulations of natural products and extracts that possess anti‑biofilm activities with primary applications for oral health, and in a broader context, for the treatment of various bacterial infections.

  6. PCR detection of Streptococcus mutans and Aggregatibacter actinomycetemcomitans in dental plaque samples from Haitian adolescents.

    PubMed

    Psoter, Walter J; Ge, Yao; Russell, Stefanie L; Chen, Zhou; Katz, Ralph V; Jean-Charles, Germain; Li, Yihong

    2011-08-01

    Streptococcus mutans and Aggregatibacter actinomycetemcomitans are oral pathogens associated with dental caries and periodontitis, respectively. The aim of this study was to determine the colonization of these two microorganisms in the dental plaque of a group of Haitian adolescents using two different polymerase chain reaction (PCR) methods, standard PCR, and quantitative real-time PCR (qPCR) assays. Fifty-four pooled supra-gingival plaque samples and 98 pooled sub-gingival plaque samples were obtained from 104 12- to19-year-old rural-dwelling Haitians. The total genomic DNA of bacteria was isolated from these samples, and all participants also received caries and periodontal examinations. Caries prevalence was 42.2%, and the mean decayed, missing, and filled surface (DMFS) was 2.67 ± 5.3. More than half of the adolescents (53.3%) experienced periodontal pockets (Community Periodontal Index score ≥3). S. mutans was detected in 67.3% by qPCR and 38.8% by PCR of the supra-gingival plaque samples (p < 0.01), and 36.6% by qPCR and 8.1% by PCR of the sub-gingival samples (p < 0.01). A. actinomycetemcomitans was detected in 85.1% by qPCR and 44.0% by PCR of the sub-gingival samples (p < 0.01), but the prevalence was similar, 67.3% by qPCR and 59.2% by PCR, in the supra-gingival plaque samples. Neither age nor gender was significantly correlated to the bacterial colonization. The results demonstrated a moderate-to-high prevalence of S. mutans and A. actinomycetemcomitans in the Haitian adolescent population, and qPCR is more sensitive than standard PCR in field conditions. These findings suggest that qPCR should be considered for field oral epidemiologic studies and may be necessary in investigations having major logistic challenges.

  7. Fueling the caries process: carbohydrate metabolism and gene regulation by Streptococcus mutans

    PubMed Central

    Moye, Zachary D.; Zeng, Lin; Burne, Robert A.

    2014-01-01

    The nature of the oral cavity and host behaviors has mandated that the oral microbiota evolve mechanisms for coping with environmental fluctuations, especially changes in the type and availability of carbohydrates. In the case of human dental caries, the presence of excess carbohydrates is often responsible for altering the local environment to be more favorable for species associated with the initiation and progression of disease, including Streptococcus mutans. Some of the earliest endeavors to understand how cariogenic species respond to environmental perturbations were carried out using chemostat cultivation, which provides fine control over culture conditions and bacterial behaviors. The development of genome-scale methodologies has allowed for the combination of sophisticated cultivation technologies with genome-level analysis to more thoroughly probe how bacterial pathogens respond to environmental stimuli. Recent investigations in S. mutans and other closely related streptococci have begun to reveal that carbohydrate metabolism can drastically impact pathogenic potential and highlight the important influence that nutrient acquisition has on the success of pathogens; inside and outside of the oral cavity. Collectively, research into pathogenic streptococci, which have evolved in close association with the human host, has begun to unveil the essential nature of careful orchestration of carbohydrate acquisition and catabolism to allow the organisms to persist and, when conditions allow, initiate or worsen disease. PMID:25317251

  8. Comparative short-term in vitro analysis of mutans streptococci adhesion on esthetic, nickel-titanium, and stainless-steel arch wires.

    PubMed

    Kim, In-Hye; Park, Hyo-Sang; Kim, Young Kyung; Kim, Kyo-Han; Kwon, Tae-Yub

    2014-07-01

    To test the hypothesis that there are no differences in mutans streptococci (MS) adhesion between esthetic and metallic orthodontic arch wires based on their surface characteristics. Surface roughness (Ra) and apparent surface free energy (SFE) were measured for six wires-four esthetic, one nickel-titanium (NiTi), and one stainless-steel (SS)-using profilometry and dynamic contact angle analysis, respectively. The amount of MS (Streptococcus mutans and Streptococcus sobrinus) adhering to the wires was quantified using the colony-counting method. The surfaces, coating layers, and MS adhesion were also observed by scanning electron microscopy. Statistical significance was set at P < .05. The Ra values of the esthetic wires were significantly different from one another depending on the coating method (P < .05). The NiTi wire showed the highest SFE, followed by the SS wire and then the four esthetic wires. The NiTi wires produced a significantly higher MS adhesion than did the SS wires (P < .05). The esthetic wires showed significantly lower MS adhesions than did the NiTi wire (P < .05). Pearson correlation analyses found moderate significant positive correlations between the SFE and the S mutans and S sobrinus adhesions (r  =  .636/.427, P < .001/P  =  .001, respectively). The hypothesis is rejected. This study indicates that some esthetic coatings on NiTi alloy might reduce MS adhesion in vitro in the short term.

  9. Origins of heterogeneity in Streptococcus mutans competence: interpreting an environment-sensitive signaling pathway

    NASA Astrophysics Data System (ADS)

    Hagen, Stephen J.; Son, Minjun

    2017-02-01

    Bacterial pathogens rely on chemical signaling and environmental cues to regulate disease-causing behavior in complex microenvironments. The human pathogen Streptococcus mutans employs a particularly complex signaling and sensing scheme to regulate genetic competence and other virulence behaviors in the oral biofilms it inhabits. Individual S. mutans cells make the decision to enter the competent state by integrating chemical and physical cues received from their microenvironment along with endogenously produced peptide signals. Studies at the single-cell level, using microfluidics to control the extracellular environment, provide physical insight into how the cells process these inputs to generate complex and often heterogeneous outputs. Fine changes in environmental stimuli can dramatically alter the behavior of the competence circuit. Small shifts in pH can switch the quorum sensing response on or off, while peptide-rich media appear to switch the output from a unimodal to a bimodal behavior. Therefore, depending on environmental cues, the quorum sensing circuitry can either synchronize virulence across the population, or initiate and amplify heterogeneity in that behavior. Much of this complex behavior can be understood within the framework of a quorum sensing system that can operate both as an intercellular signaling mechanism and intracellularly as a noisy bimodal switch.

  10. Effect of penicillin on fatty acid synthesis and excretion in Streptococcus mutans BHT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brissette, J.L.; Pieringer, R.A.

    Treatment of exponentially growing cultures of Streptococcus mutans BHT with growth-inhibitory concentrations (0.2 microgram/ml) of benzylpenicillin stimulates the incorporation of (2-/sup 14/C) acetate into lipids excreted by the cells by as much as 69-fold, but does not change the amount of /sup 14/C incorporated into intracellular lipids. At this concentration of penicillin cellular lysis does not occur. The radioactive label is incorporated exclusively into the fatty acid moieties of the glycerolipids. During a 4-hr incubation in the presence of penicillin, the extracellular fatty acid ester concentration increases 1.5 fold, even though there is no growth or cellular lysis. An indicationmore » of the relative rate of fatty acid synthesis was most readily obtained by placing S. mutans BHT in a buffer containing /sup 14/C-acetate. Under these nongrowing conditions free fatty acids are the only lipids labeled, a factor which simplifies the assay. The addition of glycerol to the buffer causes all of the nonesterified fatty acids to be incorporated into glycerolipid. The cells excrete much of the lipid whether glycerol is present or not. Addition of penicillin to the nongrowth supporting buffer system does not stimulate the incorporation of (/sup 14/C)-acetate into fatty acids.« less

  11. Baseline dental plaque activity, mutans streptococci culture, and future caries experience in children.

    PubMed

    Hallett, Kerrod B; O'Rourke, Peter K

    2013-01-01

    The purpose of this study was to evaluate a chairside caries risk assessment protocol utilizing a caries prediction instrument, adenosine triphosphate (ATP) activity in dental plaque, mutans streptococci (MS) culture, and routine dental examination in five- to 10-year-old children at two regional Australian schools with high caries experience. Clinical indicators for future caries were assessed at baseline examination using a standardized prediction instrument. Plaque ATP activity was measured directly in relative light units (RLU) using a bioluminescence meter, and MS culture data were recorded. Each child's dentition was examined clinically and radiographically, and caries experience was recorded using enamel white spot lesions and decayed, missing, and filled surfaces for primary and permanent teeth indices. Univariate one-way analysis of variance between selected clinical indicators, ATP activity, MS count at baseline, and future new caries activity was performed, and a generalized linear model for prediction of new caries activity at 24 months was constructed. Future new caries activity was significantly associated with the presence of visible cavitations, reduced saliva flow, and orthodontic appliances at baseline (R(2)=0.2, P<.001). Baseline plaque adenosine triphosphate activity and mutans streptococci counts were not significantly associated with caries activity at 24 months.

  12. Function of the Pyruvate Oxidase-Lactate Oxidase Cascade in Interspecies Competition between Streptococcus oligofermentans and Streptococcus mutans

    PubMed Central

    Liu, Lei

    2012-01-01

    Complex interspecies interactions occur constantly between oral commensals and the opportunistic pathogen Streptococcus mutans in dental plaque. Previously, we showed that oral commensal Streptococcus oligofermentans possesses multiple enzymes for H2O2 production, especially lactate oxidase (Lox), allowing it to out-compete S. mutans. In this study, through extensive biochemical and genetic studies, we identified a pyruvate oxidase (pox) gene in S. oligofermentans. A pox deletion mutant completely lost Pox activity, while ectopically expressed pox restored activity. Pox was determined to produce most of the H2O2 in the earlier growth phase and log phase, while Lox mainly contributed to H2O2 production in stationary phase. Both pox and lox were expressed throughout the growth phase, while expression of the lox gene increased by about 2.5-fold when cells entered stationary phase. Since lactate accumulation occurred to a large degree in stationary phase, the differential Pox- and Lox-generated H2O2 can be attributed to differential gene expression and substrate availability. Interestingly, inactivation of pox causes a dramatic reduction in H2O2 production from lactate, suggesting a synergistic action of the two oxidases in converting lactate into H2O2. In an in vitro two-species biofilm experiment, the pox mutant of S. oligofermentans failed to inhibit S. mutans even though lox was active. In summary, S. oligofermentans develops a Pox-Lox synergy strategy to maximize its H2O2 formation so as to win the interspecies competition. PMID:22287002

  13. Comparison of antimicrobial effects of titanium tetrafluoride, chlorhexidine, xylitol and sodium fluoride on streptococcus mutans: An in-vitro study.

    PubMed

    Eskandarian, Tahereh; Motamedifar, Mohammad; Arasteh, Peyman; Eghbali, Seyed Sajad; Adib, Ali; Abdoli, Zahra

    2017-03-01

    No studies have yet documented the bactericidal effects of TiF4, and its role in the treatment of dental caries, and no definite protocol has been introduced to regulate its use. The aim of this study was to determine the antimicrobial/bactericidal effects of TiF4 on Streptococcus Mutans ( S. Mutans ) and to compare it with chlorhexidine (Chx), sodium fluoride (NaF) and xylitol. This study was conducted at the Shiraz University of Medical Sciences microbiology laboratory during March 2015 to September 2015. In this in-vitro study, first a bacterial suspension was prepared and adjusted to a 0.5 McFarland standard (equivalent to 1×10 8 CFU/ml). The minimal inhibitory concentration (MIC) and minimal bactericidal concentrations (MBC) of TiF4, Chx, NaF and xylitol were assessed using broth microdilution assay and disk diffusion methods. In order to neutralize the acidic nature of TiF4, we used a sodium hydroxide preparation to obtain a pH of 7.2 and repeated all of the previous tests with the neutralized TiF4 solution. We reported the final results as percentages where appropriate. The MIC of TiF4, NaF and Chx for S. Mutans were 12.5%, 12.5% and 6.25%, respectively. At a concentration of 12.5% the inhibition zone diameters were 9 mm, 15mm and 14mm for TiF4, NaF and Chx, respectively. The MBC was 25%, 12.5% and 12.5% for TiF4, NaF and Chx, respectively. Xylitol failed to show any bactericidal or growth inhibitory effect in all of its concentrations. When we repeated the tests with an adjusted pH, identical results were obtained. TiF4 solutions have anti-growth and bactericidal effects on S. Mutans at a concentration of 12.5% which is comparable with chlorhexidine and NaF, indicating the possible use of this solution in dental practice as an anti-cariogenic agent, furthermore the antimicrobial activity is unaffected by pH of the environment.

  14. The synthetic human beta-defensin-3 C15 peptide exhibits antimicrobial activity against Streptococcus mutans, both alone and in combination with dental disinfectants.

    PubMed

    Ahn, Ki Bum; Kim, A Reum; Kum, Kee-Yeon; Yun, Cheol-Heui; Han, Seung Hyun

    2017-10-01

    Streptococcus mutans is a major etiologic agent of human dental caries that forms biofilms on hard tissues in the human oral cavity, such as tooth and dentinal surfaces. Human β-defensin-3 (HBD3) is a 45-amino-acid natural antimicrobial peptide that has broad spectrum antimicrobial activity against bacteria and fungi. A synthetic peptide consisting of the C-terminal 15 amino acids of HBD3 (HBD3-C15) was recently shown to be sufficient for its antimicrobial activity. Thus, clinical applications of this peptide have garnered attention. In this study, we investigated whether HBD3-C15 inhibits the growth of the representative cariogenic pathogen Streptococcus mutans and its biofilm formation. HBD3-C15 inhibited bacterial growth, exhibited bactericidal activity, and attenuated bacterial biofilm formation in a dose-dependent manner. HBD3-C15 potentiated the bactericidal and anti-biofilm activity of calcium hydroxide (CH) and chlorhexidine digluconate (CHX), which are representative disinfectants used in dental clinics, against S. mutans. Moreover, HBD3-C15 showed antimicrobial activity by inhibiting biofilm formation by S. mutans and other dentinophilic bacteria such as Enterococcus faecalis and Streptococcus gordonii, which are associated with dental caries and endodontic infection, on human dentin slices. These effects were observed for HBD3-C15 alone and for HBD3-C15 in combination with CH or CHX. Therefore, we suggest that HBD3-C15 is a potential alternative or additive disinfectant that can be used for the treatment of oral infectious diseases, including dental caries and endodontic infections.

  15. Antibacterial Effects of Different Concentrations of Althaea officinalis Root Extract versus 0.2% Chlorhexidine and Penicillin on Streptococcus mutans and Lactobacillus (In vitro).

    PubMed

    Haghgoo, Roza; Mehran, Majid; Afshari, Elahe; Zadeh, Hamide Farajian; Ahmadvand, Motahare

    2017-01-01

    The aims of the present study were to determine and compare the effects of different concentrations of Althaea officinalis extract, 0.2% chlorhexidine (CHX), and penicillin on Streptococcus mutans and Lactobacillus acidophilus in vitro . The laboratory study was done, for a period of 8 weeks. Minimum inhibitory concentration (MIC) in the test tube, minimum bactericidal concentration (MBC) in a plate culture medium, and growth inhibition zone diameter methods were used to compare the antibacterial effects of 0.2% CHX, penicillin, and different concentrations of A. officinalis root extract. The data were analyzed by SPSS version 24 using ANOVA and t -test analysis. The results showed A. officinalis root extract had antibacterial effect, but significant differences were in MIC and MBC against L. acidophilus and S. mutans with penicillin and 0.2% CHX mouthwash. In addition, the mean growth inhibition zones of all the concentrations of the plant extract were less than that of the positive control group ( P = 0.001). However, the difference in the maximum growth inhibition zone from that with the negative control group was significant. In addition, the antibacterial effect of the extract increased with an increase in its concentration. The extract exerted a greater antibacterial effect on S. mutans than on L. acidophilus . The plant polyphenols content is 3.7% which is equivalent to 29.93 g/ml. The root extract of A. officinalis exhibited antibacterial effects on S. mutans and L. acidophilus , but this effect was less than those of CHX mouthwash and penicillin. The antibacterial effect increased with an increase in the concentration of the extract.

  16. Bactericidal effect of extracts and metabolites of Robinia pseudoacacia L. on Streptococcus mutans and Porphyromonas gingivalis causing dental plaque and periodontal inflammatory diseases.

    PubMed

    Patra, Jayanta Kumar; Kim, Eun Sil; Oh, Kyounghee; Kim, Hyeon-Jeong; Dhakal, Radhika; Kim, Yangseon; Baek, Kwang-Hyun

    2015-04-08

    The mouth cavity hosts many types of anaerobic bacteria, including Streptococcus mutans and Porphyromonas gingivalis, which cause periodontal inflammatory diseases and dental caries. The present study was conducted to evaluate the antibacterial potential of extracts of Robinia pseudoacacia and its different fractions, as well as some of its natural compounds against oral pathogens and a nonpathogenic reference bacteria, Escherichia coli. The antibacterial activity of the crude extract and the solvent fractions (hexane, chloroform, ethyl acetate and butanol) of R. pseudoacacia were evaluated against S. mutans, P. gingivalis and E. coli DH5α by standard micro-assay procedure using conventional sterile polystyrene microplates. The results showed that the crude extract was more active against P. gingivalis (100% growth inhibition) than against S. mutans (73% growth inhibition) at 1.8 mg/mL. The chloroform and hexane fractions were active against P. gingivalis, with 91 and 97% growth inhibition, respectively, at 0.2 mg/mL. None of seven natural compounds found in R. pseudoacacia exerted an antibacterial effect on P. gingivalis; however, fisetin and myricetin at 8 µg/mL inhibited the growth of S. mutans by 81% and 86%, respectively. The crude extract of R. pseudoacacia possesses bioactive compounds that could completely control the growth of P. gingivalis. The antibiotic activities of the hexane and chloroform fractions suggest that the active compounds are hydrophobic in nature. The results indicate the effectiveness of the plant in clinical applications for the treatment of dental plaque and periodontal inflammatory diseases and its potential use as disinfectant for various surgical and orthodontic appliances.

  17. Inactivation of the spxA1 or spxA2 gene of Streptococcus mutans decreases virulence in the rat caries model.

    PubMed

    Galvão, L C C; Rosalen, P L; Rivera-Ramos, I; Franco, G C N; Kajfasz, J K; Abranches, J; Bueno-Silva, B; Koo, H; Lemos, J A

    2017-04-01

    In oral biofilms, the major environmental challenges encountered by Streptococcus mutans are acid and oxidative stresses. Previously, we showed that the transcriptional regulators SpxA1 and SpxA2 are involved in general stress survival of S. mutans with SpxA1 playing a primary role in activation of antioxidant and detoxification strategies whereas SpxA2 serves as a back up activator of oxidative stress genes. We have also found that spxA1 mutant strains (∆spxA1 and ∆spxA1∆spxA2) are outcompeted by peroxigenic oral streptococci in vitro and have impaired abilities to colonize the teeth of rats fed a highly cariogenic diet. Here, we show that the Spx proteins can also exert regulatory roles in the expression of additional virulence attributes of S. mutans. Competence activation is significantly impaired in Δspx strains and the production of mutacin IV and V is virtually abolished in ΔspxA1 strains. Unexpectedly, the ∆spxA2 strain showed increased production of glucans from sucrose, without affecting the total amount of bacteria within biofilms when compared with the parent strain. By using the rat caries model, we showed that the capacity of the ΔspxA1 and ΔspxA2 strains to cause caries on smooth tooth surfaces is significantly impaired. The ∆spxA2 strain also formed fewer lesions on sulcal surfaces. This report reveals that global regulation via Spx contributes to the cariogenic potential of S. mutans and highlights that animal models are essential in the characterization of bacterial traits implicated in virulence. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Preliminary findings on the correlation of saliva pH, buffering capacity, flow, Consistency and Streptococcus mutans in relation to cigarette smoking.

    PubMed

    Voelker, Marsha A; Simmer-Beck, Melanie; Cole, Molly; Keeven, Erin; Tira, Daniel

    2013-02-01

    The purpose of this preliminary study was to examine the relationship of caries risk, salivary buffering capacity, salivary pH, salivary quality (flow, consistency) and levels of Streptococcus mutans in relation to cigarette smoking. This clinical trial consisted of 53 volunteer patients receiving care in a university based dental hygiene clinic. Participants completed a questionnaire specific to their social history in regards to tobacco use, oral health and dietary history. Measurements of unstimulated saliva were collected followed by collection of stimulated saliva samples. These samples were used to measure salivary pH, buffering capacity and Streptococcus mutans levels. The subject's smoking status was significantly associated with caries risk (p= 0.001), with 25% of the variability of caries risk attributed to smoking. The smoking status was significantly associated with buffering capacity (p=0.025), with 9% of the variability of buffering status attributed to the smoking. Associations between smoking status and salivary pH were not statistically significant. The subject's caries risk was significantly associated with buffering capacity (p= 0.001), with 25% of the variability of caries risk attributed to the buffering capacity. The subject's caries risk was significantly associated with salivary pH (p= 0.031), with 9% of the variability of caries risk attributed to the salivary pH. The Streptococcus mutans test showed no statistical significance (p>0.05) possibly due to the number and low variance in the subjects. A relationship between caries risk and smoking, buffering capacity and smoking, and stimulated salivary pH and smoking were concluded. No significance difference (p>0.05) between caries risk and salivary pH, salivary quality and smoking, S. mutans and smoking were noted from the preliminary results.

  19. Carnosine-graphene oxide conjugates decorated with hydroxyapatite as promising nanocarrier for ICG loading with enhanced antibacterial effects in photodynamic therapy against Streptococcus mutans.

    PubMed

    Gholibegloo, Elham; Karbasi, Ashkan; Pourhajibagher, Maryam; Chiniforush, Nasim; Ramazani, Ali; Akbari, Tayebeh; Bahador, Abbas; Khoobi, Mehdi

    2018-04-01

    Antimicrobial photodynamic therapy (aPDT) has been emerged as a noninvasive strategy to remove bacterial contaminants such as S. mutans from the tooth surface. Photosensitizer (PS), like indocyanine green (ICG), plays a key role in this technique which mainly suffers from the poor stability and concentration-dependent aggregation. An appropriate nanocarrier (NC) with enhanced antibacterial effects could overcome these limitations and improve the efficiency of ICG as a PS. In this study, various ICG-loaded NCs including graphene oxide (GO), GO-carnosine (Car) and GO-Car/Hydroxyapatite (HAp) were synthesized and characterized by Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Filed Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive Spectroscopy (EDS), Zeta Potential and Ultraviolet-Visible spectrometry (UV-Vis). The colony forming unit and crystal violet assays were performed to evaluate the antimicrobial and anti-biofilm properties of PSs against S. mutans. The quantitative real-time PCR approach was also applied to determine the expression ratio of the gtfB gene in S. mutans. The zeta potential analysis and UV-Vis spectrometry indicated successful loading of ICG onto/into NCs. GO-Car/HAp showed highest amount of ICG loading (57.52%) and also highest aqueous stability after one week (94%). UV-Vis spectrometry analyses disclosed a red shift from 780 to 800 nm for the characteristic peak of ICG-loaded NCs. In the lack of aPDT, GO-Car@ICG showed the highest decrease in bacterial survival (86.4%) which indicated that Car could significantly promote the antibacterial effect of GO. GO@ICG, GO-Car@ICG and GO-Car/HAp@ICG mediated aPDT, dramatically declined the count of S. mutans strains to 91.2%, 95.5% and 93.2%, respectively (P < 0.05). The GO@ICG, GO-Car@ICG, GO-Car/HAp@ICG significantly suppressed the S. mutans biofilm formation by 51.4%, 63.8%, and 56.8%, respectively (P < 0.05). The expression of gtfB gene was

  20. Diethylaminoethyl-cellulose-bacterial cell immunoadsorbent columns: preparation of serotype-specific globulin and immunofluorescent conjugates for Streptococcus mutans serotypes a and d.

    PubMed

    McKinney, R M; Thacker, L

    1976-04-01

    Diethylaminoethyl (DEAE)-cellulose was used as a support material for preparing bacterial cell columns. Pretreatment of the bacterial cells with formalin was essential in obtaining satisfactory adherence of the cells to DEAE-cellulose. Cross-reacting antibodies were removed from antibody preparations against strains of Streptococcus mutans serotypes a and d by adsorption on appropriate bacterial cell columns. S. mutans serotype d was further divided into two subtypes on the basis of immunofluorescent staining with conjugates of immunospecifically adsorbed immunoglobulin G. The DEAE-cellulose-bacterial cell columns were regenerated after use by desorbing the cross-reacting antibodies with low-pH buffer and were used repeatedly over and 18-month period with no detectable loss in effectiveness.