Sample records for galvanizing

  1. Process for dezincing galvanized steel

    DOEpatents

    Morgan, W.A.; Dudek, F.J.; Daniels, E.J.

    1998-07-14

    A process is described for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75 C and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (1) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (2) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (3) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (4) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte. 1 fig.

  2. Process for dezincing galvanized steel

    DOEpatents

    Morgan, William A.; Dudek, Frederick J.; Daniels, Edward J.

    1998-01-01

    A process for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75.degree. C. and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (i) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (ii) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (iii) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (iv) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte.

  3. 76 FR 68422 - Galvanized Steel Wire From Mexico: Preliminary Determination of Sales at Less Than Fair Value and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-04

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-201-840] Galvanized Steel Wire From... determines that galvanized steel wire (galvanized wire) from Mexico is being, or is likely to be, sold in the... investigation on galvanized wire from Mexico. See Galvanized Steel Wire from the People's Republic of China and...

  4. 76 FR 55031 - Galvanized Steel Wire From the People's Republic of China: Preliminary Affirmative Countervailing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-06

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-976] Galvanized Steel Wire From... galvanized steel wire (galvanized wire) from the People's Republic of China (PRC). For information on the..., filed in proper form, concerning imports of galvanized wire from the PRC.\\1\\ The Department initiated a...

  5. 77 FR 17427 - Notice of Final Determination of Sales at Less Than Fair Value: Galvanized Steel Wire From Mexico

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ... Determination of Sales at Less Than Fair Value: Galvanized Steel Wire From Mexico AGENCY: Import Administration... the investigation of sales at less than fair value of galvanized steel wire (galvanized wire) from Mexico.\\1\\ \\1\\ See Galvanized Steel Wire from Mexico: Preliminary Determination of Sales at Less Than...

  6. 40 CFR 465.20 - Applicability; description of the galvanized basis material subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... galvanized basis material subcategory. 465.20 Section 465.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS COIL COATING POINT SOURCE CATEGORY Galvanized Basis Material Subcategory § 465.20 Applicability; description of the galvanized basis material...

  7. 77 FR 17418 - Galvanized Steel Wire From the People's Republic of China: Final Affirmative Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-976] Galvanized Steel Wire From... exporters of galvanized steel wire (galvanized wire) from the People's Republic of China (the PRC). For... investigation are Davis Wire Corporation, Johnstown Wire Technologies, Inc., Mid- South Wire Company, Inc...

  8. 76 FR 33242 - Galvanized Steel Wire From the People's Republic of China: Postponement of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-976] Galvanized Steel Wire From... the countervailing duty investigation of galvanized steel wire from the People's Republic of China. See Galvanized Steel Wire From the People's Republic of China: Initiation of Countervailing Duty...

  9. 21 CFR 882.1540 - Galvanic skin response measurement device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Galvanic skin response measurement device. 882... Galvanic skin response measurement device. (a) Identification. A galvanic skin response measurement device... electrical resistance of the skin and the tissue path between two electrodes applied to the skin. (b...

  10. 21 CFR 882.1540 - Galvanic skin response measurement device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Galvanic skin response measurement device. 882... Galvanic skin response measurement device. (a) Identification. A galvanic skin response measurement device... electrical resistance of the skin and the tissue path between two electrodes applied to the skin. (b...

  11. 21 CFR 882.1540 - Galvanic skin response measurement device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Galvanic skin response measurement device. 882... Galvanic skin response measurement device. (a) Identification. A galvanic skin response measurement device... electrical resistance of the skin and the tissue path between two electrodes applied to the skin. (b...

  12. 21 CFR 882.1540 - Galvanic skin response measurement device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Galvanic skin response measurement device. 882... Galvanic skin response measurement device. (a) Identification. A galvanic skin response measurement device... electrical resistance of the skin and the tissue path between two electrodes applied to the skin. (b...

  13. Simulation on the steel galvanic corrosion and acoustic emission

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Shi, Xin; Yang, Ping

    2015-12-01

    Galvanic corrosion is a very destructive localized corrosion. The research on galvanic corrosion could determine equipment corrosion and prevent the accidents occurrence. Steel corrosion had been studied by COMSOL software with mathematical modeling. The galvanic corrosion of steel-aluminum submerged into 10% sodium chloride solution had been on-line detected by PIC-2 acoustic emission system. The results show that the acoustic emission event counts detected within unit time can qualitative judge galvanic corrosion rate and further erosion trend can be judged by the value changes.

  14. 7 CFR 1755.370 - RUS specification for seven wire galvanized steel strand.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false RUS specification for seven wire galvanized steel..., ACCEPTABLE MATERIALS, AND STANDARD CONTRACT FORMS § 1755.370 RUS specification for seven wire galvanized... Steel Wire Strand, issued May 1978. All seven wire galvanized steel strand purchased after April 1, 1990...

  15. 76 FR 73589 - Galvanized Steel Wire From the People's Republic of China: Amended Preliminary Determination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-975] Galvanized Steel Wire From... galvanized steel wire from the People's Republic of China (``PRC'').\\1\\ We are amending our Preliminary... Fair Value and Postponement of Final Determination: Galvanized Steel Wire from the People's Republic of...

  16. 7 CFR 1755.370 - RUS specification for seven wire galvanized steel strand.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false RUS specification for seven wire galvanized steel..., ACCEPTABLE MATERIALS, AND STANDARD CONTRACT FORMS § 1755.370 RUS specification for seven wire galvanized... Steel Wire Strand, issued May 1978. All seven wire galvanized steel strand purchased after April 1, 1990...

  17. 77 FR 28404 - Galvanized Steel Wire From China and Mexico

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ...)] Galvanized Steel Wire From China and Mexico Determinations On the basis of the record \\1\\ developed in the... reason of imports from China of galvanized steel wire, provided for in subheadings 7217.20.30, 7217.20.45... reason of imports from Mexico of galvanized steel wire, provided for in subheadings 7217.20.30, 7217.20...

  18. 76 FR 72721 - Galvanized Steel Wire From China and Mexico; Scheduling of the Final Phase of Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    ...)] Galvanized Steel Wire From China and Mexico; Scheduling of the Final Phase of Countervailing Duty and... galvanized steel wire, provided for in subheading 7217.20 of the Harmonized Tariff Schedule of the United... merchandise as galvanized steel wire which is a cold- drawn carbon quality steel product in coils, of solid...

  19. Galvanic Manufacturing in the Cities of Russia: Potential Source of Ambient Nanoparticles

    PubMed Central

    Golokhvast, Kirill S.; Shvedova, Anna A.

    2014-01-01

    Galvanic manufacturing is widely employed and can be found in nearly every average city in Russia. The release and accumulation of different metals (Me), depending on the technology used can be found in the vicinities of galvanic plants. Under the environmental protection act in Russia, the regulations for galvanic manufacturing do not include the regulations and safety standards for ambient ultrafine and nanosized particulate matter (PM). To assess whether Me nanoparticles (NP) are among environmental pollutants caused by galvanic manufacturing, the level of Me NP were tested in urban snow samples collected around galvanic enterprises in two cities. Employing transmission electronic microscopy, energy-dispersive X-ray spectroscopy, and a laser diffraction particle size analyzer, we found that the size distribution of tested Me NP was within 10–120 nm range. This is the first study to report that Me NP of Fe, Cr, Pb, Al, Ni, Cu, and Zn were detected around galvanic shop settings. PMID:25329582

  20. Galvanic zinc-copper microparticles inhibit melanogenesis via multiple pigmentary pathways.

    PubMed

    Won, Yen-Kim; Lin, Connie B; Seiberg, Miri; Chen, Nannan; Hu, Yaping; Rossetti, Dianne; Saliou, Claude; Loy, Chong-Jin

    2014-01-01

    The endogenous electrical field of human skin plays an important role in many skin functions. However, the biological effects and mechanism of action of externally applied electrical stimulation on skin remain unclear. Recent study showed that galvanic zinc-copper microparticles produce electrical stimulation and reduce inflammatory and immune responses in intact skin, suggesting the important role of electrical stimulation in non-wounded skin. The objective of this study is to investigate the biological effect of galvanic zinc-copper microparticles on skin pigmentation. Our findings showed that galvanic zinc-copper microparticles inhibited melanogenesis in a human melanoma cell line (MNT-1), human keratinocytes and melanoma cells co-cultures, and in pigmented epidermal equivalents. Treatment of galvanic zinc-copper microparticles inhibited melanogenesis by reducing the promoter transactivation of tyrosinase and tyrosinase-related protein-1 in human melanoma cells. In a co-culture Transwell system of keratinocytes and melanoma cells, galvanic zinc-copper microparticles reduced melanin production via downregulation of endothelin-1 secretion from keratinocytes and reduced tyrosinase gene expression in melanoma cells. In addition, exposure of pigmented epidermal equivalents to galvanic zinc-copper microparticles resulted in reduced melanin deposition. In conclusion, our data demonstrated for the first time that galvanic zinc-copper microparticles reduced melanogenesis in melanoma cells and melanin deposition in pigmented epidermal equivalents by affecting multiple pigmentary pathways.

  1. Corrosion of galvanized transmission towers near the Colbert Steam Plant: data report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, J.H.

    1980-01-01

    This report contains data relating power plant emissions and the thickness of the galvanized layers on 20 electric transmission towers near the Colbert Steam plant after 25 years of ambient exposure. In addition to the thickness of the galvanized layers, total exposure to SO/sub 2/ at each tower was estimated and relevant meteorological data were reported. These data may be useful in relating galvanized corrosion to power plant emissions.

  2. Corrosive microenvironments at lead solder surfaces arising from galvanic corrosion with copper pipe.

    PubMed

    Nguyen, Caroline K; Stone, Kendall R; Dudi, Abhijeet; Edwards, Marc A

    2010-09-15

    As stagnant water contacts copper pipe and lead solder (simulated soldered joints), a corrosion cell is formed between the metals in solder (Pb, Sn) and the copper. If the resulting galvanic current exceeds about 2 μA/cm(2), a highly corrosive microenvironment can form at the solder surface, with pH < 2.5 and chloride concentrations at least 11 times higher than bulk water levels. Waters with relatively high chloride tend to sustain high galvanic currents, preventing passivation of the solder surface, and contributing to lead contamination of potable water supplies. The total mass of lead corroded was consistent with predictions based on the galvanic current, and lead leaching to water was correlated with galvanic current. If the concentration of sulfate in the water increased relative to chloride, galvanic currents and associated lead contamination could be greatly reduced, and solder surfaces were readily passivated.

  3. Mineralogical Evidence of Galvanic Corrosion in Domestic, Drinking Water Pipes

    EPA Science Inventory

    Drinking water distribution system (DWDS) piping contains numerous examples of galvanically-coupled metals (e.g., soldered copper pipe joints, copper-lead pipes joined during partial replacements of lead service lines). The possible role of galvanic corrosion in the release of l...

  4. Wear resistance of WC/Co HVOF-coatings and galvanic Cr coatings modified by diamond nanoparticles

    NASA Astrophysics Data System (ADS)

    Kandeva, M.; Grozdanova, T.; Karastoyanov, D.; Assenova, E.

    2017-02-01

    The efforts in the recent 20 years are related to search of ecological solutions in the tribotechnologies for the replacement of galvanic Cr coatings in the contact systems operating under extreme conditions: abrasion, erosion, cavitation, corrosion, shock and vibration loads. One of the solutions is in the composite coatings deposited by high velocity gas-flame process (HVOF). The present paper presents comparative study results for mechanical and tribological characteristics of galvanic Cr coatings without nanoparticles, galvanic Cr coatings modified by diamond nanoparticles NDDS of various concentration 0.6; 10; 15 и 20% obtained under three technological regimes, and composite WC-12Co coating. Comparative results about hardness, wear, wear resistance and friction coefficient are obtained for galvanic Cr-NDDS and WC-12Co coatings operating at equal friction conditions of dry friction on abrasive surface. The WC-12Co coating shows 5.4 to 7 times higher wear resistance compared to the galvanic Cr-NDDS coatings.

  5. 76 FR 23564 - Galvanized Steel Wire From the People's Republic of China: Initiation of Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ... the People's Republic of China: Initiation of Countervailing Duty Investigation AGENCY: Import... a countervailing duty (CVD) petition concerning imports of galvanized steel wire from the People's... Duties on Galvanized Steel Wire from the People's Republic of China'' (CVD Petition). On April 6, 2011...

  6. Galvanic cell for processing of used nuclear fuel

    DOEpatents

    Garcia-Diaz, Brenda L.; Martinez-Rodriguez, Michael J.; Gray, Joshua R.; Olson, Luke C.

    2017-02-07

    A galvanic cell and methods of using the galvanic cell is described for the recovery of uranium from used nuclear fuel according to an electrofluorination process. The galvanic cell requires no input energy and can utilize relatively benign gaseous fluorinating agents. Uranium can be recovered from used nuclear fuel in the form of gaseous uranium compound such as uranium hexafluoride, which can then be converted to metallic uranium or UO.sub.2 and processed according to known methodology to form a useful product, e.g., fuel pellets for use in a commercial energy production system.

  7. 9 CFR 91.28 - Stanchions and rails.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., galvanized, extra strong, medium carbon steel. Steel pipes or other steel profiles shall consist of not less... work. Pins, plates, and parts other than pipe shall be made of galvanized steel. All areas where galvanizing of the steel has eroded or has been damaged shall be finished with a rust preventative. (5) Pipe...

  8. 9 CFR 91.28 - Stanchions and rails.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., galvanized, extra strong, medium carbon steel. Steel pipes or other steel profiles shall consist of not less... work. Pins, plates, and parts other than pipe shall be made of galvanized steel. All areas where galvanizing of the steel has eroded or has been damaged shall be finished with a rust preventative. (5) Pipe...

  9. 9 CFR 91.28 - Stanchions and rails.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., galvanized, extra strong, medium carbon steel. Steel pipes or other steel profiles shall consist of not less... work. Pins, plates, and parts other than pipe shall be made of galvanized steel. All areas where galvanizing of the steel has eroded or has been damaged shall be finished with a rust preventative. (5) Pipe...

  10. 9 CFR 91.28 - Stanchions and rails.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., galvanized, extra strong, medium carbon steel. Steel pipes or other steel profiles shall consist of not less... work. Pins, plates, and parts other than pipe shall be made of galvanized steel. All areas where galvanizing of the steel has eroded or has been damaged shall be finished with a rust preventative. (5) Pipe...

  11. 9 CFR 91.28 - Stanchions and rails.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., galvanized, extra strong, medium carbon steel. Steel pipes or other steel profiles shall consist of not less... work. Pins, plates, and parts other than pipe shall be made of galvanized steel. All areas where galvanizing of the steel has eroded or has been damaged shall be finished with a rust preventative. (5) Pipe...

  12. 76 FR 29266 - Galvanized Steel Wire From China and Mexico

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ...)] Galvanized Steel Wire From China and Mexico Determinations On the basis of the record \\1\\ developed in the... reason of imports from China and Mexico of galvanized steel wire, provided for in subheading 7217.20.30... March 31, 2011, a petition was filed with the Commission and Commerce by Davis Wire Corporation...

  13. 76 FR 19382 - Galvanized Steel Wire From China and Mexico

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-07

    ...)] Galvanized Steel Wire From China and Mexico AGENCY: United States International Trade Commission. ACTION... galvanized steel wire, provided for in subheading 7217.20.30 and 7217.20.45 of the Harmonized Tariff Schedule... investigations are being instituted in response to a petition filed on March 31, 2011, by Davis Wire Corp...

  14. 7 CFR 1755.370 - RUS specification for seven wire galvanized steel strand.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 11 2012-01-01 2012-01-01 false RUS specification for seven wire galvanized steel... steel strand. (a) RUS incorporates by reference ASTM A475-78, Standard Specification for Zinc-Coated Steel Wire Strand, issued May 1978. All seven wire galvanized steel strand purchased after April 1, 1990...

  15. 7 CFR 1755.370 - RUS specification for seven wire galvanized steel strand.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 11 2014-01-01 2014-01-01 false RUS specification for seven wire galvanized steel... steel strand. (a) RUS incorporates by reference ASTM A475-78, Standard Specification for Zinc-Coated Steel Wire Strand, issued May 1978. All seven wire galvanized steel strand purchased after April 1, 1990...

  16. 7 CFR 1755.370 - RUS specification for seven wire galvanized steel strand.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 11 2013-01-01 2013-01-01 false RUS specification for seven wire galvanized steel... steel strand. (a) RUS incorporates by reference ASTM A475-78, Standard Specification for Zinc-Coated Steel Wire Strand, issued May 1978. All seven wire galvanized steel strand purchased after April 1, 1990...

  17. A Galvanic Sensor for Monitoring the Corrosion Condition of the Concrete Reinforcing Steel: Relationship Between the Galvanic and the Corrosion Currents

    PubMed Central

    Pereira, Elsa Vaz; Figueira, Rita Bacelar; Salta, Maria Manuela Lemos; da Fonseca, Inês Teodora Elias

    2009-01-01

    This work reports a study carried out on the design and performance of galvanic and polarization resistance sensors to be embedded in concrete systems for permanent monitoring of the corrosion condition of reinforcing steel, aiming to establish a correlation between the galvanic currents, Igal, and the corrosion currents, Icorr, estimated from the polarization resistance, Rp. Sensors have been tested in saturated Ca(OH)2 aqueous solutions, under a variety of conditions, simulating the most important parameters that can accelerate the corrosion of concrete reinforcing steel, such as carbonation, ingress of chloride ions, presence or absence of O2. For all the conditions, the influence of temperature (20 to 55 °C) has also been considered. From this study, it could be concluded that the galvanic currents are sensitive to the various parameters following a trend similar to that of the Rp values. A relationship between the galvanic and the corrosion current densities was obtained and the limiting values of the Igal, indicative of the state condition of the reinforcing steel for the designed sensor, were established. PMID:22291514

  18. Galvanic corrosion behaviors of Cu connected to Au on a printed circuit board in ammonia solution

    NASA Astrophysics Data System (ADS)

    Oh, SeKwon; Kim, YoungJun; Jung, KiMin; Park, MiSeok; Shon, MinYoung; Kwon, HyukSang

    2018-01-01

    During etching treatments of printed circuit board (PCB) with ammnioa solution, galvanic corrosion occurs between electrically connected gold and copper, and resulting in unexpected over-etching problems. Herein, we determine corrosion of galvanic coupled Cu to Au quantitatively in ammonia solutions, and evaluate factors influencing corrosion of galvanic coupled Cu to Au (i.e., area ratio of anode to cathode and stirring speed). The difference of the corrosion rate (Δi = icouple, (Cu-Au)-icorr, Cu) of Cu connected to Au (117 μA/cm2) and of single Cu (86 μA/cm2) infers the amount of over-etching of Cu resulting from galvanic corrosion in ammonia solution (Δi = 0.31 μA/cm2). As the stirring speed increases from 0 to 400 rpm, the corrosion rate of galvanic coupled Cu to Au increases from 36 to 191 μA/cm2. Furthermore, we confirm that an increase in the area ratio (Au/Cu) from 0.5 to 25 results in a higher rate of corrosion of Cu connected to Au. The corrosion rate of galvanic coupled Cu to Au is approximately 20 times higher when the area ratio of Au to Cu is 25 (1360 μA/cm2) than when the ratio is 0.5 (67 μA/cm2).

  19. 76 FR 68407 - Galvanized Steel Wire From the People's Republic of China: Preliminary Determination of Sales at...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-04

    ..., shorter strands of galvanized wire are purely for non-industrial, personal use, this galvanized [[Page... Co.; Nantong Long Yang International Trade Co., Ltd.; Shaanxi New Mile International Trade Co. Ltd... per capita gross national income are comparable to the PRC in terms of economic development.\\20\\ On...

  20. Finishes for Metals. Paintability of Galvanized Steel, Corrosion Resistance of Metallized Coatings.

    ERIC Educational Resources Information Center

    Building Research Inst., Inc., Washington, DC.

    Two papers are presented. The first, "Report of the AISI Research Project on the Paintability of Galvanized Steel," was a project aimed at determining optimum procedures for painting bright-spangled galvanized sheet steel products using three classes of trade sales paints--metallic zinc-dust, portland cement-in-oil, and water base emulsion paints.…

  1. The timing of galvanic vestibular stimulation affects responses to platform translation

    NASA Technical Reports Server (NTRS)

    Hlavacka, F.; Shupert, C. L.; Horak, F. B.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    We compared the effects of galvanic vestibular stimulation applied at 0, 0.5, 1.5 and 2.5 s prior to a backward platform translation on postural responses. The effect of the galvanic stimulation was largest on the final equilibrium position of the center of pressure (CoP). The largest effects occurred for the 0.5 and 0-s pre-period, when the dynamic CoP pressure changes in response to both the galvanic stimulus and the platform translation coincided. The shift in the final equilibrium position was also larger than the sum of the shifts for the galvanic stimulus and the platform translation alone for the 0.5 and 0-s pre-periods. The initial rate of change of the CoP response to the platform translation was not significantly affected in any condition. Changes in the peak CoP position could be accounted for by local interaction of CoP velocity changes induced by the galvanic and translation responses alone, but the changes in final equilibrium position could only be accounted for by a change in global body orientation. These findings suggest that the contribution of vestibulospinal information is greatest during the dynamic phase of the postural response, and that the vestibular system contributes most to the later components of the postural response, particularly to the final equilibrium position. These findings suggest that a nonlinear interaction between the vestibular signal induced by the galvanic current and the sensory stimuli produced by the platform translation occurs when the two stimuli are presented within 1 s, during the dynamic phase of the postural response to the galvanic stimulus. When presented at greater separations in time, the stimuli appear to be treated as independent events, such that no interaction occurs. Copyright 1999 Elsevier Science B.V.

  2. 77 FR 17430 - Galvanized Steel Wire From the People's Republic of China: Final Determination of Sales at Less...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-975] Galvanized Steel Wire From... wire from the People's Republic of China (``PRC'').\\1\\ On November 29, 2011, the Department published... galvanized steel wire from the PRC is being, or is likely to be, sold in the United States at LTFV, as...

  3. 76 FR 59067 - Airworthiness Directives; Bombardier, Inc. Model CL-600-2B16 (CL-601-3A, CL-601-3R, and CL-604...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-23

    ... galvanic corrosion. It was subsequently determined that the silver- plating is inadequate for this... microscopic galvanic corrosion on the ADG power feeder cable wires. * * * * * The proposed AD would require... feeder cables were damaged due to galvanic corrosion. It was subsequently determined that the silver...

  4. Effects of heat input on mechanical properties of metal inert gas welded 1.6 mm thick galvanized steel sheet

    NASA Astrophysics Data System (ADS)

    Rafiqul, M. I.; Ishak, M.; Rahman, M. M.

    2012-09-01

    It is usually a lot easier and less expensive to galvanize steel before it is welded into useful products. Galvanizing afterwards is almost impossible. In this research work, Galvanized Steel was welded by using the ER 308L stainless steel filler material. This work was done to find out an alternative way of welding and investigate the effects of heat input on the mechanical properties of butt welded joints of Galvanized Steel. A 13.7 kW maximum capacity MIG welding machine was used to join 1.6 mm thick sheet of galvanized steel with V groove and no gap between mm. Heat inputs was gradually increased from 21.06 to 25.07 joules/mm in this study. The result shows almost macro defects free welding and with increasing heat input the ultimate tensile strength and welding efficiency decrease. The Vickers hardness also decreases at HAZ with increasing heat input and for each individual specimen; hardness was lowest in heat affected zone (HAZ), intermediate in base metal and maximum in welded zone. The fracture for all specimens was in the heat affected zone while testing in the universal testing machine.

  5. Experimental Study on Rebar Corrosion Using the Galvanic Sensor Combined with the Electronic Resistance Technique

    PubMed Central

    Xu, Yunze; Li, Kaiqiang; Liu, Liang; Yang, Lujia; Wang, Xiaona; Huang, Yi

    2016-01-01

    In this paper, a new kind of carbon steel (CS) and stainless steel (SS) galvanic sensor system was developed for the study of rebar corrosion in different pore solution conditions. Through the special design of the CS and SS electronic coupons, the electronic resistance (ER) method and zero resistance ammeter (ZRA) technique were used simultaneously for the measurement of both the galvanic current and the corrosion depth. The corrosion processes in different solution conditions were also studied by linear polarization resistance (LPR) and the measurements of polarization curves. The test result shows that the galvanic current noise can provide detailed information of the corrosion processes. When localized corrosion occurs, the corrosion rate measured by the ER method is lower than the real corrosion rate. However, the value measured by the LPR method is higher than the real corrosion rate. The galvanic current and the corrosion current measured by the LPR method shows linear correlation in chloride-containing saturated Ca(OH)2 solution. The relationship between the corrosion current differences measured by the CS electronic coupons and the galvanic current between the CS and SS electronic coupons can also be used to evaluate the localized corrosion in reinforced concrete. PMID:27618054

  6. Experimental Study on Rebar Corrosion Using the Galvanic Sensor Combined with the Electronic Resistance Technique.

    PubMed

    Xu, Yunze; Li, Kaiqiang; Liu, Liang; Yang, Lujia; Wang, Xiaona; Huang, Yi

    2016-09-08

    In this paper, a new kind of carbon steel (CS) and stainless steel (SS) galvanic sensor system was developed for the study of rebar corrosion in different pore solution conditions. Through the special design of the CS and SS electronic coupons, the electronic resistance (ER) method and zero resistance ammeter (ZRA) technique were used simultaneously for the measurement of both the galvanic current and the corrosion depth. The corrosion processes in different solution conditions were also studied by linear polarization resistance (LPR) and the measurements of polarization curves. The test result shows that the galvanic current noise can provide detailed information of the corrosion processes. When localized corrosion occurs, the corrosion rate measured by the ER method is lower than the real corrosion rate. However, the value measured by the LPR method is higher than the real corrosion rate. The galvanic current and the corrosion current measured by the LPR method shows linear correlation in chloride-containing saturated Ca(OH)₂ solution. The relationship between the corrosion current differences measured by the CS electronic coupons and the galvanic current between the CS and SS electronic coupons can also be used to evaluate the localized corrosion in reinforced concrete.

  7. Respiratory Symptoms and Pulmonary Function Tests among Galvanized Workers Exposed To Zinc Oxide.

    PubMed

    Aminian, Omid; Zeinodin, Hamidreza; Sadeghniiat-Haghighi, Khosro; Izadi, Nazanin

    2015-01-01

    Galvanization is the process of coating steel or cast iron pieces with a thin layer of zinc allowing protection against corrosion. One of the important hazards in this industry is exposure to zinc compounds specially zinc oxide fumes and dusts. In this study, we evaluated chronic effects of zinc oxide on the respiratory tract of galvanizers. Overall, 188 workers were selected from Arak galvanization plant in 2012, 71 galvanizers as exposed group and 117 workers from other departments of plants as control group. Information was collected using American Thoracic Society (ATS) standard questionnaire, physical examination and demographic data sheet. Pulmonary function tests were measured for all subjects. Exposure assessment was done with NIOSH 7030 method. The Personal Breathing Zone (PBZ) air sampling results for zinc ranged from 6.61 to 8.25 mg/m³ above the permissible levels (Time weighted average; TWA:2 mg/m³). The prevalence of the respiratory symptoms such as dyspnea, throat and nose irritation in the exposed group was significantly (P<0.01) more than the control group. Decreasing in average percent in all spirometric parameters were seen in the galvanizers who exposed to zinc oxide fumes and dusts. The prevalence of obstructive respiratory disease was significantly (P=0.034) higher in the exposed group. High workplace zinc levels are associated with an increase in respiratory morbidity in galvanizers. Therefore administrators should evaluate these workers with periodic medical examinations and implement respiratory protection program in the working areas.

  8. Polyfibroblast: A Self-Healing and Galvanic Protection Additive

    DTIC Science & Technology

    2012-09-12

    self-healing and galvanic protection capacity to the primer (Figure 1). Polyfibroblast consists of paint-filled microcapsules and zinc powder. It has...significant added cost. Microcapsule Figure 1. Polyfibroblast contains fresh paint encapsulated in polymer shells plus Zn powder. When scratched, resin...from the broken microcapsules fills the crack to form a polymer scar. Zn powder supplies galvanic protection in the event of incomplete healing

  9. Effectiveness of low-cost electromagnetic shielding using nail-together galvanized steel: Test results. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, P.F.; Kennedy, E.L.; McCormack, R.G.

    1992-09-01

    The sensitivity of modern electronic equipment has increased the need for costly electromagnetic shielding. To reduce this cost, the U.S. Army Construction Engineering Research Laboratories (USACERL) has developed a new concept for shielding design that uses 28-gauge galvanized steel and standard galvanized nails. In this study, an electromagnetically shielded structure using the concept was designed, built, and evaluated for shielding effectiveness. The galvanized material was mounted to the standard USACERL test aperture and nailed to the wooden module frame, and the shielding effectiveness of the new construction design was measured using radio frequency antennas and receivers. Evaluations showed that themore » nail-together structure proved adequate for many shielding applications. However, while the galvanized steel met most shielding application requirements, this process added multiple seams to the structure, which decreased shielding in many instances by as much as 40 dB. Electromagnetic shielding, Electromagnetic pulse C3I Facilities.« less

  10. Characterization and Prediction of Cracks in Coated Materials: Direction and Length of Crack Propagation in Bimaterials

    PubMed Central

    Azari, Z.; Pappalettere, C.

    2015-01-01

    The behaviour of materials is governed by the surrounding environment. The contact area between the material and the surrounding environment is the likely spot where different forms of degradation, particularly rust, may be generated. A rust prevention treatment, like bluing, inhibitors, humidity control, coatings, and galvanization, will be necessary. The galvanization process aims to protect the surface of the material by depositing a layer of metallic zinc by either hot-dip galvanizing or electroplating. In the hot-dip galvanizing process, a metallic bond between steel and metallic zinc is obtained by immersing the steel in a zinc bath at a temperature of around 460°C. Although the hot-dip galvanizing procedure is recognized to be one of the most effective techniques to combat corrosion, cracks can arise in the intermetallic δ layer. These cracks can affect the life of the coated material and decrease the lifetime service of the entire structure. In the present paper the mechanical response of hot-dip galvanized steel submitted to mechanical loading condition is investigated. Experimental tests were performed and corroborative numerical and analytical methods were then applied in order to describe both the mechanical behaviour and the processes of crack/cracks propagation in a bimaterial as zinc-coated material. PMID:27347531

  11. Effect of Immersion Time and Cooling Mode on the Electrochemical Behavior of Hot-Dip Galvanized Steel in Sulfuric Acid Medium

    NASA Astrophysics Data System (ADS)

    Lekbir, Choukri; Dahoun, Nessrine; Guetitech, Asma; Hacid, Abdenour; Ziouche, Aicha; Ouaad, Kamel; Djadoun, Amar

    2017-04-01

    In this work, we investigated the influence of galvanizing immersion time and cooling modes environments on the electrochemical corrosion behavior of hot-dip galvanized steel, in 1 M sulfuric acid electrolyte at room temperature using potentiodynamic polarization technique. In addition, the evolution of thickness, structure and microstructure of zinc coatings for different immersion times and two cooling modes (air and water) is characterized, respectively, by using of Elcometer scan probe, x-ray diffraction and metallography analysis. The analysis of the behavior of steel and galvanized steel, vis-a-vis corrosion, by means of corrosion characteristic parameters as anodic (β a) and cathodic (β c) Tafel slopes, corrosion potential (E corr), corrosion current density (i corr), corrosion rate (CR) and polarization resistance (R p), reveals that the galvanized steel has anticorrosion properties much better than that of steel. More the immersion time increases, more the zinc coatings thickness increases, and more these properties become better. The comparison between the two cooling modes shows that the coatings of zinc produced by hot-dip galvanization and air-cooled provides a much better protection to steel against corrosion than those cooled by quenching in water which exhibit a brittle corrosive behavior due to the presence of cracks.

  12. Characterization and Prediction of Cracks in Coated Materials: Direction and Length of Crack Propagation in Bimaterials.

    PubMed

    Pruncu, C I; Azari, Z; Casavola, C; Pappalettere, C

    2015-01-01

    The behaviour of materials is governed by the surrounding environment. The contact area between the material and the surrounding environment is the likely spot where different forms of degradation, particularly rust, may be generated. A rust prevention treatment, like bluing, inhibitors, humidity control, coatings, and galvanization, will be necessary. The galvanization process aims to protect the surface of the material by depositing a layer of metallic zinc by either hot-dip galvanizing or electroplating. In the hot-dip galvanizing process, a metallic bond between steel and metallic zinc is obtained by immersing the steel in a zinc bath at a temperature of around 460°C. Although the hot-dip galvanizing procedure is recognized to be one of the most effective techniques to combat corrosion, cracks can arise in the intermetallic δ layer. These cracks can affect the life of the coated material and decrease the lifetime service of the entire structure. In the present paper the mechanical response of hot-dip galvanized steel submitted to mechanical loading condition is investigated. Experimental tests were performed and corroborative numerical and analytical methods were then applied in order to describe both the mechanical behaviour and the processes of crack/cracks propagation in a bimaterial as zinc-coated material.

  13. Influence of stripping and cooling atmospheres on surface properties and corrosion of zinc galvanizing coatings

    NASA Astrophysics Data System (ADS)

    Yasakau, K. A.; Giner, I.; Vree, C.; Ozcan, O.; Grothe, R.; Oliveira, A.; Grundmeier, G.; Ferreira, M. G. S.; Zheludkevich, M. L.

    2016-12-01

    In this work the influence of stripping/cooling atmospheres used after withdrawal of steel sheet from Zn or Zn-alloy melt on surface properties of Zn (Z) and Zn-Al-Mg (ZM) hot-dip galvanizing coatings has been studied. The aim was to understand how the atmosphere (composed by nitrogen (N2) or air) affects adhesion strength to model adhesive and corrosive behaviour of the galvanized substrates. It was shown that the surface chemical composition and Volta potential of the galvanizing coatings prepared under the air or nitrogen atmosphere are strongly influenced by the atmosphere. The surface chemistry Z and ZM surfaces prepared under N2 contained a higher content of metal atoms and a richer hydroxide density than the specimens prepared under air atmosphere as assessed by X-ray photoelectron spectroscopy (XPS). The induced differences on the microstructure of the galvanized coatings played a key role on the local corrosion induced defects as observed by means of in situ Atomic force microscopy (AFM). Peel force tests performed on the substrates coated by model adhesive films indicate a higher adhesive strength to the surfaces prepared under nitrogen atmosphere. The obtained results have been discussed in terms of the microstructure and surface chemical composition of the galvanizing coatings.

  14. Prognostic investigation of galvanic corrosion precursors in aircraft structures and their detection strategy

    NASA Astrophysics Data System (ADS)

    James, Robin; Kim, Tae Hee; Narayanan, Ram M.

    2017-04-01

    Aluminum alloys have been the dominant materials for aerospace construction in the past fifty years due to their light weight, forming and alloying, and relative low cost in comparison to titanium and composites. However, in recent years, carbon fiber reinforced polymers (CFRPs) and honeycomb materials have been used in aircrafts in the quest to attain lower weight, high temperature resistance, and better fuel efficiency. When these two materials are coupled together, the structural strength of the aircraft is unparalleled, but this comes at a price, namely galvanic corrosion. Previous experimental results have shown that when CFRP composite materials are joined with high strength aluminum alloys (AA7075-T6 or AA2024-T3), galvanic corrosion occurs at the material interfaces, and the aluminum is in greater danger of corroding, particularly since carbon and aluminum are on the opposite ends of the galvanic series. In this paper, we explore the occurrence of the recognizable precursors of galvanic corrosion when CFRP plate is coupled to an aluminum alloy using SS-304 bolts and exposed to environmental degradation, which creates significant concerns for aircraft structural reliability. The galvanic corrosion software package, BEASY, is used to simulate the growth of corrosion in the designed specimen after which a microwave non-destructive testing (NDT) technique is explored to detect corrosion defects that appear at the interface of this galvanic couple. This paper also explores a loaded waveguide technique to determine the dielectric constant of the final corrosion product at the Q-band millimeter-wave frequency range (33-50 GHz), as this can be an invaluable asset in developing early detection strategies.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarpellini, D.; Paoloni, S.; Medaglia, P.G.

    Highlights: • ZnO nanorods were grown on Au and Ag films in aqueous solution by galvanic effect. • The method is prone to metal contamination which can influence the ZnO properties. • Iron doping improves the lattice matching between ZnO and the substrate. • Energy levels of point defects are lowered and the light emission is red-shifted. • Galvanic-induced nucleation starts and proceeds continuously during the growth. - Abstract: Dense arrays of vertically aligned ZnO nanorods have been grown onto either silver or gold seedless substrates trough a simple hydrothermal method by exploiting the galvanic effect between the substrate andmore » metallic parts. The nanorods exhibit larger bases and more defined hexagonal shapes, in comparison with standard non-galvanic wet-chemistry synthesis. X-ray diffraction (XRD) shows that the iron contamination, associated with the galvanic contact, significantly improves the in-plane compatibility of ZnO with the Au and Ag cubic lattice. Photoluminescence (PL) measurements indicate that the contamination does not affect the number density of localized defects, but lowers their energy levels uniformly; differently, the band-edge emission is not altered appreciably. Finally, we have found that the ZnO hetero-nucleation by galvanic effect initiates at different times in different sites of the substrate area. Our results can be useful for the fabrication of high performance piezonanodevices comprising high-density metal-to-ZnO nanoscaled junctions without intermediate polycrystalline layers.« less

  16. Galvanic interactions of HE15 /MDN138 & HE15 /MDN250 alloys in natural seawater

    NASA Astrophysics Data System (ADS)

    Parthiban, G. T.; Subramanian, G.; Muthuraman, K.; Ramakrishna Rao, P.

    2017-06-01

    HE15 is a heat treatable high strength alloy with excellent machinability find wide applications in aerospace and defence industries. In view of their excellent mechanical properties, workability, machinability, heat treatment characteristics and good resistance to general and stress corrosion cracking, MDN138 & MDN250 have been widely used in petrochemical, nuclear and aerospace industries. The galvanic corrosion behaviour of the metal combinations HE15 /MDN138 and HE15 /MDN250, with 1:1 area ratio, has been studied in natural seawater using the open well facility of CECRI's Offshore Platform at Tuticorin for a year. The open circuit potentials of MDN138, MDN250 and HE15 of the individual metal, the galvanic potential and galvanic current of the couples HE15 /MDN138 and HE15 /MDN250 were periodically monitored throughout the study period. The calcareous deposits on MDN138 and MDN250 in galvanic contact with HE15 were analyzed using XRD. The electrochemical behaviors of MDN138, MDN250 and HE15 in seawater have been studied using an electrochemical work station. The surface characteristics of MDN138 and MDN250 in galvanic contact with HE15 have been examined with scanning electron microscope. The results of the study reveal that HE15 offered required amount of protection to MDN138 & MDN250.

  17. Microstructure and Mechanical Properties of Plasma Arc Brazed AISI 304L Stainless Steel and Galvanized Steel Plates

    NASA Astrophysics Data System (ADS)

    Jin, Yajuan; Li, Ruifeng; Yu, Zhishui; Wang, Yu

    2016-04-01

    Plasma arc brazing is used to join the AISI 304L stainless steel and galvanized steel plate butt joints with the CuSi3Mn1 filler wire. The effect of parameters on weld surface appearance, interfacial microstructure, and composition distribution in the joint was studied. The microhardness and mechanical tests were conducted to determine the mechanical properties of the welded specimens. The results indicated that good appearance, bead shape, and sufficient metallurgical bonding could be obtained when the brazing process was performed with a wire feeding speed of 0.8 m/min, plasma gas flow rate of 3.0 l/min, welding current of 100 A, and welding speed of 27 cm/min. During plasma arc brazing process, the top corner of the stainless steel and galvanized steel plate were heated and melted, and the melted quantity of stainless steel was much more than that of the galvanized steel due to the thermal conductivity coefficient difference between the dissimilar materials. The microhardness test results shows that the microhardness value gradually increased from the side of the galvanized steel to the stainless steel in the joint, and it is good for improving the mechanical properties of joint. The tensile strength was a little higher than that of the brazing filler, and the fracture position of weld joint was at the base metal of galvanized steel plate.

  18. Novel Galvanic Nanostructures of Ag and Pd for Efficient Laser Desorption/Ionization of Low Molecular Weight Compounds

    NASA Astrophysics Data System (ADS)

    Silina, Yuliya E.; Meier, Florian; Nebolsin, Valeriy A.; Koch, Marcus; Volmer, Dietrich A.

    2014-05-01

    A simple approach for synthesis of palladium and silver nanostructures with readily adjustable morphologies was developed using galvanic electrochemical deposition, for application to surface-assisted laser desorption/ionization (SALDI) of small biological molecules. A range of fatty acids, triglycerides, carbohydrates, and antibiotics were investigated to assess the performance of the new materials. Intense analyte cations were generated from the galvanic surfaces upon UV laser irradiation such as potassium adducts for a film thickness <100 nm (originating from impurities of the electrolyte solution) and Pd and Ag cluster ions for films with a thickness >120 nm. Possible laser desorption/ionization mechanisms of these galvanic structures are discussed. The films exhibited self-organizing abilities and adjustable morphologies by changing electrochemical parameters. They did not require any stabilizing agents and were inexpensive and very easy to produce. SALDI analysis showed that the materials were stable under ambient conditions and analytical results with excellent measurement reproducibility and detection sensitivity similar to MALDI were obtained. Finally, we applied the galvanic surfaces to fast screening of natural oils with minimum sample preparation.

  19. Galvanic corrosion of nitinol under deaerated and aerated conditions.

    PubMed

    Pound, Bruce G

    2016-10-01

    Various studies have examined the corrosion rate of nitinol generally under deaerated conditions. Likewise, galvanic corrosion studies have typically involved deaerated solutions. This work addressed the effect of galvanic coupling on the corrosion current of electropolished nitinol in phosphate buffered saline and 0.9% sodium chloride under dearated and aerated conditions for times up to 24 h. Tests were performed on nitinol alone and coupled with MP35N in both the mechanically polished and passivated conditions. Aeration and galvanic coupling were found to have relatively little effect, indicating that the corrosion current is controlled by the anodic reaction. The current can be attributed entirely to Ni(2+) dissolution, which appears to be governed by solid-state mass transport of Ni(2+) through the passive oxide film. Because corrosion of EP nitinol is controlled by the anodic reaction, contact between EP nitinol and MP35N or other biomedical Co-Cr alloys is unlikely to result in significant galvanic effects in vivo. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1322-1327, 2016. © 2015 Wiley Periodicals, Inc.

  20. Galvanic coupling between D6AC steel, 6061-T6 aluminum, Inconel 718 and graphite-epoxy composite material: Corrosion occurrence and prevention

    NASA Technical Reports Server (NTRS)

    Danford, M. D.; Higgins, R. H.

    1983-01-01

    The effects of galvanic coupling between D6AC steel, 6061-T6 aluminum, Inconel 718, and graphite-epoxy composite material (G/E) in 3.5% NaCl were studied. Measurements of corrosion potentials, galvanic currents and corrosion rates of the bare metals using weight-loss methods served to establish the need for corrosion protection in cases where D6AC steel and 6061-T6 aluminum are galvanically coupled to G/E in salt water while Inconel 718 was shown to be compatible with G/E. Six tests were made to study corrosion protective methods for eliminating galvanic corrosion in the cases of D6AC steel and 6061-T6 aluminum coupled to G/E. These results indicate that, when the G/E is completely coated with paint or a paint/polyurethane resin combination, satisfactory protection of the D6AC steel is achieved with either a coat of zinc-rich primer or a primer/topcoat combination. Likewise, satisfactory corrosion protection of the aluminum is achieved by coating it with an epoxy coating system.

  1. Research on the Microstructures and Mechanical Properties of Ti Micro-Alloyed Cold Rolled Hot-Dip Galvanizing DP980 Steel

    NASA Astrophysics Data System (ADS)

    Han, Yun; Kuang, Shuang; Qi, Xiumei; Xie, Chunqian; Liu, Guanghui

    Effects of galvanizing simulation parameters on microstructures and mechanical properties of Ti-microalloyed cold rolled hot-dip galvanizing DP980 steel were investigated in this study by optical microscopy (OM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and tensile test. Moreover, the precipitation behavior of Ti in the experimental steel was also studied. The results show that, as the heating temperature increases, the tensile strength of experimental galvanizing DP980 steel decreases while the yield ratio and elongation of the steel are enhanced. The microstructures of experimental steels exhibit typical dual phase steel character and the volume fractions of MA islands are almost 30%. In addition, lots of nano-sized TiC precipitates can be found in the ferrite grains.

  2. SERS activity studies of Ag/Au bimetallic films prepared by galvanic replacement

    NASA Astrophysics Data System (ADS)

    Wang, Chaonan; Fang, Jinghuai; Jin, Yonglong

    2012-10-01

    Ag films on Si substrates were fabricated by immersion plating, which served as sacrificial materials for preparation of Ag/Au bimetallic films by galvanic replacement method. SEM images displayed that the sacrificial Ag films presenting island morphology experienced interesting structural evolution process during galvanic replacement reaction, and nano-scaled holes were formed in the resultant bimetallic films. SERS measurements using crystal violet as an analyte showed that SERS intensities of bimetallic films were enhanced significantly compared with that of pure Ag films and related mechanisms were discussed. Immersion plating experiment carried out on Ag films on PEN substrates fabricated by photoinduced reduction method further confirmed that galvanic replacement is an easy method to fabricate Ag/Au bimetallic and a potential approach to improve the SERS performance of Ag films.

  3. Comparison of Galvanic Currents Generated Between Different Combinations of Orthodontic Brackets and Archwires Using Potentiostat: An In Vitro Study.

    PubMed

    Nayak, Rabindra S; Shafiuddin, Bareera; Pasha, Azam; Vinay, K; Narayan, Anjali; Shetty, Smitha V

    2015-07-01

    Technological advances in wire selection and bracket design have led to improved treatment efficiency and allowed longer time intervals between appliance adjustments. The wires remain in the mouth for a longer duration and are subjected to electrochemical reactions, mechanical forces of mastication and generalized wear. These cause different types of corrosion. This study was done to compare the galvanic currents generated between different combinations of brackets and archwires commonly used in orthodontic practices. The materials used for the study included different commercially available orthodontic archwires and brackets. The galvanic current generated by individual materials and different combinations of these materials was tested and compared. The orthodontic archwires used were 0.019″ × 0.025″ heat-activated nickel-titanium (3M Unitek), 0.019″ × 0.025″ beta-titanium (3M Unitek) and 0.019″ × 0.025″ stainless steel (3M Unitek). The orthodontic brackets used were 0.022″ MBT laser-cut (Victory Series, 3M Unitek) and metal-injection molded (Leone Company) maxillary central incisor brackets respectively. The ligature wire used for ligation was 0.009″ stainless steel ligature (HP Company). The galvanic current for individual archwires, brackets, and the different bracket-archwire-ligature combinations was measured by using a Potentiostat machine. The data were generated using the Linear Sweep Voltammetry and OriginPro 8.5 Graphing and Data Analysis Softwares. The study was conducted in two phases. Phase I comprised of five groups for open circuit potential (OCP) and galvanic current (I), whereas Phase II comprised of six groups for galvanic current alone. Mean, standard deviation and range were computed for the OCP and galvanic current (I) values obtained. Results were subjected to statistical analysis through ANOVA. In Phase I, higher mean OCP was recorded in stainless steel archwire, followed by beta-titanium archwire, heat-activated nickel titanium archwire, laser-cut bracket and metal-injection molded bracket, respectively. The difference in mean OCP recorded among the groups was found to be statistically significant in aerated phosphate buffered saline solution. The galvanic current (I) for metal-injection molded stainless steel brackets showed significantly higher values than all the other materials. Phase II results suggested that, in the couples formed by the archwire-bracket-ligature combinations, the bracket had more important contribution to the total galvanic current generated, since there were significant differences between galvanic current among the 2 brackets tested but not among the 3 wires. The galvanic current of the metal-injection molded bracket was significantly higher than that of laser-cut bracket. Highest mean current (I) was recorded in metal-injection molded bracket when used with heat-activated nickel titanium archwire while lowest mean current (I) was recorded in laser-cut bracket when used with beta-titanium archwire. The present study concluded that the bracket emerged to be the most important factor in determining the galvanic current (I). Higher mean current (I) was recorded in metal-injection molded bracket compared to laser-cut bracket. Among the three archwires, higher mean current (I) was recorded in heat-activated nickel-titanium, followed by stainless-steel and beta-titanium respectively. When coupled together; highest mean current (I) was recorded in metal-injection molded bracket when used with heat-activated nickel titanium archwire while lowest mean current (I) was recorded in laser-cut bracket when used with beta-titanium archwire.

  4. Bibliography on Cold Regions Science and Technology. Volume 47, Part 2, 1993

    DTIC Science & Technology

    1993-01-01

    characteristics of aluminum galvanic anodes 47-2608 Ai~oritlsm for remote sensing of vertical salt density distribu- in an arctic seawater (1993, p.261-27 7 . eng...trochemical characteristics of aluminum galvanic anodes 6 u 721 detector ( 19Ŗ. 9p.. eng1 47W95 in ’an arctic seawater (1993. p. 26 1 - 277 . engl...Electrochemical characteristics of aluminum galvanic See alo: Economic analysis cng 474999 anodes in an arctic seawater. Tamada. A.. et al. ( 1993

  5. South approach, looking north. The galvanized piping extends from the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South approach, looking north. The galvanized piping extends from the abutments across the length of the arch. - Weaverland Bridge, Quarry Road spanning Conestoga Creek, Terre Hill, Lancaster County, PA

  6. 1. Elkmont vehicle bridge at Elkmont Campground, galvanized corrugated arch. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Elkmont vehicle bridge at Elkmont Campground, galvanized corrugated arch. - Great Smoky Mountains National Park Roads & Bridges, Elkmont Vehicle Bridge, Spanning Little River at Elkmont Campground, Gatlinburg, Sevier County, TN

  7. A Novel Field-Circuit FEM Modeling and Channel Gain Estimation for Galvanic Coupling Real IBC Measurements.

    PubMed

    Gao, Yue-Ming; Wu, Zhu-Mei; Pun, Sio-Hang; Mak, Peng-Un; Vai, Mang-I; Du, Min

    2016-04-02

    Existing research on human channel modeling of galvanic coupling intra-body communication (IBC) is primarily focused on the human body itself. Although galvanic coupling IBC is less disturbed by external influences during signal transmission, there are inevitable factors in real measurement scenarios such as the parasitic impedance of electrodes, impedance matching of the transceiver, etc. which might lead to deviations between the human model and the in vivo measurements. This paper proposes a field-circuit finite element method (FEM) model of galvanic coupling IBC in a real measurement environment to estimate the human channel gain. First an anisotropic concentric cylinder model of the electric field intra-body communication for human limbs was developed based on the galvanic method. Then the electric field model was combined with several impedance elements, which were equivalent in terms of parasitic impedance of the electrodes, input and output impedance of the transceiver, establishing a field-circuit FEM model. The results indicated that a circuit module equivalent to external factors can be added to the field-circuit model, which makes this model more complete, and the estimations based on the proposed field-circuit are in better agreement with the corresponding measurement results.

  8. Influence of the Manufacturing Process on Defects in the Galvanized Coating of High Carbon Steel Wires.

    PubMed

    Gelfi, Marcello; Solazzi, Luigi; Poli, Sandro

    2017-03-06

    This study is a detailed failure analysis of galvanized high carbon steel wires, which developed coating cracks during the torsion test performed as a quality control at the end of the manufacturing process. Careful visual inspections showed that the cracks are already present in the coating before the torsion test. In order to explain the origin of these cracks, systematic metallographic investigations were performed by means of optical and scanning electron microscope on both the wires and the rods that have been cold drawn to produce the wire. The chemical composition of the galvanized coatings was evaluated by means of energy dispersive spectroscopy. Micro bidimensional X-ray diffraction experiments were also performed to measure the residual stresses in the galvanized coating. The results showed that the failure is related to two main factors: the relatively high content of silicon in the steel and the unsuitable cooling rate of the rods at the exit from the galvanizing bath. The mechanism proposed to explain the origin of the defects was supported by Finite Elements Methods simulations and verified with in-plant tests. The proper countermeasures were then applied and the problem successfully solved.

  9. Influence of the Manufacturing Process on Defects in the Galvanized Coating of High Carbon Steel Wires

    PubMed Central

    Gelfi, Marcello; Solazzi, Luigi; Poli, Sandro

    2017-01-01

    This study is a detailed failure analysis of galvanized high carbon steel wires, which developed coating cracks during the torsion test performed as a quality control at the end of the manufacturing process. Careful visual inspections showed that the cracks are already present in the coating before the torsion test. In order to explain the origin of these cracks, systematic metallographic investigations were performed by means of optical and scanning electron microscope on both the wires and the rods that have been cold drawn to produce the wire. The chemical composition of the galvanized coatings was evaluated by means of energy dispersive spectroscopy. Micro bidimensional X-ray diffraction experiments were also performed to measure the residual stresses in the galvanized coating. The results showed that the failure is related to two main factors: the relatively high content of silicon in the steel and the unsuitable cooling rate of the rods at the exit from the galvanizing bath. The mechanism proposed to explain the origin of the defects was supported by Finite Elements Methods simulations and verified with in-plant tests. The proper countermeasures were then applied and the problem successfully solved. PMID:28772623

  10. Techno-Economic Assessment of Recycling BOF Offgas Cleaning System Solid Wastes by Using Zinc-Free Scrap

    NASA Astrophysics Data System (ADS)

    Ma, Naiyang

    High zinc concentration in basic oxygen furnace (BOF) steelmaking offgas (OG) cleaning system solid wastes is one of the main barriers for recycling of the solid wastes in sintering — blast furnace ironmaking process. One of the possible solutions is to utilize zinc-free scrap in BOF steelmaking so that the BOF OG solid wastes will not be contaminated with zinc and can be recycled through sintering — blast furnace ironmaking. This paper describes a model for helping to decide whether to use zinc-free scrap in a BOF process. A model computing marginal price increment of zinc-free scrap is developed. The marginal price increment is proportional to value change of the BOF OG solid wastes after and before using zinc-free scrap, to ratio of BOF solid waste rate to purchased galvanized scrap rate, and to price of galvanized scrap. Due to the variations of consumption rate of purchased galvanized scrap and home galvanized scrap, iron ore price, landfill cost, and price of purchased galvanized scrap, using zinc-free scrap in a BOF process might be economically feasible for some ironmaking and steelmaking plants or in some particular market circumstances.

  11. Galvanic displacement reaction and rapid thermal annealing in size/shape controlling silver nanoparticles on silicon substrate

    NASA Astrophysics Data System (ADS)

    Ghosh, Tapas; Satpati, Biswarup

    2017-05-01

    The effect of the thermal annealing on silver nanoparticles deposited on silicon surface has been studied. The silver nanoparticles have been deposited by the galvanic displacement reaction. Rapid thermal annealing (RTA) has been performed on the Si substrate, containing the silver nanoparticles. The scanning transmission electron microscopy (STEM), energy dispersive X-ray (EDX) spectroscopy and scanning electron microscopy (SEM) study show that the galvanic displacement reaction and subsequent rapid thermal annealing could lead to well separated and spherical shaped larger silver nanoparticles on silicon substrate.

  12. Electrochemical fluorination for processing of used nuclear fuel

    DOEpatents

    Garcia-Diaz, Brenda L.; Martinez-Rodriguez, Michael J.; Gray, Joshua R.; Olson, Luke C.

    2016-07-05

    A galvanic cell and methods of using the galvanic cell is described for the recovery of uranium from used nuclear fuel according to an electrofluorination process. The galvanic cell requires no input energy and can utilize relatively benign gaseous fluorinating agents. Uranium can be recovered from used nuclear fuel in the form of gaseous uranium compound such as uranium hexafluoride, which can then be converted to metallic uranium or UO.sub.2 and processed according to known methodology to form a useful product, e.g., fuel pellets for use in a commercial energy production system.

  13. Effect of hot-dip galvanizing processes on the microstructure and mechanical properties of 600-MPa hot-dip galvanized dual-phase steel

    NASA Astrophysics Data System (ADS)

    Kuang, Chun-fu; Zheng, Zhi-wang; Wang, Min-li; Xu, Quan; Zhang, Shen-gen

    2017-12-01

    A C-Mn dual-phase steel was soaked at 800°C for 90 s and then either rapidly cooled to 450°C and held for 30 s (process A) or rapidly cooled to 350°C and then reheated to 450°C (process B) to simulate the hot-dip galvanizing process. The influence of the hot-dip galvanizing process on the microstructure and mechanical properties of 600-MPa hot-dip galvanized dual-phase steel (DP600) was investigated using optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tensile tests. The results showed that, in the case of process A, the microstructure of DP600 was composed of ferrite, martensite, and a small amount of bainite. The granular bainite was formed in the hot-dip galvanizing stage, and martensite islands were formed in the final cooling stage after hot-dip galvanizing. By contrast, in the case of process B, the microstructure of the DP600 was composed of ferrite, martensite, bainite, and cementite. In addition, compared with the yield strength (YS) of the DP600 annealed by process A, that for the DP600 annealed by process B increased by approximately 50 MPa because of the tempering of the martensite formed during rapid cooling. The work-hardening coefficient ( n value) of the DP600 steel annealed by process B clearly decreased because the increase of the YS affected the computation result for the n value. However, the ultimate tensile strength (UTS) and elongation ( A 80) of the DP600 annealed by process B exhibited less variation compared with those of the DP600 annealed by process A. Therefore, DP600 with excellent comprehensive mechanical properties (YS = 362 MPa, UTS = 638 MPa, A 80 = 24.3%, n = 0.17) was obtained via process A.

  14. 46 CFR 160.035-3 - Construction of steel oar-propelled lifeboats.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... apparatus shall have a minimum factor of safety of six. (2) For construction and capacity of disengaging... shall be galvanized by the hot dipped process. All fabricated pieces or sections are to be galvanized...

  15. 40 CFR Table 7 to Subpart Hhhhhhh... - Calibration and Accuracy Requirements for Continuous Parameter Monitoring Systems

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CPMS for physical and operational integrity and all electrical connections for oxidation and galvanic... for integrity, oxidation and galvanic corrosion if CPMS is not equipped with a redundant pressure...

  16. 40 CFR Table 7 to Subpart Hhhhhhh... - Calibration and Accuracy Requirements for Continuous Parameter Monitoring Systems

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CPMS for physical and operational integrity and all electrical connections for oxidation and galvanic... for integrity, oxidation and galvanic corrosion if CPMS is not equipped with a redundant pressure...

  17. Thunderbolt in biogeochemistry: galvanic effects of lightning as another source for metal remobilization.

    PubMed

    Schaller, Jörg; Weiske, Arndt; Berger, Frank

    2013-11-04

    Iron and manganese are relevant constituents of the earth's crust and both show increasing mobility when reduced by free electrons. This reduction is known to be controlled by microbial dissimilation processes. Alternative sources of free electrons in nature are cloud-to-ground lightning events with thermal and galvanic effects. Where thermal effects of lightning events are well described, less is known about the impact of galvanic lightning effects on metal mobilization. Here we show that a significant mobilization of manganese occurs due to galvanic effects of both positive and negative lightning, where iron seems to be unaffected with manganese being abundant in oxic forms in soils/sediments. A mean of 0.025 mmol manganese (negative lightning) or 0.08 mmol manganese (positive lightning) mobilization may occur. We suggest that lightning possibly influences biogeochemical cycles of redox sensitive elements in continental parts of the tropics/subtropics on a regional/local scale.

  18. Thunderbolt in biogeochemistry: galvanic effects of lightning as another source for metal remobilization

    PubMed Central

    Schaller, Jörg; Weiske, Arndt; Berger, Frank

    2013-01-01

    Iron and manganese are relevant constituents of the earth's crust and both show increasing mobility when reduced by free electrons. This reduction is known to be controlled by microbial dissimilation processes. Alternative sources of free electrons in nature are cloud-to-ground lightning events with thermal and galvanic effects. Where thermal effects of lightning events are well described, less is known about the impact of galvanic lightning effects on metal mobilization. Here we show that a significant mobilization of manganese occurs due to galvanic effects of both positive and negative lightning, where iron seems to be unaffected with manganese being abundant in oxic forms in soils/sediments. A mean of 0.025 mmol manganese (negative lightning) or 0.08 mmol manganese (positive lightning) mobilization may occur. We suggest that lightning possibly influences biogeochemical cycles of redox sensitive elements in continental parts of the tropics/subtropics on a regional/local scale. PMID:24184989

  19. Performance of Inductors Attached to a Galvanizing Bath

    NASA Astrophysics Data System (ADS)

    Zhou, Xinping; Yuan, Shuo; Liu, Chi; Yang, Peng; Qian, Chaoqun; Song, Bao

    2013-12-01

    By taking a galvanizing bath with inductors from an Iron and Steel Co., Ltd as an example, the distributions of Lorentz force and generated heat in the inductor are simulated. As a result, the zinc flow and the temperature distribution driven by the Lorentz force and the generated heat in the inductor of a galvanizing bath are simulated numerically, and their characteristics are analyzed. The relationship of the surface-weighted average velocity at the outlet and the temperature difference between the inlet and the outlet and the effective power for the inductor is studied. Results show that with an increase in effective power for the inductor, the surface-weighted average velocity at the outlet and the temperature difference between the inlet and the outlet increase gradually. We envisage this work to lay a foundation for the study of the performance of the galvanizing bath in future.

  20. Simple Heat Treatment for Production of Hot-Dip Galvanized Dual Phase Steel Using Si-Al Steels

    NASA Astrophysics Data System (ADS)

    Equihua-Guillén, F.; García-Lara, A. M.; Muñíz-Valdes, C. R.; Ortíz-Cuellar, J. C.; Camporredondo-Saucedo, J. E.

    2014-01-01

    This work presents relevant metallurgical considerations to produce galvanized dual phase steels from low cost aluminum-silicon steels which are produced by continuous strip processing. Two steels with different contents of Si and Al were austenized in the two-phase field ferrite + austenite (α + γ) in a fast manner to obtain dual phase steels, suitable for hot-dip galvanizing process, under typical parameters of continuous annealing processing line. Tensile dual phase properties were obtained from specimens cooled from temperature below Ar3, held during 3 min, intermediate cooling at temperature above Ar1 and quenching in Zn bath at 465 °C. The results have shown typical microstructure and tensile properties of galvanized dual phase steels. Finally, the synergistic effect of aluminum, silicon, and residual chromium on martensite start temperature ( M s), critical cooling rate ( C R), volume fraction of martensite, and tensile properties has been studied.

  1. Simulation to coating weight control for galvanizing

    NASA Astrophysics Data System (ADS)

    Wang, Junsheng; Yan, Zhang; Wu, Kunkui; Song, Lei

    2013-05-01

    Zinc coating weight control is one of the most critical issues for continuous galvanizing line. The process has the characteristic of variable-time large time delay, nonlinear, multivariable. It can result in seriously coating weight error and non-uniform coating. We develop a control system, which can automatically control the air knives pressure and its position to give a constant and uniform zinc coating, in accordance with customer-order specification through an auto-adaptive empirical model-based feed forward adaptive controller, and two model-free adaptive feedback controllers . The proposed models with controller were applied to continuous galvanizing line (CGL) at Angang Steel Works. By the production results, the precise and stability of the control model reduces over-coating weight and improves coating uniform. The product for this hot dip galvanizing line does not only satisfy the customers' quality requirement but also save the zinc consumption.

  2. Effects of temperature and operation parameters on the galvanic corrosion of Cu coupled to Au in organic solderability preservatives process

    NASA Astrophysics Data System (ADS)

    Oh, SeKwon; Kim, YoungJun; Jung, KiMin; Kim, JongSoo; Shon, MinYoung; Kwon, HyukSang

    2017-03-01

    In this work, we quantitatively examined the effects of temperature and operation parameters such as anode (Cu) to cathode (Au) area ratio, stirring speed, and Cu ion concentration on the galvanic corrosion kinetics of Cu coupled to Au (icouple ( Cu-Au)) on print circuit board in organic solderability preservative (OSP) soft etching solution. With the increase of temperature, galvanic corrosion rate (icouple ( Cu-Au) was increased; however, the degree of galvanic corrosion rate (icouple ( Cu-Au) - icorr (Cu)) was decreased owing to the lower activation energy of Cu coupled to Au, than that of Cu alone. With the increase of area ratio (cathode/anode), stirring speed of the system, icouple ( Cu-Au) was increased by the increase of cathodic reaction kinetics. And icouple ( Cu-Au) was decreased by the increase of the Cu-ion concentration in the OSP soft etching solution.

  3. A microfluidic galvanic cell on a single layer of paper

    NASA Astrophysics Data System (ADS)

    Purohit, Krutarth H.; Emrani, Saina; Rodriguez, Sandra; Liaw, Shi-Shen; Pham, Linda; Galvan, Vicente; Domalaon, Kryls; Gomez, Frank A.; Haan, John L.

    2016-06-01

    Paper microfluidics is used to produce single layer galvanic and hybrid cells to produce energy that could power paper-based analytical sensors. When two aqueous streams are absorbed onto paper to establish co-laminar flow, the streams stay in contact with each other with limited mixing. The interface at which mixing occurs acts as a charge-transfer region, eliminating the need for a salt bridge. We designed a Cusbnd Zn galvanic cell that powers an LED when two are placed in series. We also used more powerful redox couples (formate and silver, formate and permanganate) to produce higher power density (18 and 3.1 mW mg-1 Pd). These power densities are greater than previously reported paper microfluidic fuel cells using formate or methanol. The single layer design is much more simplified than previous reports of multi-layer galvanic cells on paper.

  4. Diamondlike carbon coating as a galvanic corrosion barrier between dental implant abutments and nickel-chromium superstructures.

    PubMed

    Ozkomur, Ahmet; Erbil, Mehmet; Akova, Tolga

    2013-01-01

    The objectives of this study were to evaluate the galvanic corrosion behavior between titanium and nickel-chromium (Ni-Cr) alloy, to investigate the effect of diamondlike carbon (DLC) coating over titanium on galvanic corrosion behavior between titanium and Ni-Cr alloy, and to evaluate the effect of DLC coating over titanium abutments on the fit and integrity of prosthetic assemblies by scanning electron microcopy (SEM). Five Ni-Cr and 10 titanium disks with a diameter of 5 mm and thickness of 3 mm were prepared. DLC coating was applied to five titanium disks. Electrode samples were prepared, and open circuit potential measurements, galvanic current measurements over platinum electrodes, and potentiodynamic polarization tests were carried out. For the SEM evaluation, 20 Ni-Cr alloy and 10 gold alloy superstructures were cast and prepared over 30 abutments. DLC coating was applied to 10 of the abutments. Following the fixation of prosthetic assemblies, the samples were embedded in acrylic resin and cross sectioned longitudinally. Internal fit evaluations were carried out through examination of the SEM images. Titanium showed more noble and electrochemically stable properties than Ni-Cr alloy. DLC coating over the cathode electrode served as an insulating film layer over the surface and prevented galvanic coupling. Results of the SEM evaluations indicated that the DLC-coated and titanium abutments showed no statistically significant difference in fit. Hence, no adverse effects on the adaptation of prosthetic components were found with the application of DLC coating over abutment surfaces. DLC coating might serve as a galvanic corrosion barrier between titanium abutments and Ni-Cr superstructures.

  5. Performance evaluation of corrosion inhibitors and galvanized steel in concrete exposure specimens.

    DOT National Transportation Integrated Search

    1999-01-01

    Corrosion inhibitor admixtures (CIA) and galvanized reinforcing steel (GS) are used for the corrosion protection for reinforced concrete bridges. The results of a 3.5-year evaluation of exposure specimens containing CIA from three different manufactu...

  6. Experimental galvanic anode for cathodic protection of Bridge A12112

    DOT National Transportation Integrated Search

    2010-11-01

    Cathodic Protection (CP) has been used by MoDOT for more than 30 years to stop : corrosion of reinforced concrete bridge decks. These systems require power from local electrical : connections. A galvanic system uses the difference in electrical poten...

  7. Alexander von Humboldt: galvanism, animal electricity, and self-experimentation part 1: formative years, naturphilosophie, and galvanism.

    PubMed

    Finger, Stanley; Piccolino, Marco; Stahnisch, Frank W

    2013-01-01

    During the 1790s, Alexander von Humboldt (1769-1859), who showed an early interest in many facets of natural philosophy and natural history, delved into the controversial subject of galvanism and animal electricity, hoping to shed light on the basic nature of the nerve force. He was motivated by his broad worldview, the experiments of Luigi Galvani, who favored animal electricity in more than a few specialized fishes, and the thinking of Alessandro Volta, who accepted specialized fish electricity but was not willing to generalize to other animals, thinking Galvani's frog experiments flawed by his use of metals. Differing from many German Naturphilosophen, who shunned "violent" experiments, the newest instruments, and detailed measurement, Humboldt conducted thousands of galvanic experiments on animals and animal parts, as well as many on his own body, some of which caused him great pain. He interpreted his results as supporting some but not all of the claims made by both Galvani and Volta. Notably, because of certain negative findings and phenomenological differences, he remained skeptical about the intrinsic animal force being qualitatively identical to true electricity. Hence, he referred to a "galvanic force," not animal electricity, in his letters and publications, a theoretical position he would abandon with Volta's help early in the new century.

  8. Measurement of adhesion properties between topcoat paint and metallized/galvanized steel with surface energy measurement equipment.

    DOT National Transportation Integrated Search

    2013-09-01

    The objectives of this research project are: (1) Compare the adhesion properties of NEPCOAT-approved topcoat paint over : metallized or galvanized steel. Use surface-energy measuring technique to characterize the wetting properties of the liqui...

  9. 76 FR 21914 - Galvanized Steel Wire From China and Mexico

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-479 and 731-TA-1183-1184 (Preliminary)] Galvanized Steel Wire From China and Mexico AGENCY: United States International Trade Commission. ACTION: Revised schedule for the subject antidumping and countervailing duty investigations. DATES: Effective Date...

  10. Mineralogy of Galvanic Corrosion By-products in Domestic Drinking Water Pipes

    EPA Science Inventory

    This study presents the results of a visual and mineralogical characterization of scales developed over long time periods at galvanically coupled lead-brass and lead-copper pipe joints from several different drinking water distribution systems. The long-term exposure aspect of t...

  11. 75 FR 47734 - Airworthiness Directives; Piaggio Aero Industries S.p.A. Model PIAGGIO P-180 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-09

    ... stabilizer (carbon fibre); investigation identified the cause in galvanic corrosion between dissimilar... elevator hinges fittings (metallic) and the horizontal stabilizer (carbon fibre); investigation identified... (carbon fibre); investigation identified the cause in galvanic corrosion between dissimilar materials. If...

  12. Teaching Electrochemistry in the General Chemistry Laboratory through Corrosion Exercises

    ERIC Educational Resources Information Center

    Sanders, Richard W.; Crettol, Gregory L.; Brown, Joseph D.; Plummer, Patrick T.; Schendorf, Tara M.; Oliphant, Alex; Swithenbank, Susan B.; Ferrante, Robert F.; Gray, Joshua P.

    2018-01-01

    Electrochemistry is primarily taught in first-year undergraduate courses through batteries; this lab focuses instead on corrosion to apply electrochemical concepts of electrolytes, standard reduction potentials, galvanic cells, and other chemistry concepts including Le Chatelier's Principle and Henry's Law. Students investigate galvanic corrosion…

  13. [Contribution of Aleksander Sapieha (1773-1812) into European galvanization therapy].

    PubMed

    Gorski, P; Goetz, W

    1996-01-01

    For the development of the therapy using electricity as agent two tracks can be identified. On the one side, the indication for applying this therapy was handled more careful, simultaneously the technical equipment was improved. The Polish noble man Alexander Sapieha (1773-1812), the leading natural scientist of the Granddukedom of Warsaw, cooperated with excellent European scientists in order to improve the galvanic battery technologically. Among these scientists were Alexander Volta (1745-1827), the inventor of the battery, and Johann Bartholomaeus Trommsdorff (1770-1837), who is considered as one of the founders of scientific pharmacy in Europe. A. Sapieha supported the publication of galvanic experiences, e.g. in the case of Alexander of Humboldt (1769-1859) by publishing his paper about electric fishes. Sapiehas connections with the scientific centers in Turin and Bologna, Erfurt, Warszaw and Paris accelerated the exchange of information about galvanism. Later the resulting mini-batteries were employed in diathermie, in defibrillators and pacemakers. Details about these connections are presented in the lecture resp. full paper.

  14. A finite-element simulation of galvanic coupling intra-body communication based on the whole human body.

    PubMed

    Song, Yong; Zhang, Kai; Hao, Qun; Hu, Lanxin; Wang, Jingwen; Shang, Fuzhou

    2012-10-09

    Simulation based on the finite-element (FE) method plays an important role in the investigation of intra-body communication (IBC). In this paper, a finite-element model of the whole body model used for the IBC simulation is proposed and verified, while the FE simulation of the galvanic coupling IBC with different signal transmission paths has been achieved. Firstly, a novel finite-element method for modeling the whole human body is proposed, and a FE model of the whole human body used for IBC simulation was developed. Secondly, the simulations of the galvanic coupling IBC with the different signal transmission paths were implemented. Finally, the feasibility of the proposed method was verified by using in vivo measurements within the frequency range of 10 kHz-5 MHz, whereby some important conclusions were deduced. Our results indicate that the proposed method will offer significant advantages in the investigation of the galvanic coupling intra-body communication.

  15. A Finite-Element Simulation of Galvanic Coupling Intra-Body Communication Based on the Whole Human Body

    PubMed Central

    Song, Yong; Zhang, Kai; Hao, Qun; Hu, Lanxin; Wang, Jingwen; Shang, Fuzhou

    2012-01-01

    Simulation based on the finite-element (FE) method plays an important role in the investigation of intra-body communication (IBC). In this paper, a finite-element model of the whole body model used for the IBC simulation is proposed and verified, while the FE simulation of the galvanic coupling IBC with different signal transmission paths has been achieved. Firstly, a novel finite-element method for modeling the whole human body is proposed, and a FE model of the whole human body used for IBC simulation was developed. Secondly, the simulations of the galvanic coupling IBC with the different signal transmission paths were implemented. Finally, the feasibility of the proposed method was verified by using in vivo measurements within the frequency range of 10 kHz–5 MHz, whereby some important conclusions were deduced. Our results indicate that the proposed method will offer significant advantages in the investigation of the galvanic coupling intra-body communication. PMID:23202010

  16. Inertization of heavy metals present in galvanic sludge by DC thermal plasma.

    PubMed

    Leal Vieira Cubas, Anelise; de Medeiros Machado, Marília; de Medeiros Machado, Marina; Gross, Frederico; Magnago, Rachel Faverzani; Moecke, Elisa Helena Siegel; Gonçalvez de Souza, Ivan

    2014-01-01

    Galvanic sludge results from the treatment of effluents generated by the industrial metal surface treatment of industrial material, which consists in the deposition of a metal on a surface or a metal surface attack, for example, electrodeposition of conductors (metals) and non conductive, phosphate, anodizing, oxidation and/or printed circuit. The treatment proposed here is exposure of the galvanic sludge to the high temperatures provided by thermal plasma, a process which aims to vitrify the galvanic sludge and render metals (iron, zinc, and chromium) inert. Two different plasma reactors were assembled: with a DC transferred arc plasma torch and with a DC nontransferred arc plasma torch. In this way it was possible to verify which reactor was more efficient in the inertization of the metals and also to investigate whether the addition of quartzite sand to the sludge influences the vitrification of the material. Quantification of water content and density of the galvanic raw sludge were performed, as well as analyzes of total organic carbon (TOC) and identify the elements that make up the raw sludge through spectroscopy X-ray fluorescence (XRF). The chemical composition and the form of the pyrolyzed and vitrified sludge were analyzed by scanning electron microscopy with energy-dispersive X-ray spectrometer (SEM-EDS) analysis, which it is a analysis that shows the chemical of the sample surface. The inertization of the sludge was verified in leaching tests, where the leachate was analyzed by flame atomic absorption spectroscopy (FAAS). The results of water content and density were 64.35% and 2.994 g.cm(-3), respectively. The TOC analysis determined 1.73% of C in the sample of galvanic raw sludge, and XRF analysis determined the most stable elements in the sample, and showed the highest peaks (higher stability) were Fe, Zn, and Cr. The efficiency of the sludge inertization was 100% for chromium, 99% for zinc, and 100% for iron. The results also showed that the most efficient reactor was that with the DC transferred arc plasma torch and quartzite sand positively influenced by the vitrification during the pyrolysis of the galvanic sludge.

  17. Use of ssq rotational invariant of magnetotelluric impedances for estimating informative properties for galvanic distortion

    NASA Astrophysics Data System (ADS)

    Rung-Arunwan, T.; Siripunvaraporn, W.; Utada, H.

    2017-06-01

    Several useful properties and parameters—a model of the regional mean one-dimensional (1D) conductivity profile, local and regional distortion indicators, and apparent gains—were defined in our recent paper using two rotational invariants (det: determinant and ssq: sum of squared elements) from a set of magnetotelluric (MT) data obtained by an array of observation sites. In this paper, we demonstrate their characteristics and benefits through synthetic examples using 1D and three-dimensional (3D) models. First, a model of the regional mean 1D conductivity profile is obtained using the average ssq impedance with different levels of galvanic distortion. In contrast to the Berdichevsky average using the average det impedance, the average ssq impedance is shown to yield a reliable estimate of the model of the regional mean 1D conductivity profile, even when severe galvanic distortion is contained in the data. Second, the local and regional distortion indicators were found to indicate the galvanic distortion as expressed by the splitting and shear parameters and to quantify their strengths in individual MT data and in the dataset as a whole. Third, the apparent gain was also shown to be a good approximation of the site gain, which is generally claimed to be undeterminable without external information. The model of the regional mean 1D profile could be used as an initial or a priori model in higher-dimensional inversions. The local and regional distortion indicators and apparent gains could be used to examine the existence and to guess the strength of the galvanic distortion. Although these conclusions were derived from synthetic tests using the Groom-Bailey distortion model, additional tests with different distortion models indicated that these conclusions are not strongly dependent on the choice of distortion model. These galvanic-distortion-related parameters would also assist in judging if a proper treatment is needed for the galvanic distortion when an MT dataset is given. Hence, this information derived from the dataset would be useful in MT data analysis and inversion.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, G.

    Research conducted in FY17 used photo-electrochemical methods to investigate the potential for radiationenhanced galvanic coupling in tritium-producing burnable absorber rod (TPBAR) materials. Specifically, a laboratory electrochemical cell was coupled with UV light in order to perform electrochemical opencircuit voltage and galvanic current measurements, techniques that have been used successfully in previous studies to replicate galvanic processes in reactor settings. UV irradiation can mimic reactor-like behavior because, similar to both directly and indirectly ionizing radiation, UV photons with energy greater than the band gap of the material will generate free charge carriers (electrons and holes) and can substantially alter the passivatingmore » effect of metal oxides.« less

  19. 21 CFR 882.1540 - Galvanic skin response measurement device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Galvanic skin response measurement device. 882.1540 Section 882.1540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1540...

  20. 46 CFR 163.002-11 - Materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... hoist must be a corrosion-resistant wire rope other than galvanized wire rope. (c) Corrosion-resistant materials. Materials of a pilot hoist that are not in watertight enclosures must be— (1) Corrosion-resistant or must be treated to be corrosion-resistant; and (2) Galvanically compatible with each other...

  1. 46 CFR 163.002-11 - Materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... hoist must be a corrosion-resistant wire rope other than galvanized wire rope. (c) Corrosion-resistant materials. Materials of a pilot hoist that are not in watertight enclosures must be— (1) Corrosion-resistant or must be treated to be corrosion-resistant; and (2) Galvanically compatible with each other...

  2. 46 CFR 163.002-11 - Materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... hoist must be a corrosion-resistant wire rope other than galvanized wire rope. (c) Corrosion-resistant materials. Materials of a pilot hoist that are not in watertight enclosures must be— (1) Corrosion-resistant or must be treated to be corrosion-resistant; and (2) Galvanically compatible with each other...

  3. Investigation of galvanic corrosion in laser-welded stainless steel sheets

    NASA Astrophysics Data System (ADS)

    Kwok, Chi-Tat; Fong, Siu Lung; Cheng, Fai Tsun; Man, Hau-Chung

    2004-10-01

    In the present study, bead-on-plate specimens of 1-mm sheets of austenitic and duplex stainless steels were fabricated by laser penetration welding with a 2.5-kW CW Nd:YAG laser. The galvanic corrosion behavior of laser-weldment (LW) against as-received (AR) specimens with an area rato of 1:1 in 3.5% NaCL solution was studied by means of a zero-resistance ammeter. The free corrosion potentials of as-received specimens were found to be considerably higher than those of laser weldments, indicating that the weldments are more active and always act as anodes. The ranking of galvanic current densities (IG) of the couples in ascending order is: AR S31603-LW S31603 < AR S31803-LW S31803 < AR S32760-LW S32760 < AR S30400-LW S30400. For the galvanic couple between AR S30400 and LW S30400, the IG is the highest (78.6 nA/cm2) because large amount of δ-ferrite in the weld zone acts as active sites. On the other hand, the IG of the galvanic couple between AR S31603 and LW S31603 is the lowest (-26 nA/cm2) because no δ-ferrite is present after laser welding. The recorded IG of all couples revealed constantly low values (in the rnage of nA/cm2) and sometimes stayed negative, which indicated polarity reversal.

  4. The Corrosion Protection of 2219-T87 Aluminum by Organic and Inorganic Zinc-Rich Primers

    NASA Technical Reports Server (NTRS)

    Danford, M. D.; Mendrek, M. J.; Walsh, D. W.

    1995-01-01

    The behavior of zinc-rich primer-coated 2219-T87 aluminum in a 3.5-percent Na-Cl was investigated using electrochemical techniques. The alternating current (ac) method of electrochemical impedance spectroscopy (EIS), in the frequency range of 0.001 to 40,000 Hz, and the direct current (dc) method of polarization resistance (PR) were used to evaluate the characteristics of an organic, epoxy zinc-rich primer and an inorganic, ethyl silicate zinc-rich primer. A dc electrochemical galvanic corrosion test was also used to determine the corrosion current of each zinc-rich primer anode coupled to a 2219-T87 aluminum cathode. Duration of the EIS/PR and galvanic testing was 21 days and 24 h, respectively. The galvanic test results demonstrated a very high galvanic current between the aluminum cathode and both zinc-rich primer anodes (37.9 pA/CM2 and 23.7 pA/CM2 for the organic and inorganic primers, respectively). The PR results demonstrated a much higher corrosion rate of the zinc in the inorganic primer than in the organic primer, due primarily to the higher porosity in the former. Based on this investigation, the inorganic zinc-rich primer appears to provide superior galvanic protection and is recommended for additional study for application in the solid rocket booster aft skirt.

  5. Galvanic Corrosion Behavior of Microwave Welded and Post-weld Heat-Treated Inconel-718 Joints

    NASA Astrophysics Data System (ADS)

    Bansal, Amit; Sharma, Apurbba Kumar; Kumar, Pradeep

    2017-05-01

    In the present study, corrosion behavior of microwave welded Inconel-718 at various conditions was investigated. Welding of Inconel-718 in 980 °C solution-treated condition was performed using microwave hybrid heating technique. The microwave welds were subjected to post-heat treatment for improving its microstructure and mechanical properties by solubilizing the Nb-enriched Laves phase. The microstructural features of the fabricated welds at various conditions were investigated through scanning electron microscopy. The electrochemical testing results revealed that Inconel-718 welds were galvanic corroded when they were anodically polarized in 3.5 wt.% NaCl solution at 28 °C. The difference in the corrosion potentials between the base metal (BM) and fusion zone (FZ) in an Inconel-718 weld was the main factor for galvanic corrosion. The highest corrosion was occurred in the as-welded/aged weldments, followed by 980 °C solution-treated and aged weldments, as-welded specimen, and 1080 °C solution-treated and aged (1080STA) weldments. The least galvanic corrosion was occurred in the 1080STA specimens due to almost uniform microstructure developed in the weldment after the treatment. Thus, it was possible to minimize the galvanic corrosion in the microwave welded Inconel-718 by 1080STA treatment which resulted in reducing the difference in corrosion potentials between the BM and the FZ.

  6. The corrosion protection of 2219-T87 aluminum by organic and inorganic zinc-rich primers

    NASA Technical Reports Server (NTRS)

    Danford, M. D.; Mendrek, M. J.; Walsh, D. W.

    1995-01-01

    The behavior of zinc-rich primer-coated 2219-T87 aluminum in a 3.5-percent Na-Cl was investigated using electrochemical techniques. The alternating current (ac) method of electro-chemical impedance spectroscopy (EIS), in the frequency range of 0.001 to 40,000 Hz, and the direct current (dc) method of polarization resistance (PR) were used to evaluate the characteristics of an organic, epoxy zinc-rich primer and an inorganic, ethyl silicate zinc-rich primer. A dc electrochemical galvanic corrosion test was also used to determine the corrosion current of each zinc-rich primer anode coupled to a 2219-T87 aluminum cathode. Duration of the EIS/PR and galvanic testing was 21 days and 24 h, respectively. the galvanic test results demonstrated a very high galvanic current between the aluminum cathode and both zinc-rich primer anodes (37.9 micro A/cm(exp 2) and 23.7 micro A/cm(exp 2) for the organic and inorganic primers, respectively). The PR results demonstrated a much higher corrosion rate of the zinc in the inorganic primer than in the organic primer, due primarily to the higher porosity in the former. Based on this investigation, the inorganic zinc-rich primer appears to provide superior galvanic protection and is recommended for additional study for application in the solid rocket booster aft skirt.

  7. Zinc toxicity among galvanization workers in the iron and steel industry.

    PubMed

    El Safty, Amal; El Mahgoub, Khalid; Helal, Sawsan; Abdel Maksoud, Neveen

    2008-10-01

    Galvanization is the process of coating steel or cast iron pieces with zinc, allowing complete protection against corrosion. The ultimate goal of this work was to assess the effect of occupational exposure to zinc in the galvanization process on different metals in the human body and to detect the association between zinc exposure and its effect on the respiratory system. This study was conducted in 111 subjects in one of the major companies in the iron and steel industry. There were 61 subjects (workers) who were involved in the galvanization process. Fifty adult men were chosen as a matched reference group from other departments of the company. All workers were interviewed using a special questionnaire on occupational history and chest diseases. Ventilatory functions and chest X rays were assessed in all examined workers. Also, complete blood counts were performed, and serum zinc, iron, copper, calcium, and magnesium levels were tested. This study illustrated the relation between zinc exposure in the galvanization process and high zinc levels among exposed workers, which was associated with a high prevalence rate of metal fume fever (MFF) and low blood copper and calcium levels. There was no statistically significant difference between the exposed and control groups with regards to the magnesium level. No long-term effect of metals exposure was detected on ventilatory functions or chest X rays among the exposed workers.

  8. JPRS Report, West Europe, Reference Aid, Glossary of Acronyms and Abbreviations of Denmark

    DTIC Science & Technology

    1989-05-25

    Security Companies, Inc. DFO Dansk Fryse 0konomi A/S Danish Frozen Economy, Inc. DGA Dansk Galvaniserings Anstalt A/S Danish Galvanizing Equipment...use YMCA] KGA K^benhavns Galvaniserings Anstalt A/S KGH Den Kongelige Gr^landske Handel Copenhagen Galvanizing Company,Inc. Royal Greenland

  9. 46 CFR 154.1125 - Pipes, fittings, and valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., fitting, and valve for the water spray system must be made of fire resistant and corrosion resistant materials, such as galvanized steel or galvanized iron pipe. (e) Each water spray system must have a means of drainage to prevent corrosion of the system and freezing of accumulated water in subfreezing...

  10. 46 CFR 154.1125 - Pipes, fittings, and valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., fitting, and valve for the water spray system must be made of fire resistant and corrosion resistant materials, such as galvanized steel or galvanized iron pipe. (e) Each water spray system must have a means of drainage to prevent corrosion of the system and freezing of accumulated water in subfreezing...

  11. Expectancy, False Galvanic Skin Response Feedback, and Systematic Desensitization in the Modification of Phobic Behavior

    ERIC Educational Resources Information Center

    Lick, John

    1975-01-01

    This study compared systematic desensitization and two pseudotherapy manipulations with and without false galvanic skin response feedback after every session suggesting improvement in the modification of intense snake and spider fear. The results indicated no consistent differences between the three treatment groups. (Author)

  12. EVALUATING THE POTENTIAL EFFICACY OF AN ANTIMICROBIAL-CONTAINING SEALANT ON DUCT LINER AND GALVANIZED STEEL

    EPA Science Inventory

    The article gives results of an evaluation of the potential efficacy of an antimicrobial-containing sealant on fibrous-glass duct liner (FGDL) and galvanized steel (GS) as used in heating, ventilating, and air-conditioning (HVAC) systems. HVAC systems become dirty to various degr...

  13. 77 FR 13191 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-06

    ... corrosion and inadequate silver-plating. This AD requires replacing ADG power feeder cables. We are issuing this AD to prevent galvanic corrosion on ADG power feeder cables, which could result in damage to the... damaged due to galvanic corrosion. It was subsequently determined that the silver- plating is inadequate...

  14. Microstructural Study Of Zinc Hot Dip Galvanized Coatings with Titanium Additions In The Zinc Melt

    NASA Astrophysics Data System (ADS)

    Konidaris, S.; Pistofidis, N.; Vourlias, G.; Pavlidou, E.; Stergiou, A.; Stergioudis, G.; Polychroniadis, E. K.

    2007-04-01

    Zinc hot-dip galvanizing is a method for protecting iron and steel against corrosion. Galvanizing with pure Zn or Zn with additions like Ni, Al, Pb and Bi has been extensively studied, but there is a lack of scientific information about other additions. The present work examines the effect of a 0.5 wt% Ti addition in the Zn melt. The samples were exposed to accelerated corrosion in a salt spray chamber (SSC). The microstructure and chemical composition of the coatings were determined by Optical Microscopy, XRD and SEM associated with an EDS Analyzer. The results indicate that the coatings have a typical morphology, while Zn-Ti phases were also detected.

  15. Synthesis of Hollow Gold-Silver Alloyed Nanoparticles: A "Galvanic Replacement" Experiment for Chemistry and Engineering Students

    ERIC Educational Resources Information Center

    Jenkins, Samir V.; Gohman, Taylor D.; Miller, Emily K.; Chen, Jingyi

    2015-01-01

    The rapid academic and industrial development of nanotechnology has led to its implementation in laboratory teaching for undergraduate-level chemistry and engineering students. This laboratory experiment introduces the galvanic replacement reaction for synthesis of hollow metal nanoparticles and investigates the optical properties of these…

  16. Galvanic Cells and the Determination of Equilibrium Constants

    ERIC Educational Resources Information Center

    Brosmer, Jonathan L.; Peters, Dennis G.

    2012-01-01

    Readily assembled mini-galvanic cells can be employed to compare their observed voltages with those predicted from the Nernst equation and to determine solubility products for silver halides and overall formation constants for metal-ammonia complexes. Results obtained by students in both an honors-level first-year course in general chemistry and…

  17. 76 FR 23548 - Galvanized Steel Wire From the People's Republic of China and Mexico: Initiation of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ... Wire From the People's Republic of China and Mexico: Initiation of Antidumping Duty Investigations...'') received petitions concerning imports of galvanized steel wire from the PRC and Mexico filed in proper form on behalf of Davis Wire Corporation (``Davis Wire''), Johnstown Wire Technologies, Inc., Mid-South...

  18. Branched tellurium hollow nanofibers by galvanic displacement reaction and their sensing performance toward nitrogen dioxide.

    PubMed

    Park, Hosik; Jung, Hyunsung; Zhang, Miluo; Chang, Chong Hyun; Ndifor-Angwafor, N George; Choa, Yongho; Myung, Nosang V

    2013-04-07

    Electrospinning and galvanic displacement reaction were combined to synthesize ultra-long hollow tellurium (Te) nanofibers with controlled dimensions, morphology and crystallinity by simply tailoring the electrolyte concentration applied. Within different morphologies of nanofibers, the branched Te nanostructure shows the greatest sensing performance towards NO2 at room temperature.

  19. Galvanic Cells: Anodes, Cathodes, Signs and Charges

    ERIC Educational Resources Information Center

    Goodwin, Alan

    2011-01-01

    Electrochemistry is a difficult subject for students at school and beyond and even for their teachers. This article explores the difficult "truth" that, when a current flows from a galvanic cell, positive ions within the cell electrolyte move towards the electrode labelled positive. This seems to contravene the basic rule that like charges repel…

  20. Cr-Free Metallic-Ceramic Coatings

    DTIC Science & Technology

    2014-11-01

    Comparable to Aluminum-Chromate/ Phosphate Humidity Resistance Galvanic Corrosion Resistance Nov. 2014 ASETSDefense 2014, Fort Myer, VA...Aluminum-Silicate Comparable to Aluminum-Chromate/ Phosphate  Humidity, Galvanic Corrosion , Heat/Salt Resistance  Adhesion & Compatibility...WP-TR-2007-4069, Sept. 2006 Sealed Aluminum-Silicate Not Comparable to Sealed Aluminum-Chromate/ Phosphate in PEWG Evaluation  Corrosion

  1. [An experimental study on the adaptation of three kinds of porcelain fused-to-metal restorations].

    PubMed

    Pei, Yan-Ping; Chen, Ji-Hua; Chang, Qing; Lin, Song-Shan; Zhang, He

    2009-04-01

    To compare the adaptation of porcelain fused-to-metal (PFM) restorations made from Ni-Cr alloy, precious alloy and galvanized forming copings after cementation and to provide a theory guidance for their application. Three kinds of crowns (Ni-Cr alloy, precious alloy and galvanized forming) were manufactured and cleaned by ultrasonic vibrate with alcoholic solution for 5 minutes, and cemented on their dies as their order. All the crowns were cemented by polycarboxylate zinc-cement and maintained 10 minutes. After coated in the center of methyl acrylic resins, all the samples were cut vertically along buccolingual direction. The cement thickness of PFM was measured by scanning electron microscope and the data were analyzed by multivariate ANOVA. No significant difference was found between the cement thickness of precious alloy crown and galvanized forming crown (P>0.05), while both of these two kinds of crown had significant differences in cement thickness with Ni-Cr crown (P<0.05). The adaptation of precious alloy crown and galvanized forming crown are superior to Ni-Cr crown.

  2. Nanoscale surface analysis on second generation advanced high strength steel after hot dip galvanizing.

    PubMed

    Arndt, M; Duchoslav, J; Preis, K; Samek, L; Stifter, D

    2013-09-01

    Second generation advanced high strength steel is one promising material of choice for modern automotive structural parts because of its outstanding maximal elongation and tensile strength. Nonetheless there is still a lack of corrosion protection for this material due to the fact that cost efficient hot dip galvanizing cannot be applied. The reason for the insufficient coatability with zinc is found in the segregation of manganese to the surface during annealing and the formation of manganese oxides prior coating. This work analyses the structure and chemical composition of the surface oxides on so called nano-TWIP (twinning induced plasticity) steel on the nanoscopic scale after hot dip galvanizing in a simulator with employed analytical methods comprising scanning Auger electron spectroscopy (SAES), energy dispersive X-ray spectroscopy (EDX), and focused ion beam (FIB) for cross section preparation. By the combination of these methods, it was possible to obtain detailed chemical images serving a better understanding which processes exactly occur on the surface of this novel kind of steel and how to promote in the future for this material system galvanic protection.

  3. Optimization of laser welding thin-gage galvanized steel via response surface methodology

    NASA Astrophysics Data System (ADS)

    Zhao, Yangyang; Zhang, Yansong; Hu, Wei; Lai, Xinmin

    2012-09-01

    The increasing demand of light weight and durability makes thin-gage galvanized steels (<0.6 mm) attractive for future automotive applications. Laser welding, well known for its deep penetration, high speed and small heat affected zone, provides a potential solution for welding thin-gage galvanized steels in automotive industry. In this study, the effect of the laser welding parameters (i.e. laser power, welding speed, gap and focal position) on the weld bead geometry (i.e. weld depth, weld width and surface concave) of 0.4 mm-thick galvanized SAE1004 steel in a lap joint configuration has been investigated by experiments. The process windows of the concerned process parameters were therefore determined. Then, response surface methodology (RSM) was used to develop models to predict the relationship between the processing parameters and the laser weld bead profile and identify the correct and optimal combination of the laser welding input variables to obtain superior weld joint. Under the optimal welding parameters, defect-free weld were produced, and the average aspect ratio increased about 30%, from 0.62 to 0.83.

  4. The study of electrochemical cell taught by problem-based learning

    NASA Astrophysics Data System (ADS)

    Srichaitung, Paisan

    2018-01-01

    According to the teaching activity of Chemistry, researcher found that students were not able to seek self knowledge even applied knowledge to their everyday life. Therefore, the researcher is interested in creating an activity to have students constructed their knowledge, science process skills, and can apply knowledge in their everyday life. The researcher presented form of teaching activity of electrochemical cell by using problem-based learning for Mathayom five students of Thai Christian School. The teaching activity focused on electron transfer in galvanic cell. In this activity, the researcher assigned students to design the electron transfer in galvanic cell using any solution that could light up the bulb. Then students were separated into a group of two, which were total seven groups. Each group of students searched the information about the electron transfer in galvanic cell from books, internet, or other sources of information. After students received concepts, or knowledge they searched for, Students designed and did the experiment. Finally, the students in each groups had twenty minutes to give a presentation in front of the classroom about the electron transfer in galvanic using any solution to light up the bulb with showing the experiment, and five minutes to answer their classmates' questions. Giving the presentation took four periods with total seven groups. After students finished their presentation, the researcher had students discussed and summarized the teaching activity's main idea of electron transfer in galvanic. Then, researcher observed students' behavior in each group found that 85.7 percentages of total students developed science process skills, and transferred their knowledge through presentation completely. When students done the post test, the researcher found that 92.85 percentages of total students were able to explain the concept of galvanic cell, described the preparation and the selection of experimental equipment. Furthermore, students constructed their skills, scientific process, and seek self knowledge which made them seek the choices to solve problems variously. This Research using problem-based learning can be applied to teaching activity in other subjects.

  5. Aqueous, Room Temperature Deposition of Silicon, Molybdenum and Germanium onto Aluminum Substrates

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Aarti Krishna

    Electrochemical deposition of active materials such as Si, Mo and Ge is notoriously difficult, so they are typically deposited using expensive vacuum methods such as chemical vapor deposition (CVD), plasma-enhanced chemical vapor deposition (PECVD), and magnetron sputtering. However, for most materials, electrochemical deposition has significant advantages of cost, scalability, and manufacturability. There are two main challenges in depositing these materials from aqueous electrolytes at room temperature, namely their highly cathodic standard reduction potential and the formation of native oxides. This has led researchers to use non-aqueous electrolytes such as organic solvents, room temperature ionic liquids (RTILs), and high temperature molten salts. However, these have drawbacks over aqueous electrolytes such as high cost, low conductivity, flammability, and corrosive behavior. During my PhS studies, these two challenges were overcome by using the galvanic method of deposition and by including HF in the electrolyte. Si thin films are employed in a variety of technologies, including microelectronic and photovoltaic devices, Li ion battery anodes, and corrosion-resistant coatings. A galvanic and a combined galvanic/electroless method of Si deposition were developed using aqueous electrolytes at room temperature to obtain nanoporous and compact films, respectively. These films were characterized to understand the surface morphology, thickness, crystallinity, growth rate, composition and nucleation behavior. Approximately 7-10 µm thick compact Si films were achieved with a deposition time of around 28 hours. The galvanic method of deposition was also extended to deposit compact Mo films. Mo thin films have a number of technological applications, including back contacts for CIGS/CZTS photovoltaic devices and corrosion-resistant coatings. Mo thin films were also thoroughly characterized and approximately 4.5 µm thick films were obtained after 3 hours. Similar to Si depostion, a galvanic method of deposition and the galvanic/electroless method of deposition was tested for the deposition of Ge. However no Ge deposit could be consistently obtained, probably due to oxyanion formation in aqueous hexaflurogermante solution.

  6. The Effect of Galvanic Vestibular Stimulation on Postural Response of Down Syndrome Individuals on the Seesaw

    ERIC Educational Resources Information Center

    Carvalho, R. L.; Almeida, G. L.

    2011-01-01

    In order to better understand the role of the vestibular system in postural adjustments on unstable surfaces, we analyzed the effects of galvanic vestibular stimulation (GVS) on the pattern of muscle activity and joint displacements (ankle knee and hip) of eight intellectually normal participants (control group--CG) and eight control group…

  7. Media Research with a Galvanic Skin Response Biosensor: Some Kids Work Up a Sweat!

    ERIC Educational Resources Information Center

    Clariana, Roy B.

    This study considers the galvanic skin response (GSR) of sixth-grade students (n=20) using print, video, and microcomputer segments. Subjects received all three media treatments, in randomized order. Data for analysis consisted of standardized test scores and GSR measures; a moderate positive relationship was shown between cumulative GSR and…

  8. Electrochemical Polishing of Silverware: A Demonstration of Voltaic and Galvanic Cells

    ERIC Educational Resources Information Center

    Ivey, Michelle M.; Smith, Eugene T.

    2008-01-01

    In this demonstration, the students use their knowledge of electrochemistry to determine that tarnish can be removed from silverware by electrochemically converting it back to silver using items commonly available in the kitchen: aluminum foil and baking soda. In addition to using this system as an example of a galvanic cell, an electrolytic cell…

  9. 76 FR 47150 - Galvanized Steel Wire From the People's Republic of China and Mexico: Postponement of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ... Wire From the People's Republic of China and Mexico: Postponement of Preliminary Determinations of... wire from the People's Republic of China (PRC) and Mexico. The period of investigation (POI) for the... is January 1, 2010, through December 31, 2010. See Galvanized Steel Wire From the People's Republic...

  10. A Student-Constructed Galvanic Cell for the Measurement of Cell Potentials at Different Temperatures

    ERIC Educational Resources Information Center

    Jakubowska, Anna

    2016-01-01

    A student-made galvanic cell is proposed for temperature measurements of cell potential. This cell can be easily constructed by students, the materials needed are readily available and nontoxic, and the solution applied is in an attractive color. For this cell, the potential values are excellently reproducible at each temperature, and the…

  11. Galvanic Corrosion In (Graphite/Epoxy)/Alloy Couples

    NASA Technical Reports Server (NTRS)

    Danford, Merlin D.; Higgins, Ralph H.

    1988-01-01

    Effects of galvanic coupling between graphite/epoxy composite material, G/E, and D6AC steel, 6061-T6 aluminum, and Inconel(R) 718 nickel alloy in salt water described in report. Introductory section summarizes previous corrosion studies of G/E with other alloys. Details of sample preparation presented along with photographs of samples before and after immersion.

  12. Effect of the Type of Surface Treatment and Cement on the Chloride Induced Corrosion of Galvanized Reinforcements

    NASA Astrophysics Data System (ADS)

    Tittarelli, Francesca; Mobili, Alessandra; Vicerè, Anna Maria; Roventi, Gabriella; Bellezze, Tiziano

    2017-10-01

    The effect of a new passivation treatment, obtained by immersion of the galvanized reinforcements in a trivalent chromium salts based solution, on the chlorides induced corrosion has been investigated. To investigate also the effect of cement alkalinity on corrosion behaviour of reinforcements, concretes manufactured with three different European cements were compared. The obtained results show that the alternative treatment based on hexavalent chromium-free baths forms effective protection layers on the galvanized rebar surfaces. The higher corrosion rates of zinc coating in concrete manufactured with Portland cement compared to those recorded for bars in concrete manufactured with pozzolanic cement depends strongly on the higher chloride content at the steel concrete interface.

  13. Galvanic corrosion behavior of orthodontic archwire alloys coupled to bracket alloys.

    PubMed

    Iijima, Masahiro; Endo, Kazuhiko; Yuasa, Toshihiro; Ohno, Hiroki; Hayashi, Kazuo; Kakizaki, Mitsugi; Mizoguchi, Itaru

    2006-07-01

    The purpose of this study was to provide a quantitative assessment of galvanic corrosion behavior of orthodontic archwire alloys coupled to orthodontic bracket alloys in 0.9% NaCl solution and to study the effect of surface area ratios. Two common bracket alloys, stainless steels and titanium, and four common wire alloys, nickel-titanium (NiTi) alloy, beta-titanium (beta-Ti) alloy, stainless steel, and cobalt-chromium-nickel alloy, were used. Three different area ratios, 1:1, 1:2.35, and 1:3.64, were used; two of them assumed that the multibracket appliances consists of 14 brackets and 0.016 inch of round archwire or 0.016 x 0.022 inch of rectangular archwire. The galvanic current was measured for 3 successive days using zero-impedance ammeter. When the NiTi alloy was coupled with Ti (1:1, 1:2.35, and 1:3.64 of the surface area ratio) or beta-Ti alloy was coupled with Ti (1:2.35 and 1:3.64 of the surface area ratio), Ti initially was the anode and corroded. However, the polarity reversed in 1 hour, resulting in corrosion of the NiTi or beta-Ti. The NiTi alloy coupled with SUS 304 or Ti exhibited a relatively large galvanic current density even after 72 hours. It is suggested that coupling SUS 304-NiTi and Ti-NiTi may remarkably accelerate the corrosion of NiTi alloy, which serves as the anode. The different anode-cathode area ratios used in this study had little effect on galvanic corrosion behavior.

  14. How Many Atomic Layers of Zinc Are in a Galvanized Iron Coating? An Experiment for General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Yang, Shui-Ping

    2007-01-01

    This article describes an experiment using a novel gasometric assembly to determine the thickness and number of atomic layers of zinc coating on galvanized iron substrates. Students solved this problem through three stages. In the first stage, students were encouraged to find a suitable acidic concentration through the guided-inquiry approach. In…

  15. An Easy-to-Assemble Three-Part Galvanic Cell

    ERIC Educational Resources Information Center

    Eggen, Per-Odd; Skaugrud, Brit

    2015-01-01

    The galvanic cell presented in this article is made of only three parts, is easy to assemble, and can light a red light emitting diode (LED). The three cell components consist of a piece of paper with copper sulfate, a piece of paper with sodium sulfate, and a piece of magnesium ribbon. Within less than 1 h, students have time to discuss the…

  16. Hot-dipped tin-zinc on U-0. 75 w/o Ti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weirick, L.J.

    1979-09-01

    Conventional Zn galvanizing of U-0.75 Ti results in nonuniform coatings and reduced elongation because of thermal aging of the surface of the U-Ti. A lower melting material which would give sacrificial galvanic protection to the U-Ti was found in the Sn-Zn alloy system. The present work describes: (1) the metallography of the Sn-Zn system, (2) the electrochemistry of the Sn-Zn system with respect to U-Ti, (3) the mechanics of applying a Sn-Zn coating to U-Ti, (4) salt spray corrosion test results of various Sn-Zn alloys applied to U-Ti coupons, and (5) mechanical property tests of coated U-Ti tensile bars. Anmore » 80 Sn-20 Zn alloy (MP-280/sup 0/C) was chosen for the galvanizing study because of its lower melting point. The results showed that all alloys of the Sn-Zn system galvanically protected the U-Ti in salt fog environments. The lack of a suitable low temperature flux prevented the operation of the Sn-Zn bath at its optimum temperature and low elongations were obtained with this coating system.« less

  17. Effect of Human Movement on Galvanic Intra-Body Communication during Single Gait Cycle

    NASA Astrophysics Data System (ADS)

    Ibrahim, I. W.; Razak, A. H. A.; Ahmad, A.; Salleh, M. K. M.

    2015-11-01

    Intra-body communication (IBC) is a communication system that uses human body as a signal transmission medium. From previous research, two coupling methods of IBC were concluded which are capacitive coupling and galvanic coupling. This paper investigates the effect of human movement on IBC using the galvanic coupling method. Because the human movement is control by the limb joint, the knee flexion angle during gait cycle was used to examine the influence of human movement on galvanic coupling IBC. The gait cycle is a cycle of people walking that start from one foot touch the ground till that foot touch the ground again. Frequency range from 300 kHz to 200MHz was swept in order to investigate the signal transmission loss and the result was focused on operating frequency 70MHz to 90MHz. Results show that the transmission loss varies when the knee flexion angle increased. The highest loss of signal at frequency range between 70MHz to 90 MHz was 69dB when the knee flexion angle is 50° and the minimum loss was 51dB during the flexion angle is 5°.

  18. Fabrication and surface-enhanced Raman scattering (SERS) of Ag/Au bimetallic films on Si substrates

    NASA Astrophysics Data System (ADS)

    Wang, Chaonan; Fang, Jinghuai; Jin, Yonglong; Cheng, Mingfei

    2011-11-01

    Ag films on Si substrates were fabricated by immersion plating and served as sacrificial materials for preparation of Ag/Au bimetallic films by galvanic replacement reaction. The formation procedure of films on the surface of Si was studied by scanning electron microscopy (SEM), which revealed Ag films with island and dendritic morphologies experienced novel structural evolution process during galvanic replacement reaction, and nanostructures with holes were produced within the resultant Ag/Au bimetallic films. SERS activity both of sacrificial Ag films and resultant Ag/Au bimetallic films was investigated by using crystal violet as an analyte. It has been shown that SERS signals increased with the process of galvanic substitution and reached intensity significantly stronger than that obtained from pure Ag films.

  19. Stainless and Galvanized Steel, Hydrophobic Admixture and Flexible Polymer-Cement Coating Compared in Increasing Durability of Reinforced Concrete Structures

    NASA Astrophysics Data System (ADS)

    Tittarelli, Francesca; Giosuè, Chiara; Mobili, Alessandra

    2017-08-01

    The use of stainless or galvanized steel reinforcements, a hydrophobic admixture or a flexible polymer-cement coating were compared as methods to improve the corrosion resistance of sound or cracked reinforced concrete specimens exposed to chloride rich solutions. The results show that in full immersion condition, negligible corrosion rates were detected in all cracked specimens, except those treated with the flexible polymer-cement mortar as preventive method against corrosion and the hydrophobic concrete specimens. High corrosion rates were measured in all cracked specimens exposed to wet-dry cycles, except for those reinforced with stainless steel, those treated with the flexible polymer-cement coating as restorative method against reinforcement corrosion and for hydrophobic concrete specimens reinforced with galvanized steel reinforcements.

  20. Alexander von Humboldt: galvanism, animal electricity, and self-experimentation part 2: the electric eel, animal electricity, and later years.

    PubMed

    Finger, Stanley; Piccolino, Marco; Stahnisch, Frank W

    2013-01-01

    After extensive experimentation during the 1790s, Alexander von Humboldt remained skeptical about "animal electricity" (and metallic electricity), writing instead about an ill-defined galvanic force. With his worldview and wishing to learn more, he studied electric eels in South America just as the new century began, again using his body as a scientific instrument in many of his experiments. As had been the case in the past and for many of the same reasons, some of his findings with the electric eel (and soon after, Italian torpedoes) seemed to argue against biological electricity. But he no longer used galvanic terminology when describing his electric fish experiments. The fact that he now wrote about animal electricity rather than a different "galvanic" force owed much to Alessandro Volta, who had come forth with his "pile" (battery) for multipling the physical and perceptable effects of otherwise weak electricity in 1800, while Humboldt was deep in South America. Humboldt probably read about and saw voltaic batteries in the United States in 1804, but the time he spent with Volta in 1805 was probably more significant in his conversion from a galvanic to an electrical framework for understanding nerve and muscle physiology. Although he did not continue his animal electricity research program after this time, Humboldt retained his worldview of a unified nature and continued to believe in intrinsic animal electricity. He also served as a patron to some of the most important figures in the new field of electrophysiology (e.g., Hermann Helmholtz and Emil du Bois-Reymond), helping to take the research that he had participated in to the next level.

  1. Techno-Economic Analysis of Solar Water Heating Systems inTurkey.

    PubMed

    Ertekin, Can; Kulcu, Recep; Evrendilek, Fatih

    2008-02-25

    In this study, solar water heater was investigated using meteorological and geographical data of 129 sites over Turkey. Three different collector types were compared in terms of absorber material (copper, galvanized sheet and selective absorber). Energy requirement for water heating, collector performances, and economical indicators were calculated with formulations using observed data. Results showed that selective absorbers were most appropriate in terms of coverage rate of energy requirement for water-heating all over Turkey. The prices of selective, copper and galvanized absorber type's heating systems in Turkey were 740.49, 615.69 and 490.89 USD, respectively. While payback periods (PBPs) of the galvanized absorber were lower, net present values (NPVs) of the selective absorber were higher than the rest. Copper absorber type collectors did not appear to be appropriate based on economical indicators.

  2. Techno-Economic Analysis of Solar Water Heating Systems in Turkey

    PubMed Central

    Ertekin, Can; Kulcu, Recep; Evrendilek, Fatih

    2008-01-01

    In this study, solar water heater was investigated using meteorological and geographical data of 129 sites over Turkey. Three different collector types were compared in terms of absorber material (copper, galvanized sheet and selective absorber). Energy requirement for water heating, collector performances, and economical indicators were calculated with formulations using observed data. Results showed that selective absorbers were most appropriate in terms of coverage rate of energy requirement for water-heating all over Turkey. The prices of selective, copper and galvanized absorber type's heating systems in Turkey were 740.49, 615.69 and 490.89 USD, respectively. While payback periods (PBPs) of the galvanized absorber were lower, net present values (NPVs) of the selective absorber were higher than the rest. Copper absorber type collectors did not appear to be appropriate based on economical indicators. PMID:27879764

  3. Characterization of Coatings on Steel Self-Piercing Rivets for Use with Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    McCune, Robert C.; Forsmark, Joy H.; Upadhyay, Vinod; Battocchi, Dante

    Incorporation of magnesium alloys in self-pierce rivet (SPR) joints poses several unique challenges among which are the creation of spurious galvanic cells and aggravated corrosion of adjacent magnesium when coated steel rivets are employed. This work firstly reviews efforts on development of coatings to steel fasteners for the diminution of galvanic corrosion when used with magnesium alloys. Secondly, approaches, based on several electrochemical methods, for the measurement of the galvanic-limiting effect of a number of commercially-available coatings to hardened 10B37 steel self-piercing rivets inserted into alloy couples incorporating several grades of magnesium are reported. Electrochemical impedance spectroscopy (EIS), zero-resistance ammeter (ZRA), corrosion potential and potential-mapping visualization methods (e.g. scanning vibrating electrode technique — SVET) are illustrated for the several rivet coatings considered.

  4. Galvanic Liquid Applied Coating System for Protection of Embedded Steel Surfaces from Corrosion

    NASA Technical Reports Server (NTRS)

    Curran, Joseph; MacDowell, Louis; Voska, N. (Technical Monitor)

    2002-01-01

    The corrosion of reinforcing steel in concrete is an insidious problem for the Kennedy Space Center, government agencies, and the general public. Existing corrosion protection systems on the market are costly, complex, and time-consuming to install, require continuous maintenance and monitoring, and require specialized skills for installation. NASA's galvanic liquid-applied coating offers companies the ability to conveniently protect embedded steel rebar surfaces from corrosion. Liquid-applied inorganic galvanic coating contains one ore more of the following metallic particles: magnesium, zinc, or indium and may contain moisture attracting compounds that facilitate the protection process. The coating is applied to the outer surface of reinforced concrete so that electrical current is established between metallic particles and surfaces of embedded steel rebar; and electric (ionic) current is responsible for providing the necessary cathodic protection for embedded rebar surfaces.

  5. Galvanic Protection Of 2219 Al By Al/Li Powder

    NASA Technical Reports Server (NTRS)

    Daech, Alfred

    1995-01-01

    Coatings consisting of aluminum/lithium powders incorporated into acrylic resin found to protect panels of 2219 aluminum from corrosion by salt spray better than coating consisting of 2219 aluminum in same acrylic resin. Exact mechanism by which aluminum/lithium coatings protect against corrosion unknown, although galvanic mechanism suspected. These coatings (instead of chromium) applied to fasteners and bars to provide cathodic protection, both with and without impressed electrical current.

  6. Substrate decomposition in galvanic displacement reaction: Contrast between gold and silver nanoparticle formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Tapas; Satpati, Biswarup, E-mail: biswarup.satpati@saha.ac.in; Kabiraj, D.

    We have investigated substrate decomposition during formation of silver and gold nanoparticles in galvanic displacement reaction on germanium surfaces. Silver and gold nanoparticles were synthesized by electroless deposition on sputter coated germanium thin film (∼ 200 nm) grown initially on silicon substrate. The nanoparticles formation and the substrate corrosion were studied using scanning transmission electron microscopy (STEM) and the energy dispersive X-ray (EDX) spectroscopy.

  7. Grade 12 Students' Conceptual Understanding and Mental Models of Galvanic Cells before and after Learning by Using Small-Scale Experiments in Conjunction with a Model Kit

    ERIC Educational Resources Information Center

    Supasorn, Saksri

    2015-01-01

    This study aimed to develop the small-scale experiments involving electrochemistry and the galvanic cell model kit featuring the sub-microscopic level. The small-scale experiments in conjunction with the model kit were implemented based on the 5E inquiry learning approach to enhance students' conceptual understanding of electrochemistry. The…

  8. Automatic voltage imbalance detector

    DOEpatents

    Bobbett, Ronald E.; McCormick, J. Byron; Kerwin, William J.

    1984-01-01

    A device for indicating and preventing damage to voltage cells such as galvanic cells and fuel cells connected in series by detecting sequential voltages and comparing these voltages to adjacent voltage cells. The device is implemented by using operational amplifiers and switching circuitry is provided by transistors. The device can be utilized in battery powered electric vehicles to prevent galvanic cell damage and also in series connected fuel cells to prevent fuel cell damage.

  9. Clay and DOPA containing polyelectrolyte multilayer film for imparting anticorrosion properties to galvanized steel.

    PubMed

    Faure, Emilie; Halusiak, Emilie; Farina, Fabrice; Giamblanco, Nicoletta; Motte, Cécile; Poelman, Mireille; Archambeau, Catherine; Van de Weerdt, Cécile; Martial, Joseph; Jérôme, Christine; Duwez, Anne-Sophie; Detrembleur, Christophe

    2012-02-07

    A facile and green approach is developed to impart remarkable protection against corrosion to galvanized steel. A protecting multilayer film is formed by alternating the deposition of a polycation bearing catechol groups, used as corrosion inhibitors, with clay that induces barrier properties. This coating does not affect the esthetical aspect of the surface and does not release any toxic molecules in the environment.

  10. Highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste with amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent.

    PubMed

    Bao, Shuangyou; Tang, Lihong; Li, Kai; Ning, Ping; Peng, Jinhui; Guo, Huibin; Zhu, Tingting; Liu, Ye

    2016-01-15

    Amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent was used as a novel sorbent to highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste in the presence of Fe(II). These hot-dip galvanizing pickling waste mainly contain ZnCl2 and FeCl2 in aqueous HCl media. The properties of this magnetic adsorbent were examined by transmission electron microscopy (TEM), powder X-ray diffraction (XRD), infrared spectrometer (FT-IR) and BET surface area measurements. Various factors influencing the adsorption of Zn(II) ion such as initial concentration of metal ions, the amount of adsorbent, pH value of the solutions, the concentration of coexisting iron ion were investigated by batch experiments. The results indicated that the adsorption equilibrium data obeyed the Freundlich model with maximum adsorption capacities for Zn(II) to 169.5mg/g. The maximum adsorption occurred at pH 5±0.1 and Fe(II) interferences had no obvious influence. This work provides a potential and unique technique for zinc ion removal from hot-dip galvanizing pickling waste. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Influence of Bond Coats on the Microstructure and Mechanical Behaviors of HVOF-Deposited TiAlNb Coatings

    NASA Astrophysics Data System (ADS)

    Zeng, H. J.; Zhang, L. Q.; Lin, J. P.; He, X. Y.; Zhang, Y. C.; Jia, P.

    2012-12-01

    Hot dip galvanizing has been extensively employed for corrosion protection of steel structures. However, during the process of galvanization, the corrosion in molten zinc brings many problems to galvanization industry. In this study, as a material of corrosion resistance to molten zinc intended for application in Hot-dip galvanization, HVOF Ti28.15Al63.4Nb8.25Y (at.%) coatings with different bond coats (NiCr5Al, NiCoCrAlY, CoCrAlYTaSi, and NiCr80/20) were deposited onto 316L stainless steel substrate, respectively. The influences of different bond coats on HVOF Ti28.15Al63.4Nb8.25Y coatings were investigated. The results showed that bond coat had an obvious influence on improving the mechanical properties of HVOF Ti28.15Al63.4Nb8.25Y coatings. HVOF Ti28.15Al63.4Nb8.25Y coatings with NiCoCrAlY bond coat displayed the best mechanical properties. However, bond coats had no obvious effects on the microstructure, porosity, and hardness of HVOF Ti28.15Al63.4Nb8.25Y top coatings. The effects of as-received powder morphology and grain size on the characteristics of coatings were also discussed.

  12. Electric and magnetic galvanic distortion decomposition of tensor CSAMT data. Application to data from the Buchans Mine (Newfoundland, Canada)

    NASA Astrophysics Data System (ADS)

    Garcia, Xavier; Boerner, David; Pedersen, Laust B.

    2003-09-01

    We have developed a Marquardt-Levenberg inversion algorithm incorporating the effects of near-surface galvanic distortion into the electromagnetic (EM) response of a layered earth model. Different tests on synthetic model responses suggest that for the grounded source method, the magnetic distortion does not vanish for low frequencies. Including this effect is important, although to date it has been neglected. We have inverted 10 stations of controlled-source audio-magnetotellurics (CSAMT) data recorded near the Buchans Mine, Newfoundland, Canada. The Buchans Mine was one of the richest massive sulphide deposits in the world, and is situated in a highly resistive volcanogenic environment, substantially modified by thrust faulting. Preliminary work in the area demonstrated that the EM fields observed at adjacent stations show large differences due to the existence of mineralized fracture zones and variable overburden thickness. Our inversion results suggest a three-layered model that is appropriate for the Buchans Mine. The resistivity model correlates with the seismic reflection interpretation that documents the existence of two thrust packages. The distortion parameters obtained from the inversion concur with the synthetic studies that galvanic magnetic distortion is required to interpret the Buchans data since the magnetic component of the galvanic distortion does not vanish at low frequency.

  13. Effect of flow rate and lead/copper pipe sequence on lead release from service lines.

    PubMed

    Cartier, Clément; Arnold, Roger B; Triantafyllidou, Simoni; Prévost, Michèle; Edwards, Marc

    2012-09-01

    A pilot experiment examined lead leaching from four representative configurations of service lines including: (1) 100% lead (Pb), (2) 100% copper (Cu), (3) 50% Pb upstream of 50% Cu, and (4) 50% Pb-downstream of 50% Cu using a range of flow rates. The cumulative mass of lead release indicated that a typical partial replacement configuration (50% lead downstream of copper) did not provide a net reduction in lead when compared to 100% lead pipe (85 mg for 50% Pb-downstream versus 83 mg for 100%-Pb) due to galvanic and deposition corrosion. The partially replaced service line configuration also had a much greater likelihood of producing water with "spikes" of lead particulates at higher flow rates, while tending to produce lower levels of lead at very low flow rates. After the first 214 days the galvanic current between copper and lead was only reduced by 34%, proving that galvanic impacts can be highly persistent even in water with optimized corrosion control by dosing of zinc orthophosphate. Finally, this experiment raises concern about the low flow rates used during some prior home sampling events, which may underestimate exposure to lead during normal water use, especially when galvanic Pb:Cu connections are present. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Isolation of a sulfide-producing bacterial consortium from cooling-tower water: Evaluation of corrosive effects on galvanized steel.

    PubMed

    Ilhan-Sungur, Esra; Ozuolmez, Derya; Çotuk, Ayşın; Cansever, Nurhan; Muyzer, Gerard

    2017-02-01

    Sulfidogenic Clostridia and sulfate reducing bacteria (SRB) often cohabit in nature. The presence of these microorganisms can cause microbially influenced corrosion (MIC) of materials in different ways. To investigate this aspect, bacteria were isolated from cooling tower water and used in corrosion tests of galvanized steel. The identity of the isolates was determined by comparative sequence analysis of PCR-amplified 16S rDNA gene fragments, separated by denaturing gradient gel electrophoresis (DGGE). This analysis showed that, in spite of the isolation process, colonies were not pure and consisted of a mixture of bacteria affiliated with Desulfosporosinus meridiei and Clostridium sp. To evaluate the corrosive effect, galvanized steel coupons were incubated with a mixed culture for 4, 8, 24, 72, 96, 168, 360 and 744 h, along with a control set in sterile culture medium only. The corrosion rate was determined by weight loss, and biofilm formation and corroded surfaces were observed by scanning electron microscopy (SEM). Although the sulfide-producing bacterial consortium led to a slight increase in the corrosion of galvanized steel coupons, when compared to the previous studies it can be said that Clostridium sp. can reduce the corrosive effect of the Desulfosporosinus sp. strain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. [Exposure to metal compounds in occupational galvanic processes].

    PubMed

    Surgiewicz, Jolanta; Domański, Wojciech

    2006-01-01

    Occupational galvanic processes are provided in more than 600 small and medium enterprises in Poland. Workers who deal with galvanic coating are exposed to heavy metal compounds: tin, silver, copper and zinc. Some of them are carcinogenic, for example, hexavalent chromium compounds, nickel and cadmium compounds. Research covered several tens of workstations involved in chrome, nickel, zinc, tin, silver, copper and cadmium plating. Compounds of metals present in the air were determined: Cr, Ni, Cd, Sn, Ag--by atomic absorption spectrometry with electrothermal atomization (ET-AAS) and Zn--by atomic absorption spectrometry with flame atomization (F-AAS). The biggest metal concentrations--of silver and copper--were found at workstations of copper, brass, cadmium, nickel and chrome plating, conducted at the same time. Significant concentrations of copper were found at workstations of maintenance bathing and neutralizing of sewage. The concentrations of metals did not exceed Polish MAC values. MAC values were not exceeded for carcinogenic chromium(VI), nickel or cadmium, either. In galvanic processes there was no hazard related to single metals or their compounds, even carcinogenic ones. Combined exposure indicators for metals at each workstation did not exceed 1, either. However, if there are even small quantities of carcinogenic agents, health results should always be taken into consideration.

  16. Novel Galvanic Corrosion Inhibitors: Synthesis, Characterization, Fabrication and Testing

    DTIC Science & Technology

    2007-09-30

    have attempted to develop methods based on chemical structural modification to prevent galvanically-induced composite corrosion. [9, 10-12] These...of the two metallopolymers 11 and 12 show characteristic MLCT (metal-to-ligand charge transfer) absorption band of tris(bipyridyl)Ru(II) unit at k...showed absorption band at 450 nm and emission band at 325 nm of tris(bipyridyl)Ru(II) units in its respective UV-vis and fluorescence spectra. Very

  17. Corrosion Potential Monitoring for Polymer Composite Wrapping and Galvanic CP System for Reinforced Concrete Marine Piles

    DTIC Science & Technology

    2010-02-01

    deteriorated – Rebar corrosion – Spalling concrete Repair Options • Patching • Polymeric composite wraps • Pre-fabricated composite shell with CP Objective... Corrosion Potential Monitoring for Polymer Composite Wrapping and Galvanic CP System for Reinforced Concrete Marine Piles David Bailey, Richard...Command DoD Corrosion Problem • Piers and wharves – Critical facilities – $14.5M maintenance costs – Reinforced concrete piles • Aged and

  18. APPARATUS FOR CONVERTING HEAT INTO ELECTRICITY

    DOEpatents

    Crouthamel, C.E.; Foster, M.S.

    1964-01-28

    This patent shows an apparatus for converting heat to electricity. It includes a galvanic cell having an anodic metal anode, a fused salt electrolyte, and a hydrogen cathode having a diffusible metal barrier of silver-- palladium alloy covered with sputtered iron on the side next to the fused electrolyte. Also shown is a regenerator for regenerating metal hydride produced by the galvanic cell into hydrogen gas and anodic metal, both of which are recycled. (AEC)

  19. Design and Processing of Electret Structures

    DTIC Science & Technology

    2009-10-31

    and width as a function of time. ( d ) Estimated current density j of dissolving copper disk as a function of time. (e) Total current I of dissolving...effect leading to a higher corrosion rate in the galvanic microreactor . Because of the small scale of our galvanic system, the dissolving copper disk is...estimated by focusing with a calibrated microscope stage.   Figure 5: Particle separation and electrolyte convection. Scale bars in ( A , D ) are 100 µm

  20. Review of Thermal Spray Coating Applications in the Steel Industry: Part 2—Zinc Pot Hardware in the Continuous Galvanizing Line

    NASA Astrophysics Data System (ADS)

    Matthews, S.; James, B.

    2010-12-01

    This two-part article series reviews the application of thermal spray coating technology in the production of steel and steel sheet products. Part 2 of this article series is dedicated to coating solutions in the continuous galvanizing line. The corrosion mechanisms of Fe- and Co-based bulk materials are briefly reviewed as a basis for the development of thermal spray coating solutions. WC-Co thermal spray coatings are commonly applied to low Al-content galvanizing hardware due to their superior corrosion resistance compared to Fe and Co alloys. The effect of phase degradation, carbon content, and WC grain size are discussed. At high Al concentrations, the properties of WC-Co coatings degrade significantly, leading to the application of oxide-based coatings and corrosion-resistant boride containing coatings. The latest results of testing are summarized, highlighting the critical coating parameters.

  1. The effect of immersion time to low carbon steel hardness and microstructure with hot dip galvanizing coating method

    NASA Astrophysics Data System (ADS)

    Hakim, A. A.; Rajagukguk, T. O.; Sumardi, S.

    2018-01-01

    Along with developing necessities of metal materials, these rise demands of quality improvements and material protections especially the mechanical properties of the material. This research used hot dip galvanizing coating method. The objectives of this research were to find out Rockwell hardness (HRb), layer thickness, micro structure and observation with Scanning Electron Microscope (SEM) from result of coating by using Hot Dip Galvanizing coating method with immersion time of 3, 6, 9, and 12 minutes at 460°C. The result shows that Highest Rockwell hardness test (HRb) was at 3 minutes immersion time with 76.012 HRb. Highest thickness result was 217.3 μm at 12 minutes immersion. Microstructure test result showed that coating was formed at eta, zeta, delta and gamma phases, while Scanning Electron Microscope (SEM) showed Fe, Zn, Mn, Si and S elements at the specimens after coating.

  2. Anticorrosive Behavior and Porosity of Tricationic Phosphate and Zirconium Conversion Coating on Galvanized Steel

    NASA Astrophysics Data System (ADS)

    Velasquez, Camilo S.; Pimenta, Egnalda P. S.; Lins, Vanessa F. C.

    2018-05-01

    This work evaluates the corrosion resistance of galvanized steel treated with tricationic phosphate and zirconium conversion coating after painting, by using electrochemical techniques, accelerated and field corrosion tests. A non-uniform and heterogeneous distribution of zirconium on the steel surface was observed due to preferential nucleation of the zirconium on the aluminum-rich sites on the surface of galvanized steel. The long-term anti-corrosion performance in a saline solution was better for the phosphate coating up to 120 days. The coating capacitance registered a higher increase for the zirconium coatings than the phosphate coatings up to 120 days of immersion. This result agrees with the higher porosity of zirconium coating in relation to the phosphate coating. After 3840 h of accelerated corrosion test, and after 1 year of accelerated field test, zirconium-treated samples showed an average scribe delamination length higher than the phosphate-treated samples.

  3. The corrosion behaviour of galvanized steel in cooling tower water containing a biocide and a corrosion inhibitor.

    PubMed

    Minnoş, Bihter; Ilhan-Sungur, Esra; Çotuk, Ayşın; Güngör, Nihal Doğruöz; Cansever, Nurhan

    2013-01-01

    The corrosion behaviour of galvanized steel in cooling tower water containing a biocide and a corrosion inhibitor was investigated over a 10-month period in a hotel. Planktonic and sessile numbers of sulphate reducing bacteria (SRB) and heterotrophic bacteria were monitored. The corrosion rate was determined by the weight loss method. The corrosion products were analyzed by energy dispersive X-ray spectroscopy and X-ray diffraction. A mineralized, heterogeneous biofilm was observed on the coupons. Although a biocide and a corrosion inhibitor were regularly added to the cooling water, the results showed that microorganisms, such as SRB in the mixed species biofilm, caused corrosion of galvanized steel. It was observed that Zn layers on the test coupons were completely depleted after 3 months. The Fe concentrations in the biofilm showed significant correlations with the weight loss and carbohydrate concentration (respectively, p < 0.01 and p < 0.01).

  4. Effect of Steel Galvanization on the Microstructure and Mechanical Performances of Planar Magnetic Pulse Welds of Aluminum and Steel

    NASA Astrophysics Data System (ADS)

    Avettand-Fènoël, M.-N.; Khalil, C.; Taillard, R.; Racineux, G.

    2018-07-01

    For the first time, planar joints between pure aluminum and galvanized or uncoated DP450 steel joints have been developed via magnetic pulse welding. Both present a wavy interface. The microstructure of the interfacial zone differs according to the joint. With uncoated steel, the interface is composed of discrete 2.5- µm-thick FeAl3 intermetallic compounds and Fe penetration lamellae, whereas the interface of the pure Al-galvanized steel joint is bilayered and composed of a 10-nm-thick (Al)Zn solid solution and a few micrometers thick aggregate of Al- and Zn-based grains, arranged from the Al side to the Zn coating. Even if the nature of the interfacial zone differs with or without the steel coating, both welds present rather similar maximum tensile forces and ductility in shear lap testing.

  5. Anticorrosive Behavior and Porosity of Tricationic Phosphate and Zirconium Conversion Coating on Galvanized Steel

    NASA Astrophysics Data System (ADS)

    Velasquez, Camilo S.; Pimenta, Egnalda P. S.; Lins, Vanessa F. C.

    2018-04-01

    This work evaluates the corrosion resistance of galvanized steel treated with tricationic phosphate and zirconium conversion coating after painting, by using electrochemical techniques, accelerated and field corrosion tests. A non-uniform and heterogeneous distribution of zirconium on the steel surface was observed due to preferential nucleation of the zirconium on the aluminum-rich sites on the surface of galvanized steel. The long-term anti-corrosion performance in a saline solution was better for the phosphate coating up to 120 days. The coating capacitance registered a higher increase for the zirconium coatings than the phosphate coatings up to 120 days of immersion. This result agrees with the higher porosity of zirconium coating in relation to the phosphate coating. After 3840 h of accelerated corrosion test, and after 1 year of accelerated field test, zirconium-treated samples showed an average scribe delamination length higher than the phosphate-treated samples.

  6. Effect of Steel Galvanization on the Microstructure and Mechanical Performances of Planar Magnetic Pulse Welds of Aluminum and Steel

    NASA Astrophysics Data System (ADS)

    Avettand-Fènoël, M.-N.; Khalil, C.; Taillard, R.; Racineux, G.

    2018-05-01

    For the first time, planar joints between pure aluminum and galvanized or uncoated DP450 steel joints have been developed via magnetic pulse welding. Both present a wavy interface. The microstructure of the interfacial zone differs according to the joint. With uncoated steel, the interface is composed of discrete 2.5-µm-thick FeAl3 intermetallic compounds and Fe penetration lamellae, whereas the interface of the pure Al-galvanized steel joint is bilayered and composed of a 10-nm-thick (Al)Zn solid solution and a few micrometers thick aggregate of Al- and Zn-based grains, arranged from the Al side to the Zn coating. Even if the nature of the interfacial zone differs with or without the steel coating, both welds present rather similar maximum tensile forces and ductility in shear lap testing.

  7. Interfacial chemistry of zinc anodes for reinforced concrete structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covino, B.S. Jr.; Bullard, S.J.; Cramer, S.D.

    1997-12-01

    Thermally-sprayed zinc anodes are used in both galvanic and impressed current cathodic protection systems for reinforced concrete structures. The Albany Research Center, in collaboration with the Oregon Department of Transportation, has been studying the effect of electrochemical aging on the bond strength of zinc anodes for bridge cathodic protection systems. Changes in anode bond strength and other anode properties can be explained by the chemistry of the zinc-concrete interface. The chemistry of the zinc-concrete interface in laboratory electrochemical aging studies is compared with that of several bridges with thermal-sprayed zinc anodes and which have been in service for 5 tomore » 10 years using both galvanic and impressed current cathodic protection systems. The bridges are the Cape Creek Bridge on the Oregon coast and the East Camino Undercrossing near Placerville, CA. Also reported are interfacial chemistry results for galvanized steel rebar from the 48 year old Longbird Bridge in Bermuda.« less

  8. Coating Galvanized Steel

    DTIC Science & Technology

    1989-06-01

    bonding of topcoats to smooth galvanizing have lead to such practices as washing with vinegar , washing with copper sulfate solution, or weathering before...of special treatments other than weathering: "The "home cure" type of treatments such as washing the surface with vinegar , acetic acid, cider, copper... alcohol . The wash primer used was MIL-P-15328 (Formula 117). It is spray- applied to give 0.3- to 0.5-mil dry film thickness and is used on ships to

  9. Measurement and analysis of channel attenuation characteristics for an implantable galvanic coupling human-body communication.

    PubMed

    Zhang, Shuang; Pun, Sio Hang; Mak, Peng Un; Qin, Yu-Ping; Liu, Yi-He; Vai, Mang I

    2016-11-14

    In this study, an experiment was designed to verify the low power consumption of galvanic coupling human-body communication. A silver electrode (silver content: 99%) is placed in a pig leg and a sine wave signal with the power of 0 dBm is input. Compared with radio frequency communication and antenna transmission communication, attenuation is reduced by approximately 10 to 15 dB, so channel characteristics are highly improved.

  10. Saccule contribution to immediate early gene induction in the gerbil brainstem with posterior canal galvanic or hypergravity stimulation

    NASA Technical Reports Server (NTRS)

    Marshburn, T. H.; Kaufman, G. D.; Purcell, I. M.; Perachio, A. A.

    1997-01-01

    Immunolabeling patterns of the immediate early gene-related protein Fos in the gerbil brainstem were studied following stimulation of the sacculus by both hypergravity and galvanic stimulation. Head-restrained, alert animals were exposed to a prolonged (1 h) inertial vector of 2 G (19.6 m/s2) head acceleration directed in a dorso-ventral head axis to maximally stimulate the sacculus. Fos-defined immunoreactivity was quantified, and the results compared to a control group. The hypergravity stimulus produced Fos immunolabeling in the dorsomedial cell column (dmcc) of the inferior olive independently of other subnuclei. Similar dmcc labeling was induced by a 30 min galvanic stimulus of up to -100 microA applied through a stimulating electrode placed unilaterally on the bony labyrinth overlying the posterior canal (PC). The pattern of vestibular afferent firing activity induced by this galvanic stimulus was quantified in anesthetized gerbils by simultaneously recording from Scarpa's ganglion. Only saccular and PC afferent neurons exhibited increases in average firing rates of 200-300%, suggesting a pattern of current spread involving only PC and saccular afferent neurons at this level of stimulation. These results suggest that alteration in saccular afferent firing rates are sufficient to induce Fos-defined genomic activation of the dmcc, and lend further evidence to the existence of a functional vestibulo-olivary-cerebellar pathway of adaptation to novel gravito-inertial environments.

  11. Synthesis and Characterization of Chromate Conversion Coatings on GALVALUME and Galvanized Steel Substrates

    NASA Astrophysics Data System (ADS)

    Domínguez-Crespo, M. A.; Onofre-Bustamante, E.; Torres-Huerta, A. M.; Rodríguez-Gómez, F. J.; Rodil, S. E.; Flores-Vela, A.

    2009-07-01

    The morphology, composition, and corrosion performance of chromate conversion coatings (CCCs) formed on GALVALUME (Fe-Al-Zn) and galvanized steel (Fe-Zn) samples have been studied, and different immersion times (0, 10, 30, and 60 seconds) have been compared. The coated surfaces were analyzed using light microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical measurements in a NaCl solution (3 wt pct). The electrochemical measurements were carried out using the polarization resistance, Tafel, and ac impedance methods. A nonuniform growth of the CCCs having a porous morphology and cracks that appear extended to the base metal was observed. The XRD patterns show that the coatings mainly consist of CrO3, Cr2O3, and traces of Cr2O{7/-2}. The electrochemical results show that GALVALUME presents a better behavior than that of the galvanized steel alloys at each dipping time. The SEM micrographs show that the galvanized steel treatments resulted in the formation of a more uniform film, but their protection barrier broke down faster than that of the GALVALUME samples in contact with the aggressive media. The samples that underwent the lowest degree of dissolution were those with a dipping time of 30 seconds. The difference in the corrosion protection given by the two substrate types could be attributed to the structural properties, grain size, composition, and roughness, which affect oxygen diffusion.

  12. Galvanic Corrosion of Lead by Iron (Oxyhydr)Oxides: Potential Impacts on Drinking Water Quality.

    PubMed

    Trueman, Benjamin F; Sweet, Gregory A; Harding, Matthew D; Estabrook, Hayden; Bishop, D Paul; Gagnon, Graham A

    2017-06-20

    Lead exposure via drinking water remains a significant public health risk; this study explored the potential effects of upstream iron corrosion on lead mobility in water distribution systems. Specifically, galvanic corrosion of lead by iron (oxyhydr)oxides was investigated. Coupling an iron mineral cathode with metallic lead in a galvanic cell increased lead release by 531 μg L -1 on average-a 9-fold increase over uniform corrosion in the absence of iron. Cathodes were composed of spark plasma sintered Fe 3 O 4 or α-Fe 2 O 3 or field-extracted Fe 3 O 4 and α-FeOOH. Orthophosphate immobilized oxidized lead as insoluble hydroxypyromorphite, while humic acid enhanced lead mobility. Addition of a humic isolate increased lead release due to uniform corrosion by 81 μg L -1 and-upon coupling lead to a mineral cathode-release due to galvanic corrosion by 990 μg L -1 . Elevated lead in the presence of humic acid appeared to be driven by complexation, with 208 Pb and UV 254 size-exclusion chromatograms exhibiting strong correlation under these conditions (R 2 average = 0.87). A significant iron corrosion effect was consistent with field data: lead levels after lead service line replacement were greater by factors of 2.3-4.7 at sites supplied by unlined cast iron distribution mains compared with the alternative, lined ductile iron.

  13. In situ removal of copper from sediments by a galvanic cell.

    PubMed

    Yuan, Songhu; Wu, Chan; Wan, Jinzhong; Lu, Xiaohua

    2009-01-01

    This study dealt with in situ removal of copper from sediments through an electrokinetic (EK) process driven by a galvanic cell. Iron (Fe) and carbon (C) were placed separately and connected with a conductive wire. Polluted sediments were put between them and water was filled above the sediments. The galvanic cell was thus formed due to the different electrode potentials of Fe and C. The cell could remove the pollutants in the sediments by electromigration and/or electroosmosis. Results showed that a weak voltage less than 1V was formed by the galvanic cell. The voltage decreased with the increase of time. A slight increase of sediment pH from the anode (Fe) to the cathode (C) was observed. The presence of supernatant water inhibited the variation of sediment pH because H(+) and OH(-) could diffuse into the water. The removal of copper was affected by the sediment pH and the distribution of electrolyte in sediment and supernatant water. Lower pH led to higher removal efficiency. More electrolyte in the sediment and/or less electrolyte in the supernatant water favored the removal of copper. The major removal mechanism was proposed on the basis of the desorption of copper from sediment to pore solution and the subsequent electromigration of copper from the anode to the cathode. The diffusion of copper from sediment to supernatant water was negligible.

  14. Statistical Methods for Quality Control of Steel Coils Manufacturing Process using Generalized Linear Models

    NASA Astrophysics Data System (ADS)

    García-Díaz, J. Carlos

    2009-11-01

    Fault detection and diagnosis is an important problem in process engineering. Process equipments are subject to malfunctions during operation. Galvanized steel is a value added product, furnishing effective performance by combining the corrosion resistance of zinc with the strength and formability of steel. Fault detection and diagnosis is an important problem in continuous hot dip galvanizing and the increasingly stringent quality requirements in automotive industry has also demanded ongoing efforts in process control to make the process more robust. When faults occur, they change the relationship among these observed variables. This work compares different statistical regression models proposed in the literature for estimating the quality of galvanized steel coils on the basis of short time histories. Data for 26 batches were available. Five variables were selected for monitoring the process: the steel strip velocity, four bath temperatures and bath level. The entire data consisting of 48 galvanized steel coils was divided into sets. The first training data set was 25 conforming coils and the second data set was 23 nonconforming coils. Logistic regression is a modeling tool in which the dependent variable is categorical. In most applications, the dependent variable is binary. The results show that the logistic generalized linear models do provide good estimates of quality coils and can be useful for quality control in manufacturing process.

  15. Galvanic coupling of steel and gold alloy lingual brackets with orthodontic wires.

    PubMed

    Polychronis, Georgios; Al Jabbari, Youssef S; Eliades, Theodore; Zinelis, Spiros

    2018-03-06

    The aim of this research was to assess galvanic behavior of lingual orthodontic brackets coupled with representative types of orthodontic wires. Three types of lingual brackets: Incognito (INC), In-Ovation L (IOV), and STb (STB) were combined with a stainless steel (SS) and a nickel-titanium (NiTi) orthodontic archwire. All materials were initially investigated by scanning electron microscopy / x-ray energy dispersive spectroscopy (SEM/EDX) while wires were also tested by x-ray diffraction spectroscopy (XRD). All bracket-wire combinations were immersed in acidic 0.1M NaCl 0.1M lactic acid and neutral NaF 0.3% (wt) electrolyte, and the potential differences were continuously recorded for 48 hours. The SEM/EDX analysis revealed that INC is a single-unit bracket made of a high gold (Au) alloy while IOV and STB are two-piece appliances in which the base and wing are made of SS alloys. The SS wire demonstrated austenite and martensite iron phase, while NiTi wire illustrated an intense austenite crystallographic structure with limited martensite. All bracket wire combinations showed potential differences below the threshold of galvanic corrosion (200 mV) except for INC and STB coupled with NiTi wire in NaF media. The electrochemical results indicate that all brackets tested demonstrated galvanic compatibility with SS wire, but fluoride treatment should be used cautiously with NiTi wires coupled with Au and SS brackets.

  16. The corrosion protection of AISI(TM) 1010 steel by organic and inorganic zinc-rich primers

    NASA Technical Reports Server (NTRS)

    Danford, M. D.; Mendrek, M. J.

    1995-01-01

    The behavior of zinc-rich primer-coated AISI 1010 steel in 3.5-percent Na-Cl was investigated using electrochemical techniques. The alternating current (ac) method of electrochemical impedance spectroscopy (EIS), in the frequency range of 0.001 to 40,000 Hz, and the direct current (dc) method of polarization resistance (PR), were used to evaluate the characteristics of an organic, epoxy zinc-rich primer and an inorganic, ethyl silicate zinc-rich primer. A dc electromechanical galvanic corrosion test was also used to determine the corrosion current of each zinc-rich primer anode coupled to a 1010 steel cathode. Duration of the EIS/PR and galvanic testing was 21 days and 24 h, respectively. The galvanic test results demonstrated a very high current between the steel cathode and both zinc-rich primer anodes (38.8 and 135.2 microns A/sq cm for the organic and inorganic primers, respectively). The results of corrosion rate determinations demonstrated a much higher corrosion rate of the zinc in the inorganic primer than in the organic primer, due primarily to the higher porosity in the former. EIS equivalent circuit parameters confirmed this conclusion. Based on this investigation, the inorganic zinc-rich primer appears to provide superior galvanic protection and is recommended for additional study for application on solid rocket booster steel hardware.

  17. Effect of 1,2,4-triazole on galvanic corrosion between cobalt and copper in CMP based alkaline slurry

    NASA Astrophysics Data System (ADS)

    Fu, Lei; Liu, Yuling; Wang, Chenwei; Han, Linan

    2018-04-01

    Cobalt has become a new type of barrier material with its unique advantages since the copper-interconnects in the great-large scale integrated circuits (GLSI) into 10 nm and below technical nodes, but cobalt and copper have severe galvanic corrosion during chemical–mechanical flattening. The effect of 1,2,4-triazole on Co/Cu galvanic corrosion in alkaline slurry and the control of rate selectivity of copper and cobalt were investigated in this work. The results of electrochemical experiments and polishing experiments had indicated that a certain concentration of 1,2,4-triazole could form a layer of insoluble and dense passive film on the surface of cobalt and copper, which reduced the corrosion potential difference between cobalt and copper. Meantime, the removal rate of cobalt and copper could be effectively controlled according to demand during the CMP process. When the study optimized slurry was composed of 0.5 wt% colloidal silica, 0.1 %vol. hydrogen peroxide, 0.05 wt% FA/O, 345 ppm 1,2,4-triazole, cobalt had higher corrosion potential than copper and the galvanic corrosion could be reduced effectively when the corrosion potential difference between them decreased to 1 mV and the galvanic corrosion current density reached 0.02 nA/cm2. Meanwhile, the removal rate of Co was 62.396 nm/min, the removal rate of Cu was 47.328 nm/min, so that the removal rate ratio of cobalt and copper was 1.32 : 1, which was a good amendment to the dishing pits. The contact potential corrosion of Co/Cu was very weak, which could be better for meeting the requirements of the barrier CMP. Project supported by the Major National Science and Technology Special Projects (No. 2016ZX02301003-004-007), the Natural Science Foundation of Hebei Province, China (No. F2015202267), and the Outstanding Young Science and Technology Innovation Fund of Hebei University of Technology (No. 2015007).

  18. Corrosion protection of galvanized steels by silane-based treatments

    NASA Astrophysics Data System (ADS)

    Yuan, Wei

    The possibility of using silane coupling agents as replacements for chromate treatments was investigated on galvanized steel substrates. In order to understand the influence of deposition parameters on silane film formation, pure zinc substrates were first used as a model for galvanized steel to study the interaction between silane coupling agents and zinc surfaces. The silane films formed on pure zinc substrates from aqueous solutions were characterized by ellipsometry, contact angle measurements, reflection absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and atomic force microscopy. The deposition parameters studied include solution concentration, solution dipping time and pH value of the applied solution. It appears that silane film formation involved a true equilibrium of hydrolysis and condensation reactions in aqueous solutions. It has been found that the silane film thickness obtained depends primarily on the solution concentration and is almost independent of the solution dipping time. The molecular orientation of applied silane films is determined by the pH value of applied silane solutions and the isoelectric point of metal substrates. The deposition window in terms of pH value for zinc substrates is between 6.0 and 9.0. The total surface energy of the silane-coated pure zinc substrates decreases with film aging time, the decrease rate, however, is determined by the nature of silane coupling agents. Selected silane coupling agents were applied as prepaint or passivation treatments onto galvanized steel substrates. The corrosion protection provided by these silane-based treatments were evaluated by salt spray test, cyclic corrosion test, electrochemical impedance spectroscopy, and stack test. The results showed that silane coupling agents can possibly be used to replace chromates for corrosion control of galvanized steel substrates. Silane coatings provided by these silane treatments serve mainly as physical barriers. Factors that affect the performance of a silane coupling agent in the application of corrosion control include chemical reactivity, hydrophobic character, siloxane crosslinker network, and film thickness. Good protections afforded by the silane treatments are a synergetic effect of all these factors.

  19. Ambulatory assessment of skin conductivity during first thesis presentation: lower self-confidence predicts prolonged stress response.

    PubMed

    Elfering, Achim; Grebner, Simone

    2011-06-01

    In this field study self-confidence was tested to predict the course of galvanic electrodermal stress response prior, during and after public speaking. Ten graduate students initially rated their self-confidence and afterwards presented their thesis proposals orally in a 10-min presentation to their supervisor and peers. Galvanic skin response level was measured throughout and analysed for 10 min prior to, during, and 10 min after the presentation. Two major galvanic electrodermal stress response types were observed. Five students showed a 'healthy response', i.e. an anticipatory increase in electrodermal conductance, followed by a decrease after termination of the presentation. The other five students showed a steady increase of skin conductance during and after their presentation ('prolonged response'). In line with the allostatic load model the 'prolonged response' group reported significantly lower self-confidence before presentation than the 'healthy response' group (p < 0.01). Self-confidence is a resource in novices facing an unfamiliar stressor.

  20. On the Processing of Martensitic Steels in Continuous Galvanizing Lines: Part II

    NASA Astrophysics Data System (ADS)

    Song, Taejin; Kwak, Jaihyun; de Cooman, B. C.

    2012-01-01

    The conventional continuous hot-dip galvanizing (GI) and galvannealing (GA) processes can be applied to untransformed austenite to produce Zn and Zn-alloy coated low-carbon ultra-high-strength martensitic steel provided specific alloying additions are made. The most suitable austenite decomposition behavior results from the combined addition of boron, Cr, and Mo, which results in a pronounced transformation bay during isothermal transformation. The occurrence of this transformation bay implies a considerable retardation of the austenite decomposition in the temperature range below the bay, which is close to the stages in the continuous galvanizing line (CGL) thermal cycle related to the GI and GA processes. After the GI and GA processes, a small amount of granular bainite, which consists of bainitic ferrite and discrete islands of martensite/austenite (M/A) constituents embedded in martensite matrix, is present in the microstructure. The ultimate tensile strength (UTS) of the steel after the GI and GA cycle was over 1300 MPa, and the stress-strain curve was continuous without any yielding phenomena.

  1. Effect of Annealing Temperature on Microstructure and Mechanical Properties of Hot-Dip Galvanizing DP600 Steel

    NASA Astrophysics Data System (ADS)

    Hai-yan, Sun; Zhi-li, Liu; Yang, Xu; Jian-qiang, Shi; Lian-xuan, Wang

    Hot-dip galvanizing dual phase steel DP600 steel grade with low Si was produced by steel plant and experiments by simulating galvanizing thermal history. The microstructure was observed and analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effect of different annealing temperatures on the microstructure and mechanical properties of dual-phase steel was also discussed. The experimental results show that the dual-phase steel possesses excellent strength and elongation that match EN10346 600MPa standards. The microstructure is ferrite and martensite. TEM micrograph shows that white ferrite with black martensite islands inlay with a diameter of around 1um and the content of 14 18%. The volume will expand and phase changing take the form of shear transformation when ferrite converted to martensite. So there are high density dislocations in ferrite crystalline grain near martensite. The martensite content growing will be obvious along with annealing temperature going up. But the tendency will be weak when temperature high.

  2. On the Processing of Martensitic Steels in Continuous Galvanizing Lines: Part 1

    NASA Astrophysics Data System (ADS)

    Song, Taejin; Kwak, Jaihyun; de Cooman, B. C.

    2012-01-01

    Whereas low-carbon (<0.2 mass pct) martensitic grades can be produced easily in continuous annealing processing lines equipped with the required cooling capacity, the thermal cycles in continuous galvanizing lines make it difficult to produce hot-dip Zn or Zn-alloy coated high-strength martensitic grades. This is because of the tempering processes occurring during dipping of the strip in the liquid Zn bath and, in the case of galvannealed sheet steel, the short thermal treatment required to achieve the alloying between the Zn and the steel. These short additional thermal treatments last less than 30 seconds but severely degrade the mechanical properties. Using a combination of internal friction, X-ray diffraction, and transmission electron microscopy, it is shown that the ultrafine-grained lath microstructure allows for a rapid dislocation recovery and carbide formation during the galvanizing processes. In addition, the effective dislocation pinning occurring during the galvannealing process results in strain localization and the suppression of strain hardening.

  3. Galvanic vestibular stimulation speeds visual memory recall.

    PubMed

    Wilkinson, David; Nicholls, Sophie; Pattenden, Charlotte; Kilduff, Patrick; Milberg, William

    2008-08-01

    The experiments of Alessandro Volta were amongst the first to indicate that visuo-spatial function can be altered by stimulating the vestibular nerves with galvanic current. Until recently, the beneficial effects of the procedure were masked by the high levels of electrical current applied, which induced nystagmus-related gaze deviation and spatial disorientation. However, several neuropsychological studies have shown that much weaker, imperceptible currents that do not elicit unpleasant side-effects can help overcome visual loss after stroke. Here, we show that visual processing in neurologically healthy individuals can also benefit from galvanic vestibular stimulation. Participants first learnt the names of eight unfamiliar faces and then after a short delay, answered questions from memory about how pairs of these faces differed. Mean correct reaction times were significantly shorter when sub-sensory, noise-enhanced anodal stimulation was administered to the left mastoid, compared to when no stimulation was administered at all. This advantage occurred with no loss in response accuracy, and raises the possibility that the procedure may constitute a more general form of cognitive enhancement.

  4. Pseudarthrosis due to galvanic corrosion presenting as subarachnoid hemorrhage.

    PubMed

    Beavers, Rosemary Noel; Lall, Rishi Rajiv; Barnett, Juan Ortega; Desai, Sohum Kiran

    2017-01-01

    Two unlike metals near one another can break down as they move toward electrochemical equilibrium resulting in galvanic corrosion. We describe a case of electrochemical corrosion resulting in pseudarthrosis, followed by instrumentation failure leading to subarachnoid hemorrhage. A 53-year-old female with a history of cervical instability and two separate prior cervical fusion surgery with sublaminar cables presented with new onset severe neck pain. Restricted range of motion in her neck and bilateral Hoffman's was noted. X-ray of her cervical spine was negative. A noncontrast CT scan of her head and neck showed subarachnoid hemorrhage in the prepontine and cervicomedullary cisterns. Neurosurgical intervention involved removal of prior stainless steel and titanium cables, repair of cerebrospinal fluid leak, and nonsegmental C1-C3 instrumented fusion. She tolerated the surgery well and followed up without complication. Galvanic corrosion of the Brook's fusion secondary to current flow between dissimilar metal alloys resulted in catastrophic instrumentation failure and subarachnoid hemorrhage.

  5. Use of Galvanic Skin Responses, Salivary Biomarkers, and Self-reports to Assess Undergraduate Student Performance During a Laboratory Exam Activity

    PubMed Central

    Villanueva, Idalis; Valladares, Maria; Goodridge, Wade

    2016-01-01

    Typically, self-reports are used in educational research to assess student response and performance to a classroom activity. Yet, addition of biological and physiological measures such as salivary biomarkers and galvanic skin responses are rarely included, limiting the wealth of information that can be obtained to better understand student performance. A laboratory protocol to study undergraduate students' responses to classroom events (e.g., exams) is presented. Participants were asked to complete a representative exam for their degree. Before and after the laboratory exam session, students completed an academic achievement emotions self-report and an interview that paralleled these questions when participants wore a galvanic skin sensor and salivary biomarkers were collected. Data collected from the three methods resulted in greater depth of information about students' performance when compared to the self-report. The work can expand educational research capabilities through more comprehensive methods for obtaining nearer to real-time student responses to an examination activity. PMID:26891278

  6. UV-light assisted patterned metallization of textile fabrics

    NASA Astrophysics Data System (ADS)

    Bahners, Thomas; Gebert, Beate; Prager, Andrea; Hartmann, Nils; Hagemann, Ulrich; Gutmann, Jochen S.

    2018-04-01

    A UV-assisted process allows full-faced or local deposition of silver domains on textiles made of natural as well as synthetic fibers, which act as nuclei for subsequent galvanic metallization. SEM and XPS analyses indicate that the process generates particulate depositions - particles, aggregates - of elementary silver. Masking the UV irradiation confines silver deposition strictly to the exposed areas thus allowing patterning. Adhesion of the deposited silver is high on the studied natural fiber cotton and polyamide fibers. Adhesion on smooth and chemically inert synthethic fibers such as, e.g., poly(ethylene terephthalate) or para- and meta-aramids could be enhanced by finishing with poly(vinylamine) thus providing complex-forming amino groups. Although the process does not deposit a closed, electrically conducting layer, all studied samples could be metallized by galvanization. The resulting metal coatings exhibit high conductivity and wash stability. Following a patterned silver deposition, the subsequent galvanic metallization produced conductive patterns of identical geometry thus opening an avenue towards printed circuits on textile fabrics.

  7. Galvanic corrosion behaviour of HE 20 / MDN 138 & HE 20 / MDN 250 alloys in natural seawater

    NASA Astrophysics Data System (ADS)

    Subramanian, G.; Parthiban, G. T.; Muthuraman, K.; Ramakrishna rao, P.

    2016-09-01

    In view of their excellent mechanical properties, workability and heat treatment characteristics, MDN 138 & MDN 250 have been widely used in missile, rocket and aerospace industries. With light weight and high performance characteristics HE 20 aluminium alloy acts as an important material in defence and aerospace applications. The galvanic corrosion behaviour of the metal combinations HE 20 / MDN 138 and HE 20 / MDN 250, with 1:1 area ratio, has been studied in natural seawater using the open well facility of CECRI's Offshore Platform at Tuticorin for a year. The open circuit potentials of MDN 138, MDN 250 and HE 20 of the individual metal, the mixed potential and galvanic current of the couples HE 20 / MDN 138 and HE 20 / MDN 250 were periodically monitored throughout the study period. The calcareous deposits on MDN 138 and MDN 250 were analysed using XRD. The results of the study reveal that that HE 20 has offered required amount of protection to MDN 138 & MDN 250.

  8. Preparation and characterization of 304 stainless steel/Q235 carbon steel composite material

    NASA Astrophysics Data System (ADS)

    Shen, Wenning; Feng, Lajun; Feng, Hui; Cao, Ying; Liu, Lei; Cao, Mo; Ge, Yanfeng

    The composite material of 304 stainless steel reinforced Q235 carbon steel has been prepared by modified hot-rolling process. The resulted material was characterized by scanning electron microscope, three-electrode method, fault current impact method, electrochemical potentiodynamic polarization curve measurement and electrochemical impedance spectroscopy. The results showed that metallurgical bond between the stainless steel layer and carbon steel substrate has been formed. The composite material exhibited good electrical conductivity and thermal stability. The average grounding resistance of the composite material was about 13/20 of dip galvanized steel. There has no surface crack and bubbling formed after fault current impact. The composite material led to a significant decrease in the corrosion current density in soil solution, compared with that of hot dip galvanized steel and bare carbon steel. On the basis polarization curve and EIS analyses, it can be concluded that the composite material showed improved anti-corrosion property than hot-dip galvanized steel.

  9. How Ag Nanospheres Are Transformed into AgAu Nanocages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreau, Liane M.; Schurman, Charles A.; Kewalramani, Sumit

    Bimetallic hollow, porous noble metal nanoparticles are of broad interest for biomedical, optical and catalytic applications. The most straightforward method for preparing such structures involves the reaction between HAuCl4 and well-formed Ag particles, typically spheres, cubes, or triangular prisms, yet the mechanism underlying their formation is poorly understood at the atomic scale. By combining in situ nanoscopic and atomic-scale characterization techniques (XAFS, SAXS, XRF, and electron microscopy) to follow the process, we elucidate a plausible reaction pathway for the conversion of citrate-capped Ag nanospheres to AgAu nanocages; importantly, the hollowing event cannot be explained by the nanoscale Kirkendall effect, normore » by Galvanic exchange alone, two processes that have been previously proposed. We propose a modification of the bulk Galvanic exchange process that takes into account considerations that can only occur with nanoscale particles. This nanoscale Galvanic exchange process explains the novel morphological and chemical changes associated with the typically observed hollowing process.« less

  10. Surface Oxidation of the High-Strength Steels Electrodeposited with Cu or Fe and the Resultant Defect Formation in Their Coating during the Following Galvanizing and Galvannealing Processes

    NASA Astrophysics Data System (ADS)

    Choi, Yun-Il; Beom, Won-Jin; Park, Chan-Jin; Paik, Doojin; Hong, Moon-Hi

    2010-12-01

    This study examined the surface oxidation of high-strength steels electrodeposited with Cu or Fe and the resultant defect formation in their coating during the following galvanizing and galvannealing processes. The high-strength steels were coated with an Cu or Fe layer by the electroplating method. Then, the coated steels were annealed in a reducing atmosphere, dipped in a molten zinc, and finally transformed into galvannealed steels through the galvannealing process. The formation of Si and Mn oxides on the surface of the high-strength steel was effectively suppressed, and the density of surface defects on the galvanized steel was significantly reduced by the pre-electrodeposition of Cu and Fe. This effect was more prominent for the steels electrodeposited at higher cathodic current densities. The finer electrodeposit layer formed at higher cathodic current density on the steels enabled the suppression of partial surface oxidation by Mn or Si and better wetting of Zn on the surface of the steels in the following galvanizing process. Furthermore, the pre-electrodeposited steels exhibited a smoother surface without surface cracks after the galvannealing process compared with the untreated steel. The diffusion of Fe and Zn in the Zn coating layer in the pre-electrodeposited steels appears to occur more uniformly during the galvannealing process due to the low density of surface defects induced by oxides.

  11. An electrochemical investigation of TMJ implant metal alloys in an artificial joint fluid environment: the influence of pH variation.

    PubMed

    Royhman, Dmitry; Radhakrishnan, Rashmi; Yuan, Judy Chia-Chun; Mathew, Mathew T; Mercuri, Louis G; Sukotjo, Cortino

    2014-10-01

    To investigate the corrosion behaviour of commonly used TMJ implants alloys (CoCrMo and Ti6Al4V) under simulated physiological conditions. Corrosion behaviour was evaluated using standard electrochemical corrosion techniques and galvanic corrosion techniques as per ASTM standards. Standard electrochemical tests (E(corr), I(corr), R(p) and C(f)) were conducted in bovine calf serum (BCS), as a function of alloys type and different pHs. Galvanic corrosion tests were conducted in BCS at a pH of 7.6. Alloy surfaces were characterized using white-light interferometry (WLI) and scanning electron microscopy (SEM). The potentiodynamic test results exhibited the enhanced passive layer growth and a better corrosion resistance of Ti6Al4V compared to CoCrMo. Electrochemical impedance spectroscopy measurements demonstrated the influence of protein as a function of pH on corrosion mechanisms/kinetics. Galvanic coupling was not a major contributor to corrosion. SEM and WLI images demonstrated a significantly higher in surface roughness in CoCrMo after corrosion. The results of this study suggest that Ti6Al4V shows superior corrosion behaviour to CoCrMo due to its strong passive layer, simulated joint fluid components can affect the electrochemical nature of the metal/electrolyte interface as a function of pH, and the galvanic effect of coupling CoCrMo and Ti6Al4V in a single joint is weak. Published by Elsevier Ltd.

  12. Repetitively Coupled Chemical Reduction and Galvanic Exchange as a Synthesis Strategy for Expanding Applicable Number of Pt Atoms in Dendrimer-Encapsulated Pt Nanoparticles.

    PubMed

    Cho, Taehoon; Yoon, Chang Won; Kim, Joohoon

    2018-06-13

    In this study, we report the controllable synthesis of dendrimer-encapsulated Pt nanoparticles (Pt DENs) utilizing repetitively coupled chemical reduction and galvanic exchange reactions. The synthesis strategy allows the expansion of the applicable number of Pt atoms encapsulated inside dendrimers to more than 1000 without being limited by the fixed number of complexation sites for Pt 2+ precursor ions in the dendrimers. The synthesis of Pt DENs is achieved in a short period of time (i.e., ∼10 min) simply by the coaddition of appropriate amounts of Cu 2+ and Pt 2+ precursors into aqueous dendrimer solution and subsequent addition of reducing agents such as BH 4 - , resulting in fast and selective complexation of Cu 2+ with the dendrimers and subsequent chemical reduction of the complexed Cu 2+ while uncomplexed Pt 2+ precursors remain oxidized. Interestingly, the chemical reduction of Cu 2+ , leading to the formation of Cu nanoparticles encapsulated inside the dendrimers, is coupled with the galvanic exchange of the Cu nanoparticles with the nearby Pt 2+ . This coupling repetitively proceeds until all of the added Pt 2+ ions form into Pt nanoparticles encapsulated inside the dendrimers. In contrast to the conventional method utilizing direct chemical reduction, this repetitively coupled chemical reduction and galvanic exchange enables a substantial increase in the applicable number of Pt atoms up to 1320 in Pt DENs while maintaining the unique features of DENs.

  13. Cooper pair tunnelling and quasiparticle poisoning in a galvanically isolated superconducting double dot

    NASA Astrophysics Data System (ADS)

    Esmail, A. A.; Ferguson, A. J.; Lambert, N. J.

    2017-12-01

    We increase the isolation of a superconducting double dot from its environment by galvanically isolating it from any electrodes. We probe it using high frequency reflectometry techniques, find 2e-periodic behaviour, and characterise the energy structure of its charge states. By modelling the response of the device, we determine the time averaged probability that the device is poisoned by quasiparticles, and by comparing this with previous work, we conclude that quasiparticle exchange between the dots and the leads is an important relaxation mechanism.

  14. Progress on S53 for Rotary Gear Actuators

    DTIC Science & Technology

    2008-02-01

    materials MP35N Ni alloy rods HP-9-4-30 or 4340 high strength steel gears (Cd plated) 17 - 4PH stainless bushings Ti wing spar Bad galvanic couples...Bushings: 17 - 4PH in Ti spar MP35N in gear 6 Galvanic corrosion of current system 7 Extent of the problem This is a problem with all F-18 lugs Matter...Titanium plate with 17 - 4PH bush – also refurbished from previous trials • Gears made from HP9-4-30 or S53 with MP35N bushes STREAMLINED CORROSION TESTING

  15. Adaptation of vestibular signals for self-motion perception

    PubMed Central

    St George, Rebecca J; Day, Brian L; Fitzpatrick, Richard C

    2011-01-01

    A fundamental concern of the brain is to establish the spatial relationship between self and the world to allow purposeful action. Response adaptation to unvarying sensory stimuli is a common feature of neural processing, both peripherally and centrally. For the semicircular canals, peripheral adaptation of the canal-cupula system to constant angular-velocity stimuli dominates the picture and masks central adaptation. Here we ask whether galvanic vestibular stimulation circumvents peripheral adaptation and, if so, does it reveal central adaptive processes. Transmastoidal bipolar galvanic stimulation and platform rotation (20 deg s−1) were applied separately and held constant for 2 min while perceived rotation was measured by verbal report. During real rotation, the perception of turn decayed from the onset of constant velocity with a mean time constant of 15.8 s. During galvanic-evoked virtual rotation, the perception of rotation initially rose but then declined towards zero over a period of ∼100 s. For both stimuli, oppositely directed perceptions of similar amplitude were reported when stimulation ceased indicating signal adaptation at some level. From these data the time constants of three independent processes were estimated: (i) the peripheral canal-cupula adaptation with time constant 7.3 s, (ii) the central ‘velocity-storage’ process that extends the afferent signal with time constant 7.7 s, and (iii) a long-term adaptation with time constant 75.9 s. The first two agree with previous data based on constant-velocity stimuli. The third component decayed with the profile of a real constant angular acceleration stimulus, showing that the galvanic stimulus signal bypasses the peripheral transformation so that the brainstem sees the galvanic signal as angular acceleration. An adaptive process involving both peripheral and central processes is indicated. Signals evoked by most natural movements will decay peripherally before adaptation can exert an appreciable effect, making a specific vestibular behavioural role unlikely. This adaptation appears to be a general property of the internal coding of self-motion that receives information from multiple sensory sources and filters out the unvarying components regardless of their origin. In this instance of a pure vestibular sensation, it defines the afferent signal that represents the stationary or zero-rotation state. PMID:20937715

  16. History of the Development of Liquid-Applied Coatings for Protection of Reinforced Concrete

    NASA Technical Reports Server (NTRS)

    Curran, Joseph J.; Hansen, marlin H.

    2005-01-01

    Corrosion of reinforcing steel in concrete is an insidious problem for structures at Kennedy Space Center (KSC). KSC is located on the coast of Florida in a highly corrosive atmosphere. Launch pads, highway bridge infrastructure, and buildings are strongly affected. To mitigate these problems, NASA initiated a development program for a Galvanic Liquid-Applied Coating System (GLACS). A breakthrough in this area would have great commercial value in transportation, marine and construction industry infrastructures. The patented NASA GLACS system has undergone considerable testing to meet the needs of commercialization. A moisture-cure coating gives excellent adhesion with ease of application compared to existing galvanic products on the market. The latest development, GalvaCori; can be sprayed or hand applied to almost any structure shape. A self-adhesive conductive tape system has been devised to simplify current collection within the coating areas. In testing programs, millivolt potential and milliamp output per square foot of anode have been closely studied at actual test sites. These two parameters are probably the most challenging items of a resin-based, room-temperature-applied, galvanic coating. Extensive re-formulation has resulted in a system that provides the needed polarization for catholic protection of reinforcing steel in concrete in a variety of structure environments. The rate of corrosion of rebar in concrete is greatly affected by the environment of the structure. In addition to this, for any given concrete structure; moisture level, carbonization, and chloride contamination influences the rate of rebar corrosion. Similarly, the cathodic protection level of galvanic systems is also dependent on the moisture level of the concrete. GalvaCorr is formulated to maintain galvanic activity as the moisture level of the structure declines. GalvaCorr is available as a three-part kit. The mixing step requires about ten minutes. The viscosity can be easily adjusted to meet the application needs. The pot or working life is four to six hours, depending on the temperature. GalvaCorr can be thought of as a spray-on coating, battery ready to provide up to -1.4 volts (relative to CSE) of cathodic protection (CP) potential.

  17. Evaluation of effect of galvanic corrosion between nickel-chromium metal and titanium on ion release and cell toxicity

    PubMed Central

    Choi, Jung-Yun

    2015-01-01

    PURPOSE The purpose of this study was to evaluate cell toxicity due to ion release caused by galvanic corrosion as a result of contact between base metal and titanium. MATERIALS AND METHODS It was hypothesized that Nickel (Ni)-Chromium (Cr) alloys with different compositions possess different corrosion resistances when contacted with titanium abutment, and therefore in this study, specimens (10×10×1.5 mm) were fabricated using commercial pure titanium and 3 different types of Ni-Cr alloys (T3, Tilite, Bella bond plus) commonly used for metal ceramic restorations. The specimens were divided into 6 groups according to the composition of Ni-Cr alloy and contact with titanium. The experimental groups were in direct contact with titanium and the control groups were not. After the samples were immersed in the culture medium - Dulbecco's modified Eagle's medium[DMEM] for 48 hours, the released metal ions were detected using inductively coupled plasma mass spectrometer (ICP-MS) and analyzed by the Kruskal-Wallis and Mann-Whitney test (P<.05). Mouse L-929 fibroblast cells were used for cell toxicity evaluation. The cell toxicity of specimens was measured by the 3-{4,5-dimethylthiazol-2yl}-2,5-diphenyltetrazolium bromide (MTT) test. Results of MTT assay were statistically analyzed by the two-way ANOVA test (P<.05). Post-hoc multiple comparisons were conducted using Tukey's tests. RESULTS The amount of metal ions released by galvanic corrosion due to contact between the base metal alloy and titanium was increased in all of the specimens. In the cytotoxicity test, the two-way ANOVA showed a significant effect of the alloy type and galvanic corrosion for cytotoxicity (P<.001). The relative cell growth rate (RGR) was decreased further on the groups in contact with titanium (P<.05). CONCLUSION The release of metal ions was increased by galvanic corrosion due to contact between base metal and titanium, and it can cause adverse effects on the tissue around the implant by inducing cytotoxicity. PMID:25932317

  18. Metallurgical characterization, galvanic corrosion, and ionic release of orthodontic brackets coupled with Ni-Ti archwires.

    PubMed

    Darabara, Myrsini S; Bourithis, Lefteris I; Zinelis, Spiros; Papadimitriou, George D

    2007-04-01

    In orthodontics, a combination of metallic alloys is placed into the oral cavity during medical treatment and thus the corrosion resistance and ionic release of these appliances is of vital importance. The aim of this study is to investigate the elemental composition, microstructure, hardness, corrosion properties, and ionic release of commercially available orthodontic brackets and Copper Ni-Ti archwires. Following the assessment of the elemental composition of the orthodontic wire (Copper Ni-Ti) and the six different brackets (Micro Loc, Equilibrium, OptiMESH(XRT), Gemini, Orthos2, and Rematitan), cyclic polarization curves were obtained for each material to estimate the susceptibility of each alloy to pitting corrosion in 1M lactic acid. Galvanic corrosion between the orthodontic wire and each bracket took place in 1M lactic acid for 28 days at 37 degrees C and then the ionic concentration of Nickel and Chromium was studied. The orthodontic wire is made up from a Ni-Ti alloy with copper additions, while the orthodontic brackets are manufactured by different stainless steel grades or titanium alloys. All tested wires and brackets with the exception of Gemini are not susceptible to pitting corrosion. In galvanic corrosion, following exposure for 28 days, the lowest potential difference (approximately 250 mV) appears for the orthodontic wire Copper Ni-Ti and the bracket made up from pure titanium (Rematitan) or from the stainless steel AISI 316 grade (Micro Loc). Following completion of the galvanic corrosion experiments, measurable quantities of chromium and nickel ions were found in the residual lactic acid solution. (c) 2006 Wiley Periodicals, Inc.

  19. Electrochemical, Polarization, and Crevice Corrosion Testing of Nitinol 60, A Supplement to the ECLSS Sustaining Materials Compatibility Study

    NASA Technical Reports Server (NTRS)

    Lee, R. E.

    2016-01-01

    In earlier trials, electrochemical test results were presented for six noble metals evaluated in test solutions representative of waste liquids processed in the Environmental Control and Life Support System (ECLSS) aboard the International Space Station (ISS). Subsequently, a seventh metal, Nitinol 60, was added for evaluation and subjected to the same test routines, data analysis, and theoretical methodologies. The previous six test metals included three titanium grades, (commercially pure, 6Al-4V alloy and 6Al-4V low interstitial alloy), two nickel-chromium alloys (Inconel(RegisteredTrademark) 625 and Hastelloy(RegisteredTrademark) C276), and one high-tier stainless steel (Cronidur(RegisteredTrademark) 30). The three titanium alloys gave the best results of all the metals, indicating superior corrosive nobility and galvanic protection properties. For this current effort, the results have clearly shown that Nitinol 60 is almost as noble as titanium, being very corrosion-resistant and galvanically compatible with the other six metals electrochemically and during long-term exposure. is also quite noble as it is very corrosion resistant and galvanically compatible with the other six metals from both an electrochemical perspective and long-term crevice corrosion scenario. This was clearly demonstrated utilizing the same techniques for linear, Tafel and cyclic polarization, and galvanic coupling of the metal candidate as was done for the previous study. The high nobility and low corrosion susceptibility for Nitinol 60 appear to be intermediate to the nickel/chromium alloys and the titanium metals with indications that are more reflective of the titanium metals in terms of general corrosion and pitting behavior.

  20. Corrosion behaviour and biocorrosion of galvanized steel water distribution systems.

    PubMed

    Delaunois, F; Tosar, F; Vitry, V

    2014-06-01

    Galvanized steel tubes are a popular mean for water distribution systems but suffer from corrosion despite their zinc or zinc alloy coatings. First, the quality of hot-dip galvanized (HDG) coatings was studied. Their microstructure, defects, and common types of corrosion were observed. It was shown that many manufactured tubes do not reach European standard (NBN EN 10240), which is the cause of several corrosion problems. The average thickness of zinc layer was found at 41μm against 55μm prescribed by the European standard. However, lack of quality, together with the usual corrosion types known for HDG steel tubes was not sufficient to explain the high corrosion rate (reaching 20μm per year versus 10μm/y for common corrosion types). Electrochemical tests were also performed to understand the corrosion behaviours occurring in galvanized steel tubes. Results have shown that the limiting step was oxygen diffusion, favouring the growth of anaerobic bacteria in steel tubes. EDS analysis was carried out on corroded coatings and has shown the presence of sulphur inside deposits, suggesting the likely bacterial activity. Therefore biocorrosion effects have been investigated. Actually sulphate reducing bacteria (SRB) can reduce sulphate contained in water to hydrogen sulphide (H2S), causing the formation of metal sulphides. Although microbial corrosion is well-known in sea water, it is less investigated in supply water. Thus, an experimental water main was kept in operation for 6months. SRB were detected by BART tests in the test water main. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Research on Forming Mechanisms and Controlling Measurements for Surface Light Spot Defects of Galvanizing Steel Coils for Automobile Use

    NASA Astrophysics Data System (ADS)

    Guangmin, Wei; Haiyan, Sun; Jianqiang, Shi; Lianxuan, Wang; Haihong, Wu

    When producing high surface quality galvanizing steel coils for automobile use, there are always many light spots on the surface since Hansteel CGL No.1 has been put into operation. The defect samples were analyzed by SEM and EDS. The result shows that cause for light spot is not only one. There are more Mn and P in high strength auto sheet, which can result in difficulty to be cleaned off the oxide on the hot rolled coils, so the defects coming. This is why the defects come with high strength auto sheet. When coils galvanized, the defects can't be covered up. To the contrary, the defects will be more obvious when zinc growing on the surface. And sometimes zinc or residue can adhere to work rolls when strips passing through SPM. The deposits then press normal coating. So the light spots come more. When the defect comes from pressing, there is no defect on steel base. The causation is found and measures were taken including high pressure cleaning equipments adopted. Result shows that the defects disappeared.

  2. Numerical Analysis of Edge Over Coating and Baffle Effect on Hot-Dip Galvanizing

    NASA Astrophysics Data System (ADS)

    Bao, Chengren; Kang, Yonglin; Li, Yan

    2017-06-01

    In hot-dip galvanizing process, air jet wiping control is so crucial to determine the coating thickness and uniformity of the zinc layer on the steel strip. A numerical simulation of gas-jet wiping in hot-dip galvanizing was conducted to minimize the occurrence of edge over coating (EOC). The causes of EOC were identified by contrasting and analyzing the airflow fields on the strip edge with and without a baffle. The factors influencing the airflow field on the strip edge during the change in the gap between the baffle and the strip edge were also analyzed. The effect of the distance between the air knife and the strip was evaluated. Technological parameters with on-site guidance role were obtained by combining them with the actual production to elucidate the role of the baffle in restraining the occurrence of EOC. The uniform distribution of pressure and coating thickness on the strip is achieved when the distance of the baffle from the strip edge is about 0.3 times of the jetting distance.

  3. Galvanic corrosion of ferritic stainless steels used for dental magnetic attachments in contact with an iron-platinum magnet.

    PubMed

    Nakamura, Keisuke; Takada, Yukyo; Yoda, Masanobu; Kimura, Kohei; Okuno, Osamu

    2008-03-01

    This study was an examination of the galvanic corrosion of ferritic stainless steels, namely SUS 444, SUS XM27, and SUS 447J1, in contact with a Fe-Pt magnet. The surface area ratio of each stainless steel to the Fe-Pt magnet was set at 1/1 or 1/10. Galvanic corrosion between the stainless steels and the magnet was evaluated by the amount of released ions and the electrochemical properties in 0.9% NaCl solution. Although each stainless steel showed sufficient corrosion resistance for clinical use, the amount of ions released from each tended to increase when the stainless steel was in contact with the magnet. When the surface area ratio was reduced to 1/10, the amount of Fe ions released from the stainless steels increased significantly more than when there was no contact. Since contact with the magnet which possessed an extremely noble potential created a very corrosive environment for the stainless steels, 447J1 was thus the recommended choice against a corrosion exposure as such.

  4. Effects of Coatings on the High-Cycle Fatigue Life of Threaded Steel Samples

    NASA Astrophysics Data System (ADS)

    Eder, M. A.; Haselbach, P. U.; Mishin, O. V.

    2018-05-01

    In this work, high-cycle fatigue is studied for threaded cylindrical high-strength steel samples coated using three different industrial processes: black oxidation, normal-temperature galvanization and high-temperature galvanization. The fatigue performance in air is compared with that of uncoated samples. Microstructural characterization revealed the abundant presence of small cracks in the zinc coating partially penetrating into the steel. This is consistent with the observation of multiple crack initiation sites along the thread in the galvanized samples, which led to crescent type fracture surfaces governed by circumferential growth. In contrast, the black oxidized and uncoated samples exhibited a semicircular segment type fracture surface governed by single-sided growth with a significantly longer fatigue life. Numerical fatigue life prediction based on an extended Paris-law formulation has been conducted on two different fracture cases: 2D axisymmetric multisided crack growth and 3D single-sided crack growth. The results of this upper-bound and lower-bound approach are in good agreement with experimental data and can potentially be used to predict the lifetime of bolted components.

  5. Galvanic Liquid Applied Coating Development for Protection of Steel in Concrete

    NASA Technical Reports Server (NTRS)

    Curran, Joseph John; Curran, Jerry; MacDowell, Louis

    2004-01-01

    Corrosion of reinforcing steel in concrete is a major problem affecting NASA facilities at Kennedy Space Center (KSC), other government agencies, and the general public. Problems include damage to KSC launch support structures, transportation and marine infrastructures, as well as building structures. A galvanic liquid applied coating was developed at KSC in order to address this problem. The coating is a non-epoxy metal rich ethyl silicate liquid coating. The coating is applied as a liquid from initial stage to final stage. Preliminary data shows that this coating system exceeds the NACE 100 millivolt shift criterion. The remainder of the paper details the development of the coating system through the following phases: Phase I: Development of multiple formulations of the coating to achieve easy application characteristics, predictable galvanic activity, long-term protection, and minimum environmental impact. Phase II: Improvement of the formulations tested in Phase I including optimization of metallic loading as well as incorporation of humectants for continuous activation. Phase III: Application and testing of improved formulations on the test blocks. Phase IV: Incorporation of the final formulation upgrades onto large instrumented structures (slabs).

  6. Analysis of the plugging of the systems autonomy demonstration project brassboard filters

    NASA Technical Reports Server (NTRS)

    Clay, John C.

    1989-01-01

    A fine gray powder was clogging the brassboard filters. The powder appeared to be residue from a galvanic corrosive attack by ammonia of the aluminum and stainless steel components in the system. The corrosion was caused by water and chlorine that had entered into the system and combined with the ammonia. This combination made an electrolyte and a corrosive agent of the ammonia that attacked the metals in the system. The corroded material traveled through the system with the ammonia and clogged the filters. Key conclusions are: the debris collecting in the filters is a by-product of galvanic corrosion; the debris is principally corroded aluminum and stainless from the system; and galvanic corrosion occurred from water and chlorine that entered the system during normal and/or extreme operating and servicing conditions. Key recommendations are: use only one metal in the ammonia system-titanium, aluminum, or stainless steel; make the system as air-tight as possible (replace fittings with welded joints); and replace electron paramagnetic resonance (EPR) O-rings with neoprene O-rings, and do not use freon to clean system components.

  7. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position.

    PubMed

    Ju, Hong; Yang, Yuan-Feng; Liu, Yun-Fei; Liu, Shu-Fa; Duan, Jin-Zhuo; Li, Yan

    2018-02-28

    The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2), titanium (TA2), and 316L stainless steel (316L SS). These electrodes were used with artificial seawater at different temperatures. The potential and current-density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles.

  8. Cross-Beam Laser Joining of AA 6111 to Galvanized Steel in a Coach Peel Configuration

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Mohammadpour, Masoud; Yazdian, Nima; Ma, Junjie; Carlson, Blair; Wang, Hui-Ping; Kovacevic, Radovan

    2017-06-01

    Cross-beam laser joining of aluminum alloy 6111 to hot-dip galvanized steel in the coach-peel configuration was investigated with the addition of AA 4047 filler wire. The filler material was not only brazed onto the galvanized steel but also partially fusion-welded with the aluminum panel. Through adjusting the laser power to 3.4 kW, a desirable wetting and spreading of filler wire on both panel surfaces could be achieved, and the thickness of intermetallic layer in the middle section of the interface between the weld bead and steel was less than 2 μm. To better understand the solid/liquid interfacial reaction at the brazing interface, two rotary Gaussian heat source models were introduced to simulate the temperature distribution in the molten pool by using the finite element method. Joint properties were examined in terms of microstructure and mechanical properties. During the tensile test, the fracture of coupons took place at the aluminum side rather than along the interface between the intermetallic layer and steel panel. No failure occurred during the three-point bending test.

  9. Modeling for intra-body communication with bone effect.

    PubMed

    Pun, S H; Gao, Y M; Mak, P U; Du, M; Vai, M I

    2009-01-01

    Intra-body communication (IBC) is a new, different "wireless" communication technique based on the human tissue. This short range "wireless" communication technology provides an alternative solution to wearable sensors, home health system, telemedicine and implanted devices. The development of the IBC enables the possibilities of providing less complexity and convenient communication methodologies for these devices. By regarding human tissue as communication channel, IBC making use of the conductivities properties of human tissue to send electrical signal from transmitter to receiver. In this paper, the authors proposed a new mathematical model for galvanic coupling type IBC based on a human limb. Starting from the electromagnetic theory, the authors treat human tissue as volume conductor, which is in analogous with the bioelectric phenomena analysis. In order to explain the mechanism of galvanic coupling type technique of IBC, applying the quasi-static approximation, the governing equation can be reduced to Laplace Equation. Finally, the analytical model is evaluated with on-body measurement for testing its performance. The comparison result shows that the developed mathematical model can provide good approximation for galvanic coupling type IBC on human limb under low operating frequencies.

  10. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position

    PubMed Central

    Liu, Yun-Fei; Liu, Shu-Fa; Duan, Jin-Zhuo

    2018-01-01

    The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2), titanium (TA2), and 316L stainless steel (316L SS). These electrodes were used with artificial seawater at different temperatures. The potential and current–density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles. PMID:29495617

  11. [Use of magnetic therapy combined with galvanization and tissue electrophoresis in the treatment of trophic ulcers].

    PubMed

    Alekseenko, A V; Gusak, V V; Stoliar, V F; Iftodiĭ, A G; Tarabanchuk, V V; Shcherban, N G; Naumets, A A

    1993-01-01

    The results of treatment of 86 patients with the use of magnetotherapy in combination with galvanization and intratissue electrophoresis are presented. To create an electric field, the "Potok-1" apparatus with a density of current equal to 0.05-0.1 mA/cm2 was employed. Simultaneously, the "MAG-30" apparatus for low-frequency magnetotherapy with induction of 30 mT and area of exposure of 20 cm2 was applied to a trophic ulcer site. The use of magnetogalvanotherapy in the complex of treatment of trophic ulcers of the lower extremities is recommended.

  12. The Feasibility of Using a Galvanic Cell Array for Corrosion Detection and Solution Monitoring

    NASA Technical Reports Server (NTRS)

    Kolody, Mark; Calle, Luz-Marina; Zeitlin, Nancy P. (Technical Monitor)

    2003-01-01

    An initial investigation into the response of the individual galvanic couples was conducted using potentiodynamic polarization measurements of solutions under conditions of varying corrosivity. It is hypothesized that the differing electrodes may provide a means to further investigate the corrosive nature of the analyte through genetic algorithms and pattern recognition techniques. The robust design of the electrochemical sensor makes its utilization in space exploration particularly attractive. Since the electrodes are fired on a ceramic substrate at 900 C, they may be one of the most rugged sensors available for the anticipated usage.

  13. Electrochemical Behaviour and Galvanic Effects of Titanium Implants Coupled to Metallic Suprastructures in Artificial Saliva

    PubMed Central

    Mellado-Valero, Ana; Igual Muñoz, Anna; Guiñón Pina, Virginia

    2018-01-01

    The aim of the present study is to analyze the electrochemical behavior of five different dental alloys: two cobalt-chromium alloys (CoCr and CoCr-c), one nickel-chromium-titanium alloy (NiCrTi), one gold-palladium alloy (Au), and one titanium alloy (Ti6Al4V), and the galvanic effect when they are coupled to titanium implants (TiG2). It was carried out by electrochemical techniques (open circuit measurements, potentiodynamic curves and Zero-Resistance Ammetry) in artificial saliva (AS), with and without fluorides in different acidic conditions. The studied alloys are spontaneously passivated, but NiCrTi alloy has a very narrow passive domain and losses its passivity in presence of fluorides, so is not considered as a good option for implant superstructures. Variations of pH from 6.5 to 3 in artificial saliva do not change the electrochemical behavior of Ti, Ti6Al4V, and CoCr alloys, and couples, but when the pH of the artificial saliva is below 3.5 and the fluoride content is 1000 ppm Ti and Ti6Al4V starts actively dissolving, and CoCr-c superstructures coupled to Ti show acceleration of corrosion due to galvanic effects. Thus, NiCrTi is not recommended for implant superstructures because of risk of Ni ion release to the body, and fluorides should be avoided in acidic media because Ti, Ti6Al4V, and CoCr-c superstructures show galvanic corrosion. The best combinations are Ti/Ti6Al4V and Ti/CoCr as alternative of noble gold alloys. PMID:29361767

  14. Performance of Flow and Heat Transfer in a Hot-Dip Round Coreless Galvanizing Bath

    NASA Astrophysics Data System (ADS)

    Yue, Qiang; Zhang, Chengbo; Xu, Yong; Zhou, Li; Kong, Hui; Wang, Jia

    2017-04-01

    Flow field in a coreless hot-dip galvanizing pot was investigated through a water modeling experiment. The corresponding velocity vector was measured using an acoustic Doppler velocimeter. The flow field of molten zinc in the bath was also analyzed. Steel strip velocities from 1.7 to 2.7 m/s were adopted to determine the effect of steel strip velocity on the molten zinc flow in the bath. A large vortex filled the space at the right side of the sink roll, under linear speed from 1.0 to 2.7 m/s and width from 1.0 to 1.3 m of the steel strip, because of the effects of wall and shear stress. The results of the water modeling experiment were compared with those of numerical simulations. In the simulation, Maxwell equations were solved using finite element method to obtain magnetic flux density, electromagnetic force, and Joule heating. The Joule heating rate reached the maximum and minimum values near the side wall and at the core of the bath, respectively, because of the effect of skin and proximity. In an industrial-sized model, the molten zinc flow and temperature fields driven by electromagnetic force and Joule heating in the inductor of a coreless galvanizing bath were numerically simulated. The results indicated that the direction of electromagnetic force concentrated at the center of the galvanizing pot horizontal planes and exerted a pinch effect on molten zinc. Consequently, molten zinc in the pot was stirred by electromagnetic force. Under molten zinc flow and electromagnetic force stirring, the temperature of the molten zinc became homogeneous throughout the bath. This study provides a basis for optimizing electromagnetic fields in coreless induction pot and fine-tuning the design of steel strip parameters.

  15. Electrochemical Behaviour and Galvanic Effects of Titanium Implants Coupled to Metallic Suprastructures in Artificial Saliva.

    PubMed

    Mellado-Valero, Ana; Muñoz, Anna Igual; Pina, Virginia Guiñón; Sola-Ruiz, Ma Fernanda

    2018-01-22

    The aim of the present study is to analyze the electrochemical behavior of five different dental alloys: two cobalt-chromium alloys (CoCr and CoCr-c), one nickel-chromium-titanium alloy (NiCrTi), one gold-palladium alloy (Au), and one titanium alloy (Ti6Al4V), and the galvanic effect when they are coupled to titanium implants (TiG2). It was carried out by electrochemical techniques (open circuit measurements, potentiodynamic curves and Zero-Resistance Ammetry) in artificial saliva (AS), with and without fluorides in different acidic conditions. The studied alloys are spontaneously passivated, but NiCrTi alloy has a very narrow passive domain and losses its passivity in presence of fluorides, so is not considered as a good option for implant superstructures. Variations of pH from 6.5 to 3 in artificial saliva do not change the electrochemical behavior of Ti, Ti6Al4V, and CoCr alloys, and couples, but when the pH of the artificial saliva is below 3.5 and the fluoride content is 1000 ppm Ti and Ti6Al4V starts actively dissolving, and CoCr-c superstructures coupled to Ti show acceleration of corrosion due to galvanic effects. Thus, NiCrTi is not recommended for implant superstructures because of risk of Ni ion release to the body, and fluorides should be avoided in acidic media because Ti, Ti6Al4V, and CoCr-c superstructures show galvanic corrosion. The best combinations are Ti/Ti6Al4V and Ti/CoCr as alternative of noble gold alloys.

  16. Application of thermodynamics and Wagner model on two problems in continuous hot-dip galvanizing

    NASA Astrophysics Data System (ADS)

    Liu, Huachu; He, Yanlin; Li, Lin

    2009-12-01

    Firstly in this paper, the influence of H 2 and water vapor content on selective oxidation occurred in continuous hot-dip galvanizing has been studied by thermodynamics and Wagner model, then, the Gibbs energy of each possible aluminothermic reducing reaction in zinc bath was calculated in order to judge the possibility of these reactions. It was found that oxides' amounts and oxidation type were greatly related to the H 2 and water content in the annealing atmosphere. And from the view of thermodynamics, surface oxides (MnO, Cr 2O 3, SiO 2 etc.) can be reduced by the effective Al in Zn bath.

  17. Influence of the doping type and level on the morphology of porous Si formed by galvanic etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyatilova, O. V., E-mail: 5ilova87@gmail.com; Gavrilov, S. A.; Shilyaeva, Yu. I.

    The formation of porous silicon (por-Si) layers by the galvanic etching of single-crystal Si samples (doped with boron or phosphorus) in an HF/C{sub 2}H{sub 5}OH/H{sub 2}O{sub 2} solution is investigated. The por-Si layers are analyzed by the capillary condensation of nitrogen and scanning electron microscopy (SEM). The dependences of the morphological characteristics of por-Si (pore diameter, specific surface area, pore volume, and thickness of the pore walls), which determine the por-Si combustion kinetics, on the dopant type and initial wafer resistivity are established.

  18. CFD study of ejector flow behavior in a blast furnace gas galvanizing plant

    NASA Astrophysics Data System (ADS)

    Besagni, Giorgio; Mereu, Riccardo; Inzoli, Fabio

    2015-02-01

    In recent years, there has been a growing interest toward Blast Furnace Gas (BFG) as a low-grade energy source for industrial furnaces. This paper considers the revamping of a galvanic plant furnace converted to BFG from natural gas. In the design of the new system, the ejector on the exhaust line is a critical component. This paper studies the flow behavior of the ejector using a Computational Fluid Dynamics (CFD) analysis. The CFD model is based on a 3D representation of the ejector, using air and exhaust gases as working fluids. This paper is divided in three parts. In the first part, the galvanic plant used as case study is presented and discussed, in the second part the CFD approach is outlined, and in the third part the CFD approach is validated using experimental data and the numerical results are presented and discussed. Different Reynolds-Averaged Navier-Stokes (RANS) turbulence models ( k-ω SST and k-ɛ Realizable) are evaluated in terms of convergence capability and accuracy in predicting the pressure drop along the ejector. Suggestions for future optimization of the system are also provided.

  19. Technical and economic advantages of making lead-acid battery grids by continuous electroforming

    NASA Astrophysics Data System (ADS)

    Warlimont, H.; Hofmann, T.

    A new continuous electroforming process to manufacture lead grids for automotive and industrial lead-acid batteries has been developed. A galvanic cell comprising a drum cathode for electroforming and a subsequent series of galvanic cells which form a strip galvanizing line are operating in a single, fully continuous, automatic process. Virgin lead or lead scrap may be used as the anode material. The product is grid strip of any specified thickness and design which can be fed into existing strip-pasting equipment. The composition and microstructure of the grid material can be varied to provide increased corrosion resistance and increased paste adherence. A unique feature of the material is its inherent layered composite structure that allows optimization of the properties according to particular functional requirements. Thus, both the specific power and the specific energy of the battery can be increased by reducing weight. The material properties increase the calendar life of the battery by increasing the corrosion resistance of the grid, and increase the cycle-life of the battery by improved adherence of the positive active material. The technical and economic features and competitive advantages of this new technology and product are presented in quantitative terms.

  20. Corrosion Behavior and Strength of Dissimilar Bonding Material between Ti and Mg Alloys Fabricated by Spark Plasma Sintering

    PubMed Central

    Pripanapong, Patchara; Kariya, Shota; Luangvaranunt, Tachai; Umeda, Junko; Tsutsumi, Seiichiro; Takahashi, Makoto; Kondoh, Katsuyoshi

    2016-01-01

    Ti and solution treated Mg alloys such as AZ31B (ST), AZ61 (ST), AZ80 (ST) and AZ91 (ST) were successfully bonded at 475 °C by spark plasma sintering, which is a promising new method in welding field. The formation of Ti3Al intermetallic compound was found to be an important factor in controlling the bonding strength and galvanic corrosion resistance of dissimilar materials. The maximum bonding strength and bonding efficiency at 193 MPa and 96% were obtained from Ti/AZ91 (ST), in which a thick and uniform nano-level Ti3Al layer was observed. This sample also shows the highest galvanic corrosion resistance with a measured galvanic width and depth of 281 and 19 µm, respectively. The corrosion resistance of the matrix on Mg alloy side was controlled by its Al content. AZ91 (ST) exhibited the highest corrosion resistance considered from its corrode surface after corrosion test in Kroll’s etchant. The effect of Al content in Mg alloy on bonding strength and corrosion behavior of Ti/Mg alloy (ST) dissimilar materials is discussed in this work. PMID:28773788

  1. Vertical Soil Profiling Using a Galvanic Contact Resistivity Scanning Approach

    PubMed Central

    Pan, Luan; Adamchuk, Viacheslav I.; Prasher, Shiv; Gebbers, Robin; Taylor, Richard S.; Dabas, Michel

    2014-01-01

    Proximal sensing of soil electromagnetic properties is widely used to map spatial land heterogeneity. The mapping instruments use galvanic contact, capacitive coupling or electromagnetic induction. Regardless of the type of instrument, the geometrical configuration between signal transmitting and receiving elements typically defines the shape of the depth response function. To assess vertical soil profiles, many modern instruments use multiple transmitter-receiver pairs. Alternatively, vertical electrical sounding can be used to measure changes in apparent soil electrical conductivity with depth at a specific location. This paper examines the possibility for the assessment of soil profiles using a dynamic surface galvanic contact resistivity scanning approach, with transmitting and receiving electrodes configured in an equatorial dipole-dipole array. An automated scanner system was developed and tested in agricultural fields with different soil profiles. While operating in the field, the distance between current injecting and measuring pairs of rolling electrodes was varied continuously from 40 to 190 cm. The preliminary evaluation included a comparison of scan results from 20 locations to shallow (less than 1.2 m deep) soil profiles and to a two-layer soil profile model defined using an electromagnetic induction instrument. PMID:25057135

  2. Real-time monitoring of laser welding of galvanized high strength steel in lap joint configuration

    NASA Astrophysics Data System (ADS)

    Kong, Fanrong; Ma, Junjie; Carlson, Blair; Kovacevic, Radovan

    2012-10-01

    Two different cases regarding the zinc coating at the lap joint faying surface are selected for studying the influence of zinc vapor on the keyhole dynamics of the weld pool and the final welding quality. One case has the zinc coating fully removed at the faying surface; while the other case retains the zinc coating on the faying surface. It is found that removal of the zinc coating at the faying surface produces a significantly better weld quality as exemplified by a lack of spatters whereas intense spatters are present when the zinc coating is present at the faying surface. Spectroscopy is used to detect the optical spectra emitted from a laser generated plasma plume during the laser welding of galvanized high strength DP980 steel in a lap-joint configuration. A correlation between the electron temperature and defects within the weld bead is identified by using the Boltzmann plot method. The laser weld pool keyhole dynamic behavior affected by a high-pressure zinc vapor generated at the faying surface of galvanized steel lap-joint is monitored in real-time by a high speed charge-coupled device (CCD) camera assisted with a green laser as an illumination source.

  3. Defect detection and classification of galvanized stamping parts based on fully convolution neural network

    NASA Astrophysics Data System (ADS)

    Xiao, Zhitao; Leng, Yanyi; Geng, Lei; Xi, Jiangtao

    2018-04-01

    In this paper, a new convolution neural network method is proposed for the inspection and classification of galvanized stamping parts. Firstly, all workpieces are divided into normal and defective by image processing, and then the defective workpieces extracted from the region of interest (ROI) area are input to the trained fully convolutional networks (FCN). The network utilizes an end-to-end and pixel-to-pixel training convolution network that is currently the most advanced technology in semantic segmentation, predicts result of each pixel. Secondly, we mark the different pixel values of the workpiece, defect and background for the training image, and use the pixel value and the number of pixels to realize the recognition of the defects of the output picture. Finally, the defect area's threshold depended on the needs of the project is set to achieve the specific classification of the workpiece. The experiment results show that the proposed method can successfully achieve defect detection and classification of galvanized stamping parts under ordinary camera and illumination conditions, and its accuracy can reach 99.6%. Moreover, it overcomes the problem of complex image preprocessing and difficult feature extraction and performs better adaptability.

  4. An evaluation of airborne nickel, zinc, and lead exposure at hot dip galvanizing plants.

    PubMed

    Verma, D K; Shaw, D S

    1991-12-01

    Industrial hygiene surveys were conducted at three hot dip galvanizing plants to determine occupational exposure to nickel, zinc, and lead. All three plants employed the "dry process" and used 2% nickel, by weight, in their zinc baths. A total of 32 personal and area air samples were taken. The air samples were analyzed for nickel, zinc, and lead. Some samples were also analyzed for various species of nickel (i.e., metallic, soluble, and oxidic). The airborne concentrations observed for nickel and its three species, zinc, and lead at the three plants were all well below the current and proposed threshold limit values recommended by the American Conference of Governmental Industrial Hygienists (ACGIH).

  5. Modeling and Characterization of cMUT-based Devices Applied to Galvanic Isolation

    NASA Astrophysics Data System (ADS)

    Heller, Jacques; Boulmé, Audren; Alquier, Daniel; Ngo, Sophie; Perroteau, Marie; Certon, Domnique

    This paper describes a new way of using cMUT technology: galvanic isolation for power electronics. These devices work like acoustic transformers, except that piezoelectricity is replaced by cMUT technology. Primary and secondary circuits are two cMUT-based transducers respectively layered on each side of a silicon substrate, through which the ultrasonic triggering signal is transmitted. A specific model based on a commercial finite element code was implemented to simulate these devices. A particular attention was paid on the modeling of the cMUT/substrate coupling which is a key feature for the intended application. First experimental results performed for model validation are presented here and discussed.

  6. Charging system with galvanic isolation and multiple operating modes

    DOEpatents

    Kajouke, Lateef A.; Perisic, Milun; Ransom, Ray M.

    2013-01-08

    Systems and methods are provided for operating a charging system with galvanic isolation adapted for multiple operating modes. A vehicle charging system comprises a DC interface, an AC interface, a first conversion module coupled to the DC interface, and a second conversion module coupled to the AC interface. An isolation module is coupled between the first conversion module and the second conversion module. The isolation module comprises a transformer and a switching element coupled between the transformer and the second conversion module. The transformer and the switching element are cooperatively configured for a plurality of operating modes, wherein each operating mode of the plurality of operating modes corresponds to a respective turns ratio of the transformer.

  7. Dissolution-Induced Nanowire Synthesis on Hot-Dip Galvanized Surface in Supercritical Carbon Dioxide.

    PubMed

    Kaleva, Aaretti; Saarimaa, Ville; Heinonen, Saara; Nikkanen, Juha-Pekka; Markkula, Antti; Väisänen, Pasi; Levänen, Erkki

    2017-07-11

    In this study, we demonstrate a rapid treatment method for producing a needle-like nanowire structure on a hot-dip galvanized sheet at a temperature of 50 °C. The processing method involved only supercritical carbon dioxide and water to induce a reaction on the zinc surface, which resulted in growth of zinc hydroxycarbonate nanowires into flower-like shapes. This artificial patina nanostructure predicts high surface area and offers interesting opportunities for its use in industrial high-end applications. The nanowires can significantly improve paint adhesion and promote electrochemical stability for organic coatings, or be converted to ZnO nanostructures by calcining to be used in various semiconductor applications.

  8. Dissolution-Induced Nanowire Synthesis on Hot-Dip Galvanized Surface in Supercritical Carbon Dioxide

    PubMed Central

    Saarimaa, Ville; Heinonen, Saara; Nikkanen, Juha-Pekka; Markkula, Antti; Väisänen, Pasi; Levänen, Erkki

    2017-01-01

    In this study, we demonstrate a rapid treatment method for producing a needle-like nanowire structure on a hot-dip galvanized sheet at a temperature of 50 °C. The processing method involved only supercritical carbon dioxide and water to induce a reaction on the zinc surface, which resulted in growth of zinc hydroxycarbonate nanowires into flower-like shapes. This artificial patina nanostructure predicts high surface area and offers interesting opportunities for its use in industrial high-end applications. The nanowires can significantly improve paint adhesion and promote electrochemical stability for organic coatings, or be converted to ZnO nanostructures by calcining to be used in various semiconductor applications. PMID:28696374

  9. Morphology and antimony segregation of spangles on batch hot-dip galvanized coatings

    NASA Astrophysics Data System (ADS)

    Peng, Shu; Lu, Jintang; Che, Chunshan; Kong, Gang; Xu, Qiaoyu

    2010-06-01

    Spangles produced by batch hot-dip galvanizing process have a rougher surface and a greater surface segregation of alloying element compared with those in continuous hot-dip galvanizing line (CGL), owing to the cooling rate of the former is much smaller than that of the later. Therefore, typical spangles on a batch hot-dipped Zn-0.05Al-0.2Sb alloy coating were investigated. The chemical, morphological characterization and identification of the phases on the spangles were examined by scanning electron microscopy (SEM), backscattered electron imaging (BSE), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The results showed that the coating surface usually exhibited three kinds of spangles: shiny, feathery and dull spangle, of which extensively antimony surface segregation was detected. The nature of precipitate on the coating surface was identified as β-Sb 3Zn 4, The precipitated β-Sb 3Zn 4 particles distributed randomly on the shiny spangle surface, both β-Sb 3Zn 4 particles and dentritic segregation of antimony dispersed in the dendritic secondary arm spacings of the feathery spangle and on the whole dull spangle surface. The dentritic segregation of antimony and precipitation of Sb 3Zn 4 compound are discussed by a proposed model.

  10. Effect of Process Parameters on the Structure and Properties of Galvanized Sheets

    NASA Astrophysics Data System (ADS)

    Shukla, S. K.; Saha, B. B.; Triathi, B. D.; Avtar, Ram

    2010-07-01

    The effect of galvanizing parameters on the structure (spangle size and coating microstructure) and properties (formability and corrosion resistance) of galvanized sheets was studied in a hot dip process simulator (HDPS) in a conventional Pb bearing (0.08-0.10%) zinc bath by varying zinc bath Al level (0.10-0.28%), bath temperature (718-743 K), dipping time (1.5-3.5 s), wiping gas flow rate (200-450 lpm), nozzle distance (15-17 mm) and wiping delay time (0.1-2.1 s). Al level in the range of 0.18-0.24% in combination with dipping time of 1.5-2.5 s and bath temperature of 718-733 K results in superior formability ( E cv: ~9.3 mm) of the composite (thickness: 0.8 mm). High post-dip cooling rates (~25 K/s) suppress spangle growth (spangle size: ~2 mm). The spangle size of the GI sheet strongly influences the corrosion rate which increases from 5.8 to 9.2 mpy with a decrease in spangle size from 17.5 to 3 mm. By controlling the Al level (0.20%) in zinc bath and bath temperature (733 K), the corrosion rate of mini-spangle GI sheet can be controlled to a level of 5.5 mpy.

  11. Selective Oxidation and Reactive Wetting during Galvanizing of a CMnAl TRIP-Assisted Steel

    NASA Astrophysics Data System (ADS)

    Bellhouse, E. M.; McDermid, J. R.

    2011-09-01

    A transformation induced plasticity (TRIP)-assisted steel with 0.2 pct C, 1.5 pct Mn, and 1.5 pct Al was successfully galvanized using a thermal cycle previously shown to produce an excellent combination of strength and ductility. The steel surface chemistry and oxide morphology were determined as a function of process atmosphere oxygen partial pressure. For the 220 K (-53 °C) dew point (dp) + 20 pct H2 atmosphere, the oxide morphology was a mixture of films and nodules. For the 243 K (-30 °C) dp + 5 pct H2 atmosphere, nodules of MnO were found primarily at grain boundaries. For the 278 K (+5 °C) dp + 5 pct H2 atmosphere, nodules of metallic Fe were found on the surface as a result of alloy element internal oxidation. The steel surface chemistry and oxide morphology were then related to the reactive wetting behavior during continuous hot dip galvanizing. Good wetting was obtained using the two lower oxygen partial pressure process atmospheres [220 K dp and 243 K dp (-53 °C dp and -30 °C dp)]. An increase in the number of bare spots was observed when using the higher oxygen partial pressure process atmosphere (+5 °C dp) due to the increased thickness of localized oxide films.

  12. The role of surface nonuniformity in controlling the initiation of a galvanic replacement reaction.

    PubMed

    Cobley, Claire M; Zhang, Qiang; Song, Wilbur; Xia, Younan

    2011-06-06

    The use of silver nanocrystals--asymmetrically truncated octahedrons and nanobars--characterized by a nonuniform surface as substrates for a galvanic replacement reaction was investigated. As the surfaces of these nanocrystals contain facets with a variety of different areas, shapes, and atomic arrangements, we were able to examine the roles of these parameters in different stages of the galvanic replacement reaction with HAuCl(4) (e.g., pitting, hollowing, pit closing, and pore formation), and thus obtain a deeper understanding of the reaction mechanism than is possible with silver nanocubes. We found that the most important of these parameters was the atomic arrangement, that is, whether the surface was capped by a {100} or {111} facet, and that the area and shape of the facet had essentially no effect on the initiation of the reaction. Interestingly, through the reaction with asymmetrically truncated octahedrons, we were also able to demonstrate that even when pitting occurred over a large area, this region would be sealed through a combination of atomic diffusion and deposition during the intermediate stages of the reaction. Consequently, even if pitting occurred across a large percentage of the nanocrystal surface, it was still possible to maintain the morphology of the template throughout the reaction. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effect of age and rainfall pH on contaminant yields from metal roofs.

    PubMed

    Wicke, Daniel; Cochrane, Thomas A; O'Sullivan, Aisling D; Cave, Simon; Derksen, Mark

    2014-01-01

    Metal roofs are recognized for conveying significant metal loads to urban streams through stormwater runoff. Metal concentrations in urban runoff depend on roof types and prevailing weather conditions but the combined effects of roof age and rainfall pH on metal mobilization are not well understood. To investigate these effects on roof runoff, water quality was analysed from galvanized iron and copper roofs following rainfall events and also from simulating runoff using a rainfall simulator on specially constructed roof modules. Zinc and copper yields under different pH regimes were investigated for two roof materials and two different ages. Metal mobilization from older roofs was greater than new roofs with 55-year-old galvanized roof surfaces yielding more Zn, on average increasing by 45% and 30% under a rainfall pH of 4 and 8, respectively. Predominantly dissolved (85-95%) Zn and Cu concentrations in runoff exponentially increased as the rainfall pH decreased. Results also confirmed that copper guttering and downpipes associated with galvanized steel roof systems can substantially increase copper levels in roof runoff. Understanding the dynamics of roof surfaces as a function of weathering and rainfall pH regimes can help developers with making better choices about roof types and materials for stormwater improvement.

  14. Cathodic behaviour of stainless steel in coastal Indian seawater: calcareous deposits overwhelm biofilms.

    PubMed

    Eashwar, M; Subramanian, G; Palanichamy, S; Rajagopal, G; Madhu, S; Kamaraj, P

    2009-01-01

    Type-316 stainless steel (SS) was investigated as the cathode in galvanic couples in full-strength seawater from the Gulf of Mannar on the southeast coast of India. Tests were devised to examine the impact of SS cathodes on anode materials with or without the accrual of marine biofilms. Biofilmed SS cathodes significantly enhanced the rate of corrosion of nickel, causing noble shifts in the couple potentials. With mild steel and zinc as the anodes, calcareous deposits developed quite rapidly on the SS cathodes and led to a significant reduction of bacterial numbers. The calcareous deposits also caused substantial reduction of galvanic corrosion rates for mild steel, whereas there was no difference for zinc. The deposits were identified by XRD as essentially carbonates, oxides and hydroxides of calcium and magnesium. Potentiodynamic polarization performed on the actual couples after disconnection and equilibration provided reasonable interpretations of the galvanic corrosion trends. Data from this work suggest that a potential of about -0.70 V vs. saturated calomel electrode (SCE) should provide optimum protection of SS in warmer, full-strength seawater that supports the precipitation of calcareous deposits. The criterion commonly recommended for temperate conditions of lower water temperature and estuarine waters of lower alkalinity is -1.0 V (SCE).

  15. Atmospheric corrosion performance of different steels in early exposure in the coastal area region West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Nuraini, Lutviasari; Prifiharni, Siska; Priyotomo, Gadang; Sundjono, Gunawan, Hadi; Purawiardi, Ibrahim

    2018-05-01

    The performance of carbon steel, galvanized steel and aluminium after one month exposed in the atmospheric coastal area, which is in Limbangan and Karangsong Beach, West Java, Indonesia was evaluated. The corrosion rate was determined by weight loss method and the morphology of the steel after exposed was observed by Scanning Electron Microscopy(SEM)/Energy Dispersive X-Ray Analysis(EDX). The site was monitored to determine the chloride content in the marine atmosphere. Then, the corrosion products formed at carbon steel were characterized by X-Ray diffraction (XRD). The result showed the aggressively corrosion in Karangsong beach, indicated from the corrosion rate of carbon steel, galvanized steel and aluminium were 38.514 mpy; 4.7860 mpy and 0.5181 mpy, respectively. While in Limbangan Beach the corrosion rate of specimen carbon steel, galvanized steel and aluminium were 3.339; 0.219 and 0.166 mpy, respectively. The chloride content was found to be the main factor that influences in the atmospheric corrosion process in this area. Chloride content accumulated in Karangsong and Limbangan was 497 mg/m2.day and 117 mg/m2.day, respectively. The XRD Analysis on each carbon steel led to the characterization of a complex mixture of iron oxides phases.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakshit, S.K.; Naik, Y.P.; Parida, S.C.

    Three ternary oxides LiAl{sub 5}O{sub 8}(s), LiAlO{sub 2}(s) and Li{sub 5}AlO{sub 4}(s) in the system Li-Al-O were prepared by solid-state reaction route and characterized by X-ray powder diffraction method. Equilibrium partial pressure of CO{sub 2}(g) over the three-phase mixtures {l_brace}LiAl{sub 5}O{sub 8}(s)+Li{sub 2}CO{sub 3}(s)+5Al{sub 2}O{sub 3}(s){r_brace}, {l_brace}LiAl{sub 5}O{sub 8}(s)+5LiAlO{sub 2}(s)+2Li{sub 2}CO{sub 3}(s){r_brace} and {l_brace}LiAlO{sub 2}(s)+Li{sub 5}AlO{sub 4}(s)+2Li{sub 2}CO{sub 3}(s){r_brace} were measured using Knudsen effusion quadrupole mass spectrometry (KEQMS). Solid-state galvanic cell technique based on calcium fluoride electrolyte was used to determine the standard molar Gibbs energies of formations of these aluminates. The standard molar Gibbs energies of formation of thesemore » three aluminates calculated from KEQMS and galvanic cell measurements were in good agreement. Heat capacities of individual ternary oxides were measured from 127 to 868 K using differential scanning calorimetry. Thermodynamic tables representing the values of {delta}{sub f}H{sup 0}(298.15 K), S{sup 0}(298.15 K) S{sup 0}(T), C{sub p}{sup 0}(T), H{sup 0}(T), {l_brace}H{sup 0}(T)-H{sup 0}(298.15 K){r_brace}, G{sup 0}(T), {delta}{sub f}H{sup 0}(T), {delta}{sub f}G{sup 0}(T) and free energy function (fef) were constructed using second law analysis and FACTSAGE thermo-chemical database software. - Graphical abstract: Comparison of {delta}{sub f}G{sub m}{sup 0} of ternary oxides determined from KEQMS and solid-state galvanic cell techniques. (O) KEQMS, (9632;) solid-state galvanic cell and solid line: combined fit of both the experimental data.« less

  17. Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets

    NASA Astrophysics Data System (ADS)

    Raab, A. E.; Berger, E.; Freudenthaler, J.; Leomann, F.; Walch, C.

    2011-05-01

    Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry1,2,3. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago1. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesive and abrasive tool wear. First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test. All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.

  18. Theoretical Investigation of the Interfacial Reactions during Hot-Dip Galvanizing of Steel

    NASA Astrophysics Data System (ADS)

    Mandal, G. K.; Balasubramaniam, R.; Mehrotra, S. P.

    2009-03-01

    In the modern galvanizing line, as soon as the steel strip enters the aluminum-containing zinc bath, two reactions occur at the strip and the liquid-zinc alloy interface: (1) iron rapidly dissolves from the strip surface, raising the iron concentration in the liquid phase at the strip-liquid interface; and (2) aluminum forms a stable aluminum-iron intermetallic compound layer at the strip-coating interface due to its greater affinity toward iron. The main objective of this study is to develop a simple and realistic mathematical model for better understanding of the kinetics of galvanizing reactions at the strip and the liquid-zinc alloy interface. In the present study, a model is proposed to simulate the effect of various process parameters on iron dissolution in the bath, as well as, aluminum-rich inhibition layer formation at the substrate-coating interface. The transient-temperature profile of the immersed strip is predicted based on conductive and convective heat-transfer mechanisms. The inhibition-layer thickness at the substrate-coating interface is predicted by assuming the cooling path of the immersed strip consists of a series of isothermal holds of infinitesimal time-step. The influence of galvanizing reaction is assessed by considering nucleation and growth mechanisms at each hold time, which is used to estimate the total effect of the immersion time on the formation mechanism of the inhibition layer. The iron- dissolution model is developed based on well established principles of diffusion taking into consideration the area fraction covered by the intermetallic on the strip surface during formation of the inhibition layer. The model can be effectively used to monitor the dross formation in the bath by optimizing the process parameters. Theoretical predictions are compared with the findings of other researchers. Simulated results are in good agreement with the theoretical and experimental observation carried out by other investigators.

  19. Comparison of galvanic corrosion potential of metal injection molded brackets to that of conventional metal brackets with nickel-titanium and copper nickel-titanium archwire combinations.

    PubMed

    Varma, D Praveen Kumar; Chidambaram, S; Reddy, K Baburam; Vijay, M; Ravindranath, D; Prasad, M Rajendra

    2013-05-01

    The aim of the study is to investigate the galvanic corrosion potential of metal injection molding (MIM) brackets to that of conventional brackets under similar in vitro conditions with nickel-titanium and copper nickel-titanium archwires. Twenty-five maxillary premolar MIM stainless steel brackets and 25 conventional stainless steel brackets and archwires, 0.16 inch, each 10 mm length, 25 nickeltitanium wires, 25 copper nickel-titanium wires were used. They were divided into four groups which had five samples each. Combination of MIM bracket with copper nickel-titanium wire, MIM bracket with nickel-titanium wire and conventional stainless steel brackets with copper nickel-titanium wire and conventional stainless steel brackets with nickel-titanium wires which later were suspended in 350 ml of 1 M lactic acid solution media. Galvanic corrosion potential of four groups were analyzed under similar in vitro conditions. Precorrosion and postcorrosion elemental composition of MIM and conventional stainless steel bracket by scanning electron microscope (SEM) with energy dispersive spectroscope (EDS) was done. MIM bracket showed decreased corrosion susceptibility than conventional bracket with copper nickeltitanium wire. Both MIM and conventional bracket showed similar corrosion resistance potential in association with nickel-titanium archwires. It seems that both brackets are more compatible with copper nickel-titanium archwires regarding the decrease in the consequences of galvanic reaction. The EDS analysis showed that the MIM brackets with copper nickel-titanium wires released less metal ions than conventional bracket with copper nickeltitanium wires. MIM brackets showed decreased corrosion susceptibility, copper nickel-titanium archwires are compatible with both the brackets than nickel-titanium archwires. Clinically MIM and conventional brackets behaved more or less similarly in terms of corrosion resistance. In order to decrease the corrosion potential of MIM brackets, more precise manufacturing technique should be improved to get a more smoother surface finish.

  20. Silver zeolite antimicrobial activity in aluminium heating, ventilation and air conditioning system ducts.

    PubMed

    Rizzetto, R; Mansi, A; Panatto, D; Rizzitelli, E; Tinteri, C; Sasso, T; Gasparini, R; Crovari, P

    2008-03-01

    Air pollution in confined environments is a serious health problem, in that most people spend long periods indoors (in homes, offices, classrooms etc.). Some people (children, the elderly, heart disease patients, asthmatic or allergic subjects) are at greater risk because of their conditions of frailty. The growing use of air-conditioning systems in many public and private buildings aggravates this health risk, especially when these systems are not correctly installed or regularly serviced. The aim of our study was to verify the capacity of Ag+ ions to stop the growth of bacteria and moulds inside the ducts of Heating, Ventilation and Air Conditioning system ducts (HVAC) systems when these ducts were lined with active Ag+ ions zeolite-coated panels. A Y-shaped HVAC model with two branches was used; one branch was made of traditional galvanized iron, as was the whole system, while the other was lined with active Ag+ zeolite-coated polyurethane panels. During the test, samples of dust present inside both ducts were collected and seeded in liquid and solid media to detect bacteria and moulds. The presence of bacteria was also sought in the air emerging from the outlets of both ducts. Tests made on samples of particulate collected from the two different ducts revealed a lower total bacterial load in the samples collected from the Ag+ zeolite-coated duct than in the samples from the traditional Zn galvanized duct. In addition, the values of bacterial load found in the air emerging from the Ag+ ions zeolite-lined duct were 5 times lower than those found in the air from the traditional galvanized iron duct. The utilization of Ag+ zeolite-coated panels in air-conditioning systems could improve the quality of the emerging air in comparison with traditional installations in galvanized iron. This innovation could prove particularly advantageous in the event of accidents during the installation of air-conditioning systems or of contaminated aerosols coming from outside.

  1. Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raab, A. E.; Berger, E.; Freudenthaler, J.

    Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesivemore » and abrasive tool wear.First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test.All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.« less

  2. Cytotoxic effect of galvanically coupled magnesium-titanium particles.

    PubMed

    Kim, Jua; Gilbert, Jeremy L

    2016-01-01

    Recent work has shown that reduction reactions at metallic biomaterial surfaces can induce significant killing of cells in proximity to the surface. To exploit this phenomenon for therapeutic purposes, for example, for cancer tumor killing or antibacterial effects (amongst other applications), magnesium metal particles, galvanically coupled to titanium by sputtering, have been evaluated for their cell-killing capability (i.e. cytotoxicity). Magnesium (Mg) particles large enough to prevent particle phagocytosis were investigated, so that only electrochemical reactions, and not particle toxicity per se, caused cytotoxic effects. Titanium (Ti) coated magnesium particles, as well as magnesium-only particles were introduced into MC3T3-E1 mouse pre-osteoblast cell cultures over a range of particle concentrations, and cells were observed to die in a dosage-dependent manner. Ti-coated magnesium particles killed more cells at lower particle concentration than magnesium alone (P<0.05), although the pH measured for magnesium and magnesium-titanium had no significant difference at similar particle concentrations. Complete cell killing occurred at 750μg/ml and 1500μg/ml for Mg-Ti and Mg, respectively. Thus, this work demonstrates that galvanically coupled Mg-Ti particles have a significant cell killing capability greater than Mg alone. In addition, when the pH associated with complete killing with particles was created using NaOH only (no particles), then the percentage of cells killed was significantly less (P<0.05). Together, these findings show that pH is not the sole factor associated with cell killing and that the electrochemical reactions, including the reduction reactions, play an important role. Reduction reactions on galvanically coupled Mg-Ti and Mg particles may generate reactive oxygen intermediates that are able to kill cells in close proximity to the particles and this approach may lead to potential therapies for infection and cancer. This paper demonstrates that during active corrosion of both Mg and Mg-Ti particles cells cultured with the particles are killed in a dose-dependent particle concentration fashion. Additionally, galvanically-coupled magnesium-titanium microparticles kill cells more effectively than magnesium particles alone. The killing effect was shown to not be due to pH shifts since no differences were seen for different particle types and pH adjusted medium without particles did not exhibit the same level of killing. The significance of this work is the recognition of this killing effect with Mg particles and the potential therapeutic applications in infection control and cancer treatment that this process may provide. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Galvanic reduction of uranium(III) chloride from LiCl-KCl eutectic salt using gadolinium metal

    NASA Astrophysics Data System (ADS)

    Bagri, Prashant; Zhang, Chao; Simpson, Michael F.

    2017-09-01

    The drawdown of actinides is an important unit operation to enable the recycling of electrorefiner salt and minimization of waste. A new method for the drawdown of actinide chlorides from LiCl-KCl molten salt has been demonstrated here. Using the galvanic interaction between the Gd/Gd(III) and U/U(III) redox reactions, it is shown that UCl3 concentration in eutectic LiCl-KCl can be reduced from 8.06 wt.% (1.39 mol %) to 0.72 wt.% (0.12 mol %) in about an hour via plating U metal onto a steel basket. This is a simple process for returning actinides to the electrorefiner and minimizing their loss to the salt waste stream.

  4. The Modeling and Simulation of the Galvanic Coupling Intra-Body Communication via Handshake Channel.

    PubMed

    Li, Maoyuan; Song, Yong; Li, Wansong; Wang, Guangfa; Bu, Tianpeng; Zhao, Yufei; Hao, Qun

    2017-04-14

    Intra-body communication (IBC) is a technology using the conductive properties of the body to transmit signal, and information interaction by handshake is regarded as one of the important applications of IBC. In this paper, a method for modeling the galvanic coupling intra-body communication via handshake channel is proposed, while the corresponding parameters are discussed. Meanwhile, the mathematical model of this kind of IBC is developed. Finally, the validity of the developed model has been verified by measurements. Moreover, its characteristics are discussed and compared with that of the IBC via single body channel. Our results indicate that the proposed method will lay a foundation for the theoretical analysis and application of the IBC via handshake channel.

  5. The Modeling and Simulation of the Galvanic Coupling Intra-Body Communication via Handshake Channel

    PubMed Central

    Li, Maoyuan; Song, Yong; Li, Wansong; Wang, Guangfa; Bu, Tianpeng; Zhao, Yufei; Hao, Qun

    2017-01-01

    Intra-body communication (IBC) is a technology using the conductive properties of the body to transmit signal, and information interaction by handshake is regarded as one of the important applications of IBC. In this paper, a method for modeling the galvanic coupling intra-body communication via handshake channel is proposed, while the corresponding parameters are discussed. Meanwhile, the mathematical model of this kind of IBC is developed. Finally, the validity of the developed model has been verified by measurements. Moreover, its characteristics are discussed and compared with that of the IBC via single body channel. Our results indicate that the proposed method will lay a foundation for the theoretical analysis and application of the IBC via handshake channel. PMID:28420119

  6. Micro Galvanic Cell To Generate PtO and Extend the Triple-Phase Boundary during Self-Assembly of Pt/C and Nafion for Catalyst Layers of PEMFC.

    PubMed

    Long, Zhi; Gao, Liqin; Li, Yankai; Kang, Baotao; Lee, Jin Yong; Ge, Junjie; Liu, Changpeng; Ma, Shuhua; Jin, Zhao; Ai, Hongqi

    2017-11-08

    The self-assembly powder (SAP) with varying Nafion content was synthesized and characterized by XRD, XPS, HRTEM, and mapping. It is observed that the oxygen from oxygen functional groups transfers to the surface of Pt and generate PtO during the process of self-assembly with the mechanism of micro galvanic cell, where Pt, carbon black, and Nafion act as the anode, cathode and electrolyte, respectively. The appearance of PtO on the surface of Pt leads to a turnover of Nafion structure, and therefore more hydrophilic sulfonic groups directly contact with Pt, and thus the triple-phase boundary (TPB) has been expanded.

  7. Theory of the Spin Galvanic Effect at Oxide Interfaces

    NASA Astrophysics Data System (ADS)

    Seibold, Götz; Caprara, Sergio; Grilli, Marco; Raimondi, Roberto

    2017-12-01

    The spin galvanic effect (SGE) describes the conversion of a nonequilibrium spin polarization into a transverse charge current. Recent experiments have demonstrated a large conversion efficiency for the two-dimensional electron gas formed at the interface between two insulating oxides, LaAlO3 and SrTiO3 . Here, we analyze the SGE for oxide interfaces within a three-band model for the Ti t2 g orbitals which displays an interesting variety of effective spin-orbit couplings in the individual bands that contribute differently to the spin-charge conversion. Our analytical approach is supplemented by a numerical treatment where we also investigate the influence of disorder and temperature, which turns out to be crucial to providing an appropriate description of the experimental data.

  8. PHYSIOLOGICAL RESPONSE PATTERNS IN CARDIAC PATIENTS,

    DTIC Science & Technology

    CARDIOVASCULAR DISEASES, ETIOLOGY), HEART, DISEASES, ELECTROENCEPHALOGRAPHY, GALVANIC SKIN RESPONSE, PULSE RATE, BODY TEMPERATURE, SKIN(ANATOMY...HYPERTENSION, ATHEROSCLEROSIS , RHEUMATIC DISEASES, EMOTIONS, REACTION(PSYCHOLOGY), PERSONALITY, PSYCHOLOGY, PATHOLOGY, MEDICAL EXAMINATION

  9. Treatment of model and galvanic waste solutions of copper(II) ions using a lignin/inorganic oxide hybrid as an effective sorbent.

    PubMed

    Ciesielczyk, Filip; Bartczak, Przemysław; Klapiszewski, Łukasz; Jesionowski, Teofil

    2017-04-15

    A study was made concerning the removal of copper(II) ions from model and galvanic waste solutions using a new sorption material consisting of lignin in combination with an inorganic oxide system. Specific physicochemical properties of the material resulted from combining the activity of the functional groups present in the structure of lignin with the high surface area of the synthesized oxide system (585m 2 /g). Analysis of the porous structure parameters, particle size and morphology, elemental composition and characteristic functional groups confirmed the effective synthesis of the new type of sorbent. A key element of the study was a series of tests of adsorption of copper(II) ions from model solutions. It was determined how the efficiency of the adsorption process was affected by the process time, mass of sorbent, concentration of adsorbate, pH and temperature. Potential regeneration of adsorbent, which provides the possibility of its reusing and recovering the adsorbed copper, was also analyzed. The sorption capacity of the material was measured (83.98mg/g), and the entire process was described using appropriate kinetic models. The results were applied to the design of a further series of adsorption tests, carried out on solutions of real sewage from a galvanizing plant. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Influence of Minor Alloying Elements on Selective Oxidation and Reactive Wetting of CMnSi TRIP Steel during Hot Dip Galvanizing

    NASA Astrophysics Data System (ADS)

    Cho, Lawrence; Kim, Myung Soo; Kim, Young Ha; De Cooman, Bruno C.

    2014-09-01

    The influence of the addition of minor alloying elements on the selective oxidation and the reactive wetting of CMnSi transformation-induced plasticity (TRIP) steels was studied by means of galvanizing simulator tests. Five TRIP steels containing small alloying additions of Cr, Ni, Ti, Cu, and Sn were investigated. After intercritical annealing (IA) at 1093 K (820 °C) in a N2 + 5 pct H2 gas atmosphere with a dew point of 213 K (-60 °C), two types of oxides were formed on the strip surface: Mn-rich xMnO·SiO2 ( x > 1.5) and Si-rich xMnO·SiO2 ( x < 0.3) oxides. The addition of the minor alloying elements changed the morphology of the Si-rich oxides from a continuous film to discrete islands and this improved the wettability by molten Zn. The improved wetting effect of the minor alloying elements was attributed to an increased area fraction of the surface where the oxides were thinner, enabling a direct unhindered reaction between Fe and the Al in the liquid Zn and the formation of the inhibition layer during the hot dip galvanizing. The addition of a small amount of Sn is shown to significantly decrease the density of Zn-coating defects on CMnSi TRIP steels.

  11. AA6082 to DX56-Steel Laser Brazing: Process Parameter-Intermetallic Formation Correlation

    NASA Astrophysics Data System (ADS)

    Narsimhachary, D.; Pal, S.; Shariff, S. M.; Padmanabham, G.; Basu, A.

    2017-09-01

    In the present study, laser-brazed AA6082 to DX56-galvanized steel joints were investigated to understand the influence of process parameters on joint strength in terms of intermetallic layer formation. 1.5-mm-thick sheet of aluminum alloy (AA6082-T6) and galvanized steel (DX56) sheet of 0.7 mm thickness were laser-brazed with 1.5-mm-diameter Al-12% Si solid filler wire. During laser brazing, laser power (4.6 kW) and wire feed rate (3.4 m/min) were kept constant with a varying laser scan speed of 3.5, 3, 2.5, 2, 1.5, and 1 m/min. Microstructure of brazed joint reveals epitaxial growth at the aluminum side and intermetallic layer formation at steel interface. Intermetallic layer formation was confirmed by EDS analysis and XRD study. Hardness profile showed hardness drop in filler region, and failure during tensile testing was initiated through the filler region near the steel interface. As per both experimental study and numerical analysis, it was observed that intermetallic layer thickness decreases with increasing brazing speed. Zn vaporization from galvanized steel interface also affected the joint strength. It was found that high laser scan speed or faster cooling rate can be chosen for suppressing intermetallic layer formation or at least decreasing the layer thickness which results in improved mechanical properties.

  12. Physicochemistry, morphology and leachability of selected metals from post-galvanized sewage sludge from screw factory in Łańcut, SE Poland

    NASA Astrophysics Data System (ADS)

    Galas, Dagmara; Kalembkiewicz, Jan; Sitarz-Palczak, Elżbieta

    2016-12-01

    Morphology, physicochemical properties, chemical composition of post-galvanized sewage sludge from Screw Factory in Łańcut, leachability and mobility of metals has been analyzed. The analyses with the use of scanning electron microscope with an adapter to perform chemical analysis of microsites (EDS) showed that the material is characterized by a high fragmentation and a predominant number of irregularly shaped grains. The sewage sludge is alkaline with a large loss of ignition (34.6%) and small bulk density (< 1 g/cm3). The EDS analyses evidenced presence of oxygen, silicon, calcium, chromium, iron and zinc in all examined areas, and presence of manganese and copper in selected areas indicating a non-uniform distribution of metals in the sewage sludge. Within one-stage mineralization and FAAS technique a predominant share of calcium, zinc and iron in terms of dry matter was recorded in the sewage sludge. The contents of Co, Cr, Cu, K, Mn, Ni and Pb in sewage sludge are below 1%. Evaluation of mobility and leaching of metals in sewage sludge was carried out by means of two parameters: accumulation coefficient of mobile fractions and leaching level related to the mass solubility of sewage sludge. The results indicate that the short-term or long-term storage of not inactivated post-galvanized sewage sludge can result in release of metals.

  13. Effects of neurofeedback therapy in healthy young subjects.

    PubMed

    Altan, Sümeyra; Berberoglu, Bercim; Canan, Sinan; Dane, Şenol

    2016-12-01

    Neurofeedback refers to a form of operant conditioning of electrical brain activity, in which desirable brain activity is rewarded and undesirable brain activity is inhibited. The research team aimed to examine the efficacy of neurofeedback therapy on electroencephalogram (EEG) for heart rate, electrocardiogram (ECG) and galvanic skin resistance (GSR) parameters in a healthy young male population. Forty healthy young male subjects aged between 18 to 30 years participated in this study. Neurofeedback application of one session was made with bipolar electrodes placed on T3 and T4 (temporal 3 and 4) regions and with reference electrode placed on PF1 (prefrontal 1). Electroencephalogram (EEG), electrocardiogram (ECG) and galvanic skin resistance (GSR) were assessed during Othmer neurofeedback application of one session to regulate slow wave activity for forty minutes thorough the session. Data assessed before neurofeedback application for 5 minutes and during neurofeedback application of 30 minutes and after neurofeedback application for 5 minutes throughout the session of 40 minutes. Means for each 5 minutes, that is to say, a total 8 data points for each subjects over 40 minutes, were assessed. Galvanic skin resistance increased and heart rate decreased after neurofeedback therapy. Beta activity in EEG increased and alfa activity decreased after neurofeedback therapy. These results suggest that neurofeedback can be used to restore sympathovagal imbalances. Also, it may be accepted as a preventive therapy for psychological and neurological problems.

  14. Antibacterial Ag/a-C nanocomposite coatings: The influence of nano-galvanic a-C and Ag couples on Ag ionization rates

    NASA Astrophysics Data System (ADS)

    Manninen, N. K.; Calderon, S.; Carvalho, I.; Henriques, M.; Cavaleiro, A.; Carvalho, S.

    2016-07-01

    Biofilm formation has been pointed as a major concern in different industrial applications, namely on biomedical implants and surgical instruments, which has prompted the development of new strategies for production of efficient antimicrobial surfaces. In this work, nano-galvanic couples were created to enhance the antibacterial properties of silver, by embedding it into amorphous carbon (a-C) matrix. The developed Ag/a-C nanocomposite coatings, deposited by magnetron sputtering, revealed an outstanding antibacterial activity against Staphylococcus epidermidis, promoting a total reduction in biofilm formation with no bacteria counts in all dilution. The open circuit potential (OCP) tests in 0.9% NaCl confirmed that a-C shows a positive OCP value, in contrast to Ag coating, thus enhancing the ionization of biocidal Ag+ due to the nano-galvanic couple activation. This result was confirmed by the inductively coupled plasma-optical emission spectroscopy (ICP-OES), which revealed a higher Ag ionization rate in the nanocomposite coating in comparison with the Ag coating. The surface of Ag/a-C and Ag coatings immersed in 0.9% NaCl were monitored by scanning electron microscopy (SEM) over a period of 24 h, being found that the Ag ionization determined by ICP-OES was accompanied by an Ag nanoparticles coalescence and agglomeration in Ag/a-C coating.

  15. Mapping the Galvanic Corrosion of Three Coupled Metal Alloys Using Coupled Multielectrode Array: Influence of Chloride Ion Concentration

    PubMed Central

    Duan, JinZhuo; Cao, Ning

    2018-01-01

    The galvanic corrosion behavior of three metal alloys commonly used in water desalination plants was investigated using coupled multielectrode arrays consisting of aluminum-brass (HAl77-2), titanium alloy (TA2), and 316L stainless steel (316L SS). The three electrode types were coupled galvanically and arranged in different geometric configurations. Their corrosion behavior was characterized as a function of the chloride concentration. The potential and current distributions of the three-electrode coupling systems display electrochemical inhomogeneity. Generally, the aluminum-brass wires are anodic versus the titanium alloy and stainless steel. The titanium alloy acts as a primary cathode, and the 316L SS acts as a secondary cathode. The corrosion rate of aluminum-brass depends on the concentration of chloride ion, with a maximum corrosion rate at a chloride concentration of 2.3 wt %. In terms of geometrical arrangements, when the anodic HAl77-2 wires are located on the edge and are connected to the 316L SS wires in the coupling system, the main anodic area enlarges, especially in the area adjacent to the 316L SS wires. When the HAl77-2 wires are located between (in the middle of) the two other types of wires, the corrosion rates are higher than the corrosion rates observed from the other two geometrical arrangements. PMID:29677150

  16. Mapping the Galvanic Corrosion of Three Coupled Metal Alloys Using Coupled Multielectrode Array: Influence of Chloride Ion Concentration.

    PubMed

    Ju, Hong; Duan, JinZhuo; Yang, Yuanfeng; Cao, Ning; Li, Yan

    2018-04-20

    The galvanic corrosion behavior of three metal alloys commonly used in water desalination plants was investigated using coupled multielectrode arrays consisting of aluminum-brass (HAl77-2), titanium alloy (TA2), and 316L stainless steel (316L SS). The three electrode types were coupled galvanically and arranged in different geometric configurations. Their corrosion behavior was characterized as a function of the chloride concentration. The potential and current distributions of the three-electrode coupling systems display electrochemical inhomogeneity. Generally, the aluminum-brass wires are anodic versus the titanium alloy and stainless steel. The titanium alloy acts as a primary cathode, and the 316L SS acts as a secondary cathode. The corrosion rate of aluminum-brass depends on the concentration of chloride ion, with a maximum corrosion rate at a chloride concentration of 2.3 wt %. In terms of geometrical arrangements, when the anodic HAl77-2 wires are located on the edge and are connected to the 316L SS wires in the coupling system, the main anodic area enlarges, especially in the area adjacent to the 316L SS wires. When the HAl77-2 wires are located between (in the middle of) the two other types of wires, the corrosion rates are higher than the corrosion rates observed from the other two geometrical arrangements.

  17. E-tongue 2 REDOX response to heavy metals

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Kuhlman, G. M.; Kounaves, S. P.

    2002-01-01

    E-Tongue 2 an array of electrochemical sensors including REDOX electrodes for Cylic Voltammetry and Anodic Stripping Voltammetry measurements, Galvanic cells for corrosion measurements, and Ion Selective Electrodes.

  18. Thermodynamic Study of the Nickel Addition in Zinc Hot-Dip Galvanizing Baths

    NASA Astrophysics Data System (ADS)

    Pistofidis, N.; Vourlias, G.

    2010-01-01

    A usual practice during zinc hot-dip galvanizing is the addition of nickel in the liquid zinc which is used to inhibit the Sandelin effect. Its action is due to the fact that the ζ (zeta) phase of the Fe-Zn system is replaced by the Τ (tau) phase of the Fe-Zn-Ni system. In the present work an attempt is made to explain the formation of the Τ phase with thermodynamics. For this reason the Gibbs free energy changes for Τ and ζ phases were calculated. The excess free energy for the system was calculated with the Redlich-Kister polyonyme. From this calculation it was deduced that the Gibbs energy change for the tau phase is negative. As a result its formation is spontaneous.

  19. Initial evaluation of a convection counter streaming galvanization technique of sex separation of human spermatozoa.

    PubMed

    Daniell, J F; Herbert, C M; Repp, J; Torbit, C A; Wentz, A C

    1982-08-01

    A new method for separating X and Y human spermatozoa called convection counter streaming galvanization was evaluated. The method was independently performed by this semenology laboratory with the use of the special separation equipment and extending media provided by its developer, Dr. Bhairab C. Bhattacharya. The mean number of Y spermatozoa increased from 48% to 77% in the separated fraction predicted to be Y-enriched. The fraction predicted to be X-enriched increased from a mean of 52% to 77%. The one separation process allowed accumulation of both enriched fractions simultaneously. The separated portions of spermatozoa maintained good motility and penetration of cervical mucus but produced a mean recovery concentration in the X- and Y-enriched fractions of only 15% to 16% of the preseparation concentration.

  20. Liquid Galvanic Coatings for Protection of Imbedded Metals

    NASA Technical Reports Server (NTRS)

    MacDowell, Louis G. (Inventor); Curran, Joseph J. (Inventor)

    2003-01-01

    Coating compositions and methods of their use are described herein for the reduction of corrosion in imbedded metal structures. The coatings are applied as liquids to an external surface of a substrate in which the metal structures are imbedded. The coatings are subsequently allowed to dry. The liquid applied coatings provide galvanic protection to the imbedded metal structures. Continued protection can be maintained with periodic reapplication of the coating compositions, as necessary, to maintain electrical continuity. Because the coatings may be applied using methods similar to standard paints, and because the coatings are applied to external surfaces of the substrates in which the metal structures are imbedded, the corresponding corrosion protection may be easily maintained. The coating compositions are particularly useful in the protection of metal-reinforced concrete.

  1. Palladium Coated Copper Nanowires as a Hydrogen Oxidation Electrocatalyst in Base

    DOE PAGES

    Alia, Shaun M.; Yan, Yushan

    2015-05-09

    The palladium (Pd) nanotubes we synthesized by the spontaneous galvanic displacement of copper (Cu) nanowires, are forming extended surface nanostructures highly active for the hydrogen oxidation reaction (HOR) in base. The synthesized catalysts produce specific activities in rotating disk electrode half-cells 20 times greater than Pd nanoparticles and about 80% higher than polycrystalline Pd. Although the surface area of the Pd nanotubes was low compared to conventional catalysts, partial galvanic displacement thrifted the noble metal layer and increased the Pd surface area. Moreover, the use of Pd coated Cu nanowires resulted in a HOR mass exchange current density 7 timesmore » greater than the Pd nanoparticles. The activity of the Pd coated Cu nanowires further nears Pt/C, producing 95% of the mass activity.« less

  2. Thermal analysis of the exothermic reaction between galvanic porous silicon and sodium perchlorate.

    PubMed

    Becker, Collin R; Currano, Luke J; Churaman, Wayne A; Stoldt, Conrad R

    2010-11-01

    Porous silicon (PS) films up to ∼150 μm thick with specific surface area similar to 700 m(2)/g and pore diameters similar to 3 nm are fabricated using a galvanic corrosion etching mechanism that does not require a power supply. After fabrication, the pores are impregnated with the strong oxidizer sodium perchlorate (NaClO(4)) to create a composite that constitutes a highly energetic system capable of explosion. Using bomb calorimetry, the heat of reaction is determined to be 9.9 ± 1.8 and 27.3 ± 3.2 kJ/g of PS when ignited under N(2) and O(2), respectively. Differential scanning calorimetry (DSC) reveals that the energy output is dependent on the hydrogen termination of the PS.

  3. Galvanic displacement assembly of ultrathin Co3O4 nanosheet arrays on nickel foam for a high-performance supercapacitor

    NASA Astrophysics Data System (ADS)

    You, Yuxiu; Zheng, Maojun; Ma, Liguo; Yuan, Xiaoliang; Zhang, Bin; Li, Qiang; Wang, Faze; Song, Jingnan; Jiang, Dongkai; Liu, Pengjie; Ma, Li; Shen, Wenzhong

    2017-03-01

    High-performance supercapacitors are very desirable for many portable electronic devices, electric vehicles and high-power electronic devices. Herein, a facile and binder-free synthesis method, galvanic displacement of the precursor followed by heat treatment, is used to fabricate ultrathin Co3O4 nanosheet arrays on nickel foam substrate. When used as a supercapacitor electrode the prepared Co3O4 on nickel foam exhibits a maximum specific capacitance of 1095 F g-1 at a current density of 1 A g-1 and good cycling stability of 71% retention after 2000 cycling tests. This excellent electrochemical performance can be ascribed to the high specific surface area of each Co3O4 nanosheet that comprises numerous nanoparticles.

  4. Bioleaching of chalcopyrite and bornite by moderately thermophilic bacteria: an emphasis on their interactions

    NASA Astrophysics Data System (ADS)

    Zhao, Hong-bo; Wang, Jun; Gan, Xiao-wen; Qin, Wen-qing; Hu, Ming-hao; Qiu, Guan-zhou

    2015-08-01

    Interactions between chalcopyrite and bornite during bioleaching by moderately thermophilic bacteria were investigated mainly by X-ray diffraction, scanning electron microscopy, and electrochemical measurements performed in conjunction with bioleaching experiments. The results showed that a synergistic effect existed between chalcopyrite and bornite during bioleaching by both Acidithiobacillus caldus and Leptospirillum ferriphilum and that extremely high copper extraction could be achieved when chalcopyrite and bornite coexisted in a bioleaching system. Bornite dissolved preferentially because of its lower corrosion potential, and its dissolution was accelerated by the galvanic current during the initial stage of bioleaching. The galvanic current and optimum redox potential of 390-480 mV vs. Ag/AgCl promoted the reduction of chalcopyrite to chalcocite (Cu2S), thus accelerating its dissolution.

  5. Part I. Corrosion studies of continuous alumina fiber reinforced aluminum-matrix composites. Part II. Galvanic corrosion between continuous alumina fiber reinforced aluminum-matrix composites and 4340 steel

    NASA Astrophysics Data System (ADS)

    Zhu, Jun

    Part I. The corrosion performance of continuous alumina fiber reinforced aluminum-matrix composites (CF-AMCs) was investigated in both the laboratory and field environments by comparing them with their respective monolithic matrix alloys, i.e., pure Al, A1-2wt%Cu T6, and Al 6061 T6. The corrosion initiation sites were identified by monitoring the changes in the surface morphology. Corrosion current densities and pH profiles at localized corrosion sites were measured using the scanning-vibrating electrode technique and the scanning ion-selective electrode technique, respectively. The corrosion damage of the materials immersed in various electrolytes, as well as those exposed in a humidity chamber and outdoor environments, was evaluated. Potentiodynamic polarization behavior was also studied. The corrosion initiation for the composites in 3.15 wt% NaCl occurred primarily around the Fe-rich intermetallic particles, which preferentially existed around the fiber/matrix interface on the composites. The corrosion initiation sites were also caused by physical damage (e.g., localized deformation) to the composite surface. At localized corrosion sites, the buildup of acidity was enhanced by the formation of micro-crevices resulting from fibers left in relief as the matrix corroded. The composites that were tested in exposure experiments exhibited higher corrosion rates than their monolithic alloys. The composites and their monolithic alloys were subjected to pitting corrosion when anodically polarized in the 3.15 wt% NaCl, while they passivated when anodically polarized in 0.5 M Na2SO4. The experimental results indicated that the composites exhibited inferior corrosion resistance compared to their monolithic matrix alloys. Part II. Galvanic corrosion studies were conducted on CF-AMCs coupled to 4340 steel since CF-AMCs have low density and excellent mechanical properties and are being considered as potential jacketing materials for reinforcing steel gun barrels. Coupled and uncoupled coupons were immersed in various electrolytes, exposed to a humidity chamber, and exposed at outdoor test sites. Results showed that the corrosion rates of the CF-AMCs increased, while those of the 4340 steel decreased after being coupled together, in most cases. Crevice corrosion was also observed in these exposure experiments. Zero resistance ammeter (ZRA) experiments were conducted to record the galvanic-corrosion rates and potentials of the couples. The CF-AMCs were found to serve as anodes, while the steel was cathodic, in most test conditions. Galvanic performance predicted by polarization experiments was in close agreement with the ZRA results. Key words. Aluminum, metal-matrix composites, alumina fiber, pitting corrosion, galvanic corrosion.

  6. 21 CFR 874.1500 - Gustometer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... sides of the tongue at different taste centers and that provides a galvanic stimulus resulting in taste... the current good manufacturing practice requirements of the quality system regulation in part 820 of...

  7. 21 CFR 874.1500 - Gustometer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... sides of the tongue at different taste centers and that provides a galvanic stimulus resulting in taste... the current good manufacturing practice requirements of the quality system regulation in part 820 of...

  8. Center for Corporate Climate Leadership Goal Setting

    EPA Pesticide Factsheets

    EPA provides tools and recognition for companies setting aggressive GHG reduction goals, which can galvanize reduction efforts at a company and often leads to the identification of many additional reduction opportunities.

  9. Aerosol characterization and pulmonary responses in rats after short-term inhalation of fumes generated during resistance spot welding of galvanized steel.

    PubMed

    Antonini, James M; Afshari, Aliakbar; Meighan, Terence G; McKinney, Walter; Jackson, Mark; Schwegler-Berry, Diane; Burns, Dru A; LeBouf, Ryan F; Chen, Bean T; Shoeb, Mohammad; Zeidler-Erdely, Patti C

    2017-01-01

    Resistance spot welding is a common process to join metals in the automotive industry. Adhesives are often used as sealers to seams of metals that are joined. Anti-spatter compounds sometimes are sprayed onto metals to be welded to improve the weldability. Spot welding produces complex aerosols composed of metal and volatile compounds (VOCs) which can cause lung disease in workers. Male Sprague-Dawley rats (n = 12/treatment group) were exposed by inhalation to 25 mg/m 3 of aerosol for 4 h/day × 8 days during spot welding of galvanized zinc (Zn)-coated steel in the presence or absence of a glue or anti-spatter spray. Controls were exposed to filtered air. Particle size distribution and chemical composition of the generated aerosol were determined. At 1 and 7 days after exposure, bronchoalveolar lavage (BAL) was performed to assess lung toxicity. The generated particles mostly were in the submicron size range with a significant number of nanometer-sized particles formed. The primary metals present in the fumes were Fe (72.5%) and Zn (26.3%). The addition of the anti-spatter spray and glue did affect particle size distribution when spot welding galvanized steel, whereas they had no effect on metal composition. Multiple VOCs (e.g., methyl methacrylate, acetaldehyde, ethanol, acetone, benzene, xylene) were identified when spot welding using either the glue or the anti-spatter spray that were not present when welding alone. Markers of lung injury (BAL lactate dehydrogenase) and inflammation (total BAL cells/neutrophils and cytokines/chemokines) were significantly elevated compared to controls 1 day after exposure to the spot welding fumes. The elevated pulmonary response was transient as lung toxicity mostly returned to control values by 7 days. The VOCs or the concentrations that they were generated during the animal exposures had no measurable effect on the pulmonary responses. Inhalation of galvanized spot welding fumes caused acute lung toxicity most likely due to the short-term exposure of particles that contain Zn.

  10. 40 CFR 165.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...)-fertilizer(s), pesticide-pesticide, or a pesticide-animal feed mixture, when: (1) The blend is prepared to... significant chemical, electrolytic, or galvanic manner with the container, or (5) Interacts in a way, such as...

  11. 40 CFR 165.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...)-fertilizer(s), pesticide-pesticide, or a pesticide-animal feed mixture, when: (1) The blend is prepared to... significant chemical, electrolytic, or galvanic manner with the container, or (5) Interacts in a way, such as...

  12. 40 CFR 165.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...)-fertilizer(s), pesticide-pesticide, or a pesticide-animal feed mixture, when: (1) The blend is prepared to... significant chemical, electrolytic, or galvanic manner with the container, or (5) Interacts in a way, such as...

  13. 40 CFR 420.126 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Hot Coating... rinse step. (2) [Reserved] (b) Galvanizing and other coatings—(1) Wire products and fasteners. Subpart L...

  14. Alternative materials for FDOT sign structures : phase I [summary].

    DOT National Transportation Integrated Search

    2012-01-01

    Inspections of tubular sign structures by the : Florida Department of Transportation (FDOT) have : revealed premature corrosion inside galvanized : steel tubes. Costs of installing and maintaining : these structures, interference with traffic from : ...

  15. People Power.

    ERIC Educational Resources Information Center

    Howlett, Patricia

    1993-01-01

    School boards need to learn how to galvanize public support. Suggests ways to communicate with and involve citizens in supporting schools. Suggestions include parent centers, television interviews, cable access, community newsletters, and opening the schools to the community. (MLF)

  16. 21 CFR 878.5360 - Tweezer-type epilator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... (a) Identification. The tweezer-type epilator is an electrical device intended to remove hair. The energy provided at the tip of the tweezer used to remove hair may be radio frequency, galvanic (direct...

  17. 21 CFR 878.5360 - Tweezer-type epilator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... (a) Identification. The tweezer-type epilator is an electrical device intended to remove hair. The energy provided at the tip of the tweezer used to remove hair may be radio frequency, galvanic (direct...

  18. 21 CFR 878.5360 - Tweezer-type epilator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... (a) Identification. The tweezer-type epilator is an electrical device intended to remove hair. The energy provided at the tip of the tweezer used to remove hair may be radio frequency, galvanic (direct...

  19. 21 CFR 878.5360 - Tweezer-type epilator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... (a) Identification. The tweezer-type epilator is an electrical device intended to remove hair. The energy provided at the tip of the tweezer used to remove hair may be radio frequency, galvanic (direct...

  20. 21 CFR 878.5360 - Tweezer-type epilator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... (a) Identification. The tweezer-type epilator is an electrical device intended to remove hair. The energy provided at the tip of the tweezer used to remove hair may be radio frequency, galvanic (direct...

  1. 40 CFR 420.125 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Hot Coating... wastewaters from the chromate rinse step. (2) [Reserved] (b) Galvanizing and other coatings—(1) Wire products...

  2. 46 CFR 195.35-5 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 1014 (incorporated by reference, see § 195.01-3). (d) All lifelines shall be of steel or bronze wire rope. Steel wire rope shall be either inherently corrosion-resistant, or made so by galvanizing or...

  3. 46 CFR 195.35-5 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 1014 (incorporated by reference, see § 195.01-3). (d) All lifelines shall be of steel or bronze wire rope. Steel wire rope shall be either inherently corrosion-resistant, or made so by galvanizing or...

  4. Activational Peaking in Educable and Trainable Mentally Retarded Persons

    ERIC Educational Resources Information Center

    Gargiulo, Richard M.; Uno, Tad

    1977-01-01

    A study involving 10 educable and 10 trainable mentally retarded adolescents indicated that levels of intellectual functioning influenced patterns of autonomic activation as measured by magnitude of the galvanic skin response. (CL)

  5. 46 CFR 56.60-3 - Ferrous materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... APPURTENANCES Materials § 56.60-3 Ferrous materials. (a) Ferrous pipe used for salt water service must be protected against corrosion by hotdip galvanizing or by the use of extra heavy schedule material. (b...

  6. 46 CFR 56.60-3 - Ferrous materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... APPURTENANCES Materials § 56.60-3 Ferrous materials. (a) Ferrous pipe used for salt water service must be protected against corrosion by hotdip galvanizing or by the use of extra heavy schedule material. (b...

  7. 46 CFR 56.60-3 - Ferrous materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... APPURTENANCES Materials § 56.60-3 Ferrous materials. (a) Ferrous pipe used for salt water service must be protected against corrosion by hotdip galvanizing or by the use of extra heavy schedule material. (b...

  8. 46 CFR 56.60-3 - Ferrous materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... APPURTENANCES Materials § 56.60-3 Ferrous materials. (a) Ferrous pipe used for salt water service must be protected against corrosion by hotdip galvanizing or by the use of extra heavy schedule material. (b...

  9. 46 CFR 56.60-3 - Ferrous materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... APPURTENANCES Materials § 56.60-3 Ferrous materials. (a) Ferrous pipe used for salt water service must be protected against corrosion by hotdip galvanizing or by the use of extra heavy schedule material. (b...

  10. Fermilab Today - Classifieds

    Science.gov Websites

    - windshield bag and hard saddle bags- picked and mirrors, excellent condition, link with photos: https ://chicago.craigslist.org/nwc/snw/5282087989.html Contact: Kevin at 630-327-1953. Galvanized poultry netting, 24" x 150

  11. Improved electrode paste provides reliable measurement of galvanic skin response

    NASA Technical Reports Server (NTRS)

    Day, J. L.

    1966-01-01

    High-conductivity electrode paste is used in obtaining accurate skin resistance or skin potential measurements. The paste is isotonic to perspiration, is nonirritating and nonsensitizing, and has an extended shelf life.

  12. Fatigue testing of galvanized and ungalvanized socket connections.

    DOT National Transportation Integrated Search

    2014-09-01

    The fatigue resistance of welded traffic signal support structure details is an ongoing research topic being : addressed at multiple universities primarily through state funding mechanisms. Fatigue problems with these : structures have plagued multip...

  13. A stress sensor based on Galvanic Skin Response (GSR) controlled by ZigBee.

    PubMed

    Villarejo, María Viqueira; Zapirain, Begoña García; Zorrilla, Amaia Méndez

    2012-01-01

    Sometimes, one needs to control different emotional situations which can lead the person suffering them to dangerous situations, in both the medium and short term. There are studies which indicate that stress increases the risk of cardiac problems. In this study we have designed and built a stress sensor based on Galvanic Skin Response (GSR), and controlled by ZigBee. In order to check the device's performance, we have used 16 adults (eight women and eight men) who completed different tests requiring a certain degree of effort, such as mathematical operations or breathing deeply. On completion, we appreciated that GSR is able to detect the different states of each user with a success rate of 76.56%. In the future, we plan to create an algorithm which is able to differentiate between each state.

  14. Cementation of colloidal particles on electrodes in a galvanic microreactor.

    PubMed

    Jan, Linda; Punckt, Christian; Aksay, Ilhan A

    2013-07-10

    We have studied the processes leading to the cementation of colloidal particles during their autonomous assembly on corroding copper electrodes within a Cu-Au galvanic microreactor. We determined the onset of particle immobilization through particle tracking, monitored the dissolution of copper as well as the deposition of insoluble products of the corrosion reactions in situ, and showed that particle immobilization initiated after reaction products (RPs) began to deposit on the electrode substrate. We further demonstrated that the time and the extent of RP precipitation and thus the strength of the particle-substrate bond could be tuned by varying the amount of copper in the system and the microreactor pH. The ability to cement colloidal particles at locations undergoing corrosion illustrates that the studied colloidal assembly approach holds potential for applications in dynamic material property adaptation.

  15. Robert Hare's Theory of Galvanism: A Study of Heat and Electricity in Early Nineteenth-Century American Chemistry.

    PubMed

    Fisher, Amy

    2018-04-09

    As a professor of chemistry at the University of Pennsylvania, Robert Hare actively shaped early American science. He participated in a large network of scholars, including Joseph Henry, François Arago, and Jacob Berzelius, and experimented with and wrote extensively about electricity and its associated chemical and thermal phenomena. In the early nineteenth century, prominent chemists such as Berzelius and Humphry Davy proclaimed that a revolution had occurred in chemistry through electrical research. Examining Robert Hare's contributions to this discourse, this paper analyzes how Hare's study of electricity and the caloric theory of heat led him to propose a new theory of galvanism. It also examines the reception of Hare's work in America and Great Britain, highlighting the contributions of early American chemists to the development of electrochemistry.

  16. Microscopic analysis and simulation of check-mark stain on the galvanized steel strip

    NASA Astrophysics Data System (ADS)

    So, Hongyun; Yoon, Hyun Gi; Chung, Myung Kyoon

    2010-11-01

    When galvanized steel strip is produced through a continuous hot-dip galvanizing process, the thickness of adhered zinc film is controlled by plane impinging air gas jet referred to as "air-knife system". In such a gas-jet wiping process, stain of check-mark or sag line shape frequently appears. The check-mark defect is caused by non-uniform zinc coating and the oblique patterns such as "W", "V" or "X" on the coated surface. The present paper presents a cause and analysis of the check-mark formation and a numerical simulation of sag lines by using the numerical data produced by Large Eddy Simulation (LES) of the three-dimensional compressible turbulent flow field around the air-knife system. It was found that there is alternating plane-wise vortices near the impinging stagnation region and such alternating vortices move almost periodically to the right and to the left sides on the stagnation line due to the jet flow instability. Meanwhile, in order to simulate the check-mark formation, a novel perturbation model has been developed to predict the variation of coating thickness along the transverse direction. Finally, the three-dimensional zinc coating surface was obtained by the present perturbation model. It was found that the sag line formation is determined by the combination of the instantaneous coating thickness distribution along the transverse direction near the stagnation line and the feed speed of the steel strip.

  17. Anodized titanium and stainless steel in contact with CFRP: an electrochemical approach considering galvanic corrosion.

    PubMed

    Mueller, Yves; Tognini, Roger; Mayer, Joerg; Virtanen, Sannakaisa

    2007-09-15

    The combination of different materials in an implant gives the opportunity to better fulfill the requirements that are needed to improve the healing process. However, using different materials increases the risk of galvanic coupling corrosion. In this study, coupling effects of gold-anodized titanium, stainless steel for biomedical applications, carbon fiber reinforced polyetheretherketone (CFRP), and CFRP containing tantalum fibers are investigated electrochemically and by long-term immersion experiments in simulated body fluid (SBF). Potentiodynamic polarization experiments (i/E curves) and electrochemical impedance spectroscopy (EIS) of the separated materials showed a passive behavior of the metallic samples. Anodized titanium showed no corrosion attacks, whereas stainless steel is highly susceptibility for localized corrosion. On the other side, an active dissolution behavior of both of the CFRPs in the given environment could be determined, leading to delaminating of the carbon fibers from the matrix. Long-term immersion experiments were carried out using a set-up especially developed to simulate coupling conditions of a point contact fixator system (PC-Fix) in a biological environment. Electrochemical data were acquired in situ during the whole immersion time. The results of the immersion experiments correlate with the findings of the electrochemical investigation. Localized corrosion attacks were found on stainless steel, whereas anodized titanium showed no corrosion attacks. No significant differences between the two CFRP types could be found. Galvanic coupling corrosion in combination with crevice conditions and possible corrosion mechanisms are discussed. Copyright 2007 Wiley Periodicals, Inc.

  18. Corrosion investigation of fire-gilded bronze involving high surface resolution spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Masi, G.; Chiavari, C.; Avila, J.; Esvan, J.; Raffo, S.; Bignozzi, M. C.; Asensio, M. C.; Robbiola, L.; Martini, C.

    2016-03-01

    Gilded bronzes are often affected by severe corrosion, due to defects in the Au layer and Au/Cu alloy galvanic coupling, stimulated by large cathodic area of the gilded layer. Galvanic corrosion, triggered by gilding defects, leads to products growth at the Au/bronze interface, inducing blistering or break-up of the Au layer. In this context, fire-gilded bronze replicas prepared by ancient methods (use of spreadable Au-Hg paste) was specifically characterised by compiling complementary spectroscopic and imaging information before/after accelerated ageing with synthetic rain. Fire-gilded bronze samples were chemically imaged in cross-section at nano-metric scale (<200 nm) using high energy and lateral resolution synchrotron radiation photoemission (HR-SRPES) of core levels and valence band after conventional characterisation of the samples by Glow Discharge optical Emission Spectroscopy (GD-OES) and conventional X-ray photoelectron spectroscopy (XPS). We have found a net surface enrichment in Zn and Sn after fire-gilding and presence of metallic Hg, Pb and Cu within the Au layer. Moreover, the composition distribution of the elements together with their oxidation has been determined. It was also revealed that metallic phases including Hg and Pb remain in the gilding after corrosion. Moreover, selective dissolution of Zn and Cu occurs in the crater due to galvanic coupling, which locally induces relative Sn species enrichment (decuprification). The feasibility advantages and disadvantages of chemical imaging using HR-SRPES to study artworks have been investigated on representative replicas.

  19. Galvanic deposition and characterization of brushite/hydroxyapatite coatings on 316L stainless steel.

    PubMed

    Blanda, Giuseppe; Brucato, Valerio; Pavia, Francesco Carfì; Greco, Silvia; Piazza, Salvatore; Sunseri, Carmelo; Inguanta, Rosalinda

    2016-07-01

    In this work, brushite and brushite/hydroxyapatite (BS, CaHPO4·H2O; HA, Ca10(PO4)6(OH)2) coatings were deposited on 316L stainless steel (316LSS) from a solution containing Ca(NO3)2·4H2O and NH4H2PO4 by a displacement reaction based on a galvanic contact, where zinc acts as sacrificial anode. Driving force for the cementation reaction arises from the difference in the electrochemical standard potentials of two different metallic materials (316LSS and Zn) immersed in an electrolyte, so forming a galvanic contact leading to the deposition of BS/HA on nobler metal. We found that temperature and deposition time affect coating features (morphology, structure, and composition). Deposits were characterized by means of several techniques. The morphology was investigated by scanning electron microscopy, the elemental composition was obtained by X-ray energy dispersive spectroscopy, whilst the structure was identified by Raman spectroscopy and X-ray diffraction. BS was deposited at all investigated temperatures covering the 316LSS surface. At low and moderate temperature, BS coatings were compact, uniform and with good crystalline degree. On BS layers, HA crystals were obtained at 50°C for all deposition times, while at 25°C, its presence was revealed only after long deposition time. Electrochemical studies show remarkable improvement in corrosion resistance. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Performance of weathered steel guardrail in NC.

    DOT National Transportation Integrated Search

    2011-05-23

    Weathered steel beam guardrail is a popular alternative to galvanized steel guardrail as an aesthetic solution that blends in with the surrounding natural environment. A research study from New Hampshire found that weathered steel guardrail deteriora...

  1. Tube swaging device uses explosive force

    NASA Technical Reports Server (NTRS)

    Mc Smith, D. G.

    1968-01-01

    Tool joins a sleeve to a tube by explosive swaging, thus providing a leakproof, lightweight, and strong assembly. No new or different material is used in this method and therefore the thermal and galvanic properties are maintained.

  2. 40 CFR 63.5995 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... galvanic corrosion. (c) For each integrating regeneration stream flow monitoring device associated with a... recording the total regeneration stream mass or volumetric flow for each regeneration cycle. (d) For any...

  3. A simple and inexpensive external fixator.

    PubMed

    Noor, M A

    1988-11-01

    A simple and inexpensive external fixator has been designed. It is constructed of galvanized iron pipe and mild steel bolts and nuts. It can easily be manufactured in a hospital workshop with a minimum of tools.

  4. Fatigue failure and cracking in high mast poles.

    DOT National Transportation Integrated Search

    2012-03-01

    This report presents the findings of a comprehensive research project to investigate the fatigue : cracking and failure of galvanized high mast illumination poles (HMIP). Ultrasonic inspection of : poles throughout the state has revealed the presence...

  5. Valve seat pores sealed with thermosetting monomer

    NASA Technical Reports Server (NTRS)

    Olmore, A. B.

    1966-01-01

    Hard anodic coating provides a smooth wear resistant value seating surface on a cast aluminum alloy valve body. Vacuum impregnation with a thermosetting monomer, diallyl phthalate, seals the pores on the coating to prevent galvanic corrosion.

  6. Making Classical Conditioning Understandable through a Demonstration Technique.

    ERIC Educational Resources Information Center

    Gibb, Gerald D.

    1983-01-01

    One lemon, an assortment of other fruits and vegetables, a tennis ball, and a Galvanic Skin Response meter are needed to implement this approach to teaching about classical conditioning in introductory psychology courses. (RM)

  7. 46 CFR 163.002-11 - Materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... hoist must be made of machine cut steel or machine cut bronze, or must be of a design of equivalent... hoist must be a corrosion-resistant wire rope other than galvanized wire rope. (c) Corrosion-resistant...

  8. 46 CFR 163.002-11 - Materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... hoist must be made of machine cut steel or machine cut bronze, or must be of a design of equivalent... hoist must be a corrosion-resistant wire rope other than galvanized wire rope. (c) Corrosion-resistant...

  9. Make Your Good Publicity Work Marketing Magic.

    ERIC Educational Resources Information Center

    Wassom, Julie

    1988-01-01

    Stresses the importance of positive public opinion and media coverage for the successful continuity of day care centers. Suggests a variety of alternatives for maximizing the longevity and galvanizing the impact of positive media attention and coverage. (RWB)

  10. Lemon Cells Revisited--The Lemon-Powered Calculator.

    ERIC Educational Resources Information Center

    Swartling, Daniel J.; Morgan, Charlotte

    1998-01-01

    Describes a demonstration of the principles of a voltaic cell using lemon cells to power a calculator and other items. A lemon fortified with a penny and a galvanized nail produces a potential of one volt. (PVD)

  11. Alternative materials for FDOT sign structures : phase I literature review.

    DOT National Transportation Integrated Search

    2012-05-01

    Inspections of tubular sign structures by the Florida Department of Transportation (FDOT) have : revealed occurrences of premature corrosion on the inside of galvanized steel tubes. As a result, FDOT : engineers are seeking alternative materials that...

  12. A Theoretical and Empirical Integration of the Rational-Emotive and Classical Conditioning Theories

    ERIC Educational Resources Information Center

    Russell, Phillip L.; Brandsma, Jeffrey M.

    1974-01-01

    Galvanic skin conductance response, respiration rate and respiration depth values of an experimental and control group were used to test the hypotheses of a Albert Ellis' ABC Theory of psychopathology. (EK)

  13. The Study on the Overall Plasma Electrolytic Oxidation for 6061–7075 Dissimilar Aluminum Alloy Welded Parts Based on the Dielectric Breakdown Theory

    PubMed Central

    Song, Xiaocun; Zhou, Jixue; Liu, Hongtao; Yang, Yuansheng

    2018-01-01

    Electrical connection of dissimilar metals will lead to galvanic corrosion. Therefore, overall surface treatment is necessary for the protection of dissimilar metal welded parts. However, serious unbalanced reactions may occur during overall surface treatment, which makes it difficult to prepare integral coating. In this paper, an overall ceramic coating was fabricated by plasma electrolytic oxidation to wrap the 6061–7075 welded part integrally. Moreover, the growth mechanism of the coating on different areas of the welded part was studied based on the dielectric breakdown theory. The reaction sequence of each area during the treatment was verified through specially designed dielectric breakdown tests. The results showed that the high impedance overall of ceramic coating can inhibit the galvanic corrosion of the 6061–7075 welded part effectively. PMID:29301306

  14. Modulation of Memory by Vestibular Lesions and Galvanic Vestibular Stimulation

    PubMed Central

    Smith, Paul F.; Geddes, Lisa H.; Baek, Jean-Ha; Darlington, Cynthia L.; Zheng, Yiwen

    2010-01-01

    For decades it has been speculated that there is a close association between the vestibular system and spatial memories constructed by areas of the brain such as the hippocampus. While many animal studies have been conducted which support this relationship, only in the last 10 years have detailed quantitative studies been carried out in patients with vestibular disorders. The majority of these studies suggest that complete bilateral vestibular loss results in spatial memory deficits that are not simply due to vestibular reflex dysfunction, while the effects of unilateral vestibular damage are more complex and subtle. Very recently, reports have emerged that sub-threshold, noisy galvanic vestibular stimulation can enhance memory in humans, although this has not been investigated for spatial memory as yet. These studies add to the increasing evidence that suggests a connection between vestibular sensory information and memory in humans. PMID:21173897

  15. High Speed Computational Ghost Imaging via Spatial Sweeping

    NASA Astrophysics Data System (ADS)

    Wang, Yuwang; Liu, Yang; Suo, Jinli; Situ, Guohai; Qiao, Chang; Dai, Qionghai

    2017-03-01

    Computational ghost imaging (CGI) achieves single-pixel imaging by using a Spatial Light Modulator (SLM) to generate structured illuminations for spatially resolved information encoding. The imaging speed of CGI is limited by the modulation frequency of available SLMs, and sets back its practical applications. This paper proposes to bypass this limitation by trading off SLM’s redundant spatial resolution for multiplication of the modulation frequency. Specifically, a pair of galvanic mirrors sweeping across the high resolution SLM multiply the modulation frequency within the spatial resolution gap between SLM and the final reconstruction. A proof-of-principle setup with two middle end galvanic mirrors achieves ghost imaging as fast as 42 Hz at 80 × 80-pixel resolution, 5 times faster than state-of-the-arts, and holds potential for one magnitude further multiplication by hardware upgrading. Our approach brings a significant improvement in the imaging speed of ghost imaging and pushes ghost imaging towards practical applications.

  16. Personal reflections on a galvanizing trail.

    PubMed

    O'Dell, B L

    1998-01-01

    This article encompasses my perception of, and experience in, an exciting segment of the trace element era in nutrition research: the role of zinc in the nutrition of animals and humans. Zinc has been a major player on the stage of trace element research, and it has left a trail that galvanized the attention of many researchers, including myself. It is ubiquitous in biological systems, and it plays a multitude of physiologic and biochemical functions. A brief historical overview is followed by a discussion of the contributions the work done in my laboratory has made toward understanding the physiological and biochemical functions of zinc. The effort of 40 years has led to the belief that one of zinc's major roles, and perhaps its first limiting role, is to preserve plasma-membrane function as regards ion channels and signal transduction. Although substantial knowledge has been gained relating to the importance of zinc in nutrition, much remains to be discovered.

  17. Threat, prejudice and the impact of the riots in England.

    PubMed

    de Rooij, Eline A; Goodwin, Matthew J; Pickup, Mark

    2015-05-01

    This paper examines how a major outbreak of rioting in England in 2011 impacted on prejudice toward three minority groups in Britain: Muslims, Black British and East Europeans. We test whether the riots mobilized individuals by increasing feelings of realistic and symbolic threat and ultimately prejudice, or whether the riots galvanized those already concerned about minorities, thus strengthening the relationship between threat and prejudice. We conducted three national surveys - before, after and one year on from the riots - and show that after the riots individuals were more likely to perceive threats to society's security and culture, and by extension express increased prejudice toward Black British and East European minorities. We find little evidence of a galvanizing impact. One year later, threat and prejudice had returned to pre-riots levels; however, results from a survey experiment show that priming memories of the riots can raise levels of prejudice. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Role of Al in Zn bath on the formation of the inhibition layer during hot-dip galvanizing for a 1.2Si-1.5Mn transformation-induced plasticity steel

    NASA Astrophysics Data System (ADS)

    Wang, Kuang-Kuo; Hsu, Chiung-Wen; Chang, Liuwen; Gan, Dershin; Yang, Kuo-Cheng

    2013-11-01

    This study investigated the interaction between the Al in the Zn bath and the surface oxides formed by selective oxidation on a 1.2Si-1.5Mn TRIP steel during hot-dip galvanizing. XPS and TEM were employed for characterization. The results indicated that the amorphous xMnO·SiO2 oxide could react with Al to form a Si-Mn-Al-containing oxide. The crystalline MnSiO3 and Mn2SiO4 oxides could be largely reduced by Al to form holes in the oxide film. Consequently, the steel covered by a layer of mixed xMnO·SiO2 and MnSiO3 could form a continuous Fe2Al5 inhibition layer and showed the highest galvanizability among the three samples examined.

  19. Ion exchange treatment of rinse water generated in the galvanizing process.

    PubMed

    Marañón, Elena; Fernández, Yolanda; Castrillón, Leonor

    2005-01-01

    A study was conducted of the viability of using the cationic exchange resins Amberlite IR-120 and Lewatit SP-112 to treat rinse water generated in the galvanizing process as well as acidic wastewater containing zinc (Zn) and iron (Fe). Solutions containing either 100 mg/L of Zn at pH 5.6 (rinse water) or Fe and Zn at concentrations of 320 and 200 mg/L at pH 1.5 (acidic water), respectively, were percolated through packed beds until the resins were exhausted. Breakthrough capacities obtained ranged between 1.1 and 1.5 meq metal/mL resin. The elution of metal and the regeneration of resins were performed with hydrochloric acid. The influence of the flowrate used during the loading stage was also studied, with 0.5 bed volumes/min (3.2 cm/min) found to be the optimum flowrate.

  20. Spherically-clustered porous Au-Ag alloy nanoparticle prepared by partial inhibition of galvanic replacement and its application for efficient multimodal therapy.

    PubMed

    Jang, Hongje; Min, Dal-Hee

    2015-03-24

    The polyvinylpyrrolidone (PVP)-coated spherically clustered porous gold-silver alloy nanoparticle (PVP-SPAN) was prepared by low temperature mediated, partially inhibited galvanic replacement reaction followed by silver etching process. The prepared porous nanostructures exhibited excellent photothermal conversion efficiency under irradiation of near-infrared light (NIR) and allowed a high payload of both doxorubicin (Dox) and thiolated dye-labeled oligonucleotide, DNAzyme (FDz). Especially, PVP-SPAN provided 10 times higher loading capacity for oligonucleotide than conventional hollow nanoshells due to increased pore diameter and surface-to-volume ratio. We demonstrated highly efficient chemo-thermo-gene multitherapy based on codelivery of Dox and FDz with NIR-mediated photothermal therapeutic effect using a model system of hepatitis C virus infected human liver cells (Huh7 human hepatocarcinoma cell line containing hepatitis C virus NS3 gene replicon) compared to conventional hollow nanoshells.

  1. Autonomous colloidal crystallization in a galvanic microreactor

    NASA Astrophysics Data System (ADS)

    Punckt, Christian; Jan, Linda; Jiang, Peng; Frewen, Thomas A.; Saville, Dudley A.; Kevrekidis, Ioannis G.; Aksay, Ilhan A.

    2012-10-01

    We report on a technique that utilizes an array of galvanic microreactors to guide the assembly of two-dimensional colloidal crystals with spatial and orientational order. Our system is comprised of an array of copper and gold electrodes in a coplanar arrangement, immersed in a dilute hydrochloric acid solution in which colloidal micro-spheres of polystyrene and silica are suspended. Under optimized conditions, two-dimensional colloidal crystals form at the anodic copper with patterns and crystal orientation governed by the electrode geometry. After the aggregation process, the colloidal particles are cemented to the substrate by co-deposition of reaction products. As we vary the electrode geometry, the dissolution rate of the copper electrodes is altered. This way, we control the colloidal motion as well as the degree of reaction product formation. We show that particle motion is governed by a combination of electrokinetic effects acting directly on the colloidal particles and bulk electrolyte flow generated at the copper-gold interface.

  2. Performance Evaluation of CMUT-Based Ultrasonic Transformers for Galvanic Isolation.

    PubMed

    Heller, Jacques; Boulme, Audren; Alquier, Daniel; Ngo, Sophie; Certon, Dominique

    2018-04-01

    This paper presents the development of a novel acoustic transformer with high galvanic isolation dedicated to power switch triggering. The transformer is based on two capacitive micromachined ultrasonic transducers layered on each side of a silicon substrate; one is the primary circuit, and the other is the secondary circuit. The thickness mode resonance of the substrate is leveraged to transmit the triggering signal. The fabrication and characterization of an initial prototype is presented in this paper. All experimental results are discussed, from the electrical impedance measurements to the power efficiency measurements, for different electrical load conditions. A comparison with a specifically developed finite-element method model is done. Simulations are finally used to identify the optimization rules of this initial prototype. It is shown that the power efficiency can be increased from 35% to 60%, and the transmitted power can be increased from 1.6 to 45 mW/Volt.

  3. Facile synthesis of hollow Sn-Co@PMMA nanospheres as high performance anodes for lithium-ion batteries via galvanic replacement reaction and in situ polymerization

    NASA Astrophysics Data System (ADS)

    Yu, Xiaohui; Jiang, Anni; Yang, Hongyan; Meng, Haowen; Dou, Peng; Ma, Daqian; Xu, Xinhua

    2015-08-01

    Polymethyl methacrylate (PMMA)-coated hollow Sn-Co nanospheres (Sn-Co@PMMA) with superior electrochemical performance had been synthesized via a facile galvanic replacement method followed by an in situ emulsion polymerization route. The properties were investigated in detail and results show that the hollow Sn-Co nanospheres were evenly coated with PMMA. Benefiting from the protection of the PMMA layers, the hollow Sn-Co@PMMA nanocomposite is capable of retaining a high capacity of 590 mAh g-1 after 100 cycles with a coulomb efficiency above 98%, revealing better electrochemical properties compared with hollow Sn-Co anodes. The PMMA coating could help accommodate the mechanical strain caused by volume expansion and stabilize the solid electrolyte interphase (SEI) film formed on the electrode. Such a facile process could be further extended to other anode materials for lithium-ion batteries.

  4. On The Effect Of Zinc Melt Composition On The Structure Of Hot-Dip Galvanized Coatings

    NASA Astrophysics Data System (ADS)

    Konidaris, S.; Pistofidis, N.; Vourlias, G.; Pavlidou, E.; Stergiou, A.; Stergioudis, G.; Polychroniadis, E. K.

    2007-04-01

    Zinc hot-dip galvanizing is an effective method for the corrosion protection of ferrous materials. A way of improving the results is through the addition of various elements in the zinc melt. In the present work the effect of Ni, Bi, Cr, Mn, Se and Si at concentration of 0.5 or 1.5 wt.% was examined. Coupons of carbon steel St-37 were coated with zinc containing the above-mentioned elements and were exposed in a Salt Spray Chamber (SSC). The micro structure of these coatings was examined with SEM and XRD. In every case the usual morphology was observed, while differences at the thickness and the crystal size of each layer were induced. However the alloying elements were present in the coating affecting its reactivity and, at least in the case of Mn and Cr, improving corrosion resistance.

  5. Corrosion behavior in high-temperature pressurized water of Zircaloy-4 joints brazed with Zr-Cu-based amorphous filler alloys

    NASA Astrophysics Data System (ADS)

    Lee, Jung Gu; Lee, Gyoung-Ja; Park, Jin-Ju; Lee, Min-Ku

    2017-05-01

    The compositional effects of ternary Zr-Cu-X (X: Al, Fe) amorphous filler alloys on galvanic corrosion susceptibility in high-temperature pressurized water were investigated for Zircaloy-4 brazed joints. Through an Al-induced microgalvanic reaction that deteriorated the overall nobility of the joint, application of the Zr-Cu-Al filler alloy caused galvanic coupling to develop readily between the Al-bearing joint and the Al-free base metal, finally leading to massive localized corrosion of the joint. Contrastingly, joints prepared with a Zr-Cu-Fe filler alloy showed excellent corrosion resistance comparable to that of the Zircaloy-4 base metal, since the Cu and Fe elements forming fine intermetallic particles with Zr did not influence the electrochemical stability of the resultant joints. The present results demonstrate that Fe is a more suitable alloying element than Al for brazing filler alloys subjected to high-temperature corrosive environments.

  6. Corrosion Issues in Solder Joint Design and Service

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VIANCO,PAUL T.

    1999-11-24

    Corrosion is an important consideration in the design of a solder joint. It must be addressed with respect to the service environment or, as in the case of soldered conduit, as the nature of the medium being transported within piping or tubing. Galvanic-assisted corrosion is of particular concern, given the fact that solder joints are comprised of different metals or alloy compositions that are in contact with one-another. The (thermodynamic) potential for corrosion to take place in a particular environment requires the availability of the galvanic series for those conditions and which includes the metals or alloys in question. However,more » the corrosion kinetics, which actually determine the rate of material loss under the specified service conditions, are only available through laboratory evaluations or field data that are found in the existing literature or must be obtained by in-house testing.« less

  7. Simple electrical model and initial experiments for intra-body communications.

    PubMed

    Gao, Y M; Pun, S H; Du, M; Mak, P U; Vai, M I

    2009-01-01

    Intra-Body Communication(IBC) is a short range "wireless" communication technique appeared in recent years. This technique relies on the conductive property of human tissue to transmit the electric signal among human body. This is beneficial for devices networking and sensors among human body, and especially suitable for wearable sensors, telemedicine system and home health care system as in general the data rates of physiologic parameters are low. In this article, galvanic coupling type IBC application on human limb was investigated in both its mathematical model and related experiments. The experimental results showed that the proposed mathematical model was capable in describing the galvanic coupling type IBC under low frequency. Additionally, the calculated result and experimental result also indicated that the electric signal induced by the transmitters of IBC can penetrate deep into human muscle and thus, provide an evident that IBC is capable of acting as networking technique for implantable devices.

  8. Serially connected solid oxide fuel cells having monolithic cores

    DOEpatents

    Herceg, Joseph E.

    1987-01-01

    A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of cell segments electrically serially connected in the flow direction, each segment consisting of electrolyte walls and interconnect that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageways; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte composite materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick. Between 2 and 50 cell segments may be connected in series.

  9. Cathodic Protection Deployment on Space Shuttle Solid Rocket Boosters

    NASA Technical Reports Server (NTRS)

    Zook, Lee M.

    1998-01-01

    Corrosion protection of the space shuttle solid rocket boosters incorporates the use of cathodic protection(anodes) in concert with several coatings systems. The SRB design has large carbon/carbon composites(motor nozzle) electrically connected to an aluminum alloy structure. Early in the STS program, the aluminum structures incurred tremendous corrosive attack due primarily to the galvanic couple to the carbon/carbon nozzle at coating damage locations. Also contributing to the galvanic corrosion problem were stainless steel and titanium alloy components housed within the aluminum structures and electrically connected to the aluminum structures. This paper will highlight the evolution in the protection of the aluminum structures, providing historical information and summary data from the operation of the corrosion protection systems. Also, data and information will be included regarding the evaluation and deployment of inorganic zinc rich primers as anode area on the aluminum structures.

  10. Using fuzzy rule-based knowledge model for optimum plating conditions search

    NASA Astrophysics Data System (ADS)

    Solovjev, D. S.; Solovjeva, I. A.; Litovka, Yu V.; Arzamastsev, A. A.; Glazkov, V. P.; L’vov, A. A.

    2018-03-01

    The paper discusses existing approaches to plating process modeling in order to decrease the distribution thickness of plating surface cover. However, these approaches do not take into account the experience, knowledge, and intuition of the decision-makers when searching the optimal conditions of electroplating technological process. The original approach to optimal conditions search for applying the electroplating coatings, which uses the rule-based model of knowledge and allows one to reduce the uneven product thickness distribution, is proposed. The block diagrams of a conventional control system of a galvanic process as well as the system based on the production model of knowledge are considered. It is shown that the fuzzy production model of knowledge in the control system makes it possible to obtain galvanic coatings of a given thickness unevenness with a high degree of adequacy to the experimental data. The described experimental results confirm the theoretical conclusions.

  11. Verticality perception during and after galvanic vestibular stimulation.

    PubMed

    Volkening, Katharina; Bergmann, Jeannine; Keller, Ingo; Wuehr, Max; Müller, Friedemann; Jahn, Klaus

    2014-10-03

    The human brain constructs verticality perception by integrating vestibular, somatosensory, and visual information. Here we investigated whether galvanic vestibular stimulation (GVS) has an effect on verticality perception both during and after application, by assessing the subjective verticals (visual, haptic and postural) in healthy subjects at those times. During stimulation the subjective visual vertical and the subjective haptic vertical shifted towards the anode, whereas this shift was reversed towards the cathode in all modalities once stimulation was turned off. Overall, the effects were strongest for the haptic modality. Additional investigation of the time course of GVS-induced changes in the haptic vertical revealed that anodal shifts persisted for the entire 20-min stimulation interval in the majority of subjects. Aftereffects exhibited different types of decay, with a preponderance for an exponential decay. The existence of such reverse effects after stimulation could have implications for GVS-based therapy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Effect of Mg on the Microstructure and Corrosion Resistance of the Continuously Hot-Dip Galvanizing Zn-Mg Coating

    PubMed Central

    Dong, Anping; Li, Baoping; Lu, Yanling; Zhu, Guoliang; Xing, Hui; Shu, Da; Sun, Baode; Wang, Jun

    2017-01-01

    The microstructure of continuously hot-dip galvanizing Zn-Mg coating was investigated in order to obtain the mechanism of the effects of Mg on the corrosion resistance. In this paper, the vertical section of the Zn-0.20 wt % Al-Mg ternary phase diagram near the Al-low corner was calculated. The results indicates that the phase composition of the Zn-0.20 wt % Al-Mg ternary phase diagram near the Al-low corner is the same as Zn-Mg binary phase diagram, suggesting Al in the Zn-Mg (ZM) coatings mainly concentrates on the interfacial layer between the coating and steel substrate. The microstructure of continuously hot-dip galvanizing ZM coatings with 0.20 wt % Al containing 1.0–3.0 wt % Mg was investigated using tunneling electron microscopy (TEM). The morphology of Zn in the coating changes from bulk to strip and finally to mesh-like, and the MgZn2 changes from rod-like to mesh-like with the Mg content increasing. Al in the ZM coatings mainly segregates at the Fe2Al5 inhibition layer and the Mg added to the Zn bath makes this inhibition layer thinner and uneven. Compared to GI coating, the time of the first red rust appears increases by more than two-fold and expansion rate of red rust reduces by more than four-fold in terms of salt spray experiment. The ZM coating containing 2.0 wt % Mg has the best corrosion resistance. The enhanced corrosion resistance of ZM coatings mainly depends on different corrosion products. PMID:28829393

  13. Effect of Mg on the Microstructure and Corrosion Resistance of the Continuously Hot-Dip Galvanizing Zn-Mg Coating.

    PubMed

    Dong, Anping; Li, Baoping; Lu, Yanling; Zhu, Guoliang; Xing, Hui; Shu, Da; Sun, Baode; Wang, Jun

    2017-08-22

    The microstructure of continuously hot-dip galvanizing Zn-Mg coating was investigated in order to obtain the mechanism of the effects of Mg on the corrosion resistance. In this paper, the vertical section of the Zn-0.20 wt % Al-Mg ternary phase diagram near the Al-low corner was calculated. The results indicates that the phase composition of the Zn-0.20 wt % Al-Mg ternary phase diagram near the Al-low corner is the same as Zn-Mg binary phase diagram, suggesting Al in the Zn-Mg (ZM) coatings mainly concentrates on the interfacial layer between the coating and steel substrate. The microstructure of continuously hot-dip galvanizing ZM coatings with 0.20 wt % Al containing 1.0-3.0 wt % Mg was investigated using tunneling electron microscopy (TEM). The morphology of Zn in the coating changes from bulk to strip and finally to mesh-like, and the MgZn₂ changes from rod-like to mesh-like with the Mg content increasing. Al in the ZM coatings mainly segregates at the Fe₂Al₅ inhibition layer and the Mg added to the Zn bath makes this inhibition layer thinner and uneven. Compared to GI coating, the time of the first red rust appears increases by more than two-fold and expansion rate of red rust reduces by more than four-fold in terms of salt spray experiment. The ZM coating containing 2.0 wt % Mg has the best corrosion resistance. The enhanced corrosion resistance of ZM coatings mainly depends on different corrosion products.

  14. Tolerance to extended galvanic vestibular stimulation: optimal exposure for astronaut training.

    PubMed

    Dilda, Valentina; MacDougall, Hamish G; Moore, Steven T

    2011-08-01

    We have developed an analogue of postflight sensorimotor dysfunction in astronauts using pseudorandom galvanic vestibular stimulation (GVS). To date there has been no study of the effects of extended GVS on human subjects and our aim was to determine optimal exposure for astronaut training based on tolerance to intermittent and continuous galvanic stimulation. There were 60 subjects who were exposed to a total of 10.5 min of intermittent GVS at a peak current of 3.5 mA or 5 mA. A subset of 24 subjects who tolerated the intermittent stimulus were subsequently exposed to 20-min continuous stimulation at 3.5 mA or 5 mA. During intermittent GVS the large majority of subjects (78.3%) reported no or at most mild motion sickness symptoms, 13.3% reported moderate symptoms, and 8.3% experienced severe nausea and requested termination of the stimulus. During 20-min continuous exposure, 83.3% of subjects reported no or at most mild motion sickness symptoms and 16.7% (all in the 5-mA group) experienced severe nausea. Based on these results, we propose two basic modes of GVS application to minimize the incidence of motion sickness: intermittent high (5 mA) amplitude, suited to simulation of intensive operator tasks requiring a high-fidelity analogue of postflight sensorimotor dysfunction such as landing or docking maneuvers; and continuous low (3.5 mA) amplitude stimulation, for longer simulation scenarios such as extra vehicular activity. Our results suggest that neither mode of stimulation would induce motion sickness in the large majority of subjects for up to 20 min exposure.

  15. The strong reactions of Lewis-base noble-metals with vanadium and other acidic transition metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebbinghaus, B.B.

    1991-05-01

    The noble metals often thought of as unreactive solids,react strongly with nearly 40% of the elements in the periodictable: group IIIB-VB transition metals, lanthanides, theactinides, and group IIIA-IVA non-transition metals. These strong reactions arise from increased bonding/electron transfer fromnonbonding electrons d electron pairs on the noble metal tovacant orbitals on V, etc. This effect is a generalized Lewis acid-base interaction. The partial Gibbs energy of V in the noblemetals has been measured as a function of concentration at a temperature near 1000C. Thermodynamics of the intermetallics are determined by ternary oxide equilibria, ternary carbide equilibria, and the high-temperature galvanic cellmore » technique. These experimental methods use equilibrated solid composite mixtures in which grains of V oxides or of V carbides are interspersed with grains of V-NM(noble-metal) alloys. In equilibrium the activity of V in the oxide or the carbide equals the activity in the alloy. Consequently, the thermodynamics available in the literature for the V oxides and V carbides are reviewed. Test runs on the galvanic cell were attempted. The V oxide electrode reacts with CaF[sub 2], ThO[sub 2], YDT(0.85ThO[sub 2]-0.15YO[sub 1.5]), and LDT(0.85ThO[sub 2]- 0.15LaO[sub 1.5]) to interfere with the measured data observed toward the beginning of a galvanic cell experiment are the most accurate. The interaction of vanadium at infinite dilution in the noble-metals was determined.« less

  16. The strong reactions of Lewis-base noble-metals with vanadium and other acidic transition metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebbinghaus, Bartley B.

    1991-05-01

    The noble metals often thought of as unreactive solids,react strongly with nearly 40% of the elements in the periodictable: group IIIB-VB transition metals, lanthanides, theactinides, and group IIIA-IVA non-transition metals. These strong reactions arise from increased bonding/electron transfer fromnonbonding electrons d electron pairs on the noble metal tovacant orbitals on V, etc. This effect is a generalized Lewis acid-base interaction. The partial Gibbs energy of V in the noblemetals has been measured as a function of concentration at a temperature near 1000C. Thermodynamics of the intermetallics are determined by ternary oxide equilibria, ternary carbide equilibria, and the high-temperature galvanic cellmore » technique. These experimental methods use equilibrated solid composite mixtures in which grains of V oxides or of V carbides are interspersed with grains of V-NM(noble-metal) alloys. In equilibrium the activity of V in the oxide or the carbide equals the activity in the alloy. Consequently, the thermodynamics available in the literature for the V oxides and V carbides are reviewed. Test runs on the galvanic cell were attempted. The V oxide electrode reacts with CaF 2, ThO 2, YDT(0.85ThO 2-0.15YO 1.5), and LDT(0.85ThO 2- 0.15LaO 1.5) to interfere with the measured data observed toward the beginning of a galvanic cell experiment are the most accurate. The interaction of vanadium at infinite dilution in the noble-metals was determined.« less

  17. Vestibular Evoked Myogenic Potential (VEMP) Triggered by Galvanic Vestibular Stimulation (GVS): A Promising Tool to Assess Spinal Cord Function in Schistosomal Myeloradiculopathy

    PubMed Central

    Labanca, Ludimila; Dornas de Oliveira, Leonardo; Vaz de Melo Trindade, Guilherme; de Almeida Pereira, Thiago; Diniz Cunha, Pedro Henrique; Santos Falci Mourão, Marina; Lambertucci, José Roberto

    2016-01-01

    Background Schistosomal myeloradiculopathy (SMR), the most severe and disabling ectopic form of Schistosoma mansoni infection, is caused by embolized ova eliciting local inflammation in the spinal cord and nerve roots. The treatment involves the use of praziquantel and long-term corticotherapy. The assessment of therapeutic response relies on neurological examination. Supplementary electrophysiological exams may improve prediction and monitoring of functional outcome. Vestibular evoked myogenic potential (VEMP) triggered by galvanic vestibular stimulation (GVS) is a simple, safe, low-cost and noninvasive electrophysiological technique that has been used to test the vestibulospinal tract in motor myelopathies. This paper reports the results of VEMP with GVS in patients with SMR. Methods A cross-sectional comparative study enrolled 22 patients with definite SMR and 22 healthy controls that were submitted to clinical, neurological examination and GVS. Galvanic stimulus was applied in the mastoid bones in a transcranial configuration for testing VEMP, which was recorded by electromyography (EMG) in the gastrocnemii muscles. The VEMP variables of interest were blindly measured by two independent examiners. They were the short-latency (SL) and the medium-latency (ML) components of the biphasic EMG wave. Results VEMP showed the components SL (p = 0.001) and ML (p<0.001) delayed in SMR compared to controls. The delay of SL (p = 0.010) and of ML (p = 0.020) was associated with gait dysfunction. Conclusion VEMP triggered by GVS identified alterations in patients with SMR and provided additional functional information that justifies its use as a supplementary test in motor myelopathies. PMID:27128806

  18. Vestibular Evoked Myogenic Potential (VEMP) Triggered by Galvanic Vestibular Stimulation (GVS): A Promising Tool to Assess Spinal Cord Function in Schistosomal Myeloradiculopathy.

    PubMed

    Caporali, Júlia Fonseca de Morais; Utsch Gonçalves, Denise; Labanca, Ludimila; Dornas de Oliveira, Leonardo; Vaz de Melo Trindade, Guilherme; de Almeida Pereira, Thiago; Diniz Cunha, Pedro Henrique; Santos Falci Mourão, Marina; Lambertucci, José Roberto

    2016-04-01

    Schistosomal myeloradiculopathy (SMR), the most severe and disabling ectopic form of Schistosoma mansoni infection, is caused by embolized ova eliciting local inflammation in the spinal cord and nerve roots. The treatment involves the use of praziquantel and long-term corticotherapy. The assessment of therapeutic response relies on neurological examination. Supplementary electrophysiological exams may improve prediction and monitoring of functional outcome. Vestibular evoked myogenic potential (VEMP) triggered by galvanic vestibular stimulation (GVS) is a simple, safe, low-cost and noninvasive electrophysiological technique that has been used to test the vestibulospinal tract in motor myelopathies. This paper reports the results of VEMP with GVS in patients with SMR. A cross-sectional comparative study enrolled 22 patients with definite SMR and 22 healthy controls that were submitted to clinical, neurological examination and GVS. Galvanic stimulus was applied in the mastoid bones in a transcranial configuration for testing VEMP, which was recorded by electromyography (EMG) in the gastrocnemii muscles. The VEMP variables of interest were blindly measured by two independent examiners. They were the short-latency (SL) and the medium-latency (ML) components of the biphasic EMG wave. VEMP showed the components SL (p = 0.001) and ML (p<0.001) delayed in SMR compared to controls. The delay of SL (p = 0.010) and of ML (p = 0.020) was associated with gait dysfunction. VEMP triggered by GVS identified alterations in patients with SMR and provided additional functional information that justifies its use as a supplementary test in motor myelopathies.

  19. Ion Release and Galvanic Corrosion of Different Orthodontic Brackets and Wires in Artificial Saliva.

    PubMed

    Tahmasbi, Soodeh; Sheikh, Tahereh; Hemmati, Yasamin B

    2017-03-01

    To investigate the galvanic corrosion of brackets manufactured by four different companies coupled with stainless steel (SS) or nickel-titanium (NiTi) wires in an artificial saliva solution. A total of 24 mandibular central incisor Roth brackets of four different manufacturers (American Orthodontics, Dentaurum, Shinye, ORJ) were used in this experimental study. These brackets were immersed in artificial saliva along with SS or NiTi orthodontic wires (0.016'', round) for 28 days. The electric potential difference of each bracket/ wire coupled with a saturated calomel reference electrode was measured via a voltmeter and recorded constantly. Corrosion rate (CR) was calculated, and release of ions was measured with an atomic absorption spectrometer. Stereomicroscope was used to evaluate all samples. Then, samples with corrosion were further assessed by scanning electron microscope and energy-dispersive X-ray spectroscopy. Two-way analysis of variance was used to analyze data. Among ions evaluated, release of nickel ions from Shinye brackets was significantly higher than that of other brackets. The mean potential difference was significantly lower in specimens containing a couple of Shinye brackets and SS wire compared with other specimens. No significant difference was observed in the mean CR of various groups (p > 0.05). Microscopic evaluation showed corrosion in two samples only: Shinye bracket coupled with SS wire and American Orthodontics bracket coupled with NiTi wire. Shinye brackets coupled with SS wire showed more susceptibility to galvanic corrosion. There were no significant differences among specimens in terms of the CR or released ions except the release of Ni ions, which was higher in Shinye brackets.

  20. Early Detection of Steel Rebar Corrosion by Acoustic Emission Monitoring

    DOT National Transportation Integrated Search

    1995-01-01

    Acoustic emission monitoring was performed in a unique way on concrete specimens containing reinforcing steel and the acoustic emission events correlated with the presence of rebar corrosion. Verification of rebar corrosion was done by galvanic curre...

  1. Long-term post-tensioned beam exposure test specimens : final evaluation.

    DOT National Transportation Integrated Search

    2003-08-01

    In the last few years, the effectiveness of cement grout in galvanized or polyethylene ducts, the most widely used corrosion protection system for : multistrand bonded post-tensioned concrete tendons, has been under debate, due to significant tendon ...

  2. PHOSPHATE CHEMICALS FOR BUILDING POTABLE WATER TREATMENT

    EPA Science Inventory

    Buildings can contribute significant quantities of trace metal contamination to drinking water, particularly lead, copper and zinc. Discolored water may also result in corroded galvanized and steel plumbing and after prolonged stagnation times. To protect human health as well as ...

  3. Improvements to highway guardrail assemblies : final report 14-1TIRE.

    DOT National Transportation Integrated Search

    2016-05-01

    Highway guardrail assemblies play an important role in enhancing the safety of motorists. Guardrail assemblies : contain three main components: (1) galvanized steel guardrail, (2) posts, and (3) blockouts. The purpose of the : blockout is to increase...

  4. ASSESSMENT OF FUNGAL (PENICILLIUM CHRYSOGENUM) GROWTH ON THREE HVAC DUCT MATERIALS

    EPA Science Inventory

    The article discusses laboratory experiments to evaluate the susceptibility of three ventilation duct materials (fibrous glass ductboard, galvanized steel, and insulated flexible duct) to fungal (P. chrysogenum) growth. [NOTE: Many building investigators have documented fungal bi...

  5. Evaluation of zinc coating procedures : final report.

    DOT National Transportation Integrated Search

    1978-01-01

    This research project was conducted in order to compare the existing procedure of zinc coating by hot-dip galvanizing with the other zinc coating systems of painting and electroplating. : Hardware coated by these processes was exposed to varied labor...

  6. View northwest, wharf B, timber framing, detail of cross bracing, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northwest, wharf B, timber framing, detail of cross bracing, charred piers, recent galvanized fastenings - U.S. Coast Guard Sandy Hook Station, Western Docking Structure, West of intersection of Canfield Road & Hartshorne Drive, Highlands, Monmouth County, NJ

  7. Performance variances of galvanized steel in mortar and concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hime, W.G.; Machin, M.

    Mild steel is used as reinforcement in concrete structures because it is passivated by the highly alkaline cement paste system, preventing typical corrosion. Two processes can corrode the initially passivated steel: air carbonation and chloride (Cl[sup [minus

  8. Designing the Color of Hot-Dip Galvanized Steel Sheet Through Destructive Light Interference Using a Zn-Ti Liquid Metallic Bath

    NASA Astrophysics Data System (ADS)

    Levai, Gabor; Godzsák, Melinda; Török, Tamas I.; Hakl, Jozsef; Takáts, Viktor; Csik, Attila; Vad, Kalman; Kaptay, George

    2016-07-01

    The color of hot-dip galvanized steel sheet was adjusted in a reproducible way using a liquid Zn-Ti metallic bath, air atmosphere, and controlling the bath temperature as the only experimental parameter. Coloring was found only for samples cooled in air and dipped into Ti-containing liquid Zn. For samples dipped into a 0.15 wt pct Ti-containing Zn bath, the color remained metallic (gray) below a 792 K (519 °C) bath temperature; it was yellow at 814 K ± 22 K (541 °C ± 22 °C), violet at 847 K ± 10 K (574 °C ± 10 °C), and blue at 873 K ± 15 K (600 °C ± 15 °C). With the increasing bath temperature, the thickness of the adhered Zn-Ti layer gradually decreased from 52 to 32 micrometers, while the thickness of the outer TiO2 layer gradually increased from 24 to 69 nm. Due to small Al contamination of the Zn bath, a thin (around 2 nm) alumina-rich layer is found between the outer TiO2 layer and the inner macroscopic Zn layer. It is proven that the color change was governed by the formation of thin outer TiO2 layer; different colors appear depending on the thickness of this layer, mostly due to the destructive interference of visible light on this transparent nano-layer. A complex model was built to explain the results using known relationships of chemical thermodynamics, adhesion, heat flow, kinetics of chemical reactions, diffusion, and optics. The complex model was able to reproduce the observations and allowed making predictions on the color of the hot-dip galvanized steel sample, as a function of the following experimental parameters: temperature and Ti content of the Zn bath, oxygen content, pressure, temperature and flow rate of the cooling gas, dimensions of the steel sheet, velocity of dipping the steel sheet into the Zn-Ti bath, residence time of the steel sheet within the bath, and the velocity of its removal from the bath. These relationships will be valuable for planning further experiments and technologies on color hot-dip galvanization of steel by Zn-Ti alloys.

  9. Investigation of electrochemical phenomena related to corrosion in high temperature aqueous systems

    NASA Astrophysics Data System (ADS)

    Biswas, Ritwik

    1999-11-01

    Three separate phenomena, each related to the problem of corrosion of metals, in high temperature aqueous solutions, have been studied. These are: (1) Kinetics of the Hydrogen Oxidation Reaction (HOR), (2) Effect of solutions containing sulfur oxyanions on Stainless Steel 347 and Inconel 600, and (3) Characterization of electrochemical behavior of intermetallic compounds Ni3Nb and Ni3(TiAl). The anodic transfer coefficient and the Tafel constant, for the HOR, on platinized nickel, in 0.1 m NaOH solution, was experimentally measured over the temperature range of 25°C to 300°C. Potentiodynamic polarization experiments, under controlled hydrodynamic flow conditions, in a cell with annular flow geometry, were used for these measurements. The anodic transfer coefficient and the Tafel constant were found to increase with increase in solution temperature. At high anodic potentials (>1V vs. rest potential), passivation of the platinum electrode was observed. Electron tunneling theory was used to determine that this was the result of formation of platinum oxide (PtO) on the surface of the platinum electrode. The relative corrosion properties of Stainless Steel 347 and Inconel 600, exposed to an aqueous electrolyte containing sulfur oxyanions, at temperatures up to 285°C, was studied using electrochemical tests, mathematical modeling and surface analysis. The presence of sulfur oxyanions was found to cause the breakdown of the protective passive film on both the alloy surfaces, and increase their corrosion rates. As a result of exposure to the electrolyte, a porous layer of corrosion product was formed on both alloys. This porous layer was composed principally of Ni3S2 in the case of Inconel 600 and Fe3O4 in the case of Stainless Steel 347. The corrosive effect of sulfur oxyanions was found to be greater on Inconel 600 than Stainless Steel 347. Galvanic coupling experiments were conducted on the intermetallics Ni 3Nb and Ni3(TiAl) and a nickel rich alloy. It was determined that the intermetallics acted as the anodes when coupled with the nickel rich alloy material. At room temperature, both galvanic current and galvanic potential displayed oscillatory behavior as a function of time. These were analyzed using dynamic systems theory. It was determined from such analysis that the galvanic coupling process can be theoretically described by two coupled ordinary differential equations.

  10. A gauged finite-element potential formulation for accurate inductive and galvanic modelling of 3-D electromagnetic problems

    NASA Astrophysics Data System (ADS)

    Ansari, S. M.; Farquharson, C. G.; MacLachlan, S. P.

    2017-07-01

    In this paper, a new finite-element solution to the potential formulation of the geophysical electromagnetic (EM) problem that explicitly implements the Coulomb gauge, and that accurately computes the potentials and hence inductive and galvanic components, is proposed. The modelling scheme is based on using unstructured tetrahedral meshes for domain subdivision, which enables both realistic Earth models of complex geometries to be considered and efficient spatially variable refinement of the mesh to be done. For the finite-element discretization edge and nodal elements are used for approximating the vector and scalar potentials respectively. The issue of non-unique, incorrect potentials from the numerical solution of the usual incomplete-gauged potential system is demonstrated for a benchmark model from the literature that uses an electric-type EM source, through investigating the interface continuity conditions for both the normal and tangential components of the potential vectors, and by showing inconsistent results obtained from iterative and direct linear equation solvers. By explicitly introducing the Coulomb gauge condition as an extra equation, and by augmenting the Helmholtz equation with the gradient of a Lagrange multiplier, an explicitly gauged system for the potential formulation is formed. The solution to the discretized form of this system is validated for the above-mentioned example and for another classic example that uses a magnetic EM source. In order to stabilize the iterative solution of the gauged system, a block diagonal pre-conditioning scheme that is based upon the Schur complement of the potential system is used. For all examples, both the iterative and direct solvers produce the same responses for the potentials, demonstrating the uniqueness of the numerical solution for the potentials and fixing the problems with the interface conditions between cells observed for the incomplete-gauged system. These solutions of the gauged system also produce the physically anticipated behaviours for the inductive and galvanic components of the electric field. For a realistic geophysical scenario, the gauged scheme is also used to synthesize the magnetic field response of a model of the Ovoid ore deposit at Voisey's Bay, Labrador, Canada. The results are in good agreement with the helicopter-borne EM data from the real survey, and the inductive and galvanic parts of the current density show expected behaviours.

  11. WET-WEATHER POLLUTION PREVENTION BY PRODUCT SUBSTITUTION

    EPA Science Inventory

    A literature review of urban stormwater runoff and building/construction materials has shown that many materials such as galvanized metal, concrete, asphalt, and wood products, have the potential to release pollutants into urban stormwater runoff, and snowmelt. However, much of t...

  12. 46 CFR 119.730 - Nonferrous metallic piping materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... temperature above 927 °C (1,700 °F) may be used in vital systems that are deemed to be galvanically compatible.... Pipe in the annealed temper must not be threaded; (4) The use of aluminum alloys with a copper content...

  13. Performance of steel girders repaired with advanced composite sheets in a corrosive environment.

    DOT National Transportation Integrated Search

    2017-01-01

    This report presents a two-phase research program studying i) galvanic current influencing deterioration of carbon fiber reinforced polymer (CFRP) sheets bonded to a steel substrate and ii) electrochemical reaction for steel beams strengthened with C...

  14. WET-WEATHER POLLUTION PREVENTION BY PRODUCT SUBSTITUTION

    EPA Science Inventory

    A literature review of building/construction materials has shown that many of these materials such as galvanized metal, concrete, asphalt, and wood products have the potential to release pollutants into urban stormwater runoff and snowmelt. However, much of this previous research...

  15. 76 FR 22446 - Office of Hazardous Materials Safety; Notice of Applications for Modification of Special Permit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... submitted in triplicate. If confirmation of receipt of comments is desired, include a self-addressed stamped..., Tilbury, test criteria for Hot- Ontario. Dip Galvanized cylinders from the ratio rejection in Sec. 180.209...

  16. View south, wharf B, timber framing, detail of cross bracing, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View south, wharf B, timber framing, detail of cross bracing, recent galvanized straps, bolts and washers - U.S. Coast Guard Sandy Hook Station, Western Docking Structure, West of intersection of Canfield Road & Hartshorne Drive, Highlands, Monmouth County, NJ

  17. Development of Formulations for a-SiC and Manganese CMP and Post-CMP Cleaning of Cobalt

    NASA Astrophysics Data System (ADS)

    Lagudu, Uma Rames Krishna

    We have investigated the chemical mechanical polishing (CMP) of amorphous SiC (a-SiC) and Mn and Post CMP cleaning of cobalt for various device applications. During the manufacture of copper interconnects using the damascene process the polishing of copper is followed by the polishing of the barrier material (Co, Mn, Ru and their alloys) and its post CMP cleaning. This is followed by the a-SiC hard mask CMP. Silicon carbide thin films, though of widespread use in microelectronic engineering, are difficult to process by CMP because of their hardness and chemical inertness. The earlier part of the SiC work discusses the development of slurries based on silica abrasives that resulted in high a-SiC removal rates (RRs). The ionic strength of the silica dispersion was found to play a significant role in enhancing material removal rate, while also providing very good post-polish surface-smoothness. For example, the addition of 50 mM potassium nitrate to a pH 8 aqueous slurry consisting of 10 wt % of silica abrasives and 1.47 M hydrogen peroxide increased the RR from about 150 nm/h to about 2100 nm/h. The role of ionic strength in obtaining such high RRs was investigated using surface zeta-potentials measurements and X-ray photoelectron spectroscopy (XPS). Evidently, hydrogen peroxide promoted the oxidation of Si and C to form weakly adhered species that were subsequently removed by the abrasive action of the silica particles. The effect of potassium nitrate in increasing material removal is attributed to the reduction in the electrostatic repulsion between the abrasive particles and the SiC surface because of screening of surface charges by the added electrolyte. We also show that transition metal compounds when used as additives to silica dispersions enhance a-SiC removal rates (RRs). Silica slurries containing potassium permanganate gave RRs as high as 2000 nm/h at pH 4. Addition of copper sulfate to this slurry further enhanced the RRs to ˜3500 nm/h at pH 6. Furthermore, addition of a low concentration of 250 ppm Brij-35 to this slurry suppressed the RRs of silicon dioxide to zero, while retaining the RRs of a-SiC at ˜2700 nm/h , a combination of RRs that is appropriate for hard mask polishing. The second part of this thesis focuses on the polishing of manganese which was proposed as a "self-forming" barrier material to prevent copper diffusion in advanced generation (22 nm and smaller) Si devices. A major challenge associated with such a self-forming Mn barrier for Cu interconnects in sub-22nm devices is galvanic corrosion that can occur at the Cu-Mn interface during chemical mechanical planarization. In the present work, it was shown that an aqueous solution of sucrose, BTA and potassium periodate reduces the corrosion potential gap between Cu and Mn to ˜ 0.01 V at pH 10 while also lowering the galvanic currents significantly and hence can be an excellent candidate for a polishing slurry. We discuss the role of these reagents and the inhibiting film that can be formed at the interface of the bimetallic system in this solution. Preliminary polishing results for Cu and Mn using a silica-based slurry formulated with this solution are also presented. The third part involves the development of compositions for Post CMP cleaning of cobalt barriers in advanced generation (22 nm and smaller). The thickness of the cobalt films was found to impact the corrosion behavior of the films. Thinner films of cobalt were found be more prone to galvanic corrosion in the presence of copper. The corrosion currents were low for both Cu and Co in all the solutions tested but the galvanic currents varied significantly. It was found that while BTA was not able to suppress the galvanic corrosion between Cu and Co (2000 A) at pH 8, either 60 mM of 3 Amino 1,2,4 triazole or 30 mM of 3 Amino 5 methyl thio 1,2,4 triazole were able to suppress the galvanic corrosion between Cu and Co (2000 A) to < 0.3 micro amperes per square cm at pH 8. These compositions however were not able to suppress the galvanic corrosion of Co (20 A) films. Changing the pH to 10 did not improve the results. Furthermore, addition of several complexing agents and other corrosion inhibitors also did not lower the Ecorr of Co (20 A) and Cu. Further experiments are being conducted to identify compositions to protect Co and Cu from corrosion. (Abstract shortened by UMI.).

  18. A Chemically Relevant Model for Teaching the Second Law of Thermodynamics.

    ERIC Educational Resources Information Center

    Williamson, Bryce E.; Morikawa, Tetsuo

    2002-01-01

    Introduces a chemical model illustrating the aspects of the second law of thermodynamics which explains concepts such as reversibility, path dependence, and extrapolation in terms of electrochemistry and calorimetry. Presents a thought experiment using an ideal galvanic electrochemical cell. (YDS)

  19. SILICATES FOR CORROSION CONTROL IN BUILDING POTABLE WATER SYSTEMS

    EPA Science Inventory

    Silicates have been used to control the corrosion of drinking water distribution system materials. Previous work has shown that they are particularly useful in reducing the release of zinc from galvanized materials in hot water systems. Negatively charged silicate species were re...

  20. Identification of techniques to meet pH standard during in-stream construction.

    DOT National Transportation Integrated Search

    2014-03-01

    Many of Marylands tributaries traverse highway infrastructure via culverts that are managed : and maintained by SHA. These culverts are often made of galvanized steel and over time are : subjected to scour. Concrete grout is often used as a repair...

  1. Protective Coatings for Metals

    NASA Technical Reports Server (NTRS)

    Ruggieri, D. J.; Rowe, A. P.

    1986-01-01

    Report evaluates protective coatings for metal structures in seashore and acid-cloud environments. Evaluation result of study of coating application characteristics, repair techniques, and field performance. Products from variety of manufacturers included in study. Also factory-coated panels and industrial galvanized panels with and without topcoats.

  2. Polyfibroblast: A Self-Healing and Galvanic Protection Additive

    DTIC Science & Technology

    2012-02-28

    inside. Figure 2 shows that the microcapsules indeed have silica nanoparticles decorating the outside of the polyurea shell. They appear roughly...water more strongly than the polyurea . Overall, this hygroscopic nature means that the drying methods need to be more aggressive. Polyfibroblast

  3. Detail of old rain shed (Building No. 43) showing truss ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of old rain shed (Building No. 43) showing truss type B at wall post. New aluminum roofing seen in comparison with older galvanized steel siding. - Hawaii Volcanoes National Park Water Collection System, Hawaii Volcanoes National Park, Volcano, Hawaii County, HI

  4. 46 CFR 128.220 - Class II non-vital systems-materials and pressure design.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... materials and pressure design of subchapter F of this chapter. (b) Piping for salt-water service must be of a corrosion-resistant material and, if ferrous, be hot-dip galvanized or be at least of extra-heavy...

  5. 46 CFR 128.220 - Class II non-vital systems-materials and pressure design.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... materials and pressure design of subchapter F of this chapter. (b) Piping for salt-water service must be of a corrosion-resistant material and, if ferrous, be hot-dip galvanized or be at least of extra-heavy...

  6. 46 CFR 128.220 - Class II non-vital systems-materials and pressure design.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... materials and pressure design of subchapter F of this chapter. (b) Piping for salt-water service must be of a corrosion-resistant material and, if ferrous, be hot-dip galvanized or be at least of extra-heavy...

  7. 46 CFR 128.220 - Class II non-vital systems-materials and pressure design.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... materials and pressure design of subchapter F of this chapter. (b) Piping for salt-water service must be of a corrosion-resistant material and, if ferrous, be hot-dip galvanized or be at least of extra-heavy...

  8. 46 CFR 128.220 - Class II non-vital systems-materials and pressure design.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... materials and pressure design of subchapter F of this chapter. (b) Piping for salt-water service must be of a corrosion-resistant material and, if ferrous, be hot-dip galvanized or be at least of extra-heavy...

  9. Evaluation of sprayed-on metalizing for precast prestressed concrete I-beams

    DOT National Transportation Integrated Search

    2002-04-01

    Cathodic protection has been used as an effective means of arresting corrosion in reinforced concrete. A galvanic system typically consists of a sacrificial anode, some form of adhesive or fastening system to secure the anode to the concrete, and an ...

  10. Protective coatings on concrete surfaces : Madden Macryseal : experimental feature : final report.

    DOT National Transportation Integrated Search

    1985-02-01

    The intrusion of salt-laden moisture into concrete bridge members has caused considerable damage to bridges along the Oregon coast. The increasing chloride ion content of the concrete fosters a galvanic corrosion cell. This results in the rapid corro...

  11. Influence of laser beam incidence angle on laser lap welding quality of galvanized steels

    NASA Astrophysics Data System (ADS)

    Mei, Lifang; Yan, Dongbing; Chen, Genyu; Wang, Zhenhui; Chen, Shuixuan

    2017-11-01

    Based on the characteristics of laser welded structural parts of auto bodies, the influence of variation in laser beam incidence angle on the lap welding performance of galvanized auto-body sheets was studied. Lap welding tests were carried out on the galvanized sheets for auto-body application at different laser beam incidence angles by using the optimal welding parameters obtained through orthogonal experiment. The effects of incidence angle variation on seam appearance, cross-sectional shape, joint mechanical properties and microstructure of weldments were analyzed. In addition, the main factors influencing the value of incidence angle were investigated. According to the results, the weld seams had a good appearance as well as a fine, and uniform microstructure when the laser beam incidence angle was smaller than the critical incidence angle, and thus they could withstand great tensile and shear loads. Moreover, all tensile-shear specimens were fractured in the base material zone. When the laser beam incidence angle was larger than the critical incidence angle, defects like shrinkage and collapse tended to emerge, thereby resulting in the deteriorated weldability of specimens. Meanwhile, factors like the type and thickness of sheet, weld width as well as inter-sheet gap all had a certain effect on the value of laser beam incidence angle. When the sheet thickness was small and the weld width was narrow, the laser beam incidence angle could be increased appropriately. At the same time, small changes in the inter-sheet gap could greatly impact the value of incidence angle. When the inter-sheet gap was small, the laser beam incidence angle should not be too large.

  12. Electrochemical behavior of tube-fin assembly for an aluminum automotive condenser with improved corrosion resistance

    NASA Astrophysics Data System (ADS)

    Pech-Canul, M. A.; Guía-Tello, J. C.; Pech-Canul, M. I.; Aguilar, J. C.; Gorocica-Díaz, J. A.; Arana-Guillén, R.; Puch-Bleis, J.

    An aluminum automotive condenser was designed to exhibit high corrosion resistance in the seawater acetic acid test (SWAAT) combining zinc coated microchannel tubes and fins made with AA4343/AA3003(Zn)/AA4343 brazing sheet. Electrochemical measurements in SWAAT solution were carried out under laboratory conditions using tube-fin assembly and individual fin and tube samples withdrawn from the condenser core. The aim was to gain information on the protective role of the zinc sacrificial layer and about changes in corrosion behavior as a function of immersion time. External corrosion of the tube-fin system was simulated by immersion of mini-core samples under open circuit conditions. The corrosion rate increased rapidly during the first 6 h and slowly afterwards. The short time behavior was related to the dissolution of the oxide film and fast dissolution of the outermost part of the zinc diffusion layer. With the aid of cross-sectional depth corrosion potential profiles, it was shown that as the sacrificial layer gets dissolved, the surface concentration of zinc decreases and the potential shifts to less negative values. The results of galvanic coupling of tube and fins in a mini-cell showed that the tube became the anode while the fins exhibited cathodic behavior. An evolution in the galvanic interaction was observed, due to the progressive dissolution of the sacrificial zinc layer. The difference of uncoupled potentials between tube and fins decreased from 71 mV to 32 mV after 84 h of galvanic coupling. At the end of such period there was still a part of the zinc sacrificial layer remaining which would serve for protection of the tube material for even longer periods and there were indications of slight corrosion in the fins.

  13. Electrochemistry and speciation of Au(+) in a deep eutectic solvent: growth and morphology of galvanic immersion coatings.

    PubMed

    Ballantyne, Andrew D; Forrest, Gregory C H; Frisch, Gero; Hartley, Jennifer M; Ryder, Karl S

    2015-11-11

    In this study we compare the electrochemical and structural properties of three gold salts AuCl, AuCN and KAu(CN)2 in a Deep Eutectic Solvent (DES) electrolyte (Ethaline 200) in order to elucidate factors affecting the galvanic deposition of gold coatings on nickel substrates. A chemically reversible diffusion limited response was observed for AuCl, whereas AuCN and KAu(CN)2 showed much more complicated, kinetically limited responses. Galvanic exchange reactions were performed on nickel substrates from DES solutions of the three gold salts; the AuCN gave a bright gold coating, the KAu(CN)2 solution give a visibly thin coating, whilst the coating from AuCl was dull, friable and poorly adhesive. This behaviour was rationalised by the differing speciation for each of these compounds, as evidenced by EXAFS methods. Analysis of EXAFS data shows that AuCl forms the chlorido-complex [AuCl2](-), AuCN forms a mixed [AuCl(CN)](-) species, whereas KAu(CN)2 maintains its [Au(CN)2](-) structure. The more labile Cl(-) enables easier reduction of Au when compared to the tightly bound cyanide species, hence leading to slower kinetics of deposition and differing electrochemical behaviour. We conclude that metal speciation in DESs is a function of the initial metal salt and that this has a strong influence on the mechanism and rate of growth, as well as on the morphology of the metal deposit obtained. In addition, these coatings are also extremely promising from a technological perspective as Electroless Nickel Immersion Gold (ENIG) finishes in the printed circuit board (PCB) industry, where the elimination of acid in gold plating formulation could potentially lead to more reliable coatings. Consequently, these results are both significant and timely.

  14. Galvanizing and Galvannealing Behavior of CMnSiCr Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Lin, Ko-Chun; Chu, Peng-Wei; Lin, Chao-Sung; Chen, Hon-Bor

    2013-06-01

    Alloying elements, such as Mn, Mo, Si, and Cr, are commonly used to enhance the strength of advanced high-strength steels. Those elements also play an important role in the hot-dip galvanizing (GI) and galvannealing (GA) process. In this study, two kinds of CMnSiCr dual-phase steels were galvanized and galvannealed using a hot-dip simulator to investigate the effect of the alloying elements on the microstructure of the GI and GA coatings. The results showed that the dual-phase steels had good galvanizability because no bare spots were observed and the Fe-Zn phases were readily formed at the interface. However, the alloying reaction during the GA process was significantly hindered. XPS analysis showed that external oxidation occurred under an extremely low dew point [213 K to 203 K (-60 °C to -70 °C)] atmosphere during the annealing prior to hot dipping. However, most of the oxides were reduced during the GI process. After the GI process, the Al was present as solid solutes in the Fe-Zn phase, suggesting that the Fe-Zn phase was formed from the transformation of the Fe-Al inhibition alloy. Meanwhile, the solubility of Si in the ζ phase was extremely low. With continued GA reaction, the ζ phase transformed into the δ phase, which contained approximately 1.0 at.pct Si. The Si also diffused into the Zn layer during the GA reaction. Hence, the ζ phase did not homogeneously nucleate at the steel substrate/Zn coating interface, but was found at the area away from the interface. Therefore, the Fe-Zn phases on the CMnSiCr dual-phase steels were relatively non-uniform compared to those on interstitial-free steel.

  15. Selective Oxidation and Reactive Wetting During Hot-Dip Galvanizing of a 1.0 pct Al-0.5 pct Si TRIP-Assisted Steel

    NASA Astrophysics Data System (ADS)

    Bellhouse, E. M.; McDermid, J. R.

    2012-07-01

    Selective oxidation and reactive wetting during continuous galvanizing were studied for a low-alloy transformation induced plasticity (TRIP)-assisted steel with 0.2 pct C, 1.5 pct Mn, 1.0 pct Al and 0.5 pct Si. Three process atmospheres were tested during annealing prior to galvanizing: 220 K (-53 °C) dew point (dp) N2-20 pct H2, 243 K (-30 °C) dp N2-5 pct H2 and 278 K (+5 °C) dp N2-5 pct H2. The process atmosphere oxygen partial pressure affected the oxide chemistry, morphology and thickness. For the 220 K (-53 °C) dp and 243 K (-30 °C) dp process atmospheres, film and nodule-type manganese, silicon and aluminum containing oxides were observed at the surface. For the 278 K (+5 °C) dp atmosphere, MnO was observed at the grain boundaries and as thicker localized surface films. Oxide morphology, thickness and chemistry affected reactive wetting, with complete wetting being observed for the 220 K (-53 °C) dp and 243 K (-30 °C) dp process atmospheres and incomplete reactive wetting being observed for the 278 K (+5 °C) dp atmosphere. Complete reactive wetting for the 220 K (-53 °C) dp and 243 K (-30 °C) dp process atmospheres was attributed to a combination of zinc bridging of oxides, aluminothermic reduction of surface oxides and wetting of the oxides. Incomplete wetting for the 278 K (+5 °C) dp atmosphere was attributed to localized thick MnO films.

  16. Urinary nickel as bioindicator of workers' Ni exposure in a galvanizing plant in Brazil.

    PubMed

    Oliveira, J P; de Siqueira, M E; da Silva, C S

    2000-01-01

    We measured urinary nickel (U-Ni) in ten workers (97 samples) from a galvanizing plant that uses nickel sulfate, and in ten control subjects (55 samples) to examine the association between occupational exposure to airborne Ni and Ni absorption. Samples from the exposed group were taken before and after the work shift on 5 successive workdays. At the same time airborne Ni (A-Ni) was measured using personal samplers. Ni levels in biological material and in the airborne were determined by a graphite furnace atomic absorption spectrometry validated method. In the control group the urine samples were collected twice a day, in the before and after the work shift, on 3 successive days. Ni exposure low to moderate was detected in all the examined places in the plant, the airborne levels varying between 2.8 and 116.7 micrograms/m3 and the urine levels, from samples taken postshift, between 4.5 and 43.2 micrograms/g creatinine (mean 14.7 micrograms/g creatinine). Significant differences in U-Ni creatinine were seen between the exposed and control groups (Student's t test, P < or = 0.01). A significant correlation between U-Ni and A-Ni (r = 0.96; P < or = 0.001) was detected. No statistical difference was observed in U-Ni collected from exposed workers in the 5 successive days, but significant difference was observed between pre- and postshift samples. Urinary nickel may be used as a reliable internal dose bioindicator in biological monitoring of workers exposed to Ni sulfate in galvanizing plants regardless of the day of the workweek on which the samples are collected.

  17. A method to quickly test the emissivity with an infrared thermal imaging system within a small distance

    NASA Astrophysics Data System (ADS)

    Wang, Xuan-yu; Hu, Rui; Wang, Rui-xin

    2015-10-01

    A simple method has been set up to quickly test the emissivity with an infrared thermal imaging system within a small distance according to the theory of measuring temperature by infrared system, which is based on the Planck radiation law and Lambert-beer law. The object's temperature is promoted and held on by a heater while a temperature difference has been formed between the target and environment. The emissivity of human skin, galvanized iron plate, black rubber and liquid water has been tested under the condition that the emissivity is set in 1.0 and the testing distance is 1m. According to the invariance of human's body temperature, a testing curve is established to describe that the thermal imaging temperatures various with the emissivity which is set in from 0.9 to 1.0. As a result, the method has been verified. The testing results show that the emissivity of human skin is 0.95. The emissivity of galvanized iron plate, black rubber and liquid water decreases with the increase of object's temperature. The emissivity of galvanized iron plate is far smaller than the one of human skin, black rubber or water. The emissivity of water slowly linearly decreases with the increase of its temperature. By the study, within a small distance and clean atmosphere, the infrared emissivity of objects may be expediently tested with an infrared thermal imaging system according to the method, which is promoting the object's temperature to make it different from the environment temperature, then simultaneously measures the environmental temperature, the real temperature and thermal imaging temperature of the object when the emissivity is set in 1.0 and the testing distance is 1.0m.

  18. Electrical potentials between stent-grafts made from different metals induce negligible corrosion.

    PubMed

    Kazimierczak, A; Podraza, W; Lenart, S; Wiernicki, I; Gutowski, P

    2013-10-01

    Evaluation of the risk of galvanic corrosion in various stent-grafts in current practice, when devices with unmatched alloy compositions are deployed together. Five nitinol (NT) and two steel (SS) stent-grafts produced by different companies were used in different combinations to create 21 samples (NT:NT, n = 10; NT:SS, n = 10; SS:SS, n = 1). Electric potential was measured between the metal couplings after immersion in 0.9% NaCl at a temperature of 37 °C. Subsequently, the same samples were incubated for 24 months in 0.9% NaCl at 37-39 °C under hermetic conditions and examined under a scanning electron microscope in order to search for any evidence of corrosion. Electric potentials between different metals alloys were found (means: NT:SS, 181 μV; NT:NT, 101 μV; SS:SS, 160 μV). The mean electrical potential between stainless steel and nitinol samples was significantly higher than between NT:NT couplings (p < .001). During the final scanning electron microscope examination, only one spot of pitting corrosion (>10 μm) on a nitinol surface was found (associated with previous mechanical damage) in an NT:SS sample after 24 months of incubation in vitro and no sign of mechanical failure of the wires was found. Direct contact between the stainless steel and the nitinol alloys does indeed create electrical potential but with a minimal risk of galvanic corrosion. No evidence was found for significant galvanic corrosion when two endovascular implants (stent-grafts) made from different metal composition were used in the same procedure. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  19. Assessment of nickel titanium and beta titanium corrosion resistance behavior in fluoride and chloride environments.

    PubMed

    Kassab, Elisa J; Gomes, José Ponciano

    2013-09-01

    To assess the influence of fluoride concentration on the corrosion behavior of nickel titanium (NiTi) superelastic wire and to compare the corrosion resistance of NiTi with that of beta titanium alloy in physiological solution with and without addition of fluoride. NiTi corrosion resistance was investigated through electrochemical impedance spectroscopy and anodic polarization in sodium chloride (NaCl 0.15 M) with and without addition of 0.02 M sodium fluoride (NaF), and the results were compared with those associated with beta titanium. The influence of fluoride concentration on NiTi corrosion behavior was assessed in NaCl (0.15 M) with and without 0.02, 0.04, 0.05, 0.07, and 0.12 M NaF solution. Galvanic corrosion between NiTi and beta titanium were investigated. All samples were characterized by scanning electron microscopy. Polarization resistance decreased when NaF concentration was increased, and, depending on NaF concentration, NiTi can suffer localized or generalized corrosion. In NaCl solution with 0.02 M NaF, NiTi suffer localized corrosion, while beta titanium alloys remained passive. Current values near zero were observed by galvanic coupling of NiTi and beta titanium. There is a decrease in NiTi corrosion resistance in the presence of fluoride. The corrosion behavior of NiTi alloy depends on fluoride concentration. When 0.02 and 0.04 M of NaF were added to the NaCl solution, NiTi presented localized corrosion. When NaF concentration increased to 0.05, 0.07, and 0.12 M, the alloy presented general corrosion. NiTi corrosion resistance behavior is lower than that of beta titanium. Galvanic coupling of these alloys does not increase corrosion rates.

  20. Selective hydrodechlorination of 1,2-dichloroethane catalyzed by trace Pd decorated Ag/Al2O3 catalysts prepared by galvanic replacement

    NASA Astrophysics Data System (ADS)

    Sun, Jingya; Han, Yuxiang; Fu, Heyun; Wan, Haiqin; Xu, Zhaoyi; Zheng, Shourong

    2018-01-01

    Ag catalysts decorated by trace Pd supported on γ-Al2O3 with different structure and chemical properties were prepared using a combined impregnation and galvanic replacement method. For comparison, monometallic Ag/γ-Al2O3 and Pd/γ-Al2O3 catalysts were prepared using the impregnation method. Gas-phase catalytic hydrodechlorination of 1,2-dichloroethane to ethylene was investigated on those catalysts. The structures and chemical compositions of bimetallic Pd-Ag particles in the catalysts were controlled by adjusting Pd replacement amount. The as-prepared catalysts were characterized by X-ray diffraction, transmission electron microscopy, UV-vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, and in-situ FTIR spectroscopy of CO adsorption. The results demonstrated that contiguous Pd sites dominated in the monometallic Pd/γ-Al2O3 catalyst, while Pd atoms were separately decorated on the surface of Ag particles in the bimetallic Pd-Ag/γ-Al2O3 catalysts when Pd replacement amount was below 0.30 wt.%. At Pd replacement amount of 0.30 wt.%, Pd ensembles with contiguous Pd sites developed in the bimetallic catalyst. Thus, monometallic Pd/γ-Al2O3 catalyst displayed negligible ethylene selectivity toward the catalytic hydrodechlorination of 1,2-dichloroethane, while bimetallic Pd-Ag/γ-Al2O3 catalyst with a Pd replacement amount of 0.13 wt.% exhibited 94.6% of ethylene selectivity. Furthermore, selectivity to incompletely dechlorinated byproduct chloroethylene decreased with Pd replacement amount, due to the enhanced decoration effect of Pd on large Ag ensembles. Findings in this work provide a promising bimetallic catalyst prepared by galvanic replacement for the selective catalytic hydrodechlorination of 1,2-dichloroethane.

  1. In Situ Apparatus to Study Gas-Metal Reactions and Wettability at High Temperatures for Hot-Dip Galvanizing Applications

    NASA Astrophysics Data System (ADS)

    Koltsov, A.; Cornu, M.-J.; Scheid, J.

    2018-02-01

    The understanding of gas-metal reactions and related surface wettability at high temperatures is often limited due to the lack of in situ surface characterization. Ex situ transfers at low temperature between annealing furnace, wettability device, and analytical tools induce noticeable changes of surface composition distinct from the reality of the phenomena.Therefore, a high temperature wettability device was designed in order to allow in situ sample surface characterization by x-rays photoelectron spectroscopy after gas/metal and liquid metal/solid metal surface reactions. Such airless characterization rules out any contamination and oxidation of surfaces and reveals their real composition after heat treatment and chemical reaction. The device consists of two connected reactors, respectively, dedicated to annealing treatments and wettability measurements. Heat treatments are performed in an infrared lamp furnace in a well-controlled atmosphere conditions designed to reproduce gas-metal reactions occurring during the industrial recrystallization annealing of steels. Wetting experiments are carried out in dispensed drop configuration with the precise control of the deposited droplets kinetic energies. The spreading of drops is followed by a high-speed CCD video camera at 500-2000 frames/s in order to reach information at very low contact time. First trials have started to simulate phenomena occurring during recrystallization annealing and hot-dip galvanizing on polished pure Fe and FeAl8 wt.% samples. The results demonstrate real surface chemistry of steel samples after annealing when they are put in contact with liquid zinc alloy bath during hot-dip galvanizing. The wetting results are compared to literature data and coupled with the characterization of interfacial layers by FEG-Auger. It is fair to conclude that the results show the real interest of such in situ experimental setup for interfacial chemistry studies.

  2. A study on the fabrication of superhydrophobic iron surfaces by chemical etching and galvanic replacement methods and their anti-icing properties

    NASA Astrophysics Data System (ADS)

    Li, Kunquan; Zeng, Xingrong; Li, Hongqiang; Lai, Xuejun

    2015-08-01

    Hierarchical structures on iron surfaces were constructed by means of chemical etching by hydrochloric acid (HCl) solution or the galvanic replacement by silver nitrate (AgNO3) solution. The superhydrophobic iron surfaces were successfully prepared by subsequent hydrophobic modification with stearic acid. The superhydrophobic iron surfaces were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and water contact angle (WCA). The effects of reactive concentration and time on the microstructure and the wetting behavior were investigated. In addition, the anti-icing properties of the superhydrophobic iron surfaces were also studied. The FTIR study showed that the stearic acid was chemically bonded onto the iron surface. With the HCl concentration increase from 4 mol/L to 8 mol/L, the iron surface became rougher with a WCA ranging from 127° to 152°. The AgNO3 concentration had little effect on the wetting behavior, but a high AgNO3 concentration caused Ag particle aggregates to transform from flower-like formations into dendritic crystals, owing to the preferential growth direction of the Ag particles. Compared with the etching method, the galvanic replacement method on the iron surface more favorably created roughness required for achieving superhydrophobicity. The superhydrophobic iron surface showed excellent anti-icing properties in comparison with the untreated iron. The icing time of water droplets on the superhydrophobic surface was delayed to 500 s, which was longer than that of 295 s for untreated iron. Meanwhile, the superhydrophobic iron surface maintained superhydrophobicity after 10 icing and de-icing cycles in cold conditions.

  3. Measuring Engagement and Learning Outcomes During a Teacher Professional Development Workshop about Creative Climate Communication

    NASA Astrophysics Data System (ADS)

    Morrison, A.; Gold, A. U.; Soltis, N.; McNeal, K.; Kay, J. E.

    2017-12-01

    Climate science and global climate change are complex topics that require system-level thinking and the application of general science concepts. Identifying effective instructional approaches for improving climate literacy is an emerging research area with important broader impacts. Active learning techniques can ensure engagement throughout the learning process and increase retention of climate science content. Conceptual changes that can be measured as lasting learning gains occur when both the cognitive and affective domain are engaged. Galvanic skin sensors are a relatively new technique to directly measure engagement and cognitive load in science education. We studied the engagement and learning gains of 16 teachers throughout a one-day teacher professional development workshop focused on creative strategies to communicate about climate change. The workshop consisted of presentations about climate science, climate communication, storytelling and filmmaking, which were delivered using different pedagogical approaches. Presentations alternated with group exercises, clicker questions, videos and discussions. Using a pre-post test design we measured learning gains and attitude changes towards climate change among participating teachers. Each teacher wore a hand sensor to measure galvanic skin conductance as a proxy for emotional engagement. We surveyed teachers to obtain self-reflection data on engagement and on their skin conductance data during and after the workshop. Qualitative data provide critical information to aid the interpretation of skin conductance readings. Based on skin conductance data, teachers were most engaged during group work, discussions and videos as compared to lecture-style presentations. We discuss the benefits and limitations of using galvanic skin sensors to inform the design of teacher professional development opportunities. Results indicate that watching videos or doing interactive activities may be the most effective strategies for increasing teachers' knowledge of climate science.

  4. Highly Tunable Hollow Gold Nanospheres: Gaining Size Control and Uniform Galvanic Exchange of Sacrificial Cobalt Boride Scaffolds.

    PubMed

    Lindley, Sarah A; Cooper, Jason K; Rojas-Andrade, Mauricio D; Fung, Victoria; Leahy, Conor J; Chen, Shaowei; Zhang, Jin Z

    2018-04-18

    In principle, the diameter and surface plasmon resonance (SPR) frequency of hollow metal nanostructures can be independently adjusted, allowing the formation of targeted photoactivated structures of specific size and optical functionality. Although tunable SPRs have been reported for various systems, the shift in SPR is usually concomitant with a change in particle size. As such, more advanced tunability, including constant diameter with varying SPR or constant SPR with varying diameter, has not been properly achieved experimentally. Herein, we demonstrate this advanced tunability with hollow gold nanospheres (HGNs). HGNs were synthesized through galvanic exchange using cobalt-based nanoparticles (NPs) as sacrificial scaffolds. Co 2 B NP scaffolds were prepared by sodium borohydride nucleation of aqueous cobalt chloride and characterized using UV-vis, dynamic light scattering, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. Careful control over the size of the Co 2 B scaffold and its galvanic conversion is essential to realize fine control of the resultant HGN diameter and shell thickness. In pursuit of size control, we introduce B(OH) 4 - (the final product of NaBH 4 hydrolysis) as a growth agent to obtain hydrodynamic diameters ranging from ∼17-85 nm with relative standard deviation <3%. The highly monodisperse Co 2 B NPs were then used as scaffolds for the formation of HGNs. In controlling HGN shell thickness and uniformity, environmental oxygen was shown to affect both the structural and optical properties of the resultant gold shells. With careful control of these key factors, we demonstrate an HGN synthesis that enables independent variation of diameter and shell thickness, and thereby SPR, with unprecedented uniformity. The new synthesis method creates a truly tunable plasmonic nanostructure platform highly desirable for a wide range of applications, including sensing, catalysis, and photothermal therapy.

  5. Cadmium plated steel caps seal anodized aluminum fittings

    NASA Technical Reports Server (NTRS)

    Padden, J.

    1971-01-01

    Cadmium prevents fracturing of hard anodic coating under torquing to system specification requirements, prevents galvanic coupling, and eliminates need for crush washers, which, though commonly used in industry, do not correct leakage problem experienced when anodized aluminum fittings and anodized aluminum cap assemblies are joined.

  6. The Power of Partnerships = The Power of Success!!!

    ERIC Educational Resources Information Center

    Dunavin, Callie

    2010-01-01

    In 2005, the five community colleges in poverty-stricken eastern Arkansas galvanized to develop capacity to train a skilled workforce, increase educational access and attainment, and transform the regional economy. The Arkansas Delta Training and Education Consortium (ADTEC) includes Arkansas Northeastern College, Blytheville; East Arkansas…

  7. 40 CFR 465.23 - New source performance standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false New source performance standards. 465.23 Section 465.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS COIL COATING POINT SOURCE CATEGORY Galvanized Basis Material Subcategory § 465.23...

  8. The President as Bard.

    ERIC Educational Resources Information Center

    Kingsley, J. Gordon

    1987-01-01

    The role of the college president is described as that of "the solitary singer galvanizing a people to noble, even heroic action by the power of Their Story." The president spends his or her life trying to embody and fulfill the dreams, hopes, and aspirations of the college. (MLW)

  9. Investigation of field corrosion performance and bond/development length of galvanized reinforcing steel : [tech transfer summary].

    DOT National Transportation Integrated Search

    2014-12-01

    In reinforced concrete systems, ensuring that a good bond between the : concrete and the embedded reinforcing steel is critical to long-term structural : performance. Without good bond between the two, the system simply cannot : behave as intended. :...

  10. Yemen: Background and U.S. Relations

    DTIC Science & Technology

    2011-03-22

    continued personal authority. First inspired by Tunisia’s Jasmine Revolution and then galvanized by the overthrow of Egyptian President Hosni Mubarak...pledged a total of $5.7 billion, and therefore this table does not include the sources for an additional $400 million in pledged aid. In essence

  11. Local Action for Global Change. World Education Reports, Number 29.

    ERIC Educational Resources Information Center

    Garb, Gillian, Ed.; Baltz, Davis, Ed.

    1991-01-01

    This issue contains five articles that address environmental concerns. "Poverty and Environmental Decline" (Alan Durning) analyzes accelerating environmental decline and discusses the need for action at every level to reverse global deterioration. "Integrated Pest Management (IPM) Made Easy" (Cesar Galvan, Peter Kenmore)…

  12. Identification of techniques to meet pH standard during in-stream construction : research summary.

    DOT National Transportation Integrated Search

    2014-03-01

    Many of Marylands tributaries traverse highway infrastructure via culverts that are managed : and maintained by SHA. These culverts are often made of galvanized steel and over time are : subjected to scour. Concrete grout is often used as a repair...

  13. WET-WEATHER POLLUTION PREVENTION THROUGH MATERIALS SUBSTITUTION AS PART OF INDUSTRIAL CONSTRUCTION

    EPA Science Inventory

    A literature review of urban stormwater runoff and building/construction materials has shown that many materials such as galvanized metal, concrete, asphalt, and wood products, have the potential to release pollutants into urban stormwater runoff and snowmelt. However, much of th...

  14. Investigation of field corrosion performance and bond/development length of galvanized reinforcing steel.

    DOT National Transportation Integrated Search

    2014-12-01

    In reinforced concrete systems, ensuring that a good bond between the concrete and the embedded reinforcing steel is critical to : long-term structural performance. Without good bond between the two, the system simply cannot behave as intended. The b...

  15. Ergonomics research methods

    NASA Technical Reports Server (NTRS)

    Uspenskiy, S. I.; Yermakova, S. V.; Chaynova, L. D.; Mitkin, A. A.; Gushcheva, T. M.; Strelkov, Y. K.; Tsvetkova, N. F.

    1973-01-01

    Various factors used in ergonomic research are given. They are: (1) anthrometric measurement, (2) polyeffector method of assessing the functional state of man, (3) galvanic skin reaction, (4) pneumography, (5) electromyography, (6) electrooculography, and (7) tachestoscopy. A brief summary is given of each factor and includes instrumentation and results.

  16. Polyfibroblast: A Self-Healing and Galvanic Protection Additive

    DTIC Science & Technology

    2012-02-27

    moisture-cured polyurethane -urea (MCPU). When scratched, the foaming action of a propellant ejects the resin from the broken tubes and completely fills...experiments have reinforced the prevailing view that the existing microcapsule recipe is difficult to improve upon. Recipes with faster reaction rates

  17. Suitable Adaptation Mechanisms for Intelligent Tutoring Technologies

    DTIC Science & Technology

    2010-12-01

    the Acoustic Society of America, 93(2), pp. 1097-1108. Neurofeedback equipment - Wireless Brainquiry PET EEG and ActivEEG. (n.d.). Retrieved from...27 5.2 Electroencephalogram ( EEG ...electroencephalogram ( EEG ), heart rate variability (HRV- a measure involving the electrocardiogram [ECG]), and galvanic skin response (GSR) either

  18. Iowa state highway 92 over drainage ditch #25 : performance evaluation - galvanized reinforcing bars, Louisa County, Iowa.

    DOT National Transportation Integrated Search

    2015-06-01

    Several strategies are available to the Iowa Department of Transportation (IaDOT) for limiting : deterioration due to chloride-induced corrosion of embedded reinforcing bars in concrete bridge decks. : While the method most commonly used throughout t...

  19. 40 CFR 420.127 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Hot Coating Subcategory § 420.127...) (1) 1 Within the range of 6.0 to 9.0. (2) [Reserved] (b) Galvanizing and other coatings—(1) Wire...

  20. 40 CFR 420.127 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Hot Coating Subcategory § 420.127...) (1) 1 Within the range of 6.0 to 9.0. (2) [Reserved] (b) Galvanizing and other coatings—(1) Wire...

  1. Chemical Principles Revisited. Redox Reactions and the Electropotential Axis.

    ERIC Educational Resources Information Center

    Vella, Alfred J.

    1990-01-01

    This paper suggests a nontraditional pedagogic approach to the subject of redox reactions and electrode potentials suitable for freshman chemistry. Presented is a method for the representation of galvanic cells without the introduction of the symbology and notation of conventional cell diagrams. (CW)

  2. A CONTINUOUS FLOW EVALUATION OF THE GALVANIC STRIPPING PROCESS. (R825549C055)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  3. Repairs with self-consolidating concrete and galvanic anodes to extend bridge life.

    DOT National Transportation Integrated Search

    2017-08-01

    Historically, repairs of substructure elements that contain vertical and overhead sections have used either shotcrete or a conventional Virginia Department of Transportation (VDOT) Class A3 (3,000 psi) or Class A4 (4,000 psi) concrete. This study inv...

  4. Indicators of Multiple Personality Disorder for the Clinician.

    ERIC Educational Resources Information Center

    Dalton, Thomas W.

    Multiple personality disorder (MPD) is now recognized as a valid diagnostic category. Occurrence may be higher than previously suspected. While physiological testing of MPD has shown significant differences between the various personalities of individuals in terms of galvanic skin response, electroencephalogram recordings, electrodermal response…

  5. 46 CFR 160.176-8 - Materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cartridge), be 410 stainless steel, have salt water and salt air corrosion characteristics equal or superior... material. (6) Corrosion resistance. Each metal component must— (i) Be galvanically compatible with each... on any surface after 720 hours of salt spray testing according to ASTM B 117 (incorporated by...

  6. 46 CFR 160.176-8 - Materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cartridge), be 410 stainless steel, have salt water and salt air corrosion characteristics equal or superior... material. (6) Corrosion resistance. Each metal component must— (i) Be galvanically compatible with each... on any surface after 720 hours of salt spray testing according to ASTM B 117 (incorporated by...

  7. 46 CFR 160.176-8 - Materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cartridge), be 410 stainless steel, have salt water and salt air corrosion characteristics equal or superior... material. (6) Corrosion resistance. Each metal component must— (i) Be galvanically compatible with each... on any surface after 720 hours of salt spray testing according to ASTM B 117 (incorporated by...

  8. Theory of the inverse spin galvanic effect in quantum wells

    NASA Astrophysics Data System (ADS)

    Maleki Sheikhabadi, Amin; Miatka, Iryna; Sherman, E. Ya.; Raimondi, Roberto

    2018-06-01

    The understanding of the fundamentals of spin and charge densities and currents interconversion by spin-orbit coupling can enable efficient applications beyond the possibilities offered by conventional electronics. For this purpose we consider various forms of the frequency-dependent inverse spin galvanic effect in semiconductor quantum wells and epilayers taking into account the cubic in the electron momentum spin-orbit coupling in the Rashba and Dresselhaus forms, concentrating on the current-induced spin polarization (CISP). We find that including the cubic terms qualitatively explains recent findings of the CISP in InGaAs epilayers being the strongest if the internal spin-orbit coupling field is the smallest and vice versa [Norman et al., Phys. Rev. Lett. 112, 056601 (2014), 10.1103/PhysRevLett.112.056601; Luengo-Kovac et al., Phys. Rev. B 96, 195206 (2017), 10.1103/PhysRevB.96.195206], in contrast to the common understanding. Our results provide a promising framework for the control of spin transport in future spintronics devices.

  9. The Effect of Bi on the Selective Oxide Formation on CMnSi TRIP Steel

    NASA Astrophysics Data System (ADS)

    Oh, Jonghan; Cho, Lawrence; Kim, Myungsoo; Kang, Kichul; De Cooman, Bruno C.

    2016-11-01

    The effect of Bi addition on the selective oxidation and the galvanizability of CMnSi transformation-induced plasticity (TRIP) steels was studied by hot dip galvanizing laboratory simulations. Bi-added TRIP steels were intercritically annealed at 1093 K (820 °C) and galvanized in a 0.22 wt pct Al-containing Zn bath. The oxide morphology was investigated by scanning electron microscopy, transmission electron microscopy, and 3D atom probe tomography. Bi formed a Bi-enriched surface layer during the intercritical annealing. A decrease of the oxygen permeability was observed with increasing Bi addition. The internal oxidation was suppressed in Bi-added CMnSi TRIP steel. The surface oxide morphology was changed from a continuous layer morphology to a more lens-shaped morphology. The galvanizability of the Bi-added TRIP steel was improved by the combination of the change of the oxide morphology and the dissolution of the Bi-enriched surface layer during immersion of the strip in the Zn bath.

  10. Galvanizability of Advanced High-Strength Steels 1180TRIP and 1180CP

    NASA Astrophysics Data System (ADS)

    Kim, M. S.; Kwak, J. H.; Kim, J. S.; Liu, Y. H.; Gao, N.; Tang, N.-Y.

    2009-08-01

    In general, Si-bearing advanced high-strength steels (AHSS) possess excellent mechanical properties but poor galvanizability. The galvanizability of a transformation-induced plasticity (TRIP) steel 1180TRIP containing 2.2 pct Mn and 1.7 pct Si and a complex phase steel 1180CP containing 2.7 pct Mn and 0.2 pct Si was extensively studied using a galvanizing simulator. The steel coupons were annealed at fixed dew points in the simulator. The surface features of the as-annealed steel coupons, together with galvanized and galvannealed coatings, were carefully examined using a variety of advanced analysis techniques. It was found that various oxides formed on the surface of these steels, depending on the steel composition and on the dew point control. Coating quality was good at 0 °C dew point but deteriorated as the dew point decreased to -35 °C and -65 °C. Based on the findings, guidance was provided for improving galvanizability by adjusting the Mn:Si ratio in steel compositions according to the dew point.

  11. Precise localization of metal nanoparticles in dendrimer nanosnakes or inner periphery and consequences in catalysis

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Gregurec, Danijela; Irigoyen, Joseba; Martinez, Angel; Moya, Sergio; Ciganda, Roberto; Hermange, Philippe; Ruiz, Jaime; Astruc, Didier

    2016-10-01

    Understanding the relationship between the location of nanoparticles (NPs) in an organic matrix and their catalytic performances is essential for catalyst design. Here we show that catalytic activities of Au, Ag and CuNPs stabilized by dendrimers using coordination to intradendritic triazoles, galvanic replacement or stabilization outside dendrimers strongly depends on their location. AgNPs are found at the inner click dendrimer periphery, whereas CuNPs and AuNPs are encapsulated in click dendrimer nanosnakes. AuNPs and AgNPs formed by galvanic replacement are larger than precursors and only partly encapsulated. AuNPs are all the better 4-nitrophenol reduction catalysts as they are less sterically inhibited by the dendrimer interior, whereas on the contrary CuNPs are all the better alkyne azide cycloaddition catalysts as they are better protected from aerobic oxidation inside dendrimers. This work highlights the role of the location in macromolecules on the catalytic efficiency of metal nanoparticles and rationalizes optimization in catalyst engineering.

  12. Mechanistic study of shape-anisotropic nanomaterials synthesized via spontaneous galvanic displacement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strand, Matthew B.; Leong, G. Jeremy; Tassone, Christopher J.

    Among the broad portfolio of preparations for nanoscale materials, spontaneous galvanic displacement (SGD) is emerging as an important technology because it is capable of creating functional nanomaterials that cannot be obtained through other routes and may be used to thrift precious metals used in a broad range of applications including catalysis. With advances resulting from increased understanding of the SGD process, materials that significantly improve efficiency and potentially enable widespread adoption of next generation technologies can be synthesized. In this work, PtAg nanotubes synthesized via displacement of Ag nanowires by Pt were used as a model system to elucidate themore » fundamental mechanisms of SGD. Furthermore, characterization by X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), and atom probe tomography (APT) indicates nanotubes are formed as Ag is oxidized first from the surface and then from the center of the nanowire, with Pt deposition forming a rough, heterogeneous surface on the PtAg nanotube.« less

  13. Mechanistic study of shape-anisotropic nanomaterials synthesized via spontaneous galvanic displacement

    DOE PAGES

    Strand, Matthew B.; Leong, G. Jeremy; Tassone, Christopher J.; ...

    2016-10-13

    Among the broad portfolio of preparations for nanoscale materials, spontaneous galvanic displacement (SGD) is emerging as an important technology because it is capable of creating functional nanomaterials that cannot be obtained through other routes and may be used to thrift precious metals used in a broad range of applications including catalysis. With advances resulting from increased understanding of the SGD process, materials that significantly improve efficiency and potentially enable widespread adoption of next generation technologies can be synthesized. In this work, PtAg nanotubes synthesized via displacement of Ag nanowires by Pt were used as a model system to elucidate themore » fundamental mechanisms of SGD. Furthermore, characterization by X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), and atom probe tomography (APT) indicates nanotubes are formed as Ag is oxidized first from the surface and then from the center of the nanowire, with Pt deposition forming a rough, heterogeneous surface on the PtAg nanotube.« less

  14. Tailoring galvanic replacement reaction for the preparation of Pt/Ag bimetallic hollow nanostructures with controlled number of voids.

    PubMed

    Zhang, Weiqing; Yang, Jizheng; Lu, Xianmao

    2012-08-28

    Here we report the synthesis of Pt/Ag bimetallic nanostructures with controlled number of void spaces via a tailored galvanic replacement reaction (GRR). Ag nanocubes (NCs) were employed as the template to react with Pt ions in the presence of HCl. The use of HCl in the GRR caused rapid precipitation of AgCl, which grew on the surface of Ag NCs and acted as a removable secondary template for the deposition of Pt. The number of nucleation sites for AgCl was tailored by controlling the amount of HCl added to the Ag NCs or by introducing PVP to the reaction. This strategy led to the formation of Pt/Ag hollow nanoboxes, dimers, multimers, or popcorn-shaped nanostructures consisting of one, two, or multiple hollow domains. Due to the presence of large void space and porous walls, these nanostructures exhibited high surface area and improved catalytic activity for methanol oxidation reaction.

  15. Microstructure and Properties of Lap Joint Between Aluminum Alloy and Galvanized Steel by CMT

    NASA Astrophysics Data System (ADS)

    Niu, Song; Chen, Su; Dong, Honggang; Zhao, Dongsheng; Zhang, Xiaosheng; Guo, Xin; Wang, Guoqiang

    2016-05-01

    Lap joining of 1-mm-thick Novelist AC 170 PX aluminum alloy to 1.2-mm-thick ST06 Z galvanized steel sheets for automotive applications was conducted by cold metal transfer advanced welding process with ER4043 and ER4047 filler wires. Under the optimized welding parameters with ER4043 filler wire, the tensile shear strength of joint was 189 MPa, reaching 89% of the aluminum alloy base metal. Microstructure and elemental distribution were characterized by optical metalloscope and electron probe microanalysis. The lap joints with ER4043 filler wire had smaller wetting angle and longer bonded line length with better wettability than with ER4047 filler wire during welding with same parameters. The needle-like Al-Fe-Si intermetallic compounds (IMCs) were spalled into the weld and brought negative effect to the tensile strength of joints. With increasing welding current, the needle-like IMCs grew longer and spread further into the weld, which would deteriorate the tensile shear strength.

  16. Serially connected solid oxide fuel cells having monolithic cores

    DOEpatents

    Herceg, J.E.

    1985-05-20

    Disclosed is a solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output. The cell core has an array of cell segments electrically serially connected in the flow direction, each segment consisting of electrolyte walls and interconnect that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageways; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte composite materials is of the order of 0.002 to 0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002 to 0.05 cm thick. Between 2 and 50 cell segments may be connected in series.

  17. A procedure to detect abnormal sensorimotor control in adolescents with idiopathic scoliosis.

    PubMed

    Pialasse, Jean-Philippe; Mercier, Pierre; Descarreaux, Martin; Simoneau, Martin

    2017-09-01

    This work identifies, among adolescents with idiopathic scoliosis, those demonstrating impaired sensorimotor control through a classification procedure comparing the amplitude of their vestibular-evoked postural responses. The sensorimotor control of healthy adolescents (n=17) and adolescents with idiopathic scoliosis (n=52) with either mild (Cobb angle≥15° and ≤30°) or severe (Cobb angle >30°) spine deformation was assessed through galvanic vestibular stimulation. A classification procedure sorted out adolescents with idiopathic scoliosis whether the amplitude of their vestibular-evoked postural response was dissimilar or similar to controls. Compared to controls, galvanic vestibular stimulation evoked larger postural response in adolescents with idiopathic scoliosis. Nonetheless, the classification procedure revealed that only 42.5% of all patients showed impaired sensorimotor control. Consequently, identifying patients with sensorimotor control impairment would allow to apply personalized treatments, help clinicians to establish prognosis and hopefully improve the condition of patients with adolescent idiopathic scoliosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Application of wire beam electrode technique to investigate initiation and propagation of rebar corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Wei; Dong, Ze Hua, E-mail: zehua.dong@gmail.com; Kong, De Jie

    Multi-electrode technique named as wire beam electrode (WBE) was used to study pitting corrosion of rebar under concrete cover. When WBE embedded mortar sample was immersed in NaCl solution, uneven distributions of galvanic current and open circuit potential (OCP) on the WBE were observed due to the initiation of pitting corrosion. The following oxygen depletion in mortar facilitated the negative shift of the OCP and the smoothing of the current and potential distributions. Wetting–drying cycle experiments showed that corrosion products instead of oxygen in wet mortar specimen sustained the propagation of pitting corrosion due to Fe (III) taking part inmore » cathodic depolarization during oxygen-deficient wet period, which was confirmed by micro-Raman spectroscopy. In addition, new pitting corrosion occurred mainly near the corrosion products, leading to preferentially horizontal propagation of rust layer on the WBE. A localized corrosion factor was further presented to quantify the localised corrosion based on galvanic current maps.« less

  19. Modified corrosion protection coatings for Concrete tower of Transmission line

    NASA Astrophysics Data System (ADS)

    Guo, Kai; Jing, Xiangyang; Wang, Hongli; Yue, Zengwu; Wu, Yaping; Mi, Xuchun; Li, Xingeng; Chen, Suhong; Fan, Zhibin

    2017-12-01

    By adding nano SiO2 particles, an enhanced K-PRTV anti-pollution flashover coating had been prepared. Optical profile meter (GT-K), atomic force microscopy (AFM) and infrared spectrometer (FT-IR) characterization were carried out on the coating surface analysis. With the use of modified epoxy resin as the base material, the supplemented by phosphate as a corrosion stabilizer, to achieve a corrosion of steel and galvanized steel with rust coating. Paint with excellent adhesion, more than 10MPa (1), resistant to neutral salt spray 1000h does not appear rust point. At the same time coating a large amount of ultra-fine zinc powder can be added for the tower galvanized layer zinc repair function, while the paint in the zinc powder for the tower to provide sacrificial anode protection, to achieve self-repair function of the coating. Compared to the market with a significant reduction in the cost of rust paint, enhance the anti-corrosion properties.

  20. Passive Resonant Bidirectional Converter with Galvanic Barrier

    NASA Technical Reports Server (NTRS)

    Rosenblad, Nathan S. (Inventor)

    2014-01-01

    A passive resonant bidirectional converter system that transports energy across a galvanic barrier includes a converter using at least first and second converter sections, each section including a pair of transfer terminals, a center tapped winding; a chopper circuit interconnected between the center tapped winding and one of the transfer terminals; an inductance feed winding interconnected between the other of the transfer terminals and the center tap and a resonant tank circuit including at least the inductance of the center tap winding and the parasitic capacitance of the chopper circuit for operating the converter section at resonance; the center tapped windings of the first and second converter sections being disposed on a first common winding core and the inductance feed windings of the first and second converter sections being disposed on a second common winding core for automatically synchronizing the resonant oscillation of the first and second converter sections and transferring energy between the converter sections until the voltage across the pairs of transfer terminals achieves the turns ratio of the center tapped windings.

  1. Potential Technology Transfer to the DoD Unmanned Ground Vehicle Program.

    DTIC Science & Technology

    1996-10-01

    Germany. This process combines x-ray lithography, galvanic casting, and micromolding technology and can be used to produce a variety of sensors and...whether circulation is being obstructed by atherosclerosis . Finally, work is being done at the University of Minnesota on a microrobotic device

  2. Stress and Identity among Black Males.

    ERIC Educational Resources Information Center

    Stokes, DeVon R.

    Twenty Black American males' reactions to slides depicting interracial climate and/or racial oppression were investigated by recording physiological responses, specifically, galvanic skin potential (GSP) and heart rate (HR). Participants were also given the Myers/Stokes Identity Scale (MSIS) to ascertain their reaction to oppression and, based on…

  3. Polyfibroblast: A Self-Healing and Galvanic Protection Additive

    DTIC Science & Technology

    2011-05-25

    Laurel, MD 20723 Figure 3: Attempt to encapsulate DABCO 197 surfactant within a polyurea shell. Note the highly wrinkled appearance. The wrinkles...will be used in different concentrations to obtain the best performance. Special attention will be given to the durability of the OTS/ polyurea films

  4. Leader Style and Anxiety Level: Their Relation to Autonomic Response.

    ERIC Educational Resources Information Center

    Seemann, Daniel C.

    1982-01-01

    Studied effects of leader style and a group of people classified as either high-anxious or low-anxious. Measured participants' (N=71) responses to the leader styles using Galvanic Skin Response. Results indicated similar responses of participants to both autocratic and democratic leadership styles. (RC)

  5. Impact of treatment on scale formation and lead release from aged LSLs

    EPA Science Inventory

    Background Municipalities have been replacing the public part of lead service lines (LSLs) by copper piping, which often leaves a lead section on the private side, resulting in partial LSL replacements. Depending on water chemistry, such practices may result in galvanic and depo...

  6. 46 CFR 160.151-15 - Design and performance of inflatable liferafts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... to differences in thermal expansion, freezing, buckling, galvanic corrosion, or other... lb), unless the liferaft is intended for launching into the water directly from its stowed position... container must be inherently resistant, or treated to be resistant, to deterioration from sunlight and salt...

  7. 46 CFR 56.60-20 - Nonferrous materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... fluids are those covered by regulations in part 98 of this chapter. (b) The possibility of galvanic corrosion due to the relative solution potentials of copper and aluminum and their alloys should be... in the annealed temper should not be threaded. (d) The corrosion resistance of copper bearing...

  8. 40 CFR 465.25 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 CFR part 403 and achieve the following pretreatment standards for new sources. The mass of... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Pretreatment standards for new sources... GUIDELINES AND STANDARDS (CONTINUED) COIL COATING POINT SOURCE CATEGORY Galvanized Basis Material Subcategory...

  9. Torsional Eye Movements Evoked by Unilateral Labyrinthine Galvanic Polarizations in the Squirrel Monkey

    NASA Technical Reports Server (NTRS)

    Minor, Lloyd B.; Tomko, David L.; Paige, Gary D.

    1995-01-01

    Electrical stimulation of vestibular-nerve afferents innervating the semicircular canals has been used to identify the extraocular muscles receiving activation or inhibition by individual ampullary nerves. This technique was originally developed by Szentagothai (1950) and led to the description of three neuron reflex arcs that connect each semicircular canal through an interneuron traversing in the region of the medial longitudinal fasciculus to one ipsilateral and one contralateral eye muscle. Selective ampullary nerve stimulation was subsequently used by Cohen and colleagues (Cohen and Suzuki, 1963; Cohen et al., 1964; Suzuki et al., 1964; Cohen et al., 1966) to study movements of the eyes and activation of individual extraocular muscles in response to stimulation of combinations of ampullary nerves. This work led to a description of the now familiar relationships between activation of a semicircular canal ampullary nerves and the anticipated movement in each eye. Disconjugacy of eye movements induced by individual vertical canal stimulation and dependence of the pulling direction of vertical recti and oblique muscles on eye position were also defined in these experiments. Subsequent studies have defined the mechanisms by which externally applied galvanic currents result in a change in vestibular-nerve afferent discharge. The currents appear to act at the spike trigger site. Perilymphatic cathodal currents depolarize the trigger site and lead to excitation whereas anodal currents hyperpolarize and result in inhibition. Afferents innervating all five vestibular endorgans appear to be affected equally by the currents (Goldberg et al., 1984). Irregularly discharging afferents are about 5-10 times more sensitive than regularly discharging ones because of the steeper slope of the former's faster postspike recovery of excitability in encoder sensitivity (Smith and Goldberg, 1986). Response adaptation similar to that noted during acceleration steps is apparent for longer periods of current administration. This adaptation is manifested as a perstimulus return toward resting discharge and poststimulus after-response in the opposite direction (Goldberg et al., 1984; Minor and Goldberg, l991). Cathodal currents (with respect to the perilymphatic space of the vestibule) are excitatory whereas anodal currents are inhibitory. Horizontal eye movements evoked by unilateral galvanic polarizations administered through chronically implanted labyrinthine stimulating electrodes have been studied in alert squirrel monkeys (Minor and Goldberg, 1991). We sought to extend this analysis by recording three-dimensional eye movements during galvanic stimulation. As predicted based upon roughly equal stimulation of ampullary nerves innervating the vertical canals, a substantial torsional component to the nystagmus is noted. The trajectory of torsional slow phases and nystagmus profile after the polarization provide insight into the central mechanisms that influence these responses.

  10. Comparison of corrosion scales in full and partially replaced lead service lines after changes in water quality

    EPA Science Inventory

    Preliminary results from scales formed 38 weeks following the LSL replacement simulations revealed differences in scale formations amongst varying water qualities and pipe sequence. Rigs fed with dechlorinated tap water show distinct pH gradients between the galvanic and the back...

  11. Corrosion protection of aluminum alloys in contact with other metals

    NASA Technical Reports Server (NTRS)

    Kuster, C. A.

    1969-01-01

    Study establishes the quality of chemical and galvanized protection afforded by anodized and aldozided coatings applied to test panels of various aluminum alloys. The test panels, placed in firm contact with panels of titanium alloys, were subjected to salt spray tests and visually examined for corrosion effect.

  12. 46 CFR 160.133-7 - Design, construction, and performance of release mechanisms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... subpart). All steel products, except corrosion resistant steel, must be galvanized to provide high-quality...; (3) Steel. Each major structural component of each release mechanism must be constructed of steel. Other materials may be used if accepted by the Commandant as equivalent or superior. Sheet steel and...

  13. 46 CFR 160.133-7 - Design, construction, and performance of release mechanisms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... subpart). All steel products, except corrosion resistant steel, must be galvanized to provide high-quality...; (3) Steel. Each major structural component of each release mechanism must be constructed of steel. Other materials may be used if accepted by the Commandant as equivalent or superior. Sheet steel and...

  14. The Achiever. Volume 6, Number 8, November-December 2007

    ERIC Educational Resources Information Center

    Ashby, Nicole, Ed.

    2007-01-01

    "The Achiever" is a monthly publication for parents and community leaders. Each issue contains news and information about school improvement in the United States. Highlights of this issue include: (1) President Signs College Cost Reduction Act; (2) Galvanizing the Community: Charter Schools Provides Greater Choice to Colorado Latinos…

  15. Uneasy Translations: Taking Theories of Supervision into Teaching

    ERIC Educational Resources Information Center

    Grant, Barbara M.

    2009-01-01

    Graduate supervision is a puzzling pedagogy requiring a thoughtful response from its practitioners. In this article, I reflect upon teaching theories of supervision produced through my own research with the aim of galvanizing the imaginations and practices of supervisors. I address a curious reluctance to introduce those theories that require…

  16. 40 CFR 420.121 - Specialized definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Hot Coating Subcategory § 420.121 Specialized definitions. (a) The term galvanizing means coating steel products with zinc by the hot dip... products with terne metal by the hot dip process including the immersion of the steel product in a molten...

  17. 40 CFR 420.121 - Specialized definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Hot Coating Subcategory § 420.121 Specialized definitions. (a) The term galvanizing means coating steel products with zinc by the hot dip... products with terne metal by the hot dip process including the immersion of the steel product in a molten...

  18. 40 CFR 420.121 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Hot Coating Subcategory § 420.121 Specialized definitions. (a) The term galvanizing means coating steel products with zinc by the hot dip... products with terne metal by the hot dip process including the immersion of the steel product in a molten...

  19. Polyfibroblast: A Self-Healing and Galvanic Protection Additive

    DTIC Science & Technology

    2013-01-25

    flour , the rapid addition of liquid created lumps in the powder that were difficult to remove. This issue did not appear to result from the material...probably the worst thing that one can do to the self-healing primer. Small scratches will prematurely rupture the microcapsules that tend to be enriched

  20. 46 CFR 162.161-3 - Materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Fixed Clean Agent Fire Extinguishing Systems § 162.161-3... § 162.161-2) and be made of metal, except for bushings, o-rings, and gaskets. Aluminum or aluminum..., or if galvanically incompatible, be separated by a bushing, o-ring, gasket, or similar device. (c...

  1. 46 CFR 162.161-3 - Materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Fixed Clean Agent Fire Extinguishing Systems § 162.161-3... § 162.161-2) and be made of metal, except for bushings, o-rings, and gaskets. Aluminum or aluminum..., or if galvanically incompatible, be separated by a bushing, o-ring, gasket, or similar device. (c...

  2. 46 CFR 162.161-3 - Materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Fixed Clean Agent Fire Extinguishing Systems § 162.161-3... § 162.161-2) and be made of metal, except for bushings, o-rings, and gaskets. Aluminum or aluminum..., or if galvanically incompatible, be separated by a bushing, o-ring, gasket, or similar device. (c...

  3. 10 CFR 71.43 - General standards for all packages.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... reaction resulting from inleakage of water, to the maximum credible extent. Account must be taken of the... that there will be no significant chemical, galvanic, or other reaction among the packaging components... packaging. (g) A package must be designed, constructed, and prepared for transport so that in still air at...

  4. 10 CFR 71.43 - General standards for all packages.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... reaction resulting from inleakage of water, to the maximum credible extent. Account must be taken of the... that there will be no significant chemical, galvanic, or other reaction among the packaging components... packaging. (g) A package must be designed, constructed, and prepared for transport so that in still air at...

  5. Multi-Metallic Galvanic Corrosion

    DTIC Science & Technology

    1988-05-01

    Tate-Emery Company Calipers, Model #120, Starrett Company Extensometer, Model #P3M, Satec Incorporated Saw, Abrasimet Model, Buehler Limited PROCEDURE...few percent. Failure Analysis & Prevention, Metals Handbook Vol. 10, ASTM 1975, p. 182. 5 MPY 35-0 30-/ 25/ 20-0 15- 10- es -10Ŕ 6061-T6 COUPLED WITH

  6. 75 FR 4104 - Prestressed Concrete Steel Wire Strand From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-26

    ... Concrete Steel Wire Strand From China AGENCY: United States International Trade Commission. ACTION... wire strand, provided for in subheading 7312.10.30 of the Harmonized Tariff Schedule of the United... merchandise as PC strand, produced from wire of nonstainless, non-galvanized steel, which is suitable for use...

  7. Galvanic Skin Response and Reported Anxiety During Systematic Desensitization

    ERIC Educational Resources Information Center

    Hyman, Edward T.; Gale, Elliot N.

    1973-01-01

    The purpose of the present study was to investigate the GSR during systematic desensitization. Three groups of females each were preselected for high snake fear. Outcome measures indicated that the desensitization group reduced phobic behavior most, followed by the relaxation group, and then the exposure groups. (Author)

  8. Friction Stir Welding of HT9 Ferritic-Martensitic Steel: An Assessment of Microstructure and Properties

    DTIC Science & Technology

    2013-06-01

    X, where X represents lithium, sodium, beryllium, or transmutation products, such as tritium [47]. In this mechanism, the transmutation of lithium...Similar to the study by Williams, Farmer found that galvanic coupling, increased temperature and the formation of transmutation products (HF and TF), a

  9. Statistical Analysis Experiment for Freshman Chemistry Lab.

    ERIC Educational Resources Information Center

    Salzsieder, John C.

    1995-01-01

    Describes a laboratory experiment dissolving zinc from galvanized nails in which data can be gathered very quickly for statistical analysis. The data have sufficient significant figures and the experiment yields a nice distribution of random errors. Freshman students can gain an appreciation of the relationships between random error, number of…

  10. 40 CFR 420.126 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Zinc 0.000376 0.000125 Chromium (hexavalent) 1 0.0000376 0.0000125 1 The limitations for hexavalent chromium shall be applicable only to galvanizing operations which discharge wastewaters from the chromate... 0.00150 0.000500 Chromium (hexavalent) 1 0.000150 0.0000501 1 The limitations for hexavalent...

  11. 40 CFR 420.126 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Zinc 0.000376 0.000125 Chromium (hexavalent) 1 0.0000376 0.0000125 1 The limitations for hexavalent chromium shall be applicable only to galvanizing operations which discharge wastewaters from the chromate... 0.00150 0.000500 Chromium (hexavalent) 1 0.000150 0.0000501 1 The limitations for hexavalent...

  12. 40 CFR 420.126 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Zinc 0.000376 0.000125 Chromium (hexavalent) 1 0.0000376 0.0000125 1 The limitations for hexavalent chromium shall be applicable only to galvanizing operations which discharge wastewaters from the chromate... 0.00150 0.000500 Chromium (hexavalent) 1 0.000150 0.0000501 1 The limitations for hexavalent...

  13. 40 CFR 420.126 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Zinc 0.000376 0.000125 Chromium (hexavalent) 1 0.0000376 0.0000125 1 The limitations for hexavalent chromium shall be applicable only to galvanizing operations which discharge wastewaters from the chromate... 0.00150 0.000500 Chromium (hexavalent) 1 0.000150 0.0000501 1 The limitations for hexavalent...

  14. Electrochemistry in a Nutshell: A General Chemistry Experiment.

    ERIC Educational Resources Information Center

    Baca, Glenn; Lewis, Dennis A.

    1978-01-01

    This experiment uses a nine-chambered plexiglas unit to facilitate rapid construction of galvanic cells and measurement of cell voltage. Using this procedure, a pair of students can construct and obtain the cell voltages of two precipitation cells, three concentration cells, and six redox cells in 30-40 minutes. (BB)

  15. 46 CFR 195.35-5 - General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 1014 (incorporated by reference, see § 195.01-3). (d) All lifelines shall be of steel or bronze wire rope. Steel wire rope shall be either inherently corrosion-resistant, or made so by galvanizing or... breaking strength of 1,500 pounds. (e) All equipment shall be maintained in an operative condition, and it...

  16. 46 CFR 195.35-5 - General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 1014 (incorporated by reference, see § 195.01-3). (d) All lifelines shall be of steel or bronze wire rope. Steel wire rope shall be either inherently corrosion-resistant, or made so by galvanizing or... breaking strength of 1,500 pounds. (e) All equipment shall be maintained in an operative condition, and it...

  17. 46 CFR 195.35-5 - General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 1014 (incorporated by reference, see § 195.01-3). (d) All lifelines shall be of steel or bronze wire rope. Steel wire rope shall be either inherently corrosion-resistant, or made so by galvanizing or... breaking strength of 1,500 pounds. (e) All equipment shall be maintained in an operative condition, and it...

  18. America's Children at an Environmental Crossroad

    ERIC Educational Resources Information Center

    Stomfay-Stitz, Aline M.; Wheeler, Edyth

    2008-01-01

    Few issues have galvanized the attention of U.S. citizenry in the past year as have environmental concerns, especially climate change, global warming, and greenhouse gas emissions. Degradation to our fragile planet continues unchecked with only limited actions on a national level. Children who absorb these concerns through television, classroom…

  19. EVALUATING THE POTENTIAL EFFICACY OF THREE ANTIFUNGAL SEALANTS OF DUCT LINER AND GALVANIZED STEEL AS USED IN HVAC SYSTEMS

    EPA Science Inventory

    Current recommendations for remediation of fiberglass duct materials contaminated with fungi specify complete removal, which can be extremely expensive, but in-place duct cleaning may not provide adequate protection from regrowth of fungal contamination. Therefore, a common pract...

  20. Evaluation of anodes for galvanic cathodic prevention of steel corrosion in prestressed concrete piles in marine environments in Virginia.

    DOT National Transportation Integrated Search

    1999-07-01

    Many of the major highway crossings over coastal waters in the Hampton area of Virginia are supported by prestressed concrete piles, some of which are showing signs of reinforcement corrosion. Grout jacketing alone is an inadequate protection against...

  1. Introducing Undergraduate Students to Electrochemistry: A Two-Week Discovery Chemistry Experiment

    ERIC Educational Resources Information Center

    Mills, Kenneth V.; Herrick, Richard S.; Guilmette, Louise W.; Nestor, Lisa P.; Shafer, Heather; Ditzler, Mauri A.

    2008-01-01

    Within the framework of a laboratory-focused, guided-inquiry pedagogy, students discover the Nernst equation, the spontaneity of galvanic cells, concentration cells, and the use of electrochemical data to calculate equilibrium constants. The laboratory experiment we describe here is a continuation of curriculum reform and pedagogical innovation at…

  2. Textbook Error: Short Circuiting on Electrochemical Cell

    ERIC Educational Resources Information Center

    Bonicamp, Judith M.; Clark, Roy W.

    2007-01-01

    Short circuiting an electrochemical cell is an unreported but persistent error in the electrochemistry textbooks. It is suggested that diagrams depicting a cell delivering usable current to a load be postponed, the theory of open-circuit galvanic cells is explained, the voltages from the tables of standard reduction potentials is calculated and…

  3. PREDICTING IMPACTS OF REROUTING DRAINAGE WATER FROM THE PAMLICO SOUND TO RESTORED WETLANDS—A CRITICAL COMPONENT TO GALVANIZE STAKEHOLDER COOPERATION

    EPA Science Inventory

    Denitrification, a microbially mediated transformation of nitrate to nitrogen gas that escapes from the wetland to the atmosphere, has been identified as the primary pathway for nitrogen removal in wetlands. Requirements for denitrification, which include anoxic conditions,...

  4. 77 FR 2666 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ... airplanes. This proposed AD was prompted by reports that escape slides/rafts did not deploy due to galvanic corrosion of the door-mounted slide/raft packboard release mechanisms. This proposed AD would require doing... corrosion of the packboard release mechanisms, which could interfere with escape slide/raft deployment...

  5. Adsorption of Cashew Allergens to Acid-Etched Zinc Metal Particles

    USDA-ARS?s Scientific Manuscript database

    Galvanized metal surfaces are approved by the FDA for use in many food processing steps. Food allergens can cause severe reactions even in very small amounts, and surfaces contaminated with allergens could pose a serious threat. The binding of cashew allergens to zinc particles was evaluated. Whi...

  6. 46 CFR 160.176-8 - Materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... °F to +150 °F). (4) Weathering resistance. Each non-metallic component which is not suitably covered... to this test. Materials that are covered when used in the lifejacket may be tested with the covering material. (6) Corrosion resistance. Each metal component must— (i) Be galvanically compatible with each...

  7. 40 CFR 465.24 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for existing...) EFFLUENT GUIDELINES AND STANDARDS COIL COATING POINT SOURCE CATEGORY Galvanized Basis Material Subcategory § 465.24 Pretreatment standards for existing sources. Except as provided in 40 CFR 403.7 and 403.13, any...

  8. 40 CFR 465.24 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Pretreatment standards for existing...) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) COIL COATING POINT SOURCE CATEGORY Galvanized Basis Material Subcategory § 465.24 Pretreatment standards for existing sources. Except as provided in 40 CFR 403.7 and 403...

  9. 40 CFR 465.25 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and achieve the following pretreatment standards for new sources. The mass of wastewater pollutants in... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for new sources... GUIDELINES AND STANDARDS COIL COATING POINT SOURCE CATEGORY Galvanized Basis Material Subcategory § 465.25...

  10. Language Insights for Caregivers with Young Children

    ERIC Educational Resources Information Center

    Honig, Alice Sterling

    2017-01-01

    How to help babies and young children right from birth to become competent in talking as well as emergent literacy is illustrated by research findings as well as with specific clinical stories. Both kinds of knowledge can serve to galvanize parents and teachers to increase awareness of infant and preschool language development and the crucial role…

  11. 49 CFR 195.577 - What must I do to alleviate interference currents?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... each impressed current or galvanic anode system to minimize any adverse effects on existing adjacent... 49 Transportation 3 2010-10-01 2010-10-01 false What must I do to alleviate interference currents... alleviate interference currents? (a) For pipelines exposed to stray currents, you must have a program to...

  12. 49 CFR 195.577 - What must I do to alleviate interference currents?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... each impressed current or galvanic anode system to minimize any adverse effects on existing adjacent... 49 Transportation 3 2011-10-01 2011-10-01 false What must I do to alleviate interference currents... alleviate interference currents? (a) For pipelines exposed to stray currents, you must have a program to...

  13. Addressing Student Misconceptions Concerning Electron Flow in Aqueous Solutions with Instruction Including Computer Animations and Conceptual Change Strategies.

    ERIC Educational Resources Information Center

    Sanger, Michael J.; Greenbowe, Thomas J.

    2000-01-01

    Investigates the effects of both computer animations of microscopic chemical processes occurring in a galvanic cell and conceptual-change instruction based on chemical demonstrations on students' conceptions of current flow in electrolyte solutions. Finds that conceptual change instruction was effective at dispelling student misconceptions but…

  14. 46 CFR 119.730 - Nonferrous metallic piping materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Provisions must be made to protect piping systems using aluminum alloys in high risk fire areas due to the... galvanic corrosion due to the relative solution potentials of copper, aluminum, and alloys of copper and... suitable thread compound must be used in making up threaded joints in aluminum pipe to prevent seizing...

  15. 46 CFR 182.730 - Nonferrous metallic piping materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... protect piping systems using aluminum alloys in high risk fire areas due to the low melting point of aluminum alloys; (2) Provisions must be made to prevent or mitigate the effect of galvanic corrosion due to... compound must be used in making up threaded joints in aluminum pipe to prevent seizing. Pipe in the...

  16. 46 CFR 160.170-7 - Design, construction, and performance of automatic release mechanisms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... subpart). All steel products, except corrosion resistant steel, must be galvanized to provide high-quality...; (3) Steel. Each major structural component of each release mechanism must be constructed of steel. Other materials may be used if accepted by the Commandant as equivalent or superior. Sheet steel and...

  17. 46 CFR 160.170-7 - Design, construction, and performance of automatic release mechanisms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... subpart). All steel products, except corrosion resistant steel, must be galvanized to provide high-quality...; (3) Steel. Each major structural component of each release mechanism must be constructed of steel. Other materials may be used if accepted by the Commandant as equivalent or superior. Sheet steel and...

  18. 46 CFR 160.170-7 - Design, construction, and performance of automatic release mechanisms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... subpart). All steel products, except corrosion resistant steel, must be galvanized to provide high-quality...; (3) Steel. Each major structural component of each release mechanism must be constructed of steel. Other materials may be used if accepted by the Commandant as equivalent or superior. Sheet steel and...

  19. 77 FR 70390 - Lifesaving Equipment: Production Testing and Harmonization With International Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ...) by ensuring that any non-grooved drum design is still shown at the prototype testing phase to be as... equivalent) will no longer be available for purchase. Only the non-galvanized, corrosion-resistant mechanisms... affecting design, performance, and testing for such lifesaving equipment, and to clarify the requirements...

  20. So, You Want to Host a Family Science Night?

    ERIC Educational Resources Information Center

    Lundeen, Cynthia

    2005-01-01

    With the exception of periodic science fairs or the occasional home-science project, science is not usually the galvanizing force for the school community. But, through family science events, it can be. It is no secret that students whose families are involved in their children's education significantly benefit in achievement, attitudes, and…

  1. Children in Crisis: Ideas for Child Care Professionals as Citizens.

    ERIC Educational Resources Information Center

    Honig, Alice Sterling

    Children in America are in crisis. As citizens, child care professionals can write letters to and apply political pressure on elected officials, galvanizing them to improve the lives of young children and their families. In the field of education, action is needed to: (1) provide human development curricula in elementary schools; (2) link…

  2. The galvanizing of Mycobacterium tuberculosis: An antimicrobial mechanism

    PubMed Central

    Russell, David G

    2011-01-01

    Summary Evolving under constant threat from invading microbes, macrophages have acquired multiple means of killing bacteria. In this issue of Cell Host & Microbe, Botella and colleagues describe a novel anti-microbial mechanism based on elevated levels of intraphagosomal Zn2+ and the corresponding induction of bacterial genes to ameliorate this host-derived stress. PMID:21925106

  3. 33 CFR 183.512 - Fuel tanks: Prohibited materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tanks: Prohibited materials... tanks: Prohibited materials. (a) A fuel tank must not be constructed from terneplate. (b) Unless it has an inorganic sacrificial galvanic coating on the inside and outside of the tank, a fuel tank must not...

  4. Galvanic Synthesis of Hollow Gold Nanoshells

    DTIC Science & Technology

    2015-02-01

    HAuNS of select diameter and shell thickness were synthesized and tunability of the extinction coefficient was demonstrated through control of the... extinction peak HAuNS ......................................................................................................... 4 Fig. 2 Histogram of...was supported in part by an appointment to the Research Participation Program at the US Army Research Laboratory (ARL) administered by the Oak Ridge

  5. The DREAMS Team: Creating Community Partnerships through Research Advocacy Training for Diverse Older Adults

    ERIC Educational Resources Information Center

    Hart, Ariel R.; Dillard, Rebecca; Perkins, Molly M.; Vaughan, Camille P.; Kinlaw, Kathy; McKay, J. Lucas; Waldrop-Valverde, Drenna; Hagen, Kimberley; Wincek, Ron C.; Hackney, Madeleine E.

    2017-01-01

    The DREAMS Team research advocacy training program helps clinical faculty and health students introduce basic clinical research concepts to diverse older adults to galvanize their active involvement in the research process. Older adults are frequently underrepresented in clinical research, due to barriers to participation including distrust,…

  6. The Chemical and Educational Appeal of the Orange Juice Clock.

    ERIC Educational Resources Information Center

    Kelter, Paul B.; And Others

    1996-01-01

    Describes the recent history, chemistry, and educational uses of the Orange Juice Clock demonstration in which a galvanic cell is made from the combination of a magnesium strip, a copper strip, and juice in a beaker. Discusses the chemistry basics, extensions for more advanced students, questions for student/teacher workshop participants, and…

  7. Conceptual Difficulties Experienced by Senior High School Students of Electrochemistry: Electrochemical (Galvanic) and Electrolytic Cells.

    ERIC Educational Resources Information Center

    Garnett, Pamela J.; Treagust, David F.

    1992-01-01

    This research used semistructured interviews to investigate students' (n=32) understanding of electrochemistry following a 7-9 week course of instruction. Three misconceptions were identified and incorporated with five previously reported into an alternative framework about electric current involving drifting electrons. Also noted was the tendency…

  8. A Dishonorable Killing

    ERIC Educational Resources Information Center

    Lum, Lydia

    2006-01-01

    The brutal slaying in 1955 of Emmett Till by at least two White Southerners shocked and outraged the country. Published photos of the Black teenager's mutilated body on the covers of Jet and The Chicago Defender galvanized the civil rights movement, especially in the South. A sadly similar crime in Hawaii 23 years earlier also led residents of…

  9. 40 CFR 63.5995 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for continuity, oxidation, and galvanic corrosion. (c) For each integrating regeneration stream flow... a device that is capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle. (d) For any other control device, or for other capture systems, ensure that the CPMS is...

  10. 40 CFR 63.5995 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for continuity, oxidation, and galvanic corrosion. (c) For each integrating regeneration stream flow... a device that is capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle. (d) For any other control device, or for other capture systems, ensure that the CPMS is...

  11. 40 CFR 63.5995 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for continuity, oxidation, and galvanic corrosion. (c) For each integrating regeneration stream flow... a device that is capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle. (d) For any other control device, or for other capture systems, ensure that the CPMS is...

  12. Galvanic Skin Response as a Measure of Soldier Stress

    DTIC Science & Technology

    2007-05-01

    in the body have been used as an effective measure of stress, including social stress such as performance in front of an audience (Nater, La Marca ...Lake, CA, 1992. Nater, U. M.; La Marca , R.; Florin, L.; Moses, A.; Langhans, W.; Koller, M. M.; Ehlert, U. Stress-Induced Changes in Human

  13. Introduction: Why Anti-Racist Activism? Why Now?

    ERIC Educational Resources Information Center

    Young, Vershawn A.; Condon, Frankie

    2013-01-01

    Despite widely circulated pronouncements of the death of racism in the U.S. following the election of President Barack Obama, politicians continue to appeal to race as a means of galvanizing their (predominantly white) bases, legislation across the States taps into deeply held racist beliefs and connects those beliefs with notions of citizenship…

  14. 46 CFR 160.062-3 - Materials, construction, workmanship, and performance requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... effects as galvanic corrosion, freezing, or buckling of moving parts, or loosening and tightening of... 15 feet prior to being tested for either the temperature or the corrosion resistance tests of 160.062-4(c)(2). After exposure to these temperature and corrosion tests, a hydraulic release shall release...

  15. 46 CFR 63.25-3 - Electric hot water supply boilers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... elements must be secured in a manner which prevents loosening. (e) Iron and steel parts must be protected against corrosion by enameling, galvanizing, or plating. Iron and steel storage tanks having a wall thickness less than 6.4mm (1/4-inch) must have the inside surface protected against corrosion. (f) Each...

  16. Galvanic Corrosion Initiatives

    DTIC Science & Technology

    1987-12-01

    Blair, Incorporated Baldwin Tensile Tester, Model #472470, Southwark Division, Tate-Emery Company Extensometer, Model #P3M, Satec , Incorporated...8217%, , q% % A - 6.0" 3.0൉ -~ 4.0" .25"’ 2.0 tesl es pcme .Ř 3.00 B.~~~~~~ inuatn slee pee %, %. % Z-,P ENVIRONMENTS , The environments for this

  17. MEASUREMENT AND ANALYSIS OF PHYSIOLOGICAL RESPONSE TO FILM.

    ERIC Educational Resources Information Center

    CASE, HARRY W.; LEVONIAN, EDWARD

    THE PRIMARY OBJECTIVE OF THIS STUDY WAS THE DEVELOPMENT OF A SYSTEM WHICH WOULD ALLOW THE MEASUREMENT AND ANALYSIS OF PHYSIOLOGICAL RESPONSE OF STUDENTS VIEWING FILM MATERIAL UNDER CONVENTIONAL CLASSROOM CONDITIONS. THE GALVANIC SKIN RESPONSE (GSR) WAS MEASURED BY SENSORS AND USED AS AN INDICATOR OF STUDENT INTERACTION WITH THE FILM MATERIAL. IN…

  18. Polyfibroblast: A Self-Healing and Galvanic Protection Additive

    DTIC Science & Technology

    2013-06-25

    polyurea shell. The degradation was so slow over the course of one month that it was easier to monitor IPD1 degradation instead. We found first order...dependence of water diffusion through the shell. Note that the polyurea shell in this case contains silica inclusions. -13.6 -14.0 -14.4 -14.8 -15.2

  19. Fighting an Epidemic: The Role of Schools in Reducing Childhood Obesity

    ERIC Educational Resources Information Center

    Pyle, Sara A.; Sharkey, Jill; Yetter, Georgette; Felix, Erika; Furlong, Michael J.; Poston, W. S. Carlos

    2006-01-01

    Obesity among children and adolescents is a major public health concern affecting the physical and emotional health of youth while increasing their risk of reduced quality and duration of life. Schools and communities have begun to galvanize to address this epidemic and need quality empirical information to guide their policy, programming, and…

  20. 40 CFR 420.125 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... product Lead 0.00113 0.000376 Zinc 0.00150 0.000500 Chromium (hexavalent) 1 0.000150 0.0000501 1 The limitations for hexavalent chromium shall be applicable only to galvanizing operations which discharge... product Lead 0.00451 0.00150 Zinc 0.00601 0.00200 Chromium (hexavalent) 1 0.000601 0.000200 1 The...

Top