Sample records for galvanically active metallic

  1. [Exposure to metal compounds in occupational galvanic processes].

    PubMed

    Surgiewicz, Jolanta; Domański, Wojciech

    2006-01-01

    Occupational galvanic processes are provided in more than 600 small and medium enterprises in Poland. Workers who deal with galvanic coating are exposed to heavy metal compounds: tin, silver, copper and zinc. Some of them are carcinogenic, for example, hexavalent chromium compounds, nickel and cadmium compounds. Research covered several tens of workstations involved in chrome, nickel, zinc, tin, silver, copper and cadmium plating. Compounds of metals present in the air were determined: Cr, Ni, Cd, Sn, Ag--by atomic absorption spectrometry with electrothermal atomization (ET-AAS) and Zn--by atomic absorption spectrometry with flame atomization (F-AAS). The biggest metal concentrations--of silver and copper--were found at workstations of copper, brass, cadmium, nickel and chrome plating, conducted at the same time. Significant concentrations of copper were found at workstations of maintenance bathing and neutralizing of sewage. The concentrations of metals did not exceed Polish MAC values. MAC values were not exceeded for carcinogenic chromium(VI), nickel or cadmium, either. In galvanic processes there was no hazard related to single metals or their compounds, even carcinogenic ones. Combined exposure indicators for metals at each workstation did not exceed 1, either. However, if there are even small quantities of carcinogenic agents, health results should always be taken into consideration.

  2. Finishes for Metals. Paintability of Galvanized Steel, Corrosion Resistance of Metallized Coatings.

    ERIC Educational Resources Information Center

    Building Research Inst., Inc., Washington, DC.

    Two papers are presented. The first, "Report of the AISI Research Project on the Paintability of Galvanized Steel," was a project aimed at determining optimum procedures for painting bright-spangled galvanized sheet steel products using three classes of trade sales paints--metallic zinc-dust, portland cement-in-oil, and water base emulsion paints.…

  3. Inertization of heavy metals present in galvanic sludge by DC thermal plasma.

    PubMed

    Leal Vieira Cubas, Anelise; de Medeiros Machado, Marília; de Medeiros Machado, Marina; Gross, Frederico; Magnago, Rachel Faverzani; Moecke, Elisa Helena Siegel; Gonçalvez de Souza, Ivan

    2014-01-01

    Galvanic sludge results from the treatment of effluents generated by the industrial metal surface treatment of industrial material, which consists in the deposition of a metal on a surface or a metal surface attack, for example, electrodeposition of conductors (metals) and non conductive, phosphate, anodizing, oxidation and/or printed circuit. The treatment proposed here is exposure of the galvanic sludge to the high temperatures provided by thermal plasma, a process which aims to vitrify the galvanic sludge and render metals (iron, zinc, and chromium) inert. Two different plasma reactors were assembled: with a DC transferred arc plasma torch and with a DC nontransferred arc plasma torch. In this way it was possible to verify which reactor was more efficient in the inertization of the metals and also to investigate whether the addition of quartzite sand to the sludge influences the vitrification of the material. Quantification of water content and density of the galvanic raw sludge were performed, as well as analyzes of total organic carbon (TOC) and identify the elements that make up the raw sludge through spectroscopy X-ray fluorescence (XRF). The chemical composition and the form of the pyrolyzed and vitrified sludge were analyzed by scanning electron microscopy with energy-dispersive X-ray spectrometer (SEM-EDS) analysis, which it is a analysis that shows the chemical of the sample surface. The inertization of the sludge was verified in leaching tests, where the leachate was analyzed by flame atomic absorption spectroscopy (FAAS). The results of water content and density were 64.35% and 2.994 g.cm(-3), respectively. The TOC analysis determined 1.73% of C in the sample of galvanic raw sludge, and XRF analysis determined the most stable elements in the sample, and showed the highest peaks (higher stability) were Fe, Zn, and Cr. The efficiency of the sludge inertization was 100% for chromium, 99% for zinc, and 100% for iron. The results also showed that the most

  4. Liquid Galvanic Coatings for Protection of Imbedded Metals

    NASA Technical Reports Server (NTRS)

    MacDowell, Louis G. (Inventor); Curran, Joseph J. (Inventor)

    2003-01-01

    Coating compositions and methods of their use are described herein for the reduction of corrosion in imbedded metal structures. The coatings are applied as liquids to an external surface of a substrate in which the metal structures are imbedded. The coatings are subsequently allowed to dry. The liquid applied coatings provide galvanic protection to the imbedded metal structures. Continued protection can be maintained with periodic reapplication of the coating compositions, as necessary, to maintain electrical continuity. Because the coatings may be applied using methods similar to standard paints, and because the coatings are applied to external surfaces of the substrates in which the metal structures are imbedded, the corresponding corrosion protection may be easily maintained. The coating compositions are particularly useful in the protection of metal-reinforced concrete.

  5. Thunderbolt in biogeochemistry: galvanic effects of lightning as another source for metal remobilization.

    PubMed

    Schaller, Jörg; Weiske, Arndt; Berger, Frank

    2013-11-04

    Iron and manganese are relevant constituents of the earth's crust and both show increasing mobility when reduced by free electrons. This reduction is known to be controlled by microbial dissimilation processes. Alternative sources of free electrons in nature are cloud-to-ground lightning events with thermal and galvanic effects. Where thermal effects of lightning events are well described, less is known about the impact of galvanic lightning effects on metal mobilization. Here we show that a significant mobilization of manganese occurs due to galvanic effects of both positive and negative lightning, where iron seems to be unaffected with manganese being abundant in oxic forms in soils/sediments. A mean of 0.025 mmol manganese (negative lightning) or 0.08 mmol manganese (positive lightning) mobilization may occur. We suggest that lightning possibly influences biogeochemical cycles of redox sensitive elements in continental parts of the tropics/subtropics on a regional/local scale.

  6. Thunderbolt in biogeochemistry: galvanic effects of lightning as another source for metal remobilization

    PubMed Central

    Schaller, Jörg; Weiske, Arndt; Berger, Frank

    2013-01-01

    Iron and manganese are relevant constituents of the earth's crust and both show increasing mobility when reduced by free electrons. This reduction is known to be controlled by microbial dissimilation processes. Alternative sources of free electrons in nature are cloud-to-ground lightning events with thermal and galvanic effects. Where thermal effects of lightning events are well described, less is known about the impact of galvanic lightning effects on metal mobilization. Here we show that a significant mobilization of manganese occurs due to galvanic effects of both positive and negative lightning, where iron seems to be unaffected with manganese being abundant in oxic forms in soils/sediments. A mean of 0.025 mmol manganese (negative lightning) or 0.08 mmol manganese (positive lightning) mobilization may occur. We suggest that lightning possibly influences biogeochemical cycles of redox sensitive elements in continental parts of the tropics/subtropics on a regional/local scale. PMID:24184989

  7. Evaluation of effect of galvanic corrosion between nickel-chromium metal and titanium on ion release and cell toxicity

    PubMed Central

    Choi, Jung-Yun

    2015-01-01

    PURPOSE The purpose of this study was to evaluate cell toxicity due to ion release caused by galvanic corrosion as a result of contact between base metal and titanium. MATERIALS AND METHODS It was hypothesized that Nickel (Ni)-Chromium (Cr) alloys with different compositions possess different corrosion resistances when contacted with titanium abutment, and therefore in this study, specimens (10×10×1.5 mm) were fabricated using commercial pure titanium and 3 different types of Ni-Cr alloys (T3, Tilite, Bella bond plus) commonly used for metal ceramic restorations. The specimens were divided into 6 groups according to the composition of Ni-Cr alloy and contact with titanium. The experimental groups were in direct contact with titanium and the control groups were not. After the samples were immersed in the culture medium - Dulbecco's modified Eagle's medium[DMEM] for 48 hours, the released metal ions were detected using inductively coupled plasma mass spectrometer (ICP-MS) and analyzed by the Kruskal-Wallis and Mann-Whitney test (P<.05). Mouse L-929 fibroblast cells were used for cell toxicity evaluation. The cell toxicity of specimens was measured by the 3-{4,5-dimethylthiazol-2yl}-2,5-diphenyltetrazolium bromide (MTT) test. Results of MTT assay were statistically analyzed by the two-way ANOVA test (P<.05). Post-hoc multiple comparisons were conducted using Tukey's tests. RESULTS The amount of metal ions released by galvanic corrosion due to contact between the base metal alloy and titanium was increased in all of the specimens. In the cytotoxicity test, the two-way ANOVA showed a significant effect of the alloy type and galvanic corrosion for cytotoxicity (P<.001). The relative cell growth rate (RGR) was decreased further on the groups in contact with titanium (P<.05). CONCLUSION The release of metal ions was increased by galvanic corrosion due to contact between base metal and titanium, and it can cause adverse effects on the tissue around the implant by inducing

  8. Measurement of adhesion properties between topcoat paint and metallized/galvanized steel with surface energy measurement equipment.

    DOT National Transportation Integrated Search

    2013-09-01

    The objectives of this research project are: (1) Compare the adhesion properties of NEPCOAT-approved topcoat paint over : metallized or galvanized steel. Use surface-energy measuring technique to characterize the wetting properties of the liqui...

  9. Comparison of Galvanic Currents Generated Between Different Combinations of Orthodontic Brackets and Archwires Using Potentiostat: An In Vitro Study.

    PubMed

    Nayak, Rabindra S; Shafiuddin, Bareera; Pasha, Azam; Vinay, K; Narayan, Anjali; Shetty, Smitha V

    2015-07-01

    Technological advances in wire selection and bracket design have led to improved treatment efficiency and allowed longer time intervals between appliance adjustments. The wires remain in the mouth for a longer duration and are subjected to electrochemical reactions, mechanical forces of mastication and generalized wear. These cause different types of corrosion. This study was done to compare the galvanic currents generated between different combinations of brackets and archwires commonly used in orthodontic practices. The materials used for the study included different commercially available orthodontic archwires and brackets. The galvanic current generated by individual materials and different combinations of these materials was tested and compared. The orthodontic archwires used were 0.019″ × 0.025″ heat-activated nickel-titanium (3M Unitek), 0.019″ × 0.025″ beta-titanium (3M Unitek) and 0.019″ × 0.025″ stainless steel (3M Unitek). The orthodontic brackets used were 0.022″ MBT laser-cut (Victory Series, 3M Unitek) and metal-injection molded (Leone Company) maxillary central incisor brackets respectively. The ligature wire used for ligation was 0.009″ stainless steel ligature (HP Company). The galvanic current for individual archwires, brackets, and the different bracket-archwire-ligature combinations was measured by using a Potentiostat machine. The data were generated using the Linear Sweep Voltammetry and OriginPro 8.5 Graphing and Data Analysis Softwares. The study was conducted in two phases. Phase I comprised of five groups for open circuit potential (OCP) and galvanic current (I), whereas Phase II comprised of six groups for galvanic current alone. Mean, standard deviation and range were computed for the OCP and galvanic current (I) values obtained. Results were subjected to statistical analysis through ANOVA. In Phase I, higher mean OCP was recorded in stainless steel archwire, followed by beta-titanium archwire, heat-activated nickel

  10. Effects of heat input on mechanical properties of metal inert gas welded 1.6 mm thick galvanized steel sheet

    NASA Astrophysics Data System (ADS)

    Rafiqul, M. I.; Ishak, M.; Rahman, M. M.

    2012-09-01

    It is usually a lot easier and less expensive to galvanize steel before it is welded into useful products. Galvanizing afterwards is almost impossible. In this research work, Galvanized Steel was welded by using the ER 308L stainless steel filler material. This work was done to find out an alternative way of welding and investigate the effects of heat input on the mechanical properties of butt welded joints of Galvanized Steel. A 13.7 kW maximum capacity MIG welding machine was used to join 1.6 mm thick sheet of galvanized steel with V groove and no gap between mm. Heat inputs was gradually increased from 21.06 to 25.07 joules/mm in this study. The result shows almost macro defects free welding and with increasing heat input the ultimate tensile strength and welding efficiency decrease. The Vickers hardness also decreases at HAZ with increasing heat input and for each individual specimen; hardness was lowest in heat affected zone (HAZ), intermediate in base metal and maximum in welded zone. The fracture for all specimens was in the heat affected zone while testing in the universal testing machine.

  11. Galvanic cell for processing of used nuclear fuel

    DOEpatents

    Garcia-Diaz, Brenda L.; Martinez-Rodriguez, Michael J.; Gray, Joshua R.; Olson, Luke C.

    2017-02-07

    A galvanic cell and methods of using the galvanic cell is described for the recovery of uranium from used nuclear fuel according to an electrofluorination process. The galvanic cell requires no input energy and can utilize relatively benign gaseous fluorinating agents. Uranium can be recovered from used nuclear fuel in the form of gaseous uranium compound such as uranium hexafluoride, which can then be converted to metallic uranium or UO.sub.2 and processed according to known methodology to form a useful product, e.g., fuel pellets for use in a commercial energy production system.

  12. Mineralogical Evidence of Galvanic Corrosion in Domestic, Drinking Water Pipes

    EPA Science Inventory

    Drinking water distribution system (DWDS) piping contains numerous examples of galvanically-coupled metals (e.g., soldered copper pipe joints, copper-lead pipes joined during partial replacements of lead service lines). The possible role of galvanic corrosion in the release of l...

  13. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position.

    PubMed

    Ju, Hong; Yang, Yuan-Feng; Liu, Yun-Fei; Liu, Shu-Fa; Duan, Jin-Zhuo; Li, Yan

    2018-02-28

    The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2), titanium (TA2), and 316L stainless steel (316L SS). These electrodes were used with artificial seawater at different temperatures. The potential and current-density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles.

  14. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position

    PubMed Central

    Liu, Yun-Fei; Liu, Shu-Fa; Duan, Jin-Zhuo

    2018-01-01

    The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2), titanium (TA2), and 316L stainless steel (316L SS). These electrodes were used with artificial seawater at different temperatures. The potential and current–density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles. PMID:29495617

  15. Galvanic Liquid Applied Coating Development for Protection of Steel in Concrete

    NASA Technical Reports Server (NTRS)

    Curran, Joseph John; Curran, Jerry; MacDowell, Louis

    2004-01-01

    Corrosion of reinforcing steel in concrete is a major problem affecting NASA facilities at Kennedy Space Center (KSC), other government agencies, and the general public. Problems include damage to KSC launch support structures, transportation and marine infrastructures, as well as building structures. A galvanic liquid applied coating was developed at KSC in order to address this problem. The coating is a non-epoxy metal rich ethyl silicate liquid coating. The coating is applied as a liquid from initial stage to final stage. Preliminary data shows that this coating system exceeds the NACE 100 millivolt shift criterion. The remainder of the paper details the development of the coating system through the following phases: Phase I: Development of multiple formulations of the coating to achieve easy application characteristics, predictable galvanic activity, long-term protection, and minimum environmental impact. Phase II: Improvement of the formulations tested in Phase I including optimization of metallic loading as well as incorporation of humectants for continuous activation. Phase III: Application and testing of improved formulations on the test blocks. Phase IV: Incorporation of the final formulation upgrades onto large instrumented structures (slabs).

  16. Zinc toxicity among galvanization workers in the iron and steel industry.

    PubMed

    El Safty, Amal; El Mahgoub, Khalid; Helal, Sawsan; Abdel Maksoud, Neveen

    2008-10-01

    Galvanization is the process of coating steel or cast iron pieces with zinc, allowing complete protection against corrosion. The ultimate goal of this work was to assess the effect of occupational exposure to zinc in the galvanization process on different metals in the human body and to detect the association between zinc exposure and its effect on the respiratory system. This study was conducted in 111 subjects in one of the major companies in the iron and steel industry. There were 61 subjects (workers) who were involved in the galvanization process. Fifty adult men were chosen as a matched reference group from other departments of the company. All workers were interviewed using a special questionnaire on occupational history and chest diseases. Ventilatory functions and chest X rays were assessed in all examined workers. Also, complete blood counts were performed, and serum zinc, iron, copper, calcium, and magnesium levels were tested. This study illustrated the relation between zinc exposure in the galvanization process and high zinc levels among exposed workers, which was associated with a high prevalence rate of metal fume fever (MFF) and low blood copper and calcium levels. There was no statistically significant difference between the exposed and control groups with regards to the magnesium level. No long-term effect of metals exposure was detected on ventilatory functions or chest X rays among the exposed workers.

  17. Galvanic Manufacturing in the Cities of Russia: Potential Source of Ambient Nanoparticles

    PubMed Central

    Golokhvast, Kirill S.; Shvedova, Anna A.

    2014-01-01

    Galvanic manufacturing is widely employed and can be found in nearly every average city in Russia. The release and accumulation of different metals (Me), depending on the technology used can be found in the vicinities of galvanic plants. Under the environmental protection act in Russia, the regulations for galvanic manufacturing do not include the regulations and safety standards for ambient ultrafine and nanosized particulate matter (PM). To assess whether Me nanoparticles (NP) are among environmental pollutants caused by galvanic manufacturing, the level of Me NP were tested in urban snow samples collected around galvanic enterprises in two cities. Employing transmission electronic microscopy, energy-dispersive X-ray spectroscopy, and a laser diffraction particle size analyzer, we found that the size distribution of tested Me NP was within 10–120 nm range. This is the first study to report that Me NP of Fe, Cr, Pb, Al, Ni, Cu, and Zn were detected around galvanic shop settings. PMID:25329582

  18. In Situ Apparatus to Study Gas-Metal Reactions and Wettability at High Temperatures for Hot-Dip Galvanizing Applications

    NASA Astrophysics Data System (ADS)

    Koltsov, A.; Cornu, M.-J.; Scheid, J.

    2018-02-01

    The understanding of gas-metal reactions and related surface wettability at high temperatures is often limited due to the lack of in situ surface characterization. Ex situ transfers at low temperature between annealing furnace, wettability device, and analytical tools induce noticeable changes of surface composition distinct from the reality of the phenomena.Therefore, a high temperature wettability device was designed in order to allow in situ sample surface characterization by x-rays photoelectron spectroscopy after gas/metal and liquid metal/solid metal surface reactions. Such airless characterization rules out any contamination and oxidation of surfaces and reveals their real composition after heat treatment and chemical reaction. The device consists of two connected reactors, respectively, dedicated to annealing treatments and wettability measurements. Heat treatments are performed in an infrared lamp furnace in a well-controlled atmosphere conditions designed to reproduce gas-metal reactions occurring during the industrial recrystallization annealing of steels. Wetting experiments are carried out in dispensed drop configuration with the precise control of the deposited droplets kinetic energies. The spreading of drops is followed by a high-speed CCD video camera at 500-2000 frames/s in order to reach information at very low contact time. First trials have started to simulate phenomena occurring during recrystallization annealing and hot-dip galvanizing on polished pure Fe and FeAl8 wt.% samples. The results demonstrate real surface chemistry of steel samples after annealing when they are put in contact with liquid zinc alloy bath during hot-dip galvanizing. The wetting results are compared to literature data and coupled with the characterization of interfacial layers by FEG-Auger. It is fair to conclude that the results show the real interest of such in situ experimental setup for interfacial chemistry studies.

  19. Process for dezincing galvanized steel

    DOEpatents

    Morgan, W.A.; Dudek, F.J.; Daniels, E.J.

    1998-07-14

    A process is described for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75 C and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (1) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (2) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (3) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (4) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte. 1 fig.

  20. Process for dezincing galvanized steel

    DOEpatents

    Morgan, William A.; Dudek, Frederick J.; Daniels, Edward J.

    1998-01-01

    A process for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75.degree. C. and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (i) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (ii) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (iii) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (iv) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte.

  1. Comparison of galvanic corrosion potential of metal injection molded brackets to that of conventional metal brackets with nickel-titanium and copper nickel-titanium archwire combinations.

    PubMed

    Varma, D Praveen Kumar; Chidambaram, S; Reddy, K Baburam; Vijay, M; Ravindranath, D; Prasad, M Rajendra

    2013-05-01

    The aim of the study is to investigate the galvanic corrosion potential of metal injection molding (MIM) brackets to that of conventional brackets under similar in vitro conditions with nickel-titanium and copper nickel-titanium archwires. Twenty-five maxillary premolar MIM stainless steel brackets and 25 conventional stainless steel brackets and archwires, 0.16 inch, each 10 mm length, 25 nickeltitanium wires, 25 copper nickel-titanium wires were used. They were divided into four groups which had five samples each. Combination of MIM bracket with copper nickel-titanium wire, MIM bracket with nickel-titanium wire and conventional stainless steel brackets with copper nickel-titanium wire and conventional stainless steel brackets with nickel-titanium wires which later were suspended in 350 ml of 1 M lactic acid solution media. Galvanic corrosion potential of four groups were analyzed under similar in vitro conditions. Precorrosion and postcorrosion elemental composition of MIM and conventional stainless steel bracket by scanning electron microscope (SEM) with energy dispersive spectroscope (EDS) was done. MIM bracket showed decreased corrosion susceptibility than conventional bracket with copper nickeltitanium wire. Both MIM and conventional bracket showed similar corrosion resistance potential in association with nickel-titanium archwires. It seems that both brackets are more compatible with copper nickel-titanium archwires regarding the decrease in the consequences of galvanic reaction. The EDS analysis showed that the MIM brackets with copper nickel-titanium wires released less metal ions than conventional bracket with copper nickeltitanium wires. MIM brackets showed decreased corrosion susceptibility, copper nickel-titanium archwires are compatible with both the brackets than nickel-titanium archwires. Clinically MIM and conventional brackets behaved more or less similarly in terms of corrosion resistance. In order to decrease the corrosion potential of MIM

  2. Corrosive microenvironments at lead solder surfaces arising from galvanic corrosion with copper pipe.

    PubMed

    Nguyen, Caroline K; Stone, Kendall R; Dudi, Abhijeet; Edwards, Marc A

    2010-09-15

    As stagnant water contacts copper pipe and lead solder (simulated soldered joints), a corrosion cell is formed between the metals in solder (Pb, Sn) and the copper. If the resulting galvanic current exceeds about 2 μA/cm(2), a highly corrosive microenvironment can form at the solder surface, with pH < 2.5 and chloride concentrations at least 11 times higher than bulk water levels. Waters with relatively high chloride tend to sustain high galvanic currents, preventing passivation of the solder surface, and contributing to lead contamination of potable water supplies. The total mass of lead corroded was consistent with predictions based on the galvanic current, and lead leaching to water was correlated with galvanic current. If the concentration of sulfate in the water increased relative to chloride, galvanic currents and associated lead contamination could be greatly reduced, and solder surfaces were readily passivated.

  3. Alexander von Humboldt: galvanism, animal electricity, and self-experimentation part 1: formative years, naturphilosophie, and galvanism.

    PubMed

    Finger, Stanley; Piccolino, Marco; Stahnisch, Frank W

    2013-01-01

    During the 1790s, Alexander von Humboldt (1769-1859), who showed an early interest in many facets of natural philosophy and natural history, delved into the controversial subject of galvanism and animal electricity, hoping to shed light on the basic nature of the nerve force. He was motivated by his broad worldview, the experiments of Luigi Galvani, who favored animal electricity in more than a few specialized fishes, and the thinking of Alessandro Volta, who accepted specialized fish electricity but was not willing to generalize to other animals, thinking Galvani's frog experiments flawed by his use of metals. Differing from many German Naturphilosophen, who shunned "violent" experiments, the newest instruments, and detailed measurement, Humboldt conducted thousands of galvanic experiments on animals and animal parts, as well as many on his own body, some of which caused him great pain. He interpreted his results as supporting some but not all of the claims made by both Galvani and Volta. Notably, because of certain negative findings and phenomenological differences, he remained skeptical about the intrinsic animal force being qualitatively identical to true electricity. Hence, he referred to a "galvanic force," not animal electricity, in his letters and publications, a theoretical position he would abandon with Volta's help early in the new century.

  4. Physicochemistry, morphology and leachability of selected metals from post-galvanized sewage sludge from screw factory in Łańcut, SE Poland

    NASA Astrophysics Data System (ADS)

    Galas, Dagmara; Kalembkiewicz, Jan; Sitarz-Palczak, Elżbieta

    2016-12-01

    Morphology, physicochemical properties, chemical composition of post-galvanized sewage sludge from Screw Factory in Łańcut, leachability and mobility of metals has been analyzed. The analyses with the use of scanning electron microscope with an adapter to perform chemical analysis of microsites (EDS) showed that the material is characterized by a high fragmentation and a predominant number of irregularly shaped grains. The sewage sludge is alkaline with a large loss of ignition (34.6%) and small bulk density (< 1 g/cm3). The EDS analyses evidenced presence of oxygen, silicon, calcium, chromium, iron and zinc in all examined areas, and presence of manganese and copper in selected areas indicating a non-uniform distribution of metals in the sewage sludge. Within one-stage mineralization and FAAS technique a predominant share of calcium, zinc and iron in terms of dry matter was recorded in the sewage sludge. The contents of Co, Cr, Cu, K, Mn, Ni and Pb in sewage sludge are below 1%. Evaluation of mobility and leaching of metals in sewage sludge was carried out by means of two parameters: accumulation coefficient of mobile fractions and leaching level related to the mass solubility of sewage sludge. The results indicate that the short-term or long-term storage of not inactivated post-galvanized sewage sludge can result in release of metals.

  5. Galvanic Cells and the Determination of Equilibrium Constants

    ERIC Educational Resources Information Center

    Brosmer, Jonathan L.; Peters, Dennis G.

    2012-01-01

    Readily assembled mini-galvanic cells can be employed to compare their observed voltages with those predicted from the Nernst equation and to determine solubility products for silver halides and overall formation constants for metal-ammonia complexes. Results obtained by students in both an honors-level first-year course in general chemistry and…

  6. Galvanic reduction of uranium(III) chloride from LiCl-KCl eutectic salt using gadolinium metal

    NASA Astrophysics Data System (ADS)

    Bagri, Prashant; Zhang, Chao; Simpson, Michael F.

    2017-09-01

    The drawdown of actinides is an important unit operation to enable the recycling of electrorefiner salt and minimization of waste. A new method for the drawdown of actinide chlorides from LiCl-KCl molten salt has been demonstrated here. Using the galvanic interaction between the Gd/Gd(III) and U/U(III) redox reactions, it is shown that UCl3 concentration in eutectic LiCl-KCl can be reduced from 8.06 wt.% (1.39 mol %) to 0.72 wt.% (0.12 mol %) in about an hour via plating U metal onto a steel basket. This is a simple process for returning actinides to the electrorefiner and minimizing their loss to the salt waste stream.

  7. Pseudarthrosis due to galvanic corrosion presenting as subarachnoid hemorrhage.

    PubMed

    Beavers, Rosemary Noel; Lall, Rishi Rajiv; Barnett, Juan Ortega; Desai, Sohum Kiran

    2017-01-01

    Two unlike metals near one another can break down as they move toward electrochemical equilibrium resulting in galvanic corrosion. We describe a case of electrochemical corrosion resulting in pseudarthrosis, followed by instrumentation failure leading to subarachnoid hemorrhage. A 53-year-old female with a history of cervical instability and two separate prior cervical fusion surgery with sublaminar cables presented with new onset severe neck pain. Restricted range of motion in her neck and bilateral Hoffman's was noted. X-ray of her cervical spine was negative. A noncontrast CT scan of her head and neck showed subarachnoid hemorrhage in the prepontine and cervicomedullary cisterns. Neurosurgical intervention involved removal of prior stainless steel and titanium cables, repair of cerebrospinal fluid leak, and nonsegmental C1-C3 instrumented fusion. She tolerated the surgery well and followed up without complication. Galvanic corrosion of the Brook's fusion secondary to current flow between dissimilar metal alloys resulted in catastrophic instrumentation failure and subarachnoid hemorrhage.

  8. Galvanic interactions of HE15 /MDN138 & HE15 /MDN250 alloys in natural seawater

    NASA Astrophysics Data System (ADS)

    Parthiban, G. T.; Subramanian, G.; Muthuraman, K.; Ramakrishna Rao, P.

    2017-06-01

    HE15 is a heat treatable high strength alloy with excellent machinability find wide applications in aerospace and defence industries. In view of their excellent mechanical properties, workability, machinability, heat treatment characteristics and good resistance to general and stress corrosion cracking, MDN138 & MDN250 have been widely used in petrochemical, nuclear and aerospace industries. The galvanic corrosion behaviour of the metal combinations HE15 /MDN138 and HE15 /MDN250, with 1:1 area ratio, has been studied in natural seawater using the open well facility of CECRI's Offshore Platform at Tuticorin for a year. The open circuit potentials of MDN138, MDN250 and HE15 of the individual metal, the galvanic potential and galvanic current of the couples HE15 /MDN138 and HE15 /MDN250 were periodically monitored throughout the study period. The calcareous deposits on MDN138 and MDN250 in galvanic contact with HE15 were analyzed using XRD. The electrochemical behaviors of MDN138, MDN250 and HE15 in seawater have been studied using an electrochemical work station. The surface characteristics of MDN138 and MDN250 in galvanic contact with HE15 have been examined with scanning electron microscope. The results of the study reveal that HE15 offered required amount of protection to MDN138 & MDN250.

  9. Cytotoxic effect of galvanically coupled magnesium-titanium particles.

    PubMed

    Kim, Jua; Gilbert, Jeremy L

    2016-01-01

    Recent work has shown that reduction reactions at metallic biomaterial surfaces can induce significant killing of cells in proximity to the surface. To exploit this phenomenon for therapeutic purposes, for example, for cancer tumor killing or antibacterial effects (amongst other applications), magnesium metal particles, galvanically coupled to titanium by sputtering, have been evaluated for their cell-killing capability (i.e. cytotoxicity). Magnesium (Mg) particles large enough to prevent particle phagocytosis were investigated, so that only electrochemical reactions, and not particle toxicity per se, caused cytotoxic effects. Titanium (Ti) coated magnesium particles, as well as magnesium-only particles were introduced into MC3T3-E1 mouse pre-osteoblast cell cultures over a range of particle concentrations, and cells were observed to die in a dosage-dependent manner. Ti-coated magnesium particles killed more cells at lower particle concentration than magnesium alone (P<0.05), although the pH measured for magnesium and magnesium-titanium had no significant difference at similar particle concentrations. Complete cell killing occurred at 750μg/ml and 1500μg/ml for Mg-Ti and Mg, respectively. Thus, this work demonstrates that galvanically coupled Mg-Ti particles have a significant cell killing capability greater than Mg alone. In addition, when the pH associated with complete killing with particles was created using NaOH only (no particles), then the percentage of cells killed was significantly less (P<0.05). Together, these findings show that pH is not the sole factor associated with cell killing and that the electrochemical reactions, including the reduction reactions, play an important role. Reduction reactions on galvanically coupled Mg-Ti and Mg particles may generate reactive oxygen intermediates that are able to kill cells in close proximity to the particles and this approach may lead to potential therapies for infection and cancer. This paper demonstrates

  10. The strong reactions of Lewis-base noble-metals with vanadium and other acidic transition metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebbinghaus, B.B.

    1991-05-01

    The noble metals often thought of as unreactive solids,react strongly with nearly 40% of the elements in the periodictable: group IIIB-VB transition metals, lanthanides, theactinides, and group IIIA-IVA non-transition metals. These strong reactions arise from increased bonding/electron transfer fromnonbonding electrons d electron pairs on the noble metal tovacant orbitals on V, etc. This effect is a generalized Lewis acid-base interaction. The partial Gibbs energy of V in the noblemetals has been measured as a function of concentration at a temperature near 1000C. Thermodynamics of the intermetallics are determined by ternary oxide equilibria, ternary carbide equilibria, and the high-temperature galvanic cellmore » technique. These experimental methods use equilibrated solid composite mixtures in which grains of V oxides or of V carbides are interspersed with grains of V-NM(noble-metal) alloys. In equilibrium the activity of V in the oxide or the carbide equals the activity in the alloy. Consequently, the thermodynamics available in the literature for the V oxides and V carbides are reviewed. Test runs on the galvanic cell were attempted. The V oxide electrode reacts with CaF[sub 2], ThO[sub 2], YDT(0.85ThO[sub 2]-0.15YO[sub 1.5]), and LDT(0.85ThO[sub 2]- 0.15LaO[sub 1.5]) to interfere with the measured data observed toward the beginning of a galvanic cell experiment are the most accurate. The interaction of vanadium at infinite dilution in the noble-metals was determined.« less

  11. The strong reactions of Lewis-base noble-metals with vanadium and other acidic transition metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebbinghaus, Bartley B.

    1991-05-01

    The noble metals often thought of as unreactive solids,react strongly with nearly 40% of the elements in the periodictable: group IIIB-VB transition metals, lanthanides, theactinides, and group IIIA-IVA non-transition metals. These strong reactions arise from increased bonding/electron transfer fromnonbonding electrons d electron pairs on the noble metal tovacant orbitals on V, etc. This effect is a generalized Lewis acid-base interaction. The partial Gibbs energy of V in the noblemetals has been measured as a function of concentration at a temperature near 1000C. Thermodynamics of the intermetallics are determined by ternary oxide equilibria, ternary carbide equilibria, and the high-temperature galvanic cellmore » technique. These experimental methods use equilibrated solid composite mixtures in which grains of V oxides or of V carbides are interspersed with grains of V-NM(noble-metal) alloys. In equilibrium the activity of V in the oxide or the carbide equals the activity in the alloy. Consequently, the thermodynamics available in the literature for the V oxides and V carbides are reviewed. Test runs on the galvanic cell were attempted. The V oxide electrode reacts with CaF 2, ThO 2, YDT(0.85ThO 2-0.15YO 1.5), and LDT(0.85ThO 2- 0.15LaO 1.5) to interfere with the measured data observed toward the beginning of a galvanic cell experiment are the most accurate. The interaction of vanadium at infinite dilution in the noble-metals was determined.« less

  12. SERS activity studies of Ag/Au bimetallic films prepared by galvanic replacement

    NASA Astrophysics Data System (ADS)

    Wang, Chaonan; Fang, Jinghuai; Jin, Yonglong

    2012-10-01

    Ag films on Si substrates were fabricated by immersion plating, which served as sacrificial materials for preparation of Ag/Au bimetallic films by galvanic replacement method. SEM images displayed that the sacrificial Ag films presenting island morphology experienced interesting structural evolution process during galvanic replacement reaction, and nano-scaled holes were formed in the resultant bimetallic films. SERS measurements using crystal violet as an analyte showed that SERS intensities of bimetallic films were enhanced significantly compared with that of pure Ag films and related mechanisms were discussed. Immersion plating experiment carried out on Ag films on PEN substrates fabricated by photoinduced reduction method further confirmed that galvanic replacement is an easy method to fabricate Ag/Au bimetallic and a potential approach to improve the SERS performance of Ag films.

  13. Corrosion behaviour and biocorrosion of galvanized steel water distribution systems.

    PubMed

    Delaunois, F; Tosar, F; Vitry, V

    2014-06-01

    Galvanized steel tubes are a popular mean for water distribution systems but suffer from corrosion despite their zinc or zinc alloy coatings. First, the quality of hot-dip galvanized (HDG) coatings was studied. Their microstructure, defects, and common types of corrosion were observed. It was shown that many manufactured tubes do not reach European standard (NBN EN 10240), which is the cause of several corrosion problems. The average thickness of zinc layer was found at 41μm against 55μm prescribed by the European standard. However, lack of quality, together with the usual corrosion types known for HDG steel tubes was not sufficient to explain the high corrosion rate (reaching 20μm per year versus 10μm/y for common corrosion types). Electrochemical tests were also performed to understand the corrosion behaviours occurring in galvanized steel tubes. Results have shown that the limiting step was oxygen diffusion, favouring the growth of anaerobic bacteria in steel tubes. EDS analysis was carried out on corroded coatings and has shown the presence of sulphur inside deposits, suggesting the likely bacterial activity. Therefore biocorrosion effects have been investigated. Actually sulphate reducing bacteria (SRB) can reduce sulphate contained in water to hydrogen sulphide (H2S), causing the formation of metal sulphides. Although microbial corrosion is well-known in sea water, it is less investigated in supply water. Thus, an experimental water main was kept in operation for 6months. SRB were detected by BART tests in the test water main. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Electrochemical Behaviour and Galvanic Effects of Titanium Implants Coupled to Metallic Suprastructures in Artificial Saliva

    PubMed Central

    Mellado-Valero, Ana; Igual Muñoz, Anna; Guiñón Pina, Virginia

    2018-01-01

    The aim of the present study is to analyze the electrochemical behavior of five different dental alloys: two cobalt-chromium alloys (CoCr and CoCr-c), one nickel-chromium-titanium alloy (NiCrTi), one gold-palladium alloy (Au), and one titanium alloy (Ti6Al4V), and the galvanic effect when they are coupled to titanium implants (TiG2). It was carried out by electrochemical techniques (open circuit measurements, potentiodynamic curves and Zero-Resistance Ammetry) in artificial saliva (AS), with and without fluorides in different acidic conditions. The studied alloys are spontaneously passivated, but NiCrTi alloy has a very narrow passive domain and losses its passivity in presence of fluorides, so is not considered as a good option for implant superstructures. Variations of pH from 6.5 to 3 in artificial saliva do not change the electrochemical behavior of Ti, Ti6Al4V, and CoCr alloys, and couples, but when the pH of the artificial saliva is below 3.5 and the fluoride content is 1000 ppm Ti and Ti6Al4V starts actively dissolving, and CoCr-c superstructures coupled to Ti show acceleration of corrosion due to galvanic effects. Thus, NiCrTi is not recommended for implant superstructures because of risk of Ni ion release to the body, and fluorides should be avoided in acidic media because Ti, Ti6Al4V, and CoCr-c superstructures show galvanic corrosion. The best combinations are Ti/Ti6Al4V and Ti/CoCr as alternative of noble gold alloys. PMID:29361767

  15. Electrochemical Behaviour and Galvanic Effects of Titanium Implants Coupled to Metallic Suprastructures in Artificial Saliva.

    PubMed

    Mellado-Valero, Ana; Muñoz, Anna Igual; Pina, Virginia Guiñón; Sola-Ruiz, Ma Fernanda

    2018-01-22

    The aim of the present study is to analyze the electrochemical behavior of five different dental alloys: two cobalt-chromium alloys (CoCr and CoCr-c), one nickel-chromium-titanium alloy (NiCrTi), one gold-palladium alloy (Au), and one titanium alloy (Ti6Al4V), and the galvanic effect when they are coupled to titanium implants (TiG2). It was carried out by electrochemical techniques (open circuit measurements, potentiodynamic curves and Zero-Resistance Ammetry) in artificial saliva (AS), with and without fluorides in different acidic conditions. The studied alloys are spontaneously passivated, but NiCrTi alloy has a very narrow passive domain and losses its passivity in presence of fluorides, so is not considered as a good option for implant superstructures. Variations of pH from 6.5 to 3 in artificial saliva do not change the electrochemical behavior of Ti, Ti6Al4V, and CoCr alloys, and couples, but when the pH of the artificial saliva is below 3.5 and the fluoride content is 1000 ppm Ti and Ti6Al4V starts actively dissolving, and CoCr-c superstructures coupled to Ti show acceleration of corrosion due to galvanic effects. Thus, NiCrTi is not recommended for implant superstructures because of risk of Ni ion release to the body, and fluorides should be avoided in acidic media because Ti, Ti6Al4V, and CoCr-c superstructures show galvanic corrosion. The best combinations are Ti/Ti6Al4V and Ti/CoCr as alternative of noble gold alloys.

  16. Galvanic Liquid Applied Coating System for Protection of Embedded Steel Surfaces from Corrosion

    NASA Technical Reports Server (NTRS)

    Curran, Joseph; MacDowell, Louis; Voska, N. (Technical Monitor)

    2002-01-01

    The corrosion of reinforcing steel in concrete is an insidious problem for the Kennedy Space Center, government agencies, and the general public. Existing corrosion protection systems on the market are costly, complex, and time-consuming to install, require continuous maintenance and monitoring, and require specialized skills for installation. NASA's galvanic liquid-applied coating offers companies the ability to conveniently protect embedded steel rebar surfaces from corrosion. Liquid-applied inorganic galvanic coating contains one ore more of the following metallic particles: magnesium, zinc, or indium and may contain moisture attracting compounds that facilitate the protection process. The coating is applied to the outer surface of reinforced concrete so that electrical current is established between metallic particles and surfaces of embedded steel rebar; and electric (ionic) current is responsible for providing the necessary cathodic protection for embedded rebar surfaces.

  17. Designing the Color of Hot-Dip Galvanized Steel Sheet Through Destructive Light Interference Using a Zn-Ti Liquid Metallic Bath

    NASA Astrophysics Data System (ADS)

    Levai, Gabor; Godzsák, Melinda; Török, Tamas I.; Hakl, Jozsef; Takáts, Viktor; Csik, Attila; Vad, Kalman; Kaptay, George

    2016-07-01

    The color of hot-dip galvanized steel sheet was adjusted in a reproducible way using a liquid Zn-Ti metallic bath, air atmosphere, and controlling the bath temperature as the only experimental parameter. Coloring was found only for samples cooled in air and dipped into Ti-containing liquid Zn. For samples dipped into a 0.15 wt pct Ti-containing Zn bath, the color remained metallic (gray) below a 792 K (519 °C) bath temperature; it was yellow at 814 K ± 22 K (541 °C ± 22 °C), violet at 847 K ± 10 K (574 °C ± 10 °C), and blue at 873 K ± 15 K (600 °C ± 15 °C). With the increasing bath temperature, the thickness of the adhered Zn-Ti layer gradually decreased from 52 to 32 micrometers, while the thickness of the outer TiO2 layer gradually increased from 24 to 69 nm. Due to small Al contamination of the Zn bath, a thin (around 2 nm) alumina-rich layer is found between the outer TiO2 layer and the inner macroscopic Zn layer. It is proven that the color change was governed by the formation of thin outer TiO2 layer; different colors appear depending on the thickness of this layer, mostly due to the destructive interference of visible light on this transparent nano-layer. A complex model was built to explain the results using known relationships of chemical thermodynamics, adhesion, heat flow, kinetics of chemical reactions, diffusion, and optics. The complex model was able to reproduce the observations and allowed making predictions on the color of the hot-dip galvanized steel sample, as a function of the following experimental parameters: temperature and Ti content of the Zn bath, oxygen content, pressure, temperature and flow rate of the cooling gas, dimensions of the steel sheet, velocity of dipping the steel sheet into the Zn-Ti bath, residence time of the steel sheet within the bath, and the velocity of its removal from the bath. These relationships will be valuable for planning further experiments and technologies on color hot-dip galvanization of steel

  18. Metal Organic Framework-Templated Chemiresistor: Sensing Type Transition from P-to-N Using Hollow Metal Oxide Polyhedron via Galvanic Replacement.

    PubMed

    Jang, Ji-Soo; Koo, Won-Tae; Choi, Seon-Jin; Kim, Il-Doo

    2017-08-30

    Facile synthesis of porous nanobuilding blocks with high surface area and uniform catalyst functionalization has always been regarded as an essential requirement for the development of highly sensitive and selective chemical sensors. Metal-organic frameworks (MOFs) are considered as one of the most ideal templates due to their ability to encapsulate ultrasmall catalytic nanoparticles (NPs) in microporous MOF structures in addition to easy removal of the sacrificial MOF scaffold by calcination. Here, we introduce a MOFs derived n-type SnO 2 (n-SnO 2 ) sensing layer with hollow polyhedron structures, obtained from p-n transition of MOF-templated p-type Co 3 O 4 (p-Co 3 O 4 ) hollow cubes during galvanic replacement reaction (GRR). In addition, the Pd NPs encapsulated in MOF and residual Co 3 O 4 clusters partially remained after GRR led to uniform functionalization of efficient cocatalysts (PdO NPs and p-Co 3 O 4 islands) on the porous and hollow polyhedron SnO 2 structures. Due to high gas accessibility through the meso- and macrosized pores in MOF-templated oxides and effective modulation of electron depletion layer assisted by the creation of numerous p-n junctions, the GRR-treated SnO 2 structures exhibited 21.9-fold higher acetone response (R air /R gas = 22.8 @ 5 ppm acetone, 90%RH) compared to MOF-templated p-Co 3 O 4 hollow structures. To the best of our knowledge, the selectivity and response amplitudes reported here for the detection of acetone are superior to those MOF derived metal oxide sensing layers reported so far. Our results demonstrate that highly active MOF-derived sensing layers can be achieved via p-n semiconducting phase transition, driven by a simple and versatile GRR process combined with MOF templating route.

  19. Mapping the Galvanic Corrosion of Three Coupled Metal Alloys Using Coupled Multielectrode Array: Influence of Chloride Ion Concentration

    PubMed Central

    Duan, JinZhuo; Cao, Ning

    2018-01-01

    The galvanic corrosion behavior of three metal alloys commonly used in water desalination plants was investigated using coupled multielectrode arrays consisting of aluminum-brass (HAl77-2), titanium alloy (TA2), and 316L stainless steel (316L SS). The three electrode types were coupled galvanically and arranged in different geometric configurations. Their corrosion behavior was characterized as a function of the chloride concentration. The potential and current distributions of the three-electrode coupling systems display electrochemical inhomogeneity. Generally, the aluminum-brass wires are anodic versus the titanium alloy and stainless steel. The titanium alloy acts as a primary cathode, and the 316L SS acts as a secondary cathode. The corrosion rate of aluminum-brass depends on the concentration of chloride ion, with a maximum corrosion rate at a chloride concentration of 2.3 wt %. In terms of geometrical arrangements, when the anodic HAl77-2 wires are located on the edge and are connected to the 316L SS wires in the coupling system, the main anodic area enlarges, especially in the area adjacent to the 316L SS wires. When the HAl77-2 wires are located between (in the middle of) the two other types of wires, the corrosion rates are higher than the corrosion rates observed from the other two geometrical arrangements. PMID:29677150

  20. Mapping the Galvanic Corrosion of Three Coupled Metal Alloys Using Coupled Multielectrode Array: Influence of Chloride Ion Concentration.

    PubMed

    Ju, Hong; Duan, JinZhuo; Yang, Yuanfeng; Cao, Ning; Li, Yan

    2018-04-20

    The galvanic corrosion behavior of three metal alloys commonly used in water desalination plants was investigated using coupled multielectrode arrays consisting of aluminum-brass (HAl77-2), titanium alloy (TA2), and 316L stainless steel (316L SS). The three electrode types were coupled galvanically and arranged in different geometric configurations. Their corrosion behavior was characterized as a function of the chloride concentration. The potential and current distributions of the three-electrode coupling systems display electrochemical inhomogeneity. Generally, the aluminum-brass wires are anodic versus the titanium alloy and stainless steel. The titanium alloy acts as a primary cathode, and the 316L SS acts as a secondary cathode. The corrosion rate of aluminum-brass depends on the concentration of chloride ion, with a maximum corrosion rate at a chloride concentration of 2.3 wt %. In terms of geometrical arrangements, when the anodic HAl77-2 wires are located on the edge and are connected to the 316L SS wires in the coupling system, the main anodic area enlarges, especially in the area adjacent to the 316L SS wires. When the HAl77-2 wires are located between (in the middle of) the two other types of wires, the corrosion rates are higher than the corrosion rates observed from the other two geometrical arrangements.

  1. Influence of stripping and cooling atmospheres on surface properties and corrosion of zinc galvanizing coatings

    NASA Astrophysics Data System (ADS)

    Yasakau, K. A.; Giner, I.; Vree, C.; Ozcan, O.; Grothe, R.; Oliveira, A.; Grundmeier, G.; Ferreira, M. G. S.; Zheludkevich, M. L.

    2016-12-01

    In this work the influence of stripping/cooling atmospheres used after withdrawal of steel sheet from Zn or Zn-alloy melt on surface properties of Zn (Z) and Zn-Al-Mg (ZM) hot-dip galvanizing coatings has been studied. The aim was to understand how the atmosphere (composed by nitrogen (N2) or air) affects adhesion strength to model adhesive and corrosive behaviour of the galvanized substrates. It was shown that the surface chemical composition and Volta potential of the galvanizing coatings prepared under the air or nitrogen atmosphere are strongly influenced by the atmosphere. The surface chemistry Z and ZM surfaces prepared under N2 contained a higher content of metal atoms and a richer hydroxide density than the specimens prepared under air atmosphere as assessed by X-ray photoelectron spectroscopy (XPS). The induced differences on the microstructure of the galvanized coatings played a key role on the local corrosion induced defects as observed by means of in situ Atomic force microscopy (AFM). Peel force tests performed on the substrates coated by model adhesive films indicate a higher adhesive strength to the surfaces prepared under nitrogen atmosphere. The obtained results have been discussed in terms of the microstructure and surface chemical composition of the galvanizing coatings.

  2. Novel Galvanic Corrosion Inhibitors: Synthesis, Characterization, Fabrication and Testing

    DTIC Science & Technology

    2007-09-30

    have attempted to develop methods based on chemical structural modification to prevent galvanically-induced composite corrosion. [9, 10-12] These...of the two metallopolymers 11 and 12 show characteristic MLCT (metal-to-ligand charge transfer) absorption band of tris(bipyridyl)Ru(II) unit at k...showed absorption band at 450 nm and emission band at 325 nm of tris(bipyridyl)Ru(II) units in its respective UV-vis and fluorescence spectra. Very

  3. Platinum-coated non-noble metal-noble metal core-shell electrocatalysts

    DOEpatents

    Adzic, Radoslav; Zhang, Junliang; Mo, Yibo; Vukmirovic, Miomir

    2015-04-14

    Core-shell particles encapsulated by a thin film of a catalytically active metal are described. The particles are preferably nanoparticles comprising a non-noble core with a noble metal shell which preferably do not include Pt. The non-noble metal-noble metal core-shell nanoparticles are encapsulated by a catalytically active metal which is preferably Pt. The core-shell nanoparticles are preferably formed by prolonged elevated-temperature annealing of nanoparticle alloys in an inert environment. This causes the noble metal component to surface segregate and form an atomically thin shell. The Pt overlayer is formed by a process involving the underpotential deposition of a monolayer of a non-noble metal followed by immersion in a solution comprising a Pt salt. A thin Pt layer forms via the galvanic displacement of non-noble surface atoms by more noble Pt atoms in the salt. The overall process is a robust and cost-efficient method for forming Pt-coated non-noble metal-noble metal core-shell nanoparticles.

  4. Investigation of galvanic corrosion in laser-welded stainless steel sheets

    NASA Astrophysics Data System (ADS)

    Kwok, Chi-Tat; Fong, Siu Lung; Cheng, Fai Tsun; Man, Hau-Chung

    2004-10-01

    In the present study, bead-on-plate specimens of 1-mm sheets of austenitic and duplex stainless steels were fabricated by laser penetration welding with a 2.5-kW CW Nd:YAG laser. The galvanic corrosion behavior of laser-weldment (LW) against as-received (AR) specimens with an area rato of 1:1 in 3.5% NaCL solution was studied by means of a zero-resistance ammeter. The free corrosion potentials of as-received specimens were found to be considerably higher than those of laser weldments, indicating that the weldments are more active and always act as anodes. The ranking of galvanic current densities (IG) of the couples in ascending order is: AR S31603-LW S31603 < AR S31803-LW S31803 < AR S32760-LW S32760 < AR S30400-LW S30400. For the galvanic couple between AR S30400 and LW S30400, the IG is the highest (78.6 nA/cm2) because large amount of δ-ferrite in the weld zone acts as active sites. On the other hand, the IG of the galvanic couple between AR S31603 and LW S31603 is the lowest (-26 nA/cm2) because no δ-ferrite is present after laser welding. The recorded IG of all couples revealed constantly low values (in the rnage of nA/cm2) and sometimes stayed negative, which indicated polarity reversal.

  5. 21 CFR 882.1540 - Galvanic skin response measurement device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Galvanic skin response measurement device. 882... Galvanic skin response measurement device. (a) Identification. A galvanic skin response measurement device... electrical resistance of the skin and the tissue path between two electrodes applied to the skin. (b...

  6. 21 CFR 882.1540 - Galvanic skin response measurement device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Galvanic skin response measurement device. 882... Galvanic skin response measurement device. (a) Identification. A galvanic skin response measurement device... electrical resistance of the skin and the tissue path between two electrodes applied to the skin. (b...

  7. 21 CFR 882.1540 - Galvanic skin response measurement device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Galvanic skin response measurement device. 882... Galvanic skin response measurement device. (a) Identification. A galvanic skin response measurement device... electrical resistance of the skin and the tissue path between two electrodes applied to the skin. (b...

  8. 21 CFR 882.1540 - Galvanic skin response measurement device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Galvanic skin response measurement device. 882... Galvanic skin response measurement device. (a) Identification. A galvanic skin response measurement device... electrical resistance of the skin and the tissue path between two electrodes applied to the skin. (b...

  9. Simulation on the steel galvanic corrosion and acoustic emission

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Shi, Xin; Yang, Ping

    2015-12-01

    Galvanic corrosion is a very destructive localized corrosion. The research on galvanic corrosion could determine equipment corrosion and prevent the accidents occurrence. Steel corrosion had been studied by COMSOL software with mathematical modeling. The galvanic corrosion of steel-aluminum submerged into 10% sodium chloride solution had been on-line detected by PIC-2 acoustic emission system. The results show that the acoustic emission event counts detected within unit time can qualitative judge galvanic corrosion rate and further erosion trend can be judged by the value changes.

  10. Galvanic Corrosion Behavior of Microwave Welded and Post-weld Heat-Treated Inconel-718 Joints

    NASA Astrophysics Data System (ADS)

    Bansal, Amit; Sharma, Apurbba Kumar; Kumar, Pradeep

    2017-05-01

    In the present study, corrosion behavior of microwave welded Inconel-718 at various conditions was investigated. Welding of Inconel-718 in 980 °C solution-treated condition was performed using microwave hybrid heating technique. The microwave welds were subjected to post-heat treatment for improving its microstructure and mechanical properties by solubilizing the Nb-enriched Laves phase. The microstructural features of the fabricated welds at various conditions were investigated through scanning electron microscopy. The electrochemical testing results revealed that Inconel-718 welds were galvanic corroded when they were anodically polarized in 3.5 wt.% NaCl solution at 28 °C. The difference in the corrosion potentials between the base metal (BM) and fusion zone (FZ) in an Inconel-718 weld was the main factor for galvanic corrosion. The highest corrosion was occurred in the as-welded/aged weldments, followed by 980 °C solution-treated and aged weldments, as-welded specimen, and 1080 °C solution-treated and aged (1080STA) weldments. The least galvanic corrosion was occurred in the 1080STA specimens due to almost uniform microstructure developed in the weldment after the treatment. Thus, it was possible to minimize the galvanic corrosion in the microwave welded Inconel-718 by 1080STA treatment which resulted in reducing the difference in corrosion potentials between the BM and the FZ.

  11. Synthesis of Hollow Gold-Silver Alloyed Nanoparticles: A "Galvanic Replacement" Experiment for Chemistry and Engineering Students

    ERIC Educational Resources Information Center

    Jenkins, Samir V.; Gohman, Taylor D.; Miller, Emily K.; Chen, Jingyi

    2015-01-01

    The rapid academic and industrial development of nanotechnology has led to its implementation in laboratory teaching for undergraduate-level chemistry and engineering students. This laboratory experiment introduces the galvanic replacement reaction for synthesis of hollow metal nanoparticles and investigates the optical properties of these…

  12. Microstructure and Mechanical Properties of Plasma Arc Brazed AISI 304L Stainless Steel and Galvanized Steel Plates

    NASA Astrophysics Data System (ADS)

    Jin, Yajuan; Li, Ruifeng; Yu, Zhishui; Wang, Yu

    2016-04-01

    Plasma arc brazing is used to join the AISI 304L stainless steel and galvanized steel plate butt joints with the CuSi3Mn1 filler wire. The effect of parameters on weld surface appearance, interfacial microstructure, and composition distribution in the joint was studied. The microhardness and mechanical tests were conducted to determine the mechanical properties of the welded specimens. The results indicated that good appearance, bead shape, and sufficient metallurgical bonding could be obtained when the brazing process was performed with a wire feeding speed of 0.8 m/min, plasma gas flow rate of 3.0 l/min, welding current of 100 A, and welding speed of 27 cm/min. During plasma arc brazing process, the top corner of the stainless steel and galvanized steel plate were heated and melted, and the melted quantity of stainless steel was much more than that of the galvanized steel due to the thermal conductivity coefficient difference between the dissimilar materials. The microhardness test results shows that the microhardness value gradually increased from the side of the galvanized steel to the stainless steel in the joint, and it is good for improving the mechanical properties of joint. The tensile strength was a little higher than that of the brazing filler, and the fracture position of weld joint was at the base metal of galvanized steel plate.

  13. Corrosion protection of galvanized steels by silane-based treatments

    NASA Astrophysics Data System (ADS)

    Yuan, Wei

    The possibility of using silane coupling agents as replacements for chromate treatments was investigated on galvanized steel substrates. In order to understand the influence of deposition parameters on silane film formation, pure zinc substrates were first used as a model for galvanized steel to study the interaction between silane coupling agents and zinc surfaces. The silane films formed on pure zinc substrates from aqueous solutions were characterized by ellipsometry, contact angle measurements, reflection absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and atomic force microscopy. The deposition parameters studied include solution concentration, solution dipping time and pH value of the applied solution. It appears that silane film formation involved a true equilibrium of hydrolysis and condensation reactions in aqueous solutions. It has been found that the silane film thickness obtained depends primarily on the solution concentration and is almost independent of the solution dipping time. The molecular orientation of applied silane films is determined by the pH value of applied silane solutions and the isoelectric point of metal substrates. The deposition window in terms of pH value for zinc substrates is between 6.0 and 9.0. The total surface energy of the silane-coated pure zinc substrates decreases with film aging time, the decrease rate, however, is determined by the nature of silane coupling agents. Selected silane coupling agents were applied as prepaint or passivation treatments onto galvanized steel substrates. The corrosion protection provided by these silane-based treatments were evaluated by salt spray test, cyclic corrosion test, electrochemical impedance spectroscopy, and stack test. The results showed that silane coupling agents can possibly be used to replace chromates for corrosion control of galvanized steel substrates. Silane coatings provided by these silane treatments serve mainly as physical barriers. Factors that

  14. Galvanic corrosion behaviour of HE 20 / MDN 138 & HE 20 / MDN 250 alloys in natural seawater

    NASA Astrophysics Data System (ADS)

    Subramanian, G.; Parthiban, G. T.; Muthuraman, K.; Ramakrishna rao, P.

    2016-09-01

    In view of their excellent mechanical properties, workability and heat treatment characteristics, MDN 138 & MDN 250 have been widely used in missile, rocket and aerospace industries. With light weight and high performance characteristics HE 20 aluminium alloy acts as an important material in defence and aerospace applications. The galvanic corrosion behaviour of the metal combinations HE 20 / MDN 138 and HE 20 / MDN 250, with 1:1 area ratio, has been studied in natural seawater using the open well facility of CECRI's Offshore Platform at Tuticorin for a year. The open circuit potentials of MDN 138, MDN 250 and HE 20 of the individual metal, the mixed potential and galvanic current of the couples HE 20 / MDN 138 and HE 20 / MDN 250 were periodically monitored throughout the study period. The calcareous deposits on MDN 138 and MDN 250 were analysed using XRD. The results of the study reveal that that HE 20 has offered required amount of protection to MDN 138 & MDN 250.

  15. Multi-Metallic Galvanic Corrosion

    DTIC Science & Technology

    1988-05-01

    Tate-Emery Company Calipers, Model #120, Starrett Company Extensometer, Model #P3M, Satec Incorporated Saw, Abrasimet Model, Buehler Limited PROCEDURE...few percent. Failure Analysis & Prevention, Metals Handbook Vol. 10, ASTM 1975, p. 182. 5 MPY 35-0 30-/ 25/ 20-0 15- 10- es -10Ŕ 6061-T6 COUPLED WITH

  16. Use of Galvanic Skin Responses, Salivary Biomarkers, and Self-reports to Assess Undergraduate Student Performance During a Laboratory Exam Activity

    PubMed Central

    Villanueva, Idalis; Valladares, Maria; Goodridge, Wade

    2016-01-01

    Typically, self-reports are used in educational research to assess student response and performance to a classroom activity. Yet, addition of biological and physiological measures such as salivary biomarkers and galvanic skin responses are rarely included, limiting the wealth of information that can be obtained to better understand student performance. A laboratory protocol to study undergraduate students' responses to classroom events (e.g., exams) is presented. Participants were asked to complete a representative exam for their degree. Before and after the laboratory exam session, students completed an academic achievement emotions self-report and an interview that paralleled these questions when participants wore a galvanic skin sensor and salivary biomarkers were collected. Data collected from the three methods resulted in greater depth of information about students' performance when compared to the self-report. The work can expand educational research capabilities through more comprehensive methods for obtaining nearer to real-time student responses to an examination activity. PMID:26891278

  17. UV-light assisted patterned metallization of textile fabrics

    NASA Astrophysics Data System (ADS)

    Bahners, Thomas; Gebert, Beate; Prager, Andrea; Hartmann, Nils; Hagemann, Ulrich; Gutmann, Jochen S.

    2018-04-01

    A UV-assisted process allows full-faced or local deposition of silver domains on textiles made of natural as well as synthetic fibers, which act as nuclei for subsequent galvanic metallization. SEM and XPS analyses indicate that the process generates particulate depositions - particles, aggregates - of elementary silver. Masking the UV irradiation confines silver deposition strictly to the exposed areas thus allowing patterning. Adhesion of the deposited silver is high on the studied natural fiber cotton and polyamide fibers. Adhesion on smooth and chemically inert synthethic fibers such as, e.g., poly(ethylene terephthalate) or para- and meta-aramids could be enhanced by finishing with poly(vinylamine) thus providing complex-forming amino groups. Although the process does not deposit a closed, electrically conducting layer, all studied samples could be metallized by galvanization. The resulting metal coatings exhibit high conductivity and wash stability. Following a patterned silver deposition, the subsequent galvanic metallization produced conductive patterns of identical geometry thus opening an avenue towards printed circuits on textile fabrics.

  18. 77 FR 28404 - Galvanized Steel Wire From China and Mexico

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ...)] Galvanized Steel Wire From China and Mexico Determinations On the basis of the record \\1\\ developed in the... reason of imports from China of galvanized steel wire, provided for in subheadings 7217.20.30, 7217.20.45... reason of imports from Mexico of galvanized steel wire, provided for in subheadings 7217.20.30, 7217.20...

  19. Galvanic zinc-copper microparticles inhibit melanogenesis via multiple pigmentary pathways.

    PubMed

    Won, Yen-Kim; Lin, Connie B; Seiberg, Miri; Chen, Nannan; Hu, Yaping; Rossetti, Dianne; Saliou, Claude; Loy, Chong-Jin

    2014-01-01

    The endogenous electrical field of human skin plays an important role in many skin functions. However, the biological effects and mechanism of action of externally applied electrical stimulation on skin remain unclear. Recent study showed that galvanic zinc-copper microparticles produce electrical stimulation and reduce inflammatory and immune responses in intact skin, suggesting the important role of electrical stimulation in non-wounded skin. The objective of this study is to investigate the biological effect of galvanic zinc-copper microparticles on skin pigmentation. Our findings showed that galvanic zinc-copper microparticles inhibited melanogenesis in a human melanoma cell line (MNT-1), human keratinocytes and melanoma cells co-cultures, and in pigmented epidermal equivalents. Treatment of galvanic zinc-copper microparticles inhibited melanogenesis by reducing the promoter transactivation of tyrosinase and tyrosinase-related protein-1 in human melanoma cells. In a co-culture Transwell system of keratinocytes and melanoma cells, galvanic zinc-copper microparticles reduced melanin production via downregulation of endothelin-1 secretion from keratinocytes and reduced tyrosinase gene expression in melanoma cells. In addition, exposure of pigmented epidermal equivalents to galvanic zinc-copper microparticles resulted in reduced melanin deposition. In conclusion, our data demonstrated for the first time that galvanic zinc-copper microparticles reduced melanogenesis in melanoma cells and melanin deposition in pigmented epidermal equivalents by affecting multiple pigmentary pathways.

  20. Synthesis and Characterization of Chromate Conversion Coatings on GALVALUME and Galvanized Steel Substrates

    NASA Astrophysics Data System (ADS)

    Domínguez-Crespo, M. A.; Onofre-Bustamante, E.; Torres-Huerta, A. M.; Rodríguez-Gómez, F. J.; Rodil, S. E.; Flores-Vela, A.

    2009-07-01

    The morphology, composition, and corrosion performance of chromate conversion coatings (CCCs) formed on GALVALUME (Fe-Al-Zn) and galvanized steel (Fe-Zn) samples have been studied, and different immersion times (0, 10, 30, and 60 seconds) have been compared. The coated surfaces were analyzed using light microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical measurements in a NaCl solution (3 wt pct). The electrochemical measurements were carried out using the polarization resistance, Tafel, and ac impedance methods. A nonuniform growth of the CCCs having a porous morphology and cracks that appear extended to the base metal was observed. The XRD patterns show that the coatings mainly consist of CrO3, Cr2O3, and traces of Cr2O{7/-2}. The electrochemical results show that GALVALUME presents a better behavior than that of the galvanized steel alloys at each dipping time. The SEM micrographs show that the galvanized steel treatments resulted in the formation of a more uniform film, but their protection barrier broke down faster than that of the GALVALUME samples in contact with the aggressive media. The samples that underwent the lowest degree of dissolution were those with a dipping time of 30 seconds. The difference in the corrosion protection given by the two substrate types could be attributed to the structural properties, grain size, composition, and roughness, which affect oxygen diffusion.

  1. Galvanic coupling between D6AC steel, 6061-T6 aluminum, Inconel 718 and graphite-epoxy composite material: Corrosion occurrence and prevention

    NASA Technical Reports Server (NTRS)

    Danford, M. D.; Higgins, R. H.

    1983-01-01

    The effects of galvanic coupling between D6AC steel, 6061-T6 aluminum, Inconel 718, and graphite-epoxy composite material (G/E) in 3.5% NaCl were studied. Measurements of corrosion potentials, galvanic currents and corrosion rates of the bare metals using weight-loss methods served to establish the need for corrosion protection in cases where D6AC steel and 6061-T6 aluminum are galvanically coupled to G/E in salt water while Inconel 718 was shown to be compatible with G/E. Six tests were made to study corrosion protective methods for eliminating galvanic corrosion in the cases of D6AC steel and 6061-T6 aluminum coupled to G/E. These results indicate that, when the G/E is completely coated with paint or a paint/polyurethane resin combination, satisfactory protection of the D6AC steel is achieved with either a coat of zinc-rich primer or a primer/topcoat combination. Likewise, satisfactory corrosion protection of the aluminum is achieved by coating it with an epoxy coating system.

  2. 40 CFR 465.20 - Applicability; description of the galvanized basis material subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... galvanized basis material subcategory. 465.20 Section 465.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS COIL COATING POINT SOURCE CATEGORY Galvanized Basis Material Subcategory § 465.20 Applicability; description of the galvanized basis material...

  3. A Galvanic Sensor for Monitoring the Corrosion Condition of the Concrete Reinforcing Steel: Relationship Between the Galvanic and the Corrosion Currents

    PubMed Central

    Pereira, Elsa Vaz; Figueira, Rita Bacelar; Salta, Maria Manuela Lemos; da Fonseca, Inês Teodora Elias

    2009-01-01

    This work reports a study carried out on the design and performance of galvanic and polarization resistance sensors to be embedded in concrete systems for permanent monitoring of the corrosion condition of reinforcing steel, aiming to establish a correlation between the galvanic currents, Igal, and the corrosion currents, Icorr, estimated from the polarization resistance, Rp. Sensors have been tested in saturated Ca(OH)2 aqueous solutions, under a variety of conditions, simulating the most important parameters that can accelerate the corrosion of concrete reinforcing steel, such as carbonation, ingress of chloride ions, presence or absence of O2. For all the conditions, the influence of temperature (20 to 55 °C) has also been considered. From this study, it could be concluded that the galvanic currents are sensitive to the various parameters following a trend similar to that of the Rp values. A relationship between the galvanic and the corrosion current densities was obtained and the limiting values of the Igal, indicative of the state condition of the reinforcing steel for the designed sensor, were established. PMID:22291514

  4. Simulation to coating weight control for galvanizing

    NASA Astrophysics Data System (ADS)

    Wang, Junsheng; Yan, Zhang; Wu, Kunkui; Song, Lei

    2013-05-01

    Zinc coating weight control is one of the most critical issues for continuous galvanizing line. The process has the characteristic of variable-time large time delay, nonlinear, multivariable. It can result in seriously coating weight error and non-uniform coating. We develop a control system, which can automatically control the air knives pressure and its position to give a constant and uniform zinc coating, in accordance with customer-order specification through an auto-adaptive empirical model-based feed forward adaptive controller, and two model-free adaptive feedback controllers . The proposed models with controller were applied to continuous galvanizing line (CGL) at Angang Steel Works. By the production results, the precise and stability of the control model reduces over-coating weight and improves coating uniform. The product for this hot dip galvanizing line does not only satisfy the customers' quality requirement but also save the zinc consumption.

  5. Aerosol characterization and pulmonary responses in rats after short-term inhalation of fumes generated during resistance spot welding of galvanized steel.

    PubMed

    Antonini, James M; Afshari, Aliakbar; Meighan, Terence G; McKinney, Walter; Jackson, Mark; Schwegler-Berry, Diane; Burns, Dru A; LeBouf, Ryan F; Chen, Bean T; Shoeb, Mohammad; Zeidler-Erdely, Patti C

    2017-01-01

    Resistance spot welding is a common process to join metals in the automotive industry. Adhesives are often used as sealers to seams of metals that are joined. Anti-spatter compounds sometimes are sprayed onto metals to be welded to improve the weldability. Spot welding produces complex aerosols composed of metal and volatile compounds (VOCs) which can cause lung disease in workers. Male Sprague-Dawley rats (n = 12/treatment group) were exposed by inhalation to 25 mg/m 3 of aerosol for 4 h/day × 8 days during spot welding of galvanized zinc (Zn)-coated steel in the presence or absence of a glue or anti-spatter spray. Controls were exposed to filtered air. Particle size distribution and chemical composition of the generated aerosol were determined. At 1 and 7 days after exposure, bronchoalveolar lavage (BAL) was performed to assess lung toxicity. The generated particles mostly were in the submicron size range with a significant number of nanometer-sized particles formed. The primary metals present in the fumes were Fe (72.5%) and Zn (26.3%). The addition of the anti-spatter spray and glue did affect particle size distribution when spot welding galvanized steel, whereas they had no effect on metal composition. Multiple VOCs (e.g., methyl methacrylate, acetaldehyde, ethanol, acetone, benzene, xylene) were identified when spot welding using either the glue or the anti-spatter spray that were not present when welding alone. Markers of lung injury (BAL lactate dehydrogenase) and inflammation (total BAL cells/neutrophils and cytokines/chemokines) were significantly elevated compared to controls 1 day after exposure to the spot welding fumes. The elevated pulmonary response was transient as lung toxicity mostly returned to control values by 7 days. The VOCs or the concentrations that they were generated during the animal exposures had no measurable effect on the pulmonary responses. Inhalation of galvanized spot welding fumes caused acute lung toxicity most

  6. 7 CFR 1755.370 - RUS specification for seven wire galvanized steel strand.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false RUS specification for seven wire galvanized steel..., ACCEPTABLE MATERIALS, AND STANDARD CONTRACT FORMS § 1755.370 RUS specification for seven wire galvanized... Steel Wire Strand, issued May 1978. All seven wire galvanized steel strand purchased after April 1, 1990...

  7. 7 CFR 1755.370 - RUS specification for seven wire galvanized steel strand.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false RUS specification for seven wire galvanized steel..., ACCEPTABLE MATERIALS, AND STANDARD CONTRACT FORMS § 1755.370 RUS specification for seven wire galvanized... Steel Wire Strand, issued May 1978. All seven wire galvanized steel strand purchased after April 1, 1990...

  8. Galvanic Corrosion of Lead by Iron (Oxyhydr)Oxides: Potential Impacts on Drinking Water Quality.

    PubMed

    Trueman, Benjamin F; Sweet, Gregory A; Harding, Matthew D; Estabrook, Hayden; Bishop, D Paul; Gagnon, Graham A

    2017-06-20

    Lead exposure via drinking water remains a significant public health risk; this study explored the potential effects of upstream iron corrosion on lead mobility in water distribution systems. Specifically, galvanic corrosion of lead by iron (oxyhydr)oxides was investigated. Coupling an iron mineral cathode with metallic lead in a galvanic cell increased lead release by 531 μg L -1 on average-a 9-fold increase over uniform corrosion in the absence of iron. Cathodes were composed of spark plasma sintered Fe 3 O 4 or α-Fe 2 O 3 or field-extracted Fe 3 O 4 and α-FeOOH. Orthophosphate immobilized oxidized lead as insoluble hydroxypyromorphite, while humic acid enhanced lead mobility. Addition of a humic isolate increased lead release due to uniform corrosion by 81 μg L -1 and-upon coupling lead to a mineral cathode-release due to galvanic corrosion by 990 μg L -1 . Elevated lead in the presence of humic acid appeared to be driven by complexation, with 208 Pb and UV 254 size-exclusion chromatograms exhibiting strong correlation under these conditions (R 2 average = 0.87). A significant iron corrosion effect was consistent with field data: lead levels after lead service line replacement were greater by factors of 2.3-4.7 at sites supplied by unlined cast iron distribution mains compared with the alternative, lined ductile iron.

  9. Polyfibroblast: A Self-Healing and Galvanic Protection Additive

    DTIC Science & Technology

    2012-09-12

    self-healing and galvanic protection capacity to the primer (Figure 1). Polyfibroblast consists of paint-filled microcapsules and zinc powder. It has...significant added cost. Microcapsule Figure 1. Polyfibroblast contains fresh paint encapsulated in polymer shells plus Zn powder. When scratched, resin...from the broken microcapsules fills the crack to form a polymer scar. Zn powder supplies galvanic protection in the event of incomplete healing

  10. Ion exchange treatment of rinse water generated in the galvanizing process.

    PubMed

    Marañón, Elena; Fernández, Yolanda; Castrillón, Leonor

    2005-01-01

    A study was conducted of the viability of using the cationic exchange resins Amberlite IR-120 and Lewatit SP-112 to treat rinse water generated in the galvanizing process as well as acidic wastewater containing zinc (Zn) and iron (Fe). Solutions containing either 100 mg/L of Zn at pH 5.6 (rinse water) or Fe and Zn at concentrations of 320 and 200 mg/L at pH 1.5 (acidic water), respectively, were percolated through packed beds until the resins were exhausted. Breakthrough capacities obtained ranged between 1.1 and 1.5 meq metal/mL resin. The elution of metal and the regeneration of resins were performed with hydrochloric acid. The influence of the flowrate used during the loading stage was also studied, with 0.5 bed volumes/min (3.2 cm/min) found to be the optimum flowrate.

  11. 76 FR 55031 - Galvanized Steel Wire From the People's Republic of China: Preliminary Affirmative Countervailing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-06

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-976] Galvanized Steel Wire From... galvanized steel wire (galvanized wire) from the People's Republic of China (PRC). For information on the..., filed in proper form, concerning imports of galvanized wire from the PRC.\\1\\ The Department initiated a...

  12. Galvanic deposition and characterization of brushite/hydroxyapatite coatings on 316L stainless steel.

    PubMed

    Blanda, Giuseppe; Brucato, Valerio; Pavia, Francesco Carfì; Greco, Silvia; Piazza, Salvatore; Sunseri, Carmelo; Inguanta, Rosalinda

    2016-07-01

    In this work, brushite and brushite/hydroxyapatite (BS, CaHPO4·H2O; HA, Ca10(PO4)6(OH)2) coatings were deposited on 316L stainless steel (316LSS) from a solution containing Ca(NO3)2·4H2O and NH4H2PO4 by a displacement reaction based on a galvanic contact, where zinc acts as sacrificial anode. Driving force for the cementation reaction arises from the difference in the electrochemical standard potentials of two different metallic materials (316LSS and Zn) immersed in an electrolyte, so forming a galvanic contact leading to the deposition of BS/HA on nobler metal. We found that temperature and deposition time affect coating features (morphology, structure, and composition). Deposits were characterized by means of several techniques. The morphology was investigated by scanning electron microscopy, the elemental composition was obtained by X-ray energy dispersive spectroscopy, whilst the structure was identified by Raman spectroscopy and X-ray diffraction. BS was deposited at all investigated temperatures covering the 316LSS surface. At low and moderate temperature, BS coatings were compact, uniform and with good crystalline degree. On BS layers, HA crystals were obtained at 50°C for all deposition times, while at 25°C, its presence was revealed only after long deposition time. Electrochemical studies show remarkable improvement in corrosion resistance. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Performance of Inductors Attached to a Galvanizing Bath

    NASA Astrophysics Data System (ADS)

    Zhou, Xinping; Yuan, Shuo; Liu, Chi; Yang, Peng; Qian, Chaoqun; Song, Bao

    2013-12-01

    By taking a galvanizing bath with inductors from an Iron and Steel Co., Ltd as an example, the distributions of Lorentz force and generated heat in the inductor are simulated. As a result, the zinc flow and the temperature distribution driven by the Lorentz force and the generated heat in the inductor of a galvanizing bath are simulated numerically, and their characteristics are analyzed. The relationship of the surface-weighted average velocity at the outlet and the temperature difference between the inlet and the outlet and the effective power for the inductor is studied. Results show that with an increase in effective power for the inductor, the surface-weighted average velocity at the outlet and the temperature difference between the inlet and the outlet increase gradually. We envisage this work to lay a foundation for the study of the performance of the galvanizing bath in future.

  14. Corrosion of galvanized transmission towers near the Colbert Steam Plant: data report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, J.H.

    1980-01-01

    This report contains data relating power plant emissions and the thickness of the galvanized layers on 20 electric transmission towers near the Colbert Steam plant after 25 years of ambient exposure. In addition to the thickness of the galvanized layers, total exposure to SO/sub 2/ at each tower was estimated and relevant meteorological data were reported. These data may be useful in relating galvanized corrosion to power plant emissions.

  15. Galvanic corrosion of nitinol under deaerated and aerated conditions.

    PubMed

    Pound, Bruce G

    2016-10-01

    Various studies have examined the corrosion rate of nitinol generally under deaerated conditions. Likewise, galvanic corrosion studies have typically involved deaerated solutions. This work addressed the effect of galvanic coupling on the corrosion current of electropolished nitinol in phosphate buffered saline and 0.9% sodium chloride under dearated and aerated conditions for times up to 24 h. Tests were performed on nitinol alone and coupled with MP35N in both the mechanically polished and passivated conditions. Aeration and galvanic coupling were found to have relatively little effect, indicating that the corrosion current is controlled by the anodic reaction. The current can be attributed entirely to Ni(2+) dissolution, which appears to be governed by solid-state mass transport of Ni(2+) through the passive oxide film. Because corrosion of EP nitinol is controlled by the anodic reaction, contact between EP nitinol and MP35N or other biomedical Co-Cr alloys is unlikely to result in significant galvanic effects in vivo. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1322-1327, 2016. © 2015 Wiley Periodicals, Inc.

  16. Effect of hot-dip galvanizing processes on the microstructure and mechanical properties of 600-MPa hot-dip galvanized dual-phase steel

    NASA Astrophysics Data System (ADS)

    Kuang, Chun-fu; Zheng, Zhi-wang; Wang, Min-li; Xu, Quan; Zhang, Shen-gen

    2017-12-01

    A C-Mn dual-phase steel was soaked at 800°C for 90 s and then either rapidly cooled to 450°C and held for 30 s (process A) or rapidly cooled to 350°C and then reheated to 450°C (process B) to simulate the hot-dip galvanizing process. The influence of the hot-dip galvanizing process on the microstructure and mechanical properties of 600-MPa hot-dip galvanized dual-phase steel (DP600) was investigated using optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tensile tests. The results showed that, in the case of process A, the microstructure of DP600 was composed of ferrite, martensite, and a small amount of bainite. The granular bainite was formed in the hot-dip galvanizing stage, and martensite islands were formed in the final cooling stage after hot-dip galvanizing. By contrast, in the case of process B, the microstructure of the DP600 was composed of ferrite, martensite, bainite, and cementite. In addition, compared with the yield strength (YS) of the DP600 annealed by process A, that for the DP600 annealed by process B increased by approximately 50 MPa because of the tempering of the martensite formed during rapid cooling. The work-hardening coefficient ( n value) of the DP600 steel annealed by process B clearly decreased because the increase of the YS affected the computation result for the n value. However, the ultimate tensile strength (UTS) and elongation ( A 80) of the DP600 annealed by process B exhibited less variation compared with those of the DP600 annealed by process A. Therefore, DP600 with excellent comprehensive mechanical properties (YS = 362 MPa, UTS = 638 MPa, A 80 = 24.3%, n = 0.17) was obtained via process A.

  17. The timing of galvanic vestibular stimulation affects responses to platform translation

    NASA Technical Reports Server (NTRS)

    Hlavacka, F.; Shupert, C. L.; Horak, F. B.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    We compared the effects of galvanic vestibular stimulation applied at 0, 0.5, 1.5 and 2.5 s prior to a backward platform translation on postural responses. The effect of the galvanic stimulation was largest on the final equilibrium position of the center of pressure (CoP). The largest effects occurred for the 0.5 and 0-s pre-period, when the dynamic CoP pressure changes in response to both the galvanic stimulus and the platform translation coincided. The shift in the final equilibrium position was also larger than the sum of the shifts for the galvanic stimulus and the platform translation alone for the 0.5 and 0-s pre-periods. The initial rate of change of the CoP response to the platform translation was not significantly affected in any condition. Changes in the peak CoP position could be accounted for by local interaction of CoP velocity changes induced by the galvanic and translation responses alone, but the changes in final equilibrium position could only be accounted for by a change in global body orientation. These findings suggest that the contribution of vestibulospinal information is greatest during the dynamic phase of the postural response, and that the vestibular system contributes most to the later components of the postural response, particularly to the final equilibrium position. These findings suggest that a nonlinear interaction between the vestibular signal induced by the galvanic current and the sensory stimuli produced by the platform translation occurs when the two stimuli are presented within 1 s, during the dynamic phase of the postural response to the galvanic stimulus. When presented at greater separations in time, the stimuli appear to be treated as independent events, such that no interaction occurs. Copyright 1999 Elsevier Science B.V.

  18. Anodized titanium and stainless steel in contact with CFRP: an electrochemical approach considering galvanic corrosion.

    PubMed

    Mueller, Yves; Tognini, Roger; Mayer, Joerg; Virtanen, Sannakaisa

    2007-09-15

    The combination of different materials in an implant gives the opportunity to better fulfill the requirements that are needed to improve the healing process. However, using different materials increases the risk of galvanic coupling corrosion. In this study, coupling effects of gold-anodized titanium, stainless steel for biomedical applications, carbon fiber reinforced polyetheretherketone (CFRP), and CFRP containing tantalum fibers are investigated electrochemically and by long-term immersion experiments in simulated body fluid (SBF). Potentiodynamic polarization experiments (i/E curves) and electrochemical impedance spectroscopy (EIS) of the separated materials showed a passive behavior of the metallic samples. Anodized titanium showed no corrosion attacks, whereas stainless steel is highly susceptibility for localized corrosion. On the other side, an active dissolution behavior of both of the CFRPs in the given environment could be determined, leading to delaminating of the carbon fibers from the matrix. Long-term immersion experiments were carried out using a set-up especially developed to simulate coupling conditions of a point contact fixator system (PC-Fix) in a biological environment. Electrochemical data were acquired in situ during the whole immersion time. The results of the immersion experiments correlate with the findings of the electrochemical investigation. Localized corrosion attacks were found on stainless steel, whereas anodized titanium showed no corrosion attacks. No significant differences between the two CFRP types could be found. Galvanic coupling corrosion in combination with crevice conditions and possible corrosion mechanisms are discussed. Copyright 2007 Wiley Periodicals, Inc.

  19. 76 FR 19382 - Galvanized Steel Wire From China and Mexico

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-07

    ...)] Galvanized Steel Wire From China and Mexico AGENCY: United States International Trade Commission. ACTION... galvanized steel wire, provided for in subheading 7217.20.30 and 7217.20.45 of the Harmonized Tariff Schedule... investigations are being instituted in response to a petition filed on March 31, 2011, by Davis Wire Corp...

  20. 76 FR 29266 - Galvanized Steel Wire From China and Mexico

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ...)] Galvanized Steel Wire From China and Mexico Determinations On the basis of the record \\1\\ developed in the... reason of imports from China and Mexico of galvanized steel wire, provided for in subheading 7217.20.30... March 31, 2011, a petition was filed with the Commission and Commerce by Davis Wire Corporation...

  1. The effect of immersion time to low carbon steel hardness and microstructure with hot dip galvanizing coating method

    NASA Astrophysics Data System (ADS)

    Hakim, A. A.; Rajagukguk, T. O.; Sumardi, S.

    2018-01-01

    Along with developing necessities of metal materials, these rise demands of quality improvements and material protections especially the mechanical properties of the material. This research used hot dip galvanizing coating method. The objectives of this research were to find out Rockwell hardness (HRb), layer thickness, micro structure and observation with Scanning Electron Microscope (SEM) from result of coating by using Hot Dip Galvanizing coating method with immersion time of 3, 6, 9, and 12 minutes at 460°C. The result shows that Highest Rockwell hardness test (HRb) was at 3 minutes immersion time with 76.012 HRb. Highest thickness result was 217.3 μm at 12 minutes immersion. Microstructure test result showed that coating was formed at eta, zeta, delta and gamma phases, while Scanning Electron Microscope (SEM) showed Fe, Zn, Mn, Si and S elements at the specimens after coating.

  2. 76 FR 68422 - Galvanized Steel Wire From Mexico: Preliminary Determination of Sales at Less Than Fair Value and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-04

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-201-840] Galvanized Steel Wire From... determines that galvanized steel wire (galvanized wire) from Mexico is being, or is likely to be, sold in the... investigation on galvanized wire from Mexico. See Galvanized Steel Wire from the People's Republic of China and...

  3. 76 FR 33242 - Galvanized Steel Wire From the People's Republic of China: Postponement of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-976] Galvanized Steel Wire From... the countervailing duty investigation of galvanized steel wire from the People's Republic of China. See Galvanized Steel Wire From the People's Republic of China: Initiation of Countervailing Duty...

  4. Coating Galvanized Steel

    DTIC Science & Technology

    1989-06-01

    bonding of topcoats to smooth galvanizing have lead to such practices as washing with vinegar , washing with copper sulfate solution, or weathering before...of special treatments other than weathering: "The "home cure" type of treatments such as washing the surface with vinegar , acetic acid, cider, copper... alcohol . The wash primer used was MIL-P-15328 (Formula 117). It is spray- applied to give 0.3- to 0.5-mil dry film thickness and is used on ships to

  5. Metallurgical characterization, galvanic corrosion, and ionic release of orthodontic brackets coupled with Ni-Ti archwires.

    PubMed

    Darabara, Myrsini S; Bourithis, Lefteris I; Zinelis, Spiros; Papadimitriou, George D

    2007-04-01

    In orthodontics, a combination of metallic alloys is placed into the oral cavity during medical treatment and thus the corrosion resistance and ionic release of these appliances is of vital importance. The aim of this study is to investigate the elemental composition, microstructure, hardness, corrosion properties, and ionic release of commercially available orthodontic brackets and Copper Ni-Ti archwires. Following the assessment of the elemental composition of the orthodontic wire (Copper Ni-Ti) and the six different brackets (Micro Loc, Equilibrium, OptiMESH(XRT), Gemini, Orthos2, and Rematitan), cyclic polarization curves were obtained for each material to estimate the susceptibility of each alloy to pitting corrosion in 1M lactic acid. Galvanic corrosion between the orthodontic wire and each bracket took place in 1M lactic acid for 28 days at 37 degrees C and then the ionic concentration of Nickel and Chromium was studied. The orthodontic wire is made up from a Ni-Ti alloy with copper additions, while the orthodontic brackets are manufactured by different stainless steel grades or titanium alloys. All tested wires and brackets with the exception of Gemini are not susceptible to pitting corrosion. In galvanic corrosion, following exposure for 28 days, the lowest potential difference (approximately 250 mV) appears for the orthodontic wire Copper Ni-Ti and the bracket made up from pure titanium (Rematitan) or from the stainless steel AISI 316 grade (Micro Loc). Following completion of the galvanic corrosion experiments, measurable quantities of chromium and nickel ions were found in the residual lactic acid solution. (c) 2006 Wiley Periodicals, Inc.

  6. Protective Coatings for Metals

    NASA Technical Reports Server (NTRS)

    Ruggieri, D. J.; Rowe, A. P.

    1986-01-01

    Report evaluates protective coatings for metal structures in seashore and acid-cloud environments. Evaluation result of study of coating application characteristics, repair techniques, and field performance. Products from variety of manufacturers included in study. Also factory-coated panels and industrial galvanized panels with and without topcoats.

  7. Effect of age and rainfall pH on contaminant yields from metal roofs.

    PubMed

    Wicke, Daniel; Cochrane, Thomas A; O'Sullivan, Aisling D; Cave, Simon; Derksen, Mark

    2014-01-01

    Metal roofs are recognized for conveying significant metal loads to urban streams through stormwater runoff. Metal concentrations in urban runoff depend on roof types and prevailing weather conditions but the combined effects of roof age and rainfall pH on metal mobilization are not well understood. To investigate these effects on roof runoff, water quality was analysed from galvanized iron and copper roofs following rainfall events and also from simulating runoff using a rainfall simulator on specially constructed roof modules. Zinc and copper yields under different pH regimes were investigated for two roof materials and two different ages. Metal mobilization from older roofs was greater than new roofs with 55-year-old galvanized roof surfaces yielding more Zn, on average increasing by 45% and 30% under a rainfall pH of 4 and 8, respectively. Predominantly dissolved (85-95%) Zn and Cu concentrations in runoff exponentially increased as the rainfall pH decreased. Results also confirmed that copper guttering and downpipes associated with galvanized steel roof systems can substantially increase copper levels in roof runoff. Understanding the dynamics of roof surfaces as a function of weathering and rainfall pH regimes can help developers with making better choices about roof types and materials for stormwater improvement.

  8. 77 FR 17418 - Galvanized Steel Wire From the People's Republic of China: Final Affirmative Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-976] Galvanized Steel Wire From... exporters of galvanized steel wire (galvanized wire) from the People's Republic of China (the PRC). For... investigation are Davis Wire Corporation, Johnstown Wire Technologies, Inc., Mid- South Wire Company, Inc...

  9. A microfluidic galvanic cell on a single layer of paper

    NASA Astrophysics Data System (ADS)

    Purohit, Krutarth H.; Emrani, Saina; Rodriguez, Sandra; Liaw, Shi-Shen; Pham, Linda; Galvan, Vicente; Domalaon, Kryls; Gomez, Frank A.; Haan, John L.

    2016-06-01

    Paper microfluidics is used to produce single layer galvanic and hybrid cells to produce energy that could power paper-based analytical sensors. When two aqueous streams are absorbed onto paper to establish co-laminar flow, the streams stay in contact with each other with limited mixing. The interface at which mixing occurs acts as a charge-transfer region, eliminating the need for a salt bridge. We designed a Cusbnd Zn galvanic cell that powers an LED when two are placed in series. We also used more powerful redox couples (formate and silver, formate and permanganate) to produce higher power density (18 and 3.1 mW mg-1 Pd). These power densities are greater than previously reported paper microfluidic fuel cells using formate or methanol. The single layer design is much more simplified than previous reports of multi-layer galvanic cells on paper.

  10. 76 FR 73589 - Galvanized Steel Wire From the People's Republic of China: Amended Preliminary Determination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-975] Galvanized Steel Wire From... galvanized steel wire from the People's Republic of China (``PRC'').\\1\\ We are amending our Preliminary... Fair Value and Postponement of Final Determination: Galvanized Steel Wire from the People's Republic of...

  11. Alexander von Humboldt: galvanism, animal electricity, and self-experimentation part 2: the electric eel, animal electricity, and later years.

    PubMed

    Finger, Stanley; Piccolino, Marco; Stahnisch, Frank W

    2013-01-01

    After extensive experimentation during the 1790s, Alexander von Humboldt remained skeptical about "animal electricity" (and metallic electricity), writing instead about an ill-defined galvanic force. With his worldview and wishing to learn more, he studied electric eels in South America just as the new century began, again using his body as a scientific instrument in many of his experiments. As had been the case in the past and for many of the same reasons, some of his findings with the electric eel (and soon after, Italian torpedoes) seemed to argue against biological electricity. But he no longer used galvanic terminology when describing his electric fish experiments. The fact that he now wrote about animal electricity rather than a different "galvanic" force owed much to Alessandro Volta, who had come forth with his "pile" (battery) for multipling the physical and perceptable effects of otherwise weak electricity in 1800, while Humboldt was deep in South America. Humboldt probably read about and saw voltaic batteries in the United States in 1804, but the time he spent with Volta in 1805 was probably more significant in his conversion from a galvanic to an electrical framework for understanding nerve and muscle physiology. Although he did not continue his animal electricity research program after this time, Humboldt retained his worldview of a unified nature and continued to believe in intrinsic animal electricity. He also served as a patron to some of the most important figures in the new field of electrophysiology (e.g., Hermann Helmholtz and Emil du Bois-Reymond), helping to take the research that he had participated in to the next level.

  12. Respiratory Symptoms and Pulmonary Function Tests among Galvanized Workers Exposed To Zinc Oxide.

    PubMed

    Aminian, Omid; Zeinodin, Hamidreza; Sadeghniiat-Haghighi, Khosro; Izadi, Nazanin

    2015-01-01

    Galvanization is the process of coating steel or cast iron pieces with a thin layer of zinc allowing protection against corrosion. One of the important hazards in this industry is exposure to zinc compounds specially zinc oxide fumes and dusts. In this study, we evaluated chronic effects of zinc oxide on the respiratory tract of galvanizers. Overall, 188 workers were selected from Arak galvanization plant in 2012, 71 galvanizers as exposed group and 117 workers from other departments of plants as control group. Information was collected using American Thoracic Society (ATS) standard questionnaire, physical examination and demographic data sheet. Pulmonary function tests were measured for all subjects. Exposure assessment was done with NIOSH 7030 method. The Personal Breathing Zone (PBZ) air sampling results for zinc ranged from 6.61 to 8.25 mg/m³ above the permissible levels (Time weighted average; TWA:2 mg/m³). The prevalence of the respiratory symptoms such as dyspnea, throat and nose irritation in the exposed group was significantly (P<0.01) more than the control group. Decreasing in average percent in all spirometric parameters were seen in the galvanizers who exposed to zinc oxide fumes and dusts. The prevalence of obstructive respiratory disease was significantly (P=0.034) higher in the exposed group. High workplace zinc levels are associated with an increase in respiratory morbidity in galvanizers. Therefore administrators should evaluate these workers with periodic medical examinations and implement respiratory protection program in the working areas.

  13. 7 CFR 1755.370 - RUS specification for seven wire galvanized steel strand.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 11 2012-01-01 2012-01-01 false RUS specification for seven wire galvanized steel... steel strand. (a) RUS incorporates by reference ASTM A475-78, Standard Specification for Zinc-Coated Steel Wire Strand, issued May 1978. All seven wire galvanized steel strand purchased after April 1, 1990...

  14. 7 CFR 1755.370 - RUS specification for seven wire galvanized steel strand.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 11 2014-01-01 2014-01-01 false RUS specification for seven wire galvanized steel... steel strand. (a) RUS incorporates by reference ASTM A475-78, Standard Specification for Zinc-Coated Steel Wire Strand, issued May 1978. All seven wire galvanized steel strand purchased after April 1, 1990...

  15. 7 CFR 1755.370 - RUS specification for seven wire galvanized steel strand.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 11 2013-01-01 2013-01-01 false RUS specification for seven wire galvanized steel... steel strand. (a) RUS incorporates by reference ASTM A475-78, Standard Specification for Zinc-Coated Steel Wire Strand, issued May 1978. All seven wire galvanized steel strand purchased after April 1, 1990...

  16. 77 FR 17427 - Notice of Final Determination of Sales at Less Than Fair Value: Galvanized Steel Wire From Mexico

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ... Determination of Sales at Less Than Fair Value: Galvanized Steel Wire From Mexico AGENCY: Import Administration... the investigation of sales at less than fair value of galvanized steel wire (galvanized wire) from Mexico.\\1\\ \\1\\ See Galvanized Steel Wire from Mexico: Preliminary Determination of Sales at Less Than...

  17. Wear resistance of WC/Co HVOF-coatings and galvanic Cr coatings modified by diamond nanoparticles

    NASA Astrophysics Data System (ADS)

    Kandeva, M.; Grozdanova, T.; Karastoyanov, D.; Assenova, E.

    2017-02-01

    The efforts in the recent 20 years are related to search of ecological solutions in the tribotechnologies for the replacement of galvanic Cr coatings in the contact systems operating under extreme conditions: abrasion, erosion, cavitation, corrosion, shock and vibration loads. One of the solutions is in the composite coatings deposited by high velocity gas-flame process (HVOF). The present paper presents comparative study results for mechanical and tribological characteristics of galvanic Cr coatings without nanoparticles, galvanic Cr coatings modified by diamond nanoparticles NDDS of various concentration 0.6; 10; 15 и 20% obtained under three technological regimes, and composite WC-12Co coating. Comparative results about hardness, wear, wear resistance and friction coefficient are obtained for galvanic Cr-NDDS and WC-12Co coatings operating at equal friction conditions of dry friction on abrasive surface. The WC-12Co coating shows 5.4 to 7 times higher wear resistance compared to the galvanic Cr-NDDS coatings.

  18. Effects of temperature and operation parameters on the galvanic corrosion of Cu coupled to Au in organic solderability preservatives process

    NASA Astrophysics Data System (ADS)

    Oh, SeKwon; Kim, YoungJun; Jung, KiMin; Kim, JongSoo; Shon, MinYoung; Kwon, HyukSang

    2017-03-01

    In this work, we quantitatively examined the effects of temperature and operation parameters such as anode (Cu) to cathode (Au) area ratio, stirring speed, and Cu ion concentration on the galvanic corrosion kinetics of Cu coupled to Au (icouple ( Cu-Au)) on print circuit board in organic solderability preservative (OSP) soft etching solution. With the increase of temperature, galvanic corrosion rate (icouple ( Cu-Au) was increased; however, the degree of galvanic corrosion rate (icouple ( Cu-Au) - icorr (Cu)) was decreased owing to the lower activation energy of Cu coupled to Au, than that of Cu alone. With the increase of area ratio (cathode/anode), stirring speed of the system, icouple ( Cu-Au) was increased by the increase of cathodic reaction kinetics. And icouple ( Cu-Au) was decreased by the increase of the Cu-ion concentration in the OSP soft etching solution.

  19. Prognostic investigation of galvanic corrosion precursors in aircraft structures and their detection strategy

    NASA Astrophysics Data System (ADS)

    James, Robin; Kim, Tae Hee; Narayanan, Ram M.

    2017-04-01

    Aluminum alloys have been the dominant materials for aerospace construction in the past fifty years due to their light weight, forming and alloying, and relative low cost in comparison to titanium and composites. However, in recent years, carbon fiber reinforced polymers (CFRPs) and honeycomb materials have been used in aircrafts in the quest to attain lower weight, high temperature resistance, and better fuel efficiency. When these two materials are coupled together, the structural strength of the aircraft is unparalleled, but this comes at a price, namely galvanic corrosion. Previous experimental results have shown that when CFRP composite materials are joined with high strength aluminum alloys (AA7075-T6 or AA2024-T3), galvanic corrosion occurs at the material interfaces, and the aluminum is in greater danger of corroding, particularly since carbon and aluminum are on the opposite ends of the galvanic series. In this paper, we explore the occurrence of the recognizable precursors of galvanic corrosion when CFRP plate is coupled to an aluminum alloy using SS-304 bolts and exposed to environmental degradation, which creates significant concerns for aircraft structural reliability. The galvanic corrosion software package, BEASY, is used to simulate the growth of corrosion in the designed specimen after which a microwave non-destructive testing (NDT) technique is explored to detect corrosion defects that appear at the interface of this galvanic couple. This paper also explores a loaded waveguide technique to determine the dielectric constant of the final corrosion product at the Q-band millimeter-wave frequency range (33-50 GHz), as this can be an invaluable asset in developing early detection strategies.

  20. [Contribution of Aleksander Sapieha (1773-1812) into European galvanization therapy].

    PubMed

    Gorski, P; Goetz, W

    1996-01-01

    For the development of the therapy using electricity as agent two tracks can be identified. On the one side, the indication for applying this therapy was handled more careful, simultaneously the technical equipment was improved. The Polish noble man Alexander Sapieha (1773-1812), the leading natural scientist of the Granddukedom of Warsaw, cooperated with excellent European scientists in order to improve the galvanic battery technologically. Among these scientists were Alexander Volta (1745-1827), the inventor of the battery, and Johann Bartholomaeus Trommsdorff (1770-1837), who is considered as one of the founders of scientific pharmacy in Europe. A. Sapieha supported the publication of galvanic experiences, e.g. in the case of Alexander of Humboldt (1769-1859) by publishing his paper about electric fishes. Sapiehas connections with the scientific centers in Turin and Bologna, Erfurt, Warszaw and Paris accelerated the exchange of information about galvanism. Later the resulting mini-batteries were employed in diathermie, in defibrillators and pacemakers. Details about these connections are presented in the lecture resp. full paper.

  1. Electrochemistry and speciation of Au(+) in a deep eutectic solvent: growth and morphology of galvanic immersion coatings.

    PubMed

    Ballantyne, Andrew D; Forrest, Gregory C H; Frisch, Gero; Hartley, Jennifer M; Ryder, Karl S

    2015-11-11

    In this study we compare the electrochemical and structural properties of three gold salts AuCl, AuCN and KAu(CN)2 in a Deep Eutectic Solvent (DES) electrolyte (Ethaline 200) in order to elucidate factors affecting the galvanic deposition of gold coatings on nickel substrates. A chemically reversible diffusion limited response was observed for AuCl, whereas AuCN and KAu(CN)2 showed much more complicated, kinetically limited responses. Galvanic exchange reactions were performed on nickel substrates from DES solutions of the three gold salts; the AuCN gave a bright gold coating, the KAu(CN)2 solution give a visibly thin coating, whilst the coating from AuCl was dull, friable and poorly adhesive. This behaviour was rationalised by the differing speciation for each of these compounds, as evidenced by EXAFS methods. Analysis of EXAFS data shows that AuCl forms the chlorido-complex [AuCl2](-), AuCN forms a mixed [AuCl(CN)](-) species, whereas KAu(CN)2 maintains its [Au(CN)2](-) structure. The more labile Cl(-) enables easier reduction of Au when compared to the tightly bound cyanide species, hence leading to slower kinetics of deposition and differing electrochemical behaviour. We conclude that metal speciation in DESs is a function of the initial metal salt and that this has a strong influence on the mechanism and rate of growth, as well as on the morphology of the metal deposit obtained. In addition, these coatings are also extremely promising from a technological perspective as Electroless Nickel Immersion Gold (ENIG) finishes in the printed circuit board (PCB) industry, where the elimination of acid in gold plating formulation could potentially lead to more reliable coatings. Consequently, these results are both significant and timely.

  2. Microstructure and Properties of Lap Joint Between Aluminum Alloy and Galvanized Steel by CMT

    NASA Astrophysics Data System (ADS)

    Niu, Song; Chen, Su; Dong, Honggang; Zhao, Dongsheng; Zhang, Xiaosheng; Guo, Xin; Wang, Guoqiang

    2016-05-01

    Lap joining of 1-mm-thick Novelist AC 170 PX aluminum alloy to 1.2-mm-thick ST06 Z galvanized steel sheets for automotive applications was conducted by cold metal transfer advanced welding process with ER4043 and ER4047 filler wires. Under the optimized welding parameters with ER4043 filler wire, the tensile shear strength of joint was 189 MPa, reaching 89% of the aluminum alloy base metal. Microstructure and elemental distribution were characterized by optical metalloscope and electron probe microanalysis. The lap joints with ER4043 filler wire had smaller wetting angle and longer bonded line length with better wettability than with ER4047 filler wire during welding with same parameters. The needle-like Al-Fe-Si intermetallic compounds (IMCs) were spalled into the weld and brought negative effect to the tensile strength of joints. With increasing welding current, the needle-like IMCs grew longer and spread further into the weld, which would deteriorate the tensile shear strength.

  3. 76 FR 72721 - Galvanized Steel Wire From China and Mexico; Scheduling of the Final Phase of Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    ...)] Galvanized Steel Wire From China and Mexico; Scheduling of the Final Phase of Countervailing Duty and... galvanized steel wire, provided for in subheading 7217.20 of the Harmonized Tariff Schedule of the United... merchandise as galvanized steel wire which is a cold- drawn carbon quality steel product in coils, of solid...

  4. Corrosion behavior of metals and alloys in marine-industrial environment

    PubMed Central

    Natesan, Mariappan; Selvaraj, Subbiah; Manickam, Tharmakkannu; Venkatachari, Gopalachari

    2008-01-01

    This work deals with atmospheric corrosion to assess the degrading effects of air pollutants on ferrous and non-ferrous metals and alloys, which are mostly used as engineering materials. An exposure study was conducted in the Tuticorin port area located on the east coast of South India, in the Gulf of Mannar with Sri Lanka to the southeast. Common engineering materials, namely mild steel, galvanized iron, Zn, Al, Cu and Cu–Zn alloys (Cu–27Zn, Cu–30Zn and Cu–37Zn), were used in the investigation. The site was chosen where the metals are exposed to marine and industrial atmospheres. Seasonal 1 to 12 month corrosion losses of these metals and alloys were determined by a weight loss method. The weight losses showed strong corrosion of mild steel, galvanized iron, Cu and Zn and minor effect on Al and Cu–Zn alloys. Linear regression analysis was conducted to study the mechanism of corrosion. The composition of corrosion products formed on the metal surfaces was identified by x-ray diffraction and Fourier transform infrared spectroscopy. PMID:27878030

  5. Experimental Study on Rebar Corrosion Using the Galvanic Sensor Combined with the Electronic Resistance Technique.

    PubMed

    Xu, Yunze; Li, Kaiqiang; Liu, Liang; Yang, Lujia; Wang, Xiaona; Huang, Yi

    2016-09-08

    In this paper, a new kind of carbon steel (CS) and stainless steel (SS) galvanic sensor system was developed for the study of rebar corrosion in different pore solution conditions. Through the special design of the CS and SS electronic coupons, the electronic resistance (ER) method and zero resistance ammeter (ZRA) technique were used simultaneously for the measurement of both the galvanic current and the corrosion depth. The corrosion processes in different solution conditions were also studied by linear polarization resistance (LPR) and the measurements of polarization curves. The test result shows that the galvanic current noise can provide detailed information of the corrosion processes. When localized corrosion occurs, the corrosion rate measured by the ER method is lower than the real corrosion rate. However, the value measured by the LPR method is higher than the real corrosion rate. The galvanic current and the corrosion current measured by the LPR method shows linear correlation in chloride-containing saturated Ca(OH)₂ solution. The relationship between the corrosion current differences measured by the CS electronic coupons and the galvanic current between the CS and SS electronic coupons can also be used to evaluate the localized corrosion in reinforced concrete.

  6. An evaluation of airborne nickel, zinc, and lead exposure at hot dip galvanizing plants.

    PubMed

    Verma, D K; Shaw, D S

    1991-12-01

    Industrial hygiene surveys were conducted at three hot dip galvanizing plants to determine occupational exposure to nickel, zinc, and lead. All three plants employed the "dry process" and used 2% nickel, by weight, in their zinc baths. A total of 32 personal and area air samples were taken. The air samples were analyzed for nickel, zinc, and lead. Some samples were also analyzed for various species of nickel (i.e., metallic, soluble, and oxidic). The airborne concentrations observed for nickel and its three species, zinc, and lead at the three plants were all well below the current and proposed threshold limit values recommended by the American Conference of Governmental Industrial Hygienists (ACGIH).

  7. Selective Oxidation and Reactive Wetting during Galvanizing of a CMnAl TRIP-Assisted Steel

    NASA Astrophysics Data System (ADS)

    Bellhouse, E. M.; McDermid, J. R.

    2011-09-01

    A transformation induced plasticity (TRIP)-assisted steel with 0.2 pct C, 1.5 pct Mn, and 1.5 pct Al was successfully galvanized using a thermal cycle previously shown to produce an excellent combination of strength and ductility. The steel surface chemistry and oxide morphology were determined as a function of process atmosphere oxygen partial pressure. For the 220 K (-53 °C) dew point (dp) + 20 pct H2 atmosphere, the oxide morphology was a mixture of films and nodules. For the 243 K (-30 °C) dp + 5 pct H2 atmosphere, nodules of MnO were found primarily at grain boundaries. For the 278 K (+5 °C) dp + 5 pct H2 atmosphere, nodules of metallic Fe were found on the surface as a result of alloy element internal oxidation. The steel surface chemistry and oxide morphology were then related to the reactive wetting behavior during continuous hot dip galvanizing. Good wetting was obtained using the two lower oxygen partial pressure process atmospheres [220 K dp and 243 K dp (-53 °C dp and -30 °C dp)]. An increase in the number of bare spots was observed when using the higher oxygen partial pressure process atmosphere (+5 °C dp) due to the increased thickness of localized oxide films.

  8. Galvanic corrosion behaviors of Cu connected to Au on a printed circuit board in ammonia solution

    NASA Astrophysics Data System (ADS)

    Oh, SeKwon; Kim, YoungJun; Jung, KiMin; Park, MiSeok; Shon, MinYoung; Kwon, HyukSang

    2018-01-01

    During etching treatments of printed circuit board (PCB) with ammnioa solution, galvanic corrosion occurs between electrically connected gold and copper, and resulting in unexpected over-etching problems. Herein, we determine corrosion of galvanic coupled Cu to Au quantitatively in ammonia solutions, and evaluate factors influencing corrosion of galvanic coupled Cu to Au (i.e., area ratio of anode to cathode and stirring speed). The difference of the corrosion rate (Δi = icouple, (Cu-Au)-icorr, Cu) of Cu connected to Au (117 μA/cm2) and of single Cu (86 μA/cm2) infers the amount of over-etching of Cu resulting from galvanic corrosion in ammonia solution (Δi = 0.31 μA/cm2). As the stirring speed increases from 0 to 400 rpm, the corrosion rate of galvanic coupled Cu to Au increases from 36 to 191 μA/cm2. Furthermore, we confirm that an increase in the area ratio (Au/Cu) from 0.5 to 25 results in a higher rate of corrosion of Cu connected to Au. The corrosion rate of galvanic coupled Cu to Au is approximately 20 times higher when the area ratio of Au to Cu is 25 (1360 μA/cm2) than when the ratio is 0.5 (67 μA/cm2).

  9. Highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste with amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent.

    PubMed

    Bao, Shuangyou; Tang, Lihong; Li, Kai; Ning, Ping; Peng, Jinhui; Guo, Huibin; Zhu, Tingting; Liu, Ye

    2016-01-15

    Amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent was used as a novel sorbent to highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste in the presence of Fe(II). These hot-dip galvanizing pickling waste mainly contain ZnCl2 and FeCl2 in aqueous HCl media. The properties of this magnetic adsorbent were examined by transmission electron microscopy (TEM), powder X-ray diffraction (XRD), infrared spectrometer (FT-IR) and BET surface area measurements. Various factors influencing the adsorption of Zn(II) ion such as initial concentration of metal ions, the amount of adsorbent, pH value of the solutions, the concentration of coexisting iron ion were investigated by batch experiments. The results indicated that the adsorption equilibrium data obeyed the Freundlich model with maximum adsorption capacities for Zn(II) to 169.5mg/g. The maximum adsorption occurred at pH 5±0.1 and Fe(II) interferences had no obvious influence. This work provides a potential and unique technique for zinc ion removal from hot-dip galvanizing pickling waste. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The Effect of Galvanic Vestibular Stimulation on Postural Response of Down Syndrome Individuals on the Seesaw

    ERIC Educational Resources Information Center

    Carvalho, R. L.; Almeida, G. L.

    2011-01-01

    In order to better understand the role of the vestibular system in postural adjustments on unstable surfaces, we analyzed the effects of galvanic vestibular stimulation (GVS) on the pattern of muscle activity and joint displacements (ankle knee and hip) of eight intellectually normal participants (control group--CG) and eight control group…

  11. Saccule contribution to immediate early gene induction in the gerbil brainstem with posterior canal galvanic or hypergravity stimulation

    NASA Technical Reports Server (NTRS)

    Marshburn, T. H.; Kaufman, G. D.; Purcell, I. M.; Perachio, A. A.

    1997-01-01

    Immunolabeling patterns of the immediate early gene-related protein Fos in the gerbil brainstem were studied following stimulation of the sacculus by both hypergravity and galvanic stimulation. Head-restrained, alert animals were exposed to a prolonged (1 h) inertial vector of 2 G (19.6 m/s2) head acceleration directed in a dorso-ventral head axis to maximally stimulate the sacculus. Fos-defined immunoreactivity was quantified, and the results compared to a control group. The hypergravity stimulus produced Fos immunolabeling in the dorsomedial cell column (dmcc) of the inferior olive independently of other subnuclei. Similar dmcc labeling was induced by a 30 min galvanic stimulus of up to -100 microA applied through a stimulating electrode placed unilaterally on the bony labyrinth overlying the posterior canal (PC). The pattern of vestibular afferent firing activity induced by this galvanic stimulus was quantified in anesthetized gerbils by simultaneously recording from Scarpa's ganglion. Only saccular and PC afferent neurons exhibited increases in average firing rates of 200-300%, suggesting a pattern of current spread involving only PC and saccular afferent neurons at this level of stimulation. These results suggest that alteration in saccular afferent firing rates are sufficient to induce Fos-defined genomic activation of the dmcc, and lend further evidence to the existence of a functional vestibulo-olivary-cerebellar pathway of adaptation to novel gravito-inertial environments.

  12. Experimental Study on Rebar Corrosion Using the Galvanic Sensor Combined with the Electronic Resistance Technique

    PubMed Central

    Xu, Yunze; Li, Kaiqiang; Liu, Liang; Yang, Lujia; Wang, Xiaona; Huang, Yi

    2016-01-01

    In this paper, a new kind of carbon steel (CS) and stainless steel (SS) galvanic sensor system was developed for the study of rebar corrosion in different pore solution conditions. Through the special design of the CS and SS electronic coupons, the electronic resistance (ER) method and zero resistance ammeter (ZRA) technique were used simultaneously for the measurement of both the galvanic current and the corrosion depth. The corrosion processes in different solution conditions were also studied by linear polarization resistance (LPR) and the measurements of polarization curves. The test result shows that the galvanic current noise can provide detailed information of the corrosion processes. When localized corrosion occurs, the corrosion rate measured by the ER method is lower than the real corrosion rate. However, the value measured by the LPR method is higher than the real corrosion rate. The galvanic current and the corrosion current measured by the LPR method shows linear correlation in chloride-containing saturated Ca(OH)2 solution. The relationship between the corrosion current differences measured by the CS electronic coupons and the galvanic current between the CS and SS electronic coupons can also be used to evaluate the localized corrosion in reinforced concrete. PMID:27618054

  13. Effectiveness of low-cost electromagnetic shielding using nail-together galvanized steel: Test results. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, P.F.; Kennedy, E.L.; McCormack, R.G.

    1992-09-01

    The sensitivity of modern electronic equipment has increased the need for costly electromagnetic shielding. To reduce this cost, the U.S. Army Construction Engineering Research Laboratories (USACERL) has developed a new concept for shielding design that uses 28-gauge galvanized steel and standard galvanized nails. In this study, an electromagnetically shielded structure using the concept was designed, built, and evaluated for shielding effectiveness. The galvanized material was mounted to the standard USACERL test aperture and nailed to the wooden module frame, and the shielding effectiveness of the new construction design was measured using radio frequency antennas and receivers. Evaluations showed that themore » nail-together structure proved adequate for many shielding applications. However, while the galvanized steel met most shielding application requirements, this process added multiple seams to the structure, which decreased shielding in many instances by as much as 40 dB. Electromagnetic shielding, Electromagnetic pulse C3I Facilities.« less

  14. Galvanic Cells: Anodes, Cathodes, Signs and Charges

    ERIC Educational Resources Information Center

    Goodwin, Alan

    2011-01-01

    Electrochemistry is a difficult subject for students at school and beyond and even for their teachers. This article explores the difficult "truth" that, when a current flows from a galvanic cell, positive ions within the cell electrolyte move towards the electrode labelled positive. This seems to contravene the basic rule that like charges repel…

  15. Galvanic vestibular stimulation speeds visual memory recall.

    PubMed

    Wilkinson, David; Nicholls, Sophie; Pattenden, Charlotte; Kilduff, Patrick; Milberg, William

    2008-08-01

    The experiments of Alessandro Volta were amongst the first to indicate that visuo-spatial function can be altered by stimulating the vestibular nerves with galvanic current. Until recently, the beneficial effects of the procedure were masked by the high levels of electrical current applied, which induced nystagmus-related gaze deviation and spatial disorientation. However, several neuropsychological studies have shown that much weaker, imperceptible currents that do not elicit unpleasant side-effects can help overcome visual loss after stroke. Here, we show that visual processing in neurologically healthy individuals can also benefit from galvanic vestibular stimulation. Participants first learnt the names of eight unfamiliar faces and then after a short delay, answered questions from memory about how pairs of these faces differed. Mean correct reaction times were significantly shorter when sub-sensory, noise-enhanced anodal stimulation was administered to the left mastoid, compared to when no stimulation was administered at all. This advantage occurred with no loss in response accuracy, and raises the possibility that the procedure may constitute a more general form of cognitive enhancement.

  16. Galvanic corrosion behavior of orthodontic archwire alloys coupled to bracket alloys.

    PubMed

    Iijima, Masahiro; Endo, Kazuhiko; Yuasa, Toshihiro; Ohno, Hiroki; Hayashi, Kazuo; Kakizaki, Mitsugi; Mizoguchi, Itaru

    2006-07-01

    The purpose of this study was to provide a quantitative assessment of galvanic corrosion behavior of orthodontic archwire alloys coupled to orthodontic bracket alloys in 0.9% NaCl solution and to study the effect of surface area ratios. Two common bracket alloys, stainless steels and titanium, and four common wire alloys, nickel-titanium (NiTi) alloy, beta-titanium (beta-Ti) alloy, stainless steel, and cobalt-chromium-nickel alloy, were used. Three different area ratios, 1:1, 1:2.35, and 1:3.64, were used; two of them assumed that the multibracket appliances consists of 14 brackets and 0.016 inch of round archwire or 0.016 x 0.022 inch of rectangular archwire. The galvanic current was measured for 3 successive days using zero-impedance ammeter. When the NiTi alloy was coupled with Ti (1:1, 1:2.35, and 1:3.64 of the surface area ratio) or beta-Ti alloy was coupled with Ti (1:2.35 and 1:3.64 of the surface area ratio), Ti initially was the anode and corroded. However, the polarity reversed in 1 hour, resulting in corrosion of the NiTi or beta-Ti. The NiTi alloy coupled with SUS 304 or Ti exhibited a relatively large galvanic current density even after 72 hours. It is suggested that coupling SUS 304-NiTi and Ti-NiTi may remarkably accelerate the corrosion of NiTi alloy, which serves as the anode. The different anode-cathode area ratios used in this study had little effect on galvanic corrosion behavior.

  17. Galvanic Corrosion In (Graphite/Epoxy)/Alloy Couples

    NASA Technical Reports Server (NTRS)

    Danford, Merlin D.; Higgins, Ralph H.

    1988-01-01

    Effects of galvanic coupling between graphite/epoxy composite material, G/E, and D6AC steel, 6061-T6 aluminum, and Inconel(R) 718 nickel alloy in salt water described in report. Introductory section summarizes previous corrosion studies of G/E with other alloys. Details of sample preparation presented along with photographs of samples before and after immersion.

  18. 76 FR 23564 - Galvanized Steel Wire From the People's Republic of China: Initiation of Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ... the People's Republic of China: Initiation of Countervailing Duty Investigation AGENCY: Import... a countervailing duty (CVD) petition concerning imports of galvanized steel wire from the People's... Duties on Galvanized Steel Wire from the People's Republic of China'' (CVD Petition). On April 6, 2011...

  19. Inductively coupled plasma mass spectrometer with laser ablation metal ions release detection in the human mouth

    NASA Astrophysics Data System (ADS)

    Kueerova, Hana; Dostalova, Tatjana; Prochazkova, J.

    2002-06-01

    Presence of more dental alloys in oral cavity often causes pathological symptoms. Due to various and multi-faced symptomatology, they tend to be a source of significant problems not only for the patient but also for the dentist. Metal ions released from alloys can cause subjective and objective symptoms in mouth. The aim of this study was detection of metal elements presence in saliva. There were 4 groups of examined persons: with intact teeth (15 individuals) with metallic restorations, pathological currents 5-30 (mu) A, multi-faced subjective symptomatology and uncharacteristic objective diagnosis (32 patients), with metallic restorations and no subjective symptoms (14 persons) and with metallic restorations, without pathological currents and with problems related to galvanism (13 patients). Presence of 14 metal elements was checked by inductively coupled plasma mass spectrometer with laser ablation. Nd:YAG laser detector was used. There were significant differences in content of silver, gold and mercury between persons with intact teeth and other three groups. There were no differences found between subjects with and without galvanic currents, and presence of subjective and objective symptoms.

  20. South approach, looking north. The galvanized piping extends from the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South approach, looking north. The galvanized piping extends from the abutments across the length of the arch. - Weaverland Bridge, Quarry Road spanning Conestoga Creek, Terre Hill, Lancaster County, PA

  1. Mechanistic study of shape-anisotropic nanomaterials synthesized via spontaneous galvanic displacement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strand, Matthew B.; Leong, G. Jeremy; Tassone, Christopher J.

    Among the broad portfolio of preparations for nanoscale materials, spontaneous galvanic displacement (SGD) is emerging as an important technology because it is capable of creating functional nanomaterials that cannot be obtained through other routes and may be used to thrift precious metals used in a broad range of applications including catalysis. With advances resulting from increased understanding of the SGD process, materials that significantly improve efficiency and potentially enable widespread adoption of next generation technologies can be synthesized. In this work, PtAg nanotubes synthesized via displacement of Ag nanowires by Pt were used as a model system to elucidate themore » fundamental mechanisms of SGD. Furthermore, characterization by X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), and atom probe tomography (APT) indicates nanotubes are formed as Ag is oxidized first from the surface and then from the center of the nanowire, with Pt deposition forming a rough, heterogeneous surface on the PtAg nanotube.« less

  2. Mechanistic study of shape-anisotropic nanomaterials synthesized via spontaneous galvanic displacement

    DOE PAGES

    Strand, Matthew B.; Leong, G. Jeremy; Tassone, Christopher J.; ...

    2016-10-13

    Among the broad portfolio of preparations for nanoscale materials, spontaneous galvanic displacement (SGD) is emerging as an important technology because it is capable of creating functional nanomaterials that cannot be obtained through other routes and may be used to thrift precious metals used in a broad range of applications including catalysis. With advances resulting from increased understanding of the SGD process, materials that significantly improve efficiency and potentially enable widespread adoption of next generation technologies can be synthesized. In this work, PtAg nanotubes synthesized via displacement of Ag nanowires by Pt were used as a model system to elucidate themore » fundamental mechanisms of SGD. Furthermore, characterization by X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), and atom probe tomography (APT) indicates nanotubes are formed as Ag is oxidized first from the surface and then from the center of the nanowire, with Pt deposition forming a rough, heterogeneous surface on the PtAg nanotube.« less

  3. 1. Elkmont vehicle bridge at Elkmont Campground, galvanized corrugated arch. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Elkmont vehicle bridge at Elkmont Campground, galvanized corrugated arch. - Great Smoky Mountains National Park Roads & Bridges, Elkmont Vehicle Bridge, Spanning Little River at Elkmont Campground, Gatlinburg, Sevier County, TN

  4. Plasma methods for metals recovery from metal-containing waste.

    PubMed

    Changming, Du; Chao, Shang; Gong, Xiangjie; Ting, Wang; Xiange, Wei

    2018-04-27

    Metal-containing waste, a kind of new wastes, has a great potential for recycling and is also difficult to deal with. Many countries pay more and more attention to develop the metal recovery process and equipment of this kind of waste as raw material, so as to solve the environmental pollution and comprehensively utilize the discarded metal resources. Plasma processing is an efficient and environmentally friendly way for metal-containing waste. This review mainly discuss various metal-containing waste types, such as printed circuit boards (PCBs), red mud, galvanic sludge, Zircon, aluminium dross and incinerated ash, and the corresponding plasma methods, which include DC extended transferred arc plasma reactor, DC non-transferred arc plasma torch, RF thermal plasma reactor and argon and argon-hydrogen plasma jets. In addition, the plasma arc melting technology has a better purification effect on the extraction of useful metals from metal-containing wastes, a great capacity of volume reduction of waste materials, and a low leaching toxicity of solid slag, which can also be used to deal with all kinds of metal waste materials, having a wide range of applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Optimization of laser welding thin-gage galvanized steel via response surface methodology

    NASA Astrophysics Data System (ADS)

    Zhao, Yangyang; Zhang, Yansong; Hu, Wei; Lai, Xinmin

    2012-09-01

    The increasing demand of light weight and durability makes thin-gage galvanized steels (<0.6 mm) attractive for future automotive applications. Laser welding, well known for its deep penetration, high speed and small heat affected zone, provides a potential solution for welding thin-gage galvanized steels in automotive industry. In this study, the effect of the laser welding parameters (i.e. laser power, welding speed, gap and focal position) on the weld bead geometry (i.e. weld depth, weld width and surface concave) of 0.4 mm-thick galvanized SAE1004 steel in a lap joint configuration has been investigated by experiments. The process windows of the concerned process parameters were therefore determined. Then, response surface methodology (RSM) was used to develop models to predict the relationship between the processing parameters and the laser weld bead profile and identify the correct and optimal combination of the laser welding input variables to obtain superior weld joint. Under the optimal welding parameters, defect-free weld were produced, and the average aspect ratio increased about 30%, from 0.62 to 0.83.

  6. Adsorption of Cashew Allergens to Acid-Etched Zinc Metal Particles

    USDA-ARS?s Scientific Manuscript database

    Galvanized metal surfaces are approved by the FDA for use in many food processing steps. Food allergens can cause severe reactions even in very small amounts, and surfaces contaminated with allergens could pose a serious threat. The binding of cashew allergens to zinc particles was evaluated. Whi...

  7. 76 FR 68407 - Galvanized Steel Wire From the People's Republic of China: Preliminary Determination of Sales at...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-04

    ..., shorter strands of galvanized wire are purely for non-industrial, personal use, this galvanized [[Page... Co.; Nantong Long Yang International Trade Co., Ltd.; Shaanxi New Mile International Trade Co. Ltd... per capita gross national income are comparable to the PRC in terms of economic development.\\20\\ On...

  8. High speed chalcogenide glass electrochemical metallization cells with various active metals.

    PubMed

    Hughes, Mark A; Burgess, Alexander; Hinder, Steven; Gholizadeh, A Baset; Craig, Christopher; Hewak, Daniel W

    2018-08-03

    We fabricated electrochemical metallization cells using a GaLaSO solid electrolyte, an InSnO inactive electrode and active electrodes consisting of various metals (Cu, Ag, Fe, Cu, Mo, Al). Devices with Ag and Cu active metals showed consistent and repeatable resistive switching behaviour, and had a retention of 3 and >43 days, respectively; both had switching speeds of <5 ns. Devices with Cr and Fe active metals displayed incomplete or intermittent resistive switching, and devices with Mo and Al active electrodes displayed no resistive switching ability. Deeper penetration of the active metal into the GaLaSO layer resulted in greater resistive switching ability of the cell. The off-state resistivity was greater for more reactive active metals which may be due to a thicker intermediate layer.

  9. Use of ssq rotational invariant of magnetotelluric impedances for estimating informative properties for galvanic distortion

    NASA Astrophysics Data System (ADS)

    Rung-Arunwan, T.; Siripunvaraporn, W.; Utada, H.

    2017-06-01

    Several useful properties and parameters—a model of the regional mean one-dimensional (1D) conductivity profile, local and regional distortion indicators, and apparent gains—were defined in our recent paper using two rotational invariants (det: determinant and ssq: sum of squared elements) from a set of magnetotelluric (MT) data obtained by an array of observation sites. In this paper, we demonstrate their characteristics and benefits through synthetic examples using 1D and three-dimensional (3D) models. First, a model of the regional mean 1D conductivity profile is obtained using the average ssq impedance with different levels of galvanic distortion. In contrast to the Berdichevsky average using the average det impedance, the average ssq impedance is shown to yield a reliable estimate of the model of the regional mean 1D conductivity profile, even when severe galvanic distortion is contained in the data. Second, the local and regional distortion indicators were found to indicate the galvanic distortion as expressed by the splitting and shear parameters and to quantify their strengths in individual MT data and in the dataset as a whole. Third, the apparent gain was also shown to be a good approximation of the site gain, which is generally claimed to be undeterminable without external information. The model of the regional mean 1D profile could be used as an initial or a priori model in higher-dimensional inversions. The local and regional distortion indicators and apparent gains could be used to examine the existence and to guess the strength of the galvanic distortion. Although these conclusions were derived from synthetic tests using the Groom-Bailey distortion model, additional tests with different distortion models indicated that these conclusions are not strongly dependent on the choice of distortion model. These galvanic-distortion-related parameters would also assist in judging if a proper treatment is needed for the galvanic distortion when an MT

  10. Precise localization of metal nanoparticles in dendrimer nanosnakes or inner periphery and consequences in catalysis

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Gregurec, Danijela; Irigoyen, Joseba; Martinez, Angel; Moya, Sergio; Ciganda, Roberto; Hermange, Philippe; Ruiz, Jaime; Astruc, Didier

    2016-10-01

    Understanding the relationship between the location of nanoparticles (NPs) in an organic matrix and their catalytic performances is essential for catalyst design. Here we show that catalytic activities of Au, Ag and CuNPs stabilized by dendrimers using coordination to intradendritic triazoles, galvanic replacement or stabilization outside dendrimers strongly depends on their location. AgNPs are found at the inner click dendrimer periphery, whereas CuNPs and AuNPs are encapsulated in click dendrimer nanosnakes. AuNPs and AgNPs formed by galvanic replacement are larger than precursors and only partly encapsulated. AuNPs are all the better 4-nitrophenol reduction catalysts as they are less sterically inhibited by the dendrimer interior, whereas on the contrary CuNPs are all the better alkyne azide cycloaddition catalysts as they are better protected from aerobic oxidation inside dendrimers. This work highlights the role of the location in macromolecules on the catalytic efficiency of metal nanoparticles and rationalizes optimization in catalyst engineering.

  11. Galvanic corrosion between orthodontic wires and brackets in fluoride mouthwashes.

    PubMed

    Schiff, Nicolas; Boinet, Mickaël; Morgon, Laurent; Lissac, Michèle; Dalard, Francis; Grosgogeat, Brigitte

    2006-06-01

    The aim of this investigation was to determine the influence of fluoride in certain mouthwashes on the risk of corrosion through galvanic coupling of orthodontic wires and brackets. Two titanium alloy wires, nickel-titanium (NiTi) and copper-nickel-titanium (CuNiTi), and the three most commonly used brackets, titanium (Ti), iron-chromium-nickel (FeCrNi) and cobalt-chromium (CoCr), were tested in a reference solution of Fusayama-Meyer artificial saliva and in two commercially available fluoride (250 ppm) mouthwashes, Elmex and Meridol. Corrosion resistance was assessed by inductively coupled plasma-atomic emission spectrometry (ICP-MS), analysis of released metal ions, and a scanning electron microscope (SEM) study of the metal surfaces after immersion of different wire-bracket pairs in the test solutions. The study was completed by an electrochemical analysis. Meridol mouthwash, which contains stannous fluoride, was the solution in which the NiTi wires coupled with the different brackets showed the highest corrosion risk, while in Elmex mouthwash, which contains sodium fluoride, the CuNiTi wires presented the highest corrosion risk. Such corrosion has two consequences: deterioration in mechanical performance of the wire-bracket system, which would negatively affect the final aesthetic result, and the risk of local allergic reactions caused by released Ni ions. The results suggest that mouthwashes should be prescribed according to the orthodontic materials used. A new type of mouthwash for use during orthodontic therapy could be an interesting development in this field.

  12. 21 CFR 882.1540 - Galvanic skin response measurement device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Galvanic skin response measurement device. 882.1540 Section 882.1540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1540...

  13. Experimental galvanic anode for cathodic protection of Bridge A12112

    DOT National Transportation Integrated Search

    2010-11-01

    Cathodic Protection (CP) has been used by MoDOT for more than 30 years to stop : corrosion of reinforced concrete bridge decks. These systems require power from local electrical : connections. A galvanic system uses the difference in electrical poten...

  14. [An experimental study on the adaptation of three kinds of porcelain fused-to-metal restorations].

    PubMed

    Pei, Yan-Ping; Chen, Ji-Hua; Chang, Qing; Lin, Song-Shan; Zhang, He

    2009-04-01

    To compare the adaptation of porcelain fused-to-metal (PFM) restorations made from Ni-Cr alloy, precious alloy and galvanized forming copings after cementation and to provide a theory guidance for their application. Three kinds of crowns (Ni-Cr alloy, precious alloy and galvanized forming) were manufactured and cleaned by ultrasonic vibrate with alcoholic solution for 5 minutes, and cemented on their dies as their order. All the crowns were cemented by polycarboxylate zinc-cement and maintained 10 minutes. After coated in the center of methyl acrylic resins, all the samples were cut vertically along buccolingual direction. The cement thickness of PFM was measured by scanning electron microscope and the data were analyzed by multivariate ANOVA. No significant difference was found between the cement thickness of precious alloy crown and galvanized forming crown (P>0.05), while both of these two kinds of crown had significant differences in cement thickness with Ni-Cr crown (P<0.05). The adaptation of precious alloy crown and galvanized forming crown are superior to Ni-Cr crown.

  15. An Easy-to-Assemble Three-Part Galvanic Cell

    ERIC Educational Resources Information Center

    Eggen, Per-Odd; Skaugrud, Brit

    2015-01-01

    The galvanic cell presented in this article is made of only three parts, is easy to assemble, and can light a red light emitting diode (LED). The three cell components consist of a piece of paper with copper sulfate, a piece of paper with sodium sulfate, and a piece of magnesium ribbon. Within less than 1 h, students have time to discuss the…

  16. 76 FR 21914 - Galvanized Steel Wire From China and Mexico

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-479 and 731-TA-1183-1184 (Preliminary)] Galvanized Steel Wire From China and Mexico AGENCY: United States International Trade Commission. ACTION: Revised schedule for the subject antidumping and countervailing duty investigations. DATES: Effective Date...

  17. A Novel Field-Circuit FEM Modeling and Channel Gain Estimation for Galvanic Coupling Real IBC Measurements.

    PubMed

    Gao, Yue-Ming; Wu, Zhu-Mei; Pun, Sio-Hang; Mak, Peng-Un; Vai, Mang-I; Du, Min

    2016-04-02

    Existing research on human channel modeling of galvanic coupling intra-body communication (IBC) is primarily focused on the human body itself. Although galvanic coupling IBC is less disturbed by external influences during signal transmission, there are inevitable factors in real measurement scenarios such as the parasitic impedance of electrodes, impedance matching of the transceiver, etc. which might lead to deviations between the human model and the in vivo measurements. This paper proposes a field-circuit finite element method (FEM) model of galvanic coupling IBC in a real measurement environment to estimate the human channel gain. First an anisotropic concentric cylinder model of the electric field intra-body communication for human limbs was developed based on the galvanic method. Then the electric field model was combined with several impedance elements, which were equivalent in terms of parasitic impedance of the electrodes, input and output impedance of the transceiver, establishing a field-circuit FEM model. The results indicated that a circuit module equivalent to external factors can be added to the field-circuit model, which makes this model more complete, and the estimations based on the proposed field-circuit are in better agreement with the corresponding measurement results.

  18. Influence of the Manufacturing Process on Defects in the Galvanized Coating of High Carbon Steel Wires.

    PubMed

    Gelfi, Marcello; Solazzi, Luigi; Poli, Sandro

    2017-03-06

    This study is a detailed failure analysis of galvanized high carbon steel wires, which developed coating cracks during the torsion test performed as a quality control at the end of the manufacturing process. Careful visual inspections showed that the cracks are already present in the coating before the torsion test. In order to explain the origin of these cracks, systematic metallographic investigations were performed by means of optical and scanning electron microscope on both the wires and the rods that have been cold drawn to produce the wire. The chemical composition of the galvanized coatings was evaluated by means of energy dispersive spectroscopy. Micro bidimensional X-ray diffraction experiments were also performed to measure the residual stresses in the galvanized coating. The results showed that the failure is related to two main factors: the relatively high content of silicon in the steel and the unsuitable cooling rate of the rods at the exit from the galvanizing bath. The mechanism proposed to explain the origin of the defects was supported by Finite Elements Methods simulations and verified with in-plant tests. The proper countermeasures were then applied and the problem successfully solved.

  19. Influence of the Manufacturing Process on Defects in the Galvanized Coating of High Carbon Steel Wires

    PubMed Central

    Gelfi, Marcello; Solazzi, Luigi; Poli, Sandro

    2017-01-01

    This study is a detailed failure analysis of galvanized high carbon steel wires, which developed coating cracks during the torsion test performed as a quality control at the end of the manufacturing process. Careful visual inspections showed that the cracks are already present in the coating before the torsion test. In order to explain the origin of these cracks, systematic metallographic investigations were performed by means of optical and scanning electron microscope on both the wires and the rods that have been cold drawn to produce the wire. The chemical composition of the galvanized coatings was evaluated by means of energy dispersive spectroscopy. Micro bidimensional X-ray diffraction experiments were also performed to measure the residual stresses in the galvanized coating. The results showed that the failure is related to two main factors: the relatively high content of silicon in the steel and the unsuitable cooling rate of the rods at the exit from the galvanizing bath. The mechanism proposed to explain the origin of the defects was supported by Finite Elements Methods simulations and verified with in-plant tests. The proper countermeasures were then applied and the problem successfully solved. PMID:28772623

  20. Effects of deuterium oxide and galvanic vestibular stimulation on visual cortical cell function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinis, S.; Landolt, J.P.; Weiss, D.S.

    1984-03-01

    The spontaneous and evoked unit activities of complex visual cortical cells were recorded from Brodmann's area 18 in immobilized, unanesthetized cats before, during, and after stimulation of the vestibular system. The vestibular system was stimulated by intravenous injection of deuterium oxide (D2O)--a noted nystagmogenic agent--or by direct galvanic stimulation of the labyrinth. Measures of the receptive-field areas, poststimulus time histograms, directional preferences, and the optimal speed of the light bar stimulating the cell were obtained before and after the application of D2O. Directional preferences were determined in a novel manner, using a method derived from a hierarchical clustering technique. Datamore » were collected and analyzed from a) visual cortical cells in cats with intact labyrinths, b) visual cortical cells in cats following bilateral labrinthectomies, and c) nonvisual cortical cells in cats with intact labyrinths. The other cellular characteristics were also altered by the D2O. Galvanic stimulation of the labyrinth resembles, in its effects, the injection of D2O. In labyrinth-intact cats, the time course of area 18 spontaneous activity dramatically increased 30 min or more after D2O was administered. It peaked 2-3 h later and still had not returned to preinjection levels even 7 h after the D2O administration. In bilaterally labyrinthectomized cats, the spontaneous activity of the visual cells did not change following D2O administration. In nonvisual cells from labyrinth-intact cats, the spontaneous activity demonstrated a slight but significant decrease over time after D2O injection. In pilot studies, the cats were injected with D2O. Within 8-10 min afterward, signs of positional nystagmus commenced; and within 30 min, problems in maintaining balance were noted. This continued for 7-8 h before disappearing. In the labyrinthectomized animals, such effects were not observed.« less

  1. In situ removal of copper from sediments by a galvanic cell.

    PubMed

    Yuan, Songhu; Wu, Chan; Wan, Jinzhong; Lu, Xiaohua

    2009-01-01

    This study dealt with in situ removal of copper from sediments through an electrokinetic (EK) process driven by a galvanic cell. Iron (Fe) and carbon (C) were placed separately and connected with a conductive wire. Polluted sediments were put between them and water was filled above the sediments. The galvanic cell was thus formed due to the different electrode potentials of Fe and C. The cell could remove the pollutants in the sediments by electromigration and/or electroosmosis. Results showed that a weak voltage less than 1V was formed by the galvanic cell. The voltage decreased with the increase of time. A slight increase of sediment pH from the anode (Fe) to the cathode (C) was observed. The presence of supernatant water inhibited the variation of sediment pH because H(+) and OH(-) could diffuse into the water. The removal of copper was affected by the sediment pH and the distribution of electrolyte in sediment and supernatant water. Lower pH led to higher removal efficiency. More electrolyte in the sediment and/or less electrolyte in the supernatant water favored the removal of copper. The major removal mechanism was proposed on the basis of the desorption of copper from sediment to pore solution and the subsequent electromigration of copper from the anode to the cathode. The diffusion of copper from sediment to supernatant water was negligible.

  2. Novel Galvanic Nanostructures of Ag and Pd for Efficient Laser Desorption/Ionization of Low Molecular Weight Compounds

    NASA Astrophysics Data System (ADS)

    Silina, Yuliya E.; Meier, Florian; Nebolsin, Valeriy A.; Koch, Marcus; Volmer, Dietrich A.

    2014-05-01

    A simple approach for synthesis of palladium and silver nanostructures with readily adjustable morphologies was developed using galvanic electrochemical deposition, for application to surface-assisted laser desorption/ionization (SALDI) of small biological molecules. A range of fatty acids, triglycerides, carbohydrates, and antibiotics were investigated to assess the performance of the new materials. Intense analyte cations were generated from the galvanic surfaces upon UV laser irradiation such as potassium adducts for a film thickness <100 nm (originating from impurities of the electrolyte solution) and Pd and Ag cluster ions for films with a thickness >120 nm. Possible laser desorption/ionization mechanisms of these galvanic structures are discussed. The films exhibited self-organizing abilities and adjustable morphologies by changing electrochemical parameters. They did not require any stabilizing agents and were inexpensive and very easy to produce. SALDI analysis showed that the materials were stable under ambient conditions and analytical results with excellent measurement reproducibility and detection sensitivity similar to MALDI were obtained. Finally, we applied the galvanic surfaces to fast screening of natural oils with minimum sample preparation.

  3. Diamondlike carbon coating as a galvanic corrosion barrier between dental implant abutments and nickel-chromium superstructures.

    PubMed

    Ozkomur, Ahmet; Erbil, Mehmet; Akova, Tolga

    2013-01-01

    The objectives of this study were to evaluate the galvanic corrosion behavior between titanium and nickel-chromium (Ni-Cr) alloy, to investigate the effect of diamondlike carbon (DLC) coating over titanium on galvanic corrosion behavior between titanium and Ni-Cr alloy, and to evaluate the effect of DLC coating over titanium abutments on the fit and integrity of prosthetic assemblies by scanning electron microcopy (SEM). Five Ni-Cr and 10 titanium disks with a diameter of 5 mm and thickness of 3 mm were prepared. DLC coating was applied to five titanium disks. Electrode samples were prepared, and open circuit potential measurements, galvanic current measurements over platinum electrodes, and potentiodynamic polarization tests were carried out. For the SEM evaluation, 20 Ni-Cr alloy and 10 gold alloy superstructures were cast and prepared over 30 abutments. DLC coating was applied to 10 of the abutments. Following the fixation of prosthetic assemblies, the samples were embedded in acrylic resin and cross sectioned longitudinally. Internal fit evaluations were carried out through examination of the SEM images. Titanium showed more noble and electrochemically stable properties than Ni-Cr alloy. DLC coating over the cathode electrode served as an insulating film layer over the surface and prevented galvanic coupling. Results of the SEM evaluations indicated that the DLC-coated and titanium abutments showed no statistically significant difference in fit. Hence, no adverse effects on the adaptation of prosthetic components were found with the application of DLC coating over abutment surfaces. DLC coating might serve as a galvanic corrosion barrier between titanium abutments and Ni-Cr superstructures.

  4. 77 FR 17430 - Galvanized Steel Wire From the People's Republic of China: Final Determination of Sales at Less...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-975] Galvanized Steel Wire From... wire from the People's Republic of China (``PRC'').\\1\\ On November 29, 2011, the Department published... galvanized steel wire from the PRC is being, or is likely to be, sold in the United States at LTFV, as...

  5. Effect of Human Movement on Galvanic Intra-Body Communication during Single Gait Cycle

    NASA Astrophysics Data System (ADS)

    Ibrahim, I. W.; Razak, A. H. A.; Ahmad, A.; Salleh, M. K. M.

    2015-11-01

    Intra-body communication (IBC) is a communication system that uses human body as a signal transmission medium. From previous research, two coupling methods of IBC were concluded which are capacitive coupling and galvanic coupling. This paper investigates the effect of human movement on IBC using the galvanic coupling method. Because the human movement is control by the limb joint, the knee flexion angle during gait cycle was used to examine the influence of human movement on galvanic coupling IBC. The gait cycle is a cycle of people walking that start from one foot touch the ground till that foot touch the ground again. Frequency range from 300 kHz to 200MHz was swept in order to investigate the signal transmission loss and the result was focused on operating frequency 70MHz to 90MHz. Results show that the transmission loss varies when the knee flexion angle increased. The highest loss of signal at frequency range between 70MHz to 90 MHz was 69dB when the knee flexion angle is 50° and the minimum loss was 51dB during the flexion angle is 5°.

  6. Nanoscale surface analysis on second generation advanced high strength steel after hot dip galvanizing.

    PubMed

    Arndt, M; Duchoslav, J; Preis, K; Samek, L; Stifter, D

    2013-09-01

    Second generation advanced high strength steel is one promising material of choice for modern automotive structural parts because of its outstanding maximal elongation and tensile strength. Nonetheless there is still a lack of corrosion protection for this material due to the fact that cost efficient hot dip galvanizing cannot be applied. The reason for the insufficient coatability with zinc is found in the segregation of manganese to the surface during annealing and the formation of manganese oxides prior coating. This work analyses the structure and chemical composition of the surface oxides on so called nano-TWIP (twinning induced plasticity) steel on the nanoscopic scale after hot dip galvanizing in a simulator with employed analytical methods comprising scanning Auger electron spectroscopy (SAES), energy dispersive X-ray spectroscopy (EDX), and focused ion beam (FIB) for cross section preparation. By the combination of these methods, it was possible to obtain detailed chemical images serving a better understanding which processes exactly occur on the surface of this novel kind of steel and how to promote in the future for this material system galvanic protection.

  7. Corrosion on the acetabular liner taper from retrieved modular metal-on-metal total hip replacements.

    PubMed

    Gascoyne, Trevor C; Dyrkacz, Richard M; Turgeon, Thomas R; Burnell, Colin D; Wyss, Urs P; Brandt, Jan-M

    2014-10-01

    Eight retrieved metal-on-metal total hip replacements displayed corrosion damage along the cobalt-chromium alloy liner taper junction with the Ti alloy acetabular shell. Scanning electron microscopy indicated the primary mechanism of corrosion to be grain boundary and associated crevice corrosion, which was likely accelerated through mechanical micromotion and galvanic corrosion resulting from dissimilar alloys. Coordinate measurements revealed up to 4.3mm(3) of the cobalt-chromium alloy taper surface was removed due to corrosion, which is comparable to previous reports of corrosion damage on head-neck tapers. The acetabular liner-shell taper appears to be an additional source of metal corrosion products in modular total hip replacements. Patients with these prostheses should be closely monitored for signs of adverse reaction towards corrosion by-products. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Torsional Eye Movements Evoked by Unilateral Labyrinthine Galvanic Polarizations in the Squirrel Monkey

    NASA Technical Reports Server (NTRS)

    Minor, Lloyd B.; Tomko, David L.; Paige, Gary D.

    1995-01-01

    Electrical stimulation of vestibular-nerve afferents innervating the semicircular canals has been used to identify the extraocular muscles receiving activation or inhibition by individual ampullary nerves. This technique was originally developed by Szentagothai (1950) and led to the description of three neuron reflex arcs that connect each semicircular canal through an interneuron traversing in the region of the medial longitudinal fasciculus to one ipsilateral and one contralateral eye muscle. Selective ampullary nerve stimulation was subsequently used by Cohen and colleagues (Cohen and Suzuki, 1963; Cohen et al., 1964; Suzuki et al., 1964; Cohen et al., 1966) to study movements of the eyes and activation of individual extraocular muscles in response to stimulation of combinations of ampullary nerves. This work led to a description of the now familiar relationships between activation of a semicircular canal ampullary nerves and the anticipated movement in each eye. Disconjugacy of eye movements induced by individual vertical canal stimulation and dependence of the pulling direction of vertical recti and oblique muscles on eye position were also defined in these experiments. Subsequent studies have defined the mechanisms by which externally applied galvanic currents result in a change in vestibular-nerve afferent discharge. The currents appear to act at the spike trigger site. Perilymphatic cathodal currents depolarize the trigger site and lead to excitation whereas anodal currents hyperpolarize and result in inhibition. Afferents innervating all five vestibular endorgans appear to be affected equally by the currents (Goldberg et al., 1984). Irregularly discharging afferents are about 5-10 times more sensitive than regularly discharging ones because of the steeper slope of the former's faster postspike recovery of excitability in encoder sensitivity (Smith and Goldberg, 1986). Response adaptation similar to that noted during acceleration steps is apparent for

  9. Electrical potentials between stent-grafts made from different metals induce negligible corrosion.

    PubMed

    Kazimierczak, A; Podraza, W; Lenart, S; Wiernicki, I; Gutowski, P

    2013-10-01

    Evaluation of the risk of galvanic corrosion in various stent-grafts in current practice, when devices with unmatched alloy compositions are deployed together. Five nitinol (NT) and two steel (SS) stent-grafts produced by different companies were used in different combinations to create 21 samples (NT:NT, n = 10; NT:SS, n = 10; SS:SS, n = 1). Electric potential was measured between the metal couplings after immersion in 0.9% NaCl at a temperature of 37 °C. Subsequently, the same samples were incubated for 24 months in 0.9% NaCl at 37-39 °C under hermetic conditions and examined under a scanning electron microscope in order to search for any evidence of corrosion. Electric potentials between different metals alloys were found (means: NT:SS, 181 μV; NT:NT, 101 μV; SS:SS, 160 μV). The mean electrical potential between stainless steel and nitinol samples was significantly higher than between NT:NT couplings (p < .001). During the final scanning electron microscope examination, only one spot of pitting corrosion (>10 μm) on a nitinol surface was found (associated with previous mechanical damage) in an NT:SS sample after 24 months of incubation in vitro and no sign of mechanical failure of the wires was found. Direct contact between the stainless steel and the nitinol alloys does indeed create electrical potential but with a minimal risk of galvanic corrosion. No evidence was found for significant galvanic corrosion when two endovascular implants (stent-grafts) made from different metal composition were used in the same procedure. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  10. Galvanic Tongue Stimulation Inhibits Five Basic Tastes Induced by Aqueous Electrolyte Solutions.

    PubMed

    Aoyama, Kazuma; Sakurai, Kenta; Sakurai, Satoru; Mizukami, Makoto; Maeda, Taro; Ando, Hideyuki

    2017-01-01

    Galvanic tongue stimulation (GTS) modulates taste sensation. However, the effect of GTS is contingent on the electrode polarity in the proximity of the tongue. If an anodal electrode is attached in the proximity of the tongue, an electrical or metallic taste is elicited. On the other hand, if only cathodal electrode is attached in the proximity of the tongue, the salty taste, which is induced by electrolyte materials, is inhibited. The mechanism of this taste inhibition is not adequately understood. In this study, we aim to demonstrate that the inhibition is cause by ions, which elicit taste and which migrate from the taste sensors on the tongue by GTS. We verified the inhibitory effect of GTS on all five basic tastes induced by electrolyte materials. This technology is effective for virtual reality systems and interfaces to support dietary restrictions. Our findings demonstrate that cathodal-GTS inhibits all the five basic tastes. The results also support our hypothesis that the effects of cathodal-GTS are caused by migrating tasting ions in the mouth.

  11. Simple Heat Treatment for Production of Hot-Dip Galvanized Dual Phase Steel Using Si-Al Steels

    NASA Astrophysics Data System (ADS)

    Equihua-Guillén, F.; García-Lara, A. M.; Muñíz-Valdes, C. R.; Ortíz-Cuellar, J. C.; Camporredondo-Saucedo, J. E.

    2014-01-01

    This work presents relevant metallurgical considerations to produce galvanized dual phase steels from low cost aluminum-silicon steels which are produced by continuous strip processing. Two steels with different contents of Si and Al were austenized in the two-phase field ferrite + austenite (α + γ) in a fast manner to obtain dual phase steels, suitable for hot-dip galvanizing process, under typical parameters of continuous annealing processing line. Tensile dual phase properties were obtained from specimens cooled from temperature below Ar3, held during 3 min, intermediate cooling at temperature above Ar1 and quenching in Zn bath at 465 °C. The results have shown typical microstructure and tensile properties of galvanized dual phase steels. Finally, the synergistic effect of aluminum, silicon, and residual chromium on martensite start temperature ( M s), critical cooling rate ( C R), volume fraction of martensite, and tensile properties has been studied.

  12. Dissimilar metals joint evaluation

    NASA Technical Reports Server (NTRS)

    Wakefield, M. E.; Apodaca, L. E.

    1974-01-01

    Dissimilar metals tubular joints between 2219-T851 aluminum alloy and 304L stainless steel were fabricated and tested to evaluate bonding processes. Joints were fabricated by four processes: (1) inertia (friction) weldings, where the metals are spun and forced together to create the weld; (2) explosive welding, where the metals are impacted together at high velocity; (3) co-extrusion, where the metals are extruded in contact at high temperature to promote diffusion; and (4) swaging, where residual stresses in the metals after a stretching operation maintain forced contact in mutual shear areas. Fifteen joints of each type were prepared and evaluated in a 6.35 cm (2.50 in.) O.D. size, with 0.32 cm (0.13 in.) wall thickness, and 7.6 cm (3.0 in) total length. The joints were tested to evaluate their ability to withstand pressure cycle, thermal cycle, galvanic corrosion and burst tests. Leakage tests and other non-destructive test techniques were used to evaluate the behavior of the joints, and the microstructure of the bond areas was analyzed.

  13. Effect of Immersion Time and Cooling Mode on the Electrochemical Behavior of Hot-Dip Galvanized Steel in Sulfuric Acid Medium

    NASA Astrophysics Data System (ADS)

    Lekbir, Choukri; Dahoun, Nessrine; Guetitech, Asma; Hacid, Abdenour; Ziouche, Aicha; Ouaad, Kamel; Djadoun, Amar

    2017-04-01

    In this work, we investigated the influence of galvanizing immersion time and cooling modes environments on the electrochemical corrosion behavior of hot-dip galvanized steel, in 1 M sulfuric acid electrolyte at room temperature using potentiodynamic polarization technique. In addition, the evolution of thickness, structure and microstructure of zinc coatings for different immersion times and two cooling modes (air and water) is characterized, respectively, by using of Elcometer scan probe, x-ray diffraction and metallography analysis. The analysis of the behavior of steel and galvanized steel, vis-a-vis corrosion, by means of corrosion characteristic parameters as anodic (β a) and cathodic (β c) Tafel slopes, corrosion potential (E corr), corrosion current density (i corr), corrosion rate (CR) and polarization resistance (R p), reveals that the galvanized steel has anticorrosion properties much better than that of steel. More the immersion time increases, more the zinc coatings thickness increases, and more these properties become better. The comparison between the two cooling modes shows that the coatings of zinc produced by hot-dip galvanization and air-cooled provides a much better protection to steel against corrosion than those cooled by quenching in water which exhibit a brittle corrosive behavior due to the presence of cracks.

  14. Mineralogy of Galvanic Corrosion By-products in Domestic Drinking Water Pipes

    EPA Science Inventory

    This study presents the results of a visual and mineralogical characterization of scales developed over long time periods at galvanically coupled lead-brass and lead-copper pipe joints from several different drinking water distribution systems. The long-term exposure aspect of t...

  15. Performance evaluation of corrosion inhibitors and galvanized steel in concrete exposure specimens.

    DOT National Transportation Integrated Search

    1999-01-01

    Corrosion inhibitor admixtures (CIA) and galvanized reinforcing steel (GS) are used for the corrosion protection for reinforced concrete bridges. The results of a 3.5-year evaluation of exposure specimens containing CIA from three different manufactu...

  16. A finite-element simulation of galvanic coupling intra-body communication based on the whole human body.

    PubMed

    Song, Yong; Zhang, Kai; Hao, Qun; Hu, Lanxin; Wang, Jingwen; Shang, Fuzhou

    2012-10-09

    Simulation based on the finite-element (FE) method plays an important role in the investigation of intra-body communication (IBC). In this paper, a finite-element model of the whole body model used for the IBC simulation is proposed and verified, while the FE simulation of the galvanic coupling IBC with different signal transmission paths has been achieved. Firstly, a novel finite-element method for modeling the whole human body is proposed, and a FE model of the whole human body used for IBC simulation was developed. Secondly, the simulations of the galvanic coupling IBC with the different signal transmission paths were implemented. Finally, the feasibility of the proposed method was verified by using in vivo measurements within the frequency range of 10 kHz-5 MHz, whereby some important conclusions were deduced. Our results indicate that the proposed method will offer significant advantages in the investigation of the galvanic coupling intra-body communication.

  17. A Finite-Element Simulation of Galvanic Coupling Intra-Body Communication Based on the Whole Human Body

    PubMed Central

    Song, Yong; Zhang, Kai; Hao, Qun; Hu, Lanxin; Wang, Jingwen; Shang, Fuzhou

    2012-01-01

    Simulation based on the finite-element (FE) method plays an important role in the investigation of intra-body communication (IBC). In this paper, a finite-element model of the whole body model used for the IBC simulation is proposed and verified, while the FE simulation of the galvanic coupling IBC with different signal transmission paths has been achieved. Firstly, a novel finite-element method for modeling the whole human body is proposed, and a FE model of the whole human body used for IBC simulation was developed. Secondly, the simulations of the galvanic coupling IBC with the different signal transmission paths were implemented. Finally, the feasibility of the proposed method was verified by using in vivo measurements within the frequency range of 10 kHz–5 MHz, whereby some important conclusions were deduced. Our results indicate that the proposed method will offer significant advantages in the investigation of the galvanic coupling intra-body communication. PMID:23202010

  18. Mixing implants of differing metallic composition in the treatment of upper-extremity fractures.

    PubMed

    Acevedo, Daniel; Loy, Bo Nasmyth; Loy, Bo Nasymuth; Lee, Brian; Omid, Reza; Itamura, John

    2013-09-01

    Mixing implants with differing metallic compositions has been avoided for fear of galvanic corrosion and subsequent failure of the implants and of bone healing. The purpose of this study was to evaluate upper-extremity fractures treated with open reduction and internal fixation with metallic implants that differed in metallic composition placed on the same bone. The authors studied the effects of using both stainless steel and titanium implants on fracture healing, implant failure, and other complications associated with this method of fixation. Their hypothesis was that combining these metals on the same bone would not cause clinically significant nonunions or undo clinical effects from galvanic corrosion. A retrospective review was performed of 17 patients with upper-extremity fractures fixed with metal implants of differing metallic compositions. The primary endpoint was fracture union. Eight clavicles, 2 proximal humeri, 3 distal humeri, 3 olecranons, and 1 glenoid fracture with an average follow-up 10 months were reviewed. All fractures healed. One patient experienced screw backout, which did not affect healing. This study implies that mixing implants with differing metallic compositions on the same bone for the treatment of fractures does not adversely affect bone healing. No evidence existed of corrosion or an increase in complications with this method of treatment. Contrary to prior belief, small modular hand stainless steel plates can be used to assist in reduction of smaller fracture fragments in combination with anatomic titanium plates to obtain anatomic reduction of the fracture without adversely affecting healing. Copyright 2013, SLACK Incorporated.

  19. Galvanic displacement reaction and rapid thermal annealing in size/shape controlling silver nanoparticles on silicon substrate

    NASA Astrophysics Data System (ADS)

    Ghosh, Tapas; Satpati, Biswarup

    2017-05-01

    The effect of the thermal annealing on silver nanoparticles deposited on silicon surface has been studied. The silver nanoparticles have been deposited by the galvanic displacement reaction. Rapid thermal annealing (RTA) has been performed on the Si substrate, containing the silver nanoparticles. The scanning transmission electron microscopy (STEM), energy dispersive X-ray (EDX) spectroscopy and scanning electron microscopy (SEM) study show that the galvanic displacement reaction and subsequent rapid thermal annealing could lead to well separated and spherical shaped larger silver nanoparticles on silicon substrate.

  20. Thermal treatment of toxic metals of industrial hazardous wastes with fly ash and clay.

    PubMed

    Singh, I B; Chaturvedi, K; Morchhale, R K; Yegneswaran, A H

    2007-03-06

    Waste generated from galvanizing and metal finishing processes is considered to be a hazardous due to the presence of toxic metals like Pb, Cu, Cr, Zn, etc. Thermal treatment of such types of wastes in the presence of clay and fly ash can immobilizes their toxic metals to a maximum level. After treatment solidified mass can be utilized in construction or disposed off through land fillings without susceptibility of re-mobilization of toxic metals. In the present investigation locally available clay and fly ash of particular thermal power plant were used as additives for thermal treatment of both of the wastes in their different proportions at 850, 900 and 950 degrees C. Observed results indicated that heating temperature to be a key factor in the immobilization of toxic metals of the waste. It was noticed that the leachability of metals of the waste reduces to a negligible level after heating at 950 degrees C. Thermally treated solidified specimen of 10% waste and remaining clay have shown comparatively a higher compressive strength than clay fired bricks used in building construction. Though, thermally heated specimens made of galvanizing waste have shown much better strength than specimen made of metal finishing waste. The lechability of toxic metals like Cr, Cu, Pb and Zn became far below from their regulatory threshold after heating at 950 degrees C. Addition of fly ash did not show any improvement either in engineering property or in leachability of metals from the solidified mass. X-ray diffraction (XRD) analysis of the solidified product confirmed the presence of mixed phases of oxides of metals.

  1. Galvanic coupling of steel and gold alloy lingual brackets with orthodontic wires.

    PubMed

    Polychronis, Georgios; Al Jabbari, Youssef S; Eliades, Theodore; Zinelis, Spiros

    2018-03-06

    The aim of this research was to assess galvanic behavior of lingual orthodontic brackets coupled with representative types of orthodontic wires. Three types of lingual brackets: Incognito (INC), In-Ovation L (IOV), and STb (STB) were combined with a stainless steel (SS) and a nickel-titanium (NiTi) orthodontic archwire. All materials were initially investigated by scanning electron microscopy / x-ray energy dispersive spectroscopy (SEM/EDX) while wires were also tested by x-ray diffraction spectroscopy (XRD). All bracket-wire combinations were immersed in acidic 0.1M NaCl 0.1M lactic acid and neutral NaF 0.3% (wt) electrolyte, and the potential differences were continuously recorded for 48 hours. The SEM/EDX analysis revealed that INC is a single-unit bracket made of a high gold (Au) alloy while IOV and STB are two-piece appliances in which the base and wing are made of SS alloys. The SS wire demonstrated austenite and martensite iron phase, while NiTi wire illustrated an intense austenite crystallographic structure with limited martensite. All bracket wire combinations showed potential differences below the threshold of galvanic corrosion (200 mV) except for INC and STB coupled with NiTi wire in NaF media. The electrochemical results indicate that all brackets tested demonstrated galvanic compatibility with SS wire, but fluoride treatment should be used cautiously with NiTi wires coupled with Au and SS brackets.

  2. Metallic Films with Fullerene-Like WS2 (MoS2) Nanoparticles: Self-Lubricating Coatings with Potential Applications

    NASA Astrophysics Data System (ADS)

    Eidelman, O.; Friedman, H.; Tenne, R.

    Metallic films impregnated with fullerene-like-WS2 (MoS2) nanoparticles were fabricated on stainless steel and Ti-Ni substrates using galvanic and electroless deposition. The coatings were obtained from aqueous suspensions containing the metallic salts as well as the dispersed nanoparticles. Tribological tests showed that the films have low friction and wear. Such coatings could be useful for numerous civilian and defense-related applications.

  3. Research on the Microstructures and Mechanical Properties of Ti Micro-Alloyed Cold Rolled Hot-Dip Galvanizing DP980 Steel

    NASA Astrophysics Data System (ADS)

    Han, Yun; Kuang, Shuang; Qi, Xiumei; Xie, Chunqian; Liu, Guanghui

    Effects of galvanizing simulation parameters on microstructures and mechanical properties of Ti-microalloyed cold rolled hot-dip galvanizing DP980 steel were investigated in this study by optical microscopy (OM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and tensile test. Moreover, the precipitation behavior of Ti in the experimental steel was also studied. The results show that, as the heating temperature increases, the tensile strength of experimental galvanizing DP980 steel decreases while the yield ratio and elongation of the steel are enhanced. The microstructures of experimental steels exhibit typical dual phase steel character and the volume fractions of MA islands are almost 30%. In addition, lots of nano-sized TiC precipitates can be found in the ferrite grains.

  4. Actively convected liquid metal divertor

    NASA Astrophysics Data System (ADS)

    Shimada, Michiya; Hirooka, Yoshi

    2014-12-01

    The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem.

  5. Galvanic Protection Of 2219 Al By Al/Li Powder

    NASA Technical Reports Server (NTRS)

    Daech, Alfred

    1995-01-01

    Coatings consisting of aluminum/lithium powders incorporated into acrylic resin found to protect panels of 2219 aluminum from corrosion by salt spray better than coating consisting of 2219 aluminum in same acrylic resin. Exact mechanism by which aluminum/lithium coatings protect against corrosion unknown, although galvanic mechanism suspected. These coatings (instead of chromium) applied to fasteners and bars to provide cathodic protection, both with and without impressed electrical current.

  6. Thermo-stoichiometric behavior of aluminum-nickel nanoheater particles fabricated by galvanic replacement reaction

    NASA Astrophysics Data System (ADS)

    Buckley, Jacqueline L.

    2010-03-01

    Al-Ni reactive nano-structures are gaining interest for various applications in aerospace, nano-manufacturing, and biomedical fields. However, nano-material behavior can vary from macro-scale. There has been no systematic study of Al-Ni exothermic reaction and intermetallic formation for nano-scale reactants. Therefore, this study aims to investigate deviations from the established Al-Ni phase diagram, with the premise that the intermetallic formation temperatures are expected to be lower for nano-reactants due to higher surface energy. Additionally, it is important to gain better understanding and control of the galvanic replacement reaction (GRR) fabrication method, which, in terms of producing Al-Ni bi-metallic nanoparticles, is a completely novel scheme. With an adapted phase diagram, intermetallic product and heat output of nanoparticles from any given stage of GRR process can be predicted. Al-Ni nanoparticles having ignitable Al-Ni ratios were fabricated via GRR method. Effects of composition and temperature on intermetallic formation were studied by in-situ XRD analysis. Effects of environment and heating rate on the Al-Ni exothermic reaction were also investigated.

  7. Tolerance to extended galvanic vestibular stimulation: optimal exposure for astronaut training.

    PubMed

    Dilda, Valentina; MacDougall, Hamish G; Moore, Steven T

    2011-08-01

    We have developed an analogue of postflight sensorimotor dysfunction in astronauts using pseudorandom galvanic vestibular stimulation (GVS). To date there has been no study of the effects of extended GVS on human subjects and our aim was to determine optimal exposure for astronaut training based on tolerance to intermittent and continuous galvanic stimulation. There were 60 subjects who were exposed to a total of 10.5 min of intermittent GVS at a peak current of 3.5 mA or 5 mA. A subset of 24 subjects who tolerated the intermittent stimulus were subsequently exposed to 20-min continuous stimulation at 3.5 mA or 5 mA. During intermittent GVS the large majority of subjects (78.3%) reported no or at most mild motion sickness symptoms, 13.3% reported moderate symptoms, and 8.3% experienced severe nausea and requested termination of the stimulus. During 20-min continuous exposure, 83.3% of subjects reported no or at most mild motion sickness symptoms and 16.7% (all in the 5-mA group) experienced severe nausea. Based on these results, we propose two basic modes of GVS application to minimize the incidence of motion sickness: intermittent high (5 mA) amplitude, suited to simulation of intensive operator tasks requiring a high-fidelity analogue of postflight sensorimotor dysfunction such as landing or docking maneuvers; and continuous low (3.5 mA) amplitude stimulation, for longer simulation scenarios such as extra vehicular activity. Our results suggest that neither mode of stimulation would induce motion sickness in the large majority of subjects for up to 20 min exposure.

  8. Effect of Process Variables on the Grain Size and Crystallographic Texture of Hot-Dip Galvanized Coatings

    NASA Astrophysics Data System (ADS)

    Kaboli, Shirin; McDermid, Joseph R.

    2014-08-01

    A galvanizing simulator was used to determine the effect of galvanizing bath antimony (Sb) content, substrate surface roughness, and cooling rate on the microstructural development of metallic zinc coatings. Substrate surface roughness was varied through the use of relatively rough hot-rolled and relatively smooth bright-rolled steels, cooling rates were varied from 0.1 to 10 K/s, and bulk bath Sb levels were varied from 0 to 0.1 wt pct. In general, it was found that increasing bath Sb content resulted in coatings with a larger grain size and strongly promoted the development of coatings with the close-packed {0002} basal plane parallel to the substrate surface. Increasing substrate surface roughness tended to decrease the coating grain size and promoted a more random coating crystallographic texture, except in the case of the highest Sb content bath (0.1 wt pct Sb), where substrate roughness had no significant effect on grain size except at higher cooling rates (10 K/s). Increased cooling rates tended to decrease the coating grain size and promote the {0002} basal orientation. Calculations showed that increasing the bath Sb content from 0 to 0.1 wt pct Sb increased the dendrite tip growth velocity from 0.06 to 0.11 cm/s by decreasing the solid-liquid interface surface energy from 0.77 to 0.45 J/m2. Increased dendrite tip velocity only partially explains the formation of larger zinc grains at higher Sb levels. It was also found that the classic nucleation theory cannot completely explain the present experimental observations, particularly the effect of increasing the bath Sb, where the classical theory predicts increased nucleation and a finer grain size. In this case, the "poisoning" theory of nucleation sites by segregated Sb may provide a partial explanation. However, any analysis is greatly hampered by the lack of fundamental thermodynamic information such as partition coefficients and surface energies and by a lack of fundamental structural studies. Overall

  9. Fos Expression in Neurons of the Rat Vestibulo-Autonomic Pathway Activated by Sinusoidal Galvanic Vestibular Stimulation

    PubMed Central

    Holstein, Gay R.; Friedrich Jr., Victor L.; Martinelli, Giorgio P.; Ogorodnikov, Dmitri; Yakushin, Sergei B.; Cohen, Bernard

    2012-01-01

    The vestibular system sends projections to brainstem autonomic nuclei that modulate heart rate and blood pressure in response to changes in head and body position with regard to gravity. Consistent with this, binaural sinusoidally modulated galvanic vestibular stimulation (sGVS) in humans causes vasoconstriction in the legs, while low frequency (0.02–0.04 Hz) sGVS causes a rapid drop in heart rate and blood pressure in anesthetized rats. We have hypothesized that these responses occur through activation of vestibulo-sympathetic pathways. In the present study, c-Fos protein expression was examined in neurons of the vestibular nuclei and rostral ventrolateral medullary region (RVLM) that were activated by low frequency sGVS. We found c-Fos-labeled neurons in the spinal, medial, and superior vestibular nuclei (SpVN, MVN, and SVN, respectively) and the parasolitary nucleus. The highest density of c-Fos-positive vestibular nuclear neurons was observed in MVN, where immunolabeled cells were present throughout the rostro-caudal extent of the nucleus. c-Fos expression was concentrated in the parvocellular region and largely absent from magnocellular MVN. c-Fos-labeled cells were scattered throughout caudal SpVN, and the immunostained neurons in SVN were restricted to a discrete wedge-shaped area immediately lateral to the IVth ventricle. Immunofluorescence localization of c-Fos and glutamate revealed that approximately one third of the c-Fos-labeled vestibular neurons showed intense glutamate-like immunofluorescence, far in excess of the stain reflecting the metabolic pool of cytoplasmic glutamate. In the RVLM, which receives a direct projection from the vestibular nuclei and sends efferents to preganglionic sympathetic neurons in the spinal cord, we observed an approximately threefold increase in c-Fos labeling in the sGVS-activated rats. We conclude that localization of c-Fos protein following sGVS is a reliable marker for sGVS-activated neurons of the vestibulo

  10. Advances in corrosion testing of metals in contact with treated wood

    Treesearch

    Samuel Zelinka; D.S. Stone

    2010-01-01

    A January 2004 change in the regulation of wood preservatives used in the U.S.has increased the use of newer wood preservatives, such as alkaline copper quaternary (ACQ) and copper azole (CuAz). These preservatives contain high amounts of cupric ions, which may be reduced to copper metal at the expense of less noble steel and galvanized fasteners in the wood....

  11. Thermal immobilization of Cr, Cu and Zn of galvanizing wastes in the presence of clay and fly ash.

    PubMed

    Singh, I B; Chaturvedi, K; Yegneswaran, A H

    2007-07-01

    In the present investigation thermal treatment of galvanizing waste with clay and fly ash has been carried out to immobilize Cr, Zn, Cu and other metals of the waste at temperature range 850 degrees C to 950 degrees C. Leaching of the metals from the waste and solidified product was analyzed using toxic characteristic leaching procedure (TCLP). Results indicated that the composition of waste and clay treatment temperature are the key factors in determining the stability of solidified product. After heating at 950 degrees C, the solidified specimens of 10% waste with clay have shown comparatively a high compressive strength and less water absorption. However, a decrease in compressive strength and increase in water absorption were noticed after addition of 15% of waste with clay. The leachability of all the metals present in the waste was found to reduce considerably with the increase of treatment temperature. In the case of Cr and Zn, their leachabilty was found at unacceptable levels from the treated product obtained after heating at 850 degrees C However, their leachability was reduced significantly within an acceptable level after treatment at 950 degrees C. The thermal treatment has shown an increase of re-oxidation trend of Cr (III) to Cr (VI) up to 900 degrees C of heating and this trend became almost zero after heating at 950 degrees C. Addition of fly ash did not show any improvement in strength, durability and leachability of metals from the thermally treated product. X-ray diffraction (XRD) analysis of the product confirmed the presence of mixed phases of oxides of toxic metals.

  12. Microstructural Study Of Zinc Hot Dip Galvanized Coatings with Titanium Additions In The Zinc Melt

    NASA Astrophysics Data System (ADS)

    Konidaris, S.; Pistofidis, N.; Vourlias, G.; Pavlidou, E.; Stergiou, A.; Stergioudis, G.; Polychroniadis, E. K.

    2007-04-01

    Zinc hot-dip galvanizing is a method for protecting iron and steel against corrosion. Galvanizing with pure Zn or Zn with additions like Ni, Al, Pb and Bi has been extensively studied, but there is a lack of scientific information about other additions. The present work examines the effect of a 0.5 wt% Ti addition in the Zn melt. The samples were exposed to accelerated corrosion in a salt spray chamber (SSC). The microstructure and chemical composition of the coatings were determined by Optical Microscopy, XRD and SEM associated with an EDS Analyzer. The results indicate that the coatings have a typical morphology, while Zn-Ti phases were also detected.

  13. Vertical Soil Profiling Using a Galvanic Contact Resistivity Scanning Approach

    PubMed Central

    Pan, Luan; Adamchuk, Viacheslav I.; Prasher, Shiv; Gebbers, Robin; Taylor, Richard S.; Dabas, Michel

    2014-01-01

    Proximal sensing of soil electromagnetic properties is widely used to map spatial land heterogeneity. The mapping instruments use galvanic contact, capacitive coupling or electromagnetic induction. Regardless of the type of instrument, the geometrical configuration between signal transmitting and receiving elements typically defines the shape of the depth response function. To assess vertical soil profiles, many modern instruments use multiple transmitter-receiver pairs. Alternatively, vertical electrical sounding can be used to measure changes in apparent soil electrical conductivity with depth at a specific location. This paper examines the possibility for the assessment of soil profiles using a dynamic surface galvanic contact resistivity scanning approach, with transmitting and receiving electrodes configured in an equatorial dipole-dipole array. An automated scanner system was developed and tested in agricultural fields with different soil profiles. While operating in the field, the distance between current injecting and measuring pairs of rolling electrodes was varied continuously from 40 to 190 cm. The preliminary evaluation included a comparison of scan results from 20 locations to shallow (less than 1.2 m deep) soil profiles and to a two-layer soil profile model defined using an electromagnetic induction instrument. PMID:25057135

  14. Environmentally relevant metal and transition metal ions enhance Fc epsilon RI-mediated mast cell activation.

    PubMed Central

    Walczak-Drzewiecka, Aurelia; Wyczólkowska, Janina; Dastych, Jaroslaw

    2003-01-01

    Upon contact with allergen, sensitized mast cells release highly active proinflammatory mediators. Allergen-mediated mast cell activation is an important mechanism in the pathogenesis of atopic asthma. Asthmatic patients are especially susceptible to air pollution. Epidemiologic studies found a positive correlation between severity of symptoms among asthmatic patients and the level of particulate matter (PM) in the air. Among the constituents of PM are metals and transition metals, which could mediate some of its adverse effects on human health. We sought to determine the effect of metal and transition metal ions on allergen-mediated mast cell activation. We observed that several metal and transition metal ions activated mast cells and enhanced allergen-mediated mast cell activation. Thus, Al(3+), Cd(2+), and Sr(2+) induced release of granule-associated N-acetyl-ss-d-hexosaminidase, and Al(3+) and Ni(2+) enhanced antigen-mediated release. Metal and transition metal ions also induced significant secretion of interleukin (IL)-4 and increased antigen-mediated IL-4 secretion in mast cells. These effects of metal and transition metal ions on mast cells were observed at concentrations that do not result in direct cytotoxicity and might be relevant for environmental exposure. Thus, metals and transition metals could increase the level of allergen-mediated mast cell activation, which might be one of the mechanisms mediating exacerbation of allergen-driven asthma symptoms by air pollution. PMID:12727598

  15. Electrochemical Polishing of Silverware: A Demonstration of Voltaic and Galvanic Cells

    ERIC Educational Resources Information Center

    Ivey, Michelle M.; Smith, Eugene T.

    2008-01-01

    In this demonstration, the students use their knowledge of electrochemistry to determine that tarnish can be removed from silverware by electrochemically converting it back to silver using items commonly available in the kitchen: aluminum foil and baking soda. In addition to using this system as an example of a galvanic cell, an electrolytic cell…

  16. Stabilizing contact resistance of isotropically conductive adhesives on various metal surfaces by incorporating sacrificial anode materials

    NASA Astrophysics Data System (ADS)

    Moon, Kyoung-Sik; Liong, Silvia; Li, Haiying; Wong, C. P.

    2004-11-01

    The contact resistance stability of isotropically conductive adhesives (ICAs) on non-noble metal surfaces under the 85°C/85% relative humidity (RH) aging test was investigated. Previously, we demonstrated that galvanic corrosion has been shown as the main mechanism of the unstable contact resistance of ICAs on non-noble metal surfaces. A sacrificial anode was introduced into the ICA joint for cathodic protection. Zinc, chromium, and magnesium were employed in the ICA formulations as sacrificial anode materials that have much lower electrode-potential values than the metal pad surface, such as tin or tin-based alloys. The effect of particle sizes and loading levels of sacrificial anode materials were studied. Chromium was not as effective in suppressing corrosion as magnesium or zinc because of its strong tendency to self-passivate. The corrosion potential of ICAs was reduced by half with the addition of zinc and magnesium into the ICA formulation. The addition of zinc and magnesium was very effective in controlling galvanic corrosion that takes place in the ICA joints, resulting in stabilized contact resistance of ICAs on Sn, SnPb, and SnAgCu surfaces during the 85°C/85% RH aging test.

  17. On the Processing of Martensitic Steels in Continuous Galvanizing Lines: Part 1

    NASA Astrophysics Data System (ADS)

    Song, Taejin; Kwak, Jaihyun; de Cooman, B. C.

    2012-01-01

    Whereas low-carbon (<0.2 mass pct) martensitic grades can be produced easily in continuous annealing processing lines equipped with the required cooling capacity, the thermal cycles in continuous galvanizing lines make it difficult to produce hot-dip Zn or Zn-alloy coated high-strength martensitic grades. This is because of the tempering processes occurring during dipping of the strip in the liquid Zn bath and, in the case of galvannealed sheet steel, the short thermal treatment required to achieve the alloying between the Zn and the steel. These short additional thermal treatments last less than 30 seconds but severely degrade the mechanical properties. Using a combination of internal friction, X-ray diffraction, and transmission electron microscopy, it is shown that the ultrafine-grained lath microstructure allows for a rapid dislocation recovery and carbide formation during the galvanizing processes. In addition, the effective dislocation pinning occurring during the galvannealing process results in strain localization and the suppression of strain hardening.

  18. Antibacterial Ag/a-C nanocomposite coatings: The influence of nano-galvanic a-C and Ag couples on Ag ionization rates

    NASA Astrophysics Data System (ADS)

    Manninen, N. K.; Calderon, S.; Carvalho, I.; Henriques, M.; Cavaleiro, A.; Carvalho, S.

    2016-07-01

    Biofilm formation has been pointed as a major concern in different industrial applications, namely on biomedical implants and surgical instruments, which has prompted the development of new strategies for production of efficient antimicrobial surfaces. In this work, nano-galvanic couples were created to enhance the antibacterial properties of silver, by embedding it into amorphous carbon (a-C) matrix. The developed Ag/a-C nanocomposite coatings, deposited by magnetron sputtering, revealed an outstanding antibacterial activity against Staphylococcus epidermidis, promoting a total reduction in biofilm formation with no bacteria counts in all dilution. The open circuit potential (OCP) tests in 0.9% NaCl confirmed that a-C shows a positive OCP value, in contrast to Ag coating, thus enhancing the ionization of biocidal Ag+ due to the nano-galvanic couple activation. This result was confirmed by the inductively coupled plasma-optical emission spectroscopy (ICP-OES), which revealed a higher Ag ionization rate in the nanocomposite coating in comparison with the Ag coating. The surface of Ag/a-C and Ag coatings immersed in 0.9% NaCl were monitored by scanning electron microscopy (SEM) over a period of 24 h, being found that the Ag ionization determined by ICP-OES was accompanied by an Ag nanoparticles coalescence and agglomeration in Ag/a-C coating.

  19. An Investigation and Prediction of Springback of Sheet Metals under Cold Forming Condition

    NASA Astrophysics Data System (ADS)

    Elsayed, A.; Mohamed, M.; Shazly, M.; Hegazy, A.

    2017-12-01

    Low formability and springback especially at room temperature are known to be major obstacles to advancements in sheet metal forming industries. The integration of numerical simulation within the R&D activities of the automotive industries provides a significant development in overcoming these drawbacks. The aim of the present work is to model and predict the springback of a Galvanized low carbon steel automotive panel part. This part suffers from both positive and negative springback which physically measured using CMM. The objective is to determine the suitable forming process parameters that minimize and compensate the springback through robust FE model. The analysis of the springback was carried out following (Isotropic model and Yoshida - Uemori model) which are calibrated through cyclic stress strain curve. The material data of the Galvanized low carbon steel was implemented via lookup tables in the commercial finite element software Pam-Stamp(TM). Firstly, the FE model was validated using the deformed part which suffers from springback problem at the same forming condition. The FE results were compared with the measured experimental trails providing very good agreement. Secondly, the validated FE model was used to determine the suitable forming parameters which could minimise the springback of the deformed part.

  20. Galvanic Liquid Applied Coating System For Protection of Embedded Steel Surfaces from Corrosion

    NASA Technical Reports Server (NTRS)

    Curran, Joseph; Curran, Jerome; Voska, N. (Technical Monitor)

    2002-01-01

    Corrosion of reinforcing steel in concrete is an insidious problem facing Kennedy Space Center (KSC), other Government Agencies, and the general public. These problems include KSC launch support structures, highway bridge infrastructure, and building structures such as condominium balconies. Due to these problems, the development of a Galvanic Liquid Applied Coating System would be a breakthrough technology having great commercial value for the following industries: Transportation, Infrastructure, Marine Infrastructure, Civil Engineering, and the Construction Industry. This sacrificial coating system consists of a paint matrix that may include metallic components, conducting agents, and moisture attractors. Similar systems have been used in the past with varying degrees of success. These systems have no proven history of effectiveness over the long term. In addition, these types of systems have had limited success overcoming the initial resistance between the concrete/coating interface. The coating developed at KSC incorporates methods proven to overcome the barriers that previous systems could not achieve. Successful development and continued optimization of this breakthrough system would produce great interest in NASA/KSC for corrosion engineering technology and problem solutions. Commercial patents on this technology would enhance KSC's ability to attract industry partners for similar corrosion control applications.

  1. Theoretical Investigation of the Interfacial Reactions during Hot-Dip Galvanizing of Steel

    NASA Astrophysics Data System (ADS)

    Mandal, G. K.; Balasubramaniam, R.; Mehrotra, S. P.

    2009-03-01

    In the modern galvanizing line, as soon as the steel strip enters the aluminum-containing zinc bath, two reactions occur at the strip and the liquid-zinc alloy interface: (1) iron rapidly dissolves from the strip surface, raising the iron concentration in the liquid phase at the strip-liquid interface; and (2) aluminum forms a stable aluminum-iron intermetallic compound layer at the strip-coating interface due to its greater affinity toward iron. The main objective of this study is to develop a simple and realistic mathematical model for better understanding of the kinetics of galvanizing reactions at the strip and the liquid-zinc alloy interface. In the present study, a model is proposed to simulate the effect of various process parameters on iron dissolution in the bath, as well as, aluminum-rich inhibition layer formation at the substrate-coating interface. The transient-temperature profile of the immersed strip is predicted based on conductive and convective heat-transfer mechanisms. The inhibition-layer thickness at the substrate-coating interface is predicted by assuming the cooling path of the immersed strip consists of a series of isothermal holds of infinitesimal time-step. The influence of galvanizing reaction is assessed by considering nucleation and growth mechanisms at each hold time, which is used to estimate the total effect of the immersion time on the formation mechanism of the inhibition layer. The iron- dissolution model is developed based on well established principles of diffusion taking into consideration the area fraction covered by the intermetallic on the strip surface during formation of the inhibition layer. The model can be effectively used to monitor the dross formation in the bath by optimizing the process parameters. Theoretical predictions are compared with the findings of other researchers. Simulated results are in good agreement with the theoretical and experimental observation carried out by other investigators.

  2. On the Processing of Martensitic Steels in Continuous Galvanizing Lines: Part II

    NASA Astrophysics Data System (ADS)

    Song, Taejin; Kwak, Jaihyun; de Cooman, B. C.

    2012-01-01

    The conventional continuous hot-dip galvanizing (GI) and galvannealing (GA) processes can be applied to untransformed austenite to produce Zn and Zn-alloy coated low-carbon ultra-high-strength martensitic steel provided specific alloying additions are made. The most suitable austenite decomposition behavior results from the combined addition of boron, Cr, and Mo, which results in a pronounced transformation bay during isothermal transformation. The occurrence of this transformation bay implies a considerable retardation of the austenite decomposition in the temperature range below the bay, which is close to the stages in the continuous galvanizing line (CGL) thermal cycle related to the GI and GA processes. After the GI and GA processes, a small amount of granular bainite, which consists of bainitic ferrite and discrete islands of martensite/austenite (M/A) constituents embedded in martensite matrix, is present in the microstructure. The ultimate tensile strength (UTS) of the steel after the GI and GA cycle was over 1300 MPa, and the stress-strain curve was continuous without any yielding phenomena.

  3. Highly Tunable Hollow Gold Nanospheres: Gaining Size Control and Uniform Galvanic Exchange of Sacrificial Cobalt Boride Scaffolds.

    PubMed

    Lindley, Sarah A; Cooper, Jason K; Rojas-Andrade, Mauricio D; Fung, Victoria; Leahy, Conor J; Chen, Shaowei; Zhang, Jin Z

    2018-04-18

    In principle, the diameter and surface plasmon resonance (SPR) frequency of hollow metal nanostructures can be independently adjusted, allowing the formation of targeted photoactivated structures of specific size and optical functionality. Although tunable SPRs have been reported for various systems, the shift in SPR is usually concomitant with a change in particle size. As such, more advanced tunability, including constant diameter with varying SPR or constant SPR with varying diameter, has not been properly achieved experimentally. Herein, we demonstrate this advanced tunability with hollow gold nanospheres (HGNs). HGNs were synthesized through galvanic exchange using cobalt-based nanoparticles (NPs) as sacrificial scaffolds. Co 2 B NP scaffolds were prepared by sodium borohydride nucleation of aqueous cobalt chloride and characterized using UV-vis, dynamic light scattering, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. Careful control over the size of the Co 2 B scaffold and its galvanic conversion is essential to realize fine control of the resultant HGN diameter and shell thickness. In pursuit of size control, we introduce B(OH) 4 - (the final product of NaBH 4 hydrolysis) as a growth agent to obtain hydrodynamic diameters ranging from ∼17-85 nm with relative standard deviation <3%. The highly monodisperse Co 2 B NPs were then used as scaffolds for the formation of HGNs. In controlling HGN shell thickness and uniformity, environmental oxygen was shown to affect both the structural and optical properties of the resultant gold shells. With careful control of these key factors, we demonstrate an HGN synthesis that enables independent variation of diameter and shell thickness, and thereby SPR, with unprecedented uniformity. The new synthesis method creates a truly tunable plasmonic nanostructure platform highly desirable for a wide range of applications, including sensing, catalysis, and photothermal therapy.

  4. Framing susceptibility in a risky choice game is altered by galvanic vestibular stimulation.

    PubMed

    Preuss, Nora; Kalla, Roger; Müri, Rene; Mast, Fred W

    2017-06-07

    Recent research provides evidence that galvanic vestibular stimulation (GVS) has a modulating effect on somatosensory perception and spatial cognition. However, other vestibular stimulation techniques have induced changes in affective control and decision making. The aim of this study was to investigate the effect of GVS on framing susceptibility in a risky-choice game. The participants were to decide between a safe and a risky option. The safe option was framed either positively or negatively. During the task, the participants were exposed to either left anodal/right cathodal GVS, right anodal/left cathodal GVS, or sham stimulation (control condition). While left anodal/right cathodal GVS activated more right-hemispheric vestibular brain areas, right anodal/left cathodal GVS resulted in more bilateral activation. We observed increased framing susceptibility during left anodal/right cathodal GVS, but no change in framing susceptibility during right anodal/left cathodal GVS. We propose that GVS results in increased reliance on the affect heuristic by means of activation of cortical and subcortical vestibular-emotional brain structures and that this effect is modulated by the lateralization of the vestibular cortex.

  5. Effect of the Type of Surface Treatment and Cement on the Chloride Induced Corrosion of Galvanized Reinforcements

    NASA Astrophysics Data System (ADS)

    Tittarelli, Francesca; Mobili, Alessandra; Vicerè, Anna Maria; Roventi, Gabriella; Bellezze, Tiziano

    2017-10-01

    The effect of a new passivation treatment, obtained by immersion of the galvanized reinforcements in a trivalent chromium salts based solution, on the chlorides induced corrosion has been investigated. To investigate also the effect of cement alkalinity on corrosion behaviour of reinforcements, concretes manufactured with three different European cements were compared. The obtained results show that the alternative treatment based on hexavalent chromium-free baths forms effective protection layers on the galvanized rebar surfaces. The higher corrosion rates of zinc coating in concrete manufactured with Portland cement compared to those recorded for bars in concrete manufactured with pozzolanic cement depends strongly on the higher chloride content at the steel concrete interface.

  6. Electrochemical Applications in Metal Bioleaching.

    PubMed

    Tanne, Christoph Kurt; Schippers, Axel

    2017-12-10

    Biohydrometallurgy comprises the recovery of metals by biologically catalyzed metal dissolution from solids in an aqueous solution. The application of this kind of bioprocessing is described as "biomining," referring to either bioleaching or biooxidation of sulfide metal ores. Acidophilic iron- and sulfur-oxidizing microorganisms are the key to successful biomining. However, minerals such as primary copper sulfides are recalcitrant to dissolution, which is probably due to their semiconductivity or passivation effects, resulting in low reaction rates. Thus, further improvements of the bioleaching process are recommendable. Mineral sulfide dissolution is based on redox reactions and can be accomplished by electrochemical technologies. The impact of electrochemistry on biohydrometallurgy affects processing as well as analytics. Electroanalysis is still the most widely used electrochemical application in mineralogical research. Electrochemical processing can contribute to bioleaching in two ways. The first approach is the coupling of a mineral sulfide to a galvanic partner or electrocatalyst (spontaneous electron transfer). This approach requires only low energy consumption and takes place without technical installations by the addition of higher redox potential minerals (mostly pyrite), carbonic material, or electrocatalytic ions (mostly silver ions). Consequently, the processed mineral (often chalcopyrite) is preferentially dissolved. The second approach is the application of electrolytic bioreactors (controlled electron transfer). The electrochemical regulation of electrolyte properties by such reactors has found most consideration. It implies the regulation of ferrous and ferric ion ratios, which further results in optimized solution redox potential, less passivation effects, and promotion of microbial activity. However, many questions remain open and it is recommended that reactor and electrode designs are improved, with the aim of finding options for simplified

  7. Critical review of heavy metal pollution of traffic area runoff: Occurrence, influencing factors, and partitioning.

    PubMed

    Huber, Maximilian; Welker, Antje; Helmreich, Brigitte

    2016-01-15

    A dataset of 294 monitored sites from six continents (Africa, Asia, Australia, Europe, North and South America) was compiled and evaluated to characterize the occurrence and fate of heavy metals in eight traffic area categories (parking lots, bridges, and three types each of both roads and highways). In addition, site-specific (fixed and climatic) and method-specific (related to sample collection, preparation, and analysis) factors that influence the results of the studies are summarized. These factors should be considered in site descriptions, conducting monitoring programs, and implementing a database for further research. Historical trends for Pb show a sharp decrease during recent decades, and the median total Pb concentrations of the 21st century for North America and Europe are approximately 15 μg/L. No historical trend is detected for Zn. Zn concentrations are very variable in traffic area runoff compared with other heavy metals because of its presence in galvanized structures and crumbs of car tire rubber. Heavy metal runoff concentrations of parking lots differ widely according to their use (e.g., employee, supermarket, rest areas for trucks). Bridge deck runoff can contain high Zn concentrations from safety fences and galvanizing elements. Roads with more than 5000 vehicles per day are often more polluted than highways because of other site-specific factors such as traffic signals. Four relevant heavy metals (Zn, Cu, Ni, and Cd) can occur in the dissolved phase. Knowledge of metal partitioning is important to optimize stormwater treatment strategies and prevent toxic effects to organisms in receiving waters. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Anticorrosive Behavior and Porosity of Tricationic Phosphate and Zirconium Conversion Coating on Galvanized Steel

    NASA Astrophysics Data System (ADS)

    Velasquez, Camilo S.; Pimenta, Egnalda P. S.; Lins, Vanessa F. C.

    2018-05-01

    This work evaluates the corrosion resistance of galvanized steel treated with tricationic phosphate and zirconium conversion coating after painting, by using electrochemical techniques, accelerated and field corrosion tests. A non-uniform and heterogeneous distribution of zirconium on the steel surface was observed due to preferential nucleation of the zirconium on the aluminum-rich sites on the surface of galvanized steel. The long-term anti-corrosion performance in a saline solution was better for the phosphate coating up to 120 days. The coating capacitance registered a higher increase for the zirconium coatings than the phosphate coatings up to 120 days of immersion. This result agrees with the higher porosity of zirconium coating in relation to the phosphate coating. After 3840 h of accelerated corrosion test, and after 1 year of accelerated field test, zirconium-treated samples showed an average scribe delamination length higher than the phosphate-treated samples.

  9. Anticorrosive Behavior and Porosity of Tricationic Phosphate and Zirconium Conversion Coating on Galvanized Steel

    NASA Astrophysics Data System (ADS)

    Velasquez, Camilo S.; Pimenta, Egnalda P. S.; Lins, Vanessa F. C.

    2018-04-01

    This work evaluates the corrosion resistance of galvanized steel treated with tricationic phosphate and zirconium conversion coating after painting, by using electrochemical techniques, accelerated and field corrosion tests. A non-uniform and heterogeneous distribution of zirconium on the steel surface was observed due to preferential nucleation of the zirconium on the aluminum-rich sites on the surface of galvanized steel. The long-term anti-corrosion performance in a saline solution was better for the phosphate coating up to 120 days. The coating capacitance registered a higher increase for the zirconium coatings than the phosphate coatings up to 120 days of immersion. This result agrees with the higher porosity of zirconium coating in relation to the phosphate coating. After 3840 h of accelerated corrosion test, and after 1 year of accelerated field test, zirconium-treated samples showed an average scribe delamination length higher than the phosphate-treated samples.

  10. Microalloying of transition metal silicides by mechanical activation and field-activated reaction

    DOEpatents

    Munir, Zuhair A [Davis, CA; Woolman, Joseph N [Davis, CA; Petrovic, John J [Los Alamos, NM

    2003-09-02

    Alloys of transition metal suicides that contain one or more alloying elements are fabricated by a two-stage process involving mechanical activation as the first stage and densification and field-activated reaction as the second stage. Mechanical activation, preferably performed by high-energy planetary milling, results in the incorporation of atoms of the alloying element(s) into the crystal lattice of the transition metal, while the densification and field-activated reaction, preferably performed by spark plasma sintering, result in the formation of the alloyed transition metal silicide. Among the many advantages of the process are its ability to accommodate materials that are incompatible in other alloying methods.

  11. Metal-Metal Interactions in Heterobimetallic Complexes with Dinucleating Redox-Active Ligands.

    PubMed

    Broere, Daniël L J; Modder, Dieuwertje K; Blokker, Eva; Siegler, Maxime A; van der Vlugt, Jarl Ivar

    2016-02-12

    The tuning of metal-metal interactions in multinuclear assemblies is a challenge. Selective P coordination of a redox-active PNO ligand to Au(I) followed by homoleptic metalation of the NO pocket with Ni(II) affords a unique trinuclear Au-Ni-Au complex. This species features two antiferromagnetically coupled ligand-centered radicals and a double intramolecular d(8)-d(10) interaction, as supported by spectroscopic, single-crystal X-ray diffraction, and computational data. A corresponding cationic dinuclear Au-Ni analogue with a stronger d(8)-d(10) interaction is also reported. Although both heterobimetallic structures display rich electrochemistry, only the trinuclear Au-Ni-Au complex facilitates electrocatalytic C-X bond activation of alkyl halides in its doubly reduced state. Hence, the presence of a redox-active ligand framework, an available coordination site at gold, and the nature of the nickel-gold interaction appear to be essential for this reactivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A metal-free organic-inorganic aqueous flow battery.

    PubMed

    Huskinson, Brian; Marshak, Michael P; Suh, Changwon; Er, Süleyman; Gerhardt, Michael R; Galvin, Cooper J; Chen, Xudong; Aspuru-Guzik, Alán; Gordon, Roy G; Aziz, Michael J

    2014-01-09

    As the fraction of electricity generation from intermittent renewable sources--such as solar or wind--grows, the ability to store large amounts of electrical energy is of increasing importance. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output. In contrast, flow batteries can independently scale the power (electrode area) and energy (arbitrarily large storage volume) components of the system by maintaining all of the electro-active species in fluid form. Wide-scale utilization of flow batteries is, however, limited by the abundance and cost of these materials, particularly those using redox-active metals and precious-metal electrocatalysts. Here we describe a class of energy storage materials that exploits the favourable chemical and electrochemical properties of a family of molecules known as quinones. The example we demonstrate is a metal-free flow battery based on the redox chemistry of 9,10-anthraquinone-2,7-disulphonic acid (AQDS). AQDS undergoes extremely rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in sulphuric acid. An aqueous flow battery with inexpensive carbon electrodes, combining the quinone/hydroquinone couple with the Br2/Br(-) redox couple, yields a peak galvanic power density exceeding 0.6 W cm(-2) at 1.3 A cm(-2). Cycling of this quinone-bromide flow battery showed >99 per cent storage capacity retention per cycle. The organic anthraquinone species can be synthesized from inexpensive commodity chemicals. This organic approach permits tuning of important properties such as the reduction potential and solubility by adding functional groups: for example, we demonstrate that the addition of two hydroxy groups to AQDS increases the open circuit potential of the cell by 11% and we describe a pathway for further increases in cell voltage. The use of π-aromatic redox-active organic molecules instead of redox-active metals

  13. Method and electrochemical cell for synthesis and treatment of metal monolayer electrocatalysts metal, carbon, and oxide nanoparticles ion batch, or in continuous fashion

    DOEpatents

    Adzic, Radoslav; Zhang, Junliang; Sasaki, Kotaro

    2015-04-28

    An apparatus and method for synthesis and treatment of electrocatalyst particles in batch or continuous fashion is provided. In one embodiment, the apparatus comprises a sonication bath and a two-compartment chamber submerged in the sonication bath. The upper and lower compartments are separated by a microporous material surface. The upper compartment comprises a cover and a working electrode (WE) connected to a Pt foil contact, with the foil contact connected to the microporous material. The upper chamber further comprises reference counter electrodes. The lower compartment comprises an electrochemical cell containing a solution of metal ions. In one embodiment, the method for synthesis of electrocatalysts comprises introducing a plurality of particles into the apparatus and applying sonication and an electrical potential to the microporous material connected to the WE. After the non-noble metal ions are deposited onto the particles, the non-noble metal ions are displaced by noble-metal ions by galvanic displacement.

  14. Numerical Analysis of Edge Over Coating and Baffle Effect on Hot-Dip Galvanizing

    NASA Astrophysics Data System (ADS)

    Bao, Chengren; Kang, Yonglin; Li, Yan

    2017-06-01

    In hot-dip galvanizing process, air jet wiping control is so crucial to determine the coating thickness and uniformity of the zinc layer on the steel strip. A numerical simulation of gas-jet wiping in hot-dip galvanizing was conducted to minimize the occurrence of edge over coating (EOC). The causes of EOC were identified by contrasting and analyzing the airflow fields on the strip edge with and without a baffle. The factors influencing the airflow field on the strip edge during the change in the gap between the baffle and the strip edge were also analyzed. The effect of the distance between the air knife and the strip was evaluated. Technological parameters with on-site guidance role were obtained by combining them with the actual production to elucidate the role of the baffle in restraining the occurrence of EOC. The uniform distribution of pressure and coating thickness on the strip is achieved when the distance of the baffle from the strip edge is about 0.3 times of the jetting distance.

  15. EVALUATING THE POTENTIAL EFFICACY OF AN ANTIMICROBIAL-CONTAINING SEALANT ON DUCT LINER AND GALVANIZED STEEL

    EPA Science Inventory

    The article gives results of an evaluation of the potential efficacy of an antimicrobial-containing sealant on fibrous-glass duct liner (FGDL) and galvanized steel (GS) as used in heating, ventilating, and air-conditioning (HVAC) systems. HVAC systems become dirty to various degr...

  16. Expectancy, False Galvanic Skin Response Feedback, and Systematic Desensitization in the Modification of Phobic Behavior

    ERIC Educational Resources Information Center

    Lick, John

    1975-01-01

    This study compared systematic desensitization and two pseudotherapy manipulations with and without false galvanic skin response feedback after every session suggesting improvement in the modification of intense snake and spider fear. The results indicated no consistent differences between the three treatment groups. (Author)

  17. Personal reflections on a galvanizing trail.

    PubMed

    O'Dell, B L

    1998-01-01

    This article encompasses my perception of, and experience in, an exciting segment of the trace element era in nutrition research: the role of zinc in the nutrition of animals and humans. Zinc has been a major player on the stage of trace element research, and it has left a trail that galvanized the attention of many researchers, including myself. It is ubiquitous in biological systems, and it plays a multitude of physiologic and biochemical functions. A brief historical overview is followed by a discussion of the contributions the work done in my laboratory has made toward understanding the physiological and biochemical functions of zinc. The effort of 40 years has led to the belief that one of zinc's major roles, and perhaps its first limiting role, is to preserve plasma-membrane function as regards ion channels and signal transduction. Although substantial knowledge has been gained relating to the importance of zinc in nutrition, much remains to be discovered.

  18. Media Research with a Galvanic Skin Response Biosensor: Some Kids Work Up a Sweat!

    ERIC Educational Resources Information Center

    Clariana, Roy B.

    This study considers the galvanic skin response (GSR) of sixth-grade students (n=20) using print, video, and microcomputer segments. Subjects received all three media treatments, in randomized order. Data for analysis consisted of standardized test scores and GSR measures; a moderate positive relationship was shown between cumulative GSR and…

  19. Isolation of a sulfide-producing bacterial consortium from cooling-tower water: Evaluation of corrosive effects on galvanized steel.

    PubMed

    Ilhan-Sungur, Esra; Ozuolmez, Derya; Çotuk, Ayşın; Cansever, Nurhan; Muyzer, Gerard

    2017-02-01

    Sulfidogenic Clostridia and sulfate reducing bacteria (SRB) often cohabit in nature. The presence of these microorganisms can cause microbially influenced corrosion (MIC) of materials in different ways. To investigate this aspect, bacteria were isolated from cooling tower water and used in corrosion tests of galvanized steel. The identity of the isolates was determined by comparative sequence analysis of PCR-amplified 16S rDNA gene fragments, separated by denaturing gradient gel electrophoresis (DGGE). This analysis showed that, in spite of the isolation process, colonies were not pure and consisted of a mixture of bacteria affiliated with Desulfosporosinus meridiei and Clostridium sp. To evaluate the corrosive effect, galvanized steel coupons were incubated with a mixed culture for 4, 8, 24, 72, 96, 168, 360 and 744 h, along with a control set in sterile culture medium only. The corrosion rate was determined by weight loss, and biofilm formation and corroded surfaces were observed by scanning electron microscopy (SEM). Although the sulfide-producing bacterial consortium led to a slight increase in the corrosion of galvanized steel coupons, when compared to the previous studies it can be said that Clostridium sp. can reduce the corrosive effect of the Desulfosporosinus sp. strain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A Student-Constructed Galvanic Cell for the Measurement of Cell Potentials at Different Temperatures

    ERIC Educational Resources Information Center

    Jakubowska, Anna

    2016-01-01

    A student-made galvanic cell is proposed for temperature measurements of cell potential. This cell can be easily constructed by students, the materials needed are readily available and nontoxic, and the solution applied is in an attractive color. For this cell, the potential values are excellently reproducible at each temperature, and the…

  1. Morphology and antimony segregation of spangles on batch hot-dip galvanized coatings

    NASA Astrophysics Data System (ADS)

    Peng, Shu; Lu, Jintang; Che, Chunshan; Kong, Gang; Xu, Qiaoyu

    2010-06-01

    Spangles produced by batch hot-dip galvanizing process have a rougher surface and a greater surface segregation of alloying element compared with those in continuous hot-dip galvanizing line (CGL), owing to the cooling rate of the former is much smaller than that of the later. Therefore, typical spangles on a batch hot-dipped Zn-0.05Al-0.2Sb alloy coating were investigated. The chemical, morphological characterization and identification of the phases on the spangles were examined by scanning electron microscopy (SEM), backscattered electron imaging (BSE), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The results showed that the coating surface usually exhibited three kinds of spangles: shiny, feathery and dull spangle, of which extensively antimony surface segregation was detected. The nature of precipitate on the coating surface was identified as β-Sb 3Zn 4, The precipitated β-Sb 3Zn 4 particles distributed randomly on the shiny spangle surface, both β-Sb 3Zn 4 particles and dentritic segregation of antimony dispersed in the dendritic secondary arm spacings of the feathery spangle and on the whole dull spangle surface. The dentritic segregation of antimony and precipitation of Sb 3Zn 4 compound are discussed by a proposed model.

  2. Effect of Process Parameters on the Structure and Properties of Galvanized Sheets

    NASA Astrophysics Data System (ADS)

    Shukla, S. K.; Saha, B. B.; Triathi, B. D.; Avtar, Ram

    2010-07-01

    The effect of galvanizing parameters on the structure (spangle size and coating microstructure) and properties (formability and corrosion resistance) of galvanized sheets was studied in a hot dip process simulator (HDPS) in a conventional Pb bearing (0.08-0.10%) zinc bath by varying zinc bath Al level (0.10-0.28%), bath temperature (718-743 K), dipping time (1.5-3.5 s), wiping gas flow rate (200-450 lpm), nozzle distance (15-17 mm) and wiping delay time (0.1-2.1 s). Al level in the range of 0.18-0.24% in combination with dipping time of 1.5-2.5 s and bath temperature of 718-733 K results in superior formability ( E cv: ~9.3 mm) of the composite (thickness: 0.8 mm). High post-dip cooling rates (~25 K/s) suppress spangle growth (spangle size: ~2 mm). The spangle size of the GI sheet strongly influences the corrosion rate which increases from 5.8 to 9.2 mpy with a decrease in spangle size from 17.5 to 3 mm. By controlling the Al level (0.20%) in zinc bath and bath temperature (733 K), the corrosion rate of mini-spangle GI sheet can be controlled to a level of 5.5 mpy.

  3. Performance of Flow and Heat Transfer in a Hot-Dip Round Coreless Galvanizing Bath

    NASA Astrophysics Data System (ADS)

    Yue, Qiang; Zhang, Chengbo; Xu, Yong; Zhou, Li; Kong, Hui; Wang, Jia

    2017-04-01

    Flow field in a coreless hot-dip galvanizing pot was investigated through a water modeling experiment. The corresponding velocity vector was measured using an acoustic Doppler velocimeter. The flow field of molten zinc in the bath was also analyzed. Steel strip velocities from 1.7 to 2.7 m/s were adopted to determine the effect of steel strip velocity on the molten zinc flow in the bath. A large vortex filled the space at the right side of the sink roll, under linear speed from 1.0 to 2.7 m/s and width from 1.0 to 1.3 m of the steel strip, because of the effects of wall and shear stress. The results of the water modeling experiment were compared with those of numerical simulations. In the simulation, Maxwell equations were solved using finite element method to obtain magnetic flux density, electromagnetic force, and Joule heating. The Joule heating rate reached the maximum and minimum values near the side wall and at the core of the bath, respectively, because of the effect of skin and proximity. In an industrial-sized model, the molten zinc flow and temperature fields driven by electromagnetic force and Joule heating in the inductor of a coreless galvanizing bath were numerically simulated. The results indicated that the direction of electromagnetic force concentrated at the center of the galvanizing pot horizontal planes and exerted a pinch effect on molten zinc. Consequently, molten zinc in the pot was stirred by electromagnetic force. Under molten zinc flow and electromagnetic force stirring, the temperature of the molten zinc became homogeneous throughout the bath. This study provides a basis for optimizing electromagnetic fields in coreless induction pot and fine-tuning the design of steel strip parameters.

  4. CFD study of ejector flow behavior in a blast furnace gas galvanizing plant

    NASA Astrophysics Data System (ADS)

    Besagni, Giorgio; Mereu, Riccardo; Inzoli, Fabio

    2015-02-01

    In recent years, there has been a growing interest toward Blast Furnace Gas (BFG) as a low-grade energy source for industrial furnaces. This paper considers the revamping of a galvanic plant furnace converted to BFG from natural gas. In the design of the new system, the ejector on the exhaust line is a critical component. This paper studies the flow behavior of the ejector using a Computational Fluid Dynamics (CFD) analysis. The CFD model is based on a 3D representation of the ejector, using air and exhaust gases as working fluids. This paper is divided in three parts. In the first part, the galvanic plant used as case study is presented and discussed, in the second part the CFD approach is outlined, and in the third part the CFD approach is validated using experimental data and the numerical results are presented and discussed. Different Reynolds-Averaged Navier-Stokes (RANS) turbulence models ( k-ω SST and k-ɛ Realizable) are evaluated in terms of convergence capability and accuracy in predicting the pressure drop along the ejector. Suggestions for future optimization of the system are also provided.

  5. Adsorption of metal ions by pecan shell-based granular activated carbons.

    PubMed

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-09-01

    The present investigation was undertaken to evaluate the adsorption effectiveness of pecan shell-based granular activated carbons (GACs) in removing metal ions (Cu(2+), Pb(2+), Zn(2+)) commonly found in municipal and industrial wastewater. Pecan shells were activated by phosphoric acid, steam or carbon dioxide activation methods. Metal ion adsorption of shell-based GACs was compared to the metal ion adsorption of a commercial carbon, namely, Calgon's Filtrasorb 200. Adsorption experiments were conducted using solutions containing all three metal ions in order to investigate the competitive effects of the metal ions as would occur in contaminated wastewater. The results obtained from this study showed that acid-activated pecan shell carbon adsorbed more lead ion and zinc ion than any of the other carbons, especially at carbon doses of 0.2-1.0%. However, steam-activated pecan shell carbon adsorbed more copper ion than the other carbons, particularly using carbon doses above 0.2%. In general, Filtrasorb 200 and carbon dioxide-activated pecan shell carbons were poor metal ion adsorbents. The results indicate that acid- and steam-activated pecan shell-based GACs are effective metal ion adsorbents and can potentially replace typical coal-based GACs in treatment of metal contaminated wastewater.

  6. Branched tellurium hollow nanofibers by galvanic displacement reaction and their sensing performance toward nitrogen dioxide.

    PubMed

    Park, Hosik; Jung, Hyunsung; Zhang, Miluo; Chang, Chong Hyun; Ndifor-Angwafor, N George; Choa, Yongho; Myung, Nosang V

    2013-04-07

    Electrospinning and galvanic displacement reaction were combined to synthesize ultra-long hollow tellurium (Te) nanofibers with controlled dimensions, morphology and crystallinity by simply tailoring the electrolyte concentration applied. Within different morphologies of nanofibers, the branched Te nanostructure shows the greatest sensing performance towards NO2 at room temperature.

  7. Substrate decomposition in galvanic displacement reaction: Contrast between gold and silver nanoparticle formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Tapas; Satpati, Biswarup, E-mail: biswarup.satpati@saha.ac.in; Kabiraj, D.

    We have investigated substrate decomposition during formation of silver and gold nanoparticles in galvanic displacement reaction on germanium surfaces. Silver and gold nanoparticles were synthesized by electroless deposition on sputter coated germanium thin film (∼ 200 nm) grown initially on silicon substrate. The nanoparticles formation and the substrate corrosion were studied using scanning transmission electron microscopy (STEM) and the energy dispersive X-ray (EDX) spectroscopy.

  8. Stainless and Galvanized Steel, Hydrophobic Admixture and Flexible Polymer-Cement Coating Compared in Increasing Durability of Reinforced Concrete Structures

    NASA Astrophysics Data System (ADS)

    Tittarelli, Francesca; Giosuè, Chiara; Mobili, Alessandra

    2017-08-01

    The use of stainless or galvanized steel reinforcements, a hydrophobic admixture or a flexible polymer-cement coating were compared as methods to improve the corrosion resistance of sound or cracked reinforced concrete specimens exposed to chloride rich solutions. The results show that in full immersion condition, negligible corrosion rates were detected in all cracked specimens, except those treated with the flexible polymer-cement mortar as preventive method against corrosion and the hydrophobic concrete specimens. High corrosion rates were measured in all cracked specimens exposed to wet-dry cycles, except for those reinforced with stainless steel, those treated with the flexible polymer-cement coating as restorative method against reinforcement corrosion and for hydrophobic concrete specimens reinforced with galvanized steel reinforcements.

  9. Electrodes synthesized from carbon nanostructures coated with a smooth and conformal metal adlayer

    DOEpatents

    Adzic, Radoslav; Harris, Alexander

    2014-04-15

    High-surface-area carbon nanostructures coated with a smooth and conformal submonolayer-to-multilayer thin metal films and their method of manufacture are described. The preferred manufacturing process involves the initial oxidation of the carbon nanostructures followed by a surface preparation process involving immersion in a solution with the desired pH to create negative surface dipoles. The nanostructures are subsequently immersed in an alkaline solution containing a suitable quantity of non-noble metal ions which adsorb at surface reaction sites. The metal ions are then reduced via chemical or electrical means. The nanostructures are exposed to a solution containing a salt of one or more noble metals which replace adsorbed non-noble surface metal atoms by galvanic displacement. The process can be controlled and repeated to obtain a desired film coverage. The resulting coated nanostructures may be used, for example, as high-performance electrodes in supercapacitors, batteries, or other electric storage devices.

  10. An electrochemical investigation of TMJ implant metal alloys in an artificial joint fluid environment: the influence of pH variation.

    PubMed

    Royhman, Dmitry; Radhakrishnan, Rashmi; Yuan, Judy Chia-Chun; Mathew, Mathew T; Mercuri, Louis G; Sukotjo, Cortino

    2014-10-01

    To investigate the corrosion behaviour of commonly used TMJ implants alloys (CoCrMo and Ti6Al4V) under simulated physiological conditions. Corrosion behaviour was evaluated using standard electrochemical corrosion techniques and galvanic corrosion techniques as per ASTM standards. Standard electrochemical tests (E(corr), I(corr), R(p) and C(f)) were conducted in bovine calf serum (BCS), as a function of alloys type and different pHs. Galvanic corrosion tests were conducted in BCS at a pH of 7.6. Alloy surfaces were characterized using white-light interferometry (WLI) and scanning electron microscopy (SEM). The potentiodynamic test results exhibited the enhanced passive layer growth and a better corrosion resistance of Ti6Al4V compared to CoCrMo. Electrochemical impedance spectroscopy measurements demonstrated the influence of protein as a function of pH on corrosion mechanisms/kinetics. Galvanic coupling was not a major contributor to corrosion. SEM and WLI images demonstrated a significantly higher in surface roughness in CoCrMo after corrosion. The results of this study suggest that Ti6Al4V shows superior corrosion behaviour to CoCrMo due to its strong passive layer, simulated joint fluid components can affect the electrochemical nature of the metal/electrolyte interface as a function of pH, and the galvanic effect of coupling CoCrMo and Ti6Al4V in a single joint is weak. Published by Elsevier Ltd.

  11. Electric and magnetic galvanic distortion decomposition of tensor CSAMT data. Application to data from the Buchans Mine (Newfoundland, Canada)

    NASA Astrophysics Data System (ADS)

    Garcia, Xavier; Boerner, David; Pedersen, Laust B.

    2003-09-01

    We have developed a Marquardt-Levenberg inversion algorithm incorporating the effects of near-surface galvanic distortion into the electromagnetic (EM) response of a layered earth model. Different tests on synthetic model responses suggest that for the grounded source method, the magnetic distortion does not vanish for low frequencies. Including this effect is important, although to date it has been neglected. We have inverted 10 stations of controlled-source audio-magnetotellurics (CSAMT) data recorded near the Buchans Mine, Newfoundland, Canada. The Buchans Mine was one of the richest massive sulphide deposits in the world, and is situated in a highly resistive volcanogenic environment, substantially modified by thrust faulting. Preliminary work in the area demonstrated that the EM fields observed at adjacent stations show large differences due to the existence of mineralized fracture zones and variable overburden thickness. Our inversion results suggest a three-layered model that is appropriate for the Buchans Mine. The resistivity model correlates with the seismic reflection interpretation that documents the existence of two thrust packages. The distortion parameters obtained from the inversion concur with the synthetic studies that galvanic magnetic distortion is required to interpret the Buchans data since the magnetic component of the galvanic distortion does not vanish at low frequency.

  12. Charging system with galvanic isolation and multiple operating modes

    DOEpatents

    Kajouke, Lateef A.; Perisic, Milun; Ransom, Ray M.

    2013-01-08

    Systems and methods are provided for operating a charging system with galvanic isolation adapted for multiple operating modes. A vehicle charging system comprises a DC interface, an AC interface, a first conversion module coupled to the DC interface, and a second conversion module coupled to the AC interface. An isolation module is coupled between the first conversion module and the second conversion module. The isolation module comprises a transformer and a switching element coupled between the transformer and the second conversion module. The transformer and the switching element are cooperatively configured for a plurality of operating modes, wherein each operating mode of the plurality of operating modes corresponds to a respective turns ratio of the transformer.

  13. Cr-Free Metallic-Ceramic Coatings

    DTIC Science & Technology

    2014-11-01

    Comparable to Aluminum-Chromate/ Phosphate Humidity Resistance Galvanic Corrosion Resistance Nov. 2014 ASETSDefense 2014, Fort Myer, VA...Aluminum-Silicate Comparable to Aluminum-Chromate/ Phosphate  Humidity, Galvanic Corrosion , Heat/Salt Resistance  Adhesion & Compatibility...WP-TR-2007-4069, Sept. 2006 Sealed Aluminum-Silicate Not Comparable to Sealed Aluminum-Chromate/ Phosphate in PEWG Evaluation  Corrosion

  14. Spin Seebeck effect and thermal spin galvanic effect in Ni80Fe20/p-Si bilayers

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Ravindra G.; Lou, Paul C.; Kumar, Sandeep

    2018-01-01

    The development of spintronics and spin-caloritronics devices needs efficient generation, detection, and manipulation of spin current. The thermal spin current from the spin-Seebeck effect has been reported to be more energy efficient than the electrical spin injection methods. However, spin detection has been the one of the bottlenecks since metals with large spin-orbit coupling is an essential requirement. In this work, we report an efficient thermal generation and interfacial detection of spin current. We measured a spin-Seebeck effect in Ni80Fe20 (25 nm)/p-Si (50 nm) (polycrystalline) bilayers without a heavy metal spin detector. p-Si, having a centrosymmetric crystal structure, has insignificant intrinsic spin-orbit coupling, leading to negligible spin-charge conversion. We report a giant inverse spin-Hall effect, essential for the detection of spin-Seebeck effects, in the Ni80Fe20/p-Si bilayer structure, which originates from Rashba spin orbit coupling due to structure inversion asymmetry at the interface. In addition, the thermal spin pumping in p-Si leads to spin current from p-Si to the Ni80Fe20 layer due to the thermal spin galvanic effect and the spin-Hall effect, causing spin-orbit torques. The thermal spin-orbit torques lead to collapse of magnetic hysteresis of the 25 nm thick Ni80Fe20 layer. The thermal spin-orbit torques can be used for efficient magnetic switching for memory applications. These scientific breakthroughs may give impetus to the silicon spintronics and spin-caloritronics devices.

  15. Effect of 1,2,4-triazole on galvanic corrosion between cobalt and copper in CMP based alkaline slurry

    NASA Astrophysics Data System (ADS)

    Fu, Lei; Liu, Yuling; Wang, Chenwei; Han, Linan

    2018-04-01

    Cobalt has become a new type of barrier material with its unique advantages since the copper-interconnects in the great-large scale integrated circuits (GLSI) into 10 nm and below technical nodes, but cobalt and copper have severe galvanic corrosion during chemical–mechanical flattening. The effect of 1,2,4-triazole on Co/Cu galvanic corrosion in alkaline slurry and the control of rate selectivity of copper and cobalt were investigated in this work. The results of electrochemical experiments and polishing experiments had indicated that a certain concentration of 1,2,4-triazole could form a layer of insoluble and dense passive film on the surface of cobalt and copper, which reduced the corrosion potential difference between cobalt and copper. Meantime, the removal rate of cobalt and copper could be effectively controlled according to demand during the CMP process. When the study optimized slurry was composed of 0.5 wt% colloidal silica, 0.1 %vol. hydrogen peroxide, 0.05 wt% FA/O, 345 ppm 1,2,4-triazole, cobalt had higher corrosion potential than copper and the galvanic corrosion could be reduced effectively when the corrosion potential difference between them decreased to 1 mV and the galvanic corrosion current density reached 0.02 nA/cm2. Meanwhile, the removal rate of Co was 62.396 nm/min, the removal rate of Cu was 47.328 nm/min, so that the removal rate ratio of cobalt and copper was 1.32 : 1, which was a good amendment to the dishing pits. The contact potential corrosion of Co/Cu was very weak, which could be better for meeting the requirements of the barrier CMP. Project supported by the Major National Science and Technology Special Projects (No. 2016ZX02301003-004-007), the Natural Science Foundation of Hebei Province, China (No. F2015202267), and the Outstanding Young Science and Technology Innovation Fund of Hebei University of Technology (No. 2015007).

  16. Treatment of model and galvanic waste solutions of copper(II) ions using a lignin/inorganic oxide hybrid as an effective sorbent.

    PubMed

    Ciesielczyk, Filip; Bartczak, Przemysław; Klapiszewski, Łukasz; Jesionowski, Teofil

    2017-04-15

    A study was made concerning the removal of copper(II) ions from model and galvanic waste solutions using a new sorption material consisting of lignin in combination with an inorganic oxide system. Specific physicochemical properties of the material resulted from combining the activity of the functional groups present in the structure of lignin with the high surface area of the synthesized oxide system (585m 2 /g). Analysis of the porous structure parameters, particle size and morphology, elemental composition and characteristic functional groups confirmed the effective synthesis of the new type of sorbent. A key element of the study was a series of tests of adsorption of copper(II) ions from model solutions. It was determined how the efficiency of the adsorption process was affected by the process time, mass of sorbent, concentration of adsorbate, pH and temperature. Potential regeneration of adsorbent, which provides the possibility of its reusing and recovering the adsorbed copper, was also analyzed. The sorption capacity of the material was measured (83.98mg/g), and the entire process was described using appropriate kinetic models. The results were applied to the design of a further series of adsorption tests, carried out on solutions of real sewage from a galvanizing plant. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Clay and DOPA containing polyelectrolyte multilayer film for imparting anticorrosion properties to galvanized steel.

    PubMed

    Faure, Emilie; Halusiak, Emilie; Farina, Fabrice; Giamblanco, Nicoletta; Motte, Cécile; Poelman, Mireille; Archambeau, Catherine; Van de Weerdt, Cécile; Martial, Joseph; Jérôme, Christine; Duwez, Anne-Sophie; Detrembleur, Christophe

    2012-02-07

    A facile and green approach is developed to impart remarkable protection against corrosion to galvanized steel. A protecting multilayer film is formed by alternating the deposition of a polycation bearing catechol groups, used as corrosion inhibitors, with clay that induces barrier properties. This coating does not affect the esthetical aspect of the surface and does not release any toxic molecules in the environment.

  18. Effect of Annealing Temperature on Microstructure and Mechanical Properties of Hot-Dip Galvanizing DP600 Steel

    NASA Astrophysics Data System (ADS)

    Hai-yan, Sun; Zhi-li, Liu; Yang, Xu; Jian-qiang, Shi; Lian-xuan, Wang

    Hot-dip galvanizing dual phase steel DP600 steel grade with low Si was produced by steel plant and experiments by simulating galvanizing thermal history. The microstructure was observed and analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effect of different annealing temperatures on the microstructure and mechanical properties of dual-phase steel was also discussed. The experimental results show that the dual-phase steel possesses excellent strength and elongation that match EN10346 600MPa standards. The microstructure is ferrite and martensite. TEM micrograph shows that white ferrite with black martensite islands inlay with a diameter of around 1um and the content of 14 18%. The volume will expand and phase changing take the form of shear transformation when ferrite converted to martensite. So there are high density dislocations in ferrite crystalline grain near martensite. The martensite content growing will be obvious along with annealing temperature going up. But the tendency will be weak when temperature high.

  19. [Biological activity of selenorganic compounds at heavy metal salts intoxication].

    PubMed

    Rusetskaya, N Y; Borodulin, V B

    2015-01-01

    Possible mechanisms of the antitoxic action of organoselenium compounds in heavy metal poisoning have been considered. Heavy metal toxicity associated with intensification of free radical oxidation, suppression of the antioxidant system, damage to macromolecules, mitochondria and the genetic material can cause apoptotic cell death or the development of carcinogenesis. Organic selenium compounds are effective antioxidants during heavy metal poisoning; they exhibit higher bioavailability in mammals than inorganic ones and they are able to activate antioxidant defense, bind heavy metal ions and reactive oxygen species formed during metal-induced oxidative stress. One of promising organoselenium compounds is diacetophenonyl selenide (DAPS-25), which is characterized by antioxidant and antitoxic activity, under conditions including heavy metal intoxication.

  20. Part I. Corrosion studies of continuous alumina fiber reinforced aluminum-matrix composites. Part II. Galvanic corrosion between continuous alumina fiber reinforced aluminum-matrix composites and 4340 steel

    NASA Astrophysics Data System (ADS)

    Zhu, Jun

    uncoupled coupons were immersed in various electrolytes, exposed to a humidity chamber, and exposed at outdoor test sites. Results showed that the corrosion rates of the CF-AMCs increased, while those of the 4340 steel decreased after being coupled together, in most cases. Crevice corrosion was also observed in these exposure experiments. Zero resistance ammeter (ZRA) experiments were conducted to record the galvanic-corrosion rates and potentials of the couples. The CF-AMCs were found to serve as anodes, while the steel was cathodic, in most test conditions. Galvanic performance predicted by polarization experiments was in close agreement with the ZRA results. Key words. Aluminum, metal-matrix composites, alumina fiber, pitting corrosion, galvanic corrosion.

  1. Autonomous colloidal crystallization in a galvanic microreactor

    NASA Astrophysics Data System (ADS)

    Punckt, Christian; Jan, Linda; Jiang, Peng; Frewen, Thomas A.; Saville, Dudley A.; Kevrekidis, Ioannis G.; Aksay, Ilhan A.

    2012-10-01

    We report on a technique that utilizes an array of galvanic microreactors to guide the assembly of two-dimensional colloidal crystals with spatial and orientational order. Our system is comprised of an array of copper and gold electrodes in a coplanar arrangement, immersed in a dilute hydrochloric acid solution in which colloidal micro-spheres of polystyrene and silica are suspended. Under optimized conditions, two-dimensional colloidal crystals form at the anodic copper with patterns and crystal orientation governed by the electrode geometry. After the aggregation process, the colloidal particles are cemented to the substrate by co-deposition of reaction products. As we vary the electrode geometry, the dissolution rate of the copper electrodes is altered. This way, we control the colloidal motion as well as the degree of reaction product formation. We show that particle motion is governed by a combination of electrokinetic effects acting directly on the colloidal particles and bulk electrolyte flow generated at the copper-gold interface.

  2. Fabrication of gallium nitride nanowires by metal-assisted photochemical etching

    NASA Astrophysics Data System (ADS)

    Zhang, Miao-Rong; Jiang, Qing-Mei; Zhang, Shao-Hui; Wang, Zu-Gang; Hou, Fei; Pan, Ge-Bo

    2017-11-01

    Gallium nitride (GaN) nanowires (NWs) were fabricated by metal-assisted photochemical etching (MaPEtch). Gold nanoparticles (AuNPs) as metal catalyst were electrodeposited on the GaN substrate. SEM and HRTEM images show the surface of GaN NWs is smooth and clean without any impurity. SAED and FFT patterns demonstrate GaN NWs have single crystal structure, and the crystallographic orientation of GaN NWs is (0002) face. On the basis of the assumption of localized galvanic cells, combined with the energy levels and electrochemical potentials of reactants in this etching system, the generation, transfer and consumption of electron-hole pairs reveal the whole MaPEtch reaction process. Such easily fabricated GaN NWs have great potential for the assembly of GaN-based single-nanowire nanodevices.

  3. Cross-Beam Laser Joining of AA 6111 to Galvanized Steel in a Coach Peel Configuration

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Mohammadpour, Masoud; Yazdian, Nima; Ma, Junjie; Carlson, Blair; Wang, Hui-Ping; Kovacevic, Radovan

    2017-06-01

    Cross-beam laser joining of aluminum alloy 6111 to hot-dip galvanized steel in the coach-peel configuration was investigated with the addition of AA 4047 filler wire. The filler material was not only brazed onto the galvanized steel but also partially fusion-welded with the aluminum panel. Through adjusting the laser power to 3.4 kW, a desirable wetting and spreading of filler wire on both panel surfaces could be achieved, and the thickness of intermetallic layer in the middle section of the interface between the weld bead and steel was less than 2 μm. To better understand the solid/liquid interfacial reaction at the brazing interface, two rotary Gaussian heat source models were introduced to simulate the temperature distribution in the molten pool by using the finite element method. Joint properties were examined in terms of microstructure and mechanical properties. During the tensile test, the fracture of coupons took place at the aluminum side rather than along the interface between the intermetallic layer and steel panel. No failure occurred during the three-point bending test.

  4. Defect detection and classification of galvanized stamping parts based on fully convolution neural network

    NASA Astrophysics Data System (ADS)

    Xiao, Zhitao; Leng, Yanyi; Geng, Lei; Xi, Jiangtao

    2018-04-01

    In this paper, a new convolution neural network method is proposed for the inspection and classification of galvanized stamping parts. Firstly, all workpieces are divided into normal and defective by image processing, and then the defective workpieces extracted from the region of interest (ROI) area are input to the trained fully convolutional networks (FCN). The network utilizes an end-to-end and pixel-to-pixel training convolution network that is currently the most advanced technology in semantic segmentation, predicts result of each pixel. Secondly, we mark the different pixel values of the workpiece, defect and background for the training image, and use the pixel value and the number of pixels to realize the recognition of the defects of the output picture. Finally, the defect area's threshold depended on the needs of the project is set to achieve the specific classification of the workpiece. The experiment results show that the proposed method can successfully achieve defect detection and classification of galvanized stamping parts under ordinary camera and illumination conditions, and its accuracy can reach 99.6%. Moreover, it overcomes the problem of complex image preprocessing and difficult feature extraction and performs better adaptability.

  5. Role of Metal Ions on the Activity of Mycobacterium tuberculosis Pyrazinamidase

    PubMed Central

    Sheen, Patricia; Ferrer, Patricia; Gilman, Robert H.; Christiansen, Gina; Moreno-Román, Paola; Gutiérrez, Andrés H.; Sotelo, Jun; Evangelista, Wilfredo; Fuentes, Patricia; Rueda, Daniel; Flores, Myra; Olivera, Paula; Solis, José; Pesaresi, Alessandro; Lamba, Doriano; Zimic, Mirko

    2012-01-01

    Pyrazinamidase of Mycobacterium tuberculosis catalyzes the conversion of pyrazinamide to the active molecule pyrazinoic acid. Reduction of pyrazinamidase activity results in a level of pyrazinamide resistance. Previous studies have suggested that pyrazinamidase has a metal-binding site and that a divalent metal cofactor is required for activity. To determine the effect of divalent metals on the pyrazinamidase, the recombinant wild-type pyrazinamidase corresponding to the H37Rv pyrazinamide-susceptible reference strain was expressed in Escherichia coli with and without a carboxy terminal. His-tagged pyrazinamidase was inactivated by metal depletion and reactivated by titration with divalent metals. Although Co2+, Mn2+, and Zn2+ restored pyrazinamidase activity, only Co2+ enhanced the enzymatic activity to levels higher than the wild-type pyrazinamidase. Cu2+, Fe2+, Fe3+, and Mg2+ did not restore the activity under the conditions tested. Various recombinant mutated pyrazinamidases with appropriate folding but different enzymatic activities showed a differential pattern of recovered activity. X-ray fluorescence and atomic absorbance spectroscopy showed that recombinant wild-type pyrazinamidase expressed in E. coli most likely contained Zn. In conclusion, this study suggests that M. tuberculosis pyrazinamidase is a metalloenzyme that is able to coordinate several ions, but in vivo, it is more likely to coordinate Zn2+. However, in vitro, the metal-depleted enzyme could be reactivated by several divalent metals with higher efficiency than Zn. PMID:22764307

  6. Studying Activity Series of Metals.

    ERIC Educational Resources Information Center

    Hoon, Tien-Ghun; And Others

    1995-01-01

    Presents teaching strategies that illustrate the linking together of numerous chemical concepts involving the activity of metals (quantitative analysis, corrosion, and electrolysis) through the use of deep-level processing strategies. Concludes that making explicit links in the process of teaching chemistry can lead effectively to meaningful…

  7. The corrosion behaviour of galvanized steel in cooling tower water containing a biocide and a corrosion inhibitor.

    PubMed

    Minnoş, Bihter; Ilhan-Sungur, Esra; Çotuk, Ayşın; Güngör, Nihal Doğruöz; Cansever, Nurhan

    2013-01-01

    The corrosion behaviour of galvanized steel in cooling tower water containing a biocide and a corrosion inhibitor was investigated over a 10-month period in a hotel. Planktonic and sessile numbers of sulphate reducing bacteria (SRB) and heterotrophic bacteria were monitored. The corrosion rate was determined by the weight loss method. The corrosion products were analyzed by energy dispersive X-ray spectroscopy and X-ray diffraction. A mineralized, heterogeneous biofilm was observed on the coupons. Although a biocide and a corrosion inhibitor were regularly added to the cooling water, the results showed that microorganisms, such as SRB in the mixed species biofilm, caused corrosion of galvanized steel. It was observed that Zn layers on the test coupons were completely depleted after 3 months. The Fe concentrations in the biofilm showed significant correlations with the weight loss and carbohydrate concentration (respectively, p < 0.01 and p < 0.01).

  8. Development of oil canning index model for sheet metal forming products with large curvature

    NASA Astrophysics Data System (ADS)

    Kim, Honglae; Lee, Seonggi; Murugesan, Mohanraj; Hong, Seokmoo; Lee, Shanghun; Ki, Juncheol; Jung, Hunchul; Kim, Naksoo

    2017-09-01

    Oil canning is predominantly caused by unequal stretches and heterogeneous stress distributions in steel sheets, which affects the appearance of components and develop noise and vibration problems. This paper proposes the formulation of an Oil canning index (OCI) model that can predict the occurrence of oil canning in the sheet metal. To investigate the influence of material properties, we used electro-galvanized (EGI) and galvanized (GI) steel sheets with different thicknesses and processing conditions. Furthermore, this paper presents an appropriate experimental and numerical procedure for determining the sheet stiffness and indentation properties to evaluate the oil canning results. Experiments were carried out by varying the tensile force over different materials, thicknesses, and bead force. Comparison of the discrete results obtained from these experiments confirmed that the product shape characteristics, such as curvature, have a significant influence on the oil canning occurrence. Based on the results, we propose the new OCI model, which can effectively predict the oil canning occurrence owing to the shape curvature. Verification of the accuracy and usability of our model has been carried out by simulating the experiments that were done with the sheet metal. The authors observed a good agreement between the experimental and numerical results from the model. This research work can be considered as a very effective method for eliminating appearance defects from the automobile products.

  9. Theory of the Spin Galvanic Effect at Oxide Interfaces

    NASA Astrophysics Data System (ADS)

    Seibold, Götz; Caprara, Sergio; Grilli, Marco; Raimondi, Roberto

    2017-12-01

    The spin galvanic effect (SGE) describes the conversion of a nonequilibrium spin polarization into a transverse charge current. Recent experiments have demonstrated a large conversion efficiency for the two-dimensional electron gas formed at the interface between two insulating oxides, LaAlO3 and SrTiO3 . Here, we analyze the SGE for oxide interfaces within a three-band model for the Ti t2 g orbitals which displays an interesting variety of effective spin-orbit couplings in the individual bands that contribute differently to the spin-charge conversion. Our analytical approach is supplemented by a numerical treatment where we also investigate the influence of disorder and temperature, which turns out to be crucial to providing an appropriate description of the experimental data.

  10. APPARATUS FOR CONVERTING HEAT INTO ELECTRICITY

    DOEpatents

    Crouthamel, C.E.; Foster, M.S.

    1964-01-28

    This patent shows an apparatus for converting heat to electricity. It includes a galvanic cell having an anodic metal anode, a fused salt electrolyte, and a hydrogen cathode having a diffusible metal barrier of silver-- palladium alloy covered with sputtered iron on the side next to the fused electrolyte. Also shown is a regenerator for regenerating metal hydride produced by the galvanic cell into hydrogen gas and anodic metal, both of which are recycled. (AEC)

  11. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite.

    PubMed

    Chandra, A P; Gerson, A R

    2009-01-30

    A review of the considerable, but often contradictory, literature examining the specific surface reactions associated with copper adsorption onto the common metal sulfide minerals sphalerite, (Zn,Fe)S, and pyrite (FeS(2)), and the effect of the co-location of the two minerals is presented. Copper "activation", involving the surface adsorption of copper species from solution onto mineral surfaces to activate the surface for hydrophobic collector attachment, is an important step in the flotation and separation of minerals in an ore. Due to the complexity of metal sulfide mineral containing systems this activation process and the emergence of activation products on the mineral surfaces are not fully understood for most sulfide minerals even after decades of research. Factors such as copper concentration, activation time, pH, surface charge, extent of pre-oxidation, water and surface contaminants, pulp potential and galvanic interactions are important factors affecting copper activation of sphalerite and pyrite. A high pH, the correct reagent concentration and activation time and a short time delay between reagent additions is favourable for separation of sphalerite from pyrite. Sufficient oxidation potential is also needed (through O(2) conditioning) to maintain effective galvanic interactions between sphalerite and pyrite. This ensures pyrite is sufficiently depressed while sphalerite floats. Good water quality with low concentrations of contaminant ions, such as Pb(2+)and Fe(2+), is also needed to limit inadvertent activation and flotation of pyrite into zinc concentrates. Selectivity can further be increased and reagent use minimised by opting for inert grinding and by carefully choosing selective pyrite depressants such as sulfoxy or cyanide reagents. Studies that approximate plant conditions are essential for the development of better separation techniques and methodologies. Improved experimental approaches and surface sensitive techniques with high spatial

  12. Engineering the architectural diversity of heterogeneous metallic nanocrystals.

    PubMed

    Yu, Yue; Zhang, Qingbo; Xie, Jianping; Lee, Jim Yang

    2013-01-01

    Similar to molecular engineering where structural diversity is used to create more property variations for application explorations, the architectural engineering of heterogeneous metallic nanocrystals (HMNCs) can likewise increase the versatility of metallic nanocrystals (NCs). Here we present a synthesis strategy capable of engineering the architectural diversity of HMNCs through rational and independent programming of every architecture-determining element, that is, the shape and size of the component NCs and their spatial arrangement. The strategy is based on the galvanic replacement reaction of a self-sustaining layer formed by underpotential deposition on a polyhedral NC. The selective deposition of satellite NCs on specific site of the central NC is realized by creating a geometry-dependent heterogeneous electron distribution. This site-selective deposition approach is applicable to central NCs in various polyhedral shapes and sizes. The satellite NCs can further develop their own shape and size through crystal growth kinetics control.

  13. 76 FR 23548 - Galvanized Steel Wire From the People's Republic of China and Mexico: Initiation of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ... Wire From the People's Republic of China and Mexico: Initiation of Antidumping Duty Investigations...'') received petitions concerning imports of galvanized steel wire from the PRC and Mexico filed in proper form on behalf of Davis Wire Corporation (``Davis Wire''), Johnstown Wire Technologies, Inc., Mid-South...

  14. Design of PdAg Hollow Nanoflowers through Galvanic Replacement and Their Application for Ethanol Electrooxidation.

    PubMed

    Bin, Duan; Yang, Beibei; Zhang, Ke; Wang, Caiqin; Wang, Jin; Zhong, Jiatai; Feng, Yue; Guo, Jun; Du, Yukou

    2016-11-07

    In this study, galvanic replacement provides a simple route for the synthesis of PdAg hollow nanoflower structures by using the Ag-seeds as sacrificial templates in the presence of l-ascorbic acid (reductant) and CTAC (capping agent). Transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and EDS mapping were used to characterize the as-prepared PdAg hollow nanoflower catalysts, where they were alloyed nanoflower structures with hollow interiors. By maneuvering the Pd/Ag ratio, we found that the as-prepared Pd 1 Ag 3 hollow nanoflower catalysts had the optimized performance for catalytic activity toward ethanol oxidation reaction. Moreover, these as-prepared PdAg hollow nanoflower catalysts exhibited noticeably higher electrocatalytic activity as compared to pure Pd and commercial Pd/C catalysts due to the alloyed Ag-Pd composition as well as the hollow nanoflower structures. It is anticipated that this work provides a rational design of other architecturally controlled bimetallic nanocrystals for application in fuel cells. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Poultry litter-based activated carbon for removing heavy metal ions in water.

    PubMed

    Guo, Mingxin; Qiu, Guannan; Song, Weiping

    2010-02-01

    Utilization of poultry litter as a precursor material to manufacture activated carbon for treating heavy metal-contaminated water is a value-added strategy for recycling the organic waste. Batch adsorption experiments were conducted to investigate kinetics, isotherms, and capacity of poultry litter-based activated carbon for removing heavy metal ions in water. It was revealed that poultry litter-based activated carbon possessed significantly higher adsorption affinity and capacity for heavy metals than commercial activated carbons derived from bituminous coal and coconut shell. Adsorption of metal ions onto poultry litter-based carbon was rapid and followed Sigmoidal Chapman patterns as a function of contact time. Adsorption isotherms could be described by different models such as Langmuir and Freundlich equations, depending on the metal species and the coexistence of other metal ions. Potentially 404 mmol of Cu2+, 945 mmol of Pb2+, 236 mmol of Zn2+, and 250-300 mmol of Cd2+ would be adsorbed per kg of poultry litter-derived activated carbon. Releases of nutrients and metal ions from litter-derived carbon did not pose secondary water contamination risks. The study suggests that poultry litter can be utilized as a precursor material for economically manufacturing granular activated carbon that is to be used in wastewater treatment for removing heavy metals.

  16. Effect of Steel Galvanization on the Microstructure and Mechanical Performances of Planar Magnetic Pulse Welds of Aluminum and Steel

    NASA Astrophysics Data System (ADS)

    Avettand-Fènoël, M.-N.; Khalil, C.; Taillard, R.; Racineux, G.

    2018-07-01

    For the first time, planar joints between pure aluminum and galvanized or uncoated DP450 steel joints have been developed via magnetic pulse welding. Both present a wavy interface. The microstructure of the interfacial zone differs according to the joint. With uncoated steel, the interface is composed of discrete 2.5- µm-thick FeAl3 intermetallic compounds and Fe penetration lamellae, whereas the interface of the pure Al-galvanized steel joint is bilayered and composed of a 10-nm-thick (Al)Zn solid solution and a few micrometers thick aggregate of Al- and Zn-based grains, arranged from the Al side to the Zn coating. Even if the nature of the interfacial zone differs with or without the steel coating, both welds present rather similar maximum tensile forces and ductility in shear lap testing.

  17. Effect of Steel Galvanization on the Microstructure and Mechanical Performances of Planar Magnetic Pulse Welds of Aluminum and Steel

    NASA Astrophysics Data System (ADS)

    Avettand-Fènoël, M.-N.; Khalil, C.; Taillard, R.; Racineux, G.

    2018-05-01

    For the first time, planar joints between pure aluminum and galvanized or uncoated DP450 steel joints have been developed via magnetic pulse welding. Both present a wavy interface. The microstructure of the interfacial zone differs according to the joint. With uncoated steel, the interface is composed of discrete 2.5-µm-thick FeAl3 intermetallic compounds and Fe penetration lamellae, whereas the interface of the pure Al-galvanized steel joint is bilayered and composed of a 10-nm-thick (Al)Zn solid solution and a few micrometers thick aggregate of Al- and Zn-based grains, arranged from the Al side to the Zn coating. Even if the nature of the interfacial zone differs with or without the steel coating, both welds present rather similar maximum tensile forces and ductility in shear lap testing.

  18. Metal Ions, Not Metal-Catalyzed Oxidative Stress, Cause Clay Leachate Antibacterial Activity

    PubMed Central

    Otto, Caitlin C.; Koehl, Jennifer L.; Solanky, Dipesh; Haydel, Shelley E.

    2014-01-01

    Aqueous leachates prepared from natural antibacterial clays, arbitrarily designated CB-L, release metal ions into suspension, have a low pH (3.4–5), generate reactive oxygen species (ROS) and H2O2, and have a high oxidation-reduction potential. To isolate the role of pH in the antibacterial activity of CB clay mixtures, we exposed three different strains of Escherichia coli O157:H7 to 10% clay suspensions. The clay suspension completely killed acid-sensitive and acid-tolerant E. coli O157:H7 strains, whereas incubation in a low-pH buffer resulted in a minimal decrease in viability, demonstrating that low pH alone does not mediate antibacterial activity. The prevailing hypothesis is that metal ions participate in redox cycling and produce ROS, leading to oxidative damage to macromolecules and resulting in cellular death. However, E. coli cells showed no increase in DNA or protein oxidative lesions and a slight increase in lipid peroxidation following exposure to the antibacterial leachate. Further, supplementation with numerous ROS scavengers eliminated lipid peroxidation, but did not rescue the cells from CB-L-mediated killing. In contrast, supplementing CB-L with EDTA, a broad-spectrum metal chelator, reduced killing. Finally, CB-L was equally lethal to cells in an anoxic environment as compared to the aerobic environment. Thus, ROS were not required for lethal activity and did not contribute to toxicity of CB-L. We conclude that clay-mediated killing was not due to oxidative damage, but rather, was due to toxicity associated directly with released metal ions. PMID:25502790

  19. Economic aspects of metals recover

    NASA Astrophysics Data System (ADS)

    Wieczorek, Daria; Kwaśniewska, Dobrawa

    2018-03-01

    One of the modern economy models is circular economy in which wastes should be considered as resource and used in an efficient and sustainable way. This also concerns to metals included in scraps. However, the need for metal recovery from waste is not only the result of the latest economic trends but also the result of large and constantly changing demand for metals. Shrinking natural sources of metals, concentrations of ores in small number of countries in the world and resulting from this dependence on import, geopolitical situation, new technologies demands are only a few most important determinants that have been changing the structure of the metal market over years. In this chapter, authors focused on the presentation of economic aspects of metal recovery from various sources. The chapter presents the characteristic of metal market elements (supply, demand and price) and changes that took place over decades, underlining the structure of precious and highly desirable metal market elements. Balance between the demand and supply ensures price stability and rationalizes inflation. However, growing demand on many means that secure supply chains, such as recycling and material recovery, are essential to ensure continuity in the supply chain and guarantee unrestricted technological progress and innovation. The data included in this chapter presents also the concentration of different metals and group of metals in wastes pointing that recycling of waste can become one of the possibilities of acquiring missing and critical metals. Metal-laden wastes include a few groups: waste electrical and electronic equipments, catalysts of different application, introduced on chemical, petrochemical or automotive market, galvanic wastes and wastewaters. The profitability assessment of recycling processes is very complicated. Nevertheless cited data shows that profitability of recovery depends on the metal analyzed and the type of waste. It must be underline that an optimized

  20. 76 FR 47150 - Galvanized Steel Wire From the People's Republic of China and Mexico: Postponement of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ... Wire From the People's Republic of China and Mexico: Postponement of Preliminary Determinations of... wire from the People's Republic of China (PRC) and Mexico. The period of investigation (POI) for the... is January 1, 2010, through December 31, 2010. See Galvanized Steel Wire From the People's Republic...

  1. Characterization and Prediction of Cracks in Coated Materials: Direction and Length of Crack Propagation in Bimaterials

    PubMed Central

    Azari, Z.; Pappalettere, C.

    2015-01-01

    The behaviour of materials is governed by the surrounding environment. The contact area between the material and the surrounding environment is the likely spot where different forms of degradation, particularly rust, may be generated. A rust prevention treatment, like bluing, inhibitors, humidity control, coatings, and galvanization, will be necessary. The galvanization process aims to protect the surface of the material by depositing a layer of metallic zinc by either hot-dip galvanizing or electroplating. In the hot-dip galvanizing process, a metallic bond between steel and metallic zinc is obtained by immersing the steel in a zinc bath at a temperature of around 460°C. Although the hot-dip galvanizing procedure is recognized to be one of the most effective techniques to combat corrosion, cracks can arise in the intermetallic δ layer. These cracks can affect the life of the coated material and decrease the lifetime service of the entire structure. In the present paper the mechanical response of hot-dip galvanized steel submitted to mechanical loading condition is investigated. Experimental tests were performed and corroborative numerical and analytical methods were then applied in order to describe both the mechanical behaviour and the processes of crack/cracks propagation in a bimaterial as zinc-coated material. PMID:27347531

  2. Characterization and Prediction of Cracks in Coated Materials: Direction and Length of Crack Propagation in Bimaterials.

    PubMed

    Pruncu, C I; Azari, Z; Casavola, C; Pappalettere, C

    2015-01-01

    The behaviour of materials is governed by the surrounding environment. The contact area between the material and the surrounding environment is the likely spot where different forms of degradation, particularly rust, may be generated. A rust prevention treatment, like bluing, inhibitors, humidity control, coatings, and galvanization, will be necessary. The galvanization process aims to protect the surface of the material by depositing a layer of metallic zinc by either hot-dip galvanizing or electroplating. In the hot-dip galvanizing process, a metallic bond between steel and metallic zinc is obtained by immersing the steel in a zinc bath at a temperature of around 460°C. Although the hot-dip galvanizing procedure is recognized to be one of the most effective techniques to combat corrosion, cracks can arise in the intermetallic δ layer. These cracks can affect the life of the coated material and decrease the lifetime service of the entire structure. In the present paper the mechanical response of hot-dip galvanized steel submitted to mechanical loading condition is investigated. Experimental tests were performed and corroborative numerical and analytical methods were then applied in order to describe both the mechanical behaviour and the processes of crack/cracks propagation in a bimaterial as zinc-coated material.

  3. Patterning of colloidal particles in the galvanic microreactor

    NASA Astrophysics Data System (ADS)

    Jan, Linda

    A Cu-Au galvanic microreactor is used to demonstrate the autonomous patterning of two-dimensional colloidal crystals with spatial and orientational order which are adherent to the electrode substrate. The microreactor is comprised of a patterned array of copper and gold microelectrodes in a coplanar arrangement that is immersed in a dilute hydrochloric acid solution in which colloidal polystyrene microspheres are suspended. During the electrochemical dissolution of copper, polystyrene colloids are transported to the copper electrodes. The spatial arrangement of the electrodes determines whether the colloids initiate aggregation at the edges or centers of the copper electrodes. Depending on the microreactor parameters, two-dimensional colloidal crystals can form and adhere to the electrode. This thesis investigates the mechanisms governing the autonomous particle motion, the directed particle trajectory (inner- versus edge-aggregation) as affected by the spatial patterning of the electrodes, and the adherence of the colloidal particles onto the substrate. Using in situ current density measurements, particle velocimetry, and order-of-magnitude arguments, it is shown that particle motion is governed by bulk fluid motion and electrophoresis induced by the electrochemical reactions. Bulk electrolyte flow is most likely driven by electrochemical potential gradients of reaction products formed during the inhomogeneous copper dissolution, particularly due to localized high current density at the electrode junction. Preferential aggregation of the colloidal particles resulting in inner- and edge-aggregation is influenced by changes to the flow pattern in response to difference in current density profiles as affected by the spatial patterning of the electrode. Finally, by determining the onset of particle cementation through particle tracking analysis, and by monitoring the deposition of reaction products through the observation of color changes of the galvanic electrodes in

  4. Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets

    NASA Astrophysics Data System (ADS)

    Raab, A. E.; Berger, E.; Freudenthaler, J.; Leomann, F.; Walch, C.

    2011-05-01

    Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry1,2,3. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago1. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesive and abrasive tool wear. First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test. All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.

  5. Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raab, A. E.; Berger, E.; Freudenthaler, J.

    Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesivemore » and abrasive tool wear.First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test.All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.« less

  6. A metallic metal oxide (Ti5O9)-metal oxide (TiO2) nanocomposite as the heterojunction to enhance visible-light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Li, L. H.; Deng, Z. X.; Xiao, J. X.; Yang, G. W.

    2015-06-01

    Coupling titanium dioxide (TiO2) with other semiconductors is a popular method to extend the optical response range of TiO2 and improve its photon quantum efficiency, as coupled semiconductors can increase the separation rate of photoinduced charge carriers in photocatalysts. Differing from normal semiconductors, metallic oxides have no energy gap separating occupied and unoccupied levels, but they can excite electrons between bands to create a high carrier mobility to facilitate kinetic charge separation. Here, we propose the first metallic metal oxide-metal oxide (Ti5O9-TiO2) nanocomposite as a heterojunction for enhancing the visible-light photocatalytic activity of TiO2 nanoparticles and we demonstrate that this hybridized TiO2-Ti5O9 nanostructure possesses an excellent visible-light photocatalytic performance in the process of photodegrading dyes. The TiO2-Ti5O9 nanocomposites are synthesized in one step using laser ablation in liquid under ambient conditions. The as-synthesized nanocomposites show strong visible-light absorption in the range of 300-800 nm and high visible-light photocatalytic activity in the oxidation of rhodamine B. They also exhibit excellent cycling stability in the photodegrading process. A working mechanism for the metallic metal oxide-metal oxide nanocomposite in the visible-light photocatalytic process is proposed based on first-principle calculations of Ti5O9. This study suggests that metallic metal oxides can be regarded as partners for metal oxide photocatalysts in the construction of heterojunctions to improve photocatalytic activity.

  7. A metallic metal oxide (Ti5O9)-metal oxide (TiO2) nanocomposite as the heterojunction to enhance visible-light photocatalytic activity.

    PubMed

    Li, L H; Deng, Z X; Xiao, J X; Yang, G W

    2015-01-26

    Coupling titanium dioxide (TiO2) with other semiconductors is a popular method to extend the optical response range of TiO2 and improve its photon quantum efficiency, as coupled semiconductors can increase the separation rate of photoinduced charge carriers in photocatalysts. Differing from normal semiconductors, metallic oxides have no energy gap separating occupied and unoccupied levels, but they can excite electrons between bands to create a high carrier mobility to facilitate kinetic charge separation. Here, we propose the first metallic metal oxide-metal oxide (Ti5O9-TiO2) nanocomposite as a heterojunction for enhancing the visible-light photocatalytic activity of TiO2 nanoparticles and we demonstrate that this hybridized TiO2-Ti5O9 nanostructure possesses an excellent visible-light photocatalytic performance in the process of photodegrading dyes. The TiO2-Ti5O9 nanocomposites are synthesized in one step using laser ablation in liquid under ambient conditions. The as-synthesized nanocomposites show strong visible-light absorption in the range of 300-800 nm and high visible-light photocatalytic activity in the oxidation of rhodamine B. They also exhibit excellent cycling stability in the photodegrading process. A working mechanism for the metallic metal oxide-metal oxide nanocomposite in the visible-light photocatalytic process is proposed based on first-principle calculations of Ti5O9. This study suggests that metallic metal oxides can be regarded as partners for metal oxide photocatalysts in the construction of heterojunctions to improve photocatalytic activity.

  8. Real-time monitoring of laser welding of galvanized high strength steel in lap joint configuration

    NASA Astrophysics Data System (ADS)

    Kong, Fanrong; Ma, Junjie; Carlson, Blair; Kovacevic, Radovan

    2012-10-01

    Two different cases regarding the zinc coating at the lap joint faying surface are selected for studying the influence of zinc vapor on the keyhole dynamics of the weld pool and the final welding quality. One case has the zinc coating fully removed at the faying surface; while the other case retains the zinc coating on the faying surface. It is found that removal of the zinc coating at the faying surface produces a significantly better weld quality as exemplified by a lack of spatters whereas intense spatters are present when the zinc coating is present at the faying surface. Spectroscopy is used to detect the optical spectra emitted from a laser generated plasma plume during the laser welding of galvanized high strength DP980 steel in a lap-joint configuration. A correlation between the electron temperature and defects within the weld bead is identified by using the Boltzmann plot method. The laser weld pool keyhole dynamic behavior affected by a high-pressure zinc vapor generated at the faying surface of galvanized steel lap-joint is monitored in real-time by a high speed charge-coupled device (CCD) camera assisted with a green laser as an illumination source.

  9. Robert Hare's Theory of Galvanism: A Study of Heat and Electricity in Early Nineteenth-Century American Chemistry.

    PubMed

    Fisher, Amy

    2018-04-09

    As a professor of chemistry at the University of Pennsylvania, Robert Hare actively shaped early American science. He participated in a large network of scholars, including Joseph Henry, François Arago, and Jacob Berzelius, and experimented with and wrote extensively about electricity and its associated chemical and thermal phenomena. In the early nineteenth century, prominent chemists such as Berzelius and Humphry Davy proclaimed that a revolution had occurred in chemistry through electrical research. Examining Robert Hare's contributions to this discourse, this paper analyzes how Hare's study of electricity and the caloric theory of heat led him to propose a new theory of galvanism. It also examines the reception of Hare's work in America and Great Britain, highlighting the contributions of early American chemists to the development of electrochemistry.

  10. Passive Resonant Bidirectional Converter with Galvanic Barrier

    NASA Technical Reports Server (NTRS)

    Rosenblad, Nathan S. (Inventor)

    2014-01-01

    A passive resonant bidirectional converter system that transports energy across a galvanic barrier includes a converter using at least first and second converter sections, each section including a pair of transfer terminals, a center tapped winding; a chopper circuit interconnected between the center tapped winding and one of the transfer terminals; an inductance feed winding interconnected between the other of the transfer terminals and the center tap and a resonant tank circuit including at least the inductance of the center tap winding and the parasitic capacitance of the chopper circuit for operating the converter section at resonance; the center tapped windings of the first and second converter sections being disposed on a first common winding core and the inductance feed windings of the first and second converter sections being disposed on a second common winding core for automatically synchronizing the resonant oscillation of the first and second converter sections and transferring energy between the converter sections until the voltage across the pairs of transfer terminals achieves the turns ratio of the center tapped windings.

  11. Antimalarial and antimicrobial activities of 8-Aminoquinoline-Uracils metal complexes

    PubMed Central

    Phopin, Kamonrat; Sinthupoom, Nujarin; Treeratanapiboon, Lertyot; Kunwittaya, Sarun; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong

    2016-01-01

    8-Aminoquinoline (8AQ) derivatives have been reported to have antimalarial, anticancer, and antioxidant activities. This study investigated the potency of 8AQ-5-substituted (iodo and nitro) uracils metal (Mn, Cu, Ni) complexes (1-6) as antimalarial and antimicrobial agents. Interestingly, all of these metal complexes (1-6) showed fair antimalarial activities. Moreover, Cu complexes 2 (8AQ-Cu-5Iu) and 5 (8AQ-Cu-5Nu) exerted antimicrobial activities against Gram-negative bacteria including P. shigelloides and S. dysenteriae. The results reveal application of 8AQ and its metal complexes as potential compounds to be further developed as novel antimalarial and antibacterial agents. PMID:27103894

  12. Antimalarial and antimicrobial activities of 8-Aminoquinoline-Uracils metal complexes.

    PubMed

    Phopin, Kamonrat; Sinthupoom, Nujarin; Treeratanapiboon, Lertyot; Kunwittaya, Sarun; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong

    2016-01-01

    8-Aminoquinoline (8AQ) derivatives have been reported to have antimalarial, anticancer, and antioxidant activities. This study investigated the potency of 8AQ-5-substituted (iodo and nitro) uracils metal (Mn, Cu, Ni) complexes (1-6) as antimalarial and antimicrobial agents. Interestingly, all of these metal complexes (1-6) showed fair antimalarial activities. Moreover, Cu complexes 2 (8AQ-Cu-5Iu) and 5 (8AQ-Cu-5Nu) exerted antimicrobial activities against Gram-negative bacteria including P. shigelloides and S. dysenteriae. The results reveal application of 8AQ and its metal complexes as potential compounds to be further developed as novel antimalarial and antibacterial agents.

  13. Metal-chelating active packaging film enhances lysozyme inhibition of Listeria monocytogenes.

    PubMed

    Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2014-07-01

    Several studies have demonstrated that metal chelators enhance the antimicrobial activity of lysozyme. This study examined the effect of metal-chelating active packaging film on the antimicrobial activity of lysozyme against Listeria monocytogenes. Polypropylene films were surface modified by photoinitiated graft polymerization of acrylic acid (PP-g-PAA) from the food contact surface of the films to impart chelating activity based on electrostatic interactions. PP-g-PAA exhibited a carboxylic acid density of 113 ± 5.4 nmol cm(-2) and an iron chelating activity of 53.7 ± 9.8 nmol cm(-2). The antimicrobial interaction of lysozyme and PP-g-PAA depended on growth media composition. PP-g-PAA hindered lysozyme activity at low ionic strength (2.48-log increase at 64.4 mM total ionic strength) and enhanced lysozyme activity at moderate ionic strength (5.22-log reduction at 120 mM total ionic strength). These data support the hypothesis that at neutral pH, synergy between carboxylate metal-chelating films (pKa(bulk) 6.45) and lysozyme (pI 11.35) is optimal in solutions of moderate to high ionic strength to minimize undesirable charge interactions, such as lysozyme absorption onto film. These findings suggest that active packaging, which chelates metal ions based on ligand-specific interactions, in contrast to electrostatic interactions, may improve antimicrobial synergy. This work demonstrates the potential application of metal-chelating active packaging films to enhance the antimicrobial activity of membrane-disrupting antimicrobials, such as lysozyme.

  14. Effects of heavy metal Cd pollution on microbial activities in soil.

    PubMed

    Shi, Weilin; Ma, Xiying

    2017-12-23

    Heavy metal contamination of soil occurs when heavy metals are introduced to soil through human activities, leading to the gradual deterioration of the ecology and environment. Microorganism activity reflects the intensity of various biochemical reactions in soil, and changes in it reflect the level of heavy metal pollution affecting the soil. The effects were studied of heavy metal Cd on the microbial activity of soil at different concentrations by investigating the respiratory intensity, urease activity, and catalase activity in forest soil and garden soil. The results showed that the respiratory intensity, urease and catalase activities in the garden soil were all higher than in the forest soil. Cd has obvious inhibitory effects on microbial activities. The three parameters exhibited a downward trend with increasing concentrations of Cd. Catalase activity increased when the mass concentration of Cd reached 1.0 mg/kg, indicating that low concentrations of Cd can promote the activity of some microorganisms. Respiratory intensity and urease activity also increased when the concentration reached 10.0 mg/kg, showing that respiratory intensity and urease activity have strong response mechanisms to adverse conditions. The effective state of Cd in soil, as well as inhibition of microbial activity, decreased with incubation time.

  15. Galvanic vestibular stimulation combines with Earth-horizontal rotation in roll to induce the illusion of translation.

    PubMed

    Schneider, Erich; Bartl, Klaus; Glasauer, Stefan

    2009-05-01

    Human head rotation in roll around an earth-horizontal axis constitutes a vestibular stimulus that, by its rotational component, acts on the semicircular canals (SCC) and that, by its tilt of the gravity vector, also acts on the otoliths. Galvanic vestibular stimulation (GVS) is thought to resemble mainly a rotation in roll. A superposition of sinusoidal GVS with a natural earth-horizontal roll movement was therefore applied in order to cancel the rotation effects and to isolate the otolith activation. By self-adjusting the amplitude and phase of GVS, subjects were able to minimize their sensation of rotation and to generate the perception of a linear translation. The final adjustments are in the range of a model that predicts SCC activation during natural rotations and GVS. This indicates that the tilt-translation ambiguity of the otoliths is resolved by SCC-otolith interaction. It is concluded that GVS might be able to cancel rotations in roll and that the residual tilt of the gravitoinertial force is possibly interpreted as a linear translation.

  16. Verticality perception during and after galvanic vestibular stimulation.

    PubMed

    Volkening, Katharina; Bergmann, Jeannine; Keller, Ingo; Wuehr, Max; Müller, Friedemann; Jahn, Klaus

    2014-10-03

    The human brain constructs verticality perception by integrating vestibular, somatosensory, and visual information. Here we investigated whether galvanic vestibular stimulation (GVS) has an effect on verticality perception both during and after application, by assessing the subjective verticals (visual, haptic and postural) in healthy subjects at those times. During stimulation the subjective visual vertical and the subjective haptic vertical shifted towards the anode, whereas this shift was reversed towards the cathode in all modalities once stimulation was turned off. Overall, the effects were strongest for the haptic modality. Additional investigation of the time course of GVS-induced changes in the haptic vertical revealed that anodal shifts persisted for the entire 20-min stimulation interval in the majority of subjects. Aftereffects exhibited different types of decay, with a preponderance for an exponential decay. The existence of such reverse effects after stimulation could have implications for GVS-based therapy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Yeast enolase: mechanism of activation by metal ions.

    PubMed

    Brewer, J M

    1981-01-01

    Yeast enolase as prepared by current procedures is inherently chemically homogeneous, though deamidation and partial denaturation can produce electrophoretically distinct forms. A true isozyme of the enzyme exists but does not survive the purification procedure. The chemical sequence for both has been established. The enzyme behaves in solution like a compact, nearly spherical molecule of moderate hydration. Strong intramolecular forces maintain the structure of the individual subunits. The enzyme as isolated is dimeric. If dissociated in the presence of magnesium ions and substrate, then the subunits are active, but if the dissociation occurs in the absence of metal ions, they are inactive until they have reassociated and undergone a first order "annealing" process. Magnesium (II) enhances association. The interaction between the subunits is hydrophobic in character. The enzyme can bind up to 2 mol of most metal ions in "conformational" sites which then allows up to 2 mol of substrate or some substrate analogue to bind. This is not sufficient for catalysis, but conformational metal ions do more than just allow substrate binding. A change in the environment of the metal ions occurs on substrate or substrate analogue binding. There is an absolute correlation between the occurrence of a structural change undergone by the 3-amino analogue of phosphoenolpyruvate and whether the metal ions produce any level of enzymatic activity. For catalysis, two more moles of metal ions, called "catalytic", must bind. There is evidence that the enzymatic reaction involves a carbanion mechanism. It is likely that two more moles of metal ion can bind which inhibit the reaction. The requirement for 2 mol of metal ion per subunit which contribute in different ways to catalysis is exhibited by a number of other enzymes.

  18. Cooper pair tunnelling and quasiparticle poisoning in a galvanically isolated superconducting double dot

    NASA Astrophysics Data System (ADS)

    Esmail, A. A.; Ferguson, A. J.; Lambert, N. J.

    2017-12-01

    We increase the isolation of a superconducting double dot from its environment by galvanically isolating it from any electrodes. We probe it using high frequency reflectometry techniques, find 2e-periodic behaviour, and characterise the energy structure of its charge states. By modelling the response of the device, we determine the time averaged probability that the device is poisoned by quasiparticles, and by comparing this with previous work, we conclude that quasiparticle exchange between the dots and the leads is an important relaxation mechanism.

  19. Well-Defined Metal-O6 in Metal-Catecholates as a Novel Active Site for Oxygen Electroreduction.

    PubMed

    Liu, Xuan-He; Hu, Wei-Li; Jiang, Wen-Jie; Yang, Ya-Wen; Niu, Shuai; Sun, Bing; Wu, Jing; Hu, Jin-Song

    2017-08-30

    Metal-nitrogen coordination sites, M-N x (M = Fe, Co, Ni, etc.), have shown great potential to replace platinum group materials as electrocatalysts for oxygen reduction reaction (ORR). However, the real active site in M-N x is still vague to date due to their complicated structure and composition. It is therefore highly desirable but challenging to develop ORR catalysts with novel and clear active sites, which could meet the needs of comprehensive understanding of structure-function relationships and explore new cost-effective and efficient ORR electrocatalysts. Herein, well-defined M-O 6 coordination in metal-catecholates (M-CATs, M = Ni or Co) is discovered to be catalytically active for ORR via a four-electron-dominated pathway. In view of no pyrolysis involved and unambiguous crystalline structure of M-CATs, the M-O 6 octahedral coordination site with distinct structure is determined as a new type of active site for ORR. These findings extend the scope of metal-nonmetal coordination as an active site for ORR and pave a way for bottom-up design of novel electrocatalysts containing M-O 6 coordination.

  20. Measurement and analysis of channel attenuation characteristics for an implantable galvanic coupling human-body communication.

    PubMed

    Zhang, Shuang; Pun, Sio Hang; Mak, Peng Un; Qin, Yu-Ping; Liu, Yi-He; Vai, Mang I

    2016-11-14

    In this study, an experiment was designed to verify the low power consumption of galvanic coupling human-body communication. A silver electrode (silver content: 99%) is placed in a pig leg and a sine wave signal with the power of 0 dBm is input. Compared with radio frequency communication and antenna transmission communication, attenuation is reduced by approximately 10 to 15 dB, so channel characteristics are highly improved.

  1. Microscopic analysis and simulation of check-mark stain on the galvanized steel strip

    NASA Astrophysics Data System (ADS)

    So, Hongyun; Yoon, Hyun Gi; Chung, Myung Kyoon

    2010-11-01

    When galvanized steel strip is produced through a continuous hot-dip galvanizing process, the thickness of adhered zinc film is controlled by plane impinging air gas jet referred to as "air-knife system". In such a gas-jet wiping process, stain of check-mark or sag line shape frequently appears. The check-mark defect is caused by non-uniform zinc coating and the oblique patterns such as "W", "V" or "X" on the coated surface. The present paper presents a cause and analysis of the check-mark formation and a numerical simulation of sag lines by using the numerical data produced by Large Eddy Simulation (LES) of the three-dimensional compressible turbulent flow field around the air-knife system. It was found that there is alternating plane-wise vortices near the impinging stagnation region and such alternating vortices move almost periodically to the right and to the left sides on the stagnation line due to the jet flow instability. Meanwhile, in order to simulate the check-mark formation, a novel perturbation model has been developed to predict the variation of coating thickness along the transverse direction. Finally, the three-dimensional zinc coating surface was obtained by the present perturbation model. It was found that the sag line formation is determined by the combination of the instantaneous coating thickness distribution along the transverse direction near the stagnation line and the feed speed of the steel strip.

  2. Aluminum surface corrosion and the mechanism of inhibitors using pH and metal ion selective imaging fiber bundles.

    PubMed

    Szunerits, Sabine; Walt, David R

    2002-02-15

    The localized corrosion behavior of a galvanic aluminum copper couple was investigated by in situ fluorescence imaging with a fiber-optic imaging sensor. Three different, but complementary methods were used for visualizing remote corrosion sites, mapping the topography of the metal surface, and measuring local chemical concentrations of H+, OH-, and Al3+. The first method is based on a pH-sensitive imaging fiber, where the fluorescent dye SNAFL was covalently attached to the fiber's distal end. Fluorescence images were acquired as a function of time at different areas of the galvanic couple. In a second method, the fluorescent dye morin was immobilized on the fiber-optic imaging sensor, which allowed the in situ localization of corrosion processes on pure aluminum to be visualized over time by monitoring the release of Al3+. The development of fluorescence on the aluminum surface defined the areas associated with the anodic dissolution of aluminum. We also investigated the inhibition of corrosion of pure aluminum by CeCl3 and 8-hydroxyquinoline. The decrease in current, the decrease in the number of active sites on the aluminum surface, and the faster surface passivation are all consistent indications that cerium chloride and 8-hydroxyquinoline inhibit corrosion effectively. From the number and extent of corrosion sites and the release of aluminum ions monitored with the fiber, it was shown that 8-hydroxyquinoline is a more effective inhibitor than cerium chloride.

  3. The role of surface nonuniformity in controlling the initiation of a galvanic replacement reaction.

    PubMed

    Cobley, Claire M; Zhang, Qiang; Song, Wilbur; Xia, Younan

    2011-06-06

    The use of silver nanocrystals--asymmetrically truncated octahedrons and nanobars--characterized by a nonuniform surface as substrates for a galvanic replacement reaction was investigated. As the surfaces of these nanocrystals contain facets with a variety of different areas, shapes, and atomic arrangements, we were able to examine the roles of these parameters in different stages of the galvanic replacement reaction with HAuCl(4) (e.g., pitting, hollowing, pit closing, and pore formation), and thus obtain a deeper understanding of the reaction mechanism than is possible with silver nanocubes. We found that the most important of these parameters was the atomic arrangement, that is, whether the surface was capped by a {100} or {111} facet, and that the area and shape of the facet had essentially no effect on the initiation of the reaction. Interestingly, through the reaction with asymmetrically truncated octahedrons, we were also able to demonstrate that even when pitting occurred over a large area, this region would be sealed through a combination of atomic diffusion and deposition during the intermediate stages of the reaction. Consequently, even if pitting occurred across a large percentage of the nanocrystal surface, it was still possible to maintain the morphology of the template throughout the reaction. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Galvanizing and Galvannealing Behavior of CMnSiCr Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Lin, Ko-Chun; Chu, Peng-Wei; Lin, Chao-Sung; Chen, Hon-Bor

    2013-06-01

    Alloying elements, such as Mn, Mo, Si, and Cr, are commonly used to enhance the strength of advanced high-strength steels. Those elements also play an important role in the hot-dip galvanizing (GI) and galvannealing (GA) process. In this study, two kinds of CMnSiCr dual-phase steels were galvanized and galvannealed using a hot-dip simulator to investigate the effect of the alloying elements on the microstructure of the GI and GA coatings. The results showed that the dual-phase steels had good galvanizability because no bare spots were observed and the Fe-Zn phases were readily formed at the interface. However, the alloying reaction during the GA process was significantly hindered. XPS analysis showed that external oxidation occurred under an extremely low dew point [213 K to 203 K (-60 °C to -70 °C)] atmosphere during the annealing prior to hot dipping. However, most of the oxides were reduced during the GI process. After the GI process, the Al was present as solid solutes in the Fe-Zn phase, suggesting that the Fe-Zn phase was formed from the transformation of the Fe-Al inhibition alloy. Meanwhile, the solubility of Si in the ζ phase was extremely low. With continued GA reaction, the ζ phase transformed into the δ phase, which contained approximately 1.0 at.pct Si. The Si also diffused into the Zn layer during the GA reaction. Hence, the ζ phase did not homogeneously nucleate at the steel substrate/Zn coating interface, but was found at the area away from the interface. Therefore, the Fe-Zn phases on the CMnSiCr dual-phase steels were relatively non-uniform compared to those on interstitial-free steel.

  5. Palladium Coated Copper Nanowires as a Hydrogen Oxidation Electrocatalyst in Base

    DOE PAGES

    Alia, Shaun M.; Yan, Yushan

    2015-05-09

    The palladium (Pd) nanotubes we synthesized by the spontaneous galvanic displacement of copper (Cu) nanowires, are forming extended surface nanostructures highly active for the hydrogen oxidation reaction (HOR) in base. The synthesized catalysts produce specific activities in rotating disk electrode half-cells 20 times greater than Pd nanoparticles and about 80% higher than polycrystalline Pd. Although the surface area of the Pd nanotubes was low compared to conventional catalysts, partial galvanic displacement thrifted the noble metal layer and increased the Pd surface area. Moreover, the use of Pd coated Cu nanowires resulted in a HOR mass exchange current density 7 timesmore » greater than the Pd nanoparticles. The activity of the Pd coated Cu nanowires further nears Pt/C, producing 95% of the mass activity.« less

  6. Corrosion Potential Monitoring for Polymer Composite Wrapping and Galvanic CP System for Reinforced Concrete Marine Piles

    DTIC Science & Technology

    2010-02-01

    deteriorated – Rebar corrosion – Spalling concrete Repair Options • Patching • Polymeric composite wraps • Pre-fabricated composite shell with CP Objective... Corrosion Potential Monitoring for Polymer Composite Wrapping and Galvanic CP System for Reinforced Concrete Marine Piles David Bailey, Richard...Command DoD Corrosion Problem • Piers and wharves – Critical facilities – $14.5M maintenance costs – Reinforced concrete piles • Aged and

  7. How Many Atomic Layers of Zinc Are in a Galvanized Iron Coating? An Experiment for General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Yang, Shui-Ping

    2007-01-01

    This article describes an experiment using a novel gasometric assembly to determine the thickness and number of atomic layers of zinc coating on galvanized iron substrates. Students solved this problem through three stages. In the first stage, students were encouraged to find a suitable acidic concentration through the guided-inquiry approach. In…

  8. Nanoporous metallic surface: Facile fabrication and enhancement of boiling heat transfer

    NASA Astrophysics Data System (ADS)

    Tang, Yong; Tang, Biao; Qing, Jianbo; Li, Qing; Lu, Longsheng

    2012-09-01

    The paper reports a flexible and low-cost approach, hot-dip galvanizing and dealloying, for the fabrication of enhanced nanoporous metallic surfaces. A Cu-Zn alloy layer mainly composed of γ-Cu5Zn8 and β'-CuZn was formed during the hot-dipping process. The multiple oxidation peaks recorded in the anodic liner sweep voltammetry measurements indicate different dezincification preferences of the alloy phases. A nanoporous copper surface with approximately 50-200 nm in pore size was obtained after a free corrosion process. The nanoporous structure improves the surface wettability and shows dramatic reduction of wall superheat compared to that of the plain surface in the pool-boiling experiments.

  9. Electrochemical, Polarization, and Crevice Corrosion Testing of Nitinol 60, A Supplement to the ECLSS Sustaining Materials Compatibility Study

    NASA Technical Reports Server (NTRS)

    Lee, R. E.

    2016-01-01

    In earlier trials, electrochemical test results were presented for six noble metals evaluated in test solutions representative of waste liquids processed in the Environmental Control and Life Support System (ECLSS) aboard the International Space Station (ISS). Subsequently, a seventh metal, Nitinol 60, was added for evaluation and subjected to the same test routines, data analysis, and theoretical methodologies. The previous six test metals included three titanium grades, (commercially pure, 6Al-4V alloy and 6Al-4V low interstitial alloy), two nickel-chromium alloys (Inconel(RegisteredTrademark) 625 and Hastelloy(RegisteredTrademark) C276), and one high-tier stainless steel (Cronidur(RegisteredTrademark) 30). The three titanium alloys gave the best results of all the metals, indicating superior corrosive nobility and galvanic protection properties. For this current effort, the results have clearly shown that Nitinol 60 is almost as noble as titanium, being very corrosion-resistant and galvanically compatible with the other six metals electrochemically and during long-term exposure. is also quite noble as it is very corrosion resistant and galvanically compatible with the other six metals from both an electrochemical perspective and long-term crevice corrosion scenario. This was clearly demonstrated utilizing the same techniques for linear, Tafel and cyclic polarization, and galvanic coupling of the metal candidate as was done for the previous study. The high nobility and low corrosion susceptibility for Nitinol 60 appear to be intermediate to the nickel/chromium alloys and the titanium metals with indications that are more reflective of the titanium metals in terms of general corrosion and pitting behavior.

  10. 75 FR 47734 - Airworthiness Directives; Piaggio Aero Industries S.p.A. Model PIAGGIO P-180 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-09

    ... stabilizer (carbon fibre); investigation identified the cause in galvanic corrosion between dissimilar... elevator hinges fittings (metallic) and the horizontal stabilizer (carbon fibre); investigation identified... (carbon fibre); investigation identified the cause in galvanic corrosion between dissimilar materials. If...

  11. Strain-dependent activation energy of shear transformation in metallic glasses

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Falk, Michael; Li, Jinfu; Kong, Lingti

    2017-04-01

    Shear transformation (ST) plays a decisive role in determining the mechanical behavior of metallic glasses, which is believed to be a stress-assisted thermally activated process. Understanding the dependence in its activation energy on the stress imposed on the material is of central importance to model the deformation process of metallic glasses and other amorphous solids. Here a theoretical model is proposed to predict the variation of the minimum energy path (MEP) associated with a particular ST event upon further deformation. Verification based on atomistic simulations and calculations are also conducted. The proposed model reproduces the MEP and activation energy of an ST event under different imposed macroscopic strains based on a known MEP at a reference strain. Moreover, an analytical approach is proposed based on the atomistic calculations, which works well when the stress varies linearity along the MEP. These findings provide necessary background for understanding the activation processes and, in turn, the mechanical behavior of metallic glasses.

  12. Modeling and Characterization of cMUT-based Devices Applied to Galvanic Isolation

    NASA Astrophysics Data System (ADS)

    Heller, Jacques; Boulmé, Audren; Alquier, Daniel; Ngo, Sophie; Perroteau, Marie; Certon, Domnique

    This paper describes a new way of using cMUT technology: galvanic isolation for power electronics. These devices work like acoustic transformers, except that piezoelectricity is replaced by cMUT technology. Primary and secondary circuits are two cMUT-based transducers respectively layered on each side of a silicon substrate, through which the ultrasonic triggering signal is transmitted. A specific model based on a commercial finite element code was implemented to simulate these devices. A particular attention was paid on the modeling of the cMUT/substrate coupling which is a key feature for the intended application. First experimental results performed for model validation are presented here and discussed.

  13. Activation of methane by transition metal-substituted aluminophosphate molecular sieves

    DOEpatents

    Iton, Lennox E.; Maroni, Victor A.

    1991-01-01

    Aluminophosphate molecular sieves substituted with cobalt, manganese or iron and having the AlPO.sub.4 -34 or AlPO.sub.4 -5, or related AlPO.sub.4 structure activate methane starting at approximately 350.degree. C. Between 400.degree. and 500.degree. C. and at methane pressures .ltoreq.1 atmosphere the rate of methane conversion increases steadily with typical conversion efficiencies at 500.degree. C. approaching 50% and selectivity to the production of C.sub.2+ hydrocarbons approaching 100%. The activation mechanism is based on reduction of the transition metal(III) form of the molecular sieve to the transition metal(II) form with accompanying oxidative dehydrogenation of the methane. Reoxidation of the - transition metal(II) form to the transition metal(III) form can be done either chemically (e.g., using O.sub.2) or electrochemically.

  14. Galvanic corrosion of ferritic stainless steels used for dental magnetic attachments in contact with an iron-platinum magnet.

    PubMed

    Nakamura, Keisuke; Takada, Yukyo; Yoda, Masanobu; Kimura, Kohei; Okuno, Osamu

    2008-03-01

    This study was an examination of the galvanic corrosion of ferritic stainless steels, namely SUS 444, SUS XM27, and SUS 447J1, in contact with a Fe-Pt magnet. The surface area ratio of each stainless steel to the Fe-Pt magnet was set at 1/1 or 1/10. Galvanic corrosion between the stainless steels and the magnet was evaluated by the amount of released ions and the electrochemical properties in 0.9% NaCl solution. Although each stainless steel showed sufficient corrosion resistance for clinical use, the amount of ions released from each tended to increase when the stainless steel was in contact with the magnet. When the surface area ratio was reduced to 1/10, the amount of Fe ions released from the stainless steels increased significantly more than when there was no contact. Since contact with the magnet which possessed an extremely noble potential created a very corrosive environment for the stainless steels, 447J1 was thus the recommended choice against a corrosion exposure as such.

  15. Activated Carbon Textile via Chemistry of Metal Extraction for Supercapacitors.

    PubMed

    Lam, Do Van; Jo, Kyungmin; Kim, Chang-Hyun; Kim, Jae-Hyun; Lee, Hak-Joo; Lee, Seung-Mo

    2016-12-27

    Carbothermic reduction in the chemistry of metal extraction (MO(s) + C(s) → M(s) + CO(g)) using carbon as a sacrificial agent has been used to smelt metals from diverse oxide ores since ancient times. Here, we paid attention to another aspect of the carbothermic reduction to prepare an activated carbon textile for high-rate-performance supercapacitors. On the basis of thermodynamic reducibility of metal oxides reported by Ellingham, we employed not carbon, but metal oxide as a sacrificial agent in order to prepare an activated carbon textile. We conformally coated ZnO on a bare cotton textile using atomic layer deposition, followed by pyrolysis at high temperature (C(s) + ZnO(s) → C'(s) + Zn(g) + CO(g)). We figured out that it leads to concurrent carbonization and activation in a chemical as well as mechanical way. Particularly, the combined effects of mechanical buckling and fracture that occurred between ZnO and cotton turned out to play an important role in carbonizing and activating the cotton textile, thereby significantly increasing surface area (nearly 10 times) compared with the cotton textile prepared without ZnO. The carbon textiles prepared by carbothermic reduction showed impressive combination properties of high power and energy densities (over 20-fold increase) together with high cyclic stability.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarpellini, D.; Paoloni, S.; Medaglia, P.G.

    Highlights: • ZnO nanorods were grown on Au and Ag films in aqueous solution by galvanic effect. • The method is prone to metal contamination which can influence the ZnO properties. • Iron doping improves the lattice matching between ZnO and the substrate. • Energy levels of point defects are lowered and the light emission is red-shifted. • Galvanic-induced nucleation starts and proceeds continuously during the growth. - Abstract: Dense arrays of vertically aligned ZnO nanorods have been grown onto either silver or gold seedless substrates trough a simple hydrothermal method by exploiting the galvanic effect between the substrate andmore » metallic parts. The nanorods exhibit larger bases and more defined hexagonal shapes, in comparison with standard non-galvanic wet-chemistry synthesis. X-ray diffraction (XRD) shows that the iron contamination, associated with the galvanic contact, significantly improves the in-plane compatibility of ZnO with the Au and Ag cubic lattice. Photoluminescence (PL) measurements indicate that the contamination does not affect the number density of localized defects, but lowers their energy levels uniformly; differently, the band-edge emission is not altered appreciably. Finally, we have found that the ZnO hetero-nucleation by galvanic effect initiates at different times in different sites of the substrate area. Our results can be useful for the fabrication of high performance piezonanodevices comprising high-density metal-to-ZnO nanoscaled junctions without intermediate polycrystalline layers.« less

  17. Review of Thermal Spray Coating Applications in the Steel Industry: Part 2—Zinc Pot Hardware in the Continuous Galvanizing Line

    NASA Astrophysics Data System (ADS)

    Matthews, S.; James, B.

    2010-12-01

    This two-part article series reviews the application of thermal spray coating technology in the production of steel and steel sheet products. Part 2 of this article series is dedicated to coating solutions in the continuous galvanizing line. The corrosion mechanisms of Fe- and Co-based bulk materials are briefly reviewed as a basis for the development of thermal spray coating solutions. WC-Co thermal spray coatings are commonly applied to low Al-content galvanizing hardware due to their superior corrosion resistance compared to Fe and Co alloys. The effect of phase degradation, carbon content, and WC grain size are discussed. At high Al concentrations, the properties of WC-Co coatings degrade significantly, leading to the application of oxide-based coatings and corrosion-resistant boride containing coatings. The latest results of testing are summarized, highlighting the critical coating parameters.

  18. Wide gap active brazing of ceramic-to-metal-joints for high temperature applications

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Zhao, L.; Kopp, N.; Samadian Anavar, S.

    2014-03-01

    Applications like solid oxide fuel cells and sensors increasingly demand the possibility to braze ceramics to metals with a good resistance to high temperatures and oxidative atmospheres. Commonly used silver based active filler metals cannot fulfill these requirements, if application temperatures higher than 600°C occur. Au and Pd based active fillers are too expensive for many fields of use. As one possible solution nickel based active fillers were developed. Due to the high brazing temperatures and the low ductility of nickel based filler metals, the modification of standard nickel based filler metals were necessary to meet the requirements of above mentioned applications. To reduce thermally induced stresses wide brazing gaps and the addition of Al2O3 and WC particles to the filler metal were applied. In this study, the microstructure of the brazed joints and the thermo-chemical reactions between filler metal, active elements and WC particles were analyzed to understand the mechanism of the so called wide gap active brazing process. With regard to the behavior in typical application oxidation and thermal cycle tests were conducted as well as tensile tests.

  19. Synthesis and antimalarial activity of metal complexes of cross-bridged tetraazamacrocyclic ligands.

    PubMed

    Hubin, Timothy J; Amoyaw, Prince N-A; Roewe, Kimberly D; Simpson, Natalie C; Maples, Randall D; Carder Freeman, TaRynn N; Cain, Amy N; Le, Justin G; Archibald, Stephen J; Khan, Shabana I; Tekwani, Babu L; Khan, M O Faruk

    2014-07-01

    Using transition metals such as manganese(II), iron(II), cobalt(II), nickel(II), copper(II), and zinc(II), several new metal complexes of cross-bridged tetraazamacrocyclic chelators namely, cyclen- and cyclam-analogs with benzyl groups, were synthesized and screened for in vitro antimalarial activity against chloroquine-resistant (W2) and chloroquine-sensitive (D6) strains of Plasmodium falciparum. The metal-free chelators tested showed little or no antimalarial activity. All the metal complexes of the dibenzyl cross-bridged cyclam ligand exhibited potent antimalarial activity. The Mn(2+) complex of this ligand was the most potent with IC50s of 0.127 and 0.157μM against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) P. falciparum strains, respectively. In general, the dibenzyl hydrophobic ligands showed better anti-malarial activity compared to the activity of monobenzyl ligands, potentially because of their higher lipophilicity and thus better cell penetration ability. The higher antimalarial activity displayed by the manganese complex for the cyclam ligand in comparison to that of the cyclen, correlates with the larger pocket of cyclam compared to that of cyclen which produces a more stable complex with the Mn(2+). Few of the Cu(2+) and Fe(2+) complexes also showed improvement in activity but Ni(2+), Co(2+) and Zn(2+) complexes did not show any improvement in activity upon the metal-free ligands for anti-malarial development. Published by Elsevier Ltd.

  20. Sources of heavy metals in urban wastewater in Stockholm.

    PubMed

    Sörme, L; Lagerkvist, R

    2002-10-21

    The sources of heavy metals to a wastewater treatment plant was investigated. Sources can be actual goods, e.g. runoff from roofs, wear of tires, food, or activities, e.g. large enterprises, car washes. The sources were identified by knowing the metals content in various goods and the emissions from goods to sewage or stormwater. The sources of sewage water and stormwater were categorized to enable comparison with other research and measurements. The categories were households, drainage water, businesses, pipe sediment (all transported in sewage water), atmospheric deposition, traffic, building materials and pipe sediment (transported in stormwater). Results show that it was possible to track the sources of heavy metals for some metals such as Cu and Zn (110 and 100% found, respectively) as well as Ni and Hg (70% found). Other metals sources are still poorly understood or underestimated (Cd 60%, Pb 50%, Cr 20% known). The largest sources of Cu were tap water and roofs. For Zn the largest sources were galvanized material and car washes. In the case of Ni, the largest sources were chemicals used in the WTP and drinking water itself. And finally, for Hg the most dominant emission source was the amalgam in teeth. For Pb, Cr and Cd, where sources were more poorly understood, the largest contributors for all were car washes. Estimated results of sources from this study were compared with previously done measurements. The comparison shows that measured contribution from households is higher than that estimated (except Hg), leading to the conclusion that the sources of sewage water from households are still poorly understood or that known sources are underestimated. In the case of stormwater, the estimated contributions are rather well in agreement with measured contributions, although uncertainties are large for both estimations and measurements. Existing pipe sediments in the plumbing system, which release Hg and Pb, could be one explanation for the missing amount of

  1. Precise Control Over Morphology and Density of Metal and Transition Metal Nanostructures for Sensing and Energy Related Applications

    NASA Astrophysics Data System (ADS)

    Tran, Minh

    Metallic nanostructures are of great interest due to their applicability in various modern technologies, such as catalysis, sensing, and optoelectronics. In this work, we employed three solution-based methods, including colloidal suspension synthesis, modified galvanic displacement, and electrodeposition, to synthesize nanostructured metals and transition metals, including gold (Au), copper (Cu), platinum (Pt), palladium (Pd), nickel (Ni), and cobalt (Co). Our focus was to establish process-structure-property relationship and explore their applicability in the field of sensing and clean energy generation. More precisely we established relationships between experimental parameters, such as temperature, applied potential, electrolyte pH, reactant concentration, additive, and the number of deposition cycles, and the characteristics of the nanostructures, such as morphology, density, size, and size distribution. Our results indicated that the nanostructures were tunable by adjusting the process parameters. This provided insight into the growth mechanisms of the metallic nanostructures. Since properties of the nanostructures are tunable by controlling the structure, our results provided researchers with additional tools to obtain nanomaterials with desired properties for specific applications. The materials synthesized by our methods were utilized to as substrates for surface enhanced Raman spectroscopy (SERS) and as photocathodes for photoelectrochemical production of hydrogen. The results showed that the performances of our materials were either promising or compatible with those reported in the literature, thus bringing new opportunities to the development of low-cost, high-performance, and flexible nanomaterials for the current and future technologies.

  2. Chrysler Upset Protrusion Joining Techniques for Joining Dissimilar Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, Stephen

    The project goal was to develop and demonstrate a robust, cost effective, and versatile joining technique, known as Upset Protrusion Joining (UPJ), for joining challenging dissimilar metal com-binations, especially those where one of the metals is a die cast magnesium (Mg) component. Since two of the key obstacles preventing more widespread use of light metals (especially in high volume automotive applications) are 1) a lack of robust joining techniques and 2) susceptibility to galvanic corrosion, and since the majority of the joint combinations evaluated in this project include die cast Mg (the lightest structural metal) as one of the twomore » materials being joined, and since die casting is the most common and cost effective process for producing Mg components, then successful project completion provides a key enabler to high volume application of lightweight materials, thus potentially leading to reduced costs, and encouraging implementation of lightweight multi-material vehicles for significant reductions in energy consumption and reduced greenhouse gas emissions. Eco-nomic benefits to end-use consumers are achieved primarily via the reduction in fuel consumption. Unlike currently available commercial processes, the UPJ process relies on a very robust mechanical joint rather than intermetallic bonding, so the more cathodic material can be coated prior to joining, thus creating a robust isolation against galvanic attack on the more anodic material. Additionally, since the UPJ protrusion is going through a hole that can be pre-drilled or pre-punched prior to coating, the UPJ process is less likely to damage the coating when the joint is being made. Further-more, since there is no additional cathodic material (such as a steel fastener) used to create the joint, there is no joining induced galvanic activity beyond that of the two parent materials. In accordance with its originally proposed plan, this project has successfully developed process variants of UPJ to

  3. A metal-free organic-inorganic aqueous flow battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huskinson, B; Marshak, MP; Suh, C

    2014-01-08

    As the fraction of electricity generation from intermittent renewable sources-such as solar or wind-grows, the ability to store large amounts of electrical energy is of increasing importance. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output(1,2). In contrast, flow batteries can independently scale the power (electrode area) and energy (arbitrarily large storage volume) components of the system by maintaining all of the electro-active species in fluid form(3-5). Wide-scale utilization of flow batteries is, however, limited by the abundance and cost of these materials, particularly those using redox-active metalsmore » and precious-metal electrocatalysts(6,7). Here we describe a class of energy storage materials that exploits the favourable chemical and electro-chemical properties of a family of molecules known as quinones. The example we demonstrate is ametal-free flow battery based on the redox chemistry of 9,10-anthraquinone-2,7-disulphonic acid (AQDS). AQDS undergoes extremely rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in sulphuric acid. An aqueous flow battery with inexpensive carbon electrodes, combining the quinone/hydroquinone couple with the Br-2/Br- redox couple, yields a peak galvanic power density exceeding 0.6 W cm(-2) at 1.3 A cm(-2). Cycling of this quinone-bromide flow battery showed >99 per cent storage capacity retention per cycle. The organic anthraquinone species can be synthesized from inexpensive commodity chemicals(8). This organic approach permits tuning of important properties such as the reduction potential and solubility by adding functional groups: for example, we demonstrate that the addition of two hydroxy groups to AQDS increases the open circuit potential of the cell by 11% and we describe a pathway for further increases in cell voltage. The use of p-aromatic redox-active organic molecules instead of redox-active

  4. Structure-activity relationships of mononuclear metal-thiosemicarbazone complexes endowed with potent antiplasmodial and antiamoebic activities.

    PubMed

    Bahl, Deepa; Athar, Fareeda; Soares, Milena Botelho Pereira; de Sá, Matheus Santos; Moreira, Diogo Rodrigo Magalhães; Srivastava, Rajendra Mohan; Leite, Ana Cristina Lima; Azam, Amir

    2010-09-15

    A useful concept for the rational design of antiparasitic drug candidates is the complexation of bioactive ligands with transition metals. In view of this, an investigation was conducted into a new set of metal complexes as potential antiplasmodium and antiamoebic agents, in order to examine the importance of metallic atoms, as well as the kind of sphere of co-ordination, in these biological properties. Four functionalized furyl-thiosemicarbazones (NT1-4) treated with divalent metals (Cu, Co, Pt, and Pd) to form the mononuclear metallic complexes of formula [M(L)2Cl2] or [M(L)Cl2] were examined. The pharmacological characterization, including assays against Plasmodium falciparum and Entamoeba histolytica, cytotoxicity to mammalian cells, and interaction with pBR 322 plasmid DNA was performed. Structure-activity relationship data revealed that the metallic complexation plays an essential role in antiprotozoal activity, rather than the simple presence of the ligand or metal alone. Important steps towards identification of novel antiplasmodium (NT1Cu, IC50 of 4.6 microM) and antiamoebic (NT2Pd, IC50 of 0.6 microM) drug prototypes were achieved. Of particular relevance to this work, these prototypes were able to reduce the proliferation of these parasites at concentrations that are not cytotoxic to mammalian cells. Copyright (c) 2010. Published by Elsevier Ltd.

  5. Cementation of colloidal particles on electrodes in a galvanic microreactor.

    PubMed

    Jan, Linda; Punckt, Christian; Aksay, Ilhan A

    2013-07-10

    We have studied the processes leading to the cementation of colloidal particles during their autonomous assembly on corroding copper electrodes within a Cu-Au galvanic microreactor. We determined the onset of particle immobilization through particle tracking, monitored the dissolution of copper as well as the deposition of insoluble products of the corrosion reactions in situ, and showed that particle immobilization initiated after reaction products (RPs) began to deposit on the electrode substrate. We further demonstrated that the time and the extent of RP precipitation and thus the strength of the particle-substrate bond could be tuned by varying the amount of copper in the system and the microreactor pH. The ability to cement colloidal particles at locations undergoing corrosion illustrates that the studied colloidal assembly approach holds potential for applications in dynamic material property adaptation.

  6. Activational Peaking in Educable and Trainable Mentally Retarded Persons

    ERIC Educational Resources Information Center

    Gargiulo, Richard M.; Uno, Tad

    1977-01-01

    A study involving 10 educable and 10 trainable mentally retarded adolescents indicated that levels of intellectual functioning influenced patterns of autonomic activation as measured by magnitude of the galvanic skin response. (CL)

  7. The Feasibility of Using a Galvanic Cell Array for Corrosion Detection and Solution Monitoring

    NASA Technical Reports Server (NTRS)

    Kolody, Mark; Calle, Luz-Marina; Zeitlin, Nancy P. (Technical Monitor)

    2003-01-01

    An initial investigation into the response of the individual galvanic couples was conducted using potentiodynamic polarization measurements of solutions under conditions of varying corrosivity. It is hypothesized that the differing electrodes may provide a means to further investigate the corrosive nature of the analyte through genetic algorithms and pattern recognition techniques. The robust design of the electrochemical sensor makes its utilization in space exploration particularly attractive. Since the electrodes are fired on a ceramic substrate at 900 C, they may be one of the most rugged sensors available for the anticipated usage.

  8. Repetitively Coupled Chemical Reduction and Galvanic Exchange as a Synthesis Strategy for Expanding Applicable Number of Pt Atoms in Dendrimer-Encapsulated Pt Nanoparticles.

    PubMed

    Cho, Taehoon; Yoon, Chang Won; Kim, Joohoon

    2018-06-13

    In this study, we report the controllable synthesis of dendrimer-encapsulated Pt nanoparticles (Pt DENs) utilizing repetitively coupled chemical reduction and galvanic exchange reactions. The synthesis strategy allows the expansion of the applicable number of Pt atoms encapsulated inside dendrimers to more than 1000 without being limited by the fixed number of complexation sites for Pt 2+ precursor ions in the dendrimers. The synthesis of Pt DENs is achieved in a short period of time (i.e., ∼10 min) simply by the coaddition of appropriate amounts of Cu 2+ and Pt 2+ precursors into aqueous dendrimer solution and subsequent addition of reducing agents such as BH 4 - , resulting in fast and selective complexation of Cu 2+ with the dendrimers and subsequent chemical reduction of the complexed Cu 2+ while uncomplexed Pt 2+ precursors remain oxidized. Interestingly, the chemical reduction of Cu 2+ , leading to the formation of Cu nanoparticles encapsulated inside the dendrimers, is coupled with the galvanic exchange of the Cu nanoparticles with the nearby Pt 2+ . This coupling repetitively proceeds until all of the added Pt 2+ ions form into Pt nanoparticles encapsulated inside the dendrimers. In contrast to the conventional method utilizing direct chemical reduction, this repetitively coupled chemical reduction and galvanic exchange enables a substantial increase in the applicable number of Pt atoms up to 1320 in Pt DENs while maintaining the unique features of DENs.

  9. Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria

    NASA Astrophysics Data System (ADS)

    Bestawy, Ebtesam El.; Helmy, Shacker; Hussien, Hany; Fahmy, Mohamed; Amer, Ranya

    2013-03-01

    Removal of heavy metals from contaminated domestic-industrial effluent using eight resistant indigenous bacteria isolated from acclimatized activated sludge was investigated. Molecular identification using 16S rDNA amplification revealed that all strains were Gram-negative among which two were resistant to each of copper, cadmium and cobalt while one was resistant to each of chromium and the heavy metal mixture. They were identified as Enterobacter sp. (Cu1), Enterobacter sp. (Cu2), Stenotrophomonas sp. (Cd1), Providencia sp. (Cd2), Chryseobacterium sp. (Co1), Comamonas sp. (Co2), Ochrobactrum sp. (Cr) and Delftia sp. (M1) according to their resistance pattern. Strains Cu1, Cd1, Co2 and Cr were able to resist 275 mg Cu/l, 320 mg Cd/l, 140 mg Co/l and 29 mg Cr/l respectively. The four resistant strains were used as a mixture to remove heavy metals (elevated concentrations) and reduce the organic load of wastewater effluent. Results revealed that using the proposed activated sludge with the resistant bacterial mixture was more efficient for heavy metal removal compared to the activated sludge alone. It is therefore recommended that the proposed activated sludge system augmented with the acclimatized strains is the best choice to ensure high treatment efficiency and performance under metal stresses especially when industrial effluents are involved.

  10. Ternary metal complexes of guaifenesin drug: Synthesis, spectroscopic characterization and in vitro anticancer activity of the metal complexes.

    PubMed

    Mahmoud, W H; Mahmoud, N F; Mohamed, G G; El-Sonbati, A Z; El-Bindary, A A

    2015-01-01

    The coordination behavior of a series of transition metal ions named Cr(III), Fe(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with a mono negative tridentate guaifenesin ligand (GFS) (OOO donation sites) and 1,10-phenanthroline (Phen) is reported. The metal complexes are characterized based on elemental analyses, IR, (1)H NMR, solid reflectance, magnetic moment, molar conductance, UV-vis spectral studies, mass spectroscopy, ESR, XRD and thermal analysis (TG and DTG). The ternary metal complexes were found to have the formulae of [M(GFS)(Phen)Cl]Cl·nH2O (M=Cr(III) (n=1) and Fe(III) (n=0)), [M(GFS)(Phen)Cl]·nH2O (M=Mn(II) (n=0), Zn(II) (n=0) and Cu(II) (n=3)) and [M(GFS)(Phen)(H2O)]Cl·nH2O (M=Co(II) (n=0), Ni(II) (n=0) and Cd(II) (n=4)). All the chelates are found to have octahedral geometrical structures. The ligand and its ternary chelates are subjected to thermal analyses (TG and DTG). The GFS ligand, in comparison to its ternary metal complexes also was screened for their antibacterial activity on gram positive bacteria (Bacillus subtilis and Staphylococcus aureus), gram negative bacteria (Escherichia coli and Neisseria gonorrhoeae) and for in vitro antifungal activity against (Candida albicans). The activity data show that the metal complexes have antibacterial and antifungal activity more than the parent GFS ligand. The complexes were also screened for its in vitro anticancer activity against the Breast cell line (MFC7) and the results obtained show that they exhibit a considerable anticancer activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Comparative life cycle cost assessment of painted and hot-dip galvanized bridges.

    PubMed

    Rossi, B; Marquart, S; Rossi, G

    2017-07-15

    The study addresses the life cycle cost assessment (LCCA) of steel bridges, focusing on the maintenance activities and the maintenance scenario. Firstly, the unit costs of maintenance activities and their durability (i.e. the time between two activities) are evaluated. Pragmatic data are provided for the environment category C4 and for three activities: Patch Up, Overcoating and Remove & Replace. A comparative LCCA for a typical hypothetic steel girder bridge is carried out, either painted or hot-dip galvanized (HDG), in the environmental class C4. The LCC versus the cumulated life is provided for both options. The initial cost of the steel unpainted option is only 50.3% of the HDG option. It is shown that after 'Overcoating' occurring at 18.5 years, the total Net Present Value (NPV) of the painted option surpasses that of the HDG option. A sensitivity analysis of the NPV to the cost and service life parameters, the escalation and discount rates is then performed. The discount and escalation rates, considerably influences the total LCC, following a non-linear trend. The total LCC decreases with the discount rate increasing and, conversely, increases with the escalation rate increasing. Secondly, the influence of the maintenance scenario on the total LCC is assessed based on a probabilistic approach. A permutation of the three independent maintenance activities assumed to occur six times over the life of the bridge is considered and a probability of occurrence is associated to each unique scenario. The most probable scenarios are then classified according to their NPV or achieved service life. This approach leads to the definition of a cost-effective maintenance scenario i.e. the scenario, within all the considered permutations, that has the minimum LCC in a range of lifespan. Besides, the probabilistic analysis also shows that, whatever the scenario, the return on investment period ranges between 18.5 years and 24.2 years. After that period, the HDG option becomes

  12. An assessment of polyurethane foam passive samplers for atmospheric metals compared with active samplers.

    PubMed

    Li, Qilu; Yang, Kong; Li, Jun; Zeng, Xiangying; Yu, Zhiqiang; Zhang, Gan

    2018-05-01

    In this study, we conducted an assessment of polyurethane foam (PUF) passive sampling for metals combining active sampling. Remarkably, we found that the metals collected in the passive samples differed greatly from those collected in active samples. By composition, Cu and Ni accounted for significantly higher proportions in passive samples than in active samples, leading to significantly higher uptake rates of Cu and Ni. In assessing seasonal variation, metals in passive samples had higher concentrations in summer (excluding Heshan), which differed greatly from the pattern of active samples (winter > summer), indicating that the uptake rates of most metals were higher in summer than in winter. Overall, due to the stable passive uptake rates, we considered that PUF passive samplers can be applied to collect atmospheric metals. Additionally, we created a snapshot of the metal pollution in the Pearl River Delta using principal component analysis of PUF samples and their source apportionment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Leukemia-related mortality in towns lying in the vicinity of metal production and processing installations.

    PubMed

    García-Pérez, Javier; López-Cima, María Felicitas; Boldo, Elena; Fernández-Navarro, Pablo; Aragonés, Nuria; Pollán, Marina; Pérez-Gómez, Beatriz; López-Abente, Gonzalo

    2010-10-01

    Releases to the environment of toxic substances stemming from industrial metal production and processing installations can pose a health problem to populations in their vicinity. To investigate whether there might be excess leukemia-related mortality in populations residing in towns in the vicinity of Spanish metal industries included in the European Pollutant Emission Register. Ecologic study designed to examine mortality due to leukemia at a municipal level, during the period 1994-2003. Population exposure to pollution was estimated on the basis of distance from town of residence to pollution source. Using Poisson regression models, we analyzed: risk of dying from leukemia in a 5-kilometer zone around installations which had become operational prior to 1990; effect of pollution discharge route and type of industrial activity; and risk gradient within a 50-kilometer radius of such installations. Excess mortality (relative risk, 95% confidence interval) was detected in the vicinity of pre-1990 installations (1.07, 1.02-1.13 in men; 1.05, 1.00-1.11 in women), with this being more elevated in the case of installations that released pollution to air versus water. On stratifying by type of industrial activity, statistically significant associations were also observed among women residing in the vicinity of galvanizing installations (1.58, 1.09-2.29) and surface-treatment installations using an electrolytic or chemical process (1.34, 1.10-1.62), which released pollution to air. There was an effect whereby risk increased with proximity to certain installations. The results suggest an association between risk of dying due to leukemia and proximity to Spanish metal industries. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Research on Forming Mechanisms and Controlling Measurements for Surface Light Spot Defects of Galvanizing Steel Coils for Automobile Use

    NASA Astrophysics Data System (ADS)

    Guangmin, Wei; Haiyan, Sun; Jianqiang, Shi; Lianxuan, Wang; Haihong, Wu

    When producing high surface quality galvanizing steel coils for automobile use, there are always many light spots on the surface since Hansteel CGL No.1 has been put into operation. The defect samples were analyzed by SEM and EDS. The result shows that cause for light spot is not only one. There are more Mn and P in high strength auto sheet, which can result in difficulty to be cleaned off the oxide on the hot rolled coils, so the defects coming. This is why the defects come with high strength auto sheet. When coils galvanized, the defects can't be covered up. To the contrary, the defects will be more obvious when zinc growing on the surface. And sometimes zinc or residue can adhere to work rolls when strips passing through SPM. The deposits then press normal coating. So the light spots come more. When the defect comes from pressing, there is no defect on steel base. The causation is found and measures were taken including high pressure cleaning equipments adopted. Result shows that the defects disappeared.

  15. In Situ Monitoring of Pb2+ Leaching from the Galvanic Joint Surface in a Prepared Chlorinated Drinking Water.

    PubMed

    Ma, Xiangmeng; Armas, Stephanie M; Soliman, Mikhael; Lytle, Darren A; Chumbimuni-Torres, Karin; Tetard, Laurene; Lee, Woo Hyoung

    2018-02-20

    A novel method using a micro-ion-selective electrode (micro-ISE) technique was developed for in situ lead monitoring at the water-metal interface of a brass-leaded solder galvanic joint in a prepared chlorinated drinking water environment. The developed lead micro-ISE (100 μm tip diameter) showed excellent performance toward soluble lead (Pb 2+ ) with sensitivity of 22.2 ± 0.5 mV decade -1 and limit of detection (LOD) of 1.22 × 10 -6 M (0.25 mg L -1 ). The response time was less than 10 s with a working pH range of 2.0-7.0. Using the lead micro-ISE, lead concentration microprofiles were measured from the bulk to the metal surface (within 50 μm) over time. Combined with two-dimensional (2D) pH mapping, this work clearly demonstrated that Pb 2+ ions build-up across the lead anode surface was substantial, nonuniform, and dependent on local surface pH. A large pH gradient (ΔpH = 6.0) developed across the brass and leaded-tin solder joint coupon. Local pH decreases were observed above the leaded solder to a pH as low as 4.0, indicating it was anodic relative to the brass. The low pH above the leaded solder supported elevated lead levels where even small local pH differences of 0.6 units (ΔpH = 0.6) resulted in about four times higher surface lead concentrations (42.9 vs 11.6 mg L -1 ) and 5 times higher fluxes (18.5 × 10 -6 vs 3.5 × 10 -6 mg cm -2 s -1 ). Continuous surface lead leaching monitoring was also conducted for 16 h.

  16. Anticancer activity of metal complexes: involvement of redox processes.

    PubMed

    Jungwirth, Ute; Kowol, Christian R; Keppler, Bernhard K; Hartinger, Christian G; Berger, Walter; Heffeter, Petra

    2011-08-15

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of "activation by reduction" as well as the "hard and soft acids and bases" theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology.

  17. Anticancer Activity of Metal Complexes: Involvement of Redox Processes

    PubMed Central

    Jungwirth, Ute; Kowol, Christian R.; Keppler, Bernhard K.; Hartinger, Christian G.; Berger, Walter; Heffeter, Petra

    2012-01-01

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of “activation by reduction” as well as the “hard and soft acids and bases” theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology. PMID:21275772

  18. Development of High Performance CFRP/Metal Active Laminates

    NASA Astrophysics Data System (ADS)

    Asanuma, Hiroshi; Haga, Osamu; Imori, Masataka

    This paper describes development of high performance CFRP/metal active laminates mainly by investigating the kind and thickness of the metal. Various types of the laminates were made by hot-pressing of an aluminum, aluminum alloys, a stainless steel and a titanium for the metal layer as a high CTE material, a unidirectional CFRP prepreg as a low CTE/electric resistance heating material, a unidirectional KFRP prepreg as a low CTE/insulating material. The aluminum and its alloy type laminates have almost the same and the highest room temperature curvatures and they linearly change with increasing temperature up to their fabrication temperature. The curvature of the stainless steel type jumps from one to another around its fabrication temperature, whereas the titanium type causes a double curvature and its change becomes complicated. The output force of the stainless steel type attains the highest of the three under the same thickness. The aluminum type successfully increased its output force by increasing its thickness and using its alloys. The electric resistance of the CFRP layer can be used to monitor the temperature, that is, the curvature of the active laminate because the curvature is a function of temperature.

  19. Dissolution-Induced Nanowire Synthesis on Hot-Dip Galvanized Surface in Supercritical Carbon Dioxide.

    PubMed

    Kaleva, Aaretti; Saarimaa, Ville; Heinonen, Saara; Nikkanen, Juha-Pekka; Markkula, Antti; Väisänen, Pasi; Levänen, Erkki

    2017-07-11

    In this study, we demonstrate a rapid treatment method for producing a needle-like nanowire structure on a hot-dip galvanized sheet at a temperature of 50 °C. The processing method involved only supercritical carbon dioxide and water to induce a reaction on the zinc surface, which resulted in growth of zinc hydroxycarbonate nanowires into flower-like shapes. This artificial patina nanostructure predicts high surface area and offers interesting opportunities for its use in industrial high-end applications. The nanowires can significantly improve paint adhesion and promote electrochemical stability for organic coatings, or be converted to ZnO nanostructures by calcining to be used in various semiconductor applications.

  20. Dissolution-Induced Nanowire Synthesis on Hot-Dip Galvanized Surface in Supercritical Carbon Dioxide

    PubMed Central

    Saarimaa, Ville; Heinonen, Saara; Nikkanen, Juha-Pekka; Markkula, Antti; Väisänen, Pasi; Levänen, Erkki

    2017-01-01

    In this study, we demonstrate a rapid treatment method for producing a needle-like nanowire structure on a hot-dip galvanized sheet at a temperature of 50 °C. The processing method involved only supercritical carbon dioxide and water to induce a reaction on the zinc surface, which resulted in growth of zinc hydroxycarbonate nanowires into flower-like shapes. This artificial patina nanostructure predicts high surface area and offers interesting opportunities for its use in industrial high-end applications. The nanowires can significantly improve paint adhesion and promote electrochemical stability for organic coatings, or be converted to ZnO nanostructures by calcining to be used in various semiconductor applications. PMID:28696374

  1. Modulation of Memory by Vestibular Lesions and Galvanic Vestibular Stimulation

    PubMed Central

    Smith, Paul F.; Geddes, Lisa H.; Baek, Jean-Ha; Darlington, Cynthia L.; Zheng, Yiwen

    2010-01-01

    For decades it has been speculated that there is a close association between the vestibular system and spatial memories constructed by areas of the brain such as the hippocampus. While many animal studies have been conducted which support this relationship, only in the last 10 years have detailed quantitative studies been carried out in patients with vestibular disorders. The majority of these studies suggest that complete bilateral vestibular loss results in spatial memory deficits that are not simply due to vestibular reflex dysfunction, while the effects of unilateral vestibular damage are more complex and subtle. Very recently, reports have emerged that sub-threshold, noisy galvanic vestibular stimulation can enhance memory in humans, although this has not been investigated for spatial memory as yet. These studies add to the increasing evidence that suggests a connection between vestibular sensory information and memory in humans. PMID:21173897

  2. Performance Evaluation of CMUT-Based Ultrasonic Transformers for Galvanic Isolation.

    PubMed

    Heller, Jacques; Boulme, Audren; Alquier, Daniel; Ngo, Sophie; Certon, Dominique

    2018-04-01

    This paper presents the development of a novel acoustic transformer with high galvanic isolation dedicated to power switch triggering. The transformer is based on two capacitive micromachined ultrasonic transducers layered on each side of a silicon substrate; one is the primary circuit, and the other is the secondary circuit. The thickness mode resonance of the substrate is leveraged to transmit the triggering signal. The fabrication and characterization of an initial prototype is presented in this paper. All experimental results are discussed, from the electrical impedance measurements to the power efficiency measurements, for different electrical load conditions. A comparison with a specifically developed finite-element method model is done. Simulations are finally used to identify the optimization rules of this initial prototype. It is shown that the power efficiency can be increased from 35% to 60%, and the transmitted power can be increased from 1.6 to 45 mW/Volt.

  3. Ionic conductivity measurement in magnesium aluminate spinel and solid state galvanic cell with magnesium aluminate electrolyte

    NASA Astrophysics Data System (ADS)

    Lee, Myongjai

    This thesis work is about the experimental measurement of electronic and ionic conductivities in the MgAl2O4 spinel at 500˜600°C range and exploring the fundamental origin of solid-state galvanic cell behavior in the cell of Al|MgAl2O4|Mg, Al|MgAl2O 4|C, and Mg|MgAl2O4|C, in which at least one metal electrode in common with the composition of the electrolyte. For the electronic conductivity measurement, we have used the ion-blocking Gold and Carbon electrodes which are inert with both Mg and Al ions to suppress the ionic conduction from the total conduction. DC polarization method was used to measure the conduction through Au|MgAl2O4|Au and C|MgAl2O4|C specimens. The measured electrical conductivity using Au|MgAl2O4|Au and C|MgAl2O4|C specimens showed 10-9.3 ˜ 10-8.4 (O·cm) -1 at 600˜720°C range following the Arrhenius-type relation. These conductivity data are in agreement with reported data obtained from Pt and Ag ion-blocking electrodes deposited on MgAl2O4 specimens. For the ionic conductivity measurement, we have used the non-blocking Al and Mg electrodes for Al and Mg ionic conductivities, respectively. Ionic conductivity measurement of Al and Mg in separate manner has not been reported yet. In both Al|MgAl2O4|Al and Mg|MgAl2O 4|Mg specimens, gradual increase of conduction was observed once at the initial period before it reaches the steady state conduction. By DC method on the range of 580˜650°C, steady state Al ionic conductivity was measured from Al|MgAl2O4|Al specimen showing 10 -7.7 ˜ 10-6.8 (O·cm)-1 with the activation energy of 1.9eV in sigma = sigma0 exp-QRT formula. There was no difference in the conductivity by the change of the atmosphere from 5%H2 + 95%N2 mixed gas to pure Ar gas. So it was confirmed that the oxygen defect chemistry did not play a role. For Mg ionic conductivity Mg|MgAl2O4|Mg specimen was used and the measured conductivity shows 10-6.7 ˜ 10-4.4 (O·cm)-1 at 400˜550°C with the activation energy of 1.44eV at Ar gas

  4. Ion Release and Galvanic Corrosion of Different Orthodontic Brackets and Wires in Artificial Saliva.

    PubMed

    Tahmasbi, Soodeh; Sheikh, Tahereh; Hemmati, Yasamin B

    2017-03-01

    To investigate the galvanic corrosion of brackets manufactured by four different companies coupled with stainless steel (SS) or nickel-titanium (NiTi) wires in an artificial saliva solution. A total of 24 mandibular central incisor Roth brackets of four different manufacturers (American Orthodontics, Dentaurum, Shinye, ORJ) were used in this experimental study. These brackets were immersed in artificial saliva along with SS or NiTi orthodontic wires (0.016'', round) for 28 days. The electric potential difference of each bracket/ wire coupled with a saturated calomel reference electrode was measured via a voltmeter and recorded constantly. Corrosion rate (CR) was calculated, and release of ions was measured with an atomic absorption spectrometer. Stereomicroscope was used to evaluate all samples. Then, samples with corrosion were further assessed by scanning electron microscope and energy-dispersive X-ray spectroscopy. Two-way analysis of variance was used to analyze data. Among ions evaluated, release of nickel ions from Shinye brackets was significantly higher than that of other brackets. The mean potential difference was significantly lower in specimens containing a couple of Shinye brackets and SS wire compared with other specimens. No significant difference was observed in the mean CR of various groups (p > 0.05). Microscopic evaluation showed corrosion in two samples only: Shinye bracket coupled with SS wire and American Orthodontics bracket coupled with NiTi wire. Shinye brackets coupled with SS wire showed more susceptibility to galvanic corrosion. There were no significant differences among specimens in terms of the CR or released ions except the release of Ni ions, which was higher in Shinye brackets.

  5. Drug Delivery Systems For Anti-Cancer Active Complexes of Some Coinage Metals.

    PubMed

    Zhang, Ming; Saint-Germain, Camille; He, Guiling; Sun, Raymond Wai-Yin

    2018-02-12

    Although cisplatin and a number of platinum complexes have widely been used for the treatment of neoplasia, patients receiving these treatments have frequently suffered from their severe toxic side effects, the development of resistance with consequent relapse. In the recent decades, numerous complexes of coinage metals including that of gold, copper and silver have been reported to display promising in vitro and/or in vivo anti-cancer activities as well as potent activities towards cisplatin-resistant tumors. Nevertheless, the medical development of these metal complexes has been hampered by their instability in aqueous solutions and the nonspecific binding in biological systems. One of the approaches to overcome these problems is to design and develop adequate drug delivery systems (DDSs) for the transport of these complexes. By functionalization, encapsulation or formulation of the metal complexes, several types of DDSs have been reported to improve the desired pharmacological profile of the metal complexes, improving their overall stability, bioavailability, anti-cancer activity and reducing their toxicity towards normal cells. In this review, we summarized the recent findings for different DDSs for various anti- cancer active complexes of some coinage metals. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Metal based biologically active compounds: Design, synthesis, DNA binding and antidiabetic activity of 6-methyl-3-formyl chromone derived hydrazones and their metal (II) complexes.

    PubMed

    Philip, Jessica Elizabeth; Shahid, Muhammad; Prathapachandra Kurup, M R; Velayudhan, Mohanan Puzhavoorparambil

    2017-10-01

    Two chromone hydrazone ligands HL 1 and HL 2 were synthesized and characterized by elemental analyses, IR, 1 H NMR & 13 C NMR, electronic absorption and mass spectra. The reactions of the chromone hydrazones with transition metals such as Ni, Cu, and Zn (II) salts of acetate afforded mononuclear metal complexes. Characterization and structure elucidation of the prepared chromone hydrazone metal (II) complexes were done by elemental, IR, electronic, EPR spectra and thermo gravimetric analyses as well as conductivity and magnetic susceptibility measurements. The spectroscopic data showed that the ligand acts as a mono basic bidentate with coordination sites are azomethine nitrogen and hydrazonic oxygen, and they exhibited distorted geometry. The biological studies involved antidiabetic activity i.e. enzyme inhibition of α-amylase and α-glucosidase, Calf Thymus - DNA (CT-DNA) interaction and molecular docking. Potential capacity of synthesized compounds to inhibit the α-amylase and α-glucosidase activity was assayed whereas DNA interaction studies were carried out with the help UV-Vis absorption titration and viscosity method. The docking studies of chromone hydrazones show that they are minor groove binders. Complexes were found to be good DNA - intercalates. Chromone hydrazones and its transition metal complexes have shown comparable antidiabetic activity with a standard drug acarbose. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Cloning of a heavy-metal-binding protein derived from activated-sludge microorganisms.

    PubMed

    Sano, Daisuke; Myojo, Ken; Omura, Tatsuo

    2006-09-01

    A gene of the heavy-metal-binding protein (HMBP) was newly isolated from a genetic DNA library of activated-sludge microorganisms. HMBP was produced by transformed Escherichia coli, and the copper-binding ability of HMBP was confirmed. HMBP derived from activated sludge could be available as heavy metal adsorbents in water and wastewater treatments.

  8. Effects of heavy metal pollution on enzyme activities in railway cut slope soils.

    PubMed

    Meng, Xiaoyi; Ai, Yingwei; Li, Ruirui; Zhang, Wenjuan

    2018-03-07

    Railway transportation is an important transportation mode. However, railway transportation causes heavy metal pollution in surrounding soils. Heavy metal pollution has a serious negative impact on the natural environment, including a decrease of enzyme activities in soil and degradation of sensitive ecosystems. Some studies investigated the heavy metal pollution at railway stations or certain transportation hubs. However, the pollution accumulated in artificial cut slope soil all along the rails is still questioned. The interest on non-point source pollution from railways is increasing in an effort to protect the soil quality along the line. In this study, we studied spatial distributions of heavy metals and five enzyme activities, i.e., urease (UA), saccharase (SAC), protease (PRO), catalase (CAT), and polyphenol oxidase (POA) in the soil, and the correlation among them beside three different railways in Sichuan Province, China, as well. Soil samples were respectively collected from 5, 10, 25, 50, 100, and 150 m away from the rails (depth of 0-8 cm). Results showed that Mn, Cd, Cu, and Zn were influenced by railway transportation in different degrees while Pb was not. Heavy metal pollution was due to the abrasion of the gravel bed as well as the tracks and freight transportation which caused more heavy metal pollution than passenger transportation. Enzymatic activities were significantly negatively correlated with heavy metals in soils, especially Zn and Cu. Finally, it is proposed that combined use of PRO and POA activities could be an indicator of the heavy metal pollution in cut slope soils. The protective measures aimed at heavy metal pollution caused by railway transportation in cut slope soils are urgent.

  9. Glyceraldehyde-3-phosphate dehydrogenase from Chironomidae showed differential activity towards metals.

    PubMed

    Chong, Isaac K W; Ho, Wing S

    2013-09-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is known to interact with different biomolecules and was implicated in many novel cellular activities including programmed cell death, nuclear RNA transport unrelated to the commonly known carbohydrate metabolism. We reported here the purification of GAPDH from Chironomidae larvae (Insecta, Diptera) that showed different biologic activity towards heavy metals. It was inhibited by copper, cobalt nickel, iron and lead but was activated by zinc. The GAPDH was purified by ammonium sulphate fractionation and Chelating Sepharose CL-6B chromatography followed by Blue Sepharose CL-6B chromatography. The 150-kDa tetrameric GAPDH showed optimal activity at pH 8.5 and 37°C. The multiple alignment of sequence of the Chironomidae GAPDH with other known species showed 78 - 88% identity to the conserved regions of the GADPH. Bioinformatic analysis unveils substantial N-terminal sequence similarity of GAPDH of Chironomidae larvae to mammalian GADPHs. However, the GADPH of Chironomidae larvae showed different biologic activities and cytotoxicity towards heavy metals. The GAPDH enzyme would undergo adaptive molecular changes through binding at the active site leading to higher tolerance to heavy metals.

  10. Electrochemical dopamine sensor based on P-doped graphene: Highly active metal-free catalyst and metal catalyst support.

    PubMed

    Chu, Ke; Wang, Fan; Zhao, Xiao-Lin; Wang, Xin-Wei; Tian, Ye

    2017-12-01

    Heteroatom doping is an effective strategy to enhance the catalytic activity of graphene and its hybrid materials. Despite a growing interest of P-doped graphene (P-G) in energy storage/generation applications, P-G has rarely been investigated for electrochemical sensing. Herein, we reported the employment of P-G as both metal-free catalyst and metal catalyst support for electrochemical detection of dopamine (DA). As a metal-free catalyst, P-G exhibited prominent DA sensing performances due to the important role of P doping in improving the electrocatalytic activity of graphene toward DA oxidation. Furthermore, P-G could be an efficient supporting material for loading Au nanoparticles, and resulting Au/P-G hybrid showed a dramatically enhanced electrocatalytic activity and extraordinary sensing performances with a wide linear range of 0.1-180μM and a low detection limit of 0.002μM. All these results demonstrated that P-G might be a very promising electrode material for electrochemical sensor applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Assessment of the Biological Effects of Welding Fumes Emitted From Metal Active Gas and Manual Metal Arc Welding in Humans.

    PubMed

    Dewald, Eva; Gube, Monika; Baumann, Ralf; Bertram, Jens; Kossack, Veronika; Lenz, Klaus; Reisgen, Uwe; Kraus, Thomas; Brand, Peter

    2015-08-01

    Emissions from a particular welding process, metal inert gas brazing of zinc-coated steel, induce an increase in C-reactive protein. In this study, it was investigated whether inflammatory effects could also be observed for other welding procedures. Twelve male subjects were separately exposed to (1) manual metal arc welding fumes, (2) filtered air, and (3) metal active gas welding fumes for 6 hours. Inflammatory markers were measured in serum before, and directly, 1 and 7 days after exposure. Although C-reactive protein concentrations remained unchanged, neutrophil concentrations increased directly after exposure to manual metal arc welding fumes, and endothelin-1 concentrations increased directly and 24 hours after exposure. After exposure to metal active gas and filtered air, endothelin-1 concentrations decreased. The increase in the concentrations of neutrophils and endothelin-1 may characterize a subclinical inflammatory reaction, whereas the decrease of endothelin-1 may indicate stress reduction.

  12. In situ-generated metal oxide catalyst during CO oxidation reaction transformed from redox-active metal-organic framework-supported palladium nanoparticles

    PubMed Central

    2012-01-01

    The preparation of redox-active metal-organic framework (ra-MOF)-supported Pd nanoparticles (NPs) via the redox couple-driven method is reported, which can yield unprotected metallic NPs at room temperature within 10 min without the use of reducing agents. The Pd@ra-MOF has been exploited as a precursor of an active catalyst for CO oxidation. Under the CO oxidation reaction condition, Pd@ra-MOF is transformed into a PdOx-NiOy/C nanocomposite to generate catalytically active species in situ, and the resultant nanocatalyst shows sustainable activity through synergistic stabilization. PMID:22898143

  13. Thermodynamic Study of the Nickel Addition in Zinc Hot-Dip Galvanizing Baths

    NASA Astrophysics Data System (ADS)

    Pistofidis, N.; Vourlias, G.

    2010-01-01

    A usual practice during zinc hot-dip galvanizing is the addition of nickel in the liquid zinc which is used to inhibit the Sandelin effect. Its action is due to the fact that the ζ (zeta) phase of the Fe-Zn system is replaced by the Τ (tau) phase of the Fe-Zn-Ni system. In the present work an attempt is made to explain the formation of the Τ phase with thermodynamics. For this reason the Gibbs free energy changes for Τ and ζ phases were calculated. The excess free energy for the system was calculated with the Redlich-Kister polyonyme. From this calculation it was deduced that the Gibbs energy change for the tau phase is negative. As a result its formation is spontaneous.

  14. Redox activation of metal-based prodrugs as a strategy for drug delivery

    PubMed Central

    Graf, Nora

    2012-01-01

    This review provides an overview of metal-based anticancer drugs and drug candidates. In particular, we focus on metal complexes that can be activated in the reducing environment of cancer cells, thus serving as prodrugs. There are many reports of Pt and Ru complexes as redox-activatable drug candidates, but other d-block elements with variable oxidation states have a similar potential to serve as prodrugs in this manner. In this context are compounds based on Fe, Co, or Cu chemistry, which are also covered. A trend in the field of medicinal inorganic chemistry has been toward molecularly targeted, metal-based drugs obtained by functionalizing complexes with biologically active ligands. Another recent activity is the use of nanomaterials for drug delivery, exploiting passive targeting of tumors with nanosized constructs made from Au, Fe, carbon, or organic polymers. Although complexes of all of the above mentioned metals will be described, this review focuses primarily on Pt compounds, including constructs containing nanomaterials. PMID:22289471

  15. Influence of several metal ions on the gelation activation energy of silicon tetraethoxide

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1988-01-01

    The effects of nine metal cations (Li(+), Na(+), Mg(2+), Ca(2+), Sr(2+), Cu(2+), Al(3+), La(3+), and Y(3+) on silica gel formation has been investigated by studying the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) in the presence of metal nitrates. The influence of water: TEOS mole ratio, metal ion concentration, and the reaction temperature has been investigated. The overall activation energy for gel formation has been determined from the temperature dependence of the time of gelation for each system. The activation energy for -Si-O-Si- network formation is found to be 54.5 kJ/mol. The gel formation time as well as the activation energy sharply increase in the presence of Cu(2+), Al(3+), La(3+) and Y(3+). In contrast, the presence of Li(+), Na(+), Mg(2+), Ca(2+), or, Sr(2+) lowers the gelation time, but has no appreciable effect on the activation energy. This difference may be attributed to the participation or nonparticipation of the metal ions in the formation of the three-dimensional polymeric network during the polycondensation step. The concentration of metal ion (Mg(2+), Ca(2+), Y(3+) or the water: TEOS mole ratio had no appreciable effect on the gelation activation energy. A simple test has been proposed to determine whether a metal ion would act as a network intermediate or modifier in silica and other glassy networks.

  16. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, Marca M.; Peng, Marcus Y.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard C.

    1996-01-01

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.

  17. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, M.M.; Peng, M.Y.; Ma, Y.; Visco, S.J.; DeJonghe, L.C.

    1996-09-24

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M{sub x}Z{sub y}Mn{sub (1{minus}y)}O{sub 2}, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell. 11 figs.

  18. Tailorable chiroptical activity of metallic nanospiral arrays.

    PubMed

    Deng, Junhong; Fu, Junxue; Ng, Jack; Huang, Zhifeng

    2016-02-28

    The engineering of the chiroptical activity of the emerging chiral metamaterial, metallic nanospirals, is in its infancy. We utilize glancing angle deposition (GLAD) to facilely sculpture the helical structure of silver nanospirals (AgNSs), so that the scope of chiroptical engineering factors is broadened to include the spiral growth of homochiral AgNSs, the combination of left- and right-handed helical chirality to create heterochiral AgNSs, and the coil-axis alignment of the heterochiral AgNSs. It leads to flexible control over the chiroptical activity of AgNS arrays with respect to the sign, resonance wavelength and amplitude of circular dichroism (CD) in the UV and visible regime. The UV chiroptical mode has a distinct response from the visible mode. Finite element simulation together with LC circuit theory illustrates that the UV irradiation is mainly adsorbed in the metal and the visible is preferentially scattered by the AgNSs, accounting for the wavelength-related chiroptical distinction. This work contributes to broadening the horizons in understanding and engineering chiroptical responses, primarily desired for developing a wide range of potential chiroplasmonic applications.

  19. Theory of the inverse spin galvanic effect in quantum wells

    NASA Astrophysics Data System (ADS)

    Maleki Sheikhabadi, Amin; Miatka, Iryna; Sherman, E. Ya.; Raimondi, Roberto

    2018-06-01

    The understanding of the fundamentals of spin and charge densities and currents interconversion by spin-orbit coupling can enable efficient applications beyond the possibilities offered by conventional electronics. For this purpose we consider various forms of the frequency-dependent inverse spin galvanic effect in semiconductor quantum wells and epilayers taking into account the cubic in the electron momentum spin-orbit coupling in the Rashba and Dresselhaus forms, concentrating on the current-induced spin polarization (CISP). We find that including the cubic terms qualitatively explains recent findings of the CISP in InGaAs epilayers being the strongest if the internal spin-orbit coupling field is the smallest and vice versa [Norman et al., Phys. Rev. Lett. 112, 056601 (2014), 10.1103/PhysRevLett.112.056601; Luengo-Kovac et al., Phys. Rev. B 96, 195206 (2017), 10.1103/PhysRevB.96.195206], in contrast to the common understanding. Our results provide a promising framework for the control of spin transport in future spintronics devices.

  20. 'Unconventional' coordination chemistry by metal chelating fragments in a metalloprotein active site.

    PubMed

    Martin, David P; Blachly, Patrick G; Marts, Amy R; Woodruff, Tessa M; de Oliveira, César A F; McCammon, J Andrew; Tierney, David L; Cohen, Seth M

    2014-04-09

    The binding of three closely related chelators: 5-hydroxy-2-methyl-4H-pyran-4-thione (allothiomaltol, ATM), 3-hydroxy-2-methyl-4H-pyran-4-thione (thiomaltol, TM), and 3-hydroxy-4H-pyran-4-thione (thiopyromeconic acid, TPMA) to the active site of human carbonic anhydrase II (hCAII) has been investigated. Two of these ligands display a monodentate mode of coordination to the active site Zn(2+) ion in hCAII that is not recapitulated in model complexes of the enzyme active site. This unprecedented binding mode in the hCAII-thiomaltol complex has been characterized by both X-ray crystallography and X-ray spectroscopy. In addition, the steric restrictions of the active site force the ligands into a 'flattened' mode of coordination compared with inorganic model complexes. This change in geometry has been shown by density functional computations to significantly decrease the strength of the metal-ligand binding. Collectively, these data demonstrate that the mode of binding by small metal-binding groups can be significantly influenced by the protein active site. Diminishing the strength of the metal-ligand bond results in unconventional modes of metal coordination not found in typical coordination compounds or even carefully engineered active site models, and understanding these effects is critical to the rational design of inhibitors that target clinically relevant metalloproteins.

  1. A gauged finite-element potential formulation for accurate inductive and galvanic modelling of 3-D electromagnetic problems

    NASA Astrophysics Data System (ADS)

    Ansari, S. M.; Farquharson, C. G.; MacLachlan, S. P.

    2017-07-01

    In this paper, a new finite-element solution to the potential formulation of the geophysical electromagnetic (EM) problem that explicitly implements the Coulomb gauge, and that accurately computes the potentials and hence inductive and galvanic components, is proposed. The modelling scheme is based on using unstructured tetrahedral meshes for domain subdivision, which enables both realistic Earth models of complex geometries to be considered and efficient spatially variable refinement of the mesh to be done. For the finite-element discretization edge and nodal elements are used for approximating the vector and scalar potentials respectively. The issue of non-unique, incorrect potentials from the numerical solution of the usual incomplete-gauged potential system is demonstrated for a benchmark model from the literature that uses an electric-type EM source, through investigating the interface continuity conditions for both the normal and tangential components of the potential vectors, and by showing inconsistent results obtained from iterative and direct linear equation solvers. By explicitly introducing the Coulomb gauge condition as an extra equation, and by augmenting the Helmholtz equation with the gradient of a Lagrange multiplier, an explicitly gauged system for the potential formulation is formed. The solution to the discretized form of this system is validated for the above-mentioned example and for another classic example that uses a magnetic EM source. In order to stabilize the iterative solution of the gauged system, a block diagonal pre-conditioning scheme that is based upon the Schur complement of the potential system is used. For all examples, both the iterative and direct solvers produce the same responses for the potentials, demonstrating the uniqueness of the numerical solution for the potentials and fixing the problems with the interface conditions between cells observed for the incomplete-gauged system. These solutions of the gauged system also

  2. Tailoring galvanic replacement reaction for the preparation of Pt/Ag bimetallic hollow nanostructures with controlled number of voids.

    PubMed

    Zhang, Weiqing; Yang, Jizheng; Lu, Xianmao

    2012-08-28

    Here we report the synthesis of Pt/Ag bimetallic nanostructures with controlled number of void spaces via a tailored galvanic replacement reaction (GRR). Ag nanocubes (NCs) were employed as the template to react with Pt ions in the presence of HCl. The use of HCl in the GRR caused rapid precipitation of AgCl, which grew on the surface of Ag NCs and acted as a removable secondary template for the deposition of Pt. The number of nucleation sites for AgCl was tailored by controlling the amount of HCl added to the Ag NCs or by introducing PVP to the reaction. This strategy led to the formation of Pt/Ag hollow nanoboxes, dimers, multimers, or popcorn-shaped nanostructures consisting of one, two, or multiple hollow domains. Due to the presence of large void space and porous walls, these nanostructures exhibited high surface area and improved catalytic activity for methanol oxidation reaction.

  3. Influence of laser beam incidence angle on laser lap welding quality of galvanized steels

    NASA Astrophysics Data System (ADS)

    Mei, Lifang; Yan, Dongbing; Chen, Genyu; Wang, Zhenhui; Chen, Shuixuan

    2017-11-01

    Based on the characteristics of laser welded structural parts of auto bodies, the influence of variation in laser beam incidence angle on the lap welding performance of galvanized auto-body sheets was studied. Lap welding tests were carried out on the galvanized sheets for auto-body application at different laser beam incidence angles by using the optimal welding parameters obtained through orthogonal experiment. The effects of incidence angle variation on seam appearance, cross-sectional shape, joint mechanical properties and microstructure of weldments were analyzed. In addition, the main factors influencing the value of incidence angle were investigated. According to the results, the weld seams had a good appearance as well as a fine, and uniform microstructure when the laser beam incidence angle was smaller than the critical incidence angle, and thus they could withstand great tensile and shear loads. Moreover, all tensile-shear specimens were fractured in the base material zone. When the laser beam incidence angle was larger than the critical incidence angle, defects like shrinkage and collapse tended to emerge, thereby resulting in the deteriorated weldability of specimens. Meanwhile, factors like the type and thickness of sheet, weld width as well as inter-sheet gap all had a certain effect on the value of laser beam incidence angle. When the sheet thickness was small and the weld width was narrow, the laser beam incidence angle could be increased appropriately. At the same time, small changes in the inter-sheet gap could greatly impact the value of incidence angle. When the inter-sheet gap was small, the laser beam incidence angle should not be too large.

  4. Urinary nickel as bioindicator of workers' Ni exposure in a galvanizing plant in Brazil.

    PubMed

    Oliveira, J P; de Siqueira, M E; da Silva, C S

    2000-01-01

    We measured urinary nickel (U-Ni) in ten workers (97 samples) from a galvanizing plant that uses nickel sulfate, and in ten control subjects (55 samples) to examine the association between occupational exposure to airborne Ni and Ni absorption. Samples from the exposed group were taken before and after the work shift on 5 successive workdays. At the same time airborne Ni (A-Ni) was measured using personal samplers. Ni levels in biological material and in the airborne were determined by a graphite furnace atomic absorption spectrometry validated method. In the control group the urine samples were collected twice a day, in the before and after the work shift, on 3 successive days. Ni exposure low to moderate was detected in all the examined places in the plant, the airborne levels varying between 2.8 and 116.7 micrograms/m3 and the urine levels, from samples taken postshift, between 4.5 and 43.2 micrograms/g creatinine (mean 14.7 micrograms/g creatinine). Significant differences in U-Ni creatinine were seen between the exposed and control groups (Student's t test, P < or = 0.01). A significant correlation between U-Ni and A-Ni (r = 0.96; P < or = 0.001) was detected. No statistical difference was observed in U-Ni collected from exposed workers in the 5 successive days, but significant difference was observed between pre- and postshift samples. Urinary nickel may be used as a reliable internal dose bioindicator in biological monitoring of workers exposed to Ni sulfate in galvanizing plants regardless of the day of the workweek on which the samples are collected.

  5. Design, characterization and evaluation of hydroxyethylcellulose based novel regenerable supersorbent for heavy metal ions uptake and competitive adsorption.

    PubMed

    Abbas, Azhar; Hussain, Muhammad Ajaz; Sher, Muhammad; Irfan, Muhammad Imran; Tahir, Muhammad Nawaz; Tremel, Wolfgang; Hussain, Syed Zajif; Hussain, Irshad

    2017-09-01

    Hydroxyethylcellulose succinate-Na (HEC-Suc-Na) was designed and evaluated for removal of some heavy metal ions from aqueous solution. Pristine sorbent HEC-Suc-Na was thoroughly characterized by FTIR and solid-state CP/MAS 13 C NMR spectroscopy, SEM-EDS and zero point charge analyses. Langmuir isotherm, pseudo second order kinetic and ion exchange models provided best fit to the experimental data of sorption of metal ions. Maximum sorption capacities of supersorbent HEC-Suc-Na for sorption of heavy metal ions from aqueous solution as calculated by Langmuir isotherm model were found to be 1000, 909.09, 666.6, 588 and 500mgg -1 for Pb(II), Cr(VI), Co(II), Cu(II) and Ni(II), respectively. Competitive sorption of these heavy metal ions was carried out from galvanic and nuclear waste water simulated environment. The negative values of ΔG° and ΔH° indicated spontaneity and exothermic nature of sorption. The sorbent was efficiently regenerated with no significant decrease in sorption capacity after five cycles. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Deposition of tungsten metal by an immersion process

    DOE PAGES

    Small, Leo J.; Brumbach, Michael T.; Clem, Paul G.; ...

    2017-03-23

    A new multi-step, solution-phase method for the spontaneous deposition of tungsten from a room temperature ethereal solution is reported. This immersion process relies on the deposition of a sacrificial zinc coating which is galvanically displaced by the ether-mediated reduction of oxophilic WCl 6. Subsequent thermal treatment renders a crystalline, metallic tungsten film. The chemical evolution of the surface and formation of a complex intermediate tungsten species is characterized by X-ray diffraction, infrared spectroscopy, and X-ray photoelectron spectroscopy. Efficient metallic tungsten deposition is first characterized on a graphite substrate and then demonstrated on a functional carbon foam electrode. The resulting electrochemicalmore » performance of the modified electrode is interrogated with the canonical aqueous ferricyanide system. A tungsten-coated carbon foam electrode showed that both electrode resistance and overall electrochemical cell resistance were reduced by 50%, resulting in a concomitant decrease in redox peak separation from 1.902 V to 0.783 V. Furthermore, this process promises voltage efficiency gains in electrodes for energy storage technologies and demonstrates the viability of a new route to tungsten coating for technologies and industries where high conductivity and chemical stability are paramount.« less

  7. The Role of Oral Cavity Biofilm on Metallic Biomaterial Surface Destruction-Corrosion and Friction Aspects.

    PubMed

    Mystkowska, Joanna; Niemirowicz-Laskowska, Katarzyna; Łysik, Dawid; Tokajuk, Grażyna; Dąbrowski, Jan R; Bucki, Robert

    2018-03-06

    Metallic biomaterials in the oral cavity are exposed to many factors such as saliva, bacterial microflora, food, temperature fluctuations, and mechanical forces. Extreme conditions present in the oral cavity affect biomaterial exploitation and significantly reduce its biofunctionality, limiting the time of exploitation stability. We mainly refer to friction, corrosion, and biocorrosion processes. Saliva plays an important role and is responsible for lubrication and biofilm formation as a transporter of nutrients for microorganisms. The presence of metallic elements in the oral cavity may lead to the formation of electro-galvanic cells and, as a result, may induce corrosion. Transitional microorganisms such as sulfate-reducing bacteria may also be present among the metabolic microflora in the oral cavity, which can induce biological corrosion. Microorganisms that form a biofilm locally change the conditions on the surface of biomaterials and contribute to the intensification of the biocorrosion processes. These processes may enhance allergy to metals, inflammation, or cancer development. On the other hand, the presence of saliva and biofilm may significantly reduce friction and wear on enamel as well as on biomaterials. This work summarizes data on the influence of saliva and oral biofilms on the destruction of metallic biomaterials.

  8. The Role of Oral Cavity Biofilm on Metallic Biomaterial Surface Destruction–Corrosion and Friction Aspects

    PubMed Central

    Niemirowicz-Laskowska, Katarzyna; Łysik, Dawid; Tokajuk, Grażyna; Dąbrowski, Jan R.; Bucki, Robert

    2018-01-01

    Metallic biomaterials in the oral cavity are exposed to many factors such as saliva, bacterial microflora, food, temperature fluctuations, and mechanical forces. Extreme conditions present in the oral cavity affect biomaterial exploitation and significantly reduce its biofunctionality, limiting the time of exploitation stability. We mainly refer to friction, corrosion, and biocorrosion processes. Saliva plays an important role and is responsible for lubrication and biofilm formation as a transporter of nutrients for microorganisms. The presence of metallic elements in the oral cavity may lead to the formation of electro-galvanic cells and, as a result, may induce corrosion. Transitional microorganisms such as sulfate-reducing bacteria may also be present among the metabolic microflora in the oral cavity, which can induce biological corrosion. Microorganisms that form a biofilm locally change the conditions on the surface of biomaterials and contribute to the intensification of the biocorrosion processes. These processes may enhance allergy to metals, inflammation, or cancer development. On the other hand, the presence of saliva and biofilm may significantly reduce friction and wear on enamel as well as on biomaterials. This work summarizes data on the influence of saliva and oral biofilms on the destruction of metallic biomaterials. PMID:29509686

  9. Active Site Metal Occupancy and Cyclic Di-GMP Phosphodiesterase Activity of Thermotoga maritima HD-GYP.

    PubMed

    Miner, Kyle D; Kurtz, Donald M

    2016-02-16

    HD-GYPs make up a subclass of the metal-dependent HD phosphohydrolase superfamily and catalyze conversion of cyclic di(3',5')-guanosine monophosphate (c-di-GMP) to 5'-phosphoguanylyl-(3'→5')-guanosine (pGpG) and GMP. Until now, the only reported crystal structure of an HD-GYP that also exhibits c-di-GMP phosphodiesterase activity contains a His/carboxylate ligated triiron active site. However, other structural and phylogenetic correlations indicate that some HD-GYPs contain dimetal active sites. Here we provide evidence that an HD-GYP c-di-GMP phosphodiesterase, TM0186, from Thermotoga maritima can accommodate both di- and trimetal active sites. We show that an as-isolated iron-containing TM0186 has an oxo/carboxylato-bridged diferric site, and that the reduced (diferrous) form is necessary and sufficient to catalyze conversion of c-di-GMP to pGpG, but that conversion of pGpG to GMP requires more than two metals per active site. Similar c-di-GMP phosphodiesterase activities were obtained with divalent iron or manganese. On the basis of activity correlations with several putative metal ligand residue variants and molecular dynamics simulations, we propose that TM0186 can accommodate both di- and trimetal active sites. Our results also suggest that a Glu residue conserved in a subset of HD-GYPs is required for formation of the trimetal site and can also serve as a labile ligand to the dimetal site. Given the anaerobic growth requirement of T. maritima, we suggest that this HD-GYP can function in vivo with either divalent iron or manganese occupying di- and trimetal sites.

  10. Nanoscale patterning of two metals on silicon surfaces using an ABC triblock copolymer template.

    PubMed

    Aizawa, Masato; Buriak, Jillian M

    2006-05-03

    Patterning technologically important semiconductor interfaces with nanoscale metal films is important for applications such as metallic interconnects and sensing applications. Self-assembling block copolymer templates are utilized to pattern an aqueous metal reduction reaction, galvanic displacement, on silicon surfaces. Utilization of a triblock copolymer monolayer film, polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) (PS-b-P2VP-b-PEO), with two blocks capable of selective transport of different metal complexes to the surface (PEO and P2VP), allows for chemical discrimination and nanoscale patterning. Different regions of the self-assembled structure discriminate between metal complexes at the silicon surface, at which time they undergo the spontaneous reaction at the interface. Gold deposition from gold(III) compounds such as HAuCl4(aq) in the presence of hydrofluoric acid mirrors the parent block copolymer core structure, whereas silver deposition from Ag(I) salts such as AgNO3(aq) does the opposite, localizing exclusively under the corona. By carrying out gold deposition first and silver second, sub-100-nm gold features surrounded by silver films can be produced. The chemical selectivity was extended to other metals, including copper, palladium, and platinum. The interfaces were characterized by a variety of methods, including scanning electron microscopy, scanning Auger microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy.

  11. Assessment of Trace Metals in Soil, Vegetation and Rodents in Relation to Metal Mining Activities in an Arid Environment.

    PubMed

    Méndez-Rodríguez, Lia C; Alvarez-Castañeda, Sergio Ticul

    2016-07-01

    Areas where abandoned metal-extraction mines are located contain large quantities of mineral wastes derived from environmentally unsafe mining practices. These wastes contain many pollutants, such as heavy metals, which could be released to the environment through weathering and leaching, hence becoming an important source of environmental metal pollution. This study evaluates differences in the levels of lead, iron, nickel, manganese, copper and cadmium in rodents sharing the same type of diet under different microhabitat use in arid areas with past mining activities. Samples of soil, roots, branches and seeds of Palo Adán (Fouquieria diguetii) and specimens of two rodent species (Chaetodipus arenarius and C. spinatus) were collected in areas with impact from past metal mining activities as well as from areas with no mining impact. Both rodent species mirrored nickel and iron levels in soil and seeds, as well as lead levels in soil; however, C. arenarius accumulated higher levels of manganese, copper and cadmium.

  12. Large Area Active Brazing of Multi-tile Ceramic-Metal Structures

    DTIC Science & Technology

    2012-05-01

    metallurgical bonds. The major disadvantage of using active brazing for metals and ceramics is the high processing temperature required that results in...steels) and form strong, metallurgical bonds. However, the high processing temperatures result in large strain (stress) build-up from the inherent...metals such as titanium alloys and stainless steels) and form strong, metallurgical bonds. However, the high processing temperatures result in large

  13. Application of thermodynamics and Wagner model on two problems in continuous hot-dip galvanizing

    NASA Astrophysics Data System (ADS)

    Liu, Huachu; He, Yanlin; Li, Lin

    2009-12-01

    Firstly in this paper, the influence of H 2 and water vapor content on selective oxidation occurred in continuous hot-dip galvanizing has been studied by thermodynamics and Wagner model, then, the Gibbs energy of each possible aluminothermic reducing reaction in zinc bath was calculated in order to judge the possibility of these reactions. It was found that oxides' amounts and oxidation type were greatly related to the H 2 and water content in the annealing atmosphere. And from the view of thermodynamics, surface oxides (MnO, Cr 2O 3, SiO 2 etc.) can be reduced by the effective Al in Zn bath.

  14. Mechanism of Metal Ion Activation of the Diphtheria Toxin Repressor DtxR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Aquino,J.; Tetenbaum-Novatt, J.; White, A.

    2005-01-01

    The diphtheria toxin repressor (DtxR) is a metal ion-activated transcriptional regulator that has been linked to the virulence of Corynebacterium diphtheriae. Structure determination has shown that there are two metal ion binding sites per repressor monomer, and site-directed mutagenesis has demonstrated that binding site 2 (primary) is essential for recognition of the target DNA repressor, leaving the role of binding site 1 (ancillary) unclear. Calorimetric techniques have demonstrated that although binding site 1 (ancillary) has high affinity for metal ion with a binding constant of 2 x 10{sup -7}, binding site 2 (primary) is a low-affinity binding site with amore » binding constant of 6.3 x 10{sup -4}. These two binding sites act in an independent fashion, and their contribution can be easily dissected by traditional mutational analysis. Our results clearly demonstrate that binding site 1 (ancillary) is the first one to be occupied during metal ion activation, playing a critical role in stabilization of the repressor. In addition, structural data obtained for the mutants Ni-DtxR(H79A, C102D), reported here, and the previously reported DtxR(H79A) have allowed us to propose a mechanism of metal activation for DtxR.« less

  15. Mechanism of Metal Ion Activation of the Diphtheria Toxin Repressor DtxR

    NASA Astrophysics Data System (ADS)

    D'Aquino, J. Alejandro; Ringe, Dagmar

    2006-08-01

    The diphtheria toxin repressor, DtxR, is a metal ion-activated transcriptional regulator that has been linked to the virulence of Corynebacterium diphtheriae. Structure determination has shown that there are two metal ion binding sites per repressor monomer, and site-directed mutagenesis has demonstrated that binding site 2 (primary) is essential for recognition of the target DNA repressor, leaving the role of binding site 1 (ancillary) unclear (1 - 3). Calorimetric techniques have demonstrated that while binding site 1 (ancillary) has high affinity for metal ion with a binding constant of 2 × 10-7, binding site 2 (primary) is a low affinity binding site with a binding constant of 6.3 × 10-4. These two binding sites act independently and their contribution can be easily dissected by traditional mutational analysis. Our results clearly demonstrate that binding site 1 (ancillary) is the first one to be occupied during metal ion activation, playing a critical role in stabilization of the repressor. In addition, structural data obtained for the mutants Ni-DtxR(H79A,C102D), reported here and the previously reported DtxR(H79A) (4) has allowed us to propose a mechanism of metal ion activation for DtxR.

  16. Metal Dependence of the Xylose Isomerase from Piromyces sp. E2 Explored by Activity Profiling and Protein Crystallography

    PubMed Central

    2017-01-01

    Xylose isomerase from Piromyces sp. E2 (PirXI) can be used to equip Saccharomyces cerevisiae with the capacity to ferment xylose to ethanol. The biochemical properties and structure of the enzyme have not been described even though its metal content, catalytic parameters, and expression level are critical for rapid xylose utilization. We have isolated the enzyme after high-level expression in Escherichia coli, analyzed the metal dependence of its catalytic properties, and determined 12 crystal structures in the presence of different metals, substrates, and substrate analogues. The activity assays revealed that various bivalent metals can activate PirXI for xylose isomerization. Among these metals, Mn2+ is the most favorable for catalytic activity. Furthermore, the enzyme shows the highest affinity for Mn2+, which was established by measuring the activation constants (Kact) for different metals. Metal analysis of the purified enzyme showed that in vivo the enzyme binds a mixture of metals that is determined by metal availability as well as affinity, indicating that the native metal composition can influence activity. The crystal structures show the presence of an active site similar to that of other xylose isomerases, with a d-xylose binding site containing two tryptophans and a catalytic histidine, as well as two metal binding sites that are formed by carboxylate groups of conserved aspartates and glutamates. The binding positions and conformations of the metal-coordinating residues varied slightly for different metals, which is hypothesized to contribute to the observed metal dependence of the isomerase activity. PMID:29045784

  17. Activation of Autophagy by Metals in Chlamydomonas reinhardtii.

    PubMed

    Pérez-Martín, Marta; Blaby-Haas, Crysten E; Pérez-Pérez, María Esther; Andrés-Garrido, Ascensión; Blaby, Ian K; Merchant, Sabeeha S; Crespo, José L

    2015-09-01

    Autophagy is an intracellular self-degradation pathway by which eukaryotic cells recycle their own material in response to specific stress conditions. Exposure to high concentrations of metals causes cell damage, although the effect of metal stress on autophagy has not been explored in photosynthetic organisms. In this study, we investigated the effect of metal excess on autophagy in the model unicellular green alga Chlamydomonas reinhardtii. We show in cells treated with nickel an upregulation of ATG8 that is independent of CRR1, a global regulator of copper signaling in Chlamydomonas. A similar effect on ATG8 was observed with copper and cobalt but not with cadmium or mercury ions. Transcriptome sequencing data revealed an increase in the abundance of the protein degradation machinery, including that responsible for autophagy, and a substantial overlap of that increased abundance with the hydrogen peroxide response in cells treated with nickel ions. Thus, our results indicate that metal stress triggers autophagy in Chlamydomonas and suggest that excess nickel may cause oxidative damage, which in turn activates degradative pathways, including autophagy, to clear impaired components and recover cellular homeostasis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Effect of heavy metals ions on enzyme activity in the Mediterranean mussel, Donax trunculus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizrahi, L.; Achituv, Y.

    Heavy metal ions strongly are bound by sulfhydryl groups of proteins. Sulfhydryl binding changes the structure and enzymatic activities of proteins and causes toxic effects evident at the whole organism level. Heavy metal ions like Cd, Cu, Hg, Zn, and Pb in sufficiently high concentrations might kill organisms or cause other adverse effects that changing aquatic community structures. Bivalves are known to be heavy metal accumulators. The aim of the present study was to examine the effects of different concentrations of each of five heavy metal ions on the activity of four enzymes in D. trunculus. As it is knownmore » that heavy metals inhibit the activity of a wide range of enzymes, the authors chose representative examples of dehydrogenases (lactate and malate dehydrogenases), respiratory enzyme (cytochrome oxidase) and digestive enzyme ({alpha}-amylase). The acute effects of different concentrations of selected metals were examined. These concentrations were higher than those found usually in the locality where the animals occur, but might be encountered during a given event of pollution.« less

  19. Progress in the Development of SERS-Active Substrates Based on Metal-Coated Porous Silicon

    PubMed Central

    Girel, Kseniya V.; Panarin, Andrei; Terekhov, Sergei N.

    2018-01-01

    The present work gives an overview of the developments in surface-enhanced Raman scattering (SERS) with metal-coated porous silicon used as an active substrate. We focused this review on the research referenced to SERS-active materials based on porous silicon, beginning from the patent application in 2002 and enclosing the studies of this year. Porous silicon and metal deposition technologies are discussed. Since the earliest studies, a number of fundamentally different plasmonic nanostructures including metallic dendrites, quasi-ordered arrays of metallic nanoparticles (NPs), and metallic nanovoids have been grown on porous silicon, defined by the morphology of this host material. SERS-active substrates based on porous silicon have been found to combine a high and well-reproducible signal level, storage stability, cost-effective technology and handy use. They make it possible to identify and study many compounds including biomolecules with a detection limit varying from milli- to femtomolar concentrations. The progress reviewed here demonstrates the great prospects for the extensive use of the metal-coated porous silicon for bioanalysis by SERS-spectroscopy. PMID:29883382

  20. Progress in the Development of SERS-Active Substrates Based on Metal-Coated Porous Silicon.

    PubMed

    Bandarenka, Hanna V; Girel, Kseniya V; Zavatski, Sergey A; Panarin, Andrei; Terekhov, Sergei N

    2018-05-21

    The present work gives an overview of the developments in surface-enhanced Raman scattering (SERS) with metal-coated porous silicon used as an active substrate. We focused this review on the research referenced to SERS-active materials based on porous silicon, beginning from the patent application in 2002 and enclosing the studies of this year. Porous silicon and metal deposition technologies are discussed. Since the earliest studies, a number of fundamentally different plasmonic nanostructures including metallic dendrites, quasi-ordered arrays of metallic nanoparticles (NPs), and metallic nanovoids have been grown on porous silicon, defined by the morphology of this host material. SERS-active substrates based on porous silicon have been found to combine a high and well-reproducible signal level, storage stability, cost-effective technology and handy use. They make it possible to identify and study many compounds including biomolecules with a detection limit varying from milli- to femtomolar concentrations. The progress reviewed here demonstrates the great prospects for the extensive use of the metal-coated porous silicon for bioanalysis by SERS-spectroscopy.

  1. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts

    PubMed Central

    Sahraie, Nastaran Ranjbar; Kramm, Ulrike I.; Steinberg, Julian; Zhang, Yuanjian; Thomas, Arne; Reier, Tobias; Paraknowitsch, Jens-Peter; Strasser, Peter

    2015-01-01

    Carbon materials doped with transition metal and nitrogen are highly active, non-precious metal catalysts for the electrochemical conversion of molecular oxygen in fuel cells, metal air batteries, and electrolytic processes. However, accurate measurement of their intrinsic turn-over frequency and active-site density based on metal centres in bulk and surface has remained difficult to date, which has hampered a more rational catalyst design. Here we report a successful quantification of bulk and surface-based active-site density and associated turn-over frequency values of mono- and bimetallic Fe/N-doped carbons using a combination of chemisorption, desorption and 57Fe Mössbauer spectroscopy techniques. Our general approach yields an experimental descriptor for the intrinsic activity and the active-site utilization, aiding in the catalyst development process and enabling a previously unachieved level of understanding of reactivity trends owing to a deconvolution of site density and intrinsic activity. PMID:26486465

  2. Two distinct modes of metal ion binding in the nuclease active site of a viral DNA-packaging terminase: insight into the two-metal-ion catalytic mechanism

    PubMed Central

    Zhao, Haiyan; Lin, Zihan; Lynn, Anna Y.; Varnado, Brittany; Beutler, John A.; Murelli, Ryan P.; Le Grice, Stuart F. J.; Tang, Liang

    2015-01-01

    Many dsDNA viruses encode DNA-packaging terminases, each containing a nuclease domain that resolves concatemeric DNA into genome-length units. Terminase nucleases resemble the RNase H-superfamily nucleotidyltransferases in folds, and share a two-metal-ion catalytic mechanism. Here we show that residue K428 of a bacteriophage terminase gp2 nuclease domain mediates binding of the metal cofactor Mg2+. A K428A mutation allows visualization, at high resolution, of a metal ion binding mode with a coupled-octahedral configuration at the active site, exhibiting an unusually short metal-metal distance of 2.42 Å. Such proximity of the two metal ions may play an essential role in catalysis by generating a highly positive electrostatic niche to enable formation of the negatively charged pentacovalent phosphate transition state, and provides the structural basis for distinguishing Mg2+ from Ca2+. Using a metal ion chelator β-thujaplicinol as a molecular probe, we observed a second mode of metal ion binding at the active site, mimicking the DNA binding state. Arrangement of the active site residues differs drastically from those in RNase H-like nucleases, suggesting a drifting of the active site configuration during evolution. The two distinct metal ion binding modes unveiled mechanistic details of the two-metal-ion catalysis at atomic resolution. PMID:26450964

  3. [Use of magnetic therapy combined with galvanization and tissue electrophoresis in the treatment of trophic ulcers].

    PubMed

    Alekseenko, A V; Gusak, V V; Stoliar, V F; Iftodiĭ, A G; Tarabanchuk, V V; Shcherban, N G; Naumets, A A

    1993-01-01

    The results of treatment of 86 patients with the use of magnetotherapy in combination with galvanization and intratissue electrophoresis are presented. To create an electric field, the "Potok-1" apparatus with a density of current equal to 0.05-0.1 mA/cm2 was employed. Simultaneously, the "MAG-30" apparatus for low-frequency magnetotherapy with induction of 30 mT and area of exposure of 20 cm2 was applied to a trophic ulcer site. The use of magnetogalvanotherapy in the complex of treatment of trophic ulcers of the lower extremities is recommended.

  4. Facile synthesis of PdAgTe nanowires with superior electrocatalytic activity

    NASA Astrophysics Data System (ADS)

    Hong, Wei; Wang, Jin; Wang, Erkang

    2014-12-01

    In this work, ultrathin Te nanowires (NWs) with high-aspect-ratio are prepared by a simple hydrothermal method. By using Te NWs as the sacrificial template, we demonstrate a facile and efficient method for the synthesis of PdAgTe NWs with high-quality through the partly galvanic replacement between Te NWs and the corresponding noble metal salts precursors in an aqueous solution. The compositions of PdAgTe NWs can be tuned by simply altering the concentration of the precursors. After cyclic voltammetry treatment, multi-component PdAgTe NW with a highly active and stable surface can be obtained. The structure and composition of the as-prepared nanomaterials are analyzed by transmission electron microscope, X-ray diffraction, energy dispersive X-ray spectroscopy, inductively coupled plasma-mass spectroscopy and X-ray photoelectron spectroscopy. Electrochemical catalytic measurement results prove that the as synthesized PdAgTe NWs present superior catalytic activity toward ethanol electrooxidation in alkaline solution than the commercial Pd/C catalyst, which making them can be used as effective catalysts for the direct ethanol fuel cells.

  5. Photo-Curable Metal-Chelating Coatings Offer a Scalable Approach to Production of Antioxidant Active Packaging.

    PubMed

    Lin, Zhuangsheng; Goddard, Julie

    2018-02-01

    Synthetic metal chelators (for example, ethylenediaminetetraacetic acid, EDTA) are widely used as additives to control trace transition metal induced oxidation in consumer products. To enable removal of synthetic chelators in response to increasing consumer demand for clean label products, metal-chelating active food packaging technologies have been developed with demonstrated antioxidant efficacy in simulated food systems. However, prior work in fabrication of metal-chelating materials leveraged batch chemical reactions to tether metal-chelating ligands, a process with limited industrial translatability for large-scale fabrication. To improve the industrial translatability, we have designed a 2-step laminated photo-grafting process to introduce metal chelating functionality onto common polymeric packaging materials. Iminodiacetic acid (IDA) functionalized materials were fabricated by photo-grafting poly(acrylic acid) onto polypropylene (PP) films, followed by a second photo-grafting process to graft-polymerize an IDA functionalized vinyl monomer (GMA-IDA). The photo-grafting was conducted under atmospheric conditions and was completed in 2 min. The resulting IDA functionalized metal-chelating material was able to chelate iron and copper, and showed antioxidant efficacy against ascorbic acid degradation, supporting its potential to be used synergistically with natural antioxidants for preservation of food and beverage products. The 2-step photo-grafting process improves the throughput of active packaging coatings, enabling potential roll-to-roll fabrication of metal-chelating active packaging materials for antioxidant food packaging applications. To address consumer and retail demands for "clean label" foods and beverages without a corresponding loss in product quality and shelf life, producers are seeking next generation technologies such as active packaging. In this work, we will report the synthesis of metal-chelating active packaging films, which enable removal

  6. The effect of cell density, proximity, and time on the cytotoxicity of magnesium and galvanically coupled magnesium-titanium particles in vitro.

    PubMed

    Kim, Jua; Gilbert, Jeremy L

    2018-05-01

    Magnesium (Mg) and galvanically coupled magnesium-titanium (Mg-Ti) particles in vitro have been reported previously to kill cells in a dosage-dependent manner. Mg-Ti particles kill cells more effectively than Mg alone, due to the galvanic effect of Mg and Ti. This study further investigated the in vitro cytotoxicity of Mg and Mg-Ti in terms of particle concentration, cell density, time, and proximity. Cell density has an effect on cell viability only at low particle concentrations (below 250 µg/mL), where cell viability dropped only for lower cell densities (5000-10,000 cells/cm 2 ) and not for higher cell densities (20,000-30,000 cells/cm 2 ), showing that the particles cannot kill if there are more cells present. Cytotoxicity of Mg and Mg-Ti particles is quick and temporary, where the particles kill cells only during particle corrosion (first 24 h). Depending on the percentage of surviving cells, particle concentrations, and ongoing corrosion activity, the remaining live cells either proliferated and recovered, or just remained viable and quiescent. The particle killing is also proximity-dependent, where cell viability was significantly higher for cells far away from the particles (greater than ∼1 mm) compared to those close to the particles (less than ∼1 mm). Although the increase of pH does affect cell viability negatively, it is not the sole killing factor since cell viability is significantly dependent on particle type and proximity but not pH. Mg and Mg-Ti particles used in this study are large enough to prevent direct cell phagocytosis so that the cell killing effect may be attributed to solely electrochemical reactions. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1428-1439, 2018. © 2018 Wiley Periodicals, Inc.

  7. Metal-Induced Stabilization and Activation of Plasmid Replication Initiator RepB

    PubMed Central

    Ruiz-Masó, José A.; Bordanaba-Ruiseco, Lorena; Sanz, Marta; Menéndez, Margarita; del Solar, Gloria

    2016-01-01

    Initiation of plasmid rolling circle replication (RCR) is catalyzed by a plasmid-encoded Rep protein that performs a Tyr- and metal-dependent site-specific cleavage of one DNA strand within the double-strand origin (dso) of replication. The crystal structure of RepB, the initiator protein of the streptococcal plasmid pMV158, constitutes the first example of a Rep protein structure from RCR plasmids. It forms a toroidal homohexameric ring where each RepB protomer consists of two domains: the C-terminal domain involved in oligomerization and the N-terminal domain containing the DNA-binding and endonuclease activities. Binding of Mn2+ to the active site is essential for the catalytic activity of RepB. In this work, we have studied the effects of metal binding on the structure and thermostability of full-length hexameric RepB and each of its separate domains by using different biophysical approaches. The analysis of the temperature-induced changes in RepB shows that the first thermal transition, which occurs at a range of temperatures physiologically relevant for the pMV158 pneumococcal host, represents an irreversible conformational change that affects the secondary and tertiary structure of the protein, which becomes prone to self-associate. This transition, which is also shown to result in loss of DNA binding capacity and catalytic activity of RepB, is confined to its N-terminal domain. Mn2+ protects the protein from undergoing this detrimental conformational change and the observed protection correlates well with the high-affinity binding of the cation to the active site, as substituting one of the metal-ligands at this site impairs both the protein affinity for Mn2+and the Mn2+-driven thermostabilization effect. The level of catalytic activity of the protein, especially in the case of full-length RepB, cannot be explained based only on the high-affinity binding of Mn2+ at the active site and suggests the existence of additional, lower-affinity metal binding site

  8. Synthesis and Antibacterial Activity of Metal(loid) Nanostructures by Environmental Multi-Metal(loid) Resistant Bacteria and Metal(loid)-Reducing Flavoproteins.

    PubMed

    Figueroa, Maximiliano; Fernandez, Valentina; Arenas-Salinas, Mauricio; Ahumada, Diego; Muñoz-Villagrán, Claudia; Cornejo, Fabián; Vargas, Esteban; Latorre, Mauricio; Morales, Eduardo; Vásquez, Claudio; Arenas, Felipe

    2018-01-01

    Microbes are suitable candidates to recover and decontaminate different environments from soluble metal ions, either via reduction or precipitation to generate insoluble, non-toxic derivatives. In general, microorganisms reduce toxic metal ions generating nanostructures (NS), which display great applicability in biotechnological processes. Since the molecular bases of bacterial reduction are still unknown, the search for new -environmentally safe and less expensive- methods to synthesize NS have made biological systems attractive candidates. Here, 47 microorganisms isolated from a number of environmental samples were analyzed for their tolerance or sensitivity to 19 metal(loid)s. Ten of them were highly tolerant to some of them and were assessed for their ability to reduce these toxicants in vitro . All isolates were analyzed by 16S rRNA gene sequencing, fatty acids composition, biochemical tests and electron microscopy. Results showed that they belong to the Enterobacter, Staphylococcus, Acinetobacter , and Exiguobacterium genera. Most strains displayed metal(loid)-reducing activity using either NADH or NADPH as cofactor. While Acinetobacter schindleri showed the highest tellurite ( TeO 3 2 - ) and tetrachloro aurate ( AuCl 4 - ) reducing activity, Staphylococcus sciuri and Exiguobacterium acetylicum exhibited selenite ( SeO 3 2 - ) and silver (Ag + ) reducing activity, respectively. Based on these results, we used these bacteria to synthetize, in vivo and in vitro Te, Se, Au, and Ag-containing nanostructures. On the other hand, we also used purified E. cloacae glutathione reductase to synthesize in vitro Te-, Ag-, and Se-containing NS, whose morphology, size, composition, and chemical composition were evaluated. Finally, we assessed the putative anti-bacterial activity exhibited by the in vitro synthesized NS: Te-containing NS were more effective than Au-NS in inhibiting Escherichia coli and Listeria monocytogenes growth. Aerobically synthesized TeNS using MF09

  9. Synthesis and Antibacterial Activity of Metal(loid) Nanostructures by Environmental Multi-Metal(loid) Resistant Bacteria and Metal(loid)-Reducing Flavoproteins

    PubMed Central

    Figueroa, Maximiliano; Fernandez, Valentina; Arenas-Salinas, Mauricio; Ahumada, Diego; Muñoz-Villagrán, Claudia; Cornejo, Fabián; Vargas, Esteban; Latorre, Mauricio; Morales, Eduardo; Vásquez, Claudio; Arenas, Felipe

    2018-01-01

    Microbes are suitable candidates to recover and decontaminate different environments from soluble metal ions, either via reduction or precipitation to generate insoluble, non-toxic derivatives. In general, microorganisms reduce toxic metal ions generating nanostructures (NS), which display great applicability in biotechnological processes. Since the molecular bases of bacterial reduction are still unknown, the search for new -environmentally safe and less expensive- methods to synthesize NS have made biological systems attractive candidates. Here, 47 microorganisms isolated from a number of environmental samples were analyzed for their tolerance or sensitivity to 19 metal(loid)s. Ten of them were highly tolerant to some of them and were assessed for their ability to reduce these toxicants in vitro. All isolates were analyzed by 16S rRNA gene sequencing, fatty acids composition, biochemical tests and electron microscopy. Results showed that they belong to the Enterobacter, Staphylococcus, Acinetobacter, and Exiguobacterium genera. Most strains displayed metal(loid)-reducing activity using either NADH or NADPH as cofactor. While Acinetobacter schindleri showed the highest tellurite (TeO32-) and tetrachloro aurate (AuCl4-) reducing activity, Staphylococcus sciuri and Exiguobacterium acetylicum exhibited selenite (SeO32-) and silver (Ag+) reducing activity, respectively. Based on these results, we used these bacteria to synthetize, in vivo and in vitro Te, Se, Au, and Ag-containing nanostructures. On the other hand, we also used purified E. cloacae glutathione reductase to synthesize in vitro Te-, Ag-, and Se-containing NS, whose morphology, size, composition, and chemical composition were evaluated. Finally, we assessed the putative anti-bacterial activity exhibited by the in vitro synthesized NS: Te-containing NS were more effective than Au-NS in inhibiting Escherichia coli and Listeria monocytogenes growth. Aerobically synthesized TeNS using MF09 crude extracts

  10. Short-time effect of heavy metals upon microbial community activity.

    PubMed

    Wang, Fei; Yao, Jun; Si, Yang; Chen, Huilun; Russel, Mohammad; Chen, Ke; Qian, Yiguang; Zaray, Gyula; Bramanti, Emilia

    2010-01-15

    Microcalorimetry was applied to assess and compare the toxic effect of heavy metals, such as As, Cu, Cd, Cr, Co, Pb and Zn, on the soil microbial activities and community. About 1.0 g soil spiked 5.0mg glucose and 5.0mg ammonium sulfate, the microbial activities were recorded as power-time curves, and their indices, microbial growth rate constant k, total heat evolution Q(T), metabolic enthalpy Delta H(met) and mass specific heat rate J(Q/S), were calculated. Comparing these thermodynamic parameters associated with growth yield, a general order of toxicity to the soil was found to be Cr>Pb>As>Co>Zn>Cd>Cu. When soil was exposed to heavy metals, the amount of bacteria and fungi decreased with the incubation time, and the bacterial number diminished sharply. It illustrates that fungi are more tolerant, and bacteria-fungi ratio would be altered under metal stress. To determine the status of the glucose consumed, a glucose biosensor with eggshell membrane was used to measure the remaining glucose in soil sample. Results showed that the time at which glucose was consumed completely was agreed with the microcalorimetric time to a large extent, and depended on the toxicity of heavy metals as well.

  11. Thermal analysis of the exothermic reaction between galvanic porous silicon and sodium perchlorate.

    PubMed

    Becker, Collin R; Currano, Luke J; Churaman, Wayne A; Stoldt, Conrad R

    2010-11-01

    Porous silicon (PS) films up to ∼150 μm thick with specific surface area similar to 700 m(2)/g and pore diameters similar to 3 nm are fabricated using a galvanic corrosion etching mechanism that does not require a power supply. After fabrication, the pores are impregnated with the strong oxidizer sodium perchlorate (NaClO(4)) to create a composite that constitutes a highly energetic system capable of explosion. Using bomb calorimetry, the heat of reaction is determined to be 9.9 ± 1.8 and 27.3 ± 3.2 kJ/g of PS when ignited under N(2) and O(2), respectively. Differential scanning calorimetry (DSC) reveals that the energy output is dependent on the hydrogen termination of the PS.

  12. Active Site Metal Identity Alters Histone Deacetylase 8 Substrate Selectivity: A Potential Novel Regulatory Mechanism.

    PubMed

    Castaneda, Carol Ann; Lopez, Jeffrey E; Joseph, Caleb G; Scholle, Michael D; Mrksich, Milan; Fierke, Carol A

    2017-10-24

    Histone deacetylase 8 (HDAC8) is a well-characterized member of the class I acetyl-lysine deacetylase (HDAC) family. Previous work has shown that the efficiency of HDAC8-catalyzed deacetylation of a methylcoumarin peptide varies depending on the identity of the divalent metal ion in the HDAC8 active site. Here we demonstrate that both HDAC8 activity and substrate selectivity for a diverse range of peptide substrates depend on the identity of the active site metal ion. Varied deacetylase activities of Fe(II)- and Zn(II)-HDAC8 toward an array of peptide substrates were identified using self-assembled monolayers for matrix-assisted laser desorption ionization (SAMDI) mass spectrometry. Subsequently, the metal dependence of deacetylation of peptides of biological interest was measured using an in vitro peptide assay. While Fe(II)-HDAC8 is generally more active than Zn(II)-HDAC8, the Fe(II)/Zn(II) HDAC8 activity ratio varies widely (from 2 to 150) among the peptides tested. These data provide support for the hypothesis that HDAC8 may undergo metal switching in vivo that, in turn, may regulate its activity. However, future studies are needed to explore the identity of the metal ion bound to HDAC8 in cells under varied conditions.

  13. Structure-Activity Relationships for Pt-Free Metal Phosphide Hydrogen Evolution Electrocatalysts.

    PubMed

    Owens-Baird, Bryan; Kolen'ko, Yury V; Kovnir, Kirill

    2018-05-23

    In the field of renewable energy, the splitting of water into hydrogen and oxygen fuel gases using water electrolysis is a prominent topic. Traditionally, these catalytic processes have been performed by platinum-group metal catalysts, which are effective at promoting water electrolysis but expensive and rare. The search for an inexpensive and Earth-abundant catalyst has led to the development of 3d-transition-metal phosphides for the hydrogen evolution reaction. These catalysts have shown excellent activity and stability. In this review, we discuss the electronic and crystal structures of bulk and surface of selected Fe, Co, and Ni phosphides, and their relationships to the experimental catalytic activity. The various synthetic protocols towards the state-of-the-art transition metal phosphide electrocatalysts are also discussed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. In vitro Reactivity to Implant Metals Demonstrates a Person Dependent Association with both T-Cell and B-Cell Activation

    PubMed Central

    Hallab, Nadim James; Caicedo, Marco; Epstein, Rachael; McAllister, Kyron; Jacobs, Joshua J

    2009-01-01

    Hypersensitivity to metallic implants remains relatively unpredictable and poorly understood. We initially hypothesized that metal-induced lymphocyte proliferation responses to soluble metal challenge (ions) are mediated exclusively by early T-cell activation (not B-cells), typical of a Delayed-Type-Hypersensitivity response. We tested this by comparing proliferation (6-days) of primary lymphocytes with early T-cell and B-cell activation (48-hours) in three groups of subjects likely to demonstrate elevated metal-reactivity: Group 1(n=12) history of metal-sensitivity with no implant; Group 2a(n=6) well performing metal-on-metal THRs, and Group 2b(n=20) subjects with poorly performing metal-on-polymer total joint arthroplasties (TJA). Group 1 showed 100%(12/12) metal reactivity (Stimulation Index>2) to Ni. Group 2a&2b were 83%(5/6) and 75%(15/22) metal reactive (to Co, Cr or Ni) respectively. Of the n=32 metal reactive subjects to Co, Cr or Ni (SI>2), n=22/32 demonstrated >2-fold elevations in % of T-cell or B-cell activation (CD25+,CD69+) to metal challenge compared to untreated control. 18/22 metal-activated subjects demonstrated an exclusively T-cell or B-cell activation response to metal challenge, where 6/18 demonstrated exclusively B-cell activation and 12/18 demonstrated a T-cell only response, as measured by surface activation markers CD25+ and CD69+. However, there was no direct correlation (R2<0.1) between lymphocyte proliferation and % T-cell or B-cell activation (CD25+:CD69+). Proliferation assays (LTT) showed greater ability to detect metal reactivity than did subject-dependent results of flow-cytometry analysis of T-cell or B-cell activation. The high incidence of lymphocyte reactivity and activation, indicate that more complex than initially hypothesized immune responses may contribute to the etiology of debris induced osteolysis in metal-sensitive individuals. PMID:19235773

  15. Cu-SnO2 nanostructures obtained via galvanic replacement control as high performance anodes for lithium-ion storage

    NASA Astrophysics Data System (ADS)

    Nguyen, Tuan Loi; Park, Duckshin; Hur, Jaehyun; Son, Hyung Bin; Park, Min Sang; Lee, Seung Geol; Kim, Ji Hyeon; Kim, Il Tae

    2018-01-01

    SnO2 has been considered as a promising anode material for lithium ion batteries (LIBs) because of its high theoretical capacity (782 mAh g-1). However, the reaction between lithium ions and Sn causes a large volume change, resulting in the pulverization of the anode, a loss of contact with the current collector, and a deterioration in electrochemical performance. Several strategies have been proposed to mitigate the drastic volume changes to extend the cyclic life of SnO2 materials. Herein, novel composites consisting of Cu and SnO2 were developed via the galvanic replacement reaction. The reaction was carried out at 180 °C for different durations and triethylene glycol was used as the medium solvent. The structure, morphology, and composition of the composites were analyzed by X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The reaction time affected the particle size, which in turn affected the reaction kinetics. Furthermore, the novel nanostructures contained an inactive metal phase (Cu), which acted both as the buffer space against the volume change of Sn during the alloying reaction and as the electron conductor, resulting in a lower impedance of the composites. When evaluated as potential anodes for LIBs, the composite electrodes displayed extraordinary electrochemical performance with a high capacity and Coulombic efficiency, an excellent cycling stability, and a superior rate capability compared to a Sn electrode.

  16. Ligational behavior of Schiff bases towards transition metal ion and metalation effect on their antibacterial activity

    NASA Astrophysics Data System (ADS)

    Devi, Jai; Batra, Nisha; Malhotra, Rajesh

    2012-11-01

    New Schiff bases pyrazine-2-carboxylicacid (phenyl-pyridin-2-yl-methylene)-hydrazide (Hpch-bp) HL1 and pyrazine-2-carboxylicacid (pyridin-2-ylmethylene)-hydrazide (Hpch-pc) HL2 derived from condensation of pyrazine carboxylic hydrazide (Hpch) with 2-benzoyl pyridine (bp) or pyridine 2-carbaldehyde (pc) and their transition metal complexes of type ML(1-2)2 have been synthesized, where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). Characterization of ligands and their metal complexes was carried out by elemental analysis, conductimetric studies, magnetic susceptibility, spectroscopic techniques (IR, UV-VIS, NMR, ESR, Mass) and thermogravimetric analysis. The physico-chemical studies revealed octahedral geometry or distorted octahedral geometry around metal ion. These azomethine Schiff base ligands acted as tridentate ? coordinating through carbonyl, azomethine and pyridine nitrogen present in the ligand. The thermodynamic and thermal properties of the complexes have been investigated and it was observed on the basis of these studies that thermal stability of complexes follows the order Mn < Zn < Cu < Co < Ni. The ligands and their complexes were tested for in vitro antibacterial activity at different concentrations against bacteria viz. Gram positive Bacillus subtilis, Micrococcus luteus and Gram negative Pseudomonas aeruginosa, Pseudomonas mendocina. A marked enhancement in biocidal activity of the ligands under similar experimental conditions was observed as a consequence of coordination with metal ions. The trend of growth inhibition in the complexes was found to be in the order: Cu > Mn > Ni > Co > Zn.

  17. Real-time active MR-tracking of metallic stylets in MR-guided radiation therapy

    PubMed Central

    Wang, Wei; Dumoulin, Charles L.; Viswanathan, Akila N.; Tse, Zion T. H.; Mehrtash, Alireza; Loew, Wolfgang; Norton, Isaiah; Tokuda, Junichi; Seethamraju, Ravi T.; Kapur, Tina; Damato, Antonio L.; Cormack, Robert A.; Schmidt, Ehud J.

    2014-01-01

    Purpose To develop an active MR-tracking system to guide placement of metallic devices for radiation therapy. Methods An actively tracked metallic stylet for brachytherapy was constructed by adding printed-circuit micro-coils to a commercial stylet. The coil design was optimized by electromagnetic simulation, and has a radio-frequency lobe pattern extending ~5 mm beyond the strong B0 inhomogeneity region near the metal surface. An MR-tracking sequence with phase-field dithering was used to overcome residual effects of B0 and B1 inhomogeneities caused by the metal, as well as from inductive coupling to surrounding metallic stylets. The tracking system was integrated with a graphical workstation for real-time visualization. 3T MRI catheter-insertion procedures were tested in phantoms and ex-vivo animal tissue, and then performed in three patients during interstitial brachytherapy. Results The tracking system provided high-resolution (0.6 × 0.6 × 0.6 mm3) and rapid (16 to 40 frames per second, with three to one phase-field dithering directions) catheter localization in phantoms, animals, and three gynecologic cancer patients. Conclusion This is the first demonstration of active tracking of the shaft of metallic stylet in MR-guided brachytherapy. It holds the promise of assisting physicians to achieve better targeting and improving outcomes in interstitial brachytherapy. PMID:24903165

  18. THA Using Metal-on-Metal Articulation in Active Patients Younger Than 50 Years

    PubMed Central

    Bonnomet, François; Clavert, Philippe; Laffargue, Philippe; Migaud, Henri

    2008-01-01

    The main concern of patients with longer life expectancies and of patients who are younger and more active is the longevity of their total hip arthroplasty. We retrospectively reviewed 83 cementless total hip arthroplasties in 73 patients implanted with metal-on-metal articulation. All patients were younger than 50 years old (average age, 41 years) at the time of the index procedure, and 80% of the patients had an activity level graded 4 or 5 when measured with the system of Devane et al. A 28-mm Metasul articulation was used with three different cementless titanium acetabular components. At the most recent followup (average, 7.3 years), the average Merle d’Aubigné-Postel score improved from a preoperative 11.1 points to 17.4 points. We observed no radiographic evidence of component loosening. Ten acetabular components had lucency limited to one zone. The 10-year survivorship with the end point of revision (ie, exchange of at least one prosthetic or bearing component) was 100% (95% confidence interval, 90%–100%). Metasul bearings with cementless acetabular components remain promising in this high-risk younger patient population. However, additional followup strategies are recommended to determine any possible long-term deleterious effects associated with the dissemination of metallic ions. Level of Evidence: Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18196415

  19. The Modeling and Simulation of the Galvanic Coupling Intra-Body Communication via Handshake Channel.

    PubMed

    Li, Maoyuan; Song, Yong; Li, Wansong; Wang, Guangfa; Bu, Tianpeng; Zhao, Yufei; Hao, Qun

    2017-04-14

    Intra-body communication (IBC) is a technology using the conductive properties of the body to transmit signal, and information interaction by handshake is regarded as one of the important applications of IBC. In this paper, a method for modeling the galvanic coupling intra-body communication via handshake channel is proposed, while the corresponding parameters are discussed. Meanwhile, the mathematical model of this kind of IBC is developed. Finally, the validity of the developed model has been verified by measurements. Moreover, its characteristics are discussed and compared with that of the IBC via single body channel. Our results indicate that the proposed method will lay a foundation for the theoretical analysis and application of the IBC via handshake channel.

  20. Surface Oxidation of the High-Strength Steels Electrodeposited with Cu or Fe and the Resultant Defect Formation in Their Coating during the Following Galvanizing and Galvannealing Processes

    NASA Astrophysics Data System (ADS)

    Choi, Yun-Il; Beom, Won-Jin; Park, Chan-Jin; Paik, Doojin; Hong, Moon-Hi

    2010-12-01

    This study examined the surface oxidation of high-strength steels electrodeposited with Cu or Fe and the resultant defect formation in their coating during the following galvanizing and galvannealing processes. The high-strength steels were coated with an Cu or Fe layer by the electroplating method. Then, the coated steels were annealed in a reducing atmosphere, dipped in a molten zinc, and finally transformed into galvannealed steels through the galvannealing process. The formation of Si and Mn oxides on the surface of the high-strength steel was effectively suppressed, and the density of surface defects on the galvanized steel was significantly reduced by the pre-electrodeposition of Cu and Fe. This effect was more prominent for the steels electrodeposited at higher cathodic current densities. The finer electrodeposit layer formed at higher cathodic current density on the steels enabled the suppression of partial surface oxidation by Mn or Si and better wetting of Zn on the surface of the steels in the following galvanizing process. Furthermore, the pre-electrodeposited steels exhibited a smoother surface without surface cracks after the galvannealing process compared with the untreated steel. The diffusion of Fe and Zn in the Zn coating layer in the pre-electrodeposited steels appears to occur more uniformly during the galvannealing process due to the low density of surface defects induced by oxides.

  1. Counteracting Muscle Atrophy using Galvanic Stimulation of the Vestibular System

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.; Polyakov, Igor

    1999-01-01

    The unloading of weight bearing from antigravity muscles during space flight produces significant muscle atrophy and is one of the most serious health problems facing the space program. Various exercise regimens have been developed and used either alone or in combination with pharmacological techniques to ameliorate this atrophy, but no effective countermeasure exists for this problem. The research in this project was conducted to evaluate the potential use of vestibular galvanic stimulation (VGS) to prevent muscle atrophy resulting from unloading of weight bearing from antigravity muscles. This approach was developed based on two concepts related to the process of maintaining the status of the anti-gravity neuromuscular system. These two premises are: (1) The "tone," or bias on spinal motorneurons is affected by vestibular projections that contribute importantly to maintaining muscle health and status. (2) VGS can be used to modify the excitability, or 'tone' of motorneuron of antigravity muscles. Thus, the strategy is to use VGS to modify the gain of vestibular projections to antigravity muscles and thereby change the general status of these muscles.

  2. Antifungal activity of fabrics knitted by metalized Silver/Polyester composite yarn

    NASA Astrophysics Data System (ADS)

    Özkan, İ.; Duru Baykal, P.

    2017-10-01

    In this study, antifungal properties of fabric knitted from metalized silver/polyester composite yarn were investigated. Intermingling is an alternative technique for yarn blending process. Yarns having different features can be combined by feeding the same intermingling jet. This process is defined as commingling. In the study, intermingling process was used to produce metalized silver/polyester composite yarn. Commingled yarns were knitted to single jersey fabrics by IPM brand sample type circular knitting machine. Antifungal activity test was applied to samples against Aspergillus Niger according to AATCC 30 test procedure. It has been identified that the application provides antifungal activity to fabric.

  3. 76 FR 31357 - Agency Information Collection Activities: Comment Request for the Ferrous Metals Surveys

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-31

    ... Collection Activities: Comment Request for the Ferrous Metals Surveys AGENCY: U.S. Geological Survey (USGS... revision of the currently approved paperwork requirements for the Ferrous Metals Surveys. This collection... USGS with domestic consumption data of 13 ores, concentrates, metals, and ferroalloys, some of which...

  4. Ibandronate metal complexes: solution behavior and antiparasitic activity.

    PubMed

    Demoro, Bruno; Rostán, Santiago; Moncada, Mauricio; Li, Zhu-Hong; Docampo, Roberto; Olea Azar, Claudio; Maya, Juan Diego; Torres, Julia; Gambino, Dinorah; Otero, Lucía

    2018-03-01

    To face the high costs of developing new drugs, researchers in both industry and academy are looking for ways to repurpose old drugs for new uses. In this sense, bisphosphonates that are clinically used for bone diseases have been studied as agents against Trypanosoma cruzi, causative parasite of Chagas disease. In this work, the development of first row transition metal complexes (M = Co 2+ , Mn 2+ , Ni 2+ ) with the bisphosphonate ibandronate (iba, H 4 iba representing the neutral form) is presented. The in-solution behavior of the systems containing iba and the selected 3d metal ions was studied by potentiometry. Mononuclear complexes [M(H x iba)] (2-x)- (x = 0-3) and [M(Hiba) 2 ] 4- together with the formation of the neutral polynuclear species [M 2 iba] and [M 3 (Hiba) 2 ] were detected for all studied systems. In the solid state, complexes of the formula [M 3 (Hiba) 2 (H 2 O) 4 ]·6H 2 O were obtained and characterized. All obtained complexes, forming [M(Hiba)] - species under the conditions of the biological studies, were more active against the amastigote form of T. cruzi than the free iba, showing no toxicity in mammalian Vero cells. In addition, the same complexes were selective inhibitors of the parasitic farnesyl diphosphate synthase (FPPS) enzyme showing poor inhibition of the human one. However, the increase of the anti-T. cruzi activity upon coordination could not be explained neither through the inhibition of TcFPPS nor through the inhibition of TcSPPS (T. cruzi solanesyl-diphosphate synthase). The ability of the obtained metal complexes of catalyzing the generation of free radical species in the parasite could explain the observed anti-T. cruzi activity.

  5. Electrochemical fluorination for processing of used nuclear fuel

    DOEpatents

    Garcia-Diaz, Brenda L.; Martinez-Rodriguez, Michael J.; Gray, Joshua R.; Olson, Luke C.

    2016-07-05

    A galvanic cell and methods of using the galvanic cell is described for the recovery of uranium from used nuclear fuel according to an electrofluorination process. The galvanic cell requires no input energy and can utilize relatively benign gaseous fluorinating agents. Uranium can be recovered from used nuclear fuel in the form of gaseous uranium compound such as uranium hexafluoride, which can then be converted to metallic uranium or UO.sub.2 and processed according to known methodology to form a useful product, e.g., fuel pellets for use in a commercial energy production system.

  6. How Metal Substitution Affects the Enzymatic Activity of Catechol-O-Methyltransferase

    PubMed Central

    Sparta, Manuel; Alexandrova, Anastassia N.

    2012-01-01

    Catechol-O-methyltransferase (COMT) degrades catecholamines, such as dopamine and epinephrine, by methylating them in the presence of a divalent metal cation (usually Mg(II)), and S-adenosyl-L-methionine. The enzymatic activity of COMT is known to be vitally dependent on the nature of the bound metal: replacement of Mg(II) with Ca(II) leads to a complete deactivation of COMT; Fe(II) is slightly less than potent Mg(II), and Fe(III) is again an inhibitor. Considering the fairly modest role that the metal plays in the catalyzed reaction, this dependence is puzzling, and to date remains an enigma. Using a quantum mechanical / molecular mechanical dynamics method for extensive sampling of protein structure, and first principle quantum mechanical calculations for the subsequent mechanistic study, we explicate the effect of metal substitution on the rate determining step in the catalytic cycle of COMT, the methyl transfer. In full accord with experimental data, Mg(II) bound to COMT is the most potent of the studied cations and it is closely followed by Fe(II), whereas Fe(III) is unable to promote catalysis. In the case of Ca(II), a repacking of the protein binding site is observed, leading to a significant increase in the activation barrier and higher energy of reaction. Importantly, the origin of the effect of metal substitution is different for different metals: for Fe(III) it is the electronic effect, whereas in the case of Ca(II) it is instead the effect of suboptimal protein structure. PMID:23056605

  7. Study of activation of metal samples from LDEF-1 and Spacelab-2

    NASA Technical Reports Server (NTRS)

    Laird, C. E.

    1991-01-01

    The activation of metal samples and other material orbited onboard the Long Duration Exposure Facility (LDEF) and Spacelab-2 were studied. Measurements of the radioactivities of spacecraft materials were made, and corrections for self-absorption and efficiency were calculated. Activation cross sections for specific metal samples were updated while cross sections for other materials were tabulated from the scientific literature. Activation cross sections for 200 MeV neutrons were experimentally determined. Linear absorption coefficients, half lives, branching ratios and other pertinent technical data needed for LDEF sample analyses were tabulated. The status of the sample counting at low background facilities at national laboratories is reported.

  8. A stress sensor based on Galvanic Skin Response (GSR) controlled by ZigBee.

    PubMed

    Villarejo, María Viqueira; Zapirain, Begoña García; Zorrilla, Amaia Méndez

    2012-01-01

    Sometimes, one needs to control different emotional situations which can lead the person suffering them to dangerous situations, in both the medium and short term. There are studies which indicate that stress increases the risk of cardiac problems. In this study we have designed and built a stress sensor based on Galvanic Skin Response (GSR), and controlled by ZigBee. In order to check the device's performance, we have used 16 adults (eight women and eight men) who completed different tests requiring a certain degree of effort, such as mathematical operations or breathing deeply. On completion, we appreciated that GSR is able to detect the different states of each user with a success rate of 76.56%. In the future, we plan to create an algorithm which is able to differentiate between each state.

  9. Highly active non-PGM catalysts prepared from metal organic frameworks

    DOE PAGES

    Barkholtz, Heather M.; Chong, Lina; Kaiser, Zachary B.; ...

    2015-06-11

    Finding inexpensive alternatives to platinum group metals (PGMs) is essential for reducing the cost of proton exchange membrane fuel cells (PEMFCs). Numerous materials have been investigated as potential replacements of Pt, of which the transition metal and nitrogen-doped carbon composites (TM/N x/C) prepared from iron doped zeolitic imidazolate frameworks (ZIFs) are among the most active ones in catalyzing the oxygen reduction reaction based on recent studies. In this report, we demonstrate that the catalytic activity of ZIF-based TM/N x/C composites can be substantially improved through optimization of synthesis and post-treatment processing conditions. Ultimately, oxygen reduction reaction (ORR) electrocatalytic activity mustmore » be demonstrated in membrane-electrode assemblies (MEAs) of fuel cells. The process of preparing MEAs using ZIF-based non-PGM electrocatalysts involves many additional factors which may influence the overall catalytic activity at the fuel cell level. Evaluation of parameters such as catalyst loading and perfluorosulfonic acid ionomer to catalyst ratio were optimized. Our overall efforts to optimize both the catalyst and MEA construction process have yielded impressive ORR activity when tested in a fuel cell system.« less

  10. Label-free SERS study of galvanic replacement reaction on silver nanorod surface and its application to detect trace mercury ion

    PubMed Central

    Wang, Yaohui; Wen, Guiqing; Ye, Lingling; Liang, Aihui; Jiang, Zhiliang

    2016-01-01

    It is significant to explore a rapid and highly sensitive galvanic replacement reaction (GRR) surface enhanced Raman scattering (SERS) method for detection of trace mercury ions. This article was reported a new GRR SERS analytical platform for detecting Hg(II) with label-free molecular probe Victoria blue B (VBB). In HAc-NaCl-silver nanorod (AgNR) substrate, the molecular probe VBB exhibited a strong SERS peak at 1609 cm−1. Upon addition of Hg(II), the GRR occurred between the AgNR and Hg(II), and formed a weak SERS activity of Hg2Cl2 that deposited on the AgNR surfaces to decrease the SERS intensity at 1609 cm−1. The decreased SERS intensity was linear to Hg(II) concentration in the range of 1.25–125 nmol/L, with a detection limit of 0.2 nmol/L. The GRR was studied by SERS, transmission electron microscopy and other techniques, and the GRR mechanism was discussed. PMID:26792071

  11. Purification of metal finishing waste waters with zeolites and activated carbons.

    PubMed

    Leinonen, H; Lehto, J

    2001-02-01

    Sixteen zeolites and 5 activated carbons were tested for the removal of nickel, zinc, cadmium, copper, chromium, and cobalt from waste simulants mimicking effluents produced in metal plating plants. The best performances were obtained from 4 zeolites: A, X, L, and ferrierite types and from 2 carbon types made from lignite and peat. The distribution coefficients for these sorbents were in the range of 10,000-440,000 ml/g. Column experiments showed that the most effective zeolites for Zn, Ni, Cu, and Cd were A and X type zeolites. The activated carbons, Hydrodarco 3000 and Norit Row Supra, exhibited good sorption properties for metals in aqueous solutions containing complexing agents.

  12. Collision Welding of Dissimilar Materials by Vaporizing Foil Actuator: A Breakthrough Technology for Dissimilar Metal Joining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daehn, Glenn S.; Vivek, Anupam; Liu, Bert C.

    This work demonstrated and further developed Vaporizing Foil Actuator Welding (VFAW) as a viable technique for dissimilar-metal joining for automotive lightweighting applications. VFAW is a novel impact welding technology, which uses the pressure developed from electrically-assisted rapid vaporization of a thin aluminum foil (the consumable) to launch and ultimately collide two of more pieces of metal to create a solid-state bond between them. 18 dissimilar combinations of automotive alloys from the steel, aluminum and magnesium alloy classes were screened for weldability and characterized by metallography of weld cross sections, corrosion testing, and mechanical testing. Most combinations, especially a good numbermore » of Al/Fe pairs, were welded successfully. VFAW was even able to weld combinations of very high strength materials such as 5000 and 6000 series aluminum alloys to boron and dual phase steels, which is difficult to impossible by other joining techniques such as resistance spot welding, friction stir welding, or riveting. When mechanically tested, the samples routinely failed in a base metal rather than along the weld interface, showing that the weld was stronger than either of the base metals. As for corrosion performance, a polymer-based protective coating was used to successfully combat galvanic corrosion of 5 Al/Fe pairs through a month-long exposure to warm salt fog. In addition to the technical capabilities, VFAW also consumes little energy compared to conventional welding techniques and requires relatively light, flexible tooling. Given the technical and economic advantages, VFAW can be a very competitive joining technology for automotive lightweighting. The success of this project and related activities has resulted in substantial interest not only within the research community but also various levels of automotive supply chain, which are collaborating to bring this technology to commercial use.« less

  13. Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications.

    PubMed

    Hoseinnejad, Mahmoud; Jafari, Seid Mahdi; Katouzian, Iman

    2018-03-01

    Nanotechnology has revolutionized almost all the fields of science and technology, particularly the food packaging industry. Accordingly, some nanoparticles can be used in food contact materials to preserve food products for longer periods. To date, many inorganic and metal nanoparticles have been implemented to synthesize active food packaging materials and to extend the shelf-life of foods. Packaging with nanocomposites containing these nanoparticles offers advantages, such as reduction in the usage of preservatives and higher rate of reactions to inhibit the microbial growth. Nevertheless, the safety issues of employing the metal and inorganic nanoparticles in food packaging are still a major concern and more studies along with clinical trials need to be carried out prior to the mass production of these promising food containers. In this review, we have evaluated recent studies plus the applications of inorganic and metal nanoparticles mostly in food packaging applications along with their antimicrobial properties and reaction mechanisms. Many examples have been provided with the aim of opening new horizons for researchers to implement inorganic and metal nanoparticles in active food packaging field.

  14. The Modeling and Simulation of the Galvanic Coupling Intra-Body Communication via Handshake Channel

    PubMed Central

    Li, Maoyuan; Song, Yong; Li, Wansong; Wang, Guangfa; Bu, Tianpeng; Zhao, Yufei; Hao, Qun

    2017-01-01

    Intra-body communication (IBC) is a technology using the conductive properties of the body to transmit signal, and information interaction by handshake is regarded as one of the important applications of IBC. In this paper, a method for modeling the galvanic coupling intra-body communication via handshake channel is proposed, while the corresponding parameters are discussed. Meanwhile, the mathematical model of this kind of IBC is developed. Finally, the validity of the developed model has been verified by measurements. Moreover, its characteristics are discussed and compared with that of the IBC via single body channel. Our results indicate that the proposed method will lay a foundation for the theoretical analysis and application of the IBC via handshake channel. PMID:28420119

  15. Abundance, composition and activity of denitrifier communities in metal polluted paddy soils

    PubMed Central

    Liu, Yuan; Liu, Yongzhuo; Zhou, Huimin; Li, Lianqing; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Pan, Genxing

    2016-01-01

    Denitrification is one of the most important soil microbial processes leading to the production of nitrous oxide (N2O). The potential changes with metal pollution in soil microbial community for N2O production and reduction are not well addressed. In this study, topsoil samples were collected both from polluted and non-polluted rice paddy fields and denitrifier communities were characterized with molecular fingerprinting procedures. All the retrieved nirK sequences could be grouped into neither α- nor β- proteobacteria, while most of the nosZ sequences were affiliated with α-proteobacteria. The abundances of the nirK and nosZ genes were reduced significantly in the two polluted soils. Thus, metal pollution markedly affected composition of both nirK and nosZ denitrifiers. While the total denitrifying activity and N2O production rate were both reduced under heavy metal pollution of the two sites, the N2O reduction rate showed no significant change. These findings suggest that N2O production activity could be sensitive to heavy metal pollution, which could potentially lead to a decrease in N2O emission in polluted paddies. Therefore, metal pollution could have potential impacts on soil N transformation and thus on N2O emission from paddy soils. PMID:26739424

  16. 76 FR 52686 - Agency Information Collection Activities: Comment Request for the Nonferrous Metals Surveys (30...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... Activities: Comment Request for the Nonferrous Metals Surveys (30 Forms) AGENCY: U.S. Geological Survey (USGS... Metals Surveys. Type of Request: Revision of a currently approved collection. Affected Public: Private sector: U.S. nonfuel minerals producers of nonferrous and related metals. Respondent Obligation...

  17. Inhibition of ATPase activity in rat synaptic plasma membranes by simultaneous exposure to metals.

    PubMed

    Carfagna, M A; Ponsler, G D; Muhoberac, B B

    1996-03-08

    Inhibition of Na+/K+-ATPase and Mg2+-ATPase activities by in vitro exposure to Cd2+, Pb2+ and Mn2+ was investigated in rat brain synaptic plasma membranes (SPMs). Cd2+ and Pb2+ produced a larger maximal inhibition of Na+/K+-ATPase than of Mg2+-ATPase activity. Metal concentrations causing 50% inhibition of Na+/K+-ATPase activity (IC50 values) were Cd2+ (0.6 microM) < Pb2+ (2.1 microM) < Mn2+ (approximately 3 mM), and the former two metals were substantially more potent in inhibiting SPM versus synaptosomal Na+/K+-ATPase. Dixon plots of SPM data indicated that equilibrium binding of metals occurs at sites causing enzyme inhibition. In addition, IC50 values for SPM K+-dependent p-nitrophenylphosphatase inhibition followed the same order and were Cd2+ (0.4 microM) < Pb2+ (1.2 microM) < Mn2+ (300 microM). Simultaneous exposure to the combinations Cd2+/Mn2+ or Pb2+/Mn2+ inhibited SPM Na+/K+-ATPase activity synergistically (i.e., greater than the sum of the metal-induced inhibitions assayed separately), while Cd2+/Pb2+ caused additive inhibition. Simultaneous exposure to Cd2+/Pb2+ antagonistically inhibited Mg2+-ATPase activity while Cd2+/Mn2+ or Pb2+/Mn2+ additively inhibited Mg2+-ATPase activity at low Mn2+ concentrations, but inhibited antagonistically at higher concentrations. The similar IC50 values for Cd2+ and Pb2+ versus Mn2+ inhibition of Na+/K+-ATPase and the pattern of inhibition/activation upon exposure to two metals simultaneously support similar modes of interaction of Cd2+ and Pb2+ with this enzyme, in agreement with their chemical reactivities.

  18. Development of structure-activity relationship for metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Zhang, Hai Yuan; Ji, Zhao Xia; Rallo, Robert; Xia, Tian; Chang, Chong Hyun; Nel, Andre; Cohen, Yoram

    2013-05-01

    Nanomaterial structure-activity relationships (nano-SARs) for metal oxide nanoparticles (NPs) toxicity were investigated using metrics based on dose-response analysis and consensus self-organizing map clustering. The NP cellular toxicity dataset included toxicity profiles consisting of seven different assays for human bronchial epithelial (BEAS-2B) and murine myeloid (RAW 264.7) cells, over a concentration range of 0.39-100 mg L-1 and exposure time up to 24 h, for twenty-four different metal oxide NPs. Various nano-SAR building models were evaluated, based on an initial pool of thirty NP descriptors. The conduction band energy and ionic index (often correlated with the hydration enthalpy) were identified as suitable NP descriptors that are consistent with suggested toxicity mechanisms for metal oxide NPs and metal ions. The best performing nano-SAR with the above two descriptors, built with support vector machine (SVM) model and of validated robustness, had a balanced classification accuracy of ~94%. An applicability domain for the present data was established with a reasonable confidence level of 80%. Given the potential role of nano-SARs in decision making, regarding the environmental impact of NPs, the class probabilities provided by the SVM nano-SAR enabled the construction of decision boundaries with respect to toxicity classification under different acceptance levels of false negative relative to false positive predictions.Nanomaterial structure-activity relationships (nano-SARs) for metal oxide nanoparticles (NPs) toxicity were investigated using metrics based on dose-response analysis and consensus self-organizing map clustering. The NP cellular toxicity dataset included toxicity profiles consisting of seven different assays for human bronchial epithelial (BEAS-2B) and murine myeloid (RAW 264.7) cells, over a concentration range of 0.39-100 mg L-1 and exposure time up to 24 h, for twenty-four different metal oxide NPs. Various nano-SAR building models were

  19. 77 FR 10544 - Agency Information Collection Activities: Comment Request for the Nonferrous Metals Surveys (30...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... Activities: Comment Request for the Nonferrous Metals Surveys (30 Forms) AGENCY: U.S. Geological Survey (USGS... revision of the currently approved paperwork requirements for the Nonferrous Metals Surveys. This... Control Number: 1028-0053. Form Number: Various (30 forms). Title: Nonferrous Metals Surveys. Type of...

  20. Activation of Noble Metals on Metal-Carbide Surfaces: Novel Catalysts for CO Oxidation, Desulfurization and Hydrogenation Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez J. A.; Illas, F.

    2012-01-01

    This perspective article focuses on the physical and chemical properties of highly active catalysts for CO oxidation, desulfurization and hydrogenation reactions generated by depositing noble metals on metal-carbide surfaces. To rationalize structure-reactivity relationships for these novel catalysts, well-defined systems are required. High-resolution photoemission, scanning tunneling microscopy (STM) and first-principles periodic density-functional (DF) calculations have been used to study the interaction of metals of Groups 9, 10 and 11 with MC(001) (M = Ti, Zr, V, Mo) surfaces. DF calculations give adsorption energies that range from 2 eV (Cu, Ag, Au) to 6 eV (Co, Rh, Ir). STM images show thatmore » Au, Cu, Ni and Pt grow on the carbide substrates forming two-dimensional islands at very low coverage, and three-dimensional islands at medium and large coverages. In many systems, the results of DF calculations point to the preferential formation of admetal-C bonds with significant electronic perturbations in the admetal. TiC(001) and ZrC(001) transfer some electron density to the admetals facilitating bonding of the adatom with electron-acceptor molecules (CO, O{sub 2}, C{sub 2}H{sub 4}, SO{sub 2}, thiophene, etc.). For example, the Cu/TiC(001) and Au/TiC(001) systems are able to cleave both S-O bonds of SO{sub 2} at a temperature as low as 150 K, displaying a reactivity much larger than that of TiC(001) or extended surfaces of bulk copper and gold. At temperatures below 200 K, Au/TiC is able to dissociate O{sub 2} and perform the 2CO + O{sub 2} {yields} 2CO{sub 2} reaction. Furthermore, in spite of the very poor hydrodesulfurization performance of TiC(001) or Au(111), a Au/TiC(001) surface displays an activity for the hydrodesulfurization of thiophene higher than that of conventional Ni/MoS{sub x} catalysts. In general, the Au/TiC system is more chemically active than systems generated by depositing Au nanoparticles on oxide surfaces. Thus, metal carbides are

  1. Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties.

    PubMed

    Xian, Yu; Wang, Meie; Chen, Weiping

    2015-11-01

    Soil enzyme activities are greatly influenced by soil properties and could be significant indicators of heavy metal toxicity in soil for bioavailability assessment. Two groups of experiments were conducted to determine the joint effects of heavy metals and soil properties on soil enzyme activities. Results showed that arylsulfatase was the most sensitive soil enzyme and could be used as an indicator to study the enzymatic toxicity of heavy metals under various soil properties. Soil organic matter (SOM) was the dominant factor affecting the activity of arylsulfatase in soil. A quantitative model was derived to predict the changes of arylsulfatase activity with SOM content. When the soil organic matter content was less than the critical point A (1.05% in our study), the arylsulfatase activity dropped rapidly. When the soil organic matter content was greater than the critical point A, the arylsulfatase activity gradually rose to higher levels showing that instead of harm the soil microbial activities were enhanced. The SOM content needs to be over the critical point B (2.42% in our study) to protect its microbial community from harm due to the severe Pb pollution (500mgkg(-1) in our study). The quantitative model revealed the pattern of variation of enzymatic toxicity due to heavy metals under various SOM contents. The applicability of the model under wider soil properties need to be tested. The model however may provide a methodological basis for ecological risk assessment of heavy metals in soil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Stabilization/solidification of hot dip galvanizing ash using different binders.

    PubMed

    Vinter, S; Montanes, M T; Bednarik, V; Hrivnova, P

    2016-12-15

    This study focuses on solidification of hot dip-galvanizing ash with a high content of zinc and soluble substances. The main purpose of this paper is to immobilize these pollutants into a matrix and allow a safer way for landfill disposal of that waste. Three different binders (Portland cement, fly ash and coal fluidized-bed combustion ash) were used for the waste solidification. Effectiveness of the process was evaluated using leaching test according to EN 12457-4 and by using the variance analysis and the categorical multifactorial test. In the leaching test, four parameters were observed: pH, zinc concentration in leachate, and concentration of chlorides and dissolved substances in leachate. The acquired data was then processed using statistical software to find an optimal solidifying ratio of the addition of binder, water, and waste to the mixture, with the aim to fulfil the requirement for landfill disposal set by the Council Decision 2003/33/EC. The influence on the main observed parameters (relative amount of water and a binder) on the effectiveness of the used method and their influence of measured parameters was also studied. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Effects of doping on photocatalytic activity for water splitting of metal oxides and nitride

    NASA Astrophysics Data System (ADS)

    Arai, Naoki; Saito, Nobuo; Nishiyama, Hiroshi; Kadowaki, Haruhiko; Kobayashi, Hisayoshi; Sato, Kazunori; Inoue, Yasunobu

    2007-09-01

    The effects of metal-ion doping or replacement on the photocatalytic performance for water splitting of d 10 and d 0 metal oxides and d 10 metal nitride were studied. The photocatalysts examined were (1) α-Ga 2-2xIn 2xO 3 and ZnGa 2-2xIn 2xO 4 in which In 3+ was added to Ga IIO 3 and ZnGa IIO 4, respectively, (2) Y xIn 2-xO 3 being a solid solution of In IIO 3 and Y IIO 3, (3) metal ion doped CeO II, and (4) metal ion doped GaN. The photocatalytic activity of 1 wt % RuO II-loaded α-Ga 2-2xIn 2xO 3 increased sharply with increasing x, reached a maximum at around x=0.02, and considerably decreased with further increase in x. The DFT calculation showed that the band structures of α-Ga 2-2xIn 2xO 3 had the contribution of In 4d orbital to the valence band and of In5s orbital to the conduction band. Similar effects were observed for ZnGa 2-2xIn 2xO 4. RuO II-dispersed Y xIn 2-xO 3 had a capability of producing H II and O II in the range x=1.0-1.5 in which the highest activity was obtained at x=1.3. The structures of both InO 6 and YO 6 octahedra were deformed in the solid solution,, and the hybridization of In5s5p and Y4d orbitals in the conduction band was enhanced. Undoped CeO II was photocatalytically inactive, but metal ion-doped CeO II showed a considerable photocatalytic activity. The activation occurred in the case that metal ions doped had larger ion sizes than that of Ce 4+. The small amount doping of divalent metal ions (Zn 2+ and Mg 2+) converted photocatalytically inactive GaN to an efficient photocatalyst. The doping was shown to produce p-type GaN which had the large concentration and high mobility of holes. The roles of metal ion doping and replacement in the photocatalytic properties are discussed.

  4. A Strategy for Fabricating Porous PdNi@Pt Core-shell Nanostructures and Their Enhanced Activity and Durability for the Methanol Electrooxidation

    PubMed Central

    Liu, Xinyu; Xu, Guangrui; Chen, Yu; Lu, Tianhong; Tang, Yawen; Xing, Wei

    2015-01-01

    Three-dimensionally (3D) porous morphology of nanostructures can effectively improve their electrocatalytic activity and durability for various electrochemical reactions owing to big surface area and interconnected structure. Cyanogel, a jelly-like inorganic polymer, can be used to synthesize various three-dimensionally (3D) porous alloy nanomaterials owing to its double-metal property and particular 3D backbone. Here, 3D porous PdNi@Pt core-shell nanostructures (CSNSs) are facilely synthesized by first preparing the Pd-Ni alloy networks (Pd-Ni ANWs) core via cyanogel-reduction method followed by a galvanic displacement reaction to generate the Pt-rich shell. The as-synthesized PdNi@Pt CSNSs exhibit a much improved catalytic activity and durability for the methanol oxidation reaction (MOR) in the acidic media compared to the commercial used Pt black because of their specific structural characteristics. The facile and mild method described herein is highly attractive for the synthisis of 3D porous core-shell nanostructures. PMID:25557190

  5. Influence of the doping type and level on the morphology of porous Si formed by galvanic etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyatilova, O. V., E-mail: 5ilova87@gmail.com; Gavrilov, S. A.; Shilyaeva, Yu. I.

    The formation of porous silicon (por-Si) layers by the galvanic etching of single-crystal Si samples (doped with boron or phosphorus) in an HF/C{sub 2}H{sub 5}OH/H{sub 2}O{sub 2} solution is investigated. The por-Si layers are analyzed by the capillary condensation of nitrogen and scanning electron microscopy (SEM). The dependences of the morphological characteristics of por-Si (pore diameter, specific surface area, pore volume, and thickness of the pore walls), which determine the por-Si combustion kinetics, on the dopant type and initial wafer resistivity are established.

  6. Optimal Charge-to-Spin Conversion in Graphene on Transition-Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Offidani, Manuel; Milletarı, Mirco; Raimondi, Roberto; Ferreira, Aires

    2017-11-01

    When graphene is placed on a monolayer of semiconducting transition metal dichalcogenide (TMD) its band structure develops rich spin textures due to proximity spin-orbital effects with interfacial breaking of inversion symmetry. In this work, we show that the characteristic spin winding of low-energy states in graphene on a TMD monolayer enables current-driven spin polarization, a phenomenon known as the inverse spin galvanic effect (ISGE). By introducing a proper figure of merit, we quantify the efficiency of charge-to-spin conversion and show it is close to unity when the Fermi level approaches the spin minority band. Remarkably, at high electronic density, even though subbands with opposite spin helicities are occupied, the efficiency decays only algebraically. The giant ISGE predicted for graphene on TMD monolayers is robust against disorder and remains large at room temperature.

  7. Transition Metal-Mediated and -Catalyzed C-F Bond Activation via Fluorine Elimination.

    PubMed

    Fujita, Takeshi; Fuchibe, Kohei; Ichikawa, Junji

    2018-06-28

    Activation of carbon-fluorine (C-F) bonds is an important topic in synthetic organic chemistry recently. Among the methods for C-F bond cleavage, metal mediated and catalyzed β- or α-fluorine elimination proceeds under mild conditions compared with oxidative addition of C-F bond. The β- or α-fluorine elimination is initiated from organometallic intermediates having fluorine substituents on carbon atoms β or α to metal centers, respectively. Transformations via these elimination processes (C-F bond cleavage), which are typically preceded by carbon-carbon (or carbon-heteroatom) bond formation, have been remarkably developed as C-F bond activation methods in the past five years. In this minireview, we summarize the applications of transition metal-mediated and -catalyzed fluorine elimination to synthetic organic chemistry from a historical perspective for early studies and from a systematic perspective for recent studies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Redox-activated MRI contrast agents based on lanthanide and transition metal ions.

    PubMed

    Tsitovich, Pavel B; Burns, Patrick J; McKay, Adam M; Morrow, Janet R

    2014-04-01

    The reduction/oxidation (redox) potential of tissue is tightly regulated in order to maintain normal physiological processes, but is disrupted in disease states. Thus, the development of new tools to map tissue redox potential may be clinically important for the diagnosis of diseases that lead to redox imbalances. One promising area of chemical research is the development of redox-activated probes for mapping tissue through magnetic resonance imaging (MRI). In this review, we summarize several strategies for the design of redox-responsive MRI contrast agents. Our emphasis is on both lanthanide(III) and transition metal(II/III) ion complexes that provide contrast either as T1 relaxivity MRI contrast agents or as paramagnetic chemical exchange saturation transfer (PARACEST) contrast agents. These agents are redox-triggered by a variety of chemical reactions or switches including redox-activated thiol groups, and heterocyclic groups that interact with the metal ion or influence properties of other ancillary ligands. Metal ion centered redox is an approach which is ripe for development by coordination chemists. Redox-triggered metal ion approaches have great potential for creating large differences in magnetic properties that lead to changes in contrast. An attractive feature of these agents is the ease of fine-tuning the metal ion redox potential over a biologically relevant range. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Influence of tool pin in friction stir welding on activated carbon reinforced aluminium metal matrix composite

    NASA Astrophysics Data System (ADS)

    DijuSamuel, G.; Raja Dhas, J. Edwin

    2017-10-01

    This paper focus on impact of tool pin in friction stir welding on activated carbon reinforced aluminium metal matrix composite. For fabrication of metal matrix composite AA6061 is used as matrix and activated carbon is used as reinforcement and it is casted using modified stir casting technique. After casting metal matrix composite has undergone various microstructure tests like SEM,EDAX and XRD. FSW is carried out in this metal matrix composite by choosing various tool pin profile like square,round,Threaded round, hexagon and taper. The quality of welded plates is measured in terms of ultimate tensile strength and hardness.

  10. Improvement of bio-corrosion resistance for Ti42Zr40Si15Ta3 metallic glasses in simulated body fluid by annealing within supercooled liquid region.

    PubMed

    Huang, C H; Lai, J J; Wei, T Y; Chen, Y H; Wang, X; Kuan, S Y; Huang, J C

    2015-01-01

    The effects of the nanocrystalline phases on the bio-corrosion behavior of highly bio-friendly Ti42Zr40Si15Ta3 metallic glasses in simulated body fluid were investigated, and the findings are compared with our previous observations from the Zr53Cu30Ni9Al8 metallic glasses. The Ti42Zr40Si15Ta3 metallic glasses were annealed at temperatures above the glass transition temperature, Tg, with different time periods to result in different degrees of α-Ti nano-phases in the amorphous matrix. The nanocrystallized Ti42Zr40Si15Ta3 metallic glasses containing corrosion resistant α-Ti phases exhibited more promising bio-corrosion resistance, due to the superior pitting resistance. This is distinctly different from the previous case of the Zr53Cu30Ni9Al8 metallic glasses with the reactive Zr2Cu phases inducing serious galvanic corrosion and lower bio-corrosion resistance. Thus, whether the fully amorphous or partially crystallized metallic glass would exhibit better bio-corrosion resistance, the answer would depend on the crystallized phase nature. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Effect of heavy metals and water content on the strength of magnesium phosphate cements.

    PubMed

    Buj, Irene; Torras, Josep; Casellas, Daniel; Rovira, Miquel; de Pablo, Joan

    2009-10-15

    In this paper the mechanical properties of magnesium potassium phosphate cements used for the Stabilization/Solidification (S/S) of galvanic wastes were investigated. Surrogate wastes (metal nitrate dissolutions) were employed containing Cd, Cr(III), Cu, Ni, Pb or Zn at a concentration of 25 g dm(-3) and different water-to-solid (W/S) ratios (0.3, 0.4, 0.5 and 0.6 dm(3)kg(-1)) have been employed. Cements were prepared by mixing hard burned magnesia of about 70% purity with potassium dihydrogen phosphate. Compressive strength and tensile strength of specimens were determined. In addition the volume of permeable voids was measured. It was found that when comparing pastes that the volume of permeable voids increases and mechanical strength decreases with the increase of water-to-solid ratio (W/S). Nevertheless pastes with the same material proportions containing different metals show different mechanical strength values. The hydration products were analyzed by XRD. With the increase of water content not previously reported hydration compound was detected: bobierrite.

  12. Electrocatalytic activity of spots of electrodeposited noble-metal catalysts on carbon nanotubes modified glassy carbon.

    PubMed

    Chen, Xingxing; Eckhard, Kathrin; Zhou, Min; Bron, Michael; Schuhmann, Wolfgang

    2009-09-15

    A strategy for the screening of the electrocatalytic activity of electrocatalysts for possible application in fuel cells and other devices is presented. In this approach, metal nanoclusters (Pt, Au, Ru, and Rh and their codeposits) were prepared using a capillary-based droplet-cell by pulsed electrodeposition in a diffusion-restricted viscous solution. A glassy carbon surface was modified with carbon nanotubes (CNTs) by electrophoretic accumulation and was used as substrate for metal nanoparticle deposition. The formed catalyst spots on the CNT-modified glassy carbon surface were investigated toward their catalytic activity for oxygen reduction as a test reaction employing the redox competition mode of scanning electrochemical microscopy (RC-SECM). Qualitative information on the electrocatalytic activity of the catalysts was obtained by varying the potential applied to the substrate; semiquantitative evaluation was based on the determination of the electrochemically deposited catalyst loading by means of the charge transferred during the metal nanoparticle deposition. Qualitatively, Au showed the highest electrocatalytic activity toward the oxygen reduction reaction (ORR) in phosphate buffer among all investigated single metal catalysts which was attributed to the much higher loading of Au achieved during electrodeposition. Coelectrodeposited Au-Pt catalysts showed a more positive onset potential (-150 mV in RC-SECM experiments) of the ORR in phosphate buffer at pH 6.7. After normalizing the SECM image by the charge during the metal nanocluster deposition which represents the mass loading of the catalyst, Ru showed a higher electrocatalytic activity toward the ORR than Au.

  13. Metal-Mediated Modulation of Streptococcal Cysteine Protease Activity and Its Biological Implications

    PubMed Central

    Chella Krishnan, Karthickeyan; Mukundan, Santhosh; Landero Figueroa, Julio A.; Caruso, Joseph A.

    2014-01-01

    Streptococcal cysteine protease (SpeB), the major secreted protease produced by group A streptococcus (GAS), cleaves both host and bacterial proteins and contributes importantly to the pathogenesis of invasive GAS infections. Modulation of SpeB expression and/or its activity during invasive GAS infections has been shown to affect bacterial virulence and infection severity. Expression of SpeB is regulated by the GAS CovR-CovS two-component regulatory system, and we demonstrated that bacteria with mutations in the CovR-CovS two-component regulatory system are selected for during localized GAS infections and that these bacteria lack SpeB expression and exhibit a hypervirulent phenotype. Additionally, in a separate study, we showed that expression of SpeB can also be modulated by human transferrin- and/or lactoferrin-mediated iron chelation. Accordingly, the goal of this study was to investigate the possible roles of iron and other metals in modulating SpeB expression and/or activity in a manner that would potentiate bacterial virulence. Here, we report that the divalent metals zinc and copper inhibit SpeB activity at the posttranslational level. Utilizing online metal-binding site prediction servers, we identified two putative metal-binding sites in SpeB, one of which involves the catalytic-dyad residues 47Cys and 195His. Based on our findings, we propose that zinc and/or copper availability in the bacterial microenvironment can modulate the proteolytic activity of SpeB in a manner that preserves the integrity of several other virulence factors essential for bacterial survival and dissemination within the host and thereby may exacerbate the severity of invasive GAS infections. PMID:24799625

  14. Activity Tests of Macro-Meso Porous Catalysts over Metal Foam Plate for Steam Reforming of Bio-Ethanol.

    PubMed

    Park, No-Kuk; Jeong, Yong Han; Kang, Misook; Lee, Tae Jin

    2018-09-01

    The catalytic activity of a macro-mesoporous catalyst coated on a metal foam plate in the reforming of bio-ethanol to synthesis gas was investigated. The catalysts were prepared by coating a support with a noble metal and transition metal. The catalytic activity for the production of synthetic gas by the reforming of bio-ethanol was compared according to the support material, reaction temperature, and steam/carbon ratio. The catalysts coated on the metal foams were prepared using a template method, in which macro-pores and meso-pores were formed by mixing polymer beads. In particular, the thermodynamic equilibrium composition of bio-ethanol reforming with the reaction temperature and steam/carbon ratio to produce synthetic gas was examined using the HSC (Enthalpy-Entropy-Heat capacity) chemistry program in this study. The composition of hydrogen and carbon monoxide in the reformate gas produced by steam reforming over the Rh/Ni-Ce-Zr/Al2O3-based pellet type catalysts and metal foam catalysts that had been coated with the Rh/Al-Ce-Zr-based catalysts was investigated by experimental activity tests. The activity of the metal foam catalyst was higher than that of the pellet type catalyst.

  15. Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts

    PubMed Central

    Varnell, Jason A.; Tse, Edmund C. M.; Schulz, Charles E.; Fister, Tim T.; Haasch, Richard T.; Timoshenko, Janis; Frenkel, Anatoly I.; Gewirth, Andrew A.

    2016-01-01

    The widespread use of fuel cells is currently limited by the lack of efficient and cost-effective catalysts for the oxygen reduction reaction. Iron-based non-precious metal catalysts exhibit promising activity and stability, as an alternative to state-of-the-art platinum catalysts. However, the identity of the active species in non-precious metal catalysts remains elusive, impeding the development of new catalysts. Here we demonstrate the reversible deactivation and reactivation of an iron-based non-precious metal oxygen reduction catalyst achieved using high-temperature gas-phase chlorine and hydrogen treatments. In addition, we observe a decrease in catalyst heterogeneity following treatment with chlorine and hydrogen, using Mössbauer and X-ray absorption spectroscopy. Our study reveals that protected sites adjacent to iron nanoparticles are responsible for the observed activity and stability of the catalyst. These findings may allow for the design and synthesis of enhanced non-precious metal oxygen reduction catalysts with a higher density of active sites. PMID:27538720

  16. Current status of trace metal pollution in soils affected by industrial activities.

    PubMed

    Kabir, Ehsanul; Ray, Sharmila; Kim, Ki-Hyun; Yoon, Hye-On; Jeon, Eui-Chan; Kim, Yoon Shin; Cho, Yong-Sung; Yun, Seong-Taek; Brown, Richard J C

    2012-01-01

    There is a growing public concern over the potential accumulation of heavy metals in soil, owing to rapid industrial development. In an effort to describe the status of the pollutions of soil by industrial activities, relevant data sets reported by many studies were surveyed and reviewed. The results of our analysis indicate that soils were polluted most significantly by metals such as lead, zinc, copper, and cadmium. If the dominant species are evaluated by the highest mean concentration observed for different industry types, the results were grouped into Pb, Zn, Ni, Cu, Fe, and As in smelting and metal production industries, Mn and Cd in the textile industry, and Cr in the leather industry. In most cases, metal levels in the studied areas were found to exceed the common regulation guideline levels enforced by many countries. The geoaccumulation index (I(geo)), calculated to estimate the enrichment of metal concentrations in soil, showed that the level of metal pollution in most surveyed areas is significant, especially for Pb and Cd. It is thus important to keep systematic and continuous monitoring of heavy metals and their derivatives to manage and suppress such pollution.

  17. Current Status of Trace Metal Pollution in Soils Affected by Industrial Activities

    PubMed Central

    Kabir, Ehsanul; Ray, Sharmila; Kim, Ki-Hyun; Yoon, Hye-On; Jeon, Eui-Chan; Kim, Yoon Shin; Cho, Yong-Sung; Yun, Seong-Taek; Brown, Richard J. C.

    2012-01-01

    There is a growing public concern over the potential accumulation of heavy metals in soil, owing to rapid industrial development. In an effort to describe the status of the pollutions of soil by industrial activities, relevant data sets reported by many studies were surveyed and reviewed. The results of our analysis indicate that soils were polluted most significantly by metals such as lead, zinc, copper, and cadmium. If the dominant species are evaluated by the highest mean concentration observed for different industry types, the results were grouped into Pb, Zn, Ni, Cu, Fe, and As in smelting and metal production industries, Mn and Cd in the textile industry, and Cr in the leather industry. In most cases, metal levels in the studied areas were found to exceed the common regulation guideline levels enforced by many countries. The geoaccumulation index (I geo), calculated to estimate the enrichment of metal concentrations in soil, showed that the level of metal pollution in most surveyed areas is significant, especially for Pb and Cd. It is thus important to keep systematic and continuous monitoring of heavy metals and their derivatives to manage and suppress such pollution. PMID:22645468

  18. Changeability of tissue's magnetic remanence after galvanic-magnetostimulation in upper-back pain treatment.

    PubMed

    Dyszkiewicz, Andrzej Jan; Kępiński, Paweł; Połeć, Paweł; Chachulski, Damian; Nowak-Kostrzewska, Ewa

    2015-11-01

    Research was conducted on parametric profiles of healthy subjects and patients with cervico-brachial pain syndrome resulting from C4/5 and/or C5/6 discopathy, including magnetic remanence of tissues in marker points 1-12 (L+R) and functional parameters, and their subsequent change after treatment in group A, using method of push-pull galvanic magnetostimulation (GMT 2.0). GMT 2.0 device, comprised of one air solenoid and three galvanic solenoids in electrolytic tubs, was designed for push-pull magnetostimulation of the head, coupled with simultaneous stimulation of the limbs. Clinical trial was conducted in Outpatient Private Clinic "VIS" under the auspices of Silesian Higher Medical School in Katowice, Poland. 55 subjects participated in the study: control group K consisted of 23 healthy individuals, whereas 33 patients in group A were treated using GMT 2.0. Only patients in group A were treated with GMT 2.0 during 40-min sessions over a period of 10 days. Parametric profile of the patients was defined using various measurements: electronic SFTR test (C-Th-shoulders), HR, RR, BDI and VAS tests, magnetic remanence in marker points 1-12 (L+R) and blood parameters: HB, ER, CREA, BIL, K(+), Na(+), Cl(-) Fe(2+), Ca(2+) and Mg(2+). There was a significant reduction in pain (VAS), increase in the range of motion (SFTR), lower depression symptoms (BDI), slower heart rate (HR), lower blood pressure (RR), greater concentration of Mg(2+), K(+), Ca(2+)ions and reduction in the concentration of BIL, CREA Fe(2+) after GMT 2.0 treatment in group A. Evaluation of magnetic remanence in marker points M1-12 (L+R) initially showed higher values in group K, which after treatment were normalized to values similar to those in group K. GMT 2.0 treatment in group A resulted in normalization of magnetic remanence, synergically with increased range of motion (SFTR test), decreased HR and RR parameters, smaller depressive trends (BDI test), as well as increased ion levels (K(+), Mg(2+), Ca(2

  19. Preparation, characterization and biological activity of novel metal-NNNN donor Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; Omar, M. M.; Ibrahim, Amr A.

    2010-02-01

    Novel Schiff base (H 2L) ligand is prepared via condensation of benzil and triethylenetetraamine. The ligand is characterized based on elemental analysis, mass, IR and 1H NMR spectra. Metal complexes are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, and thermal analyses (TG, DTG and DTA). 1:1 [M]:[H 2L] complexes are found from the elemental analyses data having the formulae [M(H 2L)Cl 2]· yH 2O (M = Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II)), [Fe(H 2L)Cl 2]Cl·H 2O, [Th(H 2L)Cl 2]Cl 2·3H 2O and [UO 2(H 2L)](CH 3COO) 2·2H 2O. The metal chelates are found to be non-electrolytes except Fe(III), Th(IV) and UO 2(II) complexes are electrolytes. IR spectra show that H 2L is coordinated to the metal ions in a neutral tetradentate manner with 4Ns donor sites of the two azomethine N and two NH groups. The geometrical structures of these complexes are found to be octahedral. The thermal behaviour of these chelates is studied where the hydrated complexes lose water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters are calculated using Coats-Redfern method. The ligand (H 2L), in comparison to its metal complexes, is screened for its antibacterial activity. The activity data show that the metal complexes have antibacterial activity more than the parent Schiff base ligand and cefepime standard against one or more bacterial species.

  20. Influence of Minor Alloying Elements on Selective Oxidation and Reactive Wetting of CMnSi TRIP Steel during Hot Dip Galvanizing

    NASA Astrophysics Data System (ADS)

    Cho, Lawrence; Kim, Myung Soo; Kim, Young Ha; De Cooman, Bruno C.

    2014-09-01

    The influence of the addition of minor alloying elements on the selective oxidation and the reactive wetting of CMnSi transformation-induced plasticity (TRIP) steels was studied by means of galvanizing simulator tests. Five TRIP steels containing small alloying additions of Cr, Ni, Ti, Cu, and Sn were investigated. After intercritical annealing (IA) at 1093 K (820 °C) in a N2 + 5 pct H2 gas atmosphere with a dew point of 213 K (-60 °C), two types of oxides were formed on the strip surface: Mn-rich xMnO·SiO2 ( x > 1.5) and Si-rich xMnO·SiO2 ( x < 0.3) oxides. The addition of the minor alloying elements changed the morphology of the Si-rich oxides from a continuous film to discrete islands and this improved the wettability by molten Zn. The improved wetting effect of the minor alloying elements was attributed to an increased area fraction of the surface where the oxides were thinner, enabling a direct unhindered reaction between Fe and the Al in the liquid Zn and the formation of the inhibition layer during the hot dip galvanizing. The addition of a small amount of Sn is shown to significantly decrease the density of Zn-coating defects on CMnSi TRIP steels.

  1. Initial evaluation of a convection counter streaming galvanization technique of sex separation of human spermatozoa.

    PubMed

    Daniell, J F; Herbert, C M; Repp, J; Torbit, C A; Wentz, A C

    1982-08-01

    A new method for separating X and Y human spermatozoa called convection counter streaming galvanization was evaluated. The method was independently performed by this semenology laboratory with the use of the special separation equipment and extending media provided by its developer, Dr. Bhairab C. Bhattacharya. The mean number of Y spermatozoa increased from 48% to 77% in the separated fraction predicted to be Y-enriched. The fraction predicted to be X-enriched increased from a mean of 52% to 77%. The one separation process allowed accumulation of both enriched fractions simultaneously. The separated portions of spermatozoa maintained good motility and penetration of cervical mucus but produced a mean recovery concentration in the X- and Y-enriched fractions of only 15% to 16% of the preseparation concentration.

  2. Isolation and divalent-metal activation of a ß-xylosidase, RUM630-BX

    USDA-ARS?s Scientific Manuscript database

    The gene encoding RUM630-BX, a ß-xylosidase/arabinofuranosidase, was identified from activity-based screening of a cow rumen metagenomic library. The recombinant enzyme is activated as much as 14-fold (kcat) by divalent metals Mg2+, Mn2+ and Co2+ but not by Ca2+, Ni2+, and Zn2+. Activation of RUM6...

  3. ROS-generating/ARE-activating capacity of metals in roadway particulate matter deposited in urban environment.

    PubMed

    Shuster-Meiseles, Timor; Shafer, Martin M; Heo, Jongbae; Pardo, Michal; Antkiewicz, Dagmara S; Schauer, James J; Rudich, Assaf; Rudich, Yinon

    2016-04-01

    In this study we investigated the possible causal role for soluble metal species extracted from roadway traffic emissions in promoting particulate matter (PM)-induced reactive oxygen species (ROS) production and antioxidant response element (ARE) promoter activation. To this end, these responses have been evaluated in alveolar macrophage and epithelial lung cells that have been exposed to 'Unfiltered', 'Filtered' and 'Filtered+Chelexed' water extracts of PM samples collected from the roadway urban environments of Thessaloniki, Milan and London. Except for Thessaloniki, our results demonstrate that filtration resulted in a minor decrease in ROS activity of the fine PM fraction, suggesting that ROS activity is attributed mainly to water-soluble PM species. In contrast to ROS, ARE activity was mediated predominantly by the water-soluble component of PM present in both the fine and coarse extracts. Further removal of metals by Chelex treatment from filtered water extracts showed that soluble metal species are the major factors mediating ROS and ARE activities of the soluble fraction, especially in the London PM extracts. Finally, utilizing step-wise multiple-regression analysis, we show that 87% and 78% of the total variance observed in ROS and ARE assays, respectively, is accounted for by changes in soluble metal concentration. Using a statistical analysis we find that As, Zn and Fe best predict the ROS-generating/ARE-activating capacity of the near roadway particulate matter in the pulmonary cells studied. Collectively, our findings imply that soluble metals present in roadside PM are potential drivers of both pro- and anti-oxidative effects of PM in respiratory tract. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Effect of Mg on the Microstructure and Corrosion Resistance of the Continuously Hot-Dip Galvanizing Zn-Mg Coating

    PubMed Central

    Dong, Anping; Li, Baoping; Lu, Yanling; Zhu, Guoliang; Xing, Hui; Shu, Da; Sun, Baode; Wang, Jun

    2017-01-01

    The microstructure of continuously hot-dip galvanizing Zn-Mg coating was investigated in order to obtain the mechanism of the effects of Mg on the corrosion resistance. In this paper, the vertical section of the Zn-0.20 wt % Al-Mg ternary phase diagram near the Al-low corner was calculated. The results indicates that the phase composition of the Zn-0.20 wt % Al-Mg ternary phase diagram near the Al-low corner is the same as Zn-Mg binary phase diagram, suggesting Al in the Zn-Mg (ZM) coatings mainly concentrates on the interfacial layer between the coating and steel substrate. The microstructure of continuously hot-dip galvanizing ZM coatings with 0.20 wt % Al containing 1.0–3.0 wt % Mg was investigated using tunneling electron microscopy (TEM). The morphology of Zn in the coating changes from bulk to strip and finally to mesh-like, and the MgZn2 changes from rod-like to mesh-like with the Mg content increasing. Al in the ZM coatings mainly segregates at the Fe2Al5 inhibition layer and the Mg added to the Zn bath makes this inhibition layer thinner and uneven. Compared to GI coating, the time of the first red rust appears increases by more than two-fold and expansion rate of red rust reduces by more than four-fold in terms of salt spray experiment. The ZM coating containing 2.0 wt % Mg has the best corrosion resistance. The enhanced corrosion resistance of ZM coatings mainly depends on different corrosion products. PMID:28829393

  5. Effect of Mg on the Microstructure and Corrosion Resistance of the Continuously Hot-Dip Galvanizing Zn-Mg Coating.

    PubMed

    Dong, Anping; Li, Baoping; Lu, Yanling; Zhu, Guoliang; Xing, Hui; Shu, Da; Sun, Baode; Wang, Jun

    2017-08-22

    The microstructure of continuously hot-dip galvanizing Zn-Mg coating was investigated in order to obtain the mechanism of the effects of Mg on the corrosion resistance. In this paper, the vertical section of the Zn-0.20 wt % Al-Mg ternary phase diagram near the Al-low corner was calculated. The results indicates that the phase composition of the Zn-0.20 wt % Al-Mg ternary phase diagram near the Al-low corner is the same as Zn-Mg binary phase diagram, suggesting Al in the Zn-Mg (ZM) coatings mainly concentrates on the interfacial layer between the coating and steel substrate. The microstructure of continuously hot-dip galvanizing ZM coatings with 0.20 wt % Al containing 1.0-3.0 wt % Mg was investigated using tunneling electron microscopy (TEM). The morphology of Zn in the coating changes from bulk to strip and finally to mesh-like, and the MgZn₂ changes from rod-like to mesh-like with the Mg content increasing. Al in the ZM coatings mainly segregates at the Fe₂Al₅ inhibition layer and the Mg added to the Zn bath makes this inhibition layer thinner and uneven. Compared to GI coating, the time of the first red rust appears increases by more than two-fold and expansion rate of red rust reduces by more than four-fold in terms of salt spray experiment. The ZM coating containing 2.0 wt % Mg has the best corrosion resistance. The enhanced corrosion resistance of ZM coatings mainly depends on different corrosion products.

  6. Galvanizers, guides, champions, and shields: the many ways that policymakers use public health researchers.

    PubMed

    Haynes, Abby S; Gillespie, James A; Derrick, Gemma E; Hall, Wayne D; Redman, Sally; Chapman, Simon; Sturk, Heidi

    2011-12-01

    Public health researchers make a limited but important contribution to policy development. Some engage with policy directly through committees, advisory boards, advocacy coalitions, ministerial briefings, intervention design consultation, and research partnerships with government, as well as by championing research-informed policy in the media. Nevertheless, the research utilization literature has paid little attention to these diverse roles and the ways that policymakers use them. This article describes how policymakers use researchers in policymaking and examines how these activities relate to models of research utilization. It also explores the extent to which policymakers' accounts of using researchers concur with the experiences of "policy-engaged" public health researchers. We conducted semi-structured interviews with thirty-two Australian civil servants, parliamentary ministers, and ministerial advisers identified as "research-engaged" by public health researchers. We used structured and inductive coding to generate categories that we then compared with some of the major research utilization models. Policymakers were sophisticated and multifaceted users of researchers for purposes that we describe as Galvanizing Ideas, Clarification and Advice, Persuasion, and Defense. These categories overlapped but did not wholly fit with research utilization models. Despite the negative connotation, "being used" was reported as reciprocal and uncompromising, although researchers and policymakers were likely to categorize these uses differently. Policymakers countered views expressed by some researchers. That is, they sought robust dialogue and creative thinking rather than compliance, and they valued expert opinion when research was insufficient for decision making. The technical/political character of policy development shaped the ways in which researchers were used. Elucidating the diverse roles that public health researchers play in policymaking, and the multiple ways

  7. Galvanizers, Guides, Champions, and Shields: The Many Ways That Policymakers Use Public Health Researchers

    PubMed Central

    Haynes, Abby S; Gillespie, James A; Derrick, Gemma E; Hall, Wayne D; Redman, Sally; Chapman, Simon; Sturk, Heidi

    2011-01-01

    Context Public health researchers make a limited but important contribution to policy development. Some engage with policy directly through committees, advisory boards, advocacy coalitions, ministerial briefings, intervention design consultation, and research partnerships with government, as well as by championing research-informed policy in the media. Nevertheless, the research utilization literature has paid little attention to these diverse roles and the ways that policymakers use them. This article describes how policymakers use researchers in policymaking and examines how these activities relate to models of research utilization. It also explores the extent to which policymakers’ accounts of using researchers concur with the experiences of “policy-engaged” public health researchers. Methods We conducted semi-structured interviews with thirty-two Australian civil servants, parliamentary ministers, and ministerial advisers identified as “research-engaged” by public health researchers. We used structured and inductive coding to generate categories that we then compared with some of the major research utilization models. Findings Policymakers were sophisticated and multifaceted users of researchers for purposes that we describe as Galvanizing Ideas, Clarification and Advice, Persuasion, and Defense. These categories overlapped but did not wholly fit with research utilization models. Despite the negative connotation, “being used” was reported as reciprocal and uncompromising, although researchers and policymakers were likely to categorize these uses differently. Policymakers countered views expressed by some researchers. That is, they sought robust dialogue and creative thinking rather than compliance, and they valued expert opinion when research was insufficient for decision making. The technical/political character of policy development shaped the ways in which researchers were used. Conclusions Elucidating the diverse roles that public health

  8. Grade 12 Students' Conceptual Understanding and Mental Models of Galvanic Cells before and after Learning by Using Small-Scale Experiments in Conjunction with a Model Kit

    ERIC Educational Resources Information Center

    Supasorn, Saksri

    2015-01-01

    This study aimed to develop the small-scale experiments involving electrochemistry and the galvanic cell model kit featuring the sub-microscopic level. The small-scale experiments in conjunction with the model kit were implemented based on the 5E inquiry learning approach to enhance students' conceptual understanding of electrochemistry. The…

  9. E-tongue 2 REDOX response to heavy metals

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Kuhlman, G. M.; Kounaves, S. P.

    2002-01-01

    E-Tongue 2 an array of electrochemical sensors including REDOX electrodes for Cylic Voltammetry and Anodic Stripping Voltammetry measurements, Galvanic cells for corrosion measurements, and Ion Selective Electrodes.

  10. 76 FR 9810 - Agency Information Collection Activities: Comment Request for the Ferrous Metals Surveys (17 Forms)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... Activities: Comment Request for the Ferrous Metals Surveys (17 Forms) AGENCY: U.S. Geological Survey (USGS... with domestic consumption data of 13 ores, concentrates, metals, and ferroalloys, some of which are...-0068. Form Number: Various (17 forms). Title: Ferrous Metals Surveys. Type of Request: Extension of a...

  11. Galvanic Cell Type Sensor for Soil Moisture Analysis.

    PubMed

    Gaikwad, Pramod; Devendrachari, Mruthyunjayachari Chattanahalli; Thimmappa, Ravikumar; Paswan, Bhuneshwar; Raja Kottaichamy, Alagar; Makri Nimbegondi Kotresh, Harish; Thotiyl, Musthafa Ottakam

    2015-07-21

    Here we report the first potentiometric sensor for soil moisture analysis by bringing in the concept of Galvanic cells wherein the redox energies of Al and conducting polyaniline are exploited to design a battery type sensor. The sensor consists of only simple architectural components, and as such they are inexpensive and lightweight, making it suitable for on-site analysis. The sensing mechanism is proved to be identical to a battery type discharge reaction wherein polyaniline redox energy changes from the conducting to the nonconducting state with a resulting voltage shift in the presence of soil moisture. Unlike the state of the art soil moisture sensors, a signal derived from the proposed moisture sensor is probe size independent, as it is potentiometric in nature and, hence, can be fabricated in any shape or size and can provide a consistent output signal under the strong aberration conditions often encountered in soil moisture analysis. The sensor is regenerable by treating with 1 M HCl and can be used for multiple analysis with little read out hysteresis. Further, a portable sensor is fabricated which can provide warning signals to the end user when the moisture levels in the soil go below critically low levels, thereby functioning as a smart device. As the sensor is inexpensive, portable, and potentiometric, it opens up avenues for developing effective and energy efficient irrigation strategies, understanding the heat and water transfer at the atmosphere-land interface, understanding soil mechanics, forecasting the risk of natural calamities, and so on.

  12. Effects of anthropogenic activities on the heavy metal levels in the clams and sediments in a tropical river.

    PubMed

    Wong, Koe Wei; Yap, Chee Kong; Nulit, Rosimah; Hamzah, Mohd Suhaimi; Chen, Soo Kien; Cheng, Wan Hee; Karami, Ali; Al-Shami, Salman Abdo

    2017-01-01

    The present study aimed to assess the effects of anthropogenic activities on the heavy metal levels in the Langat River by transplantation of Corbicula javanica. In addition, potential ecological risk indexes (PERI) of heavy metals in the surface sediments of the river were also investigated. The correlation analysis revealed that eight metals (As, Co, Cr, Fe, Mn, Ni, Pb and Zn) in total soft tissue (TST) while five metals (As, Cd, Cr, Fe and Mn) in shell have positively and significantly correlation with respective metal concentration in sediment, indicating the clams is a good biomonitor of the metal levels. Based on clustering patterns, the discharge of dam impoundment, agricultural activities and urban domestic waste were identified as three major contributors of the metals in Pangsun, Semenyih and Dusun Tua, and Kajang, respectively. Various geochemical indexes for a single metal pollutant (geoaccumulation index (I geo ), enrichment factors (EF), contamination factor (C f ) and ecological risk (Er)) all agreed that Cd, Co, Cr, Cu, Fe, Mn, Ni and Zn are not likely to cause adverse effect to the river ecosystem, but As and Pb could pose a potential ecological risk to the river ecosystem. All indexes (degree of contamination (C d ), combined pollution index (CPI) and PERI) showed that overall metal concentrations in the tropical river are still within safe limit. River metal pollution was investigated. Anthropogenic activities were contributors of the metal pollution. Geochemical indexes showed that metals are within the safe limit.

  13. Change of heavy metal speciation, mobility, bioavailability, and ecological risk during potassium ferrate treatment of waste-activated sludge.

    PubMed

    Yu, Ming; Zhang, Jian; Tian, Yu

    2018-05-01

    The effects of potassium ferrate treatment on the heavy metal concentrations, speciation, mobility, bioavailability, and environmental risk in waste-activated sludge (WAS) at various dosages of potassium ferrate and different treatment times were investigated. Results showed that the total concentrations of all metals (except Cd) were decreased slightly after treatment and the order of metal concentrations in WAS and treated waste-activated sludge (TWAS) was Mg > Zn > Cu > Cr > Pb > Ni > Cd. Most heavy metals in WAS remained in TWAS after potassium ferrate treatment with metal residual rates over 67.8% in TWAS. The distribution of metal speciation in WAS was affected by potassium ferrate treatment. The bioavailability and the mobility of heavy metals (except Mg) in TWAS were mitigated, compared to those in WAS. Meanwhile, the environmental risk of heavy metals (except Pb and Cu) was alleviated after potassium ferrate treatment.

  14. Metal dispersion resulting from mining activities in coastal environments: A pathways approach

    USGS Publications Warehouse

    Koski, Randolph A.

    2012-01-01

    Acid rock drainage (ARD) and disposal of tailings that result from mining activities impact coastal areas in many countries. The dispersion of metals from mine sites that are both proximal and distal to the shoreline can be examined using a pathways approach in which physical and chemical processes guide metal transport in the continuum from sources (sulfide minerals) to bioreceptors (marine biota). Large amounts of metals can be physically transported to the coastal environment by intentional or accidental release of sulfide-bearing mine tailings. Oxidation of sulfide minerals results in elevated dissolved metal concentrations in surface waters on land (producing ARD) and in pore waters of submarine tailings. Changes in pH, adsorption by insoluble secondary minerals (e.g., Fe oxyhydroxides), and precipitation of soluble salts (e.g., sulfates) affect dissolved metal fluxes. Evidence for bioaccumulation includes anomalous metal concentrations in bivalves and reef corals, and overlapping Pb isotope ratios for sulfides, shellfish, and seaweed in contaminated environments. Although bioavailability and potential toxicity are, to a large extent, functions of metal speciation, specific uptake pathways, such as adsorption from solution and ingestion of particles, also play important roles. Recent emphasis on broader ecological impacts has led to complementary methodologies involving laboratory toxicity tests and field studies of species richness and diversity.

  15. Metal dispersion resulting from mining activities in coastal environments: a pathways approach

    USGS Publications Warehouse

    Koski, Randolph A.

    2012-01-01

    Acid rock drainage (ARD) and disposal of tailings that result from mining activities impact coastal areas in many countries. The dispersion of metals from mine sites that are both proximal and distal to the shoreline can be examined using a pathways approach in which physical and chemical processes guide metal transport in the continuum from sources (sulfide minerals) to bioreceptors (marine biota). Large amounts of metals can be physically transported to the coastal environment by intentional or accidental release of sulfide-bearing mine tailings. Oxidation of sulfide minerals results in elevated dissolved metal concentrations in surface waters on land (producing ARD) and in pore waters of submarine tailings. Changes in pH, adsorption by insoluble secondary minerals (e.g., Fe oxyhydroxides), and precipitation of soluble salts (e.g., sulfates) affect dissolved metal fluxes. Evidence for bioaccumulation includes anomalous metal concentrations in bivalves and reef corals, and overlapping Pb isotope ratios for sulfides, shellfish, and seaweed in contaminated environments. Although bioavailability and potential toxicity are, to a large extent, functions of metal speciation, specific uptake pathways, such as adsorption from solution and ingestion of particles, also play important roles. Recent emphasis on broader ecological impacts has led to complementary methodologies involving laboratory toxicity tests and field studies of species richness and diversity.

  16. Changes in the biological activity of heavy metal- and oil-polluted soils in urban recreation territories

    NASA Astrophysics Data System (ADS)

    Trifonova, T. A.; Zabelina, O. N.

    2017-04-01

    Urban recreation areas of different sizes were investigated in the city of Vladimir. The degree of their contamination with heavy metals and oil products was revealed. The content of heavy metals exceeded their maximum permissible concentrations by more than 2.5 times. The total content of heavy metals decreased in the sequence: Zn > Pb > Co > Mn > Cr > Ni. The mass fraction of oil products in the studied soils varied within the range of 0.016-0.28 mg/g. The reaction of soils in public gardens and a boulevard was neutral or close to neutral; in some soil samples, it was weakly alkaline. The top layer of all the soils significantly differed from the lower one by the higher alkalinity promoting the deposition of heavy metals there. As the content of Ni, Co, and Mn increased and exceeded the background concentrations, but did not reach the three-fold value of the maximum permissible concentrations, the activity of catalase was intensified. The stimulating effect of nickel on the catalase activity was mostly pronounced at the neutral soil reaction. The urease activity increased when heavy metals and oil products were present together in the concentrations above the background ones, but not higher than the three-fold maximal permissible concentrations for heavy metals and 0.3 mg/g for the content of oil products. The nitrifying activity was inhibited by oil hydrocarbons that were recorded in the soils in different amounts.

  17. Theoretical Insights into Methane C–H Bond Activation on Alkaline Metal Oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aljama, Hassan; Nørskov, Jens K.; Abild-Pedersen, Frank

    Here, we investigate the role of alkaline metal oxides (AMO) (MgO, CaO, and SrO) in activating the C–H bond in methane. We also use Density Functional Theory (DFT) and microkinetic modeling to study the catalytic elementary steps in breaking the C–H bond in methane and creating the methyl radical, a precursor prior to creating C2 products. We also study the effects of surface geometry on the catalytic activity of AMO by examining terrace and step sites. We observe that the process of activating methane depends strongly on the structure of the AMO. When the AMO surface is doped with anmore » alkali metal, the transition state (TS) structure has a methyl radical-like behavior, where the methyl radical interacts weakly with the AMO surface. In this case, the TS energy scales with the hydrogen binding energy. On pure AMO, the TS interacts with AMO surface oxygen as well as the metal atom on the surface, and consequently the TS energy scales with the binding energy of hydrogen and methyl. We study the activity of AMO using a mean-field microkinetic model. The results indicate that terrace sites have similar catalytic activity, with the exception of MgO(100). Step sites bind hydrogen more strongly, making them more active, and this confirms previously reported experimental results. We map the catalytic activity of AMO using a volcano plot with two descriptors: the methyl and the hydrogen binding energies, with the latter being a more significant descriptor. The microkinetic model results suggest that C–H bond dissociation is not always the rate-limiting step. At weak hydrogen binding, the reaction is limited by C–H bond activation. At strong hydrogen binding, the reaction is limited due to poisoning of the active site. We found an increase in activity of AMO as the basicity increased. Finally, the developed microkinetic model allows screening for improved catalysts using simple calculations of the hydrogen binding energy.« less

  18. Theoretical Insights into Methane C–H Bond Activation on Alkaline Metal Oxides

    DOE PAGES

    Aljama, Hassan; Nørskov, Jens K.; Abild-Pedersen, Frank

    2017-07-17

    Here, we investigate the role of alkaline metal oxides (AMO) (MgO, CaO, and SrO) in activating the C–H bond in methane. We also use Density Functional Theory (DFT) and microkinetic modeling to study the catalytic elementary steps in breaking the C–H bond in methane and creating the methyl radical, a precursor prior to creating C2 products. We also study the effects of surface geometry on the catalytic activity of AMO by examining terrace and step sites. We observe that the process of activating methane depends strongly on the structure of the AMO. When the AMO surface is doped with anmore » alkali metal, the transition state (TS) structure has a methyl radical-like behavior, where the methyl radical interacts weakly with the AMO surface. In this case, the TS energy scales with the hydrogen binding energy. On pure AMO, the TS interacts with AMO surface oxygen as well as the metal atom on the surface, and consequently the TS energy scales with the binding energy of hydrogen and methyl. We study the activity of AMO using a mean-field microkinetic model. The results indicate that terrace sites have similar catalytic activity, with the exception of MgO(100). Step sites bind hydrogen more strongly, making them more active, and this confirms previously reported experimental results. We map the catalytic activity of AMO using a volcano plot with two descriptors: the methyl and the hydrogen binding energies, with the latter being a more significant descriptor. The microkinetic model results suggest that C–H bond dissociation is not always the rate-limiting step. At weak hydrogen binding, the reaction is limited by C–H bond activation. At strong hydrogen binding, the reaction is limited due to poisoning of the active site. We found an increase in activity of AMO as the basicity increased. Finally, the developed microkinetic model allows screening for improved catalysts using simple calculations of the hydrogen binding energy.« less

  19. Application of a mixed metal oxide catalyst to a metallic substrate

    NASA Technical Reports Server (NTRS)

    Sevener, Kathleen M. (Inventor); Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Wisner, Daniel L. (Inventor)

    2009-01-01

    A method for applying a mixed metal oxide catalyst to a metallic substrate for the creation of a robust, high temperature catalyst system for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in propulsion systems. The method begins by forming a prepared substrate material consisting of a metallic inner substrate and a bound layer of a noble metal intermediate. Alternatively, a bound ceramic coating, or frit, may be introduced between the metallic inner substrate and noble metal intermediate when the metallic substrate is oxidation resistant. A high-activity catalyst slurry is applied to the surface of the prepared substrate and dried to remove the organic solvent. The catalyst layer is then heat treated to bind the catalyst layer to the surface. The bound catalyst layer is then activated using an activation treatment and calcinations to form the high-activity catalyst system.

  20. Impacts of human activity modes and climate on heavy metal "spread" in groundwater are biased.

    PubMed

    Chen, Ming; Qin, Xiaosheng; Zeng, Guangming; Li, Jian

    2016-06-01

    Groundwater quality deterioration has attracted world-wide concerns due to its importance for human water supply. Although more and more studies have shown that human activities and climate are changing the groundwater status, an investigation on how different groundwater heavy metals respond to human activity modes (e.g. mining, waste disposal, agriculture, sewage effluent and complex activity) in a varying climate has been lacking. Here, for each of six heavy metals (i.e. Fe, Zn, Mn, Pb, Cd and Cu) in groundwater, we use >330 data points together with mixed-effect models to indicate that (i) human activity modes significantly influence the Cu and Mn but not Zn, Fe, Pb and Cd levels, and (ii) annual mean temperature (AMT) only significantly influences Cu and Pb levels, while annual precipitation (AP) only significantly affects Fe, Cu and Mn levels. Given these differences, we suggest that the impacts of human activity modes and climate on heavy metal "spread" in groundwater are biased. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Trace metal depositional patterns from an open pit mining activity as revealed by archived avian gizzard contents.

    PubMed

    Bendell, L I

    2011-02-15

    Archived samples of blue grouse (Dendragapus obscurus) gizzard contents, inclusive of grit, collected yearly between 1959 and 1970 were analyzed for cadmium, lead, zinc, and copper content. Approximately halfway through the 12-year sampling period, an open-pit copper mine began activities, then ceased operations 2 years later. Thus the archived samples provided a unique opportunity to determine if avian gizzard contents, inclusive of grit, could reveal patterns in the anthropogenic deposition of trace metals associated with mining activities. Gizzard concentrations of cadmium and copper strongly coincided with the onset of opening and the closing of the pit mining activity. Gizzard zinc and lead demonstrated significant among year variation; however, maximum concentrations did not correlate to mining activity. The archived gizzard contents did provide a useful tool for documenting trends in metal depositional patterns related to an anthropogenic activity. Further, blue grouse ingesting grit particles during the time of active mining activity would have been exposed to toxicologically significant levels of cadmium. Gizzard lead concentrations were also of toxicological significance but not related to mining activity. This type of "pulse" toxic metal exposure as a consequence of open-pit mining activity would not necessarily have been revealed through a "snap-shot" of soil, plant or avian tissue trace metal analysis post-mining activity. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Vestibular evoked myogenic potential (VEMP) with galvanic stimulation in normal subjects.

    PubMed

    Cunha, Luciana Cristina Matos; Labanca, Ludimila; Tavares, Maurício Campelo; Gonçalves, Denise Utsch

    2014-01-01

    The vestibular evoked myogenic potential (VEMP) generated by galvanic vestibular stimulation (GVS) is related to the vestibulo-spinal pathway. The response recorded from soleus muscle is biphasic with onset of short latency (SL) component around 60 ms and medium latency (ML) component around 100 ms. The first component reflects otolith function (sacule and utricle) and the last deals with semicircular canals. To describe VEMP generated by GVS. In this cross-sectional clinical study, VEMP was generated by 2 mA/400 ms binaural GVS, frequency of 5-6 ms that was recorded from soleus muscles of 13 healthy adults, mean age 56 years. The subjects remained standing, head turned contralateral to the GVS applied to the mastoid. Thirty GVS were applied to the mastoid in the position cathode right anode left, followed by 30 in inverted position. SL and ML were measured. SL and ML components were recorded from both legs of all participants and were similar. The average of SL component was 54 ms and of ML was 112 ms. The components SL and ML of the VEMP response in soleus were reproducible and are useful measures of vestibular-spinal function.

  3. TSCA Chemical Data Reporting Fact Sheet: Reporting Manufactured Chemical Substances from Metal Mining and Related Activities

    EPA Pesticide Factsheets

    This fact sheet provides guidance on the Chemical Data Reporting (CDR) rule requirements related to the reporting of mined metals, intermediates, and byproducts manufactured during metal mining and related activities.

  4. Chemical activation of molecules by metals: Experimental studies of electron distributions and bonding

    NASA Astrophysics Data System (ADS)

    Lichtenberg, Dennis L.

    During this period some important breakthroughs were accomplished in understanding the relationships between molecular ionization energies and bond energies in transition metal complexes, in understanding the electronic factors of carbon-hydrogen bond activation by transition metals, in characterizing small molecule bonding interactions with transition metals, and in investigating intermolecular interactions in thin films of transition metal complexes. The formal relationship between measured molecular ionization energies and thermodynamic bond dissociation energies was developed into a single equation which unifies the treatment of covalent bonds, ionic bonds, and partially ionic bonds. The relationship was used to clarify the fundamental thermodynamic information relating to metal-hydrogen, metal-alkyl, and metal-metal bond energies. The ionization energies were also used to correlate the rates of carbonyl substitution reactions of (eta(sup 5)-C5H4X)Rh(CO)2 complexes, and to reveal the factors that control the stability of the transition state. The investigations of the fundamental interactions of C-H sigma and sigma* orbitals metals were continued with study of eta(sup 3)-1-methylallyl metal complexes. Direct observation and measurement of the stabilization energy provided by the agostic interaction of the C-H bond with the metal was obtained. The ability to observe the electronic effects of intermolecular interactions by comparing the ionizations of metal complexes in the gas phase with the ionizations of thin solid organometallic films prepared in ultra-high vacuum was established. Most significantly, the scanning tunneling microscope imaging of these thin films was accomplished.

  5. SEQUESTERING AGENTS FOR ACTIVE CAPS - REMEDIATION OF METALS AND ORGANICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knox, A; Michael Paller, M; Danny D. Reible, D

    2007-05-10

    This research evaluated organoclays, zeolites, phosphates, and a biopolymer as sequestering agents for inorganic and organic contaminants. Batch experiments were conducted to identify amendments and mixtures of amendments for metal and organic contaminants removal and retention. Contaminant removal was evaluated by calculating partitioning coefficients. Metal retention was evaluated by desorption studies in which residue from the removal studies was extracted with 1 M MgCl{sub 2} solution. The results indicated that phosphate amendments, some organoclays, and the biopolymer, chitosan, were very effective sequestering agents for metals in fresh and salt water. Organoclays were very effective sorbents for phenanthrene, pyrene, and benzo(a)pyrene.more » Partitioning coefficients for the organoclays were 3000-3500 ml g{sup -1} for benzo(a)pyrene, 400-450 ml g{sup -1} for pyrene, and 50-70 ml g{sup -1} for phenanthrene. Remediation of sites with a mixture of contaminants is more difficult than sites with a single contaminant because metals and organic contaminants have different fate and transport mechanisms in sediment and water. Mixtures of amendments (e.g., organoclay and rock phosphate) have high potential for remediating both organic and inorganic contaminants under a broad range of environmental conditions, and have promise as components in active caps for sediment remediation.« less

  6. Expandable Metal Liner For Downhole Components

    DOEpatents

    Hall, David R.; Fox, Joe R.

    2004-10-05

    A liner for an annular downhole component is comprised of an expandable metal tube having indentations along its surface. The indentations are formed in the wall of the tube either by drawing the tube through a die, by hydroforming, by stamping, or roll forming and may extend axially, radially, or spirally along its wall. The indentations accommodate radial and axial expansion of the tube within the downhole component. The tube is inserted into the annular component and deformed to match an inside surface of the component. The tube may be expanded using a hydroforming process or by drawing a mandrel through the tube. The tube may be expanded in such a manner so as to place it in compression against the inside wall of the component. The tube is useful for improving component hydraulics, shielding components from contamination, inhibiting corrosion, and preventing wear to the downhole component during use. It may also be useful for positioning conduit and insulated conductors within the component. An insulating material may be disposed between the tube and the component in order to prevent galvanic corrosion of the downhole component.

  7. Silver zeolite antimicrobial activity in aluminium heating, ventilation and air conditioning system ducts.

    PubMed

    Rizzetto, R; Mansi, A; Panatto, D; Rizzitelli, E; Tinteri, C; Sasso, T; Gasparini, R; Crovari, P

    2008-03-01

    Air pollution in confined environments is a serious health problem, in that most people spend long periods indoors (in homes, offices, classrooms etc.). Some people (children, the elderly, heart disease patients, asthmatic or allergic subjects) are at greater risk because of their conditions of frailty. The growing use of air-conditioning systems in many public and private buildings aggravates this health risk, especially when these systems are not correctly installed or regularly serviced. The aim of our study was to verify the capacity of Ag+ ions to stop the growth of bacteria and moulds inside the ducts of Heating, Ventilation and Air Conditioning system ducts (HVAC) systems when these ducts were lined with active Ag+ ions zeolite-coated panels. A Y-shaped HVAC model with two branches was used; one branch was made of traditional galvanized iron, as was the whole system, while the other was lined with active Ag+ zeolite-coated polyurethane panels. During the test, samples of dust present inside both ducts were collected and seeded in liquid and solid media to detect bacteria and moulds. The presence of bacteria was also sought in the air emerging from the outlets of both ducts. Tests made on samples of particulate collected from the two different ducts revealed a lower total bacterial load in the samples collected from the Ag+ zeolite-coated duct than in the samples from the traditional Zn galvanized duct. In addition, the values of bacterial load found in the air emerging from the Ag+ ions zeolite-lined duct were 5 times lower than those found in the air from the traditional galvanized iron duct. The utilization of Ag+ zeolite-coated panels in air-conditioning systems could improve the quality of the emerging air in comparison with traditional installations in galvanized iron. This innovation could prove particularly advantageous in the event of accidents during the installation of air-conditioning systems or of contaminated aerosols coming from outside.

  8. Mycoextraction by Clitocybe maxima combined with metal immobilization by biochar and activated carbon in an aged soil.

    PubMed

    Wu, Bin; Cheng, Guanglei; Jiao, Kai; Shi, Wenjin; Wang, Can; Xu, Heng

    2016-08-15

    To develop an eco-friendly and efficient route to remediate soil highly polluted with heavy metals, the idea of mycoextraction combined with metal immobilization by carbonaceous sorbents (biochar and activated carbon) was investigated in this study. Results showed that the application of carbonaceous amendments decreased acid soluble Cd and Cu by 5.13-14.06% and 26.86-49.58%, respectively, whereas the reducible and oxidizable fractions increased significantly as the amount of carbonaceous amendments added increased. The biological activities (microbial biomass, soil enzyme activities) for treatments with carbonaceous sorbents were higher than those of samples without carbonaceous amendments. Clitocybe maxima (C. maxima) simultaneously increased soil enzyme activities and the total number of microbes. Biochar and activated carbon both showed a positive effect on C. maxima growth and metal accumulation. The mycoextraction efficiency of Cd and Cu in treatments with carbonaceous amendments enhanced by 25.64-153.85% and 15.18-107.22%, respectively, in response to that in non-treated soil, which showed positive correlation to the augment of biochar and activated carbon in soil. Therefore, this work suggested the effectiveness of mycoextraction by C. maxima combined the application of biochar and activated carbon in immobilising heavy metal in contaminated soil. Copyright © 2016. Published by Elsevier B.V.

  9. Comparison of soil heavy metal pollution caused by e-waste recycling activities and traditional industrial operations.

    PubMed

    He, Kailing; Sun, Zehang; Hu, Yuanan; Zeng, Xiangying; Yu, Zhiqiang; Cheng, Hefa

    2017-04-01

    The traditional industrial operations are well recognized as an important source of heavy metal pollution, while that caused by the e-waste recycling activities, which have sprouted in some developing countries, is often overlooked. This study was carried out to compare the status of soil heavy metal pollution caused by the traditional industrial operations and the e-waste recycling activities in the Pearl River Delta, and assess whether greater attention should be paid to control the pollution arising from e-waste recycling activities. Both the total contents and the chemical fractionation of major heavy metals (As, Cr, Cd, Ni, Pb, Cu, and Zn) in 50 surface soil samples collected from the e-waste recycling areas and 20 soil samples from the traditional industrial zones were determined. The results show that the soils in the e-waste recycling areas were mainly polluted by Cu, Zn, As, and Cd, while Cu, Zn, As, Cd, and Pb were the major heavy metals in the soils from the traditional industrial zones. Statistical analyses consistently show that Cu, Cd, Pb, and Zn in the surface soils from both types of sites were contributed mostly by human activities, while As, Cr, and Ni in the soils were dominated by natural background. No clear distinction was found on the pollution characteristic of heavy metals in the surface soils between the e-waste recycling areas and traditional industrial zones. The potential ecological risk posed by heavy metals in the surface soils from both types of sites, which was dominated by that from Cd, ranged from low to moderate. Given the much shorter development history of e-waste recycling and its largely unregulated nature, significant efforts should be made to crack down on illegal e-waste recycling and strengthen pollution control for related activities.

  10. Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China.

    PubMed

    Sun, Zehang; Xie, Xiande; Wang, Ping; Hu, Yuanan; Cheng, Hefa

    2018-10-15

    Although metal ore mining activities are well known as an important source of heavy metals, soil pollution caused by small-scale mining activities has long been overlooked. This study investigated the pollution of surface soils in an area surrounding a recently abandoned small-scale polymetallic mining district in Guangdong province of south China. A total of 13 tailing samples, 145 surface soil samples, and 29 water samples were collected, and the concentrations of major heavy metals, including Cr, Mn, Co, Ni, Cu, Zn, As, Cd, Pb, and Se, were determined. The results show that the tailings contained high levels of heavy metals, with Cu, Zn, As, Cd, and Pb occurring in the ranges of 739-4.15 × 10 3 , 1.81 × 10 3 -5.00 × 10 3 , 118-1.26 × 10 3 , 8.14-57.7, and 1.23 × 10 3 -6.99 × 10 3  mg/kg, respectively. Heavy metals also occurred at high concentrations in the mine drainages (15.4-17.9 mg/L for Cu, 21.1-29.3 mg/L for Zn, 0.553-0.770 mg/L for Cd, and 1.17-2.57 mg/L for Pb), particularly those with pH below 3. The mean contents of Cu, Zn, As, Cd, and Pb in the surface soils of local farmlands were up to 7 times higher than the corresponding background values, and results of multivariate statistical analysis clearly indicate that Cu, Zn, Cd, and Pb were largely contributed by the mining activities. The surface soils from farmlands surrounding the mining district were moderately to seriously polluted, while the potential ecological risk of heavy metal pollution was extremely high. It was estimated that the input fluxes from the mining district to the surrounding farmlands were approximately 17.1, 59.2, 0.311, and 93.8 kg/ha/yr for Cu, Zn, Cd, and Pb, respectively, which probably occurred through transport of fine tailings by wind and runoff, and mine drainage as well. These findings indicate the significant need for proper containment of the mine tailings at small-scale metal ore mines. Copyright © 2018. Published by Elsevier

  11. Logical regulation of the enzyme-like activity of gold nanoparticles by using heavy metal ions.

    PubMed

    Lien, Chia-Wen; Chen, Ying-Chieh; Chang, Huan-Tsung; Huang, Chih-Ching

    2013-09-07

    In this study we employed self-deposition and competitive or synergistic interactions between metal ions and gold nanoparticles (Au NPs) to develop OR, AND, INHIBIT, and XOR logic gates through regulation of the enzyme-like activity of Au NPs. In the presence of various metal ions (Ag(+), Bi(3+), Pb(2+), Pt(4+), and Hg(2+)), we found that Au NPs (13 nm) exhibited peroxidase-, oxidase-, or catalase-like activity. After Ag(+), Bi(3+), or Pb(2+) ions had been deposited on the Au NPs, the particles displayed strong peroxidase-like activity; on the other hand, they exhibited strong oxidase- and catalase-like activities after reactions with Ag(+)/Hg(2+) and Hg(2+)/Bi(3+) ions, respectively. The catalytic activities of these Au NPs arose mainly from the various oxidation states of the surface metal atoms/ions. Taking advantage of this behavior, we constructed multiplex logic operations-OR, AND, INHIBIT, and XOR logic gates-through regulation of the enzyme-like activity after the introduction of metal ions into the Au NP solution. When we deposited Hg(2+) and/or Bi(3+) ions onto the Au NPs, the catalase-like activities of the Au NPs were strongly enhanced (>100-fold). Therefore, we could construct an OR logic gate by using Hg(2+)/Bi(3+) as inputs and the catalase-like activity of the Au NPs as the output. Likewise, we constructed an AND logic gate by using Pt(4+) and Hg(2+) as inputs and the oxidase-like activity of the Au NPs as the output; the co-deposition of Pt and Hg atoms/ions on the Au NPs was responsible for this oxidase-like activity. Competition between Pb(2+) and Hg(2+) ions for the Au NPs allowed us to develop an INHIBIT logic gate-using Pb(2+) and Hg(2+) as inputs and the peroxidase-like activity of the Au NPs as the output. Finally, regulation of the peroxidase-like activity of the Au NPs through the two inputs Ag(+) and Bi(3+) enabled us to construct an XOR logic gate.

  12. Pollution in the urban soils of Lianyungang, China, evaluated using a pollution index, mobility of heavy metals, and enzymatic activities.

    PubMed

    Li, Yu; Li, Hong-Guan; Liu, Fu-Cheng

    2017-01-01

    Soil samples from 16 urban sites in Lianyungang, China were collected and analyzed. A pollution index was used to assess the potential ecological risk of heavy metals and a sequential extraction procedure was used to evaluate the relative distribution of Cu, Zn, Pb, Cd, Cr, and As in exchangeable, carbonate, Fe/Mn oxide, organic/sulfide, and residual fractions. The mobility of heavy metals and urease (URE) activity, alkaline phosphatase (ALP) activity, and invertase (INV) activity of soils was determined. The results showed that the average concentrations of Cu, Zn, Pb, Cd, Cr, and As in Lianyungang soils were much higher than those in the coastal city soil background values of Jiangsu and China. Among the five studied regions (utilities, commercial, industrial, tourism, and roadside), the industrial region had the highest metal concentrations demonstrating that land use had a significant impact on the accumulation of heavy metals in Lianyungang soils. Compared to the other metals, Cd showed the highest ecological risk. According to chemical partitioning, Cu was associated with the organic/sulfides and Pb and Zn were mainly in the carbonate and the Fe/Mn oxide phase. The greatest amounts of Cd were found in exchangeable and carbonate fractions, while Cr and As were mainly in the residual fraction. Cd had the highest mobility of all metals, and the order of mobility (highest to lowest) of heavy metals in Lianyungang soils was Cd > Zn > Pb > Cu > As > Cr. Soil urease activity, alkaline phosphatase activity, and invertase activity varied considerably in different pollution degree sites. Soil enzyme activities had the lowest levels in roadside and industrial regions. Across all the soil data in the five regions, the total Cu, Zn, Pb, Cd, Cr, and As level was negatively correlated with urease activity, alkaline phosphatase activity, and invertase activity, but the relationship was not significant. In the industrial region, alkaline phosphatase activity had

  13. Transition metal-catalyzed C-H activation reactions: diastereoselectivity and enantioselectivity.

    PubMed

    Giri, Ramesh; Shi, Bing-Feng; Engle, Keary M; Maugel, Nathan; Yu, Jin-Quan

    2009-11-01

    This critical review discusses historical and contemporary research in the field of transition metal-catalyzed carbon-hydrogen (C-H) bond activation through the lens of stereoselectivity. Research concerning both diastereoselectivity and enantioselectivity in C-H activation processes is examined, and the application of concepts in this area for the development of novel carbon-carbon and carbon-heteroatom bond-forming reactions is described. Throughout this review, an emphasis is placed on reactions that are (or may soon become) relevant in the realm of organic synthesis (221 references).

  14. Structural basis for the metal-selective activation of the manganese transport regulator of Bacillus subtilis.

    PubMed

    Kliegman, Joseph I; Griner, Sarah L; Helmann, John D; Brennan, Richard G; Glasfeld, Arthur

    2006-03-21

    The manganese transport regulator (MntR) of Bacillus subtilis is activated by Mn(2+) to repress transcription of genes encoding transporters involved in the uptake of manganese. MntR is also strongly activated by cadmium, both in vivo and in vitro, but it is poorly activated by other metal cations, including calcium and zinc. The previously published MntR.Mn(2+) structure revealed a binuclear complex of manganese ions with a metal-metal separation of 3.3 A (herein designated the AB conformer). Analysis of four additional crystal forms of MntR.Mn(2+) reveals that the AB conformer is only observed in monoclinic crystals at 100 K, suggesting that this conformation may be stabilized by crystal packing forces. In contrast, monoclinic crystals analyzed at room temperature (at either pH 6.5 or pH 8.5), and a second hexagonal crystal form (analyzed at 100 K), all reveal the shift of one manganese ion by 2.5 A, thereby leading to a newly identified conformation (the AC conformer) with an internuclear distance of 4.4 A. Significantly, the cadmium and calcium complexes of MntR also contain binuclear complexes with a 4.4 A internuclear separation. In contrast, the zinc complex of MntR contains only one metal ion per subunit, in the A site. Isothermal titration calorimetry confirms the stoichiometry of Mn(2+), Cd(2+), and Zn(2+) binding to MntR. We propose that the specificity of MntR activation is tied to productive binding of metal ions at two sites; the A site appears to act as a selectivity filter, determining whether the B or C site will be occupied and thereby fully activate MntR.

  15. Synthesis, spectroscopic, biological activity and thermal characterization of ceftazidime with transition metals

    NASA Astrophysics Data System (ADS)

    Masoud, Mamdouh S.; Ali, Alaa E.; Elasala, Gehan S.; Kolkaila, Sherif A.

    2018-03-01

    Synthesis, physicochemical characterization and thermal analysis of ceftazidime complexes with transition metals (Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)) were discussed. It's obtained that ceftazidime act as bidentate ligand. From magnetic measurement and spectral data, octahedral structures were proposed for all complexes except for cobalt, nickel and mercury had tetrahedral structural. Hyper chemistry program confirmed binding sites of ceftazidime. Ceftazidime complexes show higher activity than ceftazidime for some strains. From TG and DTA curves the thermal decomposition mechanisms of ceftazidime and their metal complexes were suggested. The thermal decomposition of the complexes ended with the formation of metal oxides as a final product except in case of Hg complex.

  16. Blistering of Graphite/Polymer Composites Galvanically Coupled with Metals in Sea Water

    DTIC Science & Technology

    1993-01-01

    pressure Vi = molar volume of species T Yi = activity coefficient for species T (p = electrical potential Using the flux definition, the conservation...at = aJi/ax ...(11) (b) determine the rate of volume increase of water Vw’ cm3 1s in the blister cavity by the following expression: Vw’ = iVw/at = 1a...induced in the polymer and the fiber/matrix interface region due to the above volume change: The volume increase of the fluid in blister given by

  17. The carburization of transition metal molybdates (MxMoO₄, M= Cu, Ni or Co) and the generation of highly active metal/carbide catalysts for CO₂ hydrogenation

    DOE PAGES

    Rodriguez, Jose A.; Xu, Wenqian; Ramirez, Pedro J.; ...

    2015-05-06

    A new approach has been tested for the preparation of metal/Mo₂C catalysts using mixed-metal oxide molybdates as precursors. Synchrotron-based in situ time-resolved X-ray diffraction was used to study the reduction and carburization processes of Cu₃(MoO₄)₂(OH)₂, a-NiMoO₄ and CoMoO₄• nH₂O by thermal treatment under mixtures of hydrogen and methane. In all cases, the final product was β-Mo₂C and a metal phase (Cu, Ni, or Co), but the transition sequence varied with the different metals, and it could be related to the reduction potential of the Cu²⁺, Ni²⁺ and Co²⁺ cations inside each molybdate. The synthesized Cu/Mo₂C, Ni/Mo₂C and Co/Mo₂C catalysts weremore » highly active for the hydrogenation of CO₂. The metal/Mo₂C systems exhibited large variations in the selectivity towards methanol, methane and C nH₂ n₊₂ (n > 2) hydrocarbons depending on the nature of the supported metal and its ability to cleave C-O bonds. Cu/Mo₂C displayed a high selectivity for CO and methanol production. Ni/Mo₂C and Co/Mo₂C were the most active catalysts for the activation and full decomposition of CO₂, showing high selectivity for the production of methane (Ni case) and C nH₂ n₊₂ (n > 2) hydrocarbons (Co case).« less

  18. Electrocatalytic N-Doped Graphitic Nanofiber - Metal/Metal Oxide Nanoparticle Composites.

    PubMed

    Tang, Hongjie; Chen, Wei; Wang, Jiangyan; Dugger, Thomas; Cruz, Luz; Kisailus, David

    2018-03-01

    Carbon-based nanocomposites have shown promising results in replacing commercial Pt/C as high-performance, low cost, nonprecious metal-based oxygen reduction reaction (ORR) catalysts. Developing unique nanostructures of active components (e.g., metal oxides) and carbon materials is essential for their application in next generation electrode materials for fuel cells and metal-air batteries. Herein, a general approach for the production of 1D porous nitrogen-doped graphitic carbon fibers embedded with active ORR components, (M/MO x , i.e., metal or metal oxide nanoparticles) using a facile two-step electrospinning and annealing process is reported. Metal nanoparticles/nanoclusters nucleate within the polymer nanofibers and subsequently catalyze graphitization of the surrounding polymer matrix and following oxidation, create an interconnected graphite-metal oxide framework with large pore channels, considerable active sites, and high specific surface area. The metal/metal oxide@N-doped graphitic carbon fibers, especially Co 3 O 4 , exhibit comparable ORR catalytic activity but superior stability and methanol tolerance versus Pt in alkaline solutions, which can be ascribed to the synergistic chemical coupling effects between Co 3 O 4 and robust 1D porous structures composed of interconnected N-doped graphitic nanocarbon rings. This finding provides a novel insight into the design of functional electrocatalysts using electrospun carbon nanomaterials for their application in energy storage and conversion fields. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Antimicrobial Activity of N-Halamine-Coated Materials in Broiler Chicken Houses.

    PubMed

    Ren, Tian; Qiao, Mingyu; Zhang, Lei; Weese, Jean; Huang, Tung-Shi; Ren, Xuehong

    2018-02-01

    The antimicrobial activity of 1-chloro-2,2,5,5-tetramethyl-4-imidazoidinone (MC), a nonbleaching N-halamine compound, was investigated on materials commonly used in broiler production, including stainless steel, galvanized metal, aluminum, plastic, and pressure-treated wood. MC aqueous solutions at 0.02, 0.04, and 0.06% were challenged with Salmonella Typhimurium and Campylobacter jejuni at 6 log CFU/mL, resulting in complete inactivation of both bacteria in 30 min with 0.06% MC. Follow-up experiments were performed using test materials treated with 0.1 and 1% MC and challenged with Salmonella Typhimurium and C. jejuni at 6 log CFU per coupon. Stability of MC on the various surfaces of testing materials was assessed, and the chlorine content of the materials was measured using iodometric thiosulfate titration over a 4-week period. Antimicrobial activities were evaluated by a sandwich test on each sampling day during 4 weeks of storage. On the samples treated with 1% MC, bacteria at 6 log CFU per coupon were completely inactivated within 2 h of contact time. The antimicrobial activity extended to 4 weeks, and the active chlorine atoms in the treated materials decreased from the initial 10 16 to 10 15 atoms per cm 2 . Overall, MC had high stability and long-lasting antimicrobial activity, which suggests that MC has high potential for use as a novel antimicrobial agent to lower the microbial load on broiler house materials.

  20. Study of Chemistry and Structure-Property Relationship on Tunable Plasmonic Nanostructures

    NASA Astrophysics Data System (ADS)

    Jing, Hao

    In this dissertation, the rational design and controllable fabrication of an array of novel plasmonic nanostructures with geometrically tunable optical properties are demonstrated, including metal-semiconductor hybrid hetero-nanoparticles, bimetallic noble metal nanoparticles and hollow nanostructures (nanobox and nanocage). Firstly, I have developed a robust wet chemistry approach to the geometry control of Ag-Cu2O core-shell nanoparticles through epitaxial growth of Cu2O nanoshells on the surfaces of various Ag nanostructures, such as quasi-spherical nanoparticles, nanocubes, and nanocuboids. Precise control over the core and the shell geometries enables me to develop detailed, quantitative understanding of how the Cu2O nanoshells introduce interesting modifications to the resonance frequencies and the extinction spectral line shapes of multiple plasmon modes of the Ag cores. Secondly, I present a detailed and systematic study of the controlled overgrowth of Pd on Au nanorods. The overgrowth of Pd nanoshells with fine-controlled dimensions and architectures on single-crystalline Au nanorods through seed-mediated growth protocol in the presence of various surfactants is investigated. Thirdly, I have demonstrated that creation of high-index facets on subwavelength metallic nanoparticles provides a unique approach to the integration of desired plasmonic and catalytic properties on the same nanoparticle. Through site-selective surface etching of metallic nanocuboids whose surfaces are dominated by low-index facets, I have controllably fabricated nanorice and nanodumbbell particles, which exhibit drastically enhanced catalytic activities arising from the catalytically active high index facets abundant on the particle surfaces. And the nanorice and nanodumbbell particles also possess appealing tunable plasmonic properties that allow us to gain quantitative insights into nanoparticle-catalyzed reactions with unprecedented sensitivity and detail through time

  1. Influence of anionic surface-active agents on the uptake of heavy metals by water hyacinth (Eichhornia crassipes)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muramoto, S.; Oki, Y.

    1984-10-01

    In a previous paper, the ability of water hyacinth to remove toxic heavy metals, cadmium, lead, and mercury, from a metal-containing solution was reported. However, information on the effects of surface-active agents on the metal uptake from waste water by water hyacinth is insufficient. Surface-active agents including anionic detergents have been found in lake, ponds, and rivers polluted by waste from industry and municipal sewage treatment plants. The present study examines the uptake of cadmium or nickel in the presence of the anionic detergent sodium dedecyl sulfate.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, G.

    Research conducted in FY17 used photo-electrochemical methods to investigate the potential for radiationenhanced galvanic coupling in tritium-producing burnable absorber rod (TPBAR) materials. Specifically, a laboratory electrochemical cell was coupled with UV light in order to perform electrochemical opencircuit voltage and galvanic current measurements, techniques that have been used successfully in previous studies to replicate galvanic processes in reactor settings. UV irradiation can mimic reactor-like behavior because, similar to both directly and indirectly ionizing radiation, UV photons with energy greater than the band gap of the material will generate free charge carriers (electrons and holes) and can substantially alter the passivatingmore » effect of metal oxides.« less

  3. Impact of metal binding on the antitumor activity and cellular imaging of a metal chelator cationic imidazopyridine derivative.

    PubMed

    Roy, Mithun; Chakravarthi, Balabhadrapatruni V S K; Jayabaskaran, Chelliah; Karande, Anjali A; Chakravarty, Akhil R

    2011-05-14

    A new water soluble cationic imidazopyridine species, viz. (1E)-1-((pyridin-2-yl)methyleneamino)-3-(3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2(3H)-yl)propan-2-ol (1), as a metal chelator is prepared as its PF(6) salt and characterized. Compound 1 shows fluorescence at 438 nm on excitation at 342 nm in Tris-HCl buffer giving a fluorescence quantum yield (φ) of 0.105 and a life-time of 5.4 ns. Compound 1, as an avid DNA minor groove binder, shows pUC19 DNA cleavage activity in UV-A light of 365 nm forming singlet oxygen species in a type-II pathway. The photonuclease potential of 1 gets enhanced in the presence of Fe(2+), Cu(2+) or Zn(2+). Compound 1 itself displays anticancer activity in HeLa, HepG2 and Jurkat cells with an enhancement on addition of the metal ions. Photodynamic effect of 1 at 365 nm also gets enhanced in the presence of Fe(2+) and Zn(2+). Fluorescence-based cell cycle analysis shows a significant dead cell population in the sub-G1 phase of the cell cycle suggesting apoptosis via ROS generation. A significant change in the nuclear morphology is observed from Hoechst 33258 and an acridine orange/ethidium bromide (AO/EB) dual nuclear staining suggesting apoptosis in cells when treated with 1 alone or in the presence of the metal ions. Apoptosis is found to be caspase-dependent. Fluorescence imaging to monitor the distribution of 1 in cells shows that 1 in the presence of metal ions accumulates predominantly in the cytoplasm. Enhanced uptake of 1 into the cells within 12 h is observed in the presence of Fe(2+) and Zn(2+).

  4. Star trapping and metallicity enrichment in quasars and active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Artymowicz, Pawel; Lin, D. N. C.; Wampler, E. J.

    1993-01-01

    Recent observational evidence suggests that the metallicity in quasars within a wide range of redshifts, in particular in gas flowing out of the nuclear regions, may be approximately redshift-independent and comparable with or larger than solar. It is plausible that the nuclear metallicity can be internally generated and maintained at approximately time-stationary values in quasars. We identify and estimate efficiency of a mechanism for rapid metallicity enrichment of quasar nuclear gas (in general, in active galactic nuclei) based on star-gas interactions and equivalent to an unusual mode of massive star formation. The mechanism involves capture of low-mass stars from the host galaxy's nucleus by the assemblages of clouds or by accretion disks orbiting the central massive objects (e.g., black holes). Trapping of stars within gaseous disks/clouds occurs through resonant density and bending wave excitation, as well as by hydrodynamical drag. The time scale for trapping stars with total mass equal to that of disk fragment/cloud is of order Hubble time and is remarkably model-independent. Our results show that the described mechanism can produce features suggested by observations, for example, the (super) solar gas metallicity in the nucleus. Thus the observed metallicities in high-redshift quasars do not necessarily imply that global star formation and efficient chemical changes have occurred in their host galaxies at very early cosmological epochs.

  5. Activity of N-coordinated multi-metal-atom active site structures for Pt-free oxygen reduction reaction catalysis: Role of *OH ligands

    DOE PAGES

    Holby, Edward F.; Taylor, Christopher D.

    2015-03-19

    We report calculated oxygen reduction reaction energy pathways on multi-metal-atom structures that have previously been shown to be thermodynamically favorable. We predict that such sites have the ability to spontaneously cleave the O₂ bond and then will proceed to over-bind reaction intermediates. In particular, the *OH bound state has lower energy than the final 2 H₂O state at positive potentials. Contrary to traditional surface catalysts, this *OH binding does not poison the multi-metal-atom site but acts as a modifying ligand that will spontaneously form in aqueous environments leading to new active sites that have higher catalytic activities. These *OH boundmore » structures have the highest calculated activity to date.« less

  6. Ionic Liquid Activation of Amorphous Metal-Oxide Semiconductors for Flexible Transparent Electronic Devices

    DOE PAGES

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony T.; ...

    2016-02-09

    To begin this abstract, amorphous metal-oxide semiconductors offer the high carrier mobilities and excellent large-area uniformity required for high performance, transparent, flexible electronic devices; however, a critical bottleneck to their widespread implementation is the need to activate these materials at high temperatures which are not compatible with flexible polymer substrates. The highly controllable activation of amorphous indium gallium zinc oxide semiconductor channels using ionic liquid gating at room temperature is reported. Activation is controlled by electric field-induced oxygen migration across the ionic liquid-semiconductor interface. In addition to activation of unannealed devices, it is shown that threshold voltages of a transistormore » can be linearly tuned between the enhancement and depletion modes. Finally, the first ever example of transparent flexible thin film metal oxide transistor on a polyamide substrate created using this simple technique is demonstrated. Finally, this study demonstrates the potential of field-induced activation as a promising alternative to traditional postdeposition thermal annealing which opens the door to wide scale implementation into flexible electronic applications.« less

  7. On The Effect Of Zinc Melt Composition On The Structure Of Hot-Dip Galvanized Coatings

    NASA Astrophysics Data System (ADS)

    Konidaris, S.; Pistofidis, N.; Vourlias, G.; Pavlidou, E.; Stergiou, A.; Stergioudis, G.; Polychroniadis, E. K.

    2007-04-01

    Zinc hot-dip galvanizing is an effective method for the corrosion protection of ferrous materials. A way of improving the results is through the addition of various elements in the zinc melt. In the present work the effect of Ni, Bi, Cr, Mn, Se and Si at concentration of 0.5 or 1.5 wt.% was examined. Coupons of carbon steel St-37 were coated with zinc containing the above-mentioned elements and were exposed in a Salt Spray Chamber (SSC). The micro structure of these coatings was examined with SEM and XRD. In every case the usual morphology was observed, while differences at the thickness and the crystal size of each layer were induced. However the alloying elements were present in the coating affecting its reactivity and, at least in the case of Mn and Cr, improving corrosion resistance.

  8. Enhancement of Catalytic Activity of Reduced Graphene Oxide Via Transition Metal Doping Strategy

    NASA Astrophysics Data System (ADS)

    Lee, Hangil; Hong, Jung A.

    2017-06-01

    To compare the catalytic oxidation activities of reduced graphene oxide (rGO) and rGO samples doped with five different transition metals (TM-rGO), we determine their effects on the oxidation of L-cysteine (Cys) in aqueous solution by performing electrochemistry (EC) measurements and on the photocatalytic oxidation of Cys by using high-resolution photoemission spectroscopy (HRPES) under UV illumination. Our results show that Cr-, Fe-, and Co-doped rGO with 3+ charge states (stable oxide forms: Cr3+, Fe3+, and Co3+) exhibit enhanced catalytic activities that are due to the charge states of the doped metal ions as we compare them with Cr-, Fe-, and Co-doped rGO with 2+ charge states.

  9. Monitoring the solid-state electrochemistry of Cu(2,7-AQDC) (AQDC = anthraquinone dicarboxylate) in a lithium battery: coexistence of metal and ligand redox activities in a metal-organic framework.

    PubMed

    Zhang, Zhongyue; Yoshikawa, Hirofumi; Awaga, Kunio

    2014-11-19

    By adopting a facile synthetic strategy, we obtained a microporous redox-active metal-organic framework (MOF), namely, Cu(2,7-AQDC) (2,7-H2AQDC = 2,7-anthraquinonedicarboxylic acid) (1), and utilized it as a cathode active material in lithium batteries. With a voltage window of 4.0-1.7 V, both metal clusters and anthraquinone groups in the ligands exhibited reversible redox activity. The valence change of copper cations was clearly evidenced by in situ XANES analysis. By controlling the voltage window of operation, extremely high recyclability of batteries was achieved, suggesting the framework was robust. This MOF is the first example of a porous material showing independent redox activity on both metal cluster nodes and ligand sites.

  10. Spectroscopic characterization of metal complexes of novel Schiff base. Synthesis, thermal and biological activity studies

    NASA Astrophysics Data System (ADS)

    Omar, M. M.; Mohamed, Gehad G.; Ibrahim, Amr A.

    2009-07-01

    Novel Schiff base (HL) ligand is prepared via condensation of 4-aminoantipyrine and 2-aminobenzoic acid. The ligand is characterized based on elemental analysis, mass, IR and 1H NMR spectra. Metal complexes are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance and thermal analyses (TGA, DrTGA and DTA). The molar conductance data reveal that all the metal chelates are non-electrolytes. IR spectra show that HL is coordinated to the metal ions in a uninegatively tridentate manner with NNO donor sites of the azomethine N, amino N and deprotonated caroxylic-O. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, ΔH*, ΔS* and ΔG* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligands, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia Coli, Pseudomonas aeruginosa, Staphylococcus Pyogones and Fungi (Candida). The activity data show that the metal complexes to be more potent/antibacterial than the parent Shciff base ligand against one or more bacterial species.

  11. Mechanochemical processing for metals and metal alloys

    DOEpatents

    Froes, Francis H.; Eranezhuth, Baburaj G.; Prisbrey, Keith

    2001-01-01

    A set of processes for preparing metal powders, including metal alloy powders, by ambient temperature reduction of a reducible metal compound by a reactive metal or metal hydride through mechanochemical processing. The reduction process includes milling reactants to induce and complete the reduction reaction. The preferred reducing agents include magnesium and calcium hydride powders. A process of pre-milling magnesium as a reducing agent to increase the activity of the magnesium has been established as one part of the invention.

  12. Thin Metallic Films from Solvated Metal Atoms.

    DTIC Science & Technology

    1987-07-14

    platinium , and especially indium are discussed. N, ; ,, -- !, : N) By Dist , , . N S f1 -- ~~r, 821-19 C[ Thin metallic films from solvated metal atoms...metallic films. Cold, palladium, platinium , and especially indium are discussed. 1- INTRQDUCTION In the field of chemistry an active and broad area of

  13. Impact of repeated single-metal and multi-metal pollution events on soil quality.

    PubMed

    Burges, Aritz; Epelde, Lur; Garbisu, Carlos

    2015-02-01

    Most frequently, soil metal pollution results from the occurrence of repeated single-metal and, above all, multi-metal pollution events, with concomitant adverse consequences for soil quality. Therefore, in this study, we evaluated the impact of repeated single-metal and multi-metal (Cd, Pb, Cu, Zn) pollution events on soil quality, as reflected by the values of a variety of soil microbial parameters with potential as bioindicators of soil functioning. Specifically, parameters of microbial activity (potentially mineralizable nitrogen, β-glucosidase and acid phosphatase activity) and biomass (fungal and bacterial gene abundance by RT-qPCR) were determined, in the artificially metal-polluted soil samples, at regular intervals over a period of 26 weeks. Similarly, we studied the evolution over time of CaCl2-extractable metal fractions, in order to estimate metal bioavailability in soil. Different metals showed different values of bioavailability and relative bioavailability ([metal]bio/[metal]tot) in soil throughout the experiment, under both repeated single-metal and multi-metal pollution events. Both repeated Zn-pollution and multi-metal pollution events led to a significant reduction in the values of acid phosphatase activity, and bacterial and fungal gene abundance, reflecting the negative impact of these repeated events on soil microbial activity and biomass, and, hence, soil quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Curcumin derivatives as metal-chelating agents with potential multifunctional activity for pharmaceutical applications.

    PubMed

    Ferrari, Erika; Benassi, Rois; Sacchi, Stefania; Pignedoli, Francesca; Asti, Mattia; Saladini, Monica

    2014-10-01

    Curcuminoids represent new perspectives for the development of novel therapeutics for Alzheimer's disease (AD), one probable mechanism of action is related to their metal complexing ability. In this work we examined the metal complexing ability of substituted curcuminoids to propose new chelating molecules with biological properties comparable with curcumin but with improved stability as new potential AD therapeutic agents. The K2T derivatives originate from the insertion of a -CH2COOC(CH3)3 group on the central atom of the diketonic moiety of curcumin. They retain the diketo-ketoenol tautomerism which is solvent dependent. In aqueous solution the prevalent form is the diketo one but the addition of metal ion (Ga(3+), Cu(2+)) causes the dissociation of the enolic proton creating chelate complexes and shifting the tautomeric equilibrium towards the keto-enol form. The formation of metal complexes is followed by both NMR and UV-vis spectroscopy. The density functional theory (DFT) calculations on K2T21 complexes with Ga(3+) and Cu(2+) are performed and compared with those on curcumin complexes. [Ga(K2T21)2(H2O)2](+) was found more stable than curcumin one. Good agreement is detected between calculated and experimental (1)H and (13)C NMR data. The calculated OH bond dissociation energy (BDE) and the OH proton dissociation enthalpy (PDE), allowed to predict the radical scavenging ability of the metal ion complexed with K2T21, while the calculated electronic affinity (EA) and ionization potential (IP) represent yardsticks of antioxidant properties. Eventually theoretical calculations suggest that the proton-transfer-associated superoxide-scavenging activity is enhanced after binding metal ions, and that Ga(3+) complexes display possible superoxide dismutase (SOD)-like activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Theory of in-plane current induced spin torque in metal/ferromagnet bilayers

    NASA Astrophysics Data System (ADS)

    Sakanashi, Kohei; Sigrist, Manfred; Chen, Wei

    2018-05-01

    Using a semiclassical approach that simultaneously incorporates the spin Hall effect (SHE), spin diffusion, quantum well states, and interface spin–orbit coupling (SOC), we address the interplay of these mechanisms as the origin of the spin–orbit torque (SOT) induced by in-plane currents, as observed in the normal metal/ferromagnetic metal bilayer thin films. Focusing on the bilayers with a ferromagnet much thinner than its spin diffusion length, such as Pt/Co with  ∼10 nm thickness, our approach addresses simultaneously the two contributions to the SOT, namely the spin-transfer torque (SHE-STT) due to SHE-induced spin injection, and the inverse spin Galvanic effect spin–orbit torque (ISGE-SOT) due to SOC-induced spin accumulation. The SOC produces an effective magnetic field at the interface, hence it modifies the angular momentum conservation expected for the SHE-STT. The SHE-induced spin voltage and the interface spin current are mutually dependent and, hence, are solved in a self-consistent manner. The result suggests that the SHE-STT and ISGE-SOT are of the same order of magnitude, and the spin transport mediated by the quantum well states may be an important mechanism for the experimentally observed rapid variation of the SOT with respect to the thickness of the ferromagnet.

  16. Giant and switchable surface activity of liquid metal via surface oxidation

    PubMed Central

    Khan, Mohammad Rashed; Eaker, Collin B.; Bowden, Edmond F.; Dickey, Michael D.

    2014-01-01

    We present a method to control the interfacial tension of a liquid alloy of gallium via electrochemical deposition (or removal) of the oxide layer on its surface. In sharp contrast with conventional surfactants, this method provides unprecedented lowering of surface tension (∼500 mJ/m2 to near zero) using very low voltage, and the change is completely reversible. This dramatic change in the interfacial tension enables a variety of electrohydrodynamic phenomena. The ability to manipulate the interfacial properties of the metal promises rich opportunities in shape-reconfigurable metallic components in electronic, electromagnetic, and microfluidic devices without the use of toxic mercury. This work suggests that the wetting properties of surface oxides—which are ubiquitous on most metals and semiconductors—are intrinsic “surfactants.” The inherent asymmetric nature of the surface coupled with the ability to actively manipulate its energetics is expected to have important applications in electrohydrodynamics, composites, and melt processing of oxide-forming materials. PMID:25228767

  17. Antioxidant activities, metal contents, total phenolics and flavonoids of seven Morchella species.

    PubMed

    Gursoy, Nevcihan; Sarikurkcu, Cengiz; Cengiz, Mustafa; Solak, M Halil

    2009-09-01

    Seven Morchella species were analyzed for their antioxidant activities in different test systems namely beta-carotene/linoleic acid, DPPH, reducing power, chelating effect and scavenging effect (%) on the stable ABTS*(+), in addition to their heavy metals, total phenolic and flavonoid contents. In beta-carotene/linoleic acid system, the most active mushrooms were M. esculenta var. umbrina and M.angusticeps. In the case of DPPH, methanol extract of M. conica showed high antioxidant activity. The reducing power of the methanol extracts of mushrooms increased with concentration. Chelating capacity of the extracts was also increased with the concentration. On the other hand, in 40 microg ml(-1) concentration, methanol extract of M. conica, exhibited the highest radical scavenging activity (78.66+/-2.07%) when reacted with the ABTS*(+) radical. Amounts of seven elements (Cu, Mn, Co, Zn, Fe, Ca, and Mg) and five heavy metals (Ni, Pb, Cd, Cr, and Al) were also determined in all species. M. conica was found to have the highest phenolic content among the samples. Flavonoid content of M. rotunda was also found superior (0.59+/-0.01 microg QEs/mg extract).

  18. Nitrogen activation of carbon-encapsulated zero-valent iron nanoparticles and influence of the activation temperature on heavy metals removal

    NASA Astrophysics Data System (ADS)

    Bonaiti, Stefania; Calderon, Blanca; Collina, Elena; Lasagni, Marina; Mezzanotte, Valeria; Aracil, Ignacio; Fullana, Andrés

    2017-05-01

    Nanoparticles of zero-valent iron (nZVI) represent a promising agent for environmental remediation. This is due to their core-shell structure which presents the characteristics of both metallic and oxidised iron, leading to sorption and reductive precipitation of metal ions. Nevertheless, nZVI application presents some limitations regarding their rapid oxidation and aggregation in the media which leads to the delivery of the ions after some hours (the “aging effect”). To address these issues, modifications of nZVI structure and synthesis methods have been developed in the last years. The aging problem was solved by using nZVI encapsulated inside carbon spheres (CE-nZVI), synthetized through Hydrothermal Carbonization (HTC). Results showed high heavy metals removal percentage. Furthermore, CE-nZVI were activated with nitrogen in order to increase the metallic iron content. The aim of this study was to test CE-nZVI post-treated with nitrogen at different temperatures in heavy metals removal, demonstrating that the influence of the temperature was negligible in nanoparticles removal efficiency.

  19. A Timing Synchronizer System for Beam Test Setups Requiring Galvanic Isolation

    NASA Astrophysics Data System (ADS)

    Meder, Lukas Dominik; Emschermann, David; Frühauf, Jochen; Müller, Walter F. J.; Becker, Jürgen

    2017-07-01

    In beam test setups detector elements together with a readout composed of frontend electronics (FEE) and usually a layer of field-programmable gate arrays (FPGAs) are being analyzed. The FEE is in this scenario often directly connected to both the detector and the FPGA layer what in many cases requires sharing the ground potentials of these layers. This setup can become problematic if parts of the detector need to be operated at different high-voltage potentials, since all of the FPGA boards need to receive a common clock and timing reference for getting the readout synchronized. Thus, for the context of the compressed baryonic matter experiment a versatile timing synchronizer (TS) system was designed providing galvanically isolated timing distribution links over twisted-pair cables. As an electrical interface the so-called timing data processing board FPGA mezzanine card was created for being mounted onto FPGA-based advanced mezzanine cards for mTCA.4 crates. The FPGA logic of the TS system connects to this card and can be monitored and controlled through IPBus slow-control links. Evaluations show that the system is capable of stably synchronizing the FPGA boards of a beam test setup being integrated into a hierarchical TS network.

  20. Late metal carbene complexes generated by multiple C-H activations: examining the continuum of M=C bond reactivity.

    PubMed

    Whited, Matthew T; Grubbs, Robert H

    2009-10-20

    Unactivated C(sp(3))-H bonds are ubiquitous in organic chemicals and hydrocarbon feedstocks. However, these resources remain largely untapped, and the development of efficient homogeneous methods for hydrocarbon functionalization by C-H activation is an attractive and unresolved challenge for synthetic chemists. Transition-metal catalysis offers an attractive possible means for achieving selective, catalytic C-H functionalization given the thermodynamically favorable nature of many desirable partial oxidation schemes and the propensity of transition-metal complexes to cleave C-H bonds. Selective C-H activation, typically by a single cleavage event to produce M-C(sp(3)) products, is possible through myriad reported transition-metal species. In contrast, several recent reports have shown that late transition metals may react with certain substrates to perform multiple C-H activations, generating M=C(sp(2)) complexes for further elaboration. In light of the rich reactivity of metal-bound carbenes, such a route could open a new manifold of reactivity for catalytic C-H functionalization, and we have targeted this strategy in our studies. In this Account, we highlight several early examples of late transition-metal complexes that have been shown to generate metal-bound carbenes by multiple C-H activations and briefly examine factors leading to the selective generation of metal carbenes through this route. Using these reports as a backdrop, we focus on the double C-H activation of ethers and amines at iridium complexes supported by Ozerov's amidophosphine PNP ligand (PNP = [N(2-P(i)Pr(2)-4-Me-C(6)H(3))(2)](-)), allowing isolation of unusual square-planar iridium(I) carbenes. These species exhibit reactivity that is distinct from the archetypal Fischer and Schrock designations. We present experimental and theoretical studies showing that, like the classical square-planar iridium(I) organometallics, these complexes are best described as nucleophilic at iridium. We discuss

  1. Impact of heavy metal on activity of some microbial enzymes in the riverbed sediments: Ecotoxicological implications in the Ganga River (India).

    PubMed

    Jaiswal, Deepa; Pandey, Jitendra

    2018-04-15

    We studied the extracellular enzyme activity (EEA) in the riverbed sediment along a 518km gradient of the Ganga River receiving carbon and nutrient load from varied human sources. Also, we tested, together with substrate-driven stimulation, if the heavy metal accumulated in the sediment inhibits enzyme activities. Because pristine values are not available, we considered Dev Prayag, a least polluted site located 624km upstream to main study stretch, as a reference site. There were distinct increases in enzyme activities in the sediment along the study gradient from Dev Prayag, however, between-site differences were in concordance with sediment carbon(C), nitrogen (N) and phosphorus (P). Fluorescein diacetate hydrolysis (FDAase), β-glucosidase (Glu) and protease activities showed positive correlation with C, N and P while alkaline phosphatase was found negatively correlated with P. Enzyme activities were found negatively correlated with heavy metal, although ecological risk index (E R i ) varied with site and metal species. Dynamic fit curves showed significant positive correlation between heavy metal and microbial metabolic quotient (qCO 2 ) indicating a decrease in microbial activity in response to increasing heavy metal concentrations. This study forms the first report linking microbial enzyme activities to regional scale sediment heavy metal accumulation in the Ganga River, suggests that the microbial enzyme activities in the riverbed sediment were well associated with the proportion of C, N and P and appeared to be a sensitive indicator of C, N and P accumulation in the river. Heavy metal accumulated in the sediment inhibits enzyme activities, although C rich sediment showed relatively low toxicity due probably to reduced bioavailability of the metal. The study has relevance from ecotoxicological as well as from biomonitoring perspectives. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Active-passive corrosion of iron-chromium-nickel alloys in hot concentrated sulphuric acid solutions

    NASA Astrophysics Data System (ADS)

    Kish, Joseph R.

    1999-11-01

    --18)wt.% Cr stainless steel under open-circuit conditions which reduces the corrosion rate by at least an order of magnitude. (3) The electrolysis of concentrated H2SO4-H 2O solutions involves a potential-dependent reduction of H2SO 4 molecules to sulphur-containing species with an oxidation state lower than six (6). The various reduction products have a significant effect on the stainless steel corrosion resistance. (4) Successful modelling of the corrosion of nickel has been accomplished by using a galvanic interaction between a noncontinuous nickel sulphide (NiS) deposit, formed in situ, and the uncovered nickel metal. (5) Successful modelling of the active-passive corrosion of S30403 has been accomplished using a galvanic interaction between NiS(Ni) and S43000.

  3. Highly reproducible alkali metal doping system for organic crystals through enhanced diffusion of alkali metal by secondary thermal activation.

    PubMed

    Lee, Jinho; Park, Chibeom; Song, Intek; Koo, Jin Young; Yoon, Taekyung; Kim, Jun Sung; Choi, Hee Cheul

    2018-05-16

    In this paper, we report an efficient alkali metal doping system for organic single crystals. Our system employs an enhanced diffusion method for the introduction of alkali metal into organic single crystals by controlling the sample temperature to induce secondary thermal activation. Using this system, we achieved intercalation of potassium into picene single crystals with closed packed crystal structures. Using optical microscopy and Raman spectroscopy, we confirmed that the resulting samples were uniformly doped and became K 2 picene single crystal, while only parts of the crystal are doped and transformed into K 2 picene without secondary thermal activation. Moreover, using a customized electrical measurement system, the insulator-to-semiconductor transition of picene single crystals upon doping was confirmed by in situ electrical conductivity and ex situ temperature-dependent resistivity measurements. X-ray diffraction studies showed that potassium atoms were intercalated between molecular layers of picene, and doped samples did not show any KH- nor KOH-related peaks, indicating that picene molecules are retained without structural decomposition. During recent decades, tremendous efforts have been exerted to develop high-performance organic semiconductors and superconductors, whereas as little attention has been devoted to doped organic crystals. Our method will enable efficient alkali metal doping of organic crystals and will be a resource for future systematic studies on the electrical property changes of these organic crystals upon doping.

  4. Enhanced Performance of Field-Effect Transistors Based on Black Phosphorus Channels Reduced by Galvanic Corrosion of Al Overlayers.

    PubMed

    Lee, Sangik; Yoon, Chansoo; Lee, Ji Hye; Kim, Yeon Soo; Lee, Mi Jung; Kim, Wondong; Baik, Jaeyoon; Jia, Quanxi; Park, Bae Ho

    2018-06-06

    Two-dimensional (2D)-layered semiconducting materials with considerable band gaps are emerging as a new class of materials applicable to next-generation devices. Particularly, black phosphorus (BP) is considered to be very promising for next-generation 2D electrical and optical devices because of its high carrier mobility of 200-1000 cm 2 V -1 s -1 and large on/off ratio of 10 4 to 10 5 in field-effect transistors (FETs). However, its environmental instability in air requires fabrication processes in a glovebox filled with nitrogen or argon gas followed by encapsulation, passivation, and chemical functionalization of BP. Here, we report a new method for reduction of BP-channel devices fabricated without the use of a glovebox by galvanic corrosion of an Al overlayer. The reduction of BP induced by an anodic oxidation of Al overlayer is demonstrated through surface characterization of BP using atomic force microscopy, Raman spectroscopy, and X-ray photoemission spectroscopy along with electrical measurement of a BP-channel FET. After the deposition of an Al overlayer, the FET device shows a significantly enhanced performance, including restoration of ambipolar transport, high carrier mobility of 220 cm 2 V -1 s -1 , low subthreshold swing of 0.73 V/decade, and low interface trap density of 7.8 × 10 11 cm -2 eV -1 . These improvements are attributed to both the reduction of the BP channel and the formation of an Al 2 O 3 interfacial layer resulting in a high- k screening effect. Moreover, ambipolar behavior of our BP-channel FET device combined with charge-trap behavior can be utilized for implementing reconfigurable memory and neuromorphic computing applications. Our study offers a simple device fabrication process for BP-channel FETs with high performance using galvanic oxidation of Al overlayers.

  5. Analysis of the plugging of the systems autonomy demonstration project brassboard filters

    NASA Technical Reports Server (NTRS)

    Clay, John C.

    1989-01-01

    A fine gray powder was clogging the brassboard filters. The powder appeared to be residue from a galvanic corrosive attack by ammonia of the aluminum and stainless steel components in the system. The corrosion was caused by water and chlorine that had entered into the system and combined with the ammonia. This combination made an electrolyte and a corrosive agent of the ammonia that attacked the metals in the system. The corroded material traveled through the system with the ammonia and clogged the filters. Key conclusions are: the debris collecting in the filters is a by-product of galvanic corrosion; the debris is principally corroded aluminum and stainless from the system; and galvanic corrosion occurred from water and chlorine that entered the system during normal and/or extreme operating and servicing conditions. Key recommendations are: use only one metal in the ammonia system-titanium, aluminum, or stainless steel; make the system as air-tight as possible (replace fittings with welded joints); and replace electron paramagnetic resonance (EPR) O-rings with neoprene O-rings, and do not use freon to clean system components.

  6. Plasmonics and SERS activity of post-transition metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Bezerra, A. G.; Machado, T. N.; Woiski, T. D.; Turchetti, D. A.; Lenz, J. A.; Akcelrud, L.; Schreiner, W. H.

    2018-05-01

    Nanoparticles of the post-transition metals, In, Sn, Pb, and Bi, and of the metalloid Sb were produced by laser ablation synthesis in solution (LASiS) and tested for localized surface plasmon resonances (LSPR) and surface-enhanced Raman scattering (SERS). The nanoparticles were characterized by UV-Vis optical absorption, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Several organic and biological molecules were tested, and SERS activity was demonstrated for all tested nanoparticles and molecules. The Raman enhancement factor for each nanoparticle class and molecule was experimentally determined. The search for new plasmonic nanostructures is important mainly for life sciences-related applications and this study expands the range of SERS active systems.

  7. Exposure to airborne metals and particulate matter and risk for youth adjudicated for criminal activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haynes, Erin N., E-mail: Erin.Haynes@uc.edu; Chen, Aimin, E-mail: Aimin.Chen@uc.edu; Ryan, Patrick, E-mail: Patrick.Ryan@uc.edu

    Antisocial behavior is a product of multiple interacting sociohereditary variables, yet there is increasing evidence that metal exposure, particularly, manganese and lead, play a role in its epigenesis. Other metals, such as arsenic, cadmium, chromium, and mercury, and exposure to traffic-related air pollution, such as fine particulate matter ({<=}2.5 {mu}m) have been associated with neurological deficits, yet largely unexplored with respect to their relationship with delinquent behavior. The purpose of this study is to evaluate the ecological relationship between county-wide reported airborne emissions of air metals, particulate matter, and youth adjudicated for criminal activity. Metal exposure data were collected frommore » the Environmental Protection Agency AirData. Population statistics were obtained from the United States Census 2000 and adjudication data was obtained from the Courts of Common Pleases from each Ohio County. Simple correlations were calculated with the percentage of adjudications, all covariates, and estimated metal air emissions. Separate negative binomial regression models for each pollutant were used to provide an estimated risk ratio of pollutant emissions on the risk of adjudication for all Ohio counties adjusting for urban-rural residence, percentage of African Americans, median family income, percentage of family below poverty, percentage of high school graduation in 25 years and older populations, and population density. Metal emissions and PM in 1999 were all correlated with adjudication rate (2003-2005 average). Metal emissions were associated with slightly higher risk of adjudication, with about 3-4% increased risk per natural log unit of metal emission except chromium. The associations achieved statistical significance for manganese and mercury. The particulate matter {<=}2.5 and {<=}10 {mu}m emissions had a higher risk estimate, with 12% and 19% increase per natural log unit emission, respectively, and also achieved statistical

  8. Toxic responses of cytochrome P450 sub-enzyme activities to heavy metals exposure in soil and correlation with their bioaccumulation in Eisenia fetida.

    PubMed

    Cao, Xiufeng; Bi, Ran; Song, Yufang

    2017-10-01

    The dose- and time- dependent responses of cytochrome P450 (CYP) sub-enzyme activities to heavy metals in soil, and the relationships between biomarker responses and metal bioaccumulation in Eisenia fetida were evaluated. Earthworms were exposed to soils spiked with increasing doses of Cd, Cu, Pb or Zn for 21 d. Results demonstrated that EROD and CYP3A4 activities responded significantly with increasing dose and exposure duration. EROD activity significantly (P < 0.05) correlated with CYP3A4 activity exposed to Pb and Cu. The earthworm metal burdens had significant correlation with the total metal concentrations in soil (P < 0.01). The bioaccumulation factor (BAF) decreased with the increasing metal concentration in soil. The order of metal bioavailability to E. fetida was Cd > Zn > Cu > Pb. CYP3A4 activity in Pb-exposed earthworms had a significant correlation with the accumulated metal (P < 0.05). Both EROD and CYP3A4 activities in Cu-exposed worms negatively correlated with BAF (P < 0.05). Based on Discriminant Analysis (DA), CYPs activities were sensitive biomarkers of heavy metals exposure, and we also concluded that different biomarkers with multiple durations could be conducted in the eco-toxicological diagnosis of soil pollution. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Remediation of metal-contaminated marine sediments using active capping with limestone, steel slag, and activated carbon: a laboratory experiment.

    PubMed

    Park, Seong-Jik; Kang, Ku; Lee, Chang-Gu; Choi, Jae-Woo

    2018-05-18

    The objectives of this study are to assess the effectiveness of limestone (LS), steel slag (SS), and activated carbon (AC) as capping materials to sequester trace metals including As, Cd, Cr, Cu, Ni, Pb, and Zn in heavily contaminated marine sediments and to minimize the release of these metals into the water column. A flat flow tank was filled with 10 mm of capping material, contaminated sediments, and seawater, and the metal concentrations were monitored over 32 d. After completion of the flow tank experiments, the sediments below the capping material were sampled and were sequentially extracted. SS effectively reduced the As, Cr, Cu, Ni, Pb, and particularly Cd elution from the contaminated sediments to the overlying seawater. Adsorption and surface precipitation were the key mechanisms for interrupting the release of cationic trace metals by SS. LS was appropriate for interrupting the release of only Cu and Pb with high hydrolysis reaction constants. AC capping could interrupt the release of Cr, Cu, Ni, and particularly Zn from the sediments by binding with the metals via electrostatic interaction. The results obtained from the sequential extraction revealed that LS capping is appropriate for stabilizing Zn, whereas AC is appropriate for Cd and Pb. LS, SS, and AC can be applied effectively for remediation of sediments contaminated by trace metals because it interrupts their release and stabilizes the trace metals in the sediments.

  10. The sensitivity of Galvanic Skin Response for assessing mental workload in Indonesia.

    PubMed

    Widyanti, Ari; Muslim, Khoirul; Sutalaksana, Iftikar Zahedi

    2017-01-01

    Objective measures have been shown to be equally sensitive in different cultures. However, these measures need special devices that are relatively expensive and need expertise to analyze the result. In Indonesia, there is a need for a sensitive and affordable mental workload measure. To evaluate the sensitivity of Galvanic Skin Response (GSR) in assessing mental workload in Indonesia. A total of 72 Indonesian students with normal visual capability. Participants were asked to work on visual memory search task with a secondary task of counting with three different levels of difficulty. GSR, Heart Rate Variability (HRV), and the NASA-TLX were administered prior to, during, and after the tasks. GSR measure was compared to NASA-TLX and HRV measures. Like the HRV, GSR showed to be sensitive in distinguishing rest and task condition significantly but not sensitive in distinguishing different levels of mental workload. In contrast, both the NASA-TLX and performance measure were sensitive in differentiating different levels of mental workload. GSR has potential as a simple, cost-effective tool for measuring mental workload in Indonesia.

  11. Controlled growth of gold nanocrystals on biogenic As-S nanotubes by galvanic displacement

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Chen, Wilfred; Myung, Nosang V.

    2018-02-01

    Traditional methods for fabricating nanoscale arrays are usually based on lithographic techniques while alternative new approaches rely on the use of nanoscale templates made of synthetic or biological materials. Here, gold (Au) nanocrystals were grown on the surface of the microbiologically formed As-S nanotubes through the process of galvanic displacement. The size and organization of the synthesized Au nanocrystals were affected by the pH dependent speciation of HAuCl4 precursors as well as the initial ratio of As-S/HAuCl4. We found that as pH increased, the Au nanocrystals grown on As-S nanotubes had smaller sizes but were more likely to assemble in one-dimension along the nanotubes. At a proper initial ratio of As-S/HAuCl4, Au nanotubes were formed at pH 6.0. The mechanism of Au nanostructures formation and the synthesis process at different pHs were proposed. The resulting Au nanoparticle/As-S nanotube and Au nanotube/As-S nanotube hetero-structures may provide important properties to be used for novel nano-electronic devices.

  12. The effect of zinc thickness on corrosion film breakdown of Colombian galvanized steel

    NASA Astrophysics Data System (ADS)

    Sandoval-Amador, A.; E Torres Ramirez, J.; Cabrales-Villamizar, P. A.; Laverde Cataño, D.; Y Peña-Ballesteros, D.

    2017-12-01

    This work studies the corrosion behaviour of Colombian galvanized steel in solutions of chloride and sulphate ions. The effect of the thickness and exposure time on the film’s breakdown susceptibility and protectiveness of the corrosion products were studied using potentiodynamic polarization curves and electrochemical impedance spectroscopy. The corrosion products were analysed using SEM-EDS and XRD. The samples with a higher thickness level in the zinc film (Z180) have the lowest corrosion rate. In this case, one of the products that was formed by the chemical reactions that occurred was Zinc hydroxide, which exhibits a passive behaviour as observed in the Pourbaix curves of the obtained potentials and in how the different Ph levels of the solutions worked. The sheets with the highest thickness (Z180) had the best performance, since at the end of the study they showed the least amount of damage on the surface of the zinc layer. This is because the thickness of the zinc layer favours the formation of simonkolleite, which is the corrosion product that protects the material under the conditions of the study.

  13. Peroxotitanates for Biodelivery of Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, David; Elvington, M.

    2009-02-11

    Metal-based drugs are largely undeveloped in pharmacology. One limiting factor is the systemic toxicity of metal-based compounds. A solid-phase, sequestratable delivery agent for local delivery of metals could reduce systemic toxicity, facilitating new drug development in this nascent area. Amorphous peroxotitanates (APT) are ion exchange materials with high affinity for several heavy metal ions, and have been proposed to deliver or sequester metal ions in biological contexts. In the current study, we tested a hypothesis that APT are able to deliver metals or metal compounds to cells. We exposed fibroblasts (L929) or monocytes (THP1) to metal-APT materials for 72 hmore » in vitro, then measured cellular mitochondrial activity (SDH-MTT method) to assess the biological impact of the metal-APT materials vs. metals or APT alone. APT alone did not significantly affect cellular mitochondrial activity, but all metal-APT materials suppressed the mitochondrial activity of fibroblasts (by 30-65% of controls). The concentration of metal-APT materials required to suppress cellular mitochondrial activity was below that required for metals alone, suggesting that simple extracellular release of the metals from the metal-APT materials was not the primary mechanism of mitochondrial suppression. In contrast to fibroblasts, no metal-APT material had a measurable effect on THP1 monocyte mitochondrial activity, despite potent suppression by metals alone. This latter result suggested that 'biodelivery' by metal-APT materials may be cell type-specific. Therefore, it appears that APT are plausible solid phase delivery agents of metals or metal compounds to some types of cells for potential therapeutic effect.« less

  14. Effect of the chelation of metal cation on the antioxidant activity of chondroitin sulfates.

    PubMed

    Ajisaka, Katsumi; Oyanagi, Yutaka; Miyazaki, Tatsuo; Suzuki, Yasuhiro

    2016-06-01

    The antioxidant potencies of chondroitin sulfates (CSs) from shark cartilage, salmon cartilage, bovine trachea, and porcine intestinal mucosa were compared by three representative methods for the measurement of the antioxidant activity; DPPH radical scavenging activity, superoxide radical scavenging activity, and hydroxyl radical scavenging activity. CSs from salmon cartilage and bovine trachea showed higher potency in comparison with CSs from shark cartilage and porcine intestinal mucosa. Next, CS from salmon cartilage chelating with Ca(2+), Mg(2+), Mn(2+), or Zn(2+) were prepared, and their antioxidant potencies were compared. CS chelating with Ca(2+) or Mg(2+) ions showed rather decreased DPPH radical scavenging activity in comparison with CS of H(+) form. In contrast, CS chelating with Ca(2+) or Mg(2+) ion showed remarkably enhanced superoxide radical scavenging activity than CS of H(+) or Na(+) form. Moreover, CS chelating with divalent metal ions, Ca(2+), Mg(2+), Mn(2+), or Zn(2+), showed noticeably higher hydroxyl radical scavenging activity than CS of H(+) or Na(+) form. The present results revealed that the scavenging activities of, at least, superoxide radical and hydroxyl radical were enhanced by the chelation with divalent metal ions.

  15. Contribution of transition metals in the reactive oxygen species activity of PM emissions from retrofitted heavy-duty vehicles

    NASA Astrophysics Data System (ADS)

    Verma, Vishal; Shafer, Martin M.; Schauer, James J.; Sioutas, Constantinos

    2010-12-01

    We assessed the contribution of water-soluble transition metals to the reactive oxygen species (ROS) activity of diesel exhaust particles (DEPs) from four heavy-duty vehicles in five retrofitted configurations (V-SCRT, Z-SCRT, DPX, hybrid, and school bus). A heavy-duty truck without any control device served as the baseline vehicle. Particles were collected from all vehicle-configurations on a chassis dynamometer under three driving conditions: cruise (80 km h -1), transient UDDS, and idle. A sensitive macrophage-based in vitro assay was used to determine the ROS activity of collected particles. The contribution of water-soluble transition metals in the measured activity was quantified by their removal using a Chelex ® complexation method. The study demonstrates that despite an increase in the intrinsic ROS activity (per mass basis) of exhaust PM with use of most control technologies, the overall ROS activity (expressed per km or per h) was substantially reduced for retrofitted configurations compared to the baseline vehicle. Chelex treatment of DEPs water extracts removed a substantial (≥70%) and fairly consistent fraction of the ROS activity, which ascertains the dominant role of water-soluble metals in PM-induced cellular oxidative stress. However, relatively lower removal of the activity in few vehicle-configurations (V-SCRT, DPX and school bus idle), despite a large aggregate metals removal, indicated that not all species were associated with the measured activity. A univariate regression analysis identified several transition metals (Fe, Cr, Co and Mn) as significantly correlated ( R > 0.60; p < 0.05) with the ROS activity. Multivariate linear regression model incorporating Fe, Cr and Co explained 90% of variability in ROS levels, with Fe accounting for the highest (84%) fraction of the variance.

  16. Removal of metals from landfill leachate by sorption to activated carbon, bone meal and iron fines.

    PubMed

    Modin, Hanna; Persson, Kenneth M; Andersson, Anna; van Praagh, Martijn

    2011-05-30

    Sorption filters based on granular activated carbon, bone meal and iron fines were tested for their efficiency of removing metals from landfill leachate. Removal of Al, As, Ca, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sr and Zn were studied in a laboratory scale setup. Activated carbon removed more than 90% of Co, Cr, Cu, Fe, Mn and Ni. Ca, Pb, Sr and Zn were removed but less efficiently. Bone meal removed over 80% of Cr, Fe, Hg, Mn and Sr and 20-80% of Al, Ca, Cu, Mo, Ni, Pb and Zn. Iron fines removed most metals (As, Ca, Co, Cr, Cu, Fe, Mg, Mn, Pb, Sr and Zn) to some extent but less efficiently. All materials released unwanted substances (metals, TOC or nutrients), highlighting the need to study the uptake and release of a large number of compounds, not only the target metals. To remove a wide range of metals using these materials two or more filter materials may need to be combined. Sorption mechanisms for all materials include ion exchange, sorption and precipitation. For iron fines oxidation of Fe(0) seems to be important for metal immobilisation. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Abundance, Composition and Activity of Ammonia Oxidizer and Denitrifier Communities in Metal Polluted Rice Paddies from South China

    PubMed Central

    Liu, Yuan; Liu, Yongzhuo; Ding, Yuanjun; Zheng, Jinwei; Zhou, Tong; Pan, Genxing; Crowley, David; Li, Lianqing; Zheng, Jufeng; Zhang, Xuhui; Yu, Xinyan; Wang, Jiafang

    2014-01-01

    While microbial nitrogen transformations in soils had been known to be affected by heavy metal pollution, changes in abundance and community structure of the mediating microbial populations had been not yet well characterized in polluted rice soils. Here, by using the prevailing molecular fingerprinting and enzyme activity assays and comparisons to adjacent non-polluted soils, we examined changes in the abundance and activity of ammonia oxidizing and denitrifying communities of rice paddies in two sites with different metal accumulation situation under long-term pollution from metal mining and smelter activities. Potential nitrifying activity was significantly reduced in polluted paddies in both sites while potential denitrifying activity reduced only in the soils with high Cu accumulation up to 1300 mg kg−1. Copy numbers of amoA (AOA and AOB genes) were lower in both polluted paddies, following the trend with the enzyme assays, whereas that of nirK was not significantly affected. Analysis of the DGGE profiles revealed a shift in the community structure of AOA, and to a lesser extent, differences in the community structure of AOB and denitrifier between soils from the two sites with different pollution intensity and metal composition. All of the retrieved AOB sequences belonged to the genus Nitrosospira, among which species Cluster 4 appeared more sensitive to metal pollution. In contrast, nirK genes were widely distributed among different bacterial genera that were represented differentially between the polluted and unpolluted paddies. This could suggest either a possible non-specific target of the primers conventionally used in soil study or complex interactions between soil properties and metal contents on the observed community and activity changes, and thus on the N transformation in the polluted rice soils. PMID:25058658

  18. Elucidating Oxygen Reduction Active Sites in Pyrolyzed Metal-Nitrogen Coordinated Non-Precious-Metal Electrocatalyst Systems.

    PubMed

    Tylus, Urszula; Jia, Qingying; Strickland, Kara; Ramaswamy, Nagappan; Serov, Alexey; Atanassov, Plamen; Mukerjee, Sanjeev

    2014-05-01

    Detailed understanding of the nature of the active centers in non-precious-metal-based electrocatalyst, and their role in oxygen reduction reaction (ORR) mechanistic pathways will have a profound effect on successful commercialization of emission-free energy devices such as fuel cells. Recently, using pyrolyzed model structures of iron porphyrins, we have demonstrated that a covalent integration of the Fe-N x sites into π-conjugated carbon basal plane modifies electron donating/withdrawing capability of the carbonaceous ligand, consequently improving ORR activity. Here, we employ a combination of in situ X-ray spectroscopy and electrochemical methods to identify the various structural and functional forms of the active centers in non-heme Fe/N/C catalysts. Both methods corroboratively confirm the single site 2e - × 2e - mechanism in alkaline media on the primary Fe 2+ -N 4 centers and the dual-site 2e - × 2e - mechanism in acid media with the significant role of the surface bound coexisting Fe/Fe x O y nanoparticles (NPs) as the secondary active sites.

  19. Microbial activity and diversity in long-term mixed contaminated soils with respect to polyaromatic hydrocarbons and heavy metals.

    PubMed

    Thavamani, Palanisami; Malik, Seidu; Beer, Michael; Megharaj, Mallavarapu; Naidu, Ravi

    2012-05-30

    The co-occurrence of polyaromatic hydrocarbons (PAHs) with heavy metals and their effect on soil microbial activity have not been systematically investigated. In this study a holistic approach was employed by combining physico-chemical, biological and advanced molecular methods to determine the soil microbial activities of long-term mixed contaminated soils collected from a former manufactured gas plant (MGP) site. Concentrations of PAHs in MGP soils ranged from 335 to 8645 mg/kg. Of the potentially toxic metals, concentrations of lead were found to be highest, ranging from 88 to 671 mg/kg, cadmium 8 to 112 mg/kg, while zinc varied from 64 to 488 mg/kg. The enzyme activities were severely inhibited in soils that were contaminated with both PAHs and heavy metals. The presence of heavy metals in PAH-contaminated soils not only reduced the diversity of microbial population but also showed a few distinctive species by exerting selective pressure. The multivariate analysis revealed that there is an association between PAHs and heavy metals which influenced biological properties in mixed contaminated soils. The findings of this study have major implications for the bioremediation of organic pollutants in metal-organic mixed contaminated sites. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. 46 CFR 119.730 - Nonferrous metallic piping materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... temperature above 927 °C (1,700 °F) may be used in vital systems that are deemed to be galvanically compatible.... Pipe in the annealed temper must not be threaded; (4) The use of aluminum alloys with a copper content...

  1. Antimicrobial activity of transition metal acid MoO(3) prevents microbial growth on material surfaces.

    PubMed

    Zollfrank, Cordt; Gutbrod, Kai; Wechsler, Peter; Guggenbichler, Josef Peter

    2012-01-01

    Serious infectious complications of patients in healthcare settings are often transmitted by materials and devices colonised by microorganisms (nosocomial infections). Current strategies to generate material surfaces with an antimicrobial activity suffer from the consumption of the antimicrobial agent and emerging multidrug-resistant pathogens amongst others. Consequently, materials surfaces exhibiting a permanent antimicrobial activity without the risk of generating resistant microorganisms are desirable. This publication reports on the extraordinary efficient antimicrobial properties of transition metal acids such as molybdic acid (H(2)MoO(4)), which is based on molybdenum trioxide (MoO(3)). The modification of various materials (e.g. polymers, metals) with MoO(3) particles or sol-gel derived coatings showed that the modified materials surfaces were practically free of microorganisms six hours after contamination with infectious agents. The antimicrobial activity is based on the formation of an acidic surface deteriorating cell growth and proliferation. The application of transition metal acids as antimicrobial surface agents is an innovative approach to prevent the dissemination of microorganisms in healthcare units and public environments. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. X-ray crystal structure of divalent metal-activated ß-xyloisdase, RS223BX

    USDA-ARS?s Scientific Manuscript database

    We report the first X-ray structure of a glycoside hydrolase family 43 ß-xylosidase, RS223BX, which is strongly activated by the addition of divalent metal cations. The 2.69 Å structure reveals that the Ca2+ cation is located at the back of the active site pocket. The Ca2+ coordinates to H274 to sta...

  3. Evaluation of Galvanic Vestibular Stimulation System

    NASA Technical Reports Server (NTRS)

    Kofman, I. S.; Warren, E.; DeSoto, R.; Moroney, G.; Chastain, J.; De Dios, Y. E.; Gadd, N.; Taylor, L.; Peters, B. T.; Allen, E.; hide

    2017-01-01

    Microgravity exposure results in an adaptive central reinterpretation of information from multiple sensory sources to produce a sensorimotor state appropriate for motor actions in this unique environment, but this new adaptive state is no longer appropriate for the 1-g gravitational environment on Earth. During these gravitational transitions, astronauts experience deficits in both perceptual and motor functions including impaired postural control, disruption in spatial orientation, impaired control of locomotion that include alterations in muscle activation variability, modified lower limb kinematics, alterations in head-trunk coordination as well as reduced dynamic visual acuity. Post-flight changes in postural and locomotor control might have adverse consequences if a rapid egress was required following a long-duration mission, where support personnel may not be available to aid crewmembers. The act of emergency egress includes, but is not limited to standing, walking, climbing a ladder, jumping down, monitoring displays, actuating discrete controls, operating auxiliary equipment, and communicating with Mission Control and recovery teams while maintaining spatial orientation, mobility and postural stability in order to escape safely. The average time to recover impaired postural control and functional mobility to preflight levels of performance has been shown to be approximately two weeks after long-duration spaceflight. The postflight alterations are due in part to central reinterpretation of vestibular information caused by exposure to microgravity. In this study we will use a commonly used technique of transcutaneous electrical stimulation applied across the vestibular end organs (galvanic vestibular stimulation, GVS) to disrupt vestibular function as a simulation of post-flight disturbances. The goal of this project is an engineering human-in-the-loop evaluation of a device that can degrade performance of functional tasks (e.g. to maintain upright balance

  4. Electrocatalytic oxidation of small organic molecules in acid medium: enhancement of activity of noble metal nanoparticles and their alloys by supporting or modifying them with metal oxides.

    PubMed

    Kulesza, Pawel J; Pieta, Izabela S; Rutkowska, Iwona A; Wadas, Anna; Marks, Diana; Klak, Karolina; Stobinski, Leszek; Cox, James A

    2013-11-01

    Different approaches to enhancement of electrocatalytic activity of noble metal nanoparticles during oxidation of small organic molecules (namely potential fuels for low-temperature fuel cells such as methanol, ethanol and formic acid) are described. A physical approach to the increase of activity of catalytic nanoparticles (e.g. platinum or palladium) involves nanostructuring to obtain highly dispersed systems of high surface area. Recently, the feasibility of enhancing activity of noble metal systems through the formation of bimetallic (e.g. PtRu, PtSn, and PdAu) or even more complex (e.g. PtRuW, PtRuSn) alloys has been demonstrated. In addition to possible changes in the electronic properties of alloys, specific interactions between metals as well as chemical reactivity of the added components have been postulated. We address and emphasize here the possibility of utilization of noble metal and alloyed nanoparticles supported on robust but reactive high surface area metal oxides (e.g. WO 3 , MoO 3 , TiO 2 , ZrO 2 , V 2 O 5 , and CeO 2 ) in oxidative electrocatalysis. This paper concerns the way in which certain inorganic oxides and oxo species can act effectively as supports for noble metal nanoparticles or their alloys during electrocatalytic oxidation of hydrogen and representative organic fuels. Among important issues are possible changes in the morphology and dispersion, as well as specific interactions leading to the improved chemisorptive and catalytic properties in addition to the feasibility of long time operation of the discussed systems.

  5. Electrocatalytic oxidation of small organic molecules in acid medium: enhancement of activity of noble metal nanoparticles and their alloys by supporting or modifying them with metal oxides

    PubMed Central

    Kulesza, Pawel J.; Pieta, Izabela S.; Rutkowska, Iwona A.; Wadas, Anna; Marks, Diana; Klak, Karolina; Stobinski, Leszek; Cox, James A.

    2013-01-01

    Different approaches to enhancement of electrocatalytic activity of noble metal nanoparticles during oxidation of small organic molecules (namely potential fuels for low-temperature fuel cells such as methanol, ethanol and formic acid) are described. A physical approach to the increase of activity of catalytic nanoparticles (e.g. platinum or palladium) involves nanostructuring to obtain highly dispersed systems of high surface area. Recently, the feasibility of enhancing activity of noble metal systems through the formation of bimetallic (e.g. PtRu, PtSn, and PdAu) or even more complex (e.g. PtRuW, PtRuSn) alloys has been demonstrated. In addition to possible changes in the electronic properties of alloys, specific interactions between metals as well as chemical reactivity of the added components have been postulated. We address and emphasize here the possibility of utilization of noble metal and alloyed nanoparticles supported on robust but reactive high surface area metal oxides (e.g. WO3, MoO3, TiO2, ZrO2, V2O5, and CeO2) in oxidative electrocatalysis. This paper concerns the way in which certain inorganic oxides and oxo species can act effectively as supports for noble metal nanoparticles or their alloys during electrocatalytic oxidation of hydrogen and representative organic fuels. Among important issues are possible changes in the morphology and dispersion, as well as specific interactions leading to the improved chemisorptive and catalytic properties in addition to the feasibility of long time operation of the discussed systems. PMID:24443590

  6. Study on the wiping gas jet in continuous galvanizing line

    NASA Astrophysics Data System (ADS)

    Kweon, Yong-Hun; Kim, Heuy-Dong

    2011-09-01

    In the continuous hot-dip galvanizing process, the gas-jet wiping is used to control the coating thickness of moving steel strip. The high speed gas-jet discharged from the nozzle slot impinges on the strip, and at this moment, wipes the liquid coating layer dragged by a moving strip. The coating thickness is generally influenced on the flow characteristics of wiping gas-jet such as the impinging pressure distribution, pressure gradient and shear stress distribution on the surface of strip. The flow characteristics of wiping gas-jet mentioned above depends upon considerably both the process operating conditions such as the nozzle pressure, nozzle-to-strip distance and line speed, and the geometry of gas-jet wiping apparatus such as the height of nozzle slot. In the present study, the effect of the geometry of nozzle on the coating thickness is investigated with the help of a computational fluid dynamics method. The height of nozzle slot is varied in the range of 0.6mm to 1.7mm. A finite volume method (FVM) is employed to solve two-dimensional, steady, compressible Navier-Stokes equations. Based upon the results obtained, the effect of the height of nozzle slot in the gas-jet wiping process is discussed in detail. The computational results show that for a given standoff distance between the nozzle to the strip, the effective height of nozzle slot exists in achieving thinner coating thickness.

  7. Active and Durable Hydrogen Evolution Reaction Catalyst Derived from Pd-Doped Metal-Organic Frameworks.

    PubMed

    Chen, Jitang; Xia, Guoliang; Jiang, Peng; Yang, Yang; Li, Ren; Shi, Ruohong; Su, Jianwei; Chen, Qianwang

    2016-06-01

    The water electrolysis is of critical importance for sustainable hydrogen production. In this work, a highly efficient and stable PdCo alloy catalyst (PdCo@CN) was synthesized by direct annealing of Pd-doped metal-organic frameworks (MOFs) under N2 atmosphere. In 0.5 M H2SO4 solution, PdCo@CN displays remarkable electrocatalytic performance with overpotential of 80 mV, a Tafel slope of 31 mV dec(-1), and excellent stability of 10 000 cycles. Our studies reveal that noble metal doped MOFs are ideal precursors for preparing highly active alloy electrocatalysts with low content of noble metal.

  8. Vestibular Evoked Myogenic Potential (VEMP) Triggered by Galvanic Vestibular Stimulation (GVS): A Promising Tool to Assess Spinal Cord Function in Schistosomal Myeloradiculopathy.

    PubMed

    Caporali, Júlia Fonseca de Morais; Utsch Gonçalves, Denise; Labanca, Ludimila; Dornas de Oliveira, Leonardo; Vaz de Melo Trindade, Guilherme; de Almeida Pereira, Thiago; Diniz Cunha, Pedro Henrique; Santos Falci Mourão, Marina; Lambertucci, José Roberto

    2016-04-01

    Schistosomal myeloradiculopathy (SMR), the most severe and disabling ectopic form of Schistosoma mansoni infection, is caused by embolized ova eliciting local inflammation in the spinal cord and nerve roots. The treatment involves the use of praziquantel and long-term corticotherapy. The assessment of therapeutic response relies on neurological examination. Supplementary electrophysiological exams may improve prediction and monitoring of functional outcome. Vestibular evoked myogenic potential (VEMP) triggered by galvanic vestibular stimulation (GVS) is a simple, safe, low-cost and noninvasive electrophysiological technique that has been used to test the vestibulospinal tract in motor myelopathies. This paper reports the results of VEMP with GVS in patients with SMR. A cross-sectional comparative study enrolled 22 patients with definite SMR and 22 healthy controls that were submitted to clinical, neurological examination and GVS. Galvanic stimulus was applied in the mastoid bones in a transcranial configuration for testing VEMP, which was recorded by electromyography (EMG) in the gastrocnemii muscles. The VEMP variables of interest were blindly measured by two independent examiners. They were the short-latency (SL) and the medium-latency (ML) components of the biphasic EMG wave. VEMP showed the components SL (p = 0.001) and ML (p<0.001) delayed in SMR compared to controls. The delay of SL (p = 0.010) and of ML (p = 0.020) was associated with gait dysfunction. VEMP triggered by GVS identified alterations in patients with SMR and provided additional functional information that justifies its use as a supplementary test in motor myelopathies.

  9. Crystal structures reveal metal-binding plasticity at the metallo-β-lactamase active site of PqqB from Pseudomonas putida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tu, Xiongying; Latham, John A.; Klema, Valerie J.

    PqqB is an enzyme involved in the biosynthesis of pyrroloquinoline quinone and a distal member of the metallo-β-lactamase (MBL) superfamily. PqqB lacks two residues in the conserved signature motif HxHxDH that makes up the key metal-chelating elements that can bind up to two metal ions at the active site of MBLs and other members of its superfamily. Here, we report crystal structures of PqqB bound to Mn2+, Mg2+, Cu2+, and Zn2+. These structures demonstrate that PqqB can still bind metal ions at the canonical MBL active site. The fact that PqqB can adapt its side chains to chelate a widemore » spectrum of metal ions with different coordination features on a uniform main chain scaffold demonstrates its metal-binding plasticity. This plasticity may provide insights into the structural basis of promiscuous activities found in ensembles of metal complexes within this superfamily. Furthermore, PqqB belongs to a small subclass of MBLs that contain an additional CxCxxC motif that binds a structural Zn2+. Our data support a key role for this motif in dimerization.« less

  10. Determining the Catalytic Activity of Transition Metal-Doped TiO2 Nanoparticles Using Surface Spectroscopic Analysis

    NASA Astrophysics Data System (ADS)

    Yang, Sena; Lee, Hangil

    2017-11-01

    The modified TiO2 nanoparticles (NPs) to enhance their catalytic activities by doping them with the five transition metals (Cr, Mn, Fe, Co, and Ni) have been investigated using various surface analysis techniques such as scanning electron microscopy (SEM), Raman spectroscopy, scanning transmission X-ray microscopy (STXM), and high-resolution photoemission spectroscopy (HRPES). To compare catalytic activities of these transition metal-doped TiO2 nanoparticles (TM-TiO2) with those of TiO2 NPs, we monitored their performances in the catalytic oxidation of 2-aminothiophenol (2-ATP) by using HRPES and on the oxidation of 2-ATP in aqueous solution by taking electrochemistry (EC) measurements. As a result, we clearly investigate that the increased defect structures induced by the doped transition metal are closely correlated with the enhancement of catalytic activities of TiO2 NPs and confirm that Fe- and Co-doped TiO2 NPs can act as efficient catalysts.

  11. 46 CFR 160.176-8 - Materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... °F to +150 °F). (4) Weathering resistance. Each non-metallic component which is not suitably covered... to this test. Materials that are covered when used in the lifejacket may be tested with the covering material. (6) Corrosion resistance. Each metal component must— (i) Be galvanically compatible with each...

  12. Effect of metal ions on the hydrolytic and transesterification activities of Candida rugosa lipase.

    PubMed

    Katiyar, Madhu; Ali, Amjad

    2013-01-01

    In order to study the effect of metal ions on lipase activity, hydrolytic and transesterification activities of Candida rugosa lipase were investigated in presence of alkali (Na⁺ and K⁺), alkaline earth (Ca⁺² and Ba⁺²) and transition (Cr⁺³, Fe⁺³, Co⁺², Cu⁺² and Ni⁺²) metal ions. Maximum enhancement in hydrolytic activity of lipase was observed by Ca⁺², and in transesterification activity by Cr⁺³ and Co⁺². The kinetics of the lipase catalyzed transesterification (methanolysis and ethanolysis) reactions were also studied, and the activation energies of methanolysis and ethanolysis were reduced from 10.16 and 10.24 kcal mol⁻¹, respectively, to 5.41 and 7.55 kcal mol⁻¹, respectively, when reactions were performed in presence of Co⁺². Thus, in lipase catalyzed transesterification Cr⁺³ or Co⁺² could be added to the assay in order to produce the biodiesel in relatively shorter reaction duration.

  13. Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls.

    PubMed

    Rao, M Madhava; Ramana, D K; Seshaiah, K; Wang, M C; Chien, S W Chang

    2009-07-30

    Removal of lead [Pb(II)], zinc [Zn(II)], copper [Cu(II)], and cadmium [Cd(II)] from aqueous solutions using activated carbon prepared from Phaseolus aureus hulls (ACPAH), an agricultural waste was studied. The influence of various parameters such as effect of pH, contact time, adsorbent dose, and initial concentration of metal ions on the removal was evaluated by batch method. The removal of metal ions by ACPAH was pH dependent and the optimum pH values were 7.0, 8.0, 7.0 and 6.0 for Cu(II), Cd(II), Zn(II), and Pb(II), respectively. The sorption isotherms were studied using Langmuir, Freundlich, Dubinin-Radushkevich (D-R), and Temkin isotherm models. The maximum adsorption capacity values of ACPAH for metal ions were 21.8 mg g(-1) for Pb(II), 21.2 mg g(-1) for Zn(II), 19.5 mg g(-1) for Cu(II), and 15.7 mg g(-1) for Cd(II). The experiments demonstrated that the removal of metal ions followed the pseudo-second-order kinetic model. Desorption experiments were carried out using HCl solution with a view to regenerate the spent adsorbent and to recover the adsorbed metal ions.

  14. Influence of Humic Acid Complexation with Metal Ions on Extracellular Electron Transfer Activity.

    PubMed

    Zhou, Shungui; Chen, Shanshan; Yuan, Yong; Lu, Qin

    2015-11-23

    Humic acids (HAs) can act as electron shuttles and mediate biogeochemical cycles, thereby influencing the transformation of nutrients and environmental pollutants. HAs commonly complex with metals in the environment, but few studies have focused on how these metals affect the roles of HAs in extracellular electron transfer (EET). In this study, HA-metal (HA-M) complexes (HA-Fe, HA-Cu, and HA-Al) were prepared and characterized. The electron shuttle capacities of HA-M complexes were experimentally evaluated through microbial Fe(III) reduction, biocurrent generation, and microbial azoreduction. The results show that the electron shuttle capacities of HAs were enhanced after complexation with Fe but were weakened when using Cu or Al. Density functional theory calculations were performed to explore the structural geometry of the HA-M complexes and revealed the best binding sites of the HAs to metals and the varied charge transfer rate constants (k). The EET activity of the HA-M complexes were in the order HA-Fe > HA-Cu > HA-Al. These findings have important implications for biogeochemical redox processes given the ubiquitous nature of both HAs and various metals in the environment.

  15. A study on the fabrication of superhydrophobic iron surfaces by chemical etching and galvanic replacement methods and their anti-icing properties

    NASA Astrophysics Data System (ADS)

    Li, Kunquan; Zeng, Xingrong; Li, Hongqiang; Lai, Xuejun

    2015-08-01

    Hierarchical structures on iron surfaces were constructed by means of chemical etching by hydrochloric acid (HCl) solution or the galvanic replacement by silver nitrate (AgNO3) solution. The superhydrophobic iron surfaces were successfully prepared by subsequent hydrophobic modification with stearic acid. The superhydrophobic iron surfaces were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and water contact angle (WCA). The effects of reactive concentration and time on the microstructure and the wetting behavior were investigated. In addition, the anti-icing properties of the superhydrophobic iron surfaces were also studied. The FTIR study showed that the stearic acid was chemically bonded onto the iron surface. With the HCl concentration increase from 4 mol/L to 8 mol/L, the iron surface became rougher with a WCA ranging from 127° to 152°. The AgNO3 concentration had little effect on the wetting behavior, but a high AgNO3 concentration caused Ag particle aggregates to transform from flower-like formations into dendritic crystals, owing to the preferential growth direction of the Ag particles. Compared with the etching method, the galvanic replacement method on the iron surface more favorably created roughness required for achieving superhydrophobicity. The superhydrophobic iron surface showed excellent anti-icing properties in comparison with the untreated iron. The icing time of water droplets on the superhydrophobic surface was delayed to 500 s, which was longer than that of 295 s for untreated iron. Meanwhile, the superhydrophobic iron surface maintained superhydrophobicity after 10 icing and de-icing cycles in cold conditions.

  16. ACTIVATION OF THE EGF RECEPTOR SIGNALING PATHWAY IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO METALS

    EPA Science Inventory

    We have previously shown that exposure to combustion-derived metals rapidly (within 20 min) activated mitogen-activated protein kinases (MAPK), including extracellular signal-regulated kinase (ERK), in the human bronchial epithelial cell line BEAS. To study the mechanisms respons...

  17. Modeling locomotor dysfunction following spaceflight with Galvanic vestibular stimulation.

    PubMed

    Moore, Steven T; MacDougall, Hamish G; Peters, Brian T; Bloomberg, Jacob J; Curthoys, Ian S; Cohen, Helen S

    2006-10-01

    In this study locomotor and gaze dysfunction commonly observed in astronauts following spaceflight were modeled using two Galvanic vestibular stimulation (GVS) paradigms: (1) pseudorandom, and (2) head-coupled (proportional to the summed vertical linear acceleration and yaw angular velocity obtained from a head-mounted Inertial Measurement Unit). Locomotor and gaze function during GVS were assessed by tests previously used to evaluate post-flight astronaut performance; dynamic visual acuity (DVA) during treadmill locomotion at 80 m/min, and navigation of an obstacle course. During treadmill locomotion with pseudorandom GVS there was a 12% decrease in coherence between head pitch and vertical translation at the step frequency relative to the no GVS condition, which was not significantly different to the 15% decrease in coherence observed in astronauts following shuttle missions. This disruption in head stabilization likely resulted in a decrease in DVA equivalent to the reduction in acuity observed in astronauts 6 days after return from extended missions aboard the International Space Station (ISS). There were significant increases in time-to-completion of the obstacle course during both pseudorandom (21%) and head-coupled (14%) GVS, equivalent to an ISS astronaut 5 days post-landing. An attempt to suppress head movement was evident during both pseudorandom and head-coupled GVS while negotiating the obstacle course, with a 20 and 16%, decrease in head pitch and yaw velocity, respectively. The results of this study demonstrate that pseudorandom GVS generates many of the salient features of post-flight locomotor dysfunction observed in astronauts following short and long duration missions. An ambulatory GVS system may prove a useful adjunct to the current pre-flight astronaut training regimen.

  18. Temporal changes of metal bioavailability and extracellular enzyme activities in relation to afforestation of highly contaminated calcareous soil.

    PubMed

    Hu, Yahu; Huang, Yu; Su, Jieqiong; Gao, Zhuo; Li, Shuqi; Nan, Zhongren

    2018-05-01

    Metal bioavailability and extracellular enzyme activity are two important indicators of soil quality in metal-contaminated soil. However, it is unclear how the chronosequence effect modifies these two factors in highly contaminated calcareous soils undergoing afforestation. We used Populus simonii Carr. and the calciphilous Ulmus macrocarpa Hance as contrasting tree species to study the chronosequence effect. We found that afforestation significantly increased soil total nitrogen (N) content as well as soil carbon (C)/phosphorus (P) and N/P ratios, but decreased soil total P content and soil C/N ratio, regardless of the tree species and stand age, suggesting strong P limitation. However, available P did not change significantly with stand age. In both tree species, P mobilization depleted soil organic matter through the priming effect of dissolved organic carbon, whereas the decrease in soil pH in the U. macrocarpa stands enhanced CaCO 3 dissolution, collectively reducing the capacity of the soil to immobilize metals, resulting in increased metal bioavailability with stand age. The activity of oxidase (dehydrogenase) was positively correlated with bioavailable zinc concentration, soil electrical conductivity, and soil total N content. Hydrolase activities (alkaline phosphatase, β-glucosidase, and urease) were significantly positively correlated with the ratios of soil C/N and C/P, soil pH, and CaCO 3 , but negatively correlated with soil N/P ratio and bioavailable cadmium concentration. Increasing stand age was associated with the gradual recovery of oxidase activity and remarkable inhibition of hydrolase activity. Our results suggest that the combination of soil hydrolase activity and metal bioavailability can predict soil quality in the afforestation of highly contaminated soils. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Microwave-assisted digestion using nitric acid for heavy metals and sulfated ash testing in active pharmaceutical ingredients.

    PubMed

    Pluhácek, T; Hanzal, J; Hendrych, J; Milde, D

    2016-04-01

    The monitoring of inorganic impurities in active pharmaceutical ingredients plays a crucial role in the quality control of the pharmaceutical production. The heavy metals and residue on ignition/sulfated ash methods employing microwave-assisted digestion with concentrated nitric acid have been demonstrated as alternatives to inappropriate compendial methods recommended in United States Pharmacopoeia (USP) and European Pharmacopoeia (Ph. Eur.). The recoveries using the heavy metals method ranged between 89% and 122% for nearly all USP and Ph. Eur. restricted elements as well as the recoveries of sodium sulfate spikes were around 100% in all tested matrices. The proposed microwave-assisted digestion method allowed simultaneous decomposition of 15 different active pharmaceutical ingredients with sample weigh up to 1 g. The heavy metals and sulfated ash procedures were successfully applied to the determination of heavy metals and residue on ignition/sulfated ash content in mycophenolate mofetil, nicergoline and silymarin.

  20. Mineral Adsorbents for Removal of Metals in Urban Runoff

    NASA Astrophysics Data System (ADS)

    Bjorklund, Karin; Li, Loretta

    2014-05-01

    The aim of this research was to determine the capacity of four different soil minerals to adsorb metals frequently detected in urban runoff. These are low-cost, natural and commercially available soil minerals. Contaminated surface runoff from urban areas is a major cause of concern for water quality and aquatic ecosystems worldwide. Pollution in urban areas is generated by a wide array of non-point sources, including vehicular transportation and building materials. Some of the most frequently detected pollutants in urban runoff are metals. Exhaust gases, tire wear and brake linings are major sources of such metals as Pb, Zn and Cu, while impregnated wood, plastics and galvanized surfaces may release As, Cd, Cr and Zn. Many metals have toxic effects on aquatic plants and animals, depending on metal speciation and bioavailability. The removal efficiency of pollutants in stormwater depends on treatment practices and on the properties the pollutant. The distribution of metals in urban runoff has shown, for example, that Pb is predominantly particle-associated, whereas Zn and Cd are present mainly in dissolved form. Many metals are also attached to colloids, which may act as carriers for contaminants, thereby facilitating their transport through conventional water treatment processes. Filtration of stormwater is one of the most promising techniques for removal of particulates, colloidal and truly dissolved pollutants, provided that effective filtration and adsorption media are used. Filtration and infiltration are used in a wide array of stormwater treatment methods e.g. porous paving, infiltration drains and rain gardens. Several soil minerals were investigated for their potential as stormwater filter materials. Laboratory batch tests were conducted to determine the adsorption capacity of these minerals. A synthetic stormwater was tested, with spiked concentrations corresponding to levels reported in urban runoff, ranging from 50-1,500 µg/L for Zn; 5-250 µg/L for Cu